Microbial Diversity of Antarctic Dry Valley Mineral Soil

By

Kamini Moodley

Submitted in partial fulfilment of the requirements for the degree of Magister Scientiae (M.Sc.) in the Department of Biotechnology, University of the Western Cape.

Supervisor: Prof. D. Cowan

December 2004

Declaration

"I declare that, Microbial Diversity of Antarctic Dry Valley Mineral Soil, is my own work, that it has not been submitted for any degree or examination in any university and that all the sources I have used or quoted have been indicated and acknowledged by means of complete references".

.....

Kamini Moodley December 2004

Abstract

Antarctica provides some of the most extreme environments on Earth. Low temperatures, low water availability and nutrient deficiency are contributing factors to the limited colonisation of Antarctic biotopes, particularly in the continental Dry Valleys. The survival of microorganisms in this harsh continent provides the basis for the significance of this study. In this study we aim to explore microbial phylotypic diversity across a 500m altitudinal transect in the Miers Dry Valley, Ross Desert, East Antarctica. We also attempt to infer from phylogenetic data, the possible presence of indicative phenotypes which might contribute to a functional microbial community.

Total genomic DNA was isolated from 12 soil samples and 16S rDNA PCR was performed with primers designed to target the conserved regions of the bacterial 16S rRNA gene. A preliminary analysis of bacterial diversity across the transect was conducted via Denaturing Gradient Gel Electrophoresis (DGGE). It was observed that essentially similar phylotypes were present in every level. The vertical transect of 500m in the Miers Dry Valley was shown to have little effect on microbial diversity, as DGGE indicated that few phylotypes appeared to be altitudinal dependent. Due to the similarity between the transect samples, 16S rDNA clone libraries of transect samples 1, 5, 7 and 9 were prepared. A total of 121 clones were sequenced and similarity searches with known bacterial 16S rDNA sequences in public databases were evaluated. 115 were =90% identical to their respective matches in the database, 2 sequences were 89% identical and 4 sequences were 88% identical. Approximately 500 base pairs of the 16S sequences were being compared to those on the database. Major taxonomic groups represented by the genera included: a, ß, ? Proteobacteria, Actinobacteria, Verrucomicrobia, Planctomycetes and several uncultured environmental and Antarctic samples. Genera which can be assigned with some confidence included, *Opitutis*, *Clostridium*, Rhodoglobus, Brevundimonas, Lysobacter, Nocardia, Kribella, Sphingomonas, Rubrobacter, Stenotrophomonas, and Janthinobacterium.

Molecular evidence did not support the presence of an established trophic community structure in the Miers Valley transect as most of the phylotypes and genera identified in the present investigation were heterotrophs. The possibility of autotrophs inhabiting the Miers Dry Valley cannot be eliminated as a large portion of the phylotypes were uncultured and there was evidence for the possible presence of autotrophs in the Miers Dry Valley. Exogenous heterotrophic substrates are thought to be negligible in the Dry Valley mineral soils and the present investigation supports this statement as ~80% of the identified phylotypes were heterotrophs. For this reason heterotrophs depend on other sources of organic matter such as aerial dispersion.

Phylogenetic studies have shown that most of the clones clustered with their respective matches obtained from the database and also displaying bootstrap values of 100. Some Antarctic isolates clustered together whilst others exhibited high similarity to environmental samples. This suggests that most Antarctic microorganisms are common to other soil environments, but may have adapted to the extreme psychrophilic habitat. A relatively small proportion (~10%) of Antarctic phylotypes appeared to be novel.

Acknowledgements

Immense gratitude is bestowed to Vernon Ramiah whose continuous guidance and support has encouraged me throughout the duration of my studies. His kind thoughts and loving deeds will always be appreciated and for this I am eternally grateful.

I am sanctified for being blessed with two loving parents who have always supported me through all my decisions in life. I would like to thank them for positioning me on the path of excellence and to challenge life when necessary. I have become who I am today because I am a product of their influence.

I would like to express my gratitude to the following people for all their assistance, moral support and advice, without which this thesis would not have been possible.

My supervisor, Professor D. Cowan, for his continued guidance and his belief in me to always exert myself beyond the norm and to reach for the sky. He has broken the mould of immaturity and has sculptured a strong independent character within myself. For this I am eternally grateful.

Dr. L. Ah. Tow, Dr. W. H. L. Stafford and J. J. Smith, for their inexhaustible patience and tolerance. I wish to thank them for all the help and support throughout the duration of this project.

At this point, sincere gratification must be honoured to close friends, whose enthusiasm, thoughtfulness, assistance and advice have been the prism that has reflected light into my life. I would like to thank them with my true friendship.

Table of Contents

Dec	laration		i					
Abs	tract		ii					
Ack	nowledg	gements	iv					
List	of Figu	res	vii					
List	of Table	es	viii					
List	of Abbr	reviations	ix					
1.	Introduction and Aims							
	1.1.	General introduction	1					
	1.2.	Extremophiles in biotechnology	1					
	1.3.	Why study Antarctica?	3					
	1.4.	Molecular Techniques	4					
	1.5.	Dissertation	5					
	1.6.	References	6					
2.	Liter	Literature Review						
	2.1.	Antarctica	8					
		2.1.1. Maritime Antarctica	8					
		2.1.2. Terrestrial Antarctica	10					
		2.1.3. Antarctic Lakes	12					
	2.2.	Molecular Techniques	13					
		2.2.1. DNA extraction from soil	13					
		2.2.2. 16S rDNA PCR	14					
		2.2.3. Denaturing gradient gel electrophoresis (DGGE)	17					
		2.2.4. Phylogenetic Analyses	18					
	2.3.	References	21					
3.	Methodology							
	3.1.	Retrieval and storage of soil samples	26					
	3.2.	DNA Extraction						
	3.3.	PCR						

		3.3.1. 16S rDNA PCR	28
		3.3.2. DGGE specific Touchdown PCR	28
		3.3.3. M13 PCR	29
	3.4.	Denaturing gradient gel electrophoresis (DGGE)	29
	3.5.	Cloning	30
		3.5.1. Calculation of the amount of insert required	30
		3.5.2. Phosphokinase reaction	30
		3.5.3. Ligation	31
		3.5.4. Transformation	31
		3.5.5. Direct colony PCR screening	31
	3.6.	Amplified rDNA restriction analysis (ARDRA)	31
	3.7.	Plasmid isolation	32
	3.8.	Sequencing	32
	3.9.	Phylogenetic analyses	32
	3.10.	References	33
4.	Resul	ts and Discussion	34
	4.1.	Introduction	34
	4.2.	gDNA Isolation	34
	4.3.	16S rDNA PCR	36
	4.4.	Denaturing gradient gel electrophoresis (DGGE)	36
	4.5.	16S Clone Libraries and Phylogenetic Analyses	37
		4.5.1. MVT 1	40
		4.5.2. MVT 5	42
		4.5.3. MVT 7	46
		4.5.4. MVT 9	48
		4.5.5. MVT 12	50
	4.6.	References	56
5.	Conc	lusion	63

6.

Appendix

List of Figures

		Pg. No.
Figure 1.1.	Terms used to study extremophiles.	3
Figure 2.1.	Picture of the Miers Dry Valley.	11
Figure 2.2.	Illustration of 16S rRNA gene of E. coli.	15
Figure 2.3.	A Cladogram and a Phylogram showing a branch and a node.	19
Figure 3.1.	Picture of the Miers Dry Valley showing 500m altitudinal transect.	26
Figure 4.1.	gDNA isolations of MVT samples 1 to 12.	35
Figure 4.2.	Products of 16S rDNA PCR amplification.	35
Figure 4.3. the MVT tra	Denaturing gradient gel showing bacterial phylotypic diversity across ansect.	37
Figure 4.4.	Phylogenetic tree of MVT 1.	52
Figure 4.5.	The percentage of different phyla in MVT 1.	42
Figure 4.6.	The percentage of different phyla in MVT 5.	44
Figure 4.7.	The percentage of different phyla in MVT 7.	46
Figure 4.8.	Phylogenetic tree of MVT 7.	53
Figure 4.9.	Phylogenetic tree of MVT 9.	54
Figure 4.10	• The percentage of different phyla in MVT 9.	48
Figure 4.11	• Phylogenetic tree of MVT 12.	55
Figure 4.12	• The percentage of different phyla in MVT 12.	50

List of Tables

	Pg. No.
Table 3.1. Summary of the Miers Valley Transect (MVT) and the different levels.	27
Table 4.1. Summary of MVT 1 Blast results.	43
Table 4.2. Summary of MVT 5 Blast results.	45
Table 4.3. Summary of MVT 7 Blast results.	47
Table 4.4. Summary of MVT 9 Blast results.	49
Table 4.5. Summary of MVT 12 Blast results.	51

List of Abbreviations

16S rDNA PCR	16S ribosomal DNA Polymerase Chain Reaction
V	Variable regions
Tm	Melting temperature
DGGE	Denaturing gradient gel electrophoresis
TGGE	Temperature gradient gel electrophoresis
BLAST	Basic Local Alignment Search Tool
NJ	Neighbour Joining
MP	Maximum Parsimony
ML	Maximum Likelihood
MVT	Miers Valley Transect

Chapter 1

Introduction and Aims

1.1 General introduction

The term 'extreme' pertains to conditions that would be uncomfortable for the normal functioning of man. An organism which has adapted to extreme environmental conditions; e.g. high or low temperature, pH or salt concentration, low nutrient content and water availability is termed an extremophile. The use of the term 'extremophile' first appeared in 1974 in a paper by MacElroy.¹ Ever since, the extremophile research field has progressed to the extent that the first International Congress on extremophiles was convened in Portugal in June 1996, with the establishment of the scientific journal "Extremophiles" in February the following year.² Terms used to study some extremophiles are included in Fig. 1.1. Additional extremophiles include, endoliths (organisms that live in rocks), oligotrophs (organisms that are capable of surviving in nutrient limited environments)³ and toxitolerant organisms which thrive on toxic compounds.

1.2. Extremophiles in biotechnology

Extremophile research displays great potential for applications in biotechnology. Extremozymes, enzymes isolated from extremophiles, generally have a similar mode of action as their homologous mesophilic enzymes. However, extremozymes have adapted to function in extreme conditions which make them very valuable for applications in biotechnology.⁴ For example, psychrophilic enzymes function optimally at low temperatures. The potential of psychrophilic bacteria for applications in biotechnology have been reported in a number of articles and reviews. A recent review discusses the definition of psychrophilic bacteria, description of their habitats and focuses on the adaptive changes in proteins and lipids particularly those explored for biotechnological purposes.⁵ One particular study investigated

the ability of certain psychrophilic yeast strains to produce novel pectinolytic enzymes that are capable of degrading pectin compounds at low temperatures. The study investigated the application of cold-active pectinolytic enzymes in the food industry, for the clarification of fruit juice below 5°C.⁶ The use of psychrophilic microorganisms for applications in biotechnology are presently being employed, for example the application of eurythermal polar cyanobacteria for wastewater treatment in cold climates⁷ and the incorporation of proteases, lipases and cellulases into detergents to improve its mode of action in cold water. The use of nucleating proteins in psychrophiles are currently being investigated for manufacturing synthetic snow as well as freeze-dried food.⁸ Research developments with respect to isolation of novel bacteria, culture collections, bioactivity screening, taxonomy, production of polyunsaturated fatty acids (PUFA's), cold adapted enzymes and bioremediation permits for the exploitation of these and other findings for the possibility of new biotechnological products from Antarctic microorganisms.⁹

Thermophilic enzymes are thermostable, resistant to denaturation (e.g. in organic solvents) and are active at high temperatures. Whole thermophilic microorganisms also display advantages for uses in biotechnology in processes like fermentation. With the use of thermophilic microorganisms this process could be conducted at high temperatures, destroying or repressing the growth of pathogenic microorganisms. These properties render thermophiles and their enzymes very useful in biotechnology. Certain thermophilic enzymes are currently being used in industry including for example, amylases to produce glucose (as a sweetener) and xylanases for paper bleaching.¹⁰

Other applications of extremophiles include the use of hypersaline organisms for the treatment of hypersaline waste, modification of food flavours by halophilic microorganisms and the production of antibiotics from alkaliphilic microorganisms.² It is evident that extremophile research displays great potential for applications in biotechnological processes.

Figure 1.1. Terms used to study extremophiles.

1.3. Why study Antarctica?

The biology of Antarctica, more than any other continent, is dominated by microorganisms.³ Antarctic microbial habitats have remained relatively preserved for many years as compared to other invaded habitats. Hence, there exists unique opportunities for studying microbial evolution and microbial endemism (genotypes of microorganisms specific to a geographical region).^{11, 12} In addition, Antarctic food webs are relatively reduced in

complexity as compared to the invaded habitats, where there is continuous interference with higher plants and animals.¹¹

The Dry Valleys of Antarctica also serve as an exobiological model. Evidence has shown that the dry cold saline soils of the ice free Antarctic Dry Valleys probably offer one of the best possible analogues on Earth for understanding the Martian climate and the possible disappearance of life on Mars.¹³ In addition, trace fossils of cryptoendolithic microbial communities are an easier target for life detection systems as compared to fossils of cellular structures.¹⁴

The potential of psychrophiles for applications in biotechnology have already been discussed in section 1.2.

1.4. Molecular techniques

The study of prokaryotic biodiversity has been hindered for many years due to the difficulty of accessing true diversity by culture dependent methods. It has been estimated that less than 0.1% of the total microbial population can be successfully isolated in pure culture.¹⁵ This occurs because bacteria are highly selective in their growth requirements. Hence, a variety of media need to be utilised to obtain diverse microbial populations. This can become extremely laborious and time consuming.

Over the last decade, advances in molecular biology have facilitated the analysis of bacterial diversity. Major developments in this area of research have circumvented problems that may arise from the isolation and culturing of bacteria. For example, the isolation of bacterial nucleic acids directly from a soil sample, PCR, sequencing and a variety of molecular techniques have become useful tools for the detection of bacteria that cannot be cultured. Continuous advancements in this area of research have permitted rapid and effective analyses of prokaryotic biodiversity from a lmost any environmental sample.

1.5. Dissertation

Low temperatures, low carbon content and arid mineral soils render the Antarctic Dry Valleys an extreme habitat. The survival of microorganisms in this hostile habitat provides the basis for the significance of this study. This study aims to investigate bacterial phylotypic diversity in the Miers Dry Valley (Ross Desert, East Antarctica), specifically:

- (i) if altitude has an effect on microbial diversity.
- (ii) the presence of a putative community structure in terms of autotrophs and heterotrophs.
- (iii) the uniqueness of Antarctic isolates as compared to other microorganisms.

1.6. References:

- 1. MacElroy, R. D. 1974. Some comments on the evolution of extremophiles. *Biosystems.* 6:74-75.
- Cavicchioli, R., and T. Thomas. 2000. Extremophiles. Encyclopeadia of Microbiology. 2nd Ed. 2:317-337.
- 3. Friedman, E. I. 1993. Antarctic microbiology. Wiley-Liss, Inc., New York. 1-615pp.
- 4. Sellek, G. A., and J. B. Chaudhuri. 1999. Biocatalysis in organic media using enzymes from extremophiles. *Enzyme and Microbial Technology*. **2**:471-482.
- Russell, N. J. 1998. Molecular adaptations in psychrophilic bacteria: potential for biotechnological adaptations. *Advances in Biochemical Engineering/Biotechnology*. 61:1-21.
- Nakagawa, T., T. Nagaoka, S. Taniguchi, T. Miyaji, and N. Tomizuka. 2004. Isolation and characterisation of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. *Letters in Applied Microbiology*. 38:383-389.
- 7. Tang, E. P. Y., W. F. Vincent, J. De La Noue, P. Lessard, and D. Proulx. Polar cyanobacteria versus green algae for the tertiary treatment of waste-water in cool climates. *Journal of Applied Phycology*. **9**:371-381.
- Russell, N., and T. Hamamoto. 1998. Psychrophiles in Extremophiles: Microbial life in extreme environments. Wiley-Liss, New York. 25-45pp.
- Nichols, D., J. Bowman, K. Sanderson, C. M. Nichols, T. Lewis, T. McMeekin, and P. D. Nichols. 1999. Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. *Current Opinion in Biotechnology*. 10:240-246.
- 10. **Premuzic, E. T., and M. S. Lin.** 1999. Induced biochemical conversions of heavy crude oils. *Journal of Petroleum Science and Engineering*. **22:**171-180.
- 11. **Vincent, W. F.** 2000. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. *Antarctic Science*. **3**:374-385.
- 12. **Wynn-Williams, D. D.** 1996. Antarctic microbial diversity: basis of polar ecosystems processes. *Biodiversity and Conservation.* **5**:1271-1293.
- Friedman, E. I. 1986. The Antarctic cold desert and the search for traces of life on Mars. *Advances in Space Research*. 6:43-47.

- 14. Miller, K. J., S. B. Leschine, and R. L. Huguenin. 1983. Characterisation of a halotolerant-psychrotolerant bacterium from dry valley Antarctic soil. *Advances in Space Research.* 3:43-47.
- Hill, G. T., N. A. Mitkowski, L. Aldrich-Wolfe, L. R. Emele, D. D. Jurkonie, A. Ficke, S. Maldonado-Ramirez, S. T. Lynch, and E. B. Nelson. 2000. Methods for assessing the composition and diversity of soil microbial communities. *Applied Soil Ecology*. 15:25-36.

Chapter 2

Literature Review

2.1 Antarctica

Antarctica covers an area of nearly 4 million square kilometres and is considered the largest and most pristine wilderness on earth. It is the coldest, windiest and highest continent on Earth Less than 1% of this desert-like continent is ice-free. Containing about 70% of the world's freshwater and 90% of the world's ice, Antarctica is not only a scientific curiosity but is also a key component of planet Earth, as processes occurring there affect the worlds climate.^{1, 2}

Only a few insects can survive the harsh terrestrial conditions but numerous animal species that thrive in the surrounding waters include fish, krill, penguins, seals, whales and various kinds of sea birds. Plant cover is dominated by lichens and in maritime Antarctic a (sea-ice environment excluding Ross Dessert) lichen growth is more conspicuous on rock surfaces and soil whilst in terrestrial Antarctica (Ross Dessert), lichens grow between rock surfaces where temperature stability is greater.¹ However, despite the abundance of these eukaryotes, prokaryotic diversity is more prominent in Antarctica.

2.1.1 Maritime Antarctica (sea-ice environment)

Sea ice is the major nutrient source in Maritime Antarctica. Although ice may appear to be an uncongenial habitat to support microbial growth, brine inclusions, interstices within ice floes (sheets of floating ice) and the ice-water interface support the survival of rich microbial populations.³ Brine inclusions are formed through the accumulation of dissolved salts exuded from ice crystals, when ice forms from sea water at $-1.9^{\circ}C$.⁴ Since the salinity of enclosed brine is affected by the temperature⁵ *in situ*, the volume of ice occupied by brine varies directly as a function of temperature. These bw temperature high salinity extremes within ice may be important in determining the survival of organisms as well as in controlling the rate of biological processes.

An extraordinary feature of Antarctic ice is the occurrence of oxygen at supersaturated levels in certain portions of the water column. Research has shown oxygenation in sediments down to fifteen and in some cases twenty-five centimetres and it was concluded that this might be typical for perennial ice cover,⁶ (due to difficulty of diffusion through ice). These high oxygen levels undoubtedly contribute to the microbial diversity.

A range of morphological types of bacteria has been found to be associated with seaice. Light and scanning electron microscopy studies have shown the presence of rods, cocci, straight and branching filamentous, fusiform and prosthecate bacteria. In addition, it was found that approximately 70% of the bacteria in a sea-ice community at McMurdo Sound were free-living, whereas 30% were attached to either detritus or active algal cells.⁷ Microorganisms in the Antarctic ice include non-spore and spore forming bacteria. The best studied genus of non-spore bacterium is *Pseudomonas*.⁸ Two strains that have been isolated and have displayed psychrophilic properties include *P. fluorescens* and *P. alcaligenes*.⁹ Spore forming bacteria included a variety of *Bacillus* species.⁸ Actinomycetes have also been found in the ice and soil and the two representative genera include *Streptomyces* and *Nocardia*.¹⁰

It has been shown by microautoradiography that heterotrophic bacteria in sea-ice are able to take up ³H-amino acids, ³H-glucose and ³H-thymidine, under *in situ* conditions.¹¹ Chemoautotrophs were also shown to be present in sea-ice assemblages in the form of ammonia-oxidizing bacteria.¹² Pigmented and gas vacuolated bacteria have also been isolated from sea-ice in McMurdo Sound. Although some of the red to orange pigmented, filamentous bacteria contained gas vacuoles, it is uncertain whether the gas vacuoles confer an adaptive advantage for the sea-ice habitat.¹³ Plasmids have also appeared to be pervasive in sea-ice bacteria. Of 79 bacterial isolates from sea-ice in McMurdo Sound, 30% contained at least one plasmid.¹⁴ Certain plasmids may contain genetic elements such as integrase genes. These genes enable bacteria to acquire and express foreign DNA molecules and thus facilitate increased genetic diversity in sea-ice bacteria.¹⁵

There are several factors that contribute to the growing interest in Antarctic sea-ice biota. For example, the high estimates of phytoplankton production and evidence of significant bacterial productivity suggests the presence of a microbial food web.¹ In addition, the association of the Antarctic krill, *Euphausia superba*, with sea-ice has suggested that sea-ice biota serve as a resource for this key pelagic consumer in the Antarctic marine food web.¹⁶ However, microbial food webs in polar waters have not been extensively documented as compared to the lower latitude-latitude marine ecosystems.¹⁷

Studies on Antarctic sea-ice biota can be dated back to 1847¹⁸ where the research was focused largely on systematic studies of the ice microflora (primarily diatoms). Recent studies have encompassed an increased range of organisms and their ecological roles as members of complex assemblages in close association with the ice.¹⁹

2.1.2 Terrestrial Antarctica

The Ross Desert is characterised as the 'true desert' of the Antarctic continent. It occupies less than 2% of continental Antarctica, and covers an area of over 7000 km².²⁰ Environmental properties such as, mean annual temperature is -20°C, average wind speed is 100km/h, water content is 0.2-0.5%H₂O/g soil, mean relative humidities are 50% or less and the solar flux (available energy) is generally less than 100W.m, render the Antarctic Dry Valleys an extreme habitat²¹ (Fig. 2.1. is a picture of the Miers Dry Valley and the description of a typical valley). The Dry Valley regions comprise alternating mountain ranges and glacial valleys. Some of the lowest temperatures on earth have been recorded here, which in conjunction with the very low precipitation and humidity levels means that the Ross Desert is among the driest deserts on the planet.²² When viewed from South to North along the coast of McMurdo Sound, the major ice-free valleys include the Taylor, Wright, McKelvey, Balham, Victoria and Barwick Valleys. Structurally similar but smaller valleys include the Miers, Marshall, Garwood and Salmon Stream Valley, occurring to the south of Taylor Valley.²⁰

Figure 2.1. Picture of the Miers Dry Valley

The ice-free dry valleys of McMurdo Sound are the largest and highest in elevation in Antarctica and are termed "oases", defined as ice-free areas that are kept free from ice by the process of ablation (erosive processes that reduce the size of glaciers due to a higher absorption than reflection of incident light).²³ There exist several explanations for the origin of these ice-free areas and one of the earliest and most widely accepted explanations is the orographic (science of mountains) and global climatic change hypothesis, proposed in 1969.²⁴ It was proposed that ice-free areas are formed when ice sheets attenuate. The ice thinning may be associated with the general warming trends over the past ten thousand years and the positive radiation balance between the dark soils and the rocks maintains the ice-free areas. Lake formation can be attributed to summer meltwater that collects in the catchment basins. A similar concept was proposed in 1970,²² which also explained the formation of ice-free areas on the basis of the ratio of precipitation to evaporation balance. It may also be important to note that most Antarctic ice-free areas are relatively ancient as present-day examples may have formed as much as four to five million years ago.²⁵

The environmental properties of ice-free areas provide a hostile habitat for the colonization of microorganisms. Antarctic soils are highly aerobic therefore anaerobic bacteria is considered very rare. In previous studies characterising Antarctic soil bacteria using culture based approaches, seventy-one percent of bacteria were related to coryneform bacteria, within the genera *Arthrobacter, Brevibacterium, Cellulomonas, Corynebacterium* and *Kurthia*.²⁶.

Pseudomonas, Flavobacterium and other gram negative aerobic rods like *Alcaligenes* and *Arthrobacter* were also identified.²⁶ Recent studies employing molecular analysis, has detected the presence of anaerobic, gram positive *Clostridium* sp.²⁷ These data indicate that culture based methods alone remain inadequate for providing an accurate reflection of the microbial diversity in an environment. In Ross Dessert soils, coryneforms are also prominent whilst *Bacillus* and *Pseudomonas* are rare.¹⁰ Of five hundred and sixty eight isolates, twenty three percent were ascribed to *Corynebacterium* and fifty-six percent to members of the "coryneform-related group". Other lower percentages included *Bacillus* (7%), *Micrococcus* (20%), *Nocardia* (3%), *Streptomyces* (3%), *Flavobacterium* and *Pseudomonas* (6%).¹⁰

2.1.3 Antarctic lakes

For a description of an Antarctic lake refer to Fig. 2.1. The major Antarctic lakes are found in glacial valleys. During winter the lakes remains frozen but may thaw for a few weeks during summer.²⁸

Sediment deposition, high occurrence of certain gases and light, are some of the major regulators of microbial activity in Antarctic lakes. The glacial melt streams, which flow only for a restricted period during summer and the lake margins which thaw briefly, contribute minimally to sediment deposition.²⁹ Ice cover of perennial lakes, has shown to be the major contributor of sediments. It was proposed that ice traps wind blown sediments and provides a plane for the movement of these sediment particles (either by saltation or rolling and drifting on the ice), to the middle of the lake.³⁰ The first observation of sediment deposition occurring through ice cover was reported in 1983.³⁰ Cracks present on the ice surface of Lake Vanda facilitated the production of gas bubbles to escape from the water below to the atmosphere. Any sediment deposited on the ice surface would eventually make its way down through the ice cover into the water column and the lack of sediment deposits of the surface of Lake Vanda, supported this conclusion.³⁰

Certain gases such as O_2 and N_2 occur at elevated levels at the bottom of the ice in a lake.³¹ Supersaturation with nitrous oxide in an Antarctic lake was reported at a depth of 54m. The nitrous oxide concentration of more than 200 times that of air saturation was believed to be produced by a narrow band of nitrifying bacteria at a depth of about 52-55m.³²

Perhaps the most important environmental regulator in any ecosystem is light. Light provides energy for photosynthesis and thus serves as the pioneer source of energy at the base of any food web. Light is a major limiting factor for the development of microbial communities in Antarctic lakes as most Antarctic lakes are covered by ice. However, studies of light attenuation by snow and ice showed that about 99% of light striking a lakes surface is absorbed. These results suggest that microbial communities present in a lake are very well adapted to low light conditions.³³

Microbial mats in Antarctic lakes are composed primarily of Cyanobacteria, diatoms and heterotrophic bacteria.³⁴ Culture based studies found *Phormidium frigidum* and *Lyngbya martensiana* to be the dominant filamentous Cyanobacteria present in microbial mats.³⁴ Morphological and molecular analyses of Cyanobacterial diversity of microbial mats in Lake Fryxell, were conducted. Results revealed the presence of *Nostoc* sp. and *Schizothrix* sp. and morphotypes such as *Hydrocoryn* cf. *spongiosa, Nodularia* cf. *harveyana* and *Phormidium* cf. *autumnale*.³⁵ Other autotrophic bacteria include photosynthetic green sulphur bacteria such as *Chlorobium vibrioforme* and *Chlorobium limnicola*.³⁶ The majority of isolates from five habitats in Vestfold Hills belonged to *Pseudomonas* sp. followed by pigmented *Flavobacterium* and non-pigmented *Moraxella*.³⁷

2.2 Molecular techniques

2.2.1 DNA extraction from soil

Bacteria form essential agents of soil microflora, due to their abundance ($\sim 10^9$ cells per gram of soil), their species diversity (minimum of 4000-7000 different bacterial genomes per gram of soil)³⁸ and the combinational effects of their metabolic activities. Hence, when investigating soil microbial diversity, both rapid and comprehensive means of analyses need to be employed.

A protocol for extracting DNA directly from a soil sample generally involves three steps:- (i) cell extraction / cell lysis, (ii) removal of cell fragments and debris and (iii) nucleic acid precipitation and purification.³⁹ Cell extraction involves the isolation of microbial cells from their environmental matrix, prior to cell lysis. A typical cell extraction procedure consists of successive cycles of blend ing and centrifugation to recover the microbial cells present in the

sample.³⁸ However, two major limitations of this procedure is that it **s** time consuming and may not fully represent the microbial diversity of a particular environment as a fewer number of cells are obtained.³⁹ Direct lysis is a more popular method, as it does not require a preliminary cell extraction step. With direct lysis a larger number of microorganisms are exposed to the lysis procedure hence, exposure to a wider range of genomes.⁴⁰ The major problem associated with direct lysis is that there is a higher chance of co-extracting contaminants, requiring a more extensive purification procedure.³⁹

Cell lysis procedures can be chemical, mechanical or enzymatic. A combination of mechanical lysis (usually bead beating) and chemical lysis (use of detergents) usually produces DNA of good quality and purity.⁴¹ In a comparison of 5 different soil DNA extraction procedures, the Zhou method⁴² and the Ultra clean soil DNA isolation kit (MoBio Inc., Solana, CA, USA) produced the best purity and yield of DNA.⁴³ It was also suggested that an increase in the bead beating time increases shearing of DNA and reduces the DNA fragment size. Shearing can be reduced by bead beating prior to the addition of SDS or other chemical denaturants. Extraction buffers containing SDS increase DNA yields but also increase humic acid contamination.⁴³

2.2.2 16S rDNA PCR

16S rDNA PCR forms the basis for analyses of microbial diversity. C-type cytochromes, globins and other common proteins could be used for mapping phylogenetic relationships but these molecules are limited to the 'higher' eukaryotic systems.⁴⁴ Since prokaryotic and eukaryotic systems are so biochemically diverse, the use of homologous proteins would prove to be inadequate for studying prokaryotes. In addition, rRNA studies are much less complicated than the analysis of homologous proteins. For these and many other reasons (elaborated below) rRNA analysis has become the method of choice for determining phylogeny as well as understanding microbial diversity.⁴⁵

- (i) rRNA's are fundamental elements for synthesising proteins and are therefore functionally and evolutionary homologous in all organisms.
- (ii) rRNA's are ancient molecules and their overall structure and nucleotide sequences are conserved. Certain nucleotide stretches are highly conserved in the rRNA gene across all 3 'primary kingdoms' while other portions are variant. The

conserved regions are essential as they provide primer directed sites for PCR as well as convenient hybridization targets for the cloning of rRNA genes.

15

 (iii) rRNA genes lack artifacts of lateral transfer between similar organisms and are therefore thought to reflect the direct evolutionary pathway of organisms.⁴⁵

Finally, with the proper primer design to target the rRNA gene conserved regions, sufficient sequence information can be obtained to facilitate significant comparisons between organisms.⁴⁶

Prokaryotes contain 3 rRNA's, 5S (~ 120 nucleotides), 16S (~1600 nucleotides) and 23S (~3000 nucleotides). By the late 1960's, the 5S rRNA was the most popular of the three for phylogenetic analysis as it was small and very convenient for sequence analysis. However, the paucity of varying nucleotide positions limited its use for phylogenetic studies. Initially, the 16S rRNA was too large for phylogenetic analysis. However, the development of DNA cloning and sequencing protocols has facilitated the sequencing of the full 16S gene, which has become important for the analysis of microbial diversity as well as for phylogenetic studies.⁴⁵

Fig. 2.2. shows the nucleotide sequence of the 16S gene from *E. coli*.⁴⁷ Regions that remain totally conserved (blue) as well as conserved (red) are depicted. These regions are the targets for primer binding sites where the variable regions V1 – V9 can be efficiently amplified by PCR. Commonly utilised primers for 16S gene analysis include E9F ⁴⁸ and U1510R. ⁴⁹

GGGCCTC	290	TCGGA	300	CAGATGC 310	JGATTA	GCTAGTA	GGTGGGGTA	AACGG	CTCAC 340	CTAGGCGAC
JATUUUTA		LIGAG	AGGATGA	ACCAGC(JACACI	GGAACIC	JAGACACGG	CCAG	ACTCC	TAUGUGAC
	360		370	380		390	400		410	E334F/341FGC
GCAGCAGT	GGG <mark>GA</mark> A	TATTO	GCA <mark>CAAT</mark>	GGGCGC.	A <mark>A</mark> GC <mark>C</mark> I	GATGCA	GCCATGCCG	C <mark>GT</mark> GT.	AT <mark>GA</mark> A	GAAGGCCT
E334F-conti.	430		440	450		460	470		480	
ГСG <mark>G</mark> GTT <mark>G</mark>	TAAAGT.	ACTTT	CAGCGG	GGAGG <mark>A</mark>	AGGGA	GTAAAG	ГТААТАССТ	TTGCI	CATT	GACGTTACC(
	500		510	520		530	V ₃ 540		550	
GCAG <mark>A</mark> AGA	A <mark>AG</mark> CAC	C <mark>GGC</mark> T.	AACTCC	GTGCCAG	CAGCCO	GCGGTAA	TACGGAGGC	GTGC <mark>A</mark> A	AGC <mark>GT</mark> '	TAATCGGAA
	570		580	590	U529/3	4/E535R/534	R/519F 610		620	
Г <mark>ТАСТGG</mark> G	CGTAAA	<mark>GCGC</mark> A	CG <mark>CAGG</mark>	CGG <mark>TTT</mark>	GTTAA <mark>G</mark>	TCAGAT	G <mark>T</mark> GAAATCO	CCCG <mark>G</mark>	GCTC A	ACCTGGGA
	640		650	660)	670	680	V_4	690	
CTGCATCT	GA <mark>T A</mark> CT	GGCA	AGCTTG/	AGTCTCC	JTAGA <mark>G</mark>	GGGGGT	GAATTCCAC	G TGTA	A <mark>G</mark> CGG	T <mark>G</mark> AA <mark>ATG</mark> CG
	710		720	730		740	750		760	
	TGGAGG		с <mark>сс</mark> стсс		CGGCC	CCTGGA	CGAAGACT	ACGCT		
	780		790	800	eddeet	810	820	neder	830	
CTOCOC				COTOOT		CCCCCT				ATTOTOO
JIOGGAC								JUACT	GGAG	GIIGIGUU
	850		860 E	/86F 8/0)	880	890		900	
CTTGAGGG	CGTGGC	TTCCG	GAGCTA.	ACGCGTI	[<mark>A A</mark> GTC	GA <mark>CC</mark> GCC	TGGGGAGTA	ACGGC	CGCAA	GGTTAAAAC
<i>V</i> ₅	920		930	940		950	960		970	U926R
CAAATGA	ATTGAO	GGGGG	GCCCGCA	CAAGCG	GT <mark>G</mark> GA(GCATGTG	GTTTAATTCC	GATGCA	AACG <mark>C</mark>	GAAG AACC
	990	E939R	1000	1010		1020	1030		1040	
<mark>FTACC</mark> TGG	TCTTGAC	CATCCA	ACGGAAG	GTTTTCA	A <mark>GA</mark> GAT	GAGAAT	GTGCCTTCC	GGGAA	CCGTG	AGA <mark>CAGGT</mark> G
	1060		1070	1080	V_6	1090	1100		1110	
CTGC AT GG	CTGTCG	г <mark>с</mark> дс	TCG <mark>T</mark> GTT	GTGAAA	TGTTG <mark>C</mark>	GTTAAG	CCCGCAACO	GAGCG	CAACC	CTTATCC
U1053F	1130		1140	1150		1160	1170	U1115R	VU1098F	7
ITTG <mark>TT</mark> G <mark>C</mark>	CAGCGG	GTCCG	GCCG <mark>G</mark> G	AACTCA	AAGGA	G ACTGC(CAGT <mark>G</mark> ATAA	ACT <mark>GG</mark>	AGGA	AGGTGGGGAT
	1200	V 7	1210	1220		1230	1240		1250	
ACGTCAAC	TCATCA	T <mark>GGOC</mark>	CTTACG	ACCAGG	CTA CA	<mark>САС</mark> СТСС	ТАСААТСС	GCAT		GAGAACCC
	1070	1000	1000	1200		1200	1210	JUNI	1220	
	1270		1280	1290		1500	1510		1520	

Figure 2.2: Illustration of 16S rRNA gene of E. coli

2.2.3. Denaturing gradient gel electrophoresis (DGGE)

Electrophoretic separation of PCR products in a polyacrylamide gel containing a denaturing chemical or physical gradient is a relatively recent technique.⁵⁰ The former method utilises urea and formamide in a process commonly known as denaturing gradient gel electrophoresis,⁵¹ whilst the latter method utilises temperature in a process commonly known as temperature gradient gel electrophoresis (TGGE).⁵² Whilst both techniques have been reported to produce consistent results,⁵³ DGGE is a much cheaper but a slightly more tedious technique to perform. DGGE is capable of separating DNA fragments of similar sizes but different nucleotide sequences and is based on the principle that since A-T rich fragments have a lower T_m than G-C rich fragments and melted DNA fragments migrate more slowly through the gel matrix, fragments that melt first are separated from those that melt subsequently.^{51, 54}

DGGE is considered a very powerful and sensitive technique,⁵⁵ as it is capable of detecting up to 96% of all mutations or single base pair substitutions in fragments up to 500 base pairs in length.^{55,56} Primers 534R and 341FGC⁵⁷ (see Fig. 2.2.) were utilised in this study for the amplification of a 193 base pair amplicon from the 16S rRNA gene. These primers ensure amplification of the V₃ variable region of the 16S gene, which is sufficient for discriminating between different microbial species.

The use of a G-C clamp (40 bp of G-C nucleotides) in DGGE analysis is important as it imparts melting stability to the fragments. The most convenient way of obtaining a G-C clamp

is by attaching it to one of the primers.⁵¹ Double stranded DNA molecules denature more slowly than single stranded molecules therefore they migrate with greater stability during electrophoresis. Single stranded fragments tend to supercoil. The y may therefore denature incorrectly and migrate more quickly through the gel. Since A-T sequences have lower T_m values than G-C rich sequences, the G-C clamp imparts melting stability by preventing the fragments from becoming completely single stranded and electrophoresed off the gel.^{56,58}

2.2.4. Phylogenetic analyses

The construction of phylogenetic trees has become a very useful tool for the analysis of evolutionary processes and the historical relationships between different organisms.⁵⁹

Phylogenetic trees enable one to:

- (i) characterise unknown proteins
- (ii) Obtain biological function of proteins
- (iii) Examine how closely or distantly a particular DNA sequence relates to other sequences, as an indication of functions assigned to DNA sequences
- (iv) Characterise organisms on the basis of sequence similarity 60

A tree is simply an illustration of evolutionary relationships or similarities between a variety of sequences. It is made up of nodes and branches (Fig. 2.3.), where a branch is a line that connects two nodes. The nodes can either be external (the tips of the tree where the taxa are being considered) or internal (points that represent a common ancestor of two other nodes). The two basic styles of a phylogenetic tree is a cladogram or a phylogram (Fig. 2.3.). A cladogram merely represents the branching order of the nodes whereby, the branch lengths convey no information. A cladogram can either be slanted or in the more popular rectangular fashion. A phylogram displays both the branching order and distance information of the sequences. The branch distance is a representation of the sequence changes between two sequences; i.e., the longer the branch the greater the difference between sequences. A distance value which can be displayed on the tree will represent the number of substitutions that have occurred between two sequences.

The basic steps involved in constructing phylogenetic trees from molecular sequence data include:

- (i) Obtain the DNA or protein sequence of interest
- (ii) With the use of the BLAST database, search for sequence similarity and obtain electronic files of the similar sequences
- (iii) With use of appropriate computer programs, create an alignment of the sequences
- (iv) Create phylogenetic trees with the aligned sequences

When constructing a tree it is important to provide a root for the tree as this will be a representation of the common ancestor of all the taxa being considered. Unrooted trees only specify the relationships among the taxa and not the evolutionary pathways. A tree is rooted when there is a unique directional path that leads to each taxon. The easiest solution for assigning a root to the tree would be to choose the sequence that is derived from the organism which is known to be one of the earliest lineages in a particular kingdom. The topology of a tree is the order in which the different sequences diverge and by assigning a boostrap value, the order would be obtained more reliably. A bootstrap value could range from 100 to 1000 and pending the value chosen, sequence comparisons would occur that number of times respectively. Hence, a bootstrap value provides a measure of the reliability of the phylogenetic tree.^{59, 60}

20

Additional methods for tree construction would be a choice between an algorithmic and a tree searching approach. The former approach uses an algorithm to construct a tree from the data provided whilst the latter constructs many trees and utilises certain criteria to decide which is the best tree.⁶⁰ The algorithmic approach has two advantages in that it is fast and produces one tree for every given data set. The most common method employed is Neighbour Joining (NJ).⁶⁰ The tree searching methods include Maximum Parsimony (MP), Maximum Likelihood (ML) and the Bayesian method. Maximum Parsimony looks for the tree with the minimum number of evolutionary changes that explains the entire sequence evolution. Maximum Likelihood utilises a log likelihood value (chosen by the user) and the tree that displays the highest value is chosen as the ML tree. The Bayesian method is a variant of the ML method however, instead of producing a single tree, a set of trees of roughly equal likelihoods are produced from which the user can decide.⁶¹ All methods produce consistent results and have proven to be reliable however, preference is given to the Neighbour Joining method as it is fast and produces one tree.^{60, 61}

2.3. References:

- 1. Friedman, E. I. 1993. Antarctic microbiology. Wiley-Liss, Inc., New York. 1-615pp.
- Mckay, C. P., J. A. Nienow, M. A. Meyer, and E. I. Friedman. 1993. Continuous nanoclimate data (1985-1988) from the Ross Desert (McMurdo Dry Valleys) cryptoendolithic microbial ecosystem. *Antarctic Research Series*. 61:201-207.
- Palmisano, A. C., and D. L. Garrison. 1993. Microorganisms in Antarctic Sea Ice. In Antarctic microbiology. Wiley-Liss, Inc., New York. 167-218pp.
- 4. Weeks, W. F., and S. F. Ackley. 1982. The growth, structure and photosynthesis of sea ice. *Cold Regions Research and Engineering Laboratory Monograph*. 82-1:1-131.
- Assur, A. 1958. Composition of sea ice and its tensile strength. NAS-NRC Publication 598, Washington D.C.106-138pp.
- Wharton, R. A., M. A. Meyer, C. P. Mckay, R. L. Mancinelli, and G. M. Simmons. 1994. Sediment oxygen profiles in a super-oxygenated Antarctic lake. *Limnology and Oceanography.* 39:839-853.
- Sullivan, C. W., and A. C. Palmisano. 1984. Sea ice microbial communities: distribution, abundance and diversity of ice bacteria in McMurdo Sound, Antarctica 1980. *Applied and Environmental Microbiology*. 47:788-795.
- Abyzov, S. S. 1993. Microorganisms in the Antarctic ice: In Antarctic microbiology. Wiley-Liss, Inc., New York. 265-296pp.
- Stokes, J. L. 1963. General biology and nomenclature of psychrophilic microorganisms. *Recent Progress in Microbiology*. 8:187-192.
- Johnson, R. M., J. M. Madden, and J. R. Swafford. 1978. Taxonomy of Antarctic bacteria from soils and air primarily of the McMurdo Station Victoria Land dry valley region. *Antarctic Research Series*. 30:35-64.
- Sullivan, C. W., A. C. Palmisano, S. T. Kottmeier, S. M. Grossi, and R. L. Moe. 1985. The influence of light on growth and development of the sea-ice microbial community of McMurdo Sound. Springer-Verlag, Berlin. 78-83pp.
- Priscu, J. C., M. T. Downes, R. L. Priscu, A. C. Palmisano, and C. W. Sullivan.
 1990. Dynamics of ammonium oxidiser activity and nitrous oxide (N₂O) within and beneath Antarctic sea ice. *Marine Ecology Progress Series*. 62:37-46.
- 13. Staley, J. T., R. L. Irgens, and R. P. Herwig. 1989. Gas vacuolate bacteria from the sea ice of Antarctica. *Applied and Environmental Microbiology*. **55**:1033-1036.

- 14. Kobori, H., C. W. Sullivan, and H. Shizuya. 1984. Bacterial plasmids in Antarctic natural microbial assemblages. *Applied and Environmental Microbiology*. **48:**515-518.
- 15. Nemergut, D. R., A. P. Martin, and S. K. Schmidt. 2004. Integron Diversity in Heavy-Metal-Contaminated Mine Tailings and Inferences about Integron Evolution. *Applied and Environmental Microbiology*. **70**:1160-1168.
- Hamner, W. M., P. P. Hamner, S. E. Strand, and R. W. Gilmer. 1983. Behaviour of Antarctic Krill, *Euphausia superba*: chemoreception, feeding, schooling and molting. *Science*. 220:433-435.
- Azam, F., T. Fenchel, J. G. Field, J. S. Gray, R. A. Meyer-Reil, and F. Thingstad.
 1983. The ecological role of water-column microbes in the sea. *Marine Ecology Progress Series.* 10:257-263.
- 18. **Hooker, J. D.** 1847. The Botany of the Antarctic Voyage of H.M. Discovery Ships Erebus and Terror in the Years 1839-1843, vol. 1. J. Cramer, Weinhiem. 208pp.
- 19. Garrison, D. L., C. W. Sullivan, and S. F. Ackley. 1986. Sea ice microbial communities in Antarctica. *Bioscience*. **36**:243-250.
- Vishniac, H. S. 1993. The Microbiology of Antarctic Soils. In Antarctic Microbiology. Wiley-Liss Inc., New York. 297-342pp.
- Simmons, G. M., J. R. Vestal, and R. A. Wharton. 1993. Environmental regulators of microbial activity in continental Antarctic lakes: In Antarctic microbiology. Wiley-Liss, Inc., New York. 491-542pp.
- 22. Wilson, A. T. 1970. The McMurdo Dry Valleys. In Antarctic Ecology. Academic Press, London. 21-30pp.
- 23. Shumskiy, P. A. 1957. Glaciological and geomorphological reconnaissance in the Antarctic in 1956. *Journal of Glaciology*. **3:**56-61.
- Solopov, A. V. 1969. Oases in Antarctic. National Science Foundation Technical Translation TT-68-50490. 143pp.
- 25. Armstrong, R. E., W. Hamilton, and G. H. Denton. 1967. Glaciation in Taylor Valley, Antarctica, older than 2.7 million years. *Science*. **159**:187-188.
- 26. **Baker, J. H., and D. S. Smith.** 1972. The bacteria in an Antarctic peat. *Journal of Applied Bacteriology.* **35:**589-596.
- Brambilla, E., H. Hippe, A. Hagelstein, B. J. Tindall, and E. Stackebrandt. 2001.
 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. *Extremophiles*. 5:23-33.

- Ferris, J. M., and H. R. Burton. 1988. The annual cycle of heat content and mechanical stability of hypersaline Deep Lake, Vestfold Hills, Antarctica. *Hydrobiologia*. 165:115-128.
- 29. Nedell, S. S., D. W. Anderson, S. W. Squyres, and F. G. Love. 1987. Sedimentation in ice-covered Lake Hoare, Antarctica. *Sedimentology*. **34**:1093-1106.
- Love, F. G., G. M. Simmons, B. C. Parker, R. A. Wharton, and K. G. Seaburg. 1983. Modern conophyton-like microbial mats discovered in Lake Vanda, Antarctica. *Journal of Geomicrobiology*. 3:33-48.
- Wharton, R. A., C. P. McKay, R. L. Mancinelli, and G. M. Simmons. 1987.
 Perennial N₂ supersaturation in an Antarctic lake. *Nature*. 325:343-345.
- 32. Vincent, W., M. T. Downes, and C. L. Vincent. 1981. Nitrous oxide cycling in Lake Vanda, Antarctica. *Nature*. 292:618-620.
- Palmisano, A. C., and G. M. Simmons. 1987. Spectral downwelling irradiance in an Antarctic lake. *Polar Biology*. 7:145-151.
- Wharton, R. A., C. B. Parker, and G. M. Simmons. 1983. Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. *Phycologia*. 22:355-365.
- 35. Taton, A., S. Grubisic, E. Brambilla, R. De Wit, and A. Wilmotte. 2003. Cyanobacterial Diversity in Natural and Artificial Microbial Mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a Morphological and Molecular Approach. *Applied and Environmental Microbiology*. 69:5157-5169.
- Volkman, J. K., H. R. Burton, D. A. Everitt, and D. I. Allen. 1988. Pigment and lipid composition of algal and bacterial communities in Ace Lake, Vestfold Hills, Antarctica. *Hydrobiologia*. 165:41-57.
- 37. **McMeekin, T. A.** 1988. Preliminary observations on psychrotrophic and psychrophilic, heterotrophic bacteria from Antarctic water samples. *Hydrobiologia*. **165**:35-40.
- Torsvik, V., J. Goskoyr, and F. L. Daae. 1990. High diversity in DNA of soil bacteria. *Applied and Environmental Microbiology*. 56:782-787.
- Roose-Amsaleg, C. L., E. Garnier-Sillam, and M. Harry. 2001. Extraction and purification of microbial DNA from soil and sediment samples. *Applied Soil Ecology*. 18:47-60.

- 40. Steffan, R. J., J. Goksoyr, A. K. Boj, and R. M. Atlas. 1988. Recovery of DNA from soils and sediments. *Applied and Environmental Microbiology*. **54**:2908-2915.
- 41. Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimisation of DNA extraction and purification procedures for soil and sediment samples. *Applied and Environmental Microbiology*. **65**:4715-4724.
- 42. Zhou, J., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soil of diverse composition. *Applied and Environmental Microbiology*. **62:**316-322.
- 43. Stach, J. E., M. S. Bathe, J. P. Clapp, and R. G. Burns. 2001. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. *FEMS Microbiology Ecology*. **36**:139-151.
- 44. **Goodman, M.** 1982. Macromolecular sequences in systematic and evolutionary biology. Plenum, New York/London. 418pp.
- Olsen, G. J., D. Lane, S. J. Giovannoni, and N. R. Pace. 1986. Microbial ecology and evolution: A ribosomal RNA approach. *Annual Reviews in Microbiology*. 40:337-365.
- Stackebrandt, E., and C. R. Woese. 1981. The evolution of prokaryotes. In Molecular and Cellular Aspects of Microbial Evolution. Cambridge University Press, Cambridge. 1-31pp.
- 47. Van de Peer, Y., S. Chapelle, and R. De Wachter. 1996. A quantitative map of nucleotide substitution rates in bacterial rRNA. *Nucleic Acids Research*. 24:3381-3391.
- 48. **Farelly, V., F. Rainey, and E. Stackebrandt.** 1995. Effect of genome size and *rrn* gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. *Applied and Environmental Microbiology*. **61**:2798-2801.
- Reysenbach, A. L., and N. R. Pace. 1995. Reliable amplification of hyperthermophilic archael 16S rRNA genes by the Polymerase Chain Reaction. In Archaea: A Laboratory Manual - Thermophiles. Cold Spring Harbour Laboratory Press. 101-105pp.
- 50. **Muyzer, G., E. C. de Waal, and A. G. Uitterlinden.** 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. *Applied and Environmental Microbiology*. **59:**695-700.
- 51. Myers, R. M., S. G. Fischer, L. S. Lermann, and T. Maniatis. 1985. Nearly all single base substitutions in DNA fragments joint to a GC-clamp can be detected by denaturing gradient gel electrophoresis. *Nucleic Acids Research*. **13**:3131-3145.

- 52. Riesner, D., R. Steger, R. Zimmat, R. A. Owens, M. Wagenhofer, W. Hillen, S. Vollbach, and K. Henco. 1989. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. *Electrophoresis*. 10:377-389.
- 53. **Heuer, H., and K. Smalla.** 1997. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities. In Modern Soil microbiology. Marcel Dekker, Inc., New York. 353-373pp.
- Myers, R. M., L. S. Lermann, and T. Maniatis. 1987. Detection and localisation of single base changes by denaturing gradient gel electrophoresis. *Methods in Enzymology*. 155:501-527.
- Pablo, V. G., Q. Cao, F. Guegj, and S. Sommer. 1998. The sensitivity of denaturing gradient gel electrophoresis: a blinded analysis. *Mutation Research Genomics*. 382:109-114.
- 56. Wawer, C., and G. Muyzer. 1995. Genetic diversity of *Desulfovibrio* sp. in environmental samples analysed by Denaturing Gradient Gel Electrophoresis of [NiFe] hydrogenase gene fragments. *Applied and Environmental Microbiology*. 61:2203-2210.
- Watanabe, K., M. Teramoto, H. Futamata, and S. Harayama. 1998. Molecular detection, isolation and physiological characterisation of functionally dominant phenoldegrading bacteria in activated sludge. *Applied and Environmental Microbiology*. 64:4396-4402.
- 58. **van Orsouw, N. J., and J. Vijg.** 1999. Design and application of 2-D DGGE-based gene mutational scanning tests. *Journal of Biomolecular Engineering*. **14**:205-213.
- Olsen, G. J. 1987. Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harbor Symposia on Quantitative Biology. 46:426-440.
- 60. **Hall, B. G.** 2001. Phylogenetic trees made easy. Sinauer Assoc. Inc., Massachusetts. 1-173pp.
- 61. **Takahashi, K., and N. Masatoshi.** 2000. Efficiencies of fast algorithms of phylogenetic inference under the criteria of Maximum Parsimony, Minimum Evolution and Maximum Likelihood when a large number of sequences are used. *Molecular Biology and Evolution*. **17:**1251-1258.

Chapter 3

Methodology

3.1 Retrieval and storage of soil samples

Samples were acquired from the Miers Dry Valley, along a 500m vertical transect of the McMurdo Dry Valleys, east Antarctica, during the 2002 UWC/University of Waikato field expedition. Details of the various levels of the sampling site are given in Fig. 3.1. and Table 3.1. Samples were recovered under aseptic conditions by removal of a 1-2cm surface layer from a 20cm x 20cm grid. Samples were stored at below 0°C until transport to the Scott Base for storage at -18°C. During subsequent transport to UWC, Cape Town, samples were maintained at <0°C. Samples were preserved at -80°C until required for further use.

Figure 3.1. Picture of the Miers Dry Valley showing the 500m vertical transect with ascending samples 1 to 12. White arrow indicates sample 1 and red arrow indicates sample 12.
Transect sample	Description of soil	Temp.	GPS	Elevation
MVT 1	Wet gravel from flood plain	-0.2 °C	79° 05.679 163° 48.271	554 feet
MVT 2	Coarse gravels	-3.9 °C air -0.5 °C soil	78° 05.670 163° 48.285	553 feet
MVT 3	Sorted gravels on moraine below valley slope	-3.2 °C air -0.3 °C soil	78° 05.582 163° 48.324	582 feet
MVT 4	Gravels at base of Northern slope	-0.4 °C soil	78° 05.541 163° 48.310	601 feet
MVT 5	Lower Northern slope, fine gravels	-0.4 °C soil	78° 05.480 163° 48.370	662 feet
MVT 6	Northern slope 20m upslope from flat rock	-4.7 °C air -0.2 °C soil	78° 05.398 163° 48.462	768 feet
MVT 7	Northern slope	-0.4 °C soil	78° 05.324 163° 48.520	860 feet
MVT 8	Dry fine gravels	-4.9 °C air -0.2 °C soil	78° 05.184 163° 48.690	1094 feet
MVT 9	Dry fine gravels along Northern slope	-4.7 ℃ air +0.8 ℃ soil	78° 04.904 163° 48.853	1400 feet
MVT 10	Fine and coarse gravels	-4.0 °C air +1.1 °C soil	78° 04.685 163° 49.178	1698 feet
MVT 11	Fine gravels	-7.2 °C air -0.3 °C soil	78° 04.503 163° 49.297	2001 feet
MVT 12	Dry fine gravels, ~50ft below Miers Valley/Snowy lake, Marshall Valley	-6.9 °C air -3.9 °C ground	78° 03.968 163° 52.083	2689 feet

Table 3.1: Summary of the Miers Valley Transect (MVT) and the different levels.

3.2 DNA Extraction

Total genomic DNA was extracted directly from the soil samples using the BIO 101 Kit (Qbiogene). Direct cell lysis was achieved by mechanical (bead beating) and chemical (sodium phosphate and sodium lauryl sulphate) lysis. After centrifugation, each supernatant was transferred to a clean tube and proteins were then removed using a protein precipitating agent (Potassium acetate and glacial acetic acid). The supernatant was mixed with a binding matrix solution (silica gel suspension with guanidine thiocyanate) then passed through a spin filter column for elution of DNA.

3.3 PCR

3.3.1 16S rDNA PCR

Universal primers $E9F^1$ (5'- GAGTTTGATCCTGGCTCAG -3') and U1510R² (5'-GGTTACCTTGTTACGACTT -3'), designed to target the conserved regions of the rRNA gene, were utilized. Reagents of the PCR mix included, 5µl of 10X buffer, 3µl of 25mM MgCb, 5µl of 5µm E9F, 5µl of 5µm U1510R, 10µl of 1mM DNTP's, 0.5µl of *Taq* polymerase enzyme (Fermentas) and 1µl of gDNA (50ng/µl). Each reaction was adjusted to a final volume of 50µl with sterile super quality (super Q) water and amplified in an automated thermal cycler (Thermo Hybaid system). The PCR conditions were as follows:-

Initial denaturation:	94 °C for 2 mins		
Denaturation:	94 °C for 30 s	٦	
Annealing:	50 °C for 45 s	ł	\times 30 cycles
Extension:	72 °C for 60 s	J	
Final extension:	72 °C for 10 mins	-	

3.3.2 DGGE specific Touchdown PCR

decreased by 1°C every cycle to 55°C, where the temperature was held for the next 20 cycles. The PCR conditions were as follows:-

Initial denaturation:	94 °C for 5 mins
Denaturation:	94 °C for 1 min
Annealing:	$65^{\circ}C - 55^{\circ}C^*$ for 1 min $> x 30$ cycles
Extension:	72 °C for 2 mins
Final extension:	72 °C for 10 mins

* Annealing temperature decreases by 1°C every cycle.

3.3.3 M13 PCR

M13 R (5'- CAGGAAACAGCTATGAC -3') and M13 F (5'-GTTTTCCCAGTCACGAC -3') primers designed to target M13 cloning sites in the pMOS vector, were utilized. Reagents of the PCR mix included, 5µl of 10X buffer, 3µl of 25mM MgCb, 5µl of 5µm M13F, 5µl of 5µm M13R, 10µl of 1mM DNTP's, 0.5µl of Taq polymerase enzyme and 1µl of gDNA (50ng/µl). Each reaction was adjusted to a final volume of 50µl with sterile super Q water and amplified in an automated thermal cycler (Thermo Hybaid system). The PCR conditions were as follows:-

Initial denaturation:	94 °C for 5 mins		
Denaturation:	94 °C for 30 s	٦	
Annealing:	65 °C for 45 s	<pre></pre>	x 30 cycles
Extension:	72 °C for 60 s	J	
Final extension:	72 °C for 10 mins	-	

3.4 Denaturing gradient gel electrophoresis (DGGE)

Glass DGGE plates were thoroughly washed with methanol and potassium hydroxide solution, with a final 70% ethanol rinse to ensure a dust free surface. "C thru" solution was spread on one of the plates to prevent the gel from adhering to the glass and to allow for easy handling when viewing the gel. DGGE was performed with a 10% (wt/vol) polyacrylamide gel (37.5:1, acrylamide:bisacrylamide). A 30% – 60% low to high gradient was used for DNA

analysis. Usually, 100% denaturant corresponds to 7M urea and 40% (vol/vol) acrylamide. The 30% gradient contained 5ml of 40% polyacrylamide, 1ml of 10× TAE, 2.4ml of formamide, 2.5g urea and was adjusted to a final volume of 20ml with distilled water. The 60% gradient contained 5ml of 40% polyacrylamide, 1ml of $10\times$ TAE, 4.8ml of formamide, 5.0g of urea and was adjusted to a final volume of 20ml with distilled water. 180µl of 10% ammonium persulfate and 18µl of TEMED were added to catalyse the polymerization process. Samples were electrophorised for 16h at 100V at 60°C, with the Scie-plas Bio-rad system. 0.5X TAE (20mM Tris-acetate pH 7.4, 10mM sodium acetate and 0.5 mM EDTA pH 7.4) was used as electrophoresis buffer.⁵⁻⁷

3.5. Cloning

3.5.1 Calculation of the amount of insert required

Samples were cloned using the pMOS*Blue* blunt ended cloning kit (Amersham Pharmacia Biotech). The PCR insert to be cloned was gel purified using the GFX PCR DNA and Gel Band Purification Kit (Amersham Biosciences), to ensure optimal cloning efficiency. The insert concentration was estimated by comparison to DNA standards on an agarose gel. The amount of insert required to obtain a molar vector:insert ratio of 1:2.5, when using 50ng of vector, was calculated with the following equation:-

$$\left(\frac{(Z).50}{2887}x\frac{2.5}{1}\right) = \text{ng of insert}$$

where Z is the size of insert in bp2887 is the size of the vector in bp50 is the concentration of the vector (ng)

3.5.2 Phosphokinase reaction

Each phosphokinase reaction was carried out with 1µ1 of 10x phosphokinase buffer, 0.5µ1 of 100mM DTT, 1µ1 of phosphokinase enzyme and µ1 of PCR product (calculated as above). Final volume was adjusted to 10µ1 with super Q water. The production of blunt

ended, phosphorylated PCR products in a one step reaction was obtained after a 22°C incubation for 40 mins.

3.5.3 Ligation

A 75°C incubation for 10 mins. was used to inactivate the phosphokinase. The reaction was cooled on ice for 2 mins to prevent the ligase from being inactivated. 10µl of the phosphorylated PCR product (the entire pk reaction), 1µl of pMOS*Blue* vector (50ng/µl) and 1µl of T_4 DNA ligase were then incubated overnight at 22°C to allow for a more efficient ligation of the insert in the vector.

3.5.4 Transformation

 1μ l of the ligation mix was transformed into 20μ l of pre-chilled chemically competent *E. coli* cells via heat shock transformation. After incubation for 1 hour at 37°C, the cells were then plated onto LB agar ampicillin plates containing 35µl of 50mg/ml X-gal and 20µl of 100mM IPTG, for blue/white screening of recombinant cells.

3.5.5 Direct colony PCR screening

Master plates of each colony were initially constructed and detection of the insert was then carried out via direct colony PCR screening. Selected colonies, approximately 1mm in diameter, were transferred to a 1.5ml tube containing 40μ l of sterile distilled water. Tubes were then placed in boiling water for 5mins to lyse the cells and denature DNases. After centrifugation, 10μ l of each supernatant was transferred to a clean eppendorf tube for M13 PCR analysis.

3.6. Amplified rDNA restriction analysis (ARDRA)

ARDRA, which was conducted on samples that showed an insert during M13 PCR analysis, facilitates the comparison of insert sequences and eliminates need for sequencing of multiple common inserts. *Eco* R1 (8 u/μ l) was used to screen all inserts. 5 μ l of DNA was incubated with 0.8 μ l of *Eco* R1, 2 μ l of buffer and 12.2 μ l of water, overnight. *Alu*1, a 4bp

restriction endonuclease was used to obtain more detailed banding patterns of the inserts (similar sequences displayed similar bands). $5\mu l$ of DNA were incubated with $0.8\mu l$ of Alu1, $2\mu l$ of buffer (Y+ Tango, Fermentas) and $12.2\mu l$ of water, overnight.

3.7. Plasmid isolation

Clones containing the inserts selected for sequencing were inoculated into LB medium and incubated overnight. Plasmids were isolated using the GFX Micro Plasmid Prep Kit (Amersham Biosciences). The above procedure makes use of the modified alkaline lysis procedure as well as a glass fiber matrix to produce high yields of DNA.

3.8. Sequencing

Sequencing reactions were conducted at the University of Cape Town, using the Sanger Dideoxy sequencing method. Sequencing reactions were conducted by Di James, the senior technical officer at the Department of Molecular and Cell Biology at UCT.

3.9. Phylogenetic analysis

Alignments were conducted with Clustal W multiple alignments featured in Bioedit Sequence Alignment Editor version 6.0.5 (Copyright 1997-2001 Tom Hall Isis Pharmaceuticals Inc. Department of Microbiology, North Carolina State University). The software package TREECON was used for the construction and drawing of the phylogenetic trees, based on evolutionary distances computed from nucleic acid sequences.⁸ The Galtier and Gouy⁹ distance based method was used for constructing neighbour joining phylogenetic trees with a bootstrap value of 100.

3.10. References:

- Farelly, V., F. Rainey, and E. Stackebrandt. 1995. Effect of genome size and *rrn* gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. *Applied and Environmental Microbiology. Microbiology*. 61:2798-2801.
- Reysenbach, A. L., and N. R. Pace. 1995. Reliable amplification of hyperthermophilic archael 16S rRNA genes by the Polymerase Chain Reaction. In Archaea: A Laboratory Manual - Thermophiles. Cold Spring Harbour Laboratory Press. 101-105pp.
- Watanabe, K., M. Teramoto, H. Futamata, and S. Harayama. 1998. Molecular detection, isolation and physiological characterisation of functionally dominant phenoldegrading bacteria in activated sludge. *Applied and Environmental Microbiology*. 64:4396-4402.
- Don, R. H., P. T. Cox, B. J. Wainwright, K. Baker, and J. S. Mattick. 1991.
 "Touchdown" PCR to circumvent spurious priming during gene amplification. *Nucleic Acids Research.* 19: 4008.
- Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. *Applied and Environmental Microbiology*. 59:695-700.
- Myers, R. M., S. G. Fischer, L. S. Lermann, and T. Maniatis. 1985. Nearly all single base substitutions in DNA fragments joint to a GC-clamp can be detected by denaturing gradient gel electrophoresis. *Nucleic Acids Research*. 13:3131-3145.
- Myers, R. M., L. S. Lermann, and T. Maniatis. 1987. Detection and localisation of single base changes by denaturing gradient gel electrophoresis. *Methods in Enzymology*. 155:501-527.
- Van de Peer, Y., and R. De Wachter. (1994). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. *Computer Applications in Biosciences*. 10:569-570.
- Galtier, N, and M. Gouy. (1995). Inferring phylogenies from DNA sequences of unequal base compositions. *Proceedings of the National Academy of Science*. USA. 92:11317-11321.

Chapter 4

Results and Discussion

4.1. Introduction

Documented reports on the molecular investigations of microbial communities in the McMurdo Dry Valleys are few.¹ Previous studies have focused on microscopy and culture dependent methods but such approaches do not reflect the true diversity of a microbial community.¹ This study utilised 16S rDNA PCR and phylogenetic analysis to obtain qualitative data on the bacterial phylotypes that inhabit the Miers Dry Valley of McMurdo Sound. No previous studies have attempted to establish the presence of a putative community structure in Dry Valley mineral soils. Hence, this investigation has employed molecular phylogenetics in an attempt to infer the presence of one of the key components of a stable functional community, whereby carbon acquisition is either heterotrophic or autotrophic. In the Dry Valley mineral soils, exogenous heterotrophic substrates are thought to be negligible² it is therefore suggested that any putative community must inevitably be based on autotrophy (photoautotrophy/chemoautotrophy). In this investigation we attempt to infer from phylogenetic data, the possible presence of indicative phenotypes which might contribute to a functional microbial community.

4.2. gDNA Isolation

gDNA obtained with the BIO 101 Kit was of a higher purity and less sheared (Fig. 4.1.) than that of the modified Zhou method. All samples showed the presence of DNA with a size range of between 11 and 14kb. However, samples 1 to 5, 10 and 12 displayed weak signals indicating low biomass, whereas samples 6 to 9 and 11 showed strong signals, indicative of a higher biomass. These relative biomass levels might be attributed to the physical

characteristics of the mineral soils. For example, the gravels of samples 1 to 5 were coarser in nature while, with an increase in elevation, the gravels became finer (D. A. Cowan pers. comm.). Hence, the smaller the soil granules the greater the available surface area for microbial growth.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4.1. gDNA isolations of MVT samples 1 to 12. Lane 1 is ? DNA cut with *Hind* III, lane 2 ? DNA cut with *Pst* I and lanes 3 to 14 show DNA extractions from MVT samples 1 to 12, respectively.

Figure 4.2. Products of 16S rDNA PCR amplification. Lanes 1 to 12 are MVT samples 1 to 12 respectively, lane 13 is the positive control (16S PCR of *E. coli* gDNA), lane 14 is the negative control and lane 15 is ? DNA cut with *Pst* I.

4.3. 16S rDNA PCR

16S rDNA PCR, using the universal bacterial 16S primers E9F³ and U1510R,⁴ was successful with all 12 samples. In all cases amplicons of approximately 1500 bp (the expected size) were obtained (Fig. 4.2.).

4.4. Denaturing gradient gel electrophoresis (DGGE)

DGGE, conducted to obtain an overview of the bacterial diversity across the 12 samples, showed that many of the transect samples displayed similar banding patterns (Fig. 4.3.). It was seen that each sample displayed significant bacterial diversity (each band represents one or more different microorganisms). With the exception of sample 7 many of the bacterial phylotypes were common in every sample. However, certain bacterial phylotypes appeared to be site specific (see arrows Fig. 4.3.). DGGE is capable of detecting up to 96% of all mutations or single base pair substitutions in fragments up to 500 base pairs in length and was also shown to be reproducible.^{5,6} The sensitivity of DGGE was evident in the present investigation as results were consistent when DGGE was conducted repeatedly. The consistency of phylotypes present in every sample, reflected by DGGE, was also indicated in the 16S rDNA clone libraries.

A vertical transect of 500m in the Miers Dry Valley has little effect on microbial diversity, as DGGE has indicated that few phylotypes appeared to be altitude-dependent. Arrow **A** in Fig. 4.3. shows phylotypes that are common in samples 5 to 12 and arrow **B** shows phylotypes common in samples 8 to 12. Due to the similarity between the various samples clone libraries for samples 1, 5, 7, 9 and 12 were constructed.

Figure 4.3. Denaturing gradient gel showing bacterial phylotypic diversity across the MVT transect. (M) is marker ? DNA cut with *Pst* I, lanes 1 to 12 is MVT samples 1 to 12 respectively and lane 13 is the positive control (*E. coli* partial 16S sequence).

4.5. 16S Clone Libraries and Phylogenetic Analyses

Previous studies conducted on microbial communities in the McMurdo Dry Valleys have largely utilised microscopy and culture-based methods.⁷ However, it is now widely accepted that these approaches do not reflect the true microbial diversity of an environment. For example, an investigation utilising morphological and molecular approaches to explore cyanobacterial diversity in Lake Fryxell (McMurdo Dry Valleys) showed a substantial discrepancy between the two techniques.⁸ Microscopy identified eight morphotypes whilst molecular analyses revealed fifteen different phylotypes.⁸ The report provided evidence for the molecular diversity of Cyanobacteria, which was shown to be greater than the previously known diversity based on culture and microscopy methods.⁸ Previous culture based methods investigating the microbiology of Antarctic Dry Valley mineral soils showed the presence of predominately gram negative aerobic rods such as *Bacillus, Micrococcus* and *Streptomyces*.⁹ The present investigation discovered a wider range of phylotypes encompassing gram positive aerobic and anaerobic genera such as *Clostridium* (anaerobic), *Rhodoglobus* and *Rubrobacter*.

In the present investigation partial 16S gene amplicons of each sample were sequenced with the E9F³ primer via the Sanger dideoxy sequencing method. Sequences of approximately 500bp, encompassing the variable regions V1, V2 and V3, were obtained. A total of 121 clones were sequenced and similarity searches with known bacterial 16S rDNA sequences in public databases were evaluated. Of the 121 sequences, 115 were =90% identical to their respective matches in the database, 2 sequences were 89% identical and 4 sequences were 88% identical. These high percentage homology values would confirm the phylum and in some cases (=95%) the genus level of the sequences.⁷ A sequence identity value of =98% may correspond to species designation.⁷ However, confirmatory biochemical, physiological and morphological testing should be conducted (pending the culturable state of the isolates).

The partial 16S rDNA sequences of each library and their reference sequences from the database were aligned with Clustal W featured in Bioedit version 6.0.5. Neighbour joining phylogenetic trees were constructed with Treecon,¹⁰ employing the Galtier and Gouy distance based method.¹¹ The scale bar of all trees represents a 0.1% difference in nucleotide sequences. Bootstrap values provide a measure of the reliability of the phylogenetic analysis and values of 65 and above for the nodes are displayed on the trees.

All trees showed that most of the clones clustered with their respective matches obtained from the database and also displaying bootstrap values of 100. For most of these clusters, small differences in the branch distance indicated a high nucleotide similarity between the sequences. These results suggest the high probability of phylotypes in the present study being considered closely related to those in the database. Some Antarctic isolates clustered together whilst others exhibited high similarity to environmental samples. This suggests that most Antarctic genera are common to other soil environments, but may have adapted to the extreme psychrophilic habitat. A relatively small proportion (~10%) of Antarctic phylotypes appeared to be novel.

16S rDNA PCR and phylogenetic analyses have been previously used to investigate the microbial diversity of cryptoendolithic communities of the McMurdo Dry Valleys, in a previous study.⁷ Results showed that Actinobacteria, a and ?-Proteobacteria and Planctomycetes were among the dominant phylotypes present.⁷ Results correlated with the

present investigation as the major taxonomic groups represented by the genera included a-, ßand ?-Proteobacteria, Actinobacteria, Verrucomicrobia, Planctomycetes and several uncultured environmental and Antarctic samples.

Proteobacteria, considered the most diverse group of bacteria, are the second largest group (Firmicutes being the first), consisting of 429 named genera in 72 named families.¹² All species are gram negative with their diversity ranging from purple phototrophs to chemoautotrophs and chemoheterotrophs.¹³ Each library varied in the composition of a, ß and ?-Proteobacteria. The a-Proteobacteria contain genera that are mostly pathogenic in nature, either to humans or plants. Other genera are chemoautotrophs and some are capable of fixing nitrogen.¹³ a-Proteobacteria are mostly digotrophic bacteria, that occupy nutrient limiting environments and they are also common in pristine soils.¹² ß-Proteobacteria consist either of chemoautotrophs (capable of oxidising elemental sulfur) or chemoheterotrophs (capable of utilising organic sulfur).¹³ ?-Proteobacteria are autotrophs either using light (purple sulfur bacteria, photoautotrophs) or H₂S as a source of energy (chemoautotrophs). This group also contains chemoheterotrophs.¹³

Actinobacteria are a group of aerobic, gram positive bacteria with high GC content genomes. They constitute some of the most common soil microbiota, which play important roles in decomposition and humus formation.^{7,14} Planctomycetes are a group of budding peptidoglycan-less bacteria¹⁵ that are capable of growing anaerobically and autotrophically via the oxidation of ammonium.¹⁶ Verrucomicrobia, also termed prosthecobacteria (having multiple appendages on cell surfaces) are heterotrophic, gram negative non-motile bacteria. Their common environments include eutrophic lakes and ponds. The prostheca enable attachment to various surfaces.¹⁷

Cyanobacteria were shown to be the dominant phototrophs in many moist Antarctica habitats, such as lakes, ponds, endolithic and sublithic communities.^{18,19} However, the limited detection of cyanobacteria throughout the Miers Dry Valley Transect may reflect the low precipitation levels of the valley.

4.5.1. MVT 1

Based on homology values of =95% and phylogenetic studies, five sequences can be assigned to specific genera with some assurance. These included the sequences from clones 18, 19, 37, 54 and 60 (Table 4.1., Fig. 4.4.). Sequence from clone 18 showed a 96% homology to an *Opitutis* sp.¹⁷ and sequence from clone 19 was 97% identical to a *Clostridium* sp. These genera were also confirmed through phylogenetic analyses with respect to the high bootstrap values (100) and the small difference in branch lengths. The inhabitance of *Clostridia* (anaerobic, gram positive and spore forming) in Antarctica may be unexpected due to the highly aerobic nature of the environment.²⁰ However, a previous study conducted on the microbial community of a mat sample from Lake Fryxell, Antarctica reported that more than 10% of the cloned 16S rRNA gene sequences and five of the isolates belonged to the genera *Clostridium*.²¹ More specifically, most of the 16S rRNA gene sequences and four of the five isolates were phylogenetically related to *Clostridium estertheticum*, a psychrophilic species originally isolated from spoiled vacuum-packed refrigerated beef.²¹

The other confirmed genera included *Rhodoglobus* (clone 37) (Table 4.1.), an Antarctic isolate from the McMurdo Dry Valleys.²² Phylogenetic studies have illustrated that sequence from clone 37 has closely clustered with *Rhodoglobus*, with a bootstrap value of 100 and a small difference in the branch lengths (Fig. 4.4.). This microorganism was characterised as a psychrophilic, gram positive, aerobic bacterium that forms red pigmented colonies when grown at 18°C. *Rhodoglobus vestali* belongs to the family Microbacteriaceae and shows a very high similarity to the genus *Leifsonia*, a cryobacterium.²²

The sequence from clone 41 was 98% identical to a bacterium that contained a gene that was shown to code for a diooxygenase enzyme capable of breaking down naphthalene²³ (Table 4.1.). The bacterium, referred to as strain CJ2, displayed a number of characteristics that made it a likely candidate to be of Antarctic origin.²³ In the present investigation phylogenetic analyses has indicated that sequence 41 and the uncultured sample cluster closely to other Antarctic and Arctic sequences (Fig. 4.4.). Strain CJ2 is a gram negative coccus that grows in the presence of naphthalene, at temperatures only under 20°C (optimally at 10°C) and it was also incapable of growing in rich media.²³

The remaining two genera that can be assigned with some confidence, included sequence from clone 54 which was 99% identical to a *Brevundimonas* sp.,²⁴ and sequence from clone 60 which was 98% identical to a *Lysobacter* sp. (Table 4.1.). *Brevundimonas* is an a-Proteobacterium that resides in low nutrient freshwater or soil habitats.²⁴ Both these genera are chemoheterotrophs. Evidence for the presence of *Brevundimonas* sp. in Antarctic soils has been provided in other reports.²⁵

Microbial community structures are dependent on the relationships between photo- and chemoautotrophs as well as photo- and chemoheterotrophs. The former, being primary producers, generate organic compounds like starch and sugars through the oxidation of inorganic material, which are then utilised by the photoheterotrophs. Organic forms of carbon together with sunlight are used by the photoheterotrophs to produce other complex compounds and nutrients. These compounds are then metabolised by the chemoheterotrophs such as saprobes, which release the inorganic material back into the environment.

The five confirmed genera in the MVT 1 16S clone library are all heterotrophs. Species belonging to the genera *Opitutis* and *Clostridium* are chemoheterotrophs that require organic compounds for gowth and are strictly fermentative.^{17,20} The genera *Brevundimonas* and *Lysobacter* are also chemoheterotrophs.²⁴ *Rhodoglobus* is an Actinobacterium which is known to be a saprophytic heterotroph.²² Previous studies using culture based methods have shown the presence of photoautotrophs in the form of cyanobacteria, no chemoautotrophs were reported.² The use of molecular techniques in the present investigation cannot confirm the presence of chemoautotrophs. However, their possible presence cannot be eliminated as a large portion of the sequences remained uncultured (Fig. 4.5.). Photoautotrophs in the form of cyanobacteria accounted for 3% of the phylotypic diversity (Fig. 4.5.) in MVT 1, but this could be attributed to the aerial transport of dry cyanobacterial mats as site 1 resides close to the margins of Lake Miers.

Photo- and chemoautotrophic activity have shown to be deficient in the arid, highly aerobic soils of the Miers Dry Valley.² Heterotrophic activity is therefore highly dependent on imported organic matter.² Organic matter originates in the aquatic environments and in

cyanobacterial communities within cryptoendolithic habitats and is aerially dispersed across the Dry Valleys.²

Figure 4.5. The percentage of different phyla in MVT 1.

4.5.2. MVT 5

Actinobacteria in MVT 5 accounted for 13% of the phylotypic diversity (Fig. 4.6.). These included *Nocardia* sp. (clone 2),³⁶ *Kribbella* sp. (clone 5) and possibly *Rubrobacter radiotolerans* (clone 8)³⁷ (Table 4.2.). *Rubrobacter radiotolerans* is a radiation resistant bacterium which is frequently isolated from thermal environments. It is also known that the DNA of *Rubrobacter* sp. is frequently isolated from desert soils.³⁷ Studies have shown that highly radiation resistant bacteria have the ability to repair DNA that is damaged by radiation and this may also be an adaptation to repair DNA that is damaged by desiccation.⁷ In another study investigating cryptoendolithic communities from the McMurdo Dry Valleys, BLAST results of bacterial 16S sequences resulted in homology to members of the *Thermus-Deinococcus* phylogenetic group.⁷ *Deinococcus* spp. have also shown to be possible inhabitants of granite outcrops in Antarctica³⁸ and they are also very similar to *Rubrobacter* radiotolerans especially with its radiation resistant ability.⁷ This provides evidence for the possibility of *Rubrobacter* spp. inhabiting Antarctica.

Table 4.1. Summary of MVT 1 Blast results

Clone No.	Size	Phylogenetic Group	Organism	%Identity/ %Similarity	E Value	Accession Number	Ref.
3	89-437	Uncultured environmental sample	Uncultured bacterium clone cRI32d	344/350 (98%)	0	AY364069	26
4	198-683	Uncultured environmental sample	Uncultured bacterium clone KD4-108	448/486 (92%)	0	AY218624	Unpublished
6	47-692	Uncultured environmental sample	Uncultured bacterium clone ARKIA-43	600/647 (92%)	0	AF468297	27
7	82-656	? proteobacteria	Uncultured Xanthomonadaceae bacterium clone M10Ba23	524/577 (90%)	0	AY360613	28
8	182-638	Actinobacteria	Sphaerobacter thermophilus strain DSM 20745T	405/457 (88%)	e ⁻¹³⁶	AJ420142	Unpublished
10	42-663	Uncultured environmental sample	Uncultured bacterium clone a13115	604/623 (96%)	0	AY102322	29
12	50-718	Uncultured environmental sample	Uncultured bacterium clone ARKMP-16	663/671 (98%)	0	AF468326	Unpublished
18	85-682	Verrucomicrobia	Opitutus sp. strain VeCb1	580/598 (96%)	0	X99391	17
19	83-696	Clostridia	Clostridium estertheticum A-1/C-an/C1	600/614 (97%)	0	AJ297442	Unpublished
24	22-535	Uncultured environmental sample	Uncultivated soil bacterium clone C102	497/515 (96%)	0	AF013529	30
29	76-543	Planctomycetes	Uncultured Planctomy cetales bacterium clone M10Ba61	435/468 (92%)	0	AY360649	28
30	53-666	Verrucomicrobia	Bacterium Ellin5102	571/614 (92%)	0	AY234519	31
32	179-704	Planctomycetes	Uncultured Planctomycetales bacterium clone SM1A02	464/526 (88%)	e ⁻¹⁵⁴	AF445645	Unpublished
34	215-607	Cyanobacteria	Uncultured cyanobacterium clone TAF-B69	373/393 (94%)	e ⁻¹⁷⁹	AY038727	32
36	58-448	Uncultured environmental sample	Uncultured Antarctic bacterium LB3-30	378/391 (96%)	0	AF173822	Unpublished
37	65-610	Actinobacteria	Rhodoglobus vestalii, strain LV3	520/546 (95%)	0	AJ459101	22
41	82-627	Uncultured environmental sample	Uncultured bacterium clone 61	537/546 (98%)	0	AY250101	23
47	110-286	Uncultured environmental sample	Uncultured bacterium clone CBF2	168/177 (94%)	2e ⁻⁸⁰	AF392790	Unpublished
48	83-501	Uncultured environmental sample	Uncultured soil bacterium clone Tc120-141	391/419 (93%)	0	AY242634	33
49	70-644	Uncultured environmental sample	Unidentified bacterium, strain BD5-13	528/575 (91%)	0	AB015569	34
54	81-681	a proteobacteria	Brevundimonas sp., strain FWC04	596/601 (99%)	0	AJ227793	24
55	97-584	Uncultured environmental sample	Uncultured gold mine bacterium D33	457/489 (93%)	0	AF337887	Unpublished
57	149-537	a proteobacteria	R. capsulatus	365/390 (93%)	e ⁻¹⁸⁰	AY128090	Unpublished
60	105-630	? proteobacteria	Lysobacter sp. Dae16	518/526 (98%)	0	AB166878	Unpublished
61	75-505	Uncultured environmental sample	Uncultured Crater Lake bacterium CL0-56	414/431 (96%)	0	AF316782	35

Figure 4.6. The percentage of different phyla in MVT 5.

The genera or family of five sequences in MVT 5 can be assigned with confidence, based on homology values of =95%. These included sequences from clones 1, 2, 5, 24 and 68 The sequence from clone 1 displayed an identity value of 97% to a (Table 4.2.). Comamonadaceae bacterium.²⁸ Comamonadaceae are chemoheterotrophic, gram negative, aerobic bacteria that are frequently used for the treatment of activated sludge.²⁸ The sequence from clone 2 was 95% homologous to a *Nocardia* sp.³⁶ This genus comprises filamentous, chemoheterotrophic and facultatively anaerobic bacteria that are frequently used in foaming and wastewater treatment plants.³⁶ The sequence from clone 24 was 97% identical to a Sphingomonas spp.³⁹ and sequence from clone 68 was 98 % homologous to a Lysobacter sp. Both these genera are chemoheterotrophs. Supporting evidence for the presence of Sphingomonas sp. in Antarctic soils is provided in other reports.²⁵ Blast results in MVT 5 16S clone library did not support the presence of autotrophs. The apparent lack of autotrophic activity means that these heterotrophs have to rely on other sources of organic compounds and the dominant available form of organic compounds is through aerial dispersion as discussed previously.

Blast results have shown predominantly heterotrophs to be present in the Miers Dry Valley. However, the possibility of autotrophs being present in this environment cannot be eliminated as a large portion of the sequences showed homology to uncultured Antarctic and environmental samples (Fig. 4.6.). The sequence from clone 9 showed a 94% homology to *Methylobacterium nodulans*⁴⁰ (Table 4.2.), a chemoautotroph capable of oxidising methane to

Table 4.2.	Summary	of MVT 5	5 Blast results
------------	---------	----------	-----------------

Clone No.	Size	Phylogenetic Group	Organism	%Identity / %Similarity	E Value	Accession Number	Ref.
1	10 - 679	ß Proteobacteria	Uncultured Comamonadaceae bacterium clone M3Ba22	655/670 (97%)	0	AY360686	28
2	1437- 1087	Actinobacteria	N. uniformis	336/351 (95%)	e ⁻¹⁵⁹	Z46752	36
5	1471- 821	Actinobacteria	Kribbella antibiotica	632/651 (97%)	0	AY082063	Unpublished
8	15 - 646	Actinobacteria	Rubrobacter radiotolerans	596/632 (94%)	0	U65647	37
9	1410- 762	α proteobacteria	Methylobacterium nodulans strain ORS2060	611/649 (94%)	0	AF220763	40
10	13-681	uncultured environmental samples	Uncultured bacterium clone D138	656/669 (98%)	0	AY274144	41
11	1408 - 762	α proteobacteria	X. flavus strain JW/KR-E1	609/651 (93%)	0	X94206	42
12	204 - 687	uncultured environmental samples	Uncultured Crater Lake bacterium CL500-48	450/486 (92%)	0	AF316757	35
13	1362 - 799	uncultured environmental samples	Uncultured Antarctic bacterium LB3-92	531/566 (93%)	0	AF173824	Unpublished
14	1420 - 838	uncultured environmental samples	Uncultured bacterium clone ARKMP-14	572/583 (98%)	0	AF468332	Unpublished
18	1103 - 411	uncultured environmental samples	Uncultured bacterium clone KD7-88	631/694 (90%)	0	AY218718	Unpublished
21	1311-750	β Proteobacteria	Glacier bacterium FJI10	554/563 (98%)	0	AY315180	Unpublished
24	1 - 586	α proteobacteria	Sphingomonas sp. SIA181-1A1	572/588 (97%)	0	AF395032	39
26	1-626	Acidobacteria	Uncultured Acidobacteria bacterium clone 351B	622/626 (99%)	0	AY571792	Unpublished
29	1-436	uncultured environmental samples	Uncultured bacterium, clone JG34-KF-314	432/436 (99%)	0	AJ532726	43
30	744 - 510	Chloroflexi	Uncultured Chloroflexi bacterium clone s02wfb8	219/235 (93%)	e ⁻⁸⁷	AY184460	Unpublished
34	1451-819	?-Proteobacteria	Uncultured beta proteobacterium clone B-BH93	633/633 (100%)	0	AY622261	Unpublished
37	1517-890	uncultured environmental samples	Bacterial species, clone RB41	585/632 (92%),	0	Z95722	Unpublished
39	2-585	uncultured environmental samples	Uncultured bacterium clone C-F-12	546/585 (93%)	0	AF443578	44
40	1 - 627	uncultured environmental samples	Uncultured soil bacterium clone Tc123-C09	582/629 (92%)	0	AY242727	33
51	180-641	Actinobacteria	Sphaerobacter thermophilus strain DSM 20745T	405/457 (88%)	e ⁻¹³⁶	AJ420142	Unpublished
54	44-660	Uncultured environmental sample	Uncultured bacterium clone a13115	604/623 (96%)	0	AY102322	29
62	55-656	Verrucomicrobia	Bacterium Ellin5102	571/614 (92%)	0	AY234519	31
65	47-692	Uncultured environmental sample	Uncultured bacterium clone ARKIA-43	600/647 (92%)	0	AF468297	27
68	107-631	? proteobacteria	Lysobacter sp. Dae16	518/526 (98%)	0	AB166878	Unpublished

methanol. Although the percentage homology may not be sufficient to confirm the genus of the organism, it indicated the possible presence of chemoautotrophs in these samples.

4.5.2. MVT 7

MVT 7 displays a different banding pattern as compared to the other samples, when viewed by DGGE (Fig. 4.3.). MVT 7 seems to lack some of the phylotypes that are common in the other samples. This sample is at the centre of the transect and it is the driest, as the bottom samples may experience contact with flowing water from Lake Miers whilst the upper levels experience some moisture due to fog effects and cloud cover. Hence, a dominancy of Actinobacteria would be expected in this sample. This is consistent with the results obtained as the uncultured Antarctic and environmental samples accounted for the highest percentage of phylotypes, followed by Actinobacteria (Fig. 4.7.).

Figure 4.7. The percentage of different phyla in MVT 7.

The sequence from clone 94 showed a 95% homology to *Rubrobacter radiotolerans*³⁷ (Table 4.3.) and the high bootstrap value (100) and small difference in branch lengths shown in the phylogenetic studies (Fig. 4.8.), confirmed the genus. *Rubrobacter radiotolerans* is an extremely radiation resistant bacterium and the ability to repair DNA that is damaged by radiation may also be an adaptation to repair DNA that is damaged by desiccation^{7,37} (sec. 4.5.2.). Previous studies have postulated the possible presence of this microorganism in Antarctic mineral soils³⁸ and the above analyses confirm these hypotheses.

Clone No.	Size	Phylogenetic Group	Organism	%Identity / %Similarity	E Value	Accession Number	Ref.
11	78-423	Gemmatimonadetes	Uncultured Gemmatimonadetes bacterium clone SL2-1-C8	311/347 (89%)	e ⁻¹⁰⁵	AY214645	46
13	215-564	Gemmatimonadetes	Uncultured candidate division BD bacterium clone GR12	331/351 (94%)	e ⁻¹⁴⁹	AF545640	47
18	103-511	uncultured environmental samples	Uncultured bacterium clone D121	376/410 (91%)	e ⁻¹⁶³	AY274130	41
24	49-660	Actinobacteria	Uncultured Pseudonocardia sp. clone 343G	599/613 (97%)	0	AY571815	Unpublished
29	53-536	uncultured environmental samples	Uncultured bacterium clone C-F-15	439/486 (90%)	e ⁻¹⁶⁸	AF443586	44
31	120-359	Actinobacteria	Uncultured actinobacterium clone SMS9.6WL	220/241 (91%)	2e ⁻⁸³	AY043904	48
37	33-626	Actinobacteria	Uncultured actinobacterium clone FBP234	564/594 (94%)	0	AY250866	7
49	50-661	Verrucomicrobia	Bacterium Ellin5102	571/614 (92%)	0	AY234519	31
52	44-687	Uncultured environmental sample	Uncultured bacterium clone ARKIA-43	600/647 (92%)	0	AF468297	27
58	55-444	Uncultured environmental sample	Uncultured Antarctic bacterium LB3-30	378/391 (96%)	0	AF173822	Unpublished
61	85-499	Uncultured environmental sample	Uncultured soil bacterium clone Tc120-141	391/419 (93%)	0	AY242634	33
67	77-501	Uncultured environmental sample	Uncultured Crater Lake bacterium CL0-56	414/431 (96%)	0	AF316782	35
74	1411-759	α proteobacteria	X. flavus strain JW/KR-E1	609/651 (93%)	0	X94206	42
79	1453-817	?-Proteobacteria	Uncultured beta proteobacterium clone B-BH93	633/633 (100%)	0	AY622261	Unpublished
82	37-657	Actinobacteria	Arthrobacter sp. I4	573/622 (92%)	0	AY177353	49
84	86-684	Actinobacteria	Kineococcus-like bacterium AS3187	562/601 (93%)	0	AF060689	Unpublished
85	22-608	uncultured environmental samples	Uncultured bacterium clone ARKCH2Br2-66	544/588 (92%)	0	AF468240	Unpublished
90	748-65	uncultured environmental samples	Uncultured bacterium clone D11	631/684 (92%)	0	AY268337	50
92	104-611	uncultured environmental samples	Uncultured bacterium clone KD1-79	475/509 (93%)	0	AY218566	Unpublished
94	58-646	Actinobacteria	Rubrobacter radiotolerans	561/590 (95%)	0	U65647	37
98	37-709	Uncultured environmental sample	Uncultured earthworm intestine bacterium clone ew57	664/678 (97%)	0	AY154521	51
104	143-560	uncultured environmental samples	uncultivated soil bacterium clone S007	395/418 (94%)	0	AF013544	30

4.5.4. MVT 9

The sequence from clone 21 was 95% identical to an uncultured environmental sample isolated from a heavy metal contaminated site, a part of a study of integron diversity⁴¹ (Table 4.4.). This sequence was present throughout all MVT samples. Integrons are horizontal gene transfer systems, which contain elements that are necessary for site-specific recombination and the expression of foreign DNA.⁴¹ The study found 14 previously undescribed integrase genes.⁴¹ As integrons are important agents for gene transfer particularly in response to selective pressure, their possible existence in Antarctic isolates may be pivotal as a means of acquiring genes that could provide a selective advantage under adverse conditions.

Phylogenetic analysis (bootstrap value of 100 and a small difference in branch lengths) (Fig. 4.9.) of the sequence from clone 58 and an identity value of 99% confirmed the genus to be the ?-Proteobacterium *Stenotrophomonas*⁵² (Table 4.4.). *Stenotrophomonas* is a rod shaped, multi drug resistant human pathogen. The microorganism can be found in a variety of environments and displays antifungal and antibiotic properties.⁵² This is an extremely evolved bacterium with high intraspecies diversity, which was determined by physiological parameters⁵³ and genotypic studies.⁵⁴ This microorganism was also shown to be present in Antarctica soils in a previous study.²⁵

Figure 4.10. The percentage of different phyla in MVT 9.

Table 4.4.	Summary	of MVT 9	Blast results
------------	---------	----------	----------------------

Clone No.	Size	Phylogenetic Group	Organism	%Identity/ %Similarity	E Value	Accession Number	Ref.
4	74-584	Actinobacteria	Uncultured Rubrobacterium #0319-7H2	485/517 (93%)	0	AF234151	55
10	181-690	Planctomycetes	Nostocoida limicola III strain Ben223	481/512 (93%)	0	AF244750	Unpublished
13	207-647	Uncultured environmental sample	Uncultured soil bacterium clone S0202	416/441 (94%)	0	AF507699	56
14	183-689	Planctomycetes	Uncultured Planctomycetales bacterium clone M10Ba61	470/509 (92%)	0	AY360649	28
17	58-683	Actinobacteria	Uncultured Pseudonocardia sp. clone 343G	619/627 (98%)	0	AY571815	Unpublished
19	207-685	uncultured environmental samples	Uncultured Crater Lake bacterium CL500-48	450/486 (92%)	0	AF316757	35
21	96-537	Uncultured environmental sample	Uncultured bacterium clone D116	421/443 (95%)	0	AY274126	41
23	49-689	Uncultured environmental sample	Uncultured bacterium clone ARKIA-43	600/647 (92%)	0	AF468297	27
26	93-401	Uncultured environmental sample	Uncultured bacterium clone C-F-15	286/311 (91%)	e ⁻¹⁰⁶	AF443586	44
28	62-467	Verrucomicrobium	Uncultured Verrucomicrobia bacterium clone NMW3.42WL	385/414 (92%)	e ⁻¹⁵¹	AY043923	48
37	50-663	Verrucomicrobia	Bacterium Ellin5102	571/614 (92%)	0	AY234519	31
41	91-435	Uncultured environmental sample	Uncultured bacterium clone cRI32d	344/350 (98%)	0	AY364069	26
43	199-679	Uncultured environmental sample	Uncultured bacterium clone KD4-108	448/486 (92%)	0	AY218624	Unpublished
44	73-307	Uncultured environmental sample	Uncultured soil bacterium clone Tc135-228	221/243 (90%)	2e ⁻⁶³	AY242765	33
46	37-300	Acidobacteria	Uncultured Acidobacteria bacterium clone 351B	261/271 (96%)	e ⁻¹⁰⁴	AY571792	Unpublished
48	61-445	Uncultured environmental sample	Uncultured Antarctic bacterium LB3-30	378/391 (96%)	0	AF173822	Unpublished
50	24-121	Actinobacteria	Uncultured actinobacterium clone SMS9.30WL	96/100 (96%)	2e ⁻³¹	AY043899	48
51	47-660	Uncultured environmental sample	Uncultured bacterium clone a13115	604/623 (96%)	0	AY102322	29
55	53-755	α proteobacteria	Sphingomonas sp. SIA181-1A1	696/708 (98%)	0	AF395032	39
58	69-751	γproteobacteria	Stenotrophomonas maltophilia strain e-a21	687/688 (99%)	0	AJ293470	52
61	89-603	Uncultured environmental sample	Uncultured Acidobacteria bacterium clone 351B	514/520 (98%)	0	AY250867	7
62	37-710	Uncultured environmental sample	Uncultured earthworm intestine bacterium clone ew57	664/678 (97%)	0	AY154521	51
63	69-724	Uncultured environmental sample	Uncultured soil bacterium clone 460	633/661 (95%)	0	AY493946	Unpublished
68	1425-835	uncultured environmental samples	Uncultured bacterium clone ARKMP-14	572/583 (98%)	0	AF468332	Unpublished
70	1455-817	?-Proteobacteria	Uncultured beta proteobacterium clone B-BH93	633/633 (100%)	0	AY622261	Unpublished

4.5.5. MVT 12

50

The sequence from clone 56 was 98% homologous to the bacterium *Janthinobacterium agaricidamnosum* (Table 4.5.). Phylogenetic analysis showed a close association between sequence 56 and *Janthinobacterium agaricidamnosum* (Fig. 4.11.). The presence of *Janthinobacterium* spp. in Antarctica has also been previously reported.¹ Little is known about this microorganism, except that it causes a soft rot disease of the cultivated mushroom, *Agaricus bisporus*.⁵⁷ The putative genera of three sequences fom the MVT 12 sample, that were assigned with some assurance included sequence 3 (*Sphingomonas*),³⁹ sequence 6 (*Stenotrophomonas*),⁵² and sequence 56 (*Janthinobacterium*) (Table 4.5.). All these genera are chemoheterotrophs.

All samples have indicated that heterotrophs are more prevalent in Dry Valley mineral soils as compared to autotrophs. The presence of chemoautotrophs in Dry Valley mineral soils could not be confirmed. However, there was evidence for their possible presence as indicated by the identification of phylotypes showing homology with known chemoautotrophic genera (section 4.5.2.). Photoautotrophs in the form of cyanobacteria were evident in MVT samples 1 and 12. Cyanobacteria accounted for 3% of the phylum diversity in MVT 12 (Fig. 4.12.). This sample was obtained from the top of the Miers Valley Transect where water availability, resulting from occasional snowfall, fog effects and cloud cover, is considered to be higher than mid-slope regions. Although it is likely that the identification of cyanobacterial phylotypic signals in sample MVT 1 (lowest transect sample) was due to the aerial transport of dry cyanobacterial mats from the adjacent margins of Lake Miers, this data indicates the possibility of photoautotrophic activity in the higher altitude mineral soils.

Figure 4.12. The percentage of different phyla in MVT 12.

Table 4.5.	Summary	of MVT 1	12	Blast result	ts
------------	---------	----------	----	--------------	----

Clone No.	Size	Phylogenetic Group	Organism	%Identity/ %Similarity	E Value	Accession Number	Ref.
3	50 - 757	α proteobacteria	Sphingomonas sp. SIA181-1A1	696/708 (98%)	0	AF395032	39
5	38 - 699	Uncultured environmental sample	Uncultured Antarctic bacterium LB3-30	634/665 (95%)	0	AF173822	Unpublished
6	67 - 754	γproteobacteria	Stenotrophomonas maltophilia strain e-a21	687/688 (99%)	0	AJ293470	52
8	70 - 652	Uncultured environmental sample	Uncultured bacteriumclone C-F-1	563/585 (96%)	0	AF443581	44
13	569 - 66	Uncultured environmental soil bacterium	Uncultured soil bacterium clone S092	451/504 (89%)	e ⁻¹⁶⁵	AF507523	56
15	64 - 728	Actinobacteria	Rubrobacter radiotolerans	619/665 (93%)	0	U65647	37
16	87 - 606	Acidobacteria	Uncultured Acidobacteria bacterium clone 351B	514/520 (98%)	0	AY571792	Unpublished
19	211 - 725	Uncultured Actinobacteria	Uncultured bacterium ARFS-13	498/515 (96%)	0	AJ277692	60
20	22 - 679	Uncultured environmental sample	Uncultured bacterium clone Tc2	638/662 (96%)	0	AF445086	33
21	231 - 701	Actinobacteria	Sphaerobacter thermophilus strain DSM 20745T	419/471 (88%)	e ⁻¹⁴⁶	AJ420142	Unpublished
27	87-606	Uncultured environmental sample	Uncultured Acidobacteria bacterium clone 351B	514/520 (98%)	0	AY250867	7
29	55 - 741	Cyanobacteria	Uncultured Antarctic cyanobacterium clone BGC-Fr054	665/688 (96%)	0	AY151722	8
33	62-722	Uncultured environmental sample	Uncultured bacterium clone D138	605/661 (91%)	0	AY274144	41
42	490-77	Uncultured environmental sample	Uncultured bacterium clone D11	402/414 (97%)	0	AY268337	50
43	69 - 730	uncultured soil bacterium	Uncultured soil bacterium clone G7-1465-5	610/664 (91%)	0	AF525836	61
50	56 - 424	Verrucomicrobia	Uncultured Verrucomicrobia bacterium clone SMW4.44WL	339/369 (91%)	e ⁻¹³⁶	AY043931	48
52	34 - 711	Uncultured environmental sample	Uncultured earthworm intestine bacterium clone ew57	664/678 (97%)	0	AY154521	51
53	204 - 687	Uncultured environmental sample	Uncultured Crater Lake bacterium CL500-48	450/486 (92%)	0	AF316757	35
55	55-692	Actinobacteria	Modestobacter multiseptatus	591/638 (92%)	0	Y18646	62
56	40 - 668	ß proteobacteria	Janthinobacterium agaricidamnosum strain SAFR-022	619/631 (98%)	0	AY167838	Unpublished
58	61 - 539	Uncultured environmental sample	Uncultured bacterium clone KD6-15	461/479 (96%)	0	AY218754	Unpublished
60	68 - 727	Uncultured environmental sample	Uncultured soil bacterium clone 460	633/661 (95%)	0	AY493946	Unpublished
62	183-694	Planctomycetes	Nostocoida limicola III strain Ben223	481/512 (93%)	0	AF244750	Unpublished
65	51-687	Uncultured environmental sample	Uncultured bacterium clone ARKIA-43	600/647 (92%)	0	AF468297	27

Figure 4.4. Phylogenetic tree of MVT 1 containing partial 16S clone sequences (red) and their reference sequences obtained from Genbank (blue), rooted with *E. coli*.

Figure 4.8. Phylogenetic tree of MVT 7 containing partial 16S clone sequences (red) and their reference sequences obtained from Genbank (blue), rooted with *E. coli*.

Figure 4.9. Phylogenetic tree of MVT 9 containing partial 16S clone sequences (red) and their reference sequences obtained from Genbank (blue), rooted with *E. coli*.

0.1

Figure 4.11. Phylogenetic tree of MVT 12 containing partial 16S clone sequences (red) and their reference sequences obtained from Genbank (blue), rooted with *E. coli*.

4.6. References

- 1. **Christner, B. C., B. H. Kvitko, and J. N. Reeve.** 2003. Molecular identification of Bacteria and Eukarya inhabiting a cryoconite hole. *Extremophiles*. **7**:177-183.
- Vishniac, H. S. 1993. The Microbiology of Antarctic Soils. In Antarctic Microbiology. Wiley-Liss Inc., New York. 297-341pp.
- 3. Farelly, V., F. Rainey, and E. Stackebrandt. 1995. Effect of genome size and *rrn* gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. *Applied and Environmental Microbiology*. **61**:2798-2801.
- 4. **Reysenbach, A. L., and N. R. Pace.** 1995. Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the Polymerase Chain Reaction. In Archaea: A Laboratory Manual Thermophiles. Cold Spring Harbour Laboratory Press. 101-105pp.
- Pablo, V. G., Q. Cao, F. Guegj, and S. Sommer. 1998. The sensitivity of denaturing gradient gel electrophoresis: a blinded analysis. *Mutation Research Genomics*. 382:109-114.
- Wawer, C., and G. Muyzer. 1995. Genetic diversity of *Desulfovibrio* sp. in environmental samples analysed by Denaturing Gradient Gel Electrophoresis of [NiFe] hydrogenase gene fragments. *Applied and Environmental Microbiology*. 61:2203-2210.
- De La Torre, J. R., B. M. Goebel, E. I. Friedmann, and N. R. Pace. 2003. Microbial Diversity of Cryptoendolithic Communities from the McMurdo Dry Valleys, Antarctica. *Applied and Environmental Microbiology*. 69:3858-3867.
- Taton, A., S. Grubisic, E. Brambilla, R. De Wit, and A. Wilmotte. 2003. Cyanobacterial Diversity in Natural and Artificial Microbial Mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a Morphological and Molecular Approach. *Applied and Environmental Microbiology*. 69:5157-5169.
- 9. Baker, J. H., and D. S. Smith. 1972. The bacteria in an Antarctic peat. *Journal of Applied Bacteriology*. 35:589-596.
- Van de Peer, Y., and R. De Wachter. (1994). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. *Computer Applications in the Biosciences*. 10:569-570.

- Galtier, N., and M. Gouy. (1995). Inferring phylogenies from DNA sequences of unequal base compositions. *Proceedings of the National Academy of Science. USA*. 92:11317-11321.
- 12. Garrity, G. M., M. Winters, and D. B. Searles. 2001. Taxonomic outline of the prokaryotic genera, release 1.0. Springer, New York. 320pp.
- Prescott, L., J. Harley, D. Klein. 2001. Microbiology 4/e. McGraw Hill, New York. Ch 22-23.
- Monciardini, P., L. Cavaletti, P. Schumann, M. Rohde, and S. Donadio. 2003. Conexibacter woesii gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. International Journal of Systematic and Evolutionary Microbiology. 53:569-576.
- Lindsay, M. R., R. I. Webb, M. Strous, M. S. Jetten, M. K. Butler, R. J. Forde, and J. A. Fuerst. 2001. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. *Archives of Microbiology*. 175:413-429.
- 16. Kuenen, G., and M. Jetten. 2001. Extraordinary anaerobic ammonium-oxidising bacteria. *ASM News.* 67:456-463.
- 17. Janssen, P. H., A. Schuhmann, E. Morschel, and F. A. Rainey. 1997. Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. *Applied and Environmental Microbiology*. 63:1382-1388.
- 18. **Vincent, W. F.** 2000. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. *Antarctic Science*. **3**:374-385.
- Wharton, R. A., C. B. Parker, and G. M. Simmons. 1983. Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. *Phycologia*. 22:355-365.
- 20. Spring, S., B. Merkhoffer, N. Weiss, R. M. Kroppenstedt, H. Hippe, and E. Stackebrandt. 2003. Characterisation of novel psychrophilic *clostridia* from an Antarctic microbial mat: description of *Clostridium frigoris* sp. nov., *Clostridium lacusfryxellense* sp. nov., *Clostridium bowmanii* sp. nov. and *Clostridium psychrophilum* sp. nov. and reclassification of *Clostridium laramiense* as *Clostridium estertheticum* subsp. *laramiense* subsp. nov. *International Journal of Systematic and Evolutionary Microbiology*. 53:1019-1029.

- Brambilla, E., H. Hippe, A. Hagelstein, B. J. Tindall, and E. Stackebrandt. 2001.
 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. *Extremophiles*. 5:23-33.
- 22. Sheridan, P. P., J. Loveland-Curtze, V. I. Miteva, and J. E. Brenchley. 2003. *Rhodoglobus vestalii* gen. nov., sp. nov., a novel psychrophilic organism isolated from an Antarctic Dry Valley Lake. *International Journal of Systematic and Evolutionary Microbiology*. **53**:985-994.
- Jeon, C. O., W. Park, P. Padmanabhan, C. DeRito, J. R. Snape, and E. L. Madsen.
 2003. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. *Proceedings of the National Academy of Science U.S.A.* 100:13591-13596.
- 24. Abraham, W. R., C. Stroempl, H. Meyer, S. Lindholst, E. R. B. Moore, R. Christ, M. Vancanneyt, B. J. Tindall, A. Bennasar, J. Smit, and M. Tesar. 1999. Phylogeny and polyphasic taxonomy of *Caulobacter* species. Proposal of *Maricaulis* gen. nov. with *Maricaulis maris* (Poindexter) comb. nov. as the type species, and emended description of the genera *Brevundimonas* and Caulobacter. *International Journal of Systematic Bacteriology*. 49:1053-1073.
- Wery, N., U. Gerike, A. Sharman, J. B. Chauduri, D. W. Hough, and M. J. Danson. 2003. Use of a Packed-Column Bioreactor for Isolation of Diverse Protease-Producing Bacteria from Antarctic Soils. *Applied and Environmental Microbiology*. 69:1457-1464.
- Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch. 2004. Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator *Thlaspi goesingense*. *Applied and Environmental Microbiology*. **70**:2667-2677.
- Brinkmeyer, R., K. Knittel, J. Jurgens, A. Weyland, R. Amann, and E. Helmke.
 2003. Diversity and Structure of Bacterial Communities in Arctic versus Antarctic Pack Ice. *Applied and Environmental Microbiology*. 69:6610-6619.
- 28. Lueders, T., B. Wagner, P. Claus, and M. W. Friedrich. 2004. Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. *Environmental Microbiology*. **6**:60-72.

- Ellis, R. J., P. Morgan, A. J. Weightman, and J. C. Fry. 2003. Cultivation-Dependent and -Independent Approaches for Determining Bacterial Diversity in Heavy-Metal-Contaminated Soil. *Applied and Environmental Microbiology*. 69:3223-3230.
- 30. Kuske, C. R., S. M. Barns, and J. D. Busch. 1997. Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. *Applied and Environmental Microbiology*. **63**:3614-3621.
- Joseph, S. J., P. Hugenholtz, P. Sangwan, C. A. Osborne and P. H. Janssen. 2003. Laboratory Cultivation of Widespread and Previously Uncultured Soil Bacteria. *Applied and Environmental Microbiology*. 69:7210-7215.
- 32. O'Sullivan, L. A., A. J. Weightman, and J. C. Fry. 2002. New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. *Applied and Environmental Microbiology*. **68**:201-210.
- 33. Gremion, F., A. Chatzinotas, and H. Harms. 2003. Comparative 16S rand and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. *Environmental Microbiology*. 5:896-907.
- 34. Li, L., C. Kato, and K. Horikoshi. 1999. Bacterial diversity in deep-sea sediments from different depths. *Biodiversity Conservation*. **8**:659-677.
- Urbach, E., K. L. Vergin, L. Young, A. Morse, G. L. Larson, and S. J. Giovannoni.
 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake.
 Limnology and Oceanography. 46:557-572.
- Isik, K., J. Chun, Y. C. Hah, and M. Goodfellow. 1999. Nocardia uniformis nom. rev. International Journal of Systematic Bacteriology. 49:1227-1230.
- 37. Kausar, J., Y. Ohyama, H. Terato, H. Ide, and O. Yamamoto. 1997. 16S rRNA gene sequence of *Rubrobacter radiotolerans* and its phylogenetic alignment with members of the genus Arthrobacter, gram-positive bacteria, and members of the family *Deinococcaceae*. *International Journal Systematic Bacteriology*. **47**:684-686.
- Seipp, R. 2003. *Deinococcus radiodurans*: Does this bug wear a lead vest or what? *Bio Teach Journal*. 1:57-62.

- Christner, B. C., E. Mosley-Thompson, L. G. Thompson, and J. N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. *Environmental Microbiology*. 3:570-577.
- 40. Sy, A., E. Giraud, P. Jourand, N. Garcia, A. Willems, P. de Lajudie, Y. Prin, M. Neyra, M. Gillis, C. Boivin-Masson, and B. Dreyfus. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. *Journal of Bacteriology*. 183:214-220.
- Nemergut, D. R., A. P. Martin, and S. K. Schmidt. 2004. Integron Diversity in Heavy-Metal-Contaminated Mine Tailings and Inferences about Integron Evolution. *Applied and Environmental Microbiology. Microbiology* 70:1160-1168.
- 42. **Rainey, F. A., and J. Wiegel.** 1996. 16S ribosomal DNA sequence analysis confirms the close relationship between the general *Xanthobacter*, *Azorhizobium*, and *Aquabacter* and reveals a lack of phylogenetic coherence among Xanthobacter species. *International Journal of Systematic Bacteriology*. **46**:607-610.
- 43. Selenska-Pobell, S., K. Flemming, T. Tzvetkova, J. Raff, M. Schnorpfeil, and A. Geissler. 2002. Bacterial communities in uranium mining waste piles and their interactions with heavy metals. *Uranium in the Aquatic Environment*. Merkel, B. J. :455-464.
- 44. **Rutz, B. A., and T. L. Kieft.** 2004. Phylogenetic Characterization of Dwarf Archaea and Bacteria from a Semiarid Soil. *Soil Biology and Biochemistry.* **36**:825-833.
- Takeuchi, M., and A. Yakota. 1994. Phylogenetic analysis of *Kineococcus aurantiacus* based on 16S rRNA gene sequences. *FEMS Microbiology Ecology*. 116:7-12.
- 46. Liles, M. R., B. F. Manske, S. B. Bintrim, J. Handelsman, and R. M. Goodman. 2003. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. *Applied and Environmental Microbiology*. **69**:2684-2691.
- Mummey, D. L., and P. D. Stahl. 2003. Candidate division BD: phylogeny, distribution and abundance in soil ecosystems. *Systematic Applied Microbiology*. 26:228-235.
- Axelrood, P. E., M. L. Chow, C. C. Radomski, J. M. McDermott, and J. Davies.
 2002. Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. *Canadian Journal of Microbiology*. 48:655-674.

- 49. **Bodour, A. A., J. M. Wang, M. L. Brusseau, and R. M. Maier.** 2003. Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. *Environmental Microbiology*. **5**:888-895.
- Kelley, S. T., U. Theisen, L. T. Angenent, A. St. Amand, and N. R. Pace. 2004. Molecular Analysis of Shower Curtain Biofilm Microbes. *Applied and Environmental Microbiology*. 70:4187-4192.
- 51. Singleton, D. R., P. F. Hendrix, D. C. Coleman, and W. B. Whitman. 2003. Identification of uncultured bacteria tightly associated with the intestine of the earthworm *Lumbricus rubellus* (Lumbricidae; Oligochaeta). *Soil Biology and Biochemistry*. 35:1547-1555.
- 52. **Minkwitz, A., and G. Berg.** 2001. Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of *Stenotrophomonas maltophilia*. *Journal of Clinical Microbiology*. **39:**139-145.
- 53. Van Den Mooter, M., and J. Swings. 1990. Numerical analysis of 295 phenotypic features of 266 *Xanthomonas* strains and related strains and an improved taxonomy of the genus. *International Journal of Systematic Bacteriology*. **40**:348-369.
- Hauben, L., L. Vauterin, E. R. B. Moore, M. Hoste, and J. Swings. 1999. Genomic diversity of the genus *Stenotrophomonas*. *International Journal of Systematic Bacteriology*. 49:1749-1760.
- 55. Holmes, A. J., J. Bowyer, M. P. Holley, M. O'Donoghue, M. Montgomery, and M. R. Gillings. 2000. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. *FEMS Microbiology Ecology*. 33:111-120.
- Dunbar, J., S. M. Barns, L. O. Ticknor, and C. R. Kuske. 2002. Empirical and theoretical bacterial diversity in four Arizona soils. *Applied and Environmental Microbiology*. 68:3035-3045.
- 57. Lincoln, S. P., T. R. Fermor, and B. J. Tindall. 1999. Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. International Journal of Systematic Bacteriology. 49:1577-1589.
- Boyd, W. L., J. T. Staley, and J. W. Boyd. 1966. Ecology of soil microorganisms of Antarctica. *Antarctic Research Series*. 8:125-159.

- 59. Cameron, R. E., and H. P. Conrow. 1969. Soil moisture, relative humidity, and microbial abundance in Dry Valleys of Southern Victoria Land. *Antarctic Journal of the United States*. **4:**23-28.
- Ludemann, H., and R. Conrad. 2000. Molecular retrieval of large 16S rRNA gene fragments from an Italian rice paddy soil affiliated with the class Actinobacteria. *Systematic Applied Microbiology*. 23:582-584.
- 61. Yin, B., L. Valinsky, X. Gao, J. O. Becker, and J. Borneman 2003. Bacterial rRNA Genes Associated with Soil Suppressiveness against the Plant-Parasitic Nematode *Heterodera schachtii. Applied and Environmental Microbiology*. **69:**1573-1580.
- 62. Mevs, U., E. Stackebrandt, P. Schumann, C. A. Gallikowski, and P. Hirsch. 2000. Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). *International Journal of Systematic and Evolutionary Microbiology*. 50:337-346.
Chapter 5

Conclusion

The use of molecular techniques for the analyses of microbial diversity in the Miers Dry Valley proved to be successful as genera which were not previously detected by culture based studies, were evident in the present investigation. For example, previous culturedependent studies showed the presence of predominantly gram negative aerobic rods such as Bacillus, Micrococcus and Streptomyces, in Antarctic Dry Valley mineral soils.¹ However, the present investigation encompassed a wider range of phylotypes including gram positive anaerobic genera such as Clostridium. The major taxonomic groups identified from phylotypic analyses included a-, ßand ?-Proteobacteria, Actinobacteria, Verrucomicrobia, Planctomycetes and several uncultured environmental and Antarctic samples. These results correlated with a previous investigation of Antarctic Dry Valley mineral soils utilising molecular techniques.²

Proteobacteria and Actinobacteria, were shown to be the two dominant phylogenetic groups. a-Proteobacteria are predominantly oligotrophic bacteria³ and this provides a logical explanation for their dominance in the nutrient-poor Antarctic Dry Valley mineral soils. Actinobacteria are considered saprophytic heterotrophs and also constitute some of the most common soil microbiota.⁴ They are dominant in dry soil environments hence, the abundance in the Antarctic Dry Valley mineral soils. Genera which can be assigned with some confidence included, *Opitutis, Clostridium, Rhodoglobus, Brevundimonas, Lysobacter, Nocardia, Kribbella, Sphingomonas, Rubrobacter, Stenotrophomonas*, and *Janthinobacterium*.

DGGE has shown that most of the observed phylotypes were common to all samples. Analysis of microbial diversity across the 500m vertical transect in the Miers Dry Valley suggested that few phylotypes appeared to be altitude-dependent. It should be noted however, that the altitudinal change is relatively small, and unlikely to be directly responsible for major changes in environmental parameters. Indirect effects, such as differences in Aeolian dispersal patterns and varying water availability are more likely to be implicated in observed variations in microbial diversity.

Molecular evidence did not support the presence of an established trophic community structure in most samples across the Miers Valley Transect. With the exception of the cyanobacteria, virtually all of the phylotypes which could be assigned to putative genera with any confidence were heterotrophs. The possibility of autotrophs inhabiting the Miers Dry Valley cannot be eliminated due to a large portion of the samples being unassignable (i.e., low BLAST homology values) or falling within the 'uncultured' phylotypic group. An established trophic community structure would require a balance between the presence of autotrophs and heterotrophs. In a trophic community structure the sustainance of heterotrophs would depend on organic matter derived from autotrophic activity. However, $\pm 80\%$ of the phylotypes in the present investigation was shown to be putative heterotrophs. The low abundance of autotrophs may be insufficient to support the activity of heterotrophs and an established trophic community structure. It is for this reason that the present investigation supports the derivation of organic matter through aerial dispersion, (as discussed by previous studies)⁵ instead of through the activity of autotrophs.

Phylogenetic data have correlated with the 16S rDNA studies as most of the clones clustered with their respective matches obtained from the database and also displayed bootstrap values of 100 (the higher the bootstrap value the more reliable the phylogenetic analysis, with 100 being the maximum). Phylogenetic lineages were difficult to establish due to the large number of uncultured samples. The high nucleotide similarity between the sequences indicated the high probability of phylotypes in the present study being considered closely related to those in the database. Some Antarctic isolates clustered together whilst others exhibited high similarity to environmental samples. A relatively small proportion (~10%) of Antarctic phylotypes appeared to be novel. This suggests that most Antarctic microorganisms are common to other soil environments, but may have adapted to the extreme psychrophilic habitat.

References

- 1. Baker, J. H., and D. S. Smith. 1972. The bacteria in an Antarctic peat. *Journal of Applied Bacteriology*. **35:**589-596.
- De La Torre, J. R., B. M. Goebel, E. I. Friedmann, and N. R. Pace. 2003. Microbial Diversity of Cryptoendolithic Communities from the McMurdo Dry Valleys, Antarctica. *Applied and Environmental Microbiology*. 69:3858-3867.
- **3. Garrity, G. M., M. Winters, and D. B. Searles.** 2001. Taxonomic outline of the prokaryotic genera, release 1.0. Springer, New York. 320pp.
- 4. Monciardini, P., L. Cavaletti, P. Schumann, M. Rohde, and S. Donadio. 2003. Conexibacter woesii gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. International Journal of Systematic and Evolutionary Microbiology. 53:569-576.
- Vishniac, H. S. 1993. The Microbiology of Antarctic Soils. In Antarctic Microbiology. Wiley-Liss Inc., New York. 297-341pp.

APPENDIX

Sequences from MVT 1 16S rDNA clone library

Sequence from clone 3

1	TATTTGGTGG	CGACCGKCAA	ACGGGTGCGG	AACACGTACA	GAACCTTCCT
51	TTAAGTGGGG	GATAGCCCAG	AGAAATTTGG	ATTAATACCC	CGTAACATTA
101	TGAAGTGGCA	TCACCTTATA	ATTATAGATT	TATCGCTTAG	AGATGGCTGT
151	GCGGCTGATT	AGGTAGTTGG	TGTGGGTAAC	GGCCCACCAA	GCCTTCGATC
201	AGTAACTGGT	GTGAGAGCAC	GACCAGTCAC	ACGGGCACTG	AGACACGGGC
251	CCGACTCCTA	CGGGAGGCAG	CAGTAAGGAA	TATTGGTCAA	TGGACGCAAG
301	TCTGAACCAG	CCATGCCGCG	TGAAGGATGA	AGGTCCTCTG	GATTGTAAAC
351	TTCTTTTWYG	MSAAACCCC			

Sequence from clone 4

1	GACTGTTACG	GAGCGGCKMA	CGGGTGAGTA	ACACGTGAAT	AACCTGCCCT
51	CACATTCTGG	ATAATTCACC	GAAAGGTGTT	GTAATACAGG	CGAGGATTCT
101	TAAGAGGCAT	TTCTTGAGAA	GGGAAGGCGC	AAGCCGTGCG	AGGAGGGGTT
151	CGCGGATTAT	CAGGTAGTTG	GTGAGGTAAC	GGCTCACCAA	GCCGACGACG
201	ATTAGCTGGT	CTGAGAGGAT	GGTCAGCCAC	ATTGGGACTG	AGACACTGCC
251	CAGACTCCTA	CGGGAGGCTG	CAGTCGAGAA	TCTTGCACAA	TGTACGAAAG
301	TATGATGCAG	CGACGCCGCG	TGAAGGATGA	AGGCCCTCTG	GGTCGTAAAC
351	TTCTTTTATG	TGGGAAGAAT	AAATGACGGT	ACCGCATGAA	TAAGCCACGG
401	CTAACTACGT	GCCAGCAGCC	GCGGTAATAC	GTAGGTGGCA	AGCGTTGTCC
451	GGATTTACTG	GGCGTAAAGA	GTATGTAGGC	GGATGTTTAA	GTAGGAAGTG
501	AAAGGTTGGA	GCTCAACTCC	GACACTGCTC	CCTATACTGG	GCATCTTGAG
551	GGCCGGAGAG	GAAAGCGGAA	CGACACGTGT	AGCGGTGAAA	TGCGTTGATA
601	TGTGTCG				

1	AGCTCCTGAA	GATCTAGTKC	CGAACGGGTG	CRWAACACGT	GAGAAACCTG
51	TCCCGAACTT	GGGAATAACA	GCCGAAAACS	ACTGCTAATA	CCGAATATCT
101	TCGTAACGTC	GCATGGCGAT	TCGAAGAAAG	CTTTATGCGG	TTTGGGAGGG
151	TCTCGCGGCC	TATCAGCTTG	TTGGTGAGGT	AATGGCTCAC	CAAGGCATCG
201	ACGGGTAGCT	GGTCTGAGAG	GATGATCAGC	CACACTGGGA	CTGAGACACG
251	GCCCAGACTC	CTACGGGAGG	CAGCAGTGGG	GAATATTGCA	CAATGGGCGA
301	AAGCCTGATG	CAGCGATGCC	GCGTGCGGGA	AGAAGGCCCT	AGGGTTGTAA
351	ACCGCTTTCA	GTAGGGAAGA	AAATGACGGT	ACCTACAGAA	GAAGGTGCGG
401	CCAACTACGT	GCCAGCAGCC	GCGGTGACAC	GTAGGCACCA	AGCGTTGTCC
451	GGATTTATTG	GGCGTAAAGA	GCTCGTAGGC	GGTTTGGTAA	GTCGGGTGTG
501	AAAACTCTGG	GCTCAACCCA	GAGAGGCCAC	TCGATACTGC	CATGACTTGA
551	GTACGGTAGG	GGAGTGGGGA	ATTTCTAGTG	TAGCGGTGAA	ATGCGCAGAT
601	ATTAGAAGGA	ACACCAGTGG	CGAAGGCGCC	ACTCTGGGCC	GTAACTGACG
651	CT				

1	TTGCTCTGTG	GGTGGCGWST	GGCGGACGGG	CGAGGAATAC	GTCGGAATCT
51	GCCCTGTTGT	GGGGGATAAC	GTAGGGAAAC	TTACGCTAAT	ACCGCATAAG
101	ACGGTGACGT	GAAAGCGGGG	GATCCGTAAG	GACCTCGCGC	GATGGGATGA
151	GCCGACGTCG	GATTAGCTTG	TTGGTGGGGT	AAAGGCCTAC	CAAGGCGACG
201	ATCCGTAGCT	GGTCTGAGAG	GATGATCAGC	CACACTGGGA	CTGAGACACG
251	GCCCAGACTC	CCACGGGAGG	CAGCAGTGGG	GAATATTGGA	CAATGGGCGC
301	AAGCCTGATC	CAGCAATGCC	GCGTGTGTGA	AGAAGGCCTT	CGGGTTGTAA
351	AGCACTTTTA	TCAGGAACGA	AAAGGTGTCG	GCGAATACCC	GGCACTGCTG
401	ACGGTACCTG	AGGAATAAGC	ACCGGCTAAC	TTCGTGCCAG	CAGCCGCGGT
451	AATACGAAGG	GTGCAAGCGT	TAATCGGAAT	TACTGGGCGT	AAAGGGTGTG
501	TAGGTGGCCT	GTTAAGTCTG	TCGTGAAAGC	CCTGGGCTCA	ACCTGGGAAT
551	GGCGGTGGAT	ACTGGCGGGC	TCGAGTACGG	TA	

Sequence from clone 8

1	GAGGAACACG	TAGCTAACCT	GCCCAACAGA	GGGGGATAAC	CTCGGGAAAC
51	CGAGGCTAAT	ACCGCATACG	CTCATTTTTG	GGGACGAGGA	TGAGGAAACG
101	GAGCAATCCG	CTGATGGAGG	GGGCTGCGGC	CGATTAGCTA	GTTGGTGGGG
151	TAAAAGCCTA	CCGAGGCGGT	GATCGGTAGC	TGGTCTGAGA	GGACGATCAG
201	CCACACGGGG	ACTGAGACAC	GGCCCCGACT	CCTACGGGAG	GCAGCAGCAA
251	GGAATTTTCC	ACAATGGGCG	CAAGCCTGAT	GGAGCAACGC	CGCGTGGGGG
301	ATGACGCTTT	TCGGAGTGTA	AACCCCTTTT	CGAGAGGACG	AAGCTAATGA
351	CGGTACTCTC	GGAATAAGGA	CCGGCTAACT	ACGTGCCAGC	AGCCGCGGTA
401	AGACGTAGGG	TCCGAGCGTT	GTCCGGAGTT	ACTGGGCGTA	AAGCGCGCGC
451	AGGCGGTTAG	ACACGTCGGG	TGTGAAAGCC	CCCCGCTCAA	CGGGGGGAGGG
501	TCATTCGAAA	CGGTCAGACT	GGAGGCAGGG	AGAGGTCGGT	GGAATTCCCG
551	GTGTAGTGGT	GAAATGCGTA	GATAT		

1	CAATACATCA	GCGGCAGACG	GGAGAGTAAC	ACGTGGGAAC	GCGCCCTTCG
51	GTTCGGAATA	ACTCAGGGAA	ACTTGAGCTA	ATACCGGATA	CGCCCTTACG
101	GGGAAAGATT	TATTGCCGAA	GGAACGGCCC	GCGTCGGATT	AGCTAGTTGG
151	TGAGGTAATG	GCTCACCAAG	GCAACGATCC	GTAGCTGGTC	TAAGAGGATG
201	ATCAGCCTCA	CTGGGACTGA	GACACGGCCC	AGACTCCTAC	GGGAGGCAGC
251	AGTGGGGAAT	ATTGGACAAT	GGGCGAAAGC	CTGATCCAGC	CATGCCGCGT
301	GGATGATGAA	GGCCTTAGGG	TTGTAAAGTC	CTTTTAACGG	GGAAGATAAT
351	GACGGTACCC	GTAGAATAAG	CCCCGGCTAA	CTTCGTGCCA	GCAGCCGCGG
401	TAATACGAAG	GGGGCTAGCG	TTGCTCGGAA	TTACTGGGCG	TAAAGCGCAC
451	GTAGGCGGAT	TGTTAAGTCG	GGGGTGAAAT	CCTGGAGCTC	AACTCCAGAA
501	CTGCCTTCGA	AACTGGCGAT	CTTGAGTCCG	GGAGAGGTGA	GTGGAACTGC
551	GAGTGTAGAG	GTGAAATTCG	TAGATATTCG	CAAGAACACC	AGTGGCGAAG
601	GCGGCTCACT	GGCCCGGTAC	TGACGCTGAG	G	

1	CTGGTGGCGA	GTGGCKCACG	GGTGAGTAAT	ATATCGGAAC	GTGCCCAGTC
51	GTGGGGGATA	ACGTAGAGAA	ATTTACGCTA	ATACCGCATA	CGATCTAAGG
101	ATGAAAGCGG	GGGACTCGCA	AGGGCCTCGC	GCGATTGGAG	CGGCTGATAT
151	CAGATTAGGT	TGTTGGTGAG	GTAAAAGCTC	ACCAAGCCGA	CGATCTGTAG
201	CTGGTTTGAG	AGAACGACCA	GCCACACTGG	GACTGAGACA	CGGCCCAGAC
251	TCCTACGGGA	GGCAGCAGTG	GGGAATTTTG	GACAATGGGC	GAAAGCCTGA
301	TCCAGCAATG	CCGCGTGCAG	GAAGAAGGCC	TTCGGGTTGT	AAACTGCTTT
351	TGTACGGAAC	GAAAAGGTCT	GCCCTAATAC	GGCGGGCCCA	TGACGGTACC
401	GTAAGAATAA	GCACCGGCTA	ACTACGTGCC	AGCAGCCGCG	GTAATACGTA
451	GGGTGCGAGC	GTTAATCGGA	ATTACTGGGC	GTAAAGCGTG	CGCAGGCGGT
501	GATGTAAGAC	AGTTGTGAAA	TCCCCGGGCT	CAACCTGGGA	ATTGCATCTG
551	TGACTGCATC	GCTAGAGTAC	GGTAGAGGGG	GATGGAATTC	CGCGTGTAGC
601	AGTGAAATGC	GTAGATATGC	GGAGGAACAC	CGATGGCGAA	GGCAATCCCC
651	TGGACCTGTA	MTGACGCTCA	Т		

Sequence from clone 18

1	GCGTAACACG	TGAACAATCT	ACCTTCAAAT	GGGGAATAGC	TCGCCGAAAG
51	GCGAATTAAT	ACCGCATGTG	GTTGCTTCTC	GCATGAGAGG	CATATCAAAG
101	TCAGGGACCG	CAAGGCCTGA	CGTTAGAAGA	GGAGTTCGCG	GCCTATCAGC
151	TAGTTGGCGA	GGTAACGGCT	CACCAAGGCT	AAGACGGGTA	GCTGGTCTGA
201	GAGGATGATC	AGCCACACTG	GAACTGAGAC	ACGGTCCAGA	CACCTACGGG
251	TGGCAGCAGT	TTCGAATTAT	TCACAATGGG	CGAAAGCCTG	ATGGTGCGAC
301	GCCGCGTGAG	GGATGAAGGC	CTTCGGGTTG	TAAACCTCTG	TCACCGGGGA
351	AGAAACGCTT	CAAGTTAACA	ACTTGAAACC	TGACTTAACC	CGGAGAGGAA
401	GCAGTGGCTA	ACTCTGTGCC	AGCAGCCGCG	GTAATACAGA	GACTGCAAGC
451	GTTATTCGGA	TTCACTGGGC	GTAAAGGGTG	CGCAGGCGGC	CGAGTGTGTG
501	AGGCGTGAAA	GCCCGGAGCT	TAACTCCGGA	ATTGCACCTC	AAACTACACG
551	GCTAGAGCAT	TGGAGAGGGT	AGCAGAATTC	ACGGTGTAGC	AGTGAAAT

1	GGGTAACCTG	CCTCAAAGAG	GGGAATAGCC	TTCCGAAAGG	AAGATYAATA
51	CCGCATAATA	TGTTTTGGTC	GCATGACCGA	GATATCAAAG	GAGTAATCCG
101	CTTTGAGATG	GACCCGCGGC	GCATTAGCTA	GTTGGTGAGG	TAACGGCTCA
151	CCAAGGCGAC	GATGCGTAGC	CGACCTGAGA	GGGTGATCGG	CCACATTGGA
201	ACTGAGACAC	GGTCCAGACT	CCTACGGGAG	GCAGCAGTGG	GGAATATTGC
251	GCAATGGGGG	AAACCCCGAC	GCAGCAACGC	CGCGTGAATG	ATGAAGGCCT
301	TCGGGTTGTA	AAGTTCTGTC	TTCTGGGACG	ATAATGACGG	TACCAGAGGA
351	GGAAGCCACG	GCTAACTACG	TGCCAGCAGC	CGCGGTAATA	CGTAGGTGGC
401	AAGCGTTGTC	CGGATTTACT	GGGCGTAAAG	GATGCGTAGG	CGGACATTTA
451	AGTCAGATGT	GAAATACCCG	AGCTTAACTT	GGGTGCTGCA	TTTGAAACTG
501	GGTGTCTAGA	GTGCAGGAGA	GGTAAGTGGA	ATTCCTAGTG	TAGCGGTGAA
551	ATGCGTAGAG	ATTAGGAAGA	ACACCAGTGG	CGAAGGCGAC	TTACTGGACT
601	GTAACTGACG	CTGA			

1	GGGCAAGTAG	AGTGGCAWCC	GGGTGAGTAA	CACGTGGGTG	ACCTGCCTTC
51	GAGCGGGGGA	TAACGTCCCG	AAAGGGACGC	TAATACCGCA	TAACATCCTG
101	CCTTTGAAGA	GGTGGAGATC	AAAGCTGGGG	ATCGCAAGAC	CCGGCACTTG
151	AAGAGGGGCC	CGCGTCTGAT	TAGCTAGTTG	GTGGGGTAAT	GGCCTACCAA
201	GGCAACGATC	AGTATCCGGC	CTGAGAGGGC	GGACGGACAC	ACTGGGACTG
251	AGACACGGCC	CAGACTCCTA	CGGGAGGCAG	CAGTGGGGAA	TTGTTCGCAA
301	TGGGCGCAAG	CCTGACGACG	CAACGCCGCG	TGGAGGATGA	AGATTTTCGG
351	ATCGTAAACT	CCTGTCGAAT	GGGACGAACA	GACTGCGGGT	TAACAGCCCA
401	TAGTCCTGAC	GGTACCGTTA	AAGGAAACCC	CGGCTAACTC	CGTGCCAGCA
451	GCCGCGGTAA	TACGTAGGGT	CCGAGCGTTG	TCCGGAATTA	TTGGGCGTAA
501	AGGGCTCGTA	GGCGGTTTGT	CGCGTCGGGA	GTGAAAACTC	AGGGCTCAAC
551	CCTGAGCGTG	CTTCCGATAC	GGGCAGACTA	GAGGTATGCA	

Sequence from clone 29

1	AGGCGCAAGG	GTGAGTAWGG	CGGAGGCAAC	CAACCCCACA	CTTGGGTATA
51	GCCGCGGGAA	ACTGCGGGTA	ATCCCCAGCG	ACGTCGCGAG	GAGACATCTC
101	CTTGCGACCA	AAGGTGTGAT	TCCGGTGTGG	GACGGGCCTC	CGTGGTATCA
151	GGTTGTTGGT	GAGGTAATGG	CTCACCAAGC	CGATGACGCC	TACCGGGCGT
201	GCGAGCGTGG	CCCGGCACAC	TGGGACTGAG	ACACTGCCCA	GACTCCTACG
251	GGAGGCTGCA	GTCGAGAATC	TTCGGCAATG	GGCGCAAGCC	TGACCGAGCG
301	ACGCCGCGTG	GAGGACGAAG	GCCTTCGGGT	TGTAAACTCC	TGTCGAGGGG
351	GAGGAAGGCG	GCGCGAAGAG	CGTCGCTTGA	CCGATCCCTG	GARGAAGCAC
401	GGGCTAAGTT	CGTGCCAGCA	GCCGCGGTAA	GACGAACCGT	GCGAACGTTA
451	TTCCGAATCA	CTGGGCTTT			

1	CAATATTCTT	GGGTTGGMCC	GGCGCAAGGG	TGCGTAACAC	GTGGGTAATT
51	TGCCATGAAG	TCTGGAATAA	CTTGCTGAAA	GGCGAGCTAA	TGCCGGATGT
101	GATTTTCGGG	AAGCATTTCT	TGAAACTCAA	AGTTGGGGAC	CGCAAGGCCT
151	GACGCTTCTT	GATAAGCCCG	CGGCCTATCA	GCTAGTTGGT	GAGGTAATGG
201	CTCACCAAGG	CTAAGACGGG	TAGCTGGTCT	GAGAGGACGA	CCAGCCACAC
251	TGGAACTGAG	ACACGGTCCA	GACACCTACG	GGTGGCAGCA	GTCGAGAATT
301	TTTCACAATG	GGCGAAAGCC	TGATGGAGCG	ACGCCGCGTG	GGGGATGAAT
351	GGCTTCGGCC	CGTAAACCCC	TGTCATTTGC	GAACAAACCT	TACCGGTTAA
401	CAACCGTTGA	GCTGATTGTA	GCGGAAGAGG	AAGGGACGGC	TAACTCTGTG
451	CCAGCAGCCG	CGGTAATACA	GAGGTCCCAA	GCGTTGTTCG	GATTCACTGG
501	GCGTAAAGGG	TGCGTAGGTG	GTGGGGTAAG	TCGGATGTGA	AATCTCCGGG
551	CTCAACCCGG	AAATGGCATT	GGAAACTACC	TTGCTAGAGG	ATTTGAGGGG
601	GGATTGGAAT	ACTTGGTGTA	GCAGTG		

Sequence from clone 32

1	TGGCGAAAGG	GTCAKYNATA	CGATCGAACG	TACCCTGAGG	TGGAGGATAG
51	GCACGGGAAA	CTGTGCGTAA	TACTCCATGT	GCACCAAGGT	GGAAAGCCGC
101	AAGGCGCCTT	TGGAGCGGCG	ATCGTCCTAT	CAGGTAGTTG	GCGGGGTAAA
151	GGCCCACCAA	GCCTTCGACG	GGTAGCGGGT	GTGAGAGCAC	GACCCGCGAC
201	ATCGGGACTG	AGACACTGCC	CGGACTCCTA	CGGGAGGCTG	CAGCGACGAA
251	TCTTCCGCAA	TGGGCGAAAG	CCTGACGGAG	CAATGCCGCG	TGCAGGATGA
301	AGCGGCTACG	CCGTGTAAAC	TGCTGTCAGG	GGGTAGAAAC	ACTGATCACC
351	CCCAAAGGAA	GAGCCGGCTA	ACCCTGTGCC	AGCAGCCGCG	GTAATACAGG
401	GGGCTCGAGC	GTTAATCGGA	ATCATTGGGC	TTAAAGGGTG	CGTAGGCGGG
451	TTGCGAAGTG	TCTTGTGAAA	TCCCTCGGCT	CAACCGGGGA	ATCGCAAGGC
501	ATACTGGCAA	CCTTGAGGCA	TGTAGGGGCG	GACGGAACTG	TAGGTGGAGC
551	GGTGAAATGC	GTAGATATCT	ACAGGAACGC	CGATGGTGAA	GACGGTCCGC
601	TGGGCATGTC	CTGACGCTGA	GGCACGAAAG		

Sequence from clone 34

1	GGGGGTACAC	GAGCGGCCNA	CGGGTGAGTA	ACACGTGAGT	AATCTGCCCT
51	TCACTCTAGG	ATAAGCCTCA	GAAATGGGGT	CTAATACTGG	ATATGACTCG
101	TCCCTGCATG	GGGGTGGGTG	GAGAGATTTA	TCGGTGGGGG	ATGTGCTCGC
151	GGCCTATCAG	CTTGATGGTG	GGGTAATGGC	CTACCAAGGC	GACGATCGGT
201	AGCTGGTCTG	AGAGGACGAT	CAGCCACACT	GGGACTGAGA	CACGGCCCAG
251	ACTCCTACGG	GAGGCAGCAG	TGGGGAATTT	TCCGCAATGG	GCGAAAGCCT
301	GACGGAGCAA	TACCGCGTGA	GGGAAGAAGG	CTCTTGGGTT	GTAAACCTCT
351	TTTCTTAGGG	AAGAAAAAAA	TGACGGTACC	TAAGGAATAA	GCATCGGCTA
401	ACTCCGTGCC	AGCAGCCGCG	GTAATACGGA	GGATGCAAGC	GTTATCCGGA
451	ATGATTGGGC	GTAAAGCGTC	CGCAGGTGGC	AAGTCAAGTT	TGCGGTTAAA
501	GGCTCTGGCT	CAACCAGAGA	CAGGCCGTGA	AAACTGACTA	GCTAGAGTAT
551	GGTAGGGG				

Sequence from clone 36

1	GAAAGATATA	AAGTGKCGCA	CGGGTGAGTA	ACACGTAGGT	AATCTACCTT
51	TGAGTGGGGA	ATAACGTTCG	GAAACGAACG	CTAATACCGC	ATAATGCAGC
101	GGCACCGCAA	GGTGACAGTT	GTTAAAGGAG	CAATCCGCTT	AAAGAGGAGC
151	CTGCGGCAGA	TTAGCTAGTT	GGTAAGGTAA	TGGCTTACCA	AGGCTACGAT
201	CTGTAACCGA	CCTGAGAGGG	TGGTCGGTCA	CACTGACACT	GAATAACGGG
251	TCAGACTCCT	ACGGGAGGCA	GCAGTCGGGA	ATTTTGGGCA	ATGGGCGAAA
301	GCCTGACCCA	GCAACGCCGC	GTGAAGGATG	AAGTATTTCG	GTATGTAAAC
351	TTCGAAAGAA	TAGGAAGAAT	AAATGACGGT	ACTATTTATA	ARGTCCG

1	AACACGTGAG	TAACCTGCCC	TTGACTCTGG	GATAAGCGTT	GGAAACSACG
51	TCTAATACCG	GATACGAGCT	TCAGCCGCAT	GGCTAGGAGT	TGGAAAGAAT
101	TTTGGTCAAG	GATGGACTCG	CGGCCTATCA	GGTAGTTGGT	GAGGTAATGG
151	CTCACCAAGC	CGACGACGGG	TAGCCGGCCT	GAGAGGGTGA	CCGGCCACAC
201	TGGGACTGAK	TCACGGCCCA	GACTCCTACG	GGAGGCAGCA	GTGGGGAATA
251	TTGCACAATG	GGCSAAAGCC	TGATGCAKCA	ACGCCGCGTG	AGGGACGACG
301	GCCTTCGGGT	TGTAAACCTC	TTTTAGCAGG	GAAGAAGCGA	TGTGCTTGTC
351	ATGTCATGAC	GGTACCTGCA	GAAAAAGCAC	CGGCTAACTA	CGTGCCAGCA
401	GCCGCGGTAA	TACGTAGGGT	GCAAGCGTTG	TCCGGAATTA	TTGGGCGTAA
451	AGAGCTCGYA	YGCGGTTTGC	CGCGTCTGCT	GTGAAAACGC	GARGCTCAAC
501	CTCGCGCCTG	CAGTGGGTAC	GGGCAGACTA	GAGTGCGGTA	GGGGAG

ATATCGGAAC	GTGCCCAGTC	GTGGGGGATA	ACGTAGAGAA	WTTTCCGCTA
ATACCGCATA	CGATCTAAGG	ATGAAAGCGG	GGGACTCGCA	AGAGCCTCGC
GCGATTGGAG	CGGCTGATAT	CAGATTAGGT	TGTTGGTGAG	GTAAAAGCTC
ACCAAGCCGA	CGATCTGTAG	CTGGTTTGAG	AGAACGACCA	GCCACACTGG
GACTGAGACA	CGGCCCAGAC	TCCTACGGGA	GGCAGCAGTG	GGGAATTTTG
GACAATGGGC	GAAAGCCTGA	TCCAGCAATG	CCGCGTGCAG	GAAGAAGGCC
TTCGGGTTGT	AAACTGCTTT	TGTACGGAAC	GAAAAGGTCT	GCCCTAATAC
GGCGGGCCCA	TGACGGTACC	GTAAGAATAA	GCACCGGCTA	ACTACGTGCC
AGCAGCCGCG	GTAATACGTA	GGGTGCGAGC	GTTAATCGGA	ATTACTGGGC
GTAAAGCGTG	CGCARGCSGY	GATGTAAGAC	AGTTGTGAAA	TCCCCGGGCT
CAACCTGGGA	ATTGCATCTG	TGACTGCATC	GCTAGAGTAC	GGTAGA
	ATATCGGAAC ATACCGCATA GCGATTGGAG ACCAAGCCGA GACTGAGACA GACAATGGGC TTCGGGTTGT GGCGGGCCCA AGCAGCCGCG GTAAAGCGTG CAACCTGGGA	ATATCGGAACGTGCCCAGTCATACCGCATACGATCTAAGGGCGATTGGAGCGGCTGATATACCAAGCCGACGGCCCAGACGACTGAGACACGGCCCAGACTTCGGGTTGTAAACTGCTTTGGCGGGCCCATGACGGTACCAGCAGCCGCGGTAATACGTAGTAAAGCGTGCGCARGCSGYCAACCTGGGAATTGCATCTG	ATATCGGAACGTGCCCAGTCGTGGGGGATAATACCGCATACGATCTAAGGATGAAAGCGGGCGATTGGAGCGGCTGATATCAGATTAGGTACCAAGCCGACGGCCCAGACTCCTACGGGAGACAATGGCCGAAAGCCTGATCCAGCAATGTTCGGGTTGTAAACTGCTTTGTACGGAACGGCGGGCCCATGACGGTACCGTAAGAATAAAGCAGCCGGGGTAATACGTAGGGTGCGAGCGTAAAGCGGGCGCARGCSGYGATGTAAGACCAACCTGGGAATTGCATCTTGACTGCATC	ATATCGGAACGTGCCCAGTCGTGGGGGATAACGTAGAGAAATACCGCATACGATCTAAGGATGAAAGCGGGGGACTCGCAGCGATTGGAGCGGCTGATATCAGATTAGGTTGTTGGTGAGACCAAGCCGACGGCTGATATCAGATTAGGAAGAACGACCAGACTGAGACCGGCCCAGACTCCTACGGAGGCAGCAGAGGACAATGGCGAAAGCCTGATCCAGCAATGCCGCGTGCAGGGCGGGCCCATGACGGTACGTACGGACAGCACCGGCTAGGCGGGCCCATGACGGTACGTAACGAAGCACCGGCAAAGCAGCCGGGTAATACGTAGGGTGCGAGCGTTAATCGAAGTAAAGCGGAATTGCATCGTGACTGCATCGCTAGAGTAC

Sequence from clone 47

TAGGAGG	GGGATAACAA	CTGGAAACGG	TTGCTAATAY	CCCCTATGCT
GAGWGAA	ATGGATTTTC	CGCCTAAAGA	GAAGCTTGCG	GCTGATTAGC
KTGGTGA	GGTAAGAGCT	CACCAAGGSG	ACGATCAGTA	TCTGGTTTGA
GACGATC I	MGACACACTG	GAACTGA		
	TAGGAGG GAGWGAA KTGGTGA GGACGATC	TAGGAGG GGGATAACAA GAGWGAA ATGGATTTTC KTGGTGA GGTAAGAGCT GGACGATC MGACACACTG	TAGGAGG GGGATAACAA CTGGAAACGG GAGWGAA ATGGATTTTC CGCCTAAAGA KTGGTGA GGTAAGAGCT CACCAAGGSG GACGATC MGACACACTG GAACTGA	TAGGAGG GGGATAACAA CTGGAAACGG TTGCTAATAY GAGWGAA ATGGATTTTC CGCCTAAAGA GAAGCTTGCG KTGGTGA GGTAAGAGCT CACCAAGGSG ACGATCAGTA GGACGATC MGACACACTG GAACTGA

Sequence from clone 48

1	AGGAACATGA	CCTTCGGCGG	GGGATAGCCG	GCCCAACGGC	YKGCCAATAC
51	CGCGTACGAM	CACATGGGGA	CATCCCTGAG	TGGTGAAAGC	AGCAATGCGC
101	CGATGGAGTG	CCTCGCGGCC	TATCAGCTAG	TTGGTGAGGT	AACGGCTCAC
151	CAAGGCAACG	ACGGGTAGCT	GGTCTGAGAG	GATGGCCAGC	CACATTGGGA
201	CTGAGACWYK	GCCCAGACTC	CTACGGGAGG	CAGCAGTGGG	GAATATTGCG
251	CAMTGGACGA	AAGTCTGACG	CATCKWYKCC	GCGTGTGGGA	TGACGGTCTT
301	CGGATTGTAA	ACCACTGTCG	GGAGGGACGA	ATACGCCGYA	AGGCGGGTGA
351	CGGTACCTCC	AAAGGAAGCW	CCGGCTAACT	CCGTGCCAGC	ARCCGCKGTA
401	ATACGTAGGG	TGCAAGCGTY			

1	GGCCCATGGC	AGACGAGGTA	GGAACACGTA	GGTACGTACC	CCAAAGTCAG
51	GGATAATCCG	TCGAAAGACG	GCACAATACT	TGATGGTCTC	TTCGGAGTAA
101	AGATTTATCG	CTTTGGGAAC	GGCCTGCGGG	CTATCAGCTT	GTTGGTAAGG
151	TAACGGCTTA	CCAAGGCTAC	GACGGCTAGG	GGAGGTGAGA	GCCTGACCCC
201	CACCGATGGA	ACTGCGACAC	GGTCCATACT	CCTACGGGAG	GCTGCAGTCG
251	AGAATCTTCC	GCAATGGACG	AAAGTCTGAC	GGAGCGACGC	CGCGTGGTGG
301	ATGAAGTCCC	TCGGGACGTA	AACACCTTTT	ATGGAGGAGA	AAGTTTATTG
351	ATGTTACTCC	ATGAATAAGG	GGCTCCCAAC	TCTGTGCCAG	CAGGAGCGGT
401	AATACAGAGG	CCCCAAGCAT	TATCCGGATT	TACTGGGCGT	AAAGGTTGCG
451	TAGGCGGTTA	TATTAGTCAG	GTGTTAAATC	CCGAGGCTCA	ACCTCGGAAT
501	CGCATTTGAA	ACGGTATAAC	TAGAATAAGT	CAGAGGCAAG	CAGAACTCAC
551	GGTGTAGGGG	TGAAATCCGT	TGATATCGTG	G	

1	GGGAACGTGC	CTTTAGGTTC	GGAATAGCTC	CTGGAAACGG	GTGGTAATGC
51	CGMATGTGCC	CTTCGGGGGA	AAGATTTATC	GCCTTTAGAG	CGGCCCGCGT
101	CTGATTAGCT	TGTTGGTGGG	GTAATGGCCC	ACCAAGGCTA	CGATCAGTAG
151	CTGGTCTGAG	AGGATGACCA	GCCACATTGG	GACTGAGACA	CGGCCCAAAC
201	TCCTACGGGA	GGCAGCAGTG	GGGAATCTTG	CGCAATGGGC	GAAAGCCTGA
251	CGCAKCCATG	CCGCGTGTAT	GATGAAGGTC	TTAGGATTGT	AAAATACTTT
301	CACCGGTGAA	GATAATGACT	GTAGCCGGAG	AAGAAGCCCC	GGCTAACTTC
351	GTGCCAGCAG	CCGCGGTAAT	ACGAAGGGGG	CTAGCGTTGC	TCGGAATTAC
401	TGGGCGTAAA	GGGAGCGTAG	GCGGACATTT	AAGTCAGAGG	TGAAATCCCG
451	GAGCTTAACT	TCGGAACTGC	CTTTGATACT	GGGTGTCTTG	AGTGTGAGAG
501	AGGTATGTGG	AACTCCGAGT	GTAGAGGTGA	AATTCGTAGA	TATTCGGAAG
551	AACAMCAGTG	GCGAANGCGA	CATACTGGCT	CATTACTGAC	GCTGAGGCTC
601	G				

Sequence from clone 55

1	AACACGTGGG	AACCTTCCTA	GAGGTATGGA	ACAACGCAGG	GAAACTTGTG
51	CTAATACCGT	ATACGCTCGA	GAGAGGAAAG	ATTTATCGCC	TTTAGACGGG
101	CCCGCGTCGG	ATTAGCTAGT	TGGTGGGGTA	ACGGCCTACC	AAGGCGACGA
151	TCCGTAGCTG	ATCTTAGAGG	ATGATCAGCC	ACACTGGGAC	TGAGACAYGG
201	CCCAGACTCC	TACGGGAGGC	AKYWGTGGGG	AATCTTGGAC	AATGGGCGCA
251	AGCCTGATTC	AGCCATGCCG	CGTGAGTGAA	GAAGGTCTTC	GGATTGTAAA
301	GCTCTTTTAC	CAGGGCACGA	TAATGACGGT	ACCTGGAGAA	TAAGCCCCGG
351	CAAACTTCGT	GCCAGCAGCC	GCGGTAATAC	GAAGGGGGCT	AGCGTTGTTC
401	GGAATTACTG	GGCGTAAAGC	GCACGTAGGC	GGGTTATTAA	GTCAGGGGTG
451	AAATCCCGGA	GCTCAACTCC	GGAACTGCCT	TTGATACTG	

Sequence from clone 57

1	CCTTCGGTTC	RGAATAGCCT	CGGGAAACTG	GGAGTAATAY	YSSMMTACGG
51	TCTACGGACG	AAAGATTTAT	CGCCGAAGGA	TTAGCCCGCG	TTGGATTAGG
101	TAGTTGGTGG	GGTAATGGYC	TACCAAGCCG	ACGATCCATA	GCTGGTTTGA
151	GAGGATGACC	AGCCACACTG	GGACTGAKAY	WYKGYCCAGA	CTCCTACGGG
201	AGGCAGYWKT	GGGGAATCTT	AGACAATGGG	GGAAACCCTG	ATCTAGCCAT
251	GCCGCGTGAT	CGATGAAGGC	CTTAGGGTTG	TAAAGCTCTT	TCAGGGGGGA
301	AGGTAATGAC	GGTACCCCCA	GAAGAAGCCC	CGGCTAACTC	CGTGCCAGCA
351	GCCGCGGTAA	TACGGAGGGG	GCTAGCGTTA	TTCGGAATTA	CTGGGCGTAA
401	AAGCGCACGT	ARGCGGGTCK	GAAAGTCARA	GGTGAAATCC	CAGGGCTCA

1	GAAAACGTCG	GAATCTGCCT	ATTTGTGGGG	GATAACGTAK	GGNMACTTAC
51	GCTAATACCG	CATACGACCT	ACGGGTGAAA	GCGGAGGACC	TTCGGGCTTC
101	GCGCAGATAG	ATGAGCCGAC	GTCGGATTAG	CTAGTTGGCG	GGGTAAAGGC
151	CCACCAAGGC	GACGATCCGT	AGCTGGCCTG	AKAGGATGAT	CAGCCACACT
201	GGAACTGAGA	CACGGTCCAG	ACTCCTACGG	GAGGCAGCAG	TGGGGAATAT
251	TGGACAATGG	GCGCAAGCCT	GATCCAGCCA	TGCCGCGTGT	GTGAAGAAGG
301	CCTTCGGGTT	GTAAAGCACT	TTTGTCCGGA	AAGAAAAGCA	CTGGGTTAAT
351	ACCCTGGTGT	CATGACGGTA	CCGGAAGAAT	AAGCACCGGC	TAACTTCGTG
401	CCAGCAGCCG	CGGTAATACG	AAGGGTGCAA	GCGTTACTCG	GAATTACTGG
451	GCGTAAAGCG	TGCGTAGGCG	GTTTGTTAAG	TCTGATGTGA	AAGCCCTGGG
501	CTCAACCTGG	GAATGGCATT	GGATACTGGC		

1	TAGTGGCGGA	CGGGTGACTA	ACGCGTGGGA	ACATGCCCTT	TGGTACGGGA
51	TAGCCTCGGG	AAACTGGGTG	TAATACCGTA	TGTGCTCGAA	AGAGGAAAGA
101	TTTATCGCCA	AGGGATTGGC	CCGCGTTGGA	TTAGGTAGTT	GGTGGGGTAA
151	TGGCCTACCA	AGCCGACGAT	CCATAGCTGG	TTTGAGAGGA	TGATCAGCCA
201	CACTGGGACT	GAGACACGGC	CCAGACTCCT	ACGGGAGGCA	GCAGTGGGGA
251	ATCTTAGACA	ATGGGGGCAA	CCCTGATCTA	GCCATGCCGC	GTGATCGATG
301	AAGGCCTTAG	GGTTGTAAAG	ATCTTTCAGT	GGGGAAGATA	ATGACGGTAC
351	CCACAGAAGA	AGCCCCAGCT	AACTCCGTGC	CAGCAGCCGC	GGTAATACGG
401	AGGGGGCTAG	CGTTATTCNG	AATTACTGGG	С	

Sequences from MVT 5 16S rDNA clone library

Sequence from clone 1

TCCTGGCTCA	GATTGAACGC	TGGCGGAMTG	CTTTACACAT	GCAAGTCGAA
CGGCAGCACG	GGGGCAACCC	TGGTGGCGAG	TGGCGAACGG	GTGAGTAATA
CATCGGAACG	TGCCCAGTCG	TGGGGGATAA	CGTAGCGAAA	GCTACGCTAA
TACCGCATAC	GATCTATGGA	TGAAAGCGGG	GGACCGCAAG	GCCTCGCGCG
ATTGGAGCGG	CCGATGGCAG	ATTAGGTAGT	TGGTGGGGTA	AAGGCTCACC
AAGCCTGCGA	TCTGTAGCTG	GTCTGAGAGG	ACGACCAGCC	ACACTGGGAC
TGAGACACGG	CCCAGACTCC	TACGGGAGGC	AGCAGTGGGG	AATTTTGGAC
AATGGGCGCA	AGCCTGATCC	AGCCATTCCG	CGTGCAGGAT	GAAGGCCTTC
GGGTTGTAAA	CTGCTTTTGT	ACGGAACGAA	AAGGCCTTTT	CTAATACAGA
GGGCTCATGA	CGGTACCGTA	AGAATAAGCA	CCGGCTAACT	ACGTGCCAGC
AGCCGCGGTA	ATACGTAGGG	TGCAAGCGTT	AATCGGAATT	ACTGGGCGTA
AAGCGTGCGC	AGGCGGTGAT	GTAAGACAGA	TGTGAAATCC	CCGGGCTCAA
CCTGGGAACT	GCATTTGTGA	CTGCATCGCT	GGAGTGCGGC	AGAGGGGGAT
GGAATTCCGC	GTGTAGCAGT			
	TCCTGGCTCA CGGCAGCACG CATCGGAACG TACCGCATAC ATTGGAGCGG AAGCCTGCGA TGAGACACGG AATGGGCGCA GGGTTGTAAA GGGCTCATGA AGCCGCGGTA AAGCCGTGCGC CCTGGGAACT GGAATTCCGC	TCCTGGCTCAGATTGAACGCCGGCAGCACGGGGGCAACCCCATCGGAACGTGCCCAGTCGTACCGCATACGATCTATGGAATTGGAGCGGCCGATGGCAGAAGCCTGCGATCTGTAGCTGTGAGACACGGCCCAGACTCCGGGTTGTAAACTGCTTTGTGGGCTCATGAAGCCGAGACAAGCCGCGGTAATACGTAGGGAAGCGTGCCCAGGCGGTGATCCTGGGAACTGCATTTGTGAGGAATTCCGCGTGTAGCAGT	TCCTGGCTCAGATTGAACGCTGGCGGAMTGCGGCAGCACGGGGGCAACCCTGGTGGCGAGCATCGGAACGTGCCCAGTCGTGGGGGATAATACCGCATACGATCTATGGATGAAAGCGGGATTGGAGCGGCCGATGGCAGATTAGGTAGTAAGCCTGCGATCTGTAGCTGGTCTGAGAGGTGAGACACGGCCCAGACTCCTACGGGAGACAATGGGCGAAGCCTGATCCAGCCATCCGGGGTTGTAAACTGCTTTGTACGGAACGAAGGGCTCATGACGGTACCGTAAGAATAAGCAAGCCGCGGTAATACGTAGGGTGCAAGCGTTAAGCGTGCGCAGCCGGTGATGTAAGACAGACCTGGGAACTGCATTGTGACTGCATCGCTGGAATTCCGCGTGTAGCAGT	TCCTGGCTCAGATTGAACGCTGGCGGAMTGCTTTACACATCGGCAGCACGGGGCAACCCTGGTGGCGAGTGGCGAACGGCATCGGAACGTGCCCAGTCGTGGGGGATAACGTAGCGAAATACCGCATACGATCTATGGATGAAAGCGGGGGACCGCAAGATTGGAGCGGCCGATGCCAGATTAGGTAGTTGGTGGGGTAAAGCCTGCGATCTGTAGCTGGTCTGAGAGGACGACCAGCCTGGGACACGGCCCAGACTCCTACGGGAGGAAGCAGTGGGGAATGGGCGCAAGCCTGATCCAGCCATCCGCGGCAGAGTGGGTTGTAACTGCTTTGTACGGAACGAAAAGCCTTTTGGGCTCATGACGGTACCGTAAGAATAAGCACCGGCTAACTAGCCGCGGTAATACGTAGGGTGCAAGCGTAATCGGAATTAAGCGTGCGCAGGCGGTGATGTAAGACAGATGTGAAATCCCCTGGGAACTGCATTGTGACTGCATCGCTGGAGTGCGGCGGAATTCCGCGTGTAGCAGTCTGCATCGCTGAGTGCGGC

1	TCCCAATCGC	CAGTCCCACC	TTCGACGGCT	CCCTCCCAAA	GGTTGGGCCA
51	CCGGCTTCGG	GTGTTACCGA	CTTTCGTGAC	GTGACGGGCG	GTGTGTACAA
101	GGCCCGGGAA	CGTATTCACC	GCAGCATTGC	TGATCTGCGA	TTACTAGCGA
151	CTCCAACTTC	ACGGGGTCGA	GTTGCAGACC	CCGATCCGAA	CTGAGACCGG
201	CTTTGTGAGA	TTCGCTCCAC	CTTGCGGATT	CGCAGCCCTC	TGTACCGGCC
251	ATTGTAGCAT	GTGTGAAGCC	CTGGACATAA	GGGGCATGAT	GACTTGACGT
301	CGTCCCCACC	TTCCTCCGAG	TTGACCCCGG	CAGTCTCCCA	TGGGTCCCCG
351	GCCCAGTGAC	AATGTCACTG	GCCGCTGGCA	ACATGGAACG	AGGGTTGCGC
401	TCGTTGCGGG	ACTTAACCCA	ACATCTCACG	ACACGAGCTG	ACGACAGCCA
451	TGCACCACCT	GTACACCGAC	CTTGCGGGGC	ACCTGTCTCC	AGATGTTTCC
501	GGTGTATGTC	AAACCCAGGT	AAGGTTCTTC	GCGTTGCATC	GAATTAATCC
551	ACATGCTCCG	CCGCTTGTGC	GGGCCCCCGT	CAATTCCTTT	GAGTTTTAGC
601	CTTGCGGCCG	TACTCCCCAG	GCGGGGCGCT	TAATGCGTTA	GCTGCGGCAC

-			~ ~ ~ ~ ~ ~ ~ ~ ~		
1	TTAMGACTTC	GTCCCAATCG	CCAGCCCCAC	CTTCGACGGC	TCCCTCCACA
51	AGGGTTGGGC	CACCGGCTTC	GGGTGTTGCC	GACTTTCGTG	ACGTGACGGG
101	CGGTGTGTAC	AAGGCCCGGG	AACGTATTCA	CCGCAGCGTT	GCTGATCTGC
151	GATTACTAGC	GACTCCGACT	TCATGGGGTC	GAGTTGCAGA	CCCCAATCCG
201	AACTGAGACC	GGCTTTTTGG	GATTCGCTCC	ACCTTGCGGT	ATCGCAGCCC
251	TTTGTACCGG	CCATTGTAGC	ATGCGTGAAG	CCCTGGGCAT	AAGGGGCATG
301	ATGACTTGAC	GTCATCCCCA	CCTTCCTCCG	AGTTGACCCC	GGCAGTCTCT
351	TATGAGTCCC	CACCATTACG	TGCTGGCAAC	ATAAGACGAG	GGTTGCGCTC
401	GTTGCGGGAC	TTAACCCAAC	ATCTCACGAC	ACGAGCTGAC	GACAGCCATG
451	CACCACCTGT	ATAGAGCCCG	TAAGGACCTG	CCATCTCTGA	CAGTTTTCTC
501	CATATGTCAA	ACCCAGGTAA	GGTTCTTCGC	GTTGCATCGA	ATTAATCCGC
551	ATGCTCCGCC	GCTTGTGCGG	GCCCCCGTCA	ATTCCTTTGA	GTTTTAGCCT
601	TGCGGCCGTA	CTCCCCAGGC	GGGGCGCTTA	ATGCGTTAGC	TGCGGCACGG
651	AACTCGTGGA	ATGAGTCCCA	С		

Sequence from clone 8

1	CTGGCTCAGG	ACGAACGCTG	ACGGTGTGCT	TTAGGCATGC	AAGTCGAACG
51	AGAAAGCCCT	TCGGGGTGAG	TAAAGTGGCG	AACGGGTGAG	TAACACGTGG
101	GCAACCTACC	CCTCGCAGGG	GAACAACCGG	AGGAAACTCC	GGCTAATACC
151	CCGTAAGCTT	TCAGGGTCGC	ATGGCCCTGT	AAGGAAAGGT	AGCTTCGGCC
201	ATCCGGCGAG	GGATGGGCCC	GCGGTGCATT	AGCTAGTTGG	TGGGGTAAAG
251	GCCCACCAAG	GCGACGATGC	GTAGCTGGTC	TGAGAGGATG	ATCAGCCACA
301	CTGGGACTGA	GACACGGCCC	AGACTCCTAC	GGGAGGCAGC	AGCCAGGAAT
351	CTTGGGCAAT	GGGCGAAAGC	CTGACCCAGC	AACACCGTGT	GGGCGATGAA
401	GGCCTTCGGG	TCGTAAAGCC	CTGTTGATAG	GGACGAAGGG	CGAAGGGTTA
451	ATAGCCCCTA	GCCTGACGGT	ACCTTTCGAG	GAAGCCCCGG	CTAACTACGT
501	GCCAGCAGCC	GCGGTAATAC	GTAGGGGGCG	AGCGTTGTCC	GGAATTATTG
551	GGCGTAAAGA	GCGTGTAGGC	GGTTCGGTAA	GTCTGTCGTG	AAATCCTGGG
601	GCTCAACCCT	GGGCGTGCGA	TGGATACTGC	C	

1				maamaaaama	aaaaammaaa
T	ACGACIICAC	CCCAGICGCI	GACCCTACCG	IGGICGCCIG	CCCCCTIGCG
51	GTTGGCGCAA	CGCCTTCGGG	TAGAACCAAC	TCCCATGGTG	TGACGGGCGG
101	TGTGTACAAG	GCCCGGGAAC	GTATTCACCG	TGGCATGCTG	ATCCACGATT
151	ACTAGCGATT	CCACCTTCAT	GCACTCGAGT	TGCAGAGTGC	AATCCGAACT
201	GAGACGGCTT	TTTGAGATTT	GCTCAGGGTC	GCCCCTTGGC	ATCCCACTGT
251	CACCGCCATT	GTAGCACGTG	TGTAGCCCAG	CCCGTAAGGG	CCATGAGGAC
301	TTGACGTCAT	CCCCACCTTC	CTCCGGCTTA	TCACCGGCAG	TCTCCCTAGA
351	GTGCCCAACT	GAATGATGGC	AACTAAGGAC	GAGGGTTGCG	CTCGTTGCGG
401	GACTTAACCC	AACATCTCAC	GACACGAGCT	GACGACAGCC	ATGCAGCACC
451	TGTCTCCGCG	TCCCCGAAGG	GAACCTTGGG	TCTCCCCAAG	TAGCACGGGA
501	TGTCAAGAGC	TGGTAAGGTT	CTGCGCGTTG	CTTCGAATTA	AACCACATGC
551	TCCACCGCTT	GTGCGGGCCC	CCGTCAATTC	CTTTGAGTTT	TAATCTTGCG
601	ACCGTACTCC	CCGGGCGGGA	TGCTTAAAGC	GTTAGCTGCG	CCACTGAGAA
651	GCAAGCTTCC	CAAACGGCTG			

Sequence from clone 10

1	CCTGGCTCAG	AATCAACGCT	GGCGGCGTGC	CTCAGACATG	CAAGTCGAAC
51	GATTAAACTT	TCCTTCGGGA	AAGATATAAA	GTGGCGCACG	GGTGAGTAAC
101	ACGTAGGTAA	TGTACCTTTG	GGTGGGGAAT	AACTTAGGGA	AACTTAAGCT
151	AATACCGCAT	AATGCAGCGG	CTCCTTCGGG	AGACAGTTGT	TAAAGATTTA
201	TCGCCTAAAG	AGCAGCCTGC	GGCAGATTAG	CTAGTTGGTA	AGGTAACGGC
251	TTACCAAGGC	TACGATCTGT	ATCCGACCTG	AGAGGGTGGT	CGGACACACT
301	GACACTGAAT	AACGGGTCAG	ACTCCTACGG	GAGGCAGCAG	TCGGGAATTT
351	TGGGCAATGG	GCGAAAGCCT	GACCCAGCAA	CGCCGCGTGA	AGGATGAAGT
401	CTCTCGGGAT	GTAAACTTCG	AAAGAATAGG	AAGAATAAAT	GACGGTACTA
451	TTTATAAGGT	CCGGCTAACT	ACGTGCCAGC	AGCCGCGGTA	ATACGTAGGG
501	ACCAAGCGTT	GTTCGGATTT	ACTGGGCGTA	AAGGGCGCGT	AGGCGGCGTG
551	ACAAGTCAAT	TGTGAAATCT	CCGGGCTTAA	CTCGGAACGG	TCAATTGATA
601	CTGTTGTGCT	AGAGTACAGA	AGGGGCAATC	GGAATTCTTG	GTGTAGCGGT
651	GAAATGCGTA	GATATCAAGA	G		

Sequence from clone 11

1	TACGACTTCA	CCCCAGTCGC	TGACCCTACC	GTGGTTGGCT	GCCTCCCGAT
51	TGCTCAGGTT	AGCGCACCAC	CTTCGGGTAG	AACCAACTCC	CATGGTGTGA
101	CGGGCGGTGT	GTACAAGGCC	CGGGAACGTA	TTCACCGTGG	CGTGCTGATC
151	CACGATTACT	AGCGATTCCA	GCTTCATGCC	CTCGAGTTGC	AGAGGACAAT
201	CCGAACTGAG	ACGGCTTTTT	GGGATTAGCT	TCTCCTTGCG	AAGTAGCAGC
251	CCACTGTCAC	CGCCATTGTA	GCACGTGTGT	AGCCCAGCCC	GTAAGGGCCA
301	TGAGGACTTG	ACGTCATCCC	CACCTTCCTC	TCGGCTTATC	ACCGGCAGTC
351	CCCCTAGAGT	GCCCAACTGA	ATGATGGCAA	CTAAGGGCGA	GGGTTGCGCT
401	CGTTGCGGGA	CTTAACCCAA	CATCTCACGA	CACGAGCTGA	CGACAGCCAT
451	GCAGCACCTG	TGCGCAGGTC	TCTTGCGAGA	AGGAATCCAT	CTCTGGAAGC
501	CGTCCTGCCA	TGTCAAGGGC	TGGTAAGGTT	CTGCGCGTTG	CTTCGAATTA
551	AACCACATGC	TCCACCGCTT	GTGCGGGCCC	CCGTCAATTC	CTTTGAGTTT
601	TAATCTTGCG	ACCGTACTCC	CCAGGCGGAA	TGCTTAATGC	GTTAGCTGCG
651	C				

1	CGAACGCTTG	CGGCGTGCCT	AAGAAATGCA	AGTCGAACGG	ACATTCCAGC
51	AATGGGGTGC	TAGTGGCGAA	CGGTCGCGTA	ACACGTAGGC	AACCTGCCCT
101	GAAGTGGGGG	ACAACAGCCC	GAAAGGGCTG	CTAATACCGC	ATGTGAACAA
151	CGAATCACAT	GGTTTGTTGT	TCAAAGGCTA	TGGCAACATG	GTCGCTTTGG
201	GATGGGCTTG	CGGCCTATCA	GGTAGTTGGT	GGGGTAATGG	CCCACCAAGC
251	CGACGACGGG	TAGCTGGTCT	GAGAGGACGA	TCAGCCGGAT	TGGGACTGAG
301	ATACGGCCCA	GACTCCTACG	GGGGGCAGCA	ATTAGGAATC	TTGCGCAATG
351	GGCGAAAGCC	TGACGCAGCG	ACGCCGCGTG	CGGGATGAAG	GCCTTCGGGT
401	CGTAAACCGC	TTTTAACGGG	GAAGAAGAAT	GTGACGGTAC	CCGTTGAATA
451	AGCCCCGGCT	AACTACGTGC	CAGCAGCCGC	GGTAATACGT	AGGGGGCGAG
501	CGTTGTCCGA	AGTTACTGGG	CGTAAAGCGC	GCGTAGGCGG	TTGCCTAAGT
551	CTGGGGTGAA	AGGTTCAGGG	CTTAACCCGA	ACAGTGCCTT	GGATACTGGG
601	CGACTTGAGT	GCCGAAGAGG	AAAGCGGAAT	TCCTGGTGTA	GCGGTGAAAT
651	GCGTAGATAT	CAGGAGGAAC	ACCGATGGCG	AAGGCARCTT	

1	CGACTTCACC	CCAATCATAA	ATCATACCGT	AGTAACTTGC	CCCTCTTGCG
51	AGTTAGCCCA	ACTACTTCTA	GTACAACCTA	CTTTCGTGAT	GTGACGGGCG
101	GTGTGTACAA	GACCCGGGAA	CGTATTCACC	GCGGCGTTCT	GATCCGCGAT
151	TACTAGCGAT	TCCAACTTCA	TGAAGTCGAG	TTGCAGACTT	CAATCCGAAC
201	TGAGATTGGT	TTTTGCGATT	AGCTCACTCT	TACGAGATTG	CGACGTTTTG
251	TACCAACCAT	TGTAGCACGT	GTGTAGCCCT	GAACATAAAG	GCCATGATGA
301	CTTGACATCA	TCCCCACCTT	CCTCCGTTTT	ATCAACGGCA	GTCTTAACAG
351	AGTTCTCAAC	ATTACTTGTT	AGCAACTGTC	AATAGGGGTT	GCGCTCGTTG
401	CGGGACTTAA	CCCAACATCT	CGCGACACGA	GCTGACGACA	GCCATGCAGC
451	ACCTTGTTTT	GGGTCCGGTT	GCCCGGACGA	TTGGAATTAC	CCAATCTTCC
501	CTCACATTCT	AGTCCAGGTA	AGGTTCTTCG	CGTTGCGTCG	AATTAAACCA
551	CATGCTCCAC	CGCTTGTGCG	GGTCCCCGTC	AATTCCTTTG	AGTTTCACAC
601	TTGCGTGCGT	ACTCCCCAGG	CGGAATGCTT	AAAACGTTAG	CGACGG

Sequence from clone 14

1	CTAGTTACCT	GTTCTACCCT	AACCGGCTTC	TTTTACGAGC	ACCGGCTTCA
51	GGTCTACCAA	ACTTCCATGG	CTTGACGGGC	GGTGTGTACA	AGGCCCGGGA
101	ACGTATTCAC	CGCGTCATTG	CTGATACGCG	ATTACTAGTG	ATTCCAGCTT
151	CACGGAGTCG	AGTTGCAGAC	TCCGATCCGA	ACTGAGAACG	GCTTTTCGGG
201	ATTGGCGCAC	CATCGCTGGT	TGGCAACCCG	CTGTACCGTC	CATTGTAGCA
251	CGTGTGTAGC	CCTAGGCGTA	AGGGCCATGA	TGACCTGACG	TCGTCCCCGC
301	CTTCCTCACT	GCTTGCGCAG	GCAGTCTGTC	TAGAGTCCCC	GCCATTACGC
351	GCTGGCAACT	AAACATAGGG	GTTGCGCTCG	TTGCGGGACT	TAACCCAACA
401	CCTCACGGCA	CGAGCTGACG	ACGGCCATGC	AGCACCTTGC	TTTGTGTCCC
451	GAAGGAAAGG	TTCATCTCTG	AACCGGTCAC	GCGCATTCTA	GCCTAGGTAA
501	GGTTCCTCGC	GTATCATCGA	ATTAAACCAC	ATGCTCCACC	ACTTGTGCGG
551	GCCCCCGTCA	ATTCTTTTGA	GTTTCACTCT	TGCGAGCGTA	С

1	CGCCAGTTAC	CAGCTCNACC	TTCGGCGCCT	GCCTCCTTGC	GGTTAGCACG
51	GCGACTTCGG	GTAGAACCGA	TTTCCGTCAC	TTGACGGGCG	GTGTGTGCAA
101	GGCCCGGGAA	CGTATTCACC	GCAGTATTGC	TGACCTGCGG	TTACTAGCGA
151	TTCCAACTTC	ATGGAGGCGA	GTTGCAGCCT	CCAATCCGAA	CTGAGACCGG
201	CTTTTTGAGA	TTAGCATGCC	CTCGCGGGTT	AGCAACTCTT	TGTACCGGCC
251	ATTGTAGCAT	ATGTGCAGCC	CAAGATGTAA	GGGGCATGAT	GACTTGACGT
301	CATCCCCACC	TTCCTCCTCT	TTACAGAGGC	AGTTTGTTCC	GAGTTCCCGG
351	CATTACCCGC	TGGCAACAGA	ACATGAGGGT	TGCGCTCGTT	GCGGGACTTA
401	ACCCAACATT	TCACAACACG	AGCTGACGAC	AGCCATGCAC	CACCTGTGGA
451	TCACCCTCGA	AGGCGACGAT	ATTTCTACCG	CTTGCAGATC	CATGTCAAAC
501	CTTGGTAAGG	TTCTTCGCGT	TGCATCGAAT	TAAGCCATAT	GCTCCACCGC
551	TTGTGCGGGC	CCCCGCCAAT	TCCTTTGAGT	TTCAACCTTG	CGGCCGTAGT
601	TCCCAGGCGG	TTCACTTAAT	GCGTTAGCTG	CGACACCGGG	GCGAAGCCCC
651	GACATCTAGT	GAACATCGTT	TATAGCTATG	ACTACCAGGG	TATCTAATCC
701	TGTTCGCTAC	ATAG			

Sequence from clone 21

1	CCCCAGTTAC	CTGTTCTACC	CTAACTGGCT	TCTGTGACGA	GCGCCAGCTT
51	CAGGYCTACC	AGACTTCCAT	GGCTTGACGG	GCGGTGTGTA	CAAGGCCCGG
101	GAACGTATTC	ACCGCGTCAT	TGCTGATACG	CGATTACTAG	CGATTCCAAC
151	TTCATGCAGT	CGAGTTGTAG	ACTGCAATCC	GGACTACGAT	ACACTTTCTG
201	GGATTAGCTC	CCCCTCGCGG	GTTGGCGGCC	CTCTGTATGT	ACCATTGTAT
251	GACGTGTGAA	GCCCTACCCA	TAAGGGCCAT	GAGGACTTGA	CGTCATCCCC
301	ACCTTCCTCC	GGTTTGTCAC	CGGCAGTCTC	ATTAGAGTGC	TCAACTGAAT
351	GTAGCAACTA	ATGACAAGGG	TTGCGCTCGT	TGCGGGACTT	AACCCAACAT
401	CTCACGACAC	GAGCTGACGA	CAGCCATGCA	GCACCTGTGT	ACCGGCTCTC
451	TTTCGAGCAC	GCCCCAATCT	CTCGGGGCTT	CCGACCATGT	CAAGGGTAGG
501	TAAGGTTTTT	CGCGTTGCAT	CGAATTAATC	CACATCATCC	ACCGCTTGTG
551	CGGGTCCCCG	TCAATTCCTT	TGAGTTTTAA	TCTTGCGACC	GTACTCCCCA
601	GGCGGTCAAC	TTCACGCGTT	AGCTGCGTTA	CCAAGTC	

Sequence from clone 24

1	AGTTTGATCC	TGGCTCAGAA	CGAACGCTGG	CGGCATGCCT	AACACATGCA
51	AGTCGAACGA	GATCCTTCGG	GGTCTAGTGG	CGCACGGGTG	CGTAACGCGT
101	GGGAATCTGC	CCTTGGGTTC	GGAATAACAG	TGGGAAACTA	CTGCTAATAC
151	CGGATGATGT	CTTCGGACCA	AAGATTTATC	GCCCAGGGAT	GAGCCCGCGT
201	AAGATTAGCT	AGTTGGTGAG	GTAAAGGCTC	ACCAAGGCTA	CGATCTTTAG
251	CTGGTCTGAG	AGGATGATCA	GCCACACTGG	GACTGAGACA	CGGCCCAGAC
301	TCCTACGGGA	GGCAGCAGTG	GGGAATATTG	GACAATGGGC	GAAAGCCTGA
351	TCCAGCAATG	CCGCGTGAGT	GATGAAGGCC	TTAGGGTTGT	AAAGCTCTTT
401	TACCCGGGAT	GATAATGACA	GTACCGGGAG	AATAAGCTCC	GGCTAACTCC
451	GTGCCAGCAG	CCGCGGTAAT	ACGGAGGGAG	CTAGCGTTGT	TCGGAATTAC
501	TGGGCGTAAA	GCGCACGTAG	GCGGCTTTGT	AAGTTAGAGG	TGAAAGCCCG
551	GGGCTCAACT	CCGGAACTGC	CTTTAAGACT	GCATCGCTTG	AATCCAGGAG
601	A				

1	GGGGATCCGA	TGAGTTTGAT	CCTGGCTCMG	AATCAACGCT	GGCGGCGTGC
51	CTCAGACATG	CAAGTCGAAC	GATTAAACTT	TCCTTCGGGA	AAGATATAAA
101	GTGGCGCACG	GGTGAGTAAC	ACGTAGGTAA	TGTACCTTTG	GGTGGGGAAT
151	AACTTAGGGA	AACTTAAGCT	AATACCGCAT	AATGCAGCGG	CTCCTTCGGG
201	AGACAGTTGT	TAAAGATTTA	TCGCCTAAAG	AGCAGCCTGC	GGCAGATTAG
251	CTAGTTGGTA	AGGTAACGGC	TTACCAAGGC	TACGATCTGT	ATCCGACCTG
301	AGAGGGTGGT	CGGACACACT	GACACTGAAT	AACGGGTCAG	ACTCCTACGG
351	GAGGCAGCAG	TCGGGAATTT	TGGGCAATGG	GCGAAAGCCT	GACCCAGCAA
401	CGCCGCGTGA	AGGATGAAGT	CTCTCGGGAT	GTAAACTTCG	AAAGAATAGG
451	AAGAATAAAT	GACGGTACTA	TTTATAAGGT	CCGGCTAACT	ACGTGCCAGC
501	AGCCGCGGTA	ATACGTAGGG	ACCAAGCGTT	GTTCGGATTT	ACTGGGCGTA
551	AAGGGCGCGT	AGGCGGCGTG	ACAAGTCAAT	TGTGAAATCT	CCGGGCTTAA
601	CTCGGAACGG	TCAATTGATA	CTGTTGTGCT	AGAGTACAGA	AGGGGCAATC
651	GG				

1	GCGTGCCTAA	CACATGCAAG	TCGAACGGGA	CCAGGGGCAA	CTCTGGTTCA
51	GTGGCGGACG	GGTGCGTAAC	ACGTGAGGAA	CATGACCTTC	GGCGGGGGAT
101	AGCCGGCCCA	ACGGCCGGGT	AATACCGCGT	ACGACCTTTC	GGGGACATCC
151	CCGGATGGTG	AAAGCAGCAA	TGCGCCGATG	GAGTGCCTCG	CGGCCTATCA
201	GCTGGTTGGT	GAGGTAACGG	CTCACCAAGG	CAACGACGGG	TAGCTGGTCT
251	GAGAGGATGG	CCAGCCACAT	TGGGACTGAG	ACACGGCCCA	GACTCCTACG
301	GGAGGCAGCA	GTGGGGAATA	TTGCGCAATG	GACGAAAGTC	TGACGCAGCG
351	ACGCCGCGTG	TGGGATGACG	GTCTTCGGAT	TGTAAACCAC	TGTCGGGAGG
401	GACGAATACG	CCGCAAGGCG	GGTGACGGTA	CCTCCAAAGG	AAGCACCGGC
451	TAACTCCG				

Sequence from clone 30

1	CGACCCTCGG	CCGCTGCCTC	GCTTGCGCGT	TAGCCCACGG	ACTTCAGGTC
51	TTCCCCACTC	CCATGACGTG	ACGGGCGGTG	TGTACAAGGC	CCGGGTACAG
101	ATTCACCGCC	GTATGGCTGA	CCGGCGATTA	CTAGCAACTC	CGCCTTCATG
151	GGGGCGAGTT	GCAGCCCCCA	ATCTGAACTG	AGACCGACCT	TCGAGATCCG
201	CCACATGTTA	CCATGCAGCA	ACCCATTCGT	CCGGCCATTG	TAGCGTGTGT
251	GTCGCCCTGG	TCGTACGGGC	CATGCGGACT	TGACGTCATC	CCCGCCTTCC
301	TCCGTGGTTG	ACCACGGCAG	TCATGTGTGA	CACAAGTAAC	ACACATCAGG
351	GGTTGCGCTC	GTTGCGGGAC	TTAACCCAAC	ATCTCACGAC	ACGAGCTGAC
401	GACAGCCATG	CAGCACCGGT	GCACCACCCT	CGAAGGCAGC	CATGTTTCCA
451	CGACTTGCAG	GTGCATGTCA	AGACCAGGTA	AGGTTCTGCG	CGTTGCGTCG
501	AATTAAACCA	CACGCTCCGC	TGCTTGTGCG	GGCCCCCGTC	AATTCCTTTG
551	AGTTTTAAGC	TTGCGCTCGT	AGTCCCCAGG	CGGCATACTC	AACACGTAAG
601	TTAAGGCACT	GNCCTGGCTT	A		

1	TTAMCTTGTT	ACGACTTCAC	CCCAGTCACG	AATCCTACCG	TGGTAAGCGC
51	CCCCCTTGCG	GTTAAGCTAC	CTACTTCTGG	TAAAACCCGC	TCCCATGGTG
101	TGACGGGCGG	TGTGTACAAG	ACCCGGGAAC	GTATTCACCG	CGACATGCTG
151	ATCCGCGATT	ACTAGCGATT	CCAACTTCAT	GTAGTCGAGT	TGCAGACTAC
201	AATCCGGACT	ACGATACACT	TTCTGGGATT	AGCTCCCCCT	CGCGGGTTGG
251	CGGCCCTCTG	TATGTACCAT	TGTATGACGT	GTGAAGCCCT	ACCCATAAGG
301	GCCATGAGGA	CTTGACGTCA	TCCCCACCTT	CCTCCGGTTT	GTCACCGGCA
351	GTCTCATTAG	AGTGCTCTTT	CGTAGCAACT	AATGACAAGG	GTTGCGCTCG
401	TTGCGGGACT	TAACCCAACA	TCTCACGACA	CGAGCTGACG	ACAGCCATGC
451	AGCACCTGTG	TTACGGCTCT	CTTTCGAGCA	CACCTCGATC	TCTCGTGGCT
501	TCCGTACATG	TCAAGGGTAG	GTAAGGTTTT	TCGCGTTGCA	TCGAATTAAT
551	CCACATCATC	CACCGCTTGT	GCGGGTCCCC	GTCAATTCCT	TTGAGTTTTA
601	ATCTTGCGAC	CGTACTCCCC	AGGCGGTCTA	CTTCACGCGT	TAGCTGCGTT

Sequence from clone 37

1	GGGGATCCGA	TGGTTAMCTT	GTTACGACTT	CACCCCAATC	ATGAATCATA
51	CCGTTACACC	ATGCCTCCCT	TACGGGTTAG	CTCTGGCGCT	TCTAGTACAA
101	CCCACTTTCG	TGATGTGACG	GGCGGTGTGT	ACAAGACCCG	GGAACGTATT
151	CACCGCGGCG	TGCTGATCCG	CGATTACTAG	CGATTCCAAC	TTCATGAAGT
201	CGAGTTGCAG	ACTTCAATCC	GAACTGAGAC	GAGCTTTTTC	CGATTGGCTC
251	CCCATCGCTG	GTTTGCAACG	GTTTGTACTC	GCCATTGTAG	CACGTGTGTA
301	GCCCTACTCA	TAAAGGCCAT	GATGACTTGA	CGTCGTCCCC	ACCTTCCTCC
351	GTTTTGTCAA	CGGCAGTCTC	ACCAGAGTTC	TCGGCTTAAC	CCGTTAGTAA
401	CTGATGATAA	GGGTTGCGCT	CGTTGCGGGA	CTTAACCCAA	CATCTCACGA
451	CACGAGCTGA	CGACAGCCAT	GCAGCACCTT	GCATCTCGTC	CGGTTTTACC
501	CGGAAGGCTC	CATCTCTGGA	GTTGTCGAGA	GCATTCTAGA	GTAGGTAAGG
551	TTCTTCGCGT	TGCGTCGAAT	TAAACCACAT	GCTCCACCGC	TTGTGCGGGT
601	CCCCGTCAAT	TCCTTTGAGT	TTCATTCTTG	CGAACGTACT	CCCC

Sequence from clone 39

GGTTAMCTTG	TTACGACYTC	ACCCCAATCA	TAAATCATAC	CGTGGTAACT
TGCCTCCCTT	GCGAGTTAGC	CCAGCTACTT	CTAGTACAAC	CTACTTTCGT
GATGTGACGG	GCGGTGTGTA	CAAGACCCGG	GAACGTATTC	ACCGCAGCGT
TCTGATCTGC	GATTACTAGC	GATTCCAACT	TCATGGAGTC	GAGTTGCAGA
CTCCAATCCG	AACTGAGACC	GGCTTTTTAC	GATTGGCTCA	CTCTTGCGAG
TTTGCAGCGT	TTTGTACCGG	CCATTGTAGC	ACGTGTGTAG	CCCTAGTCAT
AAAGGCTATG	AGGACTTGAC	GTCATCCCCA	CCTTCCTCCG	TTTTATCAAC
GGCAGTCTCA	ACCGAGTTCC	CGGCATTACC	CGCTGGCAAC	AGTTGATAAG
GGTTGCGCTC	GTTGCGGGAC	TTAACCCAAC	ATCTCACGAC	ACGAGCTGAC
GACAGCCATG	CAGCACCTTG	CATCTTGCTT	GGTTTTTACCC	AAGAAACCCT
ATCTCTAGGG	CTGTCAAGAG	CATTCTAGAC	TAGGTAAGGT	TCTTCGCGTT
GCGTCGAATT	AAACCACATG	CTCCACCGCT	TGTGCGGGTC	CCCGTCAATT
CCTTTGAGTT	TCATGCTTGC	GCACGTACTC	CC	
	GGTTAMCTTG TGCCTCCCTT GATGTGACGG TCTGATCTGC CTCCAATCCG TTTGCAGCGT AAAGGCTATG GGCAGTCTCA GGTTGCGCTC GACAGCCATG ATCTCTAGGG GCGTCGAATT CCTTTGAGTT	GGTTAMCTTGTTACGACYTCTGCCTCCCTTGCGAGTTAGCGATGTGACGGGCGGTGTGTATCTGAACCGGATTACTAGCTTTGCAGCGTTTTGTACCGGAAAGGCTATGAGGACTTGACGGCAGTCTCAACCGAGTTCCGGTTGCGCTCGTTGCGGGACGACAGCCATGCAGCACCTTGATCTCTAGGGCTGTCAAGAGGCGTCGAATTAAACCACATGCCTTTGAGTTCATGCTTGC	GGTTAMCTTGTTACGACYTCACCCCAATCATGCCTCCCTTGCGAGTTAGCCCAGCTACTTGATGTGACGGGCGGTGTGTACAAGACCCGGTCTGAATCTGGATTACTAGCGGCTTTTACCTCCAATCGAACTGAGACCGGCTTTTACTTTGCAGCGTTTTGTACCGGCCATTGTAGCAAAGGCTATGAGCACTTGAGTCATCCCAAGGTGCGCTCGTTGCGGGACTTAACCAACGGTTGCGCTGCAGCACCTTGCATCTGCAGCACCCAACCTTGCATCTAGACCATCTAGACGCGTCGAATTAAACCACATGCTCCACGCTCCTTTGAGGTTCATGCTTGCGCACGTACT	GGTTAMCTTGTTACGACYTCACCCCAATCATAAATCATACTGCCTCCCTTGCGAGTTAGCCCAGCTACTTCTAGTACAACGATGTGACGGGCGGTGTGTACAAGACCCGGGAACGTATCTCTGAATCTGGATTACTAGCGATTCCAACTTCATGGAGTCCTCCAATCCGAACTGAGACCGGCTTTTACGATTGCAGCTTTTGCAGCGTTTTGTACCGGCCATTGTAGCACGTGTGAGCGGCAGTCTAACGAGTTCCCGGCATTACCCGCTGCAACGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACGACAGCCATGCAGCACCTTGCATCTTGCGGGTTACCCATCTCTAGGGCTGTCAAGAGCATCTAGACTAGGTAAGTGCGTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGTCCCTTTGAGGTTCATGCTTGCGCACGTACTCC

1	ATCCGATGAG	TTTGATCCTG	GCTCAGAATG	AACGTTGGCG	GCGTGGATTA
51	GGCATGCAAG	TCGGACGGGC	CGCAAGGCCA	GTGGCGTAAG	GGTGAGTAAG
101	GCGACGGCAA	TCATCCCCAC	GGTTGGGTAT	AGCCGCGAGA	AATCGCGGGT
151	AATCCCCAGC	GACGCAGGGT	GTCGGCATCG	ACGCCCTGCC	AAAGGCTCGC
201	CGCCGTGGGA	CGAGCCGTTG	TGGTATTAGG	TTGTTGGCGG	GGTAACGGCC
251	CACCAAGCCT	GCGATGCCTA	CCGGGCGTGC	GAGCGTGGCC	CGGCACACTG
301	GGACTGAGAC	ACTGCCCAGA	CTCCTACGGG	AGGCTGCAGT	CGAGAATCTT
351	CGGCAATGGG	CGCAAGCCTG	ACCGAGCGAC	GCCGCGTGGA	GGACGAAGGC
401	CTTCGGGTTG	TAAACTCCTG	TCGAGGGGAA	GGAAGGGGCC	GCGAGGCCCT
451	TGACCGCTCC	CTGGAGGAAG	CACGGGCTAA	GTTCGTGCCA	GCAGCCGCGG
501	TAAGACGAAC	CGTGCGAACG	TTATTCGGAA	TCACTGGGCT	TAAAGCGCGT
551	GTAGGCGGGG	CGGTGCGTCG	GCCGTTGAAA	TCCCCCGGCT	CAACCGGGGA
601	AGTGGCGCCG	AAACGACCGG	CCTGGAGCGA	CGTAGGGGGA	ACTGGAACTT
651	CCGGTGGAGC				

1	TTGGAACACG	TAGCTAACCT	GCCCAACAGA	GGGGGATAAC	CTCGGGAAAC
51	CGAGGCTAAT	ACCGCATACG	CTCATTTTTG	GGGACGAGGA	TGAGGAAACG
101	GAGCAATCCG	CTGATGGAGG	GGGCTGCGGC	CGATTAGCTA	GTTGGTGGGG
151	TAAAAGCCTA	CCGAGGCGGT	GATCGGTAGC	TGGTCTGAGA	GGACGATCAG
201	CCACACGGGG	ACTGAGACAC	GGCCCCGACT	CCTACGGGAG	GCAGCAGCAA
251	GGAATTTTCC	ACAATGGGCG	CAAGCCTGAT	GGAGCAACGC	CGCGTGGGGG
301	ATGACGCTTT	TCGGAGTGTA	AACCCCTTTT	CGAGAGGACG	AAGCTAATGA
351	CGGTACTCTC	GGAATAAGGA	CCGGCTAACT	ACGTGCCAGC	AGCCGCGGTA
401	AGACGTAGGG	TCCGAGCGTT	GTCCGGAGTT	ACTGGGCGTA	AAGCGCGCGC
451	AGGCGGTTAG	ACACGTCGGG	TGTGAAAGCC	CCCCGCTCAA	CGGGGGGAGGG
501	TCATTCGAAA	CGGTCAGACT	GGAGGCAGGG	AGAGGTCGGT	GGAATTCCCG
551	GTGTAGTGGT				

Sequence from clone 54

1	CAATACATCA	GCGGCAGACG	GGAGAGTAAC	ACGTGGGAAC	GCGCCCTTCG
51	GTTCGGAATA	ACTCAGGGAA	ACTTGAGCTA	ATACCGGATA	CGCCCTTACG
101	GGGAAAGATT	TATTGCCGAA	GGAACGGCCC	GCGTCGGATT	AGCTAGTTGG
151	TGAGGTAATG	GCTCACCAAG	GCAACGATCC	GTAGCTGGTC	TAAGAGGATG
201	ATCAGCCTCA	CTGGGACTGA	GACACGGCCC	AGACTCCTAC	GGGAGGCAGC
251	AGTGGGGAAT	ATTGGACAAT	GGGCGAAAGC	CTGATCCAGC	CATGCCGCGT
301	GGATGATGAA	GGCCTTAGGG	TTGTAAAGTC	CTTTTAACGG	GGAAGATAAT
351	GACGGTACCC	GTAGAATAAG	CCCCGGCTAA	CTTCGTGCCA	GCAGCCGCGG
401	TAATACGAAG	GGGGCTAGCG	TTGCTCGGAA	TTACTGGGCG	TAAAGCGCAC
451	GTAGGCGGAT	TGTTAAGTCG	GGGGTGAAAT	CCTGGAGCTC	AACTCCAGAA
501	CTGCCTTCGA	AACTGGCGAT	CTTGAGTCCG	GGAGAGGTGA	GTGGAACTGC
551	GAGTGTAGAG	GTGAAATTCG	TAGATATTCG	CAAGAACACC	AGTGGCGAAG
601	GCGGCTCACT	GGCCCGGTAC			

1	CAGGTATTCTT	GGGTTGGMCC	C GGCGCAAGGG	G TGCGTAACAC	C GTGGGTAATT
51	TGCCATGAAG	TCTGGAATAA	CTTGCTGAAA	GGCGAGCTAA	TGCCGGATGT
101	GATTTTCGGG	AAGCATTTCT	TGAAACTCAA	AGTTGGGGAC	CGCAAGGCCT
151	GACGCTTCTT	GATAAGCCCG	CGGCCTATCA	GCTAGTTGGT	GAGGTAATGG
201	CTCACCAAGG	CTAAGACGGG	TAGCTGGTCT	GAGAGGACGA	CCAGCCACAC
251	TGGAACTGAG	ACACGGTCCA	GACACCTACG	GGTGGCAGCA	GTCGAGAATT
301	TTTCACAATG	GGCGAAAGCC	TGATGGAGCG	ACGCCGCGTG	GGGGATGAAT
351	GGCTTCGGCC	CGTAAACCCC	TGTCATTTGC	GAACAAACCT	TACCGGTTAA
401	CAACCGTTGA	GCTGATTGTA	GCGGAAGAGG	AAGGGACGGC	TAACTCTGTG
451	CCAGCAGCCG	CGGTAATACA	GAGGTCCCAA	GCGTTGTTCG	GATTCACTGG
501	GCGTAAAGGG	TGCGTAGGTG	GTGGGGTAAG	TCGGATGTGA	AATCTCCGGG
551	CTCAACCCGG	AAATGGCATT	GGAAACTACC	TTGCTAGAGG	ATTTGAGGGG
601	GGATTGGAAT	ACTTGGTGTA			

TGCTCCTGAA	GATCTAGTKC	CGAACGGGTG	CRWAACACGT	GAGAAACCTG
TCCCGAACTT	GGGAATAACA	GCCGAAAACS	ACTGCTAATA	CCGAATATCT
TCGTAACGTC	GCATGGCGAT	TCGAAGAAAG	CTTTATGCGG	TTTGGGAGGG
TCTCGCGGCC	TATCAGCTTG	TTGGTGAGGT	AATGGCTCAC	CAAGGCATCG
ACGGGTAGCT	GGTCTGAGAG	GATGATCAGC	CACACTGGGA	CTGAGACACG
GCCCAGACTC	CTACGGGAGG	CAGCAGTGGG	GAATATTGCA	CAATGGGCGA
AAGCCTGATG	CAGCGATGCC	GCGTGCGGGA	AGAAGGCCCT	AGGGTTGTAA
ACCGCTTTCA	GTAGGGAAGA	AAATGACGGT	ACCTACAGAA	GAAGGTGCGG
CCAACTACGT	GCCAGCAGCC	GCGGTGACAC	GTAGGCACCA	AGCGTTGTCC
GGATTTATTG	GGCGTAAAGA	GCTCGTAGGC	GGTTTGGTAA	GTCGGGTGTG
AAAACTCTGG	GCTCAACCCA	GAGAGGCCAC	TCGATACTGC	CATGACTTGA
GTACGGTAGG	GGAGTGGGGA	ATTTCTAGTG	TAGCGGTGAA	ATGCGCAGAT
ATTAGAAGGA	ACACCAGTGG	CGAAGGCGCC	ACTCTGGGCC	GTAACT
	TGCTCCTGAA TCCCGAACTT TCGTAACGTC TCTCGCGGCC ACGGGTAGCT GCCCAGACTC AAGCCTGATG ACCGCTTTCA CCAACTACGT GGATTTATTG AAAACTCTGG GTACGGTAGG ATTAGAAGGA	TGCTCCTGAAGATCTAGTKCTCCCGAACTTGGGAATAACATCGTAACGTCGCATGGCGATTCTCGCGGCCTATCAGCTTGACGGCTAGCTGTACGGAGGGCCAGACTCCTACGGAAGAACCGCTTCAGTAGGGAAGACCAACTACGTGCCAGCACCCGGATTAATGGCCAACCAAAAACTCTGGGCACAGCGGAATTAGAAGGAACACCAGTGG	TGCTCCTGAAGATCTAGTKCCGAACGGTGTCCCGAACTTGGGAATAACAGCCGAAAACSTCGTAACGTCGCATGCGATTCGAAGAAGATCTCGCGGCCTATCAGCTGTTGGTGAGGTACGGTAGCTGCTCTGAGAGGATGATCAGCGCCCAGACTCCTACGGGAGGCAGCAGTGGGAAGCCTGATCTACGGAAGAAAATGACGGTCCAACTACGTGCCAGCAGCCGCGGTGACACGGATTTATTGGCCCAGCACGCGCTAGGCAAAACTCTGGGCACACCCAGAGAGGCCACGTACGGTAGACACCAGTGGATTCTAGTG	TGCTCCTGAAGATCTAGTKCCGAACGGGTGCRWAACACGTTCCCGAACTTGGGAATAACAGCCGAAAACSACTGCTAATATCGTAACGTCGCATGCCGATTCGAAGAAAGCTTTATGCGGTCTCGCGGCCTATCAGCTGTTGGTGAGGTAATGGCTCAGACGGTAGCTGGTCTGAGAGGATGATCAGCGACACTGGGAACGCCTGAGACCACCGGGAGACACACGGCACAAGAGCCCTAAGCCTGAGCAGCGATGCCGCGGTGCGGAAGAAGCCCAACGCATTCAGTAGGAAGAAAATGACGGTACCTACAGAACCAACTACGTGCCAACACAGCTCGTAGCGGTTGGTAAGAAAACTCTGGGCACAGCAGAAATTCAAGAGACCACGGTGAAAATAGAAGGAACACCAGTGGCGAAGCCCCACCGGTGAAA

Sequence from clone 68

GAAAACGTCG	GAATCTGCCT	ATTTGTGGGG	GATAACGTAK	GGNMACTTAC
GCTAATACCG	CATACGACCT	ACGGGTGAAA	GCGGAGGACC	TTCGGGCTTC
GCGCAGATAG	ATGAGCCGAC	GTCGGATTAG	CTAGTTGGCG	GGGTAAAGGC
CCACCAAGGC	GACGATCCGT	AGCTGGCCTG	AKAGGATGAT	CAGCCACACT
GGAACTGAGA	CACGGTCCAG	ACTCCTACGG	GAGGCAGCAG	TGGGGAATAT
TGGACAATGG	GCGCAAGCCT	GATCCAGCCA	TGCCGCGTGT	GTGAAGAAGG
CCTTCGGGTT	GTAAAGCACT	TTTGTCCGGA	AAGAAAAGCA	CTGGGTTAAT
ACCCTGGTGT	CATGACGGTA	CCGGAAGAAT	AAGCACCGGC	TAACTTCGTG
CCAGCAGCCG	CGGTAATACG	AAGGGTGCAA	GCGTTACTCG	GAATTACTGG
GCGTAAAGCG	TGCGTAGGCG	GTTTGTTAAG	TCTGATGTGA	AAGCCCTGGG
CTCAACCTGG	GAATGGCATT	GGATACTG		
	GAAAACGTCG GCTAATACCG GCGCAGATAG CCACCAAGGC GGAACTGAGA TGGACAATGG CCTTCGGGTT ACCCTGGTGT CCAGCAGCCG GCGTAAAGCG CTCAACCTGG	GAAAACGTCGGAATCTGCCTGCTAATACCGCATACGACCTGCGCAGATAGATGAGCCGACCCACCAAGGCGACGATCCGTGGAACTGAGACACGGTCCAGTGGACAATGGGCGCAAGCCTACCCTGGTTCATGACGGTACCAGCAGCCGCGGTAATACGGCGTAAAGCGTGCGTAGGCGCTCAACCTGGGAATGGCATT	GAAAACGTCGGAATCTGCCTATTTGTGGGGGCTAATACCGCATACGACCTACGGGTGAAAGCGCAGATAGATGAGCCGACGTCGGATTAGGCACCAAGGCGACGATCCGTAGCTGGCCTGGGAACTGAGACACGGTCCAGACTCCTACGGTGGACAATGGGCGCAAGCCTGATCCAGCAAACCCTGGTGTGTAAAGCACTTTTGTCCGGAAACCAGCAGCGCGGTAATACGAAGGGTGCAAGCGTAAAGCGTGCGTAGCGGTTTGTTAAGCTCAACCTGGGAATGGCATGGATACTG	GAAAACGTCGGAATCTGCCTATTTGTGGGGGATAACGTAKGCTAATACCGCATACGACCTACGGGTGAAAGCGCAGGACCGCGCAGATAGATGAGCCGACGTCGGATTAGCTAGTTGGCGCCACCAAGGCGACGATCCGACCCTGGCCGAKAGGATGATGGAACTGAGACACGGTCCAGACTCCTACGGGAGCAGCAGTGGACAATGGGCGCAAGCCTGATCCAGCATGCCGCGTGTCCTTCGGGTTGTAAAGCACTTTTGTCCGGAAAGAAAAGCAACCCTGGTGTCATGACGGTAACGCACGGCCCAGCAGCCGCCAGCAAGCCCGGTAATACGAAGGACGCGAGCGTTACTCGGCGTAAAGCGTGCGTAGGCGGTTTGTTAAGTCTGATGTGACTCAACCTGGGAATGCCATGGATACTG

Sequences from MVT 7 16S rDNA clone library

1	TGTGCGCAAG	CGCWCMCACA	TCCGGAGTGG	CGGACGGGTG	CGTAACACGT
51	GAGCGATCTG	CCCAGATGGG	GGGGATACCC	CGGGGAAACC	CGGGTCAATC
101	CCGCATGTGG	TTTTACCTCT	TCATGGAGGT	TCAATCAAAG	ATCCTCTCAA
151	GGGATTCTGT	CTGGAGGAGC	TCGCGGCGTA	TCAGCTAGTT	GGTAGGGTAA
201	CGGCCTACCA	AGGCGACGAC	GCGTAGGGGG	TCTGAGAGGA	TGGCCCCCA
251	CATGGGGACT	GAGATACGGC	CCCGACTCCT	ACGGGAGGCA	GCAGTGGGGA
301	ATCTTGCGCA	ATGGGCGAAA	GCCTGACGCA	GCGACGCCGC	GTGCGGGAGG
351	ACGCTTTTCG	GAGTGTAAAC	CGCTGTCGGG	AGGGACGAAT	CCTGTGAGGA
401	GGAAATGTCC	CACAGTTGAC	GGTACCTTCA	AAGGAAGCAC	CGGCTAACTC
451	TGTGCCAGCA	GCCGCGGTAA	TACAGAGGGT	GCAAGCGTTG	TTCGGAATCA
501	TTGGGCGTAA	AGCGCACGTA	GGCGGCCCGT	TAAGTCCGAC	TGTGAAAGAC
551	CGGGGCTCAA	CCCCGGGGGCT	GCAGCGGATA	CTGGCGGGCT	TGAGACACGT
601	А				

1	TAACACGTGG	GTAACCTGCC	CTCAGCTCTG	GGATAAGCYY	GGCCCAACTG
51	GGTCTAATAC	CGGATATGAC	CTCGCATCGC	ATGGTGTGGG	GTGGAAAGCC
101	TTGTGCGGCT	GAGGATGGGC	CCGCGGCCTA	TCAGCTAGTT	GGTGCGGTCA
151	CGGCGCACCA	AGGCGACGAC	GGGTAGCTGG	TCTGAGAGGA	TGGCCAGCCA
201	CATTGGGACT	GAKAAACGGC	CCAGACTCCT	ACGGGAGGCA	GCAGTGGGGA
251	ATCTTGCGCA	ATGGCCGAAA	GGCTGACGCA	GCGACGCCGC	GTGTGGGAGG
301	AAGCCTTTCG	GGGTGTAAAC	CACTGTTGCC	CGGGACGAAC	AGCTCCTTCG
351	TGGAGCCTGA	CGGTACCGGG	TGAGGAAGCA	CCGGCTAACT	CCGTGCCAGC
401	AGCCGCGGTA	ATACGGAGGG	TGCAAGCGTT	GTCCGGATTT	ATTGGGTTTA
451	AAGGGTGCGT	AGGCGGTTTT	ATAAGTCAGT	GGTGAAAGAC	GTCAGCTTAA
501	CTGTCGCAGT	GCCATTGATA	CTGTAGAACT	TGARTATAGT	TGAGGTAGGC

Sequence from clone 18

1	GAGTAACACG	TAAGTAATCT	ACCTTTGGGT	GGGGGATAAY	WTCCNGAAAC
51	CGATGCTAAT	ACCGCATAAT	GCAGCGGCAT	CATATGATGA	CGGTTGTTAA
101	AGCATTTATG	TGCCTAAAGA	GGAGCTTGCG	GCAGGTTAGC	TAGTTGGTAA
151	GGTAATGGCT	TACCAAGGCA	ACGATCTGTA	GCCGACCTGA	GAGGGTGGTC
201	GGTCACACTK	TWYACTGAAT	AACGGGTCAG	ACTCCTACGG	GAGGCAGCAK
251	TYGKGAATTT	TGGGCAATGG	GCGAAAGCCT	GACCCAGCAA	CGCCGCGTGA
301	AGGATGAAGT	CTTTCGGGAT	GTAAACTTCG	GAAATATAGG	AAGAATAAAT
351	GACGGTACTA	TATCTAAGGT	CCGGCTAACT	ACGTGCCAGC	AGCCGCGGTA
401	ATACGTAKGG				

Sequence from clone 24

1	TAACACGTGG	GTAACCTGCC	CTCAGCTCTG	GGATAAGCCC	GGGMMACTGG
51	GTCTAATACC	GGATATGACC	TCGCATCGCA	TGGTGTGGGG	TGGAAAGCCT
101	TGTGCGGCTG	AGGATGGGCC	CGCGGCCTAT	CAGCTTGTTG	GTGGGGTAGT
151	GGCCTACCAA	GGCGACGACG	GGTGGCCGGC	CTGAGAGGGC	GACCGGCCAC
201	ACTGGGACTG	AGACACGGCC	CAGACTCCTA	CGGGAGGCAG	CAGTGGGGAA
251	TATTGCGCAA	TGGGCGAAAG	CCTGACGCAG	CGACGCCGCG	TGAGGGATGA
301	CGGCCTTCGG	GTTGTAAACC	TCTTTCAGCT	CCGACGAAGC	CTTCGGGTGA
351	CGGTAGGGGC	AGAAGAAGCA	CCGGCCAACT	ACGTGCCAGC	AGCCGCGGTA
401	ATACGTAGGG	TGCAAGCGTT	GTCCGGAATT	ATTGGGCGTA	AAGAGCTCGT
451	AGGCGGTTTG	TCGCGTCGAC	TGTGAAAACT	CAGGGGCTCA	ACTCCGAGCT
501	TGCAGTTGAT	ACGGGCAGAC	TAGAGTTCGG	CAGGGGAGAC	TGGAATTCCT
551	GGTGTAGCGG	TGAAATGCGC	AGATATCAGG	AGGAACACCG	GTGGCGAAGG
601	CGGGTCTCTG	GGCCGATACT	GAC		

1	CAGTGGAGCG	ACGAACCAGG	CTTCGGCCTG	GGGCANAGCC	GCGAACGGGT
51	GAGTAACACG	TGGGTGACCT	GCCCCGATGA	CCGGGACAAC	CCGAGGGAAA
101	CTCGGGCTAA	TACCGGATGC	GTCCACCTCG	CGACAGCGTG	GCGGGCAAAG
151	GTAGCTTCGG	CCTCCGCATC	GGGATGGGCC	CGCGGCCCAT	TAGCTTGTTG
201	GTGAGGTAAC	GGCTCACCAA	GGCGACCATG	GGTAGCTGGT	CTGAGAGGAC
251	GATCAGCCAC	ACTGGGACTG	AGACACGGCC	CAGACTCCTA	CGGGAGGCAG
301	NNGTGNGGAA	TCTTGCGCAA	TGCGCGAAAG	CGTGACGCAC	CNACGCCGCN
351	TGGGGGAAGA	CGGCCTTCGG	GTTGTAAACC	CCTTTCANGA	TGNACGAAGG
401	TGTGGCGGTG	ATTAGCCGAC	CATACTGACG	GTACCTCCAG	AAGAAGNCCC
451	NGTTAACTAC	NGNGCCATCA	GCCGCGGTTA	TACGTAGTGG	GG

Sequence from clone 31

1	GTAACACGTG	GGTGACCTGC	CCCGATGACC	GGGACAACYY	GCCNAAACTC
51	GGGCTAATAC	CGGATGCGTC	CACCTCGCGA	CAGCGGGACG	GGCAAAGGTA
101	GCTTCGGCCT	CCGCATCGGG	ATGGGCCCGC	GGCCCATTAG	CTTGTTGGTG
151	AGGTAACGGC	TCACCAAGGC	GACGATGGGT	AGCTGGTCTG	AGAGGACGAT
201	CAGCCACWCT	GGGACTGAGA	CACGGCCCAG	ACTCCTACGG	GAGGCAGYWK
251	TGGGGAATCT	TGCGCAATGC	GCGAAAGCGT	GACGCAGCAA	CGCCGCGTGG
301	GGGAAGACGG	CCTTCGGGTT	GTAAACCCCT	TTCAGTTGGG	ACGAAGCCTC
351	GGCGGTTAAC	AGCCGTTCGG	GGTGACGGTA	CCTTCAGAAG	AAGCCCCGGC
401	TAACTACGTG	CCAGCAGCCG	CGGTAATACG	TAGGGGGCCA	GCGTTGTCCG
451	GAATCATTGG	GCGTAAAGAG	CGCGTAGGCG	GTCCGATCAG	TCCGCTGTGA
501	AAGT				

Sequence from clone 37

CAGTCGAGCG	GAACCACCAG	TGGCAACACT	GGGGCAGTCT	GAGCGCCGAA
CGGGTGAGTA	ACACGTGAGG	AACCTGCCCC	GAAGACCGGG	ATAACCCTCC
GAAAGGAGGG	CTAATACCGG	ATACCCCCAT	CGAGTCGCAT	GGCTTGTTGA
GGAAATGGAT	TCCGCTTCGG	GAGGGCCTCG	CGGCCTATCA	GCTTGTTGGT
GAGGTAACGG	CTCACCAAGG	CGTCGACGGG	TAGCTAGTCT	GAGAGGACGA
TTAGCCACAC	TGGGACTGAG	ACACGGCCCA	GACTCCTACG	GGAGGCAGCA
GTGGGGAATC	TTGCGCAATG	GGCGAAAGCC	TGACGCAGCA	ACGCCGCGTG
GGGGATGAAG	GCTCTCGGGT	TGTAAACCCC	TTTCAGCGGG	GACGATTATG
ACGGTACCCG	CAGAAGAAGG	ACCGGCCAAC	TACGTGCCAG	CAGCCGCGGT
AATACGTAGG	GTCCAAGCGT	TGTCCGGATT	TATTGGGCGT	AAAGAGCTCG
TANGTGGCTT	CGTAAGTCGG	GTGTGAAAAC	CCCAGGCTCA	ACCTGGGGAC
GCCACTCGAT	ACTGCGGTAG	CTAGAGTCTG	GTAGGGGATC	TCG
	CAGTCGAGCG CGGGTGAGTA GAAAGGAGGG GGAAATGGAT GAGGTAACGG TTAGCCACAC GTGGGGAATC GGGGATGAAG ACGGTACCCG AATACGTAGG TANGTGGCTT GCCACTCGAT	CAGTCGAGCGGAACCACCAGCGGGTGAGTAACACGTGAGGGAAAGGAGGGCTAATACCGGGGAAATGGATTCCGCTTCGGGAGGTAACGGCTCACCAAGGTTAGCCACACTGGGACTGAGGGGGATGAAGGCTCTCGGGTACGGTACCGCAGAAGAAGGAATACGTAGGTCCAAGCGTTANGTGGCTCGTAAGTCGGGCCACTCGATACTGCGGTAG	CAGTCGAGCGGAACCACCAGTGGCAACACTCGGGTGAGTAACACGTGAGGAACCTGCCCGAAAGGAGGGCTAATACCGGATACCCCATGGAAATGGATTCCGCTTCGGGAGGGCCTCGGAGGTAACGGCTCACCAAGGCGTCGACGGGTTAGCCACACTGGGACTGAGACACGGCCACGGGGATGAAGCTCTCGGGTTGTAAACCCCACGGTACCGCAGAAGAAGGACCGCCAACAATACGTAGGGTCCAAGCGTTGTCCGGATTTANGTGGCTCGTAAGTCGGGTGTGAAAACGCCACTCGATACTGCGGTAGCTAGAGTCTG	CAGTCGAGCGGAACCACCAGTGGCAACACTGGGGCAGTCTCGGGTGAGTAACACGTGAGGAACCTGCCCGAAGACCGGGGAAAGGAGGGCTAATACCGGATACCCCATCGAGTCGCATGGAAATGGATTCCGCTTCGGGAGGGCCTCGCGGCCTATCAGAGGTAACGGCTCACCAAGGCGTCGACGGGTACCCACACGTGGGGAATCTGGGACTGGGGCGAAAGCCGACGCAGCAGGGGATGAGGCTCTCGGGTTGTAAACCCCTTCAGCGGGACGGTACCGCAGAAGAAGGACCGGCCAACTACGTGCCAGAATACGTAGGGTCCAAGCGTGTCCGGATTATTGGGCGTTANGTGGCTTCGTAAGTCGGTGTGAAAACCCCAGGCTCAGCCACTCGATACTGCGGTAGCTAGAGTCTGGTAGGGAAC

1	GTTGGMCCGG	CGCAAGGGTG	CGTAACACGT	GGGTAATTTG	CCATGAAGTC
51	TGGAATAACT	TGCTGAAAGG	CGAGCTAATG	CCGGATGTGA	TTTTCGGGAA
101	GCATTTCTTG	AAACTCAAAG	TTGGGGACCG	CAAGGCCTGA	CGCTTCTTGA
151	TAAGCCCGCG	GCCTATCAGC	TAGTTGGTGA	GGTAATGGCT	CACCAAGGCT
201	AAGACGGGTA	GCTGGTCTGA	GAGGACGACC	AGCCACACTG	GAACTGAGAC
251	ACGGTCCAGA	CACCTACGGG	TGGCAGCAGT	CGAGAATTTT	TCACAATGGG
301	CGAAAGCCTG	ATGGAGCGAC	GCCGCGTGGG	GGATGAATGG	CTTCGGCCCG
351	TAAACCCCTG	TCATTTGCGA	ACAAACCTTA	CCGGTTAACA	ACCGTTGAGC
401	TGATTGTAGC	GGAAGAGGAA	GGGACGGCTA	ACTCTGTGCC	AGCAGCCGCG
451	GTAATACAGA	GGTCCCAAGC	GTTGTTCGGA	TTCACTGGGC	GTAAAGGGTG
501	CGTAGGTGGT	GGGGTAAGTC	GGATGTGAAA	TCTCCGGGCT	CAACCCGGAA
551	ATGGCATTGG	AAACTACCTT	GCTAGAGGAT	TTGAGGGGGG	ATTGGAATAC
601	TTGGTG				

1	CCGAACGGGT	GCRWAACACG	TGAGAAACCT	GTCCCGAACT	TGGGAATAAC
51	AGCCGAAAAC	SACTGCTAAT	ACCGAATATC	TTCGTAACGT	CGCATGGCGA
101	TTCGAAGAAA	GCTTTATGCG	GTTTGGGAGG	GTCTCGCGGC	CTATCAGCTT
151	GTTGGTGAGG	TAATGGCTCA	CCAAGGCATC	GACGGGTAGC	TGGTCTGAGA
201	GGATGATCAG	CCACACTGGG	ACTGAGACAC	GGCCCAGACT	CCTACGGGAG
251	GCAGCAGTGG	GGAATATTGC	ACAATGGGCG	AAAGCCTGAT	GCAGCGATGC
301	CGCGTGCGGG	AAGAAGGCCC	TAGGGTTGTA	AACCGCTTTC	AGTAGGGAAG
351	AAAATGACGG	TACCTACAGA	AGAAGGTGCG	GCCAACTACG	TGCCAGCAGC
401	CGCGGTGACA	CGTAGGCACC	AAGCGTTGTC	CGGATTTATT	GGGCGTAAAG
451	AGCTCGTAGG	CGGTTTGGTA	AGTCGGGTGT	GAAAACTCTG	GGCTCAACCC
501	AGAGAGGCCA	CTCGATACTG	CCATGACTTG	AGTACGGTAG	GGGAGTGGGG
551	AATTTCTAGT	GTAGCGGTGA	AATGCGCAGA	TATTAGAAGG	AACACCAGTG
601	GCGAAGGCGC	CACTCTGGGC	CGTAA		

Sequence from clone 58

1	AGATATAAAG	TGKCGCACGG	GTGAGTAACA	CGTAGGTAAT	CTACCTTTGA
51	GTGGGGAATA	ACGTTCGGAA	ACGAACGCTA	ATACCGCATA	ATGCAGCGGC
101	ACCGCAAGGT	GACAGTTGTT	AAAGGAGCAA	TCCGCTTAAA	GAGGAGCCTG
151	CGGCAGATTA	GCTAGTTGGT	AAGGTAATGG	CTTACCAAGG	CTACGATCTG
201	TAACCGACCT	GAGAGGGTGG	TCGGTCACAC	TGACACTGAA	TAACGGGTCA
251	GACTCCTACG	GGAGGCAGCA	GTCGGGAATT	TTGGGCAATG	GGCGAAAGCC
301	TGACCCAGCA	ACGCCGCGTG	AAGGATGAAG	TATTTCGGTA	TGTAAACTTC
351	GAAAGAATAG	GAAGAATAAA	TGACGGTACT	ATTTATAA	

Sequence from clone 61

1	TCGGCGGGGG	ATAGCCGGCC	CAACGGCYKG	CCAATACCGC	GTACGAMCAC
51	ATGGGGACAT	CCCTGAGTGG	TGAAAGCAGC	AATGCGCCGA	TGGAGTGCCT
101	CGCGGCCTAT	CAGCTAGTTG	GTGAGGTAAC	GGCTCACCAA	GGCAACGACG
151	GGTAGCTGGT	CTGAGAGGAT	GGCCAGCCAC	ATTGGGACTG	AGACWYKGCC
201	CAGACTCCTA	CGGGAGGCAG	CAGTGGGGAA	TATTGCGCAM	TGGACGAAAG
251	TCTGACGCAT	CKWYKCCGCG	TGTGGGATGA	CGGTCTTCGG	ATTGTAAACC
301	ACTGTCGGGA	GGGACGAATA	CGCCGYAAGG	CGGGTGACGG	TACCTCCAAA
351	GGAAGCWCCG	GCTAACTCCG	TGCCAGCARC	CGCKGTAATA	CGT

1	TGACTAACGC	GTGGGAACAT	GCCCTTTGGT	ACGGGATAGC	CTCGGGAAAC
51	TGGGTGTAAT	ACCGTATGTG	CTCGAAAGAG	GAAAGATTTA	TCGCCAAGGG
101	ATTGGCCCGC	GTTGGATTAG	GTAGTTGGTG	GGGTAATGGC	CTACCAAGCC
151	GACGATCCAT	AGCTGGTTTG	AGAGGATGAT	CAGCCACACT	GGGACTGAGA
201	CACGGCCCAG	ACTCCTACGG	GAGGCAGCAG	TGGGGAATCT	TAGACAATGG
251	GGGCAACCCT	GATCTAGCCA	TGCCGCGTGA	TCGATGAAGG	CCTTAGGGTT
301	GTAAAGATCT	TTCAGTGGGG	AAGATAATGA	CGGTACCCAC	AGAAGAAGCC
351	CCAGCTAACT	CCGTGCCAGC	AGCCGCGGTA	ATACGGAGGG	GGCTAGCGTT
401	ATT				

1	GTCGCTGACC	CTACCGTGGT	TGGCTGCCTC	CCGATTGCTC	AGGTTAGCGC
51	ACCACCTTCG	GGTAGAACCA	ACTCCCATGG	TGTGACGGGC	GGTGTGTACA
101	AGGCCCGGGA	ACGTATTCAC	CGTGGCGTGC	TGATCCACGA	TTACTAGCGA
151	TTCCAGCTTC	ATGCCCTCGA	GTTGCAGAGG	ACAATCCGAA	CTGAGACGGC
201	TTTTTGGGAT	TAGCTTCTCC	TTGCGAAGTA	GCAGCCCACT	GTCACCGCCA
251	TTGTAGCACG	TGTGTAGCCC	AGCCCGTAAG	GGCCATGAGG	ACTTGACGTC
301	ATCCCCACCT	TCCTCTCGGC	TTATCACCGG	CAGTCCCCCT	AGAGTGCCCA
351	ACTGAATGAT	GGCAACTAAG	GGCGAGGGTT	GCGCTCGTTG	CGGGACTTAA
401	CCCAACATCT	CACGACACGA	GCTGACGACA	GCCATGCAGC	ACCTGTGCGC
451	AGGTCTCTTG	CGAGAAGGAA	TCCATCTCTG	GAAGCCGTCC	TGCCATGTCA
501	AGGGCTGGTA	AGGTTCTGCG	CGTTGCTTCG	AATTAAACCA	CATGCTCCAC
551	CGCTTGTGCG	GGCCCCCGTC	AATTCCTTTG	AGTTTTAATC	TTGCGACCGT
601	ACTCCCCAGG	CGGAATGCTT	A		

Sequence from clone 79

1	TCACCCCAGT	CACGAATCCT	ACCGTGGTAA	GCGCCCCCT	TGCGGTTAAG
51	CTACCTACTT	CTGGTAAAAC	CCGCTCCCAT	GGTGTGACGG	GCGGTGTGTA
101	CAAGACCCGG	GAACGTATTC	ACCGCGACAT	GCTGATCCGC	GATTACTAGC
151	GATTCCAACT	TCATGTAGTC	GAGTTGCAGA	CTACAATCCG	GACTACGATA
201	CACTTTCTGG	GATTAGCTCC	CCCTCGCGGG	TTGGCGGCCC	TCTGTATGTA
251	CCATTGTATG	ACGTGTGAAG	CCCTACCCAT	AAGGGCCATG	AGGACTTGAC
301	GTCATCCCCA	CCTTCCTCCG	GTTTGTCACC	GGCAGTCTCA	TTAGAGTGCT
351	CTTTCGTAGC	AACTAATGAC	AAGGGTTGCG	CTCGTTGCGG	GACTTAACCC
401	AACATCTCAC	GACACGAGCT	GACGACAGCC	ATGCAGCACC	TGTGTTACGG
451	CTCTCTTTCG	AGCACACCTC	GATCTCTCGT	GGCTTCCGTA	CATGTCAAGG
501	GTAGGTAAGG	TTTTTCGCGT	TGCATCGAAT	TAATCCACAT	CATCCACCGC
551	TTGTGCGGGT	CCCCGTCAAT	TCCTTTGAGT	TTTAATCTTG	CGACCGTACT
601	CCCCAGGCGG	TCTACT			

1	COTTCCCCC	CTACACCASC	CCCCAACCCC	TCACTAACAC	GTCCCTAACC
1	CC111CGGGGG	GIACACGASC	GGCGAACGGG	IGAGIAACAC	GIGGGIAACC
51	TGCCCTCAGC	TCTGGGATAA	GCCCGGGAAA	CTGGGTCTAA	TACCGGATAT
101	GACTCCGCAT	CGCATGGTGT	GGGGTGGAAA	GCCTTGTGCG	GCTGAGGATG
151	GACCCGCGGC	CTATCAGCTT	GTTGGTGGGG	TAGTGGCCTA	CCAAGGCGAC
201	GACGGGTAGC	CGGCCTGAGA	GGGCGACCGG	CCACACTGGG	ACTGAGACAC
251	GGCCCAGACT	CCTACGGGAG	GCAGCAGTGG	GGAATATTGC	GCAATGGGCG
301	AAAGCCTGAC	GCAGCGACGC	CGCGTGAGGG	ATGACGGCCT	TCGGGTTGTA
351	AACCTCTTTC	AGCTCCGACG	AAGCGAGAGT	GACGGTAGGA	GCAGAAGAAG
401	CACCGGCCAA	CTACGTGCCA	GCAGCCGCGG	TAATACGTAG	GGTGCAAGCG
451	TTGTCCGGAA	TTATTGGGCG	TAAAGAGCTC	GTAGGCGGTT	TGTCGCGTCG
501	ACTGTGAAAA	CTCAGGGGCT	CAACTCCGAG	CTTGCAGTTG	ATACGGGCAG
551	ACTAGAGTTC	GGCAGGGGAG	ACTGGAATTC	CTGGTGTAGC	GGTGAAATGC
601	GCAGATATCA	GGAGGAACAC	CGATGGCGAA	GGCAGGTCTC	TGAGCCACTA
651	CTGAC				

1	CAGCGGTAAG	GNCCTTTCGG	GGGTACACGW	CCGGCGAACG	GGTGAGTAAC
51	ACGTGGGTAA	CCTGCCCTCA	GCTCTGGGAT	AAGCCCGGGA	AACTGGGTCT
101	AATACCGGAT	ATGACTCCGC	ATCGCATGGT	GTGGGGTGGA	AAGCCTTGTG
151	CGGCTGAGGA	TGGACCCGCG	GCCTATCAGC	TTGTTGGTGG	GGTAGTGGCC
201	TACCAAGGCG	ACGACGGGTA	GCCGGCCTGA	GAGGGCGACC	GGCCACACTG
251	GGACTGAGAC	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT
301	GCGCAATGGG	CGAAAGCCTG	ACGCAGCGAC	GCCGCGTGAG	GGATGACGGC
351	CTTCGGGTTG	TAAACCTCTT	TCAGCTCCGA	CGAAGCGAGA	GTGACGGTAG
401	GAGCAGAAGA	AGCACCGGCC	AACTACGTGC	CAGCAGCCGC	GGTAATACGT
451	AGGGTGCAAG	CGTTGTCCGG	AATTATTGGG	CGTAAAGAGC	TTGTAGGCGG
501	TTTGTCGCGT	CTGCTGTGAA	AACTCAGGGC	TTAACCCTGA	GCCTGCAGTG
551	GGTACGGGCA	GACTAGAGTG	TGGTAGGGGA	GACTGGAATT	CCTGGTGTAG
601	CGGTGGAATG	CGCAGATATC	AGGAGGAACA	CCTATGGC	

Sequence from clone 85

1	ATGCAAGTCG	AACGAGGTCC	ATGGAGCTTG	CTCCGGAAGA	CCGAGTGGCG
51	AACGGGTGCG	TAACACGTGA	GTAACCTACC	CTGAACTTGG	GAATAACAGT
101	CGGAAACGAC	TGCTAATACC	GAATATCTTC	ACGACGTCGC	ATGGCGATGT
151	GAAGAAAGCT	TTATGCGGTT	TAGGAGGGTC	TCGCGGCCTA	TCAGCTTGTT
201	GGTGAGGTAA	CGGCTCACCA	AGGCATCGAC	GGGTAGCTGG	TCTGAGAGGA
251	TGATCAGCCA	CACTGGGACT	GAGACACGGC	CCAGACTCCT	ACGGGAGGCA
301	GCAGTGGGGA	ATATTGCACA	ATGGGCGCAA	GCCTGATGCA	GCGATGCCGC
351	GTGCGGGATG	AAGGCCCTAG	GGTTGTAAAC	CGCTTTCAGT	AGGGAAGAAA
401	ATGACGGTAC	CTACAGAAGA	AGGTGCGGCC	AACTACGTGC	CAGCAGCCGC
451	GGTGACACGT	AGGCACCAAG	CGTTGTCCGG	ATTTATTGGG	CGTAAAGAGC
501	TCGTAGGCGG	TTCAGTTAGT	CGGGTGTGAA	AACTCTGGGC	TCAACCCAGA
551	AACGCCACCC	GATACTGCTG	TGACTAGAGT	ACGGTAGG	

1	CAACGATTAA	ACTTTCCTTC	GGGAAAGATA	TMAAGTGGCG	TACGGGTGAG
51	TAACACGTAA	GTAATCTACC	TTTGGGTGGG	GGATAACTCA	GGGAAACTTG
101	AGCTAATACC	GCATAATGCA	GCGGCATCAT	ATGATGACGG	TTGTTAAAGC
151	ATTTATGTGC	CTAAAGAGGA	GCTTGCGGCA	GATTAGCTAG	TTGGTAAGGT
201	AATGGCTTAC	CAAGGCAACG	ATCTGTAGCC	GACCTGAGAG	GGTGGTCGGT
251	CACACTGACA	CTGAATAACG	GGTCAGACTC	CTACGGGAGG	CAGCAGTCGG
301	GAATTTTGGG	CAATGGGCGA	AAGCCTGACC	CAGCAACGCC	GCGTGAAGGA
351	TGAAGTCTTT	CGGGATGTAA	ACTTCGGAAA	TATAGGAAGA	ATAAATGACG
401	GTACTATATC	TAAGGTCCGG	CTAACTACGT	GCCAGCAGCC	GCGGTAATAC
451	GTAGGGACCA	AGCGTTGTTC	GGATTTACTG	GGCGTAAAGG	GTGCGTAGGC
501	GGCGTGACAA	GTCACTTGTG	AAATCTCCGG	GCTTAACTCG	GAACTGCCAA
551	GTGATACTGT	CGTGCTAGAG	TACAGAAAGG	GTAACTGGAA	TTCTTGGTGT
601	AGCGGTGAAA	TGCGTAGATA	TCAAGAGGAA	CACCTGAGGC	GAAGGCGAGT
651	TACTAGGCTG	ATACTGACGC	TGAGGCACGA	AAGCT	

1	GTAATACATC	GGAACGTGCC	CAGTAGTGGG	GGATAGCTCG	KCNCCCGCCG
51	GATTAATACC	GCATACGACC	TACGGGTGAA	AGCGGGGGAT	CGCAAGACCT
101	CGCGCTATTG	GAGCGGCCGA	TGGCAGATTA	GCTTGTTGGT	GGGGTAAAAG
151	CCTACCAAGG	CGACGATCTG	TAGCTGGTCT	GAGAGGACGA	CCAGCCACAC
201	TGGGACTGAG	ACACGGCCCA	GACTCCTACG	GGAGGCAGCA	GTGGGGAATT
251	TTGGACAATG	GGCGCAAGCC	TGATCCAGCA	ATGCCGCGTG	TGTGATGAAG
301	GCCTTCGGGT	TGTAAAGCAC	TTTTAGTGGG	AACGAAACGG	TCCGGGCCAA
351	TACCCTGGAT	TACTGACGGT	ACCCGCAGAA	TAAGCACCGG	CCAACTACGT
401	GCCAGCAGCC	GCGGTAATAC	GGAGGGTGCG	AGCGTTATCC	GGAATCACTG
451	GCGCGTAAAG	GGCGCGTAGG	CGGTTTGTCA	AGTCCGATGT	TAAAGACCGG
501	GGCTCAACCC	CGACACGGCG	TTGGATACTG	ACGAGCTTGA	CGACTGGAGA
551	GGGAGGTAGA	ATTACCAGAG	TAGCGGTGGA	ATGCGTAGAT	ACTGGTAGGA
601	ATACCCATAG	CGAAGGCAGC	CTTCTGGACA	GTTAG	

Sequence from clone 94

1	TCGAACGAGA	AAAGCCCTTC	GGGGTTAGTA	AAGTGGCGAA	CGGGTGCGTA
51	ACACGTGGGC	AATCTGCCCC	TCGCAGGGGG	ACAACCGGAG	GAAACTCCGG
101	CTAATACCCC	GTAAGCTTTC	AGGGTCGCAT	GGCCTTGTAA	GGAAAGGTAG
151	CTTCGGCCAT	CCGGCGAGGG	ATGAGCCCGC	GGTACATTAG	CTAGTTGGTG
201	GGGTAACGGC	CTACCAAGGC	GACGATGTAT	AGCTGGTCTG	AGAGGATGAT
251	CAGCCACACT	GGGACTGAGA	CACGGCCCAG	ACTCCTACGG	GAGGCAGCAG
301	TCGGGAATCT	TGCACAATGG	GCGAAAGCCT	GATGCAGCAA	CACCGTGTGA
351	GCGAGGAAGG	CCTTCGGGTC	GTAAAGCTCT	GTTGTTGGGG	AAGAAGGGCG
401	AAGGGTTAAT	AGCCCCTAGC	TTGACGGTAC	CCTTCGAGGA	AGCCCCAGCT
451	AACTACGTGC	CAGCAGCCGC	GGTAATACGT	AGGGGGCGAG	CGTTGTCCGG
501	AATTATTGGG	CGTAAAGAGC	GTGTAGGCGG	TTCGGTAAGT	CTGTCGTGAA
551	AACCTGGGGC	TCAACCCCGG	GCGTGCGATG	GATACTGCCG	

1	GTAAGGCTCC	TTCGGGAGTA	CACGAGCGGC	GAACGGGTGA	GTAACACGTG
51	AGCAATCTGC	CCTTCACACG	GGGATAACTT	CGGGAAACCG	ATGCTAATAC
101	CCGATACGAC	CACTTCAGGC	ATCTGATGGT	GGTGGAAAGT	TCCGGCGGTG
151	AAGGATGAGC	TCGCGGCCTA	TCAGCTTGTT	GGTGGGGTAA	TGGCCCACCA
201	AGGCAACGAC	GGGTAGCCGG	CCTGAGAGGG	TGACCGGCCA	CACTGGGACT
251	GAGACACGGC	CCAGACTCCT	ACGGGAGGCA	GCAGTGGGGA	ATATTGGACA
301	ATGGGCGAAA	GCCTGATCCA	GCAACGCCGC	GTGAGGGATG	ACGGCCTTCG
351	GGTTGTAAAC	CTCTTTCAGC	AGGGACGAAG	CGAAAGTGAC	GGTACCTGCA
401	GAAGAAGCAC	CGGCCAACTA	CGTGCCAGCA	GCCGCGGTAA	TACGTAGGGT
451	GCGAGCGTTG	TCCGGAATTA	TTGGGCGTAA	AGGGCTCGTA	GGCGGTTTGT
501	CACGTCGGGA	GTGAAAACTC	AGGGCTTAAC	CCTGAGCCTG	CTTCCGATAC
551	GGGCAGACTA	GAGGTATGCA	GGGGAGAACG	GAATTCCTGG	TGTAGCGGTG
601	AAATGCGCAG	ATATCAGGAG	GAACACCGGT	GGCGAAGGCG	GTTCTCTGG

1	ACACGTGAAG	AAACCTGCCC	TGCAGACCGG	AATAACCACT	NCCAAACTGT
51	GGCTAATGCC	GGATGACCTC	AGCGGTCCGC	ATGGACCGCA	GAGCAAATGG
101	TCAGCCGCTG	CAGGATGGCC	TCGCGGCCTA	TCANCTTGTT	GGTGGGGTAA
151	TGGCCCACCA	AGGCTCCGAC	GGGTAGCTGG	CGTGAGAGCG	CGACCAGCCA
201	CACTGGGACT	GAGACACGGC	CCAGACTCCT	ACGGGAGGCA	GCAGTGGGGA
251	ATCTTGCTCA	ATGGGCGAAA	GCCTGAAGCA	GCGACGCCGC	GTGCGGGAAG
301	AAGGCCTTCG	GGTTGTAAAC	CGCTTTCAGG	AGGGAAGAAG	CGAAAGTGAC
351	GGTACCTCCA	GAAGAAGCCC	CGGCCAACTA	CGTGCCAGCA	GCCGCNGTAT
401	ACGTANGGGG	CAAGCGTTGT	CCGGAATTAT	TGGGCGTAAA	GAGCTCGTAN
451	GCNGTCCATT	AAGTCGGATG	TGAATCTCAG	GGCTCAACCC	TGAAATTGCA
501	TCCGATACTG	TT			

Sequences from MVT 9 16S rDNA clone library

Sequence from clone 4

1	CGGGTGAGTA	CACGTGGGCA	ACCTGCCCCT	CGCAGGGGAC	AACCGGAGGA
51	AACTCCGGCT	AATACCCCGA	TACGCGTTGT	TGGATCGCAT	GGTCCGGCAA
101	GGAAAGGTAG	CTTCGGCCAT	CCGGCGAGGG	ATGGGCCCGC	GTTGCATTAG
151	CGTAGTTGGT	GGGGTAACGG	CCCACCAAGG	CAACGAGTGC	GTAGCTGGTC
201	TGAGAGGATG	ATCAGCCAGA	CTGGGACTGA	GACACGGCCC	AGACTCCATA
251	CGGGAGGCAG	CAGCCAGGAA	TCTTGGGCAA	TGGGCGAAAG	CCTGACCCAG
301	CAACACCGTG	TGGGTGACGA	AGGCCTTAGG	GTCGTAAAGC	CCTGTTGATA
351	GGGACGAAGG	GCGAAGGGTT	AATAGCCCCC	AGCTTGACGG	TACCTTTCGA
401	GGAAAGCCCC	GGCTAACTAC	GTGCCAGCAG	CCGCGGTAAT	ACGTAGGGGC
451	GAGCGTTGTC	CGGAATTATT	GGGCGTAAAG	AGCGTGTAGG	CGGTTCGGTA
501	AGTCTGCTGT	GAAATCCTAG	GGCTTCAAAC	CCCTGCNGNA	CNGTTGCACN
551	ANAGCGGAAT	ACTGCCGGGG	CTAGAGGGT		

1	GTAAGGCGAC	GGCAATCATC	TCACGGTTGG	GTATAGCCGC	GAGAAATCGC
51	GGGTAATCCC	CAGCGACGCA	GGGTGTCGGC	ATCGACGCCC	TGCCAAAGGC
101	TCGCCGCCGT	GGGACGAGCC	GTCGTGGTAT	TAGGTTGTTG	GCGGGGTAAC
151	GGCCCACCAA	GCCTGCGATG	CCTACCGGGC	GTGCGAGCGT	GGCCCGGCAC
201	ACTGGGACTG	AGACACTGCC	CAGACTCCTA	TGGGAGGCTG	CAGTCGAGAA
251	TCTTCGGCAA	TGGGCGCAAG	CCTGACCGAG	CGACGCCGCG	TGGAGGACGA
301	AGGCCTTCGG	GTTGTAAACT	CCTGTCGAGG	GGAAGGAAGG	GGCCGCAAGG
351	CCCTTGACCG	CTCCCTGGAG	GAAGCACGGG	CTAAGTTCGT	GCCAGCAGCC
401	GCGGTAAGAC	GAACCGTGCG	AACGTTATTC	GGAATCACTG	GGCTTAAAGC
451	GCGTGTAGGC	GGGTCGGTGC	GTCGGCCGTT	GAAATCCCCC	GGCTCAACCG
501	GGGAAGTGGC	GCCGATACGA	CCGGCCTGGA	GACGACGTAN	CGGGGAACTG
551	GAACTTCCGG	TGGAGCGGNG	AAATGCGTTG	AGATCGGAAG	AACGCCGNGG
601	CGAAAGCGAG	TTCCTGGACG	TCGGCTG		

1	CCGCGGCGAA	CGGGTGAGTA	ACACGTGAAC	ATCTGTCCCT	ACATTCCGGA
51	TAATTGGCCG	AAAGGCCTTG	TAATACGGGC	GAGGATGGTG	GTGAGGCATC
101	TCACTATCAG	GAAGGTGAAG	CGCAAGCTTT	GCCGTGCAGG	AGGGGTTCGC
151	GGCCTATCAG	TTAGTTGGTG	GGGTAACGGC	CTACCAAGAC	GACGACGGGT
201	AGCTGGTCTG	AGAGGATGGT	CAGCCACATT	GGAACTGAGA	CACTGTCCAG
251	ACCCCTACGG	GAGGCTGCAG	TCGAGAATCT	TGGGCAATGC	ACGAAAGTGT
301	GACCCAGCGA	CGCCGCGTGG	AGGATGAAGG	CCCTTGGGTT	GTAAACTCCT
351	TTTAGGGGAG	AAGAACGCTC	CTTCGGGAGC	TTGACGGTAC	CCCCTGAATA
401	AGCCACGGCT	AACTACGTGC	CAGCAGCCGC	GGTAATACGT	AGGTGGCAAG
451	CGTTGTCCGG	ATTTACTGGG	CGTAAAGCGT	GTGTAGGCGG	ACCTTTAAGT
501	AGAAAGTGAA	AGGTCGGAGC	TCAACTCCTA	CACTGCTCTC	TATACTGGAG
551	GTCTTGAGTG	TCGGAGAGGA	AGATGGA		

Sequence from clone 14

1	GCAAGGCCAG	TGGCCCAAGG	GGTGATTTAA	GGCGCCGTAA	CCAACCCCAC
51	GGTCGGGGCA	TAGCCGCGGG	AAACCGCGGG	TAATTCTCGG	CGACGCCCTA
101	TTCCGGCATC	GGGACGGGGC	CAAAGGTGCG	ATTCCTGCCG	TGGGACGGGC
151	CGTCGTGGTA	TTAGCTTGTT	GGCGGGGTGA	CGGCCCACCA	AGGCTGCGAT
201	GCCTACCGGG	CGTGCGAGCG	TGGCCCGGCA	CACTGGGACT	GAGACACTGC
251	CCAGACTCCT	ACGGGAGGCT	GCAGTCGAGA	ATCTTCGGCA	ATGGGCGCAA
301	GCCTGACCGA	GCGGCGCCGC	GTGGAGGACG	AAGGCCTTCG	GGTTGTAAAC
351	TCCTGTCGAG	GGGGAGGAAG	GGGGCGTGCA	GAGCGTTCCT	TGACCGATCC
401	CTGGAGGAAG	CACGGGCTAA	GTTCGTGCCA	GCAGCCGCGG	TAAGACGAAC
451	CGTGCGAACG	TTATTCGGAA	TCACTGGGCT	TAAAGCGTGC	GTAGGCGGGC
501	CGCCGCATCG	GTCGCTGAAA	TCCCCCGGCT	TAACCGGGGA	AGTGGCGCCG
551	AGATGGGCGG	TCTGGACGGG	GCGTAGGGGG	ATCTGGAACT	CCCGGTGGAG
601	CGGTGAAATG	CGTTGAGATC	GGGAGGA		

1	GTACACGAGC	GGAGAACGGG	TGAGTAACAC	GTGGGTAACC	TGCCTCAGCT
51	CTGGGATAAG	CCCGGGAAAC	TGGGTCTAAT	ACCGGATATG	ACCTCGCATC
101	GCATGGTGTG	GGGTGGAAAG	CCTTGTGCGG	CTGAGGATGG	GCCCGCGGCC
151	TATCAGCTTG	TTGGTGGGGT	AGTGGCCTAC	CAAGGCGACG	ACGGGTAGCC
201	GGCCTGAGAG	GGCGACCGGC	CACACTGGGA	CTGAGACACG	GCCCAGACTC
251	CTACGGGAGG	CAGCAGTGGG	GAATATTGCG	CAATGGGCGA	AAGCCTGACG
301	CAGCGACGCC	GCGTGAGGGA	TGACGGCCTT	CGGGTTGTAA	ACCTCTTTCA
351	GCTCCGACGA	AGCCTTCGGG	TGACGGTAGG	GGCAGAAGAA	GCACCGGCCA
401	ACTACGTGCC	AGCAGCCGCG	GTAATACGTA	GGGTGCAAGC	GTTGTCCGGA
451	ATTATTGGGC	GTAAAGAGCT	CGTAGGCGGT	TTGTCGCGTC	GACTGTGAAA
501	ACTCAGGGCT	CAACTCCGAG	CTTGCAGTTG	ATACGGGCAG	NCTAGAGTTC
551	GGCAGGGAGA	CTGGAATTCC	TGGTGTAGCG	GTGAAATGCG	CAGATATCAG
601	GAGGAACACC	GGTGGCGAAG	GCGGAAACGC	GTGTGCTAC	

Sequence from clone 19

1	GCTTGCGGCG	TGCCTAAGAA	ATGCAAGTCG	AACGGACATT	CCAGCAATGG
51	GGTGCTAGTG	GCGAACGGTC	GCGTAACACG	TAGGCAACCT	GCCCTGAAGT
101	GGGGGACAAC	AGCCCGAAAG	GGCTGCTAAT	ACCGCATGTG	AACAACGAAT
151	CACATGGTTT	GTTGTTCAAA	GGCTATGGCA	ACATGGTCGC	TTTGGGATGG
201	GCTTGCGGCC	TATCAGGTAG	TTGGTGGGGT	AATGGCCCAC	CAAGCCGACG
251	ACGGGTAGCT	GGTCTGAGAG	GACGATCAGC	CGGATTGGGA	CTGAGATACG
301	GCCCAGACTC	CTACGGGGGG	CAGCAATTAG	GAATCTTGCG	CAATGGGCGA
351	AAGCCTGACG	CAGCGACGCC	GCGTGCGGGA	TGAAGGCCTT	CGGGTCGTAA
401	ACCGCTTTTA	ACGGGGAAGA	AGAATGTGAC	GGTACCCGTT	GAATAAGCCC
451	CGGCTAACTA	CGTGCCAGCA	GCCGCGGTAA	TACGTAGGGG	GCGAGCGTTG
501	TCCGAAGTTA	CTGGGCGTAA	AGCGCGCGTA	GGCGGTTGCC	TAAGTCTGGG
551	GTGAAAGGTT	CAGGGCTTAA	CCCGAACAGT	GCCTTGGATA	CTGGGCGACT
601	TGAGTGCCGA	AGAGGAAAGC	GGAATTCCTG	GTGTAGCGGT	GAAATGCGTA
651	GATATCAGGA	GGAACACCGA	TGGCGAAGG		

Sequence from clone 21

1	GGGTGAGTAA	CACGTGGGTA	ATCTACTCTG	GGTGGGGGAT	AACTCTGGGA
51	AACCGGAGCT	AATACCGCAT	AAGCCTGAAA	AGGGAAAGGG	GAAATTCGCC
101	GAGAGAGGAG	CCCGCGGCCG	ATTAGCTAGT	TGGTGGGGTA	AAGGCCTACC
151	AAGGCGACGA	TCGGTAGCCG	GCCTGAGAGG	GCACACGGCC	ACACTGGCAC
201	TGAAACACGG	GCCAGACTCC	TACGGGAGGC	AGCAGTGGGG	AATCTTGCAC
251	AATGGGGGCA	ACCCTGATGC	AGCGACGCCG	CGTGAGCGAT	TAAGCCCTTC
301	GGGGTGTAAA	GCTCTTTCGG	CAGGAACGAT	CATGACGGTA	CCTGAAGAAG
351	AAGCTGCGGC	TAACTACGTG	CCAGCAGCCG	CGGTAATACG	TAGGCAGCGA
401	GCGTTGTCGG	AGTTTACTGG	GCGTAAGGGT	GCGTAGGCGG	GTTTTCTTAA
451	GGTCTTGGTG	TGAAATCTCC	CGGGTCA		

Sequence from clone 23

1	ACACGTGAGA	AACCTGTCCC	GAACTTGGGA	ATAACAGCCG	AAAACSACTG
51	CTAATACCGA	ATATCTTCGT	AACGTCGCAT	GGCGATTCGA	AGAAAGCTTT
101	ATGCGGTTTG	GGAGGGTCTC	GCGGCCTATC	AGCTTGTTGG	TGAGGTAATG
151	GCTCACCAAG	GCATCGACGG	GTAGCTGGTC	TGAGAGGATG	ATCAGCCACA
201	CTGGGACTGA	GACACGGCCC	AGACTCCTAC	GGGAGGCAGC	AGTGGGGAAT
251	ATTGCACAAT	GGGCGAAAGC	CTGATGCAGC	GATGCCGCGT	GCGGGAAGAA
301	GGCCCTAGGG	TTGTAAACCG	CTTTCAGTAG	GGAAGAAAAT	GACGGTACCT
351	ACAGAAGAAG	GTGCGGCCAA	CTACGTGCCA	GCAGCCGCGG	TGACACGTAG
401	GCACCAAGCG	TTGTCCGGAT	TTATTGGGCG	TAAAGAGCTC	GTAGGCGGTT
451	TGGTAAGTCG	GGTGTGAAAA	CTCTGGGCTC	AACCCAGAGA	GGCCACTCGA
501	TACTGCCATG	ACTTGAGTAC	GGTAGGGGAG	TGGGGAATTT	CTAGTGTAGC
551	GGTGAAATGC	GCAGATATTA	GAAGGAACAC	CAGTGGCGAA	GGCGCCACTC
601	TGGGCCGTAA	CTGACG			

1	GGCAGAGTTA	CGAACGGGTG	AGTAAAGTGG	GTGACTGCCC	CGATGACCGG
51	GACAACCCGA	GGAAANTCGG	GCTAATACCG	GGATGTGTCC	ACCTCGCGAC
101	AGCGGGGCGG	GCAAAGGTAG	CTTCGGCCTC	CGCATCGGGA	TGGGCCCGCG
151	GCCCATTAGC	TTGTTGGTGA	GGTAACGGCT	CACCAAGGCG	ACNATGGGTA
201	GCTGGTCTGA	GAGGACGATC	AGCCACACTG	GGACTGAGAC	ACGGCCCAGA
251	CTCCTACGGG	AGGCAGCAGT	GGGGAATCTT	GCGCAAATGC	GCGAAAGCGT
301	GACGCAGCAA	CGCCGCGTTG			

Sequence from clone 28

1	TTGGTAGCAA	TCCTAAGAGT	ANTTAGTGGC	GAACGGGTGC	GTAACACGTG
51	GCAATCTGCC	GAGAAGTGGG	GGATAGCTCG	CCGAAAGGCG	AATTAATACC
101	GCATATGACC	AGAGGCGACA	TCGCTTCGAA	ATCAAAGGTG	GCGCAAGCTA
151	CCGCTTTCCG	ATGAGCCCGC	GGCCTATCAG	CTAGTTGGTG	AAGTAACGGC
201	TCACCAAGGG	CGATGACGGG	TAGCTGGTCT	GAGAGGACTC	NACCAGTCAC
251	ACTGGAACTG	AGACACGGTC	CAGACACCTA	CGGGTGGCAG	CAGTCGAGAA
301	TTTTTTCTCAA	TGGGGGAAAC	CCTGAAGGAG	CGACGCCGCG	TGGAGGATGA
351	AGGCTTTCGG	GTTGTAAAAC	TCCTGTCATT	TTGAGAACAC	GGTGCCGAAC
401	AAGTAACTAC	TGTCGGGCTT	GATAGTATCC	GAAGAGGAAG	AGACGGCTAA
451	CTCTGTGCCA	GCAGCCGCGG	TAATACCGAG	GTCTCAAGCG	TTGTTCGGAT
501	ТС				

Sequence from clone 37

1	TGCGTAACAC	GTGGGTAATT	TGCCATGAAG	TCTGGAATAA	CTTGCTGAAA
51	GGCGAGCTAA	TGCCGGATGT	GATTTTCGGG	AAGCATTTCT	TGAAACTCAA
101	AGTTGGGGAC	CGCAAGGCCT	GACGCTTCTT	GATAAGCCCG	CGGCCTATCA
151	GCTAGTTGGT	GAGGTAATGG	CTCACCAAGG	CTAAGACGGG	TAGCTGGTCT
201	GAGAGGACGA	CCAGCCACAC	TGGAACTGAG	ACACGGTCCA	GACACCTACG
251	GGTGGCAGCA	GTCGAGAATT	TTTCACAATG	GGCGAAAGCC	TGATGGAGCG
301	ACGCCGCGTG	GGGGATGAAT	GGCTTCGGCC	CGTAAACCCC	TGTCATTTGC
351	GAACAAACCT	TACCGGTTAA	CAACCGTTGA	GCTGATTGTA	GCGGAAGAGG
401	AAGGGACGGC	TAACTCTGTG	CCAGCAGCCG	CGGTAATACA	GAGGTCCCAA
451	GCGTTGTTCG	GATTCACTGG	GCGTAAAGGG	TGCGTAGGTG	GTGGGGTAAG
501	TCGGATGTGA	AATCTCCGGG	CTCAACCCGG	AAATGGCATT	GGAAACTACC
551	TTGCTAGAGG	ATTTGAGGGG	GGATTGGAAT	ACTTGGTGTA	

Sequence from clone 41

1	ATTTGGTGGC	GACCGKCAAA	CGGGTGCGGA	ACACGTACAG	AACCTTCCTT
51	TAAGTGGGGG	ATAGCCCAGA	GAAATTTGGA	TTAATACCCC	GTAACATTAT
101	GAAGTGGCAT	CACCTTATAA	TTATAGATTT	ATCGCTTAGA	GATGGCTGTG
151	CGGCTGATTA	GGTAGTTGGT	GTGGGTAACG	GCCCACCAAG	CCTTCGATCA
201	GTAACTGGTG	TGAGAGCACG	ACCAGTCACA	CGGGCACTGA	GACACGGGCC
251	CGACTCCTAC	GGGAGGCAGC	AGTAAGGAAT	ATTGGTCAAT	GGACGCAAGT
301	CTGAACCAGC	CATGCCGCGT	GAAGGATGAA	GGTCCTCTGG	ATTGTAAACT
351	TCTTTT				

1	CGGGTGAGTA	ACACGTGAAT	AACCTGCCCT	CACATTCTGG	ATAATTCACC
51	GAAAGGTGTT	GTAATACAGG	CGAGGATTCT	TAAGAGGCAT	TTCTTGAGAA
101	GGGAAGGCGC	AAGCCGTGCG	AGGAGGGGTT	CGCGGATTAT	CAGGTAGTTG
151	GTGAGGTAAC	GGCTCACCAA	GCCGACGACG	ATTAGCTGGT	CTGAGAGGAT
201	GGTCAGCCAC	ATTGGGACTG	AGACACTGCC	CAGACTCCTA	CGGGAGGCTG
251	CAGTCGAGAA	TCTTGCACAA	TGTACGAAAG	TATGATGCAG	CGACGCCGCG
301	TGAAGGATGA	AGGCCCTCTG	GGTCGTAAAC	TTCTTTTATG	TGGGAAGAAT
351	AAATGACGGT	ACCGCATGAA	TAAGCCACGG	CTAACTACGT	GCCAGCAGCC
401	GCGGTAATAC	GTAGGTGGCA	AGCGTTGTCC	GGATTTACTG	GGCGTAAAGA
451	GTATGTAGGC	GGATGTTTAA	GTAGGAAGTG	AAAGGTTGGA	GCTCAACTCC
501	GACACTGCTC	CCTATACTGG	GCATCTTGAG	GGCCGGAGAG	GAAAGCGGAA
551	CGACACGTGT	AGCGGTGAAA	TGCGTTGATA		

1	TGGACGCGAC	GAACTAGTGC	TTCGTGCCTG	GTGTGCAGCA	GCCTGCTGAA
51	CGTGTGTGAG	TAACACGTGG	GCAACCTTGC	CCCGATGATT	CGGGACAANC
101	CGGGGAAACT	CGGGCTAAGT	ACCGAATGTG	CTCTCCTCAC	ATCAGTGAGG
151	CGTGTAAAGG	AAGCTTCGGC	CTCCGCATTG	GGATGGGCCC	CGCAGGCCCA
201	TTAGCTTGTT	GGTGAGGTAA	CGGCTCACCA	AGGCCGNGAA	TGGGTAGCTG
251	GTCTGAGAGG	ACGATCAGCC	ACACTTGGGA	CTTGAGACAC	GGNCCAGAAA
301	CTTCCCTTAC	GTGTGTATGT	GNCNACGGCA	GTCGNGNGTG	AAACTTCTTT
351	GCTNCAATTG	ACTGCCGAAA	TCA		

Sequence from clone 46

1	GCAGTCGAAC	GATTAACTTT	CCTTCGCGGA	AAGATATACA	AGTGGCGCAC
51	GGGTGAGTAC	ACGGTAGTGT	AATGTACCTT	TGGNGTGGGG	AATAACTTAG
101	GGAAACTTAA	GCTAATACCG	CATAATGCAG	CGGCTCCTTC	GGGAGACAGT
151	TGTTAAAGAT	TTATCGCCTA	AAGAGCAGCC	TGCGGCAGAT	TAGCTAGTTG
201	GTAAGTGTAA	TGGCTTACCA	AGGCTACGAT	CTGTATCCGA	CCTGAGAGGG
251	TGGTCGGACA	CCACTGACAC	TNAAATTTAA	CCGGTTCCAA	ATCTCCTCTN
301	TAACGGGAAA	AGCGCAAACA	TCTCCGGAAA	ATTTGGGGGC	CACCAATGGC
351	GCCGAAACC				

Sequence from clone 48

1	ATATAAAGTG	KCGCACGGGT	GAGTAACACG	TAGGTAATCT	ACCTTTGAGT
51	GGGGAATAAC	GTTCGGAAAC	GAACGCTAAT	ACCGCATAAT	GCAGCGGCAC
101	CGCAAGGTGA	CAGTTGTTAA	AGGAGCAATC	CGCTTAAAGA	GGAGCCTGCG
151	GCAGATTAGC	TAGTTGGTAA	GGTAATGGCT	TACCAAGGCT	ACGATCTGTA
201	ACCGACCTGA	GAGGGTGGTC	GGTCACACTG	ACACTGAATA	ACGGGTCAGA
251	CTCCTACGGG	AGGCAGCAGT	CGGGAATTTT	GGGCAATGGG	CGAAAGCCTG
301	ACCCAGCAAC	GCCGCGTGAA	GGATGAAGTA	TTTCGGTATG	TAAACTTCGA
351	AAGAATAGGA	AGAATAAATG	ACGGTACTAT	TTATA	

1	GTGGAGCGAC	GAACGGGCTT	CGGCCCGGGG	TCAAAGCCTG	CGAACGGGTG
51	AGTAACACGT	GGGTAACCTG	CCCCGATGAC	CGGGACAACC	CGAGGAAACC
101	CTGGGCTNGT	ACCGGATGCG	CTCGGTTCAC	ACCAGTGGGC	CGAGCAAAGG
151	TAGGTTCGGC	CGTCCGCCTC	GGGATGGGCC	CGCAGAGCNG	CGATTAGCTT
201	GTTGGTGGGG	TAACGGACTT	ACCAAAGGNT	AACGAANGGC	CGTTAACAGC
251	CTTTGGCGCT	CCTTTGAAGT			

Sequence from clone 51

1	GCGGCAGACG	GGAGAGTAAC	ACGTGGGAAC	GCGCCCTTCG	GTTCGGAATA
51	ACTCAGGGAA	ACTTGAGCTA	ATACCGGATA	CGCCCTTACG	GGGAAAGATT
101	TATTGCCGAA	GGAACGGCCC	GCGTCGGATT	AGCTAGTTGG	TGAGGTAATG
151	GCTCACCAAG	GCAACGATCC	GTAGCTGGTC	TAAGAGGATG	ATCAGCCTCA
201	CTGGGACTGA	GACACGGCCC	AGACTCCTAC	GGGAGGCAGC	AGTGGGGAAT
251	ATTGGACAAT	GGGCGAAAGC	CTGATCCAGC	CATGCCGCGT	GGATGATGAA
301	GGCCTTAGGG	TTGTAAAGTC	CTTTTAACGG	GGAAGATAAT	GACGGTACCC
351	GTAGAATAAG	CCCCGGCTAA	CTTCGTGCCA	GCAGCCGCGG	TAATACGAAG
401	GGGGCTAGCG	TTGCTCGGAA	TTACTGGGCG	TAAAGCGCAC	GTAGGCGGAT
451	TGTTAAGTCG	GGGGTGAAAT	CCTGGAGCTC	AACTCCAGAA	CTGCCTTCGA
501	AACTGGCGAT	CTTGAGTCCG	GGAGAGGTGA	GTGGAACTGC	GAGTGTAGAG
551	GTGAAATTCG	TAGATATTCG	CAAGAACACC	AGTGGCGAAG	GCGGCTCACT
601	GGCCCGGTAC				

Sequence from clone 55

1	GCCTTCGGGT	CTAGTGGCGC	ACGGGTGCGT	AACGCGTGGG	AATCTGCCCT
51	TGGGTTCGGG	ATAACAGTTG	GAAACGACTG	CTAATACCGG	ATGATGACTT
101	CGGTCCAAAG	ATTTATCGCC	CAAGGATGAG	CCCGCGTAGG	ATTAGCTTGT
151	TGGTGAGGTA	AGAGCTCACC	AAGGCGACGA	TCCTTAGCTG	GTCTGAGAGG
201	ATGATCAGCC	ACACTGGGAC	TGAGACACGG	CCCAGACTCC	TACGGGAGGC
251	AGCAGTGGGG	AATATTGGAC	AATGGGCGAA	AGCCTGATCC	AGCAATGCCG
301	CGTGAGTGAT	GAAGGCCTTA	GGGTTGTAAA	GCTCTTTTAC	CCGGGATGAT
351	AATGGCAGTA	CCGGGAGAAT	AAGCCCCGGC	TAACTCCGTG	CCAGCAGCCG
401	CGGTAATACG	GAGGGGGCTA	GCGTTGTTCG	GAATTACTGG	GCGTAAAGCG
451	CGCGTAGGCG	GCTTTGTAAG	TTAGGGGTGA	AAGCCCGGAG	CTCAACTCCG
501	GAATTGCCTT	TAAGACTGCA	TCGCTAGAAT	CATGGAGAGG	TGAGTGGAAT
551	TCCGAGTGTA	GAGGTGAAAT	TCGTAGATAT	TCGGAAGAAC	ACCAGTGGCG
601	AAGGCGACTC	ACTGGACATG	TATTGACGCT	GAGGTGCGAA	AGCGTGGGGA
651	GCAAACAGGA	TTAGATACCC	TGGTAGTCCA	CGCC	

1	GGTGGCGAGT	GGCGGACGGG	TGAGGAATAC	ATCGGAATCT	ACTCTGTCGT
51	GGGGGATAAC	GTAGGGAAAC	TTACGCTAAT	ACCGCATACG	ACCTACGGGT
101	GAAAGCAGGG	GATCTTCGGA	CCTTGCGCGA	TTGAATGAGC	CGATGTCGGA
151	TTAGCTAGTT	GGCGGGGTAA	AGGCCCACCA	AGGCGACGAT	CCGTAGCTGG
201	TCTGAGAGGA	TGATCAGCCA	CACTGGAACT	GAGACACGGT	CCAGACTCCT
251	ACGGGAGGCA	GCAGTGGGGA	ATATTGGACA	ATGGGCGCAA	GCCTGATCCA
301	GCCATACCGC	GTGGGTGAAG	AAGGCCTTCG	GGTTGTAAAG	CCCTTTTGTT
351	GGGAAAGAAA	TCCAGCTGGC	TAATACCCGG	TTGGGATGAC	GGTACCCAAA
401	GAATAAGCAC	CGGCTAACTT	CGTGCCAGCA	GCCGCGGTAA	TACGAAGGGT
451	GCAAGCGTTA	CTCGGAATTA	CTGGGCGTAA	AGCGTGCGTA	GGTGGTCGTT
501	TAAGTCCGTT	GTGAAAGCCC	TGGGCTCAAC	CTGGGAACTG	CAGTGGATAC
551	TGGGCGACTA	GAGTGTGGTA	GAGGGTAGCG	GAATTCCTGG	TGTAGCAGTG
601	AAATGCGTAG	AGATCAGGAG	GAACATCCAT	GGCGAAGGCA	GCTACCTGGA
651	CC				

1	GAGGTAATGT	ACCTTTGGGT	CGGGAWTAAC	YTAGGGAAAC	TTAAGCTAAT
51	ACCGCATAAT	GCAGCGGCTC	CTTCGGGAGA	CAGTTGTTAA	AGATTTATCG
101	CCTAAAGAGC	AGCCTGCGGC	AGATTAGCTA	GTTGGTAAGG	TAACGGCTTA
151	CCAAGGCTAC	GATCTGTATC	CGACCTGAGA	GGGTGGTCGG	ACNYWCTGAC
201	ACTGAATAAC	GGGTCAGACT	CCTACGGGAG	GCAGCAGTCG	GGAATTTTGG
251	GCAATGGGCG	AAAGCCTGAC	CCAGCAACGC	CGCGTGAAGG	ATGAAGTCTT
301	TCGGGATGTA	AACTTCGTAA	GAATAGGAAG	AATAAATGAC	GGTACTATTT
351	GTAAGGTCCG	GCTAACTACG	TGCCAGCAGC	CGCGGTAATA	CGTAGGGACC
401	AAGCGTTGTT	CGGATTTACT	GGGCGTAAAG	GGCGCGTAGG	CGGCGTGACA
451	AGTCAATTGT	GAAATCTCCG	GGCTTAACTC	GGAACGGTCA	ATTGATACTG
501	TTGT				

Sequence from clone 62

1	TCGGGAGTAC	ACGAGCGGCG	AACGGGTGAG	TAACACGTGA	GCAATCTGCC
51	CTTCACACGG	GGATAACTTC	GGGAAACCGA	TGCTAATACC	CGATACGACC
101	ACTTCAGGCA	TCTGATGGTG	GTGGAAAGTT	CCGGCGGTGA	AGGATGAGCT
151	CGCGGCCTAT	CAGCTTGTTG	GTGGGGTAAT	GGCCCACCAA	GGCAACGACG
201	GGTAGCCGGC	CTGAGAGGGT	GACCGGCCAC	ACTGGGACTG	AGACACGGCC
251	CAGACTCCTA	CGGGAGGCAG	CAGTGGGGAA	TATTGGACAA	TGGGCGAAAG
301	CCTGATCCAG	CAACGCCGCG	TGAGGGATGA	CGGCCTTCGG	GTTGTAAACC
351	TCTTTCAGCA	GGGACGAAGC	GAAAGTGACG	GTACCTGCAG	AAGAAGCACC
401	GGCCAACTAC	GTGCCAGCAG	CCGCGGTAAT	ACGTAGGGTG	CGAGCGTTGT
451	CCGGAATTAT	TGGGCGTAAA	GGGCTCGTAG	GCGGTTTGTC	ACGTCGGGAG
501	TGAAAACTCA	GGGCTTAACC	CTGAGCCTGC	TTCCGATACG	GGCAGACTAG
551	AGGTATGCAG	GGGAGAACGG	AATTCCTGGT	GTAGCGGTGA	AATGCGCAGA
601	TATCAGGAGG	AACACCGGTG	GCGAAGGCGG	TTCTCTGGGC	ATTACCTGAC
651	GCT				

1	GCGAACGGGT	GAGTAATACA	TCGGAACGTA	TCCTATAGCG	GGGGATAACC
51	TCTCGAAAGA	GAGGCTAATA	CCGCATACGA	CCCATGGGTG	AAAGAGGGGG
101	ATCGCAAGAC	CTCTCACTAT	TGGAGCGGCC	GATGTCGGAT	TAGCTAGTTG
151	GCGGGGTAAA	AGCCCACCAA	GGCTACGATC	CGTAGCTGGT	CTGAGAGGAC
201	GACCAGCCAC	ACTGGAACTG	AGACACGGTC	CAGACTCCTA	CGGGAGGCAG
251	CAGTGGGGAA	TTTTGGACAA	TGGGCGCAAG	CCTGATCCAG	CCATGCCGCG
301	TGAGTGAAGA	AGGCCTTCGG	GTTGTAAAGC	TCTTTCGGCG	GGGACGAAAA
351	GATTCGCGTT	AACACCGCGG	ATCCATGACG	GTACCCGCAG	AAGAAGCACC
401	GGCTAACTAC	GTGCCAGCAG	CCGCGGTAAT	ACGTAGGGTG	CAGGCGTTAA
451	TCGGAATTAC	TGGGCGTAAA	GCGTGCGCAG	GCGGTCTTTT	AAGTCAGATG
501	TGAAATCCCC	GGGCTTAACC	TGGGAACTGC	GTTTGAAACT	GGAAGGCTAG
551	AGTGTGGCAG	AGGGGGGTGG	AATTCCACGT	GTAGCAGTGA	AATGCGTAGA
601	TATGTGGAGG	AACAMCGATG	GCGAAAGGCA	GCCCCCTGGG	CTAACAC

Sequence from clone 68

ACCCTAACCG	GCTTCTTTTA	CGAGCACCGG	CTTCAGGTCT	ACCAAACTTC
CATGGCTTGA	CGGGCGGTGT	GTACAAGGCC	CGGGAACGTA	TTCACCGCGT
CATTGCTGAT	ACGCGATTAC	TAGTGATTCC	AGCTTCACGG	AGTCGAGTTG
CAGACTCCGA	TCCGAACTGA	GAACGGCTTT	TCGGGATTGG	CGCACCATCG
CTGGTTGGCA	ACCCGCTGTA	CCGTCCATTG	TAGCACGTGT	GTAGCCCTAG
GCGTAAGGGC	CATGATGACC	TGACGTCGTC	CCCGCCTTCC	TCACTGCTTG
CGCAGGCAGT	CTGTCTAGAG	TCCCCGCCAT	TACGCGCTGG	CAACTAAACA
TAGGGGTTGC	GCTCGTTGCG	GGACTTAACC	CAACACCTCA	CGGCACGAGC
TGACGACGGC	CATGCAGCAC	CTTGCTTTGT	GTCCCGAAGG	AAAGGTTCAT
CTCTGAACCG	GTCACGCGCA	TTCTAGCCTA	GGTAAGGTTC	CTCGCGTATC
ATCGAATTAA	ACCACATGCT	CCACCACTTG	TGCGGGCCCC	CGTCAATTCT
TTTGA				
	ACCCTAACCG CATGGCTTGA CATGCTGAT CAGACTCCGA CTGGTTGGCA GCGTAAGGGC CGCAGGCAGT TAGGGGTTGC TGACGACGGC CTCTGAACCG ATCGAATTAA TTTGA	ACCCTAACCGGCTTCTTTACATGGCTTGACGGGCGGTGTCATTGCTGATACGCGATTACCAGACTCCATCCGAACTGACTGGTTGGCAACCCGCTGTAGCGTAAGGCCATGATGACGCGCAGGCAGTCTGTCTAGAGTAGGGGTTGCGCTCGTTGCGTGACGACGCCATGCAGCACACTCTGAACCGGTCACGCGCAATCGAATTAAACCACATGCTTTTGA	ACCCTAACCGGCTTCTTTACGAGCACCGGCATGGCTTGACGGGCGGTGTGTACAAGGCCCATGCTGATACGCGATTACTAGTGATTCCCAGACTCCGATCCGAACTGAGAACGGCTTTCTGGTAGGCAACCCGCTGTACCGTCCATTGGCGAAGGCAGTCTGTCTAGAGTCCCCGCCATTAGGGGTTGCGCTCGTTGCGGGACTTAACCTGACGACGCGCATGCAGCACCTTGCTTGTCTCTGAACCGGTCACGCGCATCTAGCCTAATCGAATTAAACCACATGCTCCACCACTTGTTTGA	ACCCTAACCGGCTTCTTTACGAGCACCGGCTTCAGGTCTCATGGCTTGACGGGCGGTGTGTACAAGGCCCGGGAACGTACATTGCTGATACGCGATTACTAGTGATTCCAGCTTCACGGCAGACTCCGATCCGAACTGAGAACGGCTTTTCGGGATGGGCTGGTAGGCAACCCGCTGACCGCCCATTGTAGCGCGTGTGCGTAAGGGCCATGATGACTGACGTCGCTACGCGCTGGCGCAGGCAGTCTGTCTAGAGTCCCCGCATTACGCGCTGGTAGGGGTTGCGCTCGTTGCGGACTTAACCCAACACTCATGACGACGCCATGCACGCATTCTAGCCTAGGTAAGGTTCATCGAATTAAACCACATGCTCCACCACTGTGCGGGCCCTTTGA </td

Sequence from clone 70

1	CCCAGTCACG	AATCCTACCG	TGGTAAGCGC	CCCCCTTGCG	GTTAAGCTAC
51	CTACTTCTGG	TAAAACCCGC	TCCCATGGTG	TGACGGGCGG	TGTGTACAAG
101	ACCCGGGAAC	GTATTCACCG	CGACATGCTG	ATCCGCGATT	ACTAGCGATT
151	CCAACTTCAT	GTAGTCGAGT	TGCAGACTAC	AATCCGGACT	ACGATACACT
201	TTCTGGGATT	AGCTCCCCCT	CGCGGGTTGG	CGGCCCTCTG	TATGTACCAT
251	TGTATGACGT	GTGAAGCCCT	ACCCATAAGG	GCCATGAGGA	CTTGACGTCA
301	TCCCCACCTT	CCTCCGGTTT	GTCACCGGCA	GTCTCATTAG	AGTGCTCTTT
351	CGTAGCAACT	AATGACAAGG	GTTGCGCTCG	TTGCGGGACT	TAACCCAACA
401	TCTCACGACA	CGAGCTGACG	ACAGCCATGC	AGCACCTGTG	TTACGGCTCT
451	CTTTCGAGCA	CACCTCGATC	TCTCGTGGCT	TCCGTACATG	TCAAGGGTAG
501	GTAAGGTTTT	TCGCGTTGCA	TCGAATTAAT	CCACATCATC	CACCGCTTGT
551	GCGGGTCCCC	GTCAATTCCT	TTGAGTTTTA	ATCTTGCGAC	CGTACTCCCC
601	AGGCGGTCTA	CTTCACGCGT			

Sequences from MVT 12 16S rDNA clone library

1	AACGAGGCCT	TCGGGTCTAG	TGGCGCACGG	GTGCGTAACG	CGTGGGAATC
51	TGCCCTTGGG	TTCGGGATAA	CAGTTGGAAA	CGACTGCTAA	TACCGGATGA
101	TGACTTCGGT	CCAAAGATTT	ATCGCCCAAG	GATGAGCCCG	CGTAGGATTA
151	GCTTGTTGGT	GAGGTAAGAG	CTCACCAAGG	CGACGATCCT	TAGCTGGTCT
201	GAGAGGATGA	TCAGCCACAC	TGGGACTGAG	ACACGGCCCA	GACTCCTACG
251	GGAGGCAGCA	GTGGGGAATA	TTGGACAATG	GGCGAAAGCC	TGATCCAGCA
301	ATGCCGCGTG	AGTGATGAAG	GCCTTAGGGT	TGTAAAGCTC	TTTTACCCGG
351	GATGATAATG	GCAGTACCGG	GAGAATAAGC	CCCGGCTAAC	TCCGTGCCAG
401	CAGCCGCGGT	AATACGGAGG	GGGCTAGCGT	TGTTCGGAAT	TACTGGGCGT
451	AAAGCGCGCG	TAGGCGGCTT	TGTAAGTTAG	GGGTGAAAGC	CCGGAGCTCA
501	ACTCCGGAAT	TGCCTTTAAG	ACTGCATCGC	TAGAATCATG	GAGAGGTGAG
551	TGGAATTCCG	AGTGTAGAGG	TGAAATTCGT	AGATATTCGG	AAGAACACCA
601	GTGGCGAAGG	CGACTCACTG	GACATGTATT	GACGCTGAGG	TGCGAAAGCG
651	TGGGGAGCAA	ACAGGATTAG	ATACCCTGGT	AGTCCACGCC	GTAAACGATG
701	ATGACTAG				

1	AAAGCTCTCT	TCGGAGAGTG	YATAGAGTGG	CGCACGGGTG	AGTAACACGT
51	AAGTAATCTA	CCTTTGAGTG	GGGAATAACG	TCCGGAAACG	GACGCTAATA
101	CCGCATAATG	CAGCGGCATC	GCAAGATGAC	AGTTGTTAAA	GGAATTTATT
151	TCGCTTGAAG	AGGAGCTTGC	GGCAGATTAG	CTAGTTGGTA	AGGTAATGGC
201	TTACCAAGGC	TACGATCTGT	AACCGGTCTT	AGAGGACGGT	CGGTCACACT
251	GACACTGAAT	AACGGGTCAG	ACTCCTACGG	GAGGCAGCAG	TCGGGAATTT
301	TGGGCAATGG	GCGAAAGCCT	GACCCAGCAA	CGCCGCGTGA	AGGATGAAGT
351	ATTTCGGTAT	GTAAACTTCG	AAAGAATGGG	AAGAATCAAT	GACGGTACCA
401	TTTATAAGGT	CCGGCTAACT	ACGTGCCAGC	AGCCGCGGTA	ATACGTAGGG
451	ACCAAGCGTT	GTTCGGATTT	ACTGGGCGTA	AAGGGCGCGT	AGGCGGCTTG
501	TCAAGTCACT	TGTGAAATCT	CCGGGCTTAA	CTCGGAACGG	TCAAGTGAAA
551	CTGTCAAGCT	AGAGTGTGGA	AGGGGCAATC	GGAATTCTTG	GTGTAGCGGT
601	GAAATGCGTA	GATATCAAGA	GGAACACCTG	AGGTGAAGAC	GGGTTGCTGG
651	GCCAACACTG	ACGC			

Sequence from clone 6

1	AGAGGAGCTT	GCTCCTYGGG	TGGCGAGTGG	CGGACGGGTG	AGGAATACAT
51	CGGAATCTAC	TCTGTCGTGG	GGGATAACGT	AGGGAAACTT	ACGCTAATAC
101	CGCATACGAC	CTACGGGTGA	AAGCAGGGGA	TCTTCGGACC	TTGCGCGATT
151	GAATGAGCCG	ATGTCGGATT	AGCTAGTTGG	CGGGGTAAAG	GCCCACCAAG
201	GCGACGATCC	GTAGCTGGTC	TGAGAGGATG	ATCAGCCACA	CTGGAACTGA
251	GACACGGTCC	AGACTCCTAC	GGGAGGCAGC	AGTGGGGAAT	ATTGGACAAT
301	GGGCGCAAGC	CTGATCCAGC	CATACCGCGT	GGGTGAAGAA	GGCCTTCGGG
351	TTGTAAAGCC	CTTTTGTTGG	GAAAGAAATC	CAGCTGGCTA	ATACCCGGTT
401	GGGATGACGG	TACCCAAAGA	ATAAGCACCG	GCTAACTTCG	TGCCAGCAGC
451	CGCGGTAATA	CGAAGGGTGC	AAGCGTTACT	CGGAATTACT	GGGCGTAAAG
501	CGTGCGTAGG	TGGTCGTTTA	AGTCCGTTGT	GAAAGCCCTG	GGCTCAACCT
551	GGGAACTGCA	GTGGATACTG	GGCGACTAGA	GTGTGGTAGA	GGGTAGCGGA
601	ATTCCTGGTG	TAGCAGTGAA	ATGCGTAGAG	ATCAGGAGGA	ACATCCATGG
651	CGAAGGCAGC	TACCTGGACC	AACACTGACA	CTGAGGCA	

1	GGGCTTGCCC	TGGGSCAGAG	CCGCGAACGG	GTGAGTAACA	CGTGGGTAAC
51	GTGCCCCGAT	GACTGGGACA	ACCCGGGGAA	ACCCGGGCTA	ATACCGGATA
101	TGCCCCCTCA	CGCGAGTGAG	GTGTGTAAAG	GAAGCTTCGG	CCTCCGCATC
151	GGGATCGGCC	CGCGGCGCAT	TAGCTTGTTG	GTGAGGTAAC	GGCTTACCAA
201	GGCAACGATG	CGTAGCTGGT	CTGAGAGGAC	GATCAGCCAC	ACTGGGACTG
251	AGACACGGCC	CAGACTCCTA	CGGGAGGCAG	CAGTGGGGAA	TCTTGCGCAA
301	TGCGCGAAAG	CGTGACGCAG	CAACGCCGCG	TGGGGGAAGA	AGGCCTTCGG
351	GTTGTAAACC	CCTTTCAGTT	GGGACGAAGT	GTGGGCGGTT	AATAGCCGTT
401	CTGCATGACG	GTACCTTCAC	AAGAAGCCCC	GGCTAACTAC	GTGCCAGCAG
451	CCGCGGTAAT	ACGTAGGGGG	CAAGCGTTGT	CCGGAATCAT	TGGGCGTAAA
501	GAGCGTGTAG	GCGGCCCGGT	AAGTCCGTTG	TGAAAGTCGA	GGGCTCAACC
551	CTCGAATGCC	GGCGGATACT	GTCGGGCTAG	AGTCCGGAAG	AGGC

Sequence from clone 13

1	GTTTCTTCGG	AAACCGASTA	GAGTGGCGCA	CGGGTGAGTA	ACACGTGAGT
51	AATCTGCCTT	TGGGTGGGGG	ATACCAATCG	GAAACGATTG	TTAATACCGC
101	ATAACGCAGC	GGCATCGCAA	GATGACAGTT	GTTAAAGCGG	GGGAACGAAG
151	CAATTCGTCC	TCGCGCCAGA	AGAGGAGCTC	GCGGCAGATT	AGGTAGTTGG
201	TGAGGTAATG	GCTCACCAAG	CCTGCGATCT	GTAACCGGCC	TGAGAGGGCG
251	GTCGGTCACA	CTGACACTTA	GATACGGGTC	AGACTCCTAC	GGGAGGCAGC
301	AGTCGGGAAT	TTTGGGCAAT	GGGCGCAAGC	CTGACCCAGC	AACGCCGCGT
351	GAAGGATGAA	GCATTTCGGT	GTGTAAACTT	CGCAAGAATA	GGAAGAATAA
401	GAGTAAGCAA	ATACCTTGCT	CGATGACGGT	ACTATTTGTA	AGCCCCGGCT
451	AACTCCGTGC	CAGCAGCCGC	GGTAATACGG	GGGGGGCAAG	CGTTGTTCGG
501	ATTTACTGGG	CGTAAAGGGT	GCGTAGGCGG	CACCACAAGT	CACTTGTGAA
551	ATCTCCAAGC	TCAACTTGGA	ACGGTCAAGT	GATACTGTGG	AGCTAGAGTG
601	CAGAAGGGGC	AACCGGAATT	CTCGGTGTAG	CGGTGAAATG	CGTAGATATC
651	GAGAGGAACA	CT			

Sequence from clone 15

1	GAGAAAGCCC	TTCGGGGTTA	GTAAAGTGGC	GAACGGGTGA	GTAACACGTG
51	GGCAACCTGC	CCCTCGCAGG	GGGACAACCG	GAGGAAACTC	CGGCTAATAC
101	CCCGTACGCT	TGTTGGATCG	CATGGTCCGG	CAAGGAAAGG	TAGCTTCGGC
151	CATCCGGCGA	GGGATGGGCC	CGCGTTGCAT	TAGCTAGTTG	GTAGGGTAAC
201	GGCCTACCAA	GGCTACGATG	CGTAGCTGGT	CTGAGAGGAT	GATCAGCCAC
251	ACTGGGACTG	AGACACGGCC	CAGACTCCTA	CGGGAGGCAG	CAGCCAGGAA
301	TCTTGGGCAA	TGGGCGAAAG	CCTGACCCAG	CAACACCGTG	TGGGTGATGA
351	AGGCCTTAGG	GTCGTAAAGC	CCTGTTGATA	GGGACGAAGG	GCGAAGGGTT
401	AATAGCCCGG	AGCTTGACGG	TACCTTTCGA	GGAAGCCCCG	GCTAACTACG
451	TGCCAGCAGC	CGCGGTAATA	CGTAGGGGGC	GAGCGTTGTC	CGGAATTATT
501	GGGCGTAAAG	AGCGTGTAGG	CGGTTCGGTA	AGTCTGCTGT	GAAATCTTGG
551	GGCTCAACCC	TGAGCGTGCA	GCGGATACTG	CCGGGCTAGA	GGGTGGTAGA
601	GGCGAGTGGA	ATTCCGAGTG	TAGCGGTGAA	ATGCGCAGAT	ATTCGGAGGA
651	ACACCAGTAG	CGAA			

1	TGAGTAACAC	GTAGGTAATG	TACCTTTGGG	TCGGGAWTAA	CYTAGGGAAA
51	CTTAAGCTAA	TACCGCATAA	TGCAGCGGCT	CCTTCGGGAG	ACAGTTGTTA
101	AAGATTTATC	GCCTAAAGAG	CAGCCTGCGG	CAGATTAGCT	AGTTGGTAAG
151	GTAACGGCTT	ACCAAGGCTA	CGATCTGTAT	CCGACCTGAG	AGGGTGGTCG
201	GACNYWCTGA	CACTGAATAA	CGGGTCAGAC	TCCTACGGGA	GGCAGCAGTC
251	GGGAATTTTG	GGCAATGGGC	GAAAGCCTGA	CCCAGCAACG	CCGCGTGAAG
301	GATGAAGTCT	TTCGGGATGT	AAACTTCGTA	AGAATAGGAA	GAATAAATGA
351	CGGTACTATT	TGTAAGGTCC	GGCTAACTAC	GTGCCAGCAG	CCGCGGTAAT
401	ACGTAGGGAC	CAAGCGTTGT	TCGGATTTAC	TGGGCGTAAA	GGGCGCGTAG
451	GCGGCGTGAC	AAGTCAATTG	TGAAATCTCC	GGGCTTAACT	CGGAACGGTC
501	AATTGATACT	GTTGTGCTAG			

1	TTCGGGTCTA	GTGGCGAACS	GGTGAGTAAC	ACGTGAGGAA	CGTGCCCCAG
51	AGACCGGGAT	AAGCCGAGGA	AACTTGGTCT	AATACCGGAT	GTCCCCACCG
101	GATCGCATGG	TCTGGTGAGG	AAATGGATTC	CGCTCTGGGA	GCGCCTCGCG
151	GCCTATCAGC	TAGTTGGTGA	GGTAACGGCC	CACCAAGGCG	TCGACGGGTA
201	GCTGGTCTGA	GAGGATGATC	AGCCACACTG	GGACTGAGAC	ACGGCCCAGA
251	CTCCTACGGG	AGGCAGCAGT	GGGGAATCTT	GCGCAATGGG	CGAAAGCCTG
301	ACGCAGCAAC	GCCGCGTGCG	GGACGACGGC	CCTCGGGTTG	TAAACCGCTT
351	TCAGCAGGAA	CGATGATGAC	GGTACCTGCA	GAAGAAGCTC	CGGCCAACTA
401	CGTGCCAGCA	GCCGCGGTAA	TACGTAGGGA	GCAAGCGTTG	TCCGGATTTA
451	TTGGGCGTAA	AGAGCTCGTA	GGCGGTTCGG	TAAGTCGGGT	GTGAAAACTC
501	TGGGCTCAAC	CCGGAGAGGC	CACTCGATAC	TGCTGTGACT	TGAGTCTGGT
551	AGGGGAGCAC	GGAATTCCTG	GTGTAGCGGT	GAAATGCACA	GATATCAGGA
601	GGAACACCGG	TGGCGAAGGC	GGTGCTCTGG	GCCAGTACTG	ACGCTGAGGA
651	GCGAAAGCG				

Sequence from clone 20

1	CTCTCTTCGG	AGAGTGTATA	GAGTGGCGCA	CGGGTGAGTA	ACACGTAAGT
51	AATCTACCTT	TGAGTGGGGA	ATAACGTCCG	GAAACGGACG	CTAATACCGC
101	ATAATGCAGC	GGCATCGCAA	GATGACAGTT	GTTAAAGGAA	TTTATTTCGC
151	TTGAAGAGGA	GCTTGCGGCA	GATTAGCTAG	TTGGTAAGGT	AATGGCTTAC
201	CAAGGCTACG	ATCTGTAACC	GGTCTAAGAG	GACGGTCGGT	CACACTGACA
251	CTGAATAACG	GGTCAGACTC	CTACGGGAGG	CAGCAGTCGG	GAATTTTGGG
301	CAATGGGCGA	AAGCCTGACC	CAGCAACGCC	GCGTGAAGGA	TGAAGTATTT
351	CGGTATGTAA	ACTTCGAAAG	AATGGGAAGA	ATCAATGACG	GTACCATTTA
401	TAAGGTCCGG	CTAACTACGT	GCCAGCAGCC	GCGGTAATAC	GTAGGGACCA
451	AGCGTTGTTC	GGATTTACTG	GGCGTAAAGG	GCGCGTAGGC	GGCTTGTCAA
501	GTCACTTGTG	AAATCTCCGG	GCTTAACTCG	GAACGGTCAA	GTGAAACTGT
551	CAAGCTAGAG	CGTGGAAGGG	GCAATCGGAA	TTCTTGGTGT	AGCGGTGAAA
601	TGCGTAGATA	TCAAGAGGAA	CACCTGAGGT	GAAGACGGGT	TGCTAGGCCA
651	ACACTGACGC	TG			

1	CGGGAGCTCA	TTTATGAGTC	GACCGTGGCG	GACGGGTGAG	GAACACGTAG
51	CTAACCTGCC	CAGGTATGGG	GGATATGCGC	TGGAAACGGC	GTGCAATACC
101	GCATACGTTC	GGGTCACGGG	AGTGACTTGA	GGAAAGCCGC	AAGGCGTACC
151	TGGAGGGGGC	TGCGTCCGAT	TAGCTAGTTG	GTGTGGTAAG	AGCGCACCAA
201	GGCGATGATC	GGTAGCTGGT	CTGAGAGGAC	GATCAGCCAC	ACGGGGACTG
251	AGACACGGCC	CCGACTCCTA	CGGGAGGCAG	CAGCAAGGAA	TTTTCCACAA
301	TGGGCGCAAG	CCTGATGGAG	CAACGCCGCG	TGGGGGATGA	CGCGTTTCGG
351	CGTGTAAACC	CCTTTTCGAG	GGGACGAAGC	TAATGACGGT	ACCCTCGGAA
401	TAAGGACCGG	CTAACTACGT	GCCAGCAGCC	GCGGTAAGAC	GTAGGGTCCG
451	AGCGTTGTCC	GGAATTACTG	GGCGTAAAGC	GCGCGCAGGC	GGATTCGCGC
501	ATCATCGGTG	AAAGCCCCCC	GCTTAACGGG	GGAGGGTCCG	GTGAGATGGC
551	GAGTCTGGAG	GCAGGGAGAG	GCGAGTGGAA	TTCCGGGTGT	AGTGGTGAAA
601	TGCGTAGAGA	TCCGGANGAA	CACCAGTGGC	GAANGCGGCT	CGCTGGACCT
651	GACCTGACGC	TGAAGCGCGA	A		
Appendix

Sequence from clone 27

1	CGAAAGTTTC	CTTCGGGAAG	CGAGTAGAGT	GGCGCACGGG	TGAGTAACAC
51	GTAAGTAATC	TACCCTCGGG	TGGGGAATAA	CATCGGGAAA	CCGATGCTAA
101	TACCGCATAA	TGCAGCGGCT	CCTTATGGAG	ACAGTTGTTA	AAGTATTTAT
151	ATGCCTGGGG	AGGAGCTTGC	GGCAGATTAG	CTAGTTGGTA	AGGTAATGGC
201	TTACCAAGGC	TACGATCTGT	AGCCGACCTG	AGAGGGTGGT	CGGTCACACT
251	GACACTGAAT	AACGGGTCAG	ACTCCTACGG	GAGGCAGCAG	TCGGGAATTT
301	TGGGCAATGG	GCGAAAGCCT	GACCCAGCAA	CGCCGCGTGA	AGGATGAAGT
351	CTTTCGGGAT	GTAAACTTCG	TAAGAATAGG	AAGAATAAAT	GACGGTACTA
401	TTTGTAAGGT	CCGGCTAACT	ACGTGCCAGC	AGCCGCGGTA	ATACGTAGGG
451	ACCAAGCGTT	GTTCGGATTT	ACTGGGCGTA	AAGGGCGCGT	AGGCGGCGTG
501	ACAAGTCACT	TGTGAAATCT	CCGAGCTTAA	CTCGGAACGG	TCAAGTGATA
551	CTGTTATGCT	AGAGTACAGA	AGGGGTAATC	GGAATTCTCG	GTGTAGCGGT
601	GAAATGCGTA	GATATCGAGA	GGAACACCAT	TTCCTGG	

Sequence from clone 29

1	GGGAGTGAGT	GGCGYYCNGG	TGAGTAACRC	RTGAGGATCT	GCCTACAGGA
51	TGGGGACAAC	AGTGGGAAAC	TGCTGCTAAA	ACCCAATGTG	CCGAGAGGTG
101	AAAYATTAAT	AGCCCTGTAG	ATGAGCTCGC	GTCTGATTAG	CTMGTTGGTG
151	TGGTAAAGGC	ATACCAAGGC	GACGATCAGT	AGCTGGTCTG	AGAGGACGAT
201	CAGCCACACT	GGGACTGAGA	CACGGCCCAG	ACTCCTACGG	GAGGCAGCAG
251	TGGGGAATTT	TCCGCAATGG	GCGAAAGCCT	GACGGAGCAA	CGCCGCGTGA
301	GGGAGGAAGG	CCTGTGGGTT	GTAAACCTCT	TTTCTCAAGG	AAGAAGTTCT
351	GACGGTACTT	GAGGAATCAG	CATCGGCTAA	CTCCGTGCCA	GCAGCCGCGG
401	TAAGACGGAG	GATGCAAGCG	TTATCCGGAA	TTATTGGGCG	TAAAGCGTCC
451	GTAGGCGGTT	ATAAAAGTCT	GTTGTTAAAG	CTCACAGCTC	AACTGTGAAT
501	GGGCGATGGA	AACTGTATGA	CTAGAGAGTG	GTAGGGGTAG	AGGGAATTCC
551	TAGTGTAGCG	GTGAAATGCG	TAGATATTAG	GAAGAACACC	AGTGGCGAAG
601	GCGCTCTACT	GGGCCATTAC	TGACGCTGAT	GGACGAAAGC	TAGGGGAGCG
651	AAAGGGATTA	GATACCCCTG	TAGTCCTAGC	TGTNAACGAT	GG

1	<u>ᠵ</u> ᠇᠇᠇᠈᠈᠈ᢕᡣᡣᡎ	COTTCCCCAA	λαλτλτλλλα	TCCCCCACCC	GTGAGTAACA
1	ATTAAACTTT	CCIICGGGAA	AGAIAIAAAG	IGGCGCACGG	GIGAGIAACA
51	CGTAGGTAAT	TTGCCTTTGG	GTGGGGAATA	ACCGTCGGAA	ACGACGGCTA
101	ATACCGCATA	ATGCAGCGGC	TCCTTATGGA	GACAGTTGTT	AAAGATTTAT
151	CGCCTGAAGA	GAAGCCTGCG	GCAGATTAGG	TAGTTGGTGA	GGTAATGGCT
201	CACCAAGCCC	GCGATCTGTA	TCCGGTCTAA	GAGGATGGTC	GGACACACTG
251	ACACTGAATA	ACGGGTCAGA	CTCCTACGGG	AGGCAGCAGT	CGGGAATTTT
301	GGGCAATGGG	CGAAAGCCTG	ACCCAGCAAC	GCCGCGTGAA	GGATGAAGTA
351	TCTCGGTATG	TAAACTTCGG	AAGAATGGGA	AGAATAAATG	ACGGTACCAT
401	TTTTAAGCCC	CGGCTAACTC	TGTGCCAGCA	GCCGCGGTAA	TACAGAGGGG
451	GCAAGCGTTG	TTCGGATTTA	CTGGGCGTAA	AGGGCGCGTA	GGCGGCGTGT
501	TAAGTCACTT	GTGAAATCTC	TGAGCTTAAC	TCAGAACGGT	CAAGTGATAC
551	TGATGTGCTA	GAGTGCAGAA	GGGGCAACTG	GAATTCTTGG	TGTAGCGGTG
601	AAATGCGTAG	ATATCAAGAG	GAACACCTGA	GGCGAANGCG	GGTTGCTGGG
651	CTGACACTGA	С			

Sequence from clone 42

1	AAGAGGTAGT	GGCGAGCGGG	TGAGTAACAC	GTGAGAAACC	TATCCTGGTC
51	TCTGGGAYMA	CAGCCGGAAA	CGGCTGCTAA	TACCGGATGC	CGTCGGAGCG
101	TCGCATGGCG	CGCTGACGAA	MGGGTTACTG	GATCAGGAGG	GTCTCGCGGC
151	CTATCAGCTA	GTTGGTGGGG	TAATGGCCTA	CCAAGGCATC	SACGGGTWKY
201	TGGTCTGAGA	GGATGATCAG	CCACWCTGGG	ACTGAATAAC	GGGTCAGACT
251	CCTACGGGAG	GCAGCAGTCG	GGAATTTTGG	GCAATGGGCG	AAAGCCTGAC
301	CCAGCAACGC	CGCGTGAAGG	ATGAAGTCTT	TCGGGATGTA	AACTTCGTAA
351	AAATAGGAAG	AATAAATGAC	GGTACTATTT	ATAAGGTCCG	GCTAACTACG
401	TGCCAGCAGC	CGCGGTAATA	CGTAGGGACC	AAGCGTTGTT	CGGATTTACT
451	GGGCGTAAAG	GGCGCGTAGG	CGGCAATTCA	AGTCAGTTGT	GAAATCTCCG
501	AGCTTAACTC	GGAACGGTCA	ACTGATACTG	CTTTGCTAGA	GTACAGAAGG
551	GGCAATCGGA	ATTCTTGGTG	TAGCGGTGAA	ATGCGTAGAT	ATCAAGAGGA
601	ACACCTGAGG	TGAAGACGGG	TTGCTGGGCT	GATACTGACG	CTGA

Sequence from clone 43

1	GGCCCCTTCG	GGGGTACACG	MSCGGCGAAC	GGCTGAGTAA	CGCGTGGGAA
51	TCCACCCCAA	AGTGAGGGAT	AAGCACCGGA	AACGGTGTCT	AATACCGCAT
101	ATGGTCTTCG	GATTAAAGTT	TTATACGCTT	TGGGAGGAGC	CCGCSTCCGA
151	TTAGGTTGTT	GGTGAGGTAA	TGGCTCACCA	AGCCGACGAT	CGGTAGCTGG
201	TCTGAGAGGA	TGATCAGCCA	GACTGGAACT	GAGACACGGT	CCAGACTCCT
251	ACGGGAGGCA	GCAGTAAGGA	ATCTTCCACA	ATGGGCGAAA	GCCTGATGGA
301	GCAACGCCGC	GTGCAGGACG	AAGGCCTTCG	GGTCGTAAAC	TGCTTTTGTA
351	TACGAAGAAT	TTGACGGTAG	TATACGAATA	AGGATCGGCT	AACTCCGTGC
401	CAGCAGCCGC	GGTCATACGG	AGGATCCAAG	CGTTATCCGG	AGTGACTGGG
451	CGTAAAGAGT	TGCGTAGGTG	GTTAGTAAAG	TGAATAGTGA	AACCTGAAGG
501	CTCAACCTTC	AGACTATTAT	TCAAACTTAC	TAACTCGAGA	ATGGTAGAGG
551	TAGCTGGAAT	TTCTAGTGTA	GGAGTGAAAT	CCGTAGATAT	TAGAAGGAAC
601	ACCAATGGCG	TAGGCAGGCT	ACTGGACCAT	TTCTGACACT	AAGGCACGAA
651	AGCGTGGGGA	GCGAACCGGA	TTAGATA		

1	AACGGGAATA	TTCGCTATAG	CAATATAGCG	GATGTCTAGT	GGCGGAAGGG
51	TGCGTAACAC	GTGGGCAATC	TGCCGAAAAG	TGGGGAATAG	CTCGCCGAAA
101	GGCGAATTAA	TACCGCATAC	GATTAACGAA	AGCCTTTTTG	TGAAATCAAA
151	GCTGGGGAAA	CTTGGCGCTT	TTCGATGAGC	CCGCGGCCTA	TCAGCTAGTT
201	GGCGAGGTAA	TGGCTCACCA	AGGCGATGAC	GGGTAGCTGG	TCTGAGAGGA
251	CGACCAGCCA	CACTGGAACT	GAGACACGGT	CCAGACACCT	ACGGGTGGCA
301	GCAGTCGAGA	ATTTTTCTCA	ATGGGGGAAA	CCCTGAAGGA	GCGACGCCGC
351	GTGGAGGATG	AAGGTCTTCG	GATTGTAAAC	TCCTGTCATC	AGAGAACAAT
401	GGGCACATTA	ACCGTGTGTC	TTGATAGTAC	CTGAAGAGGA	AGAGACGGCT
451	AACTCTGTGC	CAGCAGCCGC	GGTAATACGG	GGGGGGCAAG	CGTTGTTCGG
501	ATTTACTGGG	CGTAAAGGGT	GCGTAGGCGG	CACCACAAGT	CACTTGTGAA
551	ATCTCCAAGC	TCAACTTGGA	ACGGTCAAGT	GATACTGTGG	AGCTAGAGTG
601	CAGAAGGGGC				

Appendix

Sequence from clone 52

1	CGAGCGGTAA	GGCTCCTTCG	GGAGTACACG	AGCGGCGAAC	GGGTGAGTAA
51	CACGTGAGCA	ATCTGCCCTT	CACACGGGGA	TAACTTCGGG	AAACCGATGC
101	TAATACCCGA	TACGACCACT	TCAGGCATCT	GATGGTGGTG	GAAAGTTCCG
151	GCGGTGAAGG	ATGAGCTCGC	GGCCTATCAG	CTTGTTGGTG	GGGTAATGGC
201	CCACCAAGGC	AACGACGGGT	AGCCGGCCTG	AGAGGGTGAC	CGGCCACACT
251	GGGACTGAGA	CACGGCCCAG	ACTCCTACGG	GAGGCAGCAG	TGGGGAATAT
301	TGGACAATGG	GCGAAAGCCT	GATCCAGCAA	CGCCGCGTGA	GGGATGACGG
351	CCTTCGGGTT	GTAAACCTCT	TTCAGCAGGG	ACGAAGCGAA	AGTGACGGTA
401	CCTGCAGAAG	AAGCACCGGC	CAACTACGTG	CCAGCAGCCG	CGGTAATACG
451	TAGGGTGCGA	GCGTTGTCCG	GAATTATTGG	GCGTAAAGGG	CTCGTAGGCG
501	GTTTGTCACG	TCGGGAGTGA	AAACTCAGGG	CTTAACCCTG	AGCCTGCTTC
551	CGATACGGGC	AGACTAGAGG	TATGCAGGGG	AGAACGGAAT	TCCTGGTGTA
601	GCGGTGAAAT	GCGCAGATAT	CAGGAGGAAC	ACCGGTGGCG	AAGGCGGTTC
651	TCTGGGCATT	ACCTGACGCT	GAGGAGCG		

Sequence from clone 53

1	CGGAMATTCC	AGCAATGGGG	TGTTAGTGGC	GAACGGTCGC	GTAACACGTA
51	GGCAACCTGC	CCTGAAGTGG	GGGACAACAG	CCCGAAAGGG	CTGCTAATAC
101	CGCATGTGAA	CAACGAATCG	CATGGTTTGT	TGTTCAAAGG	CTATGGCAAC
151	ATGGTCGCTT	TGGGATGGGC	TTGCGGCCTA	TCAGGTAGTT	GGTGGGGTAA
201	TGGCCCACCA	AGCCGACGAC	GGGTAGCTGG	TCTGAGAGGA	CGATCAGCCG
251	GATTGGGACT	GAGATACGGC	CCAGACTCCT	ACGGGGGGCA	GCAATTAGGA
301	ATCTTGCGCA	ATGGGCGAAA	GCCTGACGCA	GCGACGCCGC	GTGCGGGATG
351	AAGGCCTTCG	GGTCGTAAAC	CGCTTTTAAC	GGGGAAGAAG	AATGTGACGG
401	TACCCGTTGA	ATAAGCCCCG	GCTAACTACG	TGCCAGCAGC	CGCGGTAATA
451	CGTAGGGGGC	GAGCGTTGTC	CGAAGTTACT	GGGCGTAAAG	CGCGCGTAGG
501	CGGTTGCCTA	AGTCTGGGGT	GAAAGGTTCA	GGGCTTAACC	CGAACAGTGC
551	CTTGGATACT	GGGCGACTTG	AGTGCCGAAG	AGGAAAGCGG	AATTCCTGGT
601	GTAGCGGTGA	AATGCGTAGA	TATCAGGAGG	AACACCGATG	GCGAAGGCAG
651	CTTTCTGGTC	GGCAACTGAC	G		

GTGAAGCCCT	TCGGGGTGGA	TCASYGGCGA	ACGGGTGAGT	AACACGTGAG
CAACCTGCCC	TTCACTCTGG	GATAACTCCG	GGAAACCGGT	GCTAATACCG
GATACGAGTA	TCGGCCTCAT	GGTCTGGTGC	TGGAAAGAAT	TTTGGTGGGG
GATGGGCTCG	CGGCCTATCA	GCTTGTTGGT	GAGGTAATGG	CTCACCAAGG
CGACGACGGG	TAGCCGGCCT	GAGAGGGCGA	CCGGCCACAC	TGGGACTGAG
ACACGGGCCC	GACTCCTACG	GGAGGCAGCA	GTAAGGAATA	TTGGTCAATG
GGCGAAAGCC	TGAAGCAGCG	ACGCCGCGTG	AGGGATGAAG	GCCTTCGGGT
TGTAAACCTC	TTTCAGTAGG	GACGAAGCGA	AAGTGACGGT	ACCTACAGAA
GAAGCACCGG	CCAACTACGT	GCCAGCAGCC	GCGGTAATAC	GTAGGGTGCA
AGCGTTGTCC	GGAATTATTG	GGCGTAAAGA	GCTCGTAGGC	GGTTTGTCAC
GTCGGCTGTG	AAATCCCGAG	GCTCAACCTC	GGGTCTGCAG	TCGATACGGG
CAGACTAGAG	TACTGCAGGG	GAGACTGGAA	TTCCTGGTGT	AGCGGTGGAA
TGCGCAGATA	TCAGGAGGAA	CACCGGTGGC	GAAGGCGGGT	CTCTGGGCAG
TAACTGACGC	TG			
	GTGAAGCCCT CAACCTGCCC GATACGAGTA GATGGGCTCG CGACGACGGG ACACGGGCCC GGCGAAAGCC TGTAAACCTC GAAGCACCGG AGCGTTGTCC GTCGGCTGTG CAGACTAGAG TGCGCAGATA TAACTGACGC	GTGAAGCCCTTCGGGGTGGACAACCTGCCCTTCACTCTGGGATACGAGTATCGGCCTCATGATGGGCCGTAGCCGGCCTACACGGGCCCGACTCCTACGGGCGAAAGCCTGAAGCAGCGGAAGCACCGCCAACTACGTACGGTTGTCGGAATTATTGGTCGGCAGACTACTGCAGGGCAGACTAGAGTACTGCAGGGTGCGCAGATATCAGGAGGAATGCGCAGATATCAGGAGGAATAACTGACGTG	GTGAAGCCCTTCGGGGTGGATCASYGGCAACAACCTGCCCTTCACTCTGGGATAACTCCGGATACGAGTATCGGCCTCATGGTCTGGTGCGATGGGCCGCGGCCTATCAGCTTGTTGGTCGACGACGGCTAGCCGGCCTGAGAGGGCGAACACGGGCCCGACACCCACGGAGAGGCGAGGCGAAAGCCTGAAGCAGCGACCCGCGCGGAGGCTGCCGGAATTATGGCCGAACCACGAGACTGGCGTACTCCAGAGGACACTGGAAGTCGGCTGGCTACTGCAGGGGAGACTGGAATGCGCAGATATCAGGAGGAACACCGGTGGCTAACTGACGTGTACTGCAGAGA	GTGAAGCCCTTCGGGGTGGATCASYGGCAACGGGTGAGTCAACCTGCCCTTCACTCTGGGATAACTCCGGGAAACCGGTGATACGAGTATCGGCCTCATGGTCTGGTGCTGGAAAGAATGATGGGCCGCGGCCTATCAGCTGTTGGTGAGGTAATGGCGACGACGGTAGCCGGCTGAGAGGCGACCGGCCACACACACGGGCCGACCCTACGGGAGGCAGACGTAAGGAATAGGCGAAAGCCTGAAGCAGCGACGCCGCGCAGGATGAAGTGTAAACCCTTCCAGTAGGGCCAGCAGCGCGGTAATACGAGGTTGTCGGAATTATGGCCGACAGCGCGCTAGGCGTCGGCTGGGTACTGCAGGGAGACTGGAATTCCTGGTGTTGCGCAGATATCAGGAGAACACCGGTGCGAGGCGGGTTAACTGACGTGTGTACTGAGGA

Sequence from clone 56

1	GCGGGGCAAC	CTGGCGGCCA	GTGGCGAACG	GGTGAGTAAT	ATATCGGAAC
51	GTACCCTGGA	GTGGGGGATA	ACGTAGCGAA	AGTTACGCTA	ATACCGCATA
101	CGATCTAAGG	ATGAAAGTGG	GGGATTCGCA	AGAACCTCAT	GCTCCTGGAG
151	CGGCCGATAT	CTGATTAGCT	AGTTGGTGGG	GTAAAGGCCT	ACCAAGGCAT
201	CGATCAGTAG	CTGGTCTGAG	AGGACGACCA	GCCACACTGG	AACTGAGACA
251	CGGTCCAGAC	TCCTACGGGA	GGCAGCAGTG	GGGAATTTTG	GACAATGGGC
301	GAAAGCCTGA	TCCAGCAATG	CCGCGTGAGT	GAAGAAGGCC	TTCGGGTTGT
351	AAAGCTCTTT	TGTCAGGGAA	GAAACGGTGA	AAGCTAATAT	CTTTTGCTAA
401	TGACGGTACC	TGAAGAATAA	GCACCGGCTA	ACTACGTGCC	AGCAGCCGCG
451	GTAATACGTA	GGGTGCAAGC	GTTAATCGGA	ATTACTGGGC	GTAAAGCGTG
501	CGCAGGCGGT	TTTGTAAGTT	TGTCGTGAAA	TCCCCGGGCT	CAACCTGGGA
551	ATTGCGATGA	AGACTGCAAG	GCTAGAATCT	GGCAGAGGGG	GGTAGAATTC
601	CACGTGTAGC	AGTGAAATGC	GTAGAGATGT	G	

Sequence from clone 58

GGCAGCACGG	GAGCAATCCT	GGTGGCGAGT	GGCGAACGGG	TGAGTAATAC
ATCGGAACGT	GTCCATTAGT	GGGGGATAAC	CCGGCGAAAG	CCGGACTAAT
ACCGCATACG	ACCTAAGGGT	GAAAGCGGGG	GATCGCAAGA	CCTCGCGCTA
GCGGAGCGGC	CGATGTCAGA	TTAGCTTGTT	GGTGGGGTAA	AAGCCTACCA
AGGCAACGAT	CTGTAGCTGG	TCTGAGAGGA	CGACCAGCCA	CACTGGGACT
GAGACACGGC	CCAGACTCCT	ACGGGAGGCA	GCAGTGGGGA	ATTTTGGACA
ATGGGCGCAA	GCCTGATCCA	GCCATGCCGC	GTGCGGGAAG	AAGGCCTTCG
GGTTGTAAAC	CGCTTTTGTC	AGGGAAGAAA	AGCTCCGGGT	CAACACCTCG
GAGTCATGAC	GGTACCTGAA	GAATAAGCAC	CGGCTAACTC	CGTGCCAGCA
GCCGCGGTAA	TACGGAGGGT	GCAAGCGTTG	TCCGGATTTA	TTGGGTTTAA
AGGGTGCGTA	GGTGGCGTCT	TAAGTCTGGT	TTGAAAGCAG	GCGGCTCAAC
CGTCTGATGT	GGCTGGAAAC	TGGGGCGCTT	GAATGGGTTG	GCGGTAGCCG
GAACGGGTCA	TGTAGCGGTG	AAATGCATAG	ATATGACCCA	GAACACCGAT
TGCGAAGGCA	GGCTACTACG	ACTTGATTGA	CACTGAGGCA	CGAGAGCA
	GGCAGCACGG ATCGGAACGT ACCGCATACG GCGGAGCGGC AGGCAACGAT GAGACACGGC ATGGGCGCAA GGTTGTAAAC GAGTCATGAC GCCGCGGTAA AGGGTGCGTA CGTCTGATGT GAACGGGTCA TGCGAAGGCA	GGCAGCACGGGAGCAATCCTATCGGAACGTGTCCATTAGTACCGCATACGACCTAAGGGTGCGGAGCGCGCGATGTCAGAAGGCAACGGCCCGAGACTCCTATGGGCGCAAGCCTGATCCAGGTGGTAAACCGCTTTTGTCGAGTCATGACGGTACCTGAAGCCGCGGTAATACGGAGGTAGGGTGCATGTGGCTGGAAACGAACGGGTCATGTAGCGGTGTGCGAAGGCATGTAGCGGTGTGCGAAGGCAGGCTACTACG	GGCAGCACGGGAGCAATCCTGGTGGCAGAGTATCGGAACGTGTCCATTAGTGGGGGATAACACCGCATACGACCTAAGGGTGAAAGCGGGGGCGGAGCGGCCGATGTCAGATTAGCTTGTTAGGCAACGGCCCAGACTCCTACGGAGGGAGAGCACACGCCCCTGATCAGCCAGACGACGGTGTAAACCGCTTTGTCAGGGAAGAAGAGTCATGAGGTACCTGAAGAATAAGCACGCGCGCGTAATACGGAGGGTTAAGTCTGGTAGGGTGCGTAGGTGGCGTCTTAAGTCTGGTGGTCTGAATGTGGCAGCGTGAAATGCATAGGACGGGTCATGTAGCGGTGAAATGCATAGTGCGAAGGCAGGCTACTACGACTTGATTGA	GGCAGCACGGGAGCAATCCTGGTGGCAGTGGCGAACGGGATCGGAACGTGTCCATTAGTGGGGGATAACCCGGCGAAAGACCGCATACGACCTAAGGGTGAAAGCGGGGGATCGCAAGAACGGAACGGCCGATGTCAGATTAGCTTGTTGGTGGGGTAAAGGCAACGGCCCGAGACTCTACGGAAGGACGACCAGCCAAGGCAACGGCCCAGACTCCACGGGAGCGGCAGGGGAAATGGGCGCAAGCCTGATCAGCCATGCCGGTGCGGAAGGGTGTGTAACCGCTTTGTCAGGGAAGAAAGCTCCGGGTAGAGCACGGTATACGGAGGTGAATAAGCACCGCTAACTCGCGCGCGAAGGTGGCGTCTTAAGTCTGGTTTGAAAGCAGGGTCTGAATGTGGTGGCGTCAAATGCATAGATATGACCAAGGCAAGGGCAGGCTACTACGACTGAAGCAACTGAAGCAC

-					
1	GGGGGCAACC	CTGGTGSCGA	GTGGCGAACG	GGTGAGTAAT	ACATCGGAAC
51	GTATCCTATA	GCGGGGGATA	ACCTCTCGAA	AGAGAGGCTA	ATACCGCATA
101	CGACCCATGG	GTGAAAGAGG	GGGATCGCAA	GACCTCTCAC	TATTGGAGCG
151	GCCGATGTCG	GATTAGCTAG	TTGGCGGGGT	AAAAGCCCAC	CAAGGCTACG
201	ATCCGTAGCT	GGTCTGAGAG	GACGACCAGC	CACACTGGAA	CTGAGACACG
251	GTCCAGACTC	CTACGGGAGG	CAGCAGTGGG	GAATTTTGGA	CAATGGGCGC
301	AAGCCTGATC	CAGCCATGCC	GCGTGAGTGA	AGAAGGCCTT	CGGGTTGTAA
351	AGCTCTTTCG	GCGGGGACGA	AAAGATTCGC	GTTAACACCG	CGGATCCATG
401	ACGGTACCCG	CAGAAGAAGC	ACCGGCTAAC	TACGTGCCAG	CAGCCGCGGT
451	AATACGTAGG	GTGCAGGCGT	TAATCGGAAT	TACTGGGCGT	AAAGCGTGCG
501	CAGGCGGTCT	TTTAAGTCAG	ATGTGAAATC	CCCGGGCTTA	ACCTGGGAAC
551	TGCGTTTGAA	ACTGGAAGGC	TAGAGTGTGG	CAGAGGGGGG	TGGAATTCCA
601	CGTGTAGCAG	TGAAATGCGT	AGATATGTGG	AGGAACAMCG	ATGGCGAAAG
651	GCAGCCCCCT	GGGCTAACAC	TGACGCTCA		

Sequence from clone 62

AATCATCTCA	CGGTTGGGTA	TAGCCGCGAG	AAATCGCGGG	TAATCCCCAG
CGACGCAGGG	TGTCGGCATC	GACGCCCTGC	CAAAGGCTCG	CCGCCGTGGG
ACGAGCCGTC	GTGGTATTAG	GTTGTTGGCG	GGGTAACGGC	CCACCAAGCC
TGCGATGCCT	ACCGGGCGTG	CGAGCGTGGC	CCGGCACACT	GGGACTGAGA
CACTGCCCAG	ACTCCTATGG	GAGGCTGCAG	TCGAGAATCT	TCGGCAATGG
GCGCAAGCCT	GACCGAGCGA	CGCCGCGTGG	AGGACGAAGG	CCTTCGGGTT
GTAAACTCCT	GTCGAGGGGA	AGGAAGGGGC	CGCAAGGCCC	TTGACCGCTC
CCTGGAGGAA	GCACGGGCTA	AGTTCGTGCC	AGCAGCCGCG	GTAAGACGAA
CCGTGCGAAC	GTTATTCGGA	ATCACTGGGC	TTAAAGCGCG	TGTAGGCGGG
TCGGTGCGTC	GGCCGTTGAA	ATCCCCCGGC	TCAACCGGGG	AAGTGGCGCC
GATACGACCG	GCCTGGAGAC	GACGTANCGG	GGAACTGGAA	CTTCCGGTGG
AGCGGNGAAA	TGCGTTGAGA	TCGGAAGAAC	GCCGNGGCGA	AAGCGAGTTC
C				
	AATCATCTCA CGACGCAGGG ACGAGCCGTC TGCGATGCCT CACTGCCCAG GCGCAAGCCT GTAAACTCCT CCTGGAGGAA CCGTGCGAAC TCGGTGCGACC GATACGACCG AGCGGNGAAA C	AATCATCTCACGGTTGGGTACGACGCAGGGTGTCGGCATCACGAGCCGTCGTGGTATTAGTGCGATGCCAGACCCGGCGGGCACTGCCAGACTCCTATGGGCAAGCCTGACCGAGGAACCTGGAGGAAGCACGGGCAACCGTGCGAACGTTATTCGGACGTACGACGACGCCTGGAGAAGATACGACCGGCCTGGAGAAAGCGGNGAAATGCGTTGAAACC	AATCATCTCACGGTTGGGTATAGCCGCGAGCGACGCAGGGTGTCGCCATCGACGCCTGCACGAGCCGTCGTGGTATTAGGTTGTTGGCGTGCGATGCCAGACCCGAGCGGGAGGCTGCAGGCGCAAGCTGACCGAGGGAAGGAAGGGCGTAAACTCCTGTCGAGGGAAGGAAGGGCCCTGGAGGAAGCACGGGCTAAGTTCGTGCGCCGGTGCGAACGTTATTCGGAATCACTGGGCTCGGTGCGTCGCCTGGAGAAATCCCCGGCGATACGACGGCCTGGAGACGACGAAGAACAGCGGNGAAATGCGTTGAATCGGAAGAACCCC	AATCATCTCACGGTTGGGTATAGCCGCGAGAAATCGCGGGCGACGCAGGGTGTCGGCATCGACGCCTGCCAAAGGCTCGACGAGCCGTCGTGGTATTAGGTTGTTGGCGGGTAACGGCTGCGATGCCTACCGGGCGTGCGGGCACACTCCGGCACACTCACTGCCAGACTCCTATGGGAGGCTGCAGTCGAGAAGCGGTAAACTCCTGACGAGGGAAGGAAGGGCCGCAAGGCCCCTGGAGGAAGCACGGGCTAAGTTCGTGCAGCAGCCGGCCGTGCGAACGTTATTCGGAATCACTGGGTCAACCGGGGGATACGACCGGCCTGGAAGAATCACCGGGGAACTGGAAAGCGGNGAAATGCGTTGAATCGAAGAACGCCMGCCACCCCC

1	TGTCCCGAAC	TTGGGAATAA	CAGCCGAAAA	CSACTGCTAA	TACCGAATAT
51	CTTCGTAACG	TCGCATGGCG	ATTCGAAGAA	AGCTTTATGC	GGTTTGGGAG
101	GGTCTCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCAT
151	CGACGGGTAG	CTGGTCTGAG	AGGATGATCA	GCCACACTGG	GACTGAGACA
201	CGGCCCAGAC	TCCTACGGGA	GGCAGCAGTG	GGGAATATTG	CACAATGGGC
251	GAAAGCCTGA	TGCAGCGATG	CCGCGTGCGG	GAAGAAGGCC	CTAGGGTTGT
301	AAACCGCTTT	CAGTAGGGAA	GAAAATGACG	GTACCTACAG	AAGAAGGTGC
351	GGCCAACTAC	GTGCCAGCAG	CCGCGGTGAC	ACGTAGGCAC	CAAGCGTTGT
401	CCGGATTTAT	TGGGCGTAAA	GAGCTCGTAG	GCGGTTTGGT	AAGTCGGGTG
451	TGAAAACTCT	GGGCTCAACC	CAGAGAGGCC	ACTCGATACT	GCCATGACTT
501	GAGTACGGTA	GGGGAGTGGG	GAATTTCTAG	TGTAGCGGTG	AAATGCGCAG
551	ATATTAGAAG	GAACACCAGT	GGCGAAGGCG	CCACTCTGG	