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Abstract

Pension fund companies manage and invest large amounts of money on behalf of their

members. In return for their contributions, members expect a benefit at termination of

their contract. Due to the volatile nature of returns that pension funds attain, pension

companies started attaching a minimum guaranteed amount to member’s benefits. In this

mini-thesis we look at the pioneering work of Brennan and Schwartz [10] for pricing these

minimum guarantees. The model they developed prices these minimum guarantees using

option pricing theory. We also look at the model proposed by Deelstra et al. [13] which

prices minimum guarantees in a stochastic financial setting. We conclude this mini-thesis

with new contributions where we look at simple alternative ways of pricing minimum

guarantees. We conclude this mini-thesis with an approach, related to the work of Bren-

nan and Schwartz [10], whereby the member’s benefit is maximised for a given minimum

guaranteed amount, which comprises of multi-period guarantees. We formulate a method

to find the optimal stream of these multi-period guarantees.

Key words: pension fund, defined benefit, defined contribution, minimum guarantee,

maximum benefit, return on investment, sharing rule in pension funds, call option, put

option, Lagrangian.
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Chapter 1

Introduction

Mathematical modelling is widely applied in pension fund management. Pension fund

management involves the investment of huge amounts of funds and thus pension funds

are subject to general investment practices. On the other hand there are also specific needs

and specialised functions that distinguish them from other funding systems. Pension funds

need to ensure that they receive enough contributions and make wise investment decisions

over the life of the fund to cover the benefits the fund must pay out in the future. Pension

funds also have legal requirements to adhere to and are only allowed to invest in certain

asset types and must maintain adequate asset-liability ratios. Thus there are methods

especially developed for pension funds. One class of problems that occur frequently in

pension funds are the optimisation problems. Here we can mention contributions such

as on optimal risk management practices by Josa-Fombellida and Rincón-Zapatero [24],

the optimal form of the minimum benefit guarantee such as Deelstra, Grasselli and Koehl

[13], optimal investment choices during the accumulation phase such as Huang and Cairns

[21] and Deelstra et al. [14], investment of the benefit subsequent to retirement of a mem-

ber from the fund by Gerrard, Haberman and Vigna [18] and the optimal management

with regard to solvency level of the fund, for example Petersen, Raubenheimer and van

Schuppen [31].
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Scope of this mini-thesis

This mini-thesis is divided into three distinct parts. Each section focuses on pricing min-

imum guarantees under different scenarios and using different mathematical models.

In particular in the first two parts we shall look in detail at two important instances, which

are presented in a paper by Brennan and Schwartz [10] and another approach to minimum

guarantees as presented in the paper by Deelstra et al. [13]. These two papers are not

unrelated but they differ in the following sense. In Deelstra et al. [13] the presentation

is in terms of stochastic calculus and stochastic optimisation but in the older Brennan

and Schwartz paper [10] the methods are deterministic, with stochasticity captured in the

Black-Scholes formula, which is key to the paper. Thus presentation of two such papers

allow for a good display of the relevant methods.

In the final part we present new work on the pricing of minimum guarantees. We end off

this mini-thesis by finding a sequence of guarantees that maximises the expected benefit

the contributor receives when he/she leaves the fund.
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PART I

The Brennan and Schwartz model

for pricing guaranteed minimum

benefit

2. Equity-linked funds

3. Literature review of equity-linked funds

4. The Brennan and Schwartz model

5. Calculations based on the Brennan and Schwartz model

The first part of this mini-thesis focuses on the model for pricing minimum guarantees

in equity-linked insurance policies proposed by Brennan and Schwartz [10]. We give an

overview of the pioneering work of Brennan and Schwartz [10] on the pricing of minimum

guarantees on the benefit. The papers by Brennan and Schwartz [10] and Boyle and

Schwartz [9] are considered to be the ground-breaking papers on equity-linked funds with

a minimum guarantee. Numerous research papers on equity-linked funds are based on

these two papers. In both papers the authors show that a portion of the benefit payable

under equity-linked contracts can be modelled as either call or put options. Hence, the

benefits can be priced using well-known option pricing theory.
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In chapter 2 we give a brief introduction to equity-linked funds and option pricing tech-

niques since this forms the basis for the work in this mini-thesis. Chapter 3 is a literature

review on equity-linked funds. All the papers researched for this mini-thesis consider

the basic model proposed by Brennan and Schwartz [10] but modify certain assumptions

which Brennan and Schwartz [10] make in their model. In chapter 4 we discuss the Bren-

nan and Schwartz model in some detail and we conclude this section with computations

based on the Brennan and Schwartz model. We observe how the results produced in

chapter 4 of this part is consistent with the properties known about option prices.
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Chapter 2

Equity-linked funds

Two extreme types of pension contracts exist: defined benefit and defined contribution.

Defined benefit pension contracts ensures that the contributor knows at the beginning

of the contract what his or her benefit will be at the end of the contract. However, the

contributions the member makes to the pension fund, to pay for the benefit, will vary

over the life of the contract. This variability of the contributions is due to the variability

of external factors such as interest rates, mortality rates, etc..

This is in contrast to defined contribution funds where the contributor makes fixed contri-

butions to the fund. The benefit that the contributor receives at the end of the contract

is stochastic and depends on the investment return achieved by the pension fund over the

life of the contract. The drawback of defined contribution funds is that the contributor

bears all the risk of the investment decisions made by the pension fund manager. To

reduce some of the investment risk faced by the contributor, the pension fund ensures a

minimum guaranteed amount as part of the benefit to the contributor.

A defining feature of equity-linked contracts is that the benefit payable at expiration of the

contract is linked to a financial asset or a reference portfolio. A portion of the contribu-

tions paid by a member of an equity-linked pension fund is used to purchase stock, which

then makes up the reference portfolio. The benefit that the contributor then receives
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depends on the market value of this portfolio at expiration of the contract. This random

benefit is a distinguishing feature of equity-linked contracts. The minimum guarantee

then offers protection against the policyholder’s benefit being too low. The minimum

guarantee is attached to the benefit to minimise the investment risk the policyholder is

exposed to. The contributor has to pay a premium above the normal contribution to

cover the cost of this minimum guarantee. Hardy [20] gives a comprehensive discussion

on equity-linked funds and investment guarantees.

Since the Brennan and Schwartz [10] model uses option pricing techniques to price the

benefits in equity-linked funds we end this chapter with a definition of basic options. For

a more comprehensive discussion on options and other derivatives and how they are priced

the reader is referred to Hull [22].

A derivative security or contract is one that derives its value from the price of an un-

derlying asset at maturity of the derivative contract. A call option on an asset gives the

contract holder the right, but not the obligation, to purchase the asset at a predetermined

price, called the exercise price. At a specified time or over a specified time period, put

options give the holder the right, but not the obligation, to sell the underlying asset at the

exercise price. European options can only be exercised on the expiration date as opposed

to American options that can be exercised on any date prior to expiration.
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Chapter 3

Literature review of equity-linked

funds

Numerous authors have gone on to modify the model proposed by Brennan and Schwartz

[10] by changing some of the assumptions that Brennan and Schwartz made. Despite

the fact that the model proposed by Brennan and Schwartz [10] is considered to be the

poineering work on equity-linked funds, a major disadvantage to the model is that their

model assumes constant interest rates. This is unacceptable and unrealistic due to the

long term nature of pension funds. The main problems that authors have subsequently

considered are: the type of guarantee paid out, whether a deterministic or stochastic

interest rate is considered and whether the contributor pays a single premium or makes

periodic payments to the fund.

In their paper, Nielsen and Sandmann [29] consider stochastic interest rates and periodic

premiums. The benefit they consider is a function of the history of the spot price of the

stock throughout the life of the contract. Therefore, the life-insurance contract contains

an embedded Asian option and is priced accordingly. In another paper [30] they derive

a model where the contributor receives a bonus in addition to the guaranteed amount

depending on the investment returns over the period of the contract. This bonus is priced
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as an Asian option.

In their paper, Bacinello and Ortu [1] first build a model that extends the original work

of Brennan and Schwartz [10] to include interest rate risk. Here the reference portfolio is

an all-equity fund. They then go on to consider the case where the reference portfolio is

made up of fixed income assets. They use stochastic interest rates with a single premium

policy of the endowment type. In another paper, Bacinello and Ortu [2] consider a model

where the reference portfolio comprises of interest rate sensitive assets. They distinguish

between the case where the payoffs received from the reference portfolio are reinvested

and where they are not reinvested. They conclude by providing numerical results to assess

the effect of various parameters in their model.

Bacinello and Persson [3] propose a model for a periodic premium endowment policy

under stochastic interest rates. The guarantee they consider is expressed as a number

of units in the reference portfolio. This implies that the benefit is a number of units

of the reference portfolio and not a fixed monetary amount. The authors consider such

a contract because they feel it reflects real world contracts. Also, a distinguishing fea-

ture of this contract is the closed form solutions that is found for the periodic premium

contract. They compare the model they developed with the one originally proposed by

Brennan and Schwartz [10]. They conclude with a numerical analysis discussing how the

various parameters affect their model and how their model compares with Brennan and

Schwartz’s [10] model.

All the papers considered, in this literature review, concentrates on the financial side of

the contract and mortality is usually considered to be diversified away. In his paper,

Jacques [23], considers a single contract so that mortality cannot be diversified. He tries

to close the gap between pricing using financial theory and actuarial methods.

Since Brennan and Schwartz [10] is considered the pioneering paper on equity-linked funds
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with an asset value guarantee, in the next chapter we discuss their model.
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Chapter 4

The Brennan and Schwartz model

In their paper, Brennan and Schwartz [10] considered an equity-linked policy with an asset

value guarantee that expires at a known time t. The contributor pays regular premiums

to the insurance company to receive a benefit at expiration of the contract. A portion

of the premiums is then invested in equity (stock), which then makes up the reference

portfolio. The benefit that the contributor will receive, at maturity of the contract, will

then be the greater of the reference portfolio and a minimum guaranteed amount.

Define the following variables:

X(t): value of the reference portfolio at time t,

G(t): minimum guarantee at time t,

B(t): the benefit payable at time t.

Then the benefit paid out at time t is

max[G(t), X(t)] (4.1)

This decomposes to

B(t) = G(t) + max[X(t) − G(t), 0] (4.2)

= X(t) + max[G(t) − X(t), 0] (4.3)
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If we look at the second term on the right side of equation (4.2), max[X(t) − G(t), 0],

is the payoff the holder of a European call option receives, where X(t) is the value of

the underlying asset and G(t) is the exercise price at time t. The underlying asset is

therefore the reference portfolio and the strike price is the minimum guarantee. Similarly

for equation (4.3), max[G(t)−X(t), 0] is the payoff the holder of the put option receives.

The initial cost of purchasing the option is ignored.

Equation (4.2) defines the benefit the contributor receives as he/she receiving the min-

imum guarantee and the payoff from holding a call option on the reference portfolio.

Equation (4.3) describes the benefit as receiving the payoff from receiving the value of

the reference portfolio and holding a put option on the reference portfolio.

Define further:

C(t, G(t)): value of a call option at time 0, that expires at time t, with strike price G(t),

P (t, G(t)): value of a put option at time 0, that expires at time t, with strike price G(t),

V0X(t): discounted time 0 value of the reference portfolio,

V0B(t): discounted time 0 value of benefit that is payable at time t,

r: risk-free interest rate.

Corresponding to equations (4.2) and (4.3) the discounted values are as follows respec-

tively:

V0B(t) = G(t)exp(−rt) + C(t, G(t)) (4.4)

= V0X(t) + P (t, G(t)) (4.5)

This is the price (and hence the premium) the contributor must pay to receive the ben-

efit defined by equations (4.2) and (4.3) respectively. Looking at equation (4.5), V0X(t)

represents the part of the premium the contributor must pay for receiving the value of

the reference fund at maturity of the contract. Therefore, P (t, G(t)) represents the extra

premium the contributor must pay for having the security of the minimum guarantee
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attached to his/her policy.

Equating equations (4.4) and (4.5) leads to

P (t, G(t)) = G(t)exp(−rt) + C(t, G(t)) − V0X(t) (4.6)

Therefore to derive the extra premium the insurance company must charge for providing

the minimum guarantee, one just needs to derive the value of the call option and then

solve equation (4.6).

Assume the dynamics of the reference portfolio can be described by the following stochas-

tic differential equation
dX(t)

X(t)
= μdt + σdWt

where μ is the expected return on the portfolio, σ is the volatility of the portfolio, and

dWt is the Standard Brownian Motion. Assume further that we are working with a single

premium contract, then deriving the value of the call option is equivalent to the well-

known Black-Scholes problem of pricing an option on a non-dividend paying stock.

Based on these assumptions the well-known solution for the call option in equation (4.6)

is

C(t, G(t)) = X(0)N(d1) − G(t)exp(−rt)N(d2) (4.7)

where

d1 =
lnX(0) − lnG(t) + (r + σ2

2
)t

σ
√

t

d2 = d1 − σ
√

t

N(x) =
1√
2π

∫ x

−∞
exp(−1

2
u2)du is the cumulative normal distribution.
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For the derivation of the Black-Scholes formula see [6], [22], [34].

Now that we have the formula for the price of a call option in equation (4.7), we can use

equation (4.6) to solve for the extra premium the contributor must pay for receiving the

minimum guarantee.

Alternatively, one can use the following put price formula to calculate the extra premium

that is charged for the guarantee:

P (t, G(t)) =
(
G(t)exp(−rt)

)(
1 − N(d2)

)
− X(0)

(
1 − N(d1)

)
.

The scenario described above assumes that the contributor makes a single payment. No

unique solution can be found in the case of periodic premiums and numerical methods

are used to find the solution.

13



Chapter 5

Calculations based on the Brennan

and Schwartz model

In the calculations that follows we only consider single premium contracts and will not

consider the effects of mortality. The computations in this chapter are done using Matlab.

For more details on how the programme works and an introduction to Matlab see Hahn

[19]. To do computations on equity-linked contracts using the Black-Scholes model we

must specify a risk-free interest rate and the volatility or variance rate of the portfolio.

For each example these are specified in the tables. As mentioned previously, the assump-

tion of constant interest rates is unrealistic. However, we assume constant interest rates

for ease of computations.

In table (5.1) various results for intermediate time periods are displayed for what we will

consider our base case in comparisons. The first column shows the time to maturity of the

contract and therefore each line represents the values that would be applicable to contract

of that duration. The second column shows the premium that the contributor pays to

the fund. For our base case we assume that the premium is 100 units irrespective of the

time to maturity of the contract. This is the amount that is invested in the reference

portfolio. In the base case we assume that the guaranteed amount, shown in column 3, on

14



T − t Premium Guarantee Call Put Contribution

1 100 100 7.50 3.58 103.58

5 100 100 22.31 4.19 104.19

10 100 100 36.26 3.29 103.29

15 100 100 47.53 2.41 102.41

20 100 100 56.80 1.73 101.73

Table 5.1: Put prices charged for guarantees with σ = 0.01846 and r = 4%

the contract is 100% of the premium, in the second column. The third and fourth columns

shows the call and put prices for the contracts, and is calculated using equations (4.7) and

(4.6) respectively. The put column is the values that is of most interest to us since this

is the extra premium the fund must charge the member to have the guaranteed amount

attached to his/her contract. The final column is the total contribution the member pays

to the fund and is the sum of columns 2 and 5.

Figure (5.1) shows the effect that changes in the interest rate and the time to maturity

has on the put values (the extra premium charged). We use a term to maturity of 40

years, so that the effect can be seen more clearly, and a volatility rate of 0.01846. We

consider interest rates of 8%, 4% and 1% with a premium and guarantee of 100 units.

From the graph we see that as the term of the contract increases the value of the put

increases for a while and then starts to decrease. It however reaches a limiting value and

only for high interest rates and longer time periods does the put value decrease to zero.

We also observe that the smaller the interest rate the longer it takes before the put price

starts decreasing. If we look at one point in time the graph shows us that as the risk-free

interest rate increases the value of the put decreases.

From graph (5.2), which shows the sensitivity of the model to changes in variance, we see

that as the volatility increases the put prices increase. For this graph we assumed a term
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Figure 5.1: Put Prices at different interest rates

to maturity of 1 year, a risk-free interest rate of 4% and a guarantee and premium of 100

units.

The observations drawn from the table and graphs above are in line with well-known

properties about changes in option prices due to changes in the various parameters.

Variance Put Price

0.01 2.26

0.02 3.79

0.03 4.98

0.04 6.00

0.05 6.91

Table 5.2: Put prices for a one period contract at different volatility rates

16



0 0.5 1 1.5 2 2.5 3
10

15

20

25

30

35

40

45

50

55

60

Variance

P
ut

 P
ric

e

Figure 5.2: Put Price at different variance rates

Table (5.2) shows the value of the put option for a one period contract for increasing

variance rates. We see that the put price increases at a decreasing rate and it increases

at a smaller rate than the increases in the volatility. For table (5.2) we use the same

parameters as in graph (5.2).

In the above calculations we assumed a constant premium and guarantee irrespective of

the term to maturity of the contract. It would be more realistic to consider premiums

and guarantees that increases as time to maturity increases. This is what we consider in

the following section. We first consider a premium that increases linearly with time and

then we consider a premium that increases by a factor of time.

Table (5.3) shows the put prices for a linearly increasing premium and guarantee. The

guarantee is still 100% of the premium. Table (5.3) shows that the premium one pays for

the guarantee still increases with time at first, then starts to decrease as in table (5.1)
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T − t Premium Guarantee Call Put Contribution

1 100 100 7.50 3.58 103.58

5 500 500 111.56 20.93 520.93

10 1000 1000 362.57 32.89 1032.89

15 1500 1500 712.98 36.20 1536.20

20 2000 2000 1136.01 34.67 2034.67

Table 5.3: Results with guarantee that increases linearly with time and σ = 0.01846 and

r = 4%

which shows the base case. However, the amount of the put price is much higher when

the premium increases linearly.

Next we assume the premium increases linearly with time but that the guaranteed amount

increases exponentially with time. The results are displayed in table (5.4).

T − t Premium Guarantee Call Put Contribution

1 100 195.12 0.00 87.47 187.47

5 500 889.40 9.45 237.62 737.62

10 1000 1606.53 140.77 217.66 1217.66

15 1500 2208.55 447.53 159.61 1659.61

20 2000 2735.76 881.99 111.25 2111.25

Table 5.4: Premium increasing linearly but guarantee increasing exponentially and σ =

0.01846 and r = 4%

The guarantee is calculated as: guarantee=premium(t)+premium(t)*(exp(alpha*(t))),

where alpha is a function of time. We observe that the put price still increases but de-

creases as a proportion of the total contribution as time increases. This is in contrast to

what is observed in the base case in table (5.1).
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T − t Base case Linear Exponential

1 3.45 3.45 46.66

5 4.02 4.02 32.21

10 3.19 3.19 17.88

15 2.35 2.35 9.62

20 1.70 1.70 5.27

Table 5.5: Put price as a percentage of the contribution

Table (5.5) shows the values for the put price as a percentage of the contribution, for

the different guarantees considered, namely a constant guarantee (base case), a guarantee

increasing linearly and a guarantee increasing exponentially. We observe that for the

constant guarantee and the guarantee that increases linearly the percentages are exactly

the same. The case where the guarantees increase exponentially is always significantly

higher than in the other two cases.
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PART II

The work of Deelstra et al. on

minimum guarantees

6. Financial setting assumptions

7. Dynamics of the pension fund

8. The surplus process

9. Utility maximisation

This part looks at the model for the optimal form of the minimum guarantee proposed

by Deelstra et al. [13]. The analysis is fully stochastic in nature and looks at stochas-

tic optimisation and utility maximisation. Their model incorporates a sharing rule, that

splits the surplus of the pension fund between the contributor and pension fund manager.

The surplus of the pension fund is the difference between the value of the fund at the end

of the contract, and the guarantee. The contributor receives a portion as part of his/her

benefit and the pension fund manager takes the remainder as compensation for managing

the fund.

We begin this part with a description of the financial model of [13] and assumptions that

are used in this part of the mini-thesis. We also discuss the dynamics of the pension fund

and the surplus process of the fund. In the last chapter of this part we look at a utility
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maximisation problem as in [13]. We look to find the minimum guarantee such that the

utility the contributor derives from his/her final benefit is maximised.
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Chapter 6

Financial setting assumptions

Let us introduce the model for pension fund management as of Deelstra et al. [13]. We

assume there are n + 1 assets in the financial market we are working in: n risky as-

sets and 1 risk-free asset. The risky assets considered will be non-dividend paying stock,

and the risk-free asset will be similar to a bank account. We assume that the market

is arbitrage-free to ensure that no investor can make a profit without taking some form

of risk. We also assume that the market is complete which means that every contingent

claim is attainable and can be priced. We work in a continuous time setting with t ∈ [0, T ]

for 0 < T < ∞.

The fact that the stock prices change randomly over very short periods of time is cap-

tured by the n-dimensional Brownian Motion W (t) = (W1(t); W2(t); . . . ; Wn(t))
′. All the

information generated by the Brownian Motion (and hence the stock prices) until time

t is captured in the filtration F(t). This filtration satisfies the usual conditions of being

right continuous and complete. For a detailed discussion on filtrations see [27].

The Brownian Motion is defined on a complete probability space (Ω,F , P), where Ω is

the probability space and F is a σ-algebra. P denotes the real world probability of an

event, say A ∈ F occurring. See Bass [4] for more on probability spaces.
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6.1 The risk-free asset

The price of the bank account at time t is P0(t). If one unit of money is invested in the

bank account at time 0, then P0(t) evolves according to

dP0(t)

P0(t)
= r(t)dt P0(0) = 1, (6.1)

where r(t) is the instantaneous interest rate. This is the continuous interest rate earned

if you deposit money in the bank account now and withdraw the money an instant later.

Solving equation (6.1) leads to the value of the bank account at time t as follows:

P0(t) = exp(

∫ t

0

r(s)ds) (6.2)

In equation (6.2) if r(t) is assumed non-negative then equation (6.2) is an increasing

function. Therefore, the bank account’s value can only increase and it is considered

risk-free. Since r(t) is Ft measurable the interest rate is always known at time t [26].

6.2 The risky assets

The price process of the stock is modelled as an Itô process:

dPi(t) = Pi(t)
[
bi(t)dt +

n∑
i=1

σij(t)dWj(t)
]
, Pi(0) > 0 i , j = 1, . . . , n. (6.3)

In equation (6.3) the randomness is captured by the Brownian Motion W (t). Volatility

measures how uncertain we are about the price movements of the stock, therefore, (σij(t))

indicates how the j -th source of uncertainty affects stock i at time t. The volatility matrix

of the stock is represented by σ = (σij(t)) and the returns (drift process) of the various

stock is represented by b(t) = (b1(t), . . . , bn(t))′.

Equation (6.3) states that the change in the price of the stock depends on that stock’s

return over that period and the random volatility of that stock. The assumption is made
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that r(t), b(t) and σ(t) are progressively measurable with respect to Ft and σ(t) is invert-

ible.

Using Itô’s lemma, one finds the solution to equation (6.3) to be

Pi(t) = Pi(0)exp

[ n∑
j=1

∫ t

0

σij(s)dW j
s +

∫ t

0

(
μi

s −
1

2

n∑
j=1

σ2
ij(s)

)
ds

]

6.3 The exponential process

Since the market is arbitrage-free and complete there is a unique process

θ(t) = σ−1(t)[b(t) − r(t)1n] 1n = (1, ..., 1)n ∈ Rn [25].

This represents the market price of risk or is referred to as the relative risk.

Theorem 6.1

Define the exponential process

Z(t) = exp
[
−

∫ t

0

θ′(s)dW (s) − 1

2

∫ t

0

||θ(s)||2ds
]
.

Then Z(t) is a local martingale.

Proof

Let L(t) = − ∫ t

0
θ′(s)dW (s) − 1

2

∫ t

0
||θ′(s)||2ds

Then dL(t) = −θ′(t)dW (t) − 1
2
||θ′(t)||2dt

Now Z(t) = exp(L(t))

By the famous Itô’s formula

dZ(t) = exp(L(t))dL(t) + 0dt +
1

2
exp(L(t))(−θ′(t))2dt

= Z(t)dLt +
1

2
Z(t)θ′(t)2dt
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= Z(t)[ − θ(t)dW (t) − 1

2
θ2dt] +

1

2
Z(t)θ2(t)dt

= −Z(t)θ(t)dW (t) − 1

2
Z(t)θ2dt +

1

2
θ2Z(t)dt

= −θ(t)Z(t)dW (t).

Therefore Z(t) is an Itô integral and hence a local martingale under the real world prob-

ability, P. �

This implies that

Q(A) = E[Z(T )1A] =

∫
A

Z(t)dP A ∈ F(t)

is the risk-neutral equivalent martingale measure.

To ensure there is no arbitrage in the market the state-price density process h(t) is intro-

duced

h(t) =
Z(t)

P0(t)
= exp

[
−

∫ t

0

r(s)ds −
∫ t

0

θ′(s)dW (s) − 1

2

∫ t

0

||θ(s)||2ds
]

For a more detailed and technical explanation of the various topics covered in this chapter

the reader is referred to [5], [16], [25], [26], [27] .
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Chapter 7

Dynamics of the pension fund

A member makes an initial contribution of X0 to the fund at time 0 when the member

has a defined contribution contract and then pays periodic contributions at a continuous

rate c(t) over the life of the contract. This contributions process is a square integrable,

non-negative progressively measurable process, i.e.,
∫ T

0
c2(t)dt < ∞, a.s.

Based on this the discounted value of all contributions that the contributor makes is the

initial contribution he/she makes plus the discounted value of all the contributions still

to be paid by the contributor.

X ′
0 = X0 + E

[ ∫ T

0

h(s)c(s)ds
]

(7.1)

The pension fund manager receives a portion of the surplus as compensation for man-

aging the pension fund and therefore wants to maximise the portion of the fund he/she

receives. The manner in which the surplus of the fund is divided is determined by the

sharing rule. We assume that the fund manager receives the proportion β of the surplus.

The spectrum of sharing rules provides a continuum between defined benefit funds and

defined contribution funds and allows transfer of risk between the contributor and the

pension fund manager.

With β = 0, the fund manager receives no compensation and with β = 1, the contribu-
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tor receives no portion of the surplus. These are trivial cases so we only consider β ∈ (0, 1).

Further, for the pension fund manager to make a profit we assume that the discounted

value of the contributions is greater than the discounted value of the guarantee at termi-

nation of the contract.

X ′
0 > E[h(T )G(T )]a.s.

The pension fund manager has control over the portion he/she receives by the investment

decisions he/she makes. If we consider that the pension fund manager invests the propor-

tion πi(t) of the funds he/she has available in the risky asset i such that
∑n

i=1 πi(t) = π(t)

is the total proportion invested in the risky assets, then 1−π(t) is the proportion invested

in the riskless asset.

Changes in the value of the fund, over an infinitesimal time period, are described by the

following dynamics:

• the proportion invested in the riskless asset will change by the interest rate

X(t)(1 − π(t))r(t)dt

• the proportion invested in the risky asset will change due to the stock return and

the volatility of the stock X(t)π(t)b(t)dt + X(t)π(t)σ(t)dW (t)

• the new premium is held for a short period of time, after which it gets absorbed

into the fund. Then it is subject to the dynamics described above.

The fund therefore follows the following stochastic differential equation:

dX(t) = X(t)(1 − π(t))r(t)dt + X(t)π(t)b(t)dt + X(t)π(t)σ(t)dW (t) + c(t)dt

=
(
X(t)r(t) + c(t) + X(t)π(t)

(
b(t) − r(t)

))
dt + X(t)π(t)σ(t)dW (t).
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Chapter 8

The surplus process

In Deelstra et al. [13] the surplus process of the pension fund at time t for t ≥ 0 is defined

as consisting of the value that the reference portfolio has accumulated to at time t, plus

the discounted value of contributions still to be received from time t till the end of the

contract less the value of the minimum guarantee that would be paid out at that time

t. Steffensen [33] looks at the dynamics of the surplus process in the life insurance context.

Define the following variables:

X(t): the value of the reference portfolio,

D(t): the expected discounted value of the remaining contributions,

G(t): the expected discounted value of the guarantee,

Y (t): the value of the surplus.

Then using the above definition

Y (t) = X(t) + D(t) − G(t),

where

D(t) = Et

∫ T

t

h(s)

h(t)
c(s)ds
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G(t) = Et

[h(T )

h(t)
G(T )

]

The value of the surplus at time 0 is the value of the initial contribution plus the expected

discounted value of all the contributions that will be paid by the contributor less the

expected discounted value of the guarantee, i.e.,

Y (0) = X(0) + D(0) − G(0)

= X0 + E0

∫ T

0

h(s)

h(0)
c(s)ds − E0

[h(T )

h(0)
G(T )

]

= X0 + E

[ ∫ T

0

h(s)c(s)ds
]
− E

[h(T )

h(0)
G(T )

]

= X ′
0 − E[h(T )G(T )]. (8.1)

In the second line we are taking the conditional expectations under the real-world prob-

ability. This expectation is conditional upon the information generated till the indicated

time point. Since we are taking the expectation at time 0, no information has been gener-

ated and therefore the normal expectation is taken. The last line uses X ′
0 which is defined

in equation 7.1 as the discounted value of all contributions the contributor will make.

Theorem 8.1

There exists a random Y(t) process such that

dY (t)

Y (t)
=

[
r(t) + y′(t)

(
b(t) − r(t)

)]
dt + y′(t)σ(t)dW (t)

Proof

Define K̃(t) = h(t)K(t), then dỸ (t) = dX̃(t) + dD̃(t) − dG̃(t).

From the price process of the stock, the state price density process and the process of the

reference portfolio, the change in the discounted value of the fund is defined as follows

dX̃(t) =
(
π′(t)σ(t) − θ′(t)

)
dW (t) + c̃(t)dt (8.2)

Let D1(t) = D(t) +
∫ t

0
h(u)c(u)

h(t)
du, then
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Es[h(t)D1(t)] = Es

[
h(t)Et

(∫ T

t

h(u)

h(t)
c(u)du

)
+ h(t)

∫ t

0

h(u)c(u)

h(t)
du

]

= Es

[
Et

(∫ T

t

h(u)c(u)du
)

+

∫ t

0

h(u)c(u)d(u)
]

= Es

[
Et

(∫ T

t

h(u)c(u)du
)

+ Es

(∫ t

0

h(u)c(u)du
)]

= Es

(∫ T

t

h(u)c(u)du
)

+ Es

(∫ t

0

h(u)c(u)du
)

= Es

(∫ T

0

h(u)c(u)du
)

= Es

[ ∫ s

0

h(u)c(u)du +

∫ T

s

h(u)c(u)du
]

=

∫ s

0

h(u)c(u)du + Es

[ ∫ T

s

h(u)c(u)du
]

= h(s)

∫ s

0

h(u)

h(s)
c(u)du + h(s)Es

[ ∫ T

s

h(u)c(u)

h(s)
du

]

= h(s)

∫ s

0

h(u)

h(s)
c(u)du + h(s)D(s)

= h(s)
[ ∫ s

0

h(u)

h(s)
c(u)du + D(s)

]

= h(s)D1(s).

Therefore h(t)D1(t) is a P martingale. By the Brownian motion martingale representation

theorem, there exists a unique process ζ(t) such that

D̃1(t) = D0 +

∫ t

0

ζ ′(t)dW (t).

Then,

dD̃1(t) = ζ ′(t)dW (t)

dD̃(t) = −c̃(t)dt + ζ ′(t)dW (t) (8.3)

Similarly,

Es[h(t)G(t)] = Es

[
h(t)Et

(h(T )

h(t)
G(T )

)]
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= Es

[
Et

(
h(T )G(T )

)]

= Es

[
h(T )G(T )

]

= h(s)Es

[h(T )

h(s)
G(T )

]

= h(s)G(s).

Therefore, h(t)G(t) is a P martingale and applying the Brownian motion martingale

representation theorem, there exists a unique process ρ(t) such that

G̃(t) = G(0) +

∫ t

0

ρ′(t)dW (t).

Then

dG̃(t) = ρ′(t)dW (t) (8.4)

Combining equations 8.2, 8.3 and 8.4 we get

dỸ (t) = dX̃(t) + dD̃(t) − dG̃(t)

= X̃(t)
(
π′(t)σ(t) − θ′(t)

)
dW (t) + c̃(t)dt

+
(
− c̃(t)dt + ζ ′(t)dW (t)

)
− ρ′(t)dW (t)

=
[
X̃(t)

(
π′(t)σ(t) − θ′(t)

)
+ ζ ′(t) − ρ′(t)

]
dW (t). (8.5)

The following equation solves the stochastic differential equation defined in equation 8.5:

Y (t) = Y (0)exp
{∫ t

0

[
r(s)+y′(s)

(
b(s)−r(s)

)
− 1

2
||y′(s)σ(s)||2

]
ds+

∫ t

0

y′(s)σ(s)dW (s)
}

This completes the proof of the proposition. �

Therefore,

Y (T ) = Y (0)exp
{∫ T

0

[
r(s)+y′(s)

(
b(s)−r(s)

)
−1

2
||y′(s)σ(t)||2

]
ds+

∫ T

0

y′(s)σ(s)dW (s)
}
,

with Y(0) defined in equation 8.1.
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Define

exp
{∫ T

0

[
r(s) + y′(s)

(
b(s) − r(s)

)
− 1

2
||y′(s)σ(t)||2

]
ds +

∫ T

0

y′(s)σ(s)dW (s)
}

= ϕ,

then Y (T ) = Y (0)ϕ =
(
X ′

0 − E[h(T )G(T )]
)
ϕ.

Now,

E[h(T )Y (T )] = Y (0) (8.6)

and

E[h(T )ϕ] = 1. (8.7)
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Chapter 9

Utility maximisation

The contributor receives only a portion of the surplus YT , as part of his/her benefit, be-

cause the pension fund manager takes the remainder as compensation for managing the

fund. The surplus at time T is the difference between the reference fund and minimum

guarantee. The assumption is made that the fund manager only receives his compensation

at the end of the contract.

The contributor’s benefit is then made up of the minimum guarantee and the portion

he/she receives from the surplus. If β is the proportion of the surplus that the fund

manager takes, then

BT = GT + (1 − β)(XT − GT )

= GT + (1 − β)Y (T )

is the total benefit the contributor receives at the end of the contract.

This implies that

GT = BT − (1 − β)Y (T ). (9.1)

When choosing a contract, the contributor only has control over the type of guarantee

he/she chooses. This is because the proportion the pension fund manager takes as com-
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pensation is fixed and the value of the reference portfolio is unknown at the time he/she

chooses a contract. Therefore, when choosing a contract the contributor will choose the

contract that offers him/her the best guarantee.

9.1 Utility Maximisation Problem

On deciding what contract offers the optimal guarantee, the contributor will choose a

contract such that the expected utility he/she receives from the final benefit is maximised.

Utility is a measure of the satisfaction that the contributor will receive from the benefit.

For the guarantee to add value to the pension contract, the minimum guarantee has to

be greater than zero. The expected value of the benefit is calculated by discounting the

benefit in the risk-neutral probability measure. The optimal guarantee therefore depends

on the expected value of the benefit. The optimal guarantee will therefore lie in a set

such that there is a solution for the expected value of the benefit.

The discounted expected value of the benefit the contributor receives will be the time 0

value of the expected contributions less the time 0 value of the manager’s portion of the

surplus.

k = X ′
0 − BM

0 ,

where k is the time 0 value of the benefit and BM
0 is the time 0 value of the manager’s

portion.

From the above discussion the contributor’s maximisation programme is defined in prob-

lem 9.1.

Problem 9.1

The contributor’s maximisation programme is
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Maximise{GT }E
[
u
(
GT + (1 − β)(XT − GT )

)]
(9.2)

subject to

k = E

[
h(T )

(
GT + (1 − β)(XT − GT )

)]

G = {GT : ∃k ∈ [0, X ′
0[s.t. GT is a solution of k}

GT ≥ 0

�

The set G is used in solving for k. This problem cannot be solved so we need to transform

the problem so that the problem can be solved using calculus of variations. To transform

the problem we use features about the manner in which the pension fund is managed and

features about the surplus process. This was covered in chapters 7 and 8 respectively.

Using the properties from those two chapters we transform the contributor’s maximisation

programme next.

Expression (9.2) can also be written as E

[
u
(
GT + (1− β)(YT )

)]
and the first constraint

as k = E

[
h(T )

(
GT + (1 − β)(YT )

)]

Looking at the constraint this can be simplified as follows:

k = E

[
h(T )

(
GT + (1 − β)(YT )

)]

k = E

[
h(T )

(
GT + (1 − β)

((
X ′

0 − E[h(T )G(T )])ϕ
))]

k = E[h(T )(1 − β)X ′
0ϕ] − E[h(T )(1 − β)ϕE[h(T )GT ]

+ E[h(T )GT ]

k − E[h(T )(1 − β)X ′
0ϕ] = E[h(T )GT ][1 − E[h(T )(1 − β)ϕ]

E[h(T )GT ] =
k − E[h(T )(1 − β)X ′

0ϕ]

1 − E[h(T )(1 − β)ϕ]
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E[h(T )GT ] =
k − (1 − β)X ′

0

β

The last equality holds due to (8.7). Now,

Y (T ) =
[
X ′

0 − E[h(T )G(T )]
]
ϕ

= ϕ
[
X ′

0 −
[k − (1 − β)X ′

0

β

]]

= ϕ
[
X ′

0 −
k

β
+

X ′
0

β
− βX ′

0

β

]

= ϕ
[X ′

0 − k

β

]

This changes the benefit defined in equation (9.1) to

G(T ) + ϕ
[X ′

0 − k

β
(1 − β)

]

and the guarantee to

B(T ) − (1 − β)ϕ
[X ′

0 − k

β

]

This changes the maximisation programme defined in the problem to

Maximise{GT }E
[
u
(
GT + (1 − β)ϕ

(X ′
0 − k

β

))]

subject to

k = E

[
h(T )(GT + (1 − β)ϕ

(X ′
0 − k

β

)]

G = {GT : ∃k ∈ [0, X ′
0[s.t. GT is a solution of k}

GT ≥ 0

This is further simplified to

Maximise{BT }E[u(B(T ))]
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subject to:

k = E[h(T )(B(T )]

B(T ) ≥ (1 − β)ϕ
[X ′

0 − k

β

]

This problem is solved in Deelstra et al. [13] using calculus of variations.
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PART III

New contributions

10. Maximising the expected benefit for a given minimum guarantee on the

benefit

In the final section of this mini-thesis we include some original contributions.

In conclusion, as a novelty we present a particular discrete optimisation problem, which

maximises the expected benefit for a given sequence of member contributions and a given

minimum guarantee on the benefit. We provide illustrative computational examples on

this particular problem which shows that the member can find a sequence of guarantees

that will result in him/her receiving a maximum benefit.

38



Chapter 10

Maximising the expected benefit for

a given minimum guarantee on the

benefit

In the final chapter of this mini-thesis we try to find a strategy that will maximise the

benefit a pension fund member will receive given that he/she makes regular defined con-

tributions to the fund and has a given minimum guarantee attached to his/her pension

contract.

Pension fund companies started attaching minimum guarantees to contracts to ensure

that members still earned a return on their investments, even when the pension fund

achieved poor investment returns, and to minimise the investment risk that contributors

are exposed to. In this mini-thesis we looked at the pricing of these guarantees and we saw

that these guarantees add value to the contract. In the first section of this mini-thesis we

concentrated on the model proposed by Brennan and Schwartz [10] where these minimum

guarantees are priced as put options. These put prices are the additional premiums that

contributors pay to the fund for the minimum guarantee being attached to their contract.

39



In their paper Brennan and Schwartz [10] considered maturity guarantees whereby the

minimum guarantee that is attached to the contract is only applicable at the termination

of the contract. Other authors, for instance, Lindset [28] have developed models that

price multi-period guarantees since they argue that minimum guarantees are applicable

at the end of each period and not only at the end of the contract. In this chapter of

this mini-thesis we try to find the optimal sequence of incremental guarantees that will

maximise the expected benefit the contributor will receive.

10.1 The optimisation problem

We work in the time period 0 = t0, t1, t2, ..., tn−1, tn = T , and the multi-period incremental

guarantees g0, g1, g2, ..., gn−1 we consider add up to the minimum guarantee G. We con-

sider the problem whereby we want to maximise the expected benefit B̄ the contributor

receives, with the minimum guarantee G attached to the contributor’s contract, comprised

of multi-period guarantee increments g0, g1, g2, ..., gn−1. We assume that the contributor

makes fixed contributions c0, c1, c2, ..., cn−1 to the fund at times t0, t1, t2, ..., tn−1. These

contributions ci splits as ci = pi + xi for i = 1, ..., n − 1. The amount xi is the effective

contribution, and it is only this amount that is invested in the member’s portfolio. The

remainder pi is the premium that the contributor pays for the minimum guarantee. Un-

der the assumption that the dynamics of the pension fund follows a geometric Brownian

Motion, the pi’s are the prices of European put options as explained in chapter 4 of this

mini-thesis. The strike price of the put option over the period [ti, T ] is gi, and the (time

ti)-value of the risky asset is xi. We price the option using the Black-Scholes formula,

therefore pi = BSP (T − ti, gi). The expected benefit B̄ that we want to maximise is then

derived from these effective contributions that are invested in the fund. The expected

benefit B̄ is therefore the accumulated value of the effective contributions, where the ef-

fective contributions accumulate at rate μ.
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Thus the optimisation problem is:

Maximise{gi} B = Σn−1
i=0 e(T−ti)μxi (10.1)

subject to G = Σn−1
i=0 gi , ci = xi + pi (for all i). (10.2)

It should be noted the the sum G of the incremental guarantee is actually not the final

minimum benefit. Every call option can be considered individually. Thus it may happen

that the total portfolio of the member may have a maturity value B̄ already slightly bigger

than G, but the member is entitled to claim even more than B̄. The reason for the latter

is that some of the incremental guarantees may still be claimable (i.e. in the cases where

the relevant incremental of the portfolio ended up below the strike value, gi).

Now let us express pi as a function pi = fi(xi, gi), which is of course the Black-Scholes

formula for a put option striking at gi with the initial value of the underlying asset at xi.

The second part of expression (10.2) can be expressed as xi = ci − pi. Since the ci are

fixed and pi = fi(xi, gi), we obtain the identity

xi = ci − fi(xi, gi). (10.3)

This says that xi is implicitly a function of gi. This means that xi is a fixed point of the

function Fi(u), where

Fi(u) = ci − fi(u, gi).

In order to calculate the contributor’s expected benefit we need to calculate xi. In the

following two sections we describe two iterative methods of calculating xi.

We first prove an important observation for implementing the method discussed in this

chapter.

Proposition 11.1. (a) The assumption ci = pi + xi implies gi < cie
r(T−ti) for each i.

(b) In particular, for interest rate r = 0, the assumption ci = pi + xi implies gi < ci for

each i.
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Proof. (a) For time 0 < t < T the following relationship holds for European put and call

options:

Ct − Pt = St − Ke−r(T−t)

This relationship is known as the put-call parity (see Hull [22] for instance). Noticing

that Ct > 0, the put-call parity gives the following:

−Pt < St − Ke−r(T−t), i.e., St + Pt > Ke−r(T−t).

If we consider the special case where K = gi, t = ti, St = xi and P (t) = pi, then

xi + pi > gie
−r(T−ti), i.e., gi < cie

r(T−ti).

(b) This follows immediately from (a). �

10.2 Newton’s method for finding roots

The Newton-Raphson method is a technique used to find the roots of an equation using

the derivative. If ϕ(x) is the function we want the root of using the Newton-Raphson

formula, we approximate the root as

xn+1 = xn − ϕ(x)

ϕ′(x)
. (10.4)

We guess a value x0 in order that the sequence of iterations will converge to the value we

are looking for. The iterations of the Newton-Raphson will converge as long as ϕ, ϕ′, ϕ′′

are continuous near the root, ϕ′ does not equal zero at the root and the initial value

chosen is sufficiently close to the answer [17].

We therefore use the Newton-Raphson method to calculate the root of equation (10.3).

Now,

ϕ(xi) = ci − pi − xi

42



so that

ϕ′(xi) = −∂pi

∂xi

− 1 (10.5)

where

∂pi

∂xi

= gie
−rt

(
− e−

k2
i
2

xiσ
√

2πτ

)
− N(−hi) +

e−
k2
i
2

σ
√

2πτ
(10.6)

hi =

[
ln xi

gi
+ (r + 1

2
σ2)(τ)

]
(σ
√

τ )
(10.7)

ki =

[
ln xi

gi
+ (r − 1

2
σ2)(τ)

]
(σ
√

τ )
(10.8)

τ = Ti − t and N(·) is the cumulative normal distribution.

We calculate values for xi using Maple 9.5. For an introduction to the programme Maple

see [12]. We found that in certain instances the iterations did stabilise but for certain

parameters no stabilisation of the iterations occurred. For the examples in this section we

assume a volatility rate of 0.03 and that there are only two time periods. We also assume

the total contribution ci is 1.

We find that the method gives no results for guarantee values gi greater than 1, if we

assume ci = xi + pi(x, g) = 1. The iterations are shown in appendix A. The following

proposition explains why no solution is found for guarantees greater than 1.

Suppose we have an asset with value that has the dynamics dS(t)
S(t)

= μdt + σdWt and let

us denote by pi(x, g) the Black-Scholes price of a European put option with strike g and

S0 = x while we assume that T, r, σ are fixed. Since we assume that the contribution is 1

we let F (u) = 1 − pi(u, g).

We can prove the following.
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Proposition 11.2

F (u) has no fixed point if g > 1.

Proof

For time 0 < t < T the following relationship holds for European put and call options:

ct − pt = St − Ke−r(T−t)

This relationship is known as the put-call parity. For details on how the put-call parity

relationship arises see Hull [22]. Noticing that ct > 0, the put-call parity gives the

following:

−pt < St − Ke−r(T−t)

St + pt > Ke−r(T−t)

If we consider the special case where K = g, r = 0, t = 0, St = x, then

x + pt > g

1 > g

�

Since the incremental guarantees gi are less than one, Σn−1
i=0 gi will always be less than n.

This means that if we take ci = 1 for all i, then the total minimum guaranteed amount

G always has to be less than the time to maturity of the contract.

In the following section we discuss another method that can be used to find the effective

contributions, namely the fixed point iteration method.

10.3 Fixed point iteration method

The fixed point iteration method is an iterative technique that aims to find a fixed point

of a given function. A fixed point is that point of the function where the y = x line crosses
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that graph. We therefore use the fixed point method since xi is implicit in pi. If we assume

that the constant contribution that is paid is one unit then the effective contribution is

1− pi = xi. The aim is to find the fixed point of this equation. If g(x) is the function we

want to find the fixed point of then xn+1 = g(x). For an initial value this will converge

towards the fixed point which is the solution we are looking for. The question now is

whether a fixed point exist for our problem and will the iterations converge.

Appendix B shows an example where the fixed point iterations stabilises after 10 itera-

tions.

For fixed strike=g and variable stock=x the graph of p(x) has slope ∂p
∂x

, which is defined

by equation (10.6). We observe that

−1 <
∂p

∂x
< 0

This means that xi = 1 − pi has slope between 0 and 1. We also observe that ∂2p
∂x2 < 0

over the whole interval. Consequently, the iteration method will always produce a fixed

point.

For a more in-depth discussion of the Newton-Raphson and the fixed point method the

reader is referred to [17].

Now having shown that we can determine the contributor’s effective contribution in the

following section we show some numerical examples where we calculate the member’s

expected benefit. In particular we can now calculate the expected benfit for a given

sequence of incremental guarantees.We use the fixed point iteration method to calculate

the member’s effective contribution in the rest of this chapter.

We note in table 10.1 that we obtain an increase on the expected benefit if instead of the

“level” sequence, case (a), we take an increasing sequence of gi’s, case (b).
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Table 10.1: r = 0.04, μ = 0.06, σ = 0.08, G = 95828 (and in fact G was decided to be

Σ8
j=1cj), (ci) is a geometric sequence with factor 1.04.

ci : 10400 10816 11249 11699 12167 12653 13159 13686

(a) gi : 10400 10816 11249 11699 12167 12653 13159 13686

xi : 10324 10723 11134 11556 11991 12435 12890 13360 B̄a = 123412

(b) gi 11087 11295 11547 11765 12025 12326 12667 13117

xi : 10250 10664 11091 11546 12018 12512 13034 13588 B̄b = 123659

10.4 The 2 and 3 period cases

Let us suppose that there are only two periods in the contract. We show graphically

the existence of a maximum in the expected benefit for the member. In the 2-period

case there are only two contributions, c0 and c1 and consequently we consider only g0

and g1. Since the minimum guarantee G is fixed, we can consider g0 to be an indepen-

dent variable but then g1 is automatically determined by g1 = G−g0. We plot B̄ versus g0.

The graph (10.1) shows the expected benefit as a function of g0 given that the minimum

guarantee is 1.95 units, for contributions c0 = 1 = c1 while we work with volatility value

σ = 0.08.

We now turn to the 3-period case where there are 3 gi’s. Again the minimum guaran-

tee G is fixed, the expected benefit B̄ is a function of two independent variables g0 and

g1 while g2 = G − g0 − g1. We observe that the graph in figure (10.2) is concave down,

which indicates that once again a maximum of the expected benefit is attained. For the

graph we consider the case: μ=0.01, a volatility rate of 0.08, a minimum guarantee of 2.8

units and constant contributions of 1 unit.
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Figure 10.1: Benefit with G=1.95, σ = 0.08, μ = 0.1

Figure 10.2: Expected benefit for a three period contract

From the sketch (note that on the computer we can rotate the graph and make more

accurate readings from the screen) we read off the approximate values for g∗
0 and g∗

1 where

the maximum benefit will occur:

g∗
0
∼= 0.920 , g∗

1
∼= 0.928.

With a total G = 2.8 we thus have g∗
2
∼= 2.8− 1.848 = 0.952. The approximate maximum

value of B̄ is B̄∗ ∼= 2.98.

The graphs for the 2 period case and the 3 period case show that a maximum benefit

amount can be attained for a suitable choice of the numbers gi. This motivates the

formulation of a solution method to find the optimal stream of gi’s, which is done in the

next section.
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10.5 Solving the optimisation problem

To solve the optimisation problem mentioned in section (11.1) we use the Lagrangian

method of optimisation. The Lagrangian method of optimisation is used when we want

to determine the optimal value of a function that has more than two variables, that are

possibly inter-related. A detailed explanation of the Lagrangian method of optimisation

is found in [11].

Let g denote the T -tuple variable g = (g0, g1, ..., gn−1), B̄ is the objective function that we

seek to minimise, λ is a Lagrangian multiplier. The T -tuple (x0, x1, ..., xn−1) is denoted

by x. The Lagrangian is:

L(x, g, λ, λ0, λ1, ..., λn−1) = B̄(x) + λ
[ n−1∑

i=0

gi − G
]

+
n−1∑
i=0

λi

(
ci − pi(xi, gi) − xi

)
. (10.9)

Proposition 11.3

The following conditions (together with the constraints pi = ci−xiand
∑n−1

1=0 gi = G)arenecessaryforaseque

that solves the optimisation problem. For each i = 0, 1, 2, ..., n− 1:

eμi/λi = 1 − N(−hi) + (e−h2
i /2 − gi

xi
e−rτi−k2

i /2)/σ
√

2πτi (10.10)

λ/λi = e−rτiN(−ki) + (e−rτ−1
2

k2
i − xi

gi

e−
1
2

h2
i )/(σ

√
2πτi), (10.11)

where for each i,

τi = T − ti (10.12)

hi =
ln xi

gi
+ (r + 1

2
σ2)τi

σ
√

τi

(10.13)

ki =
ln xi

gi
+ (r − 1

2
σ2)τi

σ
√

τi

(10.14)

Proof

The first order conditions that need to be satisfied are that the first order partial deriva-

tives of L with respect to the variables xi and gi and with respect to the costate variables

λ, λ0, λ1, ....λn−1 must vanish. Considering the costate variables we obtain the constraints.

Furthermore we have
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0 = ∂L
∂xi

= eμτi + λi(− ∂pi

∂xi
− 1)

0 = ∂L
∂gi

= λ − λi
∂xi

∂gi
.

Now we calculate these partial derivatives. We note that

∂N(−hi)

∂xi
=

dN(−hi)

dhi

∂hi

∂xi
= − 1√

2π
e−

1
2

h2
i · 1

xiσ
√

τi
.

We also note that
∂ki

∂xi

=
∂hi

∂xi

=
1

xiσ
√

τi

.

This gives
∂pi

∂xi
= erτigi

∂N(−ki)

∂xi
− N(−hi) − xi

∂N(−hi)

∂xi

= −N(−hi) + (e−h2
i /2 − gi

xi

e−rτi−k2
i /2)/σ

√
2πτi.

Similarly we can calculate ∂pi

∂gi
. These values when substituted into ∂L

∂xi
and ∂L

∂gi
above gives

us the stated conditions. �

Now the necessary conditions constitute a system simultaneous equations which we can

solve for the unknown g0, g1, g2, ..., gn−1 together with λ and all the λi. In the next section

we give sample numerical solutions.

10.6 Solving for the incremental guarantees and the

expected benefit

To solve for the incremental guarantees in higher time periods we solve the system of

equations in proposition 11.2. We use the powerful f-solve function in the computing

programme Maple to solve the system of equations.

When calculating these values we use approximations for the exponential and normal

function since the computer code could not solve the problem with the true values. We

use the following approximations: ex ∼= Σ10
n=0

xn

n!
and

N(x) ∼= x − x3

6
+

x5

40
− x7

336
+

x9

3456
− x11

42240
+

x13

599040
− x15

9676800
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It is sufficient to use these orders for the approximations since our x values are small.

However, using an approximation is a significant drawback of the method. Yet, for 8

period problems it ran very fast (a few seconds). Given a solution, the test (calculation of

B̄ and comparison with other gi sequences) can be made without making approximations,

and we are happy that we obtain sufficiently precise solutions. The case (b) of the table

(10.1) above is in fact an optimal solution obtained via this method. In what follows we

include some further computations.

We consider an 8-period problem with a constant sequence of contributions and with the

parameters r = 0.02, μ = 0.06, σ = 0.08, and G is just the sum of the contributions

G = 48690. The sequence of incremental guarantees in (a) is the one for which gi = ci,

and the optimal sequence of incremental guarantees is given in (b).

Table 10.2: r = 0.02, μ = 0.06, σ = 0.08, G = 48690 (and in fact G was decided to be

Σ8
j=11.02j), (ci) is a geometric sequence with factor 1.04).

ci : 5000 5200 5400 5600 6100 6530 6860 8000

(a) gi : 5000 5200 5400 5600 6100 6530 6860 8000

xi : 4809 4992 5174 5355 5832 6224 6535 7638 B̄ = 60345

g∗
i : 5138 5319 5441 5628 6084 6480 6759 7840

x∗
i : 4748 4933 5152 5338 5833 6262 6625 7810 B̄∗ = 60448
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Table 10.3: r = 0.05, μ = 0.08, σ = 0.115, G = 50000

ci 5000 5200 5400 5600 6100 6530 6860 8000

g∗
i 5532 5724 5787 5841 6223 6504 6666 7723

x∗
i 4841 5010 5208 5411 5901 6338 6698 7846 B̄∗ = 66984
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Conclusion

In this mini-thesis we calculate and discuss various results regarding minimum guarantees

that are present in investment contracts. We concentrated on the models proposed by

Brennan and Schwartz [10] and Deelstra et al. [13]. We found that the inclusion of these

minimum guarantees to a pension fund member’s contract adds value to his/her contract.

In the final chapter of this mini-thesis we formulate a method to find an optimal stream

of incremental multi-period guarantees that would maximise the benefit the contributor

receives from his/her contract. We conclude that the member can attain the highest

benefit when his/her guarantees are increasing. We include numerical examples for a two,

three and four period contract. We did not include major multi-period cases since that

may include numerical work taking us beyond the scope of a mini-thesis. Instead we used

the very powerful f-solve function of Maple.
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Appendix A

Iteration Initial xi

1 1 0.99130718

2 0.99130718 0.99009306

3 0.99009306 0.988997875

4 0.988997875 0.98996891

5 0.98996891 0.98996806

6 0.98996806 0.98996799

7 0.98996799 0.98996800

8 0.98996800 0.98996800

Table 4: Newton-Raphson iterated values with gaurantee = 0.95

Table (4) shows an instance where the sequence stabilises. We observe that with a guar-

antee of 0.95 the sequence stabilises after 8 iterations.

Table (5) is produced using code that produces a value for the effective contribution using

the Newton-Raphson method after 10 iterations. We iterate 5 times to get a value after

50 iterations. From table (5) we see that the series with a guarantee of 1 still does not

stabilise after 50 iterations.

From table (6) we see that the iterations also does not stabilise after 50 iterations when

the guarantee is 1.01.
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Iteration Initial xi

1 1 1.0237582

2 1.0237582 0.97035619

3 0.97035619 1.0382054

4 1.0382054 0.98033454

5 0.98033454 1.0188994

Table 5: Newton-Raphson iterated values with gaurantee = 1

Iteration Initial xi

1 1 0.95998052

2 0.95998052 1.2243362

3 1.2243362 0.99999884

4 0.99999884 0.95980852

5 0.95980852 1.2243362

Table 6: Newton-Raphson iterated values with gaurantee = 1.01

Iteration Initial xi

1 1 0.99927183

2 0.99927183 0.99927183

Table 7: Newton-Raphson iterated values with gaurantee = 0.9

In table (7) we see that the series stabilises after twenty iterations.

From this we conclude that the Newton-Raphson method only converges when the guar-

antee is less than 1.
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Appendix B

Iteration Initial xi

1 1 0.99225739

2 0.99225739 0.99049877

3 0.99049877 0.99009114

4 0.99009114 0.98999656

5 0.98999656 0.98997462

6 0.98997462 0.98996952

7 0.98996952 0.98996835

8 0.98996835 0.98996806

9 0.98996806 0.98996800

10 0.98996800 0.98996800

Table 8: Fixed-Point Iterated values with guarantee = 0.95

Table (8) shows the iterated values using the fixed point method with guarantee equal to

0.95. We see that this method converges after 10 iterations. We again assume a volatility

of 0.03 and two time periods.
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