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ABSTRACT 

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin 

lymphoma (NHL) and incorporates a diverse range of illnesses with varying biology, clinical 

manifestations, and therapeutic responses. Functional insertion mutations represent the 

driving mechanism behind many oncologic illnesses. Research has shown that variants 

associated with cancer in the non-coding portion of the genome, which is enriched with 

enhancer elements, is greatly underappreciated. The present study designed a bioinformatics 

pipeline using Nextflow DSL2 to identify insertion-induced enhancers associated with DLBCL 

oncogenes within the non-coding genome using H3K27ac ChIP-seq data. Gapped DLBCL reads 

identified by bowtie were mapped to the human reference genome with bowtie2. Non-coding 

insertions were identified with BEDTools and verified by pBlat. Putative enhancers located by 

MACS2 were intersected with the non-coding insertions. Genes linked to the identified non-

coding insertion-induced enhancers were generated by BEDOPS before functional analysis 

was performed using DAVID. The insertion mutations were observed to target chromosomes 

that were gene rich, correlating to areas of the genome high in GC content and accessible to 

transcription. This resulted in a strong, positive correlation between enhancer rate and gene 

count. The enhancers were largely proximal, situated within or near the transcription start 

site (TSS) of their associated genes, among which were found known oncogenes relevant to 

several cancer types, such as DYRK1A, COPB2, FOXP1, IPO11, PRDM2 and PRDM15, or 

specifically to DLBCL, such as SMC3, MIR155HG, PIM1 and NOTCH1. Functional analysis placed 

the affected genes in lymphoma pathways involved with cell growth and survival, apoptosis, 

chemotherapy resistance, sustained angiogenesis, and metastasis. The study highlighted the 

non-coding genome’s potential contribution to DLBCL tumorigenesis through the 

dysregulated effect of mutated enhancers on gene expression. The research provided a 

framework for further investigation of non-coding anomalies across human malignancies.  

KEYWORDS: cancer, diffuse large B-cell lymphoma, enhancer, insertion, pipeline 
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CHAPTER 1 

INTRODUCTION 

1.1.  BACKGROUND  

Non-Hodgkin’s lymphoma (NHL) results from the growth and accumulation of a single mature 

clone of lymphocytes (Gouveia, Siqueira and Pereira, 2012). Diffuse large B-cell lymphoma 

(DLBCL), the most common subtype of NHL, originates in the germinal centre and is 

characterized by a diffuse production of matured and enlarged B-cells (Frick, Dörken and Lenz, 

2011). Although lasting remissions can be found in over 50% of cases, DLBCL remains a 

difficult clinical issue, with one-third of patients remaining uncured by standard 

immunochemotherapeutic regimens (Bakhshi and Georgel, 2020).  

DLBCL makes up 30–40% of all NHL cases (Evrard et al., 2019). In South Africa, DLBCL 

comprises up to 43% of NHL cases (Pather and Patel, 2022). DLBCL is the most prevalent 

cancer in people living with HIV (PLWH), and South Africa is home to one of the biggest HIV 

epidemics worldwide (Naidoo et al., 2018). It is suggested that HIV may promote 

lymphomagenesis through direct and indirect interactions with B-cells (Re, Cattaneo and 

Rossi, 2019).  HIV-related lymphomas are clinically distinct. In comparison to the non-HIV 

infected population, there is a greater predisposition to advanced stage, aggressive 

presentation, and extranodal activity (Pather and Patel, 2022). A clearer understanding on the 

molecular pathways affected in DLBCL may provide insight into the disease mechanism 

behind the manifestation of lymphoma in HIV infected patients that may be used as a guide 

in therapeutic development. 

DLBCL is generally comprised of two major subgroups based on cell of origin (COO); activated 

B-cell (ABC), and germinal centre B-cell (GCB) DLBCL (Chettiankandy et al., 2016). ABC DLBCL 

is the more aggressive of the two subtypes; associated with poorer outcomes, it is 

characterized by constitutive activation of the nuclear factor ĸB (NF-ĸB) pathway which is 

involved in cell immunity and regulation of cell differentiation, proliferation, and apoptosis 

(Nowakowski and Czuczman, 2015). ABC DLBCL develops from B-cells immediately after they 

have left the germinal centre (Roschewski, Phelan and Wilson, 2020). GCB DLBCL develops in 

the germinal-centre dark zone, where B-cells encounter antigens and somatic hypermutation 
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occurs (Hunter et al., 2020). Each subgroup has their own molecular features indicative of 

differential pathogenesis. Up to 20% of DLBCL cases go unclassified (Schrader et al., 2022). 

Refining what is known about the mutational variability on a molecular level may aid in the 

production of alternate approaches to disease management, including precision therapy. 

Tumour genomes have numerous DNA variants that differentiates them from healthy cell 

genomes, but only a fraction are driver mutations involved in pathogenesis (Abraham et al., 

2017). Among the most poorly understood of these variants are insertions (Abraham et al., 

2017). Evidence has shown that somatic insertions can create binding motifs for master 

transcription factors, which then erroneously create super-enhancers that stimulate the 

overexpression of oncogenes (Mansour et al., 2016). However, insertions frequently passed 

undetected due to limitations involving the alignment of short reads generated by sequencing 

technologies to human reference genomes (Mansour et al., 2016). 

While many variants in coding regions found in cancer cells via next generation sequencing 

(NGS) have been studied, there has been significantly less research into the importance of 

non-coding variants in cancer (Huang et al., 2020). Those that have been studied were found 

to play critical roles in tumorigenesis suggesting non-coding mutations are underappreciated 

(Abraham et al., 2017). Examples of functional non-coding mutations that disturb enhancers 

and promoters and expression of their target genes include a single-nucleotide polymorphism 

in the LMO1 enhancer of neuroblastoma patients, variants in the TERT promoter of different 

cancer types, and heterozygous indels (insertions and deletions) in a super-enhancer linked 

to the TAL1 promoter in T-acute lymphoblastic leukaemia patients (He et al., 2020).  

Non-coding DNA comprises most of the human genome and contains functional cis regulatory 

DNA elements like enhancers that control protein coding genes in a signal-dependent manner 

and are frequently dysregulated by cancerous mutations (Elliott and Larsson, 2021). 

Dysregulation may be brought on by trans regulatory processes, like the activation of 

transcription factors or epigenetic regulators that control enhancer activity, or by cis 

regulatory mutations that alter enhancer activity or specificity of its target gene (Elliott and 

Larsson, 2021). These activities produce super-enhancers that are specific to a particular type 

of tumour and which create a gene regulatory state that maintains the uncontrollable growth 

of cancer cells (Wang, Yan and Cairns, 2019). Acetylation of the histone mark H3K27 
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distinguishes active from inactive enhancers (Creyghton et al., 2010). H3K27ac ChIP-seq 

allows the detection of enhancers through its ability to trace transcription factors which 

activate enhancers (Abraham et al., 2017). Since H3K27ac sequence reads are largely 

produced from active regulatory regions, a more direct relationship between the variant and 

potential function is provided.  

Bioinformatics tools arranged within a pipeline is used to analyse the data generated by ChIP-

seq and convert it to meaningful information (Federico et al., 2019).  Workflow management 

systems enable bioinformatics pipelines to efficiently arrange analysis stages while processing 

large quantities of ChIP-seq data across varying computational environments (Ahmed et al., 

2021). Nextflow is a workflow framework and programming DSL that allows scalable, 

reproducible, and inherently parallel workflows using container technology to ensure 

efficient deployment (di Tommaso et al., 2017).  

Two steps typical of ChIP-seq analytical pipelines used in epigenetic studies involve mapping 

and variant calling, for which several programs have been developed. Bowtie2 allows quick 

and memory-efficient large-scale alignment of short, gapped sequencing reads to a reference 

genome (Langmead and Salzberg, 2012). This enables the detection of mutation events such 

as insertions in ChIP-seq data. The tool pBlat is a parallelised sequence alignment algorithm 

typically used for the analysis and comparison of biological sequences and can verify ChIP-seq 

sequences with insertions. MACS2 is used to identify transcription factor binding sites (Feng, 

Liu and Zhang, 2011) and, when coupled with H3K27ac ChIP-seq data, can be used to locate 

areas in the genome enriched with enhancer activity. The BEDTools suite offers tools for the 

exploration of genomic datasets through arithmetic tasks and can be used to find overlapping 

features between two datasets (Quinlan and Hall, 2010). Causative insertion events can 

therefore be linked to putative mutated enhancer activity within ChIP-seq data. The BEDOPS 

suite can then link a list of variants to the nearest genes based on genomic distance (Neph et 

al., 2012), thereby suggesting biological significance.   

Algorithms such as those described have been used in past studies; Abraham et al. (2017) 

successfully identified enhancer-associated small insertion variants near known oncogenes. 

Later research by Huang et al. (2020) computationally rebuilt the techniques described by 

Abraham et al. (2017) and developed a database cataloguing enhancer-associated insertion 
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and deletion variants for human and murine ChIP-seq data. The combination of an 

experimental and computational approach is therefore suggested to optimise genome-wide 

detection of enhancer-associated variations in tumour cells. As a result, the search for 

diagnostic biomarkers and therapeutic targets may turn its focus to the non-coding genome.  

1.2. PROBLEM STATEMENT 

DLBCL is a genetically diverse form of cancer with notable variations in manifestation and 

pathogenesis. Driver mutation discovery is essential to comprehending DLBCL oncogenesis 

and therapeutic response. The search for driver mutations in B-cell lymphoma has mostly 

centred on coding areas, but many tumours lack obvious driver mutations. Since non-coding 

sequences make approximately 98% of the human genome, it is the location of most somatic 

mutations in cancer genomes. Insertions were one of the main topics of earlier investigations 

into non-coding mutations, of which several have now been identified. Enhancers, which are 

non-coding regulatory sequences, are important regulators of gene expression. Enhancers 

and the expression of their target genes have been known to be disrupted by insertions in 

DLBCL. Detection of functional non-coding insertion-induced enhancers is crucial to 

identifying genes and pathways relevant to the onset, progression, and outcome of DLBCL 

pathogenesis.  

1.3. RESEARCH AIM 

Mutations in the non-coding genome may have an impact on the progression of 

tumorigenesis that is not fully realised. This study was geared to determine via a 

bioinformatics pipeline for H3K27ac ChIP-seq data analysis whether genomic insertions in 

non-coding regions can create novel enhancers associated with DLBCL oncogenes for the 

purpose of developing a database that future studies on DLBCL can use in South Africa.  
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1.4. RESEARCH OBJECTIVES 

The objectives of this study were to: 

a) Access DLBCL H3K27ac ChIP-seq data through public repositories and published 

literature. 

b) Create a bioinformatics pipeline to find non-coding insertion-induced enhancers. 

c) Identify genes associated with the detected novel enhancers. 

d) Perform functional enrichment analysis to analyse the enhancer associated genes’ 

involvement in biological pathways relevant to cancer. 

1.5. DISSERTATION STRUCTURE 

Chapter 1 describes the development of the thesis idea, its rationale and significance. It 

includes the main research problem that drove the investigation, and the aim and objectives 

the study strived to achieve to explore potential solutions to the issues described. It indicates 

the research framework, structure, and methodology. Chapter 2 involves deep insight into 

literature surrounding the study, the boundaries of the study and the research upon which 

the study was built. It discusses the latest technology and virtualisation of biological studies. 

Chapter 3 explains the research hypothesis, concepts, research instruments and processes 

used and the rationale behind their selection. It stipulates the specificities involving data 

gathering methodology, data editing and data coding. It also describes the steps taken to 

reduce error and validate findings. Chapter 4 describes the properties of the published data 

accessed together with the results drawn from the computational pipeline as well as patterns 

and relationships observed. Chapter 5 discusses key points, anomalies, and unexpected 

discoveries along with potential explanations. It underlines the importance of the study and 

areas that require further investigation. It also covers the study's potential practical 

implications. Chapter 6 summarises the key points of the investigation and areas of potential 

research expansion. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. INTRODUCTION 

The purpose of the following chapter is to explain the reasoning behind the conception of and 

methodology undertaken in the present study. The chapter describes the biological theory 

and computational practices that gave rise to the study hypothesis and the research 

techniques employed to achieve the study objectives. It begins with the classification of 

DLBCL, the influence of genetic factors on pathogenesis, and the significance of DLBCL in 

South Africa. This is followed by an analysis of genomic components such as enhancers, 

insertions, and the non-coding genome relevant to cancer as well as DLBCL specifically. 

Previous literature involving similar themes are discussed and their methods and results 

summarised to describe the foundation upon which this study was built. Subsequently, the 

value of computational biology in modern science is explored along with the various 

bioinformatics tools that can be utilised to answer data intensive questions.  

2.2. CELL OF ORIGIN CLASSIFICATION OF DLBCL 

DLBCL can develop spontaneously or by transition from low grade B-cell malignancies such 

follicular lymphoma or chronic lymphocytic leukaemia, also known as Richter’s 

transformation. DLBCL is caused by mature B-cells becoming cancerous after they have 

undergone the germinal centre response (Pasqualucci and Dalla-Favera, 2015). When B-cells 

are exposed to a foreign antigen, microanatomical compartments called germinal centres 

(GC) develop (Pasqualucci and Dalla-Favera, 2015). Clonal growth and antibody affinity 

maturation occurs within these compartments. The B-cells are recycled in two different 

regions: the dark zone (DZ), made up of proliferating cells that undergo somatic 

hypermutation to alter their immunoglobulin genes; and the light zone (LZ), where B-cells 

become either plasma cells or memory B-cells based on their affinity for the antigen (Tripodo 

et al., 2020).  
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The World Health Organisation (WHO) partitioned DLBCL into distinct subgroups such as T-

cell/histiocyte-rich B-cell lymphoma, primary DLBCL of the Central Nervous System (CNS 

DLBCL), primary cutaneous DLBCL, Epstein-Barr virus (EBV)-positive DLBCL of the elderly, and 

DLBCL not otherwise specified (NOS) (Beham-Schmid, 2017). DLBCL NOS is the most common 

category representing cases that do not fit into any specific disease subgroup and 

demonstrates a broad cytologic spectrum (Collares et al., 2019). In DLBCL NOS, two main 

molecular phenotypes exist (Xie, Pittaluga and Jaffe, 2015). These phenotypes, later 

discussed, show the importance of the GC as a target of malignant transformation. Germinal 

centre B-cell (GCB) DLBCL lacks expression of early post-GC differentiation markers, whereas 

activated B-cell (ABC) DLBCL exhibits a transcriptional signature like that in activated B-cells 

or in lymphocytes poised to plasma cell differentiation (Nowakowski and Czuczman, 2015). 

2.2.1. ACTIVATED B-CELL SUBTYPE 

ABC DLBCL is derived from B-cells in the process of differentiating into plasma cells. Genes 

routinely expressed in normal germinal centre B-cells are downregulated, whilst genes 

routinely expressed in normal plasma cells are upregulated (Frick, Dörken and Lenz, 2011). 

The inactivation of the PR/SET domain family (PRDM) member PRDM1, which encodes 

BLIMP1 and promotes plasmacytic differentiation, suggests that a block in differentiation is a 

trait of ABC subtype (Xia et al., 2017). The INKa/ARF tumour suppressor locus is deleted in 

30% of cases and the amplification of 18q is associated with overexpression of the anti-

apoptotic BCL2 protein (Frick, Dörken and Lenz, 2011). Mutations in the B-cell receptor (BCR) 

subunits (CD79A and CD79B) and in regulators of the NF-κB pathway (MYD88) work in unison 

to stimulate the activation of the NF-κB transcription factor complex via constitutive B-cell 

receptor signalling (Weber and Schmitz, 2022). These processes consequently promote cell 

survival and proliferation and impedes apoptosis. Inhibition of the NF-κB pathway is toxic to 

ABC but not to GCB-cell lines (Frick, Dörken and Lenz, 2011). ABC patients respond poorly to 

standard rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) 

immunochemotherapy as compared to GCB patients (Miao et al., 2019). ABC DLBCL patients 

that carry MYD88 and CD79B mutations show a significantly better response to ibrutinib, a 

Bruton’s tyrosine kinase (BTK) inhibitor, than patients with other ABC DLBCL tumours 

(Roschewski, Phelan and Wilson, 2020). 
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The pivotal role played by BCR signalling in the pathogenesis of ABC DLBCL validates the 

concept of the cell-of-origin classification. 

2.2.2. GERMINAL CENTRE B-CELL SUBTYPE 

GCB DLBCL arises from malignant B-cells with overexpression of genes involved in the 

germinal centre response including ongoing somatic hypermutation and CD10 expression. 

Common mutations that define GCB DLBCL include B-cell lymphoma 2 (BCL2) chromosomal 

translocations, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) oncogenic 

mutations, REL amplification and alterations in gene phosphatase and tensin homolog 

deleted on chromosome 10 (PTEN) (Roschewski, Phelan and Wilson, 2020). A t(14;18) 

translocation placing the BCL2 gene and the regulatory elements of the immunoglobulin 

heavy chain locus close together leads to activation of the anti-apoptotic BCL2 protein (Frick, 

Dörken and Lenz, 2011). Loss of function of PTEN activates the phosphatidylinositol 3-kinase 

(PI3K) pathway stimulating cell proliferation and survival. EZH2 inhibits proliferation 

checkpoint genes and establishes bivalent chromatin domains thereby enabling a GC B-cell 

specific gene expression program (Weber and Schmitz, 2022). GCB DLBCL also shows 

amplification of MDM2 (Miao et al., 2018), a negative regulator of the tumour suppressor 

p53, as well as deletions of the known tumour suppressor genes TP73 and ING1 (Frick, Dörken 

and Lenz, 2011). The 2016 WHO classification demarcated a subgroup of high-grade DLBCL 

with a GCB phenotype based on MYC proto-oncogene (MYC) and BCL2 translocations 

(Roschewski, Phelan and Wilson, 2020). This so-called double hit lymphoma presents in 

approximately 8% of DLBCL cases and has an extremely poor prognosis (Roschewski, Phelan 

and Wilson, 2020). 

2.2.3. UNCLASSIFIED 

B-cell Lymphoma unclassifiable is a group of high-grade B-cell lymphomas recognised by the 

WHO that cannot be classified as either Burkitt's lymphoma or DLBCL because it has features 

common to both groups (Chettiankandy et al., 2016). Improvements in molecular 

characterization techniques and the introduction of new medicines that target particular 

DLBCL subtypes have laid the groundwork for individualized treatment of DLBCL based on 

molecular subtype. However, up to 20% of DLBCL NOS cases remain unclassified with 

biological traits largely unknown (Roschewski, Phelan and Wilson, 2020).  
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The cell of origin classification does not cover rare subtypes like T-cell/histiocyte-rich large B-

cell lymphoma, suggesting the need for future refinement of the classification system 

(Roschewski, Phelan and Wilson, 2020). 

2.2.4. GENETIC SUBTYPES OF DLBCL 

The biology and prognosis of the DLBCL ABC and GCB subgroups continue to show significant 

variability. Defining genetic events have been found exclusively within and across cell of origin 

subtypes and can further sub-classify DLBCL (Figure 1). 

 

Figure 1: Genetic subtypes of DLBCL with their mutational mechanisms and therapeutic targets (Roschewski, Phelan and 
Wilson, 2020). 

EZB is typically a GCB DLBCL with BCL2 translocations, mutated PTEN and EZH2, and REL 

amplifications (Weber and Schmitz, 2022). TNFRSF14, CREBBP, and EP300 are often 

inactivated. EZB has the best overall prognosis of DLBCL, but the worst within the GCB 

subgroup (Weber and Schmitz, 2022). Targeted therapy for EZB includes inhibitors of EZH2 

and BCL2, or of proximal BCR signalling and the PI3K signalling pathway (Roschewski, Phelan 

and Wilson, 2020). BN2, found across DLBCL cell of origin subtypes, is defined by B-cell 

lymphoma 6 (BCL6) fusions and alterations of the BCR and NOTCH signalling pathways (Kotlov 

et al., 2021). It frequently shows mutations in NOTCH2. BN2 has the best prognosis within 

ABC DLBCL and inhibitors of BCL2, BCR or PI3K signalling are standard treatments 

(Roschewski, Phelan and Wilson, 2020). MCD is usually an ABC DLBCL characterized by MYD88 
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and CD79B mutations. Other recurrent mutations in MCD are seen in primary CNS lymphoma, 

including pim-1 proto-oncogene, serine/threonine kinase (PIM1) (Roschewski, Phelan and 

Wilson, 2020). Treatment of MCD includes inhibitors of BTK, PI3K, BCL2, and IRAK4. N1 is 

almost exclusively an ABC DLBCL; characterized by NOTCH receptor 1 (NOTCH1) mutations, it 

is associated with the worst prognosis along with MCD. N1 includes variations in IRF4 and ID3 

controlling B-cell differentiation (Kotlov et al., 2021). N1 has chronic active BCR signalling 

susceptible to BTK inhibitors (Roschewski, Phelan and Wilson, 2020).  

Primary mediastinal B-cell lymphoma, which is distinct from DLBCL, is a post-thymic B-cell 

derivative (Roschewski, Phelan and Wilson, 2020). Several mutations that promote immune 

evasion are observed, such as EZH2 variations that lessen the production of MHC class I and 

MHC class II. 

More research is required to understand the therapeutic implications of these subgroups with 

reference to the function of targeted treatment. Precision medicine is transforming patient 

care by customising treatment based on genetic and phenotypic traits that distinguish 

between patients exhibiting comparable clinical presentations (Nowakowski et al., 2019). The 

strategy is being increasingly used in clinical practice with improved patient response and 

survival. Two prime examples are trastuzumab for HER2 positive breast cancer, and 

vemurafenib for BRAF V600E positive melanoma (Nowakowski et al., 2019). Both are novel 

therapies developed due to the application of molecular profiling. The study of genetic 

pathways provides for the identification of diagnostic and prognostic indicators, as well as for 

the development of precision medicine strategies focused at addressing oncogenic addictions 

particular to distinct DLBCL classes, e.g., proteasome inhibitors that reduce NF-κB signalling 

and BCR pathway inhibitors for ABC DLBCL (Roschewski, Staudt and Wilson, 2014). 
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2.3. GENOMIC FACTORS INFLUENCING DLBCL PATHOGENESIS 

2.3.1. ONCOGENES, TUMOUR SUPPRESSOR GENES, AND TRANSCRIPTION FACTORS 

The diverse and aggressive nature of diffuse large B-cell lymphoma (DLBCL), as well as its 

resistance and relapse after standard treatment, have spurred the exploration of the 

pathological mechanisms that sustain the disease. The introduction of powerful genomic 

technologies has enabled a deeper characterisation of the genetic and molecular landscape 

of DLBCL. DLBCL is maintained by the build-up of genetic abnormalities that change the 

structure or expression of proto-oncogenes, tumour suppressor genes, transcription factors, 

and other molecules of pathogenetic importance. The mutations induce dysregulation of 

biological functions crucial to the maintenance of healthy germinal centre B-cells. 

The BCL2 gene encodes an anti-apoptotic protein that is involved in resistance to 

chemotherapy (Dunleavy and Wilson, 2011). BCL2 regulation is disrupted in DLBCL by the 

t(14;18) translocation, gene amplification or NF-κB signalling (Schuetz et al., 2012). BCL2 is 

the most mutated gene in GCB DLBCL (Schuetz et al., 2012). Studies have shown a higher 

disease-free survival rate in DLBCL without the positively correlated expression of BCL2 and 

Cyclin D2 (Amen et al., 2007). The BCL6 gene, like the BCL2 gene, is an anti-apoptotic factor 

important to B-cell development. BCL6 is a proto-oncogene expressed in normal B-cells that 

blocks genes involved in cell cycle progression and response to DNA damage (Evrard et al., 

2019). BCL6 expression is higher in the GCB subtype than in the ABC subtype of DLBCL (Li et 

al., 2019). BCL6 expression can become dysregulated because of mutations in the 5′ non-

coding region; in around 13% of DLBCL cases, these mutations prevent BCL6 from negatively 

regulating its own expression (Bakhshi and Georgel, 2020). Approximately 40% of DLBCL 

instances have chromosomal translocations that result in increased BCL6 expression (Bakhshi 

and Georgel, 2020). Chromosomal translocations in the BCL6 gene come from disorders in the 

sequence of the promoter region of DNA. Alterations in BCL6 protein expression cause failure 

in cell differentiation and continuous cell proliferation with improved cell survival.   

The tumour protein p53 gene (p53) encodes a phosphoprotein p53 that regulates DNA 

transcription and repair, autophagy, and apoptosis. Mutated p53 is one of the most 

frequently mutated genes in GCB and ABC subtypes. Observed in 20%–25% of DLBCL cases, it 

is an unfavourable prognostic factor for patients undergoing R-CHOP treatment.  
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Patients with absent or mutated p53 show more aggressive disease and worse prognosis and 

some studies suggest that p53 may be inactivated by the BCL6 gene during the start of 

lymphoma (Wang et al., 2017).  

The tumour suppressor p53 negatively regulates c-Myc, the dysregulation of which impacts 

the inferior prognosis in B-cell lymphoma (Yu, Yu and Young, 2019). MYC is a regulatory gene 

that is involved in cell cycle regulation, metabolism, and apoptosis (Wang et al., 2017). MYC 

translocations can upregulate many growth-promoting genes. Recombination of the MYC 

gene with other genes is especially found in extranodal lymphomas and is linked to lower 

remission and survival rates (Richardson et al., 2019). MYC rearrangements, usually from 

chromosomal translocation, is an instigator in many types of B-cell lymphoma including 10–

15% of DLBCL (Wang et al., 2017). Double-expressor DLBCL characterised by the 

overexpression of MYC and BCL2, and double-hit lymphoma characterised by the dual 

translocation of MYC with BCL2/BCL6, represent subgroups of DLBCL with poor prognosis (Xia 

and Zhang, 2020). Overexpression of anti-apoptotic protein BCL2 together with MYC 

activation induces uncontrolled cell proliferation (Xia and Zhang, 2020).  

B-cell differentiation and proliferation are controlled by transcription factors, two of which 

are the OCT-1 and OCT-2 proteins (Heckman et al., 2006). The OCT-2 protein is highly 

expressed in mature B-cells but not in pre-B-cells, T-cells, myelomonocytic and epithelial cells 

(Gouveia, Siqueira and Pereira, 2012). The OCT-1 protein is highly expressed in pre-B-cells and 

may be involved in the early development of B-cells. OCT factors affect the survival of cells in 

lymphomas with the t(14; 18) translocation (the transfer of a chromosome 18 segment 

containing a certain gene to an IgH downstream site on chromosome 14, like that which 

occurs with BCL2) (Gouveia et al., 2020). A positive correlation was found between OCT, BOB1 

and BCL2 expressions. OCT-2 activates the BCL2 gene promoter and is involved in the 

malignant transformation in B-lymphomas (Heckman et al., 2006). Apoptosis is inversely 

proportional to low expression of OCT-1, OCT-2 and BOB1 (Heckman et al., 2006). Gene 

forkhead box P1 (FOXP1), which encodes another transcription factor relevant to DLBCL, 

distinguishes the ABC subtype from the GCB subtype (Gascoyne and Banham, 2017). FOXP1 

regulates the expression of ABC DLBCL signatures, such as the NF-κB and MYD88 pathways 

(Gascoyne and Banham, 2017). By opposing pathways specific to GCB DLBCL, such as those of 

the GCB regulator BCL6, FOXP1 increases gene expression fundamental to the transition of 
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the GCB cell to the plasmablast, which is the transitory B-cell stage targeted in ABC DLBCL 

transformation (Dekker et al., 2016). 

2.3.2. ENHANCERS 

Enhancers are one of several cis-regulatory elements (non-coding DNA regulatory elements) 

that work in unison to regulate transcription by controlling cell state and cell differentiation 

(Wang, Yan and Cairns, 2019). Enhancers are comprised of short DNA regions that can be 

bound by transcription factors to activate gene expression regardless of their orientation or 

distance (Panigrahi and O’Malley, 2021). Single enhancers in non-coding areas outside of 

model genes, found by studies of elements related to disease followed by large scale 

comparative genomics, suggest certain cis-regulatory elements influence disease in a very big 

way (Creyghton et al., 2010).  

Enhancer dysfunction is one of the main mechanisms behind the abnormal regulation of 

oncogenes in cancer and is typically induced by epigenetic processes (Yao et al., 2020). Super 

enhancers, a subclass of regulatory domains, are made up of large enhancer clusters with a 

stronger ability to promote gene expression than typical enhancers (Bal et al., 2022). During 

normal cell development, super enhancers or very strong enhancers are often located close 

to genes that determine lineage (He, Long and Liu, 2019). During tumorigenesis, super-

enhancers form de novo near oncogenes and enlist enhancer-binding proteins to activate 

gene expression (He, Long and Liu, 2019). This locks the growth regulation network in an 

activated state and promotes unchecked proliferation (Sur and Taipale, 2016). Super 

enhancers are often filled with H3K4me1, H3K27ac, p300, Mediator, RNA polymerase II, 

BRD4, CDK7, and other master transcription factors (He, Long and Liu, 2019). 

Histones can undergo several post-transcriptional changes, such as acetylation, 

phosphorylation, methylation, and ubiquitination, which affect how histones and DNA 

interact, hence affecting how genes are expressed globally (Zhang et al., 2020). Histone 

acetylation, like that of histone H3 on lys9 and lys27, is often associated with transcription 

that is active, while deacetylation results in transcriptional silence (Gao et al., 2020). Histone 

acetylation entails the covalent modification of lysine with an acetyl group. Normally a 

positively charged amino acid, lysine has a strong binding affinity for the negatively charged 

DNA molecule (Ellenbroek and Youn, 2016). A more open structure that is easier for the 
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transcriptional machinery to access results from the inclusion of the acetyl group, which 

neutralizes this positive charge and lessens the interaction between histones and DNA 

(Ellenbroek and Youn, 2016).   

Histone modifications, which are utilized as markers to distinguish putative enhancers, are 

necessary for enhancer activity ( Zhang et al., 2020). The mark for enhancer priming is histone 

H3 lysine 4 monomethylation (H3K4me1) (Tang et al., 2020). However, the identification of 

enhancers focuses on the acetylation of histone H3 on lysine 27 (H3K27) to find specific cell 

type enhancer sites (Huang et al., 2021). Active enhancers are marked with H3K4me1 and 

H3K27ac, with reduction of histone H3 lysine 4 trimethylation (H3K4me3); silent or inactive 

enhancers are marked with only H3K4me3 (Creyghton et al., 2010). Thus, Histone H3K27ac 

can differentiate active from inactive enhancers containing H3K4me1 and is the most 

extensively researched histone acetylation used for the detection of enhancers and super-

enhancers in published ChIP-seq studies (Gao et al., 2020). 

Genome-wide association studies have revealed that most cancerous mutations are found 

outside the exome (Huang et al., 2020) in regions enriched with enhancer elements (Sur and 

Taipale, 2016). Mutations in regulatory elements can alter their activity, e.g., an indel in T-ALL 

creates a super-enhancer that drives overexpression of TAL1 gene (Hung et al., 2019). 

Sporadic tumours usually have enhancers with somatic mutations, like copy number changes 

that increase enhancer affinity and activity, structural rearrangements that direct enhancers 

to new targets and point mutations or insertions and deletions that create new enhancers by 

changing transcription factor binding sites (Sur and Taipale, 2016). Malfunctioning enhancers 

are the biggest contributor to heritable cancer predisposition (Sur and Taipale, 2016). 

Different cancers have been observed to lose or acquire super enhancers (Xu et al., 2022). 

The expression of downstream oncogenes crucial for the development of DLBCL have been 

found to be stimulated by super enhancers (Chapuy et al., 2013). Active super enhancers 

connected to the proto-oncogenes BCL6, BCL2, and CXCR4 were found to prevent 

transcriptional repressors from binding to and downregulating the target gene (Bal et al., 

2022). DLBCL treatment with super enhancer inhibitors have been shown to reduce the 

expression of oncogenes impacted in this manner (Xu et al., 2022).  
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Although transcription is a characteristic of all cells, cancer cells are dependent on increased 

transcription from enhancers, making them particularly vulnerable to enhancer inhibition (Sur 

and Taipale, 2016). Cancer therapy can be turned toward enhancer dysfunction which could 

pinpoint critical factors that directly contribute to pathogenesis. These can be methodically 

examined through procedures like ChIP-seq of histone mark H3K27ac. By focusing on 

mutations in reported enhancers, the search space can be reduced while statistical power is 

increased; indels and low frequency variants in regulatory regions can be detected (Huang et 

al., 2020). Additionally, candidate variants can be efficiently linked to target transcripts. 

2.3.3. GENOMIC INSERTIONS AND DELETIONS 

The non-coding regions of tumour genomes have a lot of DNA variation, but the contribution 

of these variants to tumorigenesis is poorly understood (Abraham et al., 2017). Somatic 

insertions are among the least defined due to challenges with interpreting short-read DNA 

sequences (Abraham et al., 2017). Insertions and deletions (indels) are additions or deletions 

of one or more nucleotides in a DNA sequence (Gagliano et al., 2019). Studies have estimated 

that 16% to 25% of sequence polymorphisms are indels (Chen and Guo, 2021) . Indels in both 

coding and non-coding regions have been associated with Mendelian and complex diseases 

(Gagliano et al., 2019). Indels are important in clinical NGS because they’re the driving 

procedure behind many constitutional and oncologic diseases, they are also typically a 

mechanism of kinase activation in cancer which is a feature exploited by targeted therapy 

with kinase inhibitors (Sehn, 2015). 

In coding regions, an indel that is not in‐frame will change the reading frame resulting in a 

protein product different to the wild type, e.g., 40 or more CAG repeats in the first exon of 

the huntingtin gene results in Huntington's disease (Lench et al., 2013). Indels that are in-

frame can also result in altered proteins, e.g., a deletion in the cystic fibrosis transmembrane 

conductance regulator gene that leads to cystic fibrosis (Mullaney et al., 2010).  

A 2010 study suggested that indels are often under positive selection and can therefore be 

oncogenic driver mutations (Yang et al., 2010). The study established a strong correlation 

between indels and base substitutions in cancer-related genes and observed a tendency of 

the indels to group at the same locus in the coding sequences of the same samples. 

Furthermore, a larger amount of indels were found in somatic mutations than in meiotic ones. 
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Indels in non-coding regions may affect chromatin structure or the affinity of a binding site 

for a regulatory factor, e.g., insertions in the promoter region of the FMR1 gene can cause 

Fragile X syndrome (Mills et al., 2006), and insertions in the promoter region of the SNCA gene 

contributes to autosomal dominant Parkinson's disease (Gagliano et al., 2019). Previous work 

established that somatic non-coding indels in 79 lung adenocarcinoma genomes were 

exclusively enriched in protein genes (Imielinski, Guo and Meyerson, 2017). Another study 

further reported the presence of non-coding indels in different forms of lung cancer and 

demonstrated their clinical use as clonal markers (Nakagomi et al., 2019). 

Indel identification is influenced by structural features, like repeats or short interspersed 

elements. Variant detection methods have been NGS based for which software like SOAP and 

MAQ have been designed (Bennett et al., 2021). The sequencing methods and bioinformatics 

tools used for NGS analysis influence the sensitivity and specificity of indel detection. The 

many NGS platforms have different error types regarding detection of substitutions and 

indels, comparative analyses therefore show limited agreement between identified indels. 

False negative rates in many NGS studies have led to about one third of indels in human 

genomes remaining undiscovered (Bennett et al., 2021).  Due to such difficulties, studies 

suggest that indels are underrepresented with only 55% of insertions in European and 

Yoruban genomes detected (Bennett et al., 2021). 

Many mutations linked to complex traits are found outside the exome; a study found that 

88% of the single nucleotide polymorphisms (SNP) in prostate cancer fell in presumed 

enhancers and less than 20% of the variants were present in the coding region (Hazelett et 

al., 2014). Therefore, it is important to examine the possible pathogenic influence of indels in 

non-coding areas of the genome. 

2.3.4. NON-CODING DNA REGION 

The central dogma of molecular biology comprises the cellular processes of replication, 

transcription, and translation. The Human Genome Project established that about 98.5% of 

the human genome does not encode proteins (Boland, 2017). Originally thought to be 

redundant and under no selective pressure, it is now known that 3D genomic organisation 

needed for gene regulation is defined by structural elements of non-coding DNA (Perenthaler 

et al., 2019). 
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Studies have identified frequently mutated genes and pathways in B-cell lymphoma; 

however, many malignancies have no detectable driver mutations. The search for driver 

mutations in B-cell lymphoma has mostly been limited to coding DNA (Cornish et al., 2019). 

Finding oncogenic mutations in the non-coding genome is problematic because of the huge 

search space, the challenge in determining the effect of variants that do not encode proteins, 

the higher mutation rates of non-coding regions due to weaker selective pressure, the 

analysis of a greater amount of passenger mutations to find non-coding driver variants, and 

a lack of understanding of the non-coding genome (Rahman and Mansour, 2019). Therefore, 

it is tricky to analyse the selection pressure of non-coding mutations methodically and 

unbiasedly, which is why few non-coding mutations have been defined and the functional 

contribution of non-coding mutations is underappreciated (Huang et al., 2020). 

There is however good reason for exploring the non-coding genome for biomarkers, 

therapeutic targets, and driver mutations. It is filled with cis regulatory DNA elements like 

enhancers that play key roles in gene expression (Rahman and Mansour, 2019). Mutations 

are many in the non-coding genome which is over 50 times bigger than the exome (Elliott and 

Larsson, 2021) . New variants of regulatory potential may exist in non-coding regions and may 

also provide clues to finding other mutations that disrupt normal cellular development. For 

example, a germline deletion in the microRNA MIR17HG leads to microcephaly, and a 

mutation in the promoter region of MIR146A is associated with lupus; most single-nucleotide 

variants (SNV) identified by genome wide association studies that are linked with increased 

risk of complex disease are in non-coding DNA areas (Ferlaino et al., 2017). 

Recent studies have identified somatically acquired recurring mutations in the non-coding 

genome that activate protooncogene expression (Rahman and Mansour, 2019). A 2013 study 

found that the promoter of TERT, which encodes the reverse transcriptase subunit of 

telomerase, can somatically acquire mutations leading to its overexpression in human 

melanoma (Huang et al., 2013). This showed that the non-coding genome can acquire driver 

mutations. The lesions made de novo consensus binding sites for ETS family transcription 

factors, allowing overexpression of TERT and telomere length and therefore continued cell 

survival (Hornshøj et al., 2018). Further study showed that these TERT promoter mutations 

occur in other neoplasms too, like ovarian, follicular thyroid, and meningiomas, so similar 

mutations are selected during the development of other malignancies (Vinagre et al., 2013).  
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Other comparable non-coding mutational hotspots have been found in additional cancer 

genomes; FOXA1 promoter mutations (a driver of hormone-receptor positive breast cancer), 

recurring mutations in cis-regulatory elements that interact with the ETV1 promoter in 

colorectal cancer (CRC), and recurring non-coding mutations in liver cancer (Rahman and 

Mansour, 2019). Recurrent mutations have also been found in the regulatory regions of the 

promoters of cancer related genes WDR74, SDHD and PLEKHS1 (Gan et al., 2018). These 

mutations change gene expression levels, transcription factor binding and are linked to poor 

prognosis. Analyses of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium and 

The Cancer Genome Atlas (TCGA) identified non-coding driver mutations in several cancer 

related genes such as TP53, NFKBIZ, TOB1, BRD4 and AKR1C (Rheinbay et al., 1965). Another 

study identified 160 significant non-coding elements, including the TERT promoter, as well as 

elements associated with known cancer related genes and regulatory genes such as PAX5, 

TOX3, PCF11 and MAPRE3 (Hornshøj et al., 2018).  

With all the mutational procedures at work, it is reasonable to expand the search space for 

driver mutations in malignancies beyond the exome. 

2.4. DLBCL IN SOUTH AFRICA 

DLBCL comprises approximately 43% of NHLs in South Africa (Pather and Patel, 2022). This is 

thought to be largely influenced by the high seroprevalence of HIV infection in the southern 

African region (Pather and Patel, 2022). South Africa accounts for a third of all new HIV 

infections in southern Africa and has the biggest HIV epidemic in the world, with 7.7 million 

people living with the disease (AVERT, 2020). HIV occurrence in the general population was 

at 20.4% as of 2020 (AVERT, 2020). HIV infection is a recognized risk factor for aggressive B-

cell NHLs, which account for up to 30% of tumours in Africa (Pather and Patel, 2022). DLBCL 

makes up approximately 50% of all HIV-associated lymphomas worldwide (Magangane, 

Mohamed and Naidoo, 2020).  

Studies suggest that HIV can influence B-cells and promote lymphomagenesis directly and 

indirectly by interacting with B lymphocyte surface molecules (de Carvalho, Leal and Soares, 

2021). HIV may affect B-cells by changing how different cell types secrete cytokines. Many 

cytokines, like IL6, IL10, TNFα, and IFNα, that are involved in B-cell activation, differentiation, 
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and HIV induced modifications, are overexpressed in HIV-positive individuals (de Carvalho, 

Leal and Soares, 2021).  

A retrospective cohort study was conducted in 2020 on patients diagnosed with de novo 

DLBCL NOS in Cape Town, South Africa over a 14-year period (Cassim et al., 2020). The study 

included DLBCL patients with and without HIV comorbidity. An equal distribution of GCB and 

ABC subtypes was observed in the HIV-infected and HIV-uninfected groups. There is growing 

research indicating that DLBCL classification into GCB or ABC subtype does not predict the 

outcome of HIV-linked DLBCL (Wu et al., 2021). The expression of antigens like FOXP1, BCL2, 

and PRDM1 that indicate poor prognosis in non-AIDS DLBCL patients does not predict survival 

with HIV-linked DLBCL (Chadburn et al., 2009). The 2020 South African study however 

observed no statistically significant differences in overall survival by DLBCL COO subtype, 

regardless of HIV status (Cassim et al., 2020). Higher CD4 counts in HIV-infected patients was 

associated with similar survival outcomes as HIV-uninfected patients, whereas lower CD4 

counts in HIV-infected patients predicted significantly poorer outcomes compared to HIV-

uninfected patients (Cassim et al., 2020). This was corroborated with other research that also 

linked worse DLBCL prognosis in PLWH to infectious complications, specifically, 

immunosuppression with low CD4 count (Re, Cattaneo and Rossi, 2019).  

Although the rate of HIV-associated lymphoma has decreased since the introduction of highly 

active antiretroviral therapy (HAART), the risk of lymphoma is still higher in PLWH (Wu et al., 

2021). In South Africa, late establishment of anti-retroviral therapy and late diagnosis of AIDS-

defining cancers remain common (Cassim et al., 2020). In the setting of HIV, DLBCL is 

characterised by early diagnosis, later tumour staging, higher prevalence of B symptoms, and 

extranodal involvement, supporting accumulating evidence that indicate HIV-linked DLBCL is 

distinct from other forms of DLBCL (de Carvalho, Leal and Soares, 2021). HIV-linked DLBCL 

possesses specific molecular properties, gene expression profiles, and chromosomal 

rearrangements, as well as altered amounts of miRNAs (de Carvalho, Leal and Soares, 2021).  

Though the survival estimates for HIV-linked DLBCL patients are consistently similar to those 

for immunocompetent DLBCL patients, up to 70% of PLWH are excluded from DLBCL research 

trials (de Carvalho, Leal and Soares, 2021). The inclusion of HIV-DLBCL patients in clinical trial 

http://etd.uwc.ac.za/



20 

 

protocols may help accurately characterise DLBCL in this particularly sensitive population 

given the innate link between lymphoma and HIV. 

2.5. NEXT GENERATION SEQUENCING 

Determining the order of nucleotides in a genome or targeted region of DNA/RNA has 

improved due to the development of next-generation sequencing (NGS). NGS technology's 

success is a result of its capacity to sequence millions of DNA reads and perform multi-gene 

analysis with very little nucleic acid (Kanzi et al., 2020). It is excellent for sequencing 

complicated genomes quickly and effectively, which saves time and money.  

DNA NGS calls for DNA fragmentation, library preparation, massive parallel sequencing, 

bioinformatics analysis, and variant identification and interpretation (Nones and Patch, 2020). 

NGS technology has improved in reliability, sequencing chemistry, pipeline analyses, and data 

interpretation (Kanzi et al., 2020). Additionally, it boasts an impressive degree of flexibility 

and is effectively used in a variety of research fields, including pharmacogenomics, molecular 

diagnostics of genetic disorders, infectious illnesses, and cancer (Kamps et al., 2017). 

Due to the ability to discover a large number of variations linked to complex pathways of 

oncogenesis and inter- and intra-tumour heterogeneity, NGS usage in cancer research has 

yielded high-quality mutation detection data, particularly for functional or rarely mutated 

genes, epigenetics, and transcriptomics (del Vecchio et al., 2017). Molecular profiling of 

malignancies can offer significant insights on diagnosis, prognosis, and therapeutic response 

prediction, which can influence clinical decision-making.  

NGS has been used in testing circulating tumour DNA and in human leukocyte antigen typing, 

and microbial sequencing (Thompson et al., 2016; di Resta et al., 2018). Targeted testing can 

be focused on oncogenes, like BRCA1 and BRCA2 genes for breast and ovarian cancer, or it 

can analyse a wider panel that includes genes associated with other cancers (many cancers 

have overlapping characteristics) (di Resta et al., 2018). NGS has allowed collective efforts, 

like the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas 

(TCGA) project, to list the genomic environment of different cancer genomes (Meldrum, 

Doyle and Tothill, 2011). TCGA has generated data on 33 types of cancer (Wang et al., 2018); 

and the Catalogue Of Somatic Mutations In Cancer (COSMIC) project has collected about six 
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million coding mutations and has explored other genetic mechanisms that can aid cancer like 

gene fusions, drug resistance mutations and non-coding mutations (Tate et al., 2019). 

Available NGS platforms include Illumina, which uses ‘sequencing by synthesis’ (Illumina 

Custom Amplicon panels, Illumina Nextera for large amplicons, etc.); Ion Torrent, which uses 

fusion primers for small amplicons; Roche and Helios (Moorthie, Mattocks and Wright, 2011).  

With greater than 99% accuracy, Illumina's equipment is used in a variety of fields, including 

transcriptomics, epigenomics, and genomics (Illumina Sequencing and array-based solutions 

for genetic research, 2022). The Illumina sequencing technique is based on clonal arrays 

paired with clonal sequencing by synthesis employing cyclic reversible termination. The 

process is designed to sequence both the forward and reverse strands; as a result, data from 

both strands are taken into account in the final analysis. During sequencing by synthesis, base 

calls are made for each cluster and stored for every cycle of sequencing in individual base call 

(BCL) files. When sequencing completes, the BCL files must be converted into sequence data 

in FASTQ format, the default file format for sequence reads generated from NGS technologies 

(FASTQ files explained, 2022). A FASTQ file is a text file that represents biological sequences 

and their corresponding quality scores.  

NGS has been applied to whole genome sequencing (WGS), a technique designed for entire 

genome sequencing (del Vecchio et al., 2017). It offers the most comprehensive landscape of 

genetic data and potential biological effects. Despite its potential, which enables the 

detection of undiscovered mutations at the level of both coding and non-coding areas largely 

engaged in the control of gene expression, it exhibits unavoidable challenges owing to the 

large volume of generated data and their relevance, e.g., variants with unknown significance 

(del Vecchio et al., 2017). Whole-exome sequencing (WES), targeted sequencing, and 

transcriptome sequencing (RNA-Seq) have been developed to get around these problems. 

Targeted sequencing concentrates on particular genome regions or significant genes whose 

pathogenic role in disease has previously been documented (del Vecchio et al., 2017). WES 

restricts the length of the nucleic acid under analysis to coding areas, providing details about 

exons in the process (del Vecchio et al., 2017). RNA sequencing (RNA-Seq) offers insight into 

a cell's transcriptome, and the data it produces makes it easier to find new transcripts, identify 

alternatively spliced genes, and find allele-specific expression patterns (Conesa et al., 2016).  
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To create profiles that may be utilized for diagnostic or prognostic reasons, it may be helpful 

to analyse components that play a part in these mechanisms, such as DNA-binding proteins, 

methylated regions, or non-coding RNAs. NGS is being increasingly applied to the analysis of 

epigenetic changes, most notably in the study of cancer. This is crucial for detecting 

alterations to the genome's regulatory components, such as transcription factor binding sites, 

enhancers, and insulators that control gene expression. High-throughput sequencing like 

ChIP-seq has enabled genome wide experimental determination of in vivo transcription factor 

binding regions. 

2.5.1. ChIP-SEQ 

Many important biological processes, like cell differentiation, gene transcription and DNA 

replication, etc., depend on interactions between cellular proteins and DNA. ChIP-seq 

comprises chromatin immunoprecipitation followed by high-throughput sequencing.  

Chromatin is a compound of DNA and proteins in the nucleus (Nakato and Sakata, 2021). 

Histones are major proteins of the chromatin; histone H1, 2A, 2B, 3 and 4, etc., (Furey, 2012). 

Histones and other regulatory proteins bind to DNA and preserve its 3D structure.  

The chromatin packages DNA into a smaller volume to fit into the cell; it reinforces the DNA 

to allow mitosis and prevent damage. ChIP-seq is the standard assay for genome-wide 

identification of transcription factor binding sites and other DNA-binding proteins important 

in the understanding of cellular processes and disease (Mundade et al., 2014). Applications 

include studies on transcriptional regulation and histone modifications (Ma and Wong, 2011). 

The ChIP method was established by Gilmour and Lis while studying the involvement of RNA 

polymerase II with transcribed and poised genes in Escherichia coli and Drosophila (Gilmour 

and Lis, 1984). Ultraviolet (UV) irradiation was used to covalently cross-link proteins in contact 

with neighbouring DNA in living cells. The formaldehyde cross-link approach by Solomon and 

Varshavsky later replaced the UV cross-link (Solomon, Larsen and Varshavsky, 1988). 

ChIP-seq begins with cross-linking DNA and DNA-bound proteins. Chromatin is then isolated 

from nuclei and exposed to sonication (Raha, Hong and Snyder, 2010). A specific antibody of 

a transcription factor or DNA-binding protein is used to immunoprecipitate specific DNA-

transcription factor complexes. Purification of ChIP DNA is followed by ligation of sequencing 
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adapters; typically producing 30 to 35 nucleotide sequence reads. The DNA fragment 

sequences are mapped to a reference genome to identify binding sites. Thus, ChIP-seq 

ultimately reveals the binding sites for DNA-associated proteins which are then stored in 

FASTQ formatted files. During ChIP–seq analysis, the ChIP-seq data in FASTQ format is used 

to perform read mapping which enables the detection of mutations like indels by gapped 

alignments. The ChIP-seq reads in FASTQ format is also used to perform peak calling, which 

identifies regions within the genome that are enriched with reads indicating increased 

transcription.  

Large-scale ChIP-seq data sets have been made for different transcription factors and histone 

modifications with potential to predict gene expression that can be used to test hypotheses 

about the mechanisms of gene regulation (Jiang and Mortazavi, 2018). While technology like 

WGS can determine the entire DNA sequence of an organism’s genome, including mutations, 

it cannot detect which genes are functional, and with the cost of sequencing decreasing, ChIP-

seq is a vital tool for studying gene regulation and epigenetics.  

Due to the high sensitivity and specificity ChIP-seq has in plotting protein binding sites, it has 

enabled motif and target discovery and identification. Enhancers, key regulatory elements 

that control gene expression, are marked by specific chromatin modifications including 

H3K4me1 and H3K27ac. H3K27ac is particularly interesting because it differentiates active 

enhancers from poised ones. ChIP-seq allows the detection of enhancers through its ability 

to trace transcription factors which activate enhancers. 

Bioinformatics is a rate limiting factor of ChIP-seq in terms of storage challenges, analysis, and 

data interpretation (Kulski, 2016). Bioinformatics tools and databases are required for ChIP-

seq data analysis from the original raw sequencing data to functional biology. 
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2.6. BIOINFORMATICS STUDIES ON CANCER USING THE H3K27AC MARK 

Bioinformatics is a multidisciplinary field that includes computer science, mathematics, 

statistics, molecular biology, and genetics (Baichoo et al., 2018). Data intensive, large-scale 

biological problems are addressed from a computational point of view. Bioinformatics 

combines data generated by high throughput sequencing such as ChIP-seq to form a 

comprehensive picture of normal cellular activities so that researchers can investigate how 

these activities are changed by disease (Spjuth et al., 2015). Common points of interest 

involve modelling biological processes at the molecular level and making inferences from the 

collected data (Can, 2014). The field’s goal is to foster the discovery of novel biological insights 

and to provide a broad viewpoint from which unifying biological principles may be extracted.  

ChIP-seq computational studies are becoming more thorough and complex as more 

experimental groups use it to elucidate transcriptional and epigenetic regulatory processes. 

A variety of computational and statistical methods have been designed for ChIP-seq analysis 

(Nakato and Sakata, 2021; Eder and Grebien, 2022). 

MISREGULATION OF ONCOGENES VIA ENHANCERS FORMED BY SMALL GENOMIC INSERTIONS   

A 2017 study found non-coding driver mutations by looking at sequencing reads from 

H3K27ac ChIP-seq (Abraham et al., 2017). They developed a computational pipeline to get 

insertions that were present in tumour cells but not in the NCBI human reference genome to 

find enhancer-associated variation in cancer cells.  

To detect reads without insertions as well as enhancers, the H3K27ac reads were mapped to 

the hg19 reference genome using bowtie. The H3K27ac reads were also used to find active 

enhancers using MACS with input DNA controls. H3K27ac reads that were not aligned by 

bowtie were mapped to the hg19 reference genome using bowtie2, which allows gaps 

(insertions and deletions) relative to the target genome. The reads with insertions were 

verified with Blat; reads with a CIGAR string containing ‘I' were used as input. The BLAT output 

was parsed so that each accepted read hit included the entire read sequence rather than just 

aligning a portion of the read, it also contained only one insertion that was shorter than the 

read with no BLAT-called mismatches and ensured that the best hit with the highest score 

was kept. The CIGAR string from the bowtie hit was utilized to pinpoint the location and 
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nature of the insertion in BLAT hits, which were additionally filtered to have no more than a 

20-bp (base pair) insertion. For a read to be kept, bowtie2 and BLAT hits had to be within 100 

bp. Overlaps with the enhancers served as the basis for determining inserts in enhancers.  

The study identified candidate enhancer-associated insertions ranging in size from 1 to 31 bp 

in the tumour samples. Small insertions were often found in enhancer DNA sequences close 

to known oncogenes. Further study of one insertion, somatically acquired in primary 

leukaemia tumour genomes, revealed that it nucleated formation of an active enhancer that 

drives expression of the LMO2 oncogene. The information on enhancer-associated insertions 

obtained in this study contributed to the foundation for further studies to define the 

oncogenic impact of this type of variant. 

ACTIVATION OF GENE ENHANCERS VIA MISMATCH REPAIR SIGNATURE MUTATIONS ACROSS 

THE EPIGENOMES OF HUMAN COLORECTAL CANCER 

In 2019, a study used gains in tumour-specific enhancer activity with allele-biased mutation 

detection from H3K27ac ChIP-seq data to find enhancer-activating mutations in colorectal 

cancer (Hung et al., 2019). ChIP-seq data processing, alignment, peak-calling, and 

identification of differentially enriched-peaks relative to normal colonic crypts was performed 

before the detection of enhancer mutations.  

H3K27ac ChIP-seq reads were aligned to the human genome (hg19) with bowtie2 and then 

realigned around regions with evidence of indels. Peaks were called using MACS. For each 

indel, the sequence 50 bp upstream and downstream was aligned to the human genome with 

Blat. The reference allele was replaced with the indel allele to simulate the alignment of indel-

supporting ChIP-seq reads. Indels whose second-highest alignment score was >50 indicated 

potential alignment error and was discarded. Indels with imbalanced read distributions 

favouring the indel allele were prioritized, because it suggested the enhancer signal and indel 

occurred on the same allele. 

The analysis of CRC specimens showed that microsatellite instable (MSI) samples had a high 

indel rate in active enhancers which showed evidence of positive selection, upregulation of 

target gene expression with a recurrent subset. The indels increased affinity for FOX 
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transcription factors. The results suggested that mismatch-repair signature mutations 

activate enhancers in CRC tumour epigenomes to provide a selective advantage. 

IDENTIFICATION OF TUMOUR SPECIFIC GENE EXPRESSION VIA EPIGENOME MAPPING IN 

PRIMARY RECTAL CANCER 

ChIP-seq analyses are usually done on cell lines so data from primary tumours is limited. A 

study investigated the use of ChIP-seq to find tumour-specific epigenetic variations in primary 

rectal cancer (Flebbe et al., 2019). Focus was put on H3K27ac due to its association with active 

gene transcription. 

Tissue samples from primary rectal cancer and matched healthy mucosa was obtained. ChIP-

seq for H3K27ac was performed before statistical analysis of the data. The data was mapped 

to the human reference genome using bowtie2. Peak calling was done using MACS2. 

Visualization of the ChIP-seq data was done with Integrative Genomics Viewer (IGV). 

ChIP-seq for H3K27ac in primary rectal cancer and matched mucosa revealed differential 

binding in 44 regions. Genes with increased H3K27ac were identified; EPHX4, KRT23, FOXQ1, 

and RIPK2. They were also upregulated in an independent primary rectal cancer dataset. The 

increased expression of the four proteins was confirmed by immunohistochemistry. This 

study showed the viability of ChIP-seq-based epigenome mapping of primary rectal cancer 

and validates the value of H3K27ac to predict gene expression differences. 

DBINDEL: A DATABASE OF ENHANCER-ASSSOCIATED INDEL VARIANTS BY H3K27ac ChIP-seq 

ANALYSIS 

In 2020, dbInDel, a database cataloguing enhancer-associated indel variants for human and 

murine samples, was introduced (Huang et al., 2020). It includes transcription factor binding 

motif analysis which enables the identification of upstream transcriptional regulators. The 

database contains enhancer-associated indels taken from H3K27ac ChIP-seq data. Survival 

analysis in tumour and normal samples across human cancer types and mRNA expression 

profiles was integrated to allow analysis of target transcripts of enhancers with indels. The 

method identifies the possible recruitment of transcription factors due to enhancer-

associated indels, supporting the examination of the functional contributions of these non-

coding variants. 
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To find enhancers, H3K27ac enriched regions were identified with or without a corresponding 

control sample using MACS. To find small indels in presumed enhancers across a range of 

cancers, the method described in Abraham et al. (2017) was computationally rebuilt and 

H3K27ac ChIP-seq datasets from over 250 samples of 26 types of cancer was investigated. 

The ChIP-seq reads was mapped to the reference genome using bowtie. To align gapped reads 

to the reference genome, bowtie2 was used. The SAM output files were examined for CIGAR 

string containing ‘M’ and one ‘I’. Those reads were selected to align to the reference genome 

using pBlat (multi-threads support Blat). The insertion was confirmed if the whole read 

aligned with only one insertion in the pBlat result. IntersectBed was used to remove insertions 

in exons of hg19 refseq mRNAs from the University of California Santa Cruz (UCSC) Browser. 

Enhancer associated non-coding indels were therefore captured after overlapping indels with 

enhancers.  

The database contains 640,432 insertions and 157,554 deletions in 593,655 presumed 

enhancers detected across 275 samples. Among the indels, 274,995 are unique insertions and 

71,603 are unique deletions. The results indicated that many cancer drivers have unique 

enhancer-associated indels in the respective cancer types, e.g., AR, a prostate cancer 

oncogene, was found to have enhancer-associated indels only in prostate cancer samples. 

The data suggests that some of the enhancer-associated indels are under selective pressure 

and give advantage to certain cells because of the functions of the target genes they regulate. 

2.7. BIOINFORMATICS TOOLS USED TO IDENTIFY INSERTIONS AND ENHANCERS THROUGH 

H3K27AC CHIP-SEQ ANALYSIS 

2.7.1. ALIGNING READS TO A REFERENCE GENOME 

The first step of ChIP-seq analysis involves mapping the ChIP-seq reads in FASTQ format to a 

reference genome to facilitate the detection of insertions and to perform peak calling which 

then aids the identification of putative enhancers. Aligners usually use a genome index to 

narrow the list of possible alignment locations. Such aligners work by looking for ways to 

change the read string into one that occurs in the reference. The search space is large, and 

many portions can be skipped without loss of sensitivity. Bowtie allows quick and memory-

efficient large-scale alignment of short sequencing reads to a reference genome (Langmead, 

2010). It has tools to build Burrows-Wheeler reference genome indexes with which it aligns 
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reads to a reference genome. More than one processor can be used at the same time to 

increase the speed of alignment. Bowtie can output alignments in SAM format which enables 

it to work with other SAM supporting tools. Bowtie is run via the command line under Solaris, 

Windows, Linux, and Mac OS X. Bowtie is fast when working with sets of short reads where 

many are of high quality with at least one valid alignment, and the number of reported 

alignments per read is small. 

Index-aided alignment is inefficient when alignments have gaps from sequencing errors or 

indels. Ungapped aligners like bowtie cannot align reads spanning gaps and so these events 

go overlooked. Bowtie2 allows gapped alignment with a two-stage algorithm: an ungapped 

seed-finding stage and a gapped extension stage that benefits from single-instruction 

multiple-data (SIMD) parallel processing (Langmead and Salzberg, 2012). Bowtie2 takes ‘seed’ 

substrings from the read and its reverse complement; these substrings are aligned to the 

reference in an ungapped manner; seed alignments are prioritized and their positions in the 

reference genome are calculated from the index; seeds are extended into full alignments by 

performing SIMD-accelerated programming. The combination results in effective speed, 

sensitivity, and accuracy across a range of read lengths and sequencing technologies. In this 

way, ChIP-seq reads that contain gaps potentially caused by indels are identified and typically 

stored in SAM formatted files. 

2.7.2. ALIGNMENT FORMATTING 

Modern sequencing technologies have led to the advent of alignment tools for read mapping 

against reference sequences. However, the alignments produced by these tools differ in 

format which complicates further processing. A defined interface between alignment and 

further analysis is necessary to create a format that can support all types of sequences and 

aligners. Sequence Alignment/Map (SAM) format is an alignment format for storing read 

alignments to reference sequences (Li et al., 2009) . SAM supports short and long reads from 

different sequencing platforms including ChIP-seq. The format has one header section with 

lines starting at ‘@’, and one alignment section. The lines are TAB delimited. Every alignment 

line has 11 compulsory fields with further optional fields. The sixth compulsory field contains 

the CIGAR string which represents spliced alignments in the SAM/BAM format.  
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The CIGAR string indicates which bases match with the reference, are deleted from the 

reference, and are insertions that are not in the reference.  

Binary Alignment/Map (BAM), a binary representation of SAM compressed by the BGZF 

library, improves performance through quick retrieval of alignments in specific regions (Li et 

al., 2009). An unsorted SAM/BAM file can be sorted by coordinate to streamline processing. 

A BAM file can be indexed by combining the UCSC binning plan and linear indexing to quickly 

fetch alignments that overlap a certain region. Sorting and indexing can implement genomic 

processing without loading the whole file into memory. 

SAMtools is a software package for manipulating alignments in SAM or BAM format (Li et al., 

2009). SAMtools can perform jobs like converting alignment formats, sorting, viewing, and 

combining alignments, indexing, and variant calling. The SAM and BAM formats, together 

with SAMtools, provide for a modular approach to process ChIP-seq data by separating 

alignment from downstream analytics. 

2.7.3. IDENTIFYING INSERTIONS WITHIN SEQUENCING READS 

Reliable read filtering is crucial when processing ChIP-seq data in epigenetic studies. For jobs 

such as identifying insertion events within ChIP-seq data, some custom data processing which 

cannot be implemented in shell pipelines can be implemented in AWK, Bash or Python scripts. 

AWK is a scripting language and text manipulation toolkit for the command line (McKay, 

2020). It allows the user to write small but effective statements that are programs (Spjuth et 

al., 2015). AWK requires no compiling and allows the user to use numeric and string functions, 

logical operators, and variables (Spjuth et al., 2015) . AWK is utilized for pattern scanning and 

processing, manipulating, and transforming data and generating formatted reports (Aho, 

Kernighan and Weinberger, 1978) . 

Sequence aligners typically output files in SAM format. Aligned ChIP-seq sequences may 

contain extra bases not found in the reference or may lack bases found in the reference. The 

CIGAR field of SAM formatted files contains a sequence of base lengths and associated 

operations viz. ‘M’ for match, ‘I’ for insertion and ‘D’ for deletion (Kim et al., 2017) . AWK 

programs scan a file line by line splitting them into fields and comparing them to a provided 

pattern before performing an action on lines that match (Goyal and Negi, 2021) .  
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In this way, a SAM formatted file of ChIP-seq reads that were aligned to a reference genome 

can be analysed for insertions using the ‘I’ field in the CIGAR string. Positive matches can be 

stored in a separate output file. ChIP-seq sequences containing insertions to the reference 

genome are thus filtered from sequences without insertions to the reference genome.  

2.7.4. VERIFICATION OF INSERTIONS WITHIN SEQUENCING READS  

Studying genomes require quick mRNA/DNA and cross-species protein alignments. To 

confirm ChIP-seq reads with insertions are reliably alignable, reads with a CIGAR string 

containing ‘I’ are used as input for the program Blat or pBlat. Blat (BLAST-like alignment tool) 

is a pairwise sequence alignment algorithm that was developed by Jim Kent to assist in the 

assembly and annotation of the human genome (Kent, 2002). It is used for the analysis and 

comparison of biological sequences to infer homology to identify the biological function of 

genomic sequences. Previous alignment tools could not perform such operations in a way 

that would allow a regular update of the human genome assembly. Blat produces alignments 

at the DNA level between two sequences that are of 95% or greater identity, but which may 

include large inserts. It searches for short matches and extends these into high-scoring pairs 

(Kent, 2002). Blat has an index of nonoverlapping K-mers in the genome which fits inside the 

RAM of inexpensive computers and must only be computed once for each genome assembly 

(Bhagwat, Young and Robison, 2012). Blat uses the index to find areas in the genome likely to 

be homologous to the query sequence. It performs an alignment between homologous 

regions and stitches these aligned regions (exons) together into larger alignments (genes). 

Blat then goes back to small internal exons possibly missed before and modifies large gap 

boundaries that have feasible splice sites. 

Blat is typically used for gapped mapping and long sequence alignment which can’t be 

properly done by other fast sequence mappers made for short reads (Wang and Kong, 2019). 

However, the number of sequences generated by high throughput sequencing projects is 

increasing and blat is not adept at large scale sequencing research and iterative analysis 

(Wang and Kong, 2019). It takes days for blat to map whole genome or transcriptome 

sequences to a reference genome. This is because blat was designed to be single threaded 

and therefore does not take advantage of modern multicore processors.  
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The parallel blat (pBlat) algorithm is a multithreaded program with cluster computing support 

that facilitates high-throughput mapping of large scale genomic and transcript sequences to 

reference genomes through the C programming language to implement multiple thread 

support and data-level parallelism (Wang and Kong, 2019). FASTA format input query files 

containing ChIP-seq reads with insertions are partitioned based on the number of threads 

specified. Each part has the same amount of query sequences. Each thread performs the blat 

algorithm on one part of the input sequence. The threads use the same amount of memory 

as blat because they share the same memory copy of the whole reference genome and the 

index. The number of threads used reduces the run time and the results of pBlat are identical 

to that of blat. The outputs of each thread are written to a temporary file and once all threads 

have completed their workload, the temporary output files are combined into one final 

output file. The order of output records therefore matches the order of query sequences in 

the input file no matter how many threads are used. The global variables in the original blat 

program are localized to ensure all the variables and subroutines are thread safe. 

2.7.5. IDENTIFYING GENOMIC REGIONS ENRICHED WITH ALIGNED READS (PEAK CALLING) 

Peak calling finds areas in the genome that are enriched with aligned reads due to a ChIP-seq 

experiment. The Model-based Analysis of ChIP-seq data (MACS) analyses short read 

sequencing data. It can identify transcription factor binding sites and histone modification 

enriched regions (Feng, Liu and Zhang, 2011) . MACS can be used for the ChIP sample alone or 

in combination with a control sample to boost peak call specificity. MACS2 is a later version 

of MACS and performs several functions including duplicate filtering, peak model 

construction, peak identification, and multiple testing correction. It can also join close peaks 

together to create broad peaks (Gaspar, 2018). The application is user-friendly and gives 

detailed information about each peak, including genome coordinates, p-value, false discovery 

rate, fold enrichment, and peak centre (Gaspar, 2018). 

ChIP-seq tags are used to indicate the ends of fragments in a ChIP-DNA library, and they are 

usually pushed towards the 3' direction to better show the protein-DNA binding site. The 

experimenter is unaware of the magnitude of the shift. Because both ends of ChIP-DNA 

fragments can be sequenced, the tag density of a real binding site should exhibit paired peaks 

or a bimodal enrichment pattern, with Watson strand tags enriched upstream and Crick 
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strand tags enriched downstream (Feng, Liu and Zhang, 2011). This bimodal pattern is used 

by MACS2 to anticipate the moving size and locate the exact binding points. 

To develop a model, MACS2 looks at the whole dataset for substantial enriched regions to 

locate paired peaks (Chipster, 2021a). MACS2 slides two bandwidth windows over the 

genome to detect locations with tags more than mfold enriched compared to a random tag 

genome distribution (Chipster, 2021b). The ratio between the ChIP-seq tag count and local is 

reported as the fold enrichment. MACS2 selects 1,000 of these high-quality peaks at random, 

separates their positive and negative strand tags, and aligns them by their midpoints. The 

estimated fragment length is defined as 'd', the distance between the modes of the two 

peaks. MACS2 moves all tags by d/2 to the 3' ends, where the most likely protein-DNA 

interaction sites are found. By estimating the distance d and moving tags by d/2, MACS2 

enhances the spatial resolution of the anticipated binding sites. 

A dynamic Poisson distribution is used to show local biases in the genome which improves 

the prediction's validity and specificity (Feng, Liu and Zhang, 2011). This method can also be 

used to catch regional biases and estimate fold-enrichment in other applications such as copy 

number variation and digital gene expression. Because each peak is analysed separately, a 

multiple testing problem occurs when there are thousands of significant peaks discovered in 

a sample. The Benjamini-Hochberg adjustment is used to fix p-values for multiple 

comparisons in MACS2 (Gaspar, 2018).  

Peak regions indicative of enhancer activity identified from ChIP-seq data are then filtered 

and any overlaps with blacklisted regions, such as genomic locations of insertion events in 

sequence reads, are assessed in order to infer biological cause and effect.  

2.7.6. BEDTOOLS 

Genomic research requires testing for connections or overlapping between sets of genomic 

features (aligned reads, polymorphisms, annotations, etc.). Such comparisons characterise 

experimental output, deduce coincidence and evaluate biological impact (Quinlan, 2014).  

BEDTools is an open-source software package written in C++ and consisting of tools focused 

on operations for the comparison and exploration of genomic datasets through basic genome 

arithmetic tasks (Quinlan and Hall, 2010) . BEDTools includes the UCSC Genome Browser’s 
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genome-binning algorithm. It utilizes a hierarchical indexing plan to assign genomic features 

to ‘bins’ along the chromosome. This speeds up the search for overlapping features, since 

comparison of features is done between two sets that share the same bins. The most common 

question asked of two sets of genomic features involves feature intersection; bedtools 

intersect screens for overlaps between two sets of genomic features and enables the user to 

fine tune how the intersections are reported (Quinlan, 2014) .  It can be used to screen for 

insertion events within ChIP-seq data that do not occur within the exome, and to identify 

overlapping features between a set of enriched regions (peaks) and sequencing reads that 

contain insertion mutations, thereby connecting mutation events to sites in the genome with 

elevated transcription levels.  

BEDTools outputs files in standard BED (Browser Extensible Data) format. BED format is 

typically used to store genomic data (Quinlan and Hall, 2010). Operations using genomic 

coordinates, nearest-element connections between feature sets, and quantitative 

computations across linked genomic segments are necessary for BED analyses. 

2.7.7. BEDOPS  

In order to infer biological context, it is customary to link called peaks from ChIP-seq data to 

adjacent genes, either upstream or downstream, because many cis-regulatory components 

like enhancers are close to the transcription start site (TSS) of their targets.  

BEDOPS is a software tool for genomic analytical jobs such as set statistical operations and 

calculations, archiving, and conversions. Some interesting programs offered by BEDOPS 

include union, subset, and difference; closest features which links the nearest features (e.g., 

TSS or genes) between two sorted inputs based on genomic distance; and bedmap which 

maps source data onto genomically related target regions and generates summaries per 

region (Neph et al., 2012). These core utilities may be combined to make pipelines while 

keeping efficiency and scalability with standard sorted input and output stream support. The 

memory overhead of the main BEDOPS utilities is unaffected by the size of the data input so 

BEDOPS pipelines can function with dense datasets on a variety of hardware. It has better 

flexibility, scalability, and execution time than most other tools (Neph et al., 2012). BEDOPS 

compresses BED into a format that decreases access times to most data. BEDOPS only keeps 

the data needed to compute the next line of output, so memory use is reduced. Other tools 
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need more space because they load the entire file to memory and generate an index (Quinlan, 

2014); this leads to longer run times too which can cause errors with big inputs.  

Once gene annotations are assigned to peak calls for ChIP-seq data, biological ontologies like 

Gene Ontology (GO), KEGG, and Reactome can be used for functional enrichment analysis to 

uncover common biological themes among these genes. Functional enrichment methods that 

carry out over-representation analysis by querying databases holding details about gene 

function and relationships can be used to interpret the gene lists gained from annotation.  

2.7.8. FUNCTIONAL ENRICHMENT ANALYSIS 

The comprehensive quantification of DNA, RNA and proteins in biological samples has 

generated huge amounts of data that must be interpreted to elucidate biological functions 

and disease mechanisms (Reimand et al., 2019). ChIP-seq data after it has undergone analysis 

often takes the form of extensive gene lists without structure or context, and which need an 

impractical amount of manual research to analyse (Tipney and Hunter, 2010). Single genes 

also do not accurately represent the complex operation of biological systems. Researchers 

can get mechanistic insight into gene lists produced by ChIP-seq studies using pathway 

enrichment analysis (Reimand et al., 2019). This switches analysis from individual genes to 

biological processes by concentrating on sets of genes that share biologically significant 

attributes (Creixell et al., 2015). 

Pathway enrichment analysis identifies biological pathways that are more prevalent than 

would be anticipated by chance in an experimental gene list. It performs a systematic 

mapping of biological annotations, like GO terms, to genes and proteins, and then compares 

the distribution of these terms within a target gene set to the background distribution of 

these terms (Tipney and Hunter, 2010). Terms that are statistically overrepresented or 

underrepresented are thus identified and biological behaviour can be extrapolated (Tipney 

and Hunter, 2010). Three general processes comprise enrichment analysis: specifying a gene 

list from ChIP-seq studies, identifying statistically enriched pathways, and visualizing and 

translating the findings (Reimand et al., 2019).  
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Functional enrichment tools like the Database for Annotation, Visualisation, and Integrated 

Discovery (DAVID) arrange functionally related genes and terms into a summarised number 

of biological modules for effective interpretation of gene lists in a network setting (Huang et 

al., 2007). DAVID combines annotation terms from a variety of sources, e.g., InterPro for 

proteins, OMIM for disease associations, and KEGG and BioCarta for pathways (Reimand et 

al., 2019). It also takes relationships between annotation terms into account and has unique 

visualisation methods to enable assessment of results.  

Pathway analysis has been applied to cancer data sets to uncover regulators of cancer 

associated genetic pathways, undetected tumour subgroups characterised by repeated 

patterns of pathway variations, and to suggest cancer mechanisms and biomarkers (Creixell 

et al., 2015). Pathway analysis has several advantages over analysing single genes (Creixell et 

al., 2015). Results are simpler to understand since genetic variations are linked to well-known 

concepts like apoptosis. Possible causative processes can be found, e.g., by anticipating a 

specific transcription factor that accounts for the differential expression between tumour 

samples and controls. Since pathway information enables interpretation in a shared feature 

space, results from linked datasets become comparable. It also enhances statistical and 

interpretive power by enabling the assimilation of different omics inputs into a cohesive 

perspective of cancer biology. 

2.8. CONTAINER SYSTEMS 

Several bioinformatics tools and programs should typically be installed and set up before 

beginning a bioinformatics investigation. This requires a lot of labour, time, and the 

installation of software and their dependencies. The possibility that a full environment might 

be packaged and executed anywhere was made possible by the development of virtual 

machines.   

A software container is used to enclose a software component and the associated 

dependencies (Matelsky et al., 2018). It has code fragments that may be independently 

deployed and utilized to create and run applications. Containers share a machine’s operating 

system (OS) kernel but do not require the overhead of associating an OS within each 

application (IBM, 2019). The abstraction from the host OS makes containerized applications 

portable and able to run uniformly and consistently across any platform or cloud.  
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Existing operating systems serve as the foundation for containers (Emily Mell, 2021). Because 

they don't include the whole guest OS, containers vary from virtual machines in that they are 

constructed using optimized system libraries and make use of the host OS's memory 

management and process controls (Matelsky et al., 2018). Typically, containers are built 

around a single piece of software, and are made executable by creating images from them. 

Images are collections of files that may include an OS, software, data, and sometimes 

additional files for associated applications (Kurtzer, Sochat and Bauer, 2017). Two common 

container technologies are Docker and Singularity.  

Docker packages and runs an application in a loosely isolated environment i.e., a container. 

Docker separates applications from infrastructure, but it was designed for virtual servers, so 

it tries to isolate the container (di Tommaso et al., 2015). Containers have an isolated file 

system, so the script won’t have access to the host filesystem. To run the Docker image the 

same way as the script, the local directory must be mounted as a volume, and the working 

directory changed to be the mounted volume (Mitra-Behura, Fiolka and Daetwyler, 2022). 

Docker also isolates user identities. The container uses a different user identity to the process 

that launches it. On Linux OS the output file becomes owned as root so the container must 

be run as a user and group identity that matches the user. 

Singularity containers are frequently used on high performance computing (HPC) clusters 

because they do not require root access (Mitra-Behura, Fiolka and Daetwyler, 2022). It can 

create images from Docker definitions accessible from Docker Hub and is an excellent tool for 

condensing several difficult image processing operations into one. A Singularity container 

packages an application and all its dependencies into a single Singularity Image File (SIF). It 

allows you to install pre-built container images and it ensures the same software can be 

shared and used across Linux systems (Mitra-Behura, Fiolka and Daetwyler, 2022). A 

Singularity definition file contains instructions on how to build a custom container including 

details about the base OS to build or the base container to start from, software to install, 

environment variables to set at runtime, files to add from the host system, and container 

metadata (Mitra-Behura, Fiolka and Daetwyler, 2022). 
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Singularity prioritizes integration, reproducibility and security via cryptographic signatures, a 

fixed container image format, and in-memory decryption (Kurtzer, Sochat and Bauer, 2017). 

GPUs, high-speed networks, parallel filesystems, and computing mobility are used on a cluster 

or server. The single file SIF container format has an efficient security strategy and is simple 

to distribute and transfer. Singularity has direct access to the kernel so there is not a big 

performance penalty when using a container over installed applications. The same user rights 

are maintained inside a container as on the outside, and more authority is not automatically 

granted on the host system. Singularity does not ask for extra administrative rights for a user 

to run and interact with containers on a platform where it is being used. 

2.9. PIPELINES AND WORKFLOW FRAMEWORKS 

Genetic information gained from high throughput technologies like ChIP-seq is used to 

develop complex biological data models, having a mechanism to map and manage analysis 

step-by-step has therefore become vital. Bioinformatics analyses involve steering files 

through transformations, called a pipeline, that perform tasks, support reproducibility, and 

provide measures to reduce error (Leipzig, 2017).  The components of a pipeline are linked 

together to form a path. Using parallel buffers, the output of one operation serves as the 

direct input for the next. As a result, information administration is made more efficient and 

human processing error is reduced.  

A bioinformatics workflow usually involves collecting statistics from biological data, building 

a computational model, solving a computational modelling problem, and evaluating a 

computational algorithm (Ahmed et al., 2021).  Frameworks are increasingly used in 

bioinformatics investigations to sequence metadata.  

2.9.1. NEXTFLOW 

Studies typically yield millions of raw reads produced by high throughput sequencing that 

require computationally intensive processing tools. These tools must be easy to use and 

combine into stable workflows. This has led to the development of sequencing pipelines like 

RseqFlow and Galaxy (Federico et al., 2019). However, some difficulties with these pipelines 

involve the limited number of computational tools and modification abilities when they are 
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used on existing computational resources. Other frameworks may be more flexible but usually 

each tool must be separately installed, which is cumbersome and hinders reproducibility. 

Nextflow is a workflow framework and a programming Domain Scripting Language (DSL) for 

writing computational pipelines (di Tommaso et al., 2017). The DSL2 syntax is an updated 

version of the original DSL with several enhancements, including better data flow 

manipulation and the introduction of module libraries which separate components to allow 

for flexibility and reuse (di Tommaso and Floden, 2021). Nextflow expands the Linux 

platform's command-line and scripting facilities for data manipulation. It uses the dataflow 

programming approach to create complex program interactions and a high-level parallel 

computing environment. It supports Docker and Singularity containers. This, along with the 

GitHub code sharing platform, provides for version control, the creation of self-contained 

pipelines, and the easy replication of previous setups.  

A Nextflow process is the fundamental component used to run a user script. The process is 

defined by the script/command to be executed, the input to the script and the output of the 

script. Processes are executed independently; they are connected via their outputs and inputs 

to other processes and run as soon as they receive input. Data is passed between process 

tasks via channels which manipulate the flow of data from one process to the next. There are 

two types of channels (di Tommaso and Floden, 2021). A queue channel is a non-blocking, 

unidirectional first-in-first-out queue. A value channel is restricted to a single value and can 

be read limitlessly without its content is consumed. Processes can be written in any scripting 

language executable by Linux (Bash, Python, Perl, etc.) (di Tommaso et al., 2017). Workflows 

are made up of chained Nextflow processes.  The applications are innately parallel and can 

be scaled without adapting to a certain platform structure.  

Nextflow operators are methods that connect channels or transform values emitted by a 

channel by applying customizable rules (di Tommaso et al., 2017). For example, the ‘join’ 

operator generates a channel that connects two channels emitting items that have a matching 

key; the ‘collect’ operator gathers a channel's entire output and returns the resultant object 

as a single emission. Almost every operator produces one or more new channels, allowing 

operators to be chained to fit the user’s needs. 
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The executor controls how the script is run on the target system (di Tommaso et al., 2017). It 

allows the pipeline logic to be separate from the processing platform, i.e., the pipeline script 

can be written once and run on a computer, cluster or cloud depending on the executor 

defined in the Nextflow configuration file. Unless otherwise specified, processes are run 

locally, which is useful for pipeline development and testing before switching to a cluster 

when it must be run on production data. Executors compatible with Nextflow include SGE, 

Moab, LSF, SLURM, PBS/Torque, PBS Pro, NQSII, Igntie, Kubernetes, AWS Batch, Google Life 

Science and OAR.   

In recent years, researchers have used Nextflow as a foundation with other tools to create 

advanced frameworks.  A 2019 study presented the Pipeliner framework which used Nextflow 

and the Anaconda package manager to make standard computational workflows (Federico et 

al., 2019).  The study created an RNA-seq pipeline to process raw DLBCL sequencing reads 

from a cohort supplied by TCGA. Supplementary files were generated that could be used as a 

template for applying Pipeliner to publicly available datasets . A 2020 study presented 

GeneTEFlow, a workflow for the analysis of transposable element expression from RNA-Seq 

data (Liu, Bienkowska and Zhong, 2020).  GeneTEFlow used Nextflow and Docker which 

allowed reproduceable analyses on different computing platforms without requiring separate 

tool installation and manual version tracking. 

2.10. CONCLUSION 

DLBCL is a hereditarily heterogenous cancer originating in the germinal centre characterized 

by a diffuse production of matured and enlarged B-cells. It is hypothesized to be promoted by 

HIV and makes up almost half all HIV-associated lymphomas in South Africa. DLBCL is divided 

into two phenotypic categories based on cell of origin; ABC DLBCL, defined by a post-germinal 

centre B-cell, and GCB DLBCL, defined by a B-cell that overexpresses genes associated with 

the germinal centre reaction. Each category has distinguishing genetic drivers and signalling 

pathways that are targetable for therapy.   

Majority of the human genome does not encode proteins; the structural elements of non-

coding DNA defines 3D genomic organization necessary for gene regulation. Most mutations 

linked to complex traits are found outside the exome, and somatic insertion mutations are 

among the most underrepresented and poorly defined. The non-coding genome is also filled 
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with cis regulatory DNA elements like enhancers that play key roles in gene expression. 

Enhancer activities in DLBCL lock the growth regulatory network in an activated state and can 

be reliably identified though the histone mark H3K27 acetylation which is examined through 

ChIP-seq. ChIP-seq is the standard assay for genome-wide identification of DNA-associated 

protein binding sites. It has enabled the detection of enhancers through its ability to trace 

transcription factors which activate enhancers. FASTQ files containing sequence data 

generated by ChIP-seq is analysed using bioinformatics tools. Bioinformatics analyses rely on 

frameworks to address biological problems from a computational point of view. Nextflow is a 

prime workflow framework and a programming DSL for writing pipelines. 

The current research would like to develop a flexible and reusable bioinformatics pipeline for 

DLBCL ChIP-seq data to uncover potential non-coding insertion-induced enhancers associated 

with the progression of DLBCL. Investigation into this arena could provide insight into the 

different disease mechanisms of DLBCL with the ultimate goal of functional precision therapy.  
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CHAPTER 3 

RESEARCH PROCEDURE 

3.1. INTRODUCTION 

This chapter's main contribution is to detail the procedures and data science methodologies 

employed in this investigation as well as any problems encountered throughout. The 

discussed tools are some of the latest and most tested for handling data problems in 

bioinformatics and statistical analysis. This chapter describes a unique computational pipeline 

that encapsulates the procedures involved in this work, from collecting and curating biological 

data sets to developing processes that interpret the information contained within and 

connecting them in flexible and reusable workflows.  

3.2. DATA COLLECTION 

DLBCL H3K27ac ChIP-seq data with corresponding whole cell extract controls were queried 

for in the National Centre for Biotechnology Information (NCBI) Sequence Read Archive (SRA) 

database. Three single read Sequence Read Run (SRR) identities were selected with accession 

numbers SRR1020510, SRR1020512, SRR1020514. The identities had corresponding whole 

cell extraction controls with accession numbers SRR1020511, SRR1020513, SRR1020515. The 

sratoolkit.2.10.8-ubuntu64 was used to connect to the NCBI SRA database via File Transfer 

Protocol (FTP). The operation FASTQ dump, which formed part of the sratoolkit, was used to 

access DLBCL H3K27ac ChIP-seq data matching each SRR identity in FASTQ format from the 

NCBI SRA database. The downloaded FASTQ files were renamed so that the accession 

numbers of the whole cell extract control files matched the accession numbers of their 

corresponding ChIP-seq treatment files (Table 1). The control files were further marked with 

the suffix ‘_c’ while the treatment files were marked with the suffix ‘_t’ so that the files 

remained distinguishable.  
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Table 1: DLBCL H3K27ac ChIP-seq treatment and control data files accessed from the SRA database. 

Original File Name Reformulated File Name Size of File (GB) 

SRR1020510 SRR1020510_t 17GB 

SRR1020511 SRR1020510_c 12GB 

SRR1020512 SRR1020512_t 13GB 

SRR1020513 SRR1020512_c 14GB 

SRR1020514 SRR1020514_t 13GB 

SRR1020515 SRR1020514_c 12GB 

 

The H3K27ac ChIP-seq files were generated on the Illumina HiSeq 2000 (Homo sapiens) 

platform by a study researching mutational effects in enhancers; the study GEO accession 

number is GSE46663, with BioProject accession number PRJNA201426.  The data is available 

from the GEO website with accession numbers GSM1254206, GSM1254208 and GSM1254210 

for the ChIP-seq treatment files, and GSM1254207, GSM1254209, GSM1254211 for the 

control files.  

3.3. CONTAINERISATION 

Docker is a commonly used container program but running and building it requires root 

capabilities (Mitra-Behura, Fiolka and Daetwyler, 2022). Since most users do not have root 

access, this creates a problem for HPC clusters used for sophisticated image processing 

operations. Although rootless mode is now available, it has restrictions, like the small number 

of supported storage drivers (Mitra-Behura, Fiolka and Daetwyler, 2022). Singularity 

containers have direct access to the host system’s Linux kernel and allows one to install pre-

built container images while ensuring the same software can be used across Linux systems 

and shared in a group (Kurtzer, Sochat and Bauer, 2017). Singularity was therefore found to 

be most suitable for the present study. 
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Singularity version 3.5.3 acted as the main container management system for this study. By 

executing the required programs in separate containers along with their dependencies, the 

environment in which they were executed was better controlled. A goal for this study’s 

bioinformatics pipeline was reproducibility, and Singularity is the container management 

system of choice for cases where there might be multiple users of the same script, and where 

exact software versions and every specific environment might be required.  

A custom container's construction is made up of a header and a body in the Singularity 

definition file. Details on the OS that had to be made or the base container to start from were 

included, along with instructions for installing software, configuring metadata and 

environment variables, and adding files from the host system. Existing images from Docker 

Hub for the tools’ bowtie, bowtie2, MACS2, sambamba, SAMtools, BEDTools, BEDOPS and 

pBlat were used as a base for creating new Singularity images using the ‘docker’ bootstrap 

agent. Once the Singularity definition file for each tool was complete, the ‘build’ command 

was used to create fixed images of the pre-existing containers in the SIF format. Processes 

that made use of these tools and therefore required access to the images were specified in 

the nextflow.config file.  

3.4. WORKFLOW FRAMEWORK AND SUPPORTING SYSTEMS  

The aim of this study was to create a bioinformatics pipeline for DLBCL H3K27ac ChIP-seq data 

that could identify non-coding insertion-induced enhancers linked to DLBCL gene drivers. The 

bioinformatics pipeline was based on the computational techniques written in shell by 

Abraham et al. (2017); select perl scripts used in this investigation were downloaded from the 

link provided by the study. Nextflow version 21.04.0-edge (di Tommaso et al., 2017) was used 

to design the script for the bioinformatics pipeline. Using Singularity software containers for 

which Nextflow has built-in support, scalable and repeatable operations were customised in 

standard scripting languages. The DSL2 syntax was the default setting and allowed parallel 

and modulated operations. The Nextflow pipeline was executed using SLURM on the South 

African National Bioinformatics Institute (SANBI) Dell HPC cluster with 232 CPU cores and 

1952GB of RAM. The cluster used the operating system Linux version 5.4.0-121-generic 

(Ubuntu 20.04.4 LTS).  
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The source code of the developed bioinformatics pipeline is shared and saved in the following 

GitHub repository: https://github.com/wardahjassiem/enhancerAssociatedInsertions. 

3.5. WORKFLOW STRUCTURE 

The implicit workflow, which served as the entry point for the DLBCL H3K27ac ChIP-seq data 

in Table 1, was made up of three sub workflows incorporated as separate modules each with 

their own objective and invoked as functions with input channels passing as parameters.  

The sub workflows were designed for three tasks respectively:  

a) The identification of non-coding insertions. 

b) The identification of areas in the genome enriched with aligned reads, i.e., peak 

calling. 

c) The identification of enhancers and their associated genes linked to DLBCL. 

Module scripts were written to define the various processes that were included and 

executed in each workflow. Parameters, executors, and other configuration specifications 

were defined in the nextflow.config file. Figure 2 depicts the structure of the investigative 

pipeline which will be further elaborated upon in the following sections. 
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Figure 2: Diagram depicting the workflow frame for the bioinformatics pipeline. 

The DLBCL ChIP-seq data was directed into the implicit workflow which then channelled the treatment 
data into a sub workflow for the identification of non-coding insertions, and the treatment and control 
data into a sub workflow for the identification of regions in the genome enriched with ChIP-seq reads. 
The output of these two sub workflows were channelled as input for the third and final sub workflow; 
the identification of insertion-induced enhancer associated genes. Abbreviations: nc, non-coding.  
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3.6. SUB WORKFLOW: IDENTIFICATION OF NON-CODING DLBCL INSERTIONS 

The purpose of this sub workflow was to identify and verify insertions located in the non-

coding genome using the DLBCL H3K27ac ChIP-seq treatment data files shown in Table 1.  

The sub workflow declared six input channels from those specified in the implicit workflow. 

Three channels emitted the DLBCL H3K27ac treatment files and indices used for sequence 

mapping with bowtie and bowtie2, the fourth channel emitted the NCBI hg19 RefSeq genes 

used to extract coding sequences which was then emitted through a fifth channel to identify 

non-coding insertions. The final channel emitted hg19 human reference chromosomes used 

by pBlat to verify the identified non-coding insertion sequences.  

The sub workflow declared a single, final output channel which emitted aligned, filtered, and 

sorted non-coding DLBCL insertions. The following subsections elaborate on the components 

defined in module (process) scripts that were imported into the sub workflow script to 

achieve the final output. 

3.6.1. SEQUENCE ALIGNMENT  

3.6.1.1. UNGAPPED READ ALIGNMENT 

A Nextflow process was created to align the DLBCL H3K27ac ChIP-seq treatment data in 

FASTQ format to the hg19 human genome index (H.sapiens, UCSC hg19) using bowtie version 

1.3.1 (Langmead, 2010), a fast and efficient short read aligner (Figure 3). The purpose was to 

identify ChIP-seq reads that contained gaps from potential insertions. Since bowtie cannot 

align reads spanning gaps, these events go overlooked. Therefore, reads that could be aligned 

successfully to the reference genome with bowtie were separated from reads that could not 

be aligned due to gaps.  
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The number of parallel search threads was set to 24 and only 2 mismatches were allowed in the seed. 

If valid reportable alignments were found in many alignment strata, only the alignments that fell into 

the best was reported. Alignments for a read was suppressed if there was more than 1 valid alignment 

for it, all reads with more than 1 valid alignment was put into a separate file. Only alignments with the 

lowest number of mismatches in the seed was reported along with the quality at the mismatch 

position. Aligned reads were saved in SAM format. All reads that could not be aligned were saved to a 

separate file in FASTQ format. 

3.6.1.2. GAPPED READ ALIGNMENT 

A recent work evaluated 12 pipelines for their ability to detect single nucleotide variations 

(Kisakol et al., 2021). Pipelines that used aligners like Novalign identified a greater number of 

variants, but the precision rate was around 65% whereas pipelines that used bowtie2 had a 

precision rate of 90%. The FASTQ reads that could not be aligned with bowtie were therefore 

channelled into a process that ran bowtie2 version 2.4.5 (Langmead and Salzberg, 2012), an 

alignment tool that can be used for gapped reads (Figure 4). The purpose was to map DLBCL 

ChIP-seq reads that contained gaps from potential insertions to the hg19 human reference 

genome index (H.sapiens, UCSC hg19).  

 

 

 

The input DLBCL ChIP-seq reads were in FASTQ format. Bowtie2 was set to search for 1 valid alignment 

for each read before stopping the search. The number of parallel search threads was set to 24 and the 

aligned reads were saved in SAM format. 

 

bowtie --best --strata -m 1 -n 2 -p 24 -S --un ${fastq.baseName}-un.fastq -x 

$bowtie1Ind --max /dev/null $fastq > ${fastq.baseName}_ungapped.sam 

bowtie2 -k 1 -p 24 -q -x $bowtie2Ind -U $fastq -S 

${fastq.baseName}_mapped.sam 

Figure 4: Command line for aligning DLBCL H3K27ac ChIP-seq gapped reads to the human reference 

genome index using bowtie2. 

Figure 3: Command line for aligning DLBCL H3K27ac ChIP-seq reads in FASTQ format to the human reference genome 

index using bowtie. 
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3.6.2. INSERTION IDENTIFICATION 

A process was designed to filter the aligned DLBCL ChIP-seq reads from bowtie2 in SAM 

format according to query sequences that had insertions to the hg19 reference genome. To 

accomplish this, an AWK program defined a text pattern to be searched for in each line of 

each input SAM file and the action to be taken when a match was found.  Each alignment line 

in SAM format represents the linear alignment of a segment. Each line has 11 or more TAB 

delimited fields. The sixth field is the CIGAR string used to show base matches, deletions, and 

insertions. In this case, the program searched for insertions in the sixth column (CIGAR string) 

of the SAM files and printed the entire alignment line when a match was found. All Nextflow 

processes in this study employing AWK in the command line used a shell block definition to 

allow the script to have Bash and Nextflow variables without needing to escape the first. 

The files containing the identified insertion alignment lines did not have SAM headers 

necessary for complete SAM formatted files. To address this, aligned ChIP-seq reads from 

bowtie2 were fed into a process that extracted the SAM headings of each file using the head 

command. The SAM headings were then concatenated with the files containing insertion 

sequences.  

The SAM files were fed into a process that made use of the view method from the SAMtools 

package version 1.15 (Li et al., 2009) to convert the SAM formatted files to BAM format. The 

BAM files were then coordinate-sorted and indexed with sambamba (Tarasov et al., 2015).  
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3.6.3. NON-CODING INSERTION IDENTIFICATION 

3.6.3.1. EXON ACQUIREMENT 

A process was designed to extract exons from the NCBI RefSeq Genes composite track, which 

shows human protein-coding and non-protein-coding genes from the NCBI RNA reference 

sequences collection. The exons would later be used in a downstream process to identify non-

coding DLBCL insertions.  

A perl script detailed code for the extraction of the chromosome, start and end frame of the 

exon, and the gene name for each sequence by specifying the necessary columns of 

information from the human RefSeq file and saving them in tabulated BED1 format for 

compatibility between programs.  

3.6.3.2. OVERLAPPING FEATURE IDENTIFICATION 

The human exons in BED format and the sorted DLBCL non-coding insertions in BAM format 

were used as input for bedtools intersect, an operation that formed part of the BEDTools 

package version 2.30.0 (Quinlan, 2014). Bedtools intersect was used to screen for overlapping 

features between the insertions and the exons, i.e., to determine whether any of the insertion 

sequences were not found in the coding regions of the human genome. Regions in each 

chromosome was intersected with the region of each insertion. The bedtools intersect option 

-v dictated that the operation would output features that did not overlap, i.e., to report 

insertion sequences that were in the non-coding regions of the human genome. The non-

coding DLBCL insertions were emitted in SAM format. 

 

 

 

 
1 BED format has a minimum of three columns and nine optional columns. The first three contain the 

chromosome, and the start and end coordinates of the sequences. The fourth column contains the name of the 

sequence. 
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3.6.4. NON-CODING INSERTION SEQUENCE FILTRATION 

The non-coding DLBCL insertions in SAM format were fed into two individual processes that 

used AWK to extract certain columns of information stored in the alignment section of the 

SAM formatted files to create FASTQ and FASTA formatted files for downstream processing 

of the non-coding insertions. Both types of formatted files contained the same sequence 

information, however, the FASTA files were required for non-coding insertion alignment to 

the human reference genome, and the FASTQ files were required for non-coding insertion 

sequence filtration. 

3.6.5. NON-CODING INSERTION VERIFICATION 

The non-coding insertions in FASTA format were verified with pBlat (Wang and Kong, 2019) 

by locating the positions of the insertions in the human genome (Figure 5). The program pBlat 

facilitates the high-throughput mapping of large-scale sequences to reference genomes with 

speed and accuracy. The prepared FASTA files containing the insertion sequences and the 

hg19 human reference chromosomes (chromosomes 1-22 as well as chromosomes X, Y and 

M) from the UCSC Browser were used as input for the pBlat program. 

The number of parallel threads was set to 23, the stepSize was reduced from default 11 to 1 with the 

minimum score at 0 (the number of matches minus the number of mismatches minus a gap penalty). 

The output was in the default TAB separated PSL2 format.  

 

 
2 In PSL format, each alignment is represented by a line with 21 necessary fields. The format contains 

information about the alignments (insertions, deletions, matches, mismatches) but not the sequences themselves. 

for x in $chrpath 

    do 

      export chr=`basename \$x .fa` 

          pBlat -threads=23 -minScore=0 -stepSize=1 \$x $fasta \$chr.${fasta.baseName}.psl 

          tail -n +6 \$chr.${fasta.baseName}.psl > \$chr.${fasta.baseName}.blat.psl 

  done 

Figure 5: Command line for insertion sequence alignment using pBlat. 
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The process attempted to align each FASTA file, containing non-coding insertion sequences, 

to each hg19 human reference chromosome. This resulted in 25 output PSL files for each of 

the 3 FASTA files. The aligned non-coding insertion sequence PSL files were concatenated by 

file base name into a single PSL file for each of the 3 SRR identities.  

3.6.6. ALIGNED NON-CODING INSERTION SEQUENCE FILTRATION 

A process was designed that executed a perl script to identify non-coding insertions aligned 

by pBlat that occurred once and select the best hit with the highest score amongst those that 

occurred multiple times or were PCR duplicates.  

The pBlat output was parsed so that each accepted read hit included the entire read 

sequence.  Given that the whole read was aligned, and the insertion was smaller than the 

read size, if a hit occurred more than once, it was examined to determine whether it was a 

PCR duplicate. The hit along with the query name containing the chromosome position in the 

CIGAR string was then printed. If the hit was not identical to the original read line, it was taken 

that the insertion was present in multiple chromosomes. The program then printed “has multi 

hits” along with the read line. If the hit was identified as occurring for the first time, the 

program then printed “has first hit”. In the case of multiple hits, the best hit was selected. A 

read was accepted upon the following conditions: there were no pBlat-called mismatches and 

there was only one insertion of less than 20bp; the reference chromosome name from the 

bowtie2 process was the same as the target sequence name from the pBlat process; and the 

start positions of the target sequences from bowtie2 and pBlat were less than 100bp apart.  

The output files were in SAM format and included the query name of the non-coding 

insertions, the bowtie2 reference chromosome names, the alignment start positions of the 

pBlat target sequences, the CIGAR strings, and the observed template lengths.  

Within the Nextflow script of the process, the base name of the pBlat aligned insertion files 

was used as a key for the Nextflow tuple3 qualifier. This would enable downstream processes 

to receive tuples of values as input that had to be handled individually.  

 
3 The Nextflow tuple qualifier allows multiple parameters to be grouped as one. 
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3.6.7. NON-CODING INSERTION AND ALIGNED NON-CODING INSERTION INTERSECTION 

A process was designed that used a perl script to identify the matched reads between the 

aligned and filtered non-coding insertions from pBlat and the unaligned non-coding insertions 

in FASTQ format. The output files were in SAM format and included the length of the 

sequence but not the sequence quality. The SAM files were channelled into a second process 

that made use of the same perl script to identify overlaps once again with the unaligned non-

coding insertions in FASTQ format. The output of the second filtration process was also in 

SAM format but included the sequence length as well as the sequence quality. 

The Nextflow scripts of the processes invoked the tuple qualifier using the key previously 

defined which specified the SRR identity names. The Nextflow join() operator created a 

channel that joined the two input channels for each of these processes by the defined key. 

This enabled the use of paired files; each filtered PSL file aligned by pBlat was processed with 

its matching unaligned read file in FASTQ format.  

The SAM files containing the filtered non-coding DLBCL insertion sequences were 

concatenated with the SAM headings extracted from the bowtie2 aligned reads and 

converted to BAM format. The BAM alignments were then sorted according to the leftmost 

coordinates and indexed. 

3.7. SUB WORKFLOW: IDENTIFICATION OF DLBCL PEAK REGIONS  

The sub workflow used both the treatment and control DLBCL H3K27ac ChIP-seq data files 

depicted in Table 1 to identify transcription factor binding sites and locate places in the 

genome that were enriched with aligned reads, i.e., peak calling. Processes defined in 

modules were imported into the sub workflow script. 

The sub workflow called for two input channels defined in the implicit workflow. The first 

emitted the previously downloaded DLBCL H3K27ac ChIP-seq data in FASTQ format. The 

treatment and control data were emitted in corresponding pairs according to their 

reformulated names as per Table 1. The sub workflow processes used the Nextflow tuple 

qualifier so that values would be grouped by file base name but handled individually in a single 

parameter definition. Each treatment file in the tuple was therefore processed with its 
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corresponding control file as per tuple definition. The second input channel emitted the hg19 

index used for read mapping with bowtie2. 

The peaks4 generated by MACS2 in BED format served as the final output of the sub workflow. 

The following subsections elaborate on the components defined in module scripts that were 

imported into the sub workflow script to achieve the final output.  

3.7.1. GAPPED READ ALIGNMENT 

It is highly recommended that mapped reads from treatment and control samples/input DNA 

are used during peak calling, which is a procedure that outputs a set of regions representative 

of transcription factor binding locations. The reads were aligned to the hg19 human reference 

genome index (H.sapiens, UCSC hg19) using bowtie2 (Figure 6). Bowtie2 works best for reads 

that are at least 50 bp and has a local alignment mode which performs soft clipping to remove 

poor quality bases or adapters from untrimmed reads (Langmead and Salzberg, 2012).  

The input ChIP-seq reads were in FASTQ format. The number of parallel search threads was set to 5, 

and the --local mode was activated to allow soft clipping at the read ends to get the best alignment 

scores. Bowtie2 was run on the treatment and control data in parallel. Files that contained the control 

marker (‘_c’) and files that contained the treatment marker (‘_t’) were processed separately by 

bowtie2. The aligned reads were saved in SAM format.  

The aligned reads from bowtie2 in SAM formatted files were converted to BAM format. The 

BAM files were then coordinate-sorted and indexed with sambamba.  

 
4 Regions of the genome where many reads align that are suggestive of enhancer activity. 

bowtie2 -p 5 -q --local -x $bowtie2Ind -U ${fastqs.find{it.toString().contains('_t.fastq')}} 

-S ${fq1_name}.sam 

bowtie2 -p 5 -q --local -x $bowtie2Ind -U ${fastqs.find{it.toString().contains('_c.fastq')}} 

-S ${fq2_name}.sam 

Figure 6: Command line for aligning DLBCL H3K27ac ChIP-seq reads and whole cell extract controls in FASTQ format 

to the human reference genome using bowtie2. 
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3.7.2. UNIQUELY MAPPED READS  

It is recommended to use uniquely mapped reads for peak calling to improve specificity since 

ChIP-seq data tends to contain duplicates and much redundancy. Sambamba was used to 

filter the sorted BAM files to keep only uniquely mapped ChIP-seq reads (Figure 7).  

The parameters -t, -h, and -f specified that the program was to use 2 threads, print the SAM headers 

before the reads and produce all output files in BAM format. The -F parameter then described the filters 

implemented; unmapped reads were removed by specifying ‘not unmapped’, and duplicates were 

removed with ‘not duplicate’. Multimappers were removed from among the aligned reads by 

specifying ‘[XS] == null’. The bowtie2 'XS’ tag provides an alignment score for the second-best 

alignment and is only present if the read has more than one alignment. Each treatment file with its 

corresponding control file was run in parallel but separately.  

3.7.3. PEAK CALLING 

Peak calling identifies transcription factor binding sites; regions of the genome enriched with 

aligned data from a ChIP-seq experiment. To determine the characteristics of strategies that 

enable some to perform better than others, a 2017 study evaluated six peaking calling 

methods (Thomas et al., 2017). In terms of sensitivity, accuracy, and F-score metrics for low, 

medium, and high noise levels, MACS2 excelled. Methods that rate their candidate peaks 

using a Poisson test, like MACS2, rather than a Binomial test are more effective for statistical 

testing of candidate peaks. The best operating features on simulated transcription factor 

binding data was found in MACS2. The information provided direction and justification for 

the peak caller chosen in this investigation.  

 

 

sambamba view -h -t 2 -f bam -F "[XS] == null and not unmapped and not duplicate" 

${ctl.baseName}.bam > ${ctl.baseName}_unique.bam 

sambamba view -h -t 2 -f bam -F "[XS] == null and not unmapped and not duplicate" 

${trt.baseName}.bam > ${trt.baseName}_unique.bam 

Figure 7: Command line to filter uniquely mapped DLBCL reads using sambamba. 
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The aligned and sorted DLBCL ChIP-seq data in BAM format was channelled into process that 

used MACS2 (Feng, Liu and Zhang, 2011) to identify peak regions, i.e., transcription binding 

sites indicative of enhancer activity (Figure 8). The whole cell extracts for each treatment file 

were used as controls to increase the robustness of called peaks.  

MACS2 has seven functions available as sub-commands. Callpeak is the main function and was invoked 

with ‘macs2 callpeak’. A --p value cut off of 1e-9 for peak detection was used. The option -f was set to 

specify that the input file format would be BAM.  The process emitted the peak summits in BED format. 

Peak summits are useful for finding motifs at binding sites. 

3.8. SUB WORKFLOW: IDENTIFICATION OF ENHANCERS AND ASSOCIATED GENES 

The sub workflow was used to identify putative non-coding insertion-induced enhancers and 

associated genes that may act as drivers in DLBCL. The non-coding insertions in BAM format 

and the peak summits in BED format outputted by the previous two sub workflows were 

intersected to obtain non-coding insertion-induced enhancers. The hg19 human reference 

genes (UCSC Table Browser) was used by BEDOPS to locate genes closest to the identified 

enhancers. 

The final output of the workflow was a list of potential noncoding insertion-induced enhancer 

associated genes that may play a role in DLBCL pathogenesis. The following subsections 

elaborate on the components defined in module scripts that were imported into the sub 

workflow script to achieve the final output. 

 

 

 

 

macs2 callpeak -t ${trt} -c ${ctl} -g hs --bdg -n ${baseName} -f BAM -p 1e-9 

Figure 8: Peak calling performed on DLBCL ChIP-seq treatment and control data using MACS2. 
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3.8.1. INSERTION-INDUCED ENHANCER IDENTIFICATION 

The sorted and filtered non-coding insertions in BAM format and the peak summits in BED 

format were directed into the operation bedtools intersect from the BEDTools package 

(Quinlan and Hall, 2010). The sub workflow script used the Nextflow join() operator to 

combine the elements emitted by the two input channels based on the matching predefined 

key (SRR identity). The process script used the Nextflow tuple qualifier to associate the 

elements of the two parameters based on the tuple definition while still allowing them to be 

handled separately. Bedtools intersect was used to screen for overlapping features between 

the insertions and the peak summits, i.e., to determine which insertion sequences were found 

in enriched regions in the genome. The non-coding insertion-induced enhancers in BAM 

format was converted to SAM format. 

3.8.2. POTENTIAL ENHANCER FILTRATION 

The non-coding insertion-induced enhancers in SAM format was channelled into a process 

that filtered the sequences and converted the files to BED format using a perl script.  

The CIGAR string of the SAM files was used to check if an insertion was present in each SAM 

alignment line and then to determine its length. The script went on to determine how many 

unique letters were present within each insertion. The downstream position of the insertion 

was determined using the number of matching bases after the insertion, starting from 

position 0 to the insert length. Similarly, the upstream position of the insertion was 

determined using the number of matching bases before the insertion. The start position was 

the length of the matching bases less the length of the insertion, and the end point was the 

length of the insertion. The start position of each insertion was determined by adding the 

length of matching bases before the insertion to the 1-based leftmost mapping position of 

the read.  

The output files emitted in BED format contained the reference chromosome name, the start 

and end positions of the insertions, and the insertion sequences, and was used in downstream 

analysis of the putative insertion-induced enhancers. 
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3.8.3. ENHANCER ASSOCIATED GENES 

BEDOPS version 2.4.41 (Neph et al., 2012) was used to locate the genes nearest to the 

sequence positions of the insertion-induced enhancers in BED format based on genomic 

distance.  

The start and end coordinates of the non-coding insertions in BED format were identical 

because they described zero length features. BED format is defined as half-open, so this is 

what is required by BEDOPS tools (Neph et al., 2012). The reads in BED format were fed into 

a process that used AWK to modify the end coordinates of the insertions by adding the 1 

integer. The sort-bed operation from the BEDOPS package version 2.4.41 sorted the resultant 

BED files first by lexicographic chromosome order, then by ascending integer start coordinate 

order, and finally by ascending integer end coordinate order. This allowed downstream 

BEDOPS tools to work properly and quickly without software modifications. The BED files 

were piped to the linux uniq command which filtered out repeated lines. 

The operation closest-features from the BEDOPS package was used to identify the genes 

nearest to the non-coding insertion-induced enhancers. The hg19 human reference genes 

was downloaded from the UCSC Table Browser with group ‘Genes and Gene Predictions’, 

track ‘GENCODE V41lift37’, and table ‘Comprehensive (wgEncodeGencodeCompV41lift37’). 

Each reference gene was compared to each enhancer region in the BED files. The closest gene 

to each noncoding insertion-induced enhancer was outputted in BED format along with the 

distance between them. The files were delimited by tabulation to make further user specific 

processing easier. 

3.9. FUNCTIONAL ANNOTATION ANALYSIS 

A bioinformatics resource system called the Database for Annotation, Visualisation, and 

Integrated Discovery (DAVID) for gene ontology and pathway analyses was used to perform 

functional enrichment analysis on the DLBCL non-coding insertion-induced enhancer 

associated gene list detected by BEDOPS outside of the pipeline as a validation step (Huang 

et al., 2007). 
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CHAPTER 4 

RESULTS 

4.1. INTRODUCTION 

This chapter establishes the findings produced using the bioinformatics methodologies and 

technology previously described. It explores the identification of potential novel enhancers 

involved in the tumorigenesis of DLBCL and the impact of insertions located outside of the 

exome as driver mutations. It also analyses the flexibility and sensitivity of the pipeline 

developed to answer the research questions put forth by the study. All experimental gene 

symbols with their associated names can be found in the appendix.  

4.2. MUTATIONAL EVENTS DETECTED 

On a high-performance computing cluster with 4 CPUs, 1 node, 1 thread per core, and a 

memory of 90GB per task, the pipeline took 10 days, 9 hours, and 34 minutes to complete. 

The tool pBlat monopolised most of this time but was still significantly more time efficient 

than Blat due to its inherent parallel processing.  

The results from the analysis and filtration of the H3K27ac ChIP-seq data obtained from DLBCL 

tissue samples were summarised in Table 2. The first sub workflow of the investigative 

pipeline identified a total of 104,628 insertions not located in the exome and therefore 

deduced to be non-coding events. Peak calling, which was the objective of the second sub 

workflow, was done on the DLBCL treatment data along with the corresponding whole-cell 

extracts which contained sequence reads from chromatin lysates prepared for ChIP-seq but 

without antibody selection. The results of the pipeline’s second sub workflow showed 

127,407 areas in the genome enriched with aligned reads from ChIP-seq indicative of 

transcription factor binding. The third and final sub workflow of the pipeline intersected the 

peak summits with the non-coding insertions and identified a total of 1,437 potential non-

coding insertion induced DLBCL enhancers. The number of mutational events found in each 

SRR file did not correspond with the size of the file, i.e., mutational activity was not seen to 

increase along with file size (number of ChIP-seq reads per file in GB). The mutational activity 

referred to includes the number of non-coding insertions, peak regions, and enhancers per 

DLBCL H3K27ac ChIP-seq file.  
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Table 2: Summary of the results from the analysis of DLBCL H3K27ac ChIP-seq using the designed bioinformatics pipeline. 

SRR File Size of SRR File 
(GB) 

Non-Coding 
Insertions 

Number of Peak 
Regions 

Insertion-Induced 
Enhancers 

SRR1020510 17GB 20,194 26,224 104 

SRR1020512 13GB 48,754 42,934 964 

SRR1020514 13GB 35,680 58,249 369 

Total 43GB 104,628 127,407 1,437 

 

It was expected that the number of mutational events would increase as the size of the file 

increased due to growing amounts of DLBCL H3K27ac ChIP-seq data. This, however, was not 

observed. File SRR1020510 was the largest at 17GB, followed by files SRR1020512 and 

SRR1020514 at 13GB each. The largest file consistently showed significantly fewer non-coding 

insertions, enriched genomic regions, and enhancers than the other two files. Conversely, one 

of the smaller files (SRR1020512) yielded the most insertions and enhancers. Although files 

SRR1020512 and SRR1020514 were the same in size at 13GB, analysis revealed vastly 

different results for both files. The rate of enhancers also did not consistently correspond with 

the number of enriched regions (peaks); while file SRR1020514 contained more peak regions 

than file SRR1020512, it showed fewer insertions and correspondingly fewer enhancers. The 

rate of enhancer activity did, however, correspond with the number of insertions found in 

each file, i.e., as more insertions were located in a file, the number of enhancers also 

increased. Clinical factors, such as disease stage, may have influenced the discrepancy in the 

mutational density of the DLBCL ChIP-seq data files.  

The highest percentages of non-coding insertion-induced enhancers were identified in 

chromosomes 1, 19, 2, 3, 6 and 17, while the lowest percentages of enhancers were recorded 

in chromosomes 13, 21, and 18 (Figure 9). It was necessary to take chromosome length into 

consideration.  
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Each slice is representative of the percentage of enhancers identified in each somatic chromosome. 

Chromosomes 1 and 19 contributed the greatest share of enhancers at percentages of 8.1 and 7.8 

respectively. Chromosomes 13 and 21 had slices of less than 1.5% which could not be displayed.  

The chromosome lengths referred to in this investigation were taken in centimetres from a 

published study (Piovesan et al., 2019). Chromosomes 1-3 are typically the longest 

chromosomes at 8.14cm, 7.92cm, and 6.48cm respectively and so it was expected that more 

enhancers would be identified in these areas, with the proportion of enhancers increasing 

with chromosome length. This was the general trend observed, the most notable exceptions 

being in chromosomes 13, 17 and 19.  

 

 

 

Figure 9: Graph depicting the percentage contribution of non-coding insertion-induced enhancers per chromosome. 
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Chromosome 19 is relatively small in size (1.92cm) compared to chromosomes 1-3, yet the 

data showed that it contributed a percentage of enhancers close to that of chromosome 1 

(Figure 9). Similar results were found for chromosome 17 with a length of 2.72cm.  The trend 

of enhancer activity increasing with chromosome length would suggest that the lowest 

number of enhancers among somatic chromosomes should be found in the shortest 

chromosome, 21. However, chromosome 13, at 3.74cm in length, contributed the fewest 

enhancers of all the somatic human chromosomes at a percentage of 1.18. This was followed 

by chromosomes 21 and 18, at percentages of 1.41 and 1.8 respectively (Figure 9). The former 

is 1.53cm in length while the latter is 2.63cm in length.  

The relationship between the rate of enhancer activity and chromosome length was 

graphically displayed in Figure 10. Enhancer activity was seen to increase along with 

chromosome length, except in the case of chromosomes 19 and 17 where steep upward 

inclines were observed which were not in keeping with the trend observed regarding the 

lengths of the chromosomes. Another anomaly observed was in chromosome 13, which was 

greater in length than chromosomes 21 or 18, yet it showed the lowest rate of enhancer 

activity among all the somatic chromosomes. Chromatin accessibility and other epigenetic 

factors may play a role in this observation. 
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The chromosome lengths were taken in centimetres from a published study (Piovesan et al., 2019). The 

pink line representing ChIP-seq file SRR1020512 had notably more enhancer activity across all somatic 

chromosomes. The red line representing ChIP-seq file SRR1020510 had the lowest rate of enhancer 

activity across all chromosomes, despite containing the most DLBCL reads. The blue line representing 

ChIP-seq file SRR1020514 had a lower enhancer rate than that of file SRR1020512, despite being the 

same size in GB, but was still higher than that of file SRR1020510. The green line represented the 

enhancer rate of all the DLBCL ChIP-seq data in total.  

Enhancer activity generally increasing along with chromosome length indicated a positive 

correlation between the variables which was confirmed by statistical analysis. The Pearson 

correlation coefficient of the combined ChIP-seq data indicated a moderate and positive 

relationship between enhancer occurrence and chromosome length, i.e., as the chromosome 

length increased, the number of enhancers in that chromosome generally also tended to 

increase (Figure 11). The exception was the ChIP-seq data from file SRR1020514, which did 

not statistically display a strong relationship between enhancers and chromosomes in terms 

of length. Table 3 showed that the p-value was estimated to be significant at p<0.05 for each 

SRR file except file SRR1020514. Since the p-value for the combined ChIP-seq data was 

Figure 10: Graph depicting enhancer occurrence in relation to somatic chromosome size (cm) on the combined DLBCL data 

and individual SRR ChIP-seq files. 
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significant at p<0.05, the consensus was that the probability of enhancer activity being 

consistently proportional to chromosome length was likely.  

 

 

 

 

 

 

 

Each SRR file of DLBCL ChIP-seq data showed a positive relationship between enhancer activity and 

chromosome length, file SRR1020514 however only had a weak linear association between the 

variables. 

a) Correlation coefficient for file 

SRR1020510. 

b) Correlation coefficient for file 

SRR1020512. 

c) Correlation coefficient for file 

SRR1020514. 
d) Correlation coefficient for 

combined ChIP-seq data. 

R=0.5156 R=0.6085 

R=0.3045 R=0.5699 

Figure 11: Correlation coefficient for the DLBCL ChIP-seq data in relation to chromosome length. 
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Table 3: Statistical scoring of the DLBCL ChIP-seq data in relation to chromosome size. 

File Correlation coefficient 
(R) 

Coefficient of 
determination (R2) 

p-value (exact) 

SRR1020510 0.5156 0.2658 0.014048 

SRR1020512 0.6085 0.3703  0.002656 

SRR1020514 0.3045   0.0927 0.0168252 

Combined ChIP-seq 
data 

0.5699 0.3248 0.005624 

 

 

By reorganising the enhancer rate according to the number of genes within each 

chromosome, a similar pattern to that seen with chromosome length was observed; the 

number of enhancers increased as the number of genes increased within each chromosome 

(Figure 12), which translated into the number of non-coding insertion mutations increasing 

as the number of genes increased.  

As previously stated, the highest percentages of enhancers were identified in chromosomes 

1 and 19. Chromosome 1 contains the highest number of genes at 2,100, followed by 

chromosome 19 at 1500 genes. The lowest percentages of enhancers were recorded in 

chromosomes 21 and 13, which contain 300 and 400 genes respectively, two of the lowest 

chromosomal gene counts. Chromosome length is not necessarily an indicator of the number 

of genes within a chromosome. Chromosomes 19 and 17 are among the smaller 

chromosomes in terms of length, but they are the most gene dense. Gene density, which is 

the ratio of the number genes per number of base pairs, may be a factor influencing the 

aggregation of enhancers to certain chromosomes. The study identified chromosome 18 had 

the third lowest rate of enhancer activity at a percentage of 1.8 (Figure 9). Both chromosome 

21 and 18 contain approximately 300 genes, however the former is 1.53cm in length while 

the latter is 2.63cm in length. Chromosome 18 has the lowest gene density (Figure 12).  
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The approximate number of genes were taken from a medical online site (MedlinePlus: 

Chromosomes & mtDNA, 2021). File SRR1020510 showed the lowest enhancer activity while file 

SRR1020512 showed the highest enhancer activity. Each data line in the graph curved in a general 

upward slope indicating that the number of enhancers was directly proportional to the number genes.  

The Pearson correlation coefficient of the DLBCL ChIP-seq data confirmed a very strong and 

positive relationship between enhancer occurrence and number of genes (Figure 13). Table 4 

shows that the p-value was estimated to be significant at p<0.05 for each group of DLBCL 

ChIP-seq data. 

 

 

 

 

 

Figure 12: Graph depicting enhancer occurrence in relation to the number of genes per somatic chromosome for the 

combined DLBCL data and the individual SRR ChIP-seq files. 
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Figure 13: Correlation coefficient for the DLBCL ChIP-seq data in relation to the number of genes. 

 

 

 

 

  

 

 

 

 

 

 

Each group of DLBCL ChIP-seq data showed a positive relationship between enhancer activity and 

number of genes, with a strong linear association between the variables.  

Table 4: Statistical scoring of the DLBCL ChIP-seq data in relation to the number of genes. 

File Correlation coefficient 
(R) 

Coefficient of 
determination (R2) 

p-value (exact) 

SRR1020510 0.4857 0.2359 .021928 

SRR1020512 0.8955 0.8019  < .00001 

SRR1020514 0.6324   0.3999 .001589 

Combined ChIP-seq 
data 

0.8681 0.7536 < .00001 

a) Correlation coefficient for 

combined DLBCL ChIP-seq 

data. 

b) Correlation coefficient for file 

SRR1020510. 

c) Correlation coefficient for file 

SRR1020512. 

d) Correlation coefficient for file 

SRR1020514. 

R=0.8681 R=0.4857 

R=0.8955 R=0.6324 
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The bioinformatics pipeline did not identify any non-coding insertion-induced enhancer 

activity in chromosome Y, and only one enhancer event was detected in chromosome M 

(mitochondrial DNA) (Figure 14). Chromosome Y is the second smallest chromosome at 

1.87cm and has the fewest genes (70-200) amongst all the human chromosomes. All of the 

enhancers found among the sex chromosomes came from chromosome X (Figure 15). The 

chromosome with the highest rate of enhancer activity for each SRR file was chromosome 2 

for SRR1020510, chromosome 1 for SRR1020512, and chromosome 19 for SRR1020514.  

 

Figure 14: Graph depicting the contribution of non-coding insertion-induced enhancers per chromosome for each DLBCL 
H3K27ac ChIP-seq file. 

File SRR1020510 contained the least enhancers across all chromosomes even though it was the largest 

file, for chromosomes 13 and 15 no enhancers were found. However, SRR1020510 was the only file in 

which an enhancer event was detected for chromosome M. Files SRR1020512 and SRR1020514 

contained the same amount of ChIP-seq data, yet the rate of enhancer activity in file SRR1020512 far 

outstripped that found in either of the other files. 
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Figure 15: Graph depicting proportion of enhancers in autosomal chromosomes as compared to enhancers in non-autosomal 
chromosomes. 

Majority of the non-coding insertion-induced enhancers were identified in somatic 

chromosomes/autosomes. Non-autosomal/gonosomal enhancer activity was observed to be relatively 

low in comparison and was mainly restricted to chromosome X. 

A total of 6 enhancer associated genes were found to be common to all 3 SRR files; two of the 

genes were well-known oncogenes, dual specificity tyrosine phosphorylation regulated kinase 

1A (DYRK1A) and COPI coat complex subunit beta 2 (COPB2) (Table 5).  DYRK1A is located in 

chromosome 21, one of the smallest chromosomes in size and lowest in gene count. Of the 6 

genes mentioned, 4 genes were in chromosomes 1-3 and 19, which were observed as being 

hotspots for enhancer events detected in this investigation. The distance between the DLBCL 

peak region and the TSS of the enhancer associated gene was at 0 in most cases of this 

investigation. 
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Table 5: Enhancer associated genes commonly identified in ChIP-seq files SRR1020510, SRR1020512, and SRR1020514. 

Chromosome Start 
position 

End 
position 

Gene Distance 
to TSS 

chr1 148556094 148577660 NBPF15 0 

chr14 22975628 22975687 TRAJ35 283 

chr19 57874934 57876677 TRAPPC2B 0  

chr2 65073263 65090760 LINC01800 -1644  

chr21 38739402 38885075 DYRK1A 0 

chr3 139098852 139108488 COPB2 0 

 

The relatively few (only 6) genes commonly affected by insertion-induced enhancers in all 3 

ChIP-seq data files was thought to be due to the low rate of activity in file SRR1020510- the 

few genes affected in this file lowered the number of commonly affected genes amongst all 

3 files. Files SRR1020512 and SRR1020514 had a comparatively greater rate of enhancer 

activity than file SRR1020512, with 24 genes identified to be commonly affected (Table 6). 

Instances where a gene was reported more than once was not representative of duplicates, 

rather they indicated the presence of different insertion events within the same locus of the 

gene, i.e., one base insertion, two base insertions, etc. 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/



70 

 

Table 6: Enhancer associated genes commonly identified in ChIP-seq files SRR1020512 and SRR1020514. 

Chromosome Start position End position Gene Distance 
to TSS 

chr1 148556094 148577660 NBPF15 0 

chr10 112327484 112350844 SMC3 0 

chr14 22975628 22975687 TRAJ35  283 

chr16 9056562 9060847 USP7-AS1 0 

chr16 9056562 9060847 USP7-AS1 0 

chr17 10600932 10609245 ADPRM 0 

chr17 20059401 20140492 SPECC1 0 

chr19 20736597 20844389 ENSG00000269110 0 

chr19 57874934 57876677 TRAPPC2B 0 

chr2 64415648 64479736 ENSG00000225889 0 

chr2 65073263 65090760 LINC01800 -1644 

chr20 5556545 5591570 GPCPD1 0 

chr21 38739402 38885075 DYRK1A 0 

chr3 8543573 8609450 LMCD1 0 

chr3 139098852 139108488 COPB2 0 

chr4 25863451 25931167 SMIM20 0 

chr4 25863451 25931167 SMIM20 0 

chr5 178152376 178157660 ZNF354A 0 

chr6 20321691 20333424 ENSG00000286590 1587 

chr6 32485129 32498064 HLA-DRB5 0 

chr6 36853727 36896740 C6orf89 0 

chr7 130736623 130792687 LINC-PINT 0 

chr7 154735399 154794834 PAXIP1 -133  

chrX 153178663 153200452 ARHGAP4 0 
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The cut off for increased mutational activity reported for file SRR1020510 was at 2 enhancer 

events because, in keeping with the trend of low non-coding insertional activity in this file, no 

genes were affected by more than 2 enhancer events. A total of 7 genes were affected by 

more than 1 enhancer (Table 7). 

Table 7: Genes affected by more than 1 enhancer event in ChIP-seq file SRR1020510. 

Chromosome Gene Number of 
Enhancers 

chr6 ENSG00000285064 2 

chr2 LINC01825 2 

chr21 MIR155HG 2 

chr3 RAB7A 2 

chr11 SLC22A18 2 

chr14 TRAC 2 

chr19 TRAPPC2B 2 

 

The cut off for increased mutational activity reported for files SRR1020512 and SRR1020514 

was at 3 enhancer events because of the increased rate of enhancer activity in these files. The 

genes most affected by multiple enhancer events (3 or more enhancers) were located in files 

SRR10205012 and SRR10205014 (Table 8).  
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Table 8: Genes affected by more than 2 enhancer events in ChIP-seq files SRR1020512 and SRR1020514. 

 SRR1020512   SRR1020514  

Chromosome Gene No. of 
Enhancers 

Chromosome Gene No. of 
Enhances 

chr6 ATXN1 4 chr19 TRAPPC2B 5 

chr9 SEMA4D 4 chr19 CCDC106 3 

chr5 CDC42SE2 3 chr20 ENSG00000270299 3 

chr17 CYTH1 3 chr3 NUP210 3 

chr20 GPCPD1 3    

chr3 IQSEC1 3    

chr2 UBXN4 3    

 

The trafficking protein particle complex subunit 2B (TRAPPC2B) in chromosome 19 and 

GPCPD1 in chromosome 20 showed the most enhancer activity across the DLBCL data, at 8 

and 5 enhancers respectively (Table 9). TRAPPC2B was also common to each set of enhancer 

associated genes identified among the 3 SRR files. The trend was observed again whereby 

chromosomes 1, 2 and 3, known to be large in length and gene rich, not only contributed 

greatly to the amount of enhancer associated genes identified but also to the genes most 

affected by enhancer activity (Table 9). Chromosomes 17 and 19, with two of the highest gene 

counts, also featured in the list of chromosomes housing genes most affected by enhancer 

activity.  

Some chromosomes that were among the smallest in length, such as chromosomes 20 and 

21, housed individual genes with multiple enhancers, even though the overall rate of 

enhancer activity in those chromosomes were relatively low compared to that of other 

chromosomes. The number of genes impacted as well as the degree of impact was focused 

upon in this study. The results showed that potentially significant genes affected in DLBCL by 

non-coding insertion-induced enhancers can be found regardless of chromosome length or 

gene count.  
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Table 9: Genes most affected by enhancer activity across all DLBCL ChIP-seq files. 

Chromosome Gene Total Number of Enhancers 

chr19  TRAPPC2B 8 

chr20 GPCPD1 5 

chr6 ATXN1 4 

chr5 CDC42SE2 4 

chr17 CYTH1 4 

chr2 LINC01800 4 

chr9  SEMA4D 4 

chr14 TRAC 4 

chr14 TRAJ35 4 

chr7 TTYH3 4 

chr16 USP7-AS1 4 

chrX ARHGAP4 3 

chr11 CADM1 3 

chr19 CCDC106 3 

chr3 COPB2 3 

chr21 DYRK1A 3 

chr2 ENSG00000225889 3 

chr20 ENSG00000270299 3 

chr11 ENSG00000279491 3 

chr6 ENSG00000285064 3 

chr9 FNBP1 3 

chr3 IQSEC1 3 

chr3 LMCD1 3 

chr21 MIR155HG 3 

chr17 MSI2 3 

chr1 NBPF15 3 

chr18 NDUFV2 3 
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chr6 NEDD9 3 

chr3 NUP210 3 

chr11 SLC22A18 3 

chr4 SMIM20 3 

chr4 TNIP3 3 

chr2 UBXN4 3 

chr19 ZC3H4 3 

 

The BED files containing the DLBCL peak summits obtained from MACS2 were visualised using 

IGV (online application). The peak regions were later intersected with non-coding DLBCL 

insertions to identify genes associated with the enhancers. The images displayed in Figures 

16 and 17 exemplify the potential non-coding insertion-induced enhancer locations of two 

genes found within DLBCL peak regions.  
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a) Gene TRAPPC2B in file SRR1020510. 

 

b)  Gene TRAPPC2B in file SRR1020512. 

 

c) Gene TRAPPC2B in file SRR1020514. 

Figure 16: IGV images of peak summits identified in gene TRAPPC2B of chromosome 19 in each SRR file. 

The images displayed show the peak summits indicative of enhancer activity identified in the gene 

TRAPPC2B of chromosome 19, which was common to all 3 SRR files. The vertical bar above the peak 

name indicates the position of the peak region in relation to the chromosome as well as the gene to 

which it is nearest. 
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Figure 17: IGV image of peak summit identified in gene SMC3 of chromosome 10 in ChIP-seq file SRR1020512. 

The structural maintenance of chromosomes 3 (SMC3) gene is known to play a role in B-cell 

lymphomagenesis. The investigation revealed the DLBCL peak region to be at 112,327,679 bp in 

chromosome 10, directly within the SMC3 gene region (112,327,484bp-112,350,844bp). 

4.3. FUNCTIONALLY ENRICHED PATHWAYS 

Functional analysis was performed using DAVID. Regarding disease analysis, the enhancer 

associated gene list identified from the SRR file SRR1020510 was not directly linked to any 

specific type of cancer. The gene list generated from SRR file SRR1020512 was found to 

contain proto-oncogenes within the Uniprot database and elements associated with somatic 

prostate cancer in the OMIM database. Some genes produced by SRR file SRR1020514 

matched those within the Uniprot database that translated into tumour suppressors.  

Scanning of the enhancer associated genes through KEGG databases identified their inclusion 

among proteoglycans in cancer pathways (Table 10). Proteoglycans produced by tumours aid 

in their growth, invasion, and maintenance (Elgundi et al., 2020). The investigation discovered 

several genes affected by DLBCL non-coding insertion-induced enhancers among the heparan 

sulphate proteoglycans, e.g., AKT, Moesin, and Actin linked to cell growth and survival and 

SHP-1 linked to angiogenesis. By boosting the affinity of adhesion molecules to their 

receptors, the heparan sulphate proteoglycans can function as a co-receptor of growth 

factors and extracellular matrix proteins (Elgundi et al., 2020). They interact with signalling 

pathways that influence proliferation, adhesion, invasion, and angiogenesis. Enhancer 

affected genes among the hyaluronan proteoglycans were CDC42, filamin, and F-actin linked 

to cell migration and invasion. Hyaluronic acid interacts with cell surface receptor CD44 which 

indirectly activates Rho, MAPK and PI3K signalling cascades to promote cell survival, growth, 
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proliferation, migration and invasion and transcription of pro-cancer genes (Price, Lokman 

and Ricciardelli, 2018). Among the keratan sulphate proteoglycans affected by enhancers was 

Fas, involved in growth suppression. Keratan sulphate is a glycosaminoglycan which bedecks 

proteoglycan core proteins (Wei et al., 2020). Proteoglycans carrying keratan sulphate 

epitopes in cancer are highly associated with advanced tumour grade and poor prognosis.  

The enhancer associated genes were seen to be involved in B-cell lymphoma transcriptional 

dysregulation (Table 10). Chemotherapy resistance was linked to gene CDKN1B; Zeb1 was 

linked to cell migration and invasion; H3 was linked to cell cycle progression. The gene EWSR1 

was associated with processes linked to the escape from growth inhibition, senescence, and 

apoptosis, tumour growth and survival, proliferation, and angiogenesis. 

An enhancer associated gene identified to be affected by non-coding insertions was NOTCH1, 

which formed part of the NOTCH signalling pathway (Table 10). The NOTCH pathway controls 

cell division, differentiation, proliferation, and death (Bray, 2006). NOTCH is a cell-surface 

receptor that translates short-range signals by connecting with transmembrane ligands on 

nearby cells. Multiple pathways in neoplastic B cells cooperate to activate the NOTCH 

pathway, which is shown by mutations amplifying positive signals or impairing negative 

regulators.  

Table 10: Enhancer associated genes identified by DAVID to be involved in cancer pathways. 

Proteoglycans 
involved in DLBCL 

Transcriptional 
dysregulation 

BCR signalling 
pathway 

NOTCH signalling 
pathway 

AKT CDKN1B CD22 NOTCH1 

Moesin Zeb1 SHP-1 MAML 

CDC42 H3 SYK APH-1 

Actin EWSR1 PKCB  HATs 

filamin ENL VAV Numb 

SHP-1 LYL1 GRB2 ATXN1L 

Fas PLZF AKT  

F-actin TEL   
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Other enhancer associated genes like CASP3, ITGA, PKB/Akt, PKC, PIM1, HSP, Survivin, TRAFs, 

p27, Cyclin D, VEGF, SMC3, and Max, were among those also identified by DAVID to be 

involved in various cancerous pathways including apoptosis evasion, cell proliferation, 

tumour invasion and metastasis, genomic instability, insensitivity to anti-growth signals, 

genomic damage, resistance to chemotherapy, cell immortality and block of cell 

differentiation.  

Genes CD22, SHP-1, Syk, VAV, AKT, GRB2, which form part of the BCR signalling pathway, were 

detected by the bioinformatics pipeline to be affected by non-coding insertion-induced 

enhancer activity in DLBCL (Figure 18). B-cell survival, development, and antibody production 

in both normal and pathological situations depend on signalling via the B cell receptor (Young 

et al., 2015).  

 

Figure 18: Diagram depicting enhancer associated genes involved in the BCR signalling pathway. 

While tonic BCR signalling is necessary for B cell survival and development through molecular 

mechanisms, chronic active BCR signalling promotes B-cell lymphoma growth (Havranek et 

al., 2017). 
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Additionally, there were genes involved in DLBCL pathogenesis identified in this investigation 

that were shown by DAVID to be involved in HIV-infection, such as IRAK4, STING, RIP1, TNFR1, 

Fas, AP-1, CASP3, PYK2, PKC, and AKT. The viral life cycle of HIV-1 was also found to be 

impacted by certain DLBCL enhancer associated genes such as PIN1, ELL2, INI1, CycT1, ENL, 

EP300 and SERINC.  

Disease mechanisms are complex and tend to rely upon the mutated effect of multiple 

pathways and genes working in unison. Focusing on groups of identified genes that have a 

similar function, chromosomal location and regulatory role may be beneficial to creating a 

more inclusive and precise picture of the landscape of DLBCL pathogenicity. 

4.4. PIPELINE APPLICABILITY, ADAPTABILITY AND SENSITIVITY 

The pipeline structure is easily adaptable depending on the needs of the user. Nextflow’s 

built-in set up for Singularity allowed multiple processes to make use of the same tools 

without the need for repeated lines of code and made it convenient to change and add 

software. The container system can be swapped out for Docker or Conda, two of the most 

frequently used container and environment management systems, for which there are also 

in-built setups. The modularity of DSL2 allowed tested processes to be reused with different 

inputs and required outputs which, along with parallel processing, greatly sped up 

development and increased the robustness of the pipeline. The tools employed by the 

pipeline also reduced computational run time; pBlat as compared to Blat decreased the run 

time considerably with parallel threads, and one of the main advantages of using BEDOPS 

over BEDTools to find enhancer associated genes was that BEDOPS only kept the data needed 

to compute the next line of output, so memory use was reduced.  

The output files must be filtered, like with other variant calling applications, before additional 

investigation. The necessary input and output file formats of the pipeline are commonly used 

in variant detection procedures, making it simple to incorporate them in more extensive 

pipelines. To produce the appropriate custom formats and file associations, complicated 

processing of the input files was automated.  

The pipeline was designed to enable parallel computations for numerous samples, allowing 

faster analysis of corresponding input and control data sets. Output from each workflow was 
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standardised for convenient comparison to results from different pipelines, and to enable 

output viewing with common visualisation tools; the sorted BAM file in which the non-coding 

insertions were stored can be used for visual verifications, the enhancers and their associated 

genes were both sorted and stored in BED format which can be redirected or piped directly 

to other utilities. Depending on their requirements, users can choose to use and adapt one or 

more sub workflows or their outputs.  

Several genes known for their tumorigenic roles in DLBCL and other malignancies, like FOXP1, 

NOTCH1, IPO11 and PRDM2 were identified by the pipeline to be affected by non-coding 

insertion-induced enhancers. The genes common to each file was searched for in the dbInDel 

database (Huang et al., 2020) under cancer type DLBCL, and each gene other than T-cell 

receptor alpha joining 35 (TRAJ35) was located within samples for DLBCL. Genes TRAPPC2B 

and GPCPD1 with the most aberrations were also found in the dbIndel database. Gene long 

intergenic non-protein coding RNA 1800 (LINC01800) in chromosome 2 was found at a 

distance of -1641 upstream (towards the 5’ end) to the TSS in the dbInDel database, which 

was close to the distance of -1644 upstream identified in the study, and further supported 

the accuracy of the bioinformatics pipeline.  

4.5. SUMMARY  

Using the bioinformatics tools described in the previous chapter, this chapter aimed to 

present and elucidate upon the DLBCL non-coding insertions, peak regions, and insertion-

induced enhancers yielded by the computational pipeline. The aggregation of non-coding 

insertion mutations and enhancer activity was selective with a direct relationship to 

chromosomal gene count. Based on the very low rate of mutational activity per chromosome 

in the biggest DLBCL ChIP-seq sample file and the surge of mutational activity per 

chromosome in one of the smaller sample files, analysis seemed to suggest the influence of 

clinical factors specific to the DLBCL ChIP-seq data samples over the research findings. The 

pipeline produced results that were taken to be accurate based on comparisons to published 

data. The modularity and parallel processing provided by the programming DSL along with 

the standardised results optimised the reproducibility and adaptability of the computational 

pipeline. 
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CHAPTER 5 

DISCUSSION 

5.1.  INTRODUCTION  

Non-coding mutations is an area of great interest in epigenetics. Understanding the functional 

relevance of these variations is crucial for cancer researchers. Specific transcriptional 

programs that are characteristic of cancer are dysregulated by genomic abnormalities in DNA 

regulatory regions. Numerous mutations have been discovered in cis regulatory elements like 

enhancers. This study provided a robust but flexible computational method of identifying 

enhancer-associated non-coding mutations in the genome of DLBCL to make it easier for 

cancer researchers to conduct their studies. The non-coding insertion-induced enhancers and 

associated genes can be further investigated to determine functional relevance.  Important 

mutations might be found consequently, and the development of innovative therapies that 

target the non-coding genome might be aided.  

5.2. CHROMOSOMAL IMPACT ON DLBCL ENHANCER ACTIVITY 

It was assumed that the number of non-coding insertion-induced enhancers would increase 

with chromosome length, which was the general trend observed upon analysis of the ChIP-

seq data (Figure 10). There were, however, exceptions to this trend, most notably in 

chromosomes 17 and 19, in which more enhancer activity was observed than expected, and 

chromosomes 13, in which less enhancer activity was observed than expected. Chromosome 

19 had the second highest non-coding insertion-induced enhancer rate of all somatic 

chromosomes, rivalling that of chromosome 1 which is almost 4 times its length (Figures 9 

and 10). Chromosome 17 had the fourth highest enhancer rate, rivalling that of chromosome 

6 which is almost double its length. Conversely, chromosome 13 had the lowest enhancer 

rate, even lower than that of chromosome 21 which is the smallest somatic chromosome 

(Figures 9 and 10). While there was a positive correlation between the rate of non-coding 

insertion-induced enhancers and chromosome length (Table 3), the strength of the 

relationship between the variables was weaker than expected at a barely moderate 

correlation coefficient of 0.56 for the total DLBCL ChIP-seq data (Figure 11), which was likely 

influenced by the discrepancies in chromosomes 13, 17, and 19.  
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The rate of enhancers was expected to increase with chromosome length because it was 

assumed that the number of genes (targets for mutational activity) would increase the larger 

the chromosome. Since chromosome length alone was unable to satisfactorily justify the 

observed trend in the non-coding insertion mutational pattern, the enhancer rate was 

measured according to chromosomal gene count without making assumptions about 

chromosome length.  

The rate of enhancers was found to increase with the number of genes in each chromosome 

(Figure 12). A strong, positive association was found between enhancer rate and gene count 

at a correlation coefficient of 0.86 for the total DLBCL ChIP-seq data (Figure 13), which was 

more significant than what was observed between enhancer rate and chromosome length. 

Enhancer activity in relation to chromosomal gene count and density was thus able to 

elucidate upon the discrepancies observed in chromosomes 13, 17, and 19.  

The present study identified the second highest rate of insertion-induced enhancers within 

chromosome 19 which was attributed to the fact that it had the second highest number of 

genes among all chromosomes (Figure 12), with a gene density more than two times the 

genome average (Grimwood et al., 2004). Chromosome 19 has large, clustered gene families 

with a high GC content, many CpG islands, and is packed with repetitive DNA (55% vs. the 

genome average of 44.8%), which is significant in terms of both biology and evolution 

(Grimwood et al., 2004). Studies on lung cancer subtypes found chromosome 19 contained 

the most frequently occurring aberrations (Jinesh et al., 2021). The SPIB locus on chromosome 

19 was also found to be a target of mutations in ABC DLBCL (Pasqualucci and Dalla-Favera, 

2018).  

Chromosome 17 is the fifth smallest somatic chromosome in length, yet it houses the fifth 

highest number of genes, along with chromosome 12 (Figure 12). Chromosome 17 contains 

the second-highest gene density and is enriched in segmental duplications (Zody et al., 2006). 

Numerous studies have revealed a connection between chromosome 17 genes and the 

development, progression, and response to cancer treatment, especially breast cancer (Zody 

et al., 2006). Treatment development might be made easier with a better knowledge of 

chromosome 17 anomalies since it houses several well-known tumour suppressors, like TAU 

and TOP2A, and oncogenes, like p53 and BRCA1 (Zhang and Yu, 2011).  
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The upscale observed in the number of insertion-induced enhancers found in chromosomes 

17 and 19 was therefore consistent with the literature on what is known about the 

chromosomes regarding gene density. On the other hand, although chromosome 13 has a 

length that is average (Figure 10), it has the third lowest number of genes among somatic 

chromosomes, and the second lowest gene density, after chromosome 18 (Figure 12) 

(Dunham et al., 2004). When taken in this context, the low enhancer rate in this chromosome 

was in keeping with the trend in which enhancer activity increased along with the number of 

genes and vice versa.  

The non-coding insertion mutations were not random but selective; they targeted 

chromosomes that were gene rich. Chromosomes that are gene rich have an increased GC 

content, as mentioned with chromosome 19, which serve as structural markers for 

transcription (Han and Zhao, 2009). GC-rich regions are home to CpG islands, clusters of CpG 

dinucleotides that contribute to approximately 30% of the genome-wide variability in indel 

rates (Makova and Hardison, 2015). An increased indel rate is found at high GC content 

because of the increased frequency of CpG nucleotides, which become mutation hotspots 

when methylated and therefore have higher mutation rates (Makova and Hardison, 2015). 

Furthermore, while the DLBCL insertions were non-coding mutations, they induced enhancers 

close to or within the TSS of the genes nearest to them, and increased GC content of 

sequences is known to be found at and around the TSS of genes (Koudritsky and Domany, 

2008). Higher GC content equates to stronger binding of DNA regulatory elements, and 

possibly a higher density of binding sites (Koudritsky and Domany, 2008). 

Further investigation was made into the underlying mechanisms behind the non-coding 

insertions targeting regions of the genome rich in GC content. GC rich genes have 100-fold 

greater transcription rates than GC poor genes (Khuu et al., 2007). High GC content has been 

correlated with elevated levels of gene transcription, whereas low GC content has been 

correlated with chromatin condensation (Khuu et al., 2007).  
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5.3. IMPACT OF CHROMATIN ACCESSIBILITY ON DLBCL ENHANCER ACTIVITY 

The distribution pattern of the non-coding insertion mutations could be explained by a 

particular chromatin conformation. Chromatin accessibility is a hallmark of transcription 

factor binding and regulatory elements like enhancers (Ocsenas and Reimand, 2022). The 

mutations aggregated to regions that were rich in genes, high in GC content, and therefore 

likely to be more accessible and less compact, collectively such genomic regions are referred 

to as the euchromatin (Gilbert et al., 2004). Regional mutation rates are highly influenced by 

chromatin organization; greater indel mutation densities are seen in early-replicating, 

transcriptionally active areas of open chromatin (euchromatin) (Makova and Hardison, 2015). 

Accordingly, low non-coding insertion-induced enhancer rates were observed in 

chromosomes that were gene poor, which are typically the locations of constitutive 

heterochromatin that maintains a condensed and transcriptionally inert chromatin 

conformation (Marsano and Dimitri, 2022).  

The DNA regulators that majority of the non-coding DLBCL insertions were associated with 

were putative proximal enhancers located within the TSS of the genes nearest to them. The 

enhancers induced by the non-coding DLBCL insertions may have been exposed to less 

downstream regulation if the chromatin was in an active state since this is what has been 

observed by previous cancer studies on response to gene regulation at proximal enhancers in 

rapidly dividing cells (Sanghi et al., 2021). 

A slight increase in enhancer activity was observed in chromosome 21 (Figure 12), which is 

gene poor and smallest in length of all somatic chromosomes. It is the location of known 

DLBCL oncogenes DYRK1A, PRDM15, and MIR155HG found to be affected by non-coding 

insertion-induced enhancers. Previous research identified the presence of particularly fragile 

regions of the chromatin in chromosomes that contain oncogenes and tumour suppressor 

genes, e.g., a region with one of the highest accessibility scores contains the MYC gene, a well-

known oncogene in DLBCL; another susceptible region contains the PRDM1 gene, a master 

regulator of pan-immune response (Liu, 2020). Fragile regions comparable to those 

mentioned may have made chromosome 21 slightly more susceptible to the non-coding 

insertion mutations, due to the oncogenes it contains which possibly have high accessibility 

scores. 
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Majority of the detected enhancers were found among the somatic chromosomes, enhancers 

found among the sex chromosomes came solely from chromosome X (Figure 15). 

Chromosome X at 5.10cm (Piovesan et al., 2019) is similar in length to chromosome 7 (Figure 

10), with approximately 1400 genes (MedlinePlus: Chromosomes & mtDNA, 2021), it ties with 

chromosome 11 for third most gene rich chromosome. However, it had an enhancer rate 

closer to that observed in chromosome 22 (Figure 14), which is less than half its length (Figure 

10). It is understood from published literature that indels target regions of the genome that 

is less compact and accessible to transcription (Makova and Hardison, 2015), the silent X 

chromosome in women is an example of facultative heterochromatin (Wutz, 2011), which 

describes a condensed and inactive environment not observed to be targeted by the non-

coding insertions.  

Chromatin accessibility has important clinical implications in cancer and the data gained by 

this study provided an additional perspective in mutational targets of DLBCL tumours. 

5.4. IMPACT OF CLINICAL FACTORS ON ENHANCER ACTIVITY 

There were significant differences in the quantity of non-coding insertion-induced enhancers 

detected among the DLBCL ChIP-seq data files. The mutational rate observed in the largest 

ChIP-seq file, SRR1020510, was outstandingly low across all chromosomes. The mutational 

rate observed in the smaller ChIP-seq file, SRR1020512, was exceedingly high in comparison, 

while the mutational rate of ChIP-seq file SRR1020514 averaged between that of the other 

two files, higher than the former but lower than the latter.  It was hypothesized that clinical 

factors defining the sources of the DLBCL samples might have played a role in these 

observations. 

Most patients are at an advanced disease stage when DLBCL is diagnosed, with poor 

prognosis, numerous extranodal involvement and a high percentage of the double expressor 

subtype (Zhu et al., 2022). The ChIP-seq data files reflected mutational rates from 3 DLBCL 

patients in potentially varying stages of disease (Figure 14). The data in file SRR1020510 

described a patient in an early stage of disease development, the cancer genome would still 

have been close to a non-diseased state, and so very low numbers of non-coding insertion 

mutations were observed. The data in file SRR1020512 described a patient in an advanced 

stage of the disease with an acute clinical presentation which would have been facilitated by 
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multiple dysregulated genes and pathways working in unison, hence the particularly high rate 

of mutations. Lastly, the data in file SRR1020514 described a patient in a disease stage that 

had progressed further than that of the first patient, thus an increased rate in mutations was 

found in comparison but was still not as advanced as the second patient, thus fewer 

mutations were detected in comparison.  

Despite the difference in mutational rates, enhancer associated genes were identified by the 

bioinformatics pipeline among all the DLBCL ChIP-seq files. Several were known to play key 

roles in various cancer types, including lymphomagenesis, and more specifically, DLBCL. 

5.5. NON-CODING INSERTION-INDUCED ENHANCER ASSOCIATED GENES 

This section provided insight on a selection of enhancer associated genes identified by the 

bioinformatics pipeline. Among the genes discussed were some of those common to each 

DLBCL file of ChIP-seq data as well as some of those most affected by enhancer activity and 

known from literature to be involved in cancer and, more specifically, DLBCL (SEMA4D, 

PRDM15, MIR155HG, PRDM2, UBX4N, IPO11, EZH1, FOXP1, NOTCH1 and PIM1). Previous 

studies found that enhancers located within genes were predictive of correlated RNA and 

protein expression (Sanghi et al., 2021). The non-coding insertion-induced enhancers 

therefore likely had an impact on the expression of the genes within which they were located. 

A description of the enhancer associated genes’ roles in tumorigenesis was provided to 

substantiate their significance as prime featural candidates for research and further validate 

the bioinformatics pipeline through which they were identified.  

5.5.1. ENHANCER ASSOCIATED GENES COMMON TO EACH DLBCL DATA FILE 

The genes COPB2, LINC01800, TRAPPC2B and DYRK1A were among the genes commonly 

found in each ChIP-seq file (Table 5) and most affected by non-coding insertion-induced 

enhancer activity (Table 9).   

Several studies support the relevance COPB2 as a known oncogene, potential therapeutic 

target, and biomarker (Feng et al., 2021). Breast cancer tissue is dependent on the 

overexpression of COPB2 gene (Bhandari et al., 2019). Additionally, CRC cell proliferation and 

development are significantly influenced by COPB2 and may be inhibited by COPB2 silencing 

(Feng et al., 2021). COPB2 was found to encourage the growth of lung cancer cells through 
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YAP1, which is a gene highly expressed in DLBCL (Feng et al., 2021).  The COPB2 gene was 

affected by 3 DLBCL enhancers, the same number of enhancers that affected the DYRK1A 

gene (Table 9), which is thought to be both a tumour suppressor and an oncogene (Hurtz et 

al., 2021). DYRK1A is downregulated in cancers of the colon, oesophagus, kidney, liver, 

stomach, thyroid, and uterus (Rammohan et al., 2022). However, it is upregulated in 

glioblastoma multiforme, lung cancer, and pancreatic ductal adenocarcinoma (Rammohan et 

al., 2022). A study found that by inhibiting DYRK1A, cancer cells become sensitive to BCL2 

inhibition through the hyperactivation and hyperphosphorylation of MYC and ERK (Hurtz et 

al., 2021). BCL2, is an overexpressed gene linked to poor prognosis in DLBCL. DYRK1A 

inhibition could enhance the effect of BCL2 inhibitors currently available for DLBCL. 

The gene LINC01800, affected by 4 DLBCL enhancers, is part of the lncRNA class which plays 

a significant role in controlling oncogenic genes and signalling pathways in DLBCL through 

epigenetic regulatory mechanisms (Huang, Qian and Ye, 2020). LncRNAs with high specificity 

and accuracy, like HOTAIR and MALAT-1 which play critical prognostic roles in DLBCL (Huang, 

Qian and Ye, 2020), are excellent candidates for use as biomarkers or therapeutic targets due 

to the expression patterns they exhibit (Karstensen et al., 2021).  

The TRAPPC2B gene was the most affected by non-coding insertions, with 8 resident DLBCL 

enhancers. It is located within chromosome 19, the chromosome with the second highest 

number of genes and correspondingly, the chromosome with the second highest enhancer 

rate. This gene is involved in transcriptional repression and induction of cell death (UniProt, 

2022). Its role in cancer, and furthermore in DLBCL, has yet to be properly explored. 

5.5.2. SELECTION OF ENHANCER ASSOCIATED GENES FOUND THROUGHOUT THE STUDY 

The genes UBX domain protein 4 (UBXN4) and semaphorin 4D (SEMA4D) were among those 

most affected by non-coding insertion-induced enhancers (Table 9).  UBXN4 was found to be 

downregulated in the EZB DBCL genetic subtype and unclassified DLBCL cases by analysis for 

MYC/BCL2 double-high expression (Derenzini et al., 2021). SEMA4D, located in chromosome 

19, is commonly dysregulated in cancer, and linked to invasive characteristics and a poor 

prognosis (Ch’ng and Kumanogoh, 2010). It is also a well-known immune regulator, 

supporting the significance of dysregulated SEMA4D in cancer cells' immunological evasion 

(Li et al., 2018). 
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Enhancer activity in the gene SMC3 was identified in both the SRR1020512 and SRR1020514 

ChIP-seq files (Table 6). In GC-derived DLBCL patients, SMC3 haploinsufficiency is known to 

aid the cancerous transformation of GC B-cells by disrupting connectivity of enhancers 

regulating tumour suppressor genes and induces lymphomagenesis with increased 

expression of BCL6 (Rivas et al., 2021). Loss of SMC3 has been linked to decreased gene 

stability which leads to poor prognosis and a lower survival rate in DLBCL patients (Rivas et 

al., 2021).  

The MIR155 host gene (MIR155HG) in chromosome 21 was one of the genes most affected 

by enhancer activity in the SRR1020510 ChIP-seq file (Table 7). Resistance to the antimitotic 

drug vincristine, which is crucial to the efficacy of the multiagent chemotherapy regimen R-

CHOP, is thought to be brought on by MIR155HG suppression and deletion (Due et al., 2019). 

A clinical cohort of DLBCL patients who received R-CHOP treatment showed improved survival 

for the GCB subtype when MIR155HG expression levels were high. Overexpression of the 

PR/SET domain 15 (PRDM15) gene, which was also affected by enhancer activity and located 

in chromosome 21, fuels B-cell lymphomagenesis (Mzoughi et al., 2020). It was found that by 

genetically reducing PRDM15 levels, B-cell lymphoma lines were killed both in vitro and in 

vivo. PRDM15 regulates transcriptional programs that maintains NOTCH signalling-related 

genes (Mzoughi et al., 2020).  

Genes PRDM2, IPO11, PIM1, FOXP1, and EZH1 are housed in some of the largest, most gene 

rich chromosomes (1, 5, 6, 3, and 17 respectively) and were identified to be affected by non-

coding insertion-induced enhancers. The genes are linked to tumorigenesis, genes FOXP1 and 

PIM1 specifically are relevant to ABC DLBCL while gene enhancer of zeste 1 polycomb 

repressive complex 2 subunit (EZH1) is relevant to GCB DLBCL.  

In ABC DLBCL, the FOXP1 gene is highly expressed and regulates pathways that suppress 

apoptosis and GCB-cell identity, and influence plasmablast identity and NF-κB signalling 

(Gascoyne and Banham, 2017). It is associated with poor outcomes and therapeutic resistance 

(Gascoyne and Banham, 2017). Furthermore, PIM1 mutations in ABC DLBCL decrease 

susceptibility to ibrutinib, a BTK inhibitor, by stabilising the protein and improving NF-κB 

signalling (Kuo et al., 2016). Research indicates that ibrutinib coupled with pan-PIM inhibitors 

may overcome treatment resistance in DLBCL (Szydłowski et al., 2021). PIM1 mutations have 
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been used to categorise a distinct group of DLBCL, central nerve system diffuse large B-cell 

lymphoma (CNS DLBCL) (Zhou et al., 2022). DLBCL patients with PIM1-mutant conditions have 

adverse characteristics such as advanced stage, non-GCB, and poor survival (Kuo et al., 2016). 

Both PIM1 and FOXP1 were identified exclusively in the ChIP-seq file SRR1020512, in which 

the most enhancer activity was identified which was suspected to be due to the patient having 

been in an advanced disease stage (Figure 14). Both genes are associated with ABC DLBCL, 

the more aggressive of the two DLBCL COO subtypes, and furthermore, PIM1 is linked to the 

MCD genetic subtype of DLBCL which is associated with one of the worst prognoses.   

EZH1, or its close homolog EZH2, in chromosome 17 acts as a catalytic subunit that inhibits 

gene expression (Wassef et al., 2019). EZH1/2 dual inhibitors demonstrate anticancer efficacy 

in vitro and in vivo against DLBCL cells carrying EZH2 gain-of-function mutations. About 22% 

of GCB-DLBCL show EZH2 gene mutations that are not found in ABC subtype (Honma et al., 

2017). EZH2 is associated with the EZB genetic subtype that has the worst prognosis in GCB 

DLBCL (Honma et al., 2017). EZH1 was found only within ChIP-seq file SRR1020514, which is 

suspected to contain DLBCL data from a patient with a moderate clinical manifestation (Figure 

14).  

The gene PR/SET domain 2 (PRDM2) in chromosome 1 is commonly deleted or altered in 

cancer, PRDM2 deficiency has been found to lead to DLBCL development in mice (Xia et al., 

2017). Gene importin 11 (IPO11) in chromosome 5 is the transport receptor of PTEN, upon 

which tumour suppression in DLBCL is dependent (Chen et al., 2017). PTEN degradation is 

constrained by the IPO11 cargo UBE2E1 (Chen et al., 2017). Loss of IPO11 was found to lead 

to PTEN degradation in lung cancer. 

Functional enrichment analysis summarised the enhancer associated genes identified by the 

bioinformatics pipeline and linked them to specific biological processes pertinent to DLBCL. 

Associating the individual genes with biological terms was done to better appreciate the 

complex nature of DLBCL biological processes. 
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5.6. SIGNALLING PATHWAYS IMPACTED BY DLBCL ENHANCERS 

The genes CD22, Syk and SHP-1 (Figure 18) were affected by non-coding insertion-induced 

enhancers and are involved in BCR signalling. BCR signalling with mutated CD79B, to which 

ABC DLBCL is addicted (Havranek et al., 2017), is ill suited to activate Lyn kinase which works 

to inhibit BCR signalling through CD22 phosphorylation and recruitment of the phosphatase 

SHP-1, augmenting chronically active BCR signalling (Young et al., 2015).  

A subgroup of GCB DLBCL is reliant on induction of the PI3K pathway through Syk, indicating 

the relevance of chronic BCR signalling in GCB DLBCL (Young et al., 2015). Research has 

suggested the activation of the BCR pathway in GCB DLBCL is induced by a phosphatase SHP-

1 deficiency (Sasi et al., 2018). SHP-1, a negative regulator of the BCR pathway, is 

downregulated in 40% of primary DLBCL tumours and was highlighted as a predictive marker 

for therapeutic response to a venetoclax/BCR inhibitor combination (Sasi et al., 2018). The 

clinical success of drugs that target the BCR pathway emphasizes the significance of knowing 

the metabolic workings of BCR signalling in DLBCL.  

Non-coding insertion-induced enhancers were identified within the NOTCH signalling 

pathway, most notably within the NOTCH1 gene. NOTCH1 mutations in DLBCL are suggested 

to be oncogenic because they are linked to poor prognosis and survival in patients (Fabbri et 

al., 2011). NOTCH1 activation defines the N1 DLBCL genetic subtype, which has the worst 

prognosis along with the MCD genetic subtype (Kotlov et al., 2021), and promotes tumour 

development that evades the host immune system (Shanmugam et al., 2021). NOTCH1 

mutations were only found within ChIP-seq file SRR1020512, which was suspected to define 

a patient with severe clinical manifestations based on the rate of enhancer activity (Figure 

14). NOTCH1 mutations have predictive value as they were found to be adversely linked with 

full remission of patients treated with R-CHOP chemotherapy (Li et al., 2021). In other studies, 

chronic lymphocytic leukaemia susceptible to Richter transformation into DLBCL was shown 

to have much higher rates of NOTCH1 activation (Fabbri et al., 2011). Medications are being 

developed that target NOTCH1 and some are already on the market, such as those that 

prevent its enzymatic conversion to an active transcription factor (Li et al., 2021) .  
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Functional analysis supported the role of the identified genes in processes involved with 

DLBCL proliferation, metastasis, apoptosis evasion, and resistance to therapy. The 

bioinformatics pipeline also identified genes that played a role in both DLBCL tumorigenesis 

and HIV pathogenesis. Clinical studies related to lymphoma typically exclude PLWH. The 

pipeline should be employed using samples of HIV DLBCL ChIP-seq data, the insertion-induced 

enhancers identified can then undergo comparative studies with those identified in DLBCL 

samples without the HIV comorbidity. The inclusion of HIV-DLBCL may increase our 

understanding of DLBCL induction given the inherent link between lymphoma and HIV. 

5.7. VALIDITY OF NON-CODING INSERTION-INDUCED ENHANCERS 

The bioinformatics pipeline results were validated by the mutational trend the non-coding 

insertions followed where they selectively accumulated in genomic regions that were gene 

rich and would therefore be high in GC content indicating elevated levels of transcription and 

open chromatin, which was supported by literature describing indels’ euchromatic regional 

preferences. The mutated enhancers were found to be largely proximal, within or very close 

to the TSS of their associated genes. Since proximal genes are known to be subject to less 

downstream regulation, the chance of their dysregulated effect going unchecked was 

increased, enhancing a diseased genomic state. Furthermore, many of the enhancer 

associated genes were known oncogenes or tumour suppressor genes involved in numerous 

oncological processes.  

As an extra validative step, some of the non-coding insertion-induced enhancers were 

searched for in the dbInDel database, which curates non-coding somatic indels and their 

associated cis-regulatory elements in human malignancies (Huang et al., 2020). Majority of 

the enhancer associated genes identified by the present study were found in the database 

under cancer type DLBCL, the similarity in TSS between the same genes further supported the 

validity of the enhancers identified. An exception was TRAJ35, a non-functional gene found 

within the present study but not within the dbInDel database. TRAJ35 was found to be 

affected by DLBCL enhancers in each ChIP-seq file (Table 5) and was also one of the genes 

most impacted by enhancers (Table 9). The effect of mutated TRAJ35 in DLBCL will require 

further investigation, although present information suggests that its protein product is not 

prognostic in cancer (TRAJ35 protein expression summary- The Human Protein Atlas, 2022).  
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Enhancers were expected to be found within MYC, BCL6, CREBBP, MLL2 and BCL2, some of 

the most significantly mutated genes in DLBCL (Evrard et al., 2019). However, these genes 

were not identified by the bioinformatics pipeline to be affected by non-coding insertion-

induced enhancers although their presence in the dbInDel database indicates insertions are 

present in enhancer regions within these genes. Similarly, enhancer activity was not detected 

by the study in the Y chromosome, but that did not mean there were none to be found. The 

P2RY8 gene located in the Y chromosome is frequently mutated in GCB-DLBCL (Lau, 2020). It 

may be that the sample of ChIP-seq data analysed in the study was too small to provide a 

representative selection of genes involved in DLBCL tumorigenesis. 

According to Huang et al. (2020) some insertions and deletions connected with specific 

enhancers are found in known cancer type-specific drivers, e.g., the prostate cancer oncogene 

AR is shown to exhibit enhancer-associated insertions and deletions only in samples of 

prostate cancer. The fact that non-coding insertion-induced enhancers associated with non-

DLBCL cancer type-specific drivers were not detected by the bioinformatics pipeline supports 

the idea that some enhancer-associated insertions are under selective pressure and offer 

growth advantages to particular cell types due to the properties of their targeted genes.  

5.8. BIOINFORMATICS PIPELINE MECHANICS 

Studies on non-coding mutations such as insertions in enhancer elements have been 

conducted in the past with promising results. The present study designed a bioinformatics 

pipeline based on a source script written in shell (Abraham et al., 2017). However, some of 

the methods used were outdated. Abraham et al. (2017) used Blat to verify the insertion 

sequences. Blat is single threaded and can take days to finish when used to map whole 

genome sequences to reference genomes. The present study used pBlat instead, a 

parallelized blat algorithm with multithread and cluster computing support which reduces the 

run time. It uses the same amount of memory and generates the same results as Blat. 

Abraham et al. (2017) also used MACS for peak calling whereas as the present study used the 

latest version of the tool, MACS2. The underlying algorithm for peak calling is the same but 

MACS2 comes with enhancements in the form of twelve functions serving as sub-commands. 

The main function callpeaks was used to identify DLBCL peak regions from alignment results.  
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Lastly, Abraham et al. (2017) used SAMtools to sort and index data files, however this involved 

a two-step process with two separate commands, one for sorting and one for indexing. The 

present study used sambamba instead, which has dual functionality in that it sorts and 

generates an index for a file in one step. 

Furthermore, the workflows by Abraham et al. (2017) were limited in terms of their 

management systems. The computational procedures were not assembled in an exact 

pipeline, tasks were compiled in single workflow scripts that had to be run individually within 

the same directory and required the user to wait for completion of one script before 

commencing the next. The present study made use of Nextflow as a workflow framework. 

Nextflow allowed sub workflows to be run in a single step as part of a main workflow.  DSL2 

provided parallel processing, and modularity, which is the ability to define reusable processes 

or sub workflows that can be included and invoked as a function from another script within a 

separate workflow. DSL2 also allowed for fewer lines of coding, making the scripts neater and 

more succinct. By simply specifying it in the nextflow.config file, the workflow was executed 

using SLURM. The processes were linked through channels and were also isolated, which 

made it easy to exchange tools and manage shell script problems that can be difficult to trace, 

or that stem from missing dependencies and lack of resources. 

Many intermediary files are generated when using shell that must be manually removed after 

each script has run. Intermediary files were managed by Nextflow and automatically stored 

in a separate ‘work’ directory. The publishDir directive allowed process output files to be 

exported to a specified folder that could be manually accessed, allowing the user to 

selectively view the results of each process. In this way, debugging was made easier.  

With shell, a link must be provided for each data file used in the script, if another user wants 

to make use of the same script, these links must be removed, and new links provided 

separately. Nextflow allowed the specification of a single link to multiple files which greatly 

eased reproducibility. Additionally, Singularity is difficult to integrate into shell, Singularity 

images must be imported individually, whereas Nextflow has built in support that renders 

importation of Singularity images a single step process.  
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Whereas as studies like that of Bal et al. (2022) explored the effect of structural variants and 

focused on known DLBCL oncogenes and how they were connected to identified enhancers, 

the present study sought to identify novel enhancers formed by insertions through a pipeline 

that can be manipulated to highlight genes of interest across cancer types. The investigation 

built off previous published works and designed a pipeline using state of the art infrastructure 

to setup, execute, and monitor computational workflows, incorporating the latest 

bioinformatics tools to achieve accurate and reproduceable results. 

5.9. STUDY LIMITATIONS 

This study made use of only three SRR files of DLBCL H3K27ac ChIP-seq data, and all were 

from the same research study. The pipeline was not tested on a larger sample size from a 

combination of different studies. The present study was tested on single reads generated by 

Illumina sequencing. In a scenario where data from different studies are being tested, the 

reads might be single or paired and have been generated by different sequencing platforms 

which have varying parameters for reporting errors and variants.  Therefore, there may be a 

need for troubleshooting in such circumstances. Such expansion would, however, likely lead 

to better representation and increased validity of identified non-coding insertion-induced 

enhancers.  The sub workflow for peak calling was designed to operate on only treatment 

ChIP-seq data with corresponding control data. However, some ChIP-seq treatment data do 

not come with corresponding controls, yet they may still hold valuable biological information, 

and so provision should be made for the accommodation of samples such as these. Due to 

time constraints, it was not possible to recreate the perl scripts used in this study as python 

scripts. Python scripting may be desirable over perl scripting because of its extensive library 

support and basic syntax that requires fewer lines of coding for larger programs.   
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CHAPTER 6 

CONCLUSION 

This study set out to uncover potential non-coding insertion-induced enhancers associated 

with the progression of DLBCL to develop a database that future studies on DLBCL can use in 

South Africa. The pipeline detected several enhancer-associated genes known for their role 

in DLBCL tumorigenesis and other cancer types, as well as genes jointly involved in 

lymphomagenesis and HIV, between which there is an innate association. The identification 

of known oncogenes and tumour suppressor genes indicated the accuracy of the pipeline and 

encouraged confidence in those genes identified for which little to no data has been recorded 

as potential new targets for research on the different disease mechanisms of DLBCL with the 

goal of functional precision therapy.  

The study indicated the necessity of considering clinical factors when selecting DLBCL data to 

be analysed due to the hypothesized but unconfirmed influence that they may have on 

mutational rates. Sample heterogeneity should be considered to optimize the algorithm. 

Future studies on DLBCL should categorize their data according to criteria like age, gender, 

disease subtype, disease stage, and other patient dependent information to confirm and track 

associated patterns. A greater selection of data should also be incorporated to verify whether 

the data trends hold true and to gain a better picture of the effect of insertion-induced 

enhancers on the genomic landscape.  

The research supported the growing data on the impact of the non-coding environment on 

gene expression and disease development. The promising results suggested that it might be 

worthwhile to expand the investigation into deletions in the non-coding regions and its effect 

on DLBCL. Nextflow might be one of the most developed workflow management systems to 

date, it is a complete system combining workflow language and execution engine. The coding 

involved was simple and the workflow framework provided for desirable properties like 

readability, compactness, portability, and provenance tracking.  
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APPENDIX 
 

Table 11: Experimental gene symbols and associated gene names. 

GENE SYMBOL GENE NAME   

AP-1 Activator protein 1 

ADPRM ADP-ribose/CDP-alcohol diphosphatase, manganese dependent 

AKT AKT serine/threonine kinase  

APH-1 Anterior pharynx-defective 1 

ATXN1 Ataxin 1 

ATXN1L Ataxin 1 like 

Survivin Baculoviral inhibitor of apoptosis repeat-containing 5 

CASP3 Caspase 3 

CD22 CD22 Molecule 

CDC42SE2 CDC42 small effector 2 

CADM1 Cell adhesion molecule 1 

CDC42 Cell division cycle 42 

C6orf89 Chromosome 6 open reading frame 89 

CCDC106 Coiled-coil domain containing 106 

CDKN1B Cyclin dependent kinase inhibitor 1B 

CycT1 Cyclin T1 

CYTH1 Cytohesin 1 

EP300  E1A binding protein p300 

ELL2 Elongation factor for RNA polymerase II 2 

EZH1 Enhancer of zeste 1 polycomb repressive complex 2 subunit 

TEL ETS variant transcription factor 6 

EWSR1 EWS RNA binding protein 1 

Fas Fas cell surface death receptor 

FNBP1 Formin binding protein 1 

GPCPD1 Glycerophosphocholine phosphodiesterase 1 

GRB2 Growth factor receptor bound protein 2 

HSP Heat shock genes 

HATs Histone acetyltransferases 

INI1 Integrase interactor 1 

ITGA Integrin subunit alpha 1 

IRAK4 Interleukin 1 receptor associated kinase 4 

IQSEC1 IQ motif and SEC7 domain-containing protein 1 

LMCD1 LIM and cysteine-rich domains 1 

LINC01825 Long intergenic non-protein coding RNA 1825  

LINC-PINT Long intergenic non-protein coding RNA, p53 induced transcript 

LYL1 LYL1 basic helix-loop-helix family member 

HLA-DRB5 Major histocompatibility complex, class II, DR beta 5 

MAML Mastermind like transcriptional coactivator 

MIR155HG MIR155 host gene 

MAPK Mitogen-activated protein kinases 
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ENL MLLT1 super elongation complex subunit 

MSI2 Musashi RNA binding protein 2 

Max MYC associated factor X 

NDUFV2 NADH:ubiquinone oxidoreductase core subunit V2 

NEDD9 Neural precursor cell expressed, developmentally down-regulated 9 

NBPF15 Neuroblastoma breakpoint family, member 15 

NUP210 Nucleoporin 210 

Numb NUMB endocytic adaptor protein 

P2RY8 P2Y receptor family member 8 

PAXIP1 PAX interacting protein 1 

PIN1 Peptidylprolyl cis/trans isomerase, NIMA-interacting 1 

PKC Proline rich transmembrane protein 2 

PKB  Protein kinase B 

PKCB Protein kinase C beta 

p27 Protein nb 

PYK2 Protein tyrosine kinase 2 beta 

SHP-1 Protein tyrosine phosphatase non-receptor type 6 

RAB7A RAB7A, member RAS oncogene family 

RIP1 Receptor-interacting serine/threonine-protein kinase 1 

ARHGAP4 Rho GTPase activating protein 4 

Rho RHO Family GTPases 

SERINC Serine incorporator 

SMIM20 Small integral membrane protein 20 

SLC22A18 Solute carrier family 22 member 18 

SPECC1 Sperm antigen with calponin homology and coiled-coil domains 1 

SYK Spleen associated tyrosine kinase 

STING Stimulator of interferon genes 

TRAC T-cell receptor alpha constant 

TNFR1 TNF receptor superfamily member 1A 

TNIP3 TNFAIP3 interacting protein 3 

TRAFs Tumor necrosis factor receptor-associated factors 

TTYH3 Tweety family member 3 

USP7-AS1 Ubiquitin specific peptidase 7 antisense RNA 1 

VEGF Vascular endothelial growth factor A 

VAV VAV guanine nucleotide exchange factor 1 

PLZF Zinc finger and BTB domain containing 16 

ZC3H4 Zinc finger CCCH-type containing 4 

Zeb1 Zinc finger E-box binding homeobox 1 

ZNF354A Zinc finger protein 354A 
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