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Abstract

Galaxy formation and evolution are driven by two main physical processes: star for-
mation and black hole accretion. Both processes can be traced via the synchrotron
emission at radio wavelengths. However, a reliable classification of radio sources
as star-formation-dominated sources (or Star-Forming Galaxies, SFGs) and black-
hole-accretion-dominated sources (or Active Galactic Nuclei, AGN) is non-trivial and
often requires extensive use of multi-wavelength data. Although significant effort has
been put into classifying radio sources as SFGs or AGN over the decades, the rapid
growth of radio data available from facilities such as the South African MeerKAT tele-
scope, the Australian Square Kilometre Array Pathfinder (ASKAP), and eventually
the Square Kilometre Array (SKA) requires the development of efficient and reliable
automated classification techniques. In this study, we implement, optimise and com-
pare five supervised machine learning (ML) algorithms, namely Logistic Regression
(LR), Support Vector Machine (SVM), K-Nearest Neighbour (kNN), Random For-
est (RF) and XGBoost (XGB), to classify radio sources detected in the MeerKAT
International GHz Tiered Extragalactic Exploration (MIGHTEE)–COSMOS survey
as SFGs and AGN. We first select and analyse the input features to train and test
machine learning algorithms to optimally classify sources detected in radio continuum
images as SFGs or AGN. We find that the quantities widely used in the literature,
such as the mid-infrared colours, the Infrared Radio Correlation parameter (qIR), the
optical morphology, and stellar mass, are also some of the most effective features
for training machine learning models, and that excellent performance can also be
achieved without X-ray observations. The feature importance analyses show that the
qIR is the most efficient feature in this classification, followed by optical morphology,
then combined mid-infrared colours and stellar mass. We then combine the six se-
lected features to train and optimise each of the adopted machine learning models
using the F1-score performance metric. We find that supervised machine learning
models perform very well in classifying SFGs and AGN detected in radio continuum
surveys. All algorithms yield an F1-score > 90% even when only 20% of the data
is used for training using only the qIR feature. We also show that class imbalance
has no significant impact on the performance of the machine learning methods since
the F1-score is still above 90% with a small training set size. The kNN, RF and
XGB produce state-of-art results when three or more features are used, while the LR
and the SVM perform more poorly for more than two features. We show that X-ray
data are not required in order to achieve such an excellent classification performance.
We also show that if we remove the mid-infrared colour features log(S8/S45) and
log(S58/S36) and only use the log(S45/S36) feature, the performance of kNN, RF
and XGB drops substantially. This implies that future radio surveys in fields where
no deep 5.8 µm and 8.0 µm observations are available will be at a disadvantage when
it comes to classifying radio sources as SFGs and AGN.
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Chapter 1

Introduction

Every galaxy like our own Milky Way is a massive system of billions of stars, gas
and dust bound by gravity. Galaxies are the fundamental component of our Universe
(Carroll and Ostlie, 2017). Some galaxies have relatively basic structures, contain
only stars, and lack distinctive individual characteristics. Some are built entirely of
inert gas. Some galaxies are intricate systems of numerous interacting parts, includ-
ing stars, neutral and ionised gas, dust, molecular clouds, magnetic fields, and cosmic
rays (Schneider, 2006). At the centre of many galaxies is a supermassive black hole
(SMBH), a compact nucleus that may sometimes be so bright that it overwhelms
all the normal radiation of the galaxy. SMBHs cause pairs of the twin lobes of ra-
dio galaxies (Donley et al., 2012). Galaxies can also exist in galaxy clusters bound
together by the force of gravity in space, just like stars are bound in star clusters
(Karttunen et al., 2007).
A galaxy is called a normal galaxy if its main energy source is not powered by a
central supermassive black hole. Most of the radio emission of a normal galaxy comes
from synchrotron radiation released by relativistic electrons and the free-free emis-
sion from the HII regions. Normal galaxies have a 1.4 GHz radio power in the range
1018h−2WHz−1 ≤ Lsource ≤ 10−23h−2WHz−1L (Condon, 1992). Galaxies that gener-
ate a significant fraction of luminosity from gravitational energy released as matter
accretes onto a supermassive black hole are known as Active Galactic Nuclei (AGN)
(Sparke and Gallagher III, 2007).
Understanding the detailed formation and evolution of galaxies is one of the signif-
icant challenges and fundamental to understanding the history of the universe (Mo
et al., 2010). The formation and evolution of galaxies are driven by two main physical
processes: star formation and black hole accretion. Both of these processes dominate
the radio continuum and can be traced via synchrotron emission at radio wavelengths
(Padovani et al., 2017). However, a reliable classification of these processes in the
radio continuum is non-trivial and often requires extensive use of multiwavelength
data. The star-formation-dominated radio sources are referred to as Star-Forming
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CHAPTER 1. INTRODUCTION 2

Galaxies (SFGs), and black-hole-accretion-dominated sources are called AGN.
Reliable classification of these processes is essential to answer fundamental science
questions in modern galaxy formation and evolution studies. According to Way et al.
(2012), this simple operation is at the heart of the reductionist process in science:
such assignment provides simplification and understanding and enables the deriva-
tion of valuable quantities. Classification of radio processes, which is, in this study,
a classification of radio continuum sources as SFGs or AGN, is also essential for
studying them both individually and statistically. This is an important considera-
tion that motivated the execution of large-area radio surveys over the decades. The
well-classified SFGs and AGN, especially those at high redshift, are also essential to
constrain galaxy formation and evolution models.
Astronomers have long relied on conventional wisdom and ”gut feeling” to classify
radio sources, and much progress has been made in this field to develop several classi-
fication criteria based on multi-wavelength galaxy morphology, photometry and spec-
troscopy. However, in the modern era, astronomical and digital technologies are ad-
vancing rapidly, which results in a rapid increase in the amount of data produced by
radio telescopes. Radio surveys undertaken with the MeerKAT1 telescope, the Aus-
tralian Square Kilometre Array Pathfinder (ASKAP)2, and eventually the Square
Kilometre Array (SKA)3 will result in an exponential increase in data. In contrast to
about 2.5 million known radio sources, the Evolutionary Map of the Universe (EMU)
survey on ASKAP is e.g. predicted to find roughly 70 million galaxies, and the SKA
is expected to detect 1 billion radio sources in a survey area of 3π steradians (Bourke
et al., 2015). The conventional classification techniques currently in use will not be
efficient for such large samples. This necessitates the development of methods such
as machine learning techniques to automate the tedious tasks that astronomers have
long carried out on their own, hence our study.
The current extragalactic radio surveys with MeerKAT provide unprecedented radio
continuum, spectral line, and polarisation information for us to study the formation
and evolution of galaxies in the distant Universe. The rapid growth of radio data from
MeerKAT surveys thus provides an excellent opportunity to apply machine-learning
approaches to classify radio sources.
The following sections in this chapter are arranged in the following order. Section
1.1 describes SFGs with their properties. We then briefly discuss AGN properties
and the different subclasses in subsection 1.2. Section 1.3 details the traditional tech-
niques used to distinguish between AGN and SFGs and their limitations. Section 1.4
discussed the Source counts and their importance in radio astronomy.

1MeerKAT https://www.sarao.ac.za/gallery/meerkat/
2ASKAP https://www.atnf.csiro.au/projects/askap/index.html
3SKA https://www.skatelescope.org/the-ska-project/
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1.1 Star Forming Galaxies

Figure 1.1: The multiwavelength view of the star-forming galaxy M82. Image adapted from https://chandra.

harvard.edu/photo/2006/m82/

Star-forming galaxies are normal galaxies with a high rate of ongoing star for-
mation (SF) activity. Figure 1.1 shows the multiwavelength view of the star-forming
galaxy M82. A star-forming galaxy comprises low-frequency radio emission domi-
nated by synchrotron radiation4 from relativistic electrons, accelerated by supernovae
and their remnants, interacting with the galactic magnetic field (Bonato et al., 2021).
Figure 1.2 shows the typical relative intensities of synchrotron radiation, free to free
emissions5, and dust re-radiation6 over the radio or far-infrared (FIR) spectrum of the
M82 galaxy. The spectral energy distribution (SED) of an SFG can be understood
as a superposition of emissions from the synchrotron, free-free and dust re-radiations.

4synchrotron radiation; refers to the emission of electromagnetic radiation by high-energy charged
particles moving through magnetic fields in space

5free-free radiation; https://www.cv.nrao.edu/~sransom/web/Ch4.html.
6dust re-radiation; https://ned.ipac.caltech.edu/level5/Phinney/Phinney1.html
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Star-forming galaxies are characterised by steep GHz radio spectra (spectral index
(α) = 0.7) dominated by synchrotron emission but also have a flat free-free compo-
nent, which becomes predominant at frequencies ≥ 30GHz (Condon, 1992).
Since the synchrotron emission emitted by SFGs results from relativistic plasma

Figure 1.2: The Observed radio/FIR spectrum of M82 is the sum (solid line) of synchrotron (dot-dash line), free-free
(dashed line) and dust reradiation (dotted line) components. Image adapted from (Condon, 1992).

accelerated in supernova remnants associated with massive star formation (Condon,
1992), thus radio observations probe recent star formation activity and, to some ex-
tent, pinpoint its location. The far infrared-radio correlation, one of the tightest
correlations in observational astrophysics, supports this. The far infrared and radio
emission are firmly and nearly linearly correlated in a variety of star-forming sources,
and this correlation is driven by recent star formation activity (Padovani, 2016a).
SFGs are rich in gas and dust and are believed to dominate at higher redshifts
(z > 1.2), where star-formation activity is dominant. A clumpy structure at these
redshifts characterises the SFGs since their disks are richer in gas than the local uni-
verse (Genzel et al., 2014). It is proposed that star formation activities occur via two
modes: a starburst triggered by major mergers; and another way is that the energy
released by evolved stars and supernovae can affect the interstellar medium and shock

http://etd.uwc.ac.za/



CHAPTER 1. INTRODUCTION 5

it to induce the formation of new stars (Padovani, 2016b).

Figure 1.3: Example SED of a dusty SFG at z = 1.2. The multiwavelength coverage is from the low-frequency radio
to the UV regime. The left rectangle covers the integration limits for the main IR components: the galactic cold
dust emission (green line) and the hot dust emission from the AGN torus (purple line). The right rectangle is the
integration area for the optical main components: the stellar emission (orange line) and the accretion disk emission
(blue line). The thin red line represents the total fitted SED. The dashed red and grey lines correspond to the
synchroton and thermal contributions to the radio emission, respectively. The image is acquired from Calistro Rivera
et al. (2017).

1.2 Active Galactic Nuclei

An active galactic nucleus (AGN) is a compact region at the galaxy’s centre with
excess non-stellar luminosity over some part of the electromagnetic spectrum (Sparke
and Gallagher III, 2007). Figure 1.4 shows a schematic representation of an AGN
spectral energy distribution (SED)(e.g. Elvis et al. (1994); Richards et al. (2006)).
An AGN is powered by the material from the surrounding interstellar medium ac-
creting onto a central supermassive black hole, which results in the surrounding gas
photoionised by the photons produced via the accretion mechanism (Peruzzi et al.,
2021).
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Figure 1.4: A schematic representation of an AGN spectral energy distribution (SED), (e.g. Elvis et al. (1994);
Richards et al. (2006)). The black solid curve represents the total emission, and the various coloured curves (shifted
down for clarity) represent the individual components. The image is adapted from (Padovani et al., 2017).

Observations of AGN at different wavelengths and variations over time reveal their
different structures. AGN emits radiation over all the electromagnetic bands, even at
the X-ray and gamma (γ)-ray part of the electromagnetic spectrum where most nor-
mal galaxies hardly emit radiation (Padovani et al., 2017). The population of AGN
is different and shows different properties, and as a result, they have historically been
described in terms of several subclasses of objects depending on the electromagnetic
band they were discovered in; see Figure 1.5 for the various populations of AGN.
The AGN unification scheme has been developed over the past decades, and Urry
and Padovani (1995) developed the sketch that illustrates the ideas behind the uni-
fication scheme as shown in Figure 1.6. The sketch indicates the composite AGN
phenomenon; black hole, disk, torus, clouds and jet. According to Figure 1.6, the
appearance of an AGN depends crucially on the orientation of the observer to the
symmetry axis of the accretion disk (Dermer and Giebels, 2016). Thus, the similar
intrinsic AGN may be confused with different radio sources.
AGN identification is not always clear-cut. The numerous methods used to iden-
tify AGN include classification based on emission line spectra, morphologies, and
frequency. The observational classification of AGN is dominated by the dichotomy
between radio-quiet (RQ) and radio-loud (RL) classes.
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Figure 1.5: Observational classification of active galaxies. Image adapted from (Dermer and Giebels, 2016)

Thermal emission, directly or indirectly associated with the accretion disk, domi-
nates the RQ AGN’s multiwavelength emissions (Padovani et al., 2017). Quasars are
the most common RQ AGN class, the most potent kind. Although quasars were orig-
inally discovered due to their radio emissions, only about a small fraction of quasars
have substantial radio emissions. These quasars are now called radio-loud quasars.
Quasars are characterised by higher luminosities that outshine the whole galaxy sys-
tem. Very luminous active nuclei, such as the quasars, were far more common when
the Universe was 20–40% of its present age than they are today (Sparke and Gal-
lagher III, 2007).
The largest class of RQ AGN are Seyfert galaxies. Seyfert galaxies are distinguished
from quasars via the energy emitted by the central compact region. Seyfert’s energy
emissions in the visible wavelength are equivalent to the energy emitted by stars in
the galaxy. At the same time, quasars are brighter than the energy emitted by stars
by a factor of about 100 or more (Peterson, 1997). Seyfert galaxies are subdivided
into two subclasses; Type 1 and Type 2. The physical explanation of the difference
in the two Seyfert subclasses is provided by the Unified Model, which states that for
Type 1 Seyferts, the observer looks directly into the unobscured accretion disk by
the fast-moving gas and for Type 2 the observer’s line-of-sight to the accretion disk
is blocked by an obscuring medium (Padovani et al., 2017).
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Figure 1.6: The unification model for AGN. Different viewing angles can be understood as the cause of different types
of AGN. Image sourced from https://fermi.gsfc.nasa.gov/science/eteu/agn/

A RL class is made of radio galaxies that emit a significant fraction of their
energy non-thermally and in association with the powerful relativistic jets. RL AGN is
subdivided into the Blazars and Radio galaxies. B.L Fanaroff and J.M Riley identified
radio galaxies with active nuclei as Fanaroff-Riley class 1 (FR-I ) galaxy or Fanaroff-
Riley class 2 (FR-II ) galaxy. The classification scheme is based on the fact that radio
galaxies have different morphologies depending on their radio power; The Fanaroff-
Riley classification scheme has been explained in detail in section 1.3.1.
There are also other classes of RL AGN not shown in Figure 1.5, such as low- and
high- excitation AGN class, grouped according to the optical spectroscopic properties,
where objects without and with high-excitation emission lines in their optical spectra
are referred to as low-excitation galaxies (LEGs) and high-excitation galaxies (HEGs),
respectively (Padovani et al., 2017).
For this study, we consider any radio source in the MIGHTEE-COSMOS catalogue
belonging to any AGN subclass as an AGN and use machine learning techniques
to separate them from star-forming galaxies by considering their multiwavelength
measurements.
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1.3 Conventional Source Classification

Classification is often one of the first steps taken in a scientific endeavour and usually
precedes – and indeed stimulates – understanding of the physical causes of the phe-
nomenon in question (Tadhunter, 2008). Galaxy classification emerged after Edwin
Hubble confirmed that some nebulae are external galaxies, i.e. the Galaxy is only
one of the countless galaxies in the universe. After this realisation, the work began
determining the physical properties of galaxies (Carroll and Ostlie, 2017). One task
was to classify galaxies based on their intrinsic properties. This section discusses two
classification schemes developed to classify the extragalactic sources in the radio con-
tinuum and their limitations. Each classification method played an essential role in
the development of astronomy, although all were developed using heuristic methods.

1.3.1 Fanaroff-Riley Classification

In 1974 B.L Fanaroff and J.M Riley created a classification scheme that identifies the
radio galaxies with active nuclei as Fanaroff-Riley class 1 (FR-I) galaxy or Fanaroff-
Riley class 2 (FR-II) galaxy (Fanaroff and Riley, 1974). The classification scheme
was based on the fact that radio galaxies have different morphologies depending on
their radio power. Radio sources that belong to the FR-I were brighter towards the
centre and fainter toward the edge. The spectra of FR-I galaxies are very steep,
which indicates that sources giving rise to emissions have aged. On the other hand,
FR-II sources are brighter towards the edge and are more luminous than their coun-
terparts, with bright hotspots at the ends of their lobes (Kembhavi and Narlikar,
1999). Various properties of sources in the two classes are different, meaning that the
distinction between FRI and FRII is important since it presents a direct link between
the galaxy’s luminosity and how energy is transported from the central region and
converted to radio emission in the outer parts (Kembhavi and Narlikar, 1999). Figure
1.7, shows radio images of FR-I (left) and FR-II(right).
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Figure 1.7: The FRI galaxy 3C 449 (left) and the FRII galaxy 3C 98 (right) illustrate the FR morphology. The red
area indicates the brightest radio emission. Red represents the brightest radio emission, closer to the centre of FRI
and at the edges of FRII. Image adapted from (Becker and Grobler, 2019)

The conclusion for the Fanaroff-Riley classification was based on a set of 57 radio
galaxies and quasars from the complete revised version of the Third Cambridge cata-
logue (3CR catalogue (Bennett, 1962)) clearly resolved at 1.4 GHz or 5 GHz into two
or more components. However, recent work by Mingo et al. (2019) has demonstrated,
for a sample of 5,805 extended radio-loud AGN from the LOFAR Two-Metre Sky
Survey (LoTSS), that radio luminosity does not reliably predict whether a source is
edge-brightened (FRII) or centre-brightened (FRI). Further Mingo et al. (2022) found
that the relationship between accretion mode and radio morphology is very indirect,
with the host-galaxy environment controlling these two critical parameters differently.
The existence of radio sources with hybrid FRI/FRII morphologies further compli-
cates the distinction between FRI and FRII morphologies (Gopal-Krishna and Wiita,
2000). Although figuring out radio morphologies is a beneficial place to start when
understanding radio galaxies better, multiwavelength observations are necessary to
more precisely locate the centres of radio galaxies and investigate their physical char-
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acteristics (Prescott et al., 2018).

1.3.2 Multi-Wavelength Classification

The Fanaroff-Riley classification scheme is a physical-based classification schema that
relies upon subjective and potentially incorrect model interpretation. There is a vast
difference between what is observed and what is inferred to cause what is observed, the
latter deriving from potentially several interconnected and complex physical processes
(Way et al., 2012). Over the decades since two basic radio galaxy morphologies were
recognised, several findings in different wavebands have reported properties on differ-
ent scales (Saripalli, 2012). Currently, astronomers use the available multiwavelength
observations to develop a radio source classification scheme based on the physical
processes responsible for the formation and evolution of the radio sources.
A radio spectrum is typically a power-law spectrum with little information we can
learn about sources of interest (Condon, 1992). The sensitivity of radio, infrared, op-
tical and X-ray telescopes has increased. The overlap between radio, infrared, optical
and X-ray surveys has grown to the point where many radio galaxies are detectable
in the infrared, infrared galaxies are detectable in the optical, optical galaxies are de-
tectable in the X-ray, and optical galaxies are observable in the radio, and vice versa
(Norris, 2017). Combining measurements from different wavelength bands helps dis-
tinguish whether a source is an SFG or an AGN. It is also used to find redshifts of
sources and extract information about the host galaxy, such as star formation rate,
stellar mass, etc. (Padovani, 2016a).
As indicated in section 1.2, AGN has interesting properties and has a history of being
discovered in all spectral bands. Different methods are deployed in each spectral band
to identify AGN, and we learn different AGN physics from each spectral regime. For
example, the infrared (IR) band is primarily sensitive to obscuring material and dust.
The optical/ultraviolet (UV) band is related to emission from the accretion disk. In
contrast, the X-ray band traces the emission of a (putative) corona. γ−ray and (high
flux density) radio samples, on the other hand, preferentially select AGN emitting
strong non-thermal (jet [or associated lobe] related) radiation Padovani et al. (2017).
A summary of the main indicators used to classify faint radio sources in the radio
continuum given by Padovani (2016a) includes far-infrared-radio correlation, X-ray
power, IRAC colour-colour diagram, X-ray spectrum and variability, optical indica-
tors, VLBI detection and radio polarisation. A summary of the classification scheme
used to classify the MIGHTEE-COSMOS catalogue is given in section 3.5, however
for a detailed explanation regarding each classification scheme, we refer the reader to
(Padovani, 2016a).
Figure 1.8 shows the typical spectrum of a quasar (3C273) compared to that of an
elliptical galaxy. Radiation emitted from the quasar spans the entire electromagnetic
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spectrum while the radiation from an elliptical galaxy is concentrated over a small
range of frequency (Schneider, 2006).
Using the available multiwavelength data to classify observed radio galaxies as AGN
or SFG was significant progress and had several advantages. The advantages are that;
classes are directly related to the actual physical properties of galaxies (essential), a
reduced misclassification, clear distinction of AGN subclasses, etc. Adopting mul-
tiwavelength classification also significantly impacts extragalactic astronomy. Radio
sources are now classified according to their physical processes rather than based on
the method or band they are discovered at. When working with deep radio images,
a multiwavelength strategy is essential because most sources are unresolved and not
much information can be gleaned from a single frequency catalogue.
The main challenges to the conventional multiwavelength classification are that an
experienced astronomer has to apply several methods independently and manually,
which is often ineffective for large data sets. This also requires astronomers to dis-
tribute the data to different experts for classification, after which they will compare
the classification results from each expert. Another concern is that each AGN indi-
cator used for classification leaves a significant fraction of sources unclassified; even
when all the classifications from each indicator are combined, many sources still need
to be classified. Figure 3.6 shows the completeness of MIGHTEE-COSMOS sources
classified as AGN or SFGs using four conventional techniques. This work uses the
accurately derived multiwavelength information to automate source classification in
the radio continuum using supervised machine learning methods.

Figure 1.8: The spectrum of a quasar (3C273) [an AGN] as compared to that of an elliptical galaxy [a normal galaxy]

in terms of the ratio vLv
L⊙

. The radiation emitted by an elliptical galaxy is concentrated in a narrow range spanning less

than two decades in frequency, while the emission from the quasar is observed over the full range of the electromagnetic
spectrum, and the energy per logarithmic frequency interval is roughly constant (Schneider, 2006).
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1.4 Radio Source Counts

According to Prandoni et al. (2001), radio source counts are the most immediate prod-
uct, which can be derived from a radio survey and reflect the statistical properties of
the radio source populations. The source counts distribution of radio sources from
a radio-astronomical survey is the cumulative distribution of the number of sources
(N) brighter than a given flux density (S). It is usually plotted on a log-log scale. It
is one of several cosmological tests developed in the 1930s to evaluate and contrast
new cosmological hypotheses (Kellermann and Wall, 1987).
The shape of the source counts is tightly related to the sources’ evolutionary proper-
ties and the geometry of the Universe (Padovani, 2016a). The relative contribution of
various sources at each flux, which is merely the luminosity functions at multiple red-
shifts, is primarily determined by the slope of the source counts. The source counts,
therefore, represent the primary observational constraint to evolutionary models of
radio sources. Accurately determining the source counts, their slope and normali-
sation are necessary to make this helpful constraint. The source counts, together
with measured local radio luminosity functions, can then be used to make predictions
about the redshift distribution, for instance, (Prandoni et al., 2001). The normalized
source counts derived recently from a compilation of several deep radio surveys at
1.4 GHz are shown in Figure 1.9. This plot illustrates the long-standing issue of the
large scatter in the counts present at flux densities ≤500 mJy.

Figure 1.9: Differential source counts derived from deep 1.4 GHz surveys, and normalized to a non-evolving Euclidean
model (nS2.5) as a function of flux (S). Different samples are indicated in the figure and the text with different colours.
The image is adapted from (Prandoni et al., 2018)
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1.5 Aim of Study

Despite significant advancements in radio source classification, the volume of radio
data produced by facilities like MeerKAT, ASKAP, and, ultimately, the SKA will out-
weigh the efficiency of the currently used manually applied methods. This work aims
to build an effective and trustworthy automatic classification pipeline in response to
the data influx from such facilities. We aim to implement and optimise supervised
machine learning techniques to classify radio sources detected in the MeerKAT In-
ternational GHz Tiered Extragalactic Exploration (MIGHTEE) survey as an AGN
or SFG. MIGHTEE is a project undertaken by a South African-led international col-
laboration of researchers to explore SFG and AGN evolution over cosmic time with
the MeerKAT telescope. The project focuses on four well-studied extragalactic deep
fields; COSMOS, XMM-LSS, ELAIS-S1 and E-CDFS, making up to 20 deg2 at µJy
sensitivity at Giga-Hertz frequencies (Jarvis et al., 2016). MIGHTEE observations
combined with the excellent multiwavelength data in these fields can provide a signif-
icant step forward in our understanding of galaxy evolution (Whittam et al., 2022).
We take advantage of the MIGHTEE-COSMOS multiwavelength catalogue, whose
manual classification is given by Whittam et al. (2022) to derive a machine learning
pipeline that will be useful to classify billions of radio sources detected in future radio
surveys.

1.6 Thesis Layout

This work aims to implement an automated method for classifying radio sources as
star-formation-dominated or black-hole-accretion-dominated by exploring multiwave-
length information in the MIGHTEE-COSMOS field. A summary of the chapters that
follow is provided as follows.

• Chapter 2
This chapter briefly introduces our machine learning approach for people with
or without a background in machine learning. It reviews the general approach
to most supervised machine learning classification problems. It details the nec-
essary steps to acquire good data for supervised machine learning training, such
as data preprocessing and feature selection. We also introduce the five super-
vised machine learning models or classifiers; Logistic Regression, Support Vector
Machines, k -Nearest Neighbour, Random Forest and XGBoost. The approach
each model adopts to determines the class of a source discussed. Hyperparam-
eter optimisation has been described briefly, including different techniques for
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selecting hyperparameters. The chapter concludes by giving examples of ma-
chine learning studies adopted in astronomy.

• Chapter 3
This Chapter presents the radio and the MIGHTEE-COSMOS catalogue used
in this work. MIGHTEE-COSMOS catalogue is a multiwavelength dataset
comprising several wavelength measurements from X-ray to radio. Since most
sources in deep radio images are unresolved and little information can be learned
from a single frequency collection, multiwavelength data is essential for classify-
ing radio sources. The MIGHTEE survey is introduced briefly in this Chapter.
This chapter details the COSMOS field background and why it is a focus of
this study. Briefly introduced the MIGHTEE-COSMOS radio data, including
the available corresponding multiwavelength equivalent. The conventional tech-
niques used to produce this catalogue are described, and the number of radio
sources per class is also presented. We have also described the features used to
train supervised machine learning models.

• Chapter 4
This chapter presents the main results of applying supervised machine learning
to classify radio sources. It briefly compares the automated feature analysis
techniques with the conventional methods. We presented and compared all su-
pervised machine learning results thoroughly. We also analyse these findings
and detail their implications in this chapter.

• Chapter 5
This chapter gives a summary of the results and implications of this work.
Additionally, promising prospects are proposed for the advancement of this
work.
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Introduction to Machine Learning

Traditionally, to achieve an outcome in computing, one writes explicit programs/rules
that take input and generate the output described in the program. Once the program
is written, it often works within the specific domain it is designed for and cannot
change unless manually changed by a programmer (Alpaydin, 2020). This necessi-
tates in-depth domain expertise and regular system maintenance, both of which can
be expensive and time-consuming. The vast development of technology has resulted
in an exponential increase in the amount of data available to researchers over a short
period of time. Traditional programming will not cope with such data, and as such
fast, automatic data-driven techniques such as machine learning techniques are re-
quired to learn from the data (Wang and Alexander, 2016).
In contrast to traditional programming, machine learning models take the input data
and the desired outcome and automatically generate the model to solve the problem.
The resulting models are the programs generated automatically with little or no user
programming guidance Alpaydin (2020). These techniques have several advantages
with respect to traditional programming tools, such as; they can identify patterns
that are too complex for humans to observe, can also make predictions based on a
much larger data set than traditional methods, they are not biased by human emo-
tions or subjective opinions; they can adapt to changing data patterns over time and
make more efficient use of computing and storage resources (Olah et al., 2018).
The first machine learning algorithm was introduced in 1959 by Samuel (1959) and
was applied to computer gaming. Samuel (1959) programmed a checkers-playing pro-
gram that played 10,000 games of checkers against itself. In a live game, he could
then figure out which board position was good or bad, depending on the wins and
losses of that move. However, one significant disadvantage of early machine learning
algorithms was their need for higher computer processing power than available at
the time. Recently, due to the improvement of the processing power of computers,
machine learning algorithms have been applied to a wide variety of problems and in
different fields. For example, Moosavi et al. (2021) demonstrates machine learning
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techniques to study the uncertainty in numerical weather prediction models due to
the interaction of multiple physical processes. Vijayakumar (2019) puts forth the
capsule neural network, the machine learning system that can be trained using a less
number of datasets, unlike convolutional neural networks and is sturdy against the
rotation or the affine conversions, to identify the type of cancerous tumours in the
brain at its early stage. Dixon et al. (2020) introduces fundamental concepts in ma-
chine learning for canonical modelling and decision frameworks in finance. For other
examples of machine learning research, we refer a reader to visit Olivas et al. (2009).
An application of machine learning in astronomy summary is given in this work in
section 2.4.
In the previous chapter, we pointed out important traditional source classification
techniques that astronomers have used to classify extragalactic radio sources. The
method’s ability and limitations are explained briefly. One standard limit of con-
ventional classification techniques is that the methods will not scale with the large
amounts of radio data readily available, especially for SKA surveys. It will be im-
practical to classify the astronomical data conventionally. Adding multi-wavelength
data to large amounts of existing data further exacerbates the impracticality.
Astronomy continues to be a scientific discipline to experience a flood of data over
the past few decades. The amount of data is pushing the limits of what is technically
possible. The exponential increase of available data in this field requires adopting
fast and automatic techniques to find patterns in data and translate these patterns
into useful information, hence machine learning techniques.
Compared to the conventional classification techniques, supervised machine learning
models classify every source in the data; this means that every observation in the cat-
alogue is classified using the supervised machine learning models. The well-trained
and optimised models can classify all the observations in a catalogue within minutes
to hours instead of the weeks or months that astronomers can take to produce a
catalogue’s classes for sources. The conventional techniques consider several methods
independently, and each method’s outcome is combined to conclude the class. In
contrast, we have demonstrated that each supervised machine learning method has a
specific way of finding the relationship between the input data and the class in the
training data from which it can predict the class of sources in the unseen test data.
This chapter will overview the machine-learning approach to radio source classifica-
tion and perhaps inspire exciting new ideas and applications. Although this work
focuses on classification, we regard machine learning algorithms as tools that, when
applied correctly, have vast potential for creating valid scientific results. I briefly
discuss the methodology applicable to any classification problem with supervised ma-
chine learning.
The section in this chapter are arranged as follows; Section 2.1 gives a general overview
of machine learning. The supervised classification approach is discussed in detail in
section 2.2. This includes significant processes such as data collection (2.2.1), data
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preprocessing (2.2.2), feature selection (2.2.3), selection of a supervised machine learn-
ing models (2.2.4) and the evaluation metrics. In section 2.3, we discussed hyperpa-
rameter optimisation and how important this is for machine learning models. The
last section, 2.4, gives a general overview of the application of supervised machine
learning techniques in astronomy.

2.1 Overview of Machine Learning

Machine learning (ML) is a field of study in Artificial Intelligence (AI, Winston
(1984)) and one of the fastest-growing areas of computer science, with far-reaching
applications Buradkar and More (2020). It is a method of data analysis that auto-
mates analytical model building by processing the available data and maximising a
problem-dependent performance criterion. The automatic model-building process is
called training, and the data used for training purposes is called training data. The
trained model can provide new insights into how input variables (also referred to as
features) are mapped to the output, and it can be used to make predictions for novel
input values that were not part of the training data called the test data (Baştanlar
and Özuysal, 2014). There are numerous uses for ML, but data mining is the most
important (Kotsiantis et al., 2007).
There are three categories of ML techniques (Akinsola, 2017); Supervised learning,
Unsupervised learning and Semi-supervised learning. Supervised learning is
a technique in which every instance in the dataset has an associated output. In
supervised learning, we wish to fit a model that relates the output to the observa-
tions (predictors) in the training data to accurately predict the output for future
observations in the test data that were not part of the training data (Borne, 2013).
Suppose the output we wish to predict is a categorical value like a class to which
observation belong to. In that case, it is referred to as classification; otherwise, if
the objective is to predict a numerical value, it is called regression. An unsuper-
vised machine learning technique is one in which each observation or instance in the
dataset is not associated with output. This type of learning is unsupervised because
no output variable can supervise the analysis. The main applications of unsupervised
learning include clustering, visualisation, dimensionality reduction, and finding asso-
ciation rules. Semi-supervised learning considers observations with the output and
some observations with no output. We wish to use an ML model that can include
the observations for which learning output measurements are available and other ob-
servations for which they are not. In this study, we use the words output, class label,
target and response interchangeably; all these refer to the target variable, a class to
which an observation belongs. Figure 2.1 shows three major categories of machine
learning techniques that have been a focus of most research (Borne, 2013).
The machine learning approach in astronomy is applied in data characterisation, as-
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signing the output to observed celestial sources and discovering the unknowns. Data
characterisation is an unsupervised problem, classification is a supervised problem
and finding the unknown is a semi-supervised problem (Borne, 2013). With the data
avalanche that astronomers face, such tools will be essential to perform data analyses
(Gareth et al., 2013). For this study, we limit our detailed discussion to supervised
ML classification techniques.

Figure 2.1: Classification of the machine learning approaches according to the learning.

2.2 Supervised Classification Approach

Classification is a supervised ML problem (see Figure 2.1). In this case, the target
output is categorical such as classes to which observations in the dataset belong. The
objective is that the algorithm should classify observations into two or more outputs.
If the algorithm is classifying between two target outputs, it’s called binary classifica-
tion. And if the outputs are more than two, it is called a multi-classification problem.
Both these classifications have been explored in astronomy, and section 2.4 gives some
studies that have considered these classifications. In this work, we are focused on a
binary classification since the task is to classify between SFGs and AGN.
In a Classification setting, the task is to assign a class label (y’) to an unknown ob-
servation (X’) based on the dataset D((X1, y1), ..., (Xn, yn)) referred to as a training
data. A supervised ML model learns a map that relates an instance (X) to a class
label (y) such that when applied to a new sample (X’) which was not part of training
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data, the model should assign the most likely class label (y’). In other words, the
supervised classification objective is to build a concise model of the distribution of
class labels in input features. The resulting well-trained classifier is then used to as-
sign class labels to the testing samples where the values of the predictor features are
known, but the value of the class label is unknown (Kotsiantis et al., 2007). The class
labels provided on the training data are usually manually supplied by humans and
are frequently imperfect. As such, if there are biases in a manually labelled training
set, it will result in a biased machine-learning algorithm.
There are two different approaches in which a data classification task can be carried
out: the first considers only a dichotomous distinction between the two classes. It
assigns class labels 0 or 1 to an unknown source. The second attempts to model
probability P (y|X); this yields a class label for a source and a probability of class
membership. The most prominent representatives of the first approach are Support
Vector Machines (SVM). Logistic Regression (LR), k -Nearest Neighbours (kNN), and
Decision trees all make use of the second approach. However, they vary considerably
in building an approximation to P (y|X) from data (Dreiseitl and Ohno-Machado,
2002). We adopt five different supervised classification algorithms; SVM, which con-
siders the first classification approach, and four other models, which consider the
second approach of estimating probabilities; Extreme Gradient Boosting commonly
popular as XGBoost (XGB), Random Forest (RF), kNN and LR. The details on
each model’s specific approach to building an approximation to P (y|X) from data
are given in section 2.2.4.
This study aims to classify the MIGHTEE-detected radio sources as AGN or SFGs,
and there are several steps that one needs to follow to produce good results for a clas-
sification problem. Figure 2.2 shows the supervised machine learning processes I will
adopt to classify the MIGHTEE-COSMOS radio sources. Figure 2.2 establishes a lay-
out of the steps necessary for any supervised learning task. The following subsections
discuss the most critical steps concerning astronomy datasets for classification, which
are data collection (2.2.1), preprocessing ( 2.2.2), feature selection (2.2.3), algorithm
selection (2.2.4), evaluation metrics (2.2.5), and improving the results; Hyperparam-
eter optimisation (2.3).
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Figure 2.2: The steps involved in Supervised ML classification. The first four steps in blue are essential since the model
performance mostly depends on them. The first step is identifying whether a Problem is feasible for classification
or regression. The second step is data collection (2.2.1), and the third step is preprocessing the data (2.2.2). The
fourth step is feature selection (2.2.3). The steps highlighted in yellow are the selection of algorithms (2.2.4) and
training algorithms. The last step is evaluation (2.2.5) of the model’s performance. If the classifier can make good
classification, it is retained and used to classify observations not in the training data; otherwise, one or more steps in
blue and yellow should be repeated, and the models should be retrained.

2.2.1 Data Collection

Data collection is the first process of all the steps needed to ensure the desired data
is in digital format. Data collection methods include acquiring and archiving new
observations, querying existing databases according to the science problem, and per-
forming cross-matching or data combining, a process generically described as data
fusion (Ball and Brunner, 2010).
A key focus of this work is to use the measurements observed at different wave-
lengths, often referred to as the multi-wavelength data, available in the COSMOS
field to classify the detected radio sources. Combining observations spanning various
electromagnetic bands using the positions of the sources (right ascension and Decli-
nation) is commonly known as cross-matching. These steps are already completed by
Whittam et al. (2022) and Prescott et al. [submitted]. The same radio sources seen in
various bands by other surveys are cross-matched using their unique identification. If
there is no definitive identification for the source, the source’s position in the sky with
some astrometric tolerance would be used as a standard method for cross-matching
Ball and Brunner (2010).
Cross-matching can introduce several challenges, including missing data, fuzzy matches,
resolution of sources within or between datasets, differing survey footprints, survey
masks, and large amounts of processing time and data transfer requirements when
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cross-matching large datasets. These challenges can drastically affect the performance
of the supervised model. Hence, we must consider data preprocessing before applying
ML models.

2.2.2 Data Preprocessing

Data preprocessing comprises several steps, some of which occur during data collec-
tion. It is often problem dependent, and one needs to apply it very carefully since
it may affect the performance of the ML models. Data preprocessing is cleaning and
organising the raw data to make it suitable for building and training ML models. In
this work, we do data preprocessing to transform the data according to the selected
algorithms. We will consider three steps to transform MIGHTEE-COSMOS catalogue
data; Converting the categorical data into numerical data, handling the missing data
and some invalid measurements. There are several steps one needs to consider for
data preprocessing. See Pyle (1999), Zhang et al. (2003) for details regarding data
processing.
The MIGHTEE-COSMOS catalogue comprises numerical and categorical data. The
latter is a class of observed sources, such as an SFG or an AGN. We adopt scalar-
ization, one of the standard methods to convert categorical data to numerical data.
Scalarisation is a method in which various possible categorical attributes are given
various numerical labels; for example, in a binary classification problem, ’SFG’ and
’AGN’ are labelled as the vectors [1,0] and [0,1], respectively.
Data will generally contain one or more types of incorrect or misclassified measure-
ments. Common examples in astronomy include instances where the flux of an object
at a certain wavelength has been set to -9999 or NaN. The value may be correct for
some ML algorithms. Still, it has been flagged as bad, or the value is not bad in a
formatting sense but is nonphysical, perhaps a magnitude of a high value that could
not have been detected by the instrument (Ball and Brunner, 2010).
We transform the direct measurements in the catalogue (flux densities) to the loga-
rithmic of ratio of two flux densities from different wavelength bands i.e. colours. In
astronomy, to derive a colour is an ordinary operation to take a log of a division of
flux densities in one waveband by another. These transformations can also introduce
numerical issues, such as division by zero or loss of accuracy. Such measurements
need to be removed either by simply removing the source containing them, ignoring
the whole feature with those values but using the remaining data, or interpolating a
value using other information.
Missing data is another common problem in almost all data types. Missing data could
be attributed to three reasons; the corresponding survey did not observe a particular
source, a source was detected in some wavelength bands but too faint to be detected
in others, or there is no emission from that source in that band. Missing data can
significantly affect the accuracy of results, attenuating the model’s performance. Such
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datasets cause problems to most of the Scikit-learn (sk-learn, Pedregosa et al. (2011))1

estimators that assume that all values in an array are numerical and that all have and
hold meaning (Zhang et al., 2017). We replace or remove the missing values in the
datasets. In this work, we limit our focus to only sources with valid measurements in
each input feature used to train the ML algorithms since the fraction of sources with
invalid measurements and missing values is less than 5%.

2.2.3 Feature Selection

The required input features for analysis are crucial since they will determine how well
the ML models can assign class labels to the correct observations. Feature selection
reduces the dimensions of the data, and as such, the models perform faster and effi-
ciently (Kotsiantis et al., 2007).
Multi-wavelength astronomy has given rise to a vast range of measurements to use
as input features. However, only a subset of features is helpful to a specific prob-
lem. Complete observable parameter space includes the source coordinates (Right
ascension and Declination), velocities, redshift, proper motions, fluxes densities at
different wavelengths, surface brightness, and variability over a range of timescales
(Zhang et al., 2008). Using all available features to train an ML model results in the
so-called curse of dimensionatily. High-dimensional datasets cause machine learn-
ing models to yield worse outcomes. To avoid such a problem, one requires some
dimension reduction, in which one wishes to retain as much information as possible
but with fewer input features. The most trivial form of dimension reduction is to
use one’s judgement and select a subset of features. Another way one can usually
take a more sophisticated and less subjective approach, such as principal component
analysis (PCA) (Ball and Brunner, 2010).
The MIGHTEE-COSMOS catalogue comprises several measurements from the radio
to X-ray part of the electromagnetic spectrum one can use as input features. We re-
fer the reader to chapter 3 for the details regarding MIGHTEE-COSMOS data. This
study considers one’s judgement approach to feature selection and only the fluxes at
different wavelengths used in radio astronomy for classification if SFGs and AGN are
considered primary features to train the selected ML models. Other fluxes at other
wavelengths have also been considered, and the results are reported in the appendix
5.3.

1SK-learn; https://scikit-learn.org/stable/
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2.2.4 Selection of Algorithms

We adopt and briefly compare classification algorithms from the machine learning
field; Logistic Regression (LR), Support Vector Machines (SVM), k -Nearest Neigh-
bour (kNN), Random Forest (RF) and XGBoost. All these classifiers use some a-
priori knowledge from spectroscopy or physical assumptions to deduce the function
that maps the parameter space of observables onto the manual class label distribu-
tion (Norris et al., 2019). The implementations of these classification algorithms are
available, both as free software in sk-learn2 and XGBoost3. The quality of the results
obtained using these models mainly depends on three factors: the quality of the data
set employed in model-building, the care with which adjustable model parameters
were chosen, and the evaluation criteria used to report the results of the modelling
process (Dreiseitl and Ohno-Machado, 2002).
Each algorithm’s technique to learn and make a prediction is discussed below.

Logistic Regression

Logistic regression (LR, Cramer (2002)) is a supervised learning classification ap-
proach that uses class labels (output) for building and uses a single multinomial
logistic regression model with a single estimator (Osisanwo et al., 2017). It is like or-
dinary least squares regression and is one of the most commonly used tools for applied
statistics and discrete data analysis. It is primarily applied to the binary classification
problem. However, the technique can be extended to a multi-classification problem
(James et al., 2013). The algorithm estimates the probability that an output be-
longs to a particular category based on the given dataset of independent variables
(Osisanwo et al., 2017). LR’s outcome is the probability, meaning that the predicted
outputs are bounded between 0 and 1. The location of the class border is indicated by
LR, which also shows how the class probabilities depend on distance from the bound-
ary and how quickly they approach the extremes (0 and 1) as data is more significant.

2SK-learn; https://scikit-learn.org/stable/
3XGBoost; https://xgboost.readthedocs.io/en/stable/
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Figure 2.3: An example of the predicted LR probabilities fitted to some input variable X. The blue dots indicate the
0/1 values coded for an input variable X (e.g. one of the derived colours (SFGs or AGN)). X represents the input
feature, P (y|X) is the LR model probability; All probabilities lie between 0 and 1. The threshold value defines the
probability of either 0 or 1. Values above the threshold value tend to 1, and those below the threshold value tend to
0. The figure was inspired by https://www.javatpoint.com/logistic-regression-in-machine-learning

Support Vector Machines

The support Vector Machine (SVM, Evgeniou and Pontil (1999)) approach was de-
veloped in the 1990s, and its popularity has since been increasing due to the algo-
rithm’s potential. The SVM algorithm aims to create a decision boundary referred
to as a hyperplane that can distinguish n-dimensional space into classes so a new
data point is assigned to the correct category in the future (Cristianini et al., 2000).
SVM chooses the extreme points called vectors that help in creating the hyperplane.
These extreme cases are called support vectors, and hence algorithm is termed a
Support Vector Machine. Figure 2.4 shows two categories that are classified using a
hyperplane. Support vector machines are intended for binary classification with two
observation classes (James et al., 2013). We refer the reader to James et al. (2013),
Cristianini et al. (2000), sk-learn SVM4 for further reading about the SVM.

4SVM; https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Figure 2.4: The SVM approach: The two classes of observations are illustrated by blue circles and red triangles. The
classes are separated by the optimal hyperplane (solid line) parallel to the two supporting hyperplanes (dashed lines)
on which the support vectors lie. Margin is the distance from the optimal hyperplane to either supporting hyperplane.
The distance d between the supporting hyperplane and the misclassified source indicates “slack variables”. Image
modified from (Cardoso-Fernandes et al., 2020).

K-Nearest Neighbour

k -Nearest Neighbour (kNN, Peterson (2009)) approach follows a different technique
compared to the LR and SVM because it uses the data directly for classification,
without being modelled first (Dreiseitl and Ohno-Machado, 2002). kNN classifier
approximates the association between independent variables and the class labels (de-
pendent variables/target) by averaging the observations in the same neighbourhood
(Borne, 2013). The kNN algorithm decides the class of an unknown observation
based on the majority of k -nearest neighbour category (Alaliyat, 2008). The size of
the neighbourhood (k) needs to be set by the analyst or use cross-validation5 ap-
proach to select the k -value from an array that yields high performance. kNN is
considered one of the simple machine learning algorithms. It works based on the
minimum distance from the unknown source to the training samples to determine
the k nearest neighbours. When k is known, we take the simple majority of these
k nearest neighbours to predict the class of unknown observation, as illustrated in
figure 2.5.
The algorithm depends on the user’s ability to calculate the distance between database
objects in any multivariate parameter space. However, the Euclidean distance is com-
monly used to measure neighbourhood (Alaliyat, 2008). The value of k is usually
chosen to be the square root of the total number of objects in the training set, and it
should be an odd number to avoid the tie.

5Cross validation; https://scikit-learn.org/stable/modules/cross_validation.html
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Figure 2.5: kNN algorithm illustration. X1 and X2 represent two input attributes. The blue circles and red triangles
represent observations in the training set belonging to two classes. The green squares show an unknown observation
that the algorithm must classify as one of the shown classes. The small solid circles show where the number of
neighbours (k) considered to classify the analysed source equals 3. The dashed and dotted circles represent k=7,
k=10, respectively. Image Modified from (Alaliyat, 2008)

Random Forest

Random Forest (RF, Breiman (2001)) is an ML model that builds an entire forest of
random uncorrelated decision trees and then uses a voting method to decide on the
target variable (Pham et al., 2021). To get the most understanding of how random
forest works, one needs to understand how decision tree algorithm works, which is
not a focus of this work. The RF builds a forest of independent random decision
trees to predict the best results. Every decision tree in an RF has special rules, and
randomness is added to each tree. As opposed to the decision tree algorithm, which
considers all the attributes, the RF only considers a finite number of selected features,
hence the term’ random’ forest. For more details about the random forest model refer
to (Breiman, 2001), sk-learn RF6.

6RF; https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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Figure 2.6: Sketch of RF approach. T1, T2, and Tn represent random uncorrelated decision trees from 1 to n. Each
decision tree yields its class label from which the most dominant class label would be considered.

XGBoost

The eXtreme Gradient Boosting (XGBoost, Chen and Guestrin (2016)) model imple-
ments machine learning models under the Gradient Boosting framework. The XG-
Boost model has been widely applied in many data science challenges and has shown
state-of-the-art results on a wide range of problems (Chen and Guestrin, 2016). XG-
Boost is an iterative decision tree algorithm with multiple decision trees added via
continuous splitting attributes. Every tree is learning from the residuals of all previ-
ous trees. Unlike the RF algorithm where most voting output result is adopted, the
XGBoost predicted outcome is the sum of all the results from each tree (Wang et al.,
2019). Figure 2.7 shows a sketch of the XGBoost classification approach. The differ-
ent K trees from which each outcome and the residuals are predicted are represented
by grey rectangles. The different colours of circles in each tree represent a leaf node
associated are obtained after training, and the features of prediction samples in each
tree and each leaf node corresponds to a score. The final score, as shown, corresponds
to the scores of each tree added up.
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Figure 2.7: Sketch of XGBoost approach. Image adapted from (Guo et al., 2020)

2.2.5 Evaluation Metrics

We assess the performance of supervised ML models on the data which was not part
of the training data, i.e. the unseen test data using the classification evaluation
metrics. Evaluation metrics are used to evaluate and measure the performance of
a specified model and can be used to compare to another model. There are several
metrics to evaluate the accuracy of a model. These metrics can be used to assess
models’ performance for both classification and regression. This part will focus on
the classification metrics. We adopt the classification metrics Precision, Recall and
F1-score. For binary classification, the confusion matrix scheme is shown in table 2.1.

Table 2.1: Confusion matrix for binary classification. Actual represents the actual labelled class (in our case, the
manually labelled class, i.e. AGN or SFG), while predicted represents the class predicted by the algorithm.

Actual
Positive Negative

Predicted
Positive True Positive False Positive
Negative False Negative True Negative

If we consider that an AGN class is positive and that of SFG is Negative, then
True Positive (TP) refers to the number of sources predicted as AGN and labelled
as AGN manually. Similarly, True Negative (TN) refers to the number of sources
predicted as SFGs and labelled as SFGs manually. The false Positive (FP) value is
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the number of actual SFGs classified as AGN, and the False Negative (FN) value is
the number of actual AGN classified as SFGs.
We define Precision, recall and F1 score as follows. Precision indicates how good the
classifier is when identifying the true positives (TP). A good precision score indicates
a high fraction of positive identifications, and a low precision indicates a low fraction
of positive identifications.

Precision = TP
(TP+FP )

The second metric is recall, which assesses how well the algorithm minimises false
negatives. A low recall for an individual class would indicate it is often misclassified
as another.

Recall = TP
TP+FN

Lastly, The F1-score is the harmonic mean of Precision and recall and gives the overall
performance of the ML model.

F1 = 2TP
(2TP+FP+FN)

2.3 Hyperparameter Optimization

The machine learning models comprise two parameters; hyperparameters and the
model parameters. Hyperparameters are all the parameters the user can arbitrarily
set before training the model; this includes parameters such as n-neighbours in kNN
and n-estimators in RF. In contrast, model parameters are learned during the model
training. Hyperparameters determine how our model is structured before training,
and tuning them is an optimisation problem.
Currently, it is most likely that there is no best set of hyperparameters or standard
fixed that will yield the best results. Finding the best collection of hyperparameters
is still a try-and-catch process. Two common approaches to search for the best set
of hyperparameters from which the model will yield good performance are gridsearch
parameter tuning and random search parameter tuning. Grid Search is a technique
that will try all possible parameter combinations and return a model with great accu-
racy. Grid search will build a model, evaluate it in every variety possible and choose
the most accurate one by the end. Random Search is a technique used to generate
random combinations of the hyperparameters to find the best fit for the model. Ran-
dom Search uses a subset of random parameters from which the classifier that yields
great accuracy scores will be considered.
In this work, we perform a k-fold cross-validation while trying to find the optimal
hyperparameters. Cross-Validation (CV) is a data resampling method to assess the
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generalization ability of predictive models and to prevent overfitting (Berrar et al.,
2019). It works by splitting the data into k-folds (subsets or partitions) where each
fold is used for testing the model while the remaining k-1 folds are used for training
the model. For example, if k=3, then a dataset will be divided into 3 folds, one fold
will be used as test data and the remaining two folds as training data which implies
that about 33% of the data is test data and 67% is training data. This process is
repeated until each fold is used as test data. In the end, three scores will result
from each iteration and the mean of the scores will then be reported as a final score.
We extend the CV by doing a 3-fold grid search CV while attempting to determine
the optimal hyperparameters. All hyperparameters are used to train many models,
from which the model with the greatest score has the best hyperparameters, which
are referred to as optimal hyperparameters. We have highlighted the different sets
of parameters for each model in section C of the appendix. Figure 2.8 depicts the
three-fold cross-validation used in this work for training and for the hyperparameter
selection of the model.

Figure 2.8: Three-fold cross validation hyperparameter tuning using GridSearch method. Image inspired by (Shatnawi
et al., 2022)

2.4 Machine Learning Application in Astronomy

The recent exponential increase in astronomical data necessitates the need for pow-
erful computing capabilities, the use of data mining and the employment of machine
learning techniques which can quicken the tedious work that astronomers go through.
The application of machine learning in fundamental astronomical research spans seven
main categories of activity: classification, regression, clustering, forecasting, gener-
ation, discovery, and the development of new scientific insight (Fluke and Jacobs,
2020). Classification is a common first step in the scientific process because it organ-
ises data so that hypotheses can be generated and data can be compared to models.
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This section reviews some of the applications of supervised machine learning classifi-
cation techniques in astronomy to classify stars, galaxies and AGN.
Astronomy has many classification problems, including the classification of star-
forming galaxies and active galactic nuclei. One of the earliest classifications of galax-
ies using machine learning began in the 1980s when Whitmore (1984) used principal
component analysis (PCA) for the morphological classification of spiral galaxies. In
the early 1990s, astronomers began to use more complex methods that required la-
belled training sets. The first or early algorithms to be applied for classifying stars or
galaxies are decision trees (Weir et al., 1995) and artificial neural networks(Odewahn
et al., 1992). By the 2000s, the technique was widely used, and RF began to dominate
(Fluke and Jacobs, 2020). Li et al. (2019), Golob et al. (2021), and Hughes et al.
(2022) makes use of the XGBoost algorithm to classify the celestial objects. Fadely
et al. (2012) applied the SVM to distinguish stars from galaxies. Since supervised ma-
chine learning classification algorithms have been widely adapted to classify celestial
objects (Sen et al., 2022). Li et al. (2008) uses the kNN algorithm for the classi-
fication of multi-wavelength astronomical objects. Other studies such as Bai et al.
(2019), Xiao-Qing and Jin-Meng (2021), Peng et al. (2013), Hughes et al. (2022) ex-
plore various supervised algorithms for the classification of celestial objects.
Machine learning algorithms are efficient and have been providing amazing results in
this field. Clarke et al. (2020) uses the trained and optimised RF to classify the 111
million sources in the SDSS photometry catalogue with no spectroscopic observations
as stars, galaxies, or quasars. Cavanagh et al. (2021) makes use of deep learning meth-
ods to predict the morphologies of galaxies. They train and test several convolutional
neural networks (CNN) architectures to classify the morphologies of galaxies in both
a 3-class (elliptical, lenticular, and spiral) and a 4-class (+irregular/miscellaneous)
schema with a data set of 14 034 visually classified SDSS images. The Kim and Brun-
ner (2017) model has performed over 99% accuracy for classifying stars and galaxies.
Peng et al. (2013) integrated k -NN into SVM and created a new method called SVM-
kNN. A newly created model SVM-kNN reached much higher performance, and the
performance was slightly improved than that of SVM alone. For better reviews of
machine learning applications in astronomy, we refer the reader to read Ashai et al.
(2022), Sen et al. (2022), Ball and Brunner (2010), Borne (2013).
Much effort has been made to distinguish/ separate the stars, galaxies and AGN.
However, the classification of radio sources in the radio continuum is still a signifi-
cant classification problem. Various algorithms have been explored, and impressive
results have been achieved to classify objects as galaxies, Stars and Quasars. Achiev-
ing better results in the radio continuum domain requires scrutinising suitable models
to make the end prediction with the utmost accuracy possible. In the radio continuum
domain, most of the classification tasks have been carried out manually by experts in
the field.
In this study, we adopt five machine-learning techniques; LR, SVM, kNN, RF and
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XGB to classify sources in the faint radio sky. We compare the scores of all algorithms
and make use of the Jack Knife method (Miller (1974)) to estimate each model’s un-
certainty. The jackknife also known as the delete one is a method used to estimate
the variance and bias of a large population, and it is still not commonly applied in
the astronomical domain. It works by repeatedly estimating a statistic (F1-score in
this work) of interest by systematically leaving out one observation from the dataset
at a time and recalculating the statistic. This process is performed for each obser-
vation in the dataset, resulting in a collection of estimated statistics. This method
has been used by Hussein et al. (2021) in the classification of 51 fermented (FR) and
47 unfermented (UFR) rooibos samples after extraction using water and methanol.
Since in most radio surveys, the number of SFGs and AGN are not equal. Usually,
the SFGs are more than the AGN. We have tried to balance the number of SFGs and
AGN in the training data and evaluate the trained models to determine whether the
ML models will better classify the majority population. We use the LR model as a
baseline algorithm for this study. LR is among the simplest, interpretable algorithms;
however, they are not widely adopted by many studies in astronomy. As such, we
wish to find out how sophisticated algorithms perform when compared to LR. We aim
to produce a comprehensive machine-learning pipeline to classify the radio sources in
the faint radio sky.
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MIGHTEE-COSMOS Data

This study uses early science radio continuum data from the MeerKAT International
GHz Tiered Extragalactic Exploration (MIGHTEE) survey and rich ancillary data
in the COSMOS field to explore the physical processes of the radio emission from
these extragalactic survey. The MIGHTEE survey has the potential to significantly
advance our understanding of galaxy evolution due to its exceptional depth over a
wide area and great multiwavelength coverage. The COSMOS field is one of the
well-studied sky areas, close to the celestial equator, and is visible by all astronomi-
cal facilities. Bright radio, ultraviolet (UV), and X-ray sources are absent from the
COSMOS, which makes it an excellent sky area for deep surveys.
The sections in this chapter are organized as follows. Section 3.1 briefly introduces the
MIGHTEE survey. We give the details and an overview of the COSMOS field in sec-
tion 3.2. Section 3.3 details the radio data catalogue of the COSMOS field undertaken
with the MeerKAT telescope. In section 3.4, we give the details of the MIGHTEE
COSMOS data used in this work and the equivalent multiwavelength data. Section
3.5 details the conventional classification techniques employed to classify MIGHTEE-
detected radio sources. The last section briefly discusses the limitations of conven-
tional techniques employed to produce the MIGHTEE-COSMOS catalogue labels.

3.1 The MIGHTEE Survey

The MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE, Jarvis
et al. (2016)) is a project currently undertaken by a South African-led international
collaboration of researchers to explore cosmic evolution of galaxies and active galac-
tic nuclei by using radio continuum, polarisation, and spectral line data taken by
MeerKAT Telescope. MIGHTEE covers four well-studied extragalactic deep fields,
i.e., the Cosmological Evolution Survey (COSMOS) field, the Extended Chandra
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Deep Field Source (E-CDFS), the European Large Area Infrared Survey field South
1 (ELAIS-S1), and the XMM-Newton Large Scale Structure field (XMM-LSS), mak-
ing up to 20 deg2 deep fields with a central frequency of 1284 MHz (Jarvis et al.,
2016) observed with MeerKAT’s L-band (870 – 1670 MHz) receivers for about 1000
hours. The fields were selected because there are best-studied extragalactic regions
with extensive multiwavelength data from existing surveys and potential future sur-
veys (Heywood et al., 2022b).
The MIGHTEE survey goals include enhancing our understanding of; 1) active galac-
tic nuclei and star-formation activity progression across cosmic time as a function of
stellar mass and environment, free of dust obscuration, 2) the evolution of neutral
hydrogen in the Universe, how it passes through the molecular phase to become stars,
and how effectively this might feed active galactic nuclei activity, and 3) the proper-
ties of cosmic magnetic fields and how they evolve in clusters, filaments and galaxies
(Jarvis et al., 2016).
The total intensity continuum images will reach the classical confusion limit of MeerKAT
at a depth of 2 µJy/beam sensitivity at Giga-Hertz frequencies (Jarvis et al., 2016).
The MIGHTEE survey has the potential to significantly advance our understanding
of galaxy evolution due to its exceptional depth over a wide area and great multiwave-
length coverage (Whittam et al., 2022). By Adopting supervised machine learning
techniques, this work uses MIGHTEE Early Science observations in the COSMOS
field (Heywood et al. (2022b)) to Study Star Formation and Black Hole Accretion.

3.2 The COSMOS Field

The Cosmic Evolution Survey (Scoville et al., 2007, COSMOS) aims to investigate
the associated evolution of galaxies, star formation, active galactic nuclei (AGN), and
dark matter (DM) with large-scale structure. The survey combines Hubble Space
Telescope (HST)1 imaging, multiwavelength imaging, and spectroscopy spanning a
two deg2 area from X-ray to radio wavelengths (Scoville et al., 2007). An illus-
tration of the COSMOS field relative to the full moon and the Galaxy Evolution
from Morphologies and SEDs (GEMS), the Great Observatories Origins Deep Survey
(GOODs), and Hubble Ultra-Deep Field (HDUF) fields is shown in Figure 3.1. To
ensure visibility by all astronomical facilities, the COSMOS field is close to the ce-
lestial equator. The field must be easily viewable by all major optical/IR telescopes
due to the time needed for deep imaging and spectroscopy over a total area of 2 deg2

containing more than a million galaxies. No prominent radio, UV, or X-ray sources
are in the field. The Galactic extinction in COSMOS is remarkably low and homoge-
neous compared to other equatorial fields. More details about the COSMOS project

1HST; https://hubblesite.org
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are available at https://cosmos.astro.caltech.edu/.

Figure 3.1: Illustration of the COSMOS field (right) relative to the full moon and the GEMS, the GOODs, and HDUF
fields. Image adapted from https://cosmos.astro.caltech.edu/page/public

There are numerous observations of the COSMOS field from space and ground-
based telescopes, see Figure 3.2 for examples of the COSMOS field’s multiwavelength
coverage. The HST conducted various observations with different bands in the COS-
MOS (Weaver et al., 2022), and to date, COSMOS is one of the largest sky areas
ever surveyed with the HST. In 2006, some of the first broad- and narrow-band
ground-based observations with the Subaru Supreme-Cam were made over the entire
region, resulting in one of the most extensive imaging data sets at the time (Capak
et al., 2007). Using the Spitzer Space Telescope2, mid-infrared images of the whole
COSMOS field were also made (Sanders et al., 2007). The other major astronom-
ical facilities pointed to the COSMOS field include the Galaxy Evolution Explorer
(GALEX)3, the Herschel Space Observatory4, the Chandra X-ray Observatory5, and

2https://www.spitzer.caltech.edu
3http://www.galex.caltech.edu
4https://sci.esa.int/web/herschel
5https://chandra.harvard.edu
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the XMM-Newton satellite6. COSMOS now possesses one of the largest, most com-
prehensive, standardized data sets throughout the electromagnetic spectrum, from
X-ray to radio. We refer the reader to Weaver et al. (2022) for more details on the
photometric catalogues available in the COSMOS field.
The COSMOS field is one of the best-studied regions of the sky, with an incredible
multiwavelength data archive. This work uses the multiwavelength COSMOS data
complied by Prescott et al., [submitted]. The data comprises the near-infrared YJHK-
7-band data from the UltraVISTA Survey, optical u∗-band measurements from the
Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)8, grizy-band data from
Hyper Supreme Cam (HSC) images, and grizy-band data, 3.6 and 4.5-µm infrared
data from the Spitzer Extended Deep Survey.

Figure 3.2: Examples of the COSMOS field’s multiwavelength coverage. The background image matches the detection
image from izYJHK wavelength bands. The dotted lines indicate the deepest portions of the image, while the solid
lines denote the survey limits. Image is taken from (Weaver et al., 2022).

6https://www.cosmos.esa.int/web/xmm-newton
7YJHK-UGRIZ: is different atmospheric transmission windows centred at different wavelengths

in the near-infrared and optical part of the electromagnetic spectrum respectively, for further reading
we refer the reader to visit Bessell (2005)

8CFHTLS; https://www.cfht.hawaii.edu/Science/CFHLS/
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3.3 MIGHTEE-COSMOS 1.3 GHz Data

The COSMOS field’s MIGHTEE Early Science radio continuum data release covers
1.6 deg2 and is described by Heywood et al. (2022b). The COSMOS was observed
for 17.45 hours between 2018 and 2019 using MeerKAT’s L-band (900–1670 MHz) re-
ceivers with a single field of view centred on RA 10h00m28.6s, Dec +02d12m21s. The
effective frequency across the MIGHTEE data is not constant. However, it gradually
decreases from the centre to the edges since MeerKAT’s L-band receivers are wide
bandwidth and the primary beam response changes with frequency. The MIGHTEE
flux densities and radio luminosities are scaled to 1.4 GHz using the effective fre-
quency map published by Heywood et al. (2022b), assuming a spectral index of -0.7.
This ensures that observations are at a constant frequency. All radio luminosities are
k-corrected using the same assumed spectral index.
The MIGHTEE-COSMOS Early Science data comprises two versions of the images
processed with Briggs’ (1995) robust weighting values of 0.0 and -1.2. The Briggs’
robustness parameter 0.0 is optimised for sensitivity but has a lower resolution. In
contrast, Briggs’ robustness parameter -1.2 results in higher resolution and lower sen-
sitivity images (Heywood et al., 2022b). The maximum-sensitivity image, shown in
Figure 3.3, has a circular synthesised beam size of 8.6 arcsec and thermal noise of
1.8 Jy/beam. It is limited by classical confusion at approximately 4.5 µJy/beam. As
it contains more sources than a high-resolution image, this was used as the primary
radio source catalogue by Prescott at al. [submitted]. The Whittam et al. (2022)
study provides the classification labels of the catalogue using conventional astronom-
ical techniques.
This work is restricted to the central part of the COSMOS Early Science image, with
a diameter of 0.9 degrees. This is the region over which multiwavelength counterparts
for the radio sources have been identified and was a focus of Whittam et al. (2022)
study. The radio measurements from this region were cross-matched with the X-ray,
Optical, near-, mid-, and far-infrared observations from other surveys using the right
ascension and declination. Prescott at al. [submitted] and Whittam et al. (2022) pro-
vide a comprehensive description of how cross-matching sources have been achieved.
The Python Blob Detector and Source Finder (PyBDSF; Mohan and Rafferty (2015))
source with the default source extraction parameters were used to find the radio
sources from the images. The initial sample contains 6,263 radio sources with S1.28GHz

> 20 Jy in the central part of the COSMOS field. For further details regarding the
source finding, radio flux measurements, optical spectra and redshifts, refer to Hey-
wood et al. (2022b), Whittam et al. (2022) and Prescott at al. [submitted].

http://etd.uwc.ac.za/
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Figure 3.3: The Early Science image of the MIGHTEE-COSMOS field. The image covers 1.6 deg2 with nearly 10,000
radio components with peak brightness that is greater than the σlocal (Heywood et al., 2022a).

Figure 3.4 shows the radio luminosity as a function of redshift for sources in the
MIGHTEE-COSMOS. Investigating the universe up to redshift 5 using this sample is
possible. Using the MIGHTEE survey, we can probe low-powered radio galaxies across
cosmic time, providing new insight into AGN activity (Whittam et al., 2022). The
top subplot of Figure 3.4 shows the redshift distributions of the MIGHTEE-COSMOS
samples. About 45 per cent of the sources have a spectroscopic redshift value from
the Deep Extragalactic Visible Legacy Survey (DEVILS; Davies et al. (2018)). In
contrast, the remaining sources have photometric redshift estimates. Photometric
redshifts are estimated using two techniques; machine learning and template fitting.
Template fitting estimates were computed using the Spectral Energy Distribution
(SED) template fitting code known as Le Phare (Prescott et al. [submitted]). In con-
trast, the machine learning approach uses the GPz algorithm to compute redshifts
(Almosallam et al., 2016).

http://etd.uwc.ac.za/
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Figure 3.4: The 1.4-GHz radio luminosity-redshift distribution of the well-matched MIGHTEE-COSMOS sample.
The main plot represents the radio luminosity of sources as a function of photometric and spectroscopic redshift. The
top subplot depicts the redshift distribution of the MIGHTEE-COSMOS sources, and the right subplot shows the
distribution of 1.4-GHz radio luminosity. Figure inspired by Prescott et al. [submitted]
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3.4 MIGHTEE-COSMOS Multiwavelength Coun-

terparts

The MIGHTEE-COSMOS multiwavelength catalogue comprised radio and matched
measurements from optical, near-, mid- and far-infrared, and Xray information for
the radio sources in the central part of the MIGHTEE Early Science Data in the
COSMOS field (Prescott et al. [submitted]) and is assembled as follows.
The MIGHTEE-COSMOS radio catalogue was produced by Heywood et al. (2022b),
and a brief introduction to the data is discussed in section 3.3. The radio cata-
logue was cross-matched with the optical and near-infrared counterparts adopted
from Bowler et al. (2020) catalogue by Prescott et al. [submitted]. The optical and
near-infrared catalogue comprised the near-infrared imaging in the YJHKs band; the
optical measurements in the grizy bands from Hyper Suprime-Cam Subaru Strate-
gic Program (HSC SSP); and deep optical imaging from CFHTLS’s u∗griz bands.
The method followed to identify the host galaxy of each radio source is available at
Prescott et al., [sumitted] study and is also summarised by Whittam et al. (2022).
The host galaxy of 5,224 radio sources has been identified. Thus a sample of 5,224
radio sources had an optical and near-infrared counterpart. This sample was further
cross-matched with measurements from other surveys by Whittam et al. (2022) as
follows. Whittam et al. (2022) used the positions of the optical host galaxies to find
X-ray counterparts to the MIGHTEE-COSMOS radio sources using the optical and
infrared counterpart of the Chandra COSMOS-Legacy survey catalogue presented in
Marchesi et al. (2016). Of 5,224 radio sources, 572 (∼ 10%) were detected in X-ray
observations.
The Mid-Infrared (MIR) counterparts were then added to the catalogue. The MIR
data was taken from the COSMOS2015 (Laigle et al., 2016) catalogue. This catalogue
provides the SPLASH 1 FLUX (ch1), SPLASH 2 FLUX (ch2), SPLASH 3 FLUX
(ch3), SPLASH 4 FLUX (ch4) which are 3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm fluxes
respectively. Often the 3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm will be referred to as the
IRAC1, IRAC2, IRAC3, IRAC4 flux densities and the colours derived from these
measurements will be referred to as the IRAC (The Infrared Array Camera) colours.
The Herschel Extra-galactic Legacy Project (HELP; Vaccari (2015)) provided the
far-infrared data. The observations come from the Multiband Imaging Photometer
(MIPS) instrument on the Spitzer Space Telescope, the Photodetector Array Camera
and Spectrometer (PACS) on Herschel, and the Spectral and Photometric Imaging
Receiver (SPIRE) on Herschel. The MIPS provide 24 µm data, PACS produce 100
µm and 160 µm data, and SPIRE provides the 250 µm, 350 µm, and 500 µm data.
Four thousand five hundred forty-one radio sources are identified in the MIPS and
PACS data, and 4,958 in the SPIRE data.

http://etd.uwc.ac.za/
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3.5 MIGHTEE-COSMOS Classification

Using the well-matched MIGHTEE-COSMOS multiwavelength catalogue, Whittam
et al. (2022) then classified the MIGHTEE-COSMOS radio sources as SFGs or AGN
using four conventional classification techniques; infrared-radio correlation (qIR), mid-
infrared colour-colour, optical morphology and X-ray luminosity including the VLBI
criteria (Table1, Whittam et al. (2022)). Figure 3.5 shows the completeness of the
overall classification of the MIGHTEE-COSMOS catalogue using conventional tech-
niques. A radio source that meets one or more AGN criteria is considered an AGN.
A source that could be securely classified as not being an AGN using all four crite-
ria is classified as an SFG. The X-ray criterion is limited to classifying sources with
redshifts z < 0.5. Another additional classification of ‘probable SFG’ was introduced
for sources with redshifts z > 0.5 that cannot fulfil the ‘not X-ray AGN’ criteria but
are classified as ‘not AGN’ using the other three criteria. For more details regarding
the MIGHTEE-COSMOS catalogue and classification criteria, we advise the reader
to visit Whittam et al. (2022). The four conventional techniques used are described
below.

3.5.1 Mid-Infrared/ The Infrared Array Camera (IRAC) Col-
ors

The Mid-infrared colours defined by Donley et al. (2012) are used to identify galaxies
that display the power-law emissions from the torus as mid-infrared AGN (midI-
RAGN). The region is defined on the diagram of the ratio S8.0µm/S4.5µm versus
S5.8µm/S3.6µm. Any radio source that falls within this region is regarded as a midI-
RAGN. (See (Donley et al., 2012)).

3.5.2 X-ray

X-ray observations are considered accurate and beneficial for identifying AGN. This
is because some of the brightest AGN display characteristic accretion-related X-ray
emissions. An observed galaxy is considered to be an X-ray AGN (XAGN) if it’s
unobscured (0.5 – 10 keV) X-ray luminosity Lx ≥ 1042 erg/s (Szokoly et al., 2004).
X-ray observation can be more complex as some X-ray emissions are absorbed and
reprocessed into infrared emissions by dust.

3.5.3 Infrared – Radio Correlation (qIR Parameter)

The infrared–radio correlation is used to identify galaxies with more radio emissions
that can not be understood as a sum of the emissions of its stars. The sources which

http://etd.uwc.ac.za/
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display a radio excess above what would be expected from star formation alone are
called radio-loud AGN (RLAGN). This relation is quantified as qIR and is defined as
the logarithmic ratio of the infrared and radio luminosities:

qIR =
log(LIR[W]/3.75× 1012[Hz])

log(L1.4GHz[WHz−1]
) (3.1)

In (Whittam et al., 2022) classification, the LIR is the total infrared luminosity be-
tween 8 - 1000 µm, estimated by AGNfitter. This is divided by a nominal central
frequency of 3.75 × 1012Hz, corresponding to a nominal wavelength of (80µm), so
that qIR is dimensionless (See also Delvecchio et al. (2021)).

3.5.4 Optical Morphology

The last AGN diagnostic considered separating the star-forming galaxies from active
galactic nuclei using optical morphologies. In optical imaging, the emission from the
AGN nucleus outshines the whole galaxy system and becomes a point-like source. For
MIGHTEE, they used Hubble Space Telescope (HST) Advanced Camera for Surveys
(ACS) -band image. Any source with the compactness of ≥ 0.9 in Source-Extractor
(SExtractor), i.e class star ≥ 0.9 would be point-like in the image as an optical AGN.
Else sources with class star < 0.9 are classified as ‘not optical AGN’.
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Figure 3.5: A bar plot showing the completeness of MIGHTEE-COSMOS overall classification by different criteria.
The first bar shows the total MIGHTEE sources classified as AGN (blue), SFGs (red), probSFGs (light red) and
unclassified sources (grey). The remaining bars represent the sources that are classified as AGN (blue), not AGN
(red) and not classified (light grey).

This work uses a MIGHTEE-COSMOSmultiwavelength catalogue which is slightly
different from the published version by Whittam et al. (2022). The only difference
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between the two versions of the catalogues is that the final catalogue was updated
during the course of our work to include the VLBI classification criteria (refer to
Whittam et al. (2022)), which slightly changed the number of radio sources per class.
However, the available multiwavelength measurements between the two versions of
the catalogue are the same only a slight change in the number of classified radio
sources. This slight difference is not likely to affect the classification pipeline we aim
to develop in this work; hence we stick to the previous version of the catalogue. Table
3.1 summarises each corresponding class’s total number of sources.

Table 3.1: Number of MIGHTEE-COSMOS sources per class

Overall Class Number of Sources

AGN 1,745

SFG 782

probSFG 2,062

Unclassified 635

Of all the available measurements in the catalogue, this work focuses on only a
subset of the MIGHTEE-COSMOS multiwavelength catalogue described below. This
study uses the four IRAC flux densities in 3.6 µm, 4.5 µm, 5.8 µm, and 8.0 µm
wavelengths, L14, LIR WHz, M⋆, class star, and qIR. L14 is the radio luminosity at
1.4GHz. The LIR is the total infrared luminosity between 8 - 1000 µm, estimated by
AGNfitter. M⋆, class star, and qIR are total stellar mass, optical morphology and the
infrared–radio correlation, respectively. Chapter 4 discusses the various preprocess-
ing techniques applied to these features, including the three IRAC colours derived.
We build the automated classification pipeline based on these features. However, we
have tried other input features, such as the Near and far infrared and optical physical
properties (the results are shown in the appendix) found that these additional mea-
surements show no improvements to the performances of the machine learning models.

3.6 Conventional Techniques Challenges

In this section, we select two conventional classification criteria; MIR colour cuts
and the qIR-parameter mentioned in section 3.5 to illustrate that each conventional
technique can only yield a reasonable classification for the specific subclass of AGN.
However, the method dramatically fails when used with other AGN subclasses. For
example, a class of AGN predicted using the qIR-parameter can not be constrained

http://etd.uwc.ac.za/
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within the mid-infrared AGN region and vice versa.
Figure 3.6 shows the MIR colour cuts (left) and the qIR-parameter (right) used to
classify MIGHTEE-detected radio sources as SFGs or AGN. In both plots, all sources
detected in the MIGHTEE survey are shown in blue circles, and the mid-infrared AGN
(midIRAGN) are represented in red squares. The optical AGN (optAGN), radio-loud
AGN (RLAGN), and X-ray AGN (XAGN) are depicted in magenta crosses, orange
triangles and green stars, respectively. Only midIRAGN fits well within the donley-
wedge (shown by a solid black line) in the left plot. In contrast, other sources classified
as AGN by other methods do not fall within this region. Similarly, the plot on the
right shows the Delvecchio et al. (2021) + 3σ fit at redshift (z) equal to one, be-
low which sources are considered as RLAGN. Only RLAGN meets this requirement.
Other AGN classes, however, do not adhere to this pattern.
Figure 3.6 gives a clear picture of classifying radio sources using conventional tech-
niques. It is demonstrated that more than one method is required to securely classify
a radio source as an AGN. One has to constantly adapt various techniques to ac-
curately classify an AGN, which is a severe concern when faced with the massive
amount of data or billions of sources to classify.
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Figure 3.6: The MIR colour cuts (left) and the qIR-parameter (right) diagram. The solid black line on the left plot
shows the Donley wedge (midIRAGN) region. The solid black and grey lines on the right plot show the Delvecchio
et al. (2021) fit and Delvecchio et al. (2021) + 3σ at z=1. All MIGHTEE detected sources, midIRAGN, optAGN,
RLAGN, and XAGN, are represented by blue circles, red squares, magenta crosses, orange triangles and green stars.
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Chapter 4

Classification of SFGs and AGN
with ML

This chapter details the results of applying machine learning (ML) algorithms to
classify the MIGHTEE-COSMOS radio sources as Star-Forming Galaxies (SFGs) or
Active Galactic Nuclei (AGN). We adopt the five supervised ML methods detailed
in Chapter 2. The MIGHTEE-COSMOS catalogue considered in this study has been
introduced in Chapter 3.
We adopt the conventional diagnostics of classifying SFGs and AGN as ML models’
input features. The six features adopted from conventional classification indicators are
the far-infrared-radio correlation parameter (qIR), the optical morphology (class star),
the total stellar mass (M⋆), and the three IRAC colors; log(S8/S45), log(S58/S36),
and log(S45/S36). The IRAC colour; log(S45/S36) is derived from the ch2 and ch1
of the IRAC flux densities introduced in section 3.4. Since MIGHTEE-COSMOS
multiwavelength catalogue spans several electromagnetic bands, which implies several
input features available for training ML models, we also try to add more features,
such as optical and near-infrared magnitudes and colours, to test the performance of
the ML models. The results of these tests are presented in Appendix B.2.
We begin this chapter by selecting the input features to train ML algorithms for
classifying SFGs and AGN from the MIGHTEE-COSMOS catalogue. We describe
the details of feature selection in Section 4.1. Sections 4.2, 4.3, 4.4, 4.5 and 4.6 detail
the results of applying various techniques to assess the importance of the selected
features. In section 4.7, we discuss and investigate the effect of unbalanced data
towards the model’s classification for the two classes of radio sources under study.
We conclude the section by showing the results of applying and comparing various
ML techniques on the derived feature combinations in section 4.8.

46
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4.1 Feature selection and analyses

The MIGHTEE-COSMOS radio catalogue used in this work constituted 6,263 ra-
dio sources, 5,224 of which have optical and near-infrared counterparts in the COS-
MOS multi-wavelength catalogue compiled by Bowler et al. (2020). The 5,224 result-
ing sources were cross-matched with the mid-infrared and X-ray measurements from
COSMOS2015 and the Chandra COSMOS-Legacy project by Whittam et al. (2022).
The MIGHTEE-COSMOS multiwavelength catalogue was then classified manually
by Whittam et al. (2022), and 1,745 sources are classified as AGN, 2,062 as probable
SFGs, and 782 as SFGs. In this work, we group probable SFGs and SFGs and just
refer to them as SFGs.
We adopt six features traditionally used as diagnostic criteria to classify sources as
SFGs and the AGN in the astronomical literature. The features are the far-infrared
radio correlation parameter (qIR), the compactness in optical imaging (class star), the
total stellar mass (M⋆), and the three IRAC colours, i.e., log(S8/S45), log(S58/S36),
and log(S45/S36), details of these features are described at 3.4. Several works use the
far-infrared radio correlation (FIRRC), the ratio between total (rest-framw 8-1000
µm) infrared and radio (rest-frame 1.4 GHz) luminosity in SFGs, to calibrate the
radio emission as a star formation rate (SFR) indicator. Delvecchio et al. (2021)
calibrates the qIR as a function of both stellar mass (M⋆) and redshift (z). The qIR
parameter is widely applied to categorize radio sources as either SFGs or radio-loud
AGN because it is typical of AGN activities to create an excess of radio emission. The
compactness in optical imaging could indicate whether a source is an optical AGN
because the AGN is intrinsically more compact than a SFG. In Whittam et al. (2022),
a source is an optical AGN if it has a class star value of 0.9 or greater. Class star is
a parameter that measures the compactness of sources in SExtractor. Normal SFG
spectral energy distributions (SEDs) show a dip between the 1.6 µm stellar bump and
long-wavelength emission from star formation hot dust. The superposition of black-
body emission from the AGN-heated dust will fill in the dip in the galaxy’s SED and
form a red, power-law-like thermal continuum across the IRAC bands if the AGN is
sufficiently bright in comparison to its host galaxy. The IRAC criteria are explained
in detail by Donley et al. (2012); see also Figure 1 of their study. In this study, we
adopt two colours; 4.5µm-8µm (log(S8/S45)), and 3.6µm-5.8µm (log(S58/S36)) used
by Whittam et al. (2022) to classify radio sources as midIRAGN or non-midIRAGN.
In addition, we derive the third IRAC colour, 3.6µm-4.5µm (logS45/S36), using the
IRAC1 and IRAC2 flux density. Future surveys may not have measurements in the
IRAC3 and IRAC4 wavelengths. As such, we investigate the performance of the ML
model with the two IRAC colours not used as input features; we show the results in
section 4.8.
Whittam et al. (2022) also used X-ray and optical spectral line measurements to
classify SFGs and AGN from the MIGHTEE-detected radio sources in the COSMOS
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field. In this work, we combine the classification results (i.e. the labels) from Whit-
tam et al. (2022) and our selected six features to train and test the performance of
ML models in classifying SFGs and AGN from the MIGHTEE-COSMOS radio cat-
alogue. In our study, however, we decided not to use X-ray or optical spectral line
measurements as the input features because only 10% of the MIGHTEE sources have
X-ray detections, and a very small number of sources have got reliable optical spectral
line measurements. Since the missing value in a dataset can significantly affect the
accuracy of results, attenuating the ML models’ performance and such datasets cause
problems for most of the ML estimators that assume that all values in an array are
numerical and that all have and hold meaning. Thus this study is limited to only
features whose missing data is less or equal to 10%.
We created a new sample of the MIGHTEE-COSMOS radio sources comprising the
selected features with the class labels, from which all the analyses in this section are
based. Hereafter, we will refer to it as MIGHTEE-COSMOS data/sample or just
data/sample. The completeness of the selected features is provided in Figure 4.1.
The last bar shows the total of 4,589 labelled sources in the MIGHTEE-COSMOS
catalogue, and the height of the first six bars shows the completeness of the selected
features.
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Figure 4.1: The completeness of the six features selected to train ML models from the MIGHTEE-COSMOS catalogue.
The left vertical axis scale ranges from 0.0 to 1.0 and shows the fraction of completeness of each feature, where 1.0
depicts 100% data completeness (No missing data). The right vertical axis represents the number of observations
available from 0 to the total number of observations. The bottom and the top horizontal axis represent the name of
features and the total number of valid measurements in each feature, respectively.

As shown in Figure 4.1, the intense multiwavelength data in the COSMOS field
resulted in the features’ highest completeness. The IRAC colour log(S8/S45) has the
least valid measurements. This study considered sources with valid measurements in
any of the six features. Thus, if a source has an invalid measurement in any features,
it will be discarded from the analysis. This is reasonable since sources with invalid
measurements are less than 5% of the whole dataset. The clean MIGHTEE-COSMOS
data with no missing data comprises 4,418 sources, from which 1,484 and 2,789 are
classified as AGN and SFGs, respectively by Whittam et al. (2022).
The final MIGHTEE-COSMOS data were randomly divided into a training (75%)
and a test data (25%). The training data comprises 1,113 AGN and 2,091 SFGs,
totalling 3,204. The test contains 371 AGN and 698 SFGs, which sum up to 1,069
sources. The size and number of sources in test data were fixed and not involved in
all the analysis except when testing the algorithm to ensure no data leakage in all the

http://etd.uwc.ac.za/



CHAPTER 4. CLASSIFICATION OF SFGS AND AGN WITH ML 50

calculations and training models.
The process of the supervised ML method is described well in section 2.1. A super-
vised classification depends on the quality of the data set employed in model-building,
the care with which adjustable model parameters were chosen, and the evaluation cri-
teria used to report the modelling process results. To achieve good results, we follow
the fundamental steps in supervised ML 1. feature selection, including feature analy-
sis, 2. building a training set using the selected features, 3. training the ML model to
build a classifier, 4. hyperparameter optimization, and 5. application of the classifier
to predict the class of the test sample.

4.2 One Dimensional Feature Analysis

As mentioned in Chapter 2, supervised ML model performance depends strongly on
the features selected to train the model. Feature selection reduces the dimensions of
the data so that the model can perform faster and more efficiently. However, selecting
the essential feature is not trivial and sometimes requires sophisticated ML methods.
This section considers two methods to analyse a low-dimensional feature space. One
is called the histogram method and suggested by Zhang et al. (2003); the other is
called the Kolmogorov–Smirnov test (KS test).
Zhang et al. (2003) demonstrated that histograms could extract essential features for
classification. Figure 4.2 shows a histogram of each feature per class (AGN or SFG).
A perfect feature for separating AGN from SFGs is one in which the distributions
of the two classes are completely separate (with significant differences between the
means of the two classes) such that one can infer a single threshold between the dis-
tributions, i.e., if the class distributions are completely separable, the corresponding
feature is essential.
The KS test is a nonparametric goodness-of-fit test used to determine whether two
distributions differ or whether an underlying probability distribution differs from a
hypothesized distribution (Berger and Zhou, 2014). The KS test checks the difference
in the overall shape of the two sample distributions or compares it to the expected sta-
tistical distribution. The KS test can be implemented from the scipy.stats.ks 2samp1

python method. The KS test is based on the maximum distance between the two dis-
tributions, referred to as KS-stats. If this distance is zero, then the two distributions
are the same. Otherwise, if the KS-stats is 1, then the two distribution differs. The
black dashed line in the bottom plots of Figure 4.2 shows an x-axis value where the
maximum distance between two distributions exists.
Figure 4.2a shows the histogram (top) and KS test (bottom) of SFGs and AGN over
the qIR space. Both plots indicate that two classes are separable using this feature.

1KS test; https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_

2samp.html
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For example, in the histogram, the means of SFGs and AGN are not identical, and to
some extent, we may approximate that most of the SFGs have the qIR value greater
than 2 while the AGN has the qIR value less than 2. Similarly, the KS test plot shows
a great separation between the SFGs and AGN curves, implying that the two popula-
tions differ. This is because qIR is used to identify sources with significantly more radio
emission than would be expected from star-formation alone Whittam et al. (2022).
This correlation is parameterised via the far-infrared-to-radio luminosity ratio dis-
cussed in section 3.5.3. Figure 4.2b shows similar results for the class star indicator.
In the histogram, the two classes, in this case, are not separable below 0.9; however,
there are more AGN than SFGs above this threshold. The class star feature could
be used to categorize SFGs and AGN. Because the emission from AGN outshines
that of the host galaxy, AGN sources in optical imaging will be more compact. In
Whittam et al. (2022), this indicator was used to identify optical AGN with a value
of class star greater than 0.9 as Optical AGN. We can also infer from the plot that
only the minority of the AGN meets this criterion. Figure 4.2c represents the analysis
of SFGs and AGN over stellar mass (’M⋆’). Most of the two classes overlap in the
histogram, so estimating the clear-cut between them would not be easy. This is also
indicated in the KS test results; the AGN and SFGs curves are close. Figure 4.2d,
Figure 4.2e, and Figure 4.2f depict the analysis of AGN and SFGs for the three IRAC
colours, log(S8/S45), log(S58/S36), and log(S45/S36) respectively. In all three plots,
estimating a threshold for discriminating between SFGs or AGN is problematic since
the two classes are distributed within the same range, i.e. the two distributions have
nearly identical means.
The histogram and KS test methods for analysing the selected features indicate that
the qIR, compared to the other five features, is the best indicator for classifying SFGs
or AGN. The second best indicator is the class star, which tends to work well for the
minority of the AGN, and this may be due to the manual classification mentioned
in Chapter 3. When used alone, the stellar mass and derived IRAC colours are not
good indicators of the AGN or SFG since the two populations are highly overlapped.
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(a) qIR (b) class star

(c) M⋆ (d) log(S58/S36)

(e) log(S8/S45) (f) log(S45/36)

Figure 4.2: Histograms (top) and KS test (bottom) results of the six selected features of labelled AGN (blue) and
SFGs (red) in the MIGHTEE-COSMOS data. Each diagram shows the distribution of AGN and SFGs and the KS
test results in each feature. For Histograms, the vertical axis represents the number of radio sources. If the means
(represented by a vertical dashed line) of the distribution of two classes are entirely different, we consider that the
two classes are separable by the corresponding feature. However, if the means of the two distributions are identical,
we assume that the two classes are indistinguishable using that feature. Similarly, in the KS test, the vertical axis
shows cumulative distribution function (CDF), and if the curves in the KS test plots are close, then the two classes
are indistinguishable. The qIR-parameter plot shown in Figure 4.2a has a substantial difference between the mean of
AGN and the mean of SFGs as such, it is essential to discriminate SFGs from AGN. AGN and SFGs on the Figure
4.2b, 4.2c, 4.2d, and 4.2e has nearly identical means. Figure 4.2f shows that the distributions of AGN and SFGs in
the log(S45/S36) space are similar. http://etd.uwc.ac.za/



CHAPTER 4. CLASSIFICATION OF SFGS AND AGN WITH ML 53

4.3 Feature Correlation (Two Dimensional feature

analysis)

In this section, we make joint feature correlation plots using all possible pairs of fea-
tures for the two classes of radio sources under study. Since we have six features and
want to make a combination of 2, using equation 4.1 will have 15 correlation plots
as shown in Figure 4.3. Figure 4.3 shows all feature correlation plots. The AGN and
SFGs are shown in blue and red, respectively, with the corresponding 95% confidence
ellipses.

C(n, r) =
n!

(r!(n− r)!)
(4.1)

Figure 4.3a depicts the qIR parameter plotted as a function of stellar mass for both
SFGs and AGN. In this feature space, if we consider the vertical axis, the SFGs could
be securely approximated to be above qIR value of 2. However, there is no cutoff we
can approximate on the horizontal axis. This feature combination does show that two
classes may be separated, but the confidence level ellipse of AGN is much broader
than that of the SFGs, such that SFGs falls within the confidence level of the AGN.
Due to this, we can say that these two features fail to distinguish the two classes.
The SFGs extend slightly outside the AGN ellipse in both 4.3b and 4.3c; however,
most of the sources still lie within the AGN ellipses, making it difficult to classify the
SFG and AGN using feature combinations in the first row of Figure 4.3.
Figure 4.3d shows the two classes plotted over the IRAC colour-colour feature space.
Similarly, the majority of SFGs lie within the AGN ellipse. The remarkable result is
that the two ellipses tend to take slightly different correlation directions, indicating
some association between the two IRAC colours and the two classes. It is shown in
Figure 4.2 above that using only one of the IRAC is ineffective for classifying these
sources, but adding another IRAC colour has a slight improvement for classification.
Figure 4.3e shows that the features log(S8/S45) and class star fail to discriminate
between SFGs and AGN. Similarly, the features log(S8/S45) and qIR shown in Figure
4.3f cannot separate the two classes.
In row three, Figure 4.3g shows the two classes plotted over the log(S58/S36) vs
log(S45/S36). A positive correlation exists between the two features of SFGs and
AGN. SFGs and AGN overlap within the same space, making this feature combina-
tion ineffective for separating the two classes. Figure 4.3h shows log(S8/S45) as a
function of log(S58/S36) for both SFGs and AGN. The two IRAC colours show a
positive correlation for the AGN and a negative correlation for the SFGs. These two
IRAC colours are the best indicators of AGN and SFGs. The two IRAC colours are
defined by Donley et al. (2012) as the indicators of whether a radio source is a mid-
infrared AGN or not, refer to section 3.5.1 or Donley et al. (2012) for more details
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regarding this indicator. The features log(S8/S45), and M⋆ shown in Figure 4.3i fail
to distinguish the two classes.
The remaining diagrams show that the corresponding feature pairs can not effectively
classify SFGs and AGN. This method indicates that adding more features could im-
prove the classification results. However, making a correlation pair plot for a high-
dimensional dataset might not be effective since the more features are added, the more
plots are to be analysed. As described in Chapter 3, the conventional techniques for
classification follow such methods with additional derived relations or assumptions.
Some sources cannot be securely classified because they overlap in some feature space,
which would require more information before confirmation.
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Figure 4.3: The feature correlation of each pair of features we selected to classify SFGs and AGN from the MIGHTEE-
COSMOS radio sources. The red and blue points represent the SFGs and AGN distribution labelled in the MIGHTEE-
COSMOS catalogue in Whittam et al. (2022) respectively. The solid red ellipse shows the 95% confidence level of
SFGs, while the blue dashed line shows the 95% confidence level of AGN. The direction of the ellipse indicates the
correlation of the two features per class.
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4.4 t-SNE feature analysis

t-distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised and non-
linear dimensional reduction technique introduced by Laurens van der Maaten and
Geoffrey Hinton in 2008. t-SNE is widely applied to visualise high-dimension data.
It works by converting the high-dimensional data into two or three-dimensional data
that can be displayed in a scatterplot while preserving the local and global structure
of the data. It is particularly effective in revealing clusters, patterns, and relation-
ships in complex datasets Van der Maaten and Hinton (2008). We refer the reader to
visit the Van der Maaten and Hinton (2008) study for details of t-SNE model.
In this study, we adopt and apply the t-SNE model to reduce the six-input features
in the training data to a two-dimensional feature space. We also use the correlation
technique used in section 4.3 to deduce if the new t-SNE features are able to sep-
arate between the SFGs and AGN. Figure 4.4 shows the correlation plot of t-SNE
two-dimensional features mapped from the six MIGHTEE features in the training
data. The AGN and SFG in this feature space are separable although there is an
overlap between the two 95% confidence ellipses. Since t-SNE features are generated
through an unsupervised process and are unlikely to have a direct physical inter-
pretation (Balamurali and Melkumyan, 2016), we do not use the t-SNE features to
train the ML models in this study. We further investigate the importance of the
MIGHTEE-selected features using automated techniques in the following sections.

4.5 Automated Feature Importance

We realised in section 4.2 and 4.3 that we were able to get some knowledge on which
features or pair of features is essential for classifying the SFGs and AGN by just plot-
ting a histogram of sources per class, KS test and by making use of correlation plots.
We found that the most crucial feature for classification is qIR and the combination of
the two IRAC colours: log(S58/S36) and log(S45/S36). The two methods, however,
are time-consuming and do not scale when one has a high-dimensional dataset. In
this section, we adopt three automated approaches that are not dependent on the
build-in feature importance algorithm of the ML model (ML-independent model);
permutation feature importance, sequential feature importance and ROC curves to
assess the significance of the selected features in classifying SFGs and AGN from
the radio sources. We chose the random forest model to use as the ML model for
both permutation and sequential feature importance because the random forest model
has a built-in component of feature importance that we can confirm some results with.
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Figure 4.4: Visualization of MIGHTEE feature space in a two-dimensions using t-SNE. The vertical and horizontal
axis represents the two t-SNE features converted from the six MIGHTEE features. The red and blue points represent
star-forming galaxies (SFGs) and active galactic nuclei (AGN) distribution labelled in the MIGHTEE-COSMOS
catalogue in Whittam et al. (2022) respectively. The solid red and blue dashed ellipse shows the 95% confidence level
of SFGs and AGN respectively. The direction of the ellipse indicates the correlation of the two features per class.

4.5.1 Permutation Feature Importance

Permutation feature importance is a technique that can inspect a model for any fitted
ML model when the data is tabular. The permutation procedure breaks the relation-
ship between the feature and the output or class label, leading to poor performance
of the ML model. The more the model performance drops, the more important the
feature is. Thus permutation feature importance is defined as the decrease in an ML
model score when a single feature value is randomly shuffled. The details about the
models mathematics can be found in interpretable-ml-book2 and the implementations
are available at sk-learn permutation importance3

Figure 4.5 shows the permutation feature importance method’s results for assessing
the derived features’ significance in classifying SFGs and AGN. The importance is
the mean scores calculated by using 1000 permutations. The results indicate that the
qIR is an essential feature for this classification, consistent with the one-dimensional

2https://christophm.github.io/interpretable-ml-book/feature-importance.html
3https://scikit-learn.org/stable/modules/permutation_importance.html
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analysis described in section 4.2. The qIR is ranked more than 25% important for this
classification, with the remaining features rated below 5% important. These results
complement the above conventional techniques; the qIR histogram and KS test re-
sults showed that the two classes could be separated by qIR than other features. The
method ranks the class star as the second most important feature. The two IRAC
colours, log(S58/S36) and log(S45/S36), which gave positive outcomes when combined
in section 4.2, are rated as the third and fourth important features, respectively. The
method suggests that the stellar masses and the IRAC colour log(S45/S36) are the
least significant features with an importance of about 2%.
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Figure 4.5: Permutation-based feature-importance measures for the explanatory features included in the Random
Forest model for the MIGHTEE-COSMOS data using F1-score (defined in section 2.2.5) as the evaluation metric.
The importance is the mean scores calculated by using 1000 permutations. A feature with a higher value should be
considered the most important feature for classification.

4.5.2 Sequential Feature Importance

The sequential feature selection approach adds or removes features from the dataset
sequentially. The method is used to reduce initial N features to M features where
M<N. The M features are optimized for the performance of the model. This study
uses a sequential feature importance approach to determine and evaluate multiple
feature importance. The details regarding the implementation of sequential feature
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selection can be found sk-learn; sequential feature importance 4.
In our study, we had six features and decided to run the model five times from M
1-5, as shown in Table 4.1. Since the algorithm returns important M features, we can
compare our results to the permutation and ML models’ results in the following sec-
tions. Table 4.1 below shows the results for each trial. This method ranks qIR, class
star, and log(S8/S45) as the three most essential features, respectively. Compared to
the permutation importance method, the sequential permutation method rates the
M⋆ as the 4th important feature, not the log(S58/S36); instead, the log(S58/S36)
is considered the least important feature. This is likely because the sequential per-
mutation method is designed to consider only one if two or more features are highly
correlated. The correlation between these two features is evident in Figure 4.3h.

Table 4.1: Sequential feature importance results for MIGHTEE-COSMOS data

N M Features selected

6 1 qIR

6 2 qIR and class star

6 3 qIR, class star and log(S8/S45)

6 4 qIR, class star, log(S8/S45) and M⋆

6 5 qIR, class star, log(S8/S45), M⋆ and log(S58/S36)

4.5.3 ROC Curve

We conclude the automated feature analysis with the receiver operating characteristic
(ROC) curve. The ROC curve is a graph showing the performance of a classifica-
tion model at all classification thresholds. We plot the true positive rate (TPR) as
a function of the false positive rate (FPR), where TPR is the probability that an
actual positive will test positive (given by equation 4.2). FPR is the probability that
a true negative will test negative (given by equation 4.3). We consider the area under
the ROC curve (AUC) to understand which feature performance is great. The more
area under the curve, the more accurate the model implies, and the more critical
the feature is for classification, which means the ideal classification with TPR=1 and
FPR is 0. Therefore, the closer the AUC is to 1, the better the ML performance. The
minimum AUC is 0.5, which means a random classification. Therefore the closer the
model is to an AUC of 0.5 it is considered a random classification model.

4https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.

SequentialFeatureSelector.html
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TPR =
TP

TP + FN
(4.2)

FPR =
TN

TN+ FP
(4.3)

where TP, FN, TN and FP are defined in section 2.2.5.
Figure 4.6 shows the ROC curves based on thresholds imposed individually on six
features. The AUC scores for qIR, class star, M⋆, log(S8/S45), log(S58/S36), and
log(S45/S36) are 0.88, 0.62, 0.62, 0.59, 0.54 and 0.57 respectively. The qIR curve
(shown in green) has more area under the curve when compared to other features,
implying that it is the most important feature for classification.
It is necessary to emphasize that no ML-dependent or based feature importance
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Figure 4.6: Receiver Operating Characteristic (ROC) curve for the six selected MIGHTEE-COSMOS features, namely,
the qIR (green), class star (yellow), M⋆ (blue), log(S8/S45) (purple), log(S58/S36) (violet), and log(S45/S36) (brown).
The higher the AUC score, the greater the model’s performance and thus, the corresponding feature is essential.

technique has been adopted to this point. Still, the results show that the selected
features are crucial for distinguishing the SFGs and AGN, in which the qIR is the
most significant feature. The ROC curves are calculated from the threshold imposed
individually on each feature with no ML model involved, but already we can achieve
AUC scores close to 90%. The approach of imposing a threshold on a feature when
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only one feature is considered for classification is very similar to how the logistic
regression model sets a threshold for a single feature to make a classification. However,
the one considered here is different from the ML method. I should expect that the
logistic regression results for qIR only be very close to the predicted AUC for qIR in
Figure 4.5.

4.6 Random Forest Feature Importance

In this section, we compute the feature importance using the random forest build-in
feature importance model. We compare the techniques employed for feature selection
with the model’s built-in importance approach. The built-in random forest impor-
tance is computed in two ways: Gini importance (or mean decrease impurity (MDI))
and Mean decrease accuracy (MDA). We chose the MDI method since the MDA is
not implemented in the SK-learn package and is very similar to the permutation im-
portance method. More details regarding the MDI implementation are available at
Feature importance with a forest of trees5.
Figure 4.7 represents the importance estimated for each feature by the built-in ran-
dom forest feature importance model. The qIR is rated as the most crucial fea-
ture with about a 60% score. The remaining features are ranked as class star, M⋆,
log(S8/S45),log(S58/S36), and log(S45/S36) which are consistent with our previous
no-ML-dependent assessments. These features are ranked in the same as the permu-
tation importance method.

We have employed several techniques to assess the importance of the selected features.
All the feature analysis methods rank the qIR parameter as the most crucial feature,
whereas the IRAC colour log(S45/S36) is the least important feature. The other fea-
tures change the order in which they are ranked depending on the method employed.
The emission of local star-forming galaxies follows the far-infrared-radio correlation,
initially discovered at rest-frame 1.4 GHz and covers three orders in the magnitude of
radio continuum luminosity (Schober et al., 2022). The infrared emission is caused by
dust that relatively massive OB stars have heated. The radio emission results from
relativistic cosmic ray electrons (CRe) accelerated by shock waves produced when
massive stars explode as supernovae. Delvecchio et al. (2021). The AGN activities
accelerate the CRe electrons and cause a radio excess. Such sources with AGN ac-
tivities will have significantly more radio emission than would be expected from star
formation alone. This is reflected by the qIR parameter ranked as the most significant
feature in this study. Most models rated the class star as the second best feature,
selected because the source with an AGN activity displays the point-like morphology

5https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.

html
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Figure 4.7: The feature importance results of the random forest model for our selected six features. The F1-score is
used as the evaluation. A feature with a higher value should be considered the most important feature for classification

as the emission from the nucleus outshines the emissions from the host galaxy. The
two IRAC colours log(S8/S45) and log(S58/36) are shown in a correlation scatter
plot that they are essential for classification when used together, which is found by
(Donley et al., 2012) that the two IRAC colours can identify the mid-infrared AGN.
As shown in the histogram plots, the total stellar mass of radio sources can not alone
be a reliable feature for classifying SFGs and AGN, possibly because the stellar mass
of an SFG and AGN is not systematically different. Still, when we consider it with
other features such as qIR, we can securely identify the SFGs as shown in Figure 3.6.
We have also derived the third IRAC colour log(S45/S36) to investigate if fields not
covered by IRAC3 and IRAC4 observations could be a disadvantage for source classi-
fication purposes. We found that all techniques consider the log(S45/S36) colour the
least vital feature to discriminate SFGs from AGN.
We have demonstrated that the employed techniques agree with ranking the features
according to their importance. We can reproduce the significance of features or fea-
ture combinations used in literature and asses which ones are important without using
any assumption or physics regarding the SFGs or AGN.
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4.7 Class Imbalance

Imbalanced data refers to the data with a severe skew in the class label distribu-
tion, such as 1:100 or 1:1000 examples in the minority class to the majority class
(Krawczyk, 2016). This bias can influence many supervised ML algorithms, leading
some to ignore the minority class entirely. This is a problem as it is typically the
minority class in which predictions are most important (Das et al., 2022).
The typical approach to addressing the data imbalance problem is to resample the
training data randomly. The two standard methods are; Undersampling and Over-
sampling. The undersampling procedure removes some sources from the majority
class, while the oversampling technique duplicates the examples from the minority
class. In this study, we choose the undersampling technique to remove some SFGs
in the training data to equal the number of AGN and SFGs. Considering the under-
sampling approach for this case makes sense since the number of AGN is usually in
the minority in most radio continuum surveys.
We consider several fractions of the complete training set to train the RF model and
evaluate it using the F1-score. Figure 4.8 shows how the F1-score per class varies as
a function of the fraction of the complete training data used to fit the model. The
model’s performance for the two categories is more than 90% for training set sizes
greater or equal to 20% of the complete training set. Above a training size of 20%,
the increase in the train size has no significant impact on the model’s performance.
This is indicated by an almost constant F1-scores for training set sizes above 20%.
Below the training set size of 20% there is an overall non-linear increase of F1-scores,
which results because the model has not captured enough information regarding the
relationship between input features and target classes.
In the complete training set data, the AGN to SFGs ratio is about 1: 2. Thus, we
have approximately two times more SFGs than AGN. We repeat the above proce-
dure, balancing the two classes in the training dataset whilst maintaining the same
unbalanced test dataset gives the result shown by a dashed line in Figure 4.8. To
balance the data, we have adopted the imlearn - RandomUnderSampler6 method.
The model’s resulting F1-scores are slightly lower for all classes, decreasing by an
identical fraction for all fractions of the training dataset.
Overall, the class imbalance in our dataset does not affect the model’s performance
in this study because of the relatively modest class imbalance. Most SFGs in the
training dataset do not necessarily imply that SFGs will be classified more accurately
than AGN. The good F1-score of SFGs classification shown in figure 4.8 might be
related to other observational or intrinsic properties of SFGs, which is not a focus of
this study.

6https://imbalanced-learn.org/stable/references/generated/imblearn.under_

sampling.RandomUnderSampler.html
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Figure 4.8: Results of applying Random Forest ML method to classify SFGs and AGN from the MIGHTEE-COSMOS
survey. A plot of the Random Forest F1-score per class label against the fraction of the training data used to train
the random forest. The data was balanced using the imlearn - RandomUnderSampler Method. The complete training
data is divided into training and validation data. The training data is further reduced using the RandomUnderSampler
method such that AGN and SFGs are equal in the train data. The model was evaluated on the validation dataset of
spectroscopically confirmed sources without balancing the classes.

4.8 Machine Learning Application

In this section, we show the results of adopting five supervised ML models, namely,
LR, SVM, KNN, RF and XGB on classifying SFGs and AGN from the MIGHTEE-
COSMOS radio sources. With seven different feature combinations, we compare the
performances of different ML algorithms on SFGs versus AGN classification based
on training data sizes of 80%, 60%, 40%, and 20%, respectively. The different ap-
proaches that models consider for classification are explained in section 2.2.4. We
train, validate and test the models on the same number of features to ensure that we
make apples-to-apples comparisons. The seven input feature combinations, F1, F2,
F3, F4, F5, F6 and F7, are described in Table 4.2. The first six feature combinations,
F1-F6, are grouped according to their importance as ranked with the feature impor-
tance techniques discussed in the above sections. The seventh feature combination,
F7 (qIR, class star, M⋆, log(S45/S36)) was derived because future observations may
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not have the measurements on IRAC3 and IRAC4 bands. We want to investigate if
the classifiers could still yield significant results or be disadvantaged if IRAC3 and
IRAC4 measurements are unavailable to train the models.
Supervised ML models are structured such that they require training and testing
datasets. Before testing, we run some cross-validation steps that ensure that the ML
models are not overfitting, i.e. the model yields accurate results on the train data
but yields worse results when applied to the unseen test data. We adopted a method
by (Hussein et al., 2021) where alternative cross-validation configurations were tried,
and jackknife estimation was used to determine the variability of each alternative.
We use random stratified sampling to split the MIGHTEE-COSMOS catalogue into
a training (75%) and testing (25%) dataset. The complete training dataset has been
used in the previous sections for feature and class imbalance analysis; however, the
unseen test data has not been involved in any experiments. The test set size was
fixed throughout all calculations.
We split the complete training dataset into train and validation data four times. The
split ratios of train and validation data are [1:4], [2:3], [3;2] and [4:1], respectively.
Dividing the complete train data reduces the available data to train the ML models.
The split [1:4] indicates that only 20% of the complete train data is used to train the
model while 80% of the data is kept as validation data. The second split [2:3] means
that only 40% of the complete training data is used to train the model; in contrast,
the remaining 60% is used as a validation dataset. Future radio facilities such as
the SKA will detect billions of radio sources compared to the tenth of thousands of
sources detected in current radio surveys. Thus the available conventional detected
radio sources may be a small fraction of data to train the model to classify the bil-
lions of future radio sources. As such, it is very significant for this study to figure out
how well the models perform when the training data is limited. We give the models
different fractions of examples to learn the relationships between the input features
and the class label and evaluate if there is a significant loss of accuracy as examples
decrease.

Table 4.2: Seven feature combinations

Name of combination Features

F1 qIR

F2 qIR and class star

F3 qIR, class star and log(S8/S45)

F4 qIR, class star, log(S8/S45) and M⋆

F5 qIR, class star, log(S8/S45), log(S58/S36) and M⋆

F6 qIR, class star, log(S8/S45), log(S58/S36), M⋆ and log(S45/S36)

F7 qIR, class star, M⋆ and log(S45/S36)
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Figure 4.9 shows the F1-scores results of applying the LR, kNN, SVM, RF, and
XGB models trained on input feature combinations described in Table 4.1 to sepa-
rate SFGs from AGN evaluated on the validation data. We trained the models on
80%, 60%, 40% and 20% of the complete training data, respectively. All the classi-
fiers were evaluated using the F1-score. Figures 4.9a, 4.9b, 4.9c and 4.9d show the
results of models trained on 80%, 60%, 40% and 20% of the complete training data
respectively. For each training data size, all models perform well for each feature
combination, yielding F1-scores greater than 90% except for the random forest model
on the F1 (qIR). As the training dataset decreases, all models’ scores slightly drop, as
seen in Figures 4.9a to 4.9d. This global trend is also indicated more clearly in Figure
4.12a. ML models yield scores above 90% for each feature combination even when
trained only with 20% of the data. The LR and the SVM models obtain the highest
score for F3, the combination of qIR, class star, and log(S8/S45) features. However,
both models’ performances drop for F4, F5, F6, and F7, suggesting that adding more
features to F3 does not improve the ability of these models to generalise the relation-
ship between the input features and output (AGN or SFG). The kNN, RF and XGB
models show some improvements as more features are added to train the model up to
feature combination F5, beyond which the model’s performance decreases. This sug-
gests that the sixth added feature to the model is not essential and also confuses the
model’s ability to discriminate between SFGs and AGN. For all the training sets, the
results indicate that the feature combination F7 yields poor results compared to F3
and F4, which means that sources without IRAC3 and IRAC4 measurements would
be at a disadvantage. The derived uncertainties suggest that adding more features to
the models has no significant impact on the overall performance of a model.

We applied the same trained and optimised models evaluated on the validation
data as shown in Figure 4.9 to the fixed unseen test datasets. Figure 4.10 shows
the F1-score results of all five models based on seven different feature combinations.
Figures 4.10a, 4.10b, 4.10c and 4.10d show the performance of all models trained
on 80%, 60%, 40% and 20% of the complete train data respectively. Compared to
the validation dataset results, the models still yield comparable performances with
scores above 90% in all four train splits. F1-scores decrease slightly with a decreased
training data size (see Figure 4.12b for a clear trend), but all scores are still above
90%. The scores for all data splits have dropped somewhat slightly compared to the
validation scores.
Figures 4.9 and 4.10 show that the models perform well in classifying MIGHTEE-
COSMOS sources as SFGs or AGN. The models yield more than 90% F1-scores even
when only trained on the qIR parameter and only trained on 20% of the data. The LR
and SVM have small error bars meaning the two models have precise results. The ex-
tensive RF and XGB uncertainties imply no significant difference in the performance
of a simple LR and other sophisticated models for this classification.
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(a) F1-scores for ML methods trained on 80%
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(b) F1-scores for ML methods trained on 60%
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(c) F1-scores for ML methods trained on 40%

F1 F2 F3 F4 F5 F6 F7 F1 F2 F3 F4 F5 F6 F7 F1 F2 F3 F4 F5 F6 F7 F1 F2 F3 F4 F5 F6 F7 F1 F2 F3 F4 F5 F6 F7

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

F1
-s

co
re

s
lr
knn
svm
rf
xgb

(d) F1-scores for ML methods trained on 20%

Figure 4.9: Final F1-scores results of applying supervised ML models; Logistic Regression (blue), k-Nearest Neighbour
(green), Support Vector Machine (yellow), Random Forest (red) and XGBoost (magenta) based on seven feature
combinations, evaluated on the validation data. Subplots a, b, c and d show the results of all five models trained on
80%, 60%, 40%, and 20% of the complete train data, respectively. The error bars represent the standard deviation
calculated using the jackknife method.

We then considered the LR F1-score for feature combination F1 (qIR) on each
complete train data split as a baseline. A baseline model should be a simple model
that acts as a reference in an ML project. Its main function is to contextualize the
results of trained models. Baseline models usually lack complexity and may have
little predictive power.
Logistic regression is this study’s simple and most interpretable ML model. Hence
it is considered as a baseline. Because several feature combinations are available
to train the model, we have considered the results of feature combination F1 as a
baseline. Thus the baseline in this study is the LR results for qIR in each data split.
In each data split, we calculated the differences between the F1-score of LR for feature
combination F1 and the F1-score for all feature other combinations and models. We
compare the derived differences in Figure 4.11. Similar to Figures 4.9 and 4.10, the
five models are shown in different colours, with the baseline F1-score highlighted by
a solid horizontal black line.
In each of the splits, We calculate the F1-score differences between every model’s
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(a) F1-scores for ML methods trained on 80%
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(b) F1-scores for ML methods trained on 60%
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(c) F1-scores for ML methods trained on 40%
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(d) F1-scores for ML methods trained on 20%

Figure 4.10: Final F1-scores results of applying supervised ML models; Logistic regression (blue), k-nearest neighbour
(green), Support vector machine (yellow), Random forest (red) and XGBoost (magenta) based on seven feature
combinations, evaluated on the unseen data. Subplots a, b, c and d show the results of all five models trained on
80%, 60%, 40%, and 20% of the complete train data, respectively. The error bars represent the standard deviation
calculated using the jackknife method.

results for each feature combination and the LR model results on qIR, the F1-score
differences is shown in the vertical axis of Figure 4.11. All models yield similar results
when only qIR is used as an input feature. The LR and SVM models produce identical
results for all of the features considered in this study, and this may result from the
fact that we have only considered the linear kernel for the SVM model. Figure 4.11
results suggest no significant difference between the performance of the LR model and
that of he other four more sophisticated ML methods. However, the performance of
logistic regression drops as features get more than four.
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(a) F1-scores for ML methods trained on 80%
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(b) F1-scores for ML methods trained on 60%
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(c) F1-scores for ML methods trained on 40%
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(d) F1-scores for ML methods trained on 20%

Figure 4.11: Final F1-scores differences of all supervised ML models compared to a Logistic Regression baseline
(represented by a solid black line). In each split, we use the Logistic Regression F1-score obtained with the F1 feature
combination as a baseline from which all differences are calculated.
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(a) Final F1-scores results of applying ML models evaluated on the
validation data
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(b) Final F1-scores results of applying ML models evaluated on the
unseen data.

Figure 4.12: Overall performance of ML models in validation and test data. The feature combination and models are
the same as in figure 4.9 and 4.10, however, we show the results of all five ML models trained on 80% (black circles),
60% (green triangle), 40% (blue squares), and 20% (red plus) of the complete train data as shown in subplots 4.9a,
4.9b, 4.9c and 4.9d for validation data and in subplots 4.10a, 4.10b, 4.10c and 4.10d for unseen data, respectively.
The error bars are omitted so that the global trend of results is clear.
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Chapter 5

Conclusion

5.1 Summary

In this study, five supervised ML classification models, namely LR, SVM, kNN, RF
and XGB, are applied and compared to classify radio sources as star-formation-
dominated or black-hole-accretion-dominated sources, i.e. SFGs or AGN. We use
a sample of 4,418 MIGHTEE-COSMOS radio sources classified as SFGs or AGN by
Whittam et al. (2022) to train and test the ML models. The radio sources are from the
MIGHTEE-COSMOS Early Science Data Release (Heywood et al., 2022b). Prescott
et al. [Submitted] identified optical and NIR counterparts for these radio sources by
using the multiwavelength catalogue by Bowler et al. (2020). Whittam et al. (2022)
added the X-ray, MIR, and FIR measurements by Marchesi et al. (2016), Laigle et al.
(2016), and Vaccari (2015), respectively, and used five multiwavelength diagnostics
to perform the source classifications.

We use this radio sample and the associated multiwavelength measurements to
evaluate the performance of ML models in classifying radio sources as SFGs and
AGN;

1. We select and analyse the best features to train and test ML models. Our one-
dimension, two-dimension, ML-independent, ML-dependent, and ROC curves
analyses show that the FIR-Radio correlation parameter, qIR, is the most ef-
ficient feature in classifying SFGs and AGN, followed by the optical mor-
phology parameter class star and the combined MIR colours log(S8/S45) and
log(S58/S36). The IRAC12 MIR log(S45/S36) colour is found to be the least
important feature within those considered in this study.

2. We train and test the ML models with selected features. The features are
grouped according to their importance as ranked by the feature importance
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analysis. Our results show that most ML models perform very well with a
combination of multiple features when classifying radio sources as SFGs and
AGN.

3. Since the performance of ML depends on the sample size of the training data,
we use 20%, 40%, 60% and 80% of the full data to train ML models. All models
yield F1-scores greater than 90% with any training set size except for the RF
model when trained with the single feature qIR and with a training set size of
20%.

4. We also investigate the class imbalance bias in the MIGHTEE-COSMOS data.
Our results show that in our case the class imbalance does not affect the per-
formance of ML models.

5. Overall, our results show that all ML models perform very well in classifying
SFGs and AGN from the radio sources with an F1-score greater than 90% even
when using a small training set and only using the single most efficient input
feature.

5.2 Discussion

5.2.1 Feature Selection

We select six features and derive seven feature combinations to train and evaluate
ML models for classifying the radio sources detected in the MIGHTEE-COSMOS
survey as SFGs and AGN. Whittam et al. (2022) provided the MIGHTEE-COSMOS
radio sources manual classification using five conventional techniques, including X-ray
measurements. X-ray observations are beneficial for identifying AGN because some
of the brightest AGN display characteristic accretion-related X-ray emission. How-
ever, in this study, the X-ray luminosity is not included as the input feature because
only 10% of the MIGHTEE-COSMOS have X-ray detections. If we removed sources
with no X-ray measurements, a large proportion of the sample in the MIGHTEE-
COSMOS catalogue would be removed. Instead, the X-ray measurements were not
part of our analysis but we still achieved excellent performance. This is an important
conclusion as deep and wide X-ray observations will be difficult to obtain at least
over the next 15 years, i.e. before the launch of ESA’s Athena X-ray observatory
space mission1. Therefore, during the lifetime of MeerKAT and Phase 1 of the SKA,
the classification of radio continuum sources will have to be carried out without the
availability of X-ray data, and our results demonstrate that an accurate classification
will still be possible. All ML-independent feature importance techniques show that

1https://www.the-athena-x-ray-observatory.eu/en
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the qIR parameter is the most efficient feature in separating the two classes of radio
sources. These results are shown in Figure 4.5, 4.6 and 4.7 for the sequential fea-
ture importance (4.5.1), permutation feature importance (4.5.2) and the ROC-curves
(4.5.3). The same insight is represented by a histogram and KS test in figure 4.2a.
The random forest built-in feature importance model also returns the qIR as the most
significant feature. The significance of this feature has also been demonstrated when
training the ML models. All the ML models can achieve F1-scores above 90% even
when only trained with the qIR. As discussed, the qIR parameter is derived from FIR
and radio luminosities. Both luminosities trace star formation rates (SFRs) in a way
largely immune from dust obscuration. The infrared emission is caused by dust that
relatively massive OB stars have heated, while radio emission results from relativistic
cosmic ray electrons (CRe) accelerated by shock waves produced when massive stars
explode as supernovae (Delvecchio et al. (2021)). AGN activities accelerate the CRe
electrons and cause a radio excess. Such sources with AGN signatures will have signif-
icantly more radio emission than would be expected from star formation alone. This
makes the qIR parameter the most accurate single predictor of the source class. Other
features are also significant for classification, as shown by all the feature importance
techniques. We see improvements in ML models when these features are added to the
training data. Furthermore, compared to traditional input features, adding other de-
rived colours from multiwavelength measurements, such as near-infrared, far-infrared,
and optical photometry, did not improve the classification performance of ML models.

5.2.2 Feature Importance

The features are grouped according to their importance as ranked by the discussed
feature importance analysis techniques (4.5.1, 4.5.2, 4.5.3, and 4.6). The resulting
seven feature combinations were further used as input features to train each ML
model over the four training set sizes of 80%, 60%, 40% and 20%. The LR, SVM,
kNN, RF and XGB results for the validation and unseen test data are shown in figures
4.9 and 4.10, respectively. All models yield F1-scores of about 90% or more for all
training set sizes except for the RF model when trained only with the F1 features.
The LR and SVM models produce identical results in each training set size consid-
ered. This may be because we only considered the linear kernel of the SVM model,
which is similar to the LR model approach for classification. Other kernels of the
SVM were tried in a hyperparameter optimization setting using only an 80% training
set size for each combination of features. The differences in the obtained results were
insignificant; hence, we kept working only with linear kernels in this work. LR and
SVM models’ performances decrease when four or more attributes are used to train
the models. Conversely, the kNN, RF, and XGB models yield great performances as
more attributes are added, i.e. there is a slight increase in these models’ performance
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from feature combination F1 to F6. Furthermore, all models show a slight decrease
in performance when feature combination F7 is used as input to train the models.
This implies that sources not observed or detected in the IRAC3 and IRAC4 bands
but only in the IRAC1 and IRAC2 are at a disadvantage when classification is car-
ried out with such supervised ML methods. The LR, SVM and kNN models yield a
consistent F1-score as indicated by the error bars in figures 4.9 and 4.10. However,
there are larger error bars for the RF and XGB. The error bars suggest that there
is not a substantial advantage when using the more sophisticated techniques (kNN,
SVM, RF and XGB) rather than the more interpretable LR model. We can therefore
use the LR model to separate the SFGs from AGN by considering three attributes
qIR, class star and log(S8/S45) and still yield excellent F1-scores.

5.2.3 Class Imbalance

This work uses the undersampling approach to address the class imbalance. Data
imbalance is a concern for our work as well as for future machine learning studies
of radio continuum sources since star-forming galaxies usually dominate faint radio
continuum samples. Our sample’s AGN to SFGs ratio is about 1:2. Thus, our sample
has two times more SFGs than AGN. The two classes are balanced in the training
dataset, whilst the test dataset was unbalanced. We show the results in 4.8. The
different models’ resulting F1-scores are lower for all classes, decreasing by an iden-
tical fraction for all fractions of the training dataset. Overall, the data imbalance
does not affect the models’ performance, meaning that having more SFGs than AGN
in the training dataset does not necessarily imply that SFGs will be classified more
accurately than AGN. The better F1-score of SFGs classification shown in 4.8 is thus
related to either observational or intrinsic properties of SFGs.

5.2.4 The need to apply ML techniques

The radio continuum surveys undertaken with large radio telescopes such as the
MeerKAT telescope, ASKAP, and eventually, the SKA will result in an exponential
increase in data. In phase one, the SKA is expected to detect 1 billion radio sources
in a survey area of 3π steradians (Bourke et al., 2015). In contrast to the ∼2.5 million
presently-known radio sources, the Evolutionary Map of the Universe (EMU) survey
on ASKAP is predicted to find roughly 70 million galaxies. Next-generation radio
surveys will detect millions of radio sources while improving resolution, sensitivity
to extended emission, and the ability to quantify spectral index and polarization
for the strongest sources Norris et al. (2015). Future radio continuum surveys will
regularly monitor the full sky, in the process producing extremely large data volumes.
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Conventional data processing and visualization techniques will not be practical for
such large datasets, but we will rather require accurate, efficient and automated
approaches to analyze them. Between these approaches, machine learning algorithms
provide some of the best opportunities to find patterns in digital data and translate
these patterns into useful information (Ball and Brunner, 2010). Machine learning
algorithms are better capable of handling extreme-scale data, and after their initial
training is done they can be run with relatively limited computing resources.

This work implements and optimizes supervised ML models to accurately classify
radio sources in the MIGHTEE-COSMOS catalogue as SFGs or AGN. The results
demonstrate that supervised machine learning algorithms can learn the relationship
between the data and human-provided radio source classes/labels and then apply
the learned relationship to provide the classes/labels to the new unseen test data.
Furthermore, we attempted to reduce the amount of data used to train the machine
learning models to investigate if the training data size significantly impacts the overall
classification ability. We showed that for the classification of MIGHTEE-COSMOS
radio sources, reducing the size of the training set has no significant impact on the
overall classification performance.

Figure 5.1: Left plot ; A plot of the number of known extragalactic radio sources discovered by surveys as a function
of time. An image adapted from (Norris, 2017). Right Plot; Deep 20 cm radio continuum surveys currently being
conducted and planned (Norris et al., 2015).

5.2.5 Limitations of ML techniques

Although supervised machine learning models provide state-of-the-art results when
classifying the MIGHTEE-COSMOS radio sources, some remaining possible limita-
tions are worth pointing out. This section will limit the discussion to a few remaining
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challenges in classifying radio sources in the MIGHTEE-COSMOS sample as well as
in future surveys.

As discussed in chapter 2, all supervised ML models deduce a function that maps
the input data to the target output in the training data. A learned function is then
used to predict the output for the test data, that were not part of the training data.
Thus the accuracy of the mapping function of the algorithm depends on the quality
of the target output provided in the training data. However, the target output in
the training data is provided by conventional methods and may thus be imperfect
and/or biased. For example, in order to produce our sample, Whittam et al. (2022)
used five conventional techniques to assign manual labels to MIGHTEE-COSMOS
radio sources. The different diagnostics were applied independently, which may have
introduced some errors. Also, their capability to detect all AGN signatures in radio
sources is limited by the observational data quality and by our current theoretical
understanding of the AGN phenomenon. As a result, the excellent performance of
our ML models may partially reflect our poor understanding and therefore our sim-
plification of the phenomenon we are trying to study. This limitation may be partly
addressed by developing sophisticated numerical simulations of SFG and AGN for-
mation and evolution. However, the accuracy of such simulations is also limited by
our theoretical understanding to date and by our current computational capabilities.

Another possible limitation is that missing data and invalid measurements may
affect the accuracy and the general applicability of our results. Most ML assume
that all values in an array are numerical and that all have and hold meaning. This
problem can be avoided by removing the sample with the missing data or by replacing
a missing value with e.g. the mean or median value over the full sample. However,
this works well if the fraction of missing data is very small. Otherwise, this can
introduce an observational bias in the data which will be reflected in our ML mod-
els. Our preliminary results showed that including more features in the analyses will
improve the performance of the machine-learning model. However, the fraction of
MIGHTEE-COSMOS sources with valid measurements in all features decreases with
the number of additional features. Although the XGBoost algorithm can e.g. handle
missing data, the algorithm still predicts the missing data using the measured fea-
tures. Therefore, the performance of machine learning will still be affected by these
missing data. In addition, limiting our analysis to radio sources with a large com-
plement of multi-wavelength data will limit the applicability of our machine learning
models. How to balance the performance of machine learning models and the com-
pleteness of our sample will be a continuing challenge for MIGHTEE and future radio
surveys.
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5.3 Future Plans

Figure 5.2: Pointing strategies for the three mosaics imaged MIGHTEE fields. Left: XMM-LSS (20 pointings, 6.7
deg2). Middle: E-CDFS (24 pointings, 8.3 deg2). Right: ELAIS-S1 (7 pointings, 1.6 deg2). Image adapted from
Jarvis et al. (2016).

Currently, our machine learning pipeline efficiently separates the radio continuum
population in the COSMOS field with MIGHTEE Early Science Data as SFGs or
AGN. However, some MIGHTEE radio continuum research goals require us to focus
on AGN subclasses such as radio-loud AGN and radio-quiet AGN. As a result, we
would like to extend the current machine learning pipeline to further classify AGN into
the sub-classes of interest. Thus, we would like to expand the pipeline so that, given a
sample of AGN, it could determine whether the corresponding AGN is e.g. radio-loud
or radio-quiet or incorporate a more sophisticated AGN classification scheme.

The input features currently used by our classification pipeline are often derived
from several independent original features such as flux density, morphology or other
measurements. The derived quantities can introduce further biases and uncertainties
or not make the most of the original features. This can also further reduce the sample
size as multiple original features may be needed to obtain a single derived feature. To
address this challenge, we will extend this work to include most of the original input
features in our feature importance analysis.

The MIGHTEE-COSMOS Early Science Data Release and its cross-match with
multiwavelength data has provided us with a sample of ∼ 4, 000 radio sources for
our machine-learning analyses. The small data set may affect the performance of the
machine learning analysis. The small size of the data is also arguably too small for
running a deep learning pipeline. However, the entire MIGHTEE survey will soon
reach deeper and wider in the COSMOS field as well as in three other survey fields;
XMM-LSS, E-CDFS and ELAIS-S1. Following the multiwavelength identification of
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the MIGHTEE Final Data Release sample of radio sources, we will develop a deep
learning pipeline and compare its performance with that of the more traditional ma-
chine learning algorithms used in this work.
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M., Miley, G., Pierce, J. C. S., and Röttgering, H. J. A. (2022). Accretion mode

http://etd.uwc.ac.za/



BIBLIOGRAPHY 85

versus radio morphology in the LOFAR Deep Fields. MNRAS, 511(3):3250–3271.
10

Mingo, B., Croston, J. H., Hardcastle, M. J., Best, P. N., Duncan, K. J., Morganti, R.,
Rottgering, H. J. A., Sabater, J., Shimwell, T. W., Williams, W. L., Brienza, M.,
Gurkan, G., Mahatma, V. H., Morabito, L. K., Prandoni, I., Bondi, M., Ineson,
J., and Mooney, S. (2019). Revisiting the Fanaroff-Riley dichotomy and radio-
galaxy morphology with the LOFAR Two-Metre Sky Survey (LoTSS). MNRAS,
488(2):2701–2721. 10

Mo, H., van den Bosch, F. C., and White, S. (2010). Galaxy Formation and Evolution.
Cambridge University Press. 1

Mohan, N. and Rafferty, D. (2015). PyBDSF: Python Blob Detection and Source
Finder. Astrophysics Source Code Library, record ascl:1502.007. 38

Moosavi, A., Rao, V., and Sandu, A. (2021). Machine learning based algorithms for
uncertainty quantification in numerical weather prediction models. Journal of
Computational Science, 50:101295. 16

Norris, R., Basu, K., Brown, M., Carretti, E., Kapinska, A. D., Prandoni, I., Rudnick,
L., and Seymour, N. (2015). The SKA Mid-frequency All-sky Continuum Survey:
Discovering the unexpected and transforming radio-astronomy. In Advancing
Astrophysics with the Square Kilometre Array (AASKA14), page 86. xii, 73, 74

Norris, R. P. (2017). Extragalactic radio continuum surveys and the transformation
of radio astronomy. Nature Astronomy, 1:671–678. xii, 11, 74

Norris, R. P., Salvato, M., Longo, G., Brescia, M., Budavari, T., Carliles, S., Cavuoti,
S., Farrah, D., Geach, J., Luken, K., Musaeva, A., Polsterer, K., Riccio, G., Sey-
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Appendix A

Machine Learning Pipeline

The machine-learning Python pipeline developed in this study can be accessed on the
GitHub link attached below. The underlying data is still private, and we would like
to keep the code also private until we publish the paper. However, we will make this
available upon request.
Username: pfunzowalter
Account Holder: Walter Silima
GitHub: https://github.com/pfunzowalter/MIGHTEE-CLASSIFICATION

This study adopted several supervised machine learning algorithms such as Logis-
tic Regression, Super Vector Machine, K-nearest Neighbour, XGBoost, and Random
forest to classify the radio sources detected in MeerKAT International GHz Tiered
Extragalactic Exploration (MIGHTEE) survey as Star-Forming Galaxies or Active
Galactic Nuclei. We take advantage of the available multiwavelength measurements
and use them as input features to train the supervised machine learning algorithms.
This pipeline was strictly developed based on the MIGHTEE-COSMOS measure-
ments. However, the analysis approach used to develop this pipeline can be adapted
to solve any binary classification problem with machine learning.
The pipeline workflow was divided into a series of notebooks, each with its own focus.
The experiments were organised as follows;

• EXP1 - This is a data preprocessing and feature visualization notebook - I have,
in this notebook, After an understanding of the data, sample the data that is
clean and free from missingness and define the spectroscopic features that we
going to use as input features.

• EXP2 - This is a Feature Analysis notebook. In this section, we perform feature
analysis using Correlation Matrix, SeaBorn Pair plot, Permutation Importance,
and ROC curves.
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• EXP3 - This is a Data Correlation notebook. We make a plot of two features for
each target label. Using simple statistics such as Pearson correlation coefficients,
we asses the correlation of each pair of features.

• EXP4 - We now adopt the machine learning algorithms mentioned above and
do classification. We also went on to balance the data and redo the calculation
to asses if data imbalance significantly affects this classification problem

• EXP5. In this section, I adopted the Hussein et al. (2022) method to classify
MIGHTEE sources using simple statistics such as Mahalanobis distance.

• EXP6 reference - This serves as a machine-learning reference notebook. If you
would like to know how the code is run to produce results in ”EXP 6-final
notebook”, it could be worth looking, but the results are also in ”EXP 6-final
notebook”. **EXP6 Final **- This is an important notebook where we compare
all the supervised machine-learning algorithms. We applied different machine
learning algorithms in different combinations of features and different train sizes
to classify AGN or SFGs.

• Appendix Notebook - This notebook contains several results, including the plots
in section B

• MIGHTEE-CRITERIA - In this notebook, we analyse the MIGHTEE-COSMOS
data, reproducing some plots used in literature to classify radio sources as star-
forming galaxies or active galactic nuclei.

• Hyper notebook - focuses on yielding the results for hyperparameter-optimisation.
It uses a function in ’sources’ which takes the hyperparameter and the model
you would like to optimise as input and then yield different results for different
options or values of that hyperparameter with other models’ hyperparameters
as defaults. The resulting plot shows which values of hyperparameters give
better results.

An important directory sources is also available, which contains all Python scripts
with the important functions used in all the experiments notebooks.
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Appendix B

Additional Input Features

In this chapter, we introduce other features that were available to use as input fea-
tures to train the machine learning models. The MIGHTEE-COSMOS spans several
wavebands from radio to X-rays .ie MIGHTEE comprises a lot of measurements one
can experiment with for classifying radio sources. However, almost all algorithms
assume that every input feature in the training set is vital and has a valuable physi-
cal meaning to solve the problem. Assuming that all features are vital is a problem
because not all features are significant. Some input features need to be carefully fil-
tered or removed from a training set since they introduce the curse of dimensionality.
We hope the results obtained in this section justify why some attributes were not
considered while constructing the pipeline. This section is divided into two sections;
Section B.1 uses only direct physical measurement (flux densities) as an input feature
to train the models, while section B.2 uses the derived colours as an input feature for
the ML-models.

B.1 Direct Measurement

Several direct measurements, the radio emission detected by MeerKAT and the well-
matched multi-wavelength information for MIGHTEE sources available in the MIGH-
TEE catalogue are used as the input features to train the RF model. We combine
the fluxes that derive attributes from conventional classification plus the infrared
and optical flux densities. As a result, a total of sixteen attributes; COS best z v5,
L14, LIR WHz, M⋆, class star, four HSC optical flux densities (flux-G, flux-R, flux-
I, flux-Z), four mid-infrared flux densities (SPLASH 1 FLUX, SPLASH 2 FLUX,
SPLASH 3 FLUX, SPLASH 4 FLUX) was then available to use as a training set.
These inputs have the redshift (COS best z v5) information we do not include in the
derived experiments since the qIR is derived from redshift. The results of applying the
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RF model to classify the SFGs and AGN using these measurements as input features
are shown in figure B.1.

Figure B.1: Normalized Confusion Matrix.

.

B.2 Derived Measurement

In this section, we derive several colours using the flux densities in the Radio, Far-
infrared, Mid-infrared and near-infrared and optical wavelengths. The details of the
catalogues from which the measurements are adopted have been described fully in
section 3.4. Combining all these measurements, we had twelve flux densities; four
HSC optical flux densities (flux-G, flux-R, flux-I, flux-Z), four mid-infrared flux den-
sities (SPLASH 1 FLUX, SPLASH 2 FLUX, SPLASH 3 FLUX, SPLASH 4 FLUX)
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and far infrared flux densities (flux Y, flux H, flux Ks, flux J) in different electromag-
netic bands. In addition, we use the other measurements available in the MIGHTEE-
COSMOS catalogue, such as qIR and class star already derived within the cata-
logue. Using the available measurements we end up with 17 colours; class star,
qIR, log(S8/S45), log(S58/S36), log(S45/S36), log(g/r), log(r/i), log(i/z), log(g/i),
log(g/z), log(r/z), log(y/j), log(j/h), log(h/k), log(y/h), log(y/k), log(j/k) that can
be used as input features. For example, feature log(S45/S36) is an IRAC colour
derived from IRAC flux densities SPLASH 1 FLUX and SPLASH 2 FLUX, feature
log(g/z) is an optical colour derived from the HSC flux-G and flux-Z, the feature
log(h/k) is the colour derived from flux H and flux Ks, and so on.
After combining all these colours into train data, we compute Pearson correlation
coefficients using https://seaborn.pydata.org1 to inspect any correlation between
the derived attributes. The colours derived from flux densities in the same window
of the electromagnetic spectrum show a very high correlation. A high correlation
between two or more attributes implies that using either one or all to train the ML
models has no difference in the performance of models.

1https://seaborn.pydata.org
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Figure B.2: The heatmap of Pearson correlation coefficients between the derived input features. A value of 1 (also
the reddest) between two attributes implies a strong positive correlation. A value of -1 would mean a strong negative
correlation between two attributes. A value of 0 would mean no correlation between the two attributes.

We also make a scatter plot using two attributes for each class. We had seventeen
attributes and wanted to make a combination of 2. Using equation 4.1, we end up
with 136 pair plots to visualize. Figure B.3 shows a scatter plot of all 136 pairs of
features. The AGN and SFGs are shown in blue and red, respectively. This pair plot
provides a statistical analysis of how variables in a dataset relate to each other and
how those relationships depend on other variables. If we first consider the diagonal
plots of figure B.3 we can tell that the distribution of most of the sources in each
colour is almost the same. The two population of radio sources is distributed within
a similar space or has an identical mean, which implies that most of the colours are
not suitable separators of the AGN or SFGs. The same trend is observed in the
scatter plot of the colours. The star-forming galaxies and active galactic nuclei are
mostly within the same feature space in these plots except when ’qIR’, ’IRAC colours’
and ’class star’ has been used.
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Figure B.3: Pair plot of different colours derived from the MIGHTEE-COSMOS catalogue. The AGN (blue) and
SFG (red) represent active galactic nuclei and star-forming galaxies labelled in the MIGHTEE-COSMOS catalogue
in Whittam et al. (2022), respectively. The diagonal plots show a distribution of the two classes of radio sources on
each feature (one-dimensional). The off-diagonal plots show a scatter of the two sources in a two-dimensional feature
space.

We then adopt the permutation feature importance method to assess the impor-
tance of the derived features. Figure B.4 shows the results of applying the permutation
importance algorithm to the derived input features. The additional features derived
from the far-infrared and optical flux densities are raked below the 2%. The impor-
tance of less than 2 % indicates that these features do not add knowledge about the
distinction between AGN and SFGs. These results agree with what we learn from
figure B.3.
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Figure B.4: Permutation-based feature importance for the explanatory features included in the Random Forest model
for the derived input features calculated using F1-scores. The plot indicates the relative importance of the derived
colours as input features rated by the random forest model.

.

Finally, we show the results of applying the kNN model to the derived features.
The kNN is selected in this case because it gave better results in the classification of ra-
dio sources under study, refer to Figure 4.9 and 4.10. We made three combinations of
features, namely, F4 (class star, qIR, log(S8/S45), log(S58/S36)), F4+optical colours
(class star, qIR, log(S8/S45), log(S58/S36), log(g/r), log(r/i), log(i/z), log(g/i), log(g/z),
log(r/z)) and F4+optical+NIR (class star, qIR, log(S8/S45), log(S58/S36), log(g/r),
log(r/i), log(i/z), log(g/i), log(g/z), log(r/z), log(y/j), log(j/h), log(h/k), log(y/h),
log(y/k), log(j/k)). The data was split into 80% training data and 20% test data and
was evaluated using the F1-score as the classification metrics. The performance of
kNN model is reported in Figure B.5. It is clear in Figure B.5 that the additional
optical and NIR colours do not improve the performance of the ML model, which
complement the permutation-based feature importance shown in Figure B.4
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Figure B.5: The results of applying the kNN classifier to distinguish between AGN and SFGs trained using three
different feature combinations, namely, F4, F4+optical and F4+optical+NIR. The vertical axis shows the F1-scores
and a score of 1 indicates a perfect classification.
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Appendix C

Hyperparameters

Hyperparameter optimization is one factor that plays a role in improving the per-
formance of machine learning models. I have discussed the implications of hyper-
parameter tuning in section 2.3. In this section, I give a set of parameters used to
tune each model used in this study. Due to the computational complexity that comes
when more hyperparameters are included for optimization, We only select a few val-
ues per hyperparameter to optimise. We do this by using a plot of the f1-score and
the different values of the hyperparameter. The parameters that give better results
then be selected for further optimization when training the models. Figure C.1 shows
the f1-score results for different n estimator hyperparameters. The n estimator hy-
perparameter indicates the number of trees to include in the forest and is one of the
important hyperparameters of this model. The same results can be used for different
parameters and different models. Below, we show the parameters we tune for each
model during training.
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Figure C.1: The results of applying the random forest model to MIGHTEE-COSMOS varying the number of trees in
the forest

.

• Logistics Regression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html

’solvers’ = [’newton-cg’, ’lbfgs’, ’liblinear’]

’penalty’ = [’l2’]

’c values’ = [1000, 100, 10, 1.0, 0.1, 0.01, 0.001]

• Support Vector Machines
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.

html

’C’: [0.1, 1, 10, 100, 1000]

’gamma’: [1, 0.1, 0.01, 0.001, 0.0001]

’kernel’: [’linear’, ’rbf’, ’poly’, ’sigmoid’ ]

http://etd.uwc.ac.za/
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• K-Nearest Neighbour
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html

’n neighbors’ : [5, 10, 15]

’p’:[1, 2]

’weights’ : [’uniform’, ’distance’]

• Random Forest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html

’n estimators’ = [50, 100, 150, 200, 300, 450]

’max features’ = [”sqrt”, ”log2”, ”NONE”]

’max depth’ = [5, 10, 30, 40, 50, 60, 70]

’min samples split’ = [2, 3, 5]

’min samples leaf’ = [1, 3]

’bootstrap’ = [True, False]

• XGBoost
https://xgboost.readthedocs.io/en/stable/parameter.html

’learning rate’: [0.01, 0.15, 0.23, 0.3]

’max depth’: [3, 7, 10]

’n estimators’ : [50, 100, 150, 200, 300]
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(a) The F1-scores of random forest model applied to MIGHTEE-
COSMOS varying only the hyperparameter max depth.

(b) The F1-scores of k-nearest neighbour model applied to
MIGHTEE-COSMOS varying only hyperparameter n-neighbours.

(c) The F1-scores of XGBoost model applied to MIGHTEE-COSMOS
varying only hyperparameter learning rate.

(d) The F1-scores of Support Vector Machines model applied to
MIGHTEE-COSMOS varying only hyperparameter gamma.

Figure C.2: The result of varying a single hyperparameter of different supervised machine learning models.
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