Remote sensing and multispectral imaging of hydrological responses to land use/land cover and climate variability in contrasting agro-ecological systems in Mountainous catchment, Western Cape
Abstract
Water is a fundamental resource and key in the provision of energy, food and health. However, water resources are currently under severe pressure as a consequence of climate change and variability, population growth and economic development. Two driving factors that affect the availability of water resources are land use land cover (LULC) change and climate variability. Increasing population influences both LULC change and climate variability by inducing changes in key hydrological parameters such as interception rates, evapotranspiration (ET), run-off, surface infiltration, soil moisture, water quality and groundwater availability thereby affecting the watershed hydrology. The effects of LULC change and climate variability on hydrologic parameters have been extensively studied.