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III. Abstract
________________________________________________________________

Introduction: In the last decade, next-generation sequencing (NGS) approaches have revolutionised

the study of human genomics, particularly aiding the understanding of genetic diseases. Parkinson’s

disease (PD) is a complex neurodegenerative disorder with a heterogenous genetic disposition. This

disorder is clinically characterised by the progressive loss of dopaminergic neurons in the substantia

nigra pars compacta (SNpc). Subsequently, this results in a severe decrease of available dopamine

that manifests as a myriad of both motor and non-motor symptoms. Several genes, including

α-synuclein (SNCA), parkin (PRKN), leucine-rich repeat kinase 2 (LRRK2), PTEN induced putative

kinase 1 (PINK1), and protein deglycase (DJ-1), are confirmed as disease-causing in autosomal

recessive (AR), autosomal dominant (AD), early-onset (EO), and late-onset (LO) forms of the

disorder. Thus far, monogenic causes of the disease have been found to affect a small proportion of all

individuals with PD. However, the discovery of these PD-associated genes has led to an increased

understanding of the biological systems underlying the disease, which can improve the diagnosis,

prognosis and clinical management of affected individuals.

To date, the limited number of PD studies performed in sub-Saharan Africa (SSA) have mostly

consisted of single PD gene screening analyses to determine whether these genes are implicated in PD

in individuals of African ancestry. These studies have determined that the majority of these

individuals do not possess known causes of the disease and it is postulated that they may harbour

novel disease-associated variants or genes. Whole exome sequencing (WES) studies incorporating

PD-affected families that display Mendelian inheritance patterns are useful for the determination of

novel pathogenic variants. However, the underlying disease-causing mechanisms in which these novel

variants operate are rarely examined post-NGS analysis. Consequently, the present study aimed to use

WES and in silico analysis approaches in a PD-affected family of South African Xhosa ancestry to

identify a novel variant or gene that may be linked to the onset of disease, as well as the possible

functional effect of that variant.

Methods and Results: WES was performed on two PD-affected siblings and two unaffected siblings

of a South Africa family designated as ZA 15. A WES workflow consisting of BWA-MEM, GATk

HaplotypeCaller and Ensembl-VEP was used to analyse the WES data. Variant call files (VCFs) were

screened for the presence of variants in PD-associated genes to eliminate known causes of disease.

Filtering of the VCFs using stringent criteria (heterozygous, exonic, non-synonymous variants shared

by only the affected siblings with a Phred score > 30, present in population databases with a minor

allele frequency (MAF) < 0.01 and a CADD score > 20), produced a list of 68 variants of interest.

Subsequent gene and protein expression analysis determined that 24 of the variants were expressed in
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neuro-specific tissue. Co-segregation analysis revealed that only 20 of the variants co-segregated with

the disease in the family. Screening of these variants through ancestry-specific and PD-specific

private cohorts resulted in 3 remaining candidates of interest, namely; AHNAK nucleoprotein 2

(AHNAK2) p.D1540H, mesencephalic astrocyte-derived neurotrophic factor (MANF) p.A13V and

zinc finger DHHC-type containing 11 (ZDHHC11) p.R276P. Subsequently, a single variant (p.A13V

in the MANF gene) was prioritised for further study as the gene is known to be expressed in the SNpc

(the main neuronal region implicated in PD), where it exerts a protective effect on dopaminergic

neurons.

Bioinformatic in silico analysis was done to determine p.A13V’s possible impact on MANF’s protein

structure/function. Conservation analysis using the ConSurf server revealed the variant had variable

conservation and occurs in the interior of the protein structure (i.e. buried). Secondary structure

analysis using Project HOPE, PredictProtein, SignalP 3.0 and Phobius indicated, importantly, that the

variant is present in the hydrophobic core of the signal peptide of the protein. Furthermore, the variant

was predicted to be destabilising at the sequence level with a change in Gibbs free energy (∆∆G) of -

0.2 and - 0.21 obtained from MuPro and I-Mutant 3.0, respectively. Robetta was found to produce the

best theoretical models of all the servers used (Robetta, I-TASSER and DeepPotential), according to

the scores generated by TM-Align. These structural protein models passed all the basic quality checks

by Verify3D, Q-MEAN, Procheck and ERRAT and were deemed appropriate for further structural

analysis. DUET, DynaMut and MaestroWeb predicted a destabilising effect of the variant on the

wildtype structure, while MaestroWeb also indicated an increase in rigidity of the signal peptide,

close to the cleavage site. Root mean square deviations (RMSD), root mean square fluctuations

(RMSF) and principal component analysis (PCA) using GROMACS indicated a deviation in

structural conformation and flexibility between the wildtype and mutant models.

Discussion and Conclusions: The molecular destabilisation caused to the MANF protein structure

upon introduction of the p.A13V variant, particularly at the signal peptide cleavage site and towards

the C-terminal of the protein, could potentially impact the protein’s translocation and expression.

Previous studies have linked mutations in the hydrophobic core of the signal peptide to mRNA

degradation via the Regulation of Aberrant Protein Production (RAPP) pathway, which could lead to

decreased expression levels of the protein. However, if the variant interferes with the cleavage of the

signal peptide (which would prevent recognition by signal peptide receptors), protein translocation

would be affected resulting in an accumulation of the protein in the endoplasmic reticulum (ER)

which could aggravate ER stress. Furthermore, if the signal peptide is cleaved off but the variant

prevents degradation of these molecules, they could aggregate and cause cytotoxicity. The possible

interference of the protein’s neuroprotective properties (in regards to its role as an ER stress regulator

https://etd.uwc.ac.za/



and its potential link to mitochondrial function) could cause a PD-pathology and therefore, these

findings necessitate further laboratory-based functional analysis.

Limitations of this study include the limited sample size (sequencing of only two affected and two

unaffected siblings) and the sole use of WES for mutation screening which may miss exonic

duplications/insertions and other more complex rearrangements. Although knockout studies have been

previously performed on MANF, it is necessary to determine the possible effect of the p.A13V variant

on the protein’s expressivity and trafficking. Thus, the recommendations for future study include

analysis of translocation, expression levels, signal peptide aggregation, mitochondrial function

association and the possible induced phenotype in an animal model with a high rate of homology

between the twoMANF genes, such as D. melanogaster.

Our study served as a benchmark for the analysis of PD-affected families of diverse ancestry. The use

of WES and in silico analysis in an African ancestry family affected with PD proved to be useful in

identifying a potentially new PD susceptibility factor. However, it also highlighted the necessity for

the inclusion of diverse African population data (particularly in large population databases) for

improved NGS analysis. In conclusion, determining the complex genetic architecture underlying PD,

particularly in under-represented populations, is critical to provide insight into novel PD molecular

mechanisms, detection of PD biomarkers, and elucidation of novel drug targets. Ultimately, this

knowledge will change the course of future clinical diagnoses and therapeutic modalities for this

currently, incurable disorder.

Keywords: African Ancestry; Bioinformatics; Familial PD; In Silico Analysis; MANF;
Next-Generation Sequencing (NGS); Novel Variants; Parkinson’s Disease (PD); Signal Peptide;
Whole Exome Sequencing (WES)
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________________________________________________________________
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DOB Date Of Birth
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ER Endoplasmic Reticulum
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ExAC Exome Aggregation Consortium
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FBXO7 F-Box Protein 7
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GATk Genome Analysis Toolkit
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GC Guanine/Cytosine
g Grams
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gDNA Genomic Deoxyribonucleic Acid
gERP++ Genomic Evolutionary Rate Profiling
gnomAD Genome Aggregation Database
GO Gene Ontology
GP2 Global Parkinson’s Genetics Program
GRCh37/38 (hg19/38) Genome Reference Consortium Human Build 37/38
GRP78/BiP 78-Kda Glucose-Regulated Protein/Binding Immunoglobulin Protein
gTEX Genotype-Tissue Expression
gVCF Genomic Variant Call File
GWAS Genome-Wide Association Studies
H Hydrogen
H2O Water
H3Africa Human Heredity And Health In Africa
HPA Human Phenotype Atlas
HRM High-Resolution Melt
ID Identification Number
InDels Insertions/Deletions
IRE1 Inositol-Requiring Enzyme 1
kcal/mol Kilocalorie Per Mole
KEGG Kyoto Encyclopaedia Of Genes And Genomes
LB Lewy Bodies
LO-PD Late-Onset Parkinson’s Disease
LRRK2 Leucine-Rich Repeat Kinase 2
MA Mutation Assessor
MAF Minor Allele Frequency
MANF Mesencephalic Astrocyte Derived Neurotrophic Factor
MAPT Microtubule Associated Protein Tau
M-CAP Mendelian Clinically Applicable Pathogenicity
mCSM Cutoff Scanning Matrix
MD Molecular Dynamics
MgCl2 Magnesium Chloride
MGI Mouse Genome Informatics
min Minute
mL Millilitre
MLPA Multiplex Ligation-Dependent Probe Amplification
mM Millimolar
MPP+ 1-Methyl-4-Phenylpyridinium
MPTP 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyran
MRI Magnetic Resonance Imaging
mRNA Messenger Ribonucleic Acid
MSA Multiple Sequence Alignment
n Sample Size
N/A Not Applicable
NCBI The National Center For Biotechnology Information
ng Nanogram
ng/µl Nanogram Per Microlitre
NFE Non-Finnish European
NGS Next-Generation Sequencing
NHGRI National Human Genome Research Institute
nm Nanometre
NN Neural Network

NPT Amount Of Substance (N), Pressure (P) And Temperature (T)
(Isothermal–Isobaric Ensemble)

NVT Amount Of Substance (N), Volume (V) And Temperature (T) (Canonical
Ensemble)

OMIM Online Mendelian Inheritance In Man
OPLS-AA Optimised Potentials For Liquid Simulations - All Atom
PARK (n) Pd-Associated Loci
PC Principal Components
PCA Principal Component Analysis
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PCR Polymerase Chain Reaction
PD Parkinson’s Disease
PDB Protein Data Bank
PERK Protein Kinase Rna- Like Endoplasmic Reticulum Kinase
PINK1 Pten Induced Putative Kinase 1
PLA2G6 85 Kda Calcium-Independent Phospholipase A2
pmol Picomole
PolyPhen-2 Polymorphism Phenotyping v2
ps Picosecond
PRKN Parkin Rbr E3 Ubiquitin Protein Ligase
PROVEAN Protein Variation Effect Analyzer
QMEAN Qualitative Model Energy Analysis
QPP Queensland Parkinson’s Project
QS Quality Score
RAPP Regulation Of Aberrant Protein Production
REM Rapid Eye Movement
RI Reliability Index
RMSD Root Mean Square Deviation
RMSF Root Mean Square Fluctuation
RNA Ribonucleic Acid
SA South Africa
SAHGP South African Human Genome Project
SAM Sequence Alignment/Map
SANBI South African National Bioinformatics Institute
SARS-Cov-2 Severe Acute Respiratory Syndrome Coronavirus 2
SAS South Asian
SD Standard Deviation
SH-SH5Y Human Neuroblastoma Cell Line
SIFT Sorts Intolerant From Tolerant
SNCA Alpha-Synuclein
SNP Single Nucleotide Polymorphisms
SNpc Substantia Nigra Pars Compacta
SNV Single Nucleotide Variation
SPME Smooth Particle-Mesh Ewald
SRP Signal Recognition Particle
SSA Sub-Saharan Africa
SVM Support Vector Machine
SYNJ1 Synaptojanin 1
Ta Annealing Temperature
Tm Melting Temperature
UCHL1 Ubiquitin C-Terminal Hydrolase L1
UPR Unfolded Protein Response
UPS Ubiquitin–Proteasome System
USA United States Of America
V Volts
VCF Variant Call File
VPS35 Vps35 Retromer Complex Component
VPS13C Vacuolar Protein Sorting 13 Homolog C
VUS Variant Of Unknown Significance
w/v Weight By Volume
WES Whole Exome Sequencing
WGS Whole Genome Sequencing
ZA 15 South African-Xhosa Family Affected With Parkinson’s Disease
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CHAPTER 1

Rationale of the dissertation

________________________________________________________________

1.1 Brief summary of the literature

The study of human genetic variation through DNA sequencing has evolved significantly in recent

decades and has allowed researchers to investigate the genetic mutations underlying many complex

disorders (Muzzey et al., 2015). Next-generation sequencing (NGS) technology has subsequently

allowed for high-throughput, parallel sequencing that provides a quicker, cost-effective method for

large-scale sequencing projects (Muzzey et al., 2015). Prior to the advent of NGS, positional cloning

and linkage analysis in large, multiplex pedigrees were used for co-segregation analyses to identify

monogenic disease genes (Pang et al., 2017). Genome-wide association studies (GWAS) followed and

focused on single nucleotide polymorphisms (SNPs) or variants associated with a disease that was

present in a population (Petersen et al., 2017). However, these methods only identified a small

number of disease genes, thus, the genetic cause of many diseases remained largely unknown

(Petersen et al., 2017). In the last decade, NGS, particularly in the form of whole exome sequencing

(WES), has been particularly useful to detect novel mutations in families with disorders that depict

Mendelian inheritance (Fernandez-Marmiesse et al., 2017).

Parkinson’s disease (PD) is a complex, though relatively prevalent, neurodegenerative motor disorder

with a highly heterogeneous aetiology, although Mendelian forms of the disorder do exist (Alcalay et

al., 2020). According to many reports, only 5-10% of all PD cases can be attributed to established PD

genes, indicating that many undiscovered genetic anomalies influence the onset of PD (Alcalay et al.,

2020). PD studies in sub-Saharan Africa have shown that most PD-affected individuals rarely have

the common mutations or causative genes known to be implicated in PD (Williams et al., 2018). Thus,

it is hypothesised that the use of NGS approaches may potentially identify novel genetic causes

underlying PD in African ancestry populations. This knowledge may lead to important biological

insights that will ultimately improve the diagnosis and treatment of this disorder.

Although NGS approaches have been successful in the study of multi-genic diseases, the

overwhelming majority of genomic research has been limited to European and Asian populations

(Schoonen et al., 2019). Notably, this monopolisation of scientific information can skew the

inferences made about genetic disorders. African ancestry populations harbour an abundance of

genetic diversity, and genomic research targeted at these populations may provide insight into the

‘missing heritability’ of many rare or complex disorders (Bentley et al., 2020).

1
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1.2 Rationale of the PhD research project

This study aims to identify and use, an appropriate bioinformatic approach for NGS analysis of South

African individuals affected with familial PD, thereby allowing the analysis to be effective and

reproducible. This study also aims to fill a knowledge gap regarding the genetic architecture

underlying the disease in South African PD families. Results from this study could provide insight

into novel genetic factors that instigate PD onset and progression in individuals from

under-researched ethnic backgrounds, but also in global PD populations. Further functional study into

novel candidate genes could lead to a formative basis for newer or targeted therapeutic modalities

through understanding and manipulating the mutational effects on biological targets associated with

the disease. Ultimately, it is a goal that the use of NGS could lead to precision or stratified medicine

where the treatment and prevention of a particular disease is optimised by considering individual

variability at the genetic level.

1.3 Aims and objectives of the PhD research project

Aim 1: To identify novel pathogenic variants and/or genes for PD in a South African Xhosa

family affected with familial PD using WES and bioinformatic analyses

Aim 1 objectives

1. Analyse previous candidate gene screening data of the proband to eliminate known causes of

PD

2. Perform WES on the prioritised members of the family

3. Create a custom WES analysis workflow to analyse the generated WES data

4. Formulate a stringent variant filtering approach to identify novel, potentially disease-causing

variants

5. Screen the prioritised variants through ancestry-matched and PD-specific cohorts to determine

allele frequencies

6. Perform Sanger sequencing to confirm NGS results and co-segregation of variants within the

family

7. Identify the top variant/s for further functional/in silico analysis

https://etd.uwc.ac.za/
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Aim 2: To perform in silico analysis on the prioritised variant to determine if the functional

effect on the protein could be pathogenic

Aim 2 objectives

1. Perform conservation analysis on the protein of interest

2. Perform secondary structure and stability prediction analysis to determine the effect of the

variant on protein stability

3. Create theoretical 3-dimensional models of both the wildtype and mutant protein using

webserver-based tools

4. Validate the generated wildtype and mutant protein models

5. Determine the effect of the variant on the wildtype structure

6. Perform molecular dynamics (MD) simulations on the wildtype and mutant models to

determine the impact of the variant on the generated protein structures

1.4 Dissertation overview

This dissertation is divided into 5 chapters and is written in British English. All bioinformatic analysis

and wet-laboratory experiments pertaining to this study was done by the PhD candidate.

Chapter 1: Rationale of the dissertation

Chapter 2: Literature review

The literature review encompasses the advent of NGS technology and its impact on disease genomics

as well as the current state of PD genetics. We explore how the use of WES in families affected with

PD has enabled researchers with an efficient method of determining novel variants or genes

underlying the pathobiology of the disease. Furthermore, the best-practice bioinformatic tools and

WES analysis methods are explored, as well as the implications of determining the potential causes of

PD in an understudied population such as the one examined in our study.

Chapter 3: Whole exome sequencing analysis of a South African Xhosa family

affected with Parkinson’s disease

Chapter three describes a South African family of Xhosa ancestry (designated family ZA 15) who are

affected with PD, where selected family members underwent WES. The WES analysis,

co-segregation analysis and subsequent population screening of selected variants, are described in
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detail. The results of the analysis culminated in the prioritisation of three variants of interest, from

which one was selected for further study.

Chapter 4: In-silico mutation analysis of p.A13V in mesencephalic astrocyte-derived

neurotrophic factor (MANF)

Chapter four describes the prioritisation of a single variant for in silico mutation analysis based on its

potential link to PD. This chapter focuses on conservation analysis of the amino acids, secondary

structure analysis of the implicated protein, stability effect prediction of the variant using the protein

sequence, protein domain analysis, theoretical modelling of the wildtype and mutant protein, as well

as variant effect analysis on the theoretical models. These findings serve as a precursor to ‘wet-lab’

functional studies to determine whether the variant is the cause of disease within family ZA 15.

Chapter 5: Discussion and conclusions

The final chapter explores the implications of the findings and how the variant could potentially lead

to a PD phenotype. Furthermore, the limitations of the current study are laid out and recommendations

for future work based on our findings and the direction of PD genetic research are elucidated.
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CHAPTER 2

Literature review

________________________________________________________________

2.1 The advent of next-generation sequencing (NGS)

The ability to decipher the genomic assembly of organisms, particularly humans, has accelerated the

progress of biomedical research exploring the genetic basis of disease. Simply, DNA sequencing is

the task of using biochemical methods and sequencing machinery to determine the actual order of

nucleotides within DNA (Giani et al., 2020). Various sequencing methods have expanded research

efforts to include population-wide genomics, mapping, diagnostics of genetic disease, and ultimately,

the strive towards personalised medicine (Kulski, 2016). Over time, sequencing technologies have

progressively developed to include next-generation, high-throughput approaches that perform highly

efficient and increasingly accurate methods of sequencing.

2.1.1 What is NGS?

NGS is the deep sequencing technology that allows for the parallel sequencing of millions of short

DNA fragments or reads, and additionally promises a lower cost, faster output, and higher throughput

of sequencing as compared to traditional ‘first generation’ sequencing methods (Kulski, 2016;

Gutierrez-Rodrigues and Calado, 2018). In simplified terms, the process of NGS consists of four

fundamental steps, namely, (1) nucleic acid extraction, (2) library preparation, (3) sequencing and,

ultimately, (4) computational analysis of the sequencing output data (Figure 2.1)

(Fernández-Marmiesse et al., 2018; Giani et al., 2019).

Figure 2.1: Overview of a next-generation sequencing workflow
Created in Biorender.com.

2
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For human-based genomic research, blood or saliva samples are collected from individuals of interest

and genomic DNA is then isolated and purified before sequencing. Thereafter, DNA libraries are

prepared by shearing the DNA into short fragments and subsequently attaching specialised adapters to

either end of the fragments (Behjati and Tarpey, 2013). These adapters are complementary and

capable of binding to the NGS flowcell, a substrate where the fragments are immobilised and

amplified in parallel in the sequencer (Pereira et al., 2020). Each reaction involves the stepwise

incorporation of fluorescently-labelled nucleotides that are attached to the flowcell (Giani et al., 2020).

NGS sequencing instruments can convert raw sequencer-generated DNA signals into usable data files

containing the correct sequence of nucleotide bases with a corresponding base quality score. This data

is then analysed using bioinformatic tools to compile genomic information about the organism being

investigated (Oliver et al., 2015).

NGS has allowed for higher sequencing depth and sensitivity, higher novel variant discovery power

and, the ability to identify larger mutations and produce larger volumes of data with the same amount

of input DNA as compared to Sanger sequencing (Saier, 2019). The triumphant initial sequencing of

the human genome consisting of ~3 million bp (using Sanger sequencing) took approximately 14

years whereas, currently it takes about 1-2 days using existing NGS technology (Barba et al., 2014).

The drastic improvements in sequencing afforded through the development of NGS have enabled

efficient and exponentially accelerated genomic-based research as the cost of sequencing the human

genome has decreased significantly (illustrated in Figure 2.2).

Figure 2.2: The number of publications related to NGS (indexed on PubMed) correlated to
the cost of a single sequenced genome (2001-2021)

The PUBMED string search was performed on the 29th of August 2022 and was adapted from Su et al., 2011,
and consisted of ('next-generation sequencing' OR 'next-generation sequencing' OR 'next-generation DNA
sequencing' OR 'next-generation DNA sequencing' OR 'massively parallel sequencing' OR 'ultrafast DNA
sequencing' OR “454 sequencing” OR "deep sequencing") AND (2000[Publication Date]:2021[Publication
Date]). The genome cost data (2001 to 2021) was accessed from NHGRI with permission.
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2.1.2 Comparing the types of NGS in complex disease research

Briefly, NGS technology includes three sequencing approaches, namely; whole exome sequencing

(WES), whole genome sequencing (WGS) and targeted gene panels. For complex Mendelian diseases,

these sequencing techniques are typically used to identify variants of significance in both a clinical

diagnostic and genetic research setting (Petersen et al., 2017). A comparison of these NGS approaches

is provided in Figure 2.3.

Figure 2.3 A comparison between whole genome sequencing, whole exome sequencing and
targeted gene panels

Permission obtained under the Creative Commons Attribution Non-Commercial License 4.0; Duraes et al.,
2022.

For clinical diagnostics, the screening of known disease genes is useful for the accurate diagnosis

of a particular disorder, allowing for a better prognosis for the individual. This can enable clinicians to

be better informed regarding therapeutics as some specific forms of genetic disease respond better to

certain treatments that directly target the underlying mechanisms. Targeted gene panels comprise of

known disease genes (genes that have already been associated with a particular disease phenotype)

that allow for the rapid, accurate identification of specific genetic causes of the disease in an affected

individual (Shulskaya et al., 2018). NGS data (e.g., WES data) of the affected individual is filtered

through the targeted gene panel containing these disease-relevant genes to confirm the presence of a

known variant in included disease genes or potentially find new pathogenic variants in those genes

(Reale et al., 2018; Shademan et al., 2021). These gene panels are cost-efficient and provide deeper

gene coverage when compared to WES or WGS, thus increasing the likelihood of detecting mutations

https://etd.uwc.ac.za/
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in the included genes (Brunelli et al., 2019). These panels can also be updated based on novel

disease-gene findings through NGS-based disease research (Reale et al., 2018). However, many

Mendelian disorders can be heterogeneous or polygenic, with the underlying genetic causal factors

remaining largely undetermined. Targeted gene panels can be useful for the discovery of novel

variants or genomic rearrangements in known disease genes though not for the discovery of

aberrations in novel genes. Studies using WES or WGS can observe both common and rare variants

across an entire genome, thus, making their use optimal for novel gene discovery in rare or complex

disease.

WGS, being the more comprehensive choice, cumulatively sequences the entire exome, as well as

the intergenic non-coding regions and mitochondrial DNA, resulting in approximately 4,000,000

variants for a single-sequenced human genome (Fernández-Marmiesse et al., 2017). This method also

displays relatively even genomic coverage which is necessary for copy number evaluation. However,

WGS remains the more expensive method (requiring more sequencing reagents) with an overall lower

accuracy than the other NGS methods. WGS also produces a significant amount of sequencing data

that requires sufficient storage space and time, as WGS analysis tends to be computationally intensive

(Park and Kim, 2016).

NGS, in the form of WES, sequences only the protein-coding (exonic) portion of the individual’s

genome (1 - 5% of the entire genome) and can provide ~ 20000 - 25000 variants for each exome

sequenced (Fernández-Marmiesse et al., 2017; Shulskaya et al., 2018). Notably, as disease-causing

variants may be found in the intronic, 5’ UTR and 3’ UTR regions of the genome, solely using WES

may be limiting (Belkadi et al., 2015). WES can also result in skewed coverage due to hybridisation

biases, making allele frequency and copy number assessments challenging (Brunelli et al., 2019).

However, WES is typically considered the better choice for determining monogenic causes of

Mendelian disease. This is because most pathogenic variants (80 - 85%) have been found in the

coding region of the genome, there is better coverage of the coding variants (SNVs and indels), it is

more cost-effective (at ~20% of the WGS cost) and the sequenced data load is significantly reduced

thus allowing for easier computational analysis (Fernández-Marmiesse et al., 2017). WES has been

successfully utilised to determine the genetic causes of Mendelian diseases using large families,

containing at least two disease-affected family members. Sensitive bioinformatic analyses and

co-segregation analysis of familial WES data provide an effective method of reducing the number of

relevant variants that may be disease-causing (Shulskaya et al., 2018). Thus, this method of analysis is

thought to be more effective for complex disease research targeting affected families in developing

countries and it is the NGS approach used in the present study.
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2.2 Bioinformatics analysis of NGS data in complex disease research

Over a relatively short time, biomedical research has exponentially geared towards the generation

of large datasets (particularly in the form of molecular and genomic data) to unveil new genetic

information about disease (Behjati and Tarpey, 2013). However, with the rise in biological data

availability, appropriate bioinformatic analysis of this data is considered a significant rate-limiting

step for NGS technology. It has now becomes essential for genomic researchers to be acquainted with

the adequate computational tools and skills that allow for robust data assimilation and interpretation

(Behjati and Tarpey, 2013).

2.2.1 NGS analysis steps

The final step of the NGS workflow is the analysis of the output data. In the case of WES and

WGS data, the basic analytic workflow can be constituted into primary, secondary and tertiary

analyses that allow for the prioritisation of genetic factors that may be implicated in the disease under

investigation (Figure 2.4).

Figure 2.4: Basic steps for NGS analysis
Created in Draw.io.

Primary analysis of the NGS output data is a quality control stage of the workflow. Raw FASTA

or FASTQ files include base-calling data with associated quality scores (Phred scores). In this step,

bases with low-quality scores are effectively trimmed off. Furthermore, adaptor sequences that are

still attached from the sequencing step can be identified and trimmed off, concurrently (Schubert et al.,

2019).

https://etd.uwc.ac.za/
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Secondary analysis first involves the alignment of the ‘clean’ reads to the latest human reference

genome where the alignment output can either be a sequence alignment map (SAM) or binary

alignment map (BAM) file. These files contain all the information of the FASTQ file as well as read

alignment positions, alignment quality scores and the degree to which the reads matched the reference.

Thereafter, the BAM files undergo further processing to remove potential PCR duplicates. Once the

BAM files are ready, the aligned reads are then examined to identify positions where the individual

possesses genetic variation and to determine the type of variation. This outputs a variant call file

(VCF) that, in the case of WES, specifies the genomic position of single nucleotide variants (SNVs)

and indels, the statistical probability of the variant call and the accompanying quality score (Bartha

and Győrffy, 2019).

Tertiary analysis involves the annotation of the VCFs, allowing for an additional layer of

information that can be used to later reduce the number of candidate variants. Annotation allows for

each called variant to be labelled according to gene-based and functional traits including

transcriptional gene regulation, alternative splicing, protein function modifications and evolutionary

conservation (Austin-Tse et al., 2022). This step can help describe the variant’s clinical significance,

it’s impact on protein function and the frequency in which the variant is expressed in healthy

individuals. Finally, the annotated VCFs are filtered using study-specific criteria to obtain a shorter

list of the most significant variants (candidate variants) by eliminating variants according to

population frequency, predicted pathogenicity, co-segregation, and further functional filters

(Austin-Tse et al., 2022). However, the quality of the final list of variants output after these analytic

steps can be highly dependent on the bioinformatic tools used to perform these steps.

2.2.2 NGS analysis using bioinformatic tools

Currently available bioinformatic tools have subtle variations in output, and it is thus imperative

to use the best software available that is also appropriate and suited to the disease under investigation.

The challenge lies in sifting through the ever-increasing number of software that can be used for each

step of NGS analysis (Figure 2.5). This is further supported by a study, in which 7 years after the

initial analysis, the re-analysis of WES data resulted in an increased diagnostic yield in terms of

variants implicated in rare, idiopathic disease cases (Salfati et al., 2019). This improvement was

attributed to the use of improved variant classification tools and the use of updated databases (Salfati

et al., 2019). This indicates that sequencing technologies tend to develop faster than the tools needed

to analyse the assemblies, indicating a rate-limiting step that may hinder the quality and subsequent

momentum of scientific findings using these technologies.

https://etd.uwc.ac.za/
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Figure 2.5: Diagrammatic representation of the scope of bioinformatic tools available for each
step of WES data analysis

Used with permission from Hindawi International Journal of Genomics under the Creative Commons
Attribution License International 4.0; (Hintzsche et al., 2016).

However, an issue arises with the array of tool choices that are available for each step of WES

analysis (as seen in Figure 2.5). A common encountered issue is the rapid turnover of new tools that

are not frequently updated or consistently available, making the reproducibility of WES analysis

pipelines virtually impossible. Thus, certain tools tend to be regarded as best-practise choices due to

their efficiency, continual updates and availability, and relevance to the type of data or disease being

investigated. When it comes to the analysis of WES in complex disease research, the

Burrows-Wheeler Aligner BWA-MEM algorithm is commonly employed. However, one study

emphasised the importance of using the latest reference genome (GRCh38 over GRCh37) for the

alignment, concluding the choice of the aligner is not as important for enhanced genome coverage

(Pan et al., 2019).

There are many important caveats to consider when carrying out data analysis on a specific

disease or disorder. In the case of rare or complex genetic disease, the experimental design of

secondary analysis can greatly improve variant calling by incorporating relevant assumptions. It is

important to take into consideration the genetic relationship between related individuals during variant

calling, the possible modes of inheritance (autosomal recessive, autosomal dominant, X-linked, and

de novo), population stratification which needs to be accounted for where variants of interest may be
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specific to a particular population group (as opposed to disease-causing) and the locus heterogeneity

in complex disease (Hintzsche et al., 2016). The popular choice of variant caller is the Genome

Analysis toolkit (GATk) HaplotypeCaller. This is because the HaplotypeCaller has consistently

shown the best performance in terms of calling variants from both high and low-depth coverage with

the fewest erroneous calls (Andreu-Sánchez et al., 2021). This is particularly important in the study of

Mendelian disease where the quality of the genotype call determines the quality of candidate variants.

Multiple mini pipelines are readily available for secondary analysis of NGS data however, many lack

software that is optimised to deal with heterogeneous rare diseases or genetically diverse,

under-represented population groups (Schoonen et al., 2019). Thus, the need for secondary analysis

pipelines to be compared or optimised is becoming a necessary part of the analysis, especially with

the development of population-specific genomes and upgraded variant caller software.

Tertiary analysis allows for the functional labelling and subsequent filtering of the variant data

obtained after secondary analysis. Multiple biological factors surrounding the disease need to be

accounted for to reduce the output of clinically irrelevant data (Davis-Turak et al., 2018). Thus, it is

imperative to choose an annotator that is consistently updated with the multiple databases that are

used to classify the variants. Ensembl’s Variant Effect Predictor (VEP) and Annovar tend to be

popular choices for the annotation of variants due to their comprehensive selection of biological

databases and their consistency with the use of the latest version of the databases used (Cunningham

et al., 2022). Specifications that need to be accounted for in tertiary analysis are highly dependent on

the molecular understanding of the variant, its genetic interactions and its influence on the biological

mechanisms underlying the disease. Thus, the choice of software and the stringency of selected

parameters used for secondary and tertiary analysis can ‘make or break’ the process of novel gene

discovery using NGS data.

Importantly, there are several shortfalls to using established bioinformatic pipelines for the data

analysis of South African (SA) disease-affected individuals, since most software has been primarily

developed for the study of European- or Asian-based datasets (Bentley et al., 2020). This problem

primarily occurs during the variant annotation process and recently SA researchers have begun to take

this into account (Schoonen et al., 2019). Schoonen et al (2019) incorporated Ensembl-VEP to

annotate variants and GEnome MINIng (GEMINI v0.20) to effectively filter variants according to

African allele frequencies, resulting in higher quality output.

2.2.3 Functional analysis of prioritised variants

A common problem encountered when attempting to determine a novel genetic cause of disease

is the return of prioritised variants of uncertain significance (VUSs) (Federici and Soddu, 2020). This

can be, in part, due to the limited research available on the gene’s expression and involvement in
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biological mechanisms, and the lack of knowledge regarding the effect of the change on the protein

structure and function, thus resulting in the inability to explicitly link the phenotype to the variant. In

2015, the American College of Medical Genetics formed the ‘ACMG guidelines’; a set of stringent

criteria incorporating various aspects of a variant’s information including its population data,

computational data, functional data and segregation data to classify a variant as either ‘pathogenic’,

‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, or ‘benign’ (Richards et al., 2015).

However, if there is limited information on the variant present in the databases used, the variant

remains one of uncertain significance.

Prior to NGS-based analysis, researchers were confined to ‘wet lab’-based functional analysis of

a variant of interest. However, this is no longer the most efficient approach due to the influx of VUSs

as potential causes of disease, owing to the accessibility of NGS technology (Kwong et al., 2021).

Therefore, before time-consuming and expensive methods of functional analyses, it has become easier

to potentially determine the functional effect of a variant on a protein using computational approaches

first, thus determining whether further functional analysis is needed. Initially, this was a difficult

process due to the limited number of experimentally solved protein structures (Waterhouse et al.,

2018). However, the development of computational ab initio protein modelling that can mimic the

qualities of a solved structure using just the protein sequence, as seen with DeepMind’s Alphafold, an

initiative to solve the complete protein structure of all proteins (Jumper et al., 2021). Thus,

determining the potential functional, structural, and biological effect of a variant on any protein has

become easier and necessary, prior to further downstream analysis.

A well-developed analysis workflow is necessary for the optimal analysis of NGS data. The

workflow must be capable of thorough data quality control and sensitive variant filtration. This is to

reduce the probability of error through the prevalence of false positive/negative variants by using

optimum bioinformatic tools and their subsequent parameters (Bayrak and Itan, 2020). Ultimately, the

workflow should also be able to prioritise the most-likely disease variants/genes based on a variety of

study-specific factors. These include the ethnicity of the population group, co-segregation of the

variants within the family and, ultimately, a molecular understanding of the nominated gene/s and

disease in question, thereby solidifying the importance of consecutive in silico analysis (Pereira et al.,

2020). In the present study, we aim to use WES approaches (in conjunction with specialised

bioinformatic techniques) and in silico pathogenicity analysis to identify potential novel PD

variants/genes in a South African family.
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2.3 Disease under investigation: Parkinson’s disease (PD)

PD is a progressive movement disorder that was first formally recognised in 1817 by Dr James

Parkinson and medically described as the ‘Shaking Palsy’ (Goetz, 2011). This complex

neurodegenerative disorder currently affects more than six million individuals, globally (Schneider

and Alcalay, 2020). However, this number is considered to be closer to the range of 7-10 million, due

to numerous geographical regions with limited statistics and inaccurate reporting of the disease

(Selvaraj and Piramanayagam, 2019). Furthermore, the number of known PD cases are expected to

rise to approximately 12 million by the year 2040, highlighting the necessity of genetic research into

this perplexing disease (Dorsey et al., 2018). Age is considered the largest risk factor of PD, followed

by sex, where males are 1.5 - 2 times more likely to develop the disease (Bandres-Ciga et al., 2020,

Reekes et al., 2020). The prevalence of PD is around 1% of individuals above the age of 60 years, and

approximately 4-5% of individuals over the age of 85 years (Kalinderi et al., 2016).

2.3.1 Clinical features of PD

The principal neuropathological hallmark of PD is the ~ >70% loss of nigrostriatal dopaminergic

neurons (typically present in the substantia nigra pars compacta (SNpc) that results in a marked

decrease in the amount of available dopamine over time (Figure 2.6) (Kalinderi et al., 2016, Lunati et

al., 2019). Lewy bodies are aggregated protein clumps that may be found in the remaining neurons

and are another important pathological hallmark of PD, however, it is unknown if these Lewy bodies

provide a pathogenic or protective effect (Kalinderi et al., 2016). Braak staging is typically used to

determine the movement of Lewy body deposits which can be correlated to the severity of the PD

diagnosis (Kouli et al., 2018). In post-mortem studies of the transverse brain stem, loss of

pigmentation in the SNpc is recognised as a distinct morphological change in PD-affected individuals.

Other neural cell networks are also commonly implicated in PD pathology, adding to their

heterogeneous nature and making a definite diagnosis of PD, challenging (Kouli et al., 2018).

Clinical symptoms of PD were first described by Dr. James Parkinson in 1817 and further

elucidated by Prof. Jean-Martin Charcot between 1868 and 1881 (Walusinski, 2017). Known motor

symptoms consist of bradykinesia, rigidity, resting tremor, postural instability and freezing, however,

years prior to the onset of these symptoms, non-motor PD symptoms may manifest during an

extended prodromal period (Kouli et al., 2018). These symptoms can include both cognitive and

behavioural symptoms, REM sleep disorders, gastrointestinal issues, depression, fatigue and

autonomic or sensory dysfunction (Bandres-Ciga et al., 2020, Kalinderi et al., 2016) (Figure 2.7).
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Figure 2.6: Dopamine levels in a normal vs. a PD-affected neuron
Created using Krita (version 5.1.3) and Inkscape (version 1.2.1) software.

Figure 2.7: Motor and non-motor symptoms present in PD-affected individuals
Image created using Draw.io and Inkscape (version 1.2.1) software.
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2.3.2 Diagnosis and treatment

Due to the heterogeneous neuropathology of the PD spectrum, the clinical criteria for diagnosis is

based on the presence of two of the four common motor symptoms, namely, resting tremor,

bradykinesia, rigidity and/or postural instability (Kouli et al., 2018). Definitive diagnoses may require

histopathological assessment of post-mortem brain samples to observe the presence of Lewy body

deposits and loss of pigmentation in the SNpc. The use of targeted gene panels to confirm the

monogenic cause of PD may be implemented if it can improve the treatment plan for the affected

individuals (Oertel, 2016). Currently, PD has no known cure and existing treatments aim at alleviating

symptoms of the disease, and include antidepressants, anti-tremor medications and cognitive

enhancers, with the most common symptomatic treatment aimed at increasing the quantity of

dopamine via L-dopa (Bandres-Ciga et al., 2020). Surgical treatment, in the form of deep-brain

stimulation or gastrointestinal levodopa implantations, may be encouraged if medicinal treatments do

not prove effective (Oertel, 2016). Increasing the understanding of underlying PD genetic aetiology

and subsequent biological pathway interferences may eventually lead to the implementation of

personalised or targeted therapeutics in the future.

2.4 PD genetics

2.4.1 Identified causes of PD

Initially, PD was assumed to be a sporadic disease that was mainly influenced by environmental

factors and age (Bandres-Ciga et al., 2020). However, since the discovery of causal genes within

PD-afflicted families, it is now understood that PD is increasingly influenced by genetic factors. The

genetic aetiology of PD is quite diverse as it is considered a genetically heterogeneous disorder. PD

cases are typically classified as having either familial or sporadic forms of the disorder (Schneider and

Alcalay, 2020). Familial PD is rare, only accounting for ~ 2 - 15% of all PD cases. Approximately 5 –

10% of these familial PD cases have been known to reflect classic Mendelian inheritance patterns,

whereby the disease is caused by highly penetrant variants (Lesage and Brice, 2009). However, the

study of monogenic PD can be complicated by instances in which not all PD-affected family members

carry the same pathogenic mutation and present as phenocopies (whereby two affected PD individuals

with matching phenotypes in a family have different genotypes possibly due to an environmental risk

factor). This phenomenon can easily be confused with intrafamilial heterogeneity (where one affected

individual has a different mutation to the family mutation but where this difference maybe due to de

novo mutations, epigenetic changes, pleiotropy or, in another instance, where multiple rare variants

contribute to individual disease risk as seen in oligogenic inheritance (Klein et al.,2011; Farlow et al.,

2016; Bentley et al., 2021). True phenocopies in a family may also lead to incorrect conclusions
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regarding the inheritance pattern within the family (Klein et al., 2011). These confounding factors are

relevant in PD, thus requiring adaptation of inclusion criteria in bioinformatic tools going forward.

Established causative genes are subsequently split into three categories; autosomal dominant (AD),

autosomal recessive (AR) and an X-linked form (Kalinderi et al., 2016).

The vast majority (~ 85%) of all PD cases are considered sporadic, where the actual cause is

unknown and onset is attributed to complex, synergistic interactions between genetic, metabolic, and

environmental factors (Gasser, 2015). Epidemiological studies have deduced that certain

environmental factors may impart protective effects against the development of PD, such as caffeine

or alcohol intake and tobacco exposure (Hancock et al., 2007; Zhang et al, 2014). Adverse risk factors

that may promote PD onset include exposure to certain pesticides, air pollution, well water

consumption and even head injuries (Jankovic and Tan, 2006). Other factors like depression or

gastrointestinal symptoms may also be associated with an increased risk for PD later in life

(Bandres-Ciga et al., 2020). However, it is proposed that environmental factors contribute fractionally

to the risk of onset and thus, the underlying causative mechanisms for most PD cases remain largely

unknown. Thus, newer sequencing technologies may prove insightful when attempting to decipher the

‘missing heritability’ of a disease like PD.

The underlying pathogenesis of PD has been linked to multiple biological mechanisms, including

mitochondrial dysfunction, ineffective protein degradation, neuroinflammation and mostly,

α-synuclein aggregation (Kouli et al., 2018). Mitochondrial dysfunction is considered a key

component in the pathogenesis of both idiopathic and familial PD. PD causal genes such as PRKN (an

E3 ubiquitin ligase involved in the mitophagy pathway responsible for the removal of damaged

mitochondria), PINK1 (a ligase responsible for the phosphorylation of PRKN in the mitophagy

pathway), and DJ-1 (a ubiquitin ligase known to activate PINK1 transcription) have been found to

actively contribute to mitochondrial dysfunction leading to the onset of PD (Bonifati, 2014; Kouli et

al., 2018). Putative PD candidate genes including FBXO7, PLA2G6, VPS13C and CHCHD2 have also

been found to play roles in the quality control of mitochondrial systems (Bandres-Ciga et al., 2020).

In the case of ineffective protein clearance, the ubiquitin-proteosome system (UPS) has been

implicated in PD due to its involvement in neural protein accumulation and deposits, allowing for the

accumulation of Lewy bodies. The PRKN and UCH-L1 genes have been linked to

ubiquitin-proteosome system function (Mcnaught and Jenner, 2001). Furthermore, malfunctioning or

differential expression of proteins involved in the lysosome/autophagic system have also been

affected by mutations in genes implicated in PD such as ATP13A2 and GBA (Kouli et al., 2018).

Postmortem brain analysis of sporadic PD individuals and most animal models with PD have

displayed evidence of endoplasmic reticulum (ER) stress, particularly the upregulation of the unfolded

protein response (UPR), a regulatory cascade that promotes homeostasis in the presence of misfolded
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proteins or signals autophagy when experiencing chronic ER stress (Mercado et al., 2016). Thus,

pathway analysis has increasingly become an area of interest due to the not-yet-understood overlap of

biological interactions contributing to the onset of PD.

2.4.2 The discovery of the established PD genes

Before NGS, researchers relied on methods such as chromosomal linkage association within

families presenting with extreme disease phenotypes to identify Mendelian diseases. Linkage

mapping analysis involving large multi-incident PD families, followed by positional cloning, has also

extensively been used to establish the current, known PD genes including α-synuclein (SNCA),

leucine-rich repeat kinase 2 (LRRK2) and vacuolar protein sorting ortholog 35 (VPS35), parkin

(PRKN), PTEN induced putative kinase 1 (PINK1) and protein deglycase (DJ-1) (Table 2.1) (Bonifati,

2014; Klein and Westenberger., 2012). Glucocerebrosidase (GBA) has been implicated as a genetic

susceptibility factor for PD development (Bandres-Ciga et al., 2020). Genome-wide association

studies (GWAS) consist of thousands of markers or single nucleotide polymorphisms (SNPs)

scanning across multiple genomes of individuals (with and without the disease) to identify common

genetic variation or susceptibility loci linked to a disease. This has led to the adoption of the

common-disease-common-variant hypothesis, which has been responsible for the discovery of many

PD-susceptibility loci (Hemminki et al., 2008; Nalls et al., 2019; Tam et al., 2019). GWAS has also

been able to detect PD-linked common variability in putative candidate gene loci supporting the

notion that sporadic and familial PD have a genetic link (Bandres-Ciga et al., 2020). However,

GWAS studies face difficulty in terms of statistical power and require a large cohort of cases and

controls, thus, having limited potential for the detection of rare variants or those with small effects

(Bonifati, 2014; Bayrak and Itan, 2020). The use of these studies has been mostly unsuccessful as they

have only been able to explain a small percentage of PD aetiology (Kalinderi et al., 2016). Thus, the

introduction of NGS has largely increased the potential for novel gene discovery.

Table 2.1: Genes found to be associated with PD and non-PD Parkinsonism

Locus Gene
Symbol

Chromosom
e

Method of Discovery Inheritance Onset

PARK1 SNCA 4q21-q23 Linkage analysis AD EO
PARK2 PRKN 6q25.2-q27 Linkage analysis AR EO
PARK3 ? 2p13 Linkage analysis AD LO
PARK4 SNCA 4q21-q23 Linkage analysis AD EO
PARK5** UCHL1 4p13 Candidate gene approach AD LO
PARK6 PINK1 1p35-p36 Linkage analysis AR EO
PARK7 DJ-1 1p36 Linkage analysis AR EO
PARK8 LRRK2 12p11-q13 Linkage analysis AD LO
PARK9* ATP13A2 1p36 Linkage analysis AR EO
PARK10 ? 1p32 Linkage analysis Risk Factor -
PARK11 GIGYF2 2q37.1 Linkage analysis AD EO
PARK12 ? Xq21-q22 Linkage analysis Risk Factor -
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PARK13 HTRA2 2p12 Candidate gene approach AD -
PARK14* PLA2G6 22q13.1 Linkage analysis AR EO
PARK15* FBXO7 22q12.3 Linkage analysis AR EO
PARK16 ? 1q32 GWAS Risk Factor -
PARK17 VPS35 16q12 WES AD LO
PARK18 EIF4G1 3q27.1 Linkage analysis AD LO
PARK19 DNAJC6 1p31.3 WES and homozygosity mapping AR EO
PARK20 SYNJ1 21q22.11 WES AR EO
PARK21 DNAJC13 3q22.1 WES AD LO
PARK22 CHCHD2 7p11.2 WES AD LO/EO
PARK23 VPS13C 15q22.2 WES AR EO
PARK24 PSAP 10 Candidate gene approach/WES

followed by GWAS
AD

* Depicts genes responsible for atypical PD or other parkinsonisms.
** No longer considered a significant susceptability factor for PD.
AR - autosomal recessive; AD - autosomal dominant; EO - early onset; LO - late onset; WES - whole exome
sequencing; GWAS - genome-wide association studies.

2.4.3 Strategies for the discovery of novel PD genes and susceptibility factors

It has also been hypothesised that the vast ‘missing heritability’ in complex disorders such as PD,

may be attributed to larger penetrant effects of less common variants i.e., the

rare-variant-common-disease hypothesis (Gasser et al., 2015; El-Fishawy, 2013; Germer et al., 2019).

As described earlier, analysis of NGS data can allow for the identification of rare, highly penetrant

variants in multi-incident family pedigrees. The potential of finding a genetic variant with a

substantial disease-causing effect is more likely within a PD-affected family than in a sporadic PD

individual, due to the added benefit of observing familial co-segregation of the variant of interest.

Notably, NGS analysis in PD research has increased exponentially since 2001, probably mainly as a

result of the decreasing cost of high-throughput sequencing (Figure 2.8). To date, NGS-aided analysis

has uncovered several novel genes implicated in PD including AD-inherited genes (VPS35, CHCHD2,

DNAJC13) and AR-inherited genes (DNAJ6, VPS13C, SYNJ1) (Shulskaya et al., 2018). VPS35

otherwise referred to as PARK 17, is firmly associated with classical PD. However, DNAJC6 (PARK

19), DNAJC13 (PARK 21), SYNJ1 (PARK 20), VPS13C (PARK 23), and CHCHD2 (PARK 22) are

also considered pathogenic and viewed as rare genetic contributors to PD (Table 2.1) (Olgiati et al.,

2016; Puschmann, 2017; Schormair et al., 2018; Correia Guedes et al., 2020; Day and Mullin., 2021).

The candidate gene approach can then be utilised thereafter to find novel mutations in these putative

genes through targeted sequencing or mutational screening.

As a backdrop to the present study, we recently published a Perspective article highlighting all of

the studies that used WES and subsequent data analysis to determine novel causes of PD (Appendix

D). In the article, we highlight the similarities and differences in WES approaches taken in 17 studies

that investigated PD-families (of various ancestries) for novel PD genes or susceptibility factors. We
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also speculate on the strengths of these approaches (in terms of sequencing and data analysis) and

comment on the relevance of our findings for future studies.

Figure 2.8: The number of publications related to NGS and PD (indexed on PubMed)
correlated to the cost of a single sequenced genome (2001-2021)

The PUBMED string search was performed on the 13thth of September 2022 and was adapted from Su et al.,
2011, and consisted of ('next-generation sequencing' OR 'next-generation sequencing' OR 'next-generation DNA
sequencing' OR 'next-generation DNA sequencing' AND ‘Parkinson’s disease’ OR ‘PD’ OR ‘Parkinson’s’)
AND (2000[Publication Date]:2021[Publication Date]). The genome cost data (2001 to 2021) was accessed
from NHGRI with permission.

2.5 The state of PD research in sub-Saharan Africa (SSA)

There is currently a major bias in global statistics regarding PD genetics. This is because the

majority of PD genomic studies have been conducted on individuals of European and Asian ancestry

(Abbas et al., 2017). Estimates of the prevalence of PD in sub-Saharan Africa (SSA) vary widely

among studies and range from ~10 - 235 cases/100000 in urban regions (Lekoubou et al., 2014). The

low prevalence may be attributed to low life expectancy, the relatively young population, debilitating

socio-economic factors, cultural taboos, and the lack of neurological specialists (Dotchin and Walker,

2012).

Critically limiting factors in the diagnosis and subsequent recruitment of PD individuals (of

African ancestry specifically) are due to the lack of movement disorder specialists in countries with

already limited healthcare and infrastructure and, the beliefs surrounding PD due to the lack of

knowledge about the disease. A study analysing the prevalence of movement disorder specialists in

Africa indicated a total of 10 in South Africa and 30 in Nigeria, which are concerningly low numbers

for the SSA countries with the most research output regarding PD genetics (Hamid et al., 2021). A
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cross-sectional survey analysing awareness of PD among South African Xhosa individuals (25

individuals with PD, 98 control individuals and 31 traditional healers) resulted in only 18% of them

being able to recognise the disease and almost a third believed the disease was caused by witchcraft

and that the affected individual should be removed from the community, indicating there is a

significant lack of knowledge regarding the disease among black South Africans (Mokaya et al.,2017).

This highlights the limited number of individuals, let alone families, that would be knowledgeable or

willing to receive an official PD diagnosis or partake in genetic studies. Furthermore, attempts to

bridge the fundamental gaps in African genomics are currently underway. An example is the South

African Human Genome Project (SAHGP) initiative to develop a local reference genome based on 24

African ancestry individuals (https://sahgp.sanbi.ac.za/). Another initiative is the H3Africa

Consortium which aims to develop a pan-African bioinformatics network (H3ABionet) and

infrastructure to enhance African genomics research on the continent (Mulder et al., 2017).

Most PD studies in SSA (including Nigeria, Ghana, Zambia, Tanzania and South Africa) to date

have focused on targeted genetic screening to determine the frequency of known PD genes in PD

individuals. Almost all the available studies have incorporated the use of either multiplex-ligation

probe assay (MLPA) or high-resolution melt (HRM) analyses to screen PD individuals for the

presence of variants or copy number variations in LRRK2, PRKN, PINK1, SNCA, UCHLI, ATP13A2,

DJ-1, or GBA (Rizig et al., 2021; Okubadejo et al., 2018; Milanowski et al., 2021; Keyser et al., 2010;

van der Merwe et al., 2016). However, these studies have reported only a few variants implicated in

PD. Another recent study testing South African and Nigerian PD-affected individuals for the presence

of common disease-associated variants (using a targeted NGS gene panel) discovered that none of the

individuals harboured these common mutations indicating that there may be a host of undiscovered

genetic factors influencing the onset of PD in African populations (Oluwole et al., 2020).

2.5.1 Strategies for novel PD gene discovery in SA

Genetic research on complex or rare disease in individuals of African ancestry has now become

increasingly relevant, due to their vast genetic diversity as compared to that of Asian or European

populations (Sirugo et al., 2019). The use of NGS for the discovery of novel PD genes in families

from SSA has been limited to two studies. One study published in 2018 described the WES analysis

of an African family affected with juvenile-onset parkinsonism and intellectual disability, resulting in

the discovery of a novel homozygous frameshift deletion present in PTRHD1, a gene that had

previously been implicated in two Iranian families presenting with a similar phenotype (Kuipers et al.,

2018). More recently, WES was used for the analysis of an Afrikaner family (a founder population of

Dutch, French and German ancestry that are unique to SA) affected with PD, where a novel variant

p.G849D in neurexin 2 (NRXN2) was prioritised as a candidate disease gene (Sebate et al., 2021).
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Our research group has recruited a total of 687 unrelated PD-affected individuals, with only

14.8% of recruits having African ancestry (n = 102). Of these 102 PD recruits, only 6 of those

individuals (6.5%) presented with a positive family history (Jansen van Rensburg et al., 2021). This

highlights the limitations of the investigation of PD causation in multiplex African families. As

important as the recruitment of these ancestry-specific PD families are, it is also important to develop

a reproducible analytic workflow (that caters to the genomic diversity in SA PD-affected individuals)

to optimise the odds of discovering a disease-associated variant in an unknown gene or to uncover a

novel variant in an established PD gene. If this approach is successful, our research could contribute

to the understanding of the complex genetic aetiology of PD which could eventually lead to the basis

of novel or stratified/personalised modalities of treatment for under-researched ethnic groups afflicted

with PD.

Significance of study

This study aims to develop effective bioinformatic methods of NGS analysis for PD-affected

individuals in South Africa, thereby allowing analysis to be robust and reproducible. This study also

aims to determine a novel genetic factor that may be underlying the cause of PD in a family with

South African Xhosa ancestry. Results from this study could provide insight into novel mechanisms

that instigate PD onset and progression in individuals of under-researched ethnic populations. Further

functional study into novel candidate genes could lead to a formative basis for newer or targeted

therapeutic modalities by understanding and manipulating the mutational effects on biological targets

associated with the disease. Ultimately, it is a goal that the use of NGS could lead to precision or

stratified medicine in complex disease where the treatment and prevention of a particular disease are

optimised by considering individual variability at the genetic level. Our study is the first known

example of WES analysis in a PD-affected family of Xhosa-African ancestry.
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CHAPTER 3

Whole exome sequencing analysis of a South African Xhosa
family affected with Parkinson’s disease

________________________________________________________________

Abstract

Introduction: Parkinson's disease (PD) is a neurodegenerative disorder with complex genetic

aetiology. The limited number of mutation screening studies on PD in sub-Saharan African (SSA)

populations have not typically identified known genetic causes of the disease. Whole exome

sequencing (WES) approaches have previously been successfully utilised to find novel pathogenic

mutations or genes in PD families exhibiting Mendelian inheritance patterns. This study aims to

identify novel PD susceptibility or pathogenic variants and/or genes through WES and bioinformatic

analysis in a Xhosa family (ZA 15) affected with familial PD.

Methods and Results: Initially, WES was performed on two PD-affected siblings and two unaffected

siblings from family ZA 15, on the HiSeq 4000 at the Mayo Clinic Core Facility, USA. WES data was

analysed using BWA-MEM (GRCh38/hg38 reference alignment), GATk HaplotypeCaller (variant

calling) and Ensembl-VEP (variant annotation). Variant call files (VCFs) were scanned for variants in

both known (n=21) and putative (n=101) PD genes to eliminate known genetic causes. The VCFs

were filtered to include heterozygous, exonic/splice site, non-synonymous variants with a Phred

score > 30, present in population databases with a minor allele frequency (MAF) < 0.01 and a

CADD > 20. A total of 68 variants were identified, shared between the affected individuals only.

These candidate genes were then subjected to gene and protein expression analyses to determine

neuro-specific tissue and pathway expression. A total of 24 variants were prioritised and underwent

Sanger sequencing to confirm co-segregation within the family. Thereafter, the variants were screened

through several private (not publicly available) population cohorts to determine MAFs, resulting in

the exclusion of variants with a MAF > 0.01. Following the control population screening, three

variants of interest were prioritised, namely, AHNAK2 p.D1540H, MANF p.A13V and ZDHHC11

p.R276P. These remaining variants were then subjected to Sanger sequencing in 100 South African

Xhosa controls, however, none of the variants were found to be present. Lastly, the three remaining

variants were re-evaluated based on gene and protein expression data to determine possible

correlations to PD pathobiology. A single variant (p.A13V in the mesencephalic astrocyte-derived

neurotrophic factor (MANF) gene) was prioritised for further study.

Conclusion: Identifying novel PD genes in under-represented population groups may improve clinical

diagnoses and treatment options by providing insight into unknown PD molecular mechanisms,

3
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detecting rare PD biomarkers and determining novel drug targets. WES analysis of ZA 15 yielded 3

novel variants that were found to be pathogenic across > 5 in silico pathogenicity prediction tools and

had a MAF < 0.01 in the available population databases/private PD/non-PD population cohorts,

indicating the rarity and potential pathogenicity of these variants. Subsequently, MANF, a protein

which exerts a protective effect on dopaminergic neurons in the substantia nigra pars compacta

(SNpc) (the main neuronal region implicated in PD), was selected as the top candidate. This gene or

variant has not been implicated as a genetic cause of PD before and thus, these findings illustrate the

usefulness of under-represented populations for providing potentially new insights into disease

pathobiology. However, we cannot state with certainty that any one of these variants may have caused

the disease in this family, and thus, further in silico and ‘wet-lab’ functional analysis of the variants

and their impact on protein function, is necessary. Overall, this study illustrates the importance of

incorporating understudied populations for novel gene discovery in disease genomics.

Keywords: African Ancestry; Bioinformatic Pipelines; Familial PD; Novel Genes; Parkinson’s

Disease; WES
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3.1 Introduction

Next-generation sequencing (NGS) approaches have enabled the rapid expansion of genomic-based

research due to their ability to perform high-throughput sequencing in a cost-effective and time-saving

manner. NGS technology is typically utilised in a clinical setting for diagnostic evaluations of genetic

disease, and more recently, in a research setting to determine novel genetic causation of rare or

complex diseases, such as PD. When considering NGS for the study of genetic disorders, WES

presents as the most suitable choice as most pathogenic variants (80–85%) found to date, are in exonic

regions of the genome (Ku et al., 2016). NGS approaches such as whole genome sequencing (WGS)

or WES produce a large array of genomic data requiring a robust bioinformatic pipeline (typically

comprised of open-source software) that is constructed according to best-practice guidelines to

elucidate the most promising candidate variants. However, it is important to employ an analytic

workflow that is most relevant and appropriate to the disease of interest, the mode of inheritance and

the ancestry group, to optimise the prioritisation of variants.

PD is a neurodegenerative motor disease displaying a diverse, erratic genetic aetiology with very few

causal genes having been identified, thus far. To date, several novel gene discovery WES studies in

familial PD cases have been published, however, these studies have largely been limited to

individuals of European and Asian descent (Bentley et al., 2020). Genetic studies in South Africa on

the known PD genes have not yet identified a genetic cause in the majority of PD-affected individuals.

These findings hint at the possibility that there are as-yet-undiscovered PD genes. WES approaches

provide a practical method to find novel pathogenic mutations in these PD-affected individuals. As

PD-affected individuals of African ancestry are considerably understudied, it is imperative that the

analysis and filtering of the genomic data, to prioritise variants, be tailored to factor in diverse

ancestries. This study aims to evaluate the WES data from a South African Xhosa multi-incident PD

family to elucidate novel candidate disease genes/variants using a tailored bioinformatic approach.

3.2 Methods and materials

The methodological approach chosen for the present study was determined after an exhaustive search

for all published studies that used WES to identify a novel cause of disease in a PD-affected family

(Figure 3.1). The workflows and bioinformatic tools for each of the reviewed studies were compiled

and compared in a Perspective article which was published (Pillay et al., 2021; Appendix D) and this

formed the basis for the design of the present study.
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Figure 3.1: Outline of the methodological approach for Aim 1 of the PhD project
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3.2.1 Study participants (South African Xhosa family - ZA 15)

3.2.1.1 Ethical considerations for study

Ethics approval for the parent study has been obtained from the Health Research Ethics Committee at

Stellenbosch University, South Africa (Reference Number: 2002/C059; Appendix A). Ethics

approval for this PhD project has also been obtained from the Biomedical Science Research Ethics

Committee of the University of the Western Cape, South Africa (Reference Number: BM21/4/13;

Appendix B). Furthermore, since this project involves a collaboration between two research

institutions, a Data Transfer Agreement (DTA) between Stellenbosch University (“Provider”) and the

University of the Western Cape (“Recipient”) acknowledging the transfer of NGS data generated from

human DNA samples, has been drafted and signed (Appendix C). All study participants provided

written, informed consent to take part in the study and provide peripheral blood samples for genetic

analysis.

3.2.1.2 Selection criteria for study participants

The family selected for WES (designated as ZA 15 since they were the fifteenth family to be recruited)

are of South African Xhosa ancestry and consisted of two PD-affected individuals (siblings), their two

unaffected siblings and two other unaffected individuals (Figure 3.2). They were selected for this

study since they are one of the few families of African ancestry for which there is DNA available

of >1 affected individual and because these individuals were diagnosed by a movement disorder

specialist. The PD family was recruited from the Movement Disorders Clinic at Tygerberg Hospital

(Cape Town, Western Cape, South Africa). The affected individuals underwent a standardised

neurological examination by a movement disorder specialist - Prof. Jonathan Carr - and were

diagnosed according to the UK Parkinson’s Disease Society Brain Bank Diagnostic Criteria (Gibb et

al., 1988). The age at onset (AAO) of PD and details regarding family history and lifestyle were also

obtained from the patients using a questionnaire by a trained research nurse.
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3.2.1.3 Pedigree of South African Xhosa family (ZA 15) affected with Parkinson’s

disease

Figure 3.2: Pedigree of Xhosa family ZA 15
Affected family members (PD-affected individuals) are indicated in red. Squares represent males, while
circles represent females. Dashed lines through the squares and circles indicate deceased individuals. ID =
Lab identification number of individuals that took part in the study, DOB = Date of birth and AAO = Age
at onset of PD. (All personal information was removed to allow anonymity of individuals).

3.2.2 WES and data analysis pipeline

3.2.2.1 WES

Four individuals from the PD family ZA 15 were selected for sequencing following the genetic

pre-screening of the proband. The proband (74.53), his affected sister (74.54) and their two unaffected

siblings (74.52 and 74.51) underwent short-read WES. Furthermore, DNA samples were also

collected from the spouse of the proband (ID 11.915) and the daughter of one of the affected siblings

(ID 74.50). WES was done by our collaborator, Prof. Owen Ross at the Mayo Core Facility, Mayo

Clinic, Florida, USA. Library preparations, using 50ng of sample DNA, were made following the

manufacturer’s guidelines. Library concentrations were subsequently assessed and enriched using

Agilent’s SureSelect XT Target Enrichment System V5+UTR (Agilent, Santa Clara, CA, USA). The

libraries were then quantified and the enriched exonic regions were sequenced on an Illumina HiSeq

4000 (Illumina, San Diego, CA, USA).
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3.2.2.2 WES data analysis workflow

A WES data analysis workflow was constructed for the present study based on best-practice

guidelines and tools observed in previously published WES analyses of familial PD cases with an

unknown cause of disease (Funayama et al., 2015 Sudhaman et al., 2016, Straniero et al., 2017). A

brief overview of all the WES analysis steps can be seen in Figure 3.3. The bioinformatic analyses

were conducted on the SANBI high-performance computing cluster (South African National

Bioinformatics Institute, University of the Western Cape, South Africa).

Figure 3.3: WES data analysis workflow used for the analysis of family ZA 15

3.2.2.2.1 Pre-processing of FASTQ files

Raw WES data, in the form of paired-end (PE) FASTQ files, were initially subjected to quality checks

using the FASTQC tool, version 0.11.9,

(https://www.bioinformatics.babraham.ac.uk/projects/FASTQc/). FASTQ files were assessed for per

base sequence quality, per read sequence quality and for the presence of remnant adaptor sequences

(Leggett et al, 2013). Thereafter, the BBMap tool suite, version 38.86

(https://jgi.doe.gov/data-and-tools/software-tools/bbtools), was employed to identify the exact adapter
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sequence flanking the reads and to subsequently trim off these identified sequences, as well as,

extraneous low-quality reads (Phred < 20) that may affect read alignment (Liao et al., 2017).

FASTQC was also used to assess the files during post-processing to ensure the adapters were removed

and the reads were trimmed accordingly.

3.2.2.2.2 Read alignment

Burrows-Wheeler Aligner (BWA) (version 0.7.17) was used to index the human reference genome

(hg38/GRCh38) assembly and the BWA-MEM algorithm was employed to align the PE FASTQ files

to the reference genome, producing a single SAM file per individual. Samtools (version 1.11) was

used to convert the SAM file into a workable BAM file. Furthermore, Picard (version 2.20.1) was

used to sort the BAM files before variant calling. BAM file summary statistics concerning read

alignment rate as well as read length and quality were generated using Samtools (version 1.11).

3.2.2.2.3 Variant calling

The Genome Analysis Toolkit (GATk) HaplotypeCaller (version 4.1.2.0) was utilised for variant

calling to create genomic VCF files (gVCFs) for each individual. The gVCFs of all four individuals

were then combined into one gVCF also using GATk (version 4.1.2.0), allowing the visualisation of

all four genotypes across all genomic sites (Disratthakit et al., 2022). Finally, a VCF file was

generated for post-processing using GATk (version 4.1.2.0).

3.2.2.2.4 Post-processing of VCF files

The GATk suite (version 4.1.2.0) was further used to separately isolate SNPs and InDels from the

VCF file for further quality control through filtering. The SNPs were filtered to ensure each SNP

possessed a quality Phred score > 30.0, a QualByDepth (QD) > 2.0 (used to normalise quality scores

preventing raised scores caused by regions of deeper coverage), FisherStrand (FS) < 60.0 (a

probabilistic strand bias score determining whether an alternate allele was favoured on either strand),

StrandOddsRatio (SOR) < 3.0 (another strand bias estimate calculated using a symmetric odds ratio

test), RMSMappingQuality (MQ) > 40.0 (the root mean square mapping quality over all the reads at a

particular site), MappingQualityRankSumTest (MQRankSum) > -12.5 (compares the mapping

qualities of the reads supporting the reference vs. alternate allele) and a ReadPosRankSum > -8.0

(compares the positions of the reference and alternate alleles on reads). InDels were also filtered to

include those with a quality Phred score > 30.0, QD > 2.0, FS < 200.0 and a ReadPosRankSum >

-20.0. The filtered SNPs and Indels that contained a PASS flag following filtering were merged into a

VCF for annotation.
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3.2.2.2.5 Variant annotation

Ensembl’s Variant Effect Predictor (VEP), version 104.0,

(https://www.ensembl.org/info/docs/tools/vep/index.html) was used to perform the variant annotation

using the command line interface and cache repository. Typically, variant annotation allows for the

addition of auxiliary functional information retrieved from curated databases that allow for individual

variant interpretation (Yang et al., 2016). VEP also annotated the VCF against the largest population

frequency databases including the 1000 Genomes Project (https://www.internationalgenome.org/data),

gnomAD (exome and genome) (https://gnomad.broadinstitute.org/), NCBI dbSNP, build 155

(https://www.ncbi.nlm.nih.gov/snp/) and ExAC (available through https://gnomad.broadinstitute.org/).

Population-specific minor allele frequencies (MAFs) calculated for each variant in multiple ethnic

groups (African/African-American (AFR), Admixed-American/Latino (AMR), East Asian (EAS),

Non-Finnish European (EUR) and South Asian (SAS)), were provided, to determine the rarity of the

variants in contrast to common polymorphisms. Typically, a variant presenting with a MAF of < 0.01

(1 %) is considered rare in a population group (Bomba et al., 2017).

Furthermore, the variants were also annotated against several in silico functional prediction tools to

determine pathogenicity scores as well as evolutionary conservation. The Combined Annotation

Dependent Depletion (CADD) (https://cadd.gs.washington.edu/) pathogenicity predictor scores the

deleteriousness of single nucleotide variants by incorporating multiple annotations, as opposed to just

sequence homology or conservation used by most pathogenicity prediction scorers (Kircher et al.,

2014). SIFT (https://sift.bii.a-star.edu.sg/), Poly-Phen2 (http://genetics.bwh.harvard.edu/pph2/) and

PROVEAN (http://provean.jcvi.org/index.php) similarly predict the effect of an amino acid

substitution on protein function using a sequence homology approach and simultaneously

incorporating the physical properties of the amino acids using probabilistic classifiers (Ng &

Henikoff., 2001, Adzhubei et al., 2010 and Mahmood et al., 2017). Mutation Taster

(https://www.genecascade.org/MutationTaster2021) makes use of Random Forest models

incorporating sequence homology for deleterious predictions (Steinhaus et al., 2021) while Mutation

Assessor (http://mutationassessor.org/r3/) predicts functional impact based on evolutionary

conservation of the affected amino acid (AA) in protein homologs (Reva et al., 2011). fathmm

(http://fathmm.biocompute.org.uk/) predicts functional impact incorporating both sequence

conservation with homologous sequences and conserved protein domains with Hidden Markov

Models (Rogers et al, 2018). M-CAP (http://bejerano.stanford.edu/mcap/) combines a multitude of

pathogenicity prediction scores including SIFT, Polyphen-2 and CADD scores using a supervised

learning classifier (Jagadeesh et al., 2016). GERP++

(http://mendel.stanford.edu/sidowlab/downloads/gerp/index.html) was also incorporated to score the
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variants using a novel maximum likelihood rate estimation for determining selectively constrained

sites (Davydov et al., 2010).

3.2.3 Variant filtering

Once the VCF file was fully annotated, a stringent variant filtering approach to prioritise a limited

number of potentially disease-causing variants was implemented. A brief overview of the workflow

for the variant filtering steps is outlined in Figure 3.4.

Figure 3.4: Workflow for variant filtering to eliminate known causes of PD and identify novel
candidate variants

3.2.3.1 Filter VCF for heterozygous SNPs that are shared between the affected siblings

As a dominant model of inheritance for PD was assumed for ZA 15 (Figure 3.2), only heterozygous

variants were selected for further analysis. BCFTools (version 1.11) was used to intersect the VCF for
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heterozygous, exonic variants that were shared by only the affected individuals and not the unaffected

individuals, while all2VCF (version 0.3.1) combined the non-standard genotyping output into a VCF.

3.2.3.2 Filter VCF for known and putative PD genes

A list of both known (n = 21) and putative PD genes (n = 101) (Appendix E) was assembled for

downstream filtering of the VCF that contained only the shared heterozygous and exonic/splice site

region SNPs. The VCF file was scanned for the presence of any SNPs belonging to the

known/putative PD genes. This analysis was used to rule out potential known causes of disease or to

determine if a novel variant in a known/putative gene was to be investigated further.

3.2.3.3 Filter VCF for novel potential disease variants

Thereafter, the VCF was filtered according to a list of stringent criteria to narrow down the list of

novel variants that could be pursued for further investigation. VCF files were then filtered to include

only heterozygous, exonic, non-synonymous variants with a Phred QS > 30, present in all population

databases with a MAF < 0.01 and a CADD score > 20.

3.2.4 Gene expression and pathway analysis

3.2.4.1 Tissue expression

Variants were analysed against online gene expression databases to determine if any of the variants

were expressed in neuro-associated tissue. The Genotype-Tissue Expression (GTEx) Portal

(https://www.gtexportal.org/home/gene) and the Human Protein Atlas (HPA)

(https://www.proteinatlas.org/) (Lonsdale et al., 2013, Pontén et al., 2008) were utilised for annotation

of the variants. Furthermore, Mouse Genome Informatics (http://www.informatics.jax.org/) (Begley et

al., 2022) was also utilised to corroborate gene expression profiles of the variants and to determine the

phenotype of gene knockout in mouse models (Appendix G).

3.2.4.2 Pathway analysis

Kyoto Encyclopaedia of Genes and Genomes (KEGG) Pathways Analyser

(http://www.genome.jp/kegg/pathway.html) and PANTHER Pathway Analyser

(http://www.pantherdb.org/pathway/) databases were searched to identify any association between the

variants and biological pathways.
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3.2.4.3 Gene-disease association

All variants were annotated to determine existing ‘gene-disease’ associations. ClinVar

(https://www.ncbi.nlm.nih.gov/clinvar/) provides information on the correlation between human

variation and disease phenotypes, with supporting literature (Landrum et al., 2020). Online Mendelian

Inheritance in Man (OMIM) (https://www.omim.org/) (McKusick et al., 1998) is a curated database

that also catalogues human phenotypes with genetic variation.

3.2.4.4 Gene/protein interactions

STRING (https://string-db.org/cgi/) produces a network of both known and predicted protein-protein

interactions using machine learning (ML) algorithms and text mining (Szklarczyk, 2021). Each of the

variant genes was enriched against the list of known/putative PD genes (Appendix E) to determine if

they are co-expressed or related to known PD genes. All variants were subject to Gene Ontology (GO)

(http://geneontology.org/) enrichment which allows for the gene annotation of biological processes

that were found to be implicated when the gene is expressed in humans.

3.2.5 Variant screening using wet-laboratory techniques

3.2.5.1 Sanger sequencing

3.2.5.1.1 DNA quantification

DNA samples were quantified using a NanoDrop® 2000 spectrophotometer (Thermo Scientific, MA,

U.S.A) and diluted to working concentrations of ~30 ng/ul.

3.2.5.1.2 Polymerase chain reaction primer design

Oligonucleotide primers (forward and reverse) for each of the 24 variants were designed using

sequence data obtained from NCBI’s Genome Variation Viewer

(https://www.ncbi.nlm.nih.gov/variation/view). Sequence data was submitted to the Primer-Basic

Local Alignment Search Tool (BLAST) (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) to

generate a list of optimum primer pairs. Primer3 software (version 4.0.0) (https://primer3.ut.ee/)

(Untergasser et al., 2012) was subsequently used to identify the best primer pair and confirm the size

(bp), GC content (%), melting temperature (Tm) (℃) and self-complementarity (Appendix H). The

primers were synthesised by Inqaba Biotechnical Industries (Pty) Ltd, Pretoria, SA.
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3.2.5.1.3 Polymerase chain reaction

The regions of interest were amplified in a 25μl PCR reaction containing ~30ng (1μl) of template

genomic DNA. The PCR master mix was composed of 5μl of 5X Green GoTaq® Reaction Buffer

(Promega, Madison, Wisconsin, U.S.A), 2.5μl of MgCl2 (25mM), 0.75μl dNTPs (25mM) (Promega,

Madison, Wisconsin, U.S.A), 0.5μl of both forward and reverse primers (20μM), 0.05μl GoTaq® G2

Flexi DNA Polymerase (Promega, Madison, Wisconsin, U.S.A). All PCR reactions included a

negative, non-template control (sterile dH2O) to identify potential PCR contaminants. Amplification

was performed in a SimpliAmp thermal cycler (ThermoFisher Scientific, Massachusetts, USA). PCR

conditions were as follows: one denaturation cycle of 95°C for 5 minutes, 35 cycles of denaturation at

95°C for 30 seconds, annealing at the calculated optimum temperature (specific to each primer pair)

followed by an extension at 72°C for 30 seconds. The final extension cycle was performed at 72°C for

7 minutes before being cooled to 4°C.

3.2.5.1.4 Agarose gel electrophoresis

Gel electrophoresis was performed on the PCR product to confirm the amplification of the target and

ensure the amplified product had no contamination or non-specific amplification. A 1% (w/v) agarose

gel was prepared using 1.5g agarose powder (Agarose CSL-AG500, Cleaver Scientific Warwickshire,

UK), 150mL 1X sodium borate (SB) buffer and 4μL of Conda Safe Nucleic Acid Staining Solution

(Condalab, Madrid, Spain). 5 μl of PCR product were loaded into the gel wells with 2μl of DNA

molecular weight markers (100 bp and 1000bp) that were used to determine the size of the PCR

amplicons. Gel electrophoresis was subsequently performed at 120V for 45 minutes. Gels were

viewed using the BioRad GelDoc Go Imaging System (BioRad, Johannesburg, South Africa).

3.2.5.1.5 Post-polymerase chain reaction cleanup and Sanger sequencing

All samples underwent post-PCR enzymatic cleanup and were Sanger sequenced at the DNA

Sequencing Unit, Central Analytical Facilities (CAF) (Stellenbosch University, Stellenbosch, South

Africa). Capillary electrophoresis was done on a 3130 x1 Genetic Analyser (Applied Biosystems, CA,

U.S.A) using the BigDye Terminator Sequence Ready Reaction kit version 3.1 (Applied Biosystems,

CA, U.S.A). Primer pairs used for the previous PCR reactions were diluted to 1.1 pmol/ul for Sanger

sequencing. Analysis of Sanger sequencing data was carried out using Cutepeaks (version 0.2.3)

(Schutz et al., 2021). Sanger sequences were then analysed to confirm the correct targeting of the

region of interest using Ensembl’s Blast Like Alignment Tool (BLAT)

(https://www.ensembl.org/Tools/Blast).
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3.2.5.2 Screening of variants in private cohorts

To further reduce the number of candidate variants, the variants were screened through private (not

publicly available) population cohorts, by contacting authors of published articles or our collaborators.

This was done to determine the MAFs of our variants of interest since they appeared to be rare or

non-existent in public databases e.g. gnomAD. The cohorts selected were either ancestry-matched

(Xhosa or African), or had neurological disorders, including PD. The first cohort of interest was a

large Xhosa-ancestry cohort that consisted of WES data for both cases and controls, with cases

including schizophrenia-diagnosed individuals (n = 909) and controls that had been shown to not have

neurological conditions (n = 917) (Gulsuner et al., 2020). The 24 prioritised variants were screened

through the cohort and variants exhibiting a MAF > 0.01, were excluded. Thereafter, the prioritised

variants were subjected to screening in smaller cohorts including a study group on tuberculosis

(ResisTB) comprising 161 self-identified Xhosa individuals that had undergone WGS (unpublished

data). Another African-ancestry-based control cohort incorporated into our study included the

H3Africa Baylor Dataset (excluding participants from Mali and the South African Human Genome

Project) consisting of 386 WGS samples (Choudhury et al., 2021).

We also incorporated three PD-specific cohorts to determine if our variants had been found in any

other individuals with PD or other movement disorder. The Queensland Parkinson’s Project (QPP)

consisting of 66 individuals (47 PD cases, 5 ‘other movement disorder’ cases and 14 family controls)

who had undergone WES (Bentley et al., 2021), the Mayo Clinic cohort consisting of familial PD and

Lewy Body disease brain cases, and the French and Mediterranean Parkinson’s Disease Genetic Study

group (FMPD cohort) consisting of 1319 PD cases of European and North African ancestry (Fevga et

al., 2022).

3.3 Results

3.3.1 Study participants (South African Xhosa family - ZA 15)

3.3.1.1 Descriptive overview of the family

The family ZA 15 has Xhosa-African ancestry; a population group that is descended from an

admixture of the Northern-African Bantu and Southern-African San population groups (Newman,

1995). They are the second largest Bantu population group residing in SA, specifically concentrated

in the Eastern Cape (the region where the family was recruited).
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The mother of the four siblings was stated to have had PD, and thus a dominant model of inheritance

was assumed in this family. However, it should be noted that she was deceased at the time of this

study and so her affected status could not be confirmed. The two affected and two unaffected siblings

were earmarked for WES analysis. The proband had a typical age of onset at 51 years old and

presented with typical features of PD including bradykinesia and a marked resting tremor. He also had

non-motor features including insomnia and autonomic involvement, and subsequently developed mild

psychosis with visual and auditory hallucinations. His affected sister presented with a much earlier

age of onset of 35 years, where she showed initial symptoms of tremor and difficulty with walking.

However, no abnormalities were detected with a magnetic resonance imaging (MRI) brain scan. Eight

years after onset, she exhibited no autonomic complaints with no cognitive disturbances. Both siblings

were found to be levodopa responsive.

3.3.1.2 Pre-screening of the proband resulted in no variant/s of significance in

known or putative PD genes

Before WES, the proband had been subjected to genetic screening of the common PD genes to

determine whether he had a pathogenic variant in one of those genes (Table 3.1). A single

heterozygous variant was found in LRRK2 (rs148113070, p.E899D).

Table 3.1: Pre-screening results for known PD genes in the proband (ID 43.59/74.53) using
various mutation screening techniques

Parkinson’s Disease Genes Screened Screening Method
Variants/Copy Number
Changes/Present in
Proband

Parkin MLPA* No

751 genes associated with neurological diseases
Ion AmpliSeq™
Neurological Research
panel**.

No

Copy number changes in
PARK2, DJ-1, SNCA, LRRK2, PINK1, GCH1, UC
HL1, ATP13A2, LPA, TNFRSF9, CAV2 & CAV1

MLPA No

LRRK2 (G2019S) MLPA No
SNCA (A30P) MLPA No
DJ-1 Sanger Sequencing No
LRRK2 Sanger Sequencing Heterozygous p.E899D
SNCA MLPA No
PINK1 Sanger Sequencing No
EIF4G1 Sanger Sequencing No
VPS35 Sanger Sequencing No
SCA Sanger Sequencing No
JPH3 Sanger Sequencing No
GBA Sanger Sequencing No
*MLPA - multiplex ligation-dependent probe amplification.
**Ion AmpliSeq™ Neurological Research panel - a commercially available panel containing 751 genes
affecting brain and nervous system function.

https://etd.uwc.ac.za/



38

MAFs for this variant, in all the population databases considered, were less than 0.01 indicating the

rarity of the alternate allele (orange cells, Table 3.2) (Bomba et al., 2017). All pathogenicity

prediction programs determined that the variant had little to no impact on protein function and it was

considered benign or tolerated (Table 3.2). Furthermore, with analysis of the WES data it was found

that the variant is present in both affected siblings, as well as, an unaffected sibling, and thus, the

variant was excluded from further analysis. No other likely pathogenic variants were found in the PD

genes that had been screened.

Table 3.2: Population database MAFs and pathogenicity prediction scores for LRRK2
p.E889D

Population Databases Pathogenicity Prediction Tools
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LRRK2
p.E899D

0.0006 0.00024 0.000385 18.62 0.101 0.68 0.496 -0.63 -0.147

rare rare rare likely
benign benign tolerated low tolerated neutral

1000G = 1000 Genomes Project; ExAC = Exome Aggregation Consortiom; GnomAD = Genome Aggregation
Database; CADD = Combined Annotation Dependent Depletion score; PP-2 = Polyphen-2 score; SIFT =
Sorting Intolerant From Tolerant score; MA = Mutation Assessor score; fathmm = Functional Analysis through
Hidden Markov Models score and PROVEAN = Protein Variation Effect analyser.
Orange cells indicate that the variant was considered rare due to the observed MAF.

3.3.2 WES analysis was performed on 4 individuals in ZA 15

Based on these findings, it was decided that an NGS approach would be needed to find a possible

novel PD-causing gene in family ZA 15. Four individuals were selected for WES: the proband (74.53),

his affected sister (74.54) and their two unaffected siblings (74.52 and 74.51) (Figure 3.2). As

mentioned previously, after analysing the published literature, the best practice/most appropriate

approach to use for novel gene discovery in PD was determined and this informed the subsequent

flow of steps used in this study.

3.3.2.1 Summary statistics of BAM and VCF files depicted a high rate of sequence

alignment and read quality

Summary statistics obtained for the BAM files indicated a high coverage rate (> 99%) for each

individual, with all reads possessing a quality score (QS) > 30. The generated gVCF containing the

variants across all four individuals revealed a total of 2,486,448 SNPs and 317,459 InDels (Table 3.3).

Following annotation, the multi-sample VCF was intersected to isolate heterozygous variants that
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were only shared between the affected siblings and not present in either of the unaffected siblings, as

a dominant model of PD inheritance was assumed for this family. This resulted in a total of 1,785

heterozygous exonic variants that were unique to the two affected siblings, 780 of which were

non-synonymous variants (the remaining variants were synonymous variants, which indicate the

SNPs did not result in a change in the protein sequence).

Table 3.3: Summary statistics produced for each sample that was whole exome sequenced
(BAM and gVCF files)

Sample ID
74.53 74.54 74.52 74.51

Total number of reads (n) 116,499,548 108,867,292 115,197,926 108,794,328
Total number of mapped and paired reads (n) 116,054,378 108,706,426 114,726,244 108,517,790
Read mapping alignment rate (%) 99.62 99.85 99.59 99.75
Average read length (bp) 151 151 151 151
Average quality score (Phred) 38.1 38.3 37.4 38.3
Total number of SNPs (n) 2,486,448
Total number of INdels (n) 317459

The 780 variants were then subjected to further downstream filtering using a list of known and

putative PD genes (Appendix E) to eliminate potential known causes of PD that had not been

screened for, previously. Eight variants were detected in these genes (Table 3.4). The MAFs and

pathogenicity prediction scores for each of the variants were analysed to determine their validity as

being potentially pathogenic, however, none of the variants were found to be rare across all

population databases or deleterious, thus they were excluded from further analysis.

Table 3.4: Non-synonymous, exonic variants found in the known/putative PD genes that are
shared by the affected individuals (74.53 and 74.54) only

Variants

Population Databases Pathogenicity Prediction Tools
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GBA
p.K13R

0.024 0.0071 0.0224 0.003 0.0 0.387 0.205 3.62 -0.06
common rare common B B T N T N

FAM83
p.V11L

0.4 0.3516 0.3635 0.356 0.0 1.0 -0.92 2.87 -0.2
common common common B B T N T N

ELOA2
p.A446T

0.53 0.506 0.4761 19.87 0.999 0.096 2.095 3.16 -1.37
common common common LB D T M T N

ELOA2
p.C254F

0.53 0.5058 0.4758 0.003 0.115 0.715 0 3.31 -0.95
common common common B B T N T N

ELOA2
p.R179P

0.56 0.5614 0.5377 0.249 0.0 0.353 0 3.24 1.37
common common common B B T N T N

OR8B3
p.M114I

0.027 0.2767 0.3001 3.52 0.038 0.555 -1.1 7.61 -0.05
common common common B B T N T N
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ZNF543
p.N489S

0 0.01498 0 0.001 0.02 1.0 -1.26 2.37 -1.32
rare common rare B B T N T N

ZNF543
p.G559R

0.027 0.0141 0.0265 21.8 0.171 0.201 2.077 3.15 -1.66
common common common LP B T M T N

1000G = 1000 Genomes Project; ExAC = Exome Aggregation Consortiom; GnomAD = Genome Aggregation
Database.
CADD = Combined Annotation Dependent Depletion score; PP-2 = Polyphen-2 score; SIFT = Sorting
Intolerant From Tolerant score; MA = Mutation Assessor score; fathmm = Functional Analysis through Hidden
Markov Models score and PROVEAN = Protein Variation Effect analyser.
B = benign; D = Deleterious; T = Tolerated; N = Neutral; M = Moderate; LB = Likely benign; LP = Likely
pathogenic.
‘Common’ indicates a MAF > 0.01 and ‘rare’ indicates a MAF < 0.01 in the population databases.
Orange cells are indicative of results of significance.

3.3.3 Variant filtering and prioritisation yielded 68 variants of interest

Since all the possible known genetic causes of PD were effectively excluded, the remaining 772

variants were then filtered to include only exonic, non-synonymous, heterozygous variants that

appeared in the population databases with a MAF < 0.01 (across the entire population and in the

African population) (Table 3.6) and had a CADD score > 20. Notably, it is imperative to examine

both the entire population and the ancestry-matched population, as a variant that seems rare (< 0.01

MAF) across the entire population, may be quite common in a specific population such as those with

African-ancestry. The CADD score was chosen as a prioritisation parameter as it is a cumulative

predictive score that does not only rely on the scores produced by other algorithms, but also, employs

less biased, larger training sets to improve pathogenicity prediction accuracy (Rentzsch et al., 2019).

A scaled CADD score of > 20 represents the top 1% of deleterious variants in the genome (Rentzsch

et al., 2019). This filtering approach yielded a total of 68 variants.

3.3.3.1 Gene expression and pathway analysis revealed that 24 variants were

expressed in the brain

To further identify the best candidate variants for PD, they were then subjected to gene expression

analysis to identify variants that are in ubiquitously-expressed genes that are also highly expressed in

neurological tissue. Of the 68 genes, only 24 variants of interest were in genes found to be expressed

in the brain/nervous system. Subsequently, it was also determined if any of the 24 genes (i) were

implicated in neuro-related pathways or diseases, (ii) were involved in protein-protein networks

involving PD genes or (iii) were implicated in biological processes of interest. Some of these genes

were involved in relevant pathways and diseases, and these findings are presented in Appendix G.
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3.3.3.2 In-silico pathogenicity prediction scores found 13 variants to be pathogenic

across >5 pathogenicity prediction tools

Thereafter, the 24 variants were subjected to a variety of in silico pathogenicity prediction scoring to

determine the impact of the mutation on protein function and to determine if the mutation occurs on a

highly conserved residue (Table 3.5). No variant was found to be deleterious across all the

pathogenicity predictors, highlighting the necessity of using multiple predictive algorithms to assess

the variants. The Mutation Assessor tool found no variants to be considered highly deleterious, even

among the three variants with a CADD score > 30 (representing the top 0.1% of deleterious variants).

Fifteen of the 24 variants had a GERP++ score of > 4, indicating the variant resides in a region where

fewer substitutions are occurring than usual, thus indicating higher evolutionary constraint (Huber et

al., 2020). A few studies have prioritised the deleteriousness of a variant if it is found to be pathogenic

by 5 or more predictors (Quadri et al., 2018, Ruis-Martinez et al., 2017). Thirteen of the 24 variants

fulfilled these criteria (highlighted in grey in Table 3.5), however, no variants were eliminated prior

to Sanger sequencing validation and private cohort screening.

The MAF for these 24 variants (across multiple publicly available databases) is shown in Table 3.6.

None of the variants appeared in any of the population databases with a MAF > 0.01. This indicated a

high level of rarity in both the global and African-specific subdivisions of the population databases.

Three of the variants in EIF2A, KLHL35 andMZF1, were not found in any of the databases.
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Table 3.5: In silico pathogenicity prediction scores across the prioritised 24 variants with a CADD score > 20 and expressed in neuro-specific tissue

Variant Identifiers In Silico Pathogenicity Prediction Scores

Gene Symbol rsID Amino acid change

C
A
D
D

Sc
or
e

SI
FT

PP
-2

PR
O
V
EA

N M
T

M
A

M
-C
A
P

LR
T

fa
th
m
m

gE
R
P+

+

DNAH5 rs113742238 p.R3077Q 34,0 0.011 D 0.998 D -3.98 D 1 D 3.05 M 0.075 D 0.000 D 0.75 T 5.79

NPHP3 rs111727307 p.R1167H 33,0 0.001 D 0.991 D -2.99 D 1.000 D 1.99 M 0.098 D 0.000 D -3.58 D 5.6

DNAH10 rs186639935 p.E698G 32,0 0.006 D 0.952 P -5.42 D 1.000 D 3.005 M 0.035 D 0.013 N 0.36 T 5.53

FRMD4B rs144459338 p.R360W 26,5 0.0 D 1.0 D -5.82 D 0.999 D 1.955 M 0.302 D 0.000 D -2.44 D 2.86

DAAM2 rs375083979 p.R209G 25,0 0.405 T 0.615 P -0.95 N 0.993 D 0.69 N 0.070 D 0.000 D -2.19 D 5.52

CLSTN2 rs147617850 p.D289N 24,4 0.115 T 0.984 D -3.21 D 1.000 D 1.67 L 0.044 D 0.000 D 0.08 T 5.2

STAC rs111403865 p.P103L 23,9 0.075 T 0.906 P -2.7 D 1.000 D 1.295 L 0.021 T 0.000 D -0.94 T 4.63

CLSTN2 rs140202819 p.E910K 23,8 0.067 T 0.804 P -1.76 N 1.000 D 1.735 L 0.009 T 0.004 N 1.3 T 5.24

MRE11 .N/A p.E406K 23,8 0.536 T 0.003 B -0.75 N 1.000 D 0.74 N 0.034 D 0.000 D -1.01 T 4.96

CD47 rs761086667 p.A252S 23,8 0.25 T 0.294 B -1.05 N 0.854 N 0.775 N 0.010 T 0.037 N . . 1.7

ZDHHC11 rs528116435 p.R276P 23,7 0.002 D 1.0 D -4.1 D 1 N 0 N . . 0.006 D 1.41 T -0.41
7

KNTC1 rs141767241 p.A1083T 23,6 0.006 D 0.912 P -2.31 N 1.000 D 2.57 M 0.031 D 0.000 D 2.15 T 5.91

MANF rs545661735 p.A13V 23,5 0.02 D 0.005 B . . 0.897 D 0.895 L 0.239 D 0.000 D . . 4.08

AHNAK2 rs776830611 p.D1540H 23,4 0.005 D 1.0 D -3.69 D 1 D 2.64 M 0.004 T . . 5.03 T 4.16

EIF2A rs561839835 p.A143V 23,3 0.132 T 0.038 B -2.63 D 1.000 D 1.095 L 0.004 T 0.000 D 1.01 T 6.17

KLHL35 . p.R179C 23,3 0.121 T . . 0.57 N 0.953 D . . 0.902 D 0.132 N -0.39 T 3.02

FAM149B1 rs377021877 p.I149M 23,2 0.003 D 0.991 D -1.67 N 0.977 N 2.25 M 0.039 D 0.000 D 0.96 T -0.08
1
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Variants are provided in order of the CADD score (highest to lowest).
CADD = Combined Annotation Dependent Depletion score; SIFT = Sorting Intolerant From Tolerant score; PP-2 = Polyphen-2 score;PROVEAN = Protein Variation Effect
analyser; MT: Mutation Taster score; MA = Mutation Assessor score; M-CAP = Mendelian Clinically Applicable Pathogenicity; LRT = Likelihood Ratios Test; fathmm =
Functional Analysis through Hidden Markov Models score and gERP++ = Genome Evolutionary Rate Profiling.
B = Benign; D = Deleterious; T = Tolerated; N = Neutral; M = Moderate; L = Low; LB = Likely benign; LP = Likely pathogenic.
Genes highlighted in grey are considered to be deleterious across > 5 pathogenicity prediction tools.

Table 3.6: MAF population frequencies, in public databases, for the 24 prioritised variants with a CADD score > 20 and expressed in
neuro-specific tissue

Variant Identifiers Database Population Frequencies

Gene
Symbol rsID

Amino
acid

change

1000G
(all)

1000G
(AFR)

ExAC
(all)

ExAC
(AFR)

gnomAD
(exome_ALL)

gnomAD
(exome_AFR)

gnomAD
(genome_all)

gnomAD
(genome_AF

R)
DNAH5 rs113742238 p.R3077Q 0.0006 0.0023 0.0002 0.0017 0.0001 0.0018 0.0005 0.0018
NPHP3 rs111727307 p.R1167H 0.003 0.0091 0.0004 0.0038 0.0003 0.0041 0.0010 0.0033
DNAH10 rs186639935 p.E698G 0.0002 0.0008 0.008323 0.0001 0 0 0.0056 0.0002
FRMD4B rs144459338 p.R360W 0.0016 0.0061 0.0002 0.0014 0.0002 0.0012 0.0003 0.0008
DAAM2 rs375083979 p.R209G 0.0008 0.0023 0.0001 0.0007 0.0002 0.0008 0.0002 0.0006
CLSTN2 rs147617850 p.D289N 0 0 0.00411 0.00961 0,005693 0,00353 0,00645 0.0002

CX3CR1 rs137947370 p.A313V 23,1 0.017 D 0.001 B -1.5 N 1 N 2.06 M 0.006 T 0.080 N 1.24 T 5.91

SALL3 rs150707152 p.R1012Q 23,0 0.004 D 0.996 D -1.68 N 1 D 1.355 L 0.021 T 0.000 D 2.18 T 5.1

MZF1 .N/A p.S721R 23,0 1.0 T 0.43 B -0.21 N 0.822 N 1.295 L 0.009 T 0.001 D 1.62 T -0.46
1

AHNAK2 rs11852016 p.P1711L 23,0 0.007 D 1.0 D -6.26 D 1 N 2.995 M 0.003 T . . 4.42 T 2.86

ZNF418 rs201309448 p.R667G 23,0 0.009 D 0.99 D -3.96 D 1 N 2.72 M 0.003 T . . 2.93 T 1.7

IL3RA rs776812933 p.S91C 22,9 0.117 T 0.998 D -1.75 N 1 N 0.975 L 0.002 T 0.055 U 1.33 T 0.364

NPHP3 rs113364886 p.F1324S 22.5 0.081 T 0.013 B -0.75 N 0.902 D 1.7 L 0.054 D 0.000 D -2.97 D 5.93
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STAC rs111403865 p.P103L 0 0 0.004946 0.0006 0,00243 0.0004 0.0002 0.0005
CLSTN2 rs140202819 p.E910K 0.0022 0.0083 0.0006 0.0070 0.0005 0.0065 0.0017 0.0060
MRE11 . p.E406K 0 0 0 0 0,000000 0,000000 0,00660 0
CD47 rs761086667 p.A252S 0 0 0.00386 0.0003 0.0058 0,00970 0,00323 0.0001

ZDHHC11 rs528116435 p.R276P 0.0012 0 0.0102 0.0058 0.0009 0,006390 0.0027 0.0004
KNTC1 rs141767241 p.A1083T 0.0016 0.0061 0.0005 0.0066 0.0005 0.0067 0.0021 0.0075
MANF rs545661735 p.A13V 0.0002 0.0008 0 0 0 0 0 0
AHNAK2 rs776830611 p.D1540H 0 0 0.0002 0.0004 0,00579 0.0003 0.0005 0.0018
EIF2A rs561839835 p.A143V 0 0 0 0 0 0 0 0
KLHL35 . p.R179C 0 0 0 0 0 0 0 0
FAM149B

1 rs377021877 p.I149M 0 0 0.0004 0 0.0003 0,000000 0,00322 0.0001

CX3CR1 rs137947370 p.A313V 0.0014 0.0053 0.0001 0.0014 0.0002 0.0022 0.0004 0.0013
SALL3 rs150707152 p.R1012Q 0 0 0.00248 0.0002 0,001219 0,006545 0,006467 0.0002
MZF1 . p.S721R 0 0 0 0 0 0 0 0

AHNAK2 rs11852016 p.P1711L 0.0012 0.0045 0.0001 0.0012 0,00827 0.0012 0.0004 0.0015
ZNF418 rs201309448 p.R667G 0.0014 0.0045 0.0004 0.0025 0.0003 0.0022 0.0005 0.0016
IL3RA rs776812933 p.S91C 0 0 0.00411 0.0005 0,002030 0,00640 0,0060 0.0002
NPHP3 rs113364886 p.F1324S 0.003 0.0091 0.0004 0.0036 0.0003 0.0039 0.0010 0.0033

1000G = 1000 Genomes Project; ExAC = Exome Aggregation Consortium; GnomAD = Genome Aggregation Database.
ALL = All individuals sequenced in population; AFR = All African/African American individuals sequenced in population.
Genes highlighted in orange were not present in any of the population databases.
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3.3.4 Co-segregation analysis in family ZA 15

3.3.4.1 Sanger sequencing revealed that 20 variants co-segregated in family ZA 15

To further confirm our NGS results and the co-segregation of the variants within this family, Sanger

sequencing was performed on the 24 variants for all 6 family members. The sequencing

chromatograms generated for the proband (74.53) are shown in Table 3.7. Three of the variants were

unable to be sequenced and may be attributed to the presence of repeat expansions around the variant,

preventing primer hybridisation (in KNTC1 and MZF1) (Hommelsheim et al., 2014), or primer design

failure due to the presence of several pseudogenes, as confirmed after blasting the sequence against

the reference genome (for KLHL35) (Chen et al., 2011). Notably, the variant in MRE11 was not found

to be present in the proband or any of the family members and was excluded as an NGS artefact

which could occur due to DNA deamination, amplification and sequencing error (Deans et al., 2017).

The remaining 20 variants were all validated by Sanger sequencing, as illustrated in Table 3.7.

In the co-segregation analysis in the family members, 8 variants (in the DNAH5, FRMD4B, DAAM2,

CD47, ZDHHC11, EIF2A, ZNF418, IL3RA genes) were found to be present in the affected

individuals only, while 12 of the variants (in NPHP3, DNAH10, CLSTN2, STAC, CLSTN2, MANF,

AHNAK2, FAM149B1, CX3CR1, SALL3, AHNAK2, NPHP3A) were found to be present in both the

affected individuals, as well as, the affected female’s daughter (Table 3.8). However, as the daughter

has not shown any symptoms of early-onset PD and may develop PD later on (she is currently 40

years old), we cannot use this finding as a criterion to exclude variants. One of these variants

(CLSTN2 p.E910K) was also found to be present in the proband’s wife who is an unaffected

individual of Xhosa descent, thus this variant was excluded.
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Table 3.7: Sanger sequencing of the 24 prioritised variants in the proband (ID 43.59/74.53)

Gene DNAH5 NPHP3 DNAH10
Nucleotide Change: C>T C>T A>G
Reference Sequence: CTGTCGGACCCGACTCATGAA AGCTAATGCACGTCTCCGAAT GCTCTCCAGGAAGACAAATTC
Chromatogram:

Gene FRMD4B DAAM2 CLSTN2
Nucleotide Change: G>A C>G G>A
Reference Sequence: GCTTTGCTTCCGGTGTCCAAGTAA CCAGAGCCTACGCACAGAGAA CTGGAGACGTGCGATGGAGCCGTGTC
Chromatogram:

Gene STAC CLSTN2 MRE11
Nucleotide Change: C>T G>A Wildtype variant present
Reference Sequence: CTGGTCTGCATCCAGGTGGCAAGGCT GGAGGAAGAAGCCGAGGAAGAAATGA ACCTGTTTTTTCCTTTTGTTCTCTATG
Chromatogram:
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Gene CD47 ZDHHC11 KNTC1
Nucleotide Change: C>A C>G Sequencing did not work
Reference Sequence: TCCAACCACAGCGAGGATATAGG AACTCTCTTCTTTGCGGTTATTAATGA GAACATCAAAACAGCACTGAAAAAATG
Chromatogram: N/A

Gene MANF AHNAK2_A EIF2A
Nucleotide Change: C>T C>G C>T
Reference Sequence: GGCTGGCGGTGGCGCTGGCTCTGAGCG TGTATGCTCAGGTCAGTGGCCTTGAGG TGAAACTCTTTGTGCCCGCAATGTTAAC
Chromatogram:

Gene KLHL35 FAM149B1 CX3CR1
Nucleotide Change: Sequencing did not work C>G G>A
Reference Sequence: AAGGCCTGACGCAGGACGCGGC GTAGGCAGATAATCACTCCAAGTGAAG ACACAGGACAGCCAGGCATTT
Chromatogram: N/A
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Gene SALL3 MZF1 AHNAK2
Nucleotide Change: G>A Sequencing did not work G>A
Reference Sequence: CGCGCTCTGCAGGCGAGGGTGCTCCAC AATGAGCTTGGTGCTCTGGTGGAAG GGTCGGCGGAAGGGGACTGAATGC
Chromatogram: N/A

Gene ZNF418 IL3RA NPHP3
Nucleotide Change: T>C C>G A>G
Reference Sequence: GTGTGAACTCTCTGATGTCGA CCCACCATTCTCCACGTGGAT TTGCTGAAGGAAAACATTAGGA
Chromatogram:
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Table 3.8: Co-segregation of the variants in the ZA 15 family members

ZA 15 Family Members (Lab IDs) ZA 15 Family Members (Lab IDs)

74
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DNAH5 Yes Yes No No No No

G
en
e
Sy
m
bo
l

MANF Yes Yes No No Yes No

NPHP3 Yes Yes No No Yes No AHNAK2 Yes Yes No No Yes No

DNAH10 Yes Yes No No Yes No EIF2A Yes Yes No No No No

FRMD4B Yes Yes No No No No KLHL35 N/A N/A N/A N/A N/A N/A

DAAM2 Yes Yes No No No No FAM149B1 Yes Yes No No Yes No

CLSTN2 Yes Yes No No Yes No CX3CR1 Yes Yes No No Yes No

STAC Yes Yes No No Yes No SALL3 Yes Yes No No Yes No

CLSTN2 Yes Yes No No Yes Yes MZF1 N/A N/A N/A N/A N/A N/A

MRE11 No No No No No No AHNAK2 Yes Yes No No Yes No

CD47 Yes Yes No No No No ZNF418 Yes Yes No No No No

ZDHHC11 Yes Yes No No No No IL3RA Yes Yes No No No No

KNTC1 N/A N/A N/A N/A N/A N/A NPHP3 Yes Yes No No Yes No

Green cells indicate the presence of the variant in the family member; Orange cells indicate the absence of a variant in an affected family member.
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3.3.5 Allele frequencies of variants in private PD and non-PD cohorts

3.3.5.1 Private cohort screening further reduced the number of candidates to 3

variants

The 23 variants (excluding the CLSTN2 (rs140202819) variant found in the proband’s spouse) were

screened through a large Schizophrenia Xhosa cohort and variants exhibiting a MAF > 0.01 were

excluded. Thirteen of the variants (in CX3CR1, DAAM2, DNAH10, DNAH5, FAM149B1, FRMD4B,

IL3RA, KNTC1, MZF1, NPHP3, NPHP3, SALL3 and ZNF418) had MAFs > 0.01 either in cases or

controls (first row of Table 3.9), and were thus excluded from further analysis. Notably, the results

from this initial screening indicated that although these variants were considered rare across all

population databases, about half of the variants could be considered commonly occurring among the

Xhosa-ancestry population group. This further highlights the need for expanded public population

allele frequency databases to include more non-European populations.

Thereafter, the final 10 variants were subjected to screening in two smaller cohorts including; (i) the

TB study consisting of 161 Xhosa individuals (unpublished data) and (ii) the H3Africa Baylor Dataset

comprising 386 African (non-Xhosa) individuals (Choudhury et al., 2021). Notably, in the TB study

cohort, 6 of the variants (in AHNAK2, CD47, CLSTN2, EIF2A, KLHL35, STAC) were found to be

prevalent with MAFs > 0.5 (Table 3.9). This finding further illustrates the notion of ancestry-specific

variants that may skew variant filtering analysis, if not considered. For the H3Africa study cohort,

only three of the variants were found with MAFs < 0.01 and were still considered rare, possibly due to

the lack of Xhosa-ancestry individuals in this collection.

However, in addition to the cohort screening above, we also screened the 10 variants in three

PD-specific cohorts to determine if any variants were found in any other PD/movement disorder

patients. However, none of our variants was found in these cohorts (Table 3.10). As the Queensland

Parkinson’s Project and the Mayo Clinic PD and LB cohorts consisted of individuals of European

descent, it was unlikely for these variants to have been common in either group. In the third PD cohort,

the French and Mediterranean Parkinson’s Disease Genetics Study group (FMPD cohort) which

consisted of both European and North African ancestries, 2 PD patients presented with the

rs776830611 variant) in the AHNAK2 gene. However, it was found that the gene is polymorphic, as a

large number of variants were found, but it could not yet be removed as a variant of interest due to the

low MAF.
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In summary, from the cohort screening (Table 3.9 and 3.10), all variants with MAF < 0.01 in non-PD

(population) cohorts and that were present in other individuals with PD, were selected for further

study. Thus, 4 variants in AHNAK2, MANF and ZDHHC11 and MRE11 met these criteria. However,

since the MRE11 variant was not found in the proband during Sanger sequencing, this variant was

omitted from subsequent analysis. Interestingly, further co-segregation analyses on MANF and

ZDHHC11 (using families recruited to the FMPD cohort) both indicated the presence of variants (not

the variants found in this study) in PD-affected individuals that belonged to PD-affected families, thus,

indicating a potential role of these genes in relation to PD onset.
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Table 3.9: Variant screening in various ‘non-PD’ private population cohorts

Cohort Number of
Study
Participants

Origin of
Study
Participant
s

Sequencin
g Method

Recruitment
criteria

Variant Screening Results Reference
Gene Symbol Allele Frequency (AF)

Schizophrenia
Xhosa Cohort

n = 909
cases/ n =
917 controls

Western
Cape and
Eastern
Cape, South
Africa

WES Cases included
individuals
diagnosed with
schizophrenia;
controls did not
have
neurological
conditions

Cases and
controls were
matched for
age, gender,
education, and
region of
recruitment

AHNAK2
(rs776830611)

Not present (Gulsuner et al., 2020)

AHNAK2
(rs11852016)

Not present

CD47 Cases: 0.0050/Controls: 0.0093
CLSTN2
(rs147617850)

Cases: 0.0066/Controls: 0.0076

CX3CR1 Cases: 0.0242/Controls: 0.0251
DAAM2 Cases: 0.0088/Controls: 0.0109
DNAH10 Cases: 0.0127/Controls: 0.0087
DNAH5 Cases: 0.0149/Controls: 0.0093
EIF2A Not present
FAM149B1 Cases: 0.0435/Controls: 0.0153
FRMD4B Cases: 0.0132/Controls: 0.0153
IL3RA Cases: 0.0937/Controls: 0.0523
KLHL35 Not present
KNTC1 Cases: 0.0143/Controls: 0.0115
MANF Cases: 0.0017/Controls: 0.0005
MRE11 Not present
MZF1 Cases: 0.0193/Controls: 0.0262
NPHP3 Cases: 0.0666/Controls: 0.0747
NPHP3 Cases: 0.0677/Controls: 0.0763
SALL3 Cases: 0.0462/Controls: 0.0540
STAC Cases: 0.0077/Controls: 0.0082
ZDHHC11 Not present
ZNF418 Cases: 0.0292/Controls: 0.0284

TB Xhosa
Cohort
(ResisTB
study)

n = 161
(Mostly
individuals
who
self-identifie
d as Xhosa)

Western and
Eastern
Cape, South
Africa

Some

WGS Individuals
were screened
for HIV and
TB with
diagnostic tests
before WGS.

AHNAK2
(rs776830611)

Not present N/A

AHNAK2
(rs11852016)

G:0 A:1

CD47 C:0.5 A:0.5
CLSTN2
(rs147617850)

G:0.5 A:0.5
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Rows highlighted in green indicate that the variant in the gene presented with a MAF < 0.01 within the cohort.
Rows highlighted in orange indicate that the variant was found to be rare (MAF< 0.01) across all cohorts.

non-South
African
individuals
have also
been
included in
this cohort

No post-WGS
screening was
done

EIF2A C:0.5 T:0.5
KLHL35 G:0.5 A:0.5
MANF Not present
MRE11 Not present
STAC C:0.5 T:0.5
ZDHHC11 Not present

African cohort
(H3Africa
Baylor Dataset
without Mali
and SAHGP)

n= 386 H3Africa
Biobank
samples -
no
provincial
level
information
available

WGS
(high and
medium
coverage)

All samples
from Benin
were all sickle
cell positive

Half of the
samples from
Cameroon
were sickle cell
carriers

The rest did
not report any
disease

AHNAK2
(rs776830611)

Not present (Choudhury et al., 2021)

AHNAK2
(rs11852016)

Not present

CD47 Not present
CLSTN2
(rs147617850)

Not present

EIF2A AC=1; AN=772; AF=0.00129534
KLHL35 Not present
MANF Not present
MRE11 Not present
STAC AC=2; AN=772; AF=0.00259067
ZDHHC11 AC=4; AN=772; AF=0.00518135
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Table 3.10: Variant screening in various PD-specific private population cohorts

The row highlighted in yellow indicates the presence of the variant in the cohort.

Cohort Number of
Study
Participants

Origin of
Study
Participant
s

Sequenc
ing
Method

Recruitment
criteria

Variant Screening Results Reference
Gene Symbol Allele Frequency (AF)

Queensland
Parkinson’s
Project

n = 66 Queensland,
Australia

WES 23 separate
kindreds,
containing 47 PD
cases, 5 family
cases with ‘other’
movement
disorders (e.g.
dystonia), and 14
family controls
(Average Age last
seen – 64 yrs).

AHNAK2 Not present (Bentley et al., 2021)
AHNAK2 Not present
CD47 Not present
CLSTN2 Not present
EIF2A Not present
KLHL35 Not present
MANF Not present
MRE11 Not present
STAC Not present
ZDHHC11 Not present

Mayo Clinic
PD and LB
Exomes

WES Familial PD and
Lewy body
disease brain
cases

AHNAK2 Not present Owen Ross (personal
communication)AHNAK2 Not present

CD47 Not present
CLSTN2 Not present
EIF2A Not present
KLHL35 Not present
MANF Not present
MRE11 Not present
STAC Not present
ZDHHC11 Not present

French and
Mediterranean
Parkinson’s
Disease
Genetics
4 Study group
(FMPD
cohort)

n = 1319
(Multi-ethni
cities,
particularly
Caucasians
(66%) and
North-Africa
ns (10%))

Europe,
North
Africa,
South
Africa

WES Probands with
familial PD or
parkinsonism,
patients with
sporadic PD

AHNAK2 Present in 2 patients Fevga et al., 2022
AHNAK2 Not present
CD47 Not present
CLSTN2 Not present
EIF2A Not present
KLHL35 Not present
MANF Not present
MRE11 Not present
STAC Not present
ZDHHC11 Not present
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3.3.5.1.1 Screening of ethnic-matched controls revealed that the top three
candidate variants were not present in the Xhosa population

Finally, the top 3 prioritised variants were screened in 100 Xhosa controls from our South African PD

study collection, using Sanger sequencing. A control group of 100 allows for the removal of common

polymorphisms at a frequency of 0.5% or more (typically polymorphisms are defined at a frequency

of 1% or more). These controls had been recruited from the same region and ancestry-group in South

Africa as the family, and would therefore be a more appropriate ethnic match. None of the 3 variants

was present in these controls, indicating the rarity of these variants in an ancestry-matched population.

3.3.6 Prioritising a single variant in family ZA 15 for further in-silico protein analysis

resulted in the nomination of the p.A13V variant in MANF

The three variants were then analysed to select the best candidate for further follow-up studies. Each

of the three variants (Table 3.11) was re-examined according to their gene expression annotations to

determine if there was an association with PD. Previously annotated gene expression data from the

HPA, UniProt and GO terms were examined. Furthermore, information on animal knockout effects

for each gene was retrieved from the Flybase and MGI gene knockout servers.

All 3 of the variants were previously found to have functional effects across more than 5

pathogenicity predictors (including CADD, SIFT, PROVEAN, MutationTaster, LRT and GERP++

and were considered ‘likely pathogenic’ post-ACMG-guidelines classification and co-segregation

analysis on wIntervar (https://wintervar.wglab.org/) (Appendix J; p.A13V in MANF ). Thus, it was

necessary to determine whether any of the variants had been associated with PD-specific gene

expression regions, pathways and biological processes.

The variants were compared and although all the genes were expressed in the brain, one gene in

particular, MANF, was found to be expressed in the SNpc (Table 3.11), a key neurological region

implicated in PD (Surmeier, 2018). UniProt also provides a series of functional information that is

corroborated by actual functional studies. ZDHHC11 was found to ‘influence endoplasmic

reticulum-localised palmitoyltransferase that could catalyse the addition of palmitate onto various

protein substrates and potentially play a role in cell proliferation’. AHNAK2 lacked any functional

information due to the lack of studies on the gene. MANF was found to ‘selectively promote the

survival of dopaminergic neurons of the ventral midbrain, ‘modulate GABAergic transmission to the

dopaminergic neurons of the substantia nigra’ and ‘inhibits cell proliferation and endoplasmic

reticulum (ER) stress-induced cell death’.

https://etd.uwc.ac.za/

https://wintervar.wglab.org/


56

Animal models depicting gene knockout can provide information on the phenotype the loss of a

protein may cause. Mouse knockout models indicated that the AHNAK2 gene knockout affected the

nervous system while the MANF gene knockout affected behaviour/and the neurological and nervous

system. Furthermore, MANF was the only gene that had been studied on the D. melanogaster model

in the Flybase database and was found to be involved in dopamine metabolic processes and synaptic

transmission, neuronal projection development and cellular homeostasis (Table 3.11). This

information is of importance as it is specifically the loss of dopaminergic neurons that decreases

dopamine, a pathological hallmark of PD pathobiology (Surmeier, 2018). Based on this information

and its expression in PD-specific brain regions, the MANF variant was prioritised for further in silico

analysis.

Table 3.11: Comparison of the gene expression profiles and functional processes for each gene
of interest

Gene Symbol

G
en
e
Ex

pr
es
si
on

in
th
e
B
ra
in

U
ni
Pr
ot

M
G
I

Fl
yb
as
e

AH
NA
K
2

p.
D
15
40
H

(rs
77
68
30

61
1)

Cerebral
cortex N/A Nervous system N/A

M
AN
F

p.
A
13
V

(r
s5
45
66
17
35
)

Cerebellum,
hippocampus,
caudate,
substantia
nigra

Selectively promote the
survival of dopaminergic
neurons of the ventral
mid-brain, modulates
GABAergic transmission
to the dopaminergic
neurons of the substantia
nigra and inhibits cell
proliferation and
endoplasmic reticulum
(ER) stress-induced cell
death

Behaviour/
neurological,
homeostasis
metabolism,
nervous system,
growth/size/body,
cellular

Dopamine metabolic
process, neuron
cellular homeostasis,
neuron projection
development,
dopaminergic
synaptic
transmission

ZD
H
H
C
11

p.
R
27
6P

(r
s5
28
11
64
35
)

Cerebellum

Endoplasmic
reticulum-localised
palmitoyltransferase could
catalyse the addition of
palmitate onto various
protein substrates and
potentially play a role in
cell proliferation

Homeostasis/
metabolism,
immune system,
hearing/vestibular

N/A
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3.4 Conclusion

WES analysis in a South African Xhosa family affected with PD ultimately yielded 24 variants in 22

genes that were expressed in the brain, considered to be deleterious and predicted to be rare in all

population databases (Figure 3.5). Sanger sequencing confirmed 20 of the 24 variants, indicating the

variants were co-segregating within the family and were not sequencing artefacts. Subsequent

screening of these variants through private, and some ancestry-matched cohorts, found several

variants to have high MAFs (> 0.01), thus allowing for the exclusion of these variants from further

analysis. This emphasised the importance of observing the allele frequencies of rare variants in

ethnically-matched cohorts. Based on MANF’s function and gene expression profile in relation to PD,

the p.A13V variant was prioritised, and will undergo further in silico analysis to determine the

functional impact of this variant on the protein and if it could be potentially disease-causing.

https://etd.uwc.ac.za/
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Figure 3.5: Summary of the main findings of the present study based on WES analysis of ZA 15
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CHAPTER 4

In-silico mutation analysis of p.A13V in mesencephalic
astrocyte-derived neurotrophic factor (MANF )

________________________________________________________________

Abstract

Introduction: Parkinson’s disease is a multi-genic neurodegenerative disease that is characterised by

the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). This deterioration

results in a progressive decrease of available dopamine that presents as a host of both motor and

non-motor symptoms. We investigated a PD-affected family with African Xhosa ancestry to

determine a potential novel genetic cause of the disease using next-generation sequencing (NGS).

Whole exome sequencing (WES) analysis and subsequent population screening of the PD-affected

family yielded variants that were further prioritised based on various filtering criteria. These criteria

also included analysis of gene and protein expression information to determine involvement with

PD-linked brain regions. Ultimately, a single variant, p.A13V in mesencephalic astrocyte-derived

neurotrophic factor (MANF) was earmarked for further analysis after specific filtering. In lieu of (and

as a precursor to) traditional ‘wet-lab’ functional analysis, the aim of this study was to determine

p.A13V’s impact on MANF’s protein structure/function through bioinformatic in silico analysis using

readily available online tools.

Methods and Results: Evolutionary conservation analysis of the MANF protein’s amino acids (AA)

was performed using the ConSurf web server revealing that the p.A13V variant occurs as a buried

residue (i.e. occurring on the interior of the protein and is not exposed to the surrounding solvent).

The protein sequence was then analysed to determine the effect of the variant using a predictive

approach through Project HOPE, I-Mutant 3.0 and MUpro. The protein sequence containing the

variant was then subjected to secondary structure analysis using PredictProtein, SignalP 3.0 and

Phobius. Secondary structure analysis confirmed that the variant was a buried residue. Importantly,

this analysis also showed the variant falls within the signal peptide of the protein and specifically,

within the hydrophobic core of the signal peptide of the protein. Furthermore, the variant was

predicted to be destabilising at the sequence level with a change in Gibbs free energy (∆∆G) of - 0.2

and - 0.21 obtained from MuPro and I-Mutant 3.0, respectively. Thereafter, theoretical 3-D structural

models of the wildtype and mutant proteins were created using I-TASSER, DeepPotential and Robetta.

Consequently, these models were scored on TM-Align to select the best ones for downstream analysis.

Robetta was found to produce the best theoretical models of all the servers used, according to the

scores generated by TM-Align. The models were further quality-checked using Verify3D, Q-MEAN,

PROCHECK and ERRAT where they were scored and deemed appropriate for further structural

4
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analysis. Thereafter, the wildtype model was uploaded to DUET, DynaMut and MaestroWeb to

determine the effect of p.A13V on the complete theoretical structure. It was predicted that the variant

had a destabilising effect on the wildtype structure, while MaestroWeb also indicated an increase in

rigidity of the signal peptide, close to the cleavage site. Pymol was used to determine a difference in

polar contacts between the wildtype and mutant structure. As valine is larger than alanine, due to the

addition of an alkyl group, a decrease in polarity results which may potentially disrupt the function of

the hydrophobic core. Molecular dynamics (MD) simulations were performed using the validated

theoretical wildtype and mutant models. GROMACS was used to perform the MD simulations and

produce root mean square deviations (RMSD), root mean square fluctuations (RMSF) and principal

component analysis (PCA) outputs which indicated a deviation in structural conformation and

flexibility between the wildtype and mutant models.

Conclusion: In silico analysis of the p.A13V variant found it to be destabilising, across all the

algorithms used to detect a change in stability, through both sequence-based and structural-based

analysis. This indicates that there may be disruption to the hydrophobic core of the signal peptide, as

well as the cleavage site and C-terminal of the protein, which may affect protein function due to

decreased translocation and incomplete expressivity of the protein. MANF has been found to have

neuroprotective properties through the regulation of endoplasmic reticulum (ER) stress, which can

promote neuroinflammation and the subsequent death of dopaminergic neurons if left to chronically

persist. It is postulated that a damaging variant in MANF may modulate its neuroprotective properties

which could result in the deterioration of dopaminergic neurons, as is seen in PD. Our findings

indicate that the impact of the p.A13V variant on the MANF protein is potentially significant and may

be worth further investigation in wet-laboratory-based analysis to validate the findings from this

in-silico analysis.

Keywords: In Silico; Ab Initio Protein Modelling; Signal Peptide; MANF; Hydrophobic Core
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4.1 Introduction

NGS analysis can be a useful tool that aids in the discovery of novel sequence variants which could

contribute to the onset of the disease of interest. This approach typically yields a large number of

variants which are usually condensed after stringent filtering, usually in relation to the investigated

disease and the individual. However, these prioritised variants often end up being regarded as variants

of unknown significance (VUSs). Before a variant could be regarded as ‘pathogenic’ in a disease, it

should be examined through functional-based assays in a ‘wet-laboratory’ to determine whether the

variant is capable of producing a biological effect that coincides with the disease phenotype under

investigation (Fatkin and Johnson, 2020). The downside to this approach is that these types of

functional studies can be time-consuming, expensive and sometimes not feasible. This is especially

notable when dealing with many VUSs or when researchers have no definitive evidence as to the

variant’s potential effect on protein function (Sosnay and Cutting, 2013).

Missense variants cause alterations in the protein sequence which can have an impact on the charge of

the protein, its hydrophobic nature, folding, translation, dynamics, as well as, protein-protein

interactions (Iqbal et al., 2020). Thus, computational in silico analysis is used as a precursory

assessment, prior to functional laboratory methods of analysis. This approach is warranted to study

the effects on the protein, thereby delineating variants requiring further analysis. This method often

involves the use of machine learning-based methods that are trained on existing, experimentally

solved protein structures. Typically, a combination of both sequence and structural analysis should be

undertaken to gain a more complete understanding of ways the variant may impact both the stability

and function of the protein.

The variant of interest prioritised for in silico analysis in this study is the p.A13V non-synonymous

variant present in MANF, a hormonal secretory protein. It is a conserved neurotrophic factor protein

that displays a protective role on mid-brain dopaminergic neurons (Yu et al., 2021). Typical

neurotrophic factors, including brain-derived neurotrophic factor (BDNF; an orthologue of MANF),

play an important role in regulating the synthesis, growth, survival and plasticity of neurons while

MANF also regulates ER stress (Jӓntti and Harvey, 2020). The gene is expressed in various tissues

and is abundantly expressed in several brain regions including the SNpc. The SNpc is the main brain

region involved in PD due to the death of localised dopaminergic neurons that cause a severe decrease

in dopamine synthesis (Petrova et al., 2004).

By incorporating both a sequence and structure-based approach to the in-silico analysis of the variant

on the protein of interest, it may be possible to infer potential functional impacts that inform targeted

lab-based functional studies. Thus, this chapter aimed to perform secondary and tertiary structural

https://etd.uwc.ac.za/
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analysis of the p.A13V variant and its effect on the MANF protein using a variety of ‘best practice’

open source in silico tools.

4.2 Methods and materials

In silico analysis allows us to determine the effect of the variant on the protein structure and how this

may translate regarding protein function. The methodology was determined after analysing the

literature on similar studies that highlighted the role of singular variants that may be implicated in

disease through in silico analysis. A two-fold approach through the analysis of the secondary structure

and thereafter, through the tertiary structure allows for a more comprehensive evaluation of the

potential effect on the protein. The methodological approach used for this study is outlined in Figure

4.1.

https://etd.uwc.ac.za/
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Figure 4.1: A brief overview of the methodology for in silico analysis of the p.A13V variant in MANF

https://etd.uwc.ac.za/
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4.2.1 Dataset identifiers

The protein sequence for human MANF was obtained from the UniProt (UniProt ID: P55145)

(https://www.uniprot.org/), while additional information for the biological role and function of the

protein was obtained from PUBMED (https://pubmed.ncbi.nlm.nih.gov/) (Appendix I; A). The

experimentally solved crystallographic protein structure of MANF was obtained from the Protein

Data Bank (PDB) (https://www.rcsb.org/). The structure with the highest scoring resolution (closest to

2Å which is the median resolution of most crystallographic structures) (PDB ID: 2W51) was chosen

for comparative downstream analysis (Appendix I; A).

4.2.2 Secondary structure analysis

4.2.2.1 Phylogenetic analysis of the protein sequence

Phylogenetic evolutionary constraint analysis and the determination of solvent accessibility of each

amino acid in the sequence were performed using the ConSurf server (https://consurf.tau.ac.il/).

ConSurf uses a novel, cumulative method of phylogenetic analysis across homologous sequences

while incorporating localised AA quality scores (Ashkenazy et al., 2016). The parameters determined

were based on the recommended guidelines for the analysis of a singular protein and included:

- Multiple Sequence Alignment is built using MAFFT;

- all homologues are collected from UNIREF90;

- the homolog search algorithm: HMMER;

- HMMER E-value: 0.0001;

- number of HMMER iterations: 3;

- maximal % ID between sequences: 95;

- minimal % ID For homologs: 35;

- 150 sequences that sample the list of homologues to the query;

- method of calculation: Bayesian and

- model of substitution for proteins: best fit.

4.2.2.2 Functional and stability effects prediction analysis

The Project HOPE server (https://www3.cmbi.umcn.nl/hope) was utilised to determine the potential

functional effect of the variant on the protein sequence. Furthermore, the possible effect of the variant

on protein stability was determined using MuPro (https://mupro.proteomics.ics.uci.edu/) and I-Mutant

3.0 (http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi) which both make use

https://etd.uwc.ac.za/
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of a support vector machine-based analysis to determine Gibb’s free energy change (∆∆G)

representing a change in stability.

4.2.2.3 Protein domain analysis

Once stability prediction and functional information had been derived, the protein sequence was used

to determine the secondary structure of the protein and to elucidate whether the variant fell in a

protein domain of interest. The PredictProtein server (https://predictprotein.org/) was incorporated to

provide topological transmembrane information of the MANF protein based on the sequence input, as

well as to determine the exact domain in which the variant of interest was present. Thereafter, Phobius

(https://www.ebi.ac.uk/Tools/pfa/phobius/) and SignalP 3.0

(https://services.healthtech.dtu.dk/service.php?SignalP) were both utilised to confirm the presence of

the signal peptide within the protein and to determine its domains and cleavage site.

4.2.3 Tertiary structure analysis

4.2.3.1 Ab initio structural modelling of the wildtype and variant proteins

Complete theoretical models of both the wildtype and mutant proteins were determined via an ab

initio modelling method using the DeepPotential (https://zhanggroup.org/DeepPotential/), I-TASSER

(https://zhanggroup.org/I-TASSER/), and Robetta (https://robetta.bakerlab.org/) servers. These

servers were chosen for their ability to model a protein using only its protein sequence.

4.2.3.2 Structural validation of protein models

Initially, the resulting theoretical models were subjected to structural validation using the TM-Align

(https://zhanggroup.org/TM-align/) server. The models were uploaded and analysed against the PDB

experimental structure (2W51). The generated RMSD and Tm-Scores were then compared. The

structures (both wildtype and mutant) chosen for further analysis possessed an RMSD closest to 2 Å

(high-resolution structure) and a TM-Score closest to 1 (indicating the accuracy of the structural

alignment when compared with the protein sequence).

The two prioritised theoretical models were then subjected to further structural analyses to confirm

the quality of the structure using alternate quality scores, to corroborate the results obtained above.

Verify3D (https://www.doe-mbi.ucla.edu/verify3d/) was used to determine the compatibility between

the 3D theoretical structure and its protein sequence. Q-MEAN

(https://swissmodel.expasy.org/qmean/) was used to assign an overall composite score that

incorporated both local and global protein structure quality estimates. ProCheck

(http://www.csb.yale.edu/userguides/datamanip/procheck/manual/index.html) was used to generate
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Ramachandran plots to determine if the amino acids in the protein models fell in favoured regions,

and ERRAT (https://saves.mbi.ucla.edu/) was used to determine the localised error rate values based

on non-bonded atom-atom interactions within the entire structure.

4.2.3.3 Determining the effect of the variant on the wildtype structure

Once the wildtype structure was fully validated, in silico web tools that determined the effect of the

variant on the theoretical model (as opposed to the protein sequence alone), were utilised. The

‘optimum’ wildtype protein was uploaded to the DUET (http://biosig.unimelb.edu.au/duet/stability),

DynaMut (https://biosig.lab.uq.edu.au/dynamut/) and MAESTROWeb

(https://pbwww.services.came.sbg.ac.at/maestro/web) servers to predict the functional effect of the

missense mutation in MANF using complementary consensus prediction algorithms.

4.2.3.4 Comparing the theoretical wildtype and mutant structures

Initially, Pymol was used to identify polar contacts of the 13th residue relative to neigbouring residues in

both the mutant and wildtype models. A fluctuation in the number of polar contacts can be indicative of an

increase or decrease in stability based on the AA’s interaction with water.

MD simulations for the wildtype and variant models was run through GROMACS (Galaxy Version

2022+galaxy) on the Galaxy web server (https://usegalaxy.eu/). The initial setup required an input

PDB file to generate a topology, a GRO and a position restraint file for downstream molecular

dynamics analysis. The topology file consists of important descriptors of the protein including charges,

bond lengths and angles, and the masses of atoms. The topology file is produced after the selection of

a force field and water mode. The GRO file contains all the information about the protein’s structural

co-ordinates. For this analysis, the chosen force field was an OPLS/AA force field with a TIP3 water

model. Next, the structural configuration was incorporated to outline the parameters for the simulation

box. The box dimensions were set at 1.0 nm, as a rectangular box with all sides equal. Thereafter, the

protein is solvated where water molecules are added to the structure and topology files to fill the unit

cell (Bellissent-Funel et al., 2016). At this step, sodium or chloride ions are also added to neutralise

the charge of the system. To remove any steric clashes or unusual geometry which would artificially

raise the energy of the system, we must relax the structure by running an energy minimisation (EM)

step. The following parameters were specified for the EM of the protein: Choice of integrator”:

Steepest descent algorithm (a most common choice for EM)

“Neighbor searching”: Generate a pair list with buffering (the ‘Verlet scheme’)

“Electrostatics”: Fast smooth Particle-Mesh Ewald (SPME) electrostatics

“Distance for the Coulomb cut-off”: 1.0
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“Cut-off distance for the short-range neighbour list”: 1.0 (but irrelevant as we are using the Verlet

scheme)

“Short range van der Waals cutoff”: 1.0

“Number of steps for the MD simulation”: 50000

“EM tolerance”: 1000

“Maximum step size”: 0.01

At this point of the analysis, equilibration of the solvent around the protein is necessary. This is

performed in two stages: equilibration under an NVT ensemble, followed by an NPT ensemble. Use

of the NVT ensemble entails maintaining a constant number of particles, volume and temperature,

while the NPT ensemble maintains a constant number of particles, pressure and temperature. (The

NVT ensemble is also known as the isothermal-isochoric ensemble, while the NPT ensemble is also

known as the isothermal-isobaric ensemble) (Bellissent-Funel et al., 2016). During the first

equilibration step (NVT), the protein must be held in place while the solvent is allowed to move freely

around it. This is achieved using the position restraint file that was created in the system setup. During

the second NPT step, the positional restraints are removed. The following parameters were followed

for both the NVT and NPT steps.

“Choice of integrator”: A leap-frog algorithm for integrating Newton’s equations of motion (A basic

leap-frog integrator)

“Bond constraints”: Bonds with H-atoms (bonds involving H are constrained)

“Neighbor searching”: Generate a pair list with buffering (the ‘Verlet scheme’)

“Electrostatics”: Fast smooth Particle-Mesh Ewald (SPME) electrostatics

“Temperature”: 300

“Step length in ps”: 0.002

“Number of steps that elapse between saving data points (velocities, forces, energies)”: 5000

“Distance for the Coulomb cut-off”: 1.0

“Cut-off distance for the short-range neighbour list”: 1.0

“Short range van der Waals cutoff”: 1.0

“Number of steps for the NVT simulation”: 50000

Finally, the product simulation is run using the checkpoint file obtained after the equilibration steps to

obtain a trajectory and final GRO file using the following parameters:

“Choice of integrator”: A leap-frog algorithm for integrating Newton’s equations of motion (A basic

leap-frog integrator)

“Bond constraints”: Bonds with H-atoms (bonds involving H are constrained)

“Neighbor searching”: Generate a pair list with buffering (the ‘Verlet scheme’)

“Electrostatics”: Fast smooth Particle-Mesh Ewald (SPME) electrostatics

https://etd.uwc.ac.za/
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“Temperature”: 300

“Step length in ps”: 0.002

“Number of steps that elapse between saving data points (velocities, forces, energies)”: 5000

“Distance for the Coulomb cut-off”: 1.0

“Cut-off distance for the short-range neighbour list”: 1.0 (but irrelevant as we are using the Verlet

scheme)

“Short range van der Waals cutoff”: 1.0

“Number of steps for the simulation”: 500000

Thereafter, Bio3D on the Galaxy server was used to produce the RMSD, RMSF and PCA analysis

plots using the trajectories and GRO files obtained after the product simulation.

4.3 Results

4.3.1 Secondary structure analysis

4.3.1.1 Phylogenetic conservation analysis reveals that p.A13V is a buried residue

with variable conservation

The ConSurf server provides an estimate of evolutionary conservation and solvent accessibility across

the amino acids in a protein sequence, which helps ascertain whether a variant at a particular site may

be considered more ‘harmful’. The p.A13V variant returned a normalised score of 1.014 indicating

variable conservation (i.e. the AA site may be in a conserved region with some accepted AA

substitutions), however, the multiple sequence alignment of the MANF protein with homologues

indicated that valine is not a common substitution at position 13 (Appendix I; B). The output also

showed that it is in a buried residue (which occurs on the interior of the protein and play a significant

role in its structural stability) (Aftabuddin and Kundu, 2007). Previous studies have shown that a

variant with low (or variable) conservation can have a considerable effect on protein function

(Coulthurst et al., 2012).

4.3.1.2 Functional and stability effects prediction analysis indicated that the

variant is situated in the signal peptide and is destabilising

Project Hope is a webserver that identifies the structural effects of the point mutations that are

provided in the protein sequence of interest. It is also able to provide a basic analysis of whether the

AA change causes an alteration to the protein structure. The output outlined that the mutant residue

(valine) is larger than the wildtype residue (alanine) due to the addition of a single side chain which
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may introduce ‘bumps’ or spatial adjustments at the site of the variant in the protein structure. The

analysis also noted the variant to be located within the protein’s signal peptide. This is important as

signal peptides are often recognised by other proteins and cleaved off to generate the mature protein.

Notably, the new residue (valine) that is introduced in the signal peptide differs in its properties from

the original one (alanine) thus the variant may disturb the recognition of the signal peptide. Although

the alanine-to-valine change is not considered a large change, it has been noted to cause aberrations in

protein structure and ultimately its function (Bough and Dayan, 2022).

As the stability of a protein governs its structural conformation, any change in stability can have a

significant impact on its subsequent folding, as well as potential degradation in vivo. MuPro and

I-Mutant 3.0 stability prediction analyses use both SVM and NN algorithms. In MuPro, a confidence

score between -1 and 1 is typically computed alongside the ∆∆G score. A score < 0 means the variant

decreases the protein stability whereas a score > 0 means the variant increases the protein stability.

I-Mutant 3.0 produces a similar ∆∆G score to MuPro, as well as a Reliability Index (RI) score where

0 and 10 represent the lowest and highest reliability, respectively. MuPro depicted a decrease in

stability (-0.2 kcal/mol) using its recommended analysis (SVM) and also with the use of a NN (-0.7

kcal/mol), while proposing an increase in stability (0.16 kcal/mol) when calculated using just an SVM

and a shorter sequence window as seen in Table 4.1. Furthermore, the I-Mutant 3.0 server also

depicted a decrease in stability (-0.21 kcal/mol) after the introduction of the variant, with an RI of 4

indicating moderate reliability. Thus, the indication of decreased stability of the variant using these

tools warrants further analysis of the complete protein structure of MANF.

Table 4.1: Predicted effect of the p.A13V variant on the MANF protein using MuPro and
I-Mutant 3.0

Gene MuPro I-Mutant 3.0

M
A
N
F

1. Predicted both value and sign of energy change using SVM and
sequence information only (Recommended)

∆∆G = -0.20007335 kcal/mol (DECREASE stability)

2. Prediction of the sign (direction) of energy change using SVM and
neural network with a smaller sequence window

Method 1: Support Vector Machine, uses sequence information only.
Effect: INCREASE the stability of protein structure.
Confidence Score: 0.16348451 kcal/mol

Method 2: Neural Network, uses sequence information only.
Effect: DECREASE the stability of protein structure.
Confidence Score: -0.74377979768028 kcal/mol

SVM2 Prediction
Effect:
Decrease
RI: 4

∆∆G Value
Prediction:

Decrease
-0.21 kcal/mol
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4.3.1.3 Protein domain analysis confirmed the presence of the p.A13V variant in

the hydrophobic core of the signal peptide

The protein sequence was run through PredictProtein to obtain a detailed analysis of the secondary

structure of the MANF protein. The output confirmed the presence of a signal peptide spanning

between residues 1 and 24 (Figure 4.2). Furthermore, the program depicted that the variant fell within

a helix in the signal peptide and was considered a buried residue - further confirming the information

provided by the Project HOPE server. This is important as mutations in the signal peptide, particularly

the hydrophobic core, have been found to reduce the translocation of a protein thereby reducing its

expression (Rajpar et al., 2002; Pidasheva et al., 2005).

Figure 4.2: Secondary structure prediction of the MANF protein using the PredictProtein
server

The red bar indicates the region of the protein sequence in which the p.A13V variant occurs in MANF.

It is important to note that this portion of the structure is not included in the experimentally solved

structures present in Protein Data Bank (PDB), as signal peptides are typically cleaved off before

protein secretion, and are therefore not part of the mature/ final protein. These short sequences (18-30

AA) typically form a structure that constitutes an N-terminal and a C-terminal, a hydrophobic helical

core and a cleavage site as seen in Figure 4.3.

Figure 4.3: Simplified structure of a signal peptide
Figure created using Draw.io.
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In subsequent analysis to confirm the presence of the signal peptide, determine its domains and

confirm that the variant fell within the hydrophobic core, the protein sequence was run on the Phobius

server. The server output a 2-Dimensional visualisation of the peptide structure indicating the location

of each of the signal regions as seen in Figure 4.4. The H-region or hydrophobic core of the signal

peptide spans across AAs 9-19 of the protein sequence confirming that the p.A13V variant is present

in a ‘critical’ region. Mutations in this core helix have been previously linked to protein dysfunction

resulting in disease (Kamp and Daggett, 2010). Furthermore, the peptide cleavage site is allocated

between AA positions 24 to 25.

Figure 4.4: Signal peptide secondary structure prediction for the MANF protein using the
Phobius server

The red bar indicates the cleavage region of the signal peptide.
The grey regions are indicative of the N- and C-regions of the signal peptide.

The SignalP-Neural Network (NN) is composed of two independent NNs, one based on the

confidence that the protein sequence is a signal peptide sequence (the S score), and the other NN is

based on the confidence that a given position in the sequence is the cleavage site (the C score).When
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the SignalP-NN is run, it integrates the output of both NN to generate a D score between 0 and 1. D

scores greater than a threshold yields a prediction that the sequence is a recognisable signal peptide.

The uploading of both the wildtype (D-score = 0.903) and variant-containing (D-score = 0.867)

protein sequences yielded slightly different peptide predictions as seen in Figure 4.5. A study

analysing the difference in D-scores (produced by SignalP 3.0) among variants found in the signal

peptide and linked to various diseases, noted that the range of change in D-score among the wildtype

and mutant alleles ranged from 1.6 to 28.6%, with 70% of the variants residing in the hydrophobic

core (Jarjanazi et al., 2008). Our wildtype and variant D-score difference was calculated as 3.99%.

Variants with smaller changes (<5%) in the study were found to display impaired co-translational

processing and protein secretion deficiency (Fingerhut et al., 2004) and incomplete protein

glycosylation (Anjos et al., 2002). Although this is considered a smaller change in terms of

probability prediction of the signal peptide, it does not take into account the allosteric effects

(alteration of the protein conformation resulting in a change of function) of the variant on different

regions of the protein and may still have a significant effect and thus, warrants further analysis.

Figure 4.5: Signal peptide secondary structure prediction for the MANF protein using the
SignalP 3.0 server

[A]- wildtype protein and [B]- mutant protein
C-Score (purple lines): confidence score that a given position in the sequence is the cleavage site; S-Score (green lines):
confidence that the protein sequence is a signal peptide sequence.

A

B
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4.3.2 Tertiary Structure Analysis

Part 1 (Ab Initio Protein Modelling and Validation of the MANF Protein)

4.3.2.1 Ab initio structural modelling of the wildtype and variant protein

successfully introduced the signal peptide domain onto the protein structures

Protein structures on PDB tend to lack the signal peptide since this portion of the protein is typically

cleaved before the mature protein has fully translocated. This was also the case for the MANF

protein, thus, for the present study, the helical structure of the signal peptide needed to be included in

the 3-D model for tertiary structure analysis. The programs I-TASSER, Robetta and DeepPotential

were chosen for their ability to model the ‘full length’ protein (incorporating the signal peptide) using

the protein sequence only (ab initio modelling) as opposed to comparative modelling since the signal

peptide was not present on any of the solved structures. Each of the programs was able to output

probable models that included the signal peptide structure. These were then evaluated to determine

the best models representing the complete wildtype (Alanine at position 13) and the complete mutant

model (Valine at position 13).

4.3.2.2 Structural validation of protein models indicated that Robetta produced the

highest quality theoretical structures

When compared to an experimentally solved structure, accurate theoretical models present with

RMSD scores < 2.0 Å and TM-scores that are approaching 1. The RMSD score allows one to observe

the resolution of the model, while the TM-score produces a structural alignment score that is

normalised against larger differences between the theoretical and solved protein structures (Zhang et

al., 2022). To obtain the best theoretical wildtype and variant structure of MANF, each model

generated was aligned against the crystallographic solved structure in PDB (2W51; PDB) using

TM-Align to obtain individual RMSD and TM-scores.

As seen in Table 4.2, where the structural alignment scores for all the models are presented, none of

the predicted models obtained an RMSD of < 2.0Å. A potential reason for the higher scores may be

due to the non-alignment of the entire signal peptide that is omitted from the reference structure,

however, TM-Align does provide scores that are normalised against the reference protein to take this

into account. TM-Align is typically utilised to evaluate the overall quality of the protein structure by

comparing not only the sequence alignment but also the folding of the protein when compared to the

reference (Zhang et al., 2022). Overall, both the Robetta wildtype and variant models produced the

highest TM-scores (> 0.74653) across the 3 software programs used to generate the models. The
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TM-score tends to be a more sensitive scoring method as opposed to the RMSD score alone, as it is

more heavily weighted to smaller distance errors in the alignment and accounts for global fold

similarity rather than just local structural variations (Zhang et al., 2022). This is particularly helpful as

most theoretical models are created to analyse a region that is not accounted for in experimentally

solved structures. Thus, due to the consistently higher TM-scores across all the Robetta-generated

models, a wildtype and variant model was chosen from Robetta, with structural scores of RMSD =

2.88Å / TM-Score = 0.75190 and RMSD = 2.90 / TM-Score = 0.75231, respectively (highlighted in

Table 4.2). The optimum models generated by Robetta were then subjected to further structural

validation to ensure appropriate structure quality for further variant analysis (Appendix I; C).

Table 4.2: Structural alignment and validation of the generated models of wildtype and
mutant MANF protein

Orange cells indicate the best quality scores for the wildtype and mutant theoretical structures.

Verify-3D calculates the quality of each of the AA acids in the structure concerning their position in

the protein sequence to depict the overall quality of the model. In the wildtype model, 90.11% of the

residues had averaged a 3D-1D score > =2 and had scored a pass score, while the mutant model

depicted that 86.26% of the residues had averaged a 3D-1D score > =2 and had scored a pass score

(Figure 4.6: A and B, respectively). A score above 80% represents a good quality model due to the

accurate correlation between the predicted secondary structure and the theoretical 3D structure. The

Q-MEAN server allocates a Z-score that is indicative of how well a model is structured by comparing

it to the hundreds of experimentally solved protein structures on PDB. A Z-score less than 1 indicates

the theoretical structure is of good quality and comparable to experimental structures. The wildtype

model produced a Z-score of - 0.6 while the mutant model was scored at 0.10. Thus, both models fell

in the region of high-quality protein structures as seen by the presence of the model (red star) in the

dark grey region of panels A and B in Figure 4.7. Furthermore, Q-MEAN also analyses the structure

according to the similar protein structures found on PDB (Figure 4.8: A and B) hence the decrease in

Wildtype Models Mutant Models

Modelling Algorithm Model RMSD (Å) TM-Score RMSD (Å) TM-Score

Robetta

1 2.94 0.75472 2.90 0.75231
2 2.88 0.75190 2.95 0.74867
3 2.93 0.74699 2.93 0.74772
4 2.94 0.76302 3.23 0.75233
5 2.92 0.75060 2.95 0.74653

Deep Potential 1 2.80 0.68056 3.02 0.68991

I-TASSER

1 2.80 0.63104 2.81 0.64786
2 2.35 0.67449 2.85 0.63083
3 2.91 0.54822 2.45 0.66491
4 2.67 0.63065 3.00 0.54804
5 2.82 0.70670 3.74 0.55001
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quality of the peptide region for both models as these parts of the structure are not present in the

template structures.

Figure 4.6: AA quality plots generated for the theoretical protein structures by Verify3D
[A]- Wildtype protein and [B]- Mutant protein; X axis shows the positions of the protein residues while the Y
axis shows the score value; the blue line indicates the averaged score for each AA of the protein; the green
scatter shows raw scores for each AA in the databank.

Figure 4.7: Q-MEAN PDB structure comparison plots generated for the theoretical protein
structures
[A]- Wildtype protein and [B]- Mutant protein; X-axis: Protein size (residues) of all the proteins in the PDB;
Y-axis: Normalised Q-MEAN score for each of the proteins; the red star indicates the quality of your protein in
comparison to the experimentally solved protein structures.

A

B

A B
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Figure 4.8: Q-MEAN local similarity plots generated for the theoretical protein structures
[A]- Wildtype protein and [B]- Mutant protein; X-axis: Residue number; Y-axis: Predicted similarity to target
score. Orange bars indicate a score less than 0 (lower quality) while the blue bars indicate good quality between
local residues.

ProCheck was then used to create Ramachandran plots for each of the models (Figure 4.9: A & B).

These plots are used to determine whether or not the AAs in the theoretical model fall in favoured

regions, thus indicating a high-quality model. The wildtype model was scored having 94.6% of its

AAs in favoured regions with 5.3% of AAs falling in additionally allowed regions and 0.1% fall in

‘generously allowed’ regions. The mutant model depicted 90.3% of its AAs in favoured regions with

7.3% of AAs falling in additionally allowed regions and 2.4% fall in ‘generously allowed’ regions.

Thus, both models were considered high-quality models.

A

B
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Figure 4.9: Ramachandran plots generated using ProCheck
[A]- Wildtype protein and [B]- Mutant protein.

The Overall Quality Factor provided by ERRAT on the wildtype structure was 100% and on the

mutant structure 96.5% which can be seen in Figure 4.10. The 100 represents the percentage of

protein with a calculated error value that falls below the 95% rejection limit. According to the

ERRAT server, structures with good resolution typically produce values around 95% or higher. Thus,

this indicates that both structures were predicted to be of good quality based on localised AA

evaluation. It is to be noted that a proportion of the error values in the mutant fall in the region of AA

A

B
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84, a helical region of the protein. Another deviation in the error values occur at the end of the

sequence in the mutant, a region containing a conserved signalling sequence, ‘RTDL’.

Figure 4.10: Error values calculated for each AA using the ERRAT server
[A]- Wildtype protein and [B]- Mutant protein; Yellow highlighted areas show a significant deviation in error
values.

Part 2 (Mutation Analysis of the Theoretical Protein Structures)

4.3.2.3 Determining the effect of the mutation on the wildtype structure indicated

that the variant is destabilising

DUET predicts the change in protein stability by (∆∆G) upon the introduction of a variant using a

3-Dimensional model of a protein, as opposed to solely the protein sequence. ∆∆G is a measure of the

change in energy between the folded and unfolded protein states and the change in �folding when a

point mutation is introduced (Park et al., 2016). It does this by combining two separate approaches,

namely SDM and mCSM which represents a statistical potential energy function and a predictive

model that makes use of graph-based signatures to represent the protein structure (Pires et al., 2016).

A

B
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These methods in tandem provide a more comprehensive analysis of the effect of the variant on the

protein. The individual predictions, as well as the combined DUET prediction, are portrayed in Table

4.3. All three algorithms indicated that the variant was destabilising the protein with an aggregate

DUET ∆∆G score of -0.108 kcal/mol.

Table 4.3: ∆∆G scores for the p.A13V variant on the wildtype protein structure using
DUET/SDM/mCSM

Dynamut incorporates both graph-based signatures as well as a normal mode dynamic analysis to

produce a consensus prediction of the impact of a variant on a wildtype protein structure (Rodrigues

et al., 2018). Again, a decrease in the ∆∆G (-0.309 kcal/mol) was detected resulting in a potentially

destabilising effect on the protein. As seen in Figure 4.11, the vibrational entropy was calculated to

determine if the variant affects the flexibility of the structure. There was a decrease in the change in

vibrational entropy (-0.076 kcal/mol) and the blue colouring on the helical structure represents a

rigidification upon the introduction of the mutation. Here, the signal peptide, towards the cleavage site,

is seen to change flexibility.

Figure 4.11: Output depicting the ∆∆G and molecular flexibility of the p.A13V variant on the
wildtype structure using Dynamut

The figure depicts the outcome of superimposing the variant onto the wildtype structure. The dark blue portion
of the protein represents a the structural change to the C-terminal of the signal peptide.

The MAESTROWeb server also incorporates the use of the wildtype model and creates mutation

sensitivity profiles and evaluates potential disulfide bonds to determine the effect of a variant on the

3D wildtype structure. However, the output from this server indicated a ∆∆G of -0.183 with a

Stability Effect Algorithm ∆∆G Predicted Effect on Protein
mCSM Predicted Stability Change -0.263 kcal/mol Destabilising
SDM Predicted Stability Change -1.03 kcal/mol Destabilising
DUET Predicted Stability Change -0.108 kcal.mol Destabilising
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confidence score of 0.904 (1 being the most accurate). This indicates a predicted destabilising effect

of the variant on the protein.

4.3.2.4 Comparing the wildtype and mutant structures using Pymol and MD

simulations indicated a difference in polarity, potential flexibility and

conformation

Pymol was used to determine the difference in intramolecular polar contacts (H-bonds and/or salt

bridges) between the wildtype and mutant structure. The wildtype structure was shown to have 4 polar

contacts to neighbouring residues, as compared the mutant which only had 2 (Appendix I; D). This

result coincides with earlier analysis findings indicating that valine would decrease polarity of the

molecule due to its extra alkyl group, which could cause spatial disturbances in the hydrophobic core

of the protein. The loss in polarity seen among amino acid substitutions has previously been

associated with a decrease in stability due to a difference in solvation, affecting the fold of the domain,

and potentially the overall function of the protein (Worth and Blundell, 2010)

MD simulations are typically performed to determine the flexibility of a protein, though can be

computationally extensive. The RMSD time series is indicative of the stability of the protein

conformation through the simulation frames/time. The RMSD is typically a calculation of the carbon

atoms of the protein backbone and their change in conformation throughout the simulation. Ideally, a

protein indicating thermal stability will depict fewer deviations throughout the simulation. The

wildtype protein indicated there were fluctuations in the RMSD graph, though the values were found

to have plateaued at around 2.9 Å as confirmed by the RMSD histogram plot (Figure 4.10 A). This is

expected for a stable protein and indicates no large conformational changes occurring during the

simulation (Bray et al., 2020). The wildtype protein however indicates a steady deviation away from

the protein’s original conformation. The presence of the 2 distinct peaks seen in the RMSD histogram

plot represents conformational changes that were observed during the trajectory (Batut et al., 2018).
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Figure 4.12: Comparing the RMSD between the wildtype and variant structure
[A]- RMSD plot and histogram for the wildtype protein; [B]- RMSD plot and histogram for the variant protein.

The RMSF produced from an MD simulation measures the average deviation of a particle (e.g. a

protein residue) over time from a reference position (typically the time-averaged position of the

particle). Thus, RMSF analyses the portions of the structure that are fluctuating from their mean

structure the most (or least) (Barazorda-Ccahuana et al., 2018). The significantly higher difference in

RMSF values (>1Å ) was seen for the mutant structure at sites 12 to 24, a region predicted to be the

cleavage site in this protein (Figure 4.13). Also, the increase in RMSF values at AA sites ~130 and

~150 (regions that contain a helix) is seen in the mutant. There is also a large RMSF fluctuation seen

at the C-terminal of the protein. An increase in RMSF value corresponds to the higher flexibility of a

residue while a decrease can indicate increased rigidity to the structure). Potentially, a perturbation

that interferes with the flexibility of a protein can interfere with the function of the protein (Guo et al.,

2022; Teilum et al., 2011). As the cleavage site and helical regions depict the most significant

A
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deviation in terms of RMSF values, it could be hypothesised that the variant’s impact on the protein

could potentially prevent adequate cleavage of the signal peptide thereby preventing translocation to

the ER. Also, the interference noted in the helical structure that is assumed to induce flexibility within

the structure could prevent proper folding of the protein, thus preventing normal trafficking.

Figure 4.13: Comparison of the root mean square fluctuation between the wildtype and
variant structure

RMSF values (Å) of the wildtype protein (green) and RMSF values (Å) of the variant protein (black).

Principal component analysis is typically used to derive evident variation from large datasets, such as

the trajectories produced during the MD simulation. The analysis converts the observed correlations

(i.e. movement of the carbon atoms in the protein backbone) to an uncorrelated set of principal

components (PCs). This is done to determine the interactions between important conformations in the

protein. In the wildtype protein, the first three PCs are found to be responsible for 69.3% of the

variance, as seen in the eigenvalue plot (Figure 4.14). In the variant protein, the first three PCs are

found to be responsible for 85.8% of the variance, as seen in the eigenvalue plot. The red and black

dots each represent a conformational cluster state. The distributions of these conformational clusters

are seen to differ entirely between the wildtype and the mutant protein. where the position of the

clusters is reversed after the introduction of the variant, indicating a change in allosteric conformation.

Allosteric conformations within the hydrophobic core can have downstream structural impacts on the

protein structure and subsequent fold.

https://etd.uwc.ac.za/



83

Figure 4.14: PCA of the wildtype and variant models of MANF
[A]- Wildtype protein: i. Principal components (PC) 1 and 2. ii. PC1 and PC3. iii. PC2 and PC3. iv. Percentage
of variance explained by the first 20 PC. [B]- Variant protein: i. Principal components (PC) 1 and 2. ii. PC1 and
PC3. iii. PC2 and PC3. iv. Percentage of variance explained by the first 20 PC.
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In summary, the combined approach of using multiple tools to determine the impact of the variant on

the protein supports the hypothesis that the protein structure is altered by the variant which may

impact downstream function. Using both a sequence-based and complete theoretical structural

approach, it is evident that the variant may cause steric destabilisation. The destabilisation of a protein

can cause misfolding, degradation and, in this case, interference with the signal peptide’s hydrophobic

core and cleavage site. This can affect a variety of factors including translocation and protein

expressivity. If the MANF protein is unable to be expressed, the resulting lack of dopaminergic

neuron protection and the limited response to ER and oxidative stress could be linked to the

development of PD (Figure 4.15).

4.4 Conclusion

Understanding the role of an amino acid change concerning the protein structure using computational

methods is useful to determine whether or not functional studies would be worth the time, cost and

effort. In this chapter, we have elucidated the secondary structure of MANF and revealed that the

variant is located within the h-region or helix of the signal peptide. Several variants in the signal

peptide regions of different proteins have been previously associated with disease and confirmed via

functional analysis (Karamyshev et al., 2020). In the present study, using the protein sequence only,

stability prediction tools found the variant to have an impact on the protein by reducing the ∆∆G and

thereby destabilising the protein. Tertiary structure analysis using the complete theoretical wildtype

model also revealed destabilisation of the protein upon the introduction of the variant. The variant was

also found to cause rigidity of the protein around the cleavage region of the signal peptide.

Furthermore, MD analyses that compared the wildtype and mutant structures indicated that there was

a change in the conformational stability and flexibility of the protein after the introduction of the

variant. This could potentially involve non-cleavage of the signal peptide which may render the

protein inactive or cause improper folding of the protein if the peptide is not cleaved off.
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Figure 4.15: Summary of the results obtained through in-silico analysis of p.A13V in MANF

https://etd.uwc.ac.za/



86

CHAPTER 5

Discussion and conclusions

________________________________________________________________

This chapter briefly elucidates and discusses the main findings of the research study and their

potential implications. Furthermore, the strengths and limitations of the study are explored and

recommendations for future work for this study, as well as Parkinson’s disease (PD) genomics in

sub-Saharan Africa (SSA), are proposed.

It is important to note that the prevalence of PD is set to double in the next 20 years (GBD 2016

Parkinson’s Disease Collaborators, 2016). This is a pressing concern, particularly among SSA

countries due to increased life expectancies, as well as the limited information available regarding the

cause of disease in understudied populations. Also, due to the recent Coronavirus disease 2019

(COVID-19) pandemic, there is speculation as to the associated risk of PD onset in individuals who

have been infected by SARS-CoV-2, due to secondary neuroinflammation that can cause

neurodegeneration and deterioration of nigrostriatal pathways (Leta et al., 2022; Lippi et al., 2020).

Together, the occurrences of newly ageing populations and the possibility of viral-induced

neurodegeneration may lead to a generational wave of PD cases in the near future, thus further fueling

the need to understand the complex biological mechanisms underlying the disease (Baizabal-Carvallo

and Alonso-Juarez, 2021).

Thus, the rationale for this study was to determine the potential cause of PD in a family of Xhosa

African ancestry (a population group that has been severely understudied in PD research thus far)

using previously successful whole exome sequencing (WES) techniques. This was done to determine

whether novel genetic causes or susceptibility factors could be attributed to the onset of PD, or

perhaps provide insight into the mechanisms underlying the disease in a family from an

under-represented population.

5.1 Understudied populations in PD genetic research

African genomes, as opposed to those from European and Asian-based ancestries, tend to be

comparatively diverse but severely understudied (Bentley et al., 2020). Evolutionary genetic diversity,

stratification of populations and the differences in genetic variation due to contrasting climates,

exposure to infectious disease and even diet make individuals of African ancestry a necessary part of

complex disease research (Campbell and Tishkoff, 2008). It is a hope that the inclusion of various

5
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populations from this understudied ancestry group may lead to the identification of novel disease

genes, susceptibility factors and even protective genetic factors involved in complex disease. Due to

our overall limited understanding of PD genetics and its underlying mechanistic architecture, it is

hoped that African populations may provide previously undiscovered genetic insight.

Thus far, a number of PD studies involving the screening of common PD genes for mutations or

exonic rearrangements (including in LRRK2, Parkin, PINK1 and GBA) have been performed in South

Africa, however, low frequencies of pathogenic variants have been identified (Keyser et al., 2010;

Haylett et al., 2012; du Toit et al., 2019; Mahne et al., 2016; Mahungu et al., 2020). The use of NGS

to study novel PD causes in sub-Saharan Africa (in individuals of African ancestry) is still relatively

new. So far, a single study has incorporated the use of a targeted NGS panel containing 751 genes to

screen for novel variants in 33 Black South African and 13 Nigerian PD-affected individuals but no

known pathogenic variants were identified (Oluwole et al., 2020). Thus, the probability of a novel

gene being implicated within this family, after having been screened for known or probable genetic

causes, is high.

This study explored the genetic basis of PD in a South African family of Xhosa ancestry (ZA 15).

Notably, this study is the first known example of research into familial PD utilising NGS analysis in a

family of African ancestry. These types of benchmark studies in rarely studied populations allow

researchers to look at unique methods of analysing genomic data to discover novel causes and

possibly understand how to diagnose or treat PD using alternate, newer methods. Furthermore,

understanding the monogenic causes of PD could prove useful in the search for the more elusive

causes of idiopathic PD, supporting the genetic analysis of PD families.

The Xhosa population of South Africa originate from the ancient Bantu and Khoi people who

descended from North Africa to Eastern Africa (region of Africa’s Great Lakes) before settling in

Southern Africa (Newman, 1995). The modern Xhosa population group is descended from an

admixture of the Northern Bantu and Southern San population groups (Newman, 1995). This group is

now the second-largest population group behind the Zulus with most Xhosa people (~ 5.4 million

people) occupying the Eastern Cape Province in South Africa (the region where ZA 15 were

recruited). The study of South African Xhosa population genetics, particularly regarding neurological

disorders, has been limited. Recently, a study analysed the exomes of ~1800 Xhosa individuals to

determine both rare and common genetic risk factors for schizophrenia that are particular to this group,

finding that schizophrenia behaves as an oligogenic disease in the Xhosa population, where a few

damaging variants may be disease-causing (Gulsener et al., 2020). As the largest cohort population

consisting of South African Xhosa individuals, this cohort was incorporated into our study for variant

screening purposes.
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In another study, a cross-sectional survey was done to analyse awareness of PD among South

African Xhosa individuals (25 individuals with PD, 98 control individuals and 31 traditional healers)

resulted in only 18% being able to recognise the disease and almost a third believing the disease was

caused by witchcraft and the affected individual should be removed from the community, indicating

there is a significant lack of knowledge about the disease among black South Africans (Mokaya et al.,

2017). This highlights the limited number of individuals, let alone families, that would be

knowledgeable or willing to receive an official PD diagnosis or partake in genetic studies. Regarding

parkinsonisms, a homozygous frameshift deletion in the PTRHD1 gene was found in a Xhosa family

affected with juvenile-onset parkinsonism with intellectual disability (using WES, homozygosity

mapping and linkage analysis), a gene that had produced a similar phenotype in two Iranian families

(Khodadadi et al., 2016). Though, to date, no WES studies have been done on a family of Xhosa

ancestry with typical PD.

5.2 Main findings

This study aimed to determine the genetic cause of PD (assumed to be autosomal dominant) in a

South African Xhosa family using WES. WES was conducted on four siblings (2 PD-affected and 2

non-affected individuals) and the resulting data was analysed using best-practise analysis tools.

Known causes of PD were eliminated after screening for the presence of variants in both known and

putative PD genes. Variants that were found to be heterozygous, non-synonymous, having minor

allele frequencies (MAF) < 0.01 and a CADD score > 20 were earmarked for gene expression and

pathway analysis. Twenty-four variants were found to be expressed in the brain and underwent

Sanger sequencing for confirmational co-segregation analysis. Thereafter, the number of candidate

variants was further reduced after screening through private (not publically available) population

cohorts that were either PD- or ancestry-specific. The p.A13V variant in MANF was prioritised for

further in-silico mutation analysis based on its biological role, including; promoting the survival of

dopaminergic neurons in the substantia nigra.

The p.A13V variant was subjected to a variety of in-silico functional analyses to determine whether

the variant could be implicated as a cause of PD in ZA 15. Phylogenetic analysis revealed that the

variant occurs as a buried residue (occurring within the hydrophobic interior of a protein helix) with

variable conservation. Secondary structure analysis revealed that the variant is present in the

hydrophobic core of the signal peptide of the protein. Thereafter, the variant was predicted to be

destabilising at the sequence level. For tertiary structural analysis, optimum theoretical models of the

wildtype and mutant protein were constructed and validated. These structural protein models passed

all the basic quality checks and were deemed appropriate for further structural analysis. Analysis of
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the variant’s effect on the wildtype structure also predicted a destabilising effect and an increase in

rigidity of the signal peptide, close to the cleavage site. Lastly, short molecular dynamics (MD)

simulations were performed on the wildtype and mutant models which indicated a change in the

conformational stability and flexibility of the protein upon introduction of the variant, particularly at

the N- and C-terminals of the protein.

5.3 Methodological approach in the present study

Performing WES analysis in PD-affected families has proven to be an efficient way of determining

the presence of potentially pathogenic variants with the assistance of robust filtering workflows. A

detailed look into all previously published articles outlining the use of WES in PD families (from

various population groups) to ascertain potential disease variants was compiled and published

(Appendix D). This comparative audit of each studies’ methodology, bioinformatic tools, filtering

criteria and variant prioritisation formed the basis of the methodology outlined for the analysis of the

African Xhosa family, ZA 15. The methodology incorporated best practice tools that were used to

create an optimum, reproducible pipeline. The inclusion of robust filtering techniques was employed

to ensure that the most efficient and sensitive method for finding novel variants among affected

siblings. The incorporation of tools such as Burrows-Wheeler Aligner (BWA) and the Genome

Analysis Toolkit (GATk) and the Ensembl-Variant Effect Predictor allows the researcher to obtain a

higher number of likely variants that could be disease-causing. These tools are widely-regarded as

‘best-practice’ due to their reproducibility and increased sensitivity during the formative steps of

analysis. Furthermore, observing the prioritised variants in private cohorts, that were either PD- or

ancestry specific allowed us to determine the true rarity of variants and further filter and prioritise

potentially pathogenic variants. This formed a major strength of the study as many of the variants that

were pathogenic and extremely rare in popular population databases, such as gNOMAD and the 1000

Genomes Project, were found to be significantly present in private population cohorts that included

individuals of similar ancestry. This crucial step allowed us to eliminate variants that did not require

further study. This highlights the necessity of creating databanks with genomic information obtained

from individuals with African ancestry.

In-silico analyses serve as a determinative measure for predicting the possible effect of a variant on a

protein and suggesting whether a resulting perturbation could be associated with the pathobiology of

disease, before in-house, laboratory-based functional analysis. The methodological approach taken in

this study was based on similar studies that investigated the effect of a single prioritised variant

suspected to be an underlying cause of disease and incorporated both a sequence-based and structural

approach (Hossain et al., 2020; De Oliviera et al., 2019). A secondary structural analysis of the

protein under investigation using tools such as Project Hope and PredictProtein allowed for a
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preliminary understanding of the region of the protein that is affected by the variant’s position. These

tools are useful due to the incorporation of multiple protein-based databases for detailed annotation of

the protein structure, as well as the incorporation of predictive machine learning algorithms to

compare the protein structure and domains to similar proteins. Secondary structure analysis of our

protein indicated the presence of our variant with the signal peptide of the gene, a component that is

not included in tertiary structure databases. Structure based-analysis, however, allows for analysis of

the protein using its native conformation and movement. Robetta was used to build the theoretical

wildtype and mutant structures using an ab initio approach, depicting a high-quality model of the

proteins. This can be attributed to the advanced deep learning algorithms governing the builds that are

continuously quality checked by Continuous Automated Model Evaluation (CAMEO) to ensure the

protein models are comparable to the experimentally solved structures in the Protein Data Bank. Short

molecular dynamics simulations using GROMACs were used to determine the effect of the

conformational stability and flexibility of the protein models. In a study comparing the precision of

MD simulations of the 5 most popular algorithms (including GROMACS, AMBER, LAMMPS,

DESMOND and CHARMM), where it was found that GROMACs 5.1 showed a marked increase in

performance of free energy calculations due to several new and enhanced paralleled algorithms

(Sedova et al., 2018; Abraham et al., 2015).

5.4 p.A13V in MANF as a candidate for PD

The family ZA 15 were screened for both known and novel variants in PD genes using both

laboratory and WES methods. However, no variants of significance were found, supporting the

hypothesis that PD is caused by novel genetic factors in individuals with diverse genomes. Our study

culminated in the nomination of a single variant (p.A13V) occurring in the MANF gene.

MANF is a small hormonal protein secreted by the MANF gene. It is a conserved neurotrophic factor

protein that displays a protective role on mid-brain dopaminergic neurons and exerts a regulatory

effect in response to endoplasmic reticulum (ER) stress (Yu et al., 2021). Gene expression analysis

revealed that MANF is expressed in various tissues in the body, but significantly expressed in the

substantia nigra, the main region affected in PD. The accumulation of misfolded proteins disturbs the

homeostatic environment in the ER, resulting in ER stress. ER stress then typically prompts the

unfolded protein response (UPR) which involves three signalling pathways that assist in the

degradation of misfolded proteins and attenuate subsequent protein synthesis. These pathways are

activated by ER transmembrane proteins, namely, PERK (PRKR-like endoplasmic reticulum kinase),

IRE1 (inositol requiring enzyme 1), and ATF6 (activating transcription factor 6). These proteins are

inactive during cellular homeostasis and remain bound to an ER chaperone, GRP78/BiP

(Glucose-regulated protein 78/Binding immunoglobulin protein). MANF has been found to have a
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calcium-dependent interaction with the GRP78 chaperone which upregulates MANF secretion in

response to ER stress (Glembotski et al., 2012).

Thus far, studies on MANF as a potential therapeutic target have proposed that its induced

overexpression could promote the survival of dopaminergic neurons in PD and other

neurodegenerative disorders (Voutilainen et al., 2009; Richman et al., 2018, Zhang et al., 2018).

MANF has been found to improve mitochondrial function through the alleviation of oxidative stress

in an MPTP/MPP+-induced model of PD (Liu et al., 2018). Furthermore, it has also been found to

have reduced progressive neuronal degradation and subsequent locomotive effects, as well as

facilitated the removal of misfolded aggregates of α-synuclein in an α-synuclein C. elegans PD model

(Zhang et al., 2018). In the Drosophila melanogaster fly, the knockout of the MANF ortholog was

seen to manifest as a deficiency in the development of DA neurons, though the deficiency was

corrected upon the introduction of wildtype MANF (both fly and human orthologs) (Palgi et al., 2009)

MANF is known to exert protective, modulating mechanisms in response to ER stress, not unlike

Parkin and leucine-rich repeat kinase 2 (LRRK2), which are genes that are implicated in PD

(Takahashi et al., 2003; Lee et al., 2019). Postmortem brain tissue from PD-affected individuals has

shown activation of the ER stress response, indicating a correlation with PD pathology (Conn et al,

2004, Hoozemans et al., 2007).

The loss of neurons in neurodegenerative disease has been previously associated with chronic ER

stress, where the failure of the UPR cascade to restore cellular homeostasis can result in apoptosis.

Chronic ER stress could be attributed to the prolonged production of mutant proteins thereby

overwhelming the UPR cascade (Lin et al., 2013). Thus, malfunctioning MANF may cause

attenuation of ER stress regulation and decreased neuronal protection, thereby perpetuating common

pathobiological pathways underlying PD.

The variant p.A13V in MANF is located within the hydrophobic core of the signal peptide and was

found to be destabilising across all our in silico analyses. The AA substitution of alanine to valine

may initially seem to be inconsequential as valine is also a hydrophobic AA and the difference

between the two molecules includes an alkyl group. However, when an AA is substituted within a

helix, steric torsion could be induced, allowing for aberrations in other functional regions of the

downstream protein. More importantly, the change in hydrophobicity of the signal peptide, as well as

the loss of polarity, due to the substitution may impact the processing of the immature protein.

Signal peptides play a critical role in targeting proteins in the ER, as well as dictating the translocation

of the protein into the ER membrane (Liaci and Förster, 2021). The peptide contains a hydrophobic

core that interacts with the signal recognition protein (SRP), which is a ribonucleoprotein found in the
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cytosol that assists in translocation (Voorhees and Hegde, 2016). The resulting complex, the

SRP-ribosome-nascent protein chain, enables the targeting of the protein to the ER where the SRP

binds to a receptor on the ER membrane allowing the protein to travel across the membrane (Kapp et

al., 2009). The entire protein (including the signal peptide) is then transported to the Sec61 translocon

where the mature protein is translocated into the lumen of the ER and the signal peptide is cleaved off

by a signal peptidase. Thereafter, the mature protein travels through to the Golgi apparatus where it is

secreted (Dudek et al., 2015; Voorhees and Hegde, 2016). The signal sequence may thereby interact

with different proteins during the early process of translocation, as well as after, during export to the

Golgi Apparatus and subsequent secretion (Liaci and Förster, 2021). Variants present in the signal

peptide of secretory proteins such as preprovasopressin and preproparathyroid hormone have been

previously linked to the onset of diseases such as familial central diabetes insipidus and familial

isolated hypoparathyroidism (FIH) (Ito et al., 1993; Arnold et al., 1990). This occurs due to a point

mutation that disrupts the hydrophobic core of the signal peptide thereby impairing the processing of

the hormone and resulting in a decrease in expression (Arnold et al., 1990; Karaplis et al., 1995).

Furthermore, pathogenic variants in the hydrophobic core of the signal peptide have been found to

interfere with cellular trafficking that ultimately prevents translocation of the protein (Rajpar et al.,

2002; Pidasheva et al., 2005).

There are a number of ways to speculate on how the p.A13V variant may result in a PD phenotype.

Figure 5.1 provides an overview of some of these possible ways which are highlighted in the yellow

boxes. Many studies have focused on the complete knockout of the MANF protein (which has not

resulted in a typical PD phenotype), however, very few studies have focused on the effect of a

heterozygous mutant protein and the interferences caused by its intracellular interactions.
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Figure 5.1: Model for the translational cycle of a secretory protein (MANF)
Inserts describing the possible effect of the variant on the protein at various stages of a secretory protein’s
translational cycle indicate the possibilities for how the variant could cause malfunction of the MANF protein.
Created in Biorender.com.

A study was able to demonstrate that variations in the signal peptide of secretory proteins tend to

cause mRNA degradation through the Regulation of Aberrant Protein Production (RAPP) pathway or

downstream processing defects which can both lead to disease. Specifically, the presence of the signal

peptide variant in the hydrophobic core is more likely to result in mRNA degradation via the RAPP

pathway (Tikhonova et al., 2019). This occurs as a result of the reduced hydrophobicity of the mutant

signal peptide and its limited ability to be recognised by the SRP. Therefore, the RAPP pathway is

initiated where the Argonaute-2 (AGO2) binds to the mutated signal sequence and leads to mRNA

degradation of the protein (Popp and Maquat, 2014). This would cause a decrease in the levels of

MANF, which could prompt a decrease in ER stress regulation and chronic upregulation of the UPR

pathways. However, if the protein is ablated completely, the effects may not result in the PD

phenotype as it has been shown in previous midbrain studies in mice that other neurotrophic factors

are upregulated in the absence of MANF, and thus, ER stress would still be adequately regulated and

dopaminergic neurons could remain protected (Pakarinen et al., 2020). However, this study omitted

the MANF gene altogether, and the effect of a defective protein may cause other aberrations in its

complex role as a secretory protein.
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There is also the possibility that the variant causes misfolding of the protein and interferes with the

signal peptide cleavage. As illustrated, the signal peptide is cleaved off by a signal peptidase in the

ER. If the signal peptide is not adequately cleaved off in the ER due to insufficient recognition of the

signal peptide by the SRP, there could be an increased accumulation of the protein due to decreased

disulfide bond formation and N-linked glycosylation processes (as the mature protein would not be

able to pass through to the Golgi apparatus), which can cause ER stress or even cytotoxicity (Popp

and Maquat, 2014). MANF would be unable to modulate the ER stress and may exacerbate it.

It has also been found that signal peptides can sometimes be released into the ER, secretory pathways

or even the cytoplasm instead of being degraded by intramembrane proteases (Liaci et al., 2021). This

is important as the hydrophobicity of signal peptides makes them prone to potential aggregation. One

study reported the concentration-dependent cytotoxicity of amyloid precursor protein signal peptides

in SH-SY5Y cells that were caused by the formation of its amyloid-like aggregation in vitro (Gadhave

et al., 2021). If the signal peptide was capable of being cleaved but not degraded by the proteases

within the cell, a cytotoxic aggregation of the hydrophobic peptides could occur, ultimately causing a

deterioration of dopaminergic cells.

MANF also possesses a C-terminal signal sequence (RTDL) that interacts with the KDEL receptor

(KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor) allowing the protein to

be retained in the ER (Henderson et al., 2013). This indicates that MANF has both a secretory and a

retained intracellular function. If the RTDL sequence is disrupted (which may be likely based on the

conformational stability analysis results produced by the MD simulations), the protein may lose its

ability to be retained intracellularly, potentially interfering with processes that have not been

elucidated yet.

MANF’s secretion capability is also directly associated with cellular Ca2+ homeostasis due to the

calcium-dependent binding of the protein to the GRP78/BiP complex (Eesmaa et al., 2021). The

fluctuation in calcium homeostasis due to the presence of a mutant MANF protein could also affect

the function of the membrane potential in the ER, as well as the mitochondria. PD has been

increasingly linked to mitochondrial dysfunction, particularly involving coenzyme Q deficiency and

mutations occurring in the mitochondrial complex I (Eesmaa et al., 2021). PD-associated toxins that

are used to induce PD symptoms in animal models, including MPTP and paraquat, are also found to

affect the functioning of the mitochondrial complex I. In vivo screening of DmMANF indicated

significant interactions with genes involved in the ubiquinone synthesis pathway (including COQ7,

CG9249/COQ3 and CG9613/COQ2). This pathway is responsible for the synthesis of ubiquinone (or

coenzyme Q), a protein involved in the electron transport chain whereby electrons are transferred

from complexes I and II to the third complex. Furthermore, DmMANF was also found to interact with
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2 homologues (NDUFS1 and FOXRED1) that are linked to human mitochondrial complex I

deficiency. It was postulated that MANF may have either a direct or indirect association with

mitochondrial function by affecting oxidative phosphorylation (Lindström et al., 2017). Thus, the link

between the mutant p.A13V MANF and its effect on mitochondrial function needs to be further

examined.

Herewith, protein malfunction of MANF could inhibit the hormone of its protective effects on

midbrain dopaminergic neurons, but rather cause cytotoxic degeneration of these cells. The loss of

these neurons could result in a decrease in the overall quantity of dopamine produced thus indirectly

directing the onset of a PD phenotype.

5.5 Limitations of the Study

The small sample size of PD-affected individuals available for research in ZA 15 is an indicator of the

limitations of PD research in SSA. It is difficult to obtain a family pedigree consisting of multiple

generations of affected individuals due to several reasons: 1) the lack of neurologists specialising in

movement disorders and limited healthcare resources, 2) the frequency at which affected individuals

contact traditional healers or hold traditional beliefs of the disease-preventing modern medical

intervention and also, limited knowledge of the disease due to a lack of genetic studies within these

population groups. The family analysed in this study consisted of both affected and unaffected

siblings. Thus, identifying pathogenic variants within siblings can prove to be an arduous task as they

share 50% of their DNA. It is also difficult to characterise co-segregation of a disease variant in a

family that only possesses DNA for the siblings i.e. across one generation. Moreover, in this

particular family, the presence of different ages of onset can indicate the presence of familial

heterogeneity (different genetic causes of disease in the one family) or phenocopies where the

environment can induce a form of the disease that is phenotypically similar to another individual in

the family, who would have a genetic cause of disease. Although DNA from other members of the

family (non-siblings) was obtained to observe the presence of the variant frequencies, DNA from

more affected and unaffected family members would be necessary. This is particularly evident for the

daughter of the affected female who possesses the MANF variant but is 40 years of age, and thus, may

or may not end up developing PD as there is evidence of later onset PD in this family.

Although WES is the initial choice for the determination of novel disease genes in families, a number

of concerns arise when solely using this method of analysis. WES limits the output of genomic data to

only the exome, and even then, specific regions of the exome may be inadequately covered. This can

lead to a loss of potentially disease-causing variants during analysis. Furthermore, WES is unable to

detect structural variations in the genome including large genomic rearrangements such as copy
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number variations and expanded repeat regions, as well as, long non-coding RNA or intronic regions.

This could be detrimental when investigating a disease as multifactorial as PD, whose phenotype

tends to be influenced by a large number of genetic aberrations. However, if this study were to serve

as a benchmark for the analysis of PD family pedigrees like ZA 15, particularly in those sourced from

understudied populations, WES is the optimum first line choice before performing more

comprehensive sequencing.

5.6 Future work

For this study, a number of recommendations could be made for future work. Although the

preliminary in silico analysis indicates a propensity towards protein destabilisation, the exact nature of

the prioritised variant p.A13V and its effect on the translocation or expression of the MANF protein

cannot be accurately determined. Although there are studies highlighting the effects of MANF

knockout, it is important to perform functional analysis on the effect of this particular variant on the

function of the protein and its specific implication regarding dopaminergic neurons in the substantia

nigra. Thus, further laboratory-based analyses are advised.

Previous studies linking a variant in the signal peptide have shown a variety of methods to properly

analyse the variant effect on the protein. To determine whether translocation of the protein is affected,

MANF could be cloned using site-directed mutagenesis where transfection of the vector could be

induced into neuronal cells to determine the transient transcription and translation of the protein in

vitro. Further analysis to determine the proper cleavage of the signal peptide (using immunoblotting

and proteolytic methods) as well as, the possibility for signal peptide aggregation within the cytosol

(using fluorescence spectroscopy) could be later observed. Also, the link between aberrant protein

function of MANF and its potential effect on mitochondrial function through homeostatic interference

(through quantitative analysis of calcium concentration and mitochondrial RNA), should be explored.

Furthermore, in vivo analysis using an animal model could be an improved predictor of the effect of

the variant. For example, the common fruit fly (D. melanogaster) could be an ideal model organism

due to the high rate of homology (~60 %) of the gene sequence when compared to humans, and the

similarity in neurological biomechanisms (Pandey and Nichols, 2011). It is also predicted that nearly

75% of human disease-associated genes have a functional homologue in D. melanogaster, including

DmMANF (Mirzoyan et al., 2019). Furthermore, studies have already implicated the upregulation of

MANF in D.melanogaster in response to induced ER stress, where it behaves as a regulator of the

unfolded protein response (UPR), highlighting the conserved role of the gene between species

(Lindström et al., 2016).
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Although WES was found to be a suitable method of determining a potential genetic factor in the ZA

15 family, WGS could be used on this family to rule out any exonic rearrangements or copy number

variations (CNVs) that would have been missed by WES. Also, third-generation sequencing or

long-read sequencing are newly-developed approaches that aim to overcome the limitations of

existing NGS methods. They produce long reads that are far more expansive, reducing the complexity

of detecting read overlaps—thus increasing the quality of the sequencing data and improving CNV

detection (Giani et al., 2019). Furthermore, mutable regions in the genome may harbour pathogenic

mutations, particularly compound heterozygous mutations that may only be discovered with long-read

sequencing (Mantere et al., 2019). Therefore, in the near future, long-read sequencing may be viewed

as the more favourable sequencing alternative for disorders such as PD. As newer research

methodologies develop and become available, it is important to note that new candidate genes may

arise in this PD-affected family and be worth further study.

Finally, the Global Parkinson’s Genetics Program (GP2; http://gp2.org/) is an initiative aiming to

elucidate the genetic factors underlying PD by incorporating population cohorts from around the

world (including those from under-represented populations) and exploring both monogenic causes, as

well as, genetic risk factor meta-analysis (obtained by comparing the affected individuals with control

cohorts). Our research group is in the process of submitting PD samples, including the proband

sample of ZA 15, for analysis through GP2’s monogenic working group in hopes of finding the novel

genetic cause of disease in multiple individuals with diverse, understudied ancestry. These samples

will be subjected to either whole genome or long-read sequencing dependent on a number of criteria

including family history, age at onset and ethnicity

(https://gp2.org/working-groups/monogenic-network-working-group/).

5.7 Concluding remarks

PD is a multifactorial disease that requires a faceted approach to determine the underlying

pathobiology of the disease. Genetic research in PD has evolved significantly over the past two

decades with varying strategies that have included linkage analysis to population-wide genome-wide

association studies and more recently, NGS. Familial studies incorporating NGS have revolutionised

novel disease gene discovery, however, best practice guidelines for data analysis need to be developed;

considering diverse populations and ancestral origins, since it is apparent that a generic

‘one-size-fits-all’ approach will have significant limitations. In conclusion, determining the complex

genetic architecture underlying PD, particularly in under-represented populations, is critical to

providing insight into PD molecular mechanisms, detection of PD biomarkers, and elucidation of

novel drug targets. Ultimately, this knowledge will change the course of future clinical diagnoses and

therapeutic modalities for this currently incurable disorder.
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Appendix E: List of known and putative PD genes obtained from literature

Known PD
Genes

Putative PD Associated Genes

SNCA MAPT PZP SLC18A2 CAPS2 NUS1
PRKN TH UQCRC1 COL6A5 CEL OR8B3
UCHL1 ASNA1 DCTN1 ATP1A3 SVOPL PCDHA9
PARK7 RAB39B ABCG2 CD36 ATG4C PRB3
LRRK2 GCH1 ATOH1 CP CABIN1 PRMT3
PINK1 TNR (TNRC6A) CCSER1 GRN COL15A1 PRSS48
POLG2 PODXL FAM13A PSEN1 DARS PTCHD3
HTRA2 CSMD1 FAM13A-AS1 SMPD1 DNAH8 RFLP2
ATP13A2 PTEN GRID2 FAM83 ELOA2 SCARF2
FBXO7 GPRIN3 HERC3 KIF21A FAM71A SPPL2C
GIGYF2 PPM1K HERC5 PTPRH FAM90A1 TMEM134
GBA TARDBP HERC6 COMT FER1L6 UHRF1BP1L
PLA2G6 SLC6A3 PIGY SPG7 GH2 USP20
EIF4G1 ATP10B PKD2 MCCC1 GPATCH2L ZNF516
VPS35 MMRN1 PYURF PLIN4 GRAMD1C ZNF543
DNAJC6 VAAPB SMARCARD1 TNK2 IFI35
SYNJ1 L2HGDH TIGD2 APOE KALRN
DNAJC13 SPP1 ANKRD30A OGN KCNK16
TMEM230 SCN3A DIS3 (DIS3L) WDR45 LIPI
VPS13C NAP1L5 MNS1 TBC1D24 LPA
LRP10 ITPR1 PTRHD1 TWNK MAP3K6
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Appendix F: WES analysis steps, tools and commands

Steps Tool Function
Adaptor
Identification

bbmap bbmerge.sh
in1=6899-1.FCH22VFBBXY_L2_R1_IAGCAGGAA.FASTQ.gz
in2=6899-1.FCH22VFBBXY_L2_R2_IAGCAGGAA.FASTQ.gz
outa=adapters.fa ./

Adaptor Trimming bbmap bbduk.sh
in1=read1.fq in2=read2.fq
out1=clean1.fq out2=clean2.fq
ref=adapters.fa ktrim=r k=23 mink=11 hdist=1 tpe tbo qtrim=rl trimq=20

Create Reference
Genome Index

BWA bwa index resources_broad_hg38_v0_Homo_sapiens_assembly38.fasta

Align FASTQ files
to Reference
Genome (hg38)

BWA MEM bwa mem -M -R
resources_broad_hg38_v0_Homo_sapiens_assembly38.fasta
clean1_R1.FASTQ.gz clean2_R2.fq.gz > ALN/clean_1.sam

SAM to BAM Samtools samtools view –Sb
ZA 15_6899-1.sam > ZA 15_6899-1.bam

Namesort BAMs PIcard SortSam
I=ZA 15_6899-1.bam O=ZA 15_6899-1_namesorted.bam
SO=queryname ./

BAM File
Summary Statistics

Samtools samtools stat ZA 15_6899-1.bam

Variant
Calling(gVCF)

GATk gatk HaplotypeCaller -R
GRCh38_latest_genomic.fna
-I ZA 15BAM/ZA 15_6899-1.bam -O ZA 15BAM/VCF/6899-1.g.vcf
-ERC GVCF

Combine gVCFs GATk gatk CombineGVCFs -R ZA
15MY/resources_broad_hg38_v0_Homo_sapiens_assembly38.fasta -V
ZA 15BAM/VCF/6899-1.g.vcf -V ZA 15BAM/VCF/6899-2.g.vcf -V ZA
15BAM/VCF/6899-18.g.vcf -V ZA 15BAM/VCF/6899-19.g.vcf -O ZA
15BAM/VCF/CombinedZA 15.g.vcf

Convert gVCF
format to VCF
format

GATk gatk GenotypeGVCFs -R ZA
15MY/resources_broad_hg38_v0_Homo_sapiens_assembly38.fasta -V
ZA 15BAM/VCF/CombinedZA 15.g.vcf -O CombinedZA 15.vcf

Isolate SNPs from
VCF

GATk gatk SelectVariants -R ZA
15MY/resources_broad_hg38_v0_Homo_sapiens_assembly38.fasta -V
CombinedZA 15.vcf --select-type SNP -o ZA 15BAM/VCF/ZA
15.snps.vcf

Filter Isolated SNPs GATk gatk VariantFiltration -R ZA
15MY/resources_broad_hg38_v0_Homo_sapiens_assembly38.fasta -V
ZA 15BAM/VCF/ZA 15_snps.vcf -filter "QD < 2.0" --filter-name "QD2"
-filter "QUAL < 30.0" --filter-name "QUAL30" -filter "SOR > 3.0"
--filter-name "SOR3" -filter "FS > 60.0" --filter-name "FS60" -filter "MQ
< 40.0" --filter-name "MQ40" -filter "MQRankSum < -12.5" --filter-name
"MQRankSum-12.5" -filter "ReadPosRankSum < -8.0" --filter-name
"ReadPosRankSum-8" -O ZA 15BAM/VCF/ZA 15_filtered_snps.vcf

Isolate INDELS
from VCF

GATk gatk
SelectVariants
-R ZA
15MY/resources_broad_hg38_v0_Homo_sapiens_assembly38.fasta -V
CombinedZA 15.vcf --select-type INDEL -o ZA 15BAM/VCF/ZA
15.indels.vcf

Filter Isolated
INDELS

GATk gatk VariantFiltration -R ZA
15MY/resources_broad_hg38_v0_Homo_sapiens_assembly38.fasta -V
ZA 15BAM/VCF/ZA 15_indels.vcf -filter "QD < 2.0" --filter-name
"QD2" -filter "QUAL < 30.0" --filter-name "QUAL30" -filter "FS >
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200.0" --filter-name "FS200" -filter "ReadPosRankSum < -20.0"
--filter-name "ReadPosRankSum-20" -O ZA 15BAM/VCF/ZA
15_filtered_indels.vcf

Merge filtered
SNPs and INDELs
back into one VCF

GATk gatk MergeVcfs
-I ZA 15_filtered_snps.vcf -I ZA 15_filtered_indels.vcf -O ZA
15_Merged_Filtered.vcf

Include only SNPs
and INDELs that
passed filtering step
in merged VCF

GATk gatk SelectVariants -R ZA
15MY/resources_broad_hg38_v0_Homo_sapiens_assembly38.fasta -V
ZA 15BAM/VCF/ZA 15_Merged_Filtered.vcf -O ZA 15BAM/VCF/ZA
15_Merged_Filtered_PASS.vcf --exclude-filtered

Variant Annotation Ensembl VEP vep -I ZA 15BAM/VCF/ZA 15_Merged_Filtered_PASS.vcf --cache -all
--fasta genome.fa.gz -O ZA 15_Anno.vcf

Heterozygous SNP
Filtering

BCFTools and
all2VCF

bcftools isec -i 'GT="het"' -n=3 ~ ZA 15_Anno.vcf “6899-1” “6899-2” - O
sites.txt
python all2vcf isec --sites sites.txt --vcf hetsaffect.vcf
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Appendix G: Pathway and gene expression analysis of the prioritised 24 variants with a CADD score > 20 and expressed in neuro-specific tissue

Variant
Identifiers Tissue Expression Pathway Analysis Disease Associations Gene Interactions

G
en
e
Sy
m
bo
l

rs
ID

Pr
ot
ei
n

GTex
Human
Protein
Atlas

mGI KEGG Reactome ClinVar OMIM STRING GO

D
N
A
H
5

rs
11
37
42
23
8

p.
R
30
77
Q

Fallopian
tube,
lung,
pituitary
gland,
cerebellu
m

Nasopharyn
x, fallopian
tube,
bronchus,
endometriu
m

Postnatal
lethality,
hydrocephalus,
respiratory
infections,
situs inversus
and ciliary
immotility.

Amyotrophic lateral
sclerosis - hsa05014,
Huntington disease -
hsa05016,
Pathways of
neurodegeneration -
multiple diseases -
hsa05022

N/A Primary ciliary
dyskinesia 3

Primary ciliary
dyskinesia 3

DNAI2,
DNAI1,
CCDC114,
DNAL1,
PAFAH1B
1, DCTN1,
CLIP1,
DCTN2,
DNAH6,
DNAH3

cilium
movement
determination
of left/right
symmetry
sperm motility
outer dynein
arm assembly
cilium
morphogenesis

N
PH

P3

rs
11
17
27
30
7

p.
R
11
67
H

Cervix
(uterine),
fallopian
tube,
ovary,
endometri
um,
urinary
bladder

Cerebral
cortex,
cerebellum,
testis,
ovary, heart
muscle

Kidney cysts,
enlarged
kidneys,
increased
blood urea
nitrogen,
kidney
inflammation
and associated
fibrosis, and
premature
death

N/A

ARL13B-mediated
ciliary trafficking of
INPP5E, cargo
trafficking to the
periciliary membrane,
trafficking of
myristoylated proteins
to the cilium, VxPx
cargo-targeting to
cilium
BBSome-mediated
cargo-targeting to
cilium

Meckel Syndrome,
Type 7,
Nephronophthisis 3,
Renal-Hepatic-Panc
reatic Dysplasia 1

Nephronophthisis 3

NEK8,
NPHP1,
INVS,
TMEM67,
NEK9,
NPHP3,
ARL3,
NPHP4,
CYS1,
UNC119B,
UNC1119

Kidney
development
heart looping
atrial septum
development
determination
of left/right
symmetry
lung
development

D
N
A
H
10

rs
18
66
39
93
5

p.
E6
98
G

Fallopian
tube,
testis,
cervix
(uterine),
lung,
cerebellu
m

Testis,
choroid
plexus,
bronchus,
ovary,
fallopian
tube

N/A

Amyotrophic lateral
sclerosis - hsa05014,
Huntington disease -
hsa05016,
Pathways of
neurodegeneration -
multiple diseases -
hsa05022

N/A

Lipodystrophy,
Familial Partial,
Type 1, Primary
Ciliary Dyskinesia,
Charcot-Marie-Toot
h Disease

Spermatogenic
failure 56

DCTN1,
DCTN3,
DCTN2,
ACTR1A,
ACTR10,
DCTN4,
ACTR,
DCTN5,
DCTN6,

N/A

https://etd.uwc.ac.za/



149

HAP1
FR

M
D
4B

rs
14
44
59
33
8

p.
R
36
0W Thyroid

gland

Cerebellum,
Adrenal
gland,
Nasopharyn
x

N/A N/A N/A N/A N/A

CYTH1,
CYTH2,
CYTH3,
SPON1,
TOX2,
CPNE4,
TMTC4,
HSPB7,
MIPOL1

N/A

D
A
A
M
2

rs
37
50
83
97
9

p.
R
20
9G

Spinal
cord,
midbrain,
hippocam
pal
formation
,
amygdala,
basal
ganglia,
hypothala
mus

Cerebral
cortex,
hippocampu
s, caudate,
parathyroid
gland,
adrenal
gland

Abnormal
ventricular
morphology
and pressure

Wnt signaling
pathway - hsa04310 N/A

Idiopathic
Steroid-Resistant
Nephrotic
Syndrome,
Molybdenum
Cofactor
Deficiency,
Cerebral Amyloid
Angiopathy,
Itm2b-Related, 2

Nephrotic syndrome,
type 24

DAAM1,
CDC42,
PSTSPIP1,
PSTPIP2,
DVL3,
DVL1,
DVL2,
RHOC,
RHOA,
GBF1

N/A

C
LS

TN
2

rs
14
76
17
85
0

p.
D
28
9N

Ovary,
breast,
cerebral
cortex

Cerebellum,
breast,
adipose
tissue,
kidney

Deficiency in
spatial
learning and
memory

N/A N/A

Astigmatism,
Achondroplasia,
Severe, With
Developmental
Delay And
Acanthosis
Nigricans

N/A

SLC12A9,
KLC2,
MTMR2,
ICA1L,
FAM134C,
EPC2,
GRIP1,
NMNAT3,
SLC18A1,
CDH17

N/A
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ST
A
C

rs
11
14
03
86
5

p.
P1
03
L Parathyro

id gland,
prostate,
lung

Cerebellum,
epididymis,
seminal
vesicle,
fallopian
tube,
endometriu
m, breast,
cerebral
cortex

N/A N/A N/A

Myopathy,
Congenital,
Bailey-Bloch,
Exudative
Vitreoretinopathy 6

N/A

KIR2DL1,
KIR3DL2,
KIR3DL1,
KIR3DL3,
HLA-G,
LILRB2,
KIR2DL4,
SPG20,
TRIM4S,
FCHSD2

N/A

C
LS

TN
2

rs
14
02
02
81
9

p.
E9
10
K Ovary,

breast,
cerebral
cortex

Cerebellum,
breast,
adipose
tissue,
kidney

Deficiency in
spatial
learning and
memory

N/A N/A

Astigmatism,
Achondroplasia,
Severe, With
Developmental
Delay And
Acanthosis
Nigricans

N/A

SLC12A9,
KLC2,
MTMR2,
ICA1L,
FAM134C,
EPC2,
GRIP1,
NMNAT3,
SLC18A1,
CDH17

N/A

M
R
E1
1

.

p.
E4
06
K Cervix,

Endometr
ium,
Spleen

High
expression
in all tissue

Reduced
fertility in
female

Homologous
recombination -
hsa03440,
Non-homologous
end-joining -
hsa03450, Cellular
senescence -
hsa04218

N/A

Ataxia-Telangiectas
ia-Like Disorder 1,
Ataxia,
Early-Onset, With
Oculomotor
Apraxia And
Hypoalbuminemia,
Nijmegen Breakage
Syndrome-Like
Disorder

Ataxia-telangiectasia
-like disorder 1

RBBP8,
RAD50,
XRCC5,
BRCA1,
ATM,
MDC1,
XRCC,
EXO1,
NBN,
TP53BP1,
RBBP8,
TP53BP1

N/A

C
D
47

rs
76
10
86
66
7

p.
A
25
2S

Cerebellu
m, lung,
salivary
gland

Cerebral
cortex,
cerebellum,
urinary
bladder,
prostate,
fallopian
tube

Reduced
CD3+ fraction
of peripheral
lymphocytes
and inability to
clear infection
by E.coli

N/A

Cell surface
interactions at the
vascular wall, cell-cell
communication,
extracellular matrix
organisation,
hemostasis, immune
system, innate
immune system,
integrin cell surface
interactions,
neutrophil

Hereditary
Spherocytosis,
Hereditary
Elliptocytosis

N/A

ALG1L,
TRIM61,
POTEI,
POTEJ,
CCDC183,
PPP1R37,
NWD1,
PRDM7,
PQLC1

Positive
regulation of
cell
proliferation
positive
regulation of
cell-cell
adhesion
positive
regulation of T
cell activation
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degranulation, signal
regulatory protein
(SIRP) family
interactions

ZD
H
H
C
11

rs
52
81
16
43
5

p.
R
27
6P

Cerebellu
m, testis,
pituitary
gland

N/A

Reduced
circulating IL6
levels in
response to
LPS and
D-galactosami
ne or HSV-1

N/A N/A N/A N/A

ZNF30,
ZNF181,
ZDHHC23,
TPPP,
CLPTM1L,
SLCA18,
ZDHHC13

N/A

K
N
TC

1

rs
14
17
67
24
1

p.
A
10
83
T Testis,

spleen,
small
intestine

Cerebral
cortex,
parathyroid
gland,
adrenal
gland, lung,
stomach

N/A N/A

Cell cycle, cell cycle,
mitotic, M Phase,
mitotic anaphase,
mitotic metaphase and
anaphase, mitotic
prometaphase,
resolution of sister
chromatid cohesion,
RHO GTPase
effectors, RHO
GTPases activate
formins, separation of
sister chromatids,
signal transduction,
signaling by Rho
GTPases

N/A N/A

BUB1B,
BUB1,
CDK1,
ZWILCH,
KIF11,
ASPM,
CDCA8,
CENPF,
ZW10,
MAD2L1

Mitotic cell
cycle
checkpoint

M
AN
F

rs
54
56
61
73
5

p.
A
13
V

Thyroid
gland,
pituitary
gland,
spleen

Cerebellum,
hippocampu
s, caudate,
thyroid
gland

KO affects de
novo protein
synthesis in
differentiating
neuronal stem
cells and
pancreatic beta
cells,
disrupting the
migration and
neurite growth
of developing
cortical
neurons and
causing severe
growth

N/A

Hemostasis, platelet
activation, signaling
and aggregation,
platelet degranulation,
response to elevated
platelet cytosolic
Ca2+

N/A N/A

HSPA5,
PDIA4,
SOD1,
HABP4,
ANXA5,
HSP90B1,
HYOU1,
CRELD2,
DNAJB11

dopaminergic
neuron
differentiation
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retardation and
hyperglycemia
.

A
H
N
A
K
2

rs
77
68
30
61
1

p.
D
15
40
H Skin,

colon,
cervix,
uterine

Cerbral
cortex, oral
mucosa,
esophagus,
testis,
vagina

N/A Salmonella infection
- hsa05132 N/A Episodic Ataxia Episodic Ataxia

AHNAK,
MYOF,
ANXA2,
S100A10,
CAV1,
CACNA1S,
ACTN1,
PDAP1,
ZNF280B,
FER1L6

N/A

EI
F2
A

rs
56
18
39
83
5

p.
A
14
3V Cerebellu

m, cervix
(uterine)

Testis,
endometriu
m, skin

No visible
phenotypes N/A N/A N/A N/A

EIF2S1,
EIF2S2,
EIF2AK2,
STAT1,
TGFB1,
TGFB3,
EIF3B,
EIF2S3L,
EIF2S3

Regulation of
translation
ribosome
assembly

K
LH

L3
5

.

p.
R
17
9C

Testis,
basal
ganglia,
hypothala
mus

Testis N/A N/A N/A N/A N/A

ATP5G2,
CORO6,
QPCT,
ZSCAN18,
CCDC8,
SCUBE3,
SPDYA,
CNN2,
ALAS1,
DLEC

N/A

FA
M
14
9B

1

rs
37
70
21
87
7

p.
I1
49
M

Spinal
cord,
midbrain,
hippocam
pal
formation
,
amygdala,
basal
ganglia,
hypothala

Parathyroid
gland,
adrenal
gland,
bronchus

N/A N/A N/A

Orofaciodigital
Syndrome Vi,
Spinocerebellar
Ataxia 29

Joubert Syndrome
36

DNAJC9,
CFAP20,
TBC1D32,
DHX29,
SCAF11,
PROM2,
OTUD5,
SSH2,
FFRS1L,
C21ORF62

N/A
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mus
C
X
3C

R
1

rs
13
79
47
37
0

p.
A
31
3V

Spinal
cord,
midbrain,
hypothala
mus,
spleen,
amygdala,
basal
ganglia

Caudate,
adrenal
gland, lung

Impaired
monocyte
recruitment
after vascular
injury, kidney
ischemia and
reperfusion

N/A

Chemokine receptors
bind chemokines,
Class A/1
(Rhodopsin-like
receptors), GPCR
ligand binding,
peptide ligand-binding
receptors, signal
transduction, signaling
by GPCR

Macular
Degeneration,
Age-Related,
Human
Immunodeficiency
Virus Type 1

Macular
Degeneration,
Age-Related

CCL22,
CX3CL1,
CXCL12,
CXCL1,
CCL5,
CCL21,
CCL26,
CCL2,
CCL3,
ITGAM

N/A

SA
LL

3

rs
15
07
07
15
2

p.
R
10
12
Q

Vagina,
spinal
cord,
prostate,
basal
ganglia,
amygdala,
hypothala
mus,
cerebral
cortex

N/A

Neonatal
lethality with
an impaired
suckling
ability,
truncated soft
palate, small
epiglottis, and
abnormal
cranial nerve
morphology

N/A N/A

Ureteral Benign
Neoplasm,
Chromosome 18q
Deletion Syndrome

N/A

NANOG,
SOX2,
POU5F1,
DNMT3A,
COQ2,
CD38,
RBFA,
HHLA,
NOX3,
ABCD4

N/A

M
ZF

1

.

p.
S7
21
R

Thyroid
gland,
cerebellu
m,
fallopian
tube

Cerebral
cortex,
hippocampu
s, caudate,
parathyroid
gland,
adrenal
gland

Late-onset (>2
yr) neoplasias
characterised
by infiltration,
enlargement
and disruption
of the liver by
monomorphic
cells

N/A N/A N/A Inflammatory Bowel
Disease 27

HELT,
MGARP,
TERT,
PKD2L2,
CCBE1,
PLVAAP,
FOXL1,
GGH,
GMFG

Negative
regulation of
transcription
from RNA
polymerase II
promoter
regulation of
transcription,
DNA-template
d
positive
regulation of
transcription
from RNA
polymerase II
promoter
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A
H
N
A
K
2

rs
11
85
20
16

p.
P1
71
1L Skin,

colon,
cervix,
uterine

Cerbral
cortex, oral
mucosa,
esophagus,
testis,
vagina

N/A Salmonella infection
- hsa05132 N/A Episodic Ataxia Episodic Ataxia

AHNAK,
MYOF,
ANXA2,
S100A10,
CAV1,
CACNA1S,
ACTN1,
PDAP1,
ZNF280B,
FER1L6

N/A

ZN
F4
18

rs
20
13
09
44
8

p.
R
66
7G

Parathyro
id gland,
skin,
thyroid
gland,
cerebral
cortex

Adrenal
gland,
nasopharyn
x, bronchus,
salivary
gland

Aortic
banding-induc
ed cardiac
hypertrophy
and fibrosis

N/A
Gene expression,
generic transcription
pathway

Ovarian Squamous
Cell Carcinoma N/A

CCDC183,
POTEJ,
PPP1R37,
POTEI,
NWD1,
ALG1L,
TRIM61,
KIAA1549
L, PQLC1,
PRDM7

N/A

IL
3R

A

rs
77
68
12
93
3

p.
S9
1C

Lung,
adipose
tissue,
breast

Cerebral
cortex,
fallopian
tube

N/A N/A N/A Hairy Cell
Leukemia N/A

IL3,
STAT5A,
STAT5B,
PTPN11,
JAK2,
CSF2RB,
GRB2,
CSF2,
INPP5D

N/A

N
PH

P3

rs
11
33
64
88
6

p.
F1
32
4S

Cervix
(uterine),
fallopian
tube,
ovary,
endometri
um,
urinary
bladder

Cerebral
cortex,
Cerebellum,
Testis,
Ovary,
Heart
Muscle

Kidney cysts,
enlarged
kidneys,
increased
blood urea
nitrogen,
kidney
inflammation
and associated
fibrosis, and
premature
death

N/A

ARL13B-mediated
ciliary trafficking of
INPP5E, Cargo
trafficking to the
periciliary membrane,
Trafficking of
myristoylated proteins
to the cilium, VxPx
cargo-targeting to
ciliumBBSome-media
ted cargo-targeting to
cilium

Meckel Syndrome,
Type 7,
Nephronophthisis 3,
Renal-Hepatic-Panc
reatic Dysplasia 1

Nephronophthisis 3

NEK8,
NPHP1,
INVS,
TMEM67,
NEK9,
NPHP3,
ARL3,
NPHP4,
CYS1,
UNC119B,
UNC1119

Kidney
development
heart looping
atrial septum
development
determination
of left/right
symmetry
lung
development
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Appendix H: Primer sequences designed for Sanger sequencing
G
en
e
Sy
m
bo
l

Pr
im
er
pa
ir

Te
m
pl
at
e

se
qu
en
ce

(5
’-
>
3’
)

Te
m
pl
at
e
st
ra
nd

Le
ng
th
(b
p)

St
ar
t

(g
en
om

ic
lo
ca
tio
n)

St
op

(g
en
om

ic
lo
ca
tio
n)

Tm
( ℃

)

G
C
(%

)

Se
lf-

co
m
pl
em

en
ta
rit
y

Se
lf

-
3’

co
m
pl
em

en
ta
rit
y

Pr
od
uc
t

le
ng
th

(b
p)

DNAH5 Forward Primer: AGGGCAGGGAACTTCAAAG
C

Plus 20 13776498 13776517 60.54 55.00 5.00 3.00 169

Reverse Primer: ATAGCGACCTGGCATCAGTC Minus 20 13776666 13776647 59.61 55.00 3.00 2.00
NPHP3 Forward Primer: ACTAACCTGTCCCTCATAAA

GAC
Plus 23 132684456 132684478 57.32 43.48 3.00 2.00 288

Reverse Primer: AGGACCAGATCACCCTGACT Minus 20 132684743 132684724 59.58 55.00 4.00 3.00
DNAH10 Forward Primer: TCAACTTTTCACCGGCTCTC Plus 20 - - 60.40 50.00 0.00 N/a 209

Reverse Primer: CTTTTGGAGGGGTCCTCAAT Minus 20 - - 60.30 50.00 3.00 N/a
FRMD4B Forward Primer: GCAAAAGGGGAATCTGTCC

CTA
Plus 22 69196855 69196876 60.03 50.00 4.00 2.00 157

Reverse Primer: GCAAAGTGGCTTGTTTGTGC Minus 20 69197011 69196992 59.35 50.00 4.00 2.00
DAAM2 Forward Primer: GATGAACAACTCCCAGGGG

C
Plus 20 39867633 39867652 60.68 60.00 5.00 2.00 129

Reverse Primer: CACACAGCACCCAGGATCTC Minus 20 39867761 39867742 60.39 60.00 4.00 2.00
CLSTN2 Forward Primer: ACTGACTGCACCTGATTCAC Plus 20 140448473 140448492 57.82 50.00 5.00 3.00 209

Reverse Primer: TCAGAGTAGGTCTCCCGGTC Minus 20 140448681 140448662 59.74 60.00 4.00 1.00
STAC Forward Primer: CAGCGAACCAACAGCGAAG

A
Plus 20 36443436 36443455 61.22 55.00 2.00 0.00 260

Reverse Primer: CTCACTCAGCTTTCCGGGG Minus 19 36443695 36443677 60.08 63.16 4.00 2.00
CLSTN2 Forward Primer: CAGCCCCTGATGAGCATTTG Plus 20 140566012 140566031 59.26 55.00 4.00 2.00 233

Reverse Primer: GAGGGTGGAGTCATCCCACT Minus 20 140566244 140566225 60.62 60.00 5.00 3.00
MRE11 Forward Primer: TTCCCACTGTCAATTTGTTTA

AGA
Plus 24 - - 59.90 33.30 5.0 3.0 211

Reverse Primer: AAATTTGTGGATCGGGTAGC Minus 20 - - 58.90 45.00 6.0 2.0
CD47 Forward Primer: AGAAAGATGACTCTTACCCG

CA
Plus 22 108058320 108058341 59.17 45.45 5.00 0.00 101

Reverse Primer: TAACCTCCTTCGTCATTGCC
A

Minus 21 108058420 108058400 59.37 47.62 3.00 3.00

ZDHHC11 Forward Primer: GGAGCAGAGAGACAGGTGG
TA

Plus 21 837343 837363 60.62 57.14 2.00 2.00 183
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Reverse Primer: CCGCAGGGCTGGTATCTTGT Minus 20 837525 837506 62.26 60.00 4.00 0.00
KNTC1 Forward Primer: AACAAGAGCTGGAGGCAGA

G
Plus 20 122582910 122582929 59.68 55.00 4.00 0.00 106

Reverse Primer: GCTATGCAATTCAGGGATCT
GG

Minus 22 122583015 122582994 59.18 50.00 4.00 0.00

MANF Forward Primer: AGGAGGAGGAGGATGAGGA
G

Plus 20 - - 59.80 60.00 2.00 0.00 188

Reverse Primer: TGGTGATGTTGTGGGGTTC Minus 19 - - 60.20 52.60 2.00 0.00
AHNAK2 Forward Primer: CCTCTGGGAGTTTCACGTCC Plus 20 104950761 104950780 60.04 60.00 4.00 3.00 154

Reverse Primer: GAGGCCTCAGTGGATGTGTC Minus 20 104950914 104950895 60.11 60.00 8.00 1.00
EIF2A Forward Primer: AGGTGTCCATCCTGGTCAGA Plus 20 - - 60.50 55.00 5.00 3.00 180

Reverse Primer: CAGTATTTAGGAAAACCCTA
TGATGTC

Minus 27 - 59.60 37.00 4.00 2.00

KLHL35 Forward Primer: TTCAAACACGGCCTCCTCG Plus 19 75429976 75429994 60.30 57.89 4.00 2.00 232
Reverse Primer: CTGCGTGCGCTTTCTCG Minus 17 75430207 75430191 59.55 64.71 4.00 2.00

FAM149B1 Forward Primer: TTGTATGTATGCCAGTGAAG
GTACT

Plus 25 73193422 73193446 59.81 40.00 4.00 2.00 128

Reverse Primer: GGAAACAGCAGAAGGGGAT
CT

Minus 21 73193549 73193529 59.72 52.38 4.00 2.00

CX3CR1 Forward Primer: AGAACACTTCCATGCCTGCT Plus 20 39265497 39265516 59.60 50.00 4.00 0.00 186
Reverse Primer: TGTGACTGAGACGGTTGCAT Minus 20 39265682 39265663 59.61 50.00 4.00 2.00

SALL3 Forward Primer: GAAATCCACTACCGCAGCCA Plus 20 78994968 78994987 60.39 55.00 3.00 0.00 123
Reverse Primer: AGGCAGCTCTTTCAATCTGT

GT
Minus 22 78995090 78995069 60.22 45.45 4.00 0.00

MZF1 Forward Primer: GGAGCTACTCGGCGCTGT Plus 18 58562068 58562085 61.83 66.67 4.00 2.00 108
Reverse Primer: GCACCCACCGACGAGAGAA

G
Minus 20 58562175 58562156 62.82 65.00 3.00 0.00

AHNAK2 Forward Primer: AAACTGGGCATCTGCACCTT Plus 20 104950205 104950224 60.18 50.00 4.00 2.00 186
Reverse Primer: GGTGGAAGCTGATGTGAGC

C
Minus 20 104950390 104950371 61.03 60.00 4.00 2.00

ZNF418 Forward Primer: TCCCACGTTTGTCACACTCA Plus 20 57926052 57926071 59.46 50.00 5.00 1.00 288
Reverse Primer: TCGAGGAAAGCCTTACGAGT Minus 20 57926339 57926320 58.46 50.00 5.00 2.00

IL3RA Forward Primer: CAACTACACCGTCCGAGTGG Plus 20 1348484 1348503 60.39 60.00 4.00 3.00 105
Reverse Primer: GGGAGGGAATAGAGAATAA

ACAAAC
Minus 25 1348588 1348564 57.43 40.00 2.00 0.00

NPHP3 Forward Primer: TGCAAAGAATTCTAACTGCT
GCT

Plus 23 132681886 132681908 59.18 40.13 8.00 2.00 114

Reverse Primer: GCTCCTTCACGCCATTCATC Minus 20 132681999 132681980 59.34 55.00 2.00 0.00
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Appendix I: MANF analysis figures

A] Dataset identifiers

B] Multiple sequence alignment of the MANF protein obtained from ConSurf

The red bar outlines the 13th residue (Alanine in H.sapiens) across the first 35 homologous sequences from
different species.

Gene
Symbol

dbSNP ID AA
change

Protein Sequence

MANF rs545661735 p.A13V MRRMWATQGLAVALALSVLPGSRALRPGDCEV
CISYLGRFYQDLKDRDVTFSPATIENELIKFCREA
RGKENRLCYYIGATDDAATKIINEVSKPLAHHIP
VEKICEKLKKKDSQICELKYDKQIDLSTVDLKKL
RVKELKKILDDWGETCKGCAEKSDYIRKINELM
PKYAPKAASARTDL

https://etd.uwc.ac.za/
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C] Theoretical structures of the wildtype and mutant protein produced by Robetta

[A]- wildtype protein and [B]- variant protein.

D] Polar contacts of the wildtype and mutant protein

The pink helix is the wildtype protein (residue 13; Alanine) and the blue helix is the variant.protein (residue 13:
Valine).

A

B
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Appendix J: ACMG classification of p.A13V in MANF

https://etd.uwc.ac.za/
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