Microbial Diversity of Antarctic Dry Valley Mineral Soil

By

Kamini Moodley

Submitted in partial fulfilment of the requirements for the degree of Magister Scientiae (M.Sc.) in the Department of Biotechnology, University of the Western Саре.

Supervisor: Prof. D. Cowan
December 2004

Declaration

"I declare that, Microbial Diversity of Antarctic Dry Valley Mineral Soil, is my own work, that it has not been submitted for any degree or examination in any university and that all the sources I have used or quoted have been indicated and acknowledged by means of complete references".

Kamini Moodley
December 2004

Abstract

Antarctica provides some of the most extreme environments on Earth. Low temperatures, low water availability and nutrient deficiency are contributing factors to the limited colonisation of Antarctic biotopes, particularly in the continental Dry Valleys. The survival of microorganisms in this harsh continent provides the basis for the significance of this study. In this study we aim to explore microbial phylotypic diversity across a 500 m altitudinal transect in the Miers Dry Valley, Ross Desert, East Antarctica. We also attempt to infer from phylogenetic data, the possible presence of indicative phenotypes which might contribute to a functional microbial community.

Total genomic DNA was isolated from 12 soil samples and 16 S rDNA PCR was performed with primers designed to target the conserved regions of the bacterial 16 S rRNA gene. A preliminary analysis of bacterial diversity across the transect was conducted via Denaturing Gradient Gel Electrophoresis (DGGE). It was observed that essentially similar phylotypes were present in every level. The vertical transect of 500m in the Miers Dry Valley was shown to have little effect on microbial diversity, as DGGE indicated that few phylotypes appeared to be altitudinal dependent. Due to the similarity between the transect samples, 16 S rDNA clone libraries of transect samples 1, 5, 7 and 9 were prepared. A total of 121 clones were sequenced and similarity searches with known bacterial 16 S rDNA sequences in public databases were evaluated. 115 were $=90 \%$ identical to their respective matches in the database, 2 sequences were 89% identical and 4 sequences were 88% identical. Approximately 500 base pairs of the 16 S sequences were being compared to those on the database. Major taxonomic groups represented by the genera included: a, β, ? Proteobacteria, Actinobacteria, Verrucomicrobia, Planctomycetes and several uncultured environmental and Antarctic samples. Genera which can be assigned with some confidence included, Opitutis, Clostridium, Rhodoglobus, Brevundimonas, Lysobacter, Nocardia, Kribella, Sphingomonas, Rubrobacter, Stenotrophomonas, and Janthinobacterium.

Molecular evidence did not support the presence of an established trophic community structure in the Miers Valley transect as most of the phylotypes and genera identified in the present investigation were heterotrophs. The possibility of autotrophs inhabiting the Miers Dry Valley cannot be eliminated as a large portion of the phylotypes were uncultured and there was
evidence for the possible presence of autotrophs in the Miers Dry Valley. Exogenous heterotrophic substrates are thought to be negligible in the Dry Valley mineral soils and the present investigation supports this statement as $\sim 80 \%$ of the identified phylotypes were heterotrophs. For this reason heterotrophs depend on other sources of organic matter such as aerial dispersion.

Phylogenetic studies have shown that most of the clones clustered with their respective matches obtained from the database and also displaying bootstrap values of 100. Some Antarctic isolates clustered together whilst others exhibited high similarity to environmental samples. This suggests that most Antarctic microorganisms are common to other soil environments, but may have adapted to the extreme psychrophilic habitat. A relatively small proportion ($\sim 10 \%$) of Antarctic phylotypes appeared to be novel.

Acknowledgements

Immense gratitude is bestowed to Vernon Ramiah whose continuous guidance and support has encouraged me throughout the duration of my studies. His kind thoughts and loving deeds will always be appreciated and for this I am eternally grateful.

I am sanctified for being blessed with two loving parents who have always supported me through all my decisions in life. I would like to thank them for positioning me on the path of excellence and to challenge life when necessary. I have become who I am today because I am a product of their influence.

I would like to express my gratitude to the following people for all their assistance, moral support and advice, without which this thesis would not have been possible.

My supervisor, Professor D. Cowan, for his continued guidance and his belief in me to always exert myself beyond the norm and to reach for the sky. He has broken the mould of immaturity and has sculptured a strong independent character within myself. For this I am eternally grateful.

Dr. L. Ah. Tow, Dr. W. H. L. Stafford and J. J. Smith, for their inexhaustible patience and tolerance. I wish to thank them for all the help and support throughout the duration of this project.

At this point, sincere gratification must be honoured to close friends, whose enthusiasm, thoughtfulness, assistance and advice have been the prism that has reflected light into my life. I would like to thank them with my true friendship.

Table of Contents

Declaration i
Abstract ii
Acknowledgements iv
List of Figures vii
List of Tables viii
List of Abbreviations ix

1. Introduction and Aims 1
1.1. General introduction 1
1.2. Extremophiles in biotechnology 1
1.3. Why study Antarctica? 3
1.4. Molecular Techniques 4
1.5. Dissertation 5
1.6. References 6
2. Literature Review 8
2.1. Antarctica 8
2.1.1. Maritime Antarctica 8
2.1.2. Terrestrial Antarctica 10
2.1.3. Antarctic Lakes 12
2.2. Molecular Techniques 13
2.2.1. DNA extraction from soil 13
2.2.2. 16 S rDNA PCR 14
2.2.3. Denaturing gradient gel electrophoresis (DGGE) 17
2.2.4. Phylogenetic Analyses 18
2.3. References 21
3. Methodology 26
3.1. Retrieval and storage of soil samples 26
3.2. DNA Extraction 27
3.3. PCR 28
3.3.1. 16 S rDNA PCR 28
3.3.2. DGGE specific Touchdown PCR 28
3.3.3. M13 PCR 29
3.4. Denaturing gradient gel electrophoresis (DGGE) 29
3.5. Cloning 30
3.5.1. Calculation of the amount of insert required 30
3.5.2. Phosphokinase reaction 30
3.5.3. Ligation 31
3.5.4. Transformation 31
3.5.5. Direct colony PCR screening 31
3.6. Amplified rDNA restriction analysis (ARDRA) 31
3.7. Plasmid isolation 32
3.8. \quad Sequencing 32
3.9. Phylogenetic analyses 32
3.10. References 33
4. Results and Discussion 34
4.1. Introduction 34
4.2. gDNA Isolation 34
4.3. $\quad 16 \mathrm{~S}$ rDNA PCR 36
4.4. Denaturing gradient gel electrophoresis (DGGE) 36
4.5. $\quad 16 \mathrm{~S}$ Clone Libraries and Phylogenetic Analyses 37
4.5.1. MVT 1 40
4.5.2. MVT 5 42
4.5.3. MVT 7 46
4.5.4. MVT 9 48
4.5.5. MVT 12 50
4.6. References 56
5. Conclusion 63
6. Appendix 66

List of Figures

Pg. No.
3
Figure 1.1. Terms used to study extremophiles.
Figure 2.1. Picture of the Miers Dry Valley. 11
Figure 2.2. Illustration of 16 S rRNA gene of E. coli. 15
Figure 2.3. A Cladogram and a Phylogram showing a branch and a node. 19
Figure 3.1. Picture of the Miers Dry Valley showing 500m altitudinal transect. 26
Figure 4.1. gDNA isolations of MVT samples 1 to 12 35
Figure 4.2. Products of 16S rDNA PCR amplification. 35
Figure 4.3. Denaturing gradient gel showing bacterial phylotypic diversity across 37the MVT transect.
Figure 4.4. Phylogenetic tree of MVT 1. 52
Figure 4.5. The percentage of different phyla in MVT 1. 42
Figure 4.6. The percentage of different phyla in MVT 5. 44
Figure 4.7. The percentage of different phyla in MVT 7. 46
Figure 4.8. Phylogenetic tree of MVT 7. 53
Figure 4.9. Phylogenetic tree of MVT 9. 54
Figure 4.10. The percentage of different phyla in MVT 9. 48
Figure 4.11. Phylogenetic tree of MVT 12. 55
Figure 4.12. The percentage of different phyla in MVT 12. 50

List of Tables

Pg. No.
Table 3.1. Summary of the Miers Valley Transect (MVT) and the different levels. 27
Table 4.1. Summary of MVT 1 Blast results. 43
Table 4.2. Summary of MVT 5 Blast results. 45
Table 4.3. Summary of MVT 7 Blast results. 47
Table 4.4. Summary of MVT 9 Blast results. 49
Table 4.5. Summary of MVT 12 Blast results. 51

List of Abbreviations

16S rDNA PCR	16S ribosomal DNA Polymerase Chain Reaction
V	Variable regions
Tm	Melting temperature
DGGE	Denaturing gradient gel electrophoresis
TGGE	Temperature gradient gel electrophoresis
BLAST	Basic Local Alignment Search Tool
NJ	Neighbour Joining
MP	Maximum Parsimony
ML	Maximum Likelihood
MVT	Miers Valley Transect

Chapter 1

Introduction and Aims

1.1 General introduction

The term 'extreme' pertains to conditions that would be uncomfortable for the normal functioning of man. An organism which has adapted to extreme environmental conditions; e.g. high or low temperature, pH or salt concentration, low nutrient content and water availability is termed an extremophile. The use of the term 'extremophile' first appeared in 1974 in a paper by MacElroy. ${ }^{1}$ Ever since, the extremophile research field has progressed to the extent that the first International Congress on extremophiles was convened in Portugal in June 1996, with the establishment of the scientific journal "Extremophiles" in February the following year. ${ }^{2}$ Terms used to study some extremophiles are included in Fig. 1.1. Additional extremophiles include, endoliths (organisms that live in rocks), oligotrophs (organisms that are capable of surviving in nutrient limited environments) ${ }^{3}$ and toxitolerant organisms which thrive on toxic compounds.

1.2. Extremophiles in biotechnology

Extremophile research displays great potential for applications in biotechnology. Extremozymes, enzymes isolated from extremophiles, generally have a similar mode of action as their homologous mesophilic enzymes. However, extremozymes have adapted to function in extreme conditions which make them very valuable for applications in biotechnology. ${ }^{4}$ For example, psychrophilic enzymes function optimally at low temperatures. The potential of psychrophilic bacteria for applications in biotechnology have been reported in a number of articles and reviews. A recent review discusses the definition of psychrophilic bacteria, description of their habitats and focuses on the adaptive changes in proteins and lipids particularly those explored for biotechnological purposes. ${ }^{5}$ One particular study investigated
the ability of certain psychrophilic yeast strains to produce novel pectinolytic enzymes that are capable of degrading pectin compounds at low temperatures. The study investigated the application of cold-active pectinolytic enzymes in the food industry, for the clarification of fruit juice below $5^{\circ} \mathrm{C} .{ }^{6}$ The use of psychrophilic microorganisms for applications in biotechnology are presently being employed, for example the application of eurythermal polar cyanobacteria for wastewater treatment in cold climates ${ }^{7}$ and the incorporation of proteases, lipases and cellulases into detergents to improve its mode of action in cold water. The use of nucleating proteins in psychrophiles are currently being investigated for manufacturing synthetic snow as well as freeze-dried food. ${ }^{8}$ Research developments with respect to isolation of novel bacteria, culture collections, bioactivity screening, taxonomy, production of polyunsaturated fatty acids (PUFA's), cold adapted enzymes and bioremediation permits for the exploitation of these and other findings for the possibility of new biotechnological products from Antarctic microorganisms. ${ }^{9}$

Thermophilic enzymes are thermostable, resistant to denaturation (e.g. in organic solvents) and are active at high temperatures. Whole thermophilic microorganisms also display advantages for uses in biotechnology in processes like fermentation. With the use of thermophilic microorganisms this process could be conducted at high temperatures, destroying or repressing the growth of pathogenic microorganisms. These properties render thermophiles and their enzymes very useful in biotechnology. Certain thermophilic enzymes are carrently being used in industry including fr example, amylases to produce glucose (as a sweetener) and xylanases for paper bleaching. ${ }^{10}$

Other applications of extremophiles include the use of hypersaline organisms for the treatment of hypersaline waste, modification of food flavours by halophilic microorganisms and the production of antibiotics from alkaliphilic microorganisms. ${ }^{2}$ It is evident that extremophile research displays great potential for applications in biotechnological processes.

T($\left.{ }^{\circ} \mathbf{C}\right)$

Figure 1.1. Terms used to study extremophiles.

1.3. Why study Antarctica?

The biology of Antarctica, more than any other continent, is dominated by microorganisms. ${ }^{3}$ Antarctic microbial habitats have remained relatively preserved for many years as compared to other invaded habitats. Hence, there exists unique opportunities for studying microbial evolution and microbial endemism (genotypes of microorganisms specific to a geographical region). ${ }^{11,12}$ In addition, Antarctic food webs are relatively reduced in
complexity as compared to the invaded habitats, where there is continuous interference with higher plants and animals. ${ }^{11}$

The Dry Valleys of Antarctica also serve as an exobiological model. Evidence has shown that the dry cold saline soils of the ice free Antarctic Dry Valleys probably offer one of the best possible analogues on Earth for understanding the Martian climate and the possible disappearance of life on Mars. ${ }^{13}$ In addition, trace fossils of cryptoendolithic microbial communities are an easier target for life detection systems as compared to fossils of cellular structures. ${ }^{14}$

The potential of psychrophiles for applications in biotechnology have already been discussed in section 1.2.

1.4. Molecular techniques

The study of prokaryotic biodiversity has been hindered for many years due to the difficulty of accessing true diversity by culture dependent methods. It has been estimated that less than 0.1% of the total microbial population can be successfully isolated in pure culture. ${ }^{15}$ This occurs because bacteria are highly selective in their growth requirements. Hence, a variety of media need to be utilised to obtain diverse microbial populations. This can become extremely laborious and time consuming.

Over the last decade, advances in molecular biology have facilitated the analysis of bacterial diversity. Major developments in this area of research have circumvented problems that may arise from the isolation and culturing of bacteria. For example, the isolation of bacterial nucleic acids directly from a soil sample, PCR, sequencing and a variety of molecular techniques have become useful tools for the detection of bacteria that cannot be cultured. Continuous advancements in this area of research have permitted rapid and effective analyses of prokaryotic biodiversity from almost any environmental sample.

1.5. Dissertation

Low temperatures, low carbon content and arid mineral soils render the Antarctic Dry Valleys an extreme habitat. The survival of microorganisms in this hostile habitat provides the basis for the significance of this study. This study aims to investigate bacterial phylotypic diversity in the Miers Dry Valley (Ross Desert, East Antarctica), specifically:
(i) if altitude has an effect on microbial diversity.
(ii) the presence of a putative community structure in terms of autotrophs and heterotrophs.
(iii) the uniqueness of Antarctic isolates as compared to other microorganisms.

1.6. References:

1. MacElroy, R. D. 1974. Some comments on the evolution of extremophiles. Biosystems. 6:74-75.
2. Cavicchioli, R., and T. Thomas. 2000. Extremophiles. Encyclopeadia of Microbiology. 2nd Ed. 2:317-337.
3. Friedman, E. I. 1993. Antarctic microbiology. Wiley-Liss, Inc., New York. 1-615pp.
4. Sellek, G. A., and J. B. Chaudhuri. 1999. Biocatalysis in organic media using enzymes from extremophiles. Enzyme and Microbial Technology. 2:471-482.
5. Russell, N. J. 1998. Molecular adaptations in psychrophilic bacteria: potential for biotechnological adaptations. Advances in Biochemical Engineering/Biotechnology. 61:1-21.
6. Nakagawa, T., T. Nagaoka, S. Taniguchi, T. Miyaji, and N. Tomizuka. 2004. Isolation and characterisation of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Letters in Applied Microbiology. 38:383-389.
7. Tang, E. P. Y., W. F. Vincent, J. De La Noue, P. Lessard, and D. Proulx. Polar cyanobacteria versus green algae for the tertiary treatment of waste-water in cool climates. Journal of Applied Phycology. 9:371-381.
8. Russell, N., and T. Hamamoto. 1998. Psychrophiles in Extremophiles: Microbial life in extreme environments. Wiley-Liss, New York. 25-45pp.
9. Nichols, D., J. Bowman, K. Sanderson, C. M. Nichols, T. Lewis, T. McMeekin, and P. D. Nichols. 1999. Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Current Opinion in Biotechnology. 10:240-246.
10. Premuzic, E. T., and M. S. Lin. 1999. Induced biochemical conversions of heavy crude oils. Journal of Petroleum Science and Engineering. 22:171-180.
11. Vincent, W. F. 2000. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Science. 3:374-385.
12. Wynn-Williams, D. D. 1996. Antarctic microbial diversity: basis of polar ecosystems processes. Biodiversity and Conservation. 5:1271-1293.
13. Friedman, E. I. 1986. The Antarctic cold desert and the search for traces of life on Mars. Advances in Space Research. 6:43-47.
14. Miller, K. J., S. B. Leschine, and R. L. Huguenin. 1983. Characterisation of a halotolerant-psychrotolerant bacterium from dry valley Antarctic soil. Advances in Space Research. 3:43-47.
15. Hill, G. T., N. A. Mitkowski, L. Aldrich-Wolfe, L. R. Emele, D. D. Jurkonie, A. Ficke, S. Maldonado-Ramirez, S. T. Lynch, and E. B. Nelson. 2000. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology. 15:25-36.

Chapter 2

Literature Review

2.1 Antarctica

Antarctica covers an area of nearly 4 million square kilometres and is considered the largest and most pristine wilderness on earth. It is the coldest, windiest and highest continent on Earth Less than 1% of this desert-like continent is ice-free. Containing about 70% of the world's freshwater and 90% of the world's ice, Antarctica is not only a scientific curiosity but is also a key component of planet Earth, as processes occurring there affect the worlds climate. ${ }^{1,2}$

Only a few insects can survive the harsh terrestrial conditions but numerous animal species that thrive in the surrounding waters include fish, krill, penguins, seals, whales and various kinds of sea birds. Plant cover is dominated by lichens and in maritime Antarctic a (sea-ice environment excluding Ross Dessert) lichen growth is more conspicuous on rock surfaces and soil whilst in terrestrial Antarctica (Ross Dessert), lichens grow between rock surfaces where temperature stability is greater. ${ }^{1}$ However, despite the abundance of these eukaryotes, prokaryotic diversity is more prominent in Antarctica.

2.1.1 Maritime Antarctica (sea-ice environment)

Sea ice is the major nutrient source in Maritime Antarctica. Although ice may appear to be an uncongenial habitat to support microbial growth, brine inclusions, interstices within ice floes (sheets of floating ice) and the ice-water interface support the survival of rich microbial populations. ${ }^{3}$ Brine inclusions are formed through the accumulation of dissolved salts exuded from ice crystals, when ice forms from sea water at $-1.9^{\circ} \mathrm{C}$. ${ }^{4}$ Since the salinity of enclosed brine is affected by the temperature ${ }^{5}$ in situ, the volume of ice occupied by brine
varies directly as a function of temperature. These bw temperature high salinity extremes within ice may be important in determining the survival of organisms as well as in controlling the rate of biological processes.

An extraordinary feature of Antarctic ice is the occurrence of oxygen at supersaturated levels in certain portions of the water column. Research has shown oxygenation in sediments down to fifteen and in some cases twenty-five centimetres and it was concluded that this might be typical for perennial ice cover, ${ }^{6}$ (due to difficulty of diffusion through ice). These high oxygen levels undoubtedly contribute to the microbial diversity.

A range of morphological types of bacteria has been found to be associated with seaice. Light and scanning electron microscopy studies have shown the presence of rods, cocci, straight and branching filamentous, fusiform and prosthecate bacteria. In addition, it was found that approximately 70% of the bacteria in a sea-ice community at McMurdo Sound were free-living, whereas 30% were attached to either detritus or active algal cells. ${ }^{7}$ Microorganisms in the Antarctic ice include non-spore and spore forming bacteria. The best studied genus of non-spore bacterium is Pseudomonas. ${ }^{8}$ Two strains that have been isolated and have displayed psychrophilic properties include P. fluorescens and P. alcaligenes. ${ }^{9}$ Spore forming bacteria included a variety of Bacillus species. ${ }^{8}$ Actinomycetes have also been found in the ice and soil and the two representative genera include Streptomyces and Nocardia. ${ }^{10}$

It has been shown by microautoradiography that heterotrophic bacteria in sea-ice are able to take up ${ }^{3} \mathrm{H}$-amino acids, ${ }^{3} \mathrm{H}$-glucose and ${ }^{3} \mathrm{H}$-thymidine, under in situ conditions. ${ }^{11}$ Chemoautotrophs were also shown to be present in sea-ice assemblages in the form of ammonia-oxidizing bacteria. ${ }^{12}$ Pigmented and gas vacuolated bacteria have also been isolated from sea-ice in McMurdo Sound. Although some of the red to orange pigmented, filamentous bacteria contained gas vacuoles, it is uncertain whether the gas vacuoles confer an adaptive advantage for the sea-ice habitat. ${ }^{13}$ Plasmids have also appeared to be pervasive in sea-ice bacteria. Of 79 bacterial isolates from sea-ice in McMurdo Sound, 30% contained at least one plasmid. ${ }^{14}$ Certain plasmids may contain genetic elements such as integrase genes. These genes enable bacteria to acquire and express foreign DNA molecules and thus facilitate increased genetic diversity in searice bacteria. ${ }^{15}$

There are several factors that contribute to the growing interest in Antarctic sea-ice biota. For example, the high estimates of phytoplankton production and evidence of significant bacterial productivity suggests the presence of a microbial food web. ${ }^{1}$ In addition, the association of the Antarctic krill, Euphausia superba, with sea-ice has suggested that sea-ice biota serve as a resource for this key pelagic consumer in the Antarctic marine food web. ${ }^{16}$ However, microbial food webs in polar waters have not been extensively documented as compared to the lower latitude-latitude marine ecosystems. ${ }^{17}$

Studies on Antarctic sea-ice biota can be dated back to 1847^{18} where the research was focused largely on systematic studies of the ice microflora (primarily diatoms). Recent studies have encompassed an increased range of organisms and their ecological roles as members of complex assemblages in close association with the ice. ${ }^{19}$

2.1.2 Terrestrial Antarctica

The Ross Desert is characterised as the 'true desert' of the Antarctic continent. It occupies less than 2% of continental Antarctica, and covers an area of over $7000 \mathrm{~km}^{2} .^{20}$ Environmental properties such as, mean annual temperature is $-20^{\circ} \mathrm{C}$, average wind speed is $100 \mathrm{~km} / \mathrm{h}$, water content is $0.2-0.5 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{g}$ soil, mean relative humidities are 50% or less and the solar flux (available energy) is generally less than 100W.m, render the Antarctic Dry Valleys an extreme habitat ${ }^{21}$ (Fig. 2.1. is a picture of the Miers Dry Valley and the description of a typical valley). The Dry Valley regions comprise alternating mountain ranges and glacial valleys. Some of the lowest temperatures on earth have been recorded here, which in conjunction with the very low precipitation and humidity levels means that the Ross Desert is among the driest deserts on the planet. ${ }^{22}$ When viewed from South to North along the coast of McMurdo Sound, the major ice-free valleys include the Taylor, Wright, McKelvey, Balham, Victoria and Barwick Valleys. Structurally smilar but smaller valleys include the Miers, Marshall, Garwood and Salmon Stream Valley, occurring to the south of Taylor Valley. ${ }^{20}$

Figure 2.1. Picture of the Miers Dry Valley

The ice-free dry valleys of McMurdo Sound are the largest and highest in elevation in Antarctica and are termed "oases", defined as ice-free areas that are kept free from ice by the process of ablation (erosive processes that reduce the size of glaciers due to a higher absorption than reflection of incident light). ${ }^{23}$ There exist several explanations for the origin of these icefree areas and one of the earliest and most widely accepted explanations is the orographic (science of mountains) and global climatic change hypothesis, proposed in 1969. ${ }^{24}$ It was proposed that ice-free areas are formed when ice sheets attenuate. The ice thinning may be associated with the general warming trends over the past ten thousand years and the positive radiation balance between the dark soils and the rocks maintains the ice-free areas. Lake formation can be attributed to summer meltwater that collects in the catchment basins. A similar concept was proposed in 1970, ${ }^{22}$ which also explained the formation of ice-free areas on the basis of the ratio of precipitation to evaporation balance. It may also be important to note that most Antarctic ice-free areas are relatively ancient as present-day examples may have formed as much as four to five million years ago. ${ }^{25}$

The environmental properties of ice-free areas provide a hostile habitat for the colonization of microorganisms. Antarctic soils are highly aerobic therefore anaerobic bacteria is considered very rare. In previous studies characterising Antarctic soil bacteria using culture based approaches, seventy-one percent of bacteria were related to coryneform bacteria, within the genera Arthrobacter, Brevibacterium, Cellulomonas, Corynebacterium and Kurthia. ${ }^{26}$.

Pseudomonas, Flavobacterium and other gram negative aerobic rods like Alcaligenes and Arthrobacter were also identified. ${ }^{26}$ Recent studies employing molecular analysis, has detected the presence of anaerobic, gram positive Clostridium sp. ${ }^{27}$ These data indicate that culture based methods alone remain inadequate for providing an accurate reflection of the microbial diversity in an environment. In Ross Dessert soils, coryneforms are also prominent whilst Bacillus and Pseudomonas are rare. ${ }^{10}$ Of five hundred and sixty eight isolates, twenty three percent were ascribed to Corynebacterium and fifty-six percent to members of the "coryneform-related group". Other lower percentages included Bacillus (7\%), Micrococcus (20\%), Nocardia (3\%), Streptomyces (3\%), Flavobacterium and Pseudomonas (6\%). ${ }^{10}$

2.1.3 Antarctic lakes

For a description of an Antarctic lake refer to Fig. 2.1. The major Antarctic lakes are found in glacial valleys. During winter the lakes remains frozen but may thaw for a few weeks during summer. ${ }^{28}$

Sediment deposition high occurrence of certain gases and light, are some of the major regulators of microbial activity in Antarctic lakes. The glacial melt streams, which flow only for a restricted period during summer and the lake margins which thaw briefly, contribute minimally to sediment deposition. ${ }^{29}$ Ice cover of perennial lakes, has shown to be the major contributor of sediments. It was proposed that ice traps wind blown sediments and provides a plane for the movement of these sediment particles (either by saltation or rolling and drifting on the ice), to the middle of the lake. ${ }^{30}$ The first observation of sediment deposition occurring through ice cover was reported in $1983{ }^{30}$ Cracks present on the ice surface of Lake Vanda facilitated the production of gas bubbles to escape from the water below to the atmosphere. Any sediment deposited on the ice surface would eventually make its way down through the ice cover into the water column and the lack of sediment deposits of the surface of Lake Vanda, supported this conclusion. ${ }^{30}$

Certain gases such as O_{2} and N_{2} occur at elevated levels at the bottom of the ice in a lake. ${ }^{31}$ Supersaturation with nitrous oxide in an Antarctic lake was reported at a depth of 54 m . The nitrous oxide concentration of more than 200 times that of air saturation was believed to be produced by a narrow band of nitrifying bacteria at a depth of about $52-55 \mathrm{~m} .{ }^{32}$

Perhaps the most important environme ntal regulator in any ecosystem is light. Light provides energy for photosynthesis and thus serves as the pioneer source of energy at the base of any food web. Light is a major limiting factor for the development of microbial communities in Antarctic lakes as most Antarctic lakes are covered by ice. However, studies of light attenuation by snow and ice showed that about 99% of light striking a lakes surface is absorbed. These results suggest that microbial communities present in a lake are very well adapted to low light conditions. ${ }^{33}$

Microbial mats in Antarctic lakes are composed primarily of Cyanobacteria, diatoms and heterotrophic bacteria. ${ }^{34}$ Culture based studies found Phormidium frigidum and Lyngbya martensiana to be the dominant filamentous Cyanobacteria present in microbial mats. ${ }^{34}$ Morphological and molecular analyses of Cyanobacterial diversity of microbial mats in Lake Fryxell, were conducted. Results revealed the presence of Nostoc sp. and Schizothrix sp. and morphotypes such as Hydrocoryn cf. spongiosa, Nodularia cf. harveyana and Phormidium cf. autumnale. ${ }^{35}$ Other autotrophic bacteria include photosynthetic green sulphur bacteria such as Chlorobium vibrioforme and Chlorobium limnicola. ${ }^{36}$ The majority of isolates from five habitats in Vestfold Hills belonged to Pseudomonas sp. followed by pigmented Flavobacterium and non-pigmented Moraxella. ${ }^{37}$

2.2 Molecular techniques

2.2.1 DNA extraction from soil

Bacteria form essential agents of soil microflora, due to their abundance ($\sim 10^{9}$ cells per gram of soil), their species diversity (minimum of 4000-7000 different bacterial genomes per gram of soil) ${ }^{38}$ and the combinational effects of their metabolic activities. Hence, when investigating soil microbial diversity, both rapid and comprehensive means of analyses need to be employed.

A protocol for extracting DNA directly from a soil sample generally involves three steps:- (i) cell extraction / cell lysis, (ii) removal of cell fragments and debris and (iii) nucleic acid precipitation and purification. ${ }^{39}$ Cell extraction involves the isolation of microbial cells from their environmental matrix, prior to cell lysis. A typical cell extraction procedure consists of successive cycles of blend ing and centrifugation to recover the microbial cells present in the
sample. ${ }^{38}$ However, two major limitatio ns of this procedure is that it $\dot{\Phi}$ time consuming and may not fully represent the microbial diversity of a particular environment as a fewer number of cells are obtained. ${ }^{39}$ Direct lysis is a more popular method, as it does not require a preliminary cell extraction step. With direct lysis a larger number of microorganisms are exposed to the lysis procedure hence, exposure to a wider range of genomes. ${ }^{40}$ The major problem associated with direct lysis is that there is a higher chance of co-extracting contaminants, requiring a more extensive purification n procedure. ${ }^{39}$

Cell lysis procedures can be chemical, mechanical or enzymatic. A combination of mechanical lysis (usually bead beating) and chemical lysis (use of detergents) usually produces DNA of good quality and purity. ${ }^{41}$ In a comparison of 5 different soil DNA extraction procedures, the Zhou method ${ }^{42}$ and the Ultra clean soil DNA isolation kit (MoBio Inc., Solana, CA, USA) produced the best purity and yield of DNA. ${ }^{43}$ It was also suggested that an increase in the bead beating time increases shearing of DNA and reduces the DNA fragment size. Shearing can be reduced by bead beating prior to the addition of SDS or other chemical denaturants. Extraction buffers containing SDS increase DNA yields but also increase humic acid contamination. ${ }^{43}$

2.2.2 16S rDNA PCR

16S rDNA PCR forms the basis for analyses of microbial diversity. C-type cytochromes, globins and other common proteins could be used for mapping phylogenetic relationships but these molecules are limited to the 'higher' eukaryotic systems. ${ }^{44}$ Since prokaryotic and eukaryotic systems are so biochemically diverse, the use of homologous proteins would prove to be inadequate for studying prokaryotes. In addition, rRNA studies are much less complicated than the analysis of homologous proteins. For these and many other reasons (elaborated below) rRNA analysis has become the method of choice for determining phylogeny as well as understanding microbial diversity. ${ }^{45}$
(i) rRNA`s are fundamental elements for synthesising proteins and are therefore functionally and evolutionary homologous in all organisms.
(ii) rRNA's are ancient molecules and their overall structure and nucleotide sequences are conserved. Certain nucleotide stretches are highly conserved in the rRNA gene across all 3 'primary kingdoms' while other portions are variant. The
conserved regions are essential as they provide primer directed sites for PCR as well as convenient hybridization targets for the cloning of rRNA genes.
(iii) rRNA genes lack artifacts of lateral transfer between similar organisms and are therefore thought to reflect the direct evolutionary pathway of organisms. ${ }^{45}$

Finally, with the proper primer design to target the rRNA gene conserved regions, sufficient sequence information can be obtained to facilitate significant comparisons between organisms. ${ }^{46}$

Prokaryotes contain 3 rRNA`s, 5S (~ 120 nucleotides), 16S (~ 1600 nucleotides) and 23S (~ 3000 nucleotides). By the late 1960 s, the 5 S rRNA was the most popular of the three for phylogenetic analysis as it was small and very convenient for sequence analysis. However, the paucity of varying nucleotide positions limited its use for phylogenetic studies. Initially, the 16 S rRNA was too large for phylogenetic analysis. However, the development of DNA cloning and sequencing protocols has facilitated the sequencing of the full 16S gene, which has become important for the analysis of microbial diversity as well as for phylogenetic studies. ${ }^{45}$

Fig. 22. shows the nucleotide sequence of the 16 S gene from E. coli. ${ }^{47}$ Regions that rema in totally conserved (blue) as well as conserved (red) are depicted. These regions are the targets for primer binding sites where the variable regions V1 - V9 can be efficiently amplified by PCR. Commonly utilised primers for 16S gene analysis include E9F ${ }^{48}$ and U1510R. ${ }^{49}$

KEY: totally conserved conserved variable highly variable $>75 \%$ variable variable regions priming sites

AACAGGAAGAAGCTTGCTTCTTTGCTGACGAGTGGCGGACGGGTGAGT AATGTCTGGGAAACTGCCTGAT

150	V_{1}	160	170	180	190

GGAGGGGGATAACTACTG GAAACGGTAGC TAAT ACCGCATAACGTCGCAAGACCAAAGAGGGGGACCTTC

220	230	240	V_{2}	250	260	270

GGGCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGAC
$\begin{array}{llllll}290 & 300 & 310 & 320 & 330 & 340\end{array}$

GATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACT GGAACTGAGACACGGTCCAGACTCCTACGGGAC

GCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGC AGCCATGCCGCGTGTATGAAGAAGGCCT

E334F-conti.	430	440	450	460	470	480

TCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTTAATACCTTTGCTCATTGACGTTACCC
$\begin{array}{lllllll}500 & 510 & 520 & 530 & V_{3} & 540 & 550\end{array}$

GCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAA
$570580 \quad 590 \quad$ U529/34/E535R/534R/519F $610 \quad 620$

TTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAA
$\begin{array}{lllllll}640 & 650 & 660 & 670 & 680 & V_{4} & 690\end{array}$

CTGCATCTGAT ACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGG TGTAGCGGTGAAATGCG

710	720	730	740	750	760

TAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACT GACGCTCAGGTGCGAAAGC
780
790
800
810
820
830

GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTT GGAGGTTGTGCC
$\begin{array}{lllllll}850 & 860 & \text { В } 866 \mathrm{~F} & 870 & 880 & 890 & 900\end{array}$

TCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACC $\begin{array}{lllllll}990 & \text { E939R } & 1000 & 1010 & 1020 & 1030 & 1040\end{array}$ TTACCTGGTCTTGACATCCACGGAAGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACAGGTG

1060	1070	1080	V_{6}	1090	1100	1110

TTTGTTGCCAGCGGTCCGGCCGGGAACTCAAAGGAG ACTGCCAGTGATAAACTGGAGGAAGGTGGGGATG

1200	V_{7}	1210	1220	1230	1240	1250

ACGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGCG

1290
1300
1310
1320

ACCTCGCGAGAGCAAGCGGACCTCAT AAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCAT

Figure 2.2: Illustration of 16S rRNA gene of \boldsymbol{E}. coli

2.2.3. Denaturing gradient gel electrophoresis (DGGE)

Electrophoretic separation of PCR products in a polyacrylamide gel containing a denaturing chemical or physical gradient is a relatively recent technique. ${ }^{50}$ The former method utilises urea and formamide in a process commonly known as denaturing gradient gel electrophoresis, ${ }^{51}$ whilst the latter method utilises temperature in a process commonly known as temperature gradient gel electrophoresis (TGGE). ${ }^{52}$ Whilst both techniques have been reported to produce consistent results, ${ }^{53}$ DGGE is a much cheaper but a slightly more tedious technique to perform. DGGE is capable of separating DNA fragments of similar sizes but different nucleotide sequences and is based on the principle that since A-T rich fragments have a lower T_{m} than G-C rich fragments and melted DNA fragments migrate more slowly through the gel matrix, fragments that melt first are separated from those that melt subsequently. ${ }^{51,54}$

DGGE is considered a very powerful and sensitive technique, ${ }^{55}$ as it is capable of detecting up to 96% of all mutations or single base pair substitutions in fragments up to 500 base pairs in length. ${ }^{55,56}$ Primers 534 R and $341 \mathrm{FGC}^{57}$ (see Fig. 2.2.) were utilised in this study for the amplification of a 193 base pair amplicon from the 16 S rRNA gene. These primers ensure amplification of the V_{3} variable region of the 16 S gene, which is sufficient for discriminating between different microbial species.

The use of a G-C clamp (40 bp of G-C nucleotides) in DGGE analysis is important as it imparts melting stability to the fragments. The most convenient way of obtaining a G-C clamp
is by attaching it to one of the primers. ${ }^{51}$ Double stranded DNA molecules denature more slowly than single stranded molecules therefore they migrate with greater stability during electrophoresis. Single stranded fragments tend to supercoil. The y may therefore denature incorrectly and migrate more quickly through the gel. Since A-T sequences have lower T_{m} values than GC rich sequences, the G-C clamp imparts melting stability by preventing the fragments from becoming completely single stranded and electrophoresed off the gel. ${ }^{56,58}$

2.2.4. Phylogenetic analyses

The construction of phylogenetic trees has become a very useful tool for the analysis of evolutionary processes and the historical relationships betweendifferent organisms. ${ }^{59}$

Phylogenetic trees enable one to:
(i) characterise unknown proteins
(ii) Obtain biological function of proteins
(iii) Examine how closely or distantly a particular DNA sequence relates to other sequences, as an indication of func tions assigned to DNA sequences
(iv) Characterise organisms on the basis of sequence similarity ${ }^{60}$

A tree is simply an illustration of evolutionary relationships or similarities between a variety of sequences. It is made up of nodes and branches (Fig. 2.3.), where a branch is a line that connects two nodes. The nodes can either be external (the tips of the tree where the taxa are being considered) or internal (points that represent a common ancestor of two other nodes). The two basic styles of a phylogenetic tree is a cladogram or a phylogram (Fig. 2.3.). A cladogram merely represents the branching order of the nodes whereby, the branch lengths convey no information. A cladogramcan either be slanted or in the more popular rectangular fashion. A phylogram displays both the branching order and distance information of the sequences. The branch distance is a representation of the sequence changes between two sequences; i.e., the longer the branch the greater the difference between sequences. A distance value which can be displayed on the tree will represent the number of substitutions that have occurred between two sequences. ${ }^{60}$

Figure 2.3. a) Cladogram and b) Phylogram showing a branch \qquad and a node.

The basic steps involved in constructing phylogenetic trees from molecular sequence data include:
(i) Obtain the DNA or protein sequence of interest
(ii) With the use of the BLAST database, search for sequence similarity and obtain electronic files of the similar sequences
(iii) With use of appropriate computer programs, create an alignment of the sequences
(iv) Create phylogenetic trees with the aligned sequences

When constructing a tree it is important to provide a root for the tree as this will be a representation of the common ancestor of all the taxa being considered. Unrooted trees only specify the relationships among the taxa and not the evolutionary pathways. A tree is rooted when there is a unique directional path that leads to each taxon. The easiest solution for assigning a root to the tree would be to choose the sequence that is derived from the organism which is known to be one of the earliest lineages in a particular kingdom. The topology of a tree is the order in which the different sequences diverge and by assigning a boostrap value, the order would be obtained more reliably. A bootstrap value could range from 100 to 1000 and pending the value chosen, sequence comparisons would occur that number of times respectively. Hence, a bootstrap value provides a measure of the reliability of the phylogenetic tree. ${ }^{59,60}$

Additional methods for tree construction would be a choice between an algorithmic and a tree searching approach. The former approach uses an algorithm to construct a tree from the data provided whilst the latter constructs many trees and utilises certain criteria to decide which is the best tree. ${ }^{60}$ The algorithmic approach has two advantages in that it is fast and produces one tree for every given data set. The most common method employed is Neighbour Joining (NJ). ${ }^{60}$ The tree searching methods include Maximum Parsimony (MP), Maximum Likelihood (ML) and the Bayesian method. Maximum Parsimony looks for the tree with the minimum number of evolutionary changes that explains the entire sequence evolution. Maximum Likelihood utilises a log likelihood value (chosen by the user) and the tree that displays the highest value is chosen as the ML tree. The Bayesian method is a variant of the ML method however, instead of producing a single tree, a set of trees of roughly equal likelihoods are produced from which the user can decide. ${ }^{61}$ All methods produce consistent results and have proven to be reliable however, preference is given to the Neighbour Joining method as it is fast and produces one tree. ${ }^{60,61}$

2.3. References:

1. Friedman, E. I. 1993. Antarctic microbiology. Wiley-Liss, Inc., New York. 1-615pp.
2. Mckay, C. P., J. A. Nienow, M. A. Meyer, and E. I. Friedman. 1993. Continuous nanoclimate data (1985-1988) from the Ross Desert (McMurdo Dry Valleys) cryptoendolithic microbial ecosystem. Antarctic Research Series. 61:201-207.
3. Palmisano, A. C., and D. L. Garrison. 1993. Microorganisms in Antarctic Sea Ice. In Antarctic microbiology. Wiley-Liss, Inc., New York. 167-218pp.
4. Weeks, W. F., and S. F. Ackley. 1982. The growth, structure and photosynthesis of sea ice. Cold Regions Research and Engineering Laboratory Monograph. 82-1:1-131.
5. Assur, A. 1958. Composition of sea ice and its tensile strength. NAS-NRC Publication 598, Washington D.C.106-138pp.
6. Wharton, R. A., M. A. Meyer, C. P. Mckay, R. L. Mancinelli, and G. M. Simmons. 1994. Sediment oxygen profiles in a super-oxygenated Antarctic lake. Limnology and Oceanography. 39:839-853.
7. Sullivan, C. W., and A. C. Palmisano. 1984. Sea ice microbial communities: distribution, abundance and diversity of ice bacteria in McMurdo Sound, Antarctica 1980. Applied and Environmental Microbiology. 47:788-795.
8. Abyzov, S. S. 1993. Microorganisms in the Antarctic ice: In Antarctic microbiology. Wiley-Liss, Inc., New York. 265-296pp.
9. Stokes, J. L. 1963. General biology and nomenclature of psychrophilic microorganisms. Recent Progress in Microbiology. 8:187-192.
10. Johnson, R. M., J. M. Madden, and J. R. Swafford. 1978. Taxonomy of Antarctic bacteria from soils and air primarily of the McMurdo Station Victoria Land dry valley region. Antarctic Research Series. 30:35-64.
11. Sullivan, C. W., A. C. Palmisano, S. T. Kottmeier, S. M. Grossi, and R. L. Moe. 1985. The influence of light on growth and development of the sea-ice microbial community of McMurdo Sound. Springer-Verlag, Berlin. 78-83pp.
12. Priscu, J. C., M. T. Downes, R. L. Priscu, A. C. Palmisano, and C. W. Sullivan. 1990. Dynamics of ammonium oxidiser activity and nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ within and beneath Antarctic sea ice. Marine Ecology Progress Series. 62:37-46.
13. Staley, J. T., R. L. Irgens, and R. P. Herwig. 1989. Gas vacuolate bacteria from the sea ice of Antarctica. Applied and Environmental Microbiology. 55:1033-1036.
14. Kobori, H., C. W. Sullivan, and H. Shizuya. 1984. Bacterial plasmids in Antarctic natural microbial assemblages. Applied and Environmental Microbiology. 48:515-518.
15. Nemergut, D. R., A. P. Martin, and S. K. Schmidt. 2004. Integron Diversity in Heavy-Metal-Contaminated Mine Tailings and Inferences about Integron Evolution. Applied and Environmental Microbiology. 70:1160-1168.
16. Hamner, W. M., P. P. Hamner, S. E. Strand, and R. W. Gilmer. 1983. Behaviour of Antarctic Krill, Euphausia superba: chemoreception, feeding, schooling and molting. Science. 220:433-435.
17. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, R. A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series. 10:257-263.
18. Hooker, J. D. 1847. The Botany of the Antarctic Voyage of H.M. Discovery Ships Erebus and Terror in the Years 1839-1843, vol. 1. J. Cramer, Weinhiem. 208pp.
19. Garrison, D. L., C. W. Sullivan, and S. F. Ackley. 1986. Sea ice microbial communities in Antarctica. Bioscience. 36:243-250.
20. Vishniac, H. S. 1993. The Microbiology of Antarctic Soils. In Antarctic Microbiology. Wiley-Liss Inc., New York. 297-342pp.
21. Simmons, G. M., J. R. Vestal, and R. A. Wharton. 1993. Environmental regulators of microbial activity in continental Antarctic lakes: In Antarctic microbiology. WileyLiss, Inc., New York. 491-542pp.
22. Wilson, A. T. 1970. The McMurdo Dry Valleys. In Antarctic Ecology. Academic Press, London. 21-30pp.
23. Shumskiy, P. A. 1957. Glaciological and geomorphological reconnaissance in the Antarctic in 1956. Journal of Glaciology. 3:56-61.
24. Solopov, A. V. 1969. Oases in Antarctic. National Science Foundation Technical Translation TT-68-50490. 143pp.
25. Armstrong, R. E., W. Hamilton, and G. H. Denton. 1967. Glaciation in Taylor Valley, Antarctica, older than 2.7 million years. Science. 159:187-188.
26. Baker, J. H., and D. S. Smith. 1972. The bacteria in an Antarctic peat. Journal of Applied Bacteriology. 35:589-596.
27. Brambilla, E., H. Hippe, A. Hagelstein, B. J. Tindall, and E. Stackebrandt. 2001. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles. 5:23-33.
28. Ferris, J. M., and H. R. Burton. 1988. The annual cycle of heat content and mechanical stability of hypersaline Deep Lake, Vestfold Hills, Antarctica. Hydrobiologia. 165:115-128.
29. Nedell, S. S., D. W. Anderson, S. W. Squyres, and F. G. Love. 1987. Sedimentation in ice-covered Lake Hoare, Antarctica. Sedimentology. 34:1093-1106.
30. Love, F. G., G. M. Simmons, B. C. Parker, R. A. Wharton, and K. G. Seaburg. 1983. Modern conophyton-like microbial mats discovered in Lake Vanda, Antarctica. Journal of Geomicrobiology. 3:33-48.
31. Wharton, R. A., C. P. McKay, R. L. Mancinelli, and G. M. Simmons. 1987. Perennial N_{2} supersaturation in an Antarctic lake. Nature. 325:343-345.
32. Vincent, W., M. T. Downes, and C. L. Vincent. 1981. Nitrous oxide cycling in Lake Vanda, Antarctica. Nature. 292:618-620.
33. Palmisano, A. C., and G. M. Simmons. 1987. Spectral downwelling irradiance in an Antarctic lake. Polar Biology. 7:145-151.
34. Wharton, R. A., C. B. Parker, and G. M. Simmons. 1983. Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. Phycologia. 22:355-365.
35. Taton, A., S. Grubisic, E. Brambilla, R. De Wit, and A. Wilmotte. 2003. Cyanobacterial Diversity in Natural and Artificial Microbial Mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a Morphological and Molecular Approach. Applied and Environmental Microbiology. 69:5157-5169.
36. Volkman, J. K., H. R. Burton, D. A. Everitt, and D. I. Allen. 1988. Pigment and lipid composition of algal and bacterial communities in Ace Lake, Vestfold Hills, Antarctica. Hydrobiologia. 165:41-57.
37. McMeekin, T. A. 1988. Preliminary observations on psychrotrophic and psychrophilic, heterotrophic bacteria from Antarctic water samples. Hydrobiologia. 165:35-40.
38. Torsvik, V., J. Goskoyr, and F. L. Daae. 1990. High diversity in DNA of soil bacteria. Applied and Environmental Microbiology. 56:782-787.
39. Roose-Amsaleg, C. L., E. Garnier-Sillam, and M. Harry. 2001. Extraction and purification of microbial DNA from soil and sediment samples. Applied Soil Ecology. 18:47-60.
40. Steffan, R. J., J. Goksoyr, A. K. Boj, and R. M. Atlas. 1988. Recovery of DNA from soils and sediments. Applied and Environmental Microbiology. 54:2908-2915.
41. Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimisation of DNA extraction and purification procedures for soil and sediment samples. Applied and Environmental Microbiology. 65:4715-4724.
42. Zhou, J., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soil of diverse composition. Applied and Environmental Microbiology. 62:316-322.
43. Stach, J. E., M. S. Bathe, J. P. Clapp, and R. G. Burns. 2001. PCR-SSCP comparison of 16 S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiology Ecology. 36:139-151.
44. Goodman, M. 1982. Macromolecular sequences in systematic and evolutionary biology. Plenum, New York/London. 418pp.
45. Olsen, G. J., D. Lane, S. J. Giovannoni, and N. R. Pace. 1986. Microbial ecology and evolution: A ribosomal RNA approach. Annual Reviews in Microbiology. 40:337365.
46. Stackebrandt, E., and C. R. Woese. 1981. The evolution of prokaryotes. In Molecular and Cellular Aspects of Microbial Evolution. Cambridge University Press, Cambridge. $1-31 \mathrm{pp}$.
47. Van de Peer, Y., S. Chapelle, and R. De Wachter. 1996. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Research. 24:3381-3391.
48. Farelly, V., F. Rainey, and E. Stackebrandt. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16 S rRNA genes from a mixture of bacterial species. Applied and Environmental Microbiology. 61:2798-2801.
49. Reysenbach, A. L., and N. R. Pace. 1995. Reliable amplification of hyperthermophilic archael 16S rRNA genes by the Polymerase Chain Reaction. In Archaea: A Laboratory Manual - Thermophiles. Cold Spring Harbour Laboratory Press. 101-105pp.
50. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 59:695-700.
51. Myers, R. M., S. G. Fischer, L. S. Lermann, and T. Maniatis. 1985. Nearly all single base substitutions in DNA fragments joint to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research. 13:3131-3145.
52. Riesner, D., R. Steger, R. Zimmat, R. A. Owens, M. Wagenhofer, W. Hillen, S. Vollbach, and K. Henco. 1989. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis. 10:377-389.
53. Heuer, H., and K. Smalla. 1997. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities. In Modern Soil microbiology. Marcel Dekker, Inc., New York. 353-373pp.
54. Myers, R. M., L. S. Lermann, and T. Maniatis. 1987. Detection and localisation of single base changes by denaturing gradient gel electrophoresis. Methods in Enzymology. 155:501-527.
55. Pablo, V. G., Q. Cao, F. Guegj, and S. Sommer. 1998. The sensitivity of denaturing gradient gel electrophoresis: a blinded analysis. Mutation Research Genomics. 382:109-114.
56. Wawer, C., and G. Muyzer. 1995. Genetic diversity of Desulfovibrio sp. in environmental samples analysed by Denaturing Gradient Gel Electrophoresis of [NiFe] hydrogenase gene fragments. Applied and Environmental Microbiology. 61:2203-2210.
57. Watanabe, K., M. Teramoto, H. Futamata, and S. Harayama. 1998. Molecular detection, isolation and physiological characterisation of functionally dominant phenol degrading bacteria in activated sludge. Applied and Environmental Microbiology. 64:4396-4402.
58. van Orsouw, N. J., and J. Vijg. 1999. Design and application of 2-D DGGE-based gene mutational scanning tests. Journal of Biomolecular Engineering. 14:205-213.
59. Olsen, G. J. 1987. Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harbor Symposia on Quantitative Biology. 46:426-440.
60. Hall, B. G. 2001. Phylogenetic trees made easy. Sinauer Assoc. Inc., Massachusetts. 1173pp.
61. Takahashi, K., and N. Masatoshi. 2000. Efficiencies of fast algorithms of phylogenetic inference under the criteria of Maximum Parsimony, Minimum Evolution and Maximum Likelihood when a large number of sequences are used. Molecular Biology and Evolution. 17:1251-1258.

Chapter 3

Methodology

3.1 Retrieval and storage of soil samples

Samples were acquired from the Miers Dry Valley, along a 500 m vertical transect of the McMurdo Dry Valleys, east Antarctica, during the 2002 UWC/University of Waikato field expedition. Details of the various levels of the sampling site are given in Fig. 3.1. and Table 3.1. Samples were recovered under aseptic conditions by removal of a $1-2 \mathrm{~cm}$ surface layer from a $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ grid. Samples were stored at below $0^{\circ} \mathrm{C}$ until transport to the Scott Base for storage at $-18^{\circ} \mathrm{C}$. During subsequent transport to UWC, Cape Town, samples were maintained at $<0^{\circ} \mathrm{C}$. Samples were preserved at $-80^{\circ} \mathrm{C}$ until required for further use.

Figure 3.1. Picture of the Miers Dry Valley showing the 500 m vertical transect with ascending samples 1 to 12 . White arrow indicates sample 1 and red arrow indicates sample 12.

Table 3.1: Summary of the Miers Valley Transect (MVT) and the different levels.

Transect sample	Description of soil	Temp.	GPS	Elevation
MVT 1	Wet gravel from flood plain	$-0.2{ }^{\circ} \mathrm{C}$	$\begin{array}{ll} 79^{\circ} & 05.679 \\ 163^{\circ} & 48.271 \end{array}$	554 feet
MVT 2	Coarse gravels	$\begin{gathered} -3.9^{\circ} \mathrm{C} \text { air } \\ -0.5^{\circ} \mathrm{C} \text { soil } \end{gathered}$	$\begin{array}{ll} 78^{\circ} & 05.670 \\ 163^{\circ} & 48.285 \end{array}$	553 feet
MVT 3	Sorted gravels on moraine below valley slope	$\begin{gathered} -3.2{ }^{\circ} \mathrm{C} \text { air } \\ -0.3^{\circ} \mathrm{C} \text { soil } \end{gathered}$	$\begin{array}{ll} 78^{\circ} & 05.582 \\ 163^{\circ} & 48.324 \end{array}$	582 feet
MVT 4	Gravels at base of Northern slope	$-0.4{ }^{\circ} \mathrm{C}$ soil	$\begin{array}{ll} 78^{\circ} & 05.541 \\ 163^{\circ} & 48.310 \end{array}$	601 feet
MVT 5	Lower Northern slope, fine gravels	$-0.4{ }^{\circ} \mathrm{C}$ soil	$\begin{array}{ll} 78^{\circ} & 05.480 \\ 163^{\circ} & 48.370 \end{array}$	662 feet
MVT 6	Northern slope 20 m upslope from flat rock	$\begin{gathered} -4.7^{\circ} \mathrm{C} \text { air } \\ -0.2^{\circ} \mathrm{C} \text { soil } \end{gathered}$	$\begin{array}{lll} 78^{\circ} & 05.398 \end{array}$	768 feet
MVT 7	Northern slope	$-0.4{ }^{\circ} \mathrm{C}$ soil	$\begin{array}{ll} 78^{\circ} & 05.324 \\ 163^{\circ} & 48.520 \end{array}$	860 feet
MVT 8	Dry fine gravels	$\begin{gathered} -4.9^{\circ} \mathrm{C} \text { air } \\ -0.2^{\circ} \mathrm{C} \text { soil } \end{gathered}$	$\begin{array}{ll} 78^{\circ} & 05.184 \\ 163^{\circ} & 48.690 \end{array}$	1094 feet
MVT 9	Dry fine gravels along Northern slope	$\begin{gathered} -4.7^{\circ} \mathrm{C} \text { air } \\ +0.8^{\circ} \mathrm{C} \text { soil } \end{gathered}$	$\begin{array}{ll} 78^{\circ} & 04.904 \\ 163^{\circ} & 48.853 \end{array}$	1400 feet
MVT 10	Fine and coarse gravels	$\begin{gathered} -4.0^{\circ} \mathrm{C} \text { air } \\ +1.1^{\circ} \mathrm{C} \text { soil } \end{gathered}$	$\begin{array}{ll} 78^{\circ} & 04.685 \\ 163^{\circ} & 49.178 \end{array}$	1698 feet
MVT 11	Fine gravels	$\begin{gathered} -7.2^{\circ} \mathrm{C} \text { air } \\ -0.3^{\circ} \mathrm{C} \text { soil } \end{gathered}$	$\begin{array}{ll} 78^{\circ} & 04.503 \\ 163^{\circ} & 49.297 \end{array}$	2001 feet
MVT 12	Dry fine gravels, $\sim 50 \mathrm{ft}$ below Miers Valley/Snowy lake, Marshall Valley	$\begin{gathered} -6.9^{\circ} \mathrm{C} \text { air } \\ -3.9^{\circ} \mathrm{C} \\ \text { ground } \end{gathered}$	$\begin{array}{ll} 78^{\circ} & 03.968 \\ 163^{\circ} & 52.083 \end{array}$	2689 feet

3.2 DNA Extraction

Total genomic DNA was extracted directly from the soil samples using the BIO 101 Kit (Qbiogene). Direct cell lysis was achieved by mechanical (bead beating) and chemical (sodium phosphate and sodium lauryl sulphate) lysis. After centrifugation, each supernatant was transferred to a clean tube and proteins were then removed using a protein precipitating agent (Potassium acetate and glacial acetic acid). The supernatant was mixed with a binding matrix solution (silica gel suspension with guanidine thiocyanate) then passed through a spin filter column for elution of DNA.

3.3 PCR

3.3.1 16S rDNA PCR

Universal primers E9F ${ }^{1}$ (5'- GAGTTTGATCCTGGCTCAG -3') and U1510R ${ }^{2}$ (5'GGTTACCTTGTTACGACTT -3^{\prime}), designed to target the conserved regions of the rRNA gene, were utilized. Reagents of the PCR mix included, $5 \mu 1$ of 10X buffer, $3 \mu 1$ of 25 mM $\mathrm{MgCl}, 5 \mu \mathrm{l}$ of $5 \mu \mathrm{~m}$ E9F, $5 \mu \mathrm{l}$ of $5 \mu \mathrm{~m}$ U1510R, $10 \mu 1$ of 1 mM DNTP's, $0.5 \mu \mathrm{l}$ of Taq polymerase enzyme (Fermentas) and $1 \mu \mathrm{l}$ of gDNA ($50 \mathrm{ng} / \mu \mathrm{l}$). Each reaction was adjusted to a final volume of $50 \mu 1$ with sterile super quality (super Q) water and amplified in an automated thermal cycler (Thermo Hybaid system). The PCR conditions were as follows:-
$\left.\begin{array}{ll}\text { Initial denaturation: } & 94^{\circ} \mathrm{C} \text { for } 2 \mathrm{mins} \\ \text { Denaturation: } & 94^{\circ} \mathrm{C} \text { for } 30 \mathrm{~s} \\ \text { Annealing: } & 50^{\circ} \mathrm{C} \text { for } 45 \mathrm{~s} \\ \text { Extension: } & 72^{\circ} \mathrm{C} \text { for } 60 \mathrm{~s}\end{array}\right\} \times 30$ cycles

3.3.2 DGGE specific Touchdown PCR

341FGC ${ }^{3}$ (5’-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGG

 CCTACGGGAGGCAGCAG -3^{\prime}) and $534 \mathrm{R}^{3}$ (5^{\prime} - ATTACCGCGGCTGCTGG -3) (refer to Fig. 2.2. for positions on the 16 S gene) are primers designed to target the conserved regions of the rRNA gene. The amplification results in the production of smaller PCR amplicons (encompassing the V3 region) that are more suitable for DGGE analysis. Reagents of the PCR mix included, $5 \mu \mathrm{l}$ of 10 X buffer, $3 \mu \mathrm{l}$ of $25 \mathrm{mM} \mathrm{MgCl}, 5 \mu \mathrm{l}$ of $5 \mu \mathrm{~m} 341 \mathrm{FGC}, 5 \mu \mathrm{l}$ of $5 \mu \mathrm{~m} 534 \mathrm{R}$, $10 \mu 1$ of 1 mM DNTP's, $0.5 \mu 1$ of Taq polymerase enzyme (Fermentas) and $1 \mu 1$ of gDNA $(50 \mathrm{ng} / \mu \mathrm{l})$. Each reaction was adjusted to a final volume of $50 \mu \mathrm{l}$ with sterile super Q water and amplified in a Gene Amp PCR 2700 system. To increase the specificity of the PCR reaction, a touchdown PCR protocol was employed whereby the annealing temperature was set $10^{\circ} \mathrm{C}$ above the required temperature and decreased by $1^{\circ} \mathrm{C}$ every cycle until the required temperature was attained. ${ }^{4}$ The annealing temperature was set initially at $65^{\circ} \mathrm{C}$ and thendecreased by $1^{\circ} \mathrm{C}$ every cycle to $55^{\circ} \mathrm{C}$, where the temperature was held for the next 20 cycles. The PCR conditions were as follows:-
$\left.\begin{array}{cl}\text { Initial denaturation: } & 94^{\circ} \mathrm{C} \text { for } 5 \mathrm{mins} \\ \text { Denaturation: } & 94^{\circ} \mathrm{C} \text { for } 1 \mathrm{~min} \\ \text { Annealing: } & 65^{\circ} \mathrm{C}-55^{\circ} \mathrm{C} * \text { for } 1 \mathrm{~min} \\ \text { Extension: } & 72^{\circ} \mathrm{C} \text { for } 2 \mathrm{mins} \\ \text { Final extension: } & 72^{\circ} \mathrm{C} \text { for } 10 \mathrm{mins}\end{array}\right\} \times 30$ cycles

* Annealing temperature decreases by $1^{\circ} \mathrm{C}$ every cycle.

3.3.3 M13 PCR

M13 R (5'- CAGGAAACAGCTATGAC -3') and M13 F (5'GTTTTCCCAGTCACGAC -3^{\prime}) primers designed to target M13 cloning sites in the pMOS vector, were utilized. Reagents of the PCR mix included, $5 \mu 1$ of 10X buffer, $3 \mu 1$ of 25 mM $\operatorname{MgCl}, 5 \mu \mathrm{l}$ of $5 \mu \mathrm{~m}$ M13F, $5 \mu \mathrm{l}$ of $5 \mu \mathrm{~m}$ M13R, $10 \mu \mathrm{l}$ of 1 mM DNTP's, $0.5 \mu \mathrm{l}$ of Taq polymerase enzyme and $1 \mu 1$ of gDNA ($50 \mathrm{ng} / \mu \mathrm{l}$). Each reaction was adjusted to a final volume of $50 \mu \mathrm{l}$ with sterile super Q water and amplified in an automated thermal cycler (Thermo Hybaid system). The PCR conditions were as follows:-
$\left.\begin{array}{cl}\text { Initial denaturation: } & 94^{\circ} \mathrm{C} \text { for } 5 \mathrm{mins} \\ \text { Denaturation: } & 94^{\circ} \mathrm{C} \text { for } 30 \mathrm{~s} \\ \text { Annealing: } & 65^{\circ} \mathrm{C} \text { for } 45 \mathrm{~s} \\ \text { Extension: } & 72^{\circ} \mathrm{C} \text { for } 60 \mathrm{~s}\end{array}\right\} \times 30$ cycles

3.4 Denaturing gradient gel electrophoresis (DGGE)

Glass DGGE plates were thoroughly washed with methanol and potassium hydroxide solution, with a final 70% ethanol rinse to ensure a dust free surface. "C thru" solution was spread on one of the plates to prevent the gel from adhering to the glass and to allow for easy handling when viewing the gel. DGGE was performed with a 10% ($\mathrm{wt} / \mathrm{vol}$) polyacrylamide gel (37.5:1, acrylamide:bisacrylamide). A $30 \%-60 \%$ low to high gradient was used for DNA
analysis. Usually, 100% denaturant corresponds to 7 M urea and 40% ($\mathrm{vol} / \mathrm{vol}$) acrylamide. The 30% gradient contained 5 ml of 40% polyacrylamide, 1 ml of $10 \times$ TAE, 2.4 ml of formamide, 2.5 g urea and was adjusted to a final volume of 20 ml with distilled water. The 60% gradient contained 5 ml of 40% polyacrylamide, 1 ml of $10 \times$ TAE, 4.8 ml of formamide, 5.0 g of urea and was adjusted to a final volume of 20 ml with distilled water. $180 \mu \mathrm{l}$ of 10% ammonium persulfate and $18 \mu \mathrm{l}$ of TEMED were added to catalyse the polymerization process. Samples were electrophorised for 16 h at 100 V at $60^{\circ} \mathrm{C}$, with the Scie-plas Bio-rad system. 0.5 X TAE (20 mM Tris-acetate $\mathrm{pH} 7.4,10 \mathrm{mM}$ sodium acetate and 0.5 mM EDTA pH 7.4) was used as electrophoresis buffer. ${ }^{5-7}$

3.5. Cloning

3.5.1 Calculation of the amount of insert required

Samples were cloned using the pMOSBlue blunt ended cloning kit (Amersham Pharmacia Biotech). The PCR insert to be cloned was gel purified using the GFX PCR DNA and Gel Band Purification Kit (Amersham Biosciences), to ens ure optimal cloning efficiency. The insert concentration was estimated by comparison to DNA standards on an agarose gel. The amount of insert required to obtain a molar vector:insert ratio of 1:2.5, when using 50 ng of vector, was calculated with the following equation:-

$$
\left(\frac{(Z) .50}{2887} x \frac{2.5}{1}\right)=\text { ng of insert }
$$

where Z is the size of insert in bp
2887 is the size of the vector in bp
50 is the concentration of the vector (ng)

3.5.2 Phosphokinase reaction

Each phosphokinase reaction was carried out with $1 \mu \mathrm{l}$ of 10 x phosphokinase buffer, $0.5 \mu \mathrm{l}$ of 100 mM DTT, $1 \mu \mathrm{l}$ of phosphokinase enzyme and $\chi \mu \mathrm{l}$ of PCR product (calculated as above). Final volume was adjusted to $10 \mu \mathrm{l}$ with super Q water. The production of blunt
ended, phosphorylated PCR products in a one step reaction was obtained after a $22^{\circ} \mathrm{C}$ incubation for 40 mins.

3.5.3 Ligation

A $75^{\circ} \mathrm{C}$ incubation for 10 mins . was used to inactivate the phosphokinase.. The reaction was cooled on ice for 2 mins to prevent the ligase from being inactivated. $10 \mu 1$ of the phosphorylated PCR product (the entire pk reaction), $1 \mu \mathrm{l}$ of pMOS Blue vector ($50 \mathrm{ng} / \mu \mathrm{l}$) and $1 \mu 1$ of T_{4} DNA ligase were then incubated overnight at $22^{\circ} \mathrm{C}$ to allow for a more efficient ligation of the insert in the vector.

3.5.4 Transformation

$1 \mu 1$ of the ligation mix was transformed into $20 \mu 1$ of pre-chilled chemically competent E. coli cells via heat shock transformation. After incubation for 1 hour at $37^{\circ} \mathrm{C}$, the cells were then plated onto LB agar ampicillin plates containing $35 \mu \mathrm{l}$ of $50 \mathrm{mg} / \mathrm{ml}$ X-gal and $20 \mu \mathrm{l}$ of 100 mM IPTG, for blue/white screening of recombinant cells.

3.5.5 Direct colony PCR screening

Master plates of each colony were initially constructed and detection of the insert was then carried out via direct colony PCR screening. Selected colonies, approximately 1 mm in diameter, were transferred to a 1.5 ml tube containing $40 \mu 1$ of sterile distilled water. Tubes were then placed in boiling water for 5 mins to lyse the cells and denature DNases. After centrifugation, $10 \mu \mathrm{l}$ of each supernatant was transferred to a clean eppendorf tube for M13 PCR analysis.

3.6. Amplified rDNA restriction analysis (ARDRA)

ARDRA, which was conducted on samples that showed an insert during M13 PCR analysis, facilitates the comparison of insert sequences and eliminates need for sequencing of multiple common inserts. Eco R1 ($8 \mathrm{u} / \mu \mathrm{l}$) was used to screen all inserts. $5 \mu \mathrm{l}$ of DNA was incubated with $0.8 \mu \mathrm{l}$ of Eco R1, $2 \mu \mathrm{l}$ of buffer and $12.2 \mu \mathrm{l}$ of water, overnight. Alu1, a 4bp
restriction endonuclease was used to obtain more detailed banding patterns of the inserts (similar sequences displayed similar bands). $5 \mu \mathrm{l}$ of DNA were incubated with $0.8 \mu \mathrm{l}$ of Alu1, $2 \mu \mathrm{l}$ of buffer (Y+ Tango, Fermentas) and $12.2 \mu \mathrm{l}$ of water, overnight.

3.7. Plasmid isolation

Clones containing the inserts selected for sequencing were inoculated into LB medium and incubated overnight. Plasmids were isolated using the GFX Micro Plasmid Prep Kit (Amersham Biosciences). The above procedure makes use of the modified alkaline lysis procedure as well as a glass fiber matrix to produce high yields of DNA.

3.8. Sequencing

Sequencing reactions were conducted at the University of Cape Town, using the Sanger Dideoxy sequencing method. Sequencing reactions were conducted by Di James, the senior technical officer at the Department of Molecular and Cell Biology at UCT.

3.9. Phylogenetic analysis

Alignments were conducted with Clustal W multiple alignments Eatured in Bioedit Sequence Alignment Editor version 6.0.5 (Copyright 1997-2001 Tom Hall Isis Pharmaceuticals Inc. Department of Microbiology, North Carolina State University). The software package TREECON was used for the construction and drawing of the phylogenetic trees, based on evolutionary distances computed from nucleic acid sequences. ${ }^{8}$ The Galtier and Gouy ${ }^{9}$ distance based method was used for constructing neighbour joining phylogenetic trees with a bootstrap value of 100 .

3.10. References:

1. Farelly, V., F. Rainey, and E. Stackebrandt. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16 S rRNA genes from a mixture of bacterial species. Applied and Environmental Microbiology. Microbiology. 61:27982801.
2. Reysenbach, A. L., and N. R. Pace. 1995. Reliable amplification of hyperthermophilic archael 16 S rRNA genes by the Polymerase Chain Reaction. In Archaea: A Laboratory Manual - Thermophiles. Cold Spring Harbour Laboratory Press. 101-105pp.
3. Watanabe, K., M. Teramoto, H. Futamata, and S. Harayama. 1998. Molecular detection, isolation and physiological characterisation of functionally dominant phenol degrading bacteria in activated sludge. Applied and Environmental Microbiology. 64:4396-4402.
4. Don, R. H., P. T. Cox, B. J. Wainwright, K. Baker, and J. S. Mattick. 1991. "Touchdown" PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research. 19: 4008.
5. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 59:695-700.
6. Myers, R. M., S. G. Fischer, L. S. Lermann, and T. Maniatis. 1985. Nearly all single base substitutions in DNA fragments joint to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research. 13:3131-3145.
7. Myers, R. M., L. S. Lermann, and T. Maniatis. 1987. Detection and localisation of single base changes by denaturing gradient gel electrophoresis. Methods in Enzymology. 155:501-527.
8. Van de Peer, Y., and R. De Wachter. (1994). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in Biosciences. 10:569-570.
9. Galtier, N, and M. Gouy. (1995). Inferring phylogenies from DNA sequences of unequal base compositions. Proceedings of the National Academy of Science. USA. 92:11317-11321.

Chapter

Results and Discussion

4.1. Introduction

Documented reports on the molecular investigations of microbial communities in the McMurdo Dry Valleys are few. ${ }^{1}$ Previous studies have focused on microscopy and culture dependent methods but such approaches do not reflect the true diversity of a microbial community. ${ }^{1}$ This study utilised 16 S rDNA PCR and phylogenetic analysis to obtain qualitative data on the bacterial phylotypes that inhabit the Miers Dry Valley of McMurdo Sound. No previous studies have attempted to establish the presence of a putative community structure in Dry Valley mineral soils. Hence, this investigation has employed molecular phylogenetics in an attempt to infer the presence of one of the key components of a stable functional community, whereby carbon acquisition is either heterotrophic or autotrophic. In the Dry Valley mineral soils, exogenous heterotrophic substrates are thought to be negligible ${ }^{2}$ it is therefore suggested that any putative community must inevitably be based on autotrophy (photoautotrophy/chemoautotrophy). In this investigation we attempt to infer from phylogenetic data, the possible presence of indicative phenotypes which might contribute to a functional microbial community.

4.2. gDNA Isolation

gDNA obtained with the BIO 101 Kit was of a higher purity and less sheared (Fig. 4.1.) than that of the modified Zhou method. All samples showed the presence of DNA with a size range of between 11 and 14 kb . However, samples 1 to 5,10 and 12 displayed weak signa 1 s indicating low biomass, whereas samples 6 to 9 and 11 showed strong signals, indicative of a higher biomass. These relative biomass levels might be attributed to the physical
characteristics of the mineral soils. For example, the gravels of samples 1 to 5 were coarser in nature while, with an increase in elevation, the gravels became finer (D. A. Cowan pers. comm.). Hence, the smaller the soil granules the greater the available surface area for microbial growth.

Figure 4.1. gDNA isolations of MVT samples 1 to 12. Lane 1 is? DNA cut with Hind III, lane 2 ? DNA cut with Pst I and lanes $\mathbf{3}$ to 14 show DNA extractions from MVT samples 1 to 12 , respectively.

Figure 4.2. Products of 16S rDNA PCR amplification. Lanes $\mathbf{1}$ to $\mathbf{1 2}$ are MVT samples 1 to 12 respectively, lane 13 is the positive control (16 S PCR of E. coligDNA), lane 14 is the negative control and lane 15 is? DNA cut with Pst I.

4.3. 16S rDNA PCR

16 S rDNA PCR, using the universal bacterial 16 S primers E9F ${ }^{3}$ and U1510R, ${ }^{4}$ was successful with all 12 samples. In all cases amplicons of approximately 1500 bp (the expected size) were obtained (Fig. 4.2.).

4.4. Denaturing gradient gel electrophoresis (DGGE)

DGGE, conducted to obtain an overview of the bacterial diversity across the 12 samples, showed that many of the transect samples displayed similar banding patterns (Fig. 4.3.). It was seen that each sample displayed significant bacterial diversity (each band represents one or more different microorganisms). With the exception of sample 7 many of the bacterial phylotypes were common in every sample. However, certain bacterial phylotypes appeared to be site specific (see arrows Fig. 4.3.). DGGE is capable of detecting up to 96% of all mutations or single base pair substitutions in fragments up to 500 base pairs in length and was also shown to be reproducible. ${ }^{5,6}$ The sensitivity of DGGE was evident in the present investigation as results were consistent when DGGE was conducted repeatedly. The consistency of phylotypes present in every sampe, reflected by DGGE, was also indicated in the 16 S rDNA clone libraries.

A vertical transect of 500 m in the Miers Dry Valley has little effect on microbial diversity, as DGGE has indicated that few phylotypes appeared to be altitude-dependent. Arrow \mathbf{A} in Fig. 4.3. shows phylotypes that are common in samples 5 to 12 and arrow \mathbf{B} shows phylotypes common in samples 8 to 12 . Due to the similarity between the various samples clone libraries for samples $1,5,7,9$ and 12 were constructed.

Figure 4.3. Denaturing gradient gel showing bacterial phylotypic diversity across the MVT transect. (M) is marker ? DNA cut with Pst I, lanes $\mathbf{1}$ to 12 is MVT samples 1 to 12 respectively and lane 13 is the positive control (E. coli partial 16S sequence).

4.5. 16S Clone Libraries and Phylogenetic Analyses

Previous studies conducted on microbial communities in the McMurdo Dry Valleys have largely utilised microscopy and culture-based methods. ${ }^{7}$ However, it is now widely accepted that these approaches do not reflect the true microbial diversity of an environment. For example, an investigation utilising morphological and molecular approaches to explore cyanobacterial diversity in Lake Fryxell (McMurdo Dry Valleys) showed a substantial discrepancy between the two techniques. ${ }^{8}$ Microscopy identified eight morphotypes whilst molecular analyses revealed fifteen different phylotypes. ${ }^{8}$ The report provided evidence for the molecular diversity of Cyanobacteria, which was shown to be greater than the previously known diversity based on culture and microscopy methods. ${ }^{8}$ Previous culture based methods investigating the microbiology of Antarctic Dry Valley mineral soils showed the presence of predominately gram negative aerobic rods such as Bacillus, Micrococcus and Streptomyces. ${ }^{9}$ The present investigation discovered a wider range of phylotypes encompassing gram positive aerobic and anaerobic genera such as Clostridium (anaerobic), Rhodoglobus and Rubrobacter.

In the present investigation partial 16 S gene amplicons of each sample were sequenced with the $E 9 F^{3}$ primer via the Sanger dideoxy sequencing method. Sequences of approximately 500bp, encompassing the variable regions V1, V2 and V3, were obtained. A total of 121 clones were sequenced and similarity searches with known bacterial 16S rDNA sequences in public databases were evaluated. Of the 121 sequences, 115 were $=90 \%$ identical to their respective matches in the database, 2 sequences were 89% identical and 4 sequences were 88% identical. These high percentage homology values would confirm the phylum and in some cases $(=95 \%)$ the genus level of the sequences. ${ }^{7}$ A sequence identity value of $=98 \%$ may correspond to species designation. ${ }^{7}$ However, confirmatory biochemical, physiological and morphological testing should be conducted (pending the culturable state of the isolates).

The partial 16 S rDNA sequences of each library and their reference sequences from the database were aligned with Clustal W featured in Bioedit version 6.0.5. Neighbour joining phylogenetic trees were constructed with Treecon, ${ }^{10}$ employing the Galtier and Gouy distance based method. ${ }^{11}$ The scale bar of all trees represents a 0.1% difference in nucleotide sequences. Bootstrap values provide a measure of the reliability of the phylogenetic analysis and values of 65 and above for the nodes are displayed on the trees.

All trees showed that most of the clones clustered with their respective matches obtained from the database and also displaying bootstrap values of 100 . For most of these clusters, small differences in the branch distance indicated a high nucleotide similarity between the sequences. These results suggest the high probability of phylotypes in the present study being considered closely related to those in the database. Some Antarctic isolates clustered together whilst others exhibited high similarity to environmental samples. This suggests that most Antarctic genera are common to other soil environments, but may have adapted to the extreme psychrophilic habitat. A relatively small proportion ($\sim 10 \%$) of Antarctic phylotypes appeared to be novel.

16 S rDNA PCR and phylogenetic analyses have been previously used to investigate the microbial diversity of cryptoendolithic communities of the McMurdo Dry Valleys, in a previous study. ${ }^{7}$ Results showed that Actinobacteria, a and ?-Proteobacteria and Planctomycetes were among the dominant phylotypes present. ${ }^{7}$ Results correlated with the
present investigation as the major taxonomic groups represented by the genera included a-, β and ?-Proteobacteria, Actinobacteria, Verrucomicrobia, Planctomycetes and several uncultured environmental and Antarctic samples.

Proteobacteria, considered the most diverse group of bacteria, are the second largest group (Firmicutes being the first), consisting of 429 named genera in 72 named families. ${ }^{12}$ All species are gram negative with their diversity ranging from purple phototrophs to chemoautotrophs and chemoheterotrophs. ${ }^{13}$ Each library varied in the composition of a, B and ?-Proteobacteria. The a-Proteobacteria contain genera that are mostly pathogenic in nature, either to humans or plants. Other genera are chemoautotrophs and some are capable of fixing nitrogen. ${ }^{13}$ a-Proteobacteria are mostly digotrophic bacteria, that occupy nutrient limiting environments and they are also common in pristine soils. ${ }^{12}$ B-Proteobacteria consist either of chemoautotrophs (capable of oxidising elemental sulfur) or chemoheterotrophs (capable of utilising organic sulfur). ${ }^{13}$?-Proteobacteria are autotrophs either using light (purple sulfur bacteria, photoautotrophs) or $\mathrm{H}_{2} \mathrm{~S}$ as a source of energy (chemoautotrophs). This group also contains chemoheterotrophs. ${ }^{13}$

Actinobacteria are a group of aerobic, gram positive bacteria with high GC content genomes. They constitute some of the most common soil microbiota, which play important roles in decomposition and humus formation. ${ }^{7,14}$ Planctomycetes are a group of budding peptidoglycan-less bacteria ${ }^{15}$ that are capable of growing anaerobically and autotrophically via the oxidation of ammonium. ${ }^{16}$ Verrucomicrobia, also termed prosthecobacteria (having multiple appendages on cell surfaces) are heterotrophic, gram negative non motile bacteria. Their common environments include eutrophic lakes and ponds. The prostheca enable attachment to various surfaces. ${ }^{17}$

Cyanobacteria were shown to be the dominant phototrophs in many moist Antarctica habitats, such as lakes, ponds, endolithic and sublithic communities. ${ }^{18,19}$ However, the limited detection of cyanobacteria throughout the Miers Dry Valley Transect may reflect the low precipitation levels of the valley.

4.5.1. MVT 1

Based on homology values of $=95 \%$ and phylogenetic studies, five sequences can be assigned to specific genera with some assurance. These included the sequences from clones 18, 19, 37, 54 and 60 (Table 4.1., Fig. 4.4.). Sequence from clone 18 showed a 96% homology to an Opitutis sp. ${ }^{17}$ and sequence from clone 19 was 97% identical to a Clostridium sp. These genera were also confirmed through phylogenetic analyses with respect to the high bootstrap values (100) and the small difference in branch lengths. The inhabitance of Clostridia (anaerobic, gram positive and spore forming) in Antarctica may be unexpected due to the highly aerobic nature of the environment. ${ }^{20}$ However, a previous study conducted on the microbial community of a mat sample from Lake Fryxell, Antarctica reported that more than 10% of the cloned 16 S rRNA gene sequences and five of the isolates belonged to the genera Clostridium. ${ }^{21}$ More specifically, most of the 16 S rRNA gene sequences and four of the five isolates were phylogenetically related to Clostridium estertheticum, a psychrophilic species originally isolated from spoiled vacuum-packed refrigerated beef. ${ }^{21}$

The other confirmed genera included Rhodoglobus (clone 37) (Table 4.1.), an Antarctic isolate from the McMurdo Dry Valleys. ${ }^{22}$ Phylogenetic studies have illustrated that sequence from clone 37 has closely clustered with Rhodoglobus, with a bootstrap value of 100 and a small difference in the branch lengths (Fig. 4.4.). This microorganism was characterised as a psychrophilic, gram positive, aerobic bacterium that forms red pigmented colonies when grown at $18^{\circ} \mathrm{C}$. Rhodoglobus vestali belongs to the family Microbacteriaceae and shows a very high similarity to the genus Leifsonia, a cryobacterium. ${ }^{22}$

The sequence from clone 41 was 98% identical to a bacterium that contained a gene that was shown to code for a diooxygenase enzyme capable of breaking down naphthalene ${ }^{23}$ (Table 4.1.). The bacterium, referred to as strain CJ2, displayed a number of characteristics that made it a likely candidate to be of Antarctic origin. ${ }^{23}$ In the present investigation phylogenetic analyses has indicated that sequence 41 and the uncultured sample cluster closely to other Antarctic and Arctic sequences (Fig. 4.4.). Strain CJ2 is a gram negative coccus that grows in the presence of naphthalene, at temperatures only under $20^{\circ} \mathrm{C}$ (optimally at $10^{\circ} \mathrm{C}$) and it was also incapable of growing in rich media. ${ }^{23}$

The remaining two genera that can be assigned with some confidence, included sequence from clone 54 which was 99% identical to a Brevundimonas sp., ${ }^{24}$ and sequence from clone 60 which was 98% identical to a Lysobacter sp. (Table 4.1.). Brevundimonas is an aProteobacterium that resides in low nutrient freshwater or soil habitats. ${ }^{24}$ Both these genera are chemoheterotrophs. Evidence for the presence of Brevundimonas sp. in Antarctic soils has been provided in other reports. ${ }^{25}$

Microbial community structures are dependent on the relationships between photo- and chemoautotrophs as well as photo- and chemoheterotrophs. The former, being primary producers, generate organic compounds like starch and sugars through the oxidation of inorganic material, which are then utilised by the photoheterotrophs. Organic forms of carbon together with sunlight are used by the photoheterotrophs to produce other complex compounds and nutrients. These compounds are then metabolised by the chemoheterotrophs such as saprobes, which release the inorganic material back into the environment.

The five confirmed genera in the MVT 1 16S clone library are all heterotrophs. Species belonging to the genera Opitutis and Clostridium are chemoheterotrophs that require organic compounds for gowth and are strictly fermentative. ${ }^{17,20}$ The genera Brevundimonas and Lysobacter are also chemoheterotrophs. ${ }^{24}$ Rhodoglobus is an Actinobacterium which is known to be a saprophytic heterotroph. ${ }^{22}$ Previous studies using culture based methods have shown the presence of photoautotrophs in the form of cyanobacteria, no chemoautotrophs were reported. ${ }^{2}$ The use of molecular techniques in the present investigation cannot confirm the presence of chemoautotrophs. However, their possible presence cannot be eliminated as a large portion of the sequences remained uncultured (Fig. 4.5.). Photoautotrophs in the form of cyanobacteria accounted for 3% of the phylotypic diversity (Fig. 4.5.) in MVT 1, but this could be attributed to the aerial transport of dry cyanobacterial mats as site 1 resides close to the margins of Lake Miers.

Photo- and chemoautotrophic activity have shown to be deficient in the arid, highly aerobic soils of the Miers Dry Valley. ${ }^{2}$ Heterotrophic activity is therefore highly dependent on imported organic matter. ${ }^{2}$ Organic matter originates in the aquatic environments and in
cyanobacterial communities within cryptoendolithic habitats and is aerially dispersed across the Dry Valleys. ${ }^{2}$

\author{

- Proteobacteria
 - Actinobacteria
 - Verrucomicrobia
 - Planctomycetes
 - Firmicutes
 - Cyanobacteria
 - Uncultured Antarctic / Arctic Samples
 - Uncultured Environmental Samples
}

Figure 4.5. The percentage of different phyla in MVT 1.

4.5.2. MVT 5

Actinobacteria in MVT 5 accounted for 13% of the phylotypic diversity (Fig. 4.6.). These included Nocardia sp. (clone 2), ${ }^{36}$ Kribbella sp. (clone 5) and possibly Rubrobacter radiotolerans (clone 8$)^{37}$ (Table 4.2.). Rubrobacter radiotolerans is a radiation resistant bacterium which is frequently isolated from thermal environments. It is also known that the DNA of Rubrobacter sp. is frequently isolated from desert soils. ${ }^{37}$ Studies have shown that highly radiation resistant bacteria have the ability to repair DNA that is damaged by radiation and this may also be an adaptation to repair DNA that is damaged by desiccation. ${ }^{7}$ In another study investigating cryptoendolithic communities from the McMurdo Dry Valleys, BLAST results of bacterial 16 S sequences resulted in homology to members of the ThermusDeinococcus phylogenetic group. ${ }^{7}$ Deinococcus spp. have also shown to be possible inhabitants of granite outcrops in Antarctica ${ }^{38}$ and they are also very similar to Rubrobacter radiotolerans especially with its radiation resistant ability. ${ }^{7}$ This provides evidence for the possibility of Rubrobacter spp. inhabiting Antarctica.

Table 4.1. Summary of MVT 1 Blast results

Clone No.	Size	Phylogenetic Group	Organism	\%Identity/ \%Similarity	E Value	Accession Number	Ref.
3	89-437	Uncultured environmental sample	Uncultured bacterium clone cRI32d	344/350 (98\%)	0	AY364069	26
4	198-683	Uncultured environmental sample	Uncultured bacterium clone KD4-108	448/486 (92\%)	0	AY218624	Unpublished
6	47-692	Uncultured environmental sample	Uncultured bacterium clone ARKIA-43	600/647 (92\%)	0	AF468297	27
7	82-656	? proteobacteria	Uncultured Xanthomonadaceae bacterium clone M10Ba23	524/577 (90\%)	0	AY360613	28
8	182-638	Actinobacteria	Sphaerobacter thermophilus strain DSM 20745T	405/457 (88\%)	e^{-136}	AJ420142	Unpublished
10	42-663	Uncultured environmental sample	Uncultured bacterium clone a 13115	604/623 (96\%)	0	AY102322	29
12	50-718	Uncultured environmental sample	Uncultured bacterium clone ARKMP-16	663/671 (98\%)	0	AF468326	Unpublished
18	85-682	Verrucomicrobia	Opitutus sp. strain VeCb1	580/598 (96\%)	0	X99391	17
19	83-696	Clostridia	Clostridium estertheticum A-1/C-an/C1	600/614 (97\%)	0	AJ297442	Unpublished
24	22-535	Uncultured environmental sample	Uncultivated soil bacterium clone C102	497/515 (96\%)	0	AF013529	30
29	76-543	Planctomycetes	Uncultured Planctomy cetales bacterium clone M10Ba61	435/468 (92\%)	0	AY360649	28
30	53-666	Verrucomicrobia	Bacterium Ellin5102	571/614 (92\%)	0	AY234519	31
32	179-704	Planctomycetes	Uncultured Planctomycetales bacterium clone SM1A02	464/526 (88\%)	e^{-154}	AF445645	Unpublished
34	215-607	Cyanobacteria	Uncultured cyanobacterium clone TAF-B69	373/393 (94\%)	e^{-179}	AY038727	32
36	58-448	Uncultured environmental sample	Uncultured Antarctic bacterium LB3-30	378/391 (96\%)	0	AF173822	Unpublished
37	65-610	Actinobacteria	Rhodoglobus vestalii, strain LV3	520/546 (95\%)	0	AJ459101	22
41	82-627	Uncultured environmental sample	Uncultured bacterium clone 61	537/546 (98\%)	0	AY250101	23
47	110-286	Uncultured environmental sample	Uncultured bacterium clone CBF2	168/177 (94\%)	$2 \mathrm{e}^{-80}$	AF392790	Unpublished
48	83-501	Uncultured environmental sample	Uncultured soil bacterium clone Tc120-141	391/419 (93\%)	0	AY242634	33
49	70-644	Uncultured environmental sample	Unidentified bacterium, strain BD5-13	528/575 (91\%)	0	AB015569	34
54	81-681	a proteobacteria	Brevundimonas sp., strain FWC04	596/601 (99\%)	0	AJ227793	24
55	97-584	Uncultured environmental sample	Uncultured gold mine bacterium D33	457/489 (93\%)	0	AF337887	Unpublished
57	149-537	a proteobacteria	R. capsulatus	365/390 (93\%)	e^{-180}	AY128090	Unpublished
60	105-630	? proteobacteria	Lysobacter sp. Dae16	518/526 (98\%)	0	AB166878	Unpublished
61	75-505	Uncultured environmental sample	Uncultured Crater Lake bacterium CL0-56	414/431 (96\%)	0	AF316782	35

Figure 4.6. The percentage of different phyla in MVT 5.

The genera or family of five sequences in MVT 5 can be assigned with confidence, based on homology values of $=95 \%$. These included sequences from clones $1,2,5,24$ and 68 (Table 4.2.). The sequence from clone 1 displayed an identity value of 97% to a Comamonadaceae bacterium. ${ }^{28}$ Comamonadaceae are chemoheterotrophic, gram negative, aerobic bacteria that are frequently used for the treatment of activated sludge. ${ }^{28}$ The sequence from clone 2 was 95% homologous to a Nocardia sp. ${ }^{36}$ This genus comprises filamentous, chemoheterotrophic and facultatively anaerobic bacteria that are frequently used in foaming and wastewater treatment plants. ${ }^{36}$ The sequence from clone 24 was 97% identical to a Sphingomonas spp. ${ }^{39}$ and sequence from clone 68 was 98% homologous to a Lysobacter sp. Both these genera are chemoheterotrophs. Supporting evidence for the presence of Sphingomonas sp. in Antarctic soils is provided in other reports. ${ }^{25}$ Blast results in MVT 5 16S clone library did not support the presence of autotrophs. The apparent lack of autotrophic activity means that these heterotrophs have to rely on other sources of organic compounds and the dominant available form of organic compounds is through aerial dispersion as discussed previously.

Blast results have shown predominantly heterotrophs to be present in the Miers Dry Valley. However, the possibility of autotrophs being present in this environment cannot be eliminated as a large portion of the sequences showed homology to uncultured Antarctic and environmental samples (Fig. 4.6.). The sequence from clone 9 showed a 94% homology to Methylobacterium nodulans ${ }^{40}$ (Table 4.2.), a chemoautotroph capable of oxidising methane to

Table 4.2. Summary of MVT 5 Blast results

$\begin{aligned} & \text { Clone } \\ & \text { No. } \end{aligned}$	Size	Phylogenetic Group	Organism	\%Identity / \%Similarity	E Value	Accession Number	Ref.
1	10-679	B Proteobacteria	Uncultured Comamonadaceae bacterium clone M3Ba22	655/670 (97\%)	0	AY360686	28
2	1437-1087	Actinobacteria	N. uniformis	336/351 (95\%)	e^{-159}	Z46752	36
5	1471-821	Actinobacteria	Kribbella antibiotica	632/651 (97\%)	0	AY082063	Unpublished
8	15-646	Actinobacteria	Rubrobacter radiotolerans	596/632 (94\%)	0	U65647	37
9	1410-762	α proteobacteria	Methylobacterium nodulans strain ORS2060	611/649 (94\%)	0	AF220763	40
10	13-681	uncultured environmental samples	Uncultured bacterium clone D138	656/669 (98\%)	0	AY274144	41
11	1408-762	α proteobacteria	X. flavus strain JW/KR-E1	609/651 (93\%)	0	X94206	42
12	204-687	uncultured environmental samples	Uncultured Crater Lake bacterium CL500-48	450/486 (92\%)	0	AF316757	35
13	1362-799	uncultured environmental samples	Uncultured Antarctic bacterium LB3-92	531/566 (93\%)	0	AF173824	Unpublished
14	1420-838	uncultured environmental samples	Uncultured bacterium clone ARKMP-14	572/583 (98\%)	0	AF468332	Unpublished
18	1103-411	uncultured environmental samples	Uncultured bacterium clone KD7-88	631/694 (90\%)	0	AY218718	Unpublished
21	1311-750	β Proteobacteria	Glacier bacterium FJI10	554/563 (98\%)	0	AY315180	Unpublished
24	1-586	α proteobacteria	Sphingomonas sp. SIA181-1A1	572/588 (97\%)	0	AF395032	39
26	1-626	Acidobacteria	Uncultured Acidobacteria bacterium clone 351B	622/626 (99\%)	0	AY571792	Unpublished
29	1-436	uncultured environmental samples	Uncultured bacterium, clone JG34-KF-314	432/436 (99\%)	0	AJ532726	43
30	744-510	Chloroflexi	Uncultured Chloroflexi bacterium clone s02wfb8	219/235 (93\%)	e^{-87}	AY184460	Unpublished
34	1451-819	?-Proteobacteria	Uncultured beta proteobacterium clone B-BH93	633/633 (100\%)	0	AY622261	Unpublished
37	1517-890	uncultured environmental samples	Bacterial species, clone RB41	585/632 (92\%),	0	Z95722	Unpublished
39	2-585	uncultured environmental samples	Uncultured bacterium clone C-F-12	546/585 (93\%)	0	AF443578	44
40	1-627	uncultured environmental samples	Uncultured soil bacterium clone Tc 123-C09	582/629 (92\%)	0	AY242727	33
51	180-641	Actinobacteria	Sphaerobacter thermophilus strain DSM 20745T	405/457 (88\%)	e^{-136}	AJ420142	Unpublished
54	44-660	Uncultured environmental sample	Uncultured bacterium clone a13115	604/623 (96\%)	0	AY102322	29
62	55-656	Verrucomicrobia	Bacterium Ellin5102	571/614 (92\%)	0	AY234519	31
65	47-692	Uncultured environmental s ample	Uncultured bacterium clone ARKIA-43	600/647 (92\%)	0	AF468297	27
68	107-631	? proteobacteria	Lysobacter sp. Dae16	518/526 (98\%)	0	AB166878	Unpublished

methanol. Although the percentage homology may not be sufficient to confirm the genus of the organism, it indicated the possible presence of chemoautotrophs in these samples.

4.5.2. MVT 7

MVT 7 displays a different banding pattern as compared to the other samples, when viewed by DGGE (Fig. 4.3.). MVT 7 seems to lack some of the phylotypes that are common in the other samples. This sample is at the centre of the transect and it is the driest, as the bottom samples may experience contact with flowing water from Lake Miers whilst the upper levels experience some moisture due to fog effects and cloud cover. Hence, a dominancy of Actinobacteria would be expected in this sample. This is consistent with the results obtained as the uncultured Antarctic and environmental samples accounted for the highest percentage of phylotypes, followed by Actinobacteria (Fig. 4.7.).

\square Proteobacteria

- Actinobacteria
- Gemmatimonadetes
- Verrucomicrobia
- Uncultured Antarctic / Arctic Samples
- Uncultured Environmental Samples

Figure 4.7. The percentage of different phyla in MVT 7.

The sequence from clone 94 showed a 95% homology to Rubrobacter radiotolerans ${ }^{37}$ (Table 4.3.) and the high bootstrap value (100) and small difference in branch lengths shown in the phylogenetic studies (Fig. 4.8.), confirmed the genus. Rubrobacter radiotolerans is an extremely radiation resistant bacterium and the ability to repair DNA that is damaged by radiation may also be an adaptation to repair DNA that is damaged by desiccation ${ }^{7,37}$ (sec. 4.5.2.). Previous studies have postulated the possible presence of this microorganism in Antarctic mineral soils ${ }^{38}$ and the above analyses confirm these hypotheses.

Table 4.3. Summary of MVT 7 Blast results

Clone No.	Size	Phylogenetic Group	Organism	\%Identity / \%Similarity	$\underset{\text { Value }}{\mathbf{E}}$	Accession Number	Ref.
11	78-423	Gemmatimonadetes	Uncultured Gemmatimonadetes bacterium clone SL2-1-C8	311/347 (89\%)	e^{-105}	AY214645	46
13	215-564	Gemmatimonadetes	Uncultured candidate division BD bacterium clone GR12	331/351 (94\%)	e^{-149}	AF545640	47
18	103-511	uncultured environmental samples	Uncultured bacterium clone D121	376/410 (91\%)	e^{-163}	AY274130	41
24	49-660	Actinobacteria	Uncultured Pseudonocardia sp. clone 343G	599/613 (97\%)	0	AY571815	Unpublished
29	53-536	uncultured environmental samples	Uncultured bacterium clone C-F-15	439/486 (90\%)	e^{-168}	AF443586	44
31	120-359	Actinobacteria	Uncultured actinobacterium clone SMS9.6WL	220/241 (91\%)	$2 \mathrm{e}^{-83}$	AY043904	48
37	33-626	Actinobacteria	Uncultured actinobacterium clone FBP234	564/594 (94\%)	0	AY250866	7
49	50-661	Verrucomicrobia	Bacterium Ellin5102	571/614 (92\%)	0	AY234519	31
52	44-687	Uncultured environmental sample	Uncultured bacterium clone ARKIA-43	600/647 (92\%)	0	AF468297	27
58	55-444	Uncultured environmental sample	Uncultured Antarctic bacterium LB3-30	378/391 (96\%)	0	AF173822	Unpublished
61	85-499	Uncultured environmental sample	Uncultured soil bacterium clone Tc 120-141	391/419 (93\%)	0	AY242634	33
67	77-501	Uncultured environmental sample	Uncultured Crater Lake bacterium CL0-56	414/431 (96\%)	0	AF316782	35
74	1411-759	α proteobacteria	X. flavus strain JW/KR-E1	609/651 (93\%)	0	X94206	42
79	1453-817	?-Proteobacteria	Uncultured beta proteobacterium clone B-BH93	633/633 (100\%)	0	AY622261	Unpublished
82	37-657	Actinobacteria	Arthrobacter sp. I4	573/622 (92\%)	0	AY177353	49
84	86-684	Actinobacteria	Kineococcus-like bacterium AS3187	562/601 (93\%)	0	AF060689	Unpublished
85	22-608	uncultured environmental samples	Uncultured bacterium clone ARKCH2Br2-66	544/588 (92\%)	0	AF468240	Unpublished
90	748-65	uncultured environmental samples	Uncultured bacterium clone D11	631/684 (92\%)	0	AY268337	50
92	104-611	uncultured environmental samples	Uncultured bacterium clone KD1-79	475/509 (93\%)	0	AY218566	Unpublished
94	58-646	Actinobacteria	Rubrobacter radiotolerans	561/590 (95\%)	0	U65647	37
98	37-709	Uncultured environmental sample	Uncultured earthworm intestine bacterium clone ew57	664/678 (97\%)	0	AY154521	51
104	143-560	uncultured environmental samples	uncultivated soil bacterium clone S007	395/418 (94\%)	0	AF013544	30

4.5.4. MVT 9

The sequence from clone 21 was 95% identical to an uncultured environmental sample isolated from a heavy metal contaminated site, a part of a study of integron diversity ${ }^{41}$ (Table 4.4.). This sequence was present throughout all MVT samples. Integrons are horizontal gene transfer systems, which contain elements that are necessary for site-specific recombination and the expression of foreign DNA. ${ }^{41}$ The study found 14 previously undescribed integrase genes. ${ }^{41}$ As integrons are important agents for gene transfer particularly in response to selective pressure, their possible existence in Antarctic isolates may be pivotal as a means of acquiring genes that could provide a selective advantage under adverse conditions.

Phylogenetic analysis (bootstrap value of 100 and a small difference in branch lengths) (Fig. 4.9.) of the sequence from clone 58 and an identity value of 99% confirmed the genus to be the ?-Proteobacterium Stenotrophomonas ${ }^{52}$ (Table 4.4.). Stenotrophomonas is a rod shaped, multi drug resistant human pathogen. The microorganism can be found in a variety of environments and displays antifungal and antibiotic properties. ${ }^{52}$ This is an extreme ly evolved bacterium with high intraspecies diversity, which was determined by physiological parameters ${ }^{53}$ and genotypic studies. ${ }^{54}$ This microorganism was also shown to be present in Antarctica soils in a previous study. ${ }^{25}$

Figure 4.10. The percentage of different phyla in MVT 9.

Table 4.4. Summary of MVT 9 Blast results

Clone No.	Size	Phylogenetic Group	Organism	\%Identity/ \%Similarity	E Value	Accession Number	Ref.
4	74-584	Actinobacteria	Uncultured Rubrobacterium \#0319-7H2	485/517 (93\%)	0	AF234151	55
10	181-690	Planctomycetes	Nostocoida limicola III strain Ben223	481/512 (93\%)	0	AF244750	Unpublished
13	207-647	Uncultured environmental sample	Uncultured soil bacterium clone S0202	416/441 (94\%)	0	AF507699	56
14	183-689	Planctomycetes	Uncultured Planctomycetales bacterium clone M10Ba61	470/509 (92\%)	0	AY360649	28
17	58-683	Actinobacteria	Uncultured Pseudonocardia sp. clone 343G	619/627 (98\%)	0	AY571815	Unpublished
19	207-685	uncultured environmental samples	Uncultured Crater Lake bacterium CL500-48	450/486 (92\%)	0	AF316757	35
21	96-537	Uncultured environmental sample	Uncultured bacterium clone D116	421/443 (95\%)	0	AY274126	41
23	49-689	Uncultured environmental sample	Uncultured bacterium clone ARKIA-43	600/647 (92\%)	0	AF468297	27
26	93-401	Uncultured environmental sample	Uncultured bacterium clone C-F-15	286/311 (91\%)	e^{-106}	AF443586	44
28	62-467	Verrucomicrobium	Uncultured Verrucomicrobia bacterium clone NMW3.42WL	385/414 (92\%)	e^{-151}	AY043923	48
37	50-663	Verrucomicrobia	Bacterium Ellin5102	571/614 (92\%)	0	AY234519	31
41	91-435	Uncultured environmental sample	Uncultured bacterium clone cRI32d	344/350 (98\%)	0	AY364069	26
43	199-679	Uncultured environmental sample	Uncultured bacterium clone KD4-108	448/486 (92\%)	0	AY218624	Unpublished
44	73-307	Uncultured environmental sample	Uncultured soil bacterium clone Tc135-228	221/243 (90\%)	$2 \mathrm{e}^{-63}$	AY242765	33
46	37-300	Acidobacteria	Uncultured Acidobacteria bacterium clone 351B	261/271 (96\%)	e^{-104}	AY571792	Unpublished
48	61-445	Uncultured environmental sample	Uncultured Antarctic bacterium LB3-30	378/391 (96\%)	0	AF173822	Unpublished
50	24-121	Actinobacteria	Uncultured actinobacterium clone SMS9.30WL	96/100 (96\%)	$2 \mathrm{e}^{-31}$	AY043899	48
51	47-660	Uncultured environmental sample	Uncultured bacterium clone a13115	604/623 (96\%)	0	AY102322	29
55	53-755	α proteobacteria	Sphingomonas sp. SIA181-1A1	696/708 (98\%)	0	AF395032	39
58	69-751	γ proteobacteria	Stenotrophomonas maltophilia strain e-a 21	687/688 (99\%)	0	AJ293470	52
61	89-603	Uncultured environmental sample	Uncultured Acidobacteria bacterium clone 351B	514/520 (98\%)	0	AY250867	7
62	37-710	Uncultured environmental sample	Uncultured earthworm intestine bacterium clone ew57	664/678 (97\%)	0	AY154521	51
63	69-724	Uncultured environmental sample	Uncultured soil bacteriu m clone 460	633/661 (95\%)	0	AY493946	Unpublished
68	1425-835	uncultured environmental samples	Uncultured bacterium clone ARKMP-14	572/583 (98\%)	0	AF468332	Unpublished
70	1455-817	?-Proteobacteria	Uncultured beta proteobacterium clone B-BH93	633/633 (100\%)	0	AY622261	Unpublished

4.5.5. MVT 12

The sequence from clone 56 was 98% homologous to the bacterium Janthinobacterium agaricidamnosum (Table 4.5.). Phylogenetic analysis showed a close association between sequence 56 and Janthinobacterium agaricidamnosum (Fig. 4.11.). The presence of Janthinobacterium spp. in Antarctica has also been previously reported. ${ }^{1}$ Little is known about this microorganism, except that it causes a soft rot disease of the cultivated mushroom, Agaricus bisporus. ${ }^{57}$ The putative genera of three sequences fom the MVT 12 sample, that were assigned with some assurance included sequence 3 (Sphingomonas), ${ }^{39}$ sequence 6 (Stenotrophomonas), ${ }^{52}$ and sequence 56 (Janthinobacterium) (Table 4.5.). All these genera are chemoheterotrophs.

All samples have indicated that heterotrophs are more prevalent in Dry Valley mineral soils as compared to autotrophs. The presence of chemoautotrophs in Dry Valley mineral soils could not be confirmed. However, there was evidence for their possible presence as indicated by the identification of phylotypes showing homology with known chemoautotrophic genera (section 4.5.2.). Photoautotrophs in the form of cyanobacteria were evident in MVT samples 1 and 12. Cyanobacteria accounted for 3\% of the phylum diversity in MVT 12 (Fig. 4.12.). This sample was obtained from the top of the Miers Valley Transect where water availability, resulting from occasional snowfall, fog effects and cloud cover, is considered to be higher than mid-slope regions. Although it is likely that the identification of cyanobacterial phylotypic signals in sample MVT 1 (lowest transect sample) was due to the aerial transport of dry cyanobacterial mats from the adjacent margins of Lake Miers, this data indicates the possibility of photoautotrophic activity in the higher altitude mineral soils.

- Proteobacteria
- Actinobacteria
- Verrucomicrobia
- Planctomycetes
- Cyanobacteria
- Uncultured Antarctic / Arctic Samples
- Uncultured Environmental Samples

Figure 4.12. The percentage of different phyla in MVT 12.

Table 4.5. Summary of MVT 12 Blast results

Clone No.	Size	Phylogenetic Group	Organism	\%Identity/ \%Similarity	$\underset{\text { Value }}{E}$	Accession Number	Ref.
3	50-757	α proteobacteria	Sphingomonas sp. SIA181-1A1	696/708 (98\%)	0	AF395032	39
5	38-699	Uncultured environmental sample	Uncultured Antarctic bacterium LB3-30	634/665 (95\%)	0	AF173822	Unpublished
6	67-754	γ proteobacteria	Stenotrophomonas maltophilia strain e-a21	687/688 (99\%)	0	AJ293470	52
8	70-652	Uncultured environmental sample	Uncultured bacteriumclone C-F-1	563/585 (96\%)	0	AF443581	44
13	569-66	Uncultured environmental soil bacterium	Uncultured soil bacterium clone S092	451/504 (89\%)	e^{-165}	AF507523	56
15	64-728	Actinobacteria	Rubrobacter radiotolerans	619/665 (93\%)	0	U65647	37
16	87-606	Acidobacteria	Uncultured Acidobacteria bacterium clone 351B	514/520 (98\%)	0	AY571792	Unpublished
19	211-725	Uncultured Actinobacteria	Uncultured bacterium ARFS-13	498/515 (96\%)	0	AJ277692	60
20	22-679	Uncultured environmental sample	Uncultured bacterium clone Tc2	638/662 (96\%)	0	AF445086	33
21	231-701	Actinobacteria	Sphaerobacter thermophilus strain DSM 20745T	419/471 (88\%)	e^{-146}	AJ420142	Unpublished
27	87-606	Uncultured environmental sample	Uncultured Acidobacteria bacterium clone 351B	514/520 (98\%)	0	AY250867	7
29	55-741	Cyanobacteria	Uncultured Antarctic cyanobacterium clone BGC-Fr054	665/688 (96\%)	0	AY151722	8
33	62-722	Uncultured environmental sample	Uncultured bacterium clone D138	605/661 (91\%)	0	AY274144	41
42	490-77	Uncultured environmental sample	Uncultured bacterium clone D11	402/414 (97\%)	0	AY268337	50
43	69-730	uncultured soil bacterium	Uncultured soil bacterium clone G7-1465-5	610/664 (91\%)	0	AF525836	61
50	56-424	Verrucomicrobia	Uncultured Verrucomicrobia bacterium clone SMW4.44WL	339/369 (91\%)	e^{-136}	AY043931	48
52	34-711	Uncultured environmental sample	Uncultured earthworm intestine bacterium clone ew57	664/678 (97\%)	0	AY154521	51
53	204-687	Uncultured environmental sample	Uncultured Crater Lake bacterium CL500-48	450/486 (92\%)	0	AF316757	35
55	55-692	Actinobacteria	Modestobacter multiseptatus	591/638 (92\%)	0	Y18646	62
56	40-668	B proteobacteria	Janthinobacterium agaricidamnosum strain SAFR-022	619/631 (98\%)	0	AY167838	Unpublished
58	61-539	Uncultured environmental sample	Uncultured bacterium clone KD6-15	461/479 (96\%)	0	AY218754	Unpublished
60	68-727	Uncultured environmental sample	Uncultured soil bacterium clone 460	633/661 (95\%)	0	AY493946	Unpublished
62	183-694	Planctomycetes	Nostocoida limicola III strain Ben223	481/512 (93\%)	0	AF244750	Unpublished
65	51-687	Uncultured environmental sample	Uncultured bacterium clone ARKIA-43	600/647 (92\%)	0	AF468297	27

Figure 4.4. Phylogenetic tree of MVT 1 containing partial 16S clone sequences (red) and their reference sequences obtained from Genbank (blue), rooted with E. coli.

Figure 4.8. Phylogenetic tree of MVT 7 containing partial 16S clone sequences (red) and their reference sequences obtained from Genbank (blue), rooted with E. coli.

Figure 4.9. Phylogenetic tree of MVT 9 containing partial 16S clone sequences (red) and their reference sequences obtained from Genbank (blue), rooted with E. coli.

Figure 4.11. Phylogenetic tree of MVT 12 containing partial 16S clone sequences (red) and their reference sequences obtained from Genbank (blue), rooted with E. coli.

4.6. References

1. Christner, B. C., B. H. Kvitk o, and J. N. Reeve. 2003. Molecular identification of Bacteria and Eukarya inhabiting a cryoconite hole. Extremophiles. 7:177-183.
2. Vishniac, H. S. 1993. The Microbiology of Antarctic Soils. In Antarctic Microbiology. Wiley-Liss Inc., New York. 297-341pp.
3. Farelly, V., F. Rainey, and E. Stackebrandt. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16 S rRNA genes from a mixture of bacterial species. Applied and Environmental Microbiology. 61:2798-2801.
4. Reysenbach, A. L., and N. R. Pace. 1995. Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the Polymerase Chain Reaction. In Archaea: A Laboratory Manual - Thermophiles. Cold Spring Harbour Laboratory Press. 101-105pp.
5. Pablo, V. G., Q. Cao, F. Guegj, and S. Sommer. 1998. The sensitivity of denaturing gradient gel electrophoresis: a blinded analysis. Mutation Research Genomics. 382:109-114.
6. Wawer, C., and G. Muyzer. 1995. Genetic diversity of Desulfovibrio sp. in environmental samples analysed by Denaturing Gradient Gel Electrophoresis of [NiFe] hydrogenase gene fragments. Applied and Environmental Microbiology. 61:2203-2210.
7. De La Torre, J. R., B. M. Goebel, E. I. Friedmann, and N. R. Pace. 2003. Microbial Diversity of Cryptoendolithic Communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology. 69:3858-3867.
8. Taton, A., S. Grubisic, E. Brambilla, R. De Wit, and A. Wilmotte. 2003. Cyanobacterial Diversity in Natural and Artificial Microbial Mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a Morphological and Molecular Approach. Applied and Environmental Microbiology. 69:5157-5169.
9. Baker, J. H., and D. S. Smith. 1972. The bacteria in an Antarctic peat. Journal of Applied Bacteriology. 35:589-596.
10. Van de Peer, Y., and R. De Wachter. (1994). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications in the Biosciences. 10:569-570.
11. Galtier, N., and M. Gouy. (1995). Inferring phylogenies from DNA sequences of unequal base compositions. Proceedings of the National Academy of Science. USA. 92:11317-11321.
12. Garrity, G. M., M. Winters, and D. B. Searles. 2001. Taxonomic outline of the prokaryotic genera, release 1.0. Springer, New York. 320pp.
13. Prescott, L., J. Harley, D. Klein. 2001. Microbiology 4/e. McGraw Hill, New York. Ch 22-23.
14. Monciardini, P., L. Cavaletti, P. Schumann, M. Rohde, and S. Donadio. 2003. Conexibacter woesii gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. International Journal of Systematic and Evolutionary Microbiology. 53:569-576.
15. Lindsay, M. R., R. I. Webb, M. Strous, M. S. Jetten, M. K. Butler, R. J. Forde, and J. A. Fuerst. 2001. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Archives of Microbiology. 175:413-429.
16. Kuenen, G., and M. Jetten. 2001. Extraordinary anaerobic ammonium-oxidising bacteria. ASM News. 67:456-463.
17. Janssen, P. H., A. Schuhmann, E. Morschel, and F. A. Rainey. 1997. Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Applied and Environmental Microbiology. 63:1382-1388.
18. Vincent, W. F. 2000. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Science. 3:374-385.
19. Wharton, R. A., C. B. Parker, and G. M. Simmons. 1983. Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. Phycologia. 22:355-365.
20. Spring, S., B. Merkhoffer, N. Weiss, R. M. Kroppenstedt, H. Hippe, and E. Stackebrandt. 2003. Characterisation of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. no v. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. International Journal of Systematic and Evolutionary Microbiology. 53:1019-1029.
21. Brambilla, E., H. Hippe, A. Hagelstein, B. J. Tindall, and E. Stackebrandt. 2001. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles. 5:23-33.
22. Sheridan, P. P., J. Loveland-Curtze, V. I. Miteva, and J. E. Brenchley. 2003. Rhodoglobus vestalii gen. nov., sp. nov., a novel psychrophilic organism isolated from an Antarctic Dry Valley Lake. International Journal of Systematic and Evolutionary Microbiology. 53:985-994.
23. Jeon, C. O., W. Park, P. Padmanabhan, C. DeRito, J. R. Snape, and E. L. Madsen. 2003. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proceedings of the National Academy of Science U.S.A. 100:13591-13596.
24. Abraham, W. R., C. Stroempl, H. Meyer, S. Lindholst, E. R. B. Moore, R. Christ, M. Vancanneyt, B. J. Tindall, A. Bennasar, J. Smit, and M. Tesar. 1999. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. International Journal of Systematic Bacteriology. 49:1053-1073.
25. Wery, N., U. Gerike, A. Sharman, J. B. Chauduri, D. W. Hough, and M. J. Danson. 2003. Use of a Packed-Column Bioreactor for Isolation of Diverse ProteaseProducing Bacteria from Antarctic Soils. Applied and Environmental Microbiology. 69:1457-1464.
26. Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch. 2004. Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology. 70:2667-2677.
27. Brinkmeyer, R., K. Knittel, J. Jurgens, A. Weyland, R. Amann, and E. Helmke. 2003. Diversity and Structure of Bacterial Communities in Arctic versus Antarctic Pack Ice. Applied and Environmental Microbiology. 69:6610-6619.
28. Lueders, T., B. Wagner, P. Claus, and M. W. Friedrich. 2004. Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environmental Microbiology. 6:60-72.
29. Ellis, R. J., P. Morgan, A. J. Weightman, and J. C. Fry. 2003. CultivationDependent and -Independent Approaches for Determining Bacterial Diversity in Heavy-Metal-Contaminated Soil. Applied and Environmental Microbiology. 69:32233230.
30. Kuske, C. R., S. M. Barns, and J. D. Busch. 1997. Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Applied and Environmental Microbiology. 63:3614-3621.
31. Joseph, S. J., P. Hugenholtz, P. Sangwan, C. A. Osborne and P. H. Janssen. 2003. Laboratory Cultivation of Widespread and Previously Uncultured Soil Bacteria. Applied and Environmental Microbiology. 69:7210-7215.
32. O'Sullivan, L. A., A. J. Weightman, and J. C. Fry. 2002. New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Applied and Environmental Microbiology. 68:201-210.
33. Gremion, F., A. Chatzinotas, and H. Harms. 2003. Comparative 16S rand and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metarcontaminated bulk and rhizosphere soil. Environmental Microbiology. 5:896-907.
34. Li, L., C. Kato, and K. Horikoshi. 1999. Bacterial diversity in deep-sea sediments from different depths. Biodiversity Conservation. 8:659-677.
35. Urbach, E., K. L. Vergin, L. Young, A. Morse, G. L. Larson, and S. J. Giovannoni. 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnology and Oceanography. 46:557-572.
36. Isik, K., J. Chun, Y. C. Hah, and M. Goodfellow. 1999. Nocardia uniformis nom. rev. International Journal of Systematic Bacteriology. 49:1227-1230.
37. Kausar, J., Y. Ohyama, H. Terato, H. Ide, and O. Yamamoto. 1997. 16S rRNA gene sequence of Rubrobacter radiotolerans and its phylogenetic alignment with members of the genus Arthrobacter, gram-positive bacteria, and members of the family Deinococcaceae. International Journal Systematic Bacteriology. 47:684-686.
38. Seipp, R.2003. Deinococcus radiodurans: Does this bug wear a lead vest or what? Bio Teach Journal. 1:57-62.
39. Christner, B. C., E. Mosley-Thompson, L. G. Thompson, and J. N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environmental Microbiology. 3:570-577.
40. Sy, A., E. Giraud, P. Jourand, N. Garcia, A. Willems, P. de Lajudie, Y. Prin, M. Neyra, M. Gillis, C. Boivin-Masson, and B. Dreyfus. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. Journal of Bacteriology. 183:214-220.
41. Nemergut, D. R., A. P. Martin, and S. K. Schmidt. 2004. Integron Diversity in Heavy-Metal-Contaminated Mine Tailings and Inferences about Integron Evolution. Applied and Environmental Microbiology. Microbiology 70:1160-1168.
42. Rainey, F. A., and J. Wiegel. 1996. 16S ribosomal DNA sequence analysis confirms the close relationship between the general Xanthobacter, Azorhizobium, and Aquabacter and reveals a lack of phylogenetic coherence among Xanthobacter species. International Journal of Systematic Bacteriology. 46:607-610.
43. Selenska-Pobell, S., K. Flemming, T. Tzvetkova, J. Raff, M. Schnorpfeil, and A. Geissler. 2002. Bacterial communities in uranium mining waste piles and their interactions with heavy metals. Uranium in the Aquatic Environment. Merkel, B. J. :455-464.
44. Rutz, B. A., and T. L. Kieft. 2004. Phylogenetic Characterization of Dwarf Archaea and Bacteria from a Semiarid Soil. Soil Biology and Biochemistry. 36:825-833.
45. Takeuchi, M., and A. Yakota. 1994. Phylogenetic analysis of Kineococcus aurantiacus based on 16S rRNA gene sequences. FEMS Microbiology Ecology. 116:712.
46. Liles, M. R., B. F. Manske, S. B. Bintrim, J. Handelsman, and R. M. Goodman. 2003. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Applied and Environmental Microbiology. 69:2684-2691.
47. Mummey, D. L., and P. D. Stahl. 2003. Candidate division BD: phylogeny, distribution and abundance in soil ecosystems. Systematic Applied Microbiology. 26:228-235.
48. Axelrood, P. E., M. L. Chow, C. C. Radomski, J. M. McDermott, and J. Davies. 2002. Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Canadian Journal of Microbiology. 48:655-674.
49. Bodour, A. A., J. M. Wang, M. L. Brusseau, and R. M. Maier. 2003. Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environmental Microbiology. 5:888-895.
50. Kelley, S. T., U. Theisen, L. T. Angenent, A. St. Amand, and N. R. Pace. 2004. Molecular Analysis of Shower Curtain Biofilm Microbes. Applied and Environmental Microbiology. 70:4187-4192.
51. Singleton, D. R., P. F. Hendrix, D. C. Coleman, and W. B. Whitman. 2003. Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biology and Biochemistry. 35:1547-1555.
52. Minkwitz, A., and G. Berg. 2001. Comparison of antifungal activities and 16 S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. Journal of Clinical Microbiology. 39:139-145.
53. Van Den Mooter, M., and J. Swings. 1990. Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. International Journal of Systematic Bacteriology. 40:348-369.
54. Hauben, L., L. Vauterin, E. R. B. Moore, M. Hoste, and J. Swings. 1999. Genomic diversity of the genus Stenotrophomonas. International Journal of Systematic Bacteriology. 49:1749-1760.
55. Holmes, A. J., J. Bowyer, M. P. Holley, M. O'Donoghue, M. Montgomery, and M. R. Gillings. 2000. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiology Ecology. 33:111-120.
56. Dunbar, J., S. M. Barns, L. O. Ticknor, and C. R. Kuske. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. Applied and Environmental Microbiology. 68:3035-3045.
57. Lincoln, S. P., T. R. Fermor, and B. J. Tindall. 1999. Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. International Journal of Systematic Bacteriology. 49:1577-1589.
58. Boyd, W. L., J. T. Staley, and J. W. Boyd. 1966. Ecology of soil microorganisms of Antarctica. Antarctic Research Series. 8:125-159.
59. Cameron, R. E., and H. P. Conrow. 1969. Soil moisture, relative humidity, and microbial abundance in Dry Valleys of Southern Victoria Land. Antarctic Journal of the United States. 4:23-28.
60. Ludemann, H., and R. Conrad. 2000. Molecular retrieval of large 16S rRNA gene fragments from an Italian rice paddy soil affiliated with the class Actinobacteria. Systematic Applied Microbiology. 23:582-584.
61. Yin, B., L. Valinsky, X. Gao, J. O. Becker, and J. Borneman. 2003. Bacterial rRNA Genes Associated with Soil Suppressiveness against the Plant-Parasitic Nematode Heterodera schachtii. Applied and Environmental Microbiology. 69:1573-1580.
62. Mevs, U., E. Stackebrandt, P. Schumann, C. A. Gallikowski, and P. Hirsch. 2000. Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). International Journal of Systematic and Evolutionary Microbiology. 50:337-346.

Chapter 5

Conclusion

The use of molecular techniques for the analyses of microbial diversity in the Miers Dry Valley proved to be successful as genera which were not previously detected by culture based studies, were evident in the present investigation. For example, previous culturedependent studies showed the presence of predominantly gram negative aerobic rods such as Bacillus, Micrococcus and Streptomyces, in Antarctic Dry Valley mineral soils. ${ }^{1}$ However, the present investigation encompassed a wider range of phylotypes including gram positive anaerobic genera such as Clostridium. The major taxonomic groups identified from phylotypic analyses included $a-$, β - and ?-Proteobacteria, Actinobacteria, Verrucomicrobia, Planctomycetes and several uncultured environmental and Antarctic samples. These results correlated with a previous investigation of Antarctic Dry Valley mineral soils utilising molecular techniques. ${ }^{2}$

Proteobacteria and Actinobacteria, were shown to be the two dominant phylogenetic groups. a-Proteobacteria are predominantly oligotrophic bacteria ${ }^{3}$ and this provides a logical explanation for their dominance in the nutrient-poor Antarctic Dry Valley mineral soils. Actinobacteria are considered saprophytic heterotrophs and also constitute some of the most common soil microbiota. ${ }^{4}$ They are dominant in dry soil environments hence, the abundance in the Antarctic Dry Valley mineral soils. Genera which can be assigned with some confidence included, Opitutis, Clostridium, Rhodoglobus, Brevundimonas, Lysobacter, Nocardia, Kribbella, Sphingomonas, Rubrobacter, Stenotrophomonas, and Janthinobacterium.

DGGE has shown that most of the observed phylotypes were common to all samples. Analysis of microbial diversity across the 500 m vertical transect in the Miers Dry Valley suggested that few phylotypes appeared to be altitude-dependent. It should be noted however, that the altitudinal change is relatively small, and unlikely to be directly responsible for major changes in environmental parameters. Indirect effects, such as differences in Aeolian dispersal
patterns and varying water availability are more likely to be implicated in observed variations in microbial diversity.

Molecular evidence did not support the presence of an established trophic community structure in most samples across the Miers Valley Transect. With the exception of the cyanobacteria, virtually all of the phylotypes which could be assigned to putative genera with any confidence were heterotrophs. The possibility of autotrophs inhabiting the Miers Dry Valley cannot be eliminated due to a large portion of the samples being unassignable (i.e., low BLAST homology values) or falling within the 'uncultured' phylotypic group. An established trophic community structure would require a balance between the presence of autotrophs and heterotrophs. In a trophic community structure the sustainance of heterotrophs would depend on organic matter derived from autotrophic activity. However, $\pm 80 \%$ of the phylotypes in the present investigation was shown to be putative heterotrophs. The low abundance of autotrophs may be insufficient to support the activity of heterotrophs and an established trophic community structure. It is for this reason that the present investigation supports the derivation of organic matter through aerial dispersion, (as discussed by previous studies) ${ }^{5}$ instead of through the activity of autotrophs.

Phylogenetic data have correlated with the 16 S rDNA studies as most of the clones clustered with their respective matches obtained from the database and also displayed bootstrap values of 100 (the higher the bootstrap value the more reliable the phylogenetic analysis, with 100 being the maximum). Phylogenetic lineages were difficult to establish due to the large number of uncultured samples. The high nucleotide similarity between the sequences indicated the high probability of phylotypes in the present study being considered closely related to those in the database. Some Antarctic isolates clustered together whilst others exhibited high similarity to environmental samples. A relatively small proportion ($\sim 10 \%$) of Antarctic phylotypes appeared to be novel. This suggests that most Antarctic microorganisms are common to other soil environments, but may have adapted to the extreme psychrophilic habitat.

References

1. Baker, J. H., and D. S. Smith. 1972. The bacteria in an Antarctic peat. Journal of Applied Bacteriology. 35:589-596.
2. De La Torre, J. R., B. M. Goebel, E. I. Friedmann, and N. R. Pace. 2003. Microbial Diversity of Cryptoendolithic Communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology. 69:3858-3867.
3. Garrity, G. M., M. Winters, and D. B. Searles. 2001. Taxonomic outline of the prokaryotic genera, release 1.0. Springer, New York. 320pp.
4. Monciardini, P., L. Cavaletti, P. Schumann, M. Rohde, and S. Donadio. 2003. Conexibacter woesii gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. International Journal of Systematic and Evolutionary Microbiology. 53:569-576.
5. Vishniac, H. S. 1993. The Microbiology of Antarctic Soils. In Antarctic Microbiology. Wiley-Liss Inc., New York. 297-341pp.

APPENDIX

Sequences from MVT 1 16S rDNA clone library

Sequence from clone 3

1 TATTTGGTGG CGACCGKCAA ACGGGTGCGG AACACGTACA GAACCTTCCT 51 TTAAGTGGGG GATAGCCCAG AGAAATTTGG ATTAATACCC CGTAACATTA 101 TGAAGTGGCA TCACCTTATA ATTATAGATT TATCGCTTAG AGATGGCTGT 151 GCGGCTGATT AGGTAGTTGG TGTGGGTAAC GGCCCACCAA GCCTTCGATC 201 AGTAACTGGT GTGAGAGCAC GACCAGTCAC ACGGGCACTG AGACACGGGC 251 CCGACTCCTA CGGGAGGCAG CAGTAAGGAA TATTGGTCAA TGGACGCAAG 301 TCTGAACCAG CCATGCCGCG TGAAGGATGA AGGTCCTCTG GATTGTAAAC 351 TTCTTTTWYG MSAAACCCC

Sequence from clone 4

1	GACTGTTACG	GAGCGGCKMA	CGGGTGAGTA	ACACGTGAAT	AACCTGCCCT
51	CACATTCTGG	ATAATTCACC	GAAAGGTGTT	GTAATACAGG	CGAGGATTCT
101	TAAGAGGCAT	TTCTTGAGAA	GGGAAGGCGC	AAGCCGTGCG	AGGAGGGGTT
151	CGCGGATTAT	CAGGTAGTTG	GTGAGGTAAC	GGCTCACCAA	GCCGACGACG
201	ATTAGCTGGT	CTGAGAGGAT	GGTCAGCCAC	ATTGGGACTG	AGACACTGCC
251	CAGACTCCTA	CGGGAGGCTG	CAGTCGAGAA	TCTTGCACAA	TGTACGAAAG
301	TATGATGCAG	CGACGCCGCG	TGAAGGATGA	AGGCCCTCTG	GGTCGTAAAC
351	TTCTTTTATG	TGGGAAGAAT	AAATGACGGT	ACCGCATGAA	TAAGCCACGG
401	CTAACTACGT	GCCAGCAGCC	GCGGTAATAC	GTAGGTGGCA AGCGTTGTCC	
451	GGATTTACTG	GGCGTAAAGA	GTATGTAGGC	GGATGTTTAA	GTAGGAAGTG
501	AAAGGTTGGA	GCTCAACTCC	GACACTGCTC	CCTATACTGG	GCATCTTGAG
551	GGCCGGAGAG	GAAAGCGGAA	CGACACGTGT	AGCGGTGAAA	TGCGTTGATA
601	TGTGTCG				

Sequence from clone 6

1 AGCTCCTGAA GATCTAGTKC CGAACGGGTG CRWAACACGT GAGAAACCTG 51 TCCCGAACTT GGGAATAACA GCCGAAAACS ACTGCTAATA CCGAATATCT 101 TCGTAACGTC GCATGGCGAT TCGAAGAAAG CTTTATGCGG TTTGGGAGGG 151 TCTCGCGGCC TATCAGCTTG TTGGTGAGGT AATGGCTCAC CAAGGCATCG 201 ACGGGTAGCT GGTCTGAGAG GATGATCAGC CACACTGGGA CTGAGACACG 251 GCCCAGACTC CTACGGGAGG CAGCAGTGGG GAATATTGCA CAATGGGCGA 301 AAGCCTGATG CAGCGATGCC GCGTGCGGGA AGAAGGCCCT AGGGTTGTAA 351 ACCGCTTTCA GTAGGGAAGA AAATGACGGT ACCTACAGAA GAAGGTGCGG 401 CCAACTACGT GCCAGCAGCC GCGGTGACAC GTAGGCACCA AGCGTTGTCC 451 GGATTTATTG GGCGTAAAGA GCTCGTAGGC GGTTTGGTAA GTCGGGTGTG 501 AAAACTCTGG GCTCAACCCA GAGAGGCCAC TCGATACTGC CATGACTTGA 551 GTACGGTAGG GGAGTGGGGA ATTTCTAGTG TAGCGGTGAA ATGCGCAGAT 601 ATTAGAAGGA ACACCAGTGG CGAAGGCGCC ACTCTGGGCC GTAACTGACG 651 CT

Sequence from clone 7

1 TTGCTCTGTG GGTGGCGWST GGCGGACGGG CGAGGAATAC GTCGGAATCT 51 GCCCTGTTGT GGGGGATAAC GTAGGGAAAC TTACGCTAAT ACCGCATAAG 101 ACGGTGACGT GAAAGCGGGG GATCCGTAAG GACCTCGCGC GATGGGATGA 151 GCCGACGTCG GATTAGCTTG TTGGTGGGGT AAAGGCCTAC CAAGGCGACG 201 ATCCGTAGCT GGTCTGAGAG GATGATCAGC CACACTGGGA CTGAGACACG 251 GCCCAGACTC CCACGGGAGG CAGCAGTGGG GAATATTGGA CAATGGGCGC 301 AAGCCTGATC CAGCAATGCC GCGTGTGTGA AGAAGGCCTT CGGGTTGTAA 351 AGCACTTTTA TCAGGAACGA AAAGGTGTCG GCGAATACCC GGCACTGCTG 401 ACGGTACCTG AGGAATAAGC ACCGGCTAAC TTCGTGCCAG CAGCCGCGGT 451 AATACGAAGG GTGCAAGCGT TAATCGGAAT TACTGGGCGT AAAGGGTGTG 501 TAGGTGGCCT GTTAAGTCTG TCGTGAAAGC CCTGGGCTCA ACCTGGGAAT 551 GGCGGTGGAT ACTGGCGGGC TCGAGTACGG TA

Sequence from clone 8

1 GAGGAACACG TAGCTAACCT GCCCAACAGA GGGGGATAAC CTCGGGAAAC 51 CGAGGCTAAT ACCGCATACG CTCATTTTTG GGGACGAGGA TGAGGAAACG 101 GAGCAATCCG CTGATGGAGG GGGCTGCGGC CGATTAGCTA GTTGGTGGGG 151 TAAAAGCCTA CCGAGGCGGT GATCGGTAGC TGGTCTGAGA GGACGATCAG 201 CCACACGGGG ACTGAGACAC GGCCCCGACT CCTACGGGAG GCAGCAGCAA 251 GGAATTTTCC ACAATGGGCG CAAGCCTGAT GGAGCAACGC CGCGTGGGGG 301 ATGACGCTTT TCGGAGTGTA AACCCCTTTT CGAGAGGACG AAGCTAATGA 351 CGGTACTCTC GGAATAAGGA CCGGCTAACT ACGTGCCAGC AGCCGCGGTA 401 AGACGTAGGG TCCGAGCGTT GTCCGGAGTT ACTGGGCGTA AAGCGCGCGC 451 AGGCGGTTAG ACACGTCGGG TGTGAAAGCC CCCCGCTCAA CGGGGGAGGG 501 TCATTCGAAA CGGTCAGACT GGAGGCAGGG AGAGGTCGGT GGAATTCCCG 551 GTGTAGTGGT GAAATGCGTA GATAT

Sequence from clone 10
1 CAATACATCA GCGGCAGACG GGAGAGTAAC ACGTGGGAAC GCGCCCTTCG 51 GTTCGGAATA ACTCAGGGAA ACTTGAGCTA ATACCGGATA CGCCCTTACG 101 GGGAAAGATT TATTGCCGAA GGAACGGCCC GCGTCGGATT AGCTAGTTGG 151 TGAGGTAATG GCTCACCAAG GCAACGATCC GTAGCTGGTC TAAGAGGATG 201 ATCAGCCTCA CTGGGACTGA GACACGGCCC AGACTCCTAC GGGAGGCAGC 251 AGTGGGGAAT ATTGGACAAT GGGCGAAAGC CTGATCCAGC CATGCCGCGT 301 GGATGATGAA GGCCTTAGGG TTGTAAAGTC CTTTTAACGG GGAAGATAAT 351 GACGGTACCC GTAGAATAAG CCCCGGCTAA CTTCGTGCCA GCAGCCGCGG 401 TAATACGAAG GGGGCTAGCG TTGCTCGGAA TTACTGGGCG TAAAGCGCAC 451 GTAGGCGGAT TGTTAAGTCG GGGGTGAAAT CCTGGAGCTC AACTCCAGAA 501 CTGCCTTCGA AACTGGCGAT CTTGAGTCCG GGAGAGGTGA GTGGAACTGC 551 GAGTGTAGAG GTGAAATTCG TAGATATTCG CAAGAACACC AGTGGCGAAG
601 GCGGCTCACT GGCCCGGTAC TGACGCTGAG G

Sequence from clone 12

1 CTGGTGGCGA GTGGCKCACG GGTGAGTAAT ATATCGGAAC GTGCCCAGTC 51 GTGGGGGATA ACGTAGAGAA ATTTACGCTA ATACCGCATA CGATCTAAGG 101 ATGAAAGCGG GGGACTCGCA AGGGCCTCGC GCGATTGGAG CGGCTGATAT 151 CAGATTAGGT TGTTGGTGAG GTAAAAGCTC ACCAAGCCGA CGATCTGTAG 201 CTGGTTTGAG AGAACGACCA GCCACACTGG GACTGAGACA CGGCCCAGAC 251 TCCTACGGGA GGCAGCAGTG GGGAATTTTG GACAATGGGC GAAAGCCTGA 301 TCCAGCAATG CCGCGTGCAG GAAGAAGGCC TTCGGGTTGT AAACTGCTTT 351 TGTACGGAAC GAAAAGGTCT GCCCTAATAC GGCGGGCCCA TGACGGTACC 401 GTAAGAATAA GCACCGGCTA ACTACGTGCC AGCAGCCGCG GTAATACGTA 451 GGGTGCGAGC GTTAATCGGA ATTACTGGGC GTAAAGCGTG CGCAGGCGGT 501 GATGTAAGAC AGTTGTGAAA TCCCCGGGCT CAACCTGGGA ATTGCATCTG 551 TGACTGCATC GCTAGAGTAC GGTAGAGGGG GATGGAATTC CGCGTGTAGC 601 AGTGAAATGC GTAGATATGC GGAGGAACAC CGATGGCGAA GGCAATCCCC
651 TGGACCTGTA MTGACGCTCA T
Sequence from clone 18
1 GCGTAACACG TGAACAATCT ACCTTCAAAT GGGGAATAGC TCGCCGAAAG 51 GCGAATTAAT ACCGCATGTG GTTGCTTCTC GCATGAGAGG CATATCAAAG 101 TCAGGGACCG CAAGGCCTGA CGTTAGAAGA GGAGTTCGCG GCCTATCAGC 151 TAGTTGGCGA GGTAACGGCT CACCAAGGCT AAGACGGGTA GCTGGTCTGA 201 GAGGATGATC AGCCACACTG GAACTGAGAC ACGGTCCAGA CACCTACGGG 251 TGGCAGCAGT TTCGAATTAT TCACAATGGG CGAAAGCCTG ATGGTGCGAC 301 GCCGCGTGAG GGATGAAGGC CTTCGGGTTG TAAACCTCTG TCACCGGGGA 351 AGAAACGCTT CAAGTTAACA ACTTGAAACC TGACTTAACC CGGAGAGGAA 401 GCAGTGGCTA ACTCTGTGCC AGCAGCCGCG GTAATACAGA GACTGCAAGC 451 GTTATTCGGA TTCACTGGGC GTAAAGGGTG CGCAGGCGGC CGAGTGTGTG 501 AGGCGTGAAA GCCCGGAGCT TAACTCCGGA ATTGCACCTC AAACTACACG 551 GCTAGAGCAT TGGAGAGGGT AGCAGAATTC ACGGTGTAGC AGTGAAAT

Sequence from clone 19

1 GGGTAACCTG CCTCAAAGAG GGGAATAGCC TTCCGAAAGG AAGATYAATA 51 CCGCATAATA TGTTTTGGTC GCATGACCGA GATATCAAAG GAGTAATCCG 101 CTTTGAGATG GACCCGCGGC GCATTAGCTA GTTGGTGAGG TAACGGCTCA CCAAGGCGAC GATGCGTAGC CGACCTGAGA GGGTGATCGG CCACATTGGA 201 ACTGAGACAC GGTCCAGACT CCTACGGGAG GCAGCAGTGG GGAATATTGC 251 GCAATGGGGG AAACCCCGAC GCAGCAACGC CGCGTGAATG ATGAAGGCCT 301 TCGGGTTGTA AAGTTCTGTC TTCTGGGACG ATAATGACGG TACCAGAGGA 351 GGAAGCCACG GCTAACTACG TGCCAGCAGC CGCGGTAATA CGTAGGTGGC 401 AAGCGTTGTC CGGATTTACT GGGCGTAAAG GATGCGTAGG CGGACATTTA 451 AGTCAGATGT GAAATACCCG AGCTTAACTT GGGTGCTGCA TTTGAAACTG 501 GGTGTCTAGA GTGCAGGAGA GGTAAGTGGA ATTCCTAGTG TAGCGGTGAA 551 ATGCGTAGAG ATTAGGAAGA ACACCAGTGG CGAAGGCGAC TTACTGGACT 601 GTAACTGACG CTGA

Sequence from clone 24

1 GGGCAAGTAG AGTGGCAWCC GGGTGAGTAA CACGTGGGTG ACCTGCCTTC 51 GAGCGGGGGA TAACGTCCCG AAAGGGACGC TAATACCGCA TAACATCCTG 101 CCTTTGAAGA GGTGGAGATC AAAGCTGGGG ATCGCAAGAC CCGGCACTTG 151 AAGAGGGGCC CGCGTCTGAT TAGCTAGTTG GTGGGGTAAT GGCCTACCAA 201 GGCAACGATC AGTATCCGGC CTGAGAGGGC GGACGGACAC ACTGGGACTG 251 AGACACGGCC CAGACTCCTA CGGGAGGCAG CAGTGGGGAA TTGTTCGCAA 301 TGGGCGCAAG CCTGACGACG CAACGCCGCG TGGAGGATGA AGATTTTCGG 351 ATCGTAAACT CCTGTCGAAT GGGACGAACA GACTGCGGGT TAACAGCCCA 401 TAGTCCTGAC GGTACCGTTA AAGGAAACCC CGGCTAACTC CGTGCCAGCA 451 GCCGCGGTAA TACGTAGGGT CCGAGCGTTG TCCGGAATTA TTGGGCGTAA 501 AGGGCTCGTA GGCGGTTTGT CGCGTCGGGA GTGAAAACTC AGGGCTCAAC 551 CCTGAGCGTG CTTCCGATAC GGGCAGACTA GAGGTATGCA

Sequence from clone 29

1	AGGCGCAAGG	GTGAGTAWGG	CGGAGGCAAC	CAACCCCACA	CTTGGGTATA
51	GCCGCGGGAA	ACTGCGGGTA	ATCCCCAGCG	ACGTCGCGAG	GAGACATCTC
101	CTTGCGACCA	AAGGTGTGAT	TCCGGTGTGG	GACGGGCCTC	CGTGGTATCA
151	GGTTGTTGGT	GAGGTAATGG	CTCACCAAGC	CGATGACGCC	TACCGGGCGT
201	GCGAGCGTGG	CCCGGCACAC	TGGGACTGAG	ACACTGCCCA	GACTCCTACG
251	GGAGGCTGCA	GTCGAGAATC	TTCGGCAATG	GGCGCAAGCC	TGACCGAGCG
301	ACGCCGCGTG	GAGGACGAAG	GCCTTCGGGT	TGTAAACTCC	TGTCGAGGGG
351	GAGGAAGGCG	GCGCGAAGAG	CGTCGCTTGA	CCGATCCCTG	GARGAAGCAC
401	GGGCTAAGTT	CGTGCCAGCA	GCCGCGGTAA	GACGAACCGT	GCGAACGTTA
451	TTCCGAATCA	CTGGGCTTT			

Sequence from clone 30
1 CAATATTCTT GGGTTGGMCC GGCGCAAGGG TGCGTAACAC GTGGGTAATT 51 TGCCATGAAG TCTGGAATAA CTTGCTGAAA GGCGAGCTAA TGCCGGATGT 101 GATTTTCGGG AAGCATTTCT TGAAACTCAA AGTTGGGGAC CGCAAGGCCT 151 GACGCTTCTT GATAAGCCCG CGGCCTATCA GCTAGTTGGT GAGGTAATGG 201 CTCACCAAGG CTAAGACGGG TAGCTGGTCT GAGAGGACGA CCAGCCACAC 251 TGGAACTGAG ACACGGTCCA GACACCTACG GGTGGCAGCA GTCGAGAATT 301 TTTCACAATG GGCGAAAGCC TGATGGAGCG ACGCCGCGTG GGGGATGAAT 351 GGCTTCGGCC CGTAAACCCC TGTCATTTGC GAACAAACCT TACCGGTTAA 401 CAACCGTTGA GCTGATTGTA GCGGAAGAGG AAGGGACGGC TAACTCTGTG 451 CCAGCAGCCG CGGTAATACA GAGGTCCCAA GCGTTGTTCG GATTCACTGG 501 GCGTAAAGGG TGCGTAGGTG GTGGGGTAAG TCGGATGTGA AATCTCCGGG 551 CTCAACCCGG AAATGGCATT GGAAACTACC TTGCTAGAGG ATTTGAGGGG 601 GGATTGGAAT ACTTGGTGTA GCAGTG

Sequence from clone 32

1 TGGCGAAAGG GTCAKYNATA CGATCGAACG TACCCTGAGG TGGAGGATAG 51 GCACGGGAAA CTGTGCGTAA TACTCCATGT GCACCAAGGT GGAAAGCCGC 101 AAGGCGCCTT TGGAGCGGCG ATCGTCCTAT CAGGTAGTTG GCGGGGTAAA 151 GGCCCACCAA GCCTTCGACG GGTAGCGGGT GTGAGAGCAC GACCCGCGAC 201 ATCGGGACTG AGACACTGCC CGGACTCCTA CGGGAGGCTG CAGCGACGAA 251 TCTTCCGCAA TGGGCGAAAG CCTGACGGAG CAATGCCGCG TGCAGGATGA 301 AGCGGCTACG CCGTGTAAAC TGCTGTCAGG GGGTAGAAAC ACTGATCACC 351 CCCAAAGGAA GAGCCGGCTA ACCCTGTGCC AGCAGCCGCG GTAATACAGG 401 GGGCTCGAGC GTTAATCGGA ATCATTGGGC TTAAAGGGTG CGTAGGCGGG 451 TTGCGAAGTG TCTTGTGAAA TCCCTCGGCT CAACCGGGGA ATCGCAAGGC 501 ATACTGGCAA CCTTGAGGCA TGTAGGGGCG GACGGAACTG TAGGTGGAGC 551 GGTGAAATGC GTAGATATCT ACAGGAACGC CGATGGTGAA GACGGTCCGC 601 TGGGCATGTC CTGACGCTGA GGCACGAAAG

Sequence from clone 34

1 GGGGGTACAC GAGCGGCCNA CGGGTGAGTA ACACGTGAGT AATCTGCCCT 51 TCACTCTAGG ATAAGCCTCA GAAATGGGGT CTAATACTGG ATATGACTCG 101 TCCCTGCATG GGGGTGGGTG GAGAGATTTA TCGGTGGGGG ATGTGCTCGC 151 GGCCTATCAG CTTGATGGTG GGGTAATGGC CTACCAAGGC GACGATCGGT 201 AGCTGGTCTG AGAGGACGAT CAGCCACACT GGGACTGAGA CACGGCCCAG 251 ACTCCTACGG GAGGCAGCAG TGGGGAATTT TCCGCAATGG GCGAAAGCCT 301 GACGGAGCAA TACCGCGTGA GGGAAGAAGG CTCTTGGGTT GTAAACCTCT 351 TTTCTTAGGG AAGAAAAAAA TGACGGTACC TAAGGAATAA GCATCGGCTA 401 ACTCCGTGCC AGCAGCCGCG GTAATACGGA GGATGCAAGC GTTATCCGGA 451 ATGATTGGGC GTAAAGCGTC CGCAGGTGGC AAGTCAAGTT TGCGGTTAAA 501 GGCTCTGGCT CAACCAGAGA CAGGCCGTGA AAACTGACTA GCTAGAGTAT 551 GGTAGGGG

Sequence from clone 36
1 GAAAGATATA AAGTGKCGCA CGGGTGAGTA ACACGTAGGT AATCTACCTT 51 TGAGTGGGGA ATAACGTTCG GAAACGAACG CTAATACCGC ATAATGCAGC 101 GGCACCGCAA GGTGACAGTT GTTAAAGGAG CAATCCGCTT AAAGAGGAGC 151 CTGCGGCAGA TTAGCTAGTT GGTAAGGTAA TGGCTTACCA AGGCTACGAT 201 CTGTAACCGA CCTGAGAGGG TGGTCGGTCA CACTGACACT GAATAACGGG 251 TCAGACTCCT ACGGGAGGCA GCAGTCGGGA ATTTTGGGCA ATGGGCGAAA 301 GCCTGACCCA GCAACGCCGC GTGAAGGATG AAGTATTTCG GTATGTAAAC 351 TTCGAAAGAA TAGGAAGAAT AAATGACGGT ACTATTTATA ARGTCCG

Sequence from clone 37

1
51
101
151
201
251
301
351
401
451
501

AACACGTGAG TAACCTGCCC TTGACTCTGG GATAAGCGTT GGAAACSACG TCTAATACCG GATACGAGCT TCAGCCGCAT GGCTAGGAGT TGGAAAGAAT TTTGGTCAAG GATGGACTCG CGGCCTATCA GGTAGTTGGT GAGGTAATGG CTCACCAAGC CGACGACGGG TAGCCGGCCT GAGAGGGTGA CCGGCCACAC TGGGACTGAK TCACGGCCCA GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGCACAATG GGCSAAAGCC TGATGCAKCA ACGCCGCGTG AGGGACGACG GCCTTCGGGT TGTAAACCTC TTTTAGCAGG GAAGAAGCGA TGTGCTTGTC ATGTCATGAC GGTACCTGCA GAAAAAGCAC CGGCTAACTA CGTGCCAGCA GCCGCGGTAA TACGTAGGGT GCAAGCGTTG TCCGGAATTA TTGGGCGTAA AGAGCTCGYA YGCGGTTTGC CGCGTCTGCT GTGAAAACGC GARGCTCAAC CTCGCGCCTG CAGTGGGTAC GGGCAGACTA GAGTGCGGTA GGGGAG

Sequence from clone 41

1 ATATCGGAAC GTGCCCAGTC GTGGGGGATA ACGTAGAGAA WTTTCCGCTA 51 ATACCGCATA CGATCTAAGG ATGAAAGCGG GGGACTCGCA AGAGCCTCGC 101 GCGATTGGAG CGGCTGATAT CAGATTAGGT TGTTGGTGAG GTAAAAGCTC 151 ACCAAGCCGA CGATCTGTAG CTGGTTTGAG AGAACGACCA GCCACACTGG 201 GACTGAGACA CGGCCCAGAC TCCTACGGGA GGCAGCAGTG GGGAATTTTG 251 GACAATGGGC GAAAGCCTGA TCCAGCAATG CCGCGTGCAG GAAGAAGGCC 301 TTCGGGTTGT AAACTGCTTT TGTACGGAAC GAAAAGGTCT GCCCTAATAC 351 GGCGGGCCCA TGACGGTACC GTAAGAATAA GCACCGGCTA ACTACGTGCC 401 AGCAGCCGCG GTAATACGTA GGGTGCGAGC GTTAATCGGA ATTACTGGGC 451 GTAAAGCGTG CGCARGCSGY GATGTAAGAC AGTTGTGAAA TCCCCGGGCT 501 CAACCTGGGA ATTGCATCTG TGACTGCATC GCTAGAGTAC GGTAGA

Sequence from clone 47

1 CTTTAGGAGG GGGATAACAA CTGGAAACGG TTGCTAATAY CCCCTATGCT 51 TTCGAGWGAA ATGGATTTTC CGCCTAAAGA GAAGCTTGCG GCTGATTAGC 101 TTGKTGGTGA GGTAAGAGCT CACCAAGGSG ACGATCAGTA TCTGGTTTGA 151 GAGGACGATC MGACACACTG GAACTGA

Sequence from clone 48

1	AGGAACATGA	CCTTCGGCGG	GGGATAGCCG	GCCCAACGGC	YKGCCAATAC
51	CGCGTACGAM	CACATGGGGA	CATCCCTGAG	TGGTGAAAGC	AGCAATGCGC
101	CGATGGAGTG	CCTCGCGGCC	TATCAGCTAG	TTGGTGAGGT	AACGGCTCAC
151	CAAGGCAACG	ACGGGTAGCT	GGTCTGAGAG	GATGGCCAGC	CACATTGGGA
201	CTGAGACWYK	GCCCAGACTC	CTACGGGAGG	CAGCAGTGGG	GAATATTGCG
251	CAMTGGACGA	AAGTCTGACG	CATCKWYKCC	GCGTGTGGGA	TGACGGTCTT
301	CGGATTGTAA	ACCACTGTCG	GGAGGGACGA	ATACGCCGYA AGGCGGGTGA	
351	CGGTACCTCC	AAAGGAAGCW	CCGGCTAACT	CCGTGCCAGC ARCCGCKGTA	
401	ATACGTAGGG	TGCAAGCGTY			

Sequence from clone 49
1 GGCCCATGGC AGACGAGGTA GGAACACGTA GGTACGTACC CCAAAGTCAG 51 GGATAATCCG TCGAAAGACG GCACAATACT TGATGGTCTC TTCGGAGTAA 101 AGATTTATCG CTTTGGGAAC GGCCTGCGGG CTATCAGCTT GTTGGTAAGG 151 TAACGGCTTA CCAAGGCTAC GACGGCTAGG GGAGGTGAGA GCCTGACCCC 201 CACCGATGGA ACTGCGACAC GGTCCATACT CCTACGGGAG GCTGCAGTCG 251 AGAATCTTCC GCAATGGACG AAAGTCTGAC GGAGCGACGC CGCGTGGTGG 301 ATGAAGTCCC TCGGGACGTA AACACCTTTT ATGGAGGAGA AAGTTTATTG 351 ATGTTACTCC ATGAATAAGG GGCTCCCAAC TCTGTGCCAG CAGGAGCGGT 401 AATACAGAGG CCCCAAGCAT TATCCGGATT TACTGGGCGT AAAGGTTGCG 451 TAGGCGGTTA TATTAGTCAG GTGTTAAATC CCGAGGCTCA ACCTCGGAAT 501 CGCATTTGAA ACGGTATAAC TAGAATAAGT CAGAGGCAAG CAGAACTCAC 551 GGTGTAGGGG TGAAATCCGT TGATATCGTG G

Sequence from clone 54

1	GGGAACGTGC	CTTTAGGTTC	GGAATAGCTC	CTGGAAACGG	GTGGTAATGC
51	CGMATGTGCC	CTTCGGGGGA	AAGATTTATC	GCCTTTAGAG	CGGCCCGCGT
101	CTGATTAGCT	TGTTGGTGGG	GTAATGGCCC	ACCAAGGCTA	CGATCAGTAG
151	CTGGTCTGAG	AGGATGACCA	GCCACATTGG	GACTGAGACA	CGGCCCAAAC
201	TCCTACGGGA	GGCAGCAGTG	GGGAATCTTG	CGCAATGGGC	GAAAGCCTGA
251	CGCAKCCATG	CCGCGTGTAT	GATGAAGGTC	TTAGGATTGT	AAAATACTTT
301	CACCGGTGAA	GATAATGACT	GTAGCCGGAG	AAGAAGCCCC	GGCTAACTTC
351	GTGCCAGCAG	CCGCGGTAAT	ACGAAGGGGG	CTAGCGTTGC	TCGGAATTAC
401	TGGGCGTAAA	GGGAGCGTAG	GCGGACATTT	AAGTCAGAGG	TGAAATCCCG
451	GAGCTTAACT	TCGGAACTGC	CTTTGATACT	GGGTGTCTTG AGTGTGAGAG	
501	AGGTATGTGG	AACTCCGAGT	GTAGAGGTGA	AATTCGTAGA	TATTCGGAAG
551	AACAMCAGTG	GCGAANGCGA	CATACTGGCT	CATTACTGAC	GCTGAGGCTC
601	G				

Sequence from clone 55

1 AACACGTGGG AACCTTCCTA GAGGTATGGA ACAACGCAGG GAAACTTGTG 51 CTAATACCGT ATACGCTCGA GAGAGGAAAG ATTTATCGCC TTTAGACGGG 101 CCCGCGTCGG ATTAGCTAGT TGGTGGGGTA ACGGCCTACC AAGGCGACGA 151 TCCGTAGCTG ATCTTAGAGG ATGATCAGCC ACACTGGGAC TGAGACAYGG 201 CCCAGACTCC TACGGGAGGC AKYWGTGGGG AATCTTGGAC AATGGGCGCA 251 AGCCTGATTC AGCCATGCCG CGTGAGTGAA GAAGGTCTTC GGATTGTAAA 301 GCTCTTTTAC CAGGGCACGA TAATGACGGT ACCTGGAGAA TAAGCCCCGG 351 CAAACTTCGT GCCAGCAGCC GCGGTAATAC GAAGGGGGCT AGCGTTGTTC 401 GGAATTACTG GGCGTAAAGC GCACGTAGGC GGGTTATTAA GTCAGGGGTG 451 AAATCCCGGA GCTCAACTCC GGAACTGCCT TTGATACTG

Sequence from clone 57

1 CCTTCGGTTC RGAATAGCCT CGGGAAACTG GGAGTAATAY YSSMMTACGG 51 TCTACGGACG AAAGATTTAT CGCCGAAGGA TTAGCCCGCG TTGGATTAGG 101 TAGTTGGTGG GGTAATGGYC TACCAAGCCG ACGATCCATA GCTGGTTTGA 151 GAGGATGACC AGCCACACTG GGACTGAKAY WYKGYCCAGA CTCCTACGGG 201 AGGCAGYWKT GGGGAATCTT AGACAATGGG GGAAACCCTG ATCTAGCCAT 251 GCCGCGTGAT CGATGAAGGC CTTAGGGTTG TAAAGCTCTT TCAGGGGGGA 301 AGGTAATGAC GGTACCCCCA GAAGAAGCCC CGGCTAACTC CGTGCCAGCA 351 GCCGCGGTAA TACGGAGGGG GCTAGCGTTA TTCGGAATTA CTGGGCGTAA 401 AAGCGCACGT ARGCGGGTCK GAAAGTCARA GGTGAAATCC CAGGGCTCA

Sequence from clone 60

1 GAAAACGTCG GAATCTGCCT ATTTGTGGGG GATAACGTAK GGNMACTTAC 51 GCTAATACCG CATACGACCT ACGGGTGAAA GCGGAGGACC TTCGGGCTTC 101 GCGCAGATAG ATGAGCCGAC GTCGGATTAG CTAGTTGGCG GGGTAAAGGC 151 CCACCAAGGC GACGATCCGT AGCTGGCCTG AKAGGATGAT CAGCCACACT 201 GGAACTGAGA CACGGTCCAG ACTCCTACGG GAGGCAGCAG TGGGGAATAT 251 TGGACAATGG GCGCAAGCCT GATCCAGCCA TGCCGCGTGT GTGAAGAAGG 301 CCTTCGGGTT GTAAAGCACT TTTGTCCGGA AAGAAAAGCA CTGGGTTAAT 351 ACCCTGGTGT CATGACGGTA CCGGAAGAAT AAGCACCGGC TAACTTCGTG 401 CCAGCAGCCG CGGTAATACG AAGGGTGCAA GCGTTACTCG GAATTACTGG 451 GCGTAAAGCG TGCGTAGGCG GTTTGTTAAG TCTGATGTGA AAGCCCTGGG
501 CTCAACCTGG GAATGGCATT GGATACTGGC

Sequence from clone 61

1 TAGTGGCGGA CGGGTGACTA ACGCGTGGGA ACATGCCCTT TGGTACGGGA 51 TAGCCTCGGG AAACTGGGTG TAATACCGTA TGTGCTCGAA AGAGGAAAGA 101 TTTATCGCCA AGGGATTGGC CCGCGTTGGA TTAGGTAGTT GGTGGGGTAA 151 TGGCCTACCA AGCCGACGAT CCATAGCTGG TTTGAGAGGA TGATCAGCCA 201 CACTGGGACT GAGACACGGC CCAGACTCCT ACGGGAGGCA GCAGTGGGGA 251 ATCTTAGACA ATGGGGGCAA CCCTGATCTA GCCATGCCGC GTGATCGATG 301 AAGGCCTTAG GGTTGTAAAG ATCTTTCAGT GGGGAAGATA ATGACGGTAC 351 CCACAGAAGA AGCCCCAGCT AACTCCGTGC CAGCAGCCGC GGTAATACGG 401 AGGGGGCTAG CGTTATTCNG AATTACTGGG C

Sequences from MVT 5 16S rDNA clone library

Sequence from clone 1

1 TCCTGGCTCA GATTGAACGC TGGCGGAMTG CTTTACACAT GCAAGTCGAA 51 CGGCAGCACG GGGGCAACCC TGGTGGCGAG TGGCGAACGG GTGAGTAATA 101 CATCGGAACG TGCCCAGTCG TGGGGGATAA CGTAGCGAAA GCTACGCTAA 151 TACCGCATAC GATCTATGGA TGAAAGCGGG GGACCGCAAG GCCTCGCGCG 201 ATTGGAGCGG CCGATGGCAG ATTAGGTAGT TGGTGGGGTA AAGGCTCACC 251 AAGCCTGCGA TCTGTAGCTG GTCTGAGAGG ACGACCAGCC ACACTGGGAC 301 TGAGACACGG CCCAGACTCC TACGGGAGGC AGCAGTGGGG AATTTTGGAC 351 AATGGGCGCA AGCCTGATCC AGCCATTCCG CGTGCAGGAT GAAGGCCTTC 401 GGGTTGTAAA CTGCTTTTGT ACGGAACGAA AAGGCCTTTT CTAATACAGA 451 GGGCTCATGA CGGTACCGTA AGAATAAGCA CCGGCTAACT ACGTGCCAGC 501 AGCCGCGGTA ATACGTAGGG TGCAAGCGTT AATCGGAATT ACTGGGCGTA 551 AAGCGTGCGC AGGCGGTGAT GTAAGACAGA TGTGAAATCC CCGGGCTCAA 601 CCTGGGAACT GCATTTGTGA CTGCATCGCT GGAGTGCGGC AGAGGGGGAT 651 GGAATTCCGC GTGTAGCAGT

Sequence from clone 2

1 TCCCAATCGC CAGTCCCACC TTCGACGGCT CCCTCCCAAA GGTTGGGCCA 51 CCGGCTTCGG GTGTTACCGA CTTTCGTGAC GTGACGGGCG GTGTGTACAA 101 GGCCCGGGAA CGTATTCACC GCAGCATTGC TGATCTGCGA TTACTAGCGA 151 CTCCAACTTC ACGGGGTCGA GTTGCAGACC CCGATCCGAA CTGAGACCGG 201 CTTTGTGAGA TTCGCTCCAC CTTGCGGATT CGCAGCCCTC TGTACCGGCC 251 ATTGTAGCAT GTGTGAAGCC CTGGACATAA GGGGCATGAT GACTTGACGT 301 CGTCCCCACC TTCCTCCGAG TTGACCCCGG CAGTCTCCCA TGGGTCCCCG 351 GCCCAGTGAC AATGTCACTG GCCGCTGGCA ACATGGAACG AGGGTTGCGC 401 TCGTTGCGGG ACTTAACCCA ACATCTCACG ACACGAGCTG ACGACAGCCA TGCACCACCT GTACACCGAC CTTGCGGGGC ACCTGTCTCC AGATGTTTCC 501 GGTGTATGTC AAACCCAGGT AAGGTTCTTC GCGTTGCATC GAATTAATCC 551 ACATGCTCCG CCGCTTGTGC GGGCCCCCGT CAATTCCTTT GAGTTTTAGC 601 CTTGCGGCCG TACTCCCCAG GCGGGGCGCT TAATGCGTTA GCTGCGGCAC

Sequence from clone 5

1 TTAMGACTTC GTCCCAATCG CCAGCCCCAC CTTCGACGGC TCCCTCCACA 51 AGGGTTGGGC CACCGGCTTC GGGTGTTGCC GACTTTCGTG ACGTGACGGG 101 CGGTGTGTAC AAGGCCCGGG AACGTATTCA CCGCAGCGTT GCTGATCTGC 151 GATTACTAGC GACTCCGACT TCATGGGGTC GAGTTGCAGA CCCCAATCCG 201 AACTGAGACC GGCTTTTTGG GATTCGCTCC ACCTTGCGGT ATCGCAGCCC 251 TTTGTACCGG CCATTGTAGC ATGCGTGAAG CCCTGGGCAT AAGGGGCATG 301 ATGACTTGAC GTCATCCCCA CCTTCCTCCG AGTTGACCCC GGCAGTCTCT 351 TATGAGTCCC CACCATTACG TGCTGGCAAC ATAAGACGAG GGTTGCGCTC 401 GTTGCGGGAC TTAACCCAAC ATCTCACGAC ACGAGCTGAC GACAGCCATG 451 CACCACCTGT ATAGAGCCCG TAAGGACCTG CCATCTCTGA CAGTTTTCTC 501 CATATGTCAA ACCCAGGTAA GGTTCTTCGC GTTGCATCGA ATTAATCCGC 551 ATGCTCCGCC GCTTGTGCGG GCCCCCGTCA ATTCCTTTGA GTTTTAGCCT 601 TGCGGCCGTA CTCCCCAGGC GGGGCGCTTA ATGCGTTAGC TGCGGCACGG
651 AACTCGTGGA ATGAGTCCCA C
Sequence from clone 8
1 CTGGCTCAGG ACGAACGCTG ACGGTGTGCT TTAGGCATGC AAGTCGAACG 51 AGAAAGCCCT TCGGGGTGAG TAAAGTGGCG AACGGGTGAG TAACACGTGG 101 GCAACCTACC CCTCGCAGGG GAACAACCGG AGGAAACTCC GGCTAATACC 151 CCGTAAGCTT TCAGGGTCGC ATGGCCCTGT AAGGAAAGGT AGCTTCGGCC 201 ATCCGGCGAG GGATGGGCCC GCGGTGCATT AGCTAGTTGG TGGGGTAAAG 251 GCCCACCAAG GCGACGATGC GTAGCTGGTC TGAGAGGATG ATCAGCCACA 301 CTGGGACTGA GACACGGCCC AGACTCCTAC GGGAGGCAGC AGCCAGGAAT 351 CTTGGGCAAT GGGCGAAAGC CTGACCCAGC AACACCGTGT GGGCGATGAA 401 GGCCTTCGGG TCGTAAAGCC CTGTTGATAG GGACGAAGGG CGAAGGGTTA 451 ATAGCCCCTA GCCTGACGGT ACCTTTCGAG GAAGCCCCGG CTAACTACGT 501 GCCAGCAGCC GCGGTAATAC GTAGGGGGCG AGCGTTGTCC GGAATTATTG 551 GGCGTAAAGA GCGTGTAGGC GGTTCGGTAA GTCTGTCGTG AAATCCTGGG
601 GCTCAACCCT GGGCGTGCGA TGGATACTGC C

Sequence from clone 9

1 ACGACTTCAC CCCAGTCGCT GACCCTACCG TGGTCGCCTG CCCCCTTGCG 51 GTTGGCGCAA CGCCTTCGGG TAGAACCAAC TCCCATGGTG TGACGGGCGG 101 TGTGTACAAG GCCCGGGAAC GTATTCACCG TGGCATGCTG ATCCACGATT 151 ACTAGCGATT CCACCTTCAT GCACTCGAGT TGCAGAGTGC AATCCGAACT 201 GAGACGGCTT TTTGAGATTT GCTCAGGGTC GCCCCTTGGC ATCCCACTGT 251 CACCGCCATT GTAGCACGTG TGTAGCCCAG CCCGTAAGGG CCATGAGGAC 301 TTGACGTCAT CCCCACCTTC CTCCGGCTTA TCACCGGCAG TCTCCCTAGA 351 GTGCCCAACT GAATGATGGC AACTAAGGAC GAGGGTTGCG CTCGTTGCGG 401 GACTTAACCC AACATCTCAC GACACGAGCT GACGACAGCC ATGCAGCACC 451 TGTCTCCGCG TCCCCGAAGG GAACCTTGGG TCTCCCCAAG TAGCACGGGA 501 TGTCAAGAGC TGGTAAGGTT CTGCGCGTTG CTTCGAATTA AACCACATGC 551 TCCACCGCTT GTGCGGGCCC CCGTCAATTC CTTTGAGTTT TAATCTTGCG 601 ACCGTACTCC CCGGGCGGGA TGCTTAAAGC GTTAGCTGCG CCACTGAGAA
651 GCAAGCTTCC CAAACGGCTG

Sequence from clone 10

1 CCTGGCTCAG AATCAACGCT GGCGGCGTGC CTCAGACATG CAAGTCGAAC 51 GATTAAACTT TCCTTCGGGA AAGATATAAA GTGGCGCACG GGTGAGTAAC 101 ACGTAGGTAA TGTACCTTTG GGTGGGGAAT AACTTAGGGA AACTTAAGCT 151 AATACCGCAT AATGCAGCGG CTCCTTCGGG AGACAGTTGT TAAAGATTTA 201 TCGCCTAAAG AGCAGCCTGC GGCAGATTAG CTAGTTGGTA AGGTAACGGC 251 TTACCAAGGC TACGATCTGT ATCCGACCTG AGAGGGTGGT CGGACACACT 301 GACACTGAAT AACGGGTCAG ACTCCTACGG GAGGCAGCAG TCGGGAATTT 351 TGGGCAATGG GCGAAAGCCT GACCCAGCAA CGCCGCGTGA AGGATGAAGT 401 CTCTCGGGAT GTAAACTTCG AAAGAATAGG AAGAATAAAT GACGGTACTA 451 TTTATAAGGT CCGGCTAACT ACGTGCCAGC AGCCGCGGTA ATACGTAGGG 501 ACCAAGCGTT GTTCGGATTT ACTGGGCGTA AAGGGCGCGT AGGCGGCGTG 551 ACAAGTCAAT TGTGAAATCT CCGGGCTTAA CTCGGAACGG TCAATTGATA 601 CTGTTGTGCT AGAGTACAGA AGGGGCAATC GGAATTCTTG GTGTAGCGGT 651 GAAATGCGTA GATATCAAGA G

Sequence from clone 11

1 TACGACTTCA CCCCAGTCGC TGACCCTACC GTGGTTGGCT GCCTCCCGAT 51 TGCTCAGGTT AGCGCACCAC CTTCGGGTAG AACCAACTCC CATGGTGTGA 101 CGGGCGGTGT GTACAAGGCC CGGGAACGTA TTCACCGTGG CGTGCTGATC 151 CACGATTACT AGCGATTCCA GCTTCATGCC CTCGAGTTGC AGAGGACAAT 201 CCGAACTGAG ACGGCTTTTT GGGATTAGCT TCTCCTTGCG AAGTAGCAGC 251 CCACTGTCAC CGCCATTGTA GCACGTGTGT AGCCCAGCCC GTAAGGGCCA 301 TGAGGACTTG ACGTCATCCC CACCTTCCTC TCGGCTTATC ACCGGCAGTC 351 CCCCTAGAGT GCCCAACTGA ATGATGGCAA CTAAGGGCGA GGGTTGCGCT 401 CGTTGCGGGA CTTAACCCAA CATCTCACGA CACGAGCTGA CGACAGCCAT 451 GCAGCACCTG TGCGCAGGTC TCTTGCGAGA AGGAATCCAT CTCTGGAAGC 501 CGTCCTGCCA TGTCAAGGGC TGGTAAGGTT CTGCGCGTTG CTTCGAATTA 551 AACCACATGC TCCACCGCTT GTGCGGGCCC CCGTCAATTC CTTTGAGTTT 601 TAATCTTGCG ACCGTACTCC CCAGGCGGAA TGCTTAATGC GTTAGCTGCG C

Sequence from clone 12

1 CGAACGCTTG CGGCGTGCCT AAGAAATGCA AGTCGAACGG ACATTCCAGC 51 AATGGGGTGC TAGTGGCGAA CGGTCGCGTA ACACGTAGGC AACCTGCCCT 101 GAAGTGGGGG ACAACAGCCC GAAAGGGCTG CTAATACCGC ATGTGAACAA 151 CGAATCACAT GGTTTGTTGT TCAAAGGCTA TGGCAACATG GTCGCTTTGG 201 GATGGGCTTG CGGCCTATCA GGTAGTTGGT GGGGTAATGG CCCACCAAGC 251 CGACGACGGG TAGCTGGTCT GAGAGGACGA TCAGCCGGAT TGGGACTGAG 301 ATACGGCCCA GACTCCTACG GGGGGCAGCA ATTAGGAATC TTGCGCAATG 351 GGCGAAAGCC TGACGCAGCG ACGCCGCGTG CGGGATGAAG GCCTTCGGGT 401 CGTAAACCGC TTTTAACGGG GAAGAAGAAT GTGACGGTAC CCGTTGAATA 451 AGCCCCGGCT AACTACGTGC CAGCAGCCGC GGTAATACGT AGGGGGCGAG 501 CGTTGTCCGA AGTTACTGGG CGTAAAGCGC GCGTAGGCGG TTGCCTAAGT 551 CTGGGGTGAA AGGTTCAGGG CTTAACCCGA ACAGTGCCTT GGATACTGGG 601 CGACTTGAGT GCCGAAGAGG AAAGCGGAAT TCCTGGTGTA GCGGTGAAAT 651 GCGTAGATAT CAGGAGGAAC ACCGATGGCG AAGGCARCTT

Sequence from clone 13

1 CGACTTCACC CCAATCATAA ATCATACCGT AGTAACTTGC CCCTCTTGCG 51 AGTTAGCCCA ACTACTTCTA GTACAACCTA CTTTCGTGAT GTGACGGGCG GTGTGTACAA GACCCGGGAA CGTATTCACC GCGGCGTTCT GATCCGCGAT TACTAGCGAT TCCAACTTCA TGAAGTCGAG TTGCAGACTT CAATCCGAAC TGAGATTGGT TTTTGCGATT AGCTCACTCT TACGAGATTG CGACGTTTTG TACCAACCAT TGTAGCACGT GTGTAGCCCT GAACATAAAG GCCATGATGA CTTGACATCA TCCCCACCTT CCTCCGTTTT ATCAACGGCA GTCTTAACAG AGTTCTCAAC ATTACTTGTT AGCAACTGTC AATAGGGGTT GCGCTCGTTG CGGGACTTAA CCCAACATCT CGCGACACGA GCTGACGACA GCCATGCAGC ACCTTGTTTT GGGTCCGGTT GCCCGGACGA TTGGAATTAC CCAATCTTCC CTCACATTCT AGTCCAGGTA AGGTTCTTCG CGTTGCGTCG AATTAAACCA CATGCTCCAC CGCTTGTGCG GGTCCCCGTC AATTCCTTTG AGTTTCACAC TTGCGTGCGT ACTCCCCAGG CGGAATGCTT AAAACGTTAG CGACGG

Sequence from clone 14

1 CTAGTTACCT GTTCTACCCT AACCGGCTTC TTTTACGAGC ACCGGCTTCA 51 GGTCTACCAA ACTTCCATGG CTTGACGGGC GGTGTGTACA AGGCCCGGGA 101 ACGTATTCAC CGCGTCATTG CTGATACGCG ATTACTAGTG ATTCCAGCTT 151 CACGGAGTCG AGTTGCAGAC TCCGATCCGA ACTGAGAACG GCTTTTCGGG 201 ATTGGCGCAC CATCGCTGGT TGGCAACCCG CTGTACCGTC CATTGTAGCA 251 CGTGTGTAGC CCTAGGCGTA AGGGCCATGA TGACCTGACG TCGTCCCCGC 301 CTTCCTCACT GCTTGCGCAG GCAGTCTGTC TAGAGTCCCC GCCATTACGC 351 GCTGGCAACT AAACATAGGG GTTGCGCTCG TTGCGGGACT TAACCCAACA 401 CCTCACGGCA CGAGCTGACG ACGGCCATGC AGCACCTTGC TTTGTGTCCC 451 GAAGGAAAGG TTCATCTCTG AACCGGTCAC GCGCATTCTA GCCTAGGTAA 501 GGTTCCTCGC GTATCATCGA ATTAAACCAC ATGCTCCACC ACTTGTGCGG 551 GCCCCCGTCA ATTCTTTTGA GTTTCACTCT TGCGAGCGTA C

Sequence from clone 18

1 CGCCAGTTAC CAGCTCNACC TTCGGCGCCT GCCTCCTTGC GGTTAGCACG

GCGACTTCGG GTAGAACCGA TTTCCGTCAC TTGACGGGCG GTGTGTGCAA GGCCCGGGAA CGTATTCACC GCAGTATTGC TGACCTGCGG TTACTAGCGA TTCCAACTTC ATGGAGGCGA GTTGCAGCCT CCAATCCGAA CTGAGACCGG CTTTTTGAGA TTAGCATGCC CTCGCGGGTT AGCAACTCTT TGTACCGGCC ATTGTAGCAT ATGTGCAGCC CAAGATGTAA GGGGCATGAT GACTTGACGT CATCCCCACC TTCCTCCTCT TTACAGAGGC AGTTTGTTCC GAGTTCCCGG CATTACCCGC TGGCAACAGA ACATGAGGGT TGCGCTCGTT GCGGGACTTA ACCCAACATT TCACAACACG AGCTGACGAC AGCCATGCAC CACCTGTGGA TCACCCTCGA AGGCGACGAT ATTTCTACCG CTTGCAGATC CATGTCAAAC CTTGGTAAGG TTCTTCGCGT TGCATCGAAT TAAGCCATAT GCTCCACCGC TTGTGCGGGC CCCCGCCAAT TCCTTTGAGT TTCAACCTTG CGGCCGTAGT TCCCAGGCGG TTCACTTAAT GCGTTAGCTG CGACACCGGG GCGAAGCCCC GACATCTAGT GAACATCGTT TATAGCTATG ACTACCAGGG TATCTAATCC TGTTCGCTAC ATAG

Sequence from clone 21

1 CCCCAGTTAC CTGTTCTACC CTAACTGGCT TCTGTGACGA GCGCCAGCTT 51 CAGGYCTACC AGACTTCCAT GGCTTGACGG GCGGTGTGTA CAAGGCCCGG 101 GAACGTATTC ACCGCGTCAT TGCTGATACG CGATTACTAG CGATTCCAAC 151 TTCATGCAGT CGAGTTGTAG ACTGCAATCC GGACTACGAT ACACTTTCTG 201 GGATTAGCTC CCCCTCGCGG GTTGGCGGCC CTCTGTATGT ACCATTGTAT 251 GACGTGTGAA GCCCTACCCA TAAGGGCCAT GAGGACTTGA CGTCATCCCC 301 ACCTTCCTCC GGTTTGTCAC CGGCAGTCTC ATTAGAGTGC TCAACTGAAT 351 GTAGCAACTA ATGACAAGGG TTGCGCTCGT TGCGGGACTT AACCCAACAT 401 CTCACGACAC GAGCTGACGA CAGCCATGCA GCACCTGTGT ACCGGCTCTC 451 TTTCGAGCAC GCCCCAATCT CTCGGGGCTT CCGACCATGT CAAGGGTAGG 501 TAAGGTTTTT CGCGTTGCAT CGAATTAATC CACATCATCC ACCGCTTGTG 551 CGGGTCCCCG TCAATTCCTT TGAGTTTTAA TCTTGCGACC GTACTCCCCA 601 GGCGGTCAAC TTCACGCGTT AGCTGCGTTA CCAAGTC

Sequence from clone 24

1 AGTTTGATCC TGGCTCAGAA CGAACGCTGG CGGCATGCCT AACACATGCA 51 AGTCGAACGA GATCCTTCGG GGTCTAGTGG CGCACGGGTG CGTAACGCGT 101 GGGAATCTGC CCTTGGGTTC GGAATAACAG TGGGAAACTA CTGCTAATAC 151 CGGATGATGT CTTCGGACCA AAGATTTATC GCCCAGGGAT GAGCCCGCGT 201 AAGATTAGCT AGTTGGTGAG GTAAAGGCTC ACCAAGGCTA CGATCTTTAG 251 CTGGTCTGAG AGGATGATCA GCCACACTGG GACTGAGACA CGGCCCAGAC 301 TCCTACGGGA GGCAGCAGTG GGGAATATTG GACAATGGGC GAAAGCCTGA 351 TCCAGCAATG CCGCGTGAGT GATGAAGGCC TTAGGGTTGT AAAGCTCTTT 401 TACCCGGGAT GATAATGACA GTACCGGGAG AATAAGCTCC GGCTAACTCC 451 GTGCCAGCAG CCGCGGTAAT ACGGAGGGAG CTAGCGTTGT TCGGAATTAC 501 TGGGCGTAAA GCGCACGTAG GCGGCTTTGT AAGTTAGAGG TGAAAGCCCG 551 GGGCTCAACT CCGGAACTGC CTTTAAGACT GCATCGCTTG AATCCAGGAG 601 A

Sequence from clone 26

1 GGGGATCCGA TGAGTTTGAT CCTGGCTCMG AATCAACGCT GGCGGCGTGC 51 CTCAGACATG CAAGTCGAAC GATTAAACTT TCCTTCGGGA AAGATATAAA 101 GTGGCGCACG GGTGAGTAAC ACGTAGGTAA TGTACCTTTG GGTGGGGAAT AACTTAGGGA AACTTAAGCT AATACCGCAT AATGCAGCGG CTCCTTCGGG AGACAGTTGT TAAAGATTTA TCGCCTAAAG AGCAGCCTGC GGCAGATTAG CTAGTTGGTA AGGTAACGGC TTACCAAGGC TACGATCTGT ATCCGACCTG AGAGGGTGGT CGGACACACT GACACTGAAT AACGGGTCAG ACTCCTACGG GAGGCAGCAG TCGGGAATTT TGGGCAATGG GCGAAAGCCT GACCCAGCAA CGCCGCGTGA AGGATGAAGT CTCTCGGGAT GTAAACTTCG AAAGAATAGG AAGAATAAAT GACGGTACTA TTTATAAGGT CCGGCTAACT ACGTGCCAGC AGCCGCGGTA ATACGTAGGG ACCAAGCGTT GTTCGGATTT ACTGGGCGTA AAGGGCGCGT AGGCGGCGTG ACAAGTCAAT TGTGAAATCT CCGGGCTTAA CTCGGAACGG TCAATTGATA CTGTTGTGCT AGAGTACAGA AGGGGCAATC 651 GG

Sequence from clone 29

1 GCGTGCCTAA CACATGCAAG TCGAACGGGA CCAGGGGCAA CTCTGGTTCA 51 GTGGCGGACG GGTGCGTAAC ACGTGAGGAA CATGACCTTC GGCGGGGGAT 101 AGCCGGCCCA ACGGCCGGGT AATACCGCGT ACGACCTTTC GGGGACATCC 151 CCGGATGGTG AAAGCAGCAA TGCGCCGATG GAGTGCCTCG CGGCCTATCA 201 GCTGGTTGGT GAGGTAACGG CTCACCAAGG CAACGACGGG TAGCTGGTCT 251 GAGAGGATGG CCAGCCACAT TGGGACTGAG ACACGGCCCA GACTCCTACG 301 GGAGGCAGCA GTGGGGAATA TTGCGCAATG GACGAAAGTC TGACGCAGCG 351 ACGCCGCGTG TGGGATGACG GTCTTCGGAT TGTAAACCAC TGTCGGGAGG 401 GACGAATACG CCGCAAGGCG GGTGACGGTA CCTCCAAAGG AAGCACCGGC TAACTCCG

Sequence from clone 30

1 CGACCCTCGG CCGCTGCCTC GCTTGCGCGT TAGCCCACGG ACTTCAGGTC 51 TTCCCCACTC CCATGACGTG ACGGGCGGTG TGTACAAGGC CCGGGTACAG 101 ATTCACCGCC GTATGGCTGA CCGGCGATTA CTAGCAACTC CGCCTTCATG 151 GGGGCGAGTT GCAGCCCCCA ATCTGAACTG AGACCGACCT TCGAGATCCG 201 CCACATGTTA CCATGCAGCA ACCCATTCGT CCGGCCATTG TAGCGTGTGT 251 GTCGCCCTGG TCGTACGGGC CATGCGGACT TGACGTCATC CCCGCCTTCC 301 TCCGTGGTTG ACCACGGCAG TCATGTGTGA CACAAGTAAC ACACATCAGG 351 GGTTGCGCTC GTTGCGGGAC TTAACCCAAC ATCTCACGAC ACGAGCTGAC 401 GACAGCCATG CAGCACCGGT GCACCACCCT CGAAGGCAGC CATGTTTCCA 451 CGACTTGCAG GTGCATGTCA AGACCAGGTA AGGTTCTGCG CGTTGCGTCG 501 AATTAAACCA CACGCTCCGC TGCTTGTGCG GGCCCCCGTC AATTCCTTTG 551 AGTTTTAAGC TTGCGCTCGT AGTCCCCAGG CGGCATACTC AACACGTAAG 601 TTAAGGCACT GNCCTGGCTT A

Sequence from clone 34

1	TTAMCTTGTT	ACGACTTCAC	CCCAGTCACG	AATCCTACCG	TGGTAAGCGC
51	CCCCCTTGCG	GTTAAGCTAC	CTACTTCTGG	TAAAACCCGC	TCCCATGGTG
101	TGACGGGCGG	TGTGTACAAG	ACCCGGGAAC	GTATTCACCG	CGACATGCTG
151	ATCCGCGATT	ACTAGCGATT	CCAACTTCAT	GTAGTCGAGT	TGCAGACTAC
201	AATCCGGACT	ACGATACACT	TTCTGGGATT	AGCTCCCCCT	CGCGGGTTGG
251	CGGCCCTCTG	TATGTACCAT	TGTATGACGT	GTGAAGCCCT	ACCCATAAGG
301	GCCATGAGGA	CTTGACGTCA	TCCCCACCTT	CCTCCGGTTT	GTCACCGGCA
351	GTCTCATTAG	AGTGCTCTTT	CGTAGCAACT	AATGACAAGG	GTTGCGCTCG
401	TTGCGGGACT	TAACCCAACA	TCTCACGACA	CGAGCTGACG	ACAGCCATGC
451	AGCACCTGTG	TTACGGCTCT	CTTTCGAGCA	CACCTCGATC	TCTCGTGGCT
501	TCCGTACATG	TCAAGGGTAG	GTAAGGTTTT	TCGCGTTGCA	TCGAATTAAT
551	CCACATCATC	CACCGCTTGT	GCGGGTCCCC	GTCAATTCCT	TTGAGTTTTA
601	ATCTTGCGAC	CGTACTCCCC	AGGCGGTCTA	CTTCACGCGT	TAGCTGCGTT

Sequence from clone 37

1 GGGGATCCGA TGGTTAMCTT GTTACGACTT CACCCCAATC ATGAATCATA 51 CCGTTACACC ATGCCTCCCT TACGGGTTAG CTCTGGCGCT TCTAGTACAA 101 CCCACTTTCG TGATGTGACG GGCGGTGTGT ACAAGACCCG GGAACGTATT 151 CACCGCGGCG TGCTGATCCG CGATTACTAG CGATTCCAAC TTCATGAAGT 201 CGAGTTGCAG ACTTCAATCC GAACTGAGAC GAGCTTTTTC CGATTGGCTC 251 CCCATCGCTG GTTTGCAACG GTTTGTACTC GCCATTGTAG CACGTGTGTA 301 GCCCTACTCA TAAAGGCCAT GATGACTTGA CGTCGTCCCC ACCTTCCTCC 351 GTTTTGTCAA CGGCAGTCTC ACCAGAGTTC TCGGCTTAAC CCGTTAGTAA 401 CTGATGATAA GGGTTGCGCT CGTTGCGGGA CTTAACCCAA CATCTCACGA 451 CACGAGCTGA CGACAGCCAT GCAGCACCTT GCATCTCGTC CGGTTTTACC 501 CGGAAGGCTC CATCTCTGGA GTTGTCGAGA GCATTCTAGA GTAGGTAAGG 551 TTCTTCGCGT TGCGTCGAAT TAAACCACAT GCTCCACCGC TTGTGCGGGT 601 CCCCGTCAAT TCCTTTGAGT TTCATTCTTG CGAACGTACT CCCC

Sequence from clone 39

1 GGTTAMCTTG TTACGACYTC ACCCCAATCA TAAATCATAC CGTGGTAACT 51 TGCCTCCCTT GCGAGTTAGC CCAGCTACTT CTAGTACAAC CTACTTTCGT 101 GATGTGACGG GCGGTGTGTA CAAGACCCGG GAACGTATTC ACCGCAGCGT 151 TCTGATCTGC GATTACTAGC GATTCCAACT TCATGGAGTC GAGTTGCAGA 201 CTCCAATCCG AACTGAGACC GGCTTTTTAC GATTGGCTCA CTCTTGCGAG 251 TTTGCAGCGT TTTGTACCGG CCATTGTAGC ACGTGTGTAG CCCTAGTCAT 301 AAAGGCTATG AGGACTTGAC GTCATCCCCA CCTTCCTCCG TTTTATCAAC 351 GGCAGTCTCA ACCGAGTTCC CGGCATTACC CGCTGGCAAC AGTTGATAAG 401 GGTTGCGCTC GTTGCGGGAC TTAACCCAAC ATCTCACGAC ACGAGCTGAC 451 GACAGCCATG CAGCACCTTG CATCTTGCTT GGTTTTACCC AAGAAACCCT 501 ATCTCTAGGG CTGTCAAGAG CATTCTAGAC TAGGTAAGGT TCTTCGCGTT 551 GCGTCGAATT AAACCACATG CTCCACCGCT TGTGCGGGTC CCCGTCAATT 601 CCTTTGAGTT TCATGCTTGC GCACGTACTC CC

Sequence from clone 40

1 ATCCGATGAG TTTGATCCTG GCTCAGAATG AACGTTGGCG GCGTGGATTA 51 GGCATGCAAG TCGGACGGGC CGCAAGGCCA GTGGCGTAAG GGTGAGTAAG 101 GCGACGGCAA TCATCCCCAC GGTTGGGTAT AGCCGCGAGA AATCGCGGGT AATCCCCAGC GACGCAGGGT GTCGGCATCG ACGCCCTGCC AAAGGCTCGC 201 CGCCGTGGGA CGAGCCGTTG TGGTATTAGG TTGTTGGCGG GGTAACGGCC 251 CACCAAGCCT GCGATGCCTA CCGGGCGTGC GAGCGTGGCC CGGCACACTG 301 GGACTGAGAC ACTGCCCAGA CTCCTACGGG AGGCTGCAGT CGAGAATCTT 351 CGGCAATGGG CGCAAGCCTG ACCGAGCGAC GCCGCGTGGA GGACGAAGGC 401 CTTCGGGTTG TAAACTCCTG TCGAGGGGAA GGAAGGGGCC GCGAGGCCCT 451 TGACCGCTCC CTGGAGGAAG CACGGGCTAA GTTCGTGCCA GCAGCCGCGG 501 TAAGACGAAC CGTGCGAACG TTATTCGGAA TCACTGGGCT TAAAGCGCGT 551 GTAGGCGGGG CGGTGCGTCG GCCGTTGAAA TCCCCCGGCT CAACCGGGGA 601 AGTGGCGCCG AAACGACCGG CCTGGAGCGA CGTAGGGGGA ACTGGAACTT CCGGTGGAGC

Sequence from clone 51

1 TTGGAACACG TAGCTAACCT GCCCAACAGA GGGGGATAAC CTCGGGAAAC 51 CGAGGCTAAT ACCGCATACG CTCATTTTTG GGGACGAGGA TGAGGAAACG 101 GAGCAATCCG CTGATGGAGG GGGCTGCGGC CGATTAGCTA GTTGGTGGGG 151 TAAAAGCCTA CCGAGGCGGT GATCGGTAGC TGGTCTGAGA GGACGATCAG 201 CCACACGGGG ACTGAGACAC GGCCCCGACT CCTACGGGAG GCAGCAGCAA 251 GGAATTTTCC ACAATGGGCG CAAGCCTGAT GGAGCAACGC CGCGTGGGGG 301 ATGACGCTTT TCGGAGTGTA AACCCCTTTT CGAGAGGACG AAGCTAATGA 351 CGGTACTCTC GGAATAAGGA CCGGCTAACT ACGTGCCAGC AGCCGCGGTA 401 AGACGTAGGG TCCGAGCGTT GTCCGGAGTT ACTGGGCGTA AAGCGCGCGC 451 AGGCGGTTAG ACACGTCGGG TGTGAAAGCC CCCCGCTCAA CGGGGGAGGG 501 TCATTCGAAA CGGTCAGACT GGAGGCAGGG AGAGGTCGGT GGAATTCCCG 551 GTGTAGTGGT

Sequence from clone 54
1 CAATACATCA GCGGCAGACG GGAGAGTAAC ACGTGGGAAC GCGCCCTTCG 51 GTTCGGAATA ACTCAGGGAA ACTTGAGCTA ATACCGGATA CGCCCTTACG 101 GGGAAAGATT TATTGCCGAA GGAACGGCCC GCGTCGGATT AGCTAGTTGG 151 TGAGGTAATG GCTCACCAAG GCAACGATCC GTAGCTGGTC TAAGAGGATG 201 ATCAGCCTCA CTGGGACTGA GACACGGCCC AGACTCCTAC GGGAGGCAGC 251 AGTGGGGAAT ATTGGACAAT GGGCGAAAGC CTGATCCAGC CATGCCGCGT 301 GGATGATGAA GGCCTTAGGG TTGTAAAGTC CTTTTAACGG GGAAGATAAT 351 GACGGTACCC GTAGAATAAG CCCCGGCTAA CTTCGTGCCA GCAGCCGCGG 401 TAATACGAAG GGGGCTAGCG TTGCTCGGAA TTACTGGGCG TAAAGCGCAC 451 GTAGGCGGAT TGTTAAGTCG GGGGTGAAAT CCTGGAGCTC AACTCCAGAA 501 CTGCCTTCGA AACTGGCGAT CTTGAGTCCG GGAGAGGTGA GTGGAACTGC 551 GAGTGTAGAG GTGAAATTCG TAGATATTCG CAAGAACACC AGTGGCGAAG 601 GCGGCTCACT GGCCCGGTAC

Sequence from clone 62
1 CAGGTATTCTT GGGTTGGMCC GGCGCAAGGG TGCGTAACAC GTGGGTAATT 51 TGCCATGAAG TCTGGAATAA CTTGCTGAAA GGCGAGCTAA TGCCGGATGT 101 GATTTTCGGG AAGCATTTCT TGAAACTCAA AGTTGGGGAC CGCAAGGCCT 151 GACGCTTCTT GATAAGCCCG CGGCCTATCA GCTAGTTGGT GAGGTAATGG 201 CTCACCAAGG CTAAGACGGG TAGCTGGTCT GAGAGGACGA CCAGCCACAC 251 TGGAACTGAG ACACGGTCCA GACACCTACG GGTGGCAGCA GTCGAGAATT 301 TTTCACAATG GGCGAAAGCC TGATGGAGCG ACGCCGCGTG GGGGATGAAT 351 GGCTTCGGCC CGTAAACCCC TGTCATTTGC GAACAAACCT TACCGGTTAA 401 CAACCGTTGA GCTGATTGTA GCGGAAGAGG AAGGGACGGC TAACTCTGTG 451 CCAGCAGCCG CGGTAATACA GAGGTCCCAA GCGTTGTTCG GATTCACTGG 501 GCGTAAAGGG TGCGTAGGTG GTGGGGTAAG TCGGATGTGA AATCTCCGGG 551 CTCAACCCGG AAATGGCATT GGAAACTACC TTGCTAGAGG ATTTGAGGGG 601 GGATTGGAAT ACTTGGTGTA

Sequence from clone 65

1	TGCTCCTGAA	GATCTAGTKC	CGAACGGGTG	CRWAACACGT	GAGAAACCTG
51	TCCCGAACTT	GGGAATAACA	GCCGAAAACS	ACTGCTAATA	CCGAATATCT
101	TCGTAACGTC	GCATGGCGAT	TCGAAGAAAG	CTTTATGCGG	TTTGGGAGGG
151	TCTCGCGGCC	TATCAGCTTG	TTGGTGAGGT	AATGGCTCAC	CAAGGCATCG
201	ACGGGTAGCT	GGTCTGAGAG	GATGATCAGC	CACACTGGGA	CTGAGACACG
251	GCCCAGACTC	CTACGGGAGG	CAGCAGTGGG	GAATATTGCA	CAATGGGCGA
301	AAGCCTGATG	CAGCGATGCC	GCGTGCGGGA	AGAAGGCCCT	AGGGTTGTAA
351	ACCGCTTTCA	GTAGGGAAGA	AAATGACGGT	ACCTACAGAA	GAAGGTGCGG
401	CCAACTACGT	GCCAGCAGCC	GCGGTGACAC	GTAGGCACCA	AGCGTTGTCC
451	GGATTTATTG	GGCGTAAAGA	GCTCGTAGGC	GGTTTGGTAA	GTCGGGTGTG
501	AAAACTCTGG	GCTCAACCCA	GAGAGGCCAC	TCGATACTGC	CATGACTTGA
551	GTACGGTAGG	GGAGTGGGGA	ATTTCTAGTG	TAGCGGTGAA ATGCGCAGAT	
601	ATTAGAAGGA	ACACCAGTGG	CGAAGGCGCC	ACTCTGGGCC	GTAACT

Sequence from clone 68

1	GAAAACGTCG	GAATCTGCCT	ATTTGTGGGG	GATAACGTAK	GGNMACTTAC
51	GCTAATACCG	CATACGACCT	ACGGGTGAAA	GCGGAGGACC	TTCGGGCTTC
101	GCGCAGATAG	ATGAGCCGAC	GTCGGATTAG	CTAGTTGGCG	GGGTAAAGGC
151	CCACCAAGGC	GACGATCCGT	AGCTGGCCTG	AKAGGATGAT	CAGCCACACT
201	GGAACTGAGA	CACGGTCCAG	ACTCCTACGG	GAGGCAGCAG	TGGGGAATAT
251	TGGACAATGG	GCGCAAGCCT	GATCCAGCCA	TGCCGCGTGT	GTGAAGAAGG
301	CCTTCGGGTT	GTAAAGCACT	TTTGTCCGGA	AAGAAAAGCA	CTGGGTTAAT
351	ACCCTGGTGT	CATGACGGTA	CCGGAAGAAT AAGCACCGGC	TAACTTCGTG	
401	CCAGCAGCCG CGGTAATACG	AAGGGTGCAA	GCGTTACTCG	GAATTACTGG	
451	GCGTAAAGCG	TGCGTAGGCG	GTTTGTTAAG	TCTGATGTGA AAGCCCTGGG	
501	CTCAACCTGG	GAATGGCATT	GGATACTG		

Sequences from MVT 7 16S rDNA clone library

Sequence from clone 11

1	TGTGCGCAAG	CGCWCMCACA	TCCGGAGTGG	CGGACGGGTG	CGTAACACGT
51	GAGCGATCTG	CCCAGATGGG	GGGGATACCC	CGGGGAAACC	CGGGTCAATC
101	CCGCATGTGG	TTTTACCTCT	TCATGGAGGT	TCAATCAAAG	ATCCTCTCAA
151	GGGATTCTGT	CTGGAGGAGC	TCGCGGCGTA	TCAGCTAGTT	GGTAGGGTAA
201	CGGCCTACCA	AGGCGACGAC	GCGTAGGGGG	TCTGAGAGGA	TGGCCCCCCA
251	CATGGGGACT	GAGATACGGC	CCCGACTCCT	ACGGGAGGCA	GCAGTGGGGA
301	ATCTTGCGCA	ATGGGCGAAA	GCCTGACGCA	GCGACGCCGC	GTGCGGGAGG
351	ACGCTTTTCG	GAGTGTAAAC	CGCTGTCGGG	AGGGACGAAT	CCTGTGAGGA
401	GGAAATGTCC	CACAGTTGAC	GGTACCTTCA	AAGGAAGCAC	CGGCTAACTC
451	TGTGCCAGCA	GCCGCGGTAA	TACAGAGGGT	GCAAGCGTTG	TTCGGAATCA
501	TTGGGCGTAA	AGCGCACGTA	GGCGGCCCGT	TAAGTCCGAC	TGTGAAAGAC
551	CGGGGCTCAA	CCCCGGGGCT	GCAGCGGATA	CTGGCGGGCT	TGAGACACGT
601	A				

Sequence from clone 13

1 TAACACGTGG GTAACCTGCC CTCAGCTCTG GGATAAGCYY GGCCCAACTG 51 GGTCTAATAC CGGATATGAC CTCGCATCGC ATGGTGTGGG GTGGAAAGCC 101 TTGTGCGGCT GAGGATGGGC CCGCGGCCTA TCAGCTAGTT GGTGCGGTCA 151 CGGCGCACCA AGGCGACGAC GGGTAGCTGG TCTGAGAGGA TGGCCAGCCA 201 CATTGGGACT GAKAAACGGC CCAGACTCCT ACGGGAGGCA GCAGTGGGGA 251 ATCTTGCGCA ATGGCCGAAA GGCTGACGCA GCGACGCCGC GTGTGGGAGG 301 AAGCCTTTCG GGGTGTAAAC CACTGTTGCC CGGGACGAAC AGCTCCTTCG 351 TGGAGCCTGA CGGTACCGGG TGAGGAAGCA CCGGCTAACT CCGTGCCAGC 401 AGCCGCGGTA ATACGGAGGG TGCAAGCGTT GTCCGGATTT ATTGGGTTTA 451 AAGGGTGCGT AGGCGGTTTT ATAAGTCAGT GGTGAAAGAC GTCAGCTTAA 501 CTGTCGCAGT GCCATTGATA CTGTAGAACT TGARTATAGT TGAGGTAGGC

Sequence from clone 18

1 GAGTAACACG TAAGTAATCT ACCTTTGGGT GGGGGATAAY WTCCNGAAAC 51 CGATGCTAAT ACCGCATAAT GCAGCGGCAT CATATGATGA CGGTTGTTAA 101 AGCATTTATG TGCCTAAAGA GGAGCTTGCG GCAGGTTAGC TAGTTGGTAA 151 GGTAATGGCT TACCAAGGCA ACGATCTGTA GCCGACCTGA GAGGGTGGTC 201 GGTCACACTK TWYACTGAAT AACGGGTCAG ACTCCTACGG GAGGCAGCAK 251 TYGKGAATTT TGGGCAATGG GCGAAAGCCT GACCCAGCAA CGCCGCGTGA 301 AGGATGAAGT CTTTCGGGAT GTAAACTTCG GAAATATAGG AAGAATAAAT 351 GACGGTACTA TATCTAAGGT CCGGCTAACT ACGTGCCAGC AGCCGCGGTA 401 ATACGTAKGG

Sequence from clone 24
1 TAACACGTGG GTAACCTGCC CTCAGCTCTG GGATAAGCCC GGGMMACTGG 51 GTCTAATACC GGATATGACC TCGCATCGCA TGGTGTGGGG TGGAAAGCCT 101 TGTGCGGCTG AGGATGGGCC CGCGGCCTAT CAGCTTGTTG GTGGGGTAGT 151 GGCCTACCAA GGCGACGACG GGTGGCCGGC CTGAGAGGGC GACCGGCCAC 201 ACTGGGACTG AGACACGGCC CAGACTCCTA CGGGAGGCAG CAGTGGGGAA 251 TATTGCGCAA TGGGCGAAAG CCTGACGCAG CGACGCCGCG TGAGGGATGA 301 CGGCCTTCGG GTTGTAAACC TCTTTCAGCT CCGACGAAGC CTTCGGGTGA 351 CGGTAGGGGC AGAAGAAGCA CCGGCCAACT ACGTGCCAGC AGCCGCGGTA 401 ATACGTAGGG TGCAAGCGTT GTCCGGAATT ATTGGGCGTA AAGAGCTCGT 451 AGGCGGTTTG TCGCGTCGAC TGTGAAAACT CAGGGGCTCA ACTCCGAGCT 501 TGCAGTTGAT ACGGGCAGAC TAGAGTTCGG CAGGGGAGAC TGGAATTCCT 551 GGTGTAGCGG TGAAATGCGC AGATATCAGG AGGAACACCG GTGGCGAAGG 601 CGGGTCTCTG GGCCGATACT GAC

Sequence from clone 29

1
51
101
151
201
251
301
351
401
451

CAGTGGAGCG ACGAACCAGG CTTCGGCCTG GGGCANAGCC GCGAACGGGT GAGTAACACG TGGGTGACCT GCCCCGATGA CCGGGACAAC CCGAGGGAAA CTCGGGCTAA TACCGGATGC GTCCACCTCG CGACAGCGTG GCGGGCAAAG GTAGCTTCGG CCTCCGCATC GGGATGGGCC CGCGGCCCAT TAGCTTGTTG GTGAGGTAAC GGCTCACCAA GGCGACCATG GGTAGCTGGT CTGAGAGGAC GATCAGCCAC ACTGGGACTG AGACACGGCC CAGACTCCTA CGGGAGGCAG NNGTGNGGAA TCTTGCGCAA TGCGCGAAAG CGTGACGCAC CNACGCCGCN TGGGGGAAGA CGGCCTTCGG GTTGTAAACC CCTTTCANGA TGNACGAAGG TGTGGCGGTG ATTAGCCGAC CATACTGACG GTACCTCCAG AAGAAGNCCC NGTTAACTAC NGNGCCATCA GCCGCGGTTA TACGTAGTGG GG

Sequence from clone 31

1 GTAACACGTG GGTGACCTGC CCCGATGACC GGGACAACYY GCCNAAACTC 51 GGGCTAATAC CGGATGCGTC CACCTCGCGA CAGCGGGACG GGCAAAGGTA 101 GCTTCGGCCT CCGCATCGGG ATGGGCCCGC GGCCCATTAG CTTGTTGGTG 151 AGGTAACGGC TCACCAAGGC GACGATGGGT AGCTGGTCTG AGAGGACGAT 201 CAGCCACWCT GGGACTGAGA CACGGCCCAG ACTCCTACGG GAGGCAGYWK 251 TGGGGAATCT TGCGCAATGC GCGAAAGCGT GACGCAGCAA CGCCGCGTGG 301 GGGAAGACGG CCTTCGGGTT GTAAACCCCT TTCAGTTGGG ACGAAGCCTC 351 GGCGGTTAAC AGCCGTTCGG GGTGACGGTA CCTTCAGAAG AAGCCCCGGC 401 TAACTACGTG CCAGCAGCCG CGGTAATACG TAGGGGGCCA GCGTTGTCCG 451 GAATCATTGG GCGTAAAGAG CGCGTAGGCG GTCCGATCAG TCCGCTGTGA
501 AAGT
Sequence from clone 37
1 CAGTCGAGCG GAACCACCAG TGGCAACACT GGGGCAGTCT GAGCGCCGAA 51 CGGGTGAGTA ACACGTGAGG AACCTGCCCC GAAGACCGGG ATAACCCTCC 101 GAAAGGAGGG CTAATACCGG ATACCCCCAT CGAGTCGCAT GGCTTGTTGA 151 GGAAATGGAT TCCGCTTCGG GAGGGCCTCG CGGCCTATCA GCTTGTTGGT 201 GAGGTAACGG CTCACCAAGG CGTCGACGGG TAGCTAGTCT GAGAGGACGA 251 TTAGCCACAC TGGGACTGAG ACACGGCCCA GACTCCTACG GGAGGCAGCA 301 GTGGGGAATC TTGCGCAATG GGCGAAAGCC TGACGCAGCA ACGCCGCGTG 351 GGGGATGAAG GCTCTCGGGT TGTAAACCCC TTTCAGCGGG GACGATTATG 401 ACGGTACCCG CAGAAGAAGG ACCGGCCAAC TACGTGCCAG CAGCCGCGGT 451 AATACGTAGG GTCCAAGCGT TGTCCGGATT TATTGGGCGT AAAGAGCTCG 501 TANGTGGCTT CGTAAGTCGG GTGTGAAAAC CCCAGGCTCA ACCTGGGGAC 551 GCCACTCGAT ACTGCGGTAG CTAGAGTCTG GTAGGGGATC TCG

Sequence from clone 49

1	GTTGGMCCGG	CGCAAGGGTG	CGTAACACGT	GGGTAATTTG	CCATGAAGTC
51	TGGAATAACT	TGCTGAAAGG	CGAGCTAATG	CCGGATGTGA	TTTTCGGGAA
101	GCATTTCTTG	AAACTCAAAG	TTGGGGACCG	CAAGGCCTGA	CGCTTCTTGA
151	TAAGCCCGCG	GCCTATCAGC	TAGTTGGTGA	GGTAATGGCT	CACCAAGGCT
201	AAGACGGGTA	GCTGGTCTGA	GAGGACGACC	AGCCACACTG	GAACTGAGAC
251	ACGGTCCAGA	CACCTACGGG	TGGCAGCAGT	CGAGAATTTT	TCACAATGGG
301	CGAAAGCCTG ATGGAGCGAC	GCCGCGTGGG	GGATGAATGG	CTTCGGCCCG	
351	TAAACCCCTG	TCATTTGCGA	ACAAACCTTA	CCGGTTAACA ACCGTTGAGC	
401	TGATTGTAGC	GGAAGAGGAA	GGGACGGCTA	ACTCTGTGCC AGCAGCCGCG	
451	GTAATACAGA	GGTCCCAAGC	GTTGTTCGGA	TTCACTGGGC	GTAAAGGGTG
501	CGTAGGTGGT	GGGGTAAGTC	GGATGTGAAA	TCTCCGGGCT	CAACCCGGAA
551	ATGGCATTGG AAACTACCTT	GCTAGAGGAT	TTGAGGGGGG ATTGGAATAC		
601	TTGGTG				

Sequence from clone 52

1 CCGAACGGGT GCRWAACACG TGAGAAACCT GTCCCGAACT TGGGAATAAC 51 AGCCGAAAAC SACTGCTAAT ACCGAATATC TTCGTAACGT CGCATGGCGA 101 TTCGAAGAAA GCTTTATGCG GTTTGGGAGG GTCTCGCGGC CTATCAGCTT 151 GTTGGTGAGG TAATGGCTCA CCAAGGCATC GACGGGTAGC TGGTCTGAGA 201 GGATGATCAG CCACACTGGG ACTGAGACAC GGCCCAGACT CCTACGGGAG 251 GCAGCAGTGG GGAATATTGC ACAATGGGCG AAAGCCTGAT GCAGCGATGC 301 CGCGTGCGGG AAGAAGGCCC TAGGGTTGTA AACCGCTTTC AGTAGGGAAG 351 AAAATGACGG TACCTACAGA AGAAGGTGCG GCCAACTACG TGCCAGCAGC 401 CGCGGTGACA CGTAGGCACC AAGCGTTGTC CGGATTTATT GGGCGTAAAG 451 AGCTCGTAGG CGGTTTGGTA AGTCGGGTGT GAAAACTCTG GGCTCAACCC 501 AGAGAGGCCA CTCGATACTG CCATGACTTG AGTACGGTAG GGGAGTGGGG 551 AATTTCTAGT GTAGCGGTGA AATGCGCAGA TATTAGAAGG AACACCAGTG 601 GCGAAGGCGC CACTCTGGGC CGTAA

Sequence from clone 58

1 AGATATAAAG TGKCGCACGG GTGAGTAACA CGTAGGTAAT CTACCTTTGA 51 GTGGGGAATA ACGTTCGGAA ACGAACGCTA ATACCGCATA ATGCAGCGGC 101 ACCGCAAGGT GACAGTTGTT AAAGGAGCAA TCCGCTTAAA GAGGAGCCTG 151 CGGCAGATTA GCTAGTTGGT AAGGTAATGG CTTACCAAGG CTACGATCTG 201 TAACCGACCT GAGAGGGTGG TCGGTCACAC TGACACTGAA TAACGGGTCA 251 GACTCCTACG GGAGGCAGCA GTCGGGAATT TTGGGCAATG GGCGAAAGCC 301 TGACCCAGCA ACGCCGCGTG AAGGATGAAG TATTTCGGTA TGTAAACTTC 351 GAAAGAATAG GAAGAATAAA TGACGGTACT ATTTATAA

Sequence from clone 61

1 TCGGCGGGGG ATAGCCGGCC CAACGGCYKG CCAATACCGC GTACGAMCAC 51 ATGGGGACAT CCCTGAGTGG TGAAAGCAGC AATGCGCCGA TGGAGTGCCT 101 CGCGGCCTAT CAGCTAGTTG GTGAGGTAAC GGCTCACCAA GGCAACGACG 151 GGTAGCTGGT CTGAGAGGAT GGCCAGCCAC ATTGGGACTG AGACWYKGCC 201 CAGACTCCTA CGGGAGGCAG CAGTGGGGAA TATTGCGCAM TGGACGAAAG 251 TCTGACGCAT CKWYKCCGCG TGTGGGATGA CGGTCTTCGG ATTGTAAACC 301 ACTGTCGGGA GGGACGAATA CGCCGYAAGG CGGGTGACGG TACCTCCAAA 351 GGAAGCWCCG GCTAACTCCG TGCCAGCARC CGCKGTAATA CGT

Sequence from clone 67

1 TGACTAACGC GTGGGAACAT GCCCTTTGGT ACGGGATAGC CTCGGGAAAC 51 TGGGTGTAAT ACCGTATGTG CTCGAAAGAG GAAAGATTTA TCGCCAAGGG 101 ATTGGCCCGC GTTGGATTAG GTAGTTGGTG GGGTAATGGC CTACCAAGCC 151 GACGATCCAT AGCTGGTTTG AGAGGATGAT CAGCCACACT GGGACTGAGA 201 CACGGCCCAG ACTCCTACGG GAGGCAGCAG TGGGGAATCT TAGACAATGG 251 GGGCAACCCT GATCTAGCCA TGCCGCGTGA TCGATGAAGG CCTTAGGGTT 301 GTAAAGATCT TTCAGTGGGG AAGATAATGA CGGTACCCAC AGAAGAAGCC 351 CCAGCTAACT CCGTGCCAGC AGCCGCGGTA ATACGGAGGG GGCTAGCGTT 401 ATT

Sequence from clone 74

1 GTCGCTGACC CTACCGTGGT TGGCTGCCTC CCGATTGCTC AGGTTAGCGC 51 ACCACCTTCG GGTAGAACCA ACTCCCATGG TGTGACGGGC GGTGTGTACA 101 AGGCCCGGGA ACGTATTCAC CGTGGCGTGC TGATCCACGA TTACTAGCGA 151 TTCCAGCTTC ATGCCCTCGA GTTGCAGAGG ACAATCCGAA CTGAGACGGC 201 TTTTTGGGAT TAGCTTCTCC TTGCGAAGTA GCAGCCCACT GTCACCGCCA 251 TTGTAGCACG TGTGTAGCCC AGCCCGTAAG GGCCATGAGG ACTTGACGTC 301 ATCCCCACCT TCCTCTCGGC TTATCACCGG CAGTCCCCCT AGAGTGCCCA 351 ACTGAATGAT GGCAACTAAG GGCGAGGGTT GCGCTCGTTG CGGGACTTAA 401 CCCAACATCT CACGACACGA GCTGACGACA GCCATGCAGC ACCTGTGCGC 451 AGGTCTCTTG CGAGAAGGAA TCCATCTCTG GAAGCCGTCC TGCCATGTCA 501 AGGGCTGGTA AGGTTCTGCG CGTTGCTTCG AATTAAACCA CATGCTCCAC 551 CGCTTGTGCG GGCCCCCGTC AATTCCTTTG AGTTTTAATC TTGCGACCGT 601 ACTCCCCAGG CGGAATGCTT A

Sequence from clone 79

1 TCACCCCAGT CACGAATCCT ACCGTGGTAA GCGCCCCCCT TGCGGTTAAG 51 CTACCTACTT CTGGTAAAAC CCGCTCCCAT GGTGTGACGG GCGGTGTGTA 101 CAAGACCCGG GAACGTATTC ACCGCGACAT GCTGATCCGC GATTACTAGC 151 GATTCCAACT TCATGTAGTC GAGTTGCAGA CTACAATCCG GACTACGATA 201 CACTTTCTGG GATTAGCTCC CCCTCGCGGG TTGGCGGCCC TCTGTATGTA 251 CCATTGTATG ACGTGTGAAG CCCTACCCAT AAGGGCCATG AGGACTTGAC 301 GTCATCCCCA CCTTCCTCCG GTTTGTCACC GGCAGTCTCA TTAGAGTGCT 351 CTTTCGTAGC AACTAATGAC AAGGGTTGCG CTCGTTGCGG GACTTAACCC 401 AACATCTCAC GACACGAGCT GACGACAGCC ATGCAGCACC TGTGTTACGG 451 CTCTCTTTCG AGCACACCTC GATCTCTCGT GGCTTCCGTA CATGTCAAGG 501 GTAGGTAAGG TTTTTCGCGT TGCATCGAAT TAATCCACAT CATCCACCGC 551 TTGTGCGGGT CCCCGTCAAT TCCTTTGAGT TTTAATCTTG CGACCGTACT 601 CCCCAGGCGG TCTACT

Sequence from clone 82

1
51
101
151
201
251
301
351
401
451
501
551
601
651 CCTTTCGGGG GTACACGASC GGCGAACGGG TGAGTAACAC GTGGGTAACC TGCCCTCAGC TCTGGGATAA GCCCGGGAAA CTGGGTCTAA TACCGGATAT GACTCCGCAT CGCATGGTGT GGGGTGGAAA GCCTTGTGCG GCTGAGGATG GACCCGCGGC CTATCAGCTT GTTGGTGGGG TAGTGGCCTA CCAAGGCGAC GACGGGTAGC CGGCCTGAGA GGGCGACCGG CCACACTGGG ACTGAGACAC GGCCCAGACT CCTACGGGAG GCAGCAGTGG GGAATATTGC GCAATGGGCG AAAGCCTGAC GCAGCGACGC CGCGTGAGGG ATGACGGCCT TCGGGTTGTA AACCTCTTTC AGCTCCGACG AAGCGAGAGT GACGGTAGGA GCAGAAGAAG CACCGGCCAA CTACGTGCCA GCAGCCGCGG TAATACGTAG GGTGCAAGCG TTGTCCGGAA TTATTGGGCG TAAAGAGCTC GTAGGCGGTT TGTCGCGTCG ACTGTGAAAA CTCAGGGGCT CAACTCCGAG CTTGCAGTTG ATACGGGCAG ACTAGAGTTC GGCAGGGGAG ACTGGAATTC CTGGTGTAGC GGTGAAATGC GCAGATATCA GGAGGAACAC CGATGGCGAA GGCAGGTCTC TGAGCCACTA CTGAC

Sequence from clone 84

1 CAGCGGTAAG GNCCTTTCGG GGGTACACGW CCGGCGAACG GGTGAGTAAC 51 ACGTGGGTAA CCTGCCCTCA GCTCTGGGAT AAGCCCGGGA AACTGGGTCT

101
151
201
251
301
351
401
451
501
551
601 AATACCGGAT ATGACTCCGC ATCGCATGGT GTGGGGTGGA AAGCCTTGTG CGGCTGAGGA TGGACCCGCG GCCTATCAGC TTGTTGGTGG GGTAGTGGCC TACCAAGGCG ACGACGGGTA GCCGGCCTGA GAGGGCGACC GGCCACACTG GGACTGAGAC ACGGCCCAGA CTCCTACGGG AGGCAGCAGT GGGGAATATT GCGCAATGGG CGAAAGCCTG ACGCAGCGAC GCCGCGTGAG GGATGACGGC CTTCGGGTTG TAAACCTCTT TCAGCTCCGA CGAAGCGAGA GTGACGGTAG GAGCAGAAGA AGCACCGGCC AACTACGTGC CAGCAGCCGC GGTAATACGT AGGGTGCAAG CGTTGTCCGG AATTATTGGG CGTAAAGAGC TTGTAGGCGG TTTGTCGCGT CTGCTGTGAA AACTCAGGGC TTAACCCTGA GCCTGCAGTG GGTACGGGCA GACTAGAGTG TGGTAGGGGA GACTGGAATT CCTGGTGTAG CGGTGGAATG CGCAGATATC AGGAGGAACA CCTATGGC

Sequence from clone 85

1 ATGCAAGTCG AACGAGGTCC ATGGAGCTTG CTCCGGAAGA CCGAGTGGCG 51 AACGGGTGCG TAACACGTGA GTAACCTACC CTGAACTTGG GAATAACAGT 101 CGGAAACGAC TGCTAATACC GAATATCTTC ACGACGTCGC ATGGCGATGT 151 GAAGAAAGCT TTATGCGGTT TAGGAGGGTC TCGCGGCCTA TCAGCTTGTT 201 GGTGAGGTAA CGGCTCACCA AGGCATCGAC GGGTAGCTGG TCTGAGAGGA 251 TGATCAGCCA CACTGGGACT GAGACACGGC CCAGACTCCT ACGGGAGGCA 301 GCAGTGGGGA ATATTGCACA ATGGGCGCAA GCCTGATGCA GCGATGCCGC 351 GTGCGGGATG AAGGCCCTAG GGTTGTAAAC CGCTTTCAGT AGGGAAGAAA 401 ATGACGGTAC CTACAGAAGA AGGTGCGGCC AACTACGTGC CAGCAGCCGC 451 GGTGACACGT AGGCACCAAG CGTTGTCCGG ATTTATTGGG CGTAAAGAGC 501 TCGTAGGCGG TTCAGTTAGT CGGGTGTGAA AACTCTGGGC TCAACCCAGA 551 AACGCCACCC GATACTGCTG TGACTAGAGT ACGGTAGG

Sequence from clone 90
1 CAACGATTAA ACTTTCCTTC GGGAAAGATA TMAAGTGGCG TACGGGTGAG 51 TAACACGTAA GTAATCTACC TTTGGGTGGG GGATAACTCA GGGAAACTTG 101 AGCTAATACC GCATAATGCA GCGGCATCAT ATGATGACGG TTGTTAAAGC 151 ATTTATGTGC CTAAAGAGGA GCTTGCGGCA GATTAGCTAG TTGGTAAGGT 201 AATGGCTTAC CAAGGCAACG ATCTGTAGCC GACCTGAGAG GGTGGTCGGT 251 CACACTGACA CTGAATAACG GGTCAGACTC CTACGGGAGG CAGCAGTCGG 301 GAATTTTGGG CAATGGGCGA AAGCCTGACC CAGCAACGCC GCGTGAAGGA 351 TGAAGTCTTT CGGGATGTAA ACTTCGGAAA TATAGGAAGA ATAAATGACG 401 GTACTATATC TAAGGTCCGG CTAACTACGT GCCAGCAGCC GCGGTAATAC 451 GTAGGGACCA AGCGTTGTTC GGATTTACTG GGCGTAAAGG GTGCGTAGGC 501 GGCGTGACAA GTCACTTGTG AAATCTCCGG GCTTAACTCG GAACTGCCAA 551 GTGATACTGT CGTGCTAGAG TACAGAAAGG GTAACTGGAA TTCTTGGTGT 601 AGCGGTGAAA TGCGTAGATA TCAAGAGGAA CACCTGAGGC GAAGGCGAGT 651 TACTAGGCTG ATACTGACGC TGAGGCACGA AAGCT

Sequence from clone 92

1 GTAATACATC GGAACGTGCC CAGTAGTGGG GGATAGCTCG KCNCCCGCCG 51 GATTAATACC GCATACGACC TACGGGTGAA AGCGGGGGAT CGCAAGACCT 101 CGCGCTATTG GAGCGGCCGA TGGCAGATTA GCTTGTTGGT GGGGTAAAAG 151 CCTACCAAGG CGACGATCTG TAGCTGGTCT GAGAGGACGA CCAGCCACAC 201 TGGGACTGAG ACACGGCCCA GACTCCTACG GGAGGCAGCA GTGGGGAATT 251 TTGGACAATG GGCGCAAGCC TGATCCAGCA ATGCCGCGTG TGTGATGAAG 301 GCCTTCGGGT TGTAAAGCAC TTTTAGTGGG AACGAAACGG TCCGGGCCAA 351 TACCCTGGAT TACTGACGGT ACCCGCAGAA TAAGCACCGG CCAACTACGT 401 GCCAGCAGCC GCGGTAATAC GGAGGGTGCG AGCGTTATCC GGAATCACTG 451 GCGCGTAAAG GGCGCGTAGG CGGTTTGTCA AGTCCGATGT TAAAGACCGG 501 GGCTCAACCC CGACACGGCG TTGGATACTG ACGAGCTTGA CGACTGGAGA 551 GGGAGGTAGA ATTACCAGAG TAGCGGTGGA ATGCGTAGAT ACTGGTAGGA 601 ATACCCATAG CGAAGGCAGC CTTCTGGACA GTTAG

Sequence from clone 94

1 TCGAACGAGA AAAGCCCTTC GGGGTTAGTA AAGTGGCGAA CGGGTGCGTA 51 ACACGTGGGC AATCTGCCCC TCGCAGGGGG ACAACCGGAG GAAACTCCGG 101 CTAATACCCC GTAAGCTTTC AGGGTCGCAT GGCCTTGTAA GGAAAGGTAG 151 CTTCGGCCAT CCGGCGAGGG ATGAGCCCGC GGTACATTAG CTAGTTGGTG 201 GGGTAACGGC CTACCAAGGC GACGATGTAT AGCTGGTCTG AGAGGATGAT 251 CAGCCACACT GGGACTGAGA CACGGCCCAG ACTCCTACGG GAGGCAGCAG 301 TCGGGAATCT TGCACAATGG GCGAAAGCCT GATGCAGCAA CACCGTGTGA 351 GCGAGGAAGG CCTTCGGGTC GTAAAGCTCT GTTGTTGGGG AAGAAGGGCG 401 AAGGGTTAAT AGCCCCTAGC TTGACGGTAC CCTTCGAGGA AGCCCCAGCT 451 AACTACGTGC CAGCAGCCGC GGTAATACGT AGGGGGCGAG CGTTGTCCGG 501 AATTATTGGG CGTAAAGAGC GTGTAGGCGG TTCGGTAAGT CTGTCGTGAA 551 AACCTGGGGC TCAACCCCGG GCGTGCGATG GATACTGCCG

Sequence from clone 98

1 GTAAGGCTCC TTCGGGAGTA CACGAGCGGC GAACGGGTGA GTAACACGTG 51 AGCAATCTGC CCTTCACACG GGGATAACTT CGGGAAACCG ATGCTAATAC 101 CCGATACGAC CACTTCAGGC ATCTGATGGT GGTGGAAAGT TCCGGCGGTG 151 AAGGATGAGC TCGCGGCCTA TCAGCTTGTT GGTGGGGTAA TGGCCCACCA 201 AGGCAACGAC GGGTAGCCGG CCTGAGAGGG TGACCGGCCA CACTGGGACT 251 GAGACACGGC CCAGACTCCT ACGGGAGGCA GCAGTGGGGA ATATTGGACA 301 ATGGGCGAAA GCCTGATCCA GCAACGCCGC GTGAGGGATG ACGGCCTTCG 351 GGTTGTAAAC CTCTTTCAGC AGGGACGAAG CGAAAGTGAC GGTACCTGCA 401 GAAGAAGCAC CGGCCAACTA CGTGCCAGCA GCCGCGGTAA TACGTAGGGT 451 GCGAGCGTTG TCCGGAATTA TTGGGCGTAA AGGGCTCGTA GGCGGTTTGT 501 CACGTCGGGA GTGAAAACTC AGGGCTTAAC CCTGAGCCTG CTTCCGATAC 551 GGGCAGACTA GAGGTATGCA GGGGAGAACG GAATTCCTGG TGTAGCGGTG 601 AAATGCGCAG ATATCAGGAG GAACACCGGT GGCGAAGGCG GTTCTCTGG

Sequence from clone 104

1 ACACGTGAAG AAACCTGCCC TGCAGACCGG AATAACCACT NCCAAACTGT 51 GGCTAATGCC GGATGACCTC AGCGGTCCGC ATGGACCGCA GAGCAAATGG 101 TCAGCCGCTG CAGGATGGCC TCGCGGCCTA TCANCTTGTT GGTGGGGTAA 151 TGGCCCACCA AGGCTCCGAC GGGTAGCTGG CGTGAGAGCG CGACCAGCCA 201 CACTGGGACT GAGACACGGC CCAGACTCCT ACGGGAGGCA GCAGTGGGGA 251 ATCTTGCTCA ATGGGCGAAA GCCTGAAGCA GCGACGCCGC GTGCGGGAAG 301 AAGGCCTTCG GGTTGTAAAC CGCTTTCAGG AGGGAAGAAG CGAAAGTGAC 351 GGTACCTCCA GAAGAAGCCC CGGCCAACTA CGTGCCAGCA GCCGCNGTAT 401 ACGTANGGGG CAAGCGTTGT CCGGAATTAT TGGGCGTAAA GAGCTCGTAN 451 GCNGTCCATT AAGTCGGATG TGAATCTCAG GGCTCAACCC TGAAATTGCA 501 TCCGATACTG TT

Sequences from MVT 9 16S rDNA clone library

Sequence from clone 4
1 CGGGTGAGTA CACGTGGGCA ACCTGCCCCT CGCAGGGGAC AACCGGAGGA 51 AACTCCGGCT AATACCCCGA TACGCGTTGT TGGATCGCAT GGTCCGGCAA 101 GGAAAGGTAG CTTCGGCCAT CCGGCGAGGG ATGGGCCCGC GTTGCATTAG 151 CGTAGTTGGT GGGGTAACGG CCCACCAAGG CAACGAGTGC GTAGCTGGTC 201 TGAGAGGATG ATCAGCCAGA CTGGGACTGA GACACGGCCC AGACTCCATA 251 CGGGAGGCAG CAGCCAGGAA TCTTGGGCAA TGGGCGAAAG CCTGACCCAG 301 CAACACCGTG TGGGTGACGA AGGCCTTAGG GTCGTAAAGC CCTGTTGATA 351 GGGACGAAGG GCGAAGGGTT AATAGCCCCC AGCTTGACGG TACCTTTCGA 401 GGAAAGCCCC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT ACGTAGGGGC 451 GAGCGTTGTC CGGAATTATT GGGCGTAAAG AGCGTGTAGG CGGTTCGGTA 501 AGTCTGCTGT GAAATCCTAG GGCTTCAAAC CCCTGCNGNA CNGTTGCACN 551 ANAGCGGAAT ACTGCCGGGG CTAGAGGGT

Sequence from clone 10

1 GTAAGGCGAC GGCAATCATC TCACGGTTGG GTATAGCCGC GAGAAATCGC 51 GGGTAATCCC CAGCGACGCA GGGTGTCGGC ATCGACGCCC TGCCAAAGGC 101 TCGCCGCCGT GGGACGAGCC GTCGTGGTAT TAGGTTGTTG GCGGGGTAAC 151 GGCCCACCAA GCCTGCGATG CCTACCGGGC GTGCGAGCGT GGCCCGGCAC 201 ACTGGGACTG AGACACTGCC CAGACTCCTA TGGGAGGCTG CAGTCGAGAA
251 TCTTCGGCAA TGGGCGCAAG CCTGACCGAG CGACGCCGCG TGGAGGACGA 301 AGGCCTTCGG GTTGTAAACT CCTGTCGAGG GGAAGGAAGG GGCCGCAAGG 351 CCCTTGACCG CTCCCTGGAG GAAGCACGGG CTAAGTTCGT GCCAGCAGCC 401 GCGGTAAGAC GAACCGTGCG AACGTTATTC GGAATCACTG GGCTTAAAGC GCGTGTAGGC GGGTCGGTGC GTCGGCCGTT GAAATCCCCC GGCTCAACCG 501 GGGAAGTGGC GCCGATACGA CCGGCCTGGA GACGACGTAN CGGGGAACTG 551 GAACTTCCGG TGGAGCGGNG AAATGCGTTG AGATCGGAAG AACGCCGNGG 601 CGAAAGCGAG TTCCTGGACG TCGGCTG

Sequence from clone 13

1 CCGCGGCGAA CGGGTGAGTA ACACGTGAAC ATCTGTCCCT ACATTCCGGA 51 TAATTGGCCG AAAGGCCTTG TAATACGGGC GAGGATGGTG GTGAGGCATC 101 TCACTATCAG GAAGGTGAAG CGCAAGCTTT GCCGTGCAGG AGGGGTTCGC 151 GGCCTATCAG TTAGTTGGTG GGGTAACGGC CTACCAAGAC GACGACGGGT 201 AGCTGGTCTG AGAGGATGGT CAGCCACATT GGAACTGAGA CACTGTCCAG 251 ACCCCTACGG GAGGCTGCAG TCGAGAATCT TGGGCAATGC ACGAAAGTGT 301 GACCCAGCGA CGCCGCGTGG AGGATGAAGG CCCTTGGGTT GTAAACTCCT 351 TTTAGGGGAG AAGAACGCTC CTTCGGGAGC TTGACGGTAC CCCCTGAATA 401 AGCCACGGCT AACTACGTGC CAGCAGCCGC GGTAATACGT AGGTGGCAAG 451 CGTTGTCCGG ATTTACTGGG CGTAAAGCGT GTGTAGGCGG ACCTTTAAGT 501 AGAAAGTGAA AGGTCGGAGC TCAACTCCTA CACTGCTCTC TATACTGGAG 551 GTCTTGAGTG TCGGAGAGGA AGATGGA

Sequence from clone 14

1 GCAAGGCCAG TGGCCCAAGG GGTGATTTAA GGCGCCGTAA CCAACCCCAC 51 GGTCGGGGCA TAGCCGCGGG AAACCGCGGG TAATTCTCGG CGACGCCCTA 101 TTCCGGCATC GGGACGGGGC CAAAGGTGCG ATTCCTGCCG TGGGACGGGC 151 CGTCGTGGTA TTAGCTTGTT GGCGGGGTGA CGGCCCACCA AGGCTGCGAT 201 GCCTACCGGG CGTGCGAGCG TGGCCCGGCA CACTGGGACT GAGACACTGC 251 CCAGACTCCT ACGGGAGGCT GCAGTCGAGA ATCTTCGGCA ATGGGCGCAA 301 GCCTGACCGA GCGGCGCCGC GTGGAGGACG AAGGCCTTCG GGTTGTAAAC 351 TCCTGTCGAG GGGGAGGAAG GGGGCGTGCA GAGCGTTCCT TGACCGATCC 401 CTGGAGGAAG CACGGGCTAA GTTCGTGCCA GCAGCCGCGG TAAGACGAAC 451 CGTGCGAACG TTATTCGGAA TCACTGGGCT TAAAGCGTGC GTAGGCGGGC 501 CGCCGCATCG GTCGCTGAAA TCCCCCGGCT TAACCGGGGA AGTGGCGCCG 551 AGATGGGCGG TCTGGACGGG GCGTAGGGGG ATCTGGAACT CCCGGTGGAG
601 CGGTGAAATG CGTTGAGATC GGGAGGA

Sequence from clone 17

1 GTACACGAGC GGAGAACGGG TGAGTAACAC GTGGGTAACC TGCCTCAGCT 51 CTGGGATAAG CCCGGGAAAC TGGGTCTAAT ACCGGATATG ACCTCGCATC GCATGGTGTG GGGTGGAAAG CCTTGTGCGG CTGAGGATGG GCCCGCGGCC TATCAGCTTG TTGGTGGGGT AGTGGCCTAC CAAGGCGACG ACGGGTAGCC GGCCTGAGAG GGCGACCGGC CACACTGGGA CTGAGACACG GCCCAGACTC CTACGGGAGG CAGCAGTGGG GAATATTGCG CAATGGGCGA AAGCCTGACG CAGCGACGCC GCGTGAGGGA TGACGGCCTT CGGGTTGTAA ACCTCTTTCA GCTCCGACGA AGCCTTCGGG TGACGGTAGG GGCAGAAGAA GCACCGGCCA ACTACGTGCC AGCAGCCGCG GTAATACGTA GGGTGCAAGC GTTGTCCGGA ATTATTGGGC GTAAAGAGCT CGTAGGCGGT TTGTCGCGTC GACTGTGAAA ACTCAGGGCT CAACTCCGAG CTTGCAGTTG ATACGGGCAG NCTAGAGTTC GGCAGGGAGA CTGGAATTCC TGGTGTAGCG GTGAAATGCG CAGATATCAG GAGGAACACC GGTGGCGAAG GCGGAAACGC GTGTGCTAC

Sequence from clone 19

1 GCTTGCGGCG TGCCTAAGAA ATGCAAGTCG AACGGACATT CCAGCAATGG 51 GGTGCTAGTG GCGAACGGTC GCGTAACACG TAGGCAACCT GCCCTGAAGT 101 GGGGGACAAC AGCCCGAAAG GGCTGCTAAT ACCGCATGTG AACAACGAAT 151 CACATGGTTT GTTGTTCAAA GGCTATGGCA ACATGGTCGC TTTGGGATGG 201 GCTTGCGGCC TATCAGGTAG TTGGTGGGGT AATGGCCCAC CAAGCCGACG 251 ACGGGTAGCT GGTCTGAGAG GACGATCAGC CGGATTGGGA CTGAGATACG 301 GCCCAGACTC CTACGGGGGG CAGCAATTAG GAATCTTGCG CAATGGGCGA 351 AAGCCTGACG CAGCGACGCC GCGTGCGGGA TGAAGGCCTT CGGGTCGTAA 401 ACCGCTTTTA ACGGGGAAGA AGAATGTGAC GGTACCCGTT GAATAAGCCC 451 CGGCTAACTA CGTGCCAGCA GCCGCGGTAA TACGTAGGGG GCGAGCGTTG 501 TCCGAAGTTA CTGGGCGTAA AGCGCGCGTA GGCGGTTGCC TAAGTCTGGG 551 GTGAAAGGTT CAGGGCTTAA CCCGAACAGT GCCTTGGATA CTGGGCGACT 601 TGAGTGCCGA AGAGGAAAGC GGAATTCCTG GTGTAGCGGT GAAATGCGTA
651 GATATCAGGA GGAACACCGA TGGCGAAGG
Sequence from clone 21
1 GGGTGAGTAA CACGTGGGTA ATCTACTCTG GGTGGGGGAT AACTCTGGGA 51 AACCGGAGCT AATACCGCAT AAGCCTGAAA AGGGAAAGGG GAAATTCGCC 101 GAGAGAGGAG CCCGCGGCCG ATTAGCTAGT TGGTGGGGTA AAGGCCTACC 151 AAGGCGACGA TCGGTAGCCG GCCTGAGAGG GCACACGGCC ACACTGGCAC 201 TGAAACACGG GCCAGACTCC TACGGGAGGC AGCAGTGGGG AATCTTGCAC 251 AATGGGGGCA ACCCTGATGC AGCGACGCCG CGTGAGCGAT TAAGCCCTTC 301 GGGGTGTAAA GCTCTTTCGG CAGGAACGAT CATGACGGTA CCTGAAGAAG 351 AAGCTGCGGC TAACTACGTG CCAGCAGCCG CGGTAATACG TAGGCAGCGA 401 GCGTTGTCGG AGTTTACTGG GCGTAAGGGT GCGTAGGCGG GTTTTCTTAA 451 GGTCTTGGTG TGAAATCTCC CGGGTCA

Sequence from clone 23

1 ACACGTGAGA AACCTGTCCC GAACTTGGGA ATAACAGCCG AAAACSACTG 51 CTAATACCGA ATATCTTCGT AACGTCGCAT GGCGATTCGA AGAAAGCTTT 101 ATGCGGTTTG GGAGGGTCTC GCGGCCTATC AGCTTGTTGG TGAGGTAATG 151 GCTCACCAAG GCATCGACGG GTAGCTGGTC TGAGAGGATG ATCAGCCACA 201 CTGGGACTGA GACACGGCCC AGACTCCTAC GGGAGGCAGC AGTGGGGAAT 251 ATTGCACAAT GGGCGAAAGC CTGATGCAGC GATGCCGCGT GCGGGAAGAA 301 GGCCCTAGGG TTGTAAACCG CTTTCAGTAG GGAAGAAAAT GACGGTACCT 351 ACAGAAGAAG GTGCGGCCAA CTACGTGCCA GCAGCCGCGG TGACACGTAG 401 GCACCAAGCG TTGTCCGGAT TTATTGGGCG TAAAGAGCTC GTAGGCGGTT 451 TGGTAAGTCG GGTGTGAAAA CTCTGGGCTC AACCCAGAGA GGCCACTCGA 501 TACTGCCATG ACTTGAGTAC GGTAGGGGAG TGGGGAATTT CTAGTGTAGC 551 GGTGAAATGC GCAGATATTA GAAGGAACAC CAGTGGCGAA GGCGCCACTC 601 TGGGCCGTAA CTGACG

Sequence from clone 26

1 GGCAGAGTTA CGAACGGGTG AGTAAAGTGG GTGACTGCCC CGATGACCGG 51 GACAACCCGA GGAAANTCGG GCTAATACCG GGATGTGTCC ACCTCGCGAC 101 AGCGGGGCGG GCAAAGGTAG CTTCGGCCTC CGCATCGGGA TGGGCCCGCG 151 GCCCATTAGC TTGTTGGTGA GGTAACGGCT CACCAAGGCG ACNATGGGTA 201 GCTGGTCTGA GAGGACGATC AGCCACACTG GGACTGAGAC ACGGCCCAGA 251 CTCCTACGGG AGGCAGCAGT GGGGAATCTT GCGCAAATGC GCGAAAGCGT 301 GACGCAGCAA CGCCGCGTTG

Sequence from clone 28

1 TTGGTAGCAA TCCTAAGAGT ANTTAGTGGC GAACGGGTGC GTAACACGTG 51 GCAATCTGCC GAGAAGTGGG GGATAGCTCG CCGAAAGGCG AATTAATACC 101 GCATATGACC AGAGGCGACA TCGCTTCGAA ATCAAAGGTG GCGCAAGCTA 151 CCGCTTTCCG ATGAGCCCGC GGCCTATCAG CTAGTTGGTG AAGTAACGGC 201 TCACCAAGGG CGATGACGGG TAGCTGGTCT GAGAGGACTC NACCAGTCAC 251 ACTGGAACTG AGACACGGTC CAGACACCTA CGGGTGGCAG CAGTCGAGAA 301 TTTTTCTCAA TGGGGGAAAC CCTGAAGGAG CGACGCCGCG TGGAGGATGA 351 AGGCTTTCGG GTTGTAAAAC TCCTGTCATT TTGAGAACAC GGTGCCGAAC 401 AAGTAACTAC TGTCGGGCTT GATAGTATCC GAAGAGGAAG AGACGGCTAA 451 CTCTGTGCCA GCAGCCGCGG TAATACCGAG GTCTCAAGCG TTGTTCGGAT 501 TC

Sequence from clone 37

1	TGCGTAACAC	GTGGGTAATT	TGCCATGAAG	TCTGGAATAA	CTTGCTGAAA
51	GGCGAGCTAA	TGCCGGATGT	GATTTTCGGG	AAGCATTTCT	TGAAACTCAA
101	AGTTGGGGAC	CGCAAGGCCT	GACGCTTCTT	GATAAGCCCG	CGGCCTATCA
151	GCTAGTTGGT	GAGGTAATGG	CTCACCAAGG	CTAAGACGGG	TAGCTGGTCT
201	GAGAGGACGA	CCAGCCACAC	TGGAACTGAG	ACACGGTCCA	GACACCTACG
251	GGTGGCAGCA	GTCGAGAATT	TTTCACAATG	GGCGAAAGCC	TGATGGAGCG
301	ACGCCGCGTG	GGGGATGAAT	GGCTTCGGCC	CGTAAACCCC	TGTCATTTGC
351	GAACAAACCT	TACCGGTTAA	CAACCGTTGA	GCTGATTGTA	GCGGAAGAGG
401	AAGGGACGGC	TAACTCTGTG	CCAGCAGCCG	CGGTAATACA	GAGGTCCCAA
451	GCGTTGTTCG	GATTCACTGG	GCGTAAAGGG	TGCGTAGGTG	GTGGGGTAAG
501	TCGGATGTGA	AATCTCCGGG	CTCAACCCGG	AAATGGCATT	GGAAACTACC
551	TTGCTAGAGG ATTTGAGGGG	GGATTGGAAT	ACTTGGTGTA		

Sequence from clone 41
1 ATTTGGTGGC GACCGKCAAA CGGGTGCGGA ACACGTACAG AACCTTCCTT
51 TAAGTGGGGG ATAGCCCAGA GAAATTTGGA TTAATACCCC GTAACATTAT 101 GAAGTGGCAT CACCTTATAA TTATAGATTT ATCGCTTAGA GATGGCTGTG 151 CGGCTGATTA GGTAGTTGGT GTGGGTAACG GCCCACCAAG CCTTCGATCA 201 GTAACTGGTG TGAGAGCACG ACCAGTCACA CGGGCACTGA GACACGGGCC 251 CGACTCCTAC GGGAGGCAGC AGTAAGGAAT ATTGGTCAAT GGACGCAAGT 301 CTGAACCAGC CATGCCGCGT GAAGGATGAA GGTCCTCTGG ATTGTAAACT 351 TCTTTT

Sequence from clone 43

1	CGGGTGAGTA	ACACGTGAAT	AACCTGCCCT	CACATTCTGG	ATAATTCACC
51	GAAAGGTGTT	GTAATACAGG	CGAGGATTCT	TAAGAGGCAT	TTCTTGAGAA
101	GGGAAGGCGC	AAGCCGTGCG	AGGAGGGGTT	CGCGGATTAT	CAGGTAGTTG
151	GTGAGGTAAC	GGCTCACCAA	GCCGACGACG	ATTAGCTGGT	CTGAGAGGAT
201	GGTCAGCCAC	ATTGGGACTG	AGACACTGCC	CAGACTCCTA	CGGGAGGCTG
251	CAGTCGAGAA	TCTTGCACAA	TGTACGAAAG	TATGATGCAG	CGACGCCGCG
301	TGAAGGATGA	AGGCCCTCTG	GGTCGTAAAC	TTCTTTTATG	TGGGAAGAAT
351	AAATGACGGT	ACCGCATGAA	TAAGCCACGG	CTAACTACGT	GCCAGCAGCC
401	GCGGTAATAC	GTAGGTGGCA	AGCGTTGTCC	GGATTTACTG GGCGTAAAGA	
451	GTATGTAGGC	GGATGTTTAA	GTAGGAAGTG	AAAGGTTGGA	GCTCAACTCC
501	GACACTGCTC	CCTATACTGG	GCATCTTGAG	GGCCGGAGAG	GAAAGCGGAA
551	CGACACGTGT	AGCGGTGAAA	TGCGTTGATA		

Sequence from clone 44

1 TGGACGCGAC GAACTAGTGC TTCGTGCCTG GTGTGCAGCA GCCTGCTGAA 51 CGTGTGTGAG TAACACGTGG GCAACCTTGC CCCGATGATT CGGGACAANC 101 CGGGGAAACT CGGGCTAAGT ACCGAATGTG CTCTCCTCAC ATCAGTGAGG 151 CGTGTAAAGG AAGCTTCGGC CTCCGCATTG GGATGGGCCC CGCAGGCCCA 201 TTAGCTTGTT GGTGAGGTAA CGGCTCACCA AGGCCGNGAA TGGGTAGCTG 251 GTCTGAGAGG ACGATCAGCC ACACTTGGGA CTTGAGACAC GGNCCAGAAA 301 CTTCCCTTAC GTGTGTATGT GNCNACGGCA GTCGNGNGTG AAACTTCTTT 351 GCTNCAATTG ACTGCCGAAA TCA

Sequence from clone 46
1 GCAGTCGAAC GATTAACTTT CCTTCGCGGA AAGATATACA AGTGGCGCAC 51 GGGTGAGTAC ACGGTAGTGT AATGTACCTT TGGNGTGGGG AATAACTTAG 101 GGAAACTTAA GCTAATACCG CATAATGCAG CGGCTCCTTC GGGAGACAGT 151 TGTTAAAGAT TTATCGCCTA AAGAGCAGCC TGCGGCAGAT TAGCTAGTTG 201 GTAAGTGTAA TGGCTTACCA AGGCTACGAT CTGTATCCGA CCTGAGAGGG 251 TGGTCGGACA CCACTGACAC TNAAATTTAA CCGGTTCCAA ATCTCCTCTN 301 TAACGGGAAA AGCGCAAACA TCTCCGGAAA ATTTGGGGGC CACCAATGGC 351 GCCGAAACC

Sequence from clone 48
1 ATATAAAGTG KCGCACGGGT GAGTAACACG TAGGTAATCT ACCTTTGAGT 51 GGGGAATAAC GTTCGGAAAC GAACGCTAAT ACCGCATAAT GCAGCGGCAC 101 CGCAAGGTGA CAGTTGTTAA AGGAGCAATC CGCTTAAAGA GGAGCCTGCG 151 GCAGATTAGC TAGTTGGTAA GGTAATGGCT TACCAAGGCT ACGATCTGTA 201 ACCGACCTGA GAGGGTGGTC GGTCACACTG ACACTGAATA ACGGGTCAGA 251 CTCCTACGGG AGGCAGCAGT CGGGAATTTT GGGCAATGGG CGAAAGCCTG 301 ACCCAGCAAC GCCGCGTGAA GGATGAAGTA TTTCGGTATG TAAACTTCGA 351 AAGAATAGGA AGAATAAATG ACGGTACTAT TTATA

Sequence from clone 50

1	GTGGAGCGAC	GAACGGGCTT	CGGCCCGGGG	TCAAAGCCTG	CGAACGGGTG
51	AGTAACACGT	GGGTAACCTG	CCCCGATGAC	CGGGACAACC	CGAGGAAACC
101	CTGGGCTNGT	ACCGGATGCG	CTCGGTTCAC	ACCAGTGGGC	CGAGCAAAGG
151	TAGGTTCGGC	CGTCCGCCTC	GGGATGGGCC	CGCAGAGCNG	CGATTAGCTT
201	GTTGGTGGGG	TAACGGACTT	ACCAAAGGNT	AACGAANGGC	CGTTAACAGC
251	CTTTGGCGCT	CCTTTGAAGT			

Sequence from clone 51

1 GCGGCAGACG GGAGAGTAAC ACGTGGGAAC GCGCCCTTCG GTTCGGAATA 51 ACTCAGGGAA ACTTGAGCTA ATACCGGATA CGCCCTTACG GGGAAAGATT 101 TATTGCCGAA GGAACGGCCC GCGTCGGATT AGCTAGTTGG TGAGGTAATG 151 GCTCACCAAG GCAACGATCC GTAGCTGGTC TAAGAGGATG ATCAGCCTCA 201 CTGGGACTGA GACACGGCCC AGACTCCTAC GGGAGGCAGC AGTGGGGAAT 251 ATTGGACAAT GGGCGAAAGC CTGATCCAGC CATGCCGCGT GGATGATGAA 301 GGCCTTAGGG TTGTAAAGTC CTTTTAACGG GGAAGATAAT GACGGTACCC 351 GTAGAATAAG CCCCGGCTAA CTTCGTGCCA GCAGCCGCGG TAATACGAAG 401 GGGGCTAGCG TTGCTCGGAA TTACTGGGCG TAAAGCGCAC GTAGGCGGAT 451 TGTTAAGTCG GGGGTGAAAT CCTGGAGCTC AACTCCAGAA CTGCCTTCGA 501 AACTGGCGAT CTTGAGTCCG GGAGAGGTGA GTGGAACTGC GAGTGTAGAG 551 GTGAAATTCG TAGATATTCG CAAGAACACC AGTGGCGAAG GCGGCTCACT 601 GGCCCGGTAC

Sequence from clone 55
1 GCCTTCGGGT CTAGTGGCGC ACGGGTGCGT AACGCGTGGG AATCTGCCCT 51 TGGGTTCGGG ATAACAGTTG GAAACGACTG CTAATACCGG ATGATGACTT 101 CGGTCCAAAG ATTTATCGCC CAAGGATGAG CCCGCGTAGG ATTAGCTTGT 151 TGGTGAGGTA AGAGCTCACC AAGGCGACGA TCCTTAGCTG GTCTGAGAGG 201 ATGATCAGCC ACACTGGGAC TGAGACACGG CCCAGACTCC TACGGGAGGC 251 AGCAGTGGGG AATATTGGAC AATGGGCGAA AGCCTGATCC AGCAATGCCG 301 CGTGAGTGAT GAAGGCCTTA GGGTTGTAAA GCTCTTTTAC CCGGGATGAT 351 AATGGCAGTA CCGGGAGAAT AAGCCCCGGC TAACTCCGTG CCAGCAGCCG 401 CGGTAATACG GAGGGGGCTA GCGTTGTTCG GAATTACTGG GCGTAAAGCG 451 CGCGTAGGCG GCTTTGTAAG TTAGGGGTGA AAGCCCGGAG CTCAACTCCG 501 GAATTGCCTT TAAGACTGCA TCGCTAGAAT CATGGAGAGG TGAGTGGAAT 551 TCCGAGTGTA GAGGTGAAAT TCGTAGATAT TCGGAAGAAC ACCAGTGGCG 601 AAGGCGACTC ACTGGACATG TATTGACGCT GAGGTGCGAA AGCGTGGGGA 651 GCAAACAGGA TTAGATACCC TGGTAGTCCA CGCC

Sequence from clone 58

1 GGTGGCGAGT GGCGGACGGG TGAGGAATAC ATCGGAATCT ACTCTGTCGT 51 GGGGGATAAC GTAGGGAAAC TTACGCTAAT ACCGCATACG ACCTACGGGT

101
151
201
251
301
351
401
451
501
551 601 AAATGCGTAG AGATCAGGAG GAACATCCAT GGCGAAGGCA GCTACCTGGA 651 CC

Sequence from clone 61

1 GAGGTAATGT ACCTTTGGGT CGGGAWTAAC YTAGGGAAAC TTAAGCTAAT 51 ACCGCATAAT GCAGCGGCTC CTTCGGGAGA CAGTTGTTAA AGATTTATCG 101 CCTAAAGAGC AGCCTGCGGC AGATTAGCTA GTTGGTAAGG TAACGGCTTA 151 CCAAGGCTAC GATCTGTATC CGACCTGAGA GGGTGGTCGG ACNYWCTGAC 201 ACTGAATAAC GGGTCAGACT CCTACGGGAG GCAGCAGTCG GGAATTTTGG 251 GCAATGGGCG AAAGCCTGAC CCAGCAACGC CGCGTGAAGG ATGAAGTCTT 301 TCGGGATGTA AACTTCGTAA GAATAGGAAG AATAAATGAC GGTACTATTT 351 GTAAGGTCCG GCTAACTACG TGCCAGCAGC CGCGGTAATA CGTAGGGACC 401 AAGCGTTGTT CGGATTTACT GGGCGTAAAG GGCGCGTAGG CGGCGTGACA 451 AGTCAATTGT GAAATCTCCG GGCTTAACTC GGAACGGTCA ATTGATACTG 501 TTGT

Sequence from clone 62

1 TCGGGAGTAC ACGAGCGGCG AACGGGTGAG TAACACGTGA GCAATCTGCC 51 CTTCACACGG GGATAACTTC GGGAAACCGA TGCTAATACC CGATACGACC 101 ACTTCAGGCA TCTGATGGTG GTGGAAAGTT CCGGCGGTGA AGGATGAGCT 151 CGCGGCCTAT CAGCTTGTTG GTGGGGTAAT GGCCCACCAA GGCAACGACG 201 GGTAGCCGGC CTGAGAGGGT GACCGGCCAC ACTGGGACTG AGACACGGCC 251 CAGACTCCTA CGGGAGGCAG CAGTGGGGAA TATTGGACAA TGGGCGAAAG 301 CCTGATCCAG CAACGCCGCG TGAGGGATGA CGGCCTTCGG GTTGTAAACC 351 TCTTTCAGCA GGGACGAAGC GAAAGTGACG GTACCTGCAG AAGAAGCACC 401 GGCCAACTAC GTGCCAGCAG CCGCGGTAAT ACGTAGGGTG CGAGCGTTGT 451 CCGGAATTAT TGGGCGTAAA GGGCTCGTAG GCGGTTTGTC ACGTCGGGAG 501 TGAAAACTCA GGGCTTAACC CTGAGCCTGC TTCCGATACG GGCAGACTAG 551 AGGTATGCAG GGGAGAACGG AATTCCTGGT GTAGCGGTGA AATGCGCAGA 601 TATCAGGAGG AACACCGGTG GCGAAGGCGG TTCTCTGGGC ATTACCTGAC 651 GCT

Sequence from clone 63

1 GCGAACGGGT GAGTAATACA TCGGAACGTA TCCTATAGCG GGGGATAACC 51 TCTCGAAAGA GAGGCTAATA CCGCATACGA CCCATGGGTG AAAGAGGGGG ATCGCAAGAC CTCTCACTAT TGGAGCGGCC GATGTCGGAT TAGCTAGTTG GCGGGGTAAA AGCCCACCAA GGCTACGATC CGTAGCTGGT CTGAGAGGAC GACCAGCCAC ACTGGAACTG AGACACGGTC CAGACTCCTA CGGGAGGCAG CAGTGGGGAA TTTTGGACAA TGGGCGCAAG CCTGATCCAG CCATGCCGCG TGAGTGAAGA AGGCCTTCGG GTTGTAAAGC TCTTTCGGCG GGGACGAAAA GATTCGCGTT AACACCGCGG ATCCATGACG GTACCCGCAG AAGAAGCACC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT ACGTAGGGTG CAGGCGTTAA TCGGAATTAC TGGGCGTAAA GCGTGCGCAG GCGGTCTTTT AAGTCAGATG TGAAATCCCC GGGCTTAACC TGGGAACTGC GTTTGAAACT GGAAGGCTAG AgTGTGGCAG AgGGgGgTGG AATTCCACGT GTAGCAGTGA AATGCGTAGA TATGTGGAGG AACAMCGATG GCGAAAGGCA GCCCCCTGGG CTAACAC

Sequence from clone 68

1 ACCCTAACCG GCTTCTTTTA CGAGCACCGG CTTCAGGTCT ACCAAACTTC 51 CATGGCTTGA CGGGCGGTGT GTACAAGGCC CGGGAACGTA TTCACCGCGT 101 CATTGCTGAT ACGCGATTAC TAGTGATTCC AGCTTCACGG AGTCGAGTTG 151 CAGACTCCGA TCCGAACTGA GAACGGCTTT TCGGGATTGG CGCACCATCG 201 CTGGTTGGCA ACCCGCTGTA CCGTCCATTG TAGCACGTGT GTAGCCCTAG 251 GCGTAAGGGC CATGATGACC TGACGTCGTC CCCGCCTTCC TCACTGCTTG 301 CGCAGGCAGT CTGTCTAGAG TCCCCGCCAT TACGCGCTGG CAACTAAACA 351 TAGGGGTTGC GCTCGTTGCG GGACTTAACC CAACACCTCA CGGCACGAGC 401 TGACGACGGC CATGCAGCAC CTTGCTTTGT GTCCCGAAGG AAAGGTTCAT 451 CTCTGAACCG GTCACGCGCA TTCTAGCCTA GGTAAGGTTC CTCGCGTATC 501 ATCGAATTAA ACCACATGCT CCACCACTTG TGCGGGCCCC CGTCAATTCT 551 TTTGA

Sequence from clone 70

1 CCCAGTCACG AATCCTACCG TGGTAAGCGC CCCCCTTGCG GTTAAGCTAC 51 CTACTTCTGG TAAAACCCGC TCCCATGGTG TGACGGGCGG TGTGTACAAG 101 ACCCGGGAAC GTATTCACCG CGACATGCTG ATCCGCGATT ACTAGCGATT 151 CCAACTTCAT GTAGTCGAGT TGCAGACTAC AATCCGGACT ACGATACACT 201 TTCTGGGATT AGCTCCCCCT CGCGGGTTGG CGGCCCTCTG TATGTACCAT 251 TGTATGACGT GTGAAGCCCT ACCCATAAGG GCCATGAGGA CTTGACGTCA 301 TCCCCACCTT CCTCCGGTTT GTCACCGGCA GTCTCATTAG AGTGCTCTTT 351 CGTAGCAACT AATGACAAGG GTTGCGCTCG TTGCGGGACT TAACCCAACA TCTCACGACA CGAGCTGACG ACAGCCATGC AGCACCTGTG TTACGGCTCT 451 CTTTCGAGCA CACCTCGATC TCTCGTGGCT TCCGTACATG TCAAGGGTAG 501 GTAAGGTTTT TCGCGTTGCA TCGAATTAAT CCACATCATC CACCGCTTGT 551 GCGGGTCCCC GTCAATTCCT TTGAGTTTTA ATCTTGCGAC CGTACTCCCC
601 AGGCGGTCTA CTTCACGCGT

Sequences from MVT 12 16S rDNA clone library

Sequence from clone 3

1
51
101
151
201
251
301
351
401
451
501
551
601
651
701

AACGAGGCCT TCGGGTCTAG TGGCGCACGG GTGCGTAACG CGTGGGAATC TGCCCTTGGG TTCGGGATAA CAGTTGGAAA CGACTGCTAA TACCGGATGA TGACTTCGGT CCAAAGATTT ATCGCCCAAG GATGAGCCCG CGTAGGATTA GCTTGTTGGT GAGGTAAGAG CTCACCAAGG CGACGATCCT TAGCTGGTCT GAGAGGATGA TCAGCCACAC TGGGACTGAG ACACGGCCCA GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGGACAATG GGCGAAAGCC TGATCCAGCA ATGCCGCGTG AGTGATGAAG GCCTTAGGGT TGTAAAGCTC TTTTACCCGG GATGATAATG GCAGTACCGG GAGAATAAGC CCCGGCTAAC TCCGTGCCAG CAGCCGCGGT AATACGGAGG GGGCTAGCGT TGTTCGGAAT TACTGGGCGT AAAGCGCGCG TAGGCGGCTT TGTAAGTTAG GGGTGAAAGC CCGGAGCTCA ACTCCGGAAT TGCCTTTAAG ACTGCATCGC TAGAATCATG GAGAGGTGAG TGGAATTCCG AGTGTAGAGG TGAAATTCGT AGATATTCGG AAGAACACCA GTGGCGAAGG CGACTCACTG GACATGTATT GACGCTGAGG TGCGAAAGCG TGGGGAGCAA ACAGGATTAG ATACCCTGGT AGTCCACGCC GTAAACGATG ATGACTAG

Sequence from clone 5

1 AAAGCTCTCT TCGGAGAGTG YATAGAGTGG CGCACGGGTG AGTAACACGT 51 AAGTAATCTA CCTTTGAGTG GGGAATAACG TCCGGAAACG GACGCTAATA 101 CCGCATAATG CAGCGGCATC GCAAGATGAC AGTTGTTAAA GGAATTTATT 151 TCGCTTGAAG AGGAGCTTGC GGCAGATTAG CTAGTTGGTA AGGTAATGGC 201 TTACCAAGGC TACGATCTGT AACCGGTCTT AGAGGACGGT CGGTCACACT 251 GACACTGAAT AACGGGTCAG ACTCCTACGG GAGGCAGCAG TCGGGAATTT 301 TGGGCAATGG GCGAAAGCCT GACCCAGCAA CGCCGCGTGA AGGATGAAGT 351 ATTTCGGTAT GTAAACTTCG AAAGAATGGG AAGAATCAAT GACGGTACCA 401 TTTATAAGGT CCGGCTAACT ACGTGCCAGC AGCCGCGGTA ATACGTAGGG 451 ACCAAGCGTT GTTCGGATTT ACTGGGCGTA AAGGGCGCGT AGGCGGCTTG 501 TCAAGTCACT TGTGAAATCT CCGGGCTTAA CTCGGAACGG TCAAGTGAAA 551 CTGTCAAGCT AGAGTGTGGA AGGGGCAATC GGAATTCTTG GTGTAGCGGT 601 GAAATGCGTA GATATCAAGA GGAACACCTG AGGTGAAGAC GGGTTGCTGG 651 GCCAACACTG ACGC

Sequence from clone 6
1 AGAGGAGCTT GCTCCTYGGG TGGCGAGTGG CGGACGGGTG AGGAATACAT 51 CGGAATCTAC TCTGTCGTGG GGGATAACGT AGGGAAACTT ACGCTAATAC 101 CGCATACGAC CTACGGGTGA AAGCAGGGGA TCTTCGGACC TTGCGCGATT 151 GAATGAGCCG ATGTCGGATT AGCTAGTTGG CGGGGTAAAG GCCCACCAAG 201 GCGACGATCC GTAGCTGGTC TGAGAGGATG ATCAGCCACA CTGGAACTGA 251 GACACGGTCC AGACTCCTAC GGGAGGCAGC AGTGGGGAAT ATTGGACAAT 301 GGGCGCAAGC CTGATCCAGC CATACCGCGT GGGTGAAGAA GGCCTTCGGG 351 TTGTAAAGCC CTTTTGTTGG GAAAGAAATC CAGCTGGCTA ATACCCGGTT 401 GGGATGACGG TACCCAAAGA ATAAGCACCG GCTAACTTCG TGCCAGCAGC 451 CGCGGTAATA CGAAGGGTGC AAGCGTTACT CGGAATTACT GGGCGTAAAG 501 CGTGCGTAGG TGGTCGTTTA AGTCCGTTGT GAAAGCCCTG GGCTCAACCT 551 GGGAACTGCA GTGGATACTG GGCGACTAGA GTGTGGTAGA GGGTAGCGGA 601 ATTCCTGGTG TAGCAGTGAA ATGCGTAGAG ATCAGGAGGA ACATCCATGG 651 CGAAGGCAGC TACCTGGACC AACACTGACA CTGAGGCA

Sequence from clone 8

1 GGGCTTGCCC TGGGSCAGAG CCGCGAACGG GTGAGTAACA CGTGGGTAAC 51 GTGCCCCGAT GACTGGGACA ACCCGGGGAA ACCCGGGCTA ATACCGGATA 101 TGCCCCCTCA CGCGAGTGAG GTGTGTAAAG GAAGCTTCGG CCTCCGCATC 151 GGGATCGGCC CGCGGCGCAT TAGCTTGTTG GTGAGGTAAC GGCTTACCAA 201 GGCAACGATG CGTAGCTGGT CTGAGAGGAC GATCAGCCAC ACTGGGACTG 251 AGACACGGCC CAGACTCCTA CGGGAGGCAG CAGTGGGGAA TCTTGCGCAA 301 TGCGCGAAAG CGTGACGCAG CAACGCCGCG TGGGGGAAGA AGGCCTTCGG 351 GTTGTAAACC CCTTTCAGTT GGGACGAAGT GTGGGCGGTT AATAGCCGTT 401 CTGCATGACG GTACCTTCAC AAGAAGCCCC GGCTAACTAC GTGCCAGCAG 451 CCGCGGTAAT ACGTAGGGGG CAAGCGTTGT CCGGAATCAT TGGGCGTAAA 501 GAGCGTGTAG GCGGCCCGGT AAGTCCGTTG TGAAAGTCGA GGGCTCAACC 551 CTCGAATGCC GGCGGATACT GTCGGGCTAG AGTCCGGAAG AGGC

Sequence from clone 13

1 GTTTCTTCGG AAACCGASTA GAGTGGCGCA CGGGTGAGTA ACACGTGAGT 51 AATCTGCCTT TGGGTGGGGG ATACCAATCG GAAACGATTG TTAATACCGC 101 ATAACGCAGC GGCATCGCAA GATGACAGTT GTTAAAGCGG GGGAACGAAG 151 CAATTCGTCC TCGCGCCAGA AGAGGAGCTC GCGGCAGATT AGGTAGTTGG 201 TGAGGTAATG GCTCACCAAG CCTGCGATCT GTAACCGGCC TGAGAGGGCG 251 GTCGGTCACA CTGACACTTA GATACGGGTC AGACTCCTAC GGGAGGCAGC 301 AGTCGGGAAT TTTGGGCAAT GGGCGCAAGC CTGACCCAGC AACGCCGCGT 351 GAAGGATGAA GCATTTCGGT GTGTAAACTT CGCAAGAATA GGAAGAATAA 401 GAGTAAGCAA ATACCTTGCT CGATGACGGT ACTATTTGTA AGCCCCGGCT 451 AACTCCGTGC CAGCAGCCGC GGTAATACGG GGGGGGCAAG CGTTGTTCGG 501 ATTTACTGGG CGTAAAGGGT GCGTAGGCGG CACCACAAGT CACTTGTGAA 551 ATCTCCAAGC TCAACTTGGA ACGGTCAAGT GATACTGTGG AGCTAGAGTG 601 CAGAAGGGGC AACCGGAATT CTCGGTGTAG CGGTGAAATG CGTAGATATC
651 GAGAGGAACA CT
Sequence from clone 15

1 GAGAAAGCCC TTCGGGGTTA GTAAAGTGGC GAACGGGTGA GTAACACGTG 51 GGCAACCTGC CCCTCGCAGG GGGACAACCG GAGGAAACTC CGGCTAATAC 101 CCCGTACGCT TGTTGGATCG CATGGTCCGG CAAGGAAAGG TAGCTTCGGC 151 CATCCGGCGA GGGATGGGCC CGCGTTGCAT TAGCTAGTTG GTAGGGTAAC 201 GGCCTACCAA GGCTACGATG CGTAGCTGGT CTGAGAGGAT GATCAGCCAC 251 ACTGGGACTG AGACACGGCC CAGACTCCTA CGGGAGGCAG CAGCCAGGAA 301 TCTTGGGCAA TGGGCGAAAG CCTGACCCAG CAACACCGTG TGGGTGATGA 351 AGGCCTTAGG GTCGTAAAGC CCTGTTGATA GGGACGAAGG GCGAAGGGTT 401 AATAGCCCGG AGCTTGACGG TACCTTTCGA GGAAGCCCCG GCTAACTACG 451 TGCCAGCAGC CGCGGTAATA CGTAGGGGGC GAGCGTTGTC CGGAATTATT 501 GGGCGTAAAG AGCGTGTAGG CGGTTCGGTA AGTCTGCTGT GAAATCTTGG 551 GGCTCAACCC TGAGCGTGCA GCGGATACTG CCGGGCTAGA GGGTGGTAGA 601 GGCGAGTGGA ATTCCGAGTG TAGCGGTGAA ATGCGCAGAT ATTCGGAGGA
651 ACACCAGTAG CGAA
Sequence from clone 16
1 TGAGTAACAC GTAGGTAATG TACCTTTGGG TCGGGAWTAA CYTAGGGAAA 51 CTTAAGCTAA TACCGCATAA TGCAGCGGCT CCTTCGGGAG ACAGTTGTTA 101 AAGATTTATC GCCTAAAGAG CAGCCTGCGG CAGATTAGCT AGTTGGTAAG 151 GTAACGGCTT ACCAAGGCTA CGATCTGTAT CCGACCTGAG AGGGTGGTCG 201 GACNYWCTGA CACTGAATAA CGGGTCAGAC TCCTACGGGA GGCAGCAGTC 251 GGGAATTTTG GGCAATGGGC GAAAGCCTGA CCCAGCAACG CCGCGTGAAG 301 GATGAAGTCT TTCGGGATGT AAACTTCGTA AGAATAGGAA GAATAAATGA 351 CGGTACTATT TGTAAGGTCC GGCTAACTAC GTGCCAGCAG CCGCGGTAAT 401 ACGTAGGGAC CAAGCGTTGT TCGGATTTAC TGGGCGTAAA GGGCGCGTAG 451 GCGGCGTGAC AAGTCAATTG TGAAATCTCC GGGCTTAACT CGGAACGGTC 501 AATTGATACT GTTGTGCTAG

Sequence from clone 19

1 TTCGGGTCTA GTGGCGAACS GGTGAGTAAC ACGTGAGGAA CGTGCCCCAG 51 AGACCGGGAT AAGCCGAGGA AACTTGGTCT AATACCGGAT GTCCCCACCG 101 GATCGCATGG TCTGGTGAGG AAATGGATTC CGCTCTGGGA GCGCCTCGCG 151 GCCTATCAGC TAGTTGGTGA GGTAACGGCC CACCAAGGCG TCGACGGGTA 201 GCTGGTCTGA GAGGATGATC AGCCACACTG GGACTGAGAC ACGGCCCAGA 251 CTCCTACGGG AGGCAGCAGT GGGGAATCTT GCGCAATGGG CGAAAGCCTG 301 ACGCAGCAAC GCCGCGTGCG GGACGACGGC CCTCGGGTTG TAAACCGCTT 351 TCAGCAGGAA CGATGATGAC GGTACCTGCA GAAGAAGCTC CGGCCAACTA 401 CGTGCCAGCA GCCGCGGTAA TACGTAGGGA GCAAGCGTTG TCCGGATTTA 451 TTGGGCGTAA AGAGCTCGTA GGCGGTTCGG TAAGTCGGGT GTGAAAACTC 501 TGGGCTCAAC CCGGAGAGGC CACTCGATAC TGCTGTGACT TGAGTCTGGT 551 AGGGGAGCAC GGAATTCCTG GTGTAGCGGT GAAATGCACA GATATCAGGA 601 GGAACACCGG TGGCGAAGGC GGTGCTCTGG GCCAGTACTG ACGCTGAGGA 651 GCGAAAGCG

Sequence from clone 20

1 CTCTCTTCGG AGAGTGTATA GAGTGGCGCA CGGGTGAGTA ACACGTAAGT 51 AATCTACCTT TGAGTGGGGA ATAACGTCCG GAAACGGACG CTAATACCGC 101 ATAATGCAGC GGCATCGCAA GATGACAGTT GTTAAAGGAA TTTATTTCGC 151 TTGAAGAGGA GCTTGCGGCA GATTAGCTAG TTGGTAAGGT AATGGCTTAC 201 CAAGGCTACG ATCTGTAACC GGTCTAAGAG GACGGTCGGT CACACTGACA 251 CTGAATAACG GGTCAGACTC CTACGGGAGG CAGCAGTCGG GAATTTTGGG 301 CAATGGGCGA AAGCCTGACC CAGCAACGCC GCGTGAAGGA TGAAGTATTT 351 CGGTATGTAA ACTTCGAAAG AATGGGAAGA ATCAATGACG GTACCATTTA 401 TAAGGTCCGG CTAACTACGT GCCAGCAGCC GCGGTAATAC GTAGGGACCA 451 AGCGTTGTTC GGATTTACTG GGCGTAAAGG GCGCGTAGGC GGCTTGTCAA 501 GTCACTTGTG AAATCTCCGG GCTTAACTCG GAACGGTCAA GTGAAACTGT 551 CAAGCTAGAG CGTGGAAGGG GCAATCGGAA TTCTTGGTGT AGCGGTGAAA 601 TGCGTAGATA TCAAGAGGAA CACCTGAGGT GAAGACGGGT TGCTAGGCCA
651 ACACTGACGC TG
Sequence from clone 21
1 CGGGAGCTCA TTTATGAGTC GACCGTGGCG GACGGGTGAG GAACACGTAG 51 CTAACCTGCC CAGGTATGGG GGATATGCGC TGGAAACGGC GTGCAATACC 101 GCATACGTTC GGGTCACGGG AGTGACTTGA GGAAAGCCGC AAGGCGTACC 151 TGGAGGGGGC TGCGTCCGAT TAGCTAGTTG GTGTGGTAAG AGCGCACCAA 201 GGCGATGATC GGTAGCTGGT CTGAGAGGAC GATCAGCCAC ACGGGGACTG 251 AGACACGGCC CCGACTCCTA CGGGAGGCAG CAGCAAGGAA TTTTCCACAA 301 TGGGCGCAAG CCTGATGGAG CAACGCCGCG TGGGGGATGA CGCGTTTCGG 351 CGTGTAAACC CCTTTTCGAG GGGACGAAGC TAATGACGGT ACCCTCGGAA 401 TAAGGACCGG CTAACTACGT GCCAGCAGCC GCGGTAAGAC GTAGGGTCCG 451 AGCGTTGTCC GGAATTACTG GGCGTAAAGC GCGCGCAGGC GGATTCGCGC 501 ATCATCGGTG AAAGCCCCCC GCTTAACGGG GGAGGGTCCG GTGAGATGGC 551 GAGTCTGGAG GCAGGGAGAG GCGAGTGGAA TTCCGGGTGT AGTGGTGAAA 601 TGCGTAGAGA TCCGGANGAA CACCAGTGGC GAANGCGGCT CGCTGGACCT 651 GACCTGACGC TGAAGCGCGA A

Sequence from clone 27

1 CGAAAGTTTC CTTCGGGAAG CGAGTAGAGT GGCGCACGGG TGAGTAACAC 51 GTAAGTAATC TACCCTCGGG TGGGGAATAA CATCGGGAAA CCGATGCTAA 101 TACCGCATAA TGCAGCGGCT CCTTATGGAG ACAGTTGTTA AAGTATTTAT 151 ATGCCTGGGG AGGAGCTTGC GGCAGATTAG CTAGTTGGTA AGGTAATGGC 201 TTACCAAGGC TACGATCTGT AGCCGACCTG AGAGGGTGGT CGGTCACACT 251 GACACTGAAT AACGGGTCAG ACTCCTACGG GAGGCAGCAG TCGGGAATTT 301 TGGGCAATGG GCGAAAGCCT GACCCAGCAA CGCCGCGTGA AGGATGAAGT 351 CTTTCGGGAT GTAAACTTCG TAAGAATAGG AAGAATAAAT GACGGTACTA 401 TTTGTAAGGT CCGGCTAACT ACGTGCCAGC AGCCGCGGTA ATACGTAGGG 451 ACCAAGCGTT GTTCGGATTT ACTGGGCGTA AAGGGCGCGT AGGCGGCGTG 501 ACAAGTCACT TGTGAAATCT CCGAGCTTAA CTCGGAACGG TCAAGTGATA 551 CTGTTATGCT AGAGTACAGA AGGGGTAATC GGAATTCTCG GTGTAGCGGT 601 GAAATGCGTA GATATCGAGA GGAACACCAT TTCCTGG

Sequence from clone 29
1 GGGAGTGAGT GGCGYYCNGG TGAGTAACRC RTGAGGATCT GCCTACAGGA 51 TGGGGACAAC AGTGGGAAAC TGCTGCTAAA ACCCAATGTG CCGAGAGGTG 101 AAAYATTAAT AGCCCTGTAG ATGAGCTCGC GTCTGATTAG CTMGTTGGTG 151 TGGTAAAGGC ATACCAAGGC GACGATCAGT AGCTGGTCTG AGAGGACGAT 201 CAGCCACACT GGGACTGAGA CACGGCCCAG ACTCCTACGG GAGGCAGCAG 251 TGGGGAATTT TCCGCAATGG GCGAAAGCCT GACGGAGCAA CGCCGCGTGA 301 GGGAGGAAGG CCTGTGGGTT GTAAACCTCT TTTCTCAAGG AAGAAGTTCT 351 GACGGTACTT GAGGAATCAG CATCGGCTAA CTCCGTGCCA GCAGCCGCGG 401 TAAGACGGAG GATGCAAGCG TTATCCGGAA TTATTGGGCG TAAAGCGTCC 451 GTAGGCGGTT ATAAAAGTCT GTTGTTAAAG CTCACAGCTC AACTGTGAAT 501 GGGCGATGGA AACTGTATGA CTAGAGAGTG GTAGGGGTAG AGGGAATTCC 551 TAGTGTAGCG GTGAAATGCG TAGATATTAG GAAGAACACC AGTGGCGAAG 601 GCGCTCTACT GGGCCATTAC TGACGCTGAT GGACGAAAGC TAGGGGAGCG 651 AAAGGGATTA GATACCCCTG TAGTCCTAGC TGTNAACGAT GG

Sequence from clone 33
1 ATTAAACTTT CCTTCGGGAA AGATATAAAG TGGCGCACGG GTGAGTAACA 51 CGTAGGTAAT TTGCCTTTGG GTGGGGAATA ACCGTCGGAA ACGACGGCTA 101 ATACCGCATA ATGCAGCGGC TCCTTATGGA GACAGTTGTT AAAGATTTAT 151 CGCCTGAAGA GAAGCCTGCG GCAGATTAGG TAGTTGGTGA GGTAATGGCT
201 CACCAAGCCC GCGATCTGTA TCCGGTCTAA GAGGATGGTC GGACACACTG 251 ACACTGAATA ACGGGTCAGA CTCCTACGGG AGGCAGCAGT CGGGAATTTT 301 GGGCAATGGG CGAAAGCCTG ACCCAGCAAC GCCGCGTGAA GGATGAAGTA 351 TCTCGGTATG TAAACTTCGG AAGAATGGGA AGAATAAATG ACGGTACCAT 401 TTTTAAGCCC CGGCTAACTC TGTGCCAGCA GCCGCGGTAA TACAGAGGGG 451 GCAAGCGTTG TTCGGATTTA CTGGGCGTAA AGGGCGCGTA GGCGGCGTGT 501 TAAGTCACTT GTGAAATCTC TGAGCTTAAC TCAGAACGGT CAAGTGATAC 551 TGATGTGCTA GAGTGCAGAA GGGGCAACTG GAATTCTTGG TGTAGCGGTG 601 AAATGCGTAG ATATCAAGAG GAACACCTGA GGCGAANGCG GGTTGCTGGG 651 CTGACACTGA C

Sequence from clone 42

1 AAGAGGTAGT GGCGAGCGGG TGAGTAACAC GTGAGAAACC TATCCTGGTC 51 TCTGGGAYMA CAGCCGGAAA CGGCTGCTAA TACCGGATGC CGTCGGAGCG 101 TCGCATGGCG CGCTGACGAA MGGGTTACTG GATCAGGAGG GTCTCGCGGC 151 CTATCAGCTA GTTGGTGGGG TAATGGCCTA CCAAGGCATC SACGGGTWKY 201 TGGTCTGAGA GGATGATCAG CCACWCTGGG ACTGAATAAC GGGTCAGACT 251 CCTACGGGAG GCAGCAGTCG GGAATTTTGG GCAATGGGCG AAAGCCTGAC 301 CCAGCAACGC CGCGTGAAGG ATGAAGTCTT TCGGGATGTA AACTTCGTAA 351 AAATAGGAAG AATAAATGAC GGTACTATTT ATAAGGTCCG GCTAACTACG 401 TGCCAGCAGC CGCGGTAATA CGTAGGGACC AAGCGTTGTT CGGATTTACT 451 GGGCGTAAAG GGCGCGTAGG CGGCAATTCA AGTCAGTTGT GAAATCTCCG 501 AGCTTAACTC GGAACGGTCA ACTGATACTG CTTTGCTAGA GTACAGAAGG 551 GGCAATCGGA ATTCTTGGTG TAGCGGTGAA ATGCGTAGAT ATCAAGAGGA 601 ACACCTGAGG TGAAGACGGG TTGCTGGGCT GATACTGACG CTGA

Sequence from clone 43

1 GGCCCCTTCG GGGGTACACG MSCGGCGAAC GGCTGAGTAA CGCGTGGGAA 51 TCCACCCCAA AGTGAGGGAT AAGCACCGGA AACGGTGTCT AATACCGCAT 101 ATGGTCTTCG GATTAAAGTT TTATACGCTT TGGGAGGAGC CCGCSTCCGA 151 TTAGGTTGTT GGTGAGGTAA TGGCTCACCA AGCCGACGAT CGGTAGCTGG 201 TCTGAGAGGA TGATCAGCCA GACTGGAACT GAGACACGGT CCAGACTCCT 251 ACGGGAGGCA GCAGTAAGGA ATCTTCCACA ATGGGCGAAA GCCTGATGGA 301 GCAACGCCGC GTGCAGGACG AAGGCCTTCG GGTCGTAAAC TGCTTTTGTA 351 TACGAAGAAT TTGACGGTAG TATACGAATA AGGATCGGCT AACTCCGTGC 401 CAGCAGCCGC GGTCATACGG AGGATCCAAG CGTTATCCGG AGTGACTGGG 451 CGTAAAGAGT TGCGTAGGTG GTTAGTAAAG TGAATAGTGA AACCTGAAGG 501 CTCAACCTTC AGACTATTAT TCAAACTTAC TAACTCGAGA ATGGTAGAGG 551 TAGCTGGAAT TTCTAGTGTA GGAGTGAAAT CCGTAGATAT TAGAAGGAAC 601 ACCAATGGCG TAGGCAGGCT ACTGGACCAT TTCTGACACT AAGGCACGAA
651 AGCGTGGGGA GCGAACCGGA TTAGATA

Sequence from clone 50

1 AACGGGAATA TTCGCTATAG CAATATAGCG GATGTCTAGT GGCGGAAGGG 51 TGCGTAACAC GTGGGCAATC TGCCGAAAAG TGGGGAATAG CTCGCCGAAA 101 GGCGAATTAA TACCGCATAC GATTAACGAA AGCCTTTTTG TGAAATCAAA 151 GCTGGGGAAA CTTGGCGCTT TTCGATGAGC CCGCGGCCTA TCAGCTAGTT 201 GGCGAGGTAA TGGCTCACCA AGGCGATGAC GGGTAGCTGG TCTGAGAGGA 251 CGACCAGCCA CACTGGAACT GAGACACGGT CCAGACACCT ACGGGTGGCA 301 GCAGTCGAGA ATTTTTCTCA ATGGGGGAAA CCCTGAAGGA GCGACGCCGC 351 GTGGAGGATG AAGGTCTTCG GATTGTAAAC TCCTGTCATC AGAGAACAAT 401 GGGCACATTA ACCGTGTGTC TTGATAGTAC CTGAAGAGGA AGAGACGGCT 451 AACTCTGTGC CAGCAGCCGC GGTAATACGG GGGGGGCAAG CGTTGTTCGG 501 ATTTACTGGG CGTAAAGGGT GCGTAGGCGG CACCACAAGT CACTTGTGAA 551 ATCTCCAAGC TCAACTTGGA ACGGTCAAGT GATACTGTGG AGCTAGAGTG 601 CAGAAGGGGC

Sequence from clone 52

1 CGAGCGGTAA GGCTCCTTCG GGAGTACACG AGCGGCGAAC GGGTGAGTAA 51 CACGTGAGCA ATCTGCCCTT CACACGGGGA TAACTTCGGG AAACCGATGC 101 TAATACCCGA TACGACCACT TCAGGCATCT GATGGTGGTG GAAAGTTCCG 151 GCGGTGAAGG ATGAGCTCGC GGCCTATCAG CTTGTTGGTG GGGTAATGGC 201 CCACCAAGGC AACGACGGGT AGCCGGCCTG AGAGGGTGAC CGGCCACACT 251 GGGACTGAGA CACGGCCCAG ACTCCTACGG GAGGCAGCAG TGGGGAATAT 301 TGGACAATGG GCGAAAGCCT GATCCAGCAA CGCCGCGTGA GGGATGACGG 351 CCTTCGGGTT GTAAACCTCT TTCAGCAGGG ACGAAGCGAA AGTGACGGTA 401 CCTGCAGAAG AAGCACCGGC CAACTACGTG CCAGCAGCCG CGGTAATACG 451 TAGGGTGCGA GCGTTGTCCG GAATTATTGG GCGTAAAGGG CTCGTAGGCG 501 GTTTGTCACG TCGGGAGTGA AAACTCAGGG CTTAACCCTG AGCCTGCTTC 551 CGATACGGGC AGACTAGAGG TATGCAGGGG AGAACGGAAT TCCTGGTGTA 601 GCGGTGAAAT GCGCAGATAT CAGGAGGAAC ACCGGTGGCG AAGGCGGTTC
651 TCTGGGCATT ACCTGACGCT GAGGAGCG
Sequence from clone 53
1 CGGAMATTCC AGCAATGGGG TGTTAGTGGC GAACGGTCGC GTAACACGTA 51 GGCAACCTGC CCTGAAGTGG GGGACAACAG CCCGAAAGGG CTGCTAATAC 101 CGCATGTGAA CAACGAATCG CATGGTTTGT TGTTCAAAGG CTATGGCAAC 151 ATGGTCGCTT TGGGATGGGC TTGCGGCCTA TCAGGTAGTT GGTGGGGTAA 201 TGGCCCACCA AGCCGACGAC GGGTAGCTGG TCTGAGAGGA CGATCAGCCG 251 GATTGGGACT GAGATACGGC CCAGACTCCT ACGGGGGGCA GCAATTAGGA 301 ATCTTGCGCA ATGGGCGAAA GCCTGACGCA GCGACGCCGC GTGCGGGATG 351 AAGGCCTTCG GGTCGTAAAC CGCTTTTAAC GGGGAAGAAG AATGTGACGG 401 TACCCGTTGA ATAAGCCCCG GCTAACTACG TGCCAGCAGC CGCGGTAATA 451 CGTAGGGGGC GAGCGTTGTC CGAAGTTACT GGGCGTAAAG CGCGCGTAGG 501 CGGTTGCCTA AGTCTGGGGT GAAAGGTTCA GGGCTTAACC CGAACAGTGC 551 CTTGGATACT GGGCGACTTG AGTGCCGAAG AGGAAAGCGG AATTCCTGGT 601 GTAGCGGTGA AATGCGTAGA TATCAGGAGG AACACCGATG GCGAAGGCAG 651 CTTTCTGGTC GGCAACTGAC G

Sequence from clone 55
1 GTGAAGCCCT TCGGGGTGGA TCASYGGCGA ACGGGTGAGT AACACGTGAG 51 CAACCTGCCC TTCACTCTGG GATAACTCCG GGAAACCGGT GCTAATACCG 101 GATACGAGTA TCGGCCTCAT GGTCTGGTGC TGGAAAGAAT TTTGGTGGGG 151 GATGGGCTCG CGGCCTATCA GCTTGTTGGT GAGGTAATGG CTCACCAAGG 201 CGACGACGGG TAGCCGGCCT GAGAGGGCGA CCGGCCACAC TGGGACTGAG 251 ACACGGGCCC GACTCCTACG GGAGGCAGCA GTAAGGAATA TTGGTCAATG 301 GGCGAAAGCC TGAAGCAGCG ACGCCGCGTG AGGGATGAAG GCCTTCGGGT 351 TGTAAACCTC TTTCAGTAGG GACGAAGCGA AAGTGACGGT ACCTACAGAA 401 GAAGCACCGG CCAACTACGT GCCAGCAGCC GCGGTAATAC GTAGGGTGCA 451 AGCGTTGTCC GGAATTATTG GGCGTAAAGA GCTCGTAGGC GGTTTGTCAC 501 GTCGGCTGTG AAATCCCGAG GCTCAACCTC GGGTCTGCAG TCGATACGGG 551 CAGACTAGAG TACTGCAGGG GAGACTGGAA TTCCTGGTGT AGCGGTGGAA 601 TGCGCAGATA TCAGGAGGAA CACCGGTGGC GAAGGCGGGT CTCTGGGCAG 651 TAACTGACGC TG

Sequence from clone 56

1 GCGGGGCAAC CTGGCGGCCA GTGGCGAACG GGTGAGTAAT ATATCGGAAC 51 GTACCCTGGA GTGGGGGATA ACGTAGCGAA AGTTACGCTA ATACCGCATA 101 CGATCTAAGG ATGAAAGTGG GGGATTCGCA AGAACCTCAT GCTCCTGGAG 151 CGGCCGATAT CTGATTAGCT AGTTGGTGGG GTAAAGGCCT ACCAAGGCAT 201 CGATCAGTAG CTGGTCTGAG AGGACGACCA GCCACACTGG AACTGAGACA 251 CGGTCCAGAC TCCTACGGGA GGCAGCAGTG GGGAATTTTG GACAATGGGC 301 GAAAGCCTGA TCCAGCAATG CCGCGTGAGT GAAGAAGGCC TTCGGGTTGT 351 AAAGCTCTTT TGTCAGGGAA GAAACGGTGA AAGCTAATAT CTTTTGCTAA 401 TGACGGTACC TGAAGAATAA GCACCGGCTA ACTACGTGCC AGCAGCCGCG 451 GTAATACGTA GGGTGCAAGC GTTAATCGGA ATTACTGGGC GTAAAGCGTG 501 CGCAGGCGGT TTTGTAAGTT TGTCGTGAAA TCCCCGGGCT CAACCTGGGA 551 ATTGCGATGA AGACTGCAAG GCTAGAATCT GGCAGAGGGG GGTAGAATTC 601 CACGTGTAGC AGTGAAATGC GTAGAGATGT G

Sequence from clone 58

1 GGCAGCACGG GAGCAATCCT GGTGGCGAGT GGCGAACGGG TGAGTAATAC 51 ATCGGAACGT GTCCATTAGT GGGGGATAAC CCGGCGAAAG CCGGACTAAT

101
151
201
251
301
401
451
501
551
601
651 ACCGCATACG ACCTAAGGGT GAAAGCGGGG GATCGCAAGA CCTCGCGCTA GCGGAGCGGC CGATGTCAGA TTAGCTTGTT GGTGGGGTAA AAGCCTACCA AGGCAACGAT CTGTAGCTGG TCTGAGAGGA CGACCAGCCA CACTGGGACT GAGACACGGC CCAGACTCCT ACGGGAGGCA GCAGTGGGGA ATTTTGGACA ATGGGCGCAA GCCTGATCCA GCCATGCCGC GTGCGGGAAG AAGGCCTTCG GGTTGTAAAC CGCTTTTGTC AGGGAAGAAA AGCTCCGGGT CAACACCTCG GAGTCATGAC GGTACCTGAA GAATAAGCAC CGGCTAACTC CGTGCCAGCA GCCGCGGTAA TACGGAGGGT GCAAGCGTTG TCCGGATTTA TTGGGTTTAA AGGGTGCGTA GGTGGCGTCT TAAGTCTGGT TTGAAAGCAG GCGGCTCAAC CGTCTGATGT GGCTGGAAAC TGGGGCGCTT GAATGGGTTG GCGGTAGCCG GAACGGGTCA TGTAGCGGTG AAATGCATAG ATATGACCCA GAACACCGAT TGCGAAGGCA GGCTACTACG ACTTGATTGA CACTGAGGCA CGAGAGCA

Sequence from clone 60

1 GGGGGCAACC CTGGTGSCGA GTGGCGAACG GGTGAGTAAT ACATCGGAAC 51 GTATCCTATA GCGGGGGATA ACCTCTCGAA AGAGAGGCTA ATACCGCATA

101
151
201
251
301
351
401
451
501
551
601
651 CGACCCATGG GTGAAAGAGG GGGATCGCAA GACCTCTCAC TATTGGAGCG GCCGATGTCG GATTAGCTAG TTGGCGGGGT AAAAGCCCAC CAAGGCTACG ATCCGTAGCT GGTCTGAGAG GACGACCAGC CACACTGGAA CTGAGACACG GTCCAGACTC CTACGGGAGG CAGCAGTGGG GAATTTTGGA CAATGGGCGC AAGCCTGATC CAGCCATGCC GCGTGAGTGA AGAAGGCCTT CGGGTTGTAA AGCTCTTTCG GCGGGGACGA AAAGATTCGC GTTAACACCG CGGATCCATG ACGGTACCCG CAGAAGAAGC ACCGGCTAAC TACGTGCCAG CAGCCGCGGT AATACGTAGG GTGCAGGCGT TAATCGGAAT TACTGGGCGT AAAGCGTGCG CAGGCGGTCT TTTAAGTCAG ATGTGAAATC CCCGGGCTTA ACCTGGGAAC TGCGTTTGAA ACTGGAAGGC TAGAGTGTGG CAGAGGGGGG TGGAATTCCA CGTGTAGCAG TGAAATGCGT AGATATGTGG AGGAACAMCG ATGGCGAAAG GCAGCCCCCT GGGCTAACAC TGACGCTCA

Sequence from clone 62

1	AATCATCTCA	CGGTTGGGTA	TAGCCGCGAG	AAATCGCGGG	TAATCCCCAG
51	CGACGCAGGG	TGTCGGCATC	GACGCCCTGC	CAAAGGCTCG	CCGCCGTGGG
101	ACGAGCCGTC	GTGGTATTAG	GTTGTTGGCG	GGGTAACGGC	CCACCAAGCC
151	TGCGATGCCT	ACCGGGCGTG	CGAGCGTGGC	CCGGCACACT	GGGACTGAGA
201	CACTGCCCAG	ACTCCTATGG	GAGGCTGCAG	TCGAGAATCT	TCGGCAATGG
251	GCGCAAGCCT	GACCGAGCGA	CGCCGCGTGG	AGGACGAAGG	CCTTCGGGTT
301	GTAAACTCCT	GTCGAGGGGA	AGGAAGGGGC	CGCAAGGCCC	TTGACCGCTC
351	CCTGGAGGAA	GCACGGGCTA	AGTTCGTGCC	AGCAGCCGCG	GTAAGACGAA
401	CCGTGCGAAC	GTTATTCGGA	ATCACTGGGC	TTAAAGCGCG	TGTAGGCGGG
451	TCGGTGCGTC	GGCCGTTGAA	ATCCCCCGGC	TCAACCGGGG	AAGTGGCGCC
501	GATACGACCG	GCCTGGAGAC	GACGTANCGG	GGAACTGGAA	CTTCCGGTGG
551	AGCGGNGAAA	TGCGTTGAGA	TCGGAAGAAC	GCCGNGGCGA	AAGCGAGTTC
601	C				

Sequence from clone 65

1
51 101 GGTCTCGCGG CCTATCAGCT TGTTGGTGAG GTAATGGCTC ACCAAGGCAT 151 CGACGGGTAG CTGGTCTGAG AGGATGATCA GCCACACTGG GACTGAGACA 201 CGGCCCAGAC TCCTACGGGA GGCAGCAGTG GGGAATATTG CACAATGGGC 251 GAAAGCCTGA TGCAGCGATG CCGCGTGCGG GAAGAAGGCC CTAGGGTTGT 301 AAACCGCTTT CAGTAGGGAA GAAAATGACG GTACCTACAG AAGAAGGTGC 351 GGCCAACTAC GTGCCAGCAG CCGCGGTGAC ACGTAGGCAC CAAGCGTTGT 401 CCGGATTTAT TGGGCGTAAA GAGCTCGTAG GCGGTTTGGT AAGTCGGGTG 451 TGAAAACTCT GGGCTCAACC CAGAGAGGCC ACTCGATACT GCCATGACTT 501 GAGTACGGTA GGGGAGTGGG GAATTTCTAG TGTAGCGGTG AAATGCGCAG 551 ATATTAGAAG GAACACCAGT GGCGAAGGCG CCACTCTGG

Library

 VerifiedDigitally signed by Library
DN: cn=Library, o=UWC, ou=LICT, c=ZA Date: 2005.07.08
11:12:55 Z
Reason: Document is released

