Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   ETD Home
    • Faculty of Natural Science
    • Department of Computer Science
    • Magister Scientiae - MSc (Computer Science)
    • View Item
    •   ETD Home
    • Faculty of Natural Science
    • Department of Computer Science
    • Magister Scientiae - MSc (Computer Science)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and Implementation of a Credible Blockchain-based E-health Records Platform

    Thumbnail
    View/Open
    Thesis (7.127Mb)
    Date
    2020
    Author
    Xu, Lingyu
    Metadata
    Show full item record
    Abstract
    With the development of information and network technologies, Electronic Health Records (EHRs) management system has gained wide spread application in managing medical records. One of the major challenges of EHRs is the independent nature of medical institutions. This non-collaborative nature puts a significant barrier between patients, doctors, medical researchers and medical data. Moreover, unlike the unique and strong anti-tampering nature of traditional paper-based records, electronic health records stored in centralization database are vulnerable to risks from network attacks, forgery and tampering. In view of the data sharing difficulties and information security problems commonly found in existing EHRs, this dissertation designs and develops a credible Blockchain-based electronic health records (CB-EHRs) management system. To improve security, the proposed system combines digital signature (using MD5 and RSA) with Role-Based Access Control (RBAC). The advantages of these are strong anti-tampering, high stability, high security, low cost, and easy implementation. To test the efficacy of the system, implementation was done using Java web programming technology. Tests were carried out to determine the efficiency of the Delegated Byzantine Fault Tolerance (dBFT) consensus algorithm, functionality of the RBAC mechanism and the various system modules. Results obtained show that the system can manage and share EHRs safely and effectively. The expectation of the author is that the output of this research would foster the development and adaptation of EHRs management system.
    URI
    http://hdl.handle.net/11394/7939
    Collections
    • Magister Scientiae - MSc (Computer Science)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV