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CHAPTER 1

I NTRODUCT ION

(1.1) Rigorous diffraction theory i a summary

The behaviour of monochromatic scalar waves, harrnonic
in time, is governed by the Helmholtz equation (2.1.1).

In chapter 2 the existence of a unique solution (2.2.3a)
for the Dirichlet problem (2,2.1a) , is proved for the
case where U is continuous inside and vanishes outside
a finite portion of the X-Y-plane and satisfies the
Sonmerfeld radiation conditions (2.1 .1 0) and (2. 1 . 1 1 )

at infinity. An analogous proof that the solution
(Z.Z.3b) satisfies the requirements of the Neumann

problem (2.2.lb) is readily obtained. Luneburg (1944)

gave an existence proof for the Dirichlet problem under
more general conditions, but it contains errors and

and requi.res elucidation (see Appendix).

The diffracted wave of a finite aperture in an infinite
screen is related to the scattered wave of a finite
screen congruent to the aperture by Babinet I s theorem.
The term rrtheorem" is used in preference to "principle",
as this statement can be forrirulated and proved in the
framework of boundary value problems. The mathematical
formulation of Babinet's theorem is proved in paragraph
(2 .4) .

The half-plane diffraction formulae derived in chapter 3

and summarized in table 3.2 , were obtained from
Sommerfeld (1954). When applied to electromagnetic waves,
these formulae lead to table 3.3, essentially the same as

the table derived by Frahn (1959). A uniqueness theorem
applicable to Sommerfeld's solution is given by Jones (1953).

http://etd.uwc.ac.za/
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(1.2) The determination of diffracted waves b sur fac e

field approximations

According to Hdnl, Maue and Westpfahl (1961) there are
three approaches to boundary value problems of scattering
and diffraction. One of these entails obtaining the fie1d,
by means of an integral representation, in terms of the
value of the field and/or its normal derivative on the
scatterer. These values are the solutions of integral
equations on the surface of the scatterer. Various
approximations of the surface field and its normal
derivative form the basis of an important group of methods

used to determine scattered and diffracted wave fields.

Suppose a scalar harmonic wave uon-i't is incident on an

inf inite screen S with a f inite aperture .4. The f ield be-
hind the screen is given by (2.2.3a), (2.2.3b) or a combi-
nation of these two equations:

-tryru(E,n)# Un(E,n)Gl d6dn --(1.2.1)u (R) +

According to physical optics the field behind the screen
is found by replacing the surface field and its normal
derivative in the above mentioned three equations by their
geometrical optics values. This means that U and U, are
respectively replaced by uo and Euo /3n on ,4 and by zero on

^9. The approximation thus obtained from (1 .2.1) forms the
basis of Kirchhoff diffraction theory, while the
approxinations obtained from (2.2.3a) and (2.2.3b) are
sometimes refered to as the Rayleigh-Sommerfeld diffraction
formulae (see Goodman (1968)). Braunbek (1950) refers to
the latter formulae as the weaker and better Kirchhoff
approximations respectively.

Equation (1,2.1) with Kirchhoff boundary values has been
proved to be a rigorous solution of a so-called saltus
(Sprungwert) problem (see Hdnl, Maue and Westpfahl (1961)).
Kirchhoffrs theory has also been shown by Wolf and Marchand
(1966) to provide an exact solution of a boundary value

http://etd.uwc.ac.za/
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problem somewhat different from the above. Gomez-Reino

Carnota and Vences Benito (1977) proved a uniqueness
theorem for the solution of this problem. Kirchhoff's
theory makes no distinction between sound soft (U = 0)

and sound hard (Ur,= 0 ) screens.

Braunbek (1950) advanced a method in which U and U, are

replaced by their values obtained from Sommerfeldrs exact
theory of the half-plane, as if the screen had a localIy
straight edge. This is a reasonable assumption if the wave

length is small in comparison with the dimensions of the
aperture (see Bouwkamp (1954)). Braunbek applied this
nethod to the scattering of a plane wave by a disc. He

compared these results with the numerical values of the
exact solution as calculated by Meixner and Fritze (1949),
illustrating the superiority of his method over that of
Kirchhofffs .

In an asymptotic nethod developed by Westpfahl and Witte
(1967), the diffracted field of a plane wave by a circular
aperture is given in the far region by a series of
descending powers in ka, a being the radius of the circle.
For snall angles of diffraction the solutions of Kirchhoff
and Braunbek are identical to the first term in this series.
The solutions of Kirchhoff and Braunbek differ for wide
angles of diffraction, the latter stil1 constituting the
first term in the above series.

According to Jones (1964), the originator of Braunbekrs

method for the electromagnetic case was Macdonald (1913),
who approximated the surface current on a convex body by

the current the external field would induce on an

infinite plane occupying the position of a tangent plane.
Du Plessis (1976) improved this method by using the

current that would be induced on a so-called "represent-
ativeil sphere rather than a tangent plane.

Frahn (1959) applied Braunbekts method to the problem

of electromagnetic scattering from a perfectly conducting
circular disc. He compared the numerical values predicted

http://etd.uwc.ac.za/
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by this procedure
obtained from the

-in the far and near regions with
rigorous solution by Andrejewski

those
(1es3).

Westpfahl and Witte (1971) extended their method to the
diffraction of an electromagnetic plane wave by a

circular aperture. Again the main term of the asymptotic
series solution was found to be identical to the solution
obtained by Frahn (1959). Another asymptotic procedure
yielding Braunbekrs solution as a first approximation
was advanced by Saltykov (1973).

(I.3) Braunbek's method for the diffraction of Plane waves by an

annular aperture

Braunbek (f950) applied his method to the scattering of a

scalar plane wave by a sound hard circular disc. By virtue
of Babinet's theorem this problem is equivalent to the dif-
fraction by an infinite sound soft screen with a circular
aperture. In paragraph (4.1) the diffracted far fields of
both sound soft and sound hard Screens with annular aper-
tures are derived using the same asymptotic approximations
as Braunbek.

In paragraph (4.2) the application by Frahn (1959) of Braun-

bek's method to the case of vector diffraction by a circular
aperture, is generalized to include the case of vector dif-
fraction by an annular aperture. However, in this thesis the

near field and transmission coefficient of the annular aper-
ture are not derived.

The procedure followed in paragraph (4.3) to derive the dif-
fracted scalar field on the Z-axis is sinilar to that of
Bouwkamp (1954) who reported on Braunbekrs method as applied
to scattering by a disc. The results obtained are slightly
more accurate than those of Braunbek. See (4.3.8) in this
connect ion .

http://etd.uwc.ac.za/
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CHAPTER 2

INTEGRAL SOLUTIONS OF THL HELMHOLTZ EQUATION IN HALF-SPACE

(2.1) The scalar Helnholtz equqtr!4

We wish to find soltttions of the scalar Helmholtz equation

V2u+k2u=Q (2 .1 .1)

in the region C for which either u or its normal derivative
Eu/En assumes a prescr-ibed value on an infinite plane sur-
face, the X-Y-p1ane in frg.2.1.1. An integral solution is
obtained by applying Green's second identity to G-9, where

L: is the regi<.rn interior to the hemisphere in f ig.?.1.1 and

g is the region interior to the sphere centred at the point
p with coordinates (x,y, z). Let Q be the point (E,nrE) in-

tro

P'

x

a

o

{

ry

g

P

fig.2.1 .1

E
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terior to or on the surface of G-9, then according to
Greenrs second identity

[J[ luv'v - vV2u]dr = - fr [uOv/En - v}u/ 0n]df .

G-g FUEoUf

(2.1.2)

The unit normal vector n on the surfaces Erilo and f in
fig.2.1.1 is directed towards the interior of G-9. The

variables of integration are (E, n, q) .

If v is any function that satisfies the Helmholtz equation
in the region G-g, the left hand side of equation (?,.1.2)
vanishes and one may write

ff[uav/an - v0u/En]df = -( II*IJ ) tuav/an - vEu/0nldf .

t F Eo

(2.1 .3)

Two solutions of u(R) al'e obtained by a method basically
the same as that of Luneburg (1944). Let

v-G+G', (2.1 .4)

where G' satisfies the Helmholtz equation inside G. 0n

applying Greenrs second identity to g with the functions
u and G', we find that

#tuaGy'an - G' au/Enldf = 0, and hence (2.1.3) becomes
f

ff[uaG/an - Gau/0n]df = -( [l*[l )tuav/an - vau/0n]df .

f F Fs

(2.1 . s)

Let G= nlk'/|r, where r=PQ. The function G clearly satis-
fies (2.1.1) in any region excluding P. 0n f Eu/0n= 0u/0r
and the left hand side (2.1.5) can be written in the form

2rr'
IIl(-1/e+ ik)u - Eu/0r1sintdyd$,
oo

where e is the radius of g and y and Q are spherical polar
coordinates.

ike
e

e
m

http://etd.uwc.ac.za/
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hle now assume that u is of the class Cz in G, hence u is
bounded and if we take the linit as e+0 in the expression
above, it reduces to -2u(R). Now (2.1.5) becomes

2 u (R) = UI* II ) [uEv/ En - vEu/ anJ df ,
FFo

(2.1.6)
where R = 0P.

Two solutions are obtained from (2.1.6) by applying the
method of images. This method consists of alternatively
sett ing

G'

and G'

in (2.1 .6).
the mirror
r=r'and

-nlk '/ Znr,
i

e f ?tr'

In (2.1 .7 a) and (?.1 .7b) I
image of P in the X-Y-p1ane.
e= 0 andtherefore

(2.1 .7 a)

(2.1 .7b)

=8rP',being
0n the plane

kr

ov/an = alerkrlzm 7 
"lkt'12trr,)/De

ikrl-"/, i z/r)(-1/12 + 7k/ r) e /2r

= -l aG/Az or 0

For the cases (2.1.7a) and (2.1.7b) therefore the equations

v=0
0v/ 0n = -l DG/ az --- (2,1 .8a)

and

v= 2G

0v/0n = 0
---(2.1.8b)

)

)

respectively hold
and (2.1 .8b) into

on the X-Y-plane. Substitution of (2.1.8a)
(2.1 .6) gives

iff [uEv/En - v0u/En]df
.F' --- ( 2.1 .9a)

u (8) fi
E

fi
F

"ff ar +

G df + t IJ tuav/an - vou/onldf
ro -__(2.1.9b)

u (R) Eu
EE

http://etd.uwc.ac.za/
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From (2.1.9a) and (2.1.9b) it is clear that a knowledge of
u and 0u/En on tr'is not sufficient to find the value of
u(B) in the region z>0, but that the behaviour of u and

Eu/an must also be known on an arbitrary hemisphere. Suffi-
cient for the vanishing of the integrals over a hemisphere
Fo of infinite radius are the so-ca1led radiation conditions
of Sommerfeld

l,rpl < c ti.r.rol
plau/ap - ikul * 0 --- (2.1.11)
uniformly with respect to direction as p->0. (For the proof
see Luneburg (1944).) These conditions give expression to
the physical requirement that there cannot be any contribu-
tion to the field from infinity.

The derivation of (2.1.9a) and (2.1.9b) is based on the as-
sumption that the divergence theorem may be applied to the
vector fields uVv and vVu. According to Kellogg (1929) the
continuity of uVv and vVu and their partial derivatives and

the existence of the volume integrals of diu(uYv) and dio(vVu)
in the closed regoin G-g are sufficient to guarantee the va-
lidity of this theorem. If u is of class Cz in the region
z>0, these conditions are met.

(2.2) Uniqueness and existence of solutions of the scalar
Helmholtz equation

We now give a rigorous formulation of the two boundary
value problems to be considered.

(a) The Dirichlet Problem (First Boundary Problem):
Find a u(R) which in the region z>0 is of class
Cz and satisfies (V2+k2)u = Q. On the X-Y-pIane

it is required that
u(x,y,O) = U(x,y), Q.?.la)
where U is continuous.

http://etd.uwc.ac.za/
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(b) The Neumann problem (second Boundary problem):
Find a u(B) which in the region z>0 is of class
Cz and satisfies (V2+kr), = 0. On the X-y-plane
it is required that
ou (x ,y ,o) / Dz = Un (x, y) e .z .1b)
where Un is continuous.

From paragraph Z.l it is clear that
solutions satisfying the conditions

if these problems have

1im
9*o

lim
9+-

u (R)

and

u (R)

II
Es

II
Fo

lu0G/an-G!u/3nldf=0

lu0G'/Dn - G,aulanldf = 0 ,

(2.2.2)

(2.2.3a)

(2.2.3b)

they will be unique and respectively given by
@

= - U u(t,n)# dEdn

- 1j ,,(E,n) G dE dn.

Note that in (2.1.9a) and (2.1.9b) the integrals over the
hemisphere vanish due to (Z.Z.Z) as v = G + G,.

soluticns of the Dirichlet and Neumann problems in the region
z<0 are respectively obtained by substituting AG/Alzl for
ac/az in (2.2.3a) and defining Un = - 3u(E,n, D/az in (Z.Z.Sb).

The question now arises as to which conditions the prescribed
values u and u' shourd respectivery satisfy for the functions
defined by (2.2.3a) and (?.z.sb) to be the solutions of the
Dirich-!-et and Neumann problems satisfying the additionar equa-
tions (2.2.2) . For the Dirichlet problem a sufficient condition
is given by

Theorem Z.z

and continuous for x2+ yz \<

the function u(R) defined by
the Dirichlet problem subject

(2.2.4)
D,,
(2.2.3a) will be a solution of
to the conditions (Z.Z.Z) .

pz

http://etd.uwc.ac.za/
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Proof:

The function u(R) defined by (z.z.3a) will be of class cz in
the region z>0. This is a consequence of the continuity of
U(x,y) and the fact AGG)/Az is of class Cz if z>0.
0n substituting u in (2.1.1) according to (z.z.3a) and inter-
changing the operations of differentiation and integration, it
follows directly that the Helmholtz equation'is satisfied.

To prove that the assumed boundary values are attained, we

write (2.2.3a) in the form
2TI D

u(x,y,z) = -r' jl u(peosq,esinil+ $f pdpdO,
oo

(?.2.s)
where r2= (x-pcosO),* (y-psin1)2+ 22.
In (2.2.5) integration with respect to p is terminated at p

owing to (?,2.4) .

'*Y' - p)2 * z2 which is

D

x
positive if x2* y2> D2. For these values of x and y equation
(2.2.4) and therefore (?.2.1a) follow by setting z=0 in (z.z.s).

If x2* y2 < D2 we may assume without loss of generality that
x = y = Q. In this case 12 = p2 * z2 and (2.2.5) can be written
in the form

u(0,0,2) - -z(

r,.rhere d is an arbitrary number between 0 and D. seeing that
r>0 in the second integral,. one may set z=O and so obtain

u (6r:7"os1 t F7 
"in1) f* *,

d 2+22 ,, 6'*7
!l/i".=)

+

znW
lim u(0,0,2) = lim -zll UGErycosQ,
z+o z+o o z

Oz

2r

lim
oz+

I
z

a
d2 +z' ,no(trTV)ffa,,

where 0(p) = I U(pcosS,psinQ) dO.
o

r 2 -22 sing)Sa,ao

http://etd.uwc.ac.za/
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Because of the continuity of U(x,y) the function OU;T:V)
in the above mentioned integral can be approximated to an
arbitrary degree of accuracy by 0(0) = 2nU(0,0) by taking
d sufficiently small. Let

lo1fia,, - 2nU(o,o)l< e(d), then

{ir;7
I I o (/r2-22)

z

dc.'-r-OIor

{iq7
l-, I ot,617l$ a, +

z
nik'1 I .#tO#.,t

[dt;7 ,F?nl u(0,01f;|arl < etd)lcGffi)-G(z)l
z

*g
6r;v

Equation (2.2.1a) follows by letting z tend to zero, bearing
in mind that d is arbitrary.

'l'o prove that equation
(2.Z.3a) in the form

2nD

(2.?.?) is satisf ied, w€ write

-?.9l!) odo do , whereu(E,n,E) = - I J lJ(oeosT,osinl)

u(o, o )[

oo

aso in f :-g.2. 1 . 1 . For (E, n, E) on tr'o

where

E2s
ap-T

S p

Eu/En = -Du/Ep ='fl'u(ocoso,os ino)#oaoae
oo

The integrand in the f irst eq-.rtion (2.2.2) can therefore
be written in the form

T!"{e)r$p +P - G(r) ffi-,odo* or

2nD
II
oo

U(o)F(s,p,r,)odod0

F(s,p,r)

d2G (t)T,

=frffld#)ffiffi- G(r),3&G] a2c(s1-E- r{fl'r r.

Now dG (t)T_ (ik - 1/t)G(t)

(-k'-zik/t + ?/t2)G(t)

Er=
3p a{ (e-B) . (P-R) }

1

2 /ap

{ (s-B) . (s-B) l- i ce-&i .

L.!
r0

ag

Dp

http://etd.uwc.ac.za/
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Furthermore

P = a{(o-p).(o-p)}i/ap
dp

= _1..9
sp ,

# = e.e(s*pfi) / s'p'- (e.ffi . n.ffilu 'o
= -(g.p)2/s'p' + 1/s.

.'. F(s, g,r) = (e/ ilG (s) G (r)t(ik- 1 /sXik- 1/rX-(:.exf.pVsrd)

- (ik- l/sX 1/s - (s.p)'/ s'p'] - (-k' -27Ws +2/s2 Xs. p)2/s'p'I .

AS p-.)-r T-gt S-+-p and

p'F(r,e,r) + (e / il kZ'k,/4n') l(ik-1/p) 2 + (k2 *liVp - 2/p')l
+ 0

Simi 1 arly
p'F(srgrr')- o

Equat ions
2n lnlim II t

9+o oo

(2.2.2) can now be written in the form

with r replaced by r' in the second equation. From the above

it is evident that these equations are true.

(2.3) Total reflection of scalar p lane waves by an infinite Plang screen

Suppose a monochromatic plane wave uo (z) n-iut is incident
on an infinite screen in the X-Y-plane. This nornally inci-
dent field causes an excitation on the screen which is the

Source of a secondary field, the so-called reflected fieId.
We assume that this field has the same tine dependence as

the incident field and is, in view of synnetry, independent

of x and y.

The total field (incident plus reflected field) U satisfies
the wave equation

2nD
I J u(o) F (s, 9,r)ododol p2 sintdy dO
oo

0

http://etd.uwc.ac.za/



v2u I azu
;2 5tz 0. ---(7,.s.1)

The total field has a time dependence "-iutthe tine-independent-part of IJ, satisfies the
uation (2.1 .1 ) where k = u/c.

13

and hence u,
Helmholtz eq-

loss of gene-
of the Helm-

In view of the independence of u on x and y the Helmholtz
equation reduces to

d2u a,
# = -k'u -- (2 .3 .2)

Two cases will be treated, namely sound soft and sound hard
screens on which the equations

u = 0 --- (2 .3.3s)
and

?'= o ---(z.s.sh)3nv
respectively hold.

The most general solution of (2.3.2) is given by

,., = Arik' + Re-ikz ,

where A and B are complex constants.
The term O"Ikz represents the incident wave and hence

oul-kz = u0 for the region z < 0. The boundary conditions
(2.3.3s) and (2.3.3h) require that B=-A and B=A respec-
tively on the left hand side of the screen.
The term ,n-ikz represents the a Jisturbance propagated
in the direction of the negative z-axis. The same energy
is associated with this reflected field as with the in-
cident fie1d. Consequently no field is transmitted across
the screen.

The value of A may be taken as .l without the
rality. Under these conditions the solutions
holtz equation are respectively given by

ikz
e

iklzl
etru=

and

u= z urklzl

--- (2,3.4s)

e
ikz

la ---(2.3.4h)
http://etd.uwc.ac.za/
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(z .4) Babinet's theorem for scalar plane waves

This theorem expresses the relationship between solutions of
the Helmholtz equation with boundary values given on two in-
finitely thin complementary screens in a plane. Two screens
are complementary if one is sound soft and the other is sound
hard, and when put together, they cover an infinite plane
completely without any overlap.

Suppose the plane wave of paragraph (2.3) is incident on an

infinite screen in the X-Y-plane from which a finite part
has been removed. The total field u is now regarded as the
sum of the incident field ., - the reflected field ,o and a
diffracted field u.,.

U=U0*U,

where uo =

on whether

--- (2.4.1)

Consider next a finite screen complementary to the above
screen. The total field u will in this case be regarded as

the sum of the incident field uo and a scattered field u"
arising from the excitation of the finite screen.

iklzle ' ' depenolng

---(?.4.2)U=Uo+r"

Babinet I s theorem asserts that
zU = --U.s lzl d.

for complementary screens.

+ ud,

ikz
e and u!.

iklzl
-e 

I I OI
lzl

u.re screen is sound soft or sound hard.

--- (2,4.3)

We shall prove Babinet's theorem for an infinite sound soft
screen S with finite aperture A and its complementary sound
hard screen .4 with infinite aperture S. The procedure for an

infinite sound hard screen and it's finite sound soft comple-
ment is analogous.

http://etd.uwc.ac.za/



15

An integral representation is obtained for u, by assuming
that the total field and hence the diffracted field is con-
tinuous in the closed plane region .4, and that u, satisfies
the radiation conditions (2.2.2) . Since ud. vanishes on S due

to equations (2.3.3s) and (2.4.1), the conditions of theorem
2.2 are met and u, is given by (2 .2.3a) . In the region z+0

therefore

u,
d. Jol uo(E,n,o) AGM dEdn. --- (2.4.4))(B

z

F

fig.?.4.1

An integral representation for u" is obtained by applying
Greenf s second identity to the region G-g-g in fig.?.4.1
and following the procedure used in deriving (2.1.6). By

choosing v = lG = "7k'/4n, and assuming that u" satisfies
the radiation conditions (2.?,.2) , where Eo is now a complete
sphere, it follows that

http://etd.uwc.ac.za/
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us (B) = ll[tu*aG/sn - GEu"/an]df ---(?.4.s)
"fu

As in the case of equations (2.1.9a) and (2.1.9b) the
derivation of (2.4.5) is based on the assumption that ,"
is of class Cz in the closed region G-g-g.

From itrs definition in paragraph (?.1) it follows that on
the parts of f perpendicular to the Z-axrs 0/0n = r A/AC,
depending on whether 6 ? 0. Therefore EG/an = *.3G/ 36 = + dG/32.

Because of the symmetry of G(E,n,6) and aG(E,n,6)/02 with
respect to e , (2.4.5) can be written in the form

u" (B) = -l(l .Ijrr{ "JE,n,6)- ,"(E,r,-6)}#(E,n,6)

.{#"(E,n,6) -#"(E,r,-6)} c(E,rl,6) ldEdn * Er

--- (2.4,6)
where A and A' together constitute the part of the X-y-plane
inside g and e is an integral which vanishes as 6 - 0 .

From (2.4,6) it is clear that non-trivial solutions of u"
exist only if u" ar.d/or it's nornal derivative is discon-
tinuous. The nature of the discontinuity will determine
whether one or more solutions are possible. we define u"and
au"/On on the right and left hand sides of L by

u"(xry, t0) = 1i, u"(xryrrd)
0-ro

and a similar equation for 0u"/0n. From (z.s.sh) and (2.4.2)
it follows that

0u"(x,y,*0)/Az = -ik on A --(?,.4,7)

It will now be assumed that u" and 0u"/0n behave in such a

way that the integral over A, in (2.4.6) vanishes as 6 - 0.
This analytical requirement, known as an edge condition, en-
sures the uniqueness of the field and expresses the fact
that the edge cannot be a source of energy. In this regard
see Jones (1964).

By letting 6-0, it follows from (2.4.6), (2.4.7) and the
edge condition that
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J/ tu.(E,r,+0) - r"(E,r,-0)f #(E,n,0)dEdn .
AD

is anti-symmetric with respect to the X-Y-pIane.

uJ R) = 1 uJE,n,+o)S aean .

1

2

Clearly u"

--- (2.4.8)

Fron the above it is clear that if a solution of the Diri-
chlet problem exists in the region z>0 satisfying the cbn-
ditions of theorem ?.2 as well as the edge condition, then
it will be given by (2.4.8). To prove that r" as defined by
(2.4.8) is indeed a solution of the problem above, it must
now be shown to satisfy the conditions of theorem ?.? as

well as the edge condition.

From (2.4.8) it follows that u" is anti-symmetric in z and
continuous everywhere except on .4. Hence

," = 0 on S, --- ( 2.4.9)

fulfilling one of the conditions of theorem Z.?,.
Differentiation of (2.4.8) shows that Du"/dz is synmetric
with respect to z. Using these results it is easily veri-
fied that u^ satisfies the edge condition.s

Equation (2.4.8) also defines the unique solution of the
Dirichlet problem in the region z < 0 which satisfies the ra-
diation and edge conditions and is continuous on the left
hand side of a.

Assuming that Du/az is continuous across the aperture, it
follows from (2.4.1) that
u4(x,y,+0)/az = uo(x,y,-0)/az +2ik on.4.

From (?,.4,4) it follows that buO/62 is anti-symmetric,

8ur(x,y,t0)/az =tik on/ --(2.4.10)

The proof of Babinetts theorem now depends on the validity
of the following assumption:
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There exists a unique function u(xry rz) of class Cz satis-
fying the Helnholtz equation and radiation conditions in
the region z<0, such that u is continuous on /r u=0 on S

and 0u/02=-ik on.4.'

This assumtion is a corollary of the theorem that the inte-
gral equation

I urE,n) #,t,r,0,x,y,0) dEdn = -2nlk ---( 2',4.11)

has a unique solution for U(x,y), (x,y) on a. Equation (2.4.11)
was obtained from (2.4.4) by differentiation. In their proof
of Babinetrs principle in two dimensions Baker and Copson (1950)
take the validity of a similar theorem for granted.

(2.5) Electromagnetic waves and the vector Helrnholtz equation

Suppose a nonochromatic linearly polarized electromagnetic
field, harmonic in time, is perpendicularly incident on an
infinite screen s with finite aperture a in a honogeneous
isotropic medium. we assume that the total field will have
the same time dependence. The .Q,th co*ponent of electric and
nagnetic field strengths can therefore be written in the
form

--- (2.5. 1 )
- irrlt

where the 1-, 2- and S-components are respectively along
the X-, Y- and Z-axes.

Let the incident electric field strength be given by U nlkz 6t,,
where the Z-axis is perpendicular to the screen, do, is the
Kronecker delta, k = o/c and c = fel. The incident magnetic
fi.eld vector can be obtained from Maxwell's equations for
harmonic waves:

,n^*^EX = ir,ruHf
-- (2.s.2)

,t^*^HX = -iruHt.

Er, = Etr u-iut

e=HtrHI
,
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In (2.5.2) (al,ay}r) = (a/ax,d/Ey,d/Dz) and €g,^n is the
permutation tensor. For the incident wave the nagnetic field
strength is therefore given by -*f ,tn'uo1 = - {/yn"ikz6u.

For an arbitrary fie1d.let
E

H

9.
Ee

9.

= ffiinh
---(2.s.s)

L 9"

where e0 and hU are dinensionless quantities. Then the in-
cident fields are given by

eft) = urU, Oo,

hG) =-"rn,Oo, 
---(2'5'4)

and Maxwell I s equations become

E^ E eLmnmn L ---(2.5.5)
e^ a hv,mn m n L

By eliminating hU and e 9" aLternatively from (2.5.5) the
vector Helmholtz equations

,'uL + k'ao = Q

orhl+krht=Q 
---(2'5'6)

are obtained.

In order to obtain unique solutions for (2.s.6) in the half-
space z>0, more knowledge about the nature of the electro-
magnetic field is required on the boundaries. By assuming
that the screen is infinitely thin and perfectly conducting
we have

el = aZ = 0 on S. ---(2.5.7)
Assurning that the field behind the screen complies with the
radiation condition (2.2.?,) , it follows from theorem 2.2
that this field has 1- and Z-components given by

AG

= ikh

= -ike

e^ (R) I!"ttE,n,o) M dEdn Q"=1 ,2). ---(2.5.8)
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A representation for eS is obtained by observing that the
equation
El,".Q, = 0 ---(2.5.9)
is a consequence of Maxwell's equations (2.5.5) wherever eU is
of class Cz. Bearing in mind that the normal derivative in
(2.2.3b,\ is actually the limit of Eu(E,\,r")/Ae as 6-0, the
function u nay be regarded to be of class Cz on the plane z = 0.
From (2.5.7) and (2.5.9) therefore

Eez _ 0er
az" - 5E' 5n

0e )+ 0 on S. --- (2. s. 1o)

--- (2.s.11)

--- (2.s.12)

--- (z.s.1s)

AG
7rdI

Application of (2.2.3b) yields for z>0

- 
I#5(8,n,+o)c 

dEdn

Tfrl 
(E,n,+o) +ff',E,r,+o)lG dEdn

= IItul 3* . ., #r dcdn
A

where

f = I!r#(erG) . rh(ezc)l dEdn.

Differentiation (2.5.1?) yields

AIE Ee
M,

3 ("r #, a* . ", #r) dE dn

0e-
Dz" -5r IIot# dEdn - *tl"rff ae an

+l ,

= 0,
where (2.5.8) and (2.5.9) were used.
From (2.5. 1 3) and dl/dz = 0 it follows that

[r*{(e.,Gr) 
* 1} t"rcr) I dEdn = o, where

But from (2.5.1 3)

fi
A

a

tr+ (" 1Gr) * fr t" zcr) I dE dn ,

G,

aI x rr
- 

= - - 
tt0x ,'i

hence 0I/3x = [ and similarly AI/Ay = Q.

From (2,5.12) it follows that I must satisfy the Helrnholtz
equationrhence f=0.
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The electric field in the region z>0 can now be written the
form
e, (R)

L-

e, (R)
J_

where Gr,

where G

I!. n"Gs dE dn (t. = 1 , z1

II t"rG, + arGr) dE & ,
ArrLL

= 0G/ExO = -dG/dlU .

---(2.s.14)

---(2.s.1s)

--- (?.s.17)

By applying Maxwell's equations (2.5.5) to (2.5.14) an inte-
gral representation of the magnetic field is obtained which
is valid in the region z>0:

h, (R)
t-

lerG 1z+ ezGzz*G3g) JaE61',

h, (R) le., (G1 1*G3S) 
* e ZGtZldEan ---(2.5.16)

=+I
=*I
= + [rcfzs- "zG',r)dEdn,

= a2G
3x" 0x)LmLm

(2.6) Babinet I s theorem for electromagnetic plane waves

Suppose the incident wave of paragraph (2.5) impinges on a

perfectly conducting screen, situated on the X-y-plane. As-
suming that the total field is independent of x and y, the
electric field will be given by

"g = Auuik' + B g"" 
ikz --- (2.6 . 1 )

The boundary condition (2.5.7) demands that A.,

Fron (2.5.9) and (2.6. 1 ) it follows that AS = B

"1 = A1 k7k'

" z = Az("'k'

e 0

= -B1

3 = 0'
and A

Hence

=-B) )

- ikz
e )

- ikz
e

3

The terms involving the factors "lkz and u'lkz respectively
denote disturbances travelling in the positive and negative

)
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Z-direction. In the region z<0, the terms involving nrkz
must be equal to the incident wave. It follows that A1 =0
and A, = 1 in this region. Energy considerations as in pa-
ragraph 2.3 lead to the conclusion that the field vanishes
behind the screen. For every value of z one may therefore
write
us. - "[il 

* 
"(ud 

, ---( 2.6.2)
where

"(r) = -"7k1zl asz --e.6.s)
The magnetic field is obtained by applying Maxwell's equa-
tions (2.5.5) to (2.6 .Z) . Thus

n,l, . n,;, , ---(2.6.4)
where

hs

nk) -

(d)

,ik lzl o

e +e
L L 9"

e
9"

(x,y,*lzl)

z-|4
9"1' ---(2.6.s)

If the screen is now perforated as in paragraph 2.5, the
total electric field can be written in tr^e form

o) k) --- (2,6.6)@)+eug.

where 
"(f;) 

t^tisfies the radiation conditions (2,2.2) on both
sides of the screen. As 

"9. 
and e'f'* 

"(d) 
t^titfy the boundary

conditions (2.5.7) , it follows fron (2.6.6) that (2.5.7) ap-
pries to "'f). Integral expressions for "\il una "f) in the re-
gion z+0 can therefore be obtained from (2.5.8) by substitu-
ting lrl for z. An expression for e f' ,t found by observing
that (2.5.11) was obtained from (2.2.3b) by putting Ur, (E,n)
= 3eg (E,n ,+0)/de. In (2.5.1 1 ) appropriate changes in sign
have to be made if it is to apply to the region z<0. Hence

for z+0,

= + II "'f;'tE rr , +olff ar ar, (9. = 1 ,2)

es (x,y,* lzl) = . 
[E?(E,n,+o)G 

dEdn .

--- (2,6,7)
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For the complementary problem where A is the screen and S the
infinite aperture, the field "["')it defined by

us. = 
"'uo' 

* "'ol' ---(2.6.8)
where ef"') satirrr", (2.2.2) . Bearing in mind that

eg. = 6g.2* "'rl' = 0, (9' = 1,?) on / ---( 2'6'9)
and

aE

G)
3

0e
5E

0e
5n

Ee G) G)
1

we obtain the following .representation o, "'f ' from
after replacing r, Ay 

"(f,) 
,

(B) = - tlp"f'(E,n,+o)G dEdn

2 0 onA

on .4

---(2.6.10)

(2 .4 .6)

(s)
e

9.
(9, = 1 ,2)

(s) = - 11eld'
AJ

G)
b

z

lzi
)

(E,n,.o)# dEdn .e
3

(R)

--- (2.6.11)

Babinet I s theorem for electromagnetic waves states that

--- (2.6.12)

s

(s

9

E

(,

) L- 
lrl

(d)
e

These two equations are of course not independent of one an-
other. Any one can be obtained from the other by utilizing
Maxwell rs equations (2.5.5)

The first equation of (?..6.12) is now proved by assuming that
there exists a unique source free vector field g satisfying
the Helmholtz equation in the region z>o as well as the radia-
tion and edge conditions and, in addition, having the proper-
ties:

'1 =Q
vz = -'l
dur/ 3z = 0

and

}ur/ Ez

3ur/ 0z

's = o'

=0
=0

---(?,.6.13)

onS --- (2.6.L4)
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For the electric field 
"(u) 

th" equations (?,.6.13) follow from
(2.6.9) and (2.6.10) . Equations (2.6.14) can be derived from
the anti-symmetry and continuity properties of the quantities
involved.

By assuming that ht and h, are continuous across the aperture

A and keeping in mind. that n\il ana nf) are anti-symmetric, it
it follows that nlL'= 0 and nf)U,Lt0) = +1 on.A. The third
equation of (2.6.14) is satisfied by hf ), because Egh. = 0.

According to Maxwell's equations (2.5.5)

*hy)=#P-#lo' 0

(d) @) G)ah
E

ah
ix 3 -ike 01 on S.

2

G) (d)ah1;d)
dz

ahr3 +ike 0
1

Hence u("/ 
"nd 

hG) satisfy the same boundary conditions and by
the uniqueness assumption the first equation of (2.6.12) follows.
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CHAPTER 3

SOMMERFELDIS SOLUTION FOR THE DIFFRACTION OF PLANE WAVES BY A HALF-PLANE

(3. 1) The scalar case

We now consider the same problem as in paragraph (2.2), €x-
cept that the part of the screen for which x < 0, is removed.
The resultant stationary field is independent of y (see fig.
3.1.1) and therefore satisfies

# - #. k2u = Q. ---(s.1.1)

In addition to this equation the boundary conditions (2.3.ss)
or (2.3.3h) hold on the screen.

x

II s creen

incident field

III ry

fig.3. 1 . 1

sommerfeld (1896) solved this problem by modifying the nethod
of images. this entails writing the solution in the forms

u(r,O) = v(r,O) - v(r,0+r) --- (3.1.2s)
and

u(r,0) = v(r,0) + v(rr 0+n) --- (S.1 .2h)

in the sound soft and sound hard cases respectively. The va-
riables r and 0 are defined by

z = tcosi
x = tsin|,

I

r

Z
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where the domain of e

(2 .3.3s) and (2.3.3h)
respectively satisfy
v(rr0o) = v(rr0o+n)
and

is still to be deterrnined. Due to
the function v(rr0) must of course

"Lia nlkreosa

"\ia "-Lto

26

--- (3.1 .5h)

Equation (3.1 .3h)

--- (3.1 . s)

---(3.1.3s)

ov(r,eo )/ao = -Ev(r,oo+n)/00 ,

where 0, is the value of 0 on the screen.
was obtained from (3.1.2h), the equation

E/Dz = cosl3/Dr - r rsin}A/Ae

and the boundary condition Eu(rre)/Ez le=e, = Q.

By separating the variables in (3.1 .1 ) , the solution

u = Ae i(krx+kaz) is found, where k, and k, are real and k! *4 =ld.

This can also be written in the form

u = Ae ikreos(e-o), which defines the incident wave when A=1and o=0.

The function

u = I n(o ,o) e ikrcoso* --- (s.1 .4)
K

is a general solution from which particular solutions can be

found by a suitable choice of A(cr,O) and r. For exanple if
A(or0) is a conplex function of o possesing a first order
pole with residue fi ,r o=0 and, K a closed path in the com-
plex cr-plane enclosing no singularities except for the above
mentioned pole, the integral (3.1.4) reduces to the incident
wave.

The function A(or0) and the curve r can now be chosen in such
a way that the integral (3.1.4) satisfies the conditions
(3.1 .3s) and (3.1 .5h) . This is accomplished by defining

v(rr0) I d( io)
2n

K

where K is the path indicated in fig.3.1,2, -Zn<0<2n and 0+0.

1
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DF

0-plane

E

fig.3.1.Z

t.

i:

t
ir
Ii.

Kr
t.

'l

H J

T

K

2r 517

CA

)l

First of all it nust be proved that the infinite integral
(3.1.5) exists. The shadowed regions in fig.3.1.2 are those

where the real part of ikrcosa is negative. When the ima-

ginary part of o tends to plus or minus infinity in these

areas, the integral can be approxinated to an arbitrary de-

l','.f'

G

'lJrr

t ;l

J

rij
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gree of accuracy by a constant times e s where s is the

variable of integration. In the case r = 0 the convergence

of the integral (3.1.5) is not so obvious. 0n putting

"fia = z, (3.1.5) can be written in the form

unin a-l
v(0,0) 1im

a-r @

= lim
a'+ co

. in , -rI . - ae -D - a D r
ZlTit Los n---=-T + Los 

tt;q)

1

Ei (
117

I
e-la'

+I
a

)
dz

T --6

v(0,0) 1

2 ---(3.1.6)

Secondly the function v(rr0) posesses the property

v(r,o) * v(r,0-2n) = "ikrcos1 --- ( 3.1 .7)

which is proved by showing that v(r,0) + v(r,}-Zn) is iden-

tical to the right hand side of (3.1.5) with ( replaced by

the closed path I in fig.3.1.2. This identity can be proved

by noting that
.r t ^Lia -ikrcosov(r,o-?n)=*)ffid(io)

ie- -e

1.e.

1
lio

e
ikrcoso

"Lia 
_ - LTd

d(lo).

(See ti9.3.1.2 where K and K, are defined. )

Therefore

I
K,

2T

"lia
ikrcoso

(l *l)
11

z
v(r,0) * v(rr0-2n) 1

2t KKt e
o

e

"- 
2ie d(la)
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The path in the above integral may be extended to include CD

and FA in fig.3.1.2 because of the periodicity of 4n of the
integrand and the fact that AF can be brought into coincidence
with CD by a translation of 4n along the real axis. The closed
path thus completed may now be deformed into L without the in-
tegral changing it's value. The integrand has only one singu-
larity in the region -Zr < a < Zr, nameLy a first order pole
with residue -"ikrcosO "a o, = -0. The equation (3.1.7) is ob-
tained by applying Cauchy's integral formula.

Thirdly the proof of the properties (3.1.3s) and (3.1.3h) fol-
lows from the representation of v(r,0) by a Fresnel integral.

(3.2) The scalar solution in tems of Fresnel integral s

The path.K in the definition of v(r,O) may be deformed into
two paths BHJC and DJHE in fig.3.1,2. The parts of these in-
tegrals along the real axis are equal, but of opposite sign
if 0 > 0. In this case

v(rr0) d(io). ---(s.2.1)

If e <C, the pole on the real axis is circled once and e

must be added to the above expression. Another method of

ikrcos 0

finding the value of v(r,0) when 0 < 0, is obtained by wri-
t ing

v (r, 0-2r)

-1
Ttr

I is ikrcosoe- e

lEo--- ^:lfE- atla)e'-e

and applying (3.1.7).

Equation (3.2.1) which holds for 0 > 0 can be simplified by

writing the integral along DC as an integral along EB in which

c is replaced by a+?r. One nay therefore write

?n

l io ikrcoso,t.t,;Wt" - ,W

=*,t.t,#4#u,r*,

(l * I)
BE DC
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v(r,0) f (a,o) e

I@

I
1@

lco

I
o

ikrcoso
do

f(-a ,o)) eikrcoso do,

I4

1

4r

l icr

znli (o-e )
0

lf(o,0) +

where

f(o,0) = e
(1t lio -liee- -e

1
)1

2 10 -1io
e +e

10, -1
e -e

Now

f(o,0) * f(-4,0) , io -i0le -e -io -ie-e

z_e .io I gir:t"-i\ rsl . " 
ri"("i"-"-ie[

)(e )

Therefore
av(r,0) = -fs

i0
e

"lrie klro * e-lio) ( l_n-io)
eos0 - eoso,

= =fue-sld- 
:i!-lza- ---coso.' cosO

ikrcoso co sla
cosa, - cos0 d0 ---(3.2.2)

dt,

1 0 - 10, -i0
e -o +e

io
i"*l

o

e

The integral (3.2.?) is readily evatuated by firstly differ-
entiating with respect to r; then integrating with respect
to o and finally integrating with respect to r. From (3.2.?,)

1@

0[v(r,o)e-ikrcose]/a, = f;"t.nrrul"ikr(coso-cos0) "o"1cr 
dcr

o

= ffsr:nle "ZTkrsinz 
lO in"c2

io
= \"inle 

"?ikr 
sinz r, 

Irzrkr 
sin2 lo ooria dc

o

@

eI
o

( 3.2.3)

where r = -i(Zkr/n)
1

2 sin\a.
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The integral ["
o

can be evaluated by

considering the rela-

ted integral rf dz

where C is the closed

contour in fig.3 .2.1 .

The integral vanishes

because the integrand

is analytic.
OR
I "-n*' dx + e- ltur | "hrz))RO

Z -p1 ane

(see Copson (1970))
R + -. Also

YTI ,17
2

-r22
e

dr

-nRzsinQ

R x

C

frg.3.2.1

dr 0.
-fur

--- (3.2.4)
value of the last term is snaller than or equal to

0

* in[ 
"-nR' 

(cosTO+isinTo) eio de
)

The absolute
0

*[ 
"-rtzcos 

20 
UU

I
-in

-i:
0

d0

-.inJ, 2R2o 
do ,

0

where Jordan's inequality 2t 4 :r-sing
was used. Hence the last term +0 as
qr@@

[r-n*'ar. = tI I "-"(*'*Y' 
)a*ayti

J -) 
Jo oo

ln

-,r-rz r0d0 dr l

1

2

Hence from (3.2.4) we get

-ln
=,1 ["oo

1

2

@

e-l:-t 
1

o

,inr2 6, t
2

From (3.2.3) and (3.2.5) it follows that

---(3.2.s)
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E Iv (r ,0) e'ikrcos u 
) / r, = i C#ll st:nlo 

"1'n "Zrkrstn2l0

Integrate with respect to r:

e

)l "inlo e- i i, 
f 
r- L nzikr sin' 1.0 

dr ,v(r,0)e -ikrcos0
2r
k(

or
T

f "in" d, ,v(rr0) =e - 1in ikrcos 0 ---(s.2.6)
-@)

where

T Nrrsinlo. --- (s.?.7)

The arbitrary function of 0 arising from the integration was

chosen to be zero because for r = 0 the above expression yields
v(0,0) = t which is in accordance with equation (3.1.6).
(This can be verified by setting r = 0 and 0 = ?r in (3.2.2).)

The equation (3.2.6) has been derived from (3.2.1) which holds
for 0 <e< 2r. When -2r'< 0<0, the constant t has to be

added to the expression obtained above for v(r,0) n-ikreos1.
This implies a new choice for the arbitrary function of 0. In
order to yield v(0,0) = 1 as (3.1.6) requires, the function
referred to has to be chosen equal to - 1 . (This can be verified
by adding "lkteos0 to the expression obtained for v(r,0)
in (3.2.2) and then setting r = 0, 0 = -n.)

Although v was left undefined at the singularities (0 = t2nn;
n= 1,2,3...) of the integrand in (3.1.5), the derived represen-
tation (3.2.6), obtained by deforming the path of integration,
is meaniningful at these points. We therefore take (3,2.6) to
be the definition of v(r,0) for all values of r and 0.

To ensure that u (r,0) as defined by (S. 1 .2s) and (S. 1 .2h)
exhibits the correct asyntotic behaviour, namely that it tends
to zero in region I, "ikreos9 * "-ikrcoso in region II and

"lkrcoso in regions III and IV, the domain of 0 nust be res-
tricted to the interval t-8n,1n1.

T. 4r LTIT' .Jn-"' dt is an integral of the Fresnel type and
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The properties (3.1.3s) and (3.1.sh) follow readily from the
definition (3.?,.6) and the expression for the derivative

.T
0v(r ,il/ao = -e lir erkrcosllnirT2 CHll coslg + ikrs t:neleitrzdtl.

-@

Clearly, by taking

that

v(r,]n) = v(r,fn) dt ---(3.2.9s)

---(s.?.8)

0o = l,r , it follows f rom (3.2.6) and (3.2 .8)

2

',/w
= "-lfur I

int
e

-@

and
-,/Wfr

v(r, h)/ae = -0v(r,in)/ao = -e-1in ti/^r-rTi rikr. itrJ er-qtr'd. l.
- (r,

--- (3.2. eh)

The conditions (s.1.3s) and (3.1.3h) are also satisfied if
eo is taken to be -trn,.,M
v(r,-in) = v(r,-ln) = "'ljfll nin.'d, ---(s.2.10s)

)

and

'/ffi0v(r ,-trr)/?o = -Ev( r,-l,ri/ae = "-lLr titdFrrikr- :.tr[ "irr' ur].')

--- (3.2.1 0h)

Using the definitions
-,/frT

o (kr) = z"-l'n I "int2 4.

-@

and

Y (kr)

-@

ikrnAir

-e

l/TKf

--- (3 .2.11)

--- ( 3.2.12),

equations (3.2.9s) and (S.Z.9h) become

v(r,]n) = v(r,!n) = ]O(kr) ---(3.2.15)
and

Ev(r,1n)/ae = -0v(r,*n)/ae = |ikrtv(kr) - o(kr) l

resPectively -- (3 '2 '14)http://etd.uwc.ac.za/
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Fron (5.2.5) and the fact that
it follows that

-TT

"-th ll :1, "itt2 6, = | .

int 2

e is an even function,

---(3.2.1s)

Equations (3.2. 1 0s) and 3.2. 1 0h) together with (3.2 . 1 1 ) ,
(3.2.12) and (3.2.15) yield
v(r, - in ) = 1 - io (kr) --- (3 .'2.16)
and

0v(r,-Lr)/ae = ikrll - L0(kr) + iv(kr) l. --- (3.2.17)

By making use of the definitions (3.1.2s) and (3.1.2h), the
equations (3 .2.13) , (3.2.14) , (3.2.16) and (3.?.17) and kee-
ping in mind that D/Ez = -r-r sinT E/80 holds where cosT = 0,
the following table can now be drawn up for the values of u
and Du/az in the X-Z-plane:

sound soft screen sound hard screen

table 3.2

(3,3) Electroma etic waves
T

)

Suppose the incident
wave of paragraph ?.5 2

impinges on a thin,
perfectly conducting
semi-infinite plane
of which the edge in-
cludes an angle rf with
the 2-axis as in fig. 3.3. 1 . fig.3.3.1

On introducing a new system of axes with the 2-axis along the
edge, the incident electric and magnetic fields are respective-
ly given by

1

u I Eur/ 0z u II Durr/ Dz

screen (0= 1n) 0 ik (o v) 0 0

aperture (0=- ]n) 1-0 ik 1 0+Y)ik(1

http://etd.uwc.ac.za/
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a[o' = nikz @inlt 6 r, + cosrt 6 12)

r(i) tkz. " 
---(3'3'1)

h[-' = e"'- (-eostp 6.Q,1 * sin\t 6[Z).

As the choice of origin along the edge is arbitrary, the fietds
are independent of i, so that Maxwell's equations (2.5.5) as-
sume the form

ike

ik6

ik6

ik[
ikE

ik[

1

)

3

1

Z

3

5 rE,

5 r[,
5, [,
-5,8,

-5 t6,
---(s.3.2)

5rEr

5 
r 
Ez'

5rEs

a

e

a

2

I

From (3.3.2) it is obvious that the total field can be deduced
from a knowledge of -ez and hr. These rwo fi.erds may he regarded
s scalars, respectively satisfying the boundary conditions

=0 ---(3.3.5s)

2/an = Q ---(3.3.3h
on the screen. Note that the boundary condrtion (3.3.js) does
not apply to Et at the edge, because e1 is not tangential to
the edge.

By reason of symmetry and the arbitrariness of the position of
the origin on the edge, the T-components of the incid.ent fields
do not contribute to dz and Er. Making use of table 3.2, it fol-
lows that these fields are given by

-e? = uI costp

nZ = UII sln\).

From Maxwellrs equations (3.3.2) it follows that

E 1 = Surr/ dz sing

[1 = -dur/ bz cost!.

By transforming to the original coordinates, the following table
is obtained:

http://etd.uwc.ac.za/
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"1 "z

table 3.3

h h ')
1

screen \Y sinZ{

aperture -1

0 0 -0+1Y(1+eosT\t)

lzY sinZ\t 1-0+iY(1-cosL\t) 0

http://etd.uwc.ac.za/
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CHAPTER 4

BRAUNBEKIS METHOD FOR THE DIFFRACTION OF PLANE WAVES BY AN ANNULUS

(4.1) Thq far field: scalar case

According to Braunbekrs method (see introduction) the field
u in the region z>0 in fig.4.1.1 is obtained from (2.2.3a)
or (2.2.3b) by assigning approximate values to u(x,y,+0) or
0u(x,Y,+0)/az.

In the case of an annular aperture there is the added compli-
cation of two diffracting edges. An acceptable procedure which
assigns unique boundary values to the field at Q(xrIr+0) by

Braunbekts method, is to take the parameter r in 0(kr) and

V(kr) of table 3.2 equal to s, the shortest distance from Q

to the nearest edge of the screen. In this way the plane of
the screen is divided into two regions , viz. Al U Sl for which
p < ] (a+b) and A2U S2 for which p > ] (a+b). The relationship be-
tween p and s is given in the table below.

Position of Q

p=
table 4.1

Y
a

. r,.l.risr,l4,-'1

p

x

Ar A
2

s I s2

Sb a+sb+s Sa

l(a{b)

AA
I s\

-/'1

f./

so
,E

ftg.4.1 .1http://etd.uwc.ac.za/
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Utilizing table 3.2 and assuming that each of the representa-
tions (2.2,3a) and (7..2.3b) are valid for both sound soft and

sound hard screens (Their validity has only been proved for
the case where the integration is taken over a finite region.),
Braunbek's method yields the following values for u in the re-
gion z>0:

u (B) t1-0(ks)l ---(4.1.1sa)

a

u (B) I

Zra
,[T
ob

b

?n

kI
l

o

?n

kl
o

2n

Iu (B)

d0G

2n

I
o

2n

I
o

[1-o(ks)+v(ks)] Gpdpd0 ---(4.1.1hb)I

2ra@

+#pdpdo

ff o aoao

u (R)

1

b

I
o

b

I (
I. I ,,*(ks) - y(ks)l Gpdpdo - ikl 

J 
coaoao

a ob

2ra
,I 

T
ob

--- (4. 1 .1 sb)
@

= -Z

o

Let

F (p)

and

then it follows frour
a

,T
b

u (B) F'(p)pdp +z

1dG
r dr P oPoQ'(

ldc.
rAroq F'(p),

I.I) ocr.,y]
oa

--- (4.1 . tha)

--- ( 4.1 .z)

--- (4.1 .3)

table 4.1 that

0(ks) [ (b+s)F'(b+s) + (a-s)F'(a-s) ] as

--- (4. 1 .4sa)

a-b)

t o (ks) -v (ks)l [(b+s) F (b+s) * (a-s) F(a-s)]ds

--- (4. 1 .4hb)

i(a-b)

a i(
kl
o

Ik 1u (B)

b

F (p) pdp +

o
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u (R) z F'(p) pdp
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(b-s)F'(b-s,1ds 0 (ks) (a+s ) F'(a+s ) ds.

-ik
J I

a

@

b

F(p) pdp ik [ 0 (ks) -Y (ks)] (b-s) F (b-s)ds
ob

-ik I [0(ks)-v(ks)] (a+s)F(a+s)ds ---(4.1.4sb)
o

a Ca!b

,T

c

0(ks),I
ob

Approximate values of these inregrals can be -,btairred by nak-
:ng a few assumptions in connection with the d,imensions of a

and b; the position of the pcint P and the behi,,rj.,ju!' of the
functions Q and Y.

' -'- 14. r . 4ha.)

- -- 14. --'

In the
nration,
ka>kb
and

k (a-b)

first place
hence

Braunbekts nethod rs a shor t v,'av:) epproy r -

4 {

Secondly the position of the point P will be res..r.r.ted
region far from the z-axis and including an. ar^;Ir': w€l i
cess of arcsin ( 1/kb) with tire z..,ir. ri.s, her, .

and

'this means that P is far removed from the shaded region
fig. 4 .1 .Z .

to
in

a

ex-

1n

t
1

2a
It

dresin ( l/irbJ

frg.4.1.Z

Z
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Thirdly 0(ks) and Y(ks) differ significantly from zero for
sma1l values of s on1y, say for ks<1. For these values of s

it follows from (4. 1 .5) and (4. 1 .6) that

and

s << a-b ---(4.1.10)
Consequently the upper linits of the integrals in equations
(4.1.4) may be extended to infinity without significantly aI-
tering the values of the integrals. Furthermore, the parame-
ters ats and bts may respectively be taken equal to a and b

where convenient . Eqqations (4 . 1 . .1) thus become

u(E) = -z IK(F',a,b) - L(0,F',b,a)] ---(4.1.11sa)

u(B) = -ik[K(F,a,b) - L(O,F,b,a) + L(Y,F,b,a)] --- (4.1.11hb)

u(B) = -ik[K(F,a,b) * L(0,F,a,b) - L(Y,F,a,b)] ---(4.1.11sb)

u(B) = -z IK(F',a,b) * L(0,F',a,b)] ,

where
a

--- (4.1 .1 tha)

K(F,a,b) =

and

L(0,F,arb)

---(4.1.12)I

:

dpF(p) p

ctc

0 (ks) [aF(a+s) + bF(b-s)] ds . --- (4. 1 . 1 3)

o

Without loss of generality the field point P nay be assumed
to have coordinates (Rsiny,0,Rcosy). From fig.4.1.1 it fol-
lows that the coordinates of the integration point a are
(pcosg, psing,0) . Therefore

12 = R2 + p2 - ZRp siny cosS. ---(4.1.14)

From (4.1 .7) it follows that if p is of the same order of mag-

nitude as a or smaller, the ineqality

p2 ---(4.1.1s)

holds. Expanding (4. 1 . 1 4) binomially yields

I

r s R - p siny cosg. ---(4.1.16)

http://etd.uwc.ac.za/
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and theThe integral (4. 1 . 1 3) is evaluated by using (4.1 .1 9)

following approximation of (a.1.24) :

Jo {k[a*s ) sinyl ^, 
cos{k(a*s) sin v-11r} -- (4 .1.27)

(lnk'R2 sin'y ) i

Hence we have

ikR
L(0,F,a,b) = h-

ikR .-.f f *frr) fr=cos(kssin\-B+[n)ds.o --- ( 4.1.28)

E(Y,k,r,cr) = #1" , ,i(k+g)s ds

1-t tn"
o

am cos (kssin.Y+A- [n) ds

The integrals in (4.1 .28) are obtainable in terms of

E(0rk, Ircr) = o(ks) ni('Q's+o)6r. --- ( 4.1 .2s)

Replacing 0 by Y and using (3.?.12), equation (4.1.29) becomes

G'

I
o

o

o

From (3.2.5) therefore

E(Y,kro,a) =

. IOLE
@

,ni (o+lr)
,/F(mI

inr2
I dre

--- (4. 1 .30)

In order to find an expression for E(0,k,.Q,,cr) it is useful to
observe from (3.2. 1 1 ) and (3.2.12) that

a0 (ks)--tr isv (ks ) . ---(4.1.31)

Hence from (4.1.29), (4.1.30) and (4.1.51) we have

a E (0, k, .Q,, o,) - a E (Y, k, [,0)--_--5r---_-_'n_-
i n -3= -ike** (k+0) 2

@
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The approxination (4.1.16) may be used in the evaluation of
the integrals (4 .1 ,12) and (4.1 .1 3), because where p is much

larger than a, the functions 0(ks) and V(ks) approximate zero.
From the definition of G and (4.1.16) it follows that

-ikr ^ikr ^-ikp siny cosg
^eeel,tE-A,- hrR2n
and

= a- Jo (kpszny)

= +F(P)'

d0

---(4.1.17)

---(4.1.19)

--- ( 4.1 .20)

---(4.1.21)

= lEJo (q)de
o

(4.1 .1 9) that

1
r

dG

ar l-ikrikR ,-ikp siny cosg
--- (4.1 .18)R 2r

Equations (4,1.2) and (4.1.3) may therefore be approximated by

ikR
F (p)

and

F'(p)

where

Jo (z)
2n

1 l. -Lz cosq

mJn
o

is the Bessel function of order zero.

Because of the relationship J, (z)

BesseI functions, it follows from
be written in the forn

ikR
K(F,arb) _e- EREZzy laJl (A) - bJ, (B) l, --- (4 .1 .22)

where { = kasiny and B = kbsin\ --(4.1.23)

In the region where (4.1.8) holds the Bessel functions can

be expanded asymptoticallY:

Je (z) s (inz)-L oo" (z-ln) --- (4 .1 .24)
1

J1 (z) s (irz)- 2 sin (z-in) -- (4 . 1 .25)

From (4.1.22) and (4.1 .25) ,

lG sin(A-in) - 6 sin(B-in)l

between the

(4.1.1?) can

K (F, a rb)
e
ikR

M --- (4 .1 .?6)
http://etd.uwc.ac.za/
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LE
1c

(1k
T{

J
.f,'l-l ar kr.'. E (ork, cro)

29,
) --- (4 .1 .s2)

x

--- (4.1 .36)

The integ-ral (4.1.32) is found by the substitution

tan| = lVll if t,>0 and by eoshl = vqlT if g<0.

In both cases the restrlt is 2/TT@TT + C. The inte-
gration constant C is determined by using the fact that

according to (3.2.11) and (4.1.2g), E(0,-,.0,o) = 0.

.io
.'. E(0,k,.0,o,) = Tt, - ffil .

From (4.1 .30) therefore

g E(O,kr[,o) = irio - k E(Y,k,[,o) . --- (4. 1 .33)

From (4.1 .'28) and (4.1 .29) it follows that
, ikR

L(O,F,a,b) = '". ,lG E(o,k,k siny,A-lr) + 6- E(o,k,-kszn y,-A+[n)
(]nkR2 sinY)i

+ {T E(0,k,k siny ,-n+}n) + /E- E (0,k,-k siny ,B-!ot)l ,

--- (4.1 .34)

0n using (4.1 .33) and (4.1 .26) in (4.1 .34) we find:
ikR1

zeL(QrFra,b) K(Frarb)

From (4.1.30) and the identities

l1isTrry x @ 1 t,cosy

( I nkR2 sins y1!z

Ifa E(Y,k,k siny,A-lr) - 'tr E(Y,k,-ksin\,-A+[n)

+r'5 E(Y,k,k siny,-B+f,r) -/5 E(Y,k,-k einy,B-lr) l.

---(4.1.3s)

,

it follows that (4.1.35) can be written in the form

K(F,a,b) + L(o,F,a,b) = i see^4t c(a,b)/TZE - iS(a,b),r@ l,
(nk3 R2 sinty)i

--- (4 .7 .37)

where http://etd.uwc.ac.za/
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C (a,b)

S (a,b)
--- (4. 1 .38)

Replacing 0 by Y in (1.4.34) and applying (4.1.30) and the
identities (4.1.36) we find that L(V,F,a,b) can also be ex-
pressed in terms of C(a,b) and S(a,b) :

= fa cos(A- in)

= G sin(A- ln)

+ ,fb cos(B- in)

- '/E sin(B- in).

L (YrFrarb) = + co s^( i S(a,b) 'ffi| I

--- (4.1 .39)

In the expressions (4.1 .1 1 ) for the field the values of
K(F,a,b) , L(0,F,a,b) and L(Y,F,a,b) are given by (4.1.26),
(4.1.37) and (4.1.59). From (4.1.12), (4.1.13) and (4.1.20)
we have that

z K(F',a,b) = , K(+F,a,b) = ikcosy K(F,a,b)

z L(0,F',a,b) = z L(0,$F,arb) = ikcosy L(0,F,a,b)

z L(Y,F',a,b) = z L(V,$F,a,b) = ikcosy L(Y,F,a,b).

. ikRLsec\ a 1t C(a,b)
(nk3 R2 siny)z

Substituting these values into (4.1 .1 1 ) and utilizing (4.1 .37) ,
(4.1 .39) and the identities

,/@ siny ,fRcosl = t cos\ ,r@l ,

it is found that (4.1 .1 1 sa) and (4. 1 .1 1 sb) yield identical
results, BS do (4.1 .1 tha) and (4.1 . 1 thb) :

ikR
u (B) e lC(a,b),M + iS + cos\ 1

(nkR2 si#y1l
(a,b)

---(4.1.40s)
ikR

u (B) e lC(a,b),ffiy - iS (a,b) n+cos\ )

(nkR2 sinsyll
--- ( 4.1 .40h)

Both (4.1.40s) and (4.1.40h) yield for the square of the
nagnitrrde of the field:

http://etd.uwc.ac.za/
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a[1 - co€t sin(Zkasiny)) + b[ 1 - cos'1 sin(2kb siny)l
lu(!)1'z

n k R2 sinsy

r Z@ t"l"{V@.D "t"y} - "t .
n k R' sin"y

---(4.1.41)

The result (4.1.41) reduces to equation II(13) of Braunbek

(1950) if b=0, i. e. if the annulus becomes a c'ircle.

Substituting (4.L.26) into (4.1.11hb) or (4.1.11sb) and ignoring
the terms containing L, the better Kirchhoff approximation (see

introduction) is obtained:

ikR
u (B) ike lGsin (A-!er) - {T sin(B-lr))

(1rk'R2 sin3\)z
---(4.1.42)

Multiplying (4.L.42) by eos\ produces the weaker Kirchhoff
solution. This is evident from equations (4.1.11) and the rela-
tionship between F and Fr . Note that the solutions of Kirchhoff
and Braunbek are the same for small values of Y.

(4 .2) The far field: electromagnetic case

With P and Q respectively the points

f, = (x, ) = (R szn \ cos! ,R siny sin!, R cos 0 )
x,

and

p = (8,) = (p cosg rg sin$r 0)

in fig.4.1.1, the derivatives (2.5.15) and (2.5.17) of G are
given by

cr = l#,*o - Es)

GL^= *,,# - *#,,. t"-Er)(x,-E,) . +#6s,'

In the far field region as depicted in fig.4.1 .Z the derivatives
of G are approximated, utilizing (4.1 .1 7) and (4.1 .1 8) , as

follows:

http://etd.uwc.ac.za/



(Gr ) ikG (siny cos0, siny sinl rcosO) --- (4 .2.1)

46

sin2y sinO cos| siny cos.( cosO

sin2y sinz g siny cos\ sin|

sinl cos'( sin| cos2y

--- ( 4,2.2)

tG l
9.m

Applying the approximations (4.2.1) to the solutions (2.5.14)
we obtain:

e1 =

-k2 G sinzy cos2e

sinzy sinO cos|

siny cos\ eos0

-Ikeosy[!e.,G d{dn

ez = -ikcosy I!"rG dEdn --- ( 4.2.3)

"3 = -tan\(cos! el* sinO e2).

If one assumes that the operations carried out to obtain
(2.5.14) remain valid when integration takes place over the
complete X-Y-p1ane, the magnetic field can be obtained by
the same procedure:

@

ht = -Lkcoe, [!h.,G dEdn

6

hz = -ikcosy IIhzc dEdn --- (4 .2.4)

hS = -tany (coso hl+ sin}hZ)

By applying Maxwellts equations (2.5.5) we now obtain hO and
u& respectively from (4,2,3)and (4.2.4) in terms of the values
of eO and h, on the plane z=0, In the differentiation the
approximations (4 .7, ,2) app1y. We f ind:

h1 = -tan\sdnysin0(cos0.1 * "inT e2) - cos\ eZ

hZ = cos\ e1+ tanysin"'1cos0 (eos0 e.r+ sinO er)

hS = siny(sinO e1+ cosO er)

and

---(4,2.5)
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"1 = eos\sinysinl (eosl h,+ sinl hr) + eosy h,

"Z = - cosy h, - tan'lsinyeos! (cosl h1 + sin 0 hZ)

e3 = sin\ (sinT h, - eose hr) .

47

--- (4 .2.6)
(4 .2.3) and in (4.2.6) h1 andIn (4.2.5) e

hZ are given
and e, are given by

by (4 .Z .4) .

Maxwellrs equations, applied to (4.2.5) and (4.?.6) , yield the
original results (4.2.3) and (4.2.4) respectively. Equations
(4.2.5) and (4.2.6) are not independent either; the first two
equations of (4.2.6) are obtainable from the corresponding eq-
uations in (4.2.5) by solving for "1 and eZ.

Comparing figures 3.3.1 and 4.1 .1 we see that U = 0 for o > L (a+b)

and rf = 0+n for p< l(a+b). In table 3.3 the angle 2$ may there-
fore be equated to ZQ. The first two equations of (4.2,3) and

(4.2.4) can now respectively be written in the form:

e, (R)
t-

e" (R)

---(4.2.7)
and

@

2ra
-torr"rf J IY(ks) sinzo Gpdpdo

ob

t1 - o(ks) * iY(ks) (1-cos20)lGpdpd0
2ra

"YI Tob
-lkco

a
2na

,"'',,1 f coaoao

ob
kc+i

b@

I . I ) lv(ks ) sinzgGpdpdQ.
oa

h, (R)
2nb

,"rl , Ioo
kcL

2n

"YI
o

-lkco(

) [ -o(ts) * ]Y(ks) (1+cos20)lGpdpd0+ I

(h ') R)

--- (4.2.8)
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t-

e, (R)

h, (R)
t-

h,, (R)
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= -Likcosy L (Y, Fs ,b, a)

= -ikcosytK(F,a,b) - L(0,F,b,a) + 1L(Y,F,b,a) - iL(V,Fe,b,a)l

= ikcosytK(F,a,b) + L(0,F,4,b) - 1L(Y,Frd,b) - iL(YrFo,a,b)J

= -likeosy L(YrFs rarb).
--- ( 4.2.12)

In the electromagnetic case the approximation (4.1.17) must be

replaced by

Gnr eikR ,-ikosiny cos (0-0)
--- ( 4.2.1s)T_ 2n

From (4,'l .2) and (4.2.13) it follows that (4.1 .19) , derived for
the scalar case, remains valid:

ikR
F (p) = 1-o_ Jo (kpsiny) . --- ( 4.2.14)

From (4.2.9) , (4.2.13) and the properties of Besse1 functions,
it follows that

ikR
F" (o) = -tT- sin20 Jz (kpsiny)

ikR
Fo (o) = -11_ cos20 J2 (kps iny) ,

where

ain20 J2(z)

and

cos20 J z (z)

ein?Q e -iz cos(0-e)

--- (4.2.1 5)

---(4.2.16)

2

*I
o

)

*t
o

1T

1T

d0

eosZg e
-iz coe(0-0) d0.

By applying the asynptotic expansion J r(z) nl -Jo (z) and the
result (4,2.14) , equations (4 ,2.15) become

F" (o) = sinZ0 F (p)

Fr(o) = eos20 F(p) .

--- (4 .2.17)
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To evaruate the above integrals (4 .1.2) is used as well as the
following related functions :

I
2n

fi2

G sinzO dO r" (o)

Fo(o).

o

--- ( 4,2.9)

I G cosz0 d0

o

With the aid
respect ively

b)(a-

,I
o

1
2

-llkcose, (R)
t-.

of table 4.1 equations (4.2.7) and (4.2.9) can
be written in the form:

Y (ks ) [ (b+s ) F" (b+s ) (a-s)F" (a-s) lds+

,I
b

e, (R) - ikeos F(p)pdp +

8Y

L@-

"YI
o

t 0 (ks) (b-s)F(b-s)ds + 0 (ks) (a+s)F(a+s)dsl

Y (ks )t(b+sXr @+s) - Fr(b+s)) (a-s){F(a- s) - Fr(a-s)}lds

l@-

"YI
o

ikco

I
o

I
o

Tkeo

Y(ks) (b-s){ P(b-s) + Fr(b-s)} ds"YI
o

-l:-kco

-llkeosyJ * Ctr) (a+sXF (a+s) * Fr(a+s)) ds

I
o

"rrl
o

-:-kco

b)a

b)

@b

0(ks) [ (b+s) F (b+s) + (a-s) F(a-s)]ds

+

---(4.2.10)
and

h
1

(B)

+ F(p) dp

o

h" (R) Y(ks) (b-s)F"(b-s) ds Y(ks) (a+s)F"(a+s) ds l.+

---(4.2.11)

As in the scalar case, the expressions (4.2.1 0) and (4.2.1 I )
are approximated by extending certain limits of integration to
infinity and respectively replacing ars and bts by a and. b where
convenient. In terms of the definitions (4.1 .1 z) and (4.1 .1 s)
therefore:

- likeo

b

a

""rl
b

kcI

@b

CI
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Substitution of (4.2.17) into (4.1 .1 3) yields

L(O,F ,arb) = sinZe L(0,Frarb)

(nkR2 siny)

ikR sin2 e + eos -co8e c a b 8Ln
(nkRz sinsy)

ikR
e iS (a ,b) (siny sinz O - co sa( ,M\)

(nkRz sin3\)
1

2

tC(a,b)'r@l - iS(a,b)'Mi )

s --- ( 4.2.18)
L(0rFcr8rb) = eosZe L(0rFrarb).

Substituting (4.2.18) into (4.2.12) and utilizing the third
equations of (4.2.3) and (4.2.4) leads to expressions for

"L and hU which can be written in the following form:

e., (!) = -ikcosy sin1 eosO L (V,F,b,a)

e, (!) = ikcosytK(F,b,Er) * L( 0,F,b,3) - sinze L(Y,F,b,a) I

e.(R) = -lksiny sin! tK(F,b,8) * L(0,F,b,a) - L(V,F,b,a)J

h1(B) = ikcosytK(F,a,b) + L(o,F,3rb) - coszo L(Y,F,a,b) l

= -ikcosy sinl cos0 L (YrFrarb)

hS(B) = -7ksin\ cosO tK(F,o,b) * t(0,F,a,b) - L(v,F,3,b)l

---(4.2.1e)

Hence if (4. 1 . 37) , (4. 1 .38) and (4. 1 .39) are used in (4 .2.19)
it follows that:

ikR + is a b -cos lsinl cos0 e C a b + coa

h,, (R)

e, (R)
t-

e, (R)

+

e" (R)
J_

s'Ln e
ikR

(nkR2 siny)L
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ikR
e c CL b sLn cos2 O + cos -cos

(nkR2 sint\)

cos2e tf@ - + cos

iS a b -co8

b

h, (R)
t-

a b sLn
(nkR2 sinsy)

ikRh, (R) = sinl cosl e tc a b + cos

(nkR2 siny)

eoso rikR t c

u(0,0 12) = -2rz I Gdp

ikR. -e 1)

h a b - eos +iS a b +cos l
3 (nkR2 siny)

--- (4 .2.20)

Note that if equations (4.2.20) are substituted into (4.2.5)
and (4.2,6) , the result is again (4.2.20) , The assumption made

in the derivation of (4.?,.4) therefore appears to be reasonable.

After some nanipulation it follows from (4.2.20) that the mag-

nitudes of e and h are identical to that of the scalar field
given by (4.1.41).

(4.3) The field on the Z-axis: scalar case

If the point P in fig.4.1.1 is on the Z-axis, integration with
respect to 0 in equations (4.1.1) reduces to multiplication by

2n. Integration by parts of terms containing 0(ks) and use of
(3.2.5) and (3.2.11) cause the first terms of (4.1.1sa) and

(4.1.lhb) and the last terms of (a.1.1sb) and (a.1.lha) to
cancel, hence: 

" --- (4.3.1sa)

ryl rik,dp --- (4. s. thb)

l

ikpY (ks) , ^

-ro

dpikr

u(0r0,z)

+(

)(B

Ska0
p

a

= -ftryq.
b

b @

I
Sk

p
a0

I
a

u(0,0,2) = 0(kb)e ikz

o

+ +

--- (4.3.1sb)
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)I
a

--- (4.3.lha)

5Z

s according
ikY (ks ) ,

ikzu(0r0,z) 0 (kb) e + 2nz( +

o
J

a0 ks Gdp.
p

Transformation of the variable of integration to
to table 4.1 and bearing in mind that 00(ks)/as
gives:

b)al(
- ikz

ik (b+s) 2 +22 ik (a-s) +z
e

(b+s) z +22 (a-s) 2*22

--- (4.3.2sa)

b+s ik
1e

(b+s) +z
ds

(b+s ) +z

a S
)e ik (a-s) +z

ds
(a-s) 2*22

--- (4.3.zhb)

u (0, 0 ,z) v (ks) t

ikz

I
e lds

o

i(a-b)
u (0 r 0 ,z)

u (0, 0 ,z)

u (0, 0 ,z)

o

0 (kb) e

0 (kb) e

Y(ks) t I +

ikz

-ik I

i(a-b)
f+ikl Y(ks)t r

J

o

I

. tul
o

b

-ik Y(ks)t 1

o

e

@

b-s
(b-s) +z

a+s
(a+s) +z

ik (b-s) +z

(b-s) +Z

ik (a+s) 2 +22

7e
ik (b-s) +22 ,

os

le ik +z
ds

--- (4.3.2sb)

ds

CD

+v(ks)t I

b

(a+s )

v(ks),T
o

kI

Y (ks) ds

o
(a+s ) +z

--- ( 4.3.?ha)

The field at the origin can be obtained directly from equations
(4.1.lsa) and (4.1.lha) by application of theorem Z.?. The same

results follow by setting z=0 either in (4.3.1sa) and (4.3.lha)

+ ikz

http://etd.uwc.ac.za/



53

or in (4.3.Zsa) and (4.3.?ha). To f ind the field at the origin
by means of (4.3.2hb) or (a.3.2sb) the variable of integration
is transformed to t = M . On using (3.2.5) , (3.2.11) and
(3 .2 .1?,) it f ollows that :

u (q) 0 --- (4.3.3sa)

u (q) n "'kblt 0{k (a-b) } l

ika

--.- (4.3.shb)

u(9) = 0(kb) Ae --- (4.3.3sb)

u(q) = o(kb). --- (4.3.Sha)

Where comparison is possible by setting b=0, these results are
in agreement with those of Bouwkamp (1954). However, for obvious
reasons, the field at the centre of a circular aperture cannot
be obtained from (4.3.3sa). It can be found by setting b=0 in
(4.1.1sa) and applying theorem 2.2.

The main contribution to the integrals in equations (4.5.3)
come from the neighbourhood of s=0. For smal1 values of s we

have:

5z +

z2

z2

--- (4.3.4)
sina = a/R

a

sin\ = b/Rb,

then

ars N SLNA
(ats ) +z

--- (4.3. s)
(ats) z +zz ikR- tiks sinaNeoe

AII the integrals in equations (4.3.3) are thus reduced to
linear combinations of the following integrals:

d

+a2R2
a

R;

ik
e

= [ * (ks) etiks sin o
J

o

I (ta, d) ds --- (4.3.6)
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Using (3.2.5), (3.2.11) and (3.2.L2) we find that

lin ts nd 1I

I (ta,d) 2e

I
inr

e drk,rLm
o

1 1 0ikd 1*,sina )l --- (4 .3.7)
K,lGffi

Substituting (4.3.4) into equations (4.3.2) and using (4.3.7)
yields:

u(o,o,z) = ,ikRo 16glL
-eikRa ,tl6 tt

i
e

kRu 71*"77g 1 1u(0r0rz)

ikz +u(0,0,2) = 0(kb)e i
e

kRu 6=66 1 1 0{kb (t-sin1)}1

+ sLn gtl - 0{kb (L-sinil}l

-eikRa tGffi, t L

u(0, o,z) = ,ikRo - eikRa

u(0r0rz) = eosgrikRu - eoso.eikRa.

0t lk (a-b) (1+sin B) ] l

o{ ik (a-b, ,r-":::1i: 
r.8sa)

of ik(a-b) (1*sen B) ) l

o { ik (a-b) rr- ":"_:li l, . 8hb)

--- (4.3.9a)

--- (4.3. eb)

-eikRa,retea
--- (4.3.8sb)

u(0, O,z) = 6(kb) nikz + nikno

- ikRa,M.

Note that equations (4.3.3)
(4.3.8) by setting z=0.

--- (4.3.8ha)

can be obtained from equations

Equation II (6) of Braunbek (1950) follows from (4.3.8sb)
by setting b=0 or from (4.3.8sa) by setting b=0 and O(ika) s 0.

Kirchhoff's approximations are produced by ignoring 0 and Y

in equations (4.1.1) and integrating. The weaker and better
Kirchhoff solutions respectively fo1low fron (4.1.1sa) and

(4.1.1sb) or (4.1.lha) and (4.1.lhb) :
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APPENDIX

According to Luneburg (1944) the condition (2.7,.4) in theorem
2.2 may be weakened to read:

U(xry) is sectionally continuous in the X-Y-p1ane. Outside a
circle with centre at the origin U(xry) is continuous and has
continuous derivatives such that

lu(x,y)l . +
{x, *y,

1aU=G,y)r .4' dx {x"*y, 
-- (1)

,OU(x,y)1 _ B,--Tx -t Gqr

His proof of the theorem is now reproduced, but in the notation
used in paragraph (2.2) of this thesis.

Then (2.2.3a) can be written in the form:

2tt o
u(xryrz) = -, II U(x+tcosrlt,y+tsin{)

oo

Defining
2tr

0(x,y,t) = J U(x+tcos{,y+tsin{) d{ ,
o

it follows that
zT€

u(x,y,z) = -zU * I) o(x,y,/r'-r')
zzT

0n using the inequalities

Let the polar coordinates (t,U)

r = (tcosrf ,tsin\t,-z) .

be defined by

--- (2)

ldGiiF
--- (3)

--- (4)

--- (s)

--- (6)

t dt du.

l0(x,y,t) I <

and

dG dr

Br
E

1 +ko
2rTDrTdr dt l< for r )-D t

dGr CITdr

--- (7)
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the absolute value of the second integral in (5) is found to
be smaller than

@

, i- (s,,11.) dt = + , _-_(8)
z{T2-t {T'- I

where Br and Bn are constants independent of z and T. From (5)
and (8) one may therefore conclude that

T ^ ^ikzs
lu(x,y,z) * I o(x,y,rffi.l$Cff) ds I . # .

I

--- (e)

By letting z*0,

lu*(x,y,0) . (+-

where u*(xryr0) =

it follows that

1)U(x,y) 
|

u(xry rz) .

Brtm, --- (10)

im
+O

1
z

Seeing that (I0) holds for any value of T, w€ have that
l im u (x,y ,z) = U (x,y) ,
z+o
which completes the first part of the proof. In order to
complete his proof Luneburg had to show that u as defined by
(2.2.3a) also satisfies the radiation conditions, in this
thesis formulated by (2.2.2). As regards this part of the
proof he says:
rrlt remains to be shown that u also satisfies the conditions
(45.14) and (45.141). If the function f(x,y) is zero outside
a certain finite domain these conditions follow directly from
the fact that the kernel

K r -. z E 'l ikr'
ffi76t7 e )

satisfies these conditions. For functions f(x,y) which satisfy
only the conditions (45.13) one has to proceed in a manner
similar to the above by considering first a finite domain of
integration and then estimating the rest."
lIn the above (45.14) and (45.14I) are the radiation conditions,
equations (45.13) are the equations (1) and f (x,y) = U(x,y). I

This merely outlines a procedure by neans of which the proof
may conceivably be concluded.
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The above proof is not rigorous, because B'r is not independent
of z and T. From (7) it follows that (8) only holds for zT > D.

Letting z+0 in (9) is therefore not permissible. In addition
the inequality (6) does not hold for all values of t. From (1)
we have:

lu(x+tcosu,I+tsin$) |

B

" 
*y, + t 2 + Zt (xco srlt+y s in!)

--- (11)

The nunber inside the square root is larger than or equal to

*'*y'+t2 -2t c o s 2 p *y2 s inz 0 + ?xy c o srlt s in\tx

= x2 +y2 +t2 -Zt x +y - (xsin\t-yeos,lt)

>,(t-R)2,
where R2 = x2 + y2.

--- (12)

--- (13)

By restricting the point (t,U) to the region outside the annu-
1us R-6 -< t g R+6, the variable t will satisfy the inequality
R-t-6>0 or t-R-6>0. Therefore
(R-t) (R-6) > 6t or (r-R) (R+6) > 6t. In both cases

It - nl , #h --(14)

The inequality (6) follows from (4), (11), (12) and (14).

Luneburgrs proof can be made rigorous as follows:
From (5) we can deduce the inequality

lu(x, y,z) - U(x,y) l< lri ,(x,y ,F-zr1*3u, t

D

+lU(x, D * rf o(x, y,F7Vl ffa, 1.
z

--- (1s)

By choosing D = 6 - R, the first term on the right hand side of
(15) will be smaller than or equal to
n+6 o

I ii o (x,y ,6TV1 $f a, 1 . I 1I-^o 
(x,r ,GrZ) # u, tR-6 '., R+6

.4#+D z,g(**) .#h, ---(16)
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The inequalities (7) and (8) as well as the fact that 0 is
sectionally continuous and therefore smaller than a constant
C, have been used in the last step. The value of D was set
equal to zT and consequently the expression (16) can be made

arbitrarily small by choosing z small enough.

The second term on the right hand side of (15) has already
been shown in paragraph (2.2) to vanish as 'z + O .
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ABSTRACT

In this thesis a short wave approximation, the method oI
W Braunbek, is used to determine the diffracted fields
(acoustic and electromagnetic) of plane harmonic waves by

an annular aperture.

Integral representations of the rigorous diffracted field
in terms of the surface field and its normal derivative
are derived. Babinet's theorem is proved for acoustic as

well as electromagnetic plane harmonic incident waves. A

derivation of Sommerfeld's solution for the diffraction
of plane harmonic waves by a half-plane is included.
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