COMPUTATION OF THE CHARACTER TABLES OF CERTAIN GROUP EXTENSIONS

C. JAMES

Mini-thesis submitted in partial fulfilment of the requirements for the degree of M.Sc. in the Department of Mathematics and Applied Mathematics, University of the Western Cape.

Promoter: Prof. R.L. FRAY

JUNE 1997

Acknowledgement

All praise and glory to God, our Almighty Father. Through His grace this thesis was completed. I thank the FRD for their substantial financial support throughout the entire M.Sc-program.

Professor Roland Fray spearheaded the M.Sc-program of which this thesis forms a part and played a vital role at each stage of writing the thesis. In my reading course with him, I am thankful to have gained so much from his expertise and experience. I deeply appreciate his guidance, inspiration. support and his general contribution towards this thesis and my own mathematical growth.

My deepest appreciation also goes to Professor Jamshid Moori who offered the course in Representation and Character Theory, advised me on various aspects of this work, shown keen interest in my progress and encouraged me whenever we were in contact. Without his contribution, this thesis could not have been possible.

Doctor Andrew Fransman, like professors Fray and Moori, has not only broadened my outlook on and knowledge of Group Theory in the course he offered but also helped a great deal in preparing me for the thesis. So I thank doctor Fransman for sharing some of his knowledge and experience with me.

I shall always remember the hospitality and kindness shown to me by professor Moori and Eugene Mpono during a study visit to the University of Natal. Thanks to them the visit proved to be extremely fruitful and gave me great momentum in completing the thesis. I am very grateful towards Eugene for teaching me about Fischer matrices and for providing me with vital information from Cayley on some of the groups.

I also thank my wife, Sandra and my children, Cindy, Jodi and Amy for their patience, sacrifices and support.

Contents

1 THE CONJUGACY CLASSES OF GROUP EXTENSIONS 2
1.1 Definitions and Basic Results 2
1.2 The Conjugacy Classes of Group Extensions 5
1.3 The Conjugacy Classes of a Group of the Form $2^{3}: G L_{3}(2)$ 9
2 REPRESENTATIONS AND CHARACTERS 14
2.1 Basic Concepts 15
2.2 Restriction and Induction of Characters 28
2.3 Normal Subgroups 37
2.4 The Character Table of a Group of the form $2^{3}: 7$ 42
2.5 The Character Table of a Group of the form $2^{3}: G L_{3}(2)$ 49
2.6 The Character Table of a Group of the form $\left(A_{5} \times 3\right): 2$ 35
3 FISCHER MATRICES 69
3.1 Clifford Theory 69
3.2 Properties of Fischer Matrices 75
3.3 The Character Table of a Group of the form $2^{4}: S_{3} \times S_{3}$ 82
3.4 The character table of a Group of the form $2^{4}: S_{4}$ 102
3.5 The Character Table of a Group the form $2^{4}: S_{3} \times S_{3}$ 112

Chapter 1

THE CONJUGACY CLASSES OF GROUP EXTENSIONS

In this chapter some basic theory on group extensions is first given in section 1.1 and then a method for finding the conjugacy classes of group extensions is described in section 1.2. In section 1.3 we look at an example due to Whitley[19] to illustrate how the theory developed in section 1.2 is used to calculate the conjugacy classes of the group $2^{3}: G L_{3}(2)$. For section 1.1, the books by Rotman[17] and Gorenstein[8] were used as references while for section 1.2 we used the works of Whitley[19], Moori[15], Moori and Mpono[16] and Salleh[18].

1.1 Definitions and Basic Results

Definition 1.1.1 If N and G are groups, an extension of N by G is a group \bar{G} that satisfies the following properties

1. $N \triangleleft \bar{G}$
2. $\bar{G} / N \cong G$.

We say that \bar{G} is a split extension of N by G if \bar{G} contains subgroups N and G_{1} with $G_{1} \cong G$ such that

1. $N \triangleleft \bar{G}$
2. $N G_{1}=\bar{G}$
3. $N \cap G_{1}=1_{\bar{G}}$

In this case \bar{G} is also called a semi-direct product of N by G, and we identify G_{1} with G.

Note 1 If \bar{G} is a semi-direct product of N by G, then every $\bar{g} \in \bar{G}$ can be uniquely expressed in the form $\bar{g}=n g$, where $n \in N$ and $g \in G$. Multiplication in \bar{G} satisfies $\left(n_{1} g_{1}\right)\left(n_{2} g_{2}\right)=n_{1} n_{2}^{g_{1}} g_{1} g_{2}$, where n^{g} denotes $g n g^{-1}$.

Definition 1.1.2 The automorphism group of a group G, denoted by $A u t(G)$, is the set of all automorphisms of G under the binary operation of composition.

If \bar{G} is a split extension of N by G, then there is a homomorphism $\theta: G \rightarrow \operatorname{Aut}(N)$ given by $\theta_{g}(n)=g n g^{-1}=n^{g}(n \in N, g \in G)$, where we denote $\theta(g)$ by θ_{g}. Thus G acts on N, and we say that the extension \bar{G} realizes θ.

Conversely, given any groups N and G, and $\theta: G \rightarrow \operatorname{Aut}(N)$, we can define a semi-direct product of N by G that realizes θ as follows. Let \bar{G} be the set of ordered pairs $(n, g)(n \in N, g \in G)$ with
multiplication $\left(n_{1}, g_{1}\right)\left(n_{2}, g_{2}\right)=\left(n_{1} \theta_{g_{1}}\left(n_{2}\right), g_{1} g_{2}\right)$. Then \bar{G} is a semi-direct product of N by G.

Hence a split extension of N by G is completely described by the map $\theta: G \rightarrow \operatorname{Aut}(N)$, that is, it is described by the way G acts on N.

We use the ATLAS [3] notation and let N.G denote an arbitrary extension of N by G. A split extension is denoted by $N: G$ or $N:{ }^{\theta} G$, where $\theta: G \rightarrow \operatorname{Aut}(N)$ determines the extension. A non-split extension is denoted by $N \cdot G$.

If \bar{G} is a split extension of N by G, then $\bar{G}=N G=\bigcup_{g \in G} N g$, so G may be regarded as a right transversal for N in \bar{G} (that is, a complete set of right coset representatives of N in \bar{G}). Now suppose \bar{G} is any extension of N by G, not necessarily split. Since $\bar{G} / N \cong G$, there is an epimorphism $\lambda: \bar{G} \rightarrow G$ with kernel N. For $g \in G$, define a lifting of g to be an element $\bar{g} \in \bar{G}$ such that $\lambda(\bar{g})=g$. Then choosing a lifting of each element of G, we get the set $\{\bar{g}: g \in G\}$ which is a transversal for N in \bar{G}.

We now show that even for a non-split extension \bar{G} of N by G, where N is abelian, G acts on N. This result can be obtained from Rotman[17].

Lemma 1.1.3 Let \bar{G} be an extension of an abelian group N by G, then there is a homomorphism $\theta: G \rightarrow \operatorname{Aut}(N)$ such that $\theta_{g}(n)=\bar{g} n \bar{g}^{-1}(n \in N)$, and θ is independent of the choice of liftings $\{\bar{g}: g \in G\}$.
Proof: For $a \in \bar{G}$, denote conjugation by a by γ_{a}. Since N is normal in $\bar{G},\left.\gamma_{a}\right|_{N}$ is an automorphism of N and the function $\mu: \bar{G} \rightarrow \operatorname{Aut}(N)$ defined by $\mu(a)=\left.\gamma_{a}\right|_{N}$ is a homomorphism.

If $a \in N$, then $\mu(a)=1_{N}$, since N is abelian. Therefore there is a homomorphism $\mu^{*}: \bar{G} / N \rightarrow$ $\operatorname{Aut}(N)$ defined by $\mu^{*}(N a)=\mu(a)$.

Now $G \cong \bar{G} / N$ and for any lifting $\{\bar{g}: g \in G\}$, the map $\phi: G \rightarrow \bar{G} / N$ defined by $\phi(g)=N \bar{g}$ is an isomorphism. If $\{\bar{h}: h \in G\}$ is another choice of liftings, then $\bar{g} \bar{h}^{-1} \in N$ so that $N \bar{g}=N \bar{h}$. Therefore the isomorphism ϕ is independent of the choice of liftings. Now let $\theta: G \rightarrow \operatorname{Aut}(N)$ be the composite $\mu^{*} \circ \phi$. If $g \in G$ and \bar{g} is a lifting, then $\theta(g)=\mu^{*}(\phi(g))=\mu^{*}(N \bar{g})=\mu(\bar{g}) \in \operatorname{Aut}(N)$, so for $n \in N, \theta_{g}(n)=\mu(\bar{g})(n)=\bar{g} n \bar{g}^{-1}=n^{\bar{g}}$, as required.

Note 2 Let \bar{G} be an extension of an abelian group N by G. For each $g \in G$ we choose a lifting $\bar{g} \in \bar{G}$, and for convenience we take $\overline{1}=1$. We identify G with \bar{G} / N under the isomorphism $g \rightarrow N \bar{g}$. Now $\{\bar{g}: g \in G\}$ is a right transversal for N in \bar{G}, so every element $h \in \bar{G}$ has a unique expression of the form $h=n \bar{g}(n \in N, g \in G)$, and we have the following relations.

1. $\bar{g} n=n^{\bar{g}} \bar{g}$, where $n \in N$ and $g \in G$.
2. $\bar{g} \bar{h}=f(g, h) \overline{g h}$ for some $f(g, h) \in N$, where $g, h \in G$.

1.2 The Conjugacy Classes of Group Extensions

Let $\bar{G}=N . G$, where N is abelian. Then for each conjugacy class $[g]$ in G with representative $g \in G$, we analyse the coset $N \bar{g}$, where \bar{g} is a lifting of g in \bar{G} and $\bar{G}=\bigcup_{g \in G} N \bar{g}$. To each class representative $g \in G$ with lifting $\bar{g} \in \bar{G}$, we define

$$
C_{g}=\{x \in \bar{G}: x(N \bar{g})=(N \bar{g}) x\} .
$$

Then C_{g} being the set stabilizer of $N \bar{g}$ in \bar{G} under the action by conjugation of \bar{G} on $N \bar{g}$, is a subgroup of \bar{G}. The following lemmas and their proofs due to Whitley[19] and Moori and Mpono[16] will be required in the next section .

Lemma 1.2.1 $N \triangleleft C_{g}$.
Proof: For any $n \in N$

$$
n(N \bar{g}) n^{-1}=N \bar{g} n^{-1}=N \bar{g} n^{-1} \bar{g}^{-1} \bar{g}=N \bar{g},
$$

the last step following from the fact that $\left(n^{-1}\right)^{\bar{g}} \in N$ since $N \triangleleft \bar{G}$.
Hence $N \subseteq C_{g}$. From $N \leq C_{g} \leq \bar{G}$ and $N \triangleleft \bar{G}$, we obtain $N \triangleleft C_{g}$.

Lemma 1.2.2 $C_{g} / N=C_{\bar{G} / N}(N \bar{g})$.
Proof: Consider $N k \in \bar{G} / N$. Then

$$
\begin{aligned}
N k \in C_{\bar{G} / N}(N \bar{g}) & \Longleftrightarrow N k(N \bar{g})(N k)^{-1}=N \bar{g} \\
& \Longleftrightarrow N k N \bar{g} N k^{-1}=N \bar{g} \\
& \Longleftrightarrow N k N \bar{g} k^{-1}=N \bar{g} \\
& \Longleftrightarrow N k N n \bar{g} k^{-1}=N \bar{g} \quad \forall n \in N \\
& \Longleftrightarrow N k n \bar{g} k^{-1}=N \bar{g} \quad \forall n \in N \\
& \Longleftrightarrow k n \bar{g} k^{-1} \in N \bar{g} \quad \forall n \in N \\
& \Longleftrightarrow k \in C_{g} .
\end{aligned}
$$

Thus we obtain that $C_{g} / N=C_{\bar{G} / N}(N \bar{g})$.

From the two preceding lemmas, we have that $C_{g}=N \cdot C_{\bar{G} / N}(N \bar{g})$. For a lifting $\bar{g} \in \bar{G}$ of $g \in G$, we can identify $C_{\bar{G} / N}(N \bar{g})$ with $C_{G}(g)$ and write $C_{g}=N . C_{G}(g)$ in general. If $\bar{G}=N: G$ then we can identify C_{g} with $C_{g}=\{x \in \bar{G}: x(N g)=(N g) x\}$ and in this case we obtain the following corollary.

Corollary 1.2.3 Let $\bar{G}=N: G$. Then $C_{g}=N: C_{G}(g)$.
Proof: We have already shown in the Lemma 1.2.1 that $N \triangleleft C_{g}$. Now we show that $C_{G}(g) \leq C_{g}$ and that $N \cap C_{G}(g)=\left\{1_{G}\right\}$. Let $x \in C_{G}(g)$. Then we obtain $(N g)^{x}=x(N g) x^{-1}=x N g x^{-1}=$ $N x g x^{-1}=N g$. Thus $x \in C_{g}$ and hence $C_{G}(g) \leq C_{g}$. Since $N \cap C_{G}(g) \leq N \cap G=\left\{1_{G}\right\}$, then
we have that $N \cap C_{G}(g)=\left\{1_{G}\right\}$. This completes the proof.

The conjugacy classes of \bar{G} will be determined by the action by conjugation of C_{g}, for each conjugacy class $[g]_{G}$ of G, on the elements of $N \bar{g}$ or in the case of a split extension on the elements of $N g$. Since $C_{g}=N: C_{G}(g)$, we act first N and then act $\left\{\bar{h}: h \in C_{G}(g)\right\}$ on the elements of $N \bar{g}$. The outline of this action is given in two steps by Moori and Mpono [16,page 5] as follows:
STEP 1: The action of N on $N \bar{g}$:

Let $C_{N}(\bar{g})$ be the stabilizer of \bar{g} in N. Then for any $n \in N$ we have

$$
\begin{aligned}
x \in C_{N}(n \bar{g}) & \Leftrightarrow x(n \bar{g}) x^{-1}=n \bar{g} \\
& \Leftrightarrow x n x^{-1} x \bar{g} x^{-1}=n \bar{g} \\
& \Leftrightarrow n\left(x \bar{g} x^{-1}\right)=n \bar{g}, \quad \text { since } N \text { is abelian } \\
& \Leftrightarrow x \bar{g} x^{-1}=\bar{g} \\
& \Leftrightarrow x \in C_{N}(\bar{g}) .
\end{aligned}
$$

Thus $C_{N}(\bar{g})$ fixes every element of $N \bar{g}$. Now let $\left|C_{N}(\bar{g})\right|=k$. Then under the action of $N, N \bar{g}$ splits into k orbits $Q_{1}, Q_{2}, \ldots, Q_{k}$, where

$$
\begin{aligned}
\left|Q_{i}\right| & =\left[N: C_{N}(\bar{g})\right] \\
& =\frac{|N|}{k}, \quad \text { for } i \in\{1, \ldots, k\} .
\end{aligned}
$$

STEP 2: The action of $\left\{\bar{h}: h \in C_{G}(g)\right\}$ on $N \bar{g}$

Since the elements of $N \bar{g}$ are now in the orbits Q_{1}, \ldots, Q_{k} from step 1 above, we need only to act $\left\{\bar{h}: h \in C_{G}(g)\right\}$ on the k orbits. Suppose that under this action f_{j} of the orbits Q_{1}, \ldots, Q_{k} fuse together to form one orbit Δ_{l}, then the $f_{j}^{\prime} s$ obtained this way must satisfy
$\sum_{j} f_{j}=k$
and we have
$\left|\Delta_{l}\right|=f_{j} \times \frac{|N|}{k}$
Thus for $x=d_{l} \bar{g} \in \Delta_{l}$, we obtain that

$$
\begin{aligned}
\left|[x]_{\bar{G}}\right| & =\left|\Delta_{l}\right| \times\left|[g]_{G}\right| \\
& =f_{j} \times \frac{|N|}{k} \times \frac{|G|}{\left|C_{G}(g)\right|} \\
& =f_{j} \times \frac{|\bar{G}|}{k\left|C_{G}(g)\right|}
\end{aligned}
$$

and thus we obtain that

Thus to calculate the conjugacy classes of $\bar{G}=N . G$, we need to find the values of k and the $f_{j}^{\prime} s$ for each class representative $g \in G$. We note that the values of k can be determined from the action of G on N (given in lemma 1.1.3). If $\bar{G}=N: G$ (a split extension) however, we analyse the coset $N g$ instead of $N(\bar{g})$ since in the split case $G \leq \bar{G}$. Under the action of N on $N g$, we always assume that $g \in Q_{1}$. Since $C_{G}(g)$ fixes g, Q_{1} does not fuse with any other Q_{i}. Hence we will always have that $f_{1}=1$. Hence

$$
\begin{aligned}
k & =\sum_{j} f_{j} \\
& =1+\sum_{m} f_{m}
\end{aligned}
$$

where the sum is taken over all m such that $g \notin Q_{m}$.

We now apply the method described in the Step 1 and Step 2 in the next section.

1.3 The Conjugacy Classes of a Group of the Form

$2^{3}: G L_{3}(2)$

In this section we give the conjugacy classes of the group $\bar{G}=N: G$ where N is an elementary abelian group of order 8 and $G \cong G L_{3}(2)$, as calculated by Whitley[19], where G acts naturally on N .

We regard N as the vector space $V_{3}(2)$ of dimension three over a field of two elements. Let N be generated by $\left\{e_{1}, e_{2}, e_{3}\right\}$ with $e_{i}^{2}=1$ for $1 \leq i \leq 3$, so

$$
N=\left\{1, e_{1}, e_{2}, e_{3}, e_{1} e_{2}, e_{1} e_{3}, e_{2} e_{3}, e_{1} e_{2} e_{3}\right\}
$$

To determine the conjugacy classes of \bar{G} we analyse the cosets $N g$ where g is a representative of a class of G. (Note that the extension is split, so $\bar{G}=\bigcup_{g \in G} N g$). Now

$$
\left|C_{\bar{G}}(x)\right|=\frac{k \cdot\left|C_{G}(g)\right|}{f_{j}},
$$

where f_{j} of the k blocks of the coset $N g$ have fused to give a class of \bar{G} containing x. We need the conjugacy classes of G, so we exhibit it here (obtained from ATLAS [3]).

class	$(1 \mathrm{~A})$	$(2 \mathrm{~A})$	$(3 \mathrm{~A})$	$(4 \mathrm{~A})$	$(7 \mathrm{~A})$	$(7 \mathrm{~B})$
centralizer	168	8	3	4	7	7

Table 1.3.1: The conjugacy table of $G L_{3}(2)$.

The representatives thus must come from the classes mentioned in the table above:

- $\underline{g=1} 1_{G}:$

For g the identity of G, g fixes all elements of N, so $\mathrm{k}=8$. Since G is transitive on $N-\{1\}$ under the action of $C_{G}(g)=G$, we have two orbits with $f_{1}=1$ and $f_{2}=7$, so this coset gives two classes of \bar{G} :
$x=1, \operatorname{class}(1), \quad\left|C_{\bar{G}}(x)\right|=8 \times 168=1344$
$x=e_{1}, \operatorname{class}\left(2_{1}\right), \quad\left|C_{\bar{G}}(x)\right|=\frac{8 \times 168}{7}=192$

- $g \in(2 A):$

We take

$$
g=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

with $\left|C_{G}(g)\right|=8$. The action of g on N is represented by the cycle structure

$$
(1)\left(e_{1}\right)\left(e_{1} e_{2} e_{3}\right)\left(e_{2} e_{3}\right)\left(e_{2} e_{3}\right)\left(e_{1} e_{2} e_{1} e_{3}\right), \text { so } k=4
$$

The four orbits of N on $N g$ are $\left\{g, e_{2} e_{3} g\right\},\left\{e_{1} g, e_{1} e_{2} e_{3} g\right\},\left\{e_{2} g, e_{3} g\right\}$ and $\left\{e_{1} e_{2} g, e_{1} e_{3} g\right\}$.

Now we act

$$
C_{G}(g)=\left\langle\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\right\rangle
$$

on these orbits.

For $e g \in N g, h \in C_{G}(g),(e g)^{h}=e^{h} g^{h}=e^{h} g$ so we obtain the following orbits:
$\left\{g, e_{2} e_{3} g\right\}^{C_{G}(g)}=\left\{g, e_{2} e_{3} g\right\},\left\{e_{1} g, e_{1} e_{2} e_{3} g\right\}^{C_{G}(g)}=\left\{e_{1} g, e_{1} e_{2} e_{3} g\right\},\left\{e_{2} g, e_{3} g\right\}^{C_{G}(g)}$
$=\left\{e_{2} g, e_{3} g, e_{1} e_{2} g, e_{1} e_{3} g\right\}$

Therefore we get three classes of \bar{G} :
$f_{1}=1, x=g, \operatorname{class}\left(2_{2}\right), \quad\left|C_{\bar{G}}(x)\right|=4 \times 8=32 ;$
$f_{2}=1, x=e_{1} g, \operatorname{class}\left(2_{3}\right), \quad\left|C_{\bar{G}}(x)\right|=32 ;$
$f_{3}=2, x=e_{2} g, \operatorname{class}\left(4_{1}\right), \quad\left|C_{\bar{G}}(x)\right|=\frac{4 \times 8}{2}=16$.

- $\underline{g \in(3 A):}$

We take

$$
g=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

with $\left|C_{G}(g)\right|=3$. The action of g on N is represented by (1) $\left(e_{1} e_{2} e_{3}\right)\left(e_{1} e_{2} e_{3}\right)\left(e_{1} e_{2} e_{1} e_{3} e_{2} e_{3}\right)$, so $k=2$ which means we must have two blocks. These cannot fuse together under $C_{G}(g)$, since $g^{C_{G}(g)}=\{g\}$. Therefore we have two classes of \bar{G}, with $f_{1}=1$ and $f_{2}=1$:
$x=g, \operatorname{class}\left(3_{1}\right), \quad\left|C_{\bar{G}}(x)\right|=2 \times 3=6 ;$
$x=e_{1} g, \operatorname{class}\left(6_{1}\right), \quad\left|C_{\bar{G}}(x)\right|=6$.

- $g \in(4 A):$

We get two classes of \bar{G} once more:
$x=g, \operatorname{class}\left(4_{2}\right), \quad\left|C_{\bar{G}}(x)\right|=8 ;$
$x=e_{1} g, \operatorname{class}\left(4_{3}\right), \quad\left|C_{\bar{G}}(x)\right|=8$.

- $g \in(7 A):$

For the class $(7 A)$, we have $k=1$, so each coset has just one class in \bar{G}. We thus get the class $\left(7_{1}\right)$ of \bar{G}, with centralizer of order 7 .

- $\underline{g \in(7 B):}$

This case works the same as for the previous class and we obtain class $\left(7_{2}\right)$ of \bar{G}, with centralizer of order 7 .

class of G	$(1 \mathrm{~A})$		$(2 \mathrm{~A})$			$(3 \mathrm{~A})$		$(4 \mathrm{~A})$	$(7 \mathrm{~A})$	$(7 \mathrm{~B})$
class of \bar{G}	(1)	$\left(2_{1}\right)$	$\left(2_{2}\right)$	$\left(2_{3}\right)$	$\left(4_{1}\right)$	$\left(3_{1}\right)$	$\left(6_{1}\right)$	$\left(4_{2}\right)$	$\left(4_{3}\right)$	$\left(7_{1}\right)$
centralizer	1344	192	32	32	16	6	6	8	8	7

Table 1.3.2: The conjugacy table of $2^{3}: G L_{3}(2)$.

Chapter 2

REPRESENTATIONS AND

CHARACTERS

Two ways of approaching representation and character theory are through the use of modules on the one hand (for instance, the approach used by James and Liebeck [10]), and through the classical approach used by Feit[5] for example, on the other hand. Our discussion is along the classical approach and for this purpose we follow the class notes of Moori[15].

We give some basic results on the representations and characters of finite groups in this chapter as well as some examples of how these results are used to determine the character tables of some finite groups. In the first section, theorems and lemmas will almost always be stated without proofs. Section 2.2 deals with the relationship between characters of groups and the characters of their subgroups, while in section 2.3 we shall look at the role of normal subgroups in the calculation, of characters of a group. In the last two sections mentioned, only the proofs of the main results (that is those results dealing more directly with the techniques of finding the characters of a group) are given. These proofs are mainly taken from Moori's notes [15]. In the last three sections we calculate the character tables of three group extensions, which are all split extensions.

2.1 Basic Concepts

Definition 2.1.1 Let G be a group. Let $f: G \rightarrow G L_{n}(F)$ be a homomorphism. Then we say that f is a matrix representation of G of degree n (or dimension n), over the field F.

If $\operatorname{Ker}(f)=\left\{1_{G}\right\}$, then we say that f is a faithful representation of G. In this situation $G \cong$ Image (f), so that G is isomorphic to a subgroup of $G L_{n}(F)$.

Definition 2.1.2 Let $f: G \rightarrow G L_{n}(F)$ be a representation of G over the field F. The function $\chi: G \rightarrow F$ defined by $\chi(g)=$ trace $(f(g))$ is called the character of f.

Definition 2.1.3 If $\phi: G \rightarrow F$ is a function from a group G to a field F which is constant on conjugacy classes of G, that is $\phi(g)=\phi\left(x g x^{-1}\right), \forall x \in G$, then ϕ is a class function.

Lemma 2.1.4 A character is a class function.

Proof: See [15, Lemma i. 4]

Definition 2.1.5 Two representations $\rho, \phi: G \rightarrow G L_{n}(F)$ are said to be equivalent if there exists an $n \times n$ matrix P over F such that

$$
P^{-1} \rho(g) P=\phi(g), \quad \forall g \in G
$$

Theorem 2.1.6 Equivalent representations have the same character.

Proof: See [15,Theorem i.5]

Before defining the concepts of reducibility and irreducibility of representations and characters, we need to say what is meant by a reducible and an irreducible set of matrices. If S is a set of matrices, then S is reducible if $\exists m, k \in \mathbb{N}$, and $\exists P \in G L_{n}(F)$ such that $\forall A \in S$ we have

$$
P^{-1} A P=\left(\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right)
$$

where B is an $m \times m$ matrix, D is a $k \times k$ matrix, C is a $k \times m$ matrix and 0 is the zero matrix. If no such P exists, we say that S is irreducible. Furthermore if $C=0 \forall A \in S$, we say that S is fully reducible and if $\exists P \in G L_{n}(F)$ such that

$$
P^{-1} A P=\left(\begin{array}{rrrrr}
B_{1} & 0 & \ldots & \ldots & 0 \\
0 & B_{2} & \ldots & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & B_{k}
\end{array}\right), \forall A \in S
$$

where each B_{i} is irreducible, we say S is completely reducible.

Definition 2.1.7 Let $f: G \rightarrow G L_{n}(F)$ be a representation of G over F and let $S=\{f(g): g \in G\}$. We say that f is reducible, fully reducible, or completely reducible if S is reducible, fully reducible, or completely reducible, respectively.

Definition 2.1.8 If χ_{ρ} is a character afforded by a representation ρ of G, then we say that χ_{ρ} is an irreducible character of G if ρ is an irreducible representation.

Definition 2.1.9 Let $\rho: G \rightarrow G L_{n}(F)$ and $\phi: G \rightarrow G L_{m}(F)$ be two representations of G over F. Define $\rho+\phi: G \rightarrow G L_{n+m}(F) b y$

$$
(\rho+\phi)(g)=\left(\begin{array}{cc}
\rho(g)_{n \times n} & 0_{n \times m} \\
0_{m \times n} & \phi(g)_{m \times m}
\end{array}\right)=\rho(g) \oplus \phi(g), \quad \forall g \in G
$$

Then $\rho+\phi$ is a representation of G over F, of degree $n+m$.

If χ_{1} and χ_{2} are the characters of ρ and ϕ respectively and χ is the character of $\rho+\phi$, then for all $g \in G$ we have $\chi(g)=\chi_{1}(g)+\chi_{2}(g)$.

Theorem 2.1.10 (Maschke's theorem) Let G be a finite group. Let f be a representation of G over a field F whose characteristic is either equal to zero or is a prime that does not divide $|G|$. If f is reducible, then f is fully reducible.

Proof: See [15,Theorem i.6]

Theorem 2.1.11 (The general form of Maschke's theorem)
Let G be a finite group and F be a field whose characteristic is either equal to zero or is a prime that does not divide $|G|$. Then every representation of G over F is completely reducible.

Proof: See [5,(1.1)]

Theorem 2.1.12 (Schur's lemma) Let $\rho: G \rightarrow G L_{n}(F)$ and $\phi: G \rightarrow G L_{m}(F)$ be two representations of a group G over a field F. Assume there exists an $m \times n$ matrix P such that $P \rho(g)=\phi(g) P$ for all $g \in G$. Then either $P=0_{m \times n}$ or P is non-singular so that $\rho(g)=P^{-1} \phi(g) P$ (that is, ρ and ϕ are equivalent representations).

Proof: See [5,(1.2)]

Definition 2.1.13 Let G be a finite group and assume that the characteristic of the field F does not divide $|G|$. If ρ and ϕ are two functions from G into F, we define an innerproduct \langle,$\rangle by the$ following rule:

$$
\langle\rho, \phi\rangle=\frac{1}{|G|} \sum_{g \in G} \rho(g) \phi\left(g^{-1}\right),
$$

where $\frac{1}{|G|}$ stands for $|G|^{-1}$ in F.

Theorem 2.1.14 The innerproduct \langle,$\rangle is bilinear:$
(i) $\left\langle\rho_{1}+\rho_{2}, \phi\right\rangle=\left\langle\rho_{1}, \phi\right\rangle+\left\langle\rho_{2}, \phi\right\rangle$
(ii) $\left\langle\rho, \phi_{1}+\phi_{2}\right\rangle=\left\langle\rho, \phi_{1}\right\rangle+\left\langle\rho, \phi_{2}\right\rangle$
(iii) $\langle a \rho, \phi\rangle=a\langle\rho, \phi\rangle=\langle\rho, a \phi\rangle, \quad \forall a \in F$
and symmetric:

$$
\langle\rho, \phi\rangle=\langle\phi, \rho\rangle
$$

Proof:
(i)

$$
\begin{aligned}
\left\langle\rho_{1}+\rho_{2}, \phi\right\rangle & =\frac{1}{|G|} \sum_{g \in G}\left(\rho_{1}+\rho_{2}\right)(g) \phi\left(g^{-1}\right) \\
& =\frac{1}{|G|} \sum_{g \in G}\left(\rho_{1}(g)+\rho_{2}(g)\right) \phi\left(g^{-1}\right) \\
& =\frac{1}{|G|} \sum_{g \in G}\left(\rho_{1}(g) \phi\left(g^{-1}\right)+\rho_{1}(g) \phi\left(g^{-1}\right)\right), \text { F being an additive abelian group } \\
& =\frac{1}{|G|} \sum_{g \in G} \rho_{1}(g) \phi\left(g^{-1}\right)+\frac{1}{|G|} \sum_{g \in G} \rho_{2}(g) \phi\left(g^{-1}\right) \\
& =\left\langle\rho_{1}, \phi\right\rangle+\left\langle\rho_{2}, \phi\right\rangle
\end{aligned}
$$

(ii) Similar to (i).
(iii)

$$
\begin{aligned}
\langle a \rho, \phi\rangle & =\frac{1}{|G|} \sum_{g \in G}(a \rho)(g) \phi\left(g^{-1}\right) \\
& =\frac{1}{|G|} \sum_{g \in G} a(\rho(g)) \phi\left(g^{-1}\right) \\
& =a \frac{1}{|G|} \sum_{g \in G} \rho(g) \phi\left(g^{-1}\right) \\
& =a\langle\rho, \phi\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\langle a \rho, \phi\rangle & =\frac{1}{|G|} \sum_{g \in G}(a \rho)(g) \phi\left(g^{-1}\right) \\
& =\frac{1}{|G|} \sum_{g \in G} a \rho(g) \phi\left(g^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{|G|} \sum_{g \in G} \rho(g) a \phi\left(g^{-1}\right), \mathrm{F} \text { being a multiplicative abelian group } \\
& =\frac{1}{|G|} \sum_{g \in G} \rho(g)(a \phi)\left(g^{-1}\right) \\
& =\langle\rho, a \phi\rangle
\end{aligned}
$$

To complete the proof, see [15, Theorem i.11].

Note 1 If $\rho: G \rightarrow G L_{n}(\mathbb{C})$ is a representation of a group G, then we denote the (i, j) entry of $\rho(g)$ by $\rho_{i j}(g)$. Hence $\rho_{i j}(g)$ is a map from G into \mathbb{C}.

For the rest of this chapter we shall mean finite groups when mentioning groups, unless explicit exceptions are made and all representations will be over the field \mathbb{C} of complex numbers.

Theorem 2.1.15 Let G be a finite group and let ρ and ϕ be two irreducible representations of G.
(i) If ρ and ϕ are inequivalent, then

$$
\left\langle\rho_{r s}, \phi_{i j}\right\rangle=0, \quad \forall i, j, r, \quad \text { and } s
$$

(ii) $\left\langle\rho_{r s}, \phi_{i j}\right\rangle=\frac{\delta_{i s} \cdot \delta_{j r}}{\operatorname{deg}(\rho)}$.

Proof: See [15, Theorem ii.1]

Theorem 2.1.16 Let G be a finite group and let ρ and ϕ be two irreducible representations of G, with characters χ_{ρ} and χ_{ϕ}.
(i) If ρ and ϕ are equivalent, then

$$
\left\langle\chi_{\rho}, \chi_{\phi}\right\rangle=1
$$

(ii) If ρ and ϕ are not equivalent, then

$$
\left\langle\chi_{\rho}, \chi_{\phi}\right\rangle=0
$$

(iii) $\left\langle\chi_{\rho}, \chi_{\rho}\right\rangle=1$

Proof: See [15, Theorem ii.2]

Theorem 2.1.17 Two representations of a group G are equivalent if and only if they have the same characters.

Proof: See [15,Corollary ii.4]

Lemma 2.1.18 (i) If

$$
\chi=\sum_{i=1}^{k} \lambda_{i} \chi_{i}
$$

where χ_{i} are distinct irreducible characters of a group G and λ_{i} are nonnegative integers, then

$$
\langle\chi, \chi\rangle=\sum_{i=1}^{k} \lambda_{i}^{2}
$$

(ii) If χ is a character of G, then χ is irreducible if and only if $\langle\chi, \chi\rangle=1$.

Proof:

(i)

$$
\begin{aligned}
\langle\chi, \chi\rangle & =\left\langle\sum_{i=1}^{k} \lambda_{i} \chi_{i}, \quad \sum_{j=1}^{k} \lambda_{j} \chi_{j}\right\rangle \\
& =\sum_{i=1}^{k} \lambda_{i} \sum_{j=1}^{k} \lambda_{j}\left\langle\chi_{i}, \chi_{j}\right\rangle \\
& =\sum_{i=1}^{k} \lambda_{i}^{2}\left\langle\chi_{i}, \chi_{i}\right\rangle \\
& =\sum_{i=1}^{k} \lambda_{i}^{2}
\end{aligned}
$$

(ii) By theorem 2.1.7, we have that if χ is irreducible, then $\langle\chi, \chi\rangle=1$.

For the converse, assume that $\langle\chi, \chi\rangle=1$. Let

$$
\chi=\sum_{i=1}^{k} \lambda_{i} \chi_{i}
$$

where χ_{i} are distinct irreducible characters of G and λ_{i} are nonnegative integers, then by (i), we have

$$
\begin{gathered}
\quad \sum_{i=1}^{k} \lambda_{i}^{2}=\langle\chi, \chi\rangle=1 \\
\Rightarrow \quad \lambda_{j}^{2}=1, \text { for some } \quad j=1,2, \ldots, k \\
\quad \text { and } \quad \lambda_{i}^{2}=0 \quad \forall i \neq j .
\end{gathered}
$$

Hence $\lambda_{j}=1$. Thus $\chi=\chi_{j}$ is irreducible.
Note 2 If C_{i} is a conjugacy class of G, then

$$
C_{i^{\prime}}=\left\{g \in G: g^{-1} \in C_{i}\right\}
$$

is also a conjugacy class of G and $C_{i}=C_{i^{\prime}}$ if and only if $g \sim g^{-1}$ for all $g \in C_{i}$.

Theorem 2.1.19 Let $\operatorname{Irr}(G)=\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{k}\right\}$. Then
(i) $\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \chi_{j}(g)=\delta_{i j}, \quad$ (row orthogonality)
(ii) $\quad \sum_{s=1}^{k} \chi_{s}\left(g_{i}\right) \chi_{s}\left(g_{j}\right)=\delta_{i j^{\prime}}\left|C_{G}\left(g_{j}\right)\right|$, (column orthogonality)

Proof: See [15, Theorem ii.17]

Theorem 2.1.20 The number of irreducible characters of a group G equals the number of conjugacy classes of G.

Proof: See [15, Theorem ii.18]

Proposition 2.1.21 Let $G=\langle x\rangle$ be a cyclic group of order n. Let $e^{\frac{2 k \pi i}{n} i}$ be the n-th roots of unity in $\mathbb{C}, k=0,1,2, \ldots, n-1$. Define $\rho_{k}: G \rightarrow \mathbb{C}^{*}$ by

$$
\rho_{k}\left(x^{m}\right)=\left[e^{\frac{2 k \pi_{i}}{n}}\right]^{m} .
$$

For $k=0,1,2, \ldots, n-1, \rho_{k}$ defines the n distinct irreducible representations of G.

Proof: We first show that ρ_{k} is well defined:

Let $\quad x^{m}=x^{m^{\prime}}$, where $\quad m=s n+t, \quad m^{\prime}=s^{\prime} n+t^{\prime}, \quad s, s^{\prime} \in \mathbb{Z}$ and $\quad t, t^{\prime}=0,1,2, \ldots, n-1$. From which we get $x^{t}=x^{t^{\prime}} \Rightarrow t=t^{\prime}$.

If for contradiction, $\left[e^{\frac{2 k \pi}{n} i}\right]^{m} \neq\left[e^{\frac{2 k \pi}{n} i}\right]^{m^{\prime}}$, then we have

$$
\begin{aligned}
{\left[e^{\frac{2 k \pi}{n} i}\right]^{m-m^{\prime}} \neq 1 } & \Rightarrow \quad\left[e^{\frac{2 k \pi}{n} i}\right]^{\left(s-s^{\prime}\right) n}+\left(t-t^{\prime}\right) \neq 1 \\
& \Rightarrow \quad\left[e^{\frac{2 k \pi}{n} i}\right]^{\left(s-s^{\prime}\right) n} \neq 1 \\
& \Rightarrow \quad \rho_{k}\left(x^{\left(s-s^{\prime}\right) n}\right) \neq 1 \\
& \Rightarrow \quad \rho_{k}\left(x^{0}\right) \neq 1 \\
& \Rightarrow \quad\left[e^{\frac{2 k \pi}{n} i}\right]^{0} \neq 1,
\end{aligned}
$$

giving us the contradiction. Hence ρ_{k} is well defined.

Next we show that ρ_{k} is a homomorphism:

$$
\begin{aligned}
\rho_{k}\left(x^{m}\right) \rho_{k}\left(x^{m^{\prime}}\right) & =\rho_{k}\left(x^{t}\right) \rho_{k}\left(x^{t^{\prime}}\right) \\
& =\left[e^{\frac{2 k \pi}{n}}\right]^{t}\left[e^{\frac{2 k \pi}{n}}\right]^{t^{t}} \\
& =\left[e^{\frac{2 k \pi}{n} i}\right]^{t+t^{\prime}} \\
& =\rho_{k}\left(x^{t+t^{\prime}}\right) \\
& =\rho_{k}\left(x^{t} \cdot x^{t^{\prime}}\right) \\
& =\rho_{k}\left(x^{m} \cdot x^{m^{\prime}}\right)
\end{aligned}
$$

So ρ_{k} is a homomorphism and hence a representation.
ρ_{k} is unique:

Let $\rho_{k}=\rho_{k^{\prime}}$ with $k, k^{\prime} \leq n$. Now $\forall g \in\langle x\rangle, \quad g=x^{r}$ where $r=0,1,2, \ldots, n-1$. So we have

$$
\begin{aligned}
\rho_{k}\left(x^{r}\right)=\rho_{k^{\prime}}\left(x^{r}\right) & \Rightarrow\left[e^{\frac{2 k \pi i}{n} i}\right]^{r}=\left[e^{\frac{2 k^{\prime} \pi}{n} i}\right]^{r} \\
& \left.\Rightarrow e^{\left(\frac{2 k \pi \cdot n}{n} i\right.}-\frac{2 k^{\prime} \pi \cdot r \cdot r}{n} i\right) \\
& \Rightarrow e^{\frac{2 \pi . r}{n}\left(k-k^{\prime}\right) i}=1 \\
& \Rightarrow \rho_{\left(k-k^{\prime}\right)}\left(x^{r}\right)=1, \quad \forall r=0,1,2, \ldots, n-1 . \\
& \Rightarrow k-k^{\prime}=0, \text { so that } k=k^{\prime} .
\end{aligned}
$$

Lastly we must show that ρ_{k} is irreducible:
We use lemma 2.1.2.

$$
\begin{aligned}
\left\langle\rho_{k}, \rho_{k}\right\rangle & =\frac{1}{|\langle x\rangle|} \sum_{g \in\langle x\rangle} \rho_{k}(g) \rho_{k}\left(g^{-1}\right) \\
& =\frac{1}{n} \sum_{g \in\langle x\rangle} \rho_{k}\left(g g^{-1}\right) \\
& =\frac{1}{n} \sum_{g \in\langle x\rangle} \rho_{k}\left(1_{\langle x\rangle}\right) \\
& =\frac{1}{n} \sum_{g \in\langle x\rangle} 1_{\mathbb{C}} \\
& =\frac{1}{n} n \\
& =1 .
\end{aligned}
$$

Hence ρ_{k} is irreducible.

This completes the proof of the proposition.

Definition 2.1.22 Let $P=\left(p_{i j}\right)_{m \times m}$ and $Q=\left(q_{i j}\right)_{n \times n}$ be two matrices. Then the $m n \times m n$ matrix $P \otimes Q$ is defined by

$$
P \otimes Q:=\left(p_{i j} Q\right)=\left(\begin{array}{cccccc}
p_{11} Q & p_{12} Q & \ldots & \ldots & \ldots & p_{1 m} Q \\
p_{21} Q & p_{22} Q & \ldots & \ldots & \ldots & p_{2 m} Q \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
p_{m 1} Q & p_{m 2} Q & \ldots & \ldots & \ldots & p_{m m} Q
\end{array}\right)
$$

From this definition, we can show that
$(P \otimes Q)\left(P^{\prime} \otimes Q^{\prime}\right)=\left(P P^{\prime}\right) \otimes\left(Q Q^{\prime}\right) \quad(*):$

$$
\begin{aligned}
(P \otimes Q)\left(P^{\prime} \otimes Q^{\prime}\right) & =\left(\sum_{k=1}^{m} p_{i l} Q p_{l i}^{\prime} Q^{\prime}\right)_{m n \times m n} \\
& =\left(\sum_{k=1}^{m} p_{i l} p_{l i}^{\prime} Q Q^{\prime}\right)_{m n \times m n} \\
& =\left(P P^{\prime}\right) \otimes\left(Q Q^{\prime}\right)
\end{aligned}
$$

Definition 2.1.23 Let T and U be representations of a group G, then the tensor product $T \otimes U$ is defined by:

$$
(T \otimes U)(g):=T(g) \otimes U(g)
$$

Theorem 2.1.24 Let T and U be representations of a group G, then
(i) $T \otimes U$ is a representation of G.
(ii) if $\chi_{(T \otimes U)}$ is the character afforded by $T \otimes U$ then

$$
\chi_{(T \otimes U)}=\chi_{T} \chi_{U}
$$

Proof: See [15,Theorem iii.1]

Definition 2.1.25 Let $G=H \times K$ be the direct product of two groups H and K and let $T: H \longrightarrow$ $G L_{m}(\mathbb{C})$ and $U: K \longrightarrow G L_{n}(\mathbb{C})$ be representations of H and K respectively. Since for every element g in $G, g=h k$ uniquely, for some $\quad h \in H$ and some $k \in K$, the direct product $T \times U$ can be defined by

$$
(T \times U)(g):=T(h) \otimes U(k)
$$

From the uniqueness of $g=h k$ and because of the property of representations T and U of being well defined, it can be shown that $T \times U$ is well defined. Also for $g=h k$ and $g^{\prime}=h^{\prime} k^{\prime}$ with $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$, we have

$$
\begin{aligned}
(T \times U)(g)(T \times U)\left(g^{\prime}\right) & =(T(h) \otimes U(k))\left(T\left(h^{\prime}\right) \otimes U\left(k^{\prime}\right)\right) \\
& =T(h) T\left(h^{\prime}\right) \otimes U(k) U\left(k^{\prime}\right), \text { by }(*) \\
& =T\left(h h^{\prime}\right) \otimes U\left(k k^{\prime}\right) \\
& =(T \times U)\left(g g^{\prime}\right),
\end{aligned}
$$

which means $T \times U$ is a homomorphism and therefore a representation.

From definition 2.1.22, we can deduce that for two matrices P and Q, that

$$
\operatorname{Trace}(P \otimes Q)=\operatorname{Trace}(P) \cdot \operatorname{Trace}(Q)
$$

So we show the following

$$
\begin{aligned}
\chi_{(T \times U)}(g) & =\operatorname{Trace}((T \times U)(g)) \\
& =\operatorname{Trace}(T(h) \otimes U(k)) \\
& =\operatorname{Trace}(T(h)) \cdot \operatorname{Trace}(U(k))
\end{aligned}
$$

and the next theorem tells us that all the characters of a direct product are constructed in this way.

Theorem 2.1.26 Let $G=H \times K$ be the direct product of two groups H and K. Then the direct product of any irreducible character of H and any irreducible character of K is an irreducible character of G. Moreover, every irreducible character of G can be constructed in this way.

Proof: See [15,Theorem iii.2]

Definition 2.1.27 Let χ be a character of a group G. For $n \in(\mathbb{N} \cup\{0\})$, we define χ^{n} by

$$
\chi^{n}(g):=(\chi(g))^{n}, \quad \forall g \in G
$$

If G is a group and H is a subgroup of G, then we can use the irreducible characters of G to find at least some of the characters of H and vice versa. We deal with the methods of doing this in the following section and use the notes of Moori[15] again.

2.2 Restriction and Induction of Characters

Definition 2.2.1 Let G be a group and H be a subgroup of G. If $\rho: G \longrightarrow G L_{n}(\mathbb{C})$ is a representation of G, then $(\rho \downarrow H): H \longrightarrow G L_{n}(\mathbb{C})$ given by

$$
(\rho \downarrow H)(h)=\rho(h), \quad \forall h \in H
$$

is a representation of H. We say that $\rho \downarrow H$ is the restriction of ρ to H. If χ_{ρ} is the character of ρ, then $\chi_{\rho} \downarrow H$ is the character of $\rho \downarrow H$. We refer to $\chi_{\rho} \downarrow H$ as the restriction of χ_{ρ} to H.

Theorem 2.2.2 Let G be a group and $H \leq G$. If ψ is a character of H, then there is an irreducible character χ of G such

$$
\langle\chi \downarrow H, \psi\rangle_{H} \neq 0
$$

Proof: See [15,Theorem iv.1.1].

Theorem 2.2.3 Let G be a group and $H \leq G$. If

$$
\chi \in \operatorname{Irr}(G) \quad \text { and } \quad \operatorname{Irr}(H)=\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{r}\right\},
$$

then

$$
\begin{aligned}
\chi \downarrow H & =\sum_{i=1}^{r} \delta_{i} \psi_{i}, \text { where } \delta_{i} \in(\mathbb{N} \cup\{0\}) \text { and } \\
\sum_{i=1}^{r} \delta_{i}^{2} & \leq[G: H](* *)
\end{aligned}
$$

Moreover, we have equality in $(* *)$ if and only if $\chi(g)=0, \quad \forall g \in(G \backslash H)$.

Proof: Since $\chi \downarrow H$ is a character of $H, \exists \delta_{i} \in(\mathbb{N} \cup\{0\})$ such that

$$
\chi \downarrow H=\sum_{i=1}^{r} \delta_{i} \psi_{i}
$$

Now

$$
\begin{aligned}
\langle\chi \downarrow H, \chi \downarrow H\rangle_{H} & =\left\langle\sum_{i=1}^{r} \delta_{i} \psi_{i}, \sum_{i=1}^{r} \delta_{i} \psi_{i}\right\rangle_{H} \\
& =\sum_{i=1}^{r} \delta_{i}^{2}\left\langle\psi_{i}, \psi_{i}\right\rangle_{H} \\
& =\sum_{i=1}^{r} \delta_{i}^{2}
\end{aligned}
$$

and

$$
\langle\chi \downarrow H, \chi \downarrow H\rangle_{H}=\frac{1}{|H|} \sum_{h \in H} \chi(h) \cdot \overline{\chi(h)}
$$

Hence we get

$$
\begin{aligned}
\sum_{i=1}^{r} \delta_{i}^{2} & =\frac{1}{|H|} \sum_{h \in H} \chi(h) \cdot \overline{\chi(h)} \text { so that } \\
|H| \sum_{i=1}^{r} \delta_{i}^{2} & =\sum_{h \in H} \chi(h) \cdot \overline{\chi(h)}(* * *)
\end{aligned}
$$

From

$$
\begin{aligned}
1 & =\langle\chi, \chi\rangle_{G} \\
& =\frac{1}{|G|} \sum_{g \in G} \chi(g) \cdot \overline{\chi(g)} \\
& =\frac{1}{|G|} \sum_{g \in H} \chi(g) \cdot \overline{\chi(g)}+\frac{1}{|G|} \sum_{g \in(G \backslash H)} \chi(g) \cdot \overline{\chi(g)} \\
& =\frac{|H|}{|G|} \sum_{i=1}^{r} \delta_{i}^{2}+\frac{1}{|G|} \sum_{g \in(G \backslash H)} \chi(g) \cdot \overline{\chi(g)} \quad b y(* * *) \\
& =\frac{|H|}{|G|} \sum_{i=1}^{r} \delta_{i}^{2}+\frac{1}{|G|} \sum_{g \in(G \backslash H)}|\chi(g)|^{2}
\end{aligned}
$$

we obtain that

$$
\frac{|H|}{|G|} \sum_{i=1}^{r} \delta_{i}^{2}=1-\frac{1}{|G|} \sum_{g \in(G \backslash H)}|\chi(g)|^{2} \leq 1
$$

and therefore

$$
\sum_{i=1}^{r} \delta_{i}^{2} \leq \frac{|G|}{|H|}=[G: H]
$$

Also

$$
\begin{aligned}
\frac{1}{|G|} \sum_{g \in(G \backslash H)}|\chi(g)|^{2} & =0 \quad \text { if and only if } \\
|\chi(g)|^{2} & =0 \quad \forall g \in(G \backslash H)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{1}{|G|} \sum_{g \in(G \backslash H)}|\chi(g)|^{2} & =0 \quad \text { if and only if } \\
\chi(g) & =0 \quad \forall g \in(G \backslash H)
\end{aligned}
$$

and we have the equality in $(* *)$.

We have seen how the irreducible characters G can be used to find characters of a subgroup H and can now look at a technique of finding the characters of G from the irreducible characters of any subgroup. We start with the following definition.

Definition 2.2.4 Let H be a subgroup of G. The right transversal of H in G is a set of representatives for the right cosets of H in G.

The following theorem tells us how a representation of H can be extended to a representation of G.

Theorem 2.2.5 Let H be a subgroup of G and T be a representation of H of degree n.
Extend T to G by $T^{0}(g)=T(g)$ if $g \in H$ and $T^{0}(g)=0_{n \times n}$ if $g \notin H$. Let $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ be a right transversal of H in G. Define $T \uparrow G$ by

$$
\begin{aligned}
& (T \uparrow G)(g):=\left(\begin{array}{cccccc}
T^{0}\left(x_{1} g x_{1}^{-1}\right) & T^{0}\left(x_{1} g x_{2}^{-1}\right) & \ldots & \ldots & \ldots & T^{0}\left(x_{1} g x_{r}^{-1}\right) \\
T^{0}\left(x_{2} g x_{1}^{-1}\right) & T^{0}\left(x_{2} g x_{2}^{-1}\right) & \ldots & \ldots & \ldots & T^{0}\left(x_{2} g x_{r}^{-1}\right) \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
T^{0}\left(x_{n} g x_{1}^{-1}\right) & T^{0}\left(x_{n} g x_{2}^{-1}\right) & \ldots & \ldots & \ldots & T^{0}\left(x_{n} g x_{r}^{-1}\right)
\end{array}\right) \\
& =\left(T^{0}\left(x_{i} g x_{j}^{-1}\right)\right)_{i, j=1,2, \ldots, r}, \quad \forall g \in G .
\end{aligned}
$$

Then $T \uparrow G$ is a representation of G of degree $n r$.

Proof: See [15, theorem iv.2.1].

Definition 2.2.6 The representation $T \uparrow G$ defined in the previous theorem said to be induced from the representation T of H. Let ϕ be the character afforded by T. Then the character afforded by $T \uparrow G$ is called the induced character from ϕ and is denoted by ϕ^{G}. If we extend ϕ to G by $\phi^{0}(g)=\phi(g)$ if $g \in H$ and $\phi^{0}(g)=0$ if $g \notin H$, then

$$
\begin{aligned}
\phi^{G}(g) & =\operatorname{Trace}((T \uparrow G)(g)) \\
& =\sum_{i=1}^{r} \operatorname{Trace}\left(\left(T^{0}\left(x_{i} g x_{i}^{-1}\right)\right)\right. \\
& =\sum_{i=1}^{r} \phi^{0}\left(x_{i} g x_{i}^{-1}\right)
\end{aligned}
$$

In order to construct a formula to find the induced character, the next two propositions are needed.

Proposition 2.2.7 If $H \leq G$ and ϕ is a character of H, then ϕ^{G} is independent of the choice of transuersal.

Proof: See [15, Proposition iv. 2.2].

Proposition 2.2.8 The values of the induced character are given by

$$
\phi^{G}(g)=\frac{1}{|H|} \sum_{x \in G} \phi^{0}\left(x g x^{-1}\right), \quad g \in G
$$

Proof: See [15, Proposition iv.2.3].
The following proposition provides us with a formula to calculate the induced character and the proof is provided by Moori [15, Proposition iv.2.4].

Proposition 2.2.9 Let $H \leq G, \phi$ be a character of H and $g \in G$. Let $[g]$ denote the conjugacy class containing g.
(i) If $H \cap[g]=\emptyset$, then $\phi^{G}(g)=0$,
(ii) If $H \cap[g] \neq \emptyset, \quad$ then

$$
\phi^{G}(g)=\left|C_{G}(g)\right| \sum_{i=1}^{m} \frac{\phi\left(x_{i}\right)}{\left|C_{H}\left(x_{i}\right)\right|}
$$

where $x_{1}, x_{2}, \ldots, x_{m}$ are representatives of classes of H that fuse to $[g]$. (That is $H \cap[g]$ breaks up into m conjugacy classes of H with representations $x_{1}, x_{2}, \ldots, x_{m}$.)

Proof: By Proposition 2.2.8, we have

$$
\phi^{G}(g)=\frac{1}{|H|} \sum_{x \in G} \phi^{0}\left(x g x^{-1}\right)
$$

If $H \cap[g]=\emptyset$, then $x g x^{-1} \notin H$ for all $x \in G$, so $\phi^{0}\left(x g x^{-1}\right)=0 \quad \forall x \in G$ and $\phi^{G}(g)=0$.

If $H \cap[g] \neq \emptyset$, then as x runs over $G, x g x^{-1}$ covers $[g]$ exactly $\left|C_{G}(g)\right|$ times, so

$$
\begin{aligned}
\phi^{G}(g) & =\frac{1}{|H|} \times\left|C_{G}(g)\right| \sum_{y \in[g]} \phi^{0}(y) \\
& =\frac{1}{|H|} \times\left|C_{G}(g)\right| \sum_{y \in([g] \cap H)} \phi(y) \\
& =\frac{\left|C_{G}(g)\right|}{|H|} \times \sum_{i=1}^{m}\left[H: C_{H}\left(x_{i}\right)\right] \cdot \phi\left(x_{i}\right) \\
& =\left|C_{G}(g)\right| \sum_{i=1}^{m} \frac{\phi\left(x_{i}\right)}{\left|C_{H}\left(x_{i}\right)\right|}
\end{aligned}
$$

The restriction and induction of characters are related and can be expressed by means of a matrix which we call the Frobenius Reciprocity table. To obtain this relationship, we shall take the route through class functions. We shall use the proof given by Moori [15] for the main result(the Frobenius Reciprocity theorem) in establishing the relationship.

Definition 2.2.10 Let H be a subgroup of G and ϕ be a class function on H then the induced class function ϕ^{G} on G is defined by

$$
\phi^{G}(g)=\frac{1}{|H|} \sum_{x \in G} \phi^{0}\left(x g x^{-1}\right), \quad g \in G
$$

where ϕ^{0} coincides with ϕ on H and is zero otherwise. Notice that

$$
\begin{aligned}
\phi^{G}\left(y g y^{-1}\right) & =\frac{1}{|H|} \sum_{x \in G} \phi^{0}\left(x y g y^{-1} x^{-1}\right) \\
& =\frac{1}{|H|} \sum_{x \in G} \phi^{0}\left((x y) g(x y)^{-1}\right) \\
& =\frac{1}{|H|} \sum_{z \in G} \phi^{0}\left(z g z^{-1}\right) \\
& =\phi^{G}(g)
\end{aligned}
$$

Thus ϕ^{G} is also a class function on G.

Note 3 If $H \leq G$ and ϕ is a class function on G, then $\phi \downarrow H$ is a class function on H.

Theorem 2.2.11 (Frobenius Reciprocity)
Let $H \leq G$, ϕ be a class function on H and ψ a class fuction on G. Then

$$
\left\lfloor\langle\phi, \psi \downarrow H\rangle_{H}=\left\langle\phi^{G}, \psi\right\rangle_{G}\right.
$$

Proof:

$$
\begin{aligned}
\left\langle\phi^{G}, \psi\right\rangle_{G} & =\frac{1}{|G|} \sum_{g \in G} \phi^{G}(g) \cdot \overline{\psi(g)} \\
& =\frac{1}{|G|} \sum_{g \in G}\left(\frac{1}{|H|} \sum_{x \in G} \phi^{0}\left(x g x^{-1}\right)\right) \cdot \overline{\psi(g)} \\
& =\frac{1}{|G| \cdot|H|} \sum_{g \in G} \sum_{x \in G} \phi^{0}\left(x g x^{-1}\right) \cdot \overline{\psi(g)}
\end{aligned}
$$

Let $y=x g x^{-1}$. Then as g runs over $G, x g x^{-1}$ runs through G. Also since ψ is a class function on $G, \psi(y)=\psi\left(x g x^{-1}\right)=\psi(g)$. Thus by $(* * * *)$ we have

$$
\begin{aligned}
\left\langle\phi^{G}, \psi\right\rangle_{G} & =\frac{1}{|G| \cdot|H|} \sum_{y \in G} \sum_{x \in G} \phi^{0}(y) \cdot \overline{\psi(y)} \\
& =\frac{1}{|G| \cdot|H|} \sum_{x \in G}\left(\sum_{y \in G} \phi^{0}(y) \cdot \overline{\psi(y)}\right) \\
& =\frac{1}{|G| \cdot|H|}|G| \sum_{y \in G} \phi^{0}(y) \cdot \overline{\psi(y)} \\
& =\frac{1}{|H|} \sum_{y \in H} \phi(y) \cdot \overline{\psi(y)} \\
& =\langle\phi, \psi \downarrow H\rangle_{H}
\end{aligned}
$$

Corollary 2.2.12 Let $H \leq G$. Assume that $\operatorname{Irr}(G)=\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{r}\right\}$ and $\operatorname{Irr}(H)=\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{s}\right\}$. Suppose that

$$
\begin{aligned}
\chi_{j} \downarrow H & =\sum_{i=1}^{s} b_{i j} \psi_{i} \text { and } \\
\psi_{i}^{G} & =\sum_{j=1}^{r} a_{i j} \chi_{j}, \text { then } \\
a_{i j} & =b_{i j}, \quad \forall i, j .
\end{aligned}
$$

Proof: See [15,Corollary iv.3.2].

Remark 1 (Frobenius Reciprocity table)
Let $H \leq G$. Assume that $\operatorname{Irr}(G)=\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{r}\right\}$ and $\operatorname{Irr}(H)=\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{s}\right\}$, then by the
previous corollary we have

$$
\begin{aligned}
\chi_{j} \downarrow H & =\sum_{i=1}^{s} a_{i j} \psi_{i} \quad \text { and } \\
\psi_{i}^{G} & =\sum_{j=1}^{r} a_{i j} \chi_{j}, \quad \text { then }
\end{aligned}
$$

the matrix $A=\left(a_{i j}\right)_{s r}$ is called the Frobenius Reciprocity table for G and H.

2.3 Normal Subgroups

In this section we shall look mainly at how the irreducible characters of a quotient group of a group G can be used to find some of the characters of G itself .

In order to justify a definition for the concept $\operatorname{ker}(\chi)$, where χ is a character of G, we state lemma 2.3.1 and lemma 2.3.2 and prove the lemma 2.3.2 using the thesis of Whitley [19].

Lemma 2.3.1 Let χ be a character of a group G afforded by the representation T. Then for $g \in G$, $T(g)$ is similar to a diagonal matrix diag $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ where each e_{i} is a complex root of unity. Then $\chi(g)=e_{1}+e_{2}+\ldots+e_{n}$ and $\chi\left(g^{-1}\right)=\overline{\chi(g)}$, where \bar{x} denotes the complex conjugate of x.

Proof: See [19,Lemma 2.2.1].

Lemma 2.3.2 Let χ be a character of a group G afforded by the representation T. Then $g \in \operatorname{ker}(T)$ if and only if $\chi(g)=\chi(1)$.

Proof:

Let $n=\chi(1)$, so n is the degree of T. If $g \in \operatorname{ker}(T)$ then $T(g)=I_{n}=T(1)$, where I_{n} is the $n \times n$ identity matrix, so $\chi(g)=n=\chi(1)$. Conversely, assume $\chi(g)=\chi(1)=n$. By lemma 2.3.1, $\chi(g)=e_{1}+e_{2}+\ldots+e_{n}$, where each e_{i} is a complex root of unity. Therefore, $e_{1}+e_{2}+\ldots+e_{n}=n$. But $\left|e_{i}\right|=1$ for all i, so we must have $e_{i}=1 \quad \forall i$. Hence $T(g)$ is similar to $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)=I_{n}$, so $g \in \operatorname{ker}(T)$.

Definition 2.3.3 Let χ be a character of a group G. We define

$$
\operatorname{ker}(\chi)=\{g \in G: \chi(g)=\chi(1)\}
$$

We note from lemma $2.3 .2 \operatorname{ker}(\chi)$ is a normal subgroup of G. The next two theorems taken from the Moori-notes[15, pages 78 and 79] will tell us how the normal subgroups of G can be determined from its character table and how we can tell whether G is simple or not.

Theorem 2.3.4 Let N be a normal subgroup of G. Then there exists irreducible characters $\chi_{1}, \chi_{2}, \ldots, \chi_{s}$ of G such that

$$
N=\bigcap_{i=1}^{s} k e r\left(\chi_{i}\right)
$$

Proof: See [15, Theorem v.3].

Theorem 2.3.5 A group G is simple if and only if $\chi(g) \neq \chi(1)$ for all nontrivial irreducible characters of G and for all non-identity elements g of G.

Proof: See [15, Theorem v.4].

The following results form the basis for another tool in finding the characters of a group.

Theorem 2.3.6 Let N be a normal subgroup of G.
(a) Let $\hat{\chi}$ be a character of G / N and $\chi: G \rightarrow \mathbb{C}$ be defined by

$$
\chi(g)=\hat{\chi}(g N) \quad \text { for } g \in G
$$

Then χ is a character of G and χ has the same degree as $\hat{\chi}$.
(b) Let χ be a character of $G, N \leq \operatorname{ker}(\chi)$ and $\hat{\chi}: G / N \rightarrow \mathbb{C}$ be defined by

$$
\hat{\chi}(g N)=\chi(g) \quad \text { for } g \in G
$$

Then $\hat{\chi}$ is a character of G / N.
(c) In both of the statements above, $\hat{\chi}$ is an irreducible character of G / N if and only if χ is an irreducible character of G.

Proof:

(a) Let \hat{T} be the representation of degree n that affords $\hat{\chi}$ and define $T: G \rightarrow G L_{n}(\mathbb{C})$ by $T(g)=\hat{T}(g N)$. Then for $g_{1}, g_{2} \in G$,

$$
\begin{aligned}
g_{1}=g_{2} & \Longrightarrow g_{1} N=g_{2} N \\
& \Longrightarrow \hat{T}\left(g_{1} N\right)=\hat{T}\left(g_{2} N\right) \\
& \Longrightarrow T\left(g_{1}\right)=T\left(g_{2}\right) .
\end{aligned}
$$

So T is well-defined. Also

$$
\begin{aligned}
T\left(g_{1} g_{2}\right) & =\hat{T}\left(g_{1} g_{2} N\right) \\
& =\hat{T}\left(g_{1} N g_{2} N\right) \\
& =\hat{T}\left(g_{1} N\right) \hat{T}\left(g_{2} N\right) \\
& =T\left(g_{1}\right) T\left(g_{2}\right)
\end{aligned}
$$

Hence T is a homomorphism and therefore a representation.

Now $\operatorname{Trace}(T(g))=\operatorname{Trace}(\hat{T}(g N))=\hat{\chi}(g N)=\chi(g)$ for all $g \in G$, so T affords χ. Moreover

$$
I_{m}=T(1)=\hat{T}(N)=I_{n}
$$

and so the degree of χ is the same as that of $\hat{\chi}$.
(b) Let T be the representation that affords χ and define $\hat{T}: G / N \rightarrow G L_{n}(\mathbb{C})$ by $\hat{T}(g N)=T(g)$. Then for $g_{1}, g_{2} \in G$,

$$
\begin{aligned}
g_{1} N=g_{2} N & \Longrightarrow g_{1}^{-1} g_{2} \in N \leq \operatorname{ker}(\chi)=\operatorname{ker}(T) \\
& \Longrightarrow T\left(g_{1}^{-1} g_{2}\right)=I, \text { the identity matrix } \\
& \Longrightarrow T\left(g_{1}^{-1}\right) T\left(g_{2}\right)=I \\
& \Longrightarrow T\left(g_{1}\right)=T\left(g_{2}\right) \\
& \Longrightarrow \hat{T}\left(g_{1} N\right)=\hat{T}\left(g_{2} N\right)
\end{aligned}
$$

thus \hat{T} is well-defined and

$$
\begin{aligned}
\hat{T}\left(g_{1} N g_{2} N\right) & =\hat{T}\left(g_{1} g_{2} N\right) \\
& =T\left(g_{1} g_{2}\right) \\
& =T\left(g_{1}\right) T\left(g_{2}\right) \\
& =\hat{T}\left(g_{1} N\right) \hat{T}\left(g_{2} N\right)
\end{aligned}
$$

Hence T a representation.

$$
\operatorname{Trace}(\hat{T}(g N))=\operatorname{Trace}(T(g))=\chi(g)=\hat{\chi}(g N) \text { for all } g \in G, \text { so } \hat{T} \text { affords } \hat{\chi}
$$

(c) For this part, we use the proof by Whitley [19]:

$$
\begin{aligned}
\langle\chi, \chi\rangle_{G} & =|G|^{-1} \sum_{g \in G}|\chi(g)|^{2} \\
& =|G|^{-1} \sum_{g \in G}|\hat{\chi}(g N)|^{2} \\
& =|G|^{-1}|N| \sum_{g N \in G / N}|\hat{\chi}(g N)|^{2} \\
& =|G / N|^{-1} \sum_{g N \in G / N}|\hat{\chi}(g N)|^{2} \\
& =\langle\hat{\chi}, \hat{\chi}\rangle_{G / N} .
\end{aligned}
$$

By lemma 2.1.2,

We end this section with a definition from James and Liebeck [10, Definition 17.2].

Definition 2.3.7 Let N be a normal subgroup of G and let $\hat{\chi}$ be a character of G / N, then the character χ which is given by

$$
\chi(g)=\hat{\chi}(g N) \quad \text { for } g \in G
$$

is called the lift of $\hat{\chi}$ to G. The process of obtaining characters of a group from the characters of any of its quotient groups using theorem 2.3 .5 is called the lifting process.

In each of the remaining sections we shall try to illustrate in a group extension how some of the concepts discussed in this chapter are used to calculate the character table of the specific group in discussion.

2.4 The Character Table of a Group of the form $2^{3}: 7$

Let \bar{G} be a split extension of N, an elementary abelian two-group of order 8 , by G, a cyclic subgroup of $G L(3,2)$ of order 7 . As with the example in chapter 1 (section 1.3), we use the method described in section 1.2 of chapter 1 to calculate the conjugacy classes of \bar{G}.
G can be generated by the following element of order 7 in $G L_{3}(2)$

$$
x=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

and $N \cong V_{3}(2)$, the vector space of dimension three over a field of two elements. G, being cyclic, has 7 conjugacy classes of which each class consists of a power of x. In this example, we thus work with seven cosets, namely $N x^{j}$ where $j=0,1,2, \ldots, 6$. For each j we must consider the action of $N \cong\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ and $C_{G}\left(x^{i}\right)$ on $N x^{j}$.

Action of N and $C_{G}\left(1_{G}\right)$ on $N 1_{G}$:
l_{G} fixes all elements N so that $C_{N}\left(1_{G}\right)=N$. Thus $k=8$. That is we have eight orbits, Q_{s} with $s=1,2, \ldots, 8$, each consisting of one element. Now $C_{G}\left(1_{G}\right)=G$ so we only need to look at the action x on N. This action is represented by the cycle structure ($\left.\begin{array}{lllllll}e_{1} & e_{1} e_{2} e_{3} & e_{3} & e_{2} e_{3} & e_{1} e_{2} & e_{2} & e_{1} e_{3}\end{array}\right)$. So

$$
\triangle_{1}=\{1\}=Q_{1} \quad \text { and } \quad \triangle_{2}=\bigcup_{s=2}^{8} Q_{s}
$$

Hence $f=1$ and $f=7$. We obtain the following:

$$
\begin{aligned}
\left|C_{\bar{G}}\left(1_{G}\right)\right| & =\frac{8 \times 7}{f_{1}}=56 \\
\left|C_{\bar{G}}\left(e_{1}\right)\right| & =\frac{8 \times 7}{f_{2}}=8
\end{aligned}
$$

Action of N and $C_{G}(x)$ on $N x$:
$C_{N}(x)=\left\{1_{G}\right\}$. So $k=1$ and therefore $f=1$. Also $C_{G}(x)=G$ so we have $\left|C_{\bar{G}}(x)\right|=7$. In fact $\left|C_{\bar{G}}\left(x^{j}\right)\right|=7$ for all $j=1,2, \ldots, 6$ because the action of x^{j} is represented by a $7-$ cycle and hence $x^{j}(j \neq 0)$ fixes only 1_{N}. We thus have $C_{N}\left(x^{j}\right)=\{1\}, j \neq 0$ and so $k=1$ and again $f=1$. With $C_{G}\left(x^{j}\right)=G, j \neq 0$ we have $\left|C_{\bar{G}}(x)\right|=7, \quad \forall i=1,2, \ldots, 6$. With that, the conjugacy table of \bar{G} is completed:

class	(1)	$\left(e_{1}\right)$	(x)	$\left(x^{2}\right)$	$\left(x^{3}\right)$	$\left(x^{4}\right)$	$\left(x^{5}\right)$	$\left(x^{6}\right)$
no. of elements	1	7	8	8	8	8	8	8
order	1	2	7	7	7	7	7	7
centralizer	56	8	7	7	7	7	7	7

Table 2.4.1: The conjugacy table of $2^{3}: 7$.
To calculate the character table of \bar{G} we use the method of inducing characters of subgroups of \bar{G} (discussed in section 2.2). In this case we shall use the irreducible characters of N and G.

The character table of N is easily calculated from the character table of $\mathbb{Z}_{2}=\left\langle a: a^{2}=1\right\rangle$ by using the product of these characters (theorem 2.1.13). We give the character tables of \mathbb{Z}_{2} and N.

class centralizer	(1)	(a)
2	2	
ψ_{1}	1	1
ψ_{2}	1	-1

Table 2.4.2: The character table of \mathbb{Z}_{2}.

class	(1)	$\left(e_{1}\right)$	$\left(e_{2}\right)$	$\left(e_{3}\right)$	$\left(e_{1} e_{2}\right)$	$\left(e_{1} e_{3}\right)$	$\left(e_{2} e_{3}\right)$	$\left(e_{1} e_{2} e_{3}\right)$
order	1	2	2	2	2	2	2	2
centralizer	8	8	8	8	8	8	8	8
τ_{1}	1	1	1	1	1	1	1	1
τ_{2}	1	1	-1	1	-1	1	-1	-1
τ_{3}	1	-1	1	1	-1	-1	1	-1
τ_{4}	1	-1	-1	1	1	-1	-1	1
τ_{5}	1	1	1	-1	1	-1	-1	-1
τ_{6}	1	1	-1	-1	-1	-1	1	1
τ_{7}	1	-1	1	-1	-1	1	-1	1
τ_{8}	1	-1	-1	-1	1	1	1	-1

Table 2.4.3: The character table of the group 2^{3}.

We have seen in proposition 2.1.11 that if $H=\left\langle x: x^{n}=1\right\rangle$, then $\rho_{k}: H \longrightarrow \mathbb{C}^{*}$ defined by

$$
\rho_{k}\left(x^{m}\right)=\left[e^{\frac{2 k \pi i}{n}}\right]^{m}
$$

defines n irreducible representations of H. So the character table of $G=\left\langle x: x^{7}=1\right\rangle$ is completely determined by its representatives of this type. The character table of G is as follows:
and we obtain the following characters of \bar{G} :

class	(1)	$\left(e_{1}\right)$	(x)	$\left(x^{2}\right)$	$\left(x^{3}\right)$	$\left(x^{4}\right)$	$\left(x^{5}\right)$	$\left(x^{6}\right)$
no. of elements	1	7	8	8	8	8	8	8
order	1	2	7	7	7	7	7	7
centralizer	56	8	7	7	7	7	7	7
$\tau_{1}^{\bar{G}}$	7	7	0	0	0	0	0	0
$\tau_{2}^{\bar{G}}$	7	-1	0	0	0	0	0	0

Table 2.4.5

If $\rho \in \operatorname{Irr}(G)$, then

$$
\begin{aligned}
\rho^{\bar{G}}(1) & =56\left(\frac{1 . \rho(1)}{7}\right)=8 \cdot \rho(1) \\
\rho^{\bar{G}}\left(e_{1}\right) & =0 \\
\rho^{\bar{G}}\left(x^{i}\right) & =7\left(\frac{\rho\left(x^{i}\right)}{7}\right)=\rho\left(x^{i}\right), \quad \text { for } \text { each } i=1,2, \ldots, 6 .
\end{aligned}
$$

The characters of \bar{G} induced from G are :

class	(1)	$\left(e_{1}\right)$	(x)	$\left(x^{2}\right)$	$\left(x^{3}\right)$	$\left(x^{4}\right)$	$\left(x^{5}\right)$	$\left(x^{6}\right)$
no. of elements	1	7	8	8	8	8	8	8
order	1	2	7	7	7	7	7	7
centralizer	56	8	7	7	7	7	7	7
$\rho_{0}^{\bar{G}}$	8	0	1	1	1	1	1	1
$\rho_{1}^{\bar{G}}$	8	0	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}
$\rho_{2}^{\bar{G}}$	8	0	b_{2}	b_{4}	b_{6}	b_{1}	b_{3}	b_{5}
$\rho_{3}^{\bar{G}}$	8	0	b_{3}	b_{6}	b_{2}	b_{5}	b_{1}	b_{4}
$\rho_{4}^{\bar{G}}$	8	0	b_{4}	b_{1}	b_{5}	b_{2}	b_{6}	b_{3}
$\rho_{5}^{\bar{G}}$	8	0	b_{5}	b_{3}	b_{1}	b_{6}	b_{4}	b_{2}
$\rho_{6}^{\bar{G}}$	8	0	b_{6}	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}

Table 2.4.6.
where for each $k=1,2, \ldots, 6, \quad b_{k}=e^{\frac{2 k \pi i}{7}}$.

Besides the trivial character χ_{0}, we have another irreducible character of \bar{G} in $\tau_{2}^{\bar{G}}$, because

$$
\left\langle\tau_{2}^{\bar{G}}, \tau_{2}^{\bar{G}}\right\rangle=1
$$

For each $i=1,2, \ldots, 6$,

$$
\left\langle\rho_{i}^{\bar{G}}, \rho_{i}^{\bar{G}}\right\rangle=2 .
$$

Hence none of these characters are irreducible, but for each i,

$$
\left\langle\rho_{i}^{\bar{G}}, \tau_{2}^{\bar{G}}\right\rangle=1
$$

This means that for each $i=1,2, \ldots, 6, \quad \rho_{i}^{\bar{G}}$ is the sum of two irreducible characters of \bar{G} of which one is $\tau_{2}^{\bar{G}}$. Hence for each $\quad i, \quad \rho_{i}^{\bar{G}}-\tau_{2}^{\bar{G}}$ is an irreducible character of \bar{G}. With this, we now have all the irreducible characters of \bar{G}.

class	(1)	$\left(e_{1}\right)$	(x)	$\left(x^{2}\right)$	$\left(x^{3}\right)$	$\left(x^{4}\right)$	$\left(x^{5}\right)$	$\left(x^{6}\right)$
no. of elements	1	7	8	8	8	8	8	8
order	1	2	7	7	7	7	7	7
centralizer	56	8	7	7	7	7	7	7
χ_{1}	1	1	1	1	1	1	1	1
$\chi_{2}=\rho_{1}^{\bar{G}}-\tau_{2}^{\bar{G}}$	1	1	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}
$\chi_{3}=\rho_{2}^{\bar{G}}-\tau_{2}^{\bar{G}}$	1	1	b_{2}	b_{4}	b_{6}	b_{1}	b_{3}	b_{5}
$\chi_{4}=\rho_{3}^{\bar{G}}-\tau_{2}^{\bar{G}}$	1	1	b_{3}	b_{6}	b_{2}	b_{5}	b_{1}	b_{4}
$\chi_{5}=\rho_{4}^{\bar{G}}-\tau_{2}^{\bar{G}}$	1	1	b_{4}	b_{1}	b_{5}	b_{2}	b_{6}	b_{3}
$\chi_{6}=\rho_{5}^{\bar{G}}-\tau_{2}^{\bar{G}}$	1	1	b_{5}	b_{3}	b_{1}	b_{6}	b_{4}	b_{2}
$\chi_{7}=\rho_{6}^{\bar{G}}-\tau_{2}^{\bar{G}}$	1	1	b_{6}	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}
$\chi_{8}=\tau_{2}^{\bar{G}}$	7	-1	0	0	0	0	0	0

Table2.4.7: The character table of $2^{3}: 7$.
where for each $k=1,2, \ldots, 6, \quad b_{k}=e^{\frac{2 k \pi i}{\tau}}$.

2.5 The Character Table of a Group of the form $2^{3}: G L_{3}(2)$

Once we knew what the irreducible characters of N and G in the example in section 2.4 was, we solely applied the method of induction to calculate the character table of \bar{G}. To calculate the character table of $\bar{G}=2^{3}: G L_{3}(2)$ where $G L_{3}(2)$ acts naturally on 2^{3}, we shall in addition to the method of induction, also use the methods of restriction (discussed in section 2.2) and of lifting of characters (discussed in section 2.3). The character table of this group has also been calculated by Whitley [19] but through the use of Fisher matrices.

The conjugacy classes of \bar{G} has been discussed in chapter 1 (section 1.3), so we start immediately with the business of finding the irreducible characters of G. As in section 1.3 we let N be the group 2^{3} and G be the group $G L_{3}(2)$. Now $G \cong \bar{G} / N$, which implies that some of the irreducible characters of \bar{G} can be found by lifting the irreducible characters of G to \bar{G}. The character table of G is obtained from ATLAS[3], so our first six irreducible characters of \bar{G} are the lifts $\chi_{i}, \quad i=1,2, \ldots, 6$ of $\quad \hat{\chi}_{i} \in \operatorname{Irr}(G)$:

class	$(1 A)$	$(2 A)$	$(3 A)$	$(4 A)$	$(7 A)$	$(7 B)$
centralizer	168	8	3	4	7	7
$\hat{\chi}_{1}$	1	1	1	1	1	1
$\hat{\chi}_{2}$	3	-1	0	1	a	\bar{a}
$\hat{\chi}_{3}$	3	-1	0	1	\bar{a}	a
$\hat{\chi}_{4}$	6	2	0	0	-1	-1
$\hat{\chi}_{5}$	7	-1	1	-1	0	0
$\hat{\chi}_{6}$	8	0	-1	0	1	1

Table 2.5.1: The character table of $G=G L_{3}(2)$
where $\quad a=\frac{1}{2}(-1+\sqrt{7} i)$

class	(1)	$\left(2_{1}\right)$	$\left(2_{2}\right)$	$\left(2_{3}\right)$	$\left(4_{1}\right)$	$\left(3_{1}\right)$	$\left(6_{1}\right)$	$\left(4_{2}\right)$	$\left(4_{3}\right)$	$\left(7_{1}\right)$	$\left(7_{2}\right)$
no. of elements	1	7	42	42	84	224	224	168	168	192	192
centralizer	1344	192	32	32	16	6	6	8	8	7	7
χ_{1}	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	3	3	-1	-1	-1	0	0	1	1	a	\bar{a}
χ_{3}	3	3	-1	-1	-1	0	0	1	1	\bar{a}	a
χ_{4}	6	6	2	2	2	0	0	0	0	-1	-1
χ_{5}	7	7	-1	-1	-1	1	1	-1	-1	0	0
χ_{6}	8	8	0	0	0	-1	-1	0	0	1	1

Table 2.5.2.
where $\quad a=\frac{1}{2}(-1+\sqrt{7} i)$.

The induction of the characters of G to \bar{G} will put us in a position to find more irreducible characters of \bar{G} :

If $\hat{\chi} \in \operatorname{Irr}(G)$, then by using the formula for induced characters, we find that

$$
\begin{aligned}
(\hat{\chi})^{\bar{G}}(1) & =8 \hat{\chi}(1) \\
(\hat{\chi})^{\bar{G}}(g) & =4 \hat{\chi}(g) \quad \text { for } g \in\left(2_{2}\right) ; \\
(\hat{\chi})^{\bar{G}}(g) & =2 \hat{\chi}(g) \quad \text { for } g \in\left(3_{1}\right) \cup\left(4_{2}\right) ; \\
(\hat{\chi})^{\bar{G}}(g) & =\hat{\chi}(g) \quad \text { for } g \in\left(7_{1}\right) \cup\left(2_{2}\right) ; \\
\text { and }(\hat{\chi})^{\bar{G}}(g) & =0 \text { for } g \notin G .
\end{aligned}
$$

Inducing $\hat{\chi}_{1}, \hat{\chi}_{2}, \hat{\chi}_{4}, \hat{\chi}_{5}$, we obtain $\left(\hat{\chi}_{1}\right)^{\bar{G}},\left(\hat{\chi}_{2}\right)^{\bar{G}},\left(\hat{\chi}_{4}\right)^{\bar{G}}$ and $\left(\hat{\chi}_{5}\right)^{\bar{G}}$:

class	(1)	$\left(2_{1}\right)$	$\left(2_{2}\right)$	$\left(2_{3}\right)$	$\left(4_{1}\right)$	$\left(3_{1}\right)$	$\left(6_{1}\right)$	$\left(4_{2}\right)$	$\left(4_{3}\right)$	$\left(7_{1}\right)$	$\left(7_{2}\right)$
no. of elements	1	7	42	42	84	224	224	168	168	192	192
centralizer	1344	192	32	32	16	6	6	8	8	7	7
$\left(\hat{\chi}_{1}\right)^{\bar{G}}$	8	0	4	0	0	2	0	2	0	1	1
$\left(\hat{\chi}_{2}\right)^{\bar{G}}$	24	0	-4	0	0	0	0	2	0	a	\bar{a}
$\left(\hat{\chi}_{4}\right)^{\bar{G}}$	48	0	8	0	0	0	0	0	0	-1	-1
$\left(\hat{\chi}_{5}\right)^{\bar{G}}$	56	0	-4	0	0	2	0	-2	0	0	0

Table 2.5.3.

Now

$$
\begin{aligned}
\left\langle\left(\hat{\chi}_{1}\right)^{\bar{G}},\left(\hat{\chi}_{1}\right)^{\bar{G}}\right\rangle & =2 \text { and } \\
\left\langle\chi_{1},\left(\hat{\chi}_{1}\right)^{\bar{G}}\right\rangle & =1, \text { so that } \\
\chi_{7} & =\left(\left(\hat{\chi}_{1}\right)^{\bar{G}}-\chi_{1}\right) \in \operatorname{Irr}(\bar{G})
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left\langle\left(\hat{\chi}_{2}\right)^{\bar{G}},\left(\hat{\chi}_{2}\right)^{\bar{G}}\right\rangle & =2 \text { and } \\
\left\langle\chi_{2},\left(\hat{\chi}_{2}\right)^{\bar{G}}\right\rangle & =1, \text { so that } \\
\chi_{8} & =\left(\left(\hat{\chi}_{2}\right)^{\bar{G}}-\chi_{2}\right) \in \operatorname{Irr}(\bar{G})
\end{aligned}
$$

\bar{G} is a maximal subgroup of the group A_{8}. Thus by restricting the characters of A_{8} to \bar{G} we may find more irreducible characters of \bar{G}. We shall use the following character, say τ of A_{8} obtained from its character table (in ATLAS, page [22]):

class	$1 A$	$2 A$	$2 B$	$3 A$	$3 B$	$4 A$	$4 B$	$5 A$	$6 A$	$6 B$	$7 A$	$7 B$	$15 A$	$15 B$
centralizer	20160	192	96	180	18	16	8	15	12	6	7	7	15	15
τ	21	-3	1	6	0	1	-1	1	-2	0	0	0	1	1

Table 2.5.4.

Using the fusion map of \bar{G} into A_{8} and restricting τ to \bar{G}, we obtain $\tau \downarrow \bar{G}$:

\bar{G}	A_{8}
(1)	$(1 . A)$
$\left(2_{1}\right)$	$(2 A)$
$\left(2_{2}\right)$	$(2 B)$
$\left(2_{3}\right)$	$(2 A)$
$\left(4_{1}\right)$	$(4 A)$
$\left(3_{1}\right)$	$(3 B)$
$\left(6_{1}\right)$	$(6 B)$
$\left(4_{2}\right)$	$(4 B)$
$\left(4_{3}\right)$	$(4 A)$
$\left(7_{1}\right)$	$(7 A)$
$\left(7_{2}\right)$	$(7 B)$

Table 2.5.5.

class	(1)	$\left(2_{1}\right)$	$\left(2_{2}\right)$	$\left(2_{3}\right)$	$\left(4_{1}\right)$	$\left(3_{1}\right)$	$\left(6_{1}\right)$	$\left(4_{2}\right)$	$\left(4_{3}\right)$	$\left(7_{1}\right)$	$\left(7_{2}\right)$
no. of elements	1	7	42	42	84	224	224	168	168	192	192
centralizer	1344	192	32	32	16	6	6	8	8	7	7
$\tau \downarrow \bar{G}$	21	-3	1	-3	1	0	0	-1	1	0	0

Table 2.5.6.

Because

$$
\begin{aligned}
\langle\tau \downarrow \bar{G}, \tau \downarrow \bar{G}\rangle & =1 \text { we have } \\
\chi_{9} & =\tau \downarrow \bar{G} \in \operatorname{Irr}(\bar{G})
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
\left\langle\left(\hat{\chi}_{4}\right)^{\bar{G}},\left(\hat{\chi}_{4}\right)^{\bar{G}}\right\rangle & =4 ; \\
\left\langle\left(\hat{\chi}_{4}\right)^{\bar{G}}, \chi_{4}\right\rangle & =1 ; \\
\left\langle\left(\hat{\chi}_{4}\right)^{\bar{G}}, \chi_{7}\right\rangle & =1 \text { and } \\
\left\langle\left(\hat{\chi}_{4}\right)^{\bar{G}}, \chi_{9}\right\rangle & =1 \text { so that } \\
\chi_{10} & =\left(\left(\hat{\chi}_{4}\right)^{\bar{G}}-\left(\chi_{4}+\chi_{7}+\chi_{9}\right)\right) \in \operatorname{Irr}(\bar{G})
\end{aligned}
$$

and also

$$
\begin{aligned}
\left\langle\left(\hat{\chi}_{5}\right)^{\bar{G}},\left(\hat{\chi}_{5}\right)^{\bar{G}}\right\rangle & =4 ; \\
\left\langle\left(\hat{\chi}_{5}\right)^{\bar{G}}, \chi_{5}\right\rangle & =1 ; \\
\left\langle\left(\hat{\chi}_{5}\right)^{\bar{G}}, \chi_{8}\right\rangle & =1 \text { and } \\
\left\langle\left(\hat{\chi}_{5}\right)^{\bar{G}}, \chi_{9}\right\rangle & =1 \cdot \text { Thus } \\
\chi_{11} & =\left(\left(\hat{\chi}_{4}\right)^{\bar{G}}-\left(\chi_{4}+\chi_{7}+\chi_{9}\right)\right) \in \operatorname{Irr}(\bar{G}) .
\end{aligned}
$$

And so the character table of \bar{G} is completed.

| class | (1) | $\left(2_{1}\right)$ | $\left(2_{2}\right)$ | $\left(2_{3}\right)$ | $\left(4_{1}\right)$ | $\left(3_{1}\right)$ | $\left(6_{1}\right)$ | $\left(4_{2}\right)$ | $\left(4_{3}\right)$ | $\left(7_{1}\right)$ | $\left(7_{2}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| no. of elements | 1 | 7 | 42 | 42 | 84 | 224 | 224 | 168 | 168 | 192 | 192 |
| centralizer | 1344 | 192 | 32 | 32 | 16 | 6 | 6 | 8 | 8 | 7 | 7 |
| χ_{1} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| χ_{2} | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | a | \bar{a} |
| χ_{3} | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | \bar{a} | a |
| χ_{4} | 6 | 6 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 |
| χ_{5} | 7 | 7 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 0 | 0 |
| χ_{6} | 8 | 8 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 1 | 1 |
| χ_{7} | 7 | -1 | 3 | -1 | -1 | 1 | -1 | 1 | -1 | 0 | 0 |
| χ_{8} | 21 | -3 | -3 | 1 | 1 | 0 | 0 | 1 | -1 | 0 | 0 |
| χ_{9} | 21 | -3 | 1 | -3 | 1 | 0 | 0 | -1 | 1 | 0 | 0 |
| χ_{10} | 14 | -2 | 2 | 2 | -2 | -1 | 1 | 0 | 0 | 0 | 0 |
| χ_{11} | 7 | -1 | -1 | 3 | -1 | 1 | -1 | -1 | 1 | 0 | 0 |

Table 2.5.7: The character table of $2^{3}: G L_{3}(2)$.

2.6 The Character Table of a Group of the form $\left(A_{5} \times 3\right): 2$

Let N be the direct product of the groups A_{5} and the cyclic group \mathbb{Z}_{3} and let G be a cyclic group of order two. For the calculation of the character table of $\bar{G}=N: G$, a maximal subgroup of A_{8}, we shall use the methods of restriction and induction of characters. For this purpose we shall make use of the character tables of the groups $H=S_{5} \times S_{3}$ and N.

Since N is non-abelian we cannot use the method discussed in section 1.2 of chapter 1 to calculate the conjugacy table of \bar{G}. By regarding A_{5} as the alternating on the set $\{1,2,3,4,5\}, \mathbb{Z}_{3}$ as $\langle(678)\rangle$ and G as the group $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}6 & 7\end{array}\right)\right\rangle$, we can determine the conjugacy classes of \bar{G} by acting $\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}6 & 7\end{array}\right)$ on N. We first show the conjugacy classes of N :

class	(1)	(3.4)	(3B)	(3C)	(3D)	(3E)
class representative	1	(678)	(687)	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$(123)(678)$	$(123)(687)$
no. of elements	1	1	1	20	20	20

Table 2.6.1: The conjugacy table of $A_{5} \times 3$.

class	$(2 A)$	$(6 A)$	$(6 B)$
class representative	$\left(\begin{array}{ll}1 & 2)(34) \\ \text { no. of elements } & (12)\left(\begin{array}{lll}3 & 4\end{array}\right)\left(\begin{array}{ll}6 & 7\end{array}\right) \\ (12)\left(\begin{array}{lll}3 & 4\end{array}\right)\left(\begin{array}{ll}6 & 7\end{array}\right) \\ \hline\end{array}\right.$	15	15

Table 2.6.1: The conjugacy table of $A_{5} \times 3$ (continued).

class	$(5 A)$	$(15 A)$	$(15 B)$
class representative	$\left(\begin{array}{c}1 \\ 2\end{array} 345\right)$	$(12345)(678)$	$(12345)(687)$
no. of elements	12	12	12

Table 2.6.1: The conjugacy table of $A_{5} \times 3$ (continued).

class	$(5 B)$	$(15 C)$	$(15 D)$
class representative	(13452)	$(13452)(678)$	$(13452)(687)$
no. of elements	12	12	12

Table 2.6.1: The conjugacy table of $A_{5} \times 3$ (continued).
By the action of (12)(67) on N we obtain the following fusion table

N	$\left(A_{5} \times 3\right): 2$
(1)	(1)
$(3 A)$	$\left(3_{1}\right)$
$(3 B)$	$\left(3_{1}\right)$
$(3 C)$	$\left(3_{2}\right)$
$(3 D)$	$\left(3_{3}\right)$
$(3 E)$	$\left(3_{3}\right)$
$(2 A)$	$\left(2_{1}\right)$
$(6 A)$	$\left(6_{1}\right)$
$(6 B)$	$\left(6_{1}\right)$
$(5 A)$	$\left(5_{1}\right)$
$(15 A)$	$\left(15_{1}\right)$
$(15 B)$	$\left(15_{2}\right)$
$(5 B)$	$\left(5_{1}\right)$
$(15 C)$	$\left(15_{2}\right)$
$(15 D)$	$\left(15_{1}\right)$

Table 2.6.2.
and hence complete the conjugacy table of \bar{G}.

class	(1)	$\left(3_{1}\right)$	$\left(3_{2}\right)$	$\left(3_{3}\right)$	$\left(2_{1}\right)$
class representative	1	(678)	$\left(\begin{array}{ll}123\end{array}\right)$	$(123)\left(\begin{array}{ll}6 & 7\end{array}\right)$	$(12)\left(\begin{array}{ll}3 & 4\end{array}\right)$
no. of elements	1	2	20	40	15
centralizer	360	180	18	9	24

Table 2.6.3: The conjugacy table of $\left.\left(A_{5} \times 3\right)\right): 2$.

class	$\left(6_{1}\right)$	(51)	(151)
class representative	$(12)(34)(678)$	(12345)	$(12345)(678)$
no. of elements	30	24	24
centralizer	12	15	15

Table 2.6.3: The conjugacy table of $\left.\left(A_{5} \times 3\right)\right): 2$ (continued).

class	$\left(15_{2}\right)$	$\left(2_{2}\right)$	$\left(6_{2}\right)$	$\left(4_{1}\right)$
class representative	$(12345)(687)$	(12) (67)	$(12)(345)(67)$	$(1234)(67)$
no. of elements	24	30	- 60	90
centralizer	15	12	6	4

Table 2.6.3: The conjugacy table of $\left(A_{5} \times 3\right): 2$ (continued).

We start the calculation of the character table of \bar{G} by restricting the characters of H to \bar{G}. We show the character table of H on the next two pages.

class	$1 \bar{A}$	$2 \bar{A}$	$3 \bar{A}$	$2 \bar{B}$	$2 \bar{C}$	$6 \bar{A}$	$3 \bar{B}$	$6 \bar{B}$	$3 \bar{C}$	$4 \bar{A}$	$4 \bar{B}$
no. of elements	1	3	2	10	30	20	20	60	40	30	90
centralizer	720	240	360	72	24	36	36	12	18	24	8
ϕ_{1}	1	1	1	1	1	1	1	1	1	1	1
ϕ_{2}	2	0	-1	2	0	-1	2	0	-1	2	0
ϕ_{3}	1	-1	1	1	-1	1	1	-1	1	1	-1
ϕ_{4}	1	1	1	-1	-1	-1	1	1	1	-1	-1
ϕ_{5}	2	0	-1	-2	0	1	2	0	-1	-2	0
ϕ_{6}	1	-1	1	-1	1	-1	1	-1	1	-1	1
ϕ_{7}	5	5	5	1	1	1	-1	-1	-1	-1	-1
ϕ_{8}	10	0	-5	2	0	-1	-2	0	1	-2	0
ϕ_{9}	5	-5	5	1	-1	1	-1	1	-1	-1	1
ϕ_{10}	6	6	6	0	0	0	0	0	0	0	0
ϕ_{11}	12	0	-6	0	0	0	0	0	0	0	0
ϕ_{12}	6	-6	6	0	0	0	0	0	0	0	0
ϕ_{13}	5	5	5	-1	-1	-1	-1	-1	-1	1	1
ϕ_{14}	10	0	-5	-2	0	1	-2	0	1	2	0
ϕ_{15}	5	-5	5	-1	1	-1	-1	1	-1	1	-1
ϕ_{16}	4	4	4	2	2	2	1	1	1	0	0
ϕ_{17}	8	0	-4	4	0	-2	2	0	-1	0	0
ϕ_{18}	4	-4	4	-2	-2	-2	1	1	1	0	0
ϕ_{19}	4	4	4	-2	-2	-2	1	1	1	0	0
ϕ_{20}	8	0	-4	-4	0	2	2	0	-1	0	0
ϕ_{21}	4	-4	4	-2	2	-2	1	-1	1	0	0

Table 2.6.4: The character table of $S_{5} \times S_{3}$.

class	$12 \bar{A}$	$2 \bar{D}$	$2 \bar{E}$	$6 \bar{C}$	$6 \bar{D}$	$6 \bar{E}$	$6 \bar{F}$	$5 \bar{A}$	$10 \bar{A}$	$15 \bar{A}$
no. of elements										
centralizer	60	15	45	30	20	60	40	24	72	48
ϕ_{1}	12	16	24	36	12	18	30	10	15	
ϕ_{2}	-1	2	0	-1	2	0	-1	2	0	-1
ϕ_{3}	1	1	-1	1	1	-1	1	1	-1	1
ϕ_{4}	-1	1	1	1	-1	-1	-1	1	1	1
ϕ_{5}	-1	2	0	-1	-2	0	1	2	0	-1
ϕ_{6}	-1	1	-1	1	-1	1	-1	1	-1	1
ϕ_{7}	-1	1	1	1	1	1	1	0	0	0
ϕ_{8}	1	2	0	-1	2	0	-1	0	0	0
ϕ_{9}	0	-2	-2	-2	0	0	0	1	1	1
ϕ_{10}	0	-2	-2	-2	0	0	0	1	1	1
ϕ_{11}	0	-4	0	2	0	0	0	2	0	-1
ϕ_{12}	0	-2	2	-2	0	0	0	1	-1	1
ϕ_{13}	1	1	1	1	-1	-1	-1	0	0	0
ϕ_{14}	-1	2	0	-1	-2	0	1	0	0	0
ϕ_{15}	1	1	-1	1	-1	1	-1	0	0	0
ϕ_{16}	0	0	0	0	-1	-1	-1	-1	-1	-1
ϕ_{17}	0	0	0	0	-2	0	-1	-2	0	1
ϕ_{18}	0	0	0	0	-1	1	-1	-1	1	-1
ϕ_{19}	0	0	0	0	1	1	1	-1	-1	-1
ϕ_{20}	0	0	0	0	2	0	-1	2	0	-1
ϕ_{21}	0	0	0	0	1	-1	1	-1	1	-1

Table 2.6.4: The character table of $S_{5} \times S_{3}$ (continued).
In the process of restricting the characters of H to \bar{G} we first have to see how the conjugacy classes of \bar{G} fuse to the classes of H :

By restricting $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{7}, \phi_{8}, \phi_{9}, \phi_{10}, \phi_{16}, \phi_{17}$ and ϕ_{18} of $\operatorname{Irr}(H)$, we obtain ten irreducible characters of \bar{G}.

We now look at the character table of N for the induction of some of its irreducible characters to \bar{G}.

class	(1)	$(3 A)$	$(3 B)$	$(3 C)$	$(3 D)$	$(3 E)$	$(2 A)$	$(6 A)$
no. of elements	1	1	1	20	20	20	15	15
centralizer	180	180	180	9	9	9	12	12
ψ_{1}	1	1	1	1	1	1	1	1
ψ_{2}	1	c	\bar{c}	1	c	\bar{c}	1	c
ψ_{3}	1	\bar{c}	c	1	\bar{c}	c	1	\bar{c}
ψ_{4}	3	3	3	0	0	0	-1	-1
ψ_{5}	3	$3 c$	$3 \bar{c}$	0	0	0	-1	$-c$
ψ_{6}	3	$3 \bar{c}$	$3 c$	0	0	0	-1	$-\bar{c}$
ψ_{7}	3	3	3	0	0	0	-1	-1
ψ_{8}	3	$3 c$	$3 \bar{c}$	0	0	0	-1	$-c$
ψ_{9}	3	$3 \bar{c}$	$3 c$	0	0	0	-1	$-\bar{c}$
ψ_{10}	4	4	4	1	1	1	0	0
ψ_{11}	4	$4 c$	$4 \bar{c}$	1	c	\bar{c}	0	0
ψ_{12}	4	$4 \bar{c}$	$4 c$	1	\bar{c}	c	-1	$-\bar{c}$
ψ_{13}	5	5	5	-1	-1	-1	1	1
ψ_{14}	5	$5 c$	$5 \bar{c}$	-1	$-c$	$-\bar{c}$	1	c
ψ_{15}	5	$5 \bar{c}$	$5 c$	-1	$-\bar{c}$	$-c$	1	\bar{c}

Table 2.6.6: The character table of $A_{5} \times 3$.

class	$(6 B)$	$(5 A)$	$(15 A)$	$(15 B)$	$(5 B)$	$(15 C)$	$(15 D)$
no. of elements	15	12	12	12	12	12	12
centralizer	12	15	15	15	15	15	15
ψ_{1}	1	1	1	1	1	1	1
ψ_{2}	\bar{c}	1	c	\bar{c}	1	c	\bar{c}
ψ_{3}	c	1	\bar{c}	c	1	\bar{c}	c
ψ_{4}	-1	a	a	a	b	b	b
ψ_{5}	$-\bar{c}$	a	$a c$	$a \bar{c}$	b	$b c$	$b \bar{c}$
ψ_{6}	$-c$	a	$a \bar{c}$	$a c$	b	$b \bar{c}$	$b c$
ψ_{7}	-1	b	b	b	a	a	a
ψ_{8}	$-\bar{c}$	b	$b c$	$b \bar{c}$	a	$a c$	$a \bar{c}$
ψ_{9}	$-c$	b	$b \bar{c}$	$b c$	a	$a \bar{c}$	$a c$
ψ_{10}	0	-1	-1	-1	-1	-1	-1
ψ_{11}	0	-1	$-c$	$-\bar{c}$	-1	$-c$	$-\bar{c}$
ψ_{12}	0	-1	$-\bar{c}$	$-c$	-1	$-\bar{c}$	$-c$
ψ_{13}	ψ_{14}	\bar{c}	0	0	0	0	0
ψ_{15}	0	0	0	0	0	0	

Table 2.6.6: The character table of $A_{5} \times 3$ (continued).
where

$$
\begin{aligned}
a & =\frac{1+\sqrt{5}}{2} \\
b & =\frac{1-\sqrt{5}}{2} \text { and } \\
c & =-\frac{1}{2}+\frac{\sqrt{3}}{2} i
\end{aligned}
$$

If $\psi \in \operatorname{Irr}(N)$, then by using the formula for induced characters, we have

$$
\begin{aligned}
\psi^{\bar{G}}\left(1_{\bar{G}}\right) & =2 . \psi\left(1_{N}\right) \\
\psi^{\bar{G}}(g) & =\psi\left(z_{1}\right)+\psi\left(z_{2}\right) ; g \in\left(3_{1}\right) ; z_{1} \in(3 A) \text { and } z_{2} \in(3 B) \\
\psi^{\bar{G}}(g) & =2 . \psi\left(z_{3}\right) ; g \in\left(3_{2}\right) \text { and } z_{3} \in(3 C) \\
\psi^{\bar{G}}(g) & =\psi\left(z_{4}\right)+\psi\left(z_{5}\right) ; g \in\left(3_{3}\right) ; z_{4} \in(3 D) \text { and } z_{5} \in(3 E) \\
\psi^{\bar{G}}(g) & =2 . \psi\left(z_{6}\right) ; g \in\left(2_{1}\right) \text { and } z_{6} \in(2 A) \\
\psi^{\bar{G}}(g) & =\psi\left(z_{7}\right)+\psi\left(z_{8}\right) ; g \in\left(6_{1}\right) ; z_{7} \in(6 A) \text { and } z_{8} \in(6 B) \\
\psi^{\bar{G}}(g) & =\psi\left(z_{9}\right)+\psi\left(z_{10}\right) ; g \in\left(5_{1}\right) ; \quad z_{9} \in(5 A) \text { and } z_{10} \in(5 B) \\
\psi^{\bar{G}}(g) & =\psi\left(z_{11}\right)+\psi\left(z_{12}\right) ; g \in\left(15_{1}\right) ; \quad z_{11} \in(15 A) \text { and } z_{12} \in(15 D) \\
\psi^{\bar{G}}(g) & =\psi\left(z_{13}\right)+\psi\left(z_{14}\right) ; g \in\left(15_{2}\right) ; \quad z_{13} \in(15 B) \text { and } z_{12} \in(15 C) \\
\psi^{\bar{G}}(g) & =0 . i f \quad g \in\left(2_{2}\right) \cup\left(6_{2}\right) \cup\left(4_{1}\right)
\end{aligned}
$$

From the character table of N we induce the characters ψ_{5} and ψ_{6} to \bar{G} to obtain the irreducible characters χ_{11} and χ_{12} of \bar{G} and so complete the character table of \bar{G} :

class	1	$\left(3_{1}\right)$	$\left(3_{2}\right)$	$\left(3_{3}\right)$	$\left(2_{1}\right)$	$\left(6_{1}\right)$	$\left(5_{1}\right)$
no. of elements	1	2	20	40	15	30	24
centralizer	360	180	18	9	24	12	15
χ_{1}	1	1	1	1	1	1	1
χ_{2}	2	-1	2	-1	2	-1	2
χ_{3}	1	1	1	1	1	1	1
χ_{4}	5	5	-1	-1	1	1	0
χ_{5}	10	-5	-2	1	2	-1	0
χ_{6}	5	5	-1	-1	1	1	0
χ_{7}	6	6	0	0	-2	-2	1
χ_{8}	4	4	1	1	0	0	-1
χ_{9}	8	-4	2	-1	0	0	-2
χ_{10}	4	4	1	1	0	0	-1
χ_{11}	6	-3	0	0	-2	1	1
χ_{12}	6	-3	0	0	-2	1	1

Table 2.6.7: The character table of $A_{5} \times 3: 2$.

class	$\left(15_{1}\right)$	$\left(15_{2}\right)$	$\left(2_{2}\right)$	$\left(6_{2}\right)$	$\left(4_{1}\right)$
no. of elements	24	24	30	60	90
centralizer	15	15	12	6	4
χ_{1}	1	1	1	1	1
χ_{2}	-1	-1	0	0	0
χ_{3}	1	1	-1	-1	-1
χ_{4}	0	0	1	1	-1
χ_{5}	0	0	0	0	0
χ_{6}	0	0	-1	-1	1
χ_{7}	1	1	0	0	0
χ_{8}	-1	-1	2	-1	0
χ_{9}	1	1	0	0	0
χ_{10}	-1	-1	-2	1	0
χ_{11}	$a c+b . \bar{c}$	$a . \bar{c}+b c$	0	0	0
χ_{12}	$a . \bar{c}+b c$	$a c+b . \bar{c}$	0	0	0

Table 2.6.7: The character table of $A_{5} \times 3: 2$ (continued).
where

$$
\begin{aligned}
a & =\frac{1+\sqrt{5}}{2} \\
b & =\frac{1-\sqrt{5}}{2} \text { and } \\
c & =-\frac{1}{2}+\frac{\sqrt{3}}{2} i
\end{aligned}
$$

To conclude this chapter we give as examples for our discussion on how the methods of restriction and induction of characters are related (section 2.3), the following two Frobenius reciprocity tables:

$N \backslash \bar{G}$	$\downarrow \chi_{1}$	χ_{2}	χ_{3}	χ_{4}	χ_{5}	χ_{6}	χ_{7}	χ_{8}	χ_{9}	χ_{10}	χ_{11}	χ_{12}
$\psi_{1} \uparrow$	0	1	0	0	0	0	0	0	0	0	0	0
ψ_{2}	0	1	0	0	0	0	0	0	0	0	0	0
ψ_{3}	0	1	0	0	0	0	0	0	0	0	0	0
ψ_{4}	0	0	0	0	0	0	1	0	0	0	0	0
ψ_{5}	0	0	0	0	0	0	0	0	0	0	1	0
ψ_{6}	0	0	0	0	0	0	0	0	0	0	1	0
ψ_{7}	0	0	0	0	0	0	1	0	0	0	0	0
ψ_{8}	0	0	0	0	0	0	0	0	0	0	0	1
ψ_{9}	0	0	0	0	0	0	0	0	0	0	0	1
ψ_{10}	0	0	0	0	0	0	0	1	0	1	0	0
ψ_{11}	0	0	0	0	0	0	0	0	1	0	0	0
ψ_{12}	0	0	0	0	0	0	0	0	1	0	0	0
ψ_{13}	0	0	0	1	0	1	0	0	0	0	0	0
ψ_{14}	0	0	0	0	1	0	0	0	0	0	0	0
ψ_{15}	0	0	0	0	1	0	0	0	0	0	0	0

Table 2.6.8.

From the table above we can easily express $\psi^{\bar{G}}$ as a sum of irreducible characters χ_{i} of \bar{G} for every $\psi \in N$ and likewise express $\chi \downarrow N$ as a sum of irreducible characters ψ_{j} of N for every $\chi \in \bar{G}$.

$\bar{G} \backslash H$	$\downarrow \phi_{1}$	ϕ_{2}	ϕ_{3}	ϕ_{4}	ϕ_{5}	ϕ_{6}	ϕ_{7}	ϕ_{8}	ϕ_{9}	ϕ_{10}	ϕ_{11}
$\chi_{1} \uparrow$	1	0	0	0	0	1	0	0	0	0	0
χ_{2}											
χ_{3}											
χ_{4}	0	1	0	0	1	0	0	0	0	0	0
χ_{5}	0	0	1	1	0	0	0	0	0	0	0
χ_{6}	0	0	0	0	0	0	1	0	0	0	0
χ_{7}	0	0	0	0	0	0	0	1	0	0	0
χ_{8}	0	0	0	0	0	0	0	0	1	0	0
χ_{9}	0	0	0	0	0	0	0	0	0	1	0
χ_{10}	0	0	0	0	0	0	0	0	0	0	0
χ_{11}	0	0	0	0	0	0	0	0	0	0	0
χ_{12}	0	0	0	0	0	0	0	0	0	0	0

Table 2.6.9.

$\bar{G} \backslash H$	$\downarrow \phi_{12}$	ϕ_{13}	ϕ_{14}	ϕ_{15}	ϕ_{16}	ϕ_{17}	ϕ_{18}	ϕ_{19}	ϕ_{20}	ϕ_{21}
$\chi_{1} \uparrow$	0	0	0	0	0	1	0	0	0	0
χ_{2}	0	0	0	0	0	0	0	0	0	0
χ_{3}	0	0	0	0	0	0	0	0	0	0
χ_{4}	0	0	0	1	0	0	0	0	0	0
χ_{5}	0	0	1	0	0	0	0	0	0	0
χ_{6}	0	1	0	0	0	0	0	0	0	0
χ_{7}	1	0	0	0	0	0	0	0	0	0
χ_{8}	0	0	0	0	1	0	0	0	0	1
χ_{9}	0	0	0	0	0	1	0	0	1	0
χ_{10}	0	0	0	0	0	0	1	1	0	0
χ_{11}	0	0	0	0	0	0	0	0	0	0
χ_{12}	0	0	0	0	0	0	0	0	0	0

Table 2.6.9(continued)

The Frobenius table (above) in this case tells us how to express χ^{H} as a sum of irreducible characters ϕ_{i} of H for every $\chi \in \bar{G}$ and how to express $\phi \downarrow \bar{G}$ as a sum of irreducible characters χ_{j} of \bar{G} for every $\phi \in H$.

Chapter 3

FISCHER MATRICES

In this chapter we discuss the theory of Fischer matrices and show how it is applied in finding the irreducible characters of three finite groups which are all split extensions. We shall first look at results which are necessary for our discussion of Fischer matrices. This theory, called Clifford theory, is discussed in section 3.1. Section 3.2 deals with the properties of Fischer matrices and in the rest of the chapter we calculate the character tables of the three groups as mentioned. For the first two sections we make use of the thesis of Whitley [19].

3.1 Clifford Theory

We consider the characters of \bar{G}, an extension of N by G, with N not necessarily abelian.

Let $\theta \in \operatorname{Irr}(N)$, where $N \triangleleft \bar{G}$ and for $g \in \bar{G}, n \in N$ we let θ^{g} be defined by $\theta^{g}(n)=\theta\left(g n g^{-1}\right)$. Then θ^{g} is a character of N and is said to be conjugate to θ in \bar{G}. \bar{G} permutes $\operatorname{Irr}(N)$ by $g: \theta \rightarrow \theta^{g}$. Since N acts trivially on $\operatorname{Irr}(N), \operatorname{Irr}(N)$ is permuted by \bar{G} / N, by $g N: \theta \rightarrow \theta^{g}$.

The next result, due to Clifford [2], is fundamental to the work that follows in this and the next
section. The proof is from Isaacs[9].

Theorem 3.1.1 (Clifford's theorem) Let $N \triangleleft \bar{G}$ and $\chi \in \operatorname{Irr}(\bar{G})$. Let θ be an irreducible constituent of $\left.\chi\right|_{N}$ and suppose that $\theta=\theta_{1}, \theta_{2}, \ldots, \theta_{t}$ are the distinct conjugates of θ in \bar{G}.
Then $\left.\chi\right|_{N}=e \sum_{i=1}^{t} \theta_{i}$ where $e=\left\langle\left.\chi\right|_{N}, \theta\right\rangle$.

Proof: We compute $\left.\theta^{\bar{G}}\right|_{N}$. Define θ^{0} on \bar{G} by

$$
\theta^{0}(x)= \begin{cases}\theta(x), & \text { if } x \in N \\ 0, & x \notin N\end{cases}
$$

For $n \in N$, we have

$$
\theta^{\bar{G}}(n)=|N|^{-1} \sum_{x \in \bar{G}} \theta^{0}\left(x n x^{-1}\right) .
$$

Since $x n x^{-1} \in N \forall x \in \bar{G}$ we have

$$
\begin{aligned}
\theta^{\bar{G}}(n) & =|N|^{-1} \sum_{x \in \bar{G}} \theta^{x}(n) . \text { Therefore } \\
\left.|N| \cdot \theta^{\bar{G}}\right|_{N} & =\sum_{x \in \bar{G}} \theta^{x}
\end{aligned}
$$

and if $\phi \in \operatorname{Irr}(N)$ and $\phi \notin\left\{\theta_{i}: 1 \leq i \leq t\right\}$ then

$$
0=\left\langle\sum_{x \in \bar{G}} \theta^{x}, \phi\right\rangle, \quad \text { so }\left\langle\left.\theta^{\bar{G}}\right|_{N}, \phi\right\rangle=0 .
$$

Since χ is an irreducible constituent of $\theta^{\bar{G}}$ by Frobenius reciprocity, it follows that $\left\langle\left.\chi\right|_{N}, \phi\right\rangle=0$. Thus all the irreducible constituents of $\left.\chi\right|_{N}$ are among the θ_{i}, so

$$
\left.\chi\right|_{N}=\sum_{i=1}^{t}\left\langle\left.\chi\right|_{N}, \theta_{i}\right\rangle \theta_{i} .
$$

But $\left\langle\left.\chi\right|_{N}, \theta_{i}\right\rangle=\left\langle\left.\chi\right|_{N}, \theta\right\rangle$ since θ_{i} and θ are conjugate and so the proof is complete.
Definition 3.1.2 Let $N \triangleleft \bar{G}$ and $\theta \in \operatorname{Irr}(N)$. Then $I_{\bar{G}}(\theta)=\left\{g \in \bar{G}: \theta^{g}=\theta\right\}$ is the inertia group of θ in \bar{G}.

Since $I_{\bar{G}}(\theta)$ is the stabilizer of θ in the action of \bar{G} on $\operatorname{Irr}(N)$, we have that $I_{\bar{G}}(\theta)$ is a subgroup of \bar{G} and $N \subseteq I_{\bar{G}}(\theta)$. Also $\left[\bar{G}: I_{\bar{G}}(\theta)\right]$ is the size of the orbit containing θ, so in the formula $\left.\chi\right|_{N}=e \sum_{i=1}^{t} \theta_{i}$, we have $t=\left[\bar{G}: I_{\bar{G}}(\theta)\right]$.

As a consequence of Clifford's theorem, we have the following theorem.
Theorem 3.1.3 Let $N \triangleleft \bar{G}, \quad \theta \in \operatorname{Irr}(N)$ and $\quad \bar{H}=I_{\bar{G}}(\theta)$. Then induction to \bar{G} maps the irreducible characters of \bar{H} that contain θ in their restriction to N faithfully onto the irreducible characters of \bar{G} which contains θ in their restiction to N.

Proof: See [19,Theorem 3.3.2]
Theorem 3.1.3 shows that to find the irreducible characters of \bar{G} that contain θ in their restriction to N, it suffices to find the irreducible characters $\bar{H}=I_{\bar{G}}(\theta)$ that contain θ in their restriction. If θ can be extended to an irreducible character ψ of \bar{H} (that is $\psi \in \operatorname{Irr}(\bar{H})$ with $\left.\psi\right|_{N}=\theta$), then the relevant characters of \bar{H} can be obtained by using the following theorem.

Theorem 3.1.4 (Gallaghar [6]) With N, \bar{G}, θ and \bar{H} as above, if θ extends to a character $\psi \in \operatorname{Irr}(\bar{H})$ then as β ranges over all irreducible characters of \bar{H} that contain N in their kernel,
$\beta \psi$ ranges over all irreducible characters of \bar{H} that contain θ in their restriction.

Proof: By definition of \bar{H}, θ is the only \bar{H}-conjugate of θ, so by Clifford's theorem $\left.\theta^{\bar{H}}\right|_{N}=f \theta$ for some integer f. Comparing degrees, $\left.\theta^{\bar{H}}\right|_{N}=[\bar{H}: N] \theta$, so

$$
\begin{aligned}
\left\langle\theta^{\bar{H}}, \theta^{\bar{H}}\right\rangle & =\left\langle\theta,\left.\theta^{\bar{H}}\right|_{N}\right\rangle \\
& =[\bar{H}: N]
\end{aligned}
$$

Now we claim that $\theta^{\bar{H}}=\sum_{\beta} \beta(1) \beta \psi$, where β runs over all irreducible characters of \bar{H} that contain N in their kernel, or, equivalently, over all irreducible characters of \bar{H} / N. Both $\theta^{\bar{H}}$ and $\sum_{\beta} \beta(1) \beta \psi$ are zero off N because for $g \notin N, \theta^{\bar{H}}(g)=0$ since $x g x^{-1} \notin N \forall x \in \bar{G}$, and by the column orthogonality for the character table of \bar{H} / N since g does not belong to N, we have

$$
\sum_{\beta} \beta(1)(\beta \psi)(g)=\sum_{\beta}(\beta(1) \beta(g)) \psi(g)=0 .
$$

Also

$$
\left.\theta^{\bar{H}}\right|_{N}=[\bar{H}: N] \theta=\left.\left(\sum_{\beta} \beta(1) \beta \psi\right)\right|_{N}
$$

because for $g \in N$,

$$
\begin{aligned}
\sum_{\beta} \beta(1) \beta(g) \psi(g) & =\sum_{\beta}(\beta(1))^{2} \cdot \psi(g) \\
& =[\bar{H}: N] \psi(g) \\
& =[\bar{H}: N] \theta(g) .
\end{aligned}
$$

Therefore $\theta^{\bar{H}}=\sum_{\beta} \beta(1) \beta \psi$ as claimed. Now

$$
\begin{aligned}
{[\bar{H}: N] } & =\left\langle\theta^{\bar{H}}, \theta^{\bar{H}}\right\rangle \\
& =\left\langle\sum_{\beta} \beta(1) \beta \psi, \sum_{\gamma} \gamma(1) \gamma \psi\right\rangle \\
& =\sum_{\beta, \gamma} \beta(1) \gamma(1)\langle\beta \psi, \gamma \psi\rangle .
\end{aligned}
$$

The diagonal terms contribute at least $\sum \beta(1)^{2}=[\bar{H}: N]$ so the $\beta \psi$ are irreducible and distinct. These $\beta \psi$ are all the irreducible constituents of $\theta^{\bar{H}}$, so are all the irreducible characters of \bar{H} that contain θ in their restriction, since for $\phi \in \operatorname{Irr}(\bar{H}),\left\langle\left.\phi\right|_{N}, \theta\right\rangle=\left\langle\phi, \phi^{\bar{H}}\right\rangle$.
Note 1 Now suppose \bar{G} is an extension of N by G. If every irreducible character of N can be extended to its inertia group in \bar{G}, then by application of theorems 3.1.3 and 3.1.4 the characters of \bar{G} can be obtained as follows:
Let $\theta_{1}, \theta_{2}, \ldots, \theta_{t}$ be representatives of the orbits of \bar{G} on $\operatorname{Irr}(N)$. For each i, let $\bar{H}_{i}=I_{\bar{G}}\left(\theta_{i}\right)$ and let $\psi_{i} \in \operatorname{Irr}\left(\bar{H}_{i}\right)$ with $\left.\psi_{i}\right|_{N}=\theta_{i}$. Now each irreducible character of \bar{G} contains some θ_{i} in its restriction N by Clifford's theorem, so by theorems 3.1.3 and 3.1.4 we have

$$
\operatorname{Irr}(\bar{G})=\bigcup_{i=1}^{t}\left\{\left(\beta \psi_{i}\right)^{\bar{G}}: \beta \in \operatorname{Irr}\left(\bar{H}_{i}\right), N \subset \operatorname{ker}(\beta)\right\}
$$

Hence the characters of \bar{G} fall into blocks, with each block corresponding to an inertia group.

We now quote some results which give sufficient conditions for the irreducible characters of N to be extendible to their respective inertia groups, so that the above method can be used to calculate the characters of \bar{G}.

The following result and proof was obtained from Curtis and Reiner ([4, page 353]).

Theorem 3.1.5 (Mackey's theorem) Suppose that N is a normal subgroup of \bar{H} such that N is abelian and \bar{H} is a semi-direct product of N and H for some $H \leq \bar{H}$. If $\theta \in \operatorname{Irr}(N)$ is invariant in \bar{H} (that is, $\theta^{h}=\theta, \forall h \in \bar{H}$) then θ can be extended to a linear character of \bar{H}.

Proof: Since \bar{H} is a semi-direct product, any $h \in \bar{H}$ can be written uniquely as $h=n k, n \in N, k \in H$. Define χ on \bar{H} by $\chi(n k)=\theta(n)$. Since N is abelian, θ has degree 1 , hence is linear, and the fact that $\theta=\theta^{h}$ for all $h \in \bar{H}$ implies that $\theta(n)=\theta\left(h n h^{-1}\right)$ for all $h \in \bar{H}$. Then if $h_{1}=n_{1} k_{1}, h_{2}=n_{2} k_{2}$, we have

$$
\begin{aligned}
\chi\left(h_{1} h_{2}\right) & =\chi\left(n_{1} k_{1} n_{2} k_{2}\right) \\
& =\chi\left(n_{1} n_{2}^{k_{1}} k_{1} k_{2}\right) \\
& =\theta\left(n_{1} n_{2}^{k_{1}}\right) \\
& =\theta\left(n_{1}\right) \theta\left(n_{2}^{k_{1}}\right) \\
& =\theta\left(n_{1}\right) \theta\left(n_{2}\right) \\
& =\theta\left(n_{1} n_{2}\right)=\chi\left(h_{1}\right) \chi\left(h_{2}\right) .
\end{aligned}
$$

Therefore χ is a linear character of \bar{H}, and $\left.\chi\right|_{N}=\theta$.

Since in all our examples that we will consider, N is abelian and the extension is split, Mackey's theorem will apply. Mackey's theorem is a corollary of a more general result by Karpilovsky [11] which we state without proof.

Theorem 3.1.6 Let the group \bar{H} contain a subgroup H of ordern such that $\bar{H}=N H$ for N normal in \bar{H} and let $\chi \in \operatorname{Irr}(N)$ be invariant in \bar{H}. Then χ extends to an irreducible character of \bar{H} if the following conditions hold:

1. $(m, n)=1$ where $m=\chi(1)$,
2. $N \cap H \leq N^{\prime}$ where N^{\prime} is the derived subgroup of N.

Another extension theorem which can be found in [7] is the following:

Theorem 3.1.7 If N is a normal subgroup of \bar{H} and θ is an irreducible character of N that is invariant in \bar{H}, then θ is extendable to an irreducible character of \bar{H} if

$$
\left([\bar{H}: N], \frac{|N|}{\theta(1)}\right)=1
$$

3.2 Properties of Fischer Matrices

In this section we give some properties of the Fischer matrices which will enable us to compute the character tables of three finite group extensions in the last three sections. We however need to look at some background material first.

Let \bar{G} be an extension of N by G, with the property that every irreducible character of N can be extended to its inertia group. With the notation of the previous chapter we have that $\left[\operatorname{Irr}(\bar{G})=\bigcup_{i=1}^{t}\left\{\left(\beta \psi_{i}\right)^{\bar{G}}: \beta \in \operatorname{Irr}\left(\overline{H_{i}}\right)\right.\right.$ with $\left.\left.N \subset \operatorname{ker}(\beta)\right\}\right]$ Now we show how the character table \bar{G} can be constructed using this result. We construct a matrix for each conjugacy class of G (the Fischer matices). Then the character table of \bar{G} can be constructed using these matrices and the character tables of factor groups of the inertia groups. These constructions of Fischer matrices have been discussed by Salleh [18], List [13] and List and Mahmoud [14].

As previously, let $\theta_{1}, \ldots, \theta_{t}$ be representatives of the orbits of \bar{G} on $\operatorname{Irr}(N)$, and let $\bar{H}_{i}=I_{\bar{G}}\left(\theta_{i}\right)$ and $H_{i}=\bar{H}_{i} / N$. Let ψ_{i} be an extension of θ_{i} to \bar{H}_{i}. We take $\theta_{1}=1_{N}$, so $\bar{H}_{1}=\bar{G}$ and $H_{1}=G$. We consider a conjugacy class $[g]$ of G with representative g. Let $X(g)=\left\{x_{1}, \ldots x_{c(g)}\right\}$ be representatives of \bar{G}-conjugacy classes of elements of the coset $N \bar{g}$. Take $x_{1}=\bar{g}$. Let $R(g)$ be a set of pairs (i, y)
where $i \in\{1, \ldots, t\}$ such that H_{i} contains an element of $[g]$, and y ranges over representatives of the conjugacy classes of H_{i} that fuse to $[g]$. Corresponding to this $y \in H_{i}$, let $\left\{y_{l_{k}}\right\}$ be representatives of conjugacy classes of $\overline{H_{i}}$ that contain liftings of y.
If $\beta \in \operatorname{Irr}\left(\overline{H_{i}}\right)$ with $N \subset \operatorname{ker}(\beta)$, then β has been lifted from some $\hat{\beta} \in \operatorname{Irr}\left(H_{i}\right)$, with $\hat{\beta}(y)=\beta\left(y l_{k}\right)$ for any lifting $y l_{k}$ of y. For convenience we write $\beta(y)$ for $\hat{\beta}(y)$.
Now, using the formula for induced characters given in Proposition 2.2.9., we have

$$
\begin{aligned}
\left(\psi_{i} \beta\right)^{\bar{G}}\left(x_{j}\right) & =\sum_{y:(i, y) \in R(g)} \sum_{k}^{\prime} \frac{\left|C_{\bar{G}}\left(x_{j}\right)\right|}{\left|C_{\overline{H_{i}}}\left(y_{k}\right)\right|}\left(\psi_{i} \beta\right)\left(y_{l_{k}}\right) \\
& =\sum_{y:(i, y) \in R(g)} \sum_{k}^{\prime} \frac{\left|C_{\bar{G}}\left(x_{j}\right)\right|}{\left|C_{\overline{H_{i}}}\left(y_{l_{k}}\right)\right|} \psi_{i}\left(y_{l_{k}}\right) \hat{\beta}(y) \\
& =\sum_{y:(i, y) \in R(g)}\left(\sum_{k}^{\prime} \frac{\left|C_{\bar{G}}\left(x_{j}\right)\right|}{\left|C_{\overline{H_{i}}}\left(y_{l_{k}}\right)\right|} \psi_{i}\left(y_{l_{k}}\right)\right) \beta(y)
\end{aligned}
$$

By $\Sigma_{k}{ }^{\prime}$ we mean that we sum over those k for which $y_{l_{k}}$ is conjugate to x_{j} in \bar{G}. Now we define the Fischer matrix $M(g)=\left(a_{(i, y)}^{j}\right)$ with columns indexed by $X(g)$ and rows indexed by $R(g)$ by

$$
a_{(i, y)}^{j}=\sum_{k}^{\prime} \frac{\left|C_{\bar{G}}\left(x_{j}\right)\right|}{\left|C_{\overline{H_{i}}}\left(y_{k}\right)\right|} \psi_{i}\left(y_{l_{k}}\right)
$$

Then

$$
\left(\psi_{i} \beta\right)^{\bar{G}}\left(x_{j}\right)=\sum_{y:(i, y) \in R(g)} a_{(i, y)}^{j} \beta(y) .
$$

The rows of $M(g)$ can be divided into blocks, each block corresponding to an inertia group. Denote the submatrix corresponding to H_{i} by $M_{i}(g)$, and let $C_{i}(g)$ be the fragment of the character table of H_{i} consisting of the columns corresponding to classes that fuse to $[g]$. Then, by the above relation, the characters of \bar{G} at the classes represented by $X(g)$ obtained from inducing characters of \bar{H}_{i} are given by the matrix product $C_{i}(g) \cdot M_{i}(g)$.

We now state a result of Brauer and prove a lemma which will be needed later.

Lemma 3.2.1 (Brauer) Let A be a group of automorphisms of a group K. Then A also acts on $\operatorname{Irr}(K)$ and the number of orbits of A on $\operatorname{Irr}\left(K^{*}\right)$ is the same as that on the conjugacy classes of K.

Proof: See [8, 4.5.2]

Lemma 3.2.2 Let A be a group of automorphisms of a group K, so A acts on $\operatorname{Irr}(K)$ and on the conjugacy classes of K with the same number of orbits on each by the previous lemma. Suppose we have the following matrix describing these actions:

$$
1=l_{1} \quad l_{2} \quad \ldots \quad l_{j} \quad \ldots \quad l_{t}
$$

where $a_{i j}=1$ for $j=1, \ldots t, l_{j}$'s are lengths of orbits A on the conjugacy classes of K, s_{i} 's are lengths of orbits A on $\operatorname{Irr}\left(K^{\prime}\right)$,
$a_{i j}$ is the sum of s_{i} irreducible characters of K on the element x_{j}, where x_{j} be an element of the orbit of length l_{j}.
Then the following relation holds for $i, i^{\prime} \in\{1, \ldots t\}$:

$$
\sum_{j=1}^{t} a_{i j} \overline{a_{i^{\prime} j}} l_{j}=|K| s_{i} \delta_{i i^{\prime}}
$$

Proof: Let $\underline{s_{i}}$ denote the sum of s_{i} irreducible characters of K, so $\underline{s_{i}}\left(x_{j}\right)=a_{i j}$. Then

$$
\left\langle\underline{s_{i}}, \underline{s_{i^{\prime}}}\right\rangle=|K|^{-1} \sum_{j=1}^{t} l_{j} \underline{s_{i}}\left(x_{j}\right) \overline{s_{i^{\prime}}\left(x_{j}\right)}=|K|^{-1} \sum_{j=1}^{t} l_{j} a_{i j} \overline{a_{i^{\prime} j}}
$$

But by orthogonality of irreducible characters, $\left\langle\underline{s_{i}}, \underline{s_{i^{\prime}}}\right\rangle=\delta_{i i^{\prime}} s_{i}$, so

$$
\sum_{j=1}^{t} l_{j} a_{i j} \overline{a_{i^{\prime} j}}=|K| s_{i} \delta_{i i^{\prime}}
$$

Now let $M(g)=\left(a_{(i, y)}^{j}\right)$ be the Fischer matrix for $\bar{G}=N . G$ at $g \in G$. We present $M(g)$ with corresponding "weights" for columns and rows as follows:

The matrix $M(g)$ is divided into blocks (separated by horizontal lines), each corresponding to an inertia group. Note that $a_{(1, g)}^{j}=1$ for all $j \in\{1, \ldots, c(g)\}$. Fischer has shown that $M(g)$ is square and nonsingular(see[14]). In the following propositions and note we give further properties of Fischer matrices.

Proposition 3.2.3 (column orthogonality)

$$
\sum_{(i, y) \in R(g)}\left|C_{H_{i}}(y)\right| a_{(i, y)}^{j} \overline{a_{(i, y)}^{j^{\prime}}}=\delta_{j j^{\prime}}\left|C_{\bar{G}}\left(x_{j}\right)\right|
$$

Proof:The partial character table of \bar{G} at classes $x_{1}, \ldots, x_{c(g)}$ is

$$
\left[\begin{array}{c}
C_{1}(g) M_{1}(g) \\
\vdots \\
C_{t}(g) M_{t}(g)
\end{array}\right]
$$

where $C_{i}(g), M_{i}(g)$ are as defined earlier in this section.
By column orthogonality of the character table of \bar{G}, we have

$$
\begin{aligned}
\left|C_{\bar{G}}\left(x_{j}\right)\right| \delta_{j j^{\prime}} & =\sum_{i=1}^{t} \sum_{\beta_{i} \in \operatorname{Irr}\left(H_{i}\right)}\left(\sum_{y:(i, y) \in R(g)} a_{(i, y)}^{j} \beta_{i}(y)\right)\left(\overline{\sum_{y^{\prime}:\left(i, y^{\prime}\right) \in R(g)} a_{\left(i, y^{\prime}\right)}^{j^{\prime}} \beta_{i}\left(y^{\prime}\right)}\right) \\
& =\sum_{i=1}^{t} \sum_{\beta_{i} \in \operatorname{Irr}\left(H_{i}\right)}\left(\sum_{y} a_{(i, y)}^{j} \overline{a_{(i, y)}^{j^{\prime}}} \beta_{i}(y) \overline{\beta_{i}(y)}+\sum_{y} \sum_{y^{\prime} \neq y} a_{(i, y)}^{j} \overline{a_{\left(i, y^{\prime}\right)}^{j^{\prime}}} \beta_{i}(y) \overline{\beta_{i}\left(y^{\prime}\right)}\right) \\
& =\sum_{i=1}^{t}\left(\sum_{y} a_{(i, y)}^{j} \overline{a_{(i, y)}^{j^{\prime}}} \sum_{\beta_{i} \in \operatorname{Irr}\left(H_{i}\right)} \beta_{i}(y) \overline{\beta_{i}(y)}+\sum_{y} \sum_{y^{\prime} \neq y} a_{(i, y)}^{j} \overline{a_{\left(i, y^{\prime}\right)}^{j^{\prime}}} \sum_{\beta_{i} \in \operatorname{Irr}\left(H_{i}\right)} \beta_{i}(y) \overline{\beta_{i}\left(y^{\prime}\right)}\right) \\
& =\sum_{i=1}^{t}\left(\sum_{y} a_{(i, y)}^{j} \overline{a_{(i, y)}^{j^{\prime}}}\left|C_{H_{i}}(y)\right|+0\right) \\
& =\sum_{(i, y) \in R(g)} a_{(i, y)}^{j} \overline{a_{(i, y)}^{j^{\prime}}}\left|C_{H_{i}}(y)\right| .
\end{aligned}
$$

Proposition 3.2.4 (List [13]) At the identity of G, the matrix $M(1)$ is the matrix with rows equal to orbit sums of the action of \bar{G} on $\operatorname{Irr}(N)$ with duplicate columns discarded.

For this matrix we have $a_{(i, 1)}^{j}=\left[G: H_{i}\right]$, and an orthogonality relation for rows:

$$
\sum_{j=1}^{t} a_{(i, 1)}^{j} a_{\left(i^{\prime}, 1\right)}^{j}\left|C_{\bar{G}}\left(x_{j}\right)\right|^{-1}=\delta_{i i^{\prime}}\left|C_{H_{i}}(1)\right|^{-1}=\delta_{i i^{\prime}}\left|H_{i}\right|^{-1}
$$

Proof:: The $(i, 1), j^{\text {th }}$ entry of $M(1)$ is

$$
a_{(i, 1)}^{j}=\sum_{k} \frac{\left|C_{\bar{G}}\left(x_{j}\right)\right|}{\left|C_{\overline{H_{i}}}\left(y_{l_{k}}\right)\right|} \psi_{i}\left(y_{l_{k}}\right)
$$

where we sum over representatives of conjugacy classes of \bar{H}_{i} that fuse to $\left[x_{j}\right]$ in \bar{G}. Therefore $a_{(i, 1)}^{j}=$ $\psi_{i}^{\bar{G}}\left(x_{j}\right)$. By theorem 3.1.3 $\psi_{i}^{\bar{G}}$ is an irreducible character of \bar{G}, and $<\left.\psi_{i}^{\bar{G}}\right|_{N}, \theta_{i}>=<\left.\psi_{i}\right|_{N}, \theta_{i}>=1$. Therefore, by Clifford's Theorem (Theorem 3.1.1), $\left.\psi_{i}^{\bar{G}}\right|_{N}=\sum_{\alpha} \chi_{\alpha}$, where we sum over all $\chi_{\alpha} \in$ $\operatorname{Irr}(N)$ in the orbit containing θ_{i}. Now $x_{j} \in N$, and $a_{(i, 1)}^{j}=\sum_{\alpha} \chi_{\alpha}\left(x_{j}\right)$. The orthogonality relation follows by Lemma 3.2.2.

Note 1 If N is an elementary abelian group (which is the case for our calculations), then List[13] has also shown the following for $M(g)$, where $g \neq 1$:

If \bar{G} is a split extension of N by G, then $M(g)$ is the matrix of orbit sums of C_{g} (as defined in section 1.2) acting on the rows of the character table for a certain factor group of N with duplicate columns discarded.

If the extension is not split, $M(g)$ is the matrix of orbit sums of C_{g} acting on the rows of the character table with duplicate columns discarded and with each row multiplied by a $p-t h$ root of unity where $|N|=p^{n}$ for some n. It may be that the root of unity for each row is 1 .
For these matrices (N elementary abelian, any extension) $a_{(i, y)}^{1}=\frac{\left|C_{G}(g)\right|}{\left|C_{H_{i}}(y)\right|}$, and we have an orthogonality relation for rows (as a consequence of Lemma 3.2.2.):

$$
\sum_{j=1}^{c(g)} m_{j} a_{(i, y)}^{j} \overline{a_{\left(i^{\prime}, y^{\prime}\right)}^{j}}=\delta_{(i, y)\left(i^{\prime}, y^{\prime}\right)}\left|C_{G}(g)\right|\left|C_{H_{i}}(y)\right|^{-1}|N|=\delta_{(i, y)\left(i^{\prime}, y^{\prime}\right)} a_{(i, y)}^{1}|N|
$$

where $m_{j}=\left[C_{g}: C_{\bar{G}}\left(x_{j}\right)\right]$.
(In the notation of section 1.2, m_{j} is the length of the orbit Δ_{l} of C_{g}, so $m_{j}=\frac{f|N|}{k}$)
The relations given in the above propositions and note will be used later in our calculations of Fischer matrices, so for convenience we list them in a theorem.

Theorem 3.2.5 For a Fischer matrix $M(g)=\left(a_{(i, y)}^{j}\right)$ of $\bar{G}=N . G$ we have the following relations.

1. $a_{(1, g)}^{j}=1$ for all $j \in\{1, \ldots, c(g)\}$.
2. $\sum_{(i, y) \in R(g)}\left|C_{H_{i}}(y)\right| a_{(i, y)}^{j} \overline{a_{(i, y)}^{j^{\prime}}}=\delta_{j j^{\prime}}\left|C_{\bar{G}}\left(x_{j}\right)\right|$.
3. If N is elementary abelian, then $a_{(i, y)}^{1}=\frac{\left|C_{G}(g)\right|}{\left|C_{H_{i}}(y)\right|}$, and
4. $\sum_{j=1}^{c(g)} m_{j} a_{(i, y)}^{j} \overline{a_{\left(i^{\prime}, y^{\prime}\right)}^{j}}=\delta_{(i, y)\left(i^{\prime}, y^{\prime}\right)} a_{(i, y)}^{1}|N|$.

3.3 The Character Table of a Group of the form $2^{4}: S_{3} \times S_{3}$

Let $\bar{G}=N: G$ where N is an elementary abelian 2-group of order 16 and $G=S_{3} \times S_{3}$. We start with the conjugacy classes of \bar{G} and use the facts that $S_{3} \cong G L_{2}(2)$ and that N is isomorphic to $V_{4}(2)$, the vector space of dimension four over a field of two elements. Now

$$
G L_{2}(2)=\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\rangle
$$

so we consider the following 4×4 matrices over $G F(2)$:

$$
\begin{aligned}
& \left.x_{3}=\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \\
& \left.w_{1}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \text {, } \\
& y_{2}=\left(\begin{array}{l}
\left.(1),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \text {, }, \text {, } 10 \text {, } 10
\end{array}\right. \\
& w_{2}=\left(\begin{array}{ll}
\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array} 3\right.
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right), \\
& \left.y_{3}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

We let $G=<x_{1}, y_{1}, x_{2}, y_{2}>$. Then $\left\{1_{G}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, w_{1}, w_{2}\right\}$ is a complete set of the class representatives for G. N is generated by $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ i.e.

$$
N=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right)\right\rangle
$$

Let G act naturally on N. Using the method discussed in chapter 1 , section 1.2 , we act N and $C_{G}(g)$ on the cosets $N g$ where $g \in\left\{1_{G}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, w_{1}, w_{2}\right\}$.

- $\underline{g=1_{G}}:$

If g is the identity of G, then g fixes all elements of N, so $k=16$. Under the action of $C_{G}\left(1_{G}\right)=G$ these orbits are fused as follows:
$\Delta_{1}=1^{G}=1 \Longrightarrow f_{1}=1$,
$\Delta_{2}=\left\{e_{1}\right\}^{G}=\left\{e_{1}, e_{2}, e_{1} e_{2}\right\} \Longrightarrow f_{2}=3$,
$\Delta_{3}=\left\{e_{3}\right\}^{G}=\left\{e_{3}, e_{4}, e_{3} e_{4}\right\} \Longrightarrow f_{3}=3$ and
$\Delta_{4}=\left\{e_{1}, e_{3}\right\}^{G}=N \backslash\left(\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}\right) \Longrightarrow f_{4}=9$,
so this coset gives four classes of \bar{G} :
$\left|C_{\bar{G}}(1)\right|=16 \times 36=576$
$\left|C_{\bar{G}}\left(e_{1}\right)\right|=16 \times 36 \div 3=192$
$\left|C_{\bar{G}}\left(e_{3}\right)\right|=16 \times 36 \div 3=192$
$\left|C_{\bar{G}}\left(e_{1} e_{3}\right)\right|=16 \times 36 \div 9=64$

- $\underline{g=x_{1}}:$
x_{1} fixes the elements of $\left\langle e_{3}, e_{4}, e_{1} e_{2}\right\rangle$ so $k=8$. The orbits are
$Q_{1}=\left\{x_{1}, e_{1} e_{2} x_{1}\right\}, Q_{2}=\left\{e_{1} x_{1}, e_{2} x_{1}\right\}, Q_{3}=\left\{e_{3} x_{1}, e_{1} e_{2} e_{3} x_{1}\right\}, Q_{4}=\left\{e_{4} x_{1}, e_{1} e_{2} e_{4} x_{1}\right\}$,
$Q_{5}=\left\{e_{1} e_{3} x_{1}, e_{2} e_{3} x_{1}\right\}, Q_{6}=\left\{e_{1} e_{4} x_{1}, e_{2} e_{4} x_{1}\right\}, Q_{7}=\left\{e_{3} e_{4} x_{1}, e_{1} e_{2} e_{3} e_{4} x_{1}\right\}$,
$Q_{8}=\left\{e_{1} e_{3} e_{4} x_{1}, e_{2} e_{3} e_{4} x_{1}\right\}$.

Under the action of $C_{G}\left(x_{1}\right)=\left\langle x_{1}, x_{2}, y_{2}\right\rangle, Q_{1}=\Delta_{1}$ and $Q_{2}=\Delta_{2}$ are fixed while $Q_{3} \cup Q_{4} \cup Q_{7}$ becomes Δ_{3} and $Q_{5} \cup Q_{6} \cup Q_{8}$ becomes Δ_{4} and we obtain $f_{1}=1, f_{2}=1, f_{3}=3$ and $f_{4}=3$, so this coset gives us four classes of \bar{G} :
$\left|C_{\bar{G}}\left(x_{1}\right)\right|=8 \times 12=96$
$\left|C_{\bar{G}}\left(e_{1} x_{1}\right)\right|=8 \times 12=96$
$\left|C_{\bar{G}}\left(e_{3} x_{1}\right)\right|=8 \times 12 \div 3=32$
$\left|C_{\bar{G}}\left(e_{1} e_{3} x_{1}\right)\right|=8 \times 12 \div 3=32$

- $g=y_{1}:$
$C_{N}\left(y_{1}\right)=\left\langle e_{3}, e_{4}\right\rangle$, so $k=4$. Under the action of $C_{G}\left(y_{1}\right)=\left\langle y_{1}, x_{2}, y_{2}\right\rangle$ three of the orbits are fused into one and we obtain $f_{1}=1$, and $f_{2}=3$, so this coset gives us two more classes of \bar{G} :
$\left|C_{\bar{G}}\left(y_{1}\right)\right|=4 \times 18=72$
$\left|C_{\bar{G}}\left(e_{3} y_{1}\right)\right|=4 \times 18 \div 3=24$
- $g=x_{2}$:

Here we have $C_{N}\left(x_{2}\right)=\left\langle e_{1}, e_{2}, e_{3} e_{4}\right\rangle$, so $k=8$. Under the action of $C_{G}\left(x_{2}\right)=\left\langle x_{1}, x_{2}, y_{1}\right\rangle$ we obtain $f_{1}=1, f_{2}=3 f_{3}=1$ and $f_{4}=3$, so we obtain four more classes of \bar{G} :
$\left|C_{\bar{G}}\left(x_{2}\right)\right|=8 \times 12=96$
$\left|C_{\bar{G}}\left(e_{1} x_{2}\right)\right|=8 \times 12 \div 3=32$
$\left|C_{\bar{G}}\left(e_{3} x_{2}\right)\right|=8 \times 12=96$
$\left|C_{\bar{G}}\left(e_{1} e_{3} x_{2}\right)\right|=8 \times 12 \div 3=32$

- $\underline{g=y_{2}}:$
$C_{N}(g)=\left\langle e_{1}, e_{2}\right\rangle$, so $k=4$. Under the action of $C_{G}(g)=\left\langle y_{1}, x_{2}, x_{1}\right\rangle$ we obtain $f_{1}=1$ and $f_{2}=3$ and we obtain another two classes of \bar{G} :
$\left|C_{\bar{G}}\left(y_{2}\right)\right|=4 \times 18=72$
$\left|C_{\bar{G}}\left(e_{1} y_{2}\right)\right|=4 \times 18 \div 3=24$
- $g=x_{3}:$

Here we have $C_{N}(g)=\left\langle e_{1} e_{2}, e_{3} e_{4}\right\rangle$, hence $k=4$. Under the action of $C_{G}(g)=\left\langle x_{1}, x_{2},\right\rangle$ we obtain $f_{1}=1, f_{2}=1 f_{3}=1$ and $f_{4}=1$ and so there are four more classes of \bar{G} :
$\left|C_{\bar{G}}\left(x_{3}\right)\right|=4 \times 4=16$
$\left|C_{\bar{G}}\left(e_{1} x_{3}\right)\right|=16$
$\left|C_{\bar{G}}\left(e_{3} x_{3}\right)\right|=16$
$\left|C_{\bar{G}}\left(e_{1} e_{3} x_{3}\right)\right|=16$

- $\underline{g=y_{3}}:$

We have $C_{N}(g)=\left\{1_{N}\right\}$, therefore $k=1$, hence $f_{1}=1$. We thus gained one class:
$\left|C_{\bar{G}}\left(y_{3}\right)\right|=\left|C_{G}\left(y_{3}\right)\right|=9$

- $\underline{g=w_{1}}:$
$C_{N}(g)=\left\langle e_{3} e_{4}\right\rangle$, so $k=2$. Under the action of $C_{G}(g)=\left\langle y_{1}, x_{2}\right\rangle$ we obtain $f_{1}=1$ and $f_{2}=1$. We have obtained another two classes of \bar{G} :

$$
\begin{aligned}
& \left|C_{\bar{G}}\left(w_{1}\right)\right|=2 \times 6=12 \\
& \left|C_{\bar{G}}\left(e_{3} w_{1}\right)\right|=2 \times 6=12
\end{aligned}
$$

- $g=w_{2}:$
$C_{N}(g)=\left\langle e_{1} e_{3}\right\rangle$ and so $k=2$. Under the action of $C_{G}(g)=\left\langle x_{1}, y_{2}\right\rangle$ we get $f_{1}=1$ and $f_{2}=1$ and so obtain the last two classes of \bar{G} :
$\left|C_{\bar{G}}\left(w_{1}\right)\right|=2 \times 6=12$
$\left|C_{\bar{G}}\left(e_{3} w_{1}\right)\right|=2 \times 6=12$

The conjugacy classes of \bar{G} are given below and h_{i} denotes the number of elements in a conjugacy class.

class	1	e_{1}	e_{3}	$e_{1} e_{3}$	x_{1}	$e_{1} x_{1}$	$e_{3} x_{1}$	$e_{1} e_{3} x_{1}$	y_{1}	$e_{3} y_{1}$	x_{2}	$e_{1} x_{2}$	$e_{3} x_{2}$
h_{i}	1	3	3	9	6	6	18	18	8	24	6	18	6
$C_{\bar{G}}(x)$	576	192	192	64	96	96	32	32	72	24	96	32	96

Table 3.3.1: The conjugacy table of $2^{4}: S_{3} \times S_{3}$.

class	$e_{1} e_{3} x_{2}$	y_{2}	$e_{1} y_{2}$	x_{3}	$e_{1} x_{3}$	$e_{3} x_{3}$	$e_{1} e_{3} x_{3}$	y_{3}	w_{1}	$e_{3} w_{1}$	w_{2}	$e_{1} w_{2}$
h_{i}	18	8	24	36	36	36	36	64	48	48	48	48
$C_{\bar{G}}(x)$	32	72	24	16	16	16	16	9	12	12	12	12

Table 3.3.1: The conjugacy table of $2^{4}: S_{3} \times S_{3}$ (continued).
We proceed to calculate the Fischer matrices. From the action of G on $\operatorname{Irr}(N)$ we obtain the same number of orbits as when G acts on N. From each of the four orbits, we determine the inertia groups \bar{H}_{i} where $i=1,2,3,4$. Then we let $H_{i}=\bar{H}_{i} / N$ and we obtain the following inertia factors

$$
H_{1}=G ; \quad H_{2}=\left\langle x_{1}, x_{2}, y_{2}\right\rangle ; \quad H_{3}=\left\langle x_{1}, x_{2}, y_{1}\right\rangle \quad \text { and } \quad H_{4}=\left\langle x_{1}, x_{2},\right\rangle .
$$

The character tables of these inertia factors are:

class	1	x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	w_{1}	w_{2}
h_{i}	1	3	3	9	2	2	4	6	6
$C_{\bar{G}}(x)$	36	12	12	4	18	18	9	6	6
ψ_{1}	1	1	1	1	1	1	1	1	1
ψ_{2}	2	2	0	0	2	-1	-1	0	-1
ψ_{3}	1	1	-1	-1	1	1	1	-1	1
ψ_{4}	2	0	2	0	-1	2	-1	0	-1
ψ_{5}	4	0	0	0	-2	-2	1	0	0
ψ_{6}	2	0	-2	0	-1	2	-1	1	0
ψ_{7}	1	-1	1	-1	1	1	1	1	-1
ψ_{8}	2	-2	0	0	2	-1	-1	0	1
ψ_{9}	1	-1	-1	1	1	1	1	-1	-1

Table 3.3.2 : The character table of $H_{1}=S_{3} \times S_{3}$.

class	1	x_{1}	x_{2}	x_{3}	y_{2}	w_{2}
h_{i}	1	1	3	3	2	2
$C_{\bar{G}}(x)$	12	12	4	4	6	6
ϕ_{1}	1	1	1	1	1	1
ϕ_{2}	2	2	0	0	-1	-1
ϕ_{3}	1	1	-1	-1	1	1
ϕ_{4}	1	-1	1	-1	1	-1
ϕ_{5}	2	-2	0	0	-1	1
ϕ_{6}	1	-1	-1	1	1	-1

Table 3.3.3: The character table of H_{2}.

class	1	x_{1}	x_{2}	x_{3}	y_{1}	w_{1}
h_{i}	1	3	1	3	2	2
$C_{\bar{G}}(x)$	12	4	12	4	6	6
τ_{1}	1	1	1	1	1	1
τ_{2}	2	0	2	0	-1	-1
τ_{3}	1	-1	1	-1	1	1
τ_{4}	1	1	-1	-1	1	-1
τ_{5}	2	0	-2	0	-1	1
τ_{6}	1	-1	-1	1	1	-1

Table 3.3.4: The character table of H_{3}.

class	1	x_{1}	x_{2}	x_{3}
h_{i}	1	1	1	1
$C_{\bar{G}}(x)$	4	4	4	4
Φ_{1}	1	1	1	1
Φ_{3}	1	1	-1	-1
Φ_{4}	1	-1	1	-1
Φ_{6}	1	-1	-1	1

Table 3.3.5 : The character table of H_{4}.
and their fusion maps into G are:

H_{2}	G
1	1
x_{1}	x_{1}
x_{2}	x_{2}
x_{3}	x_{3}
y_{2}	y_{2}
w_{2}	w_{2}

Table 3.3.6.

Table 3.3.7.

Table 3.3.8.

To calculate the Fischer matrices we use the relations of Theorem 3.2.5. For every g in $N g$, we have the Fischer matrix $M(g)$. For each matrix $M(g)$, we index the columns by the orders of the centralizers of the class representatives of \bar{G} which comes from $N g$ and the rows by the orders of the
centralizers of the class representatives of the inertia factors which fuse to $[g]$ in G. Corresponding to 1_{G}, we let

$$
M\left(1_{G}\right)=\begin{gathered}
576 \\
192
\end{gathered} 192 \begin{gathered}
64 \\
36 \\
12 \\
12 \\
4
\end{gathered}\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right)
$$

because we obtained four orbits from the action of G on $N 1$ and so we have a 4×4 matrix. Now by relation 3.2.5 (1), $a_{i}=1$ for each $i=1,2,3,4$ and by relation 3.2 .5 (3) we have $b_{1}=3 ; c_{1}=3 ; d_{1}=9$. By column orthoganality given by relation 3.2 .5 (2), we have for example

$$
\begin{aligned}
36+12\left|b_{2}\right|^{2}+12\left|c_{2}\right|^{2}+4\left|d_{2}\right|^{2} & =192 ; \\
36+12.3 \cdot b_{2}+12 \cdot 3 \cdot c_{2}+4.9 d_{2} & =0 ; \\
36+12 \cdot b_{1} \cdot b_{2}+12 \cdot c_{1} \cdot c_{2}+4 \cdot d_{1} \cdot d_{2} & =0 ; \\
36+12\left|b_{3}\right|^{2}+12\left|c_{3}\right|^{2}+4\left|d_{3}\right|^{2} & =192 ; \text { and so on. }
\end{aligned}
$$

Manipulating these equations we obtain the matrix:

$$
M\left(1_{G}\right)=\begin{gathered}
576 \\
192 \\
192
\end{gathered} \begin{gathered}
64 \\
36 \\
12 \\
4
\end{gathered}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
3 & -1 & 3 & -1 \\
3 & 3 & -1 & -1 \\
9 & -3 & -3 & 1
\end{array}\right)
$$

Similarly, we determine the other Fischer matrices. They appear below.

- $g=x_{1}:$

$$
\begin{array}{llll}
96 & 96 & 32 & 96
\end{array}
$$

$$
\begin{gathered}
M\left(x_{1}\right)=\begin{array}{l}
12 \\
12 \\
4
\end{array}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
3 & 3 & -1 & -1 \\
3 & -3 & 1 & -1
\end{array}\right) \\
M\left(y_{1}\right)=\begin{array}{r}
72 \\
18
\end{array}\left(\begin{array}{rr}
1 & 1 \\
3 & -1
\end{array}\right)
\end{gathered}
$$

- $g=y_{1}:$
- $\underline{g=x_{2}}$:
$\begin{array}{llll}96 & 32 & 96 & 32\end{array}$

$$
M\left(x_{2}\right)=\begin{gathered}
12 \\
4 \\
12 \\
4
\end{gathered}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
3 & -1 & 3 & -1 \\
1 & 1 & -1 & -1 \\
3 & -1 & -3 & 1
\end{array}\right)
$$

- $\underline{g=y_{2}}:$

$$
M\left(y_{2}\right)=\begin{gathered}
18 \\
6
\end{gathered}\left(\begin{array}{rr}
1 & 1 \\
3 & -1
\end{array}\right)
$$

- $\underline{g=x_{3}}$:
- $g=y_{3}:$

$$
M\left(x_{3}\right)=\begin{array}{r}
16 \\
4 \\
4 \\
4 \\
4 \\
1
\end{array}\left(\begin{array}{rrrr}
1 & 1 & 16 & 16 \\
1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

$$
M\left(y_{3}\right)=9(1)
$$

- $\underline{g=w_{1}}:$
$12 \quad 12$

$$
M\left(w_{1}\right)=\begin{aligned}
& 6 \\
& 6
\end{aligned}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- $\underline{g=w_{2}}:$

$$
12 \quad 12
$$

$$
M\left(w_{2}\right)=\begin{gathered}
6 \\
6
\end{gathered}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

We are now ready to determine the character table \bar{G}. There are four inertia factors, so the characters of \bar{G} fall into four blocks. The characters are calculated from the Fischer matrices and the character tables of the inertia factors. This is achieved by multiplying rows of the matrix $M(g)$ with sections of the character tables of the inertia factors fusing to [g].

For $g=1_{G}$ we have

$$
M(1)=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
3 & -1 & 3 & -1 \\
3 & 3 & -1 & -1 \\
9 & -3 & -3 & 1
\end{array}\right)
$$

By multiplying each row of $M(1)$ by the columns in the character tables of the inertia factors which correspond with the classes fusing to ${l_{\bar{G}}}$ respectively, we obtain the values of the characters of \bar{G} on
the \bar{G}-classes with representatives $1, e_{1}, e_{3}$ and $e_{1} e_{3}$:
$\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1\end{array}\right)\left(\begin{array}{llll}3 & -1 & 3 & -1\end{array}\right)=\left(\begin{array}{cccc}3 & -1 & 3 & -1 \\ 6 & -2 & 6 & -2 \\ 3 & -1 & 3 & -1 \\ 3 & -1 & 3 & -1 \\ 6 & -2 & 6 & -2 \\ 3 & -1 & 3 & -1\end{array}\right)$

$$
\left(\begin{array}{l}
1 \\
2 \\
1 \\
1 \\
2 \\
1
\end{array}\right)\left(\begin{array}{llll}
3 & 3 & -1 & -1
\end{array}\right)=\left(\begin{array}{cccc}
3 & 3 & -1 & -1 \\
6 & 6 & -2 & -2 \\
3 & 3 & -1 & -1 \\
3 & 3 & -1 & -1 \\
6 & 6 & -2 & -2 \\
3 & 3 & -1 & -1
\end{array}\right)
$$

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{llll}
9 & -3 & -3 & 1
\end{array}\right)=\left(\begin{array}{cccc}
9 & -3 & -3 & 1 \\
9 & -3 & -3 & 1 \\
9 & -3 & -3 & 1 \\
9 & -3 & -3 & 1
\end{array}\right)
$$

We determine the values the characters of \bar{G} corresponding to the class of G with representative x_{1} in a similar fashion:

$$
\begin{aligned}
& \left(\begin{array}{c}
1 \\
2 \\
1 \\
0 \\
0 \\
0 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & -1 & -1 & -1 \\
-2 & -2 & -2 & -2 \\
-1 & -1 & -1 & -1
\end{array}\right) \\
& \left(\begin{array}{c}
1 \\
2 \\
1 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{llll}
1 & -1 & -1 & 1
\end{array}\right)=\left(\begin{array}{ccccc}
1 & -1 & -1 & 1 \\
2 & -2 & -2 & 2 \\
1 & -1 & -1 & 1 \\
-1 & 1 & 1 & -1 \\
-2 & 2 & 2 & -2 \\
-1 & 1 & 1 & -1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
1 \\
0 \\
-1 \\
1 \\
0 \\
-1
\end{array}\right)\left(\begin{array}{llll}
3 & 3 & -1 & 1
\end{array}\right)=\left(\begin{array}{cccc}
3 & 3 & -1 & -1 \\
0 & 0 & 0 & 0 \\
-3 & -3 & 1 & 1 \\
3 & 3 & -1 & -1 \\
0 & 0 & 0 & 0 \\
-3 & -3 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{llll}
3 & -3 & 1 & -1
\end{array}\right)=\left(\begin{array}{cccc}
3 & -3 & 1 & -1 \\
3 & -3 & 1 & -1 \\
-3 & 3 & -1 & 1 \\
-3 & 3 & -1 & 1
\end{array}\right)
\end{aligned}
$$

With this we now also know the values of the characters of \bar{G} on the \bar{G}-classes with representatives $x_{1}, e_{1} x_{1}, e_{3} x_{1}$ and $e_{1} e_{3} x_{1}$.

Continuing this process with the other classes of G, we complete the character table of \bar{G}.

class	1	e_{1}	e_{3}	$e_{1} e_{3}$	x_{1}	$e_{1} x_{1}$	$e_{3} x_{1}$	$e_{1} e_{3} x_{1}$	y_{1}	$e_{3} y_{1}$	x_{2}	$e_{1} x_{2}$	$e_{3} x_{2}$	$e_{1} e_{3} x_{2}$
h_{i}	1	3	3	9	6	6	18	18	8	24	6	18	6	18
$C_{\bar{G}}(x)$	576	192	192	64	96	96	32	32	72	24	96	32	96	32
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	2	2	2	2	2	2	2	2	2	2	0	0	0	0
χ_{3}	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1
χ_{4}	2	2	2	2	0	0	0	0	-1	-1	2	2	2	2
χ_{5}	4	4	4	4	0	0	0	0	-2	-2	0	0	0	0
χ_{6}	2	2	2	2	0	0	0	0	-1	-1	-2	-2	-2	-2
χ_{7}	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	1
χ_{8}	2	2	2	2	-2	-2	-2	-2	2	2	0	0	0	0
χ_{9}	1	1	1	1	-1	-1	-1	-1	1	1	-1	-1	-1	-1
χ_{10}	3	-1	3	-1	1	-1	-1	1	0	0	3	-1	3	1
χ_{11}	6	-2	6	-2	2	-2	-2	2	0	0	0	0	0	0
χ_{12}	3	-1	3	-1	1	-1	-1	1	0	0	-3	1	-3	-1
χ_{13}	3	-1	3	-1	-1	1	1	-1	0	0	3	-1	3	1
χ_{14}	6	-2	6	-2	-2	2	2	-2	0	0	0	0	0	0
χ_{15}	3	-1	3	-1	-1	1	1	-1	0	0	-3	1	-3	-1
χ_{16}	3	3	-1	-1	3	3	-1	-1	3	-1	1	1	-1	-1
χ_{17}	6	6	-2	-2	0	0	0	0	-3	1	2	2	-2	-2
χ_{18}	3	3	-1	-1	-3	-3	1	1	3	-1	1	1	-1	-1
χ_{19}	3	3	-1	-1	3	3	-1	-1	3	-1	-1	-1	1	1
χ_{20}	6	6	-2	-2	0	0	0	0	-3	1	-2	-2	2	2
χ_{21}	3	3	-1	-1	-3	-3	1	1	3	-1	-1	-1	1	1
χ_{22}	9	-3	-3	1	3	-3	1	-1	0	0	3	-1	-3	1
χ_{23}	9	-3	-3	1	3	-3	1	-1	0	0	-3	1	3	-1
χ_{24}	9	-3	-3	1	-3	3	-1	1	0	0	3	-1	-3	1
χ_{25}	9	-3	-3	1	-3	3	-1	1	0	0	-3	1	3	-1
							98							

Table 3.3.9: The character table of $2^{4}: S_{3} \times S_{3}$.

class	y_{2}	$e_{1} y_{2}$	x_{3}	$e_{1} x_{3}$	$e_{3} x_{3}$	$e_{1} e_{3} x_{3}$	y_{3}	w_{1}	$e_{3} w_{1}$	w_{2}	$e_{1} w_{2}$
h_{i}	8	24	36	36	36	36	64	48	48	48	48
$C_{\bar{G}}(x)$	72	24	16	16	16	16	9	12	12	12	12
χ_{1}	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	-1	-1	0	0	0	0	-1	0	0	-1	-1
χ_{3}	1	1	-1	-1	-1	-1	1	-1	-1	1	1
χ_{4}	2	2	0	0	0	0	-1	-1	-1	0	0
χ_{5}	-2	-2	0	0	0	0	-1	0	0	0	0
χ_{6}	2	2	0	0	0	0	-1	1	1	0	0
χ_{7}	1	1	-1	-1	-1	-1	1	1	1	-1	-1
χ_{8}	-1	-1	0	0	0	0	-1	0	0	1	1
χ_{9}	1	1	1	1	1	1	1	-1	-1	-1	-1
χ_{10}	3	-1	1	1	-1	-1	0	0	0	1	-1
χ_{11}	-3	1	0	0	0	0	0	0	0	-1	1
χ_{12}	3	-1	-1	-1	1	1	0	0	0	1	-1
χ_{13}	3	-1	-1	-1	1	1	0	0	0	-1	1
χ_{14}	-3	1	0	0	0	0	0	0	0	1	-1
χ_{15}	3	-1	1	1	-1	-1	0	0	0	-1	1
χ_{16}	0	0	1	-1	1	-1	0	1	-1	0	0
χ_{17}	0	0	0	0	0	0	0	-1	1	0	0
χ_{18}	0	0	-1	1	-1	1	0	1	-1	0	0
χ_{19}	0	0	-1	1	-1	1	0	-1	1	0	0
χ_{20}	0	0	0	0	0	0	0	1	-1	0	0
χ_{21}	0	0	1	-1	1	-1	0	-1	1	0	0
χ_{22}	0	0	1	-1	-1	1	0	0	0	0	0
χ_{23}	0	0	-1	1	1	-1	0	0	0	0	0
χ_{24}	0	0	-1	1	1	-1	0	0	0	0	0
χ_{25}	0	0	1	-1	-1	1	0	0	0	0	0
				100							

Table 3.3.9: The Character Table of $2^{4}: S_{3} \times S_{3}$ (continued).

3.4 The character table of a Group of the form 2^{4} : S_{4}

Again we let $\bar{G}=N: G$ where N is an elementary abelian 2-group of order 16 and $G=S_{4}$. The symmetric group S_{4} is generated by (12) and (1234). By identifying (12) and (12 34) with

$$
g_{1}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text { and } g_{2}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

respectively, we can regard S_{4} as the subgroup $\left\langle g_{1}, g_{2}\right\rangle$ of $G L_{4}(2) \cong S_{6}$. Then we act the group $\left\langle g_{1}, g_{2}\right\rangle$ naturally on $V_{4}(2) \cong N$.
To determine the conjugacy classes of \bar{G} we need the conjugacy table of S_{4} for the cosets of \bar{G} / N and for this purpose, we use the character table of $G=S_{4}$. We may again use the method discussed in chapter 1 , section 1.2. We act N and $C_{G}(g)$ on the cosets $N g$ as follows:

- $\underline{g=1}:$

The identity of G fixes all elements of N, so $k=16$. Under the action of $C_{G}\left(1_{G}\right)=G$ on $N 1$, we obtain

$$
f_{1}=1, f_{2}=4, f_{3}=6, f_{4}=4 \text { and } f_{5}=1
$$

and so the following classes of \bar{G} from the coset N :
$\left|C_{\bar{G}}(1)\right|=16 \times 24=384$
$\left|C_{\bar{G}}\left(e_{1}\right)\right|=16 \times 24 \div 4=96$
$\left|C_{\bar{G}}\left(e_{1} e_{2}\right)\right|=16 \times 24 \div 6=64$
$\left|C_{\bar{G}}\left(e_{1} e_{2} e_{3}\right)\right|=16 \times 24 \div 4=96$
$\left|C_{\bar{G}}\left(e_{1} e_{2} e_{3} e_{4}\right)\right|=16 \times 24=384$

- $\underline{g \in(2 A):}$

$$
g=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

With the action of g on N we get $k=8$ and the action of $C_{G}\left(x_{1}\right)$ gives us

$$
f_{1}=1, f_{2}=1, f_{3}=2, f_{4}=1 \quad f_{5}=1 \text { and } f_{6}=2
$$

Also $\left|C_{G}(g)\right|=4$ and we obtain
$\left|C_{\bar{G}}(g)\right|=32$
$\left|C_{\bar{G}}\left(e_{1} g\right)\right|=32$
$\left|C_{\bar{G}}\left(e_{3} g\right)\right|=16$
$\left|C_{\bar{G}}\left(e_{1} e_{3} g\right)\right|=16$
$\left|C_{\bar{G}}\left(e_{3} e_{4} g\right)\right|=32$
$\left|C_{\bar{G}}\left(e_{1} e_{3} e_{4} g\right)\right|=32$

- $g \in(3 A):$

$$
g=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This case gives us $k=4$ and $f_{i}=1$, for each $i=1,2,3,4 .\left|C_{G}(g)\right|=3$ and we obtain

$$
\begin{aligned}
& \left|C_{\bar{G}}(g)\right|=12 \\
& \left|C_{\bar{G}}\left(e_{1} g\right)\right|=12 \\
& \left|C_{\bar{G}}\left(e_{4} g\right)\right|=12 \\
& \left|C_{\bar{G}}\left(e_{1} e_{4} g\right)\right|=12
\end{aligned}
$$

- $\underline{g \in(2 B):}$

$$
g=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

We have $k=4$ and

$$
f_{1}=1, f_{2}=2, \quad \text { and } f_{3}=1
$$

$\left|C_{G}(g)\right|=8$ and we obtain
$\left|C_{\bar{G}}(g)\right|=32$
$\left|C_{\bar{G}}\left(e_{1} g\right)\right|=16$
$\left|C_{\bar{G}}\left(e_{1} e_{3} g\right)\right|=32$

- $\underline{g \in(4 A):}$

$$
g=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

This case gives us $k=2$ and $f_{i}=1$, for each $i=1,2$. We have $\left|C_{G}(g)\right|=4$ and so we obtain

$$
\begin{aligned}
& \left|C_{\bar{G}}(g)\right|=8 \\
& \left|C_{\bar{G}}\left(e_{1} g\right)\right|=8
\end{aligned}
$$

which gives us the conjugacy table of \bar{G}.

class	1	$\left(2_{1}\right)$	$\left(2_{2}\right)$	$\left(2_{3}\right)$	$\left(2_{4}\right)$	$\left(2_{5}\right)$	$\left(2_{6}\right)$	$\left(2_{7}\right)$	$\left(2_{8}\right)$	$\left(2_{9}\right)$	$\left(2_{10}\right)$
no. of elements	1	4	6	4	1	12	12	24	12	12	24
centralizer	384	96	64	96	384	32	32	16	32	32	16

Table 3.4.1: The conjugacy table of $2^{4}: S_{4}$.

class	$\left(3_{1}\right)$	$\left(3_{2}\right)$	$\left(3_{3}\right)$	$\left(3_{4}\right)$	$\left(2_{11}\right)$	$\left(2_{12}\right)$	$\left(2_{13}\right)$	$\left(4_{1}\right)$	$\left(4_{2}\right)$
no. of elements	32	32	32	32	12	24	12	48	48
centralizer	12	12	12	12	32	16	32	8	8

Table 3.4.2: The conjugacy table of $2^{4}: S_{4}$ (continued).

We can now calculate the Fischer matrices. From the action of G on $\operatorname{Irr}(N)$ we obtain five orbits.
From each of these orbits, we determine the inertia groups \bar{H}_{i} where $i=1,2,3,4,5$. Then we obtain the following inertia factors
$H_{1}=H_{5}=G ; \quad H_{2}=H_{3}=S_{3} \quad$ and $\quad H_{4}=\langle(12),(34)\rangle$.

The character tables of these inertia factors are:

class	1	$(2 A)$	$(3 A)$	$(2 B)$	$(4 A)$
no. of elements	1	6	3	3	6
centralizer	24	4	3	8	4
ψ_{1}	1	1	1	1	1
ψ_{2}	1	-1	1	1	-1
ψ_{3}	2	0	-1	2	0
ψ_{4}	3	1	0	-1	-1
ψ_{5}	3	-1	0	-1	1

Table 3.4.3 : The character table of H_{1}.

class	1	$(2 \bar{A})$	$(3 \bar{A})$
no. of elements	1	3	2
centralizer	6	2	3
ϕ_{1}	1	1	1
ϕ_{2}	1	-1	1
ϕ_{3}	2	0	-1

Table 3.4.4: The character table of H_{2}

class	1	$(2 \bar{A})$	$(2 \bar{B})$	$(2 \bar{C})$
no. of elements	1	1	1	1
centralizer	4	4	4	4
Φ_{1}	1	1	1	1
Φ_{2}	1	1	-1	-1
Φ_{3}	1	-1	1	-1
Φ_{4}	1	-1	-1	1

Table 3.4.5 : The character table of H_{4}.
and their fusion maps into G are:

S_{3}	G
1	1
$2 \bar{A}$	$2 A$
$3 \bar{A}$	$3 A$

Table 3.4.6.

H_{4}	G
1	1
$2 \bar{A}$	$2 A$
$2 \bar{B}$	$2 A$
$2 \bar{C}$	$2 B$

Table 3.4.7

Next we use the relations of Theorem 3.2.5. again to calculate the Fischer matrices which are:

- $\underline{g=1_{G}}:$

$$
\left.\begin{array}{r}
384 \\
96
\end{array} \begin{array}{r}
64 \\
96
\end{array}\right) 384
$$

- $\underline{g \in(2 A):}$

$$
\begin{array}{r}
32 \\
32
\end{array} 16 \begin{gathered}
32 \\
32
\end{gathered} 169 \begin{array}{r}
4 \\
2 \\
2 \\
4 \\
4 \\
4
\end{array}\left(\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & 1 & 1 \\
2 & -2 & 0 & 2 & -2 & 0 \\
2 & -2 & 0 & -2 & 2 & 0 \\
1 & 1 & -1 & 1 & 1 & -1 \\
1 & 1 & -1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 & -1
\end{array}\right) .
$$

- $\underline{g \in(3 A):}$

$$
\begin{array}{llll}
12 & 12 & 12 & 12
\end{array}
$$

$$
M(g)=\begin{aligned}
& 3 \\
& 3 \\
& 3 \\
& 3
\end{aligned}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

- $\underline{g \in(4 A):}$

$$
M(g)=\begin{gathered}
32 \\
8 \\
4 \\
8
\end{gathered}\left(\begin{array}{rrr}
1 & 1 & 32 \\
2 & 0 & -2 \\
1 & -1 & 1
\end{array}\right)
$$

- $\underline{g \in(2 B):}$

$$
M(g)=\begin{gathered}
8 \\
4 \\
4
\end{gathered}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

We can now determine the character table \bar{G}. As with the example in section 3.3, we just need to multiply the rows of the matrix $M(g)$ with sections of the character tables of the inertia factors corresponding to g.
There are five inertia factors, so the characters of \bar{G} fall into five blocks.
The character table of \bar{G} is as follows:

UNIVERSITY of the

class	1	$\left(2_{1}\right)$	$\left(2_{2}\right)$	$\left(2_{3}\right)$	$\left(2_{4}\right)$	$\left(2_{5}\right)$	$\left(2_{6}\right)$	$\left(2_{7}\right)$	$\left(2_{8}\right)$	$\left(2_{9}\right)$	$\left(2_{10}\right)$
no. of elements	1	4	6	4	1	12	12	24	12	12	24
centralizer	384	96	64	96	384	32	32	16	32	32	16
χ_{1}	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_{3}	2	2	2	2	2	0	0	0	0	0	0
χ_{4}	3	3	3	3	3	1	1	1	1	1	1
χ_{5}	3	3	3	3	3	1	1	1	1	1	1
χ_{6}	4	2	0	-2	-4	2	-2	0	2	-2	0
χ_{7}	4	2	0	-2	-4	-2	2	0	-2	2	0
χ_{8}	8	4	0	-4	-8	0	0	0	0	0	0
χ_{9}	6	0	-2	0	6	2	2	-2	0	0	0
χ_{10}	6	0	-2	0	6	0	0	0	2	2	-2
χ_{11}	6	0	-2	0	6	0	0	0	-2	-2	2
χ_{12}	6	0	-2	0	6	-2	-2	2	0	0	0
χ_{13}	4	-2	0	2	-4	2	-2	0	-2	2	0
χ_{14}	4	-2	0	2	-4	-2	2	0	2	-2	0
χ_{15}	8	-4	0	4	-8	0	0	0	0	0	0
χ_{16}	1	-1	1	-1	1	1	1	1	-1	-1	-1
χ_{17}	1	-1	1	-1	1	-1	-1	-1	1	1	1
χ_{18}	2	-2	2	-2	2	0	0	0	0	0	0
χ_{19}	3	-3	3	-3	3	1	1	1	-1	-1	-1
χ_{20}	3	-3	3	-3	3	-1	-1	-1	1	1	1

Table 3.4.8: The character table of $2^{4}: S_{4}$.

class	$\left(3_{1}\right)$	$\left(3_{2}\right)$	$\left(3_{3}\right)$	$\left(3_{4}\right)$	$\left(2_{11}\right)$	$\left(2_{12}\right)$	$\left(2_{13}\right)$	$\left(4_{1}\right)$	$\left(4_{2}\right)$
no. of elements	32	32	32	32	12	24	12	48	48
centralizer	12	12	12	12	32	16	32	8	8
χ_{1}	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	1	1	-1	-1
χ_{3}	-1	-1	-1	-1	-2	-2	-2	0	0
χ_{4}	0	0	0	0	-1	-1	-1	-1	-1
χ_{5}	0	0	0	0	-1	-1	-1	1	1
χ_{6}	1	1	-1	-1	0	0	0	0	0
χ_{7}	1	1	-1	-1	0	0	0	0	0
χ_{8}	-1	-1	1	1	0	0	0	0	0
χ_{9}	0	0	0	0	2	0	-2	0	0
χ_{10}	0	0	0	0	-2	0	2	0	0
χ_{11}	0	0	0	0	-2	0	2	0	0
χ_{12}	0	0	0	0	2	0	-2	0	0
χ_{13}	1	-1	1	-1	0	0	0	0	0
χ_{14}	1	-1	1	-1	0	0	0	0	0
χ_{15}	-1	1	-1	1	0	0	0	0	0
χ_{16}	1	-1	-1	1	1	-1	1	1	-1
χ_{17}	1	-1	-1	1	1	-1	1	-1	1
χ_{18}	-1	1	1	-1	-2	2	-2	0	0
χ_{19}	0	0	0	0	-1	1	-1	-1	1
χ_{20}	0	0	0	-1	1	-1	1	-1	

Table 3.4.8: The character table of $2^{4}: S_{4}$ (continued).

3.5 The Character Table of a Group the form $2^{4}: S_{3} \times S_{3}$

Let $\bar{G}=N: G$ where N is as defined in the previous two examples and $G=S_{3} \times S_{3}$. The action of G on N, given by CAYLEY [1], is different from the action in section 3.3 , so \bar{G} is a different extension of N by G.

We start to determine the conjugacy classes of \bar{G} by giving the character table of $S_{3} \times S_{3}$ again.

class	$1 A$	$2 A$	$2 B$	$2 C$	$3 A$	$3 B$	$3 C$	$6 A$	$6 B$
no. of elements	1	3	3	9	2	2	4	6	6
centralizer	36	12	12	4	18	18	9	6	6
ψ_{1}	1	1	1	1	1	1	1	1	1
ψ_{2}	2	2	0	0	2	-1	-1	0	-1
ψ_{3}	1	1	-1	-1	1	1	1	-1	1
ψ_{4}	2	0	2	0	-1	2	-1	0	-1
ψ_{5}	4	0	0	0	-2	-2	-1	0	0
ψ_{6}	2	0	-2	0	-1	2	-1	1	0
ψ_{7}	1	-1	1	-1	1	1	1	1	-1
ψ_{8}	2	-2	0	0	2	-1	-1	0	1
ψ_{9}	1	-1	-1	1	1	1	1	-1	-1

Table 3.5.1: The character table of $S_{3} \times S_{3}$.

Using the same method as that in the previous sections we determine the the conjugacy classes of \bar{G} by acting N and $C_{G}(g)$ on the cosets $N g$ as follows:

- $g=1_{G}:$

All elements of $N=\{(0,0,0,0),(1,1,1,1),(1,0,1,0),(1,0,0,1),(0,1,1,0)$, $(0,1,0,1),(0,0,1,0),(1,1,1,0),(1,0,0,0),(1,0,1,1),(0,0,0,1),(1,1,0,0)$, $(0,1,1,1),(1,1,0,1),(0,0,1,1),(0,1,0,0)\}$, are fixed, so $k=16$. Under the action of $C_{G}\left(l_{G}\right)=$
G on $N 1_{G}$, we obtain the following blocks:
$\{(0,0,0,0)\}$,
$\{(1,1,1,1),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,0),(1,1,1,0)$,
$(1,0,0,0),(1,0,1,1)$,$\} ,$
$\{(0,0,0,1),(1,1,0,0),(0,1,1,1),(1,1,0,1),(0,0,1,1),(0,1,0,0)\}$. So we have

$$
f_{1}=1, f_{2}=9, \text { and } f_{3}=6
$$

and so the following classes of \bar{G} from the coset N :
$\left|C_{\bar{G}}(1)\right|=16 \times 36=576$
$\left|C_{\bar{G}}((1,1,1,1))\right|=16 \times 36 \div 9=64$
$\left|C_{\bar{G}}((0,0,0,1))\right|=16 \times 36 \div 6=96$

- $\underline{g \in(2 A):}$

$$
g=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

With the action of g on N we get the orbits
$\{(0,0,0,0),(1,0,1,0),(0,0,1,0),(1,0,0,0)\}$
$\{(0,1,0,1),(1,1,1,1),(1,1,0,1),(0,1,1,1)\}$
$\{(0,0,1,1),(1,0,0,1),(1,0,1,1),(0,0,0,1)\}$
$\{(1,1,0,0),(0,1,1,0),(0,1,0,0),(1,1,1,0)\}$
so that $k=4$
and the by the action of $C_{G}(g)$
$\{(0,0,0,0),(1,0,1,0),(0,0,1,0),(1,0,0,0)\}$ is fixed while the other orbits are fused into one, giving us $f_{1}=1$, and $f_{2}=3$. Also $\left|C_{G}(g)\right|=12$ and we obtain
$\left|C_{\bar{G}}(g)\right|=48$
$\left|C_{\bar{G}}((1,1,1,1) g)\right|=16$

- $\underline{g \in(2 B):}$

$$
g=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

This case gives us $k=4, f_{1}=1$ and $f_{2}=3 .\left|C_{G}(g)\right|=12$ and we obtain $\left|C_{\bar{G}}(g)\right|=48$
$\left|C_{\bar{G}}((1,1,1,1) g)\right|=16$

- $\underline{g \in(2 C):}$

$$
g=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

We have $k=4, f_{1}=1, f_{2}=1$, and $f_{3}=2 .\left|C_{G}(g)\right|=4$ and we obtain
$\left|C_{\bar{G}}(g)\right|=16$
$\left|C_{\bar{G}}((1,1,1,1) g)\right|=16$
$\left|C_{\bar{G}}((1,0,1,0) g)\right|=8$

- $\underline{g \in(3 A):}$

$$
g=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

We have $k=1$, and $f_{1}=1 .\left|C_{G}(g)\right|=18$ and we obtain $\left|C_{\bar{G}}(g)\right|=18$

- $\underline{g \in(3 B):}$

$$
g=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

We have $k=1$, and $f_{1}=1 .\left|C_{G}(g)\right|=18$ and we obtain $\left|C_{\bar{G}}(g)\right|=18$

- $\underline{g \in(3 C):}$

$$
g=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

We have $k=4, f_{1}=1$, and $f_{2}=3 .\left|C_{G}(g)\right|=9$ and we obtain
$\left|C_{\bar{G}}(g)\right|=36$
$\left|C_{\bar{G}}((1,1,1,1) g)\right|=12$

- $\underline{g \in(6 A):}$

$$
g=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

We have $k=1$, and $f_{1}=1 .\left|C_{G}(g)\right|=6$ and we obtain $\left|C_{\bar{G}}(g)\right|=6$

- $g \in(6 B):$

$$
g=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

We have $k=1$, and $f_{1}=1 .\left|C_{G}(g)\right|=6$ and we obtain $\left|C_{\bar{G}}(g)\right|=6$

We have completed the conjugacy table of \bar{G}. We show it below.

class	1	$\left(2_{1}\right)$	$\left(2_{2}\right)$	$\left(2_{3}\right)$	$\left(2_{4}\right)$	$\left(2_{5}\right)$	$\left(2_{6}\right)$	$\left(2_{7}\right)$	$\left(2_{8}\right)$	$\left(2_{9}\right)$
$C_{\bar{G}}(x)$	576	64	96	48	16	48	16	16	16	8

Table 3.5.2: The conjugacy table of $2^{4}: S_{3} \times S_{3}$.

class	$\left(3_{1}\right)$	$\left(3_{2}\right)$	$\left(3_{3}\right)$	$\left(3_{4}\right)$	$\left(6_{1}\right)$	$\left(6_{2}\right)$
$C_{\bar{G}}(x)$	18	18	36	12	6	6

Table 3.5.2: The conjugacy table of $2^{4}: S_{3} \times S_{3}$ (continued).

From the action of G on $\operatorname{Irr}(N)$ we obtain three orbits. From each of these orbits, we determine the inertia groups \bar{H}_{i} where $i=1,2,3,4,5$ and hence the following inertia factors
$H_{1}=G, H_{2}$ a non-cyclic subgroup of G of order four which is generated by

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { and }\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

and H_{3} a non-abelian subgroup of G of order six which is generated by

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { and }\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The character tables of these inertia factors are that of G and:

class	1	$(2 \bar{A})$	$(3 \bar{A})$	$(2 \bar{B})$
no. of elements	1	1	1	1
centralizer	4	4	4	4
ψ_{1}	1	1	1	1
ψ_{2}	1	-1	1	-1
ψ_{3}	1	1	-1	-1
ψ_{4}	1	-1	-1	1

Table 3.5.3: The character table of H_{2}.

class	1	$(2 \bar{A})$	$(3 \bar{A})$
no. of elements	1	3	2
centralizer	6	2	3
ϕ_{1}	1	1	1
ϕ_{2}	1	-1	1
ϕ_{3}	2	0	-1

Table 3.5.4: The character table of H_{3}.
and their fusion maps into G are:

H_{3}	G
1	1
$2 \bar{A}$	$2 C$
$3 \bar{A}$	$3 C$

Table 3.5.5

H_{2}	G
1	1
$2 \bar{A}$	$2 C$
$2 \bar{B}$	$2 B$
$2 \bar{C}$	$2 A$

Table 3.5.6.
We use the relations of Theorem 3.2.5. to calculate the Fischer matrices which are:

- $\underline{g=1_{G}}:$

$$
M(1)=\begin{array}{ccc}
576 & 64 & 96 \\
36 \\
4 \\
6
\end{array}\left(\begin{array}{ccc}
1 & 1 & 1 \\
9 & a & b \\
6 & c & d
\end{array}\right)
$$

From the equations

$$
\begin{aligned}
36+4|a|^{2}+6|c|^{2} & =64 \text { and } \\
36+36 a+36 c & =0
\end{aligned}
$$

we obtain $a=1$ and $c=-2$. Then from

$$
\begin{aligned}
36+4 b-12 d & =0 \quad \text { and } \\
36+36 b+36 d & =0
\end{aligned}
$$

we get $b=-3$ and $c=2$.

By using the appropriate relations, the other Fischer matrices are determined:

- $g \in(2 A):$

- $\underline{g \in(2 B):}$

$$
\begin{aligned}
& \text { WESTERN } \\
& 48 \quad 16 \\
& M(g)=\begin{array}{c}
12 \\
4
\end{array}\left(\begin{array}{rr}
1 & 1 \\
3 & -1
\end{array}\right)
\end{aligned}
$$

- $\underline{g \in(2 C):}$

$$
\left.M(g)=\begin{array}{c}
16 \\
4 \\
4 \\
2
\end{array}\left(\begin{array}{rrr}
1 & 16 & 8 \\
1 & 1 & 1 \\
2 & -2 & 0
\end{array}\right) ~ \begin{array}{r}
1 \\
2
\end{array}\right)
$$

- $\underline{g \in(3 A):}$

$$
\square M+18
$$

- $g \in(2 C):$

$$
M(g)=\begin{aligned}
& 9 \\
& 3
\end{aligned}\left(\begin{array}{rr}
1 & 1 \\
3 & -1
\end{array}\right)
$$

- $g \in(6 A):$

$$
\begin{gathered}
6 \\
M(g)=6(1)
\end{gathered}
$$

- $\underline{g \in(6 B):}$

To determine the character table of \bar{G}, we just need to multiply the rows of the matrix $M(g)$ with sections of the character tables of the inertia factors corresponding to g. The characters of \bar{G} fall into three blocks and are shown in the following table.

UNIVERSITY of the

\square

class	1	$\left(2_{1}\right)$	$\left(2_{2}\right)$	$\left(2_{3}\right)$	$\left(2_{4}\right)$	$\left(2_{5}\right)$	$\left(2_{6}\right)$	$\left(2_{7}\right)$	$\left(2_{8}\right)$	$\left(2_{9}\right)$
$C_{\bar{G}}(x)$	576	64	96	48	16	48	16	16	16	8
χ_{1}	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	-1	-1	-1	-1	-1
χ_{3}	1	1	1	-1	-1	-1	-1	1	1	1
χ_{4}	1	1	1	-1	-1	1	1	-1	-1	-1
χ_{5}	2	2	2	2	2	0	0	0	0	0
χ_{6}	2	2	2	0	0	2	2	0	0	0
χ_{7}	2	2	2	0	0	-2	-2	0	0	0
χ_{8}	2	2	2	-2	-2	0	0	0	0	0
χ_{9}	4	4	4	0	0	0	0	0	0	0
χ_{10}	9	1	-3	3	-1	3	-1	1	1	-1
χ_{11}	9	1	-3	-3	1	3	-1	-1	-1	1
χ_{12}	9	1	-3	3	-1	-3	1	-1	-1	1
χ_{13}	9	1	-3	-3	1	-3	1	1	1	-1
χ_{14}	6	-2	2	0	0	0	0	2	-2	0
χ_{15}	6	-2	2	0	0	0	0	-2	2	0
χ_{16}	12	-4	4	0	0	0	0	0	0	0

Table 3.5.7: The character table of $2^{4}: S_{3} \times S_{3}$.

class	$\left(3_{1}\right)$	$\left(3_{2}\right)$	$\left(3_{3}\right)$	$\left(3_{4}\right)$	$\left(6_{1}\right)$	$\left(6_{2}\right)$
$C_{\bar{G}}(x)$	18	18	36	12	6	6
χ_{1}	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	-1
χ_{3}	1	1	1	1	-1	-1
χ_{4}	1	1	1	1	-1	1
χ_{5}	2	-1	-1	-1	-1	0
χ_{6}	-1	2	-1	-1	0	-1
χ_{7}	-1	2	-1	-1	0	1
χ_{8}	2	-1	-1	-1	1	0
χ_{9}	-2	-2	1	1	0	0
χ_{10}	0	0	0	0	0	0
χ_{11}	0	0	0	0	0	0
χ_{12}	0	0	0	0	0	0
χ_{13}	0	0	0	0	0	0
χ_{14}	0	0	3	-1	0	0
χ_{15}	0	0	3	-1	0	0
χ_{16}	0	0	-3	1	0	0

Table 3.5.7: The character table of $2^{4}: S_{3} \times S_{3}$ (continued).
For the completion of the character table of \bar{G} most of the calculations were done by CAYLEY[1].

Summary

The work done in this mini thesis deals mainly with different methods of calculating character tables of split extensions of finite groups. Three of the six character tables that are calculated are done with the use of Fischer matrices. In this work the method of Fischer is applied on groups of the form $N . G$ where N is an elementary abelian group. In fact, only one of the six groups of which the character tables are calculated, is not of this form and so Fischer matrices could easily have been used to calculate five of the character tables. The aim of the work done here however is to exhibit a variety of methods to calculate the character tables of split extensions.

In Chapter one a review of basic definitions and results on group extensions and a description of a method for finding the conjugacy tables of group extensions is given. An example on the application of this method is also given. Chapter two deals with basic concepts and results on representa- tion and character theory as well as the application of some of these results in calculating the character tables of some group extensions. In Chapter three we discuss Fischer matrices and how it is used to calculate the character tables of group extensions of the form $N . G$ where N is an elementary abelian group.

Bibliography

[1] Cannon, J.J. The Group Theory System Cayley, Department of Pure Mathematics, University of Sydney, 1985.
[2] Clifford, A.H., Representations induced in an invariant subgroup, Ann. of Math. 38 (1937), 533-550.
[3] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A. and Wilson, R.A., An ATLAS of finite groups, Oxford University Press, Oxford, 1985.
[4] Curtis, C.W. and Reiner, I., Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, Vol.XI, Interscience, New York, 1962.
[5] Feit, W., Characters of Finite Groups, W.A. Benjamin, New York, 1967.
[6] Gallagher, P.X., Group Characters and Normal Hall Subgroups, Nagoya Math. Journal 24 (1962), 223-230.
[7] Gagola, S.M.,Jr., An Extension Theorem for Characters, Proc. Amer. Soc. 83 (no. 1) (1981), 25-26
[8] Gorenstein, D., Finite Groups, Harper and Row, New York, 1968.
[9] Isaacs, I.M., Character Theory of Finite Groups, Academic Press, San Diego, 1976.
[10] James, G.D., and Liebeck, M.W., Representations and Characters of Groups, Cambridge Uni-
versity Press, Cambridge, 1993.
[11] Karpilovsky, G., On extension of characters from normal subgroups, Proc. Edinburgh Math. Soc. 27 (1984), 7-9.
[12] Ledermann, W., Introduction to group characters, Cambridge University Press, Cambridge, 1977.
[13] List, R.J., On the characters of $2^{n-\epsilon} S_{n}$, Arch.Math. 51 (1988), 118-124.
[14] List, R.J. and Mahimoud,I.M.I., Fischer matrices for wreath products $G \omega S_{n}$, Arch. Math. 50 (1988), 394-401.
[15] Moori, J., Group Theory/Representation Theory Mathematics Honours, Department of Mathematics \& Applied Mathematics, University of Natal, Pietermaritzburg
[16] Moori, J. and Mpono Z., The Conjugacy Classes of Group Extensions, Department of Mathematics \& Applied Mathematics, University of Natal, Pietermaritzburg
[17] Rotman, J.J., An Introduction to the Theory of Groups, third edition, Wm. C. Brown, Iowa, 1988.
[18] Salleh, R.B., On the construction of the character tables of extension groups, Ph.D.thesis, University of Birmingham,1982.
[19] Whitley, N.S., Fischer Matrices and Character tables of Group Extensions, MSc thesis, University of Natal in Pietermaritzburg, 1994.

