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SUMMARY  

Dentin bonding agents display marked improvement in their mechanical 

properties as new systems are introduced commercially. The old dentin 

bonding systems had three application steps; acid –etching, application of 

primer, and finally the application of the adhesive system. With the newer 

generations of dentin bonding systems the numbers of application steps have 

decreased. This improvement resulted in the production of the two-step and 

single step dentin bonding agents. There are several factors that can influence 

the bond strength of these adhesive systems. The thermal changes that occur 

inside the oral cavity as a result of food consumption can create stresses that 

affect the bond strength of these two-step and single-step dentin adhesive 

systems. The aim of this study is to investigate if there is any difference in the 

bond strength between the two-step and the single-step dentin adhesive 

systems and then to assess the effect of repeated thermal changes on this 

bond strength following repeated thermal changes. Aim and objectives: The 

aim and objective of this study was to determine the bond strength of a two-

step and a single-step dentin bonding agent and to determine the effect of 

repeated thermal-cycling from 50C and 550C on the bond strength values of 

these dentin bonding agents. Materials and methods: 100 extracted human 

molar teeth were used in this study. The roots of the teeth were sectioned at 

the crown-root junction. The teeth were embedded in cold-cure acrylic resin so 

that the buccal surface of the teeth projected slightly above the acrylic resin. 

The buccal surfaces of the teeth were cut off exposing a flat dentin surface. The 

flat surfaces were polished with 1200 grit silicon finishing paper. The teeth will 

be randomly divided into two groups (n=50). In which Prime and Bond NT (two-

step dentin bonding agent) was used to bond the composite mold to the flat 

dentin surface in the first group and Xeno V (single-step dentin bonding agent) 

was used to bond the composite mold to the flat dentin surface in the second 

group. In each group the teeth were subdivided randomly into another two 

groups in which (n1=25), in the first subgroup the samples were stored in water 

at 370C for 24 hours before measuring the shear bond strength value and the 

group was labeled as Prime and Bond NT or Xeno V without thermal-cycling. In 

the second subgroup the samples were thermal-cycled between 50C and 550C 
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for 500 cycles before the shear bond strength was measured. Results: the 

shear bond strength test revealed that the bond strength values between Prime 

and Bond NT (two-step dentin bonding agent) and Xeno V (single-step dentin 

bonding agent) were not statistically different (p>0.05). The shear bond 

strength values of Prime and Bond NT (two-step dentin bonding agent) before 

and after thermal-cycling were not statistically different (p>0.05). The shear 

bond strength values of Xeno V (single-step dentin bonding agent) before and 

after thermal-cycling were not statistically different (p>0.05). Conclusion: 

Within the limitation of this study there is no difference in the shear bond 

strength values to dentin between the two-step dentin bonding agent (Prime 

and Bond NT) and the single-step dentin bonding agent (Xeno V).Thermo-

cycling between 50C and 550C had no effect on the bond strength values of 

these dentin bonding agents. 
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Chapter 1 
Introduction 
 

Dentin bonding agents display marked improvement in their mechanical 

properties as new systems are introduced commercially. The older generation 

dentin bonding systems had three application steps; acid –etching, application 

of primer, and finally the application of the adhesive system. With the newer 

generations of dentin bonding systems the number of application steps has 

decreased. This improvement has resulted in the introduction of the two-step 

and the single-step dentin bonding agents. There are several factors that have 

contributed to the bond strength of these adhesive systems. The thermal 

changes that occur inside the oral cavity as a result of food consumption also 

create stresses that can affect the bond strength of all these dentin adhesive 

systems. The objective of this study was to investigate if there was any 

difference in the bond strength of the two-step and the single-step dentin 

adhesive systems following repeated thermal changes. 
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1.1 Definition of terms: 
For the purpose of this study, the following terms are defined as follows: 

 

 Dentin bonding agent: resinous material that is applied to the tooth in a 

thin layer in order to bond a restorative material to the tooth surface 

micromechanically through the formation of a hybrid layer. 
 

 Hybrid layer: an intermediate layer of resin, collagen, and dentin 

produced by the etching of dentin followed by the resin infiltration into the 

conditioned dentin. 
 

 Composite resin: a highly cross-linked polymeric material reinforced by 

a dispersion of amorphous particles such as silica, glass, crystalline, or 

organic resin filler particles and/or short fibers bonded to the matrix by a 

coupling agent 
 

 Bond strength test: tests used to evaluate the force required to break 

the adhesive bond between the tooth structure and the restorative 

material. 
 

 Shear stress: is the ratio of force to the original cross-sectional area 

parallel to the direction of the force applied to the test specimen. 
 

 Shear strength: is the maximum shear stress at the point of fracture of 

the bonded surface and/or the specimen. 
  

 Thermal-cycling: is an in vitro process in which the restorative material 

and the tooth structure are subjected to repeated thermal changes 

ranging between 50–550C for the purpose of this study 
 

 Mann-Whitney U test: a non-parametric significance method of testing 

for equality of population medians among groups. 

 

 

 

 

 



3 

 

Chapter 2 
Literature review 
 

2.1. Introduction: 

The ideal restorative material should have the same physical properties as 

tooth structure. It should also adhere chemically to the tooth surface, require 

minimal instrumentation, and be aesthetically acceptable (Davis et al, 1992). In 

the past restorative materials were retained mechanically by the creation of a 

geometrical shape inside the tooth structure. This procedure has the 

disadvantage of removal of unnecessarily healthy tooth structure with a 

subsequent increase in the level of trauma and a resultant weakening in the 

remaining tooth structure (DiRenzo et al, 1995). 

In the 1950s Dr. Oskar Hagger developed a resinous material that adhered to 

tooth structure. The introduction of the acid-etching technique by Michael 

Buonocore in 1950s improved the resin-enamel bond (Tay et al, 2004). These 

improvements in the adhesive systems resulted in the development of a 

micromechanical retentive system for the bonding resin to the tooth structure 

(Bouillaguet et al, 2001).  

The adhesive systems continued to develop rapidly in the last ten years. This 

rapid development was largely due to two main factors; the first being the 

increasing demand for tooth-colored restorative materials by patients with a 

subsequent enhancement in the adhesive technology used with this type of 

restorative materials. The other reason is the introduction of minimally invasive 

operative procedures to the profession which were based on only replacing the 

diseased tooth tissue by direct bonding of the restorative material to the 

remaining tooth sound structure (Van Meerbeek et al, 2003).  

As a result of this improvement in the adhesive systems, the clinical application 

techniques also showed an improvement represented by a decrease in the 

number of clinical application steps from the original three-steps to two-steps, 
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and more recently even a one-step application adhesive system for dentin 

bonding.  

The oral cavity is constantly subjected to thermal changes that may affect the 

strength of these dentin bonding agents (Asaka et al, 2007). These temperature 

changes, that can cause hydrolysis of the bonded interface component, could 

also result in repeated contraction and expansion of the dentin bonding agents. 

This dimensional change can result in the creation of stresses on the bonded 

interface (De Munk et al, 2005) with a significant reduction in the bond strength 

of a variety of dental materials (Soh and Selwynb, 1992). 

Bond strength tests have been used to evaluate the strength of the adhesive 

joint. The bond strength can either be tested under tensile or shear load and 

sometimes in combination with cyclic fatigue or thermal stress (Eliades, 1994). 

Asaka et al (2007) investigated the influence of thermal cycling on the bond 

strength of a single-step, self-etch dentin adhesive system, while Miyazaki et al 

(1998) investigated the influence of thermal cycling on the bond strength of a 

two-step dentin adhesive system using a self-etching primer system and a self-

priming adhesive system. However there are limited studies that have 

compared the effect of thermal changes on the bond strength of the two-step 

and the-single step dentin bonding systems under the same conditions. 

2.2. Dentin bonding agents: 

2.2.1. Basic principle of adhesion: 

Adhesion is the process by which two substrates are joined together through 

formation of an adhesive joint between them. In dentistry these substrates are 

usually the adhesive and the dental substrate which can be enamel, dentin, or 

cementum. Dental adhesives have been defined as resin monomer solutions 

that join a restorative material to a dental substrate following polymerization of 

the restorative material (Perdigăo, 2007). 

The adhesive bond can be mechanical, physical, chemical, or a combination of 

these bonds. Mechanical adhesion is the simplest method of adhesion and it 

results from the presence of micro irregularities on the surface of the adherend 

and the ability of the adhesive to penetrate into these micro-irregularities or 
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undercuts such as in the case of pits and fissures or in the presence of etched 

enamel. Physical adhesion is when two surfaces are brought into intimate 

contact and there are secondary forces of attraction arising through a dipole-

dipole interaction between the polar molecules. This is a weak, rapid and 

reversible type of bond and can easily be overcome by thermal energy and as 

such it is not suitable as the only bond for permanent bonding. The third type of 

bond is the chemical bond in which the molecules of the two substrates 

dissociate after adsorption onto the surface and the constituents of each 

material bond separately to the other by covalent or ionic forces, resulting in the 

formation of a strong adhesive bond (Van Noort, 2002 (a)).  

2.2.2. History of adhesion: 

The adhesive system developed by Oskar Hagger in the early 1950s for 

bonding his resinous material to the hard tooth structures was based on the 

chemical curing of glycerophosphoric acid dimethacrylate with sulphinic acid. 

The system was produced as a commercial product called Sevriton (Tay et al, 

2004). 

Buonocore’s experiments in 1955 on enamel surfaces are still today regarded 

as the great landmarks in adhesive dentistry. He used 85% phosphoric acid for 

30 seconds to achieve acid decalcification of the enamel surface. His 

experiments showed that acid etching increased the surface area of the enamel 

exposing the organic framework of the enamel and thereby increasing the 

potential for adhesion (Buonocore, 1955). 

The adhesive systems have continued to improve since then showing an 

improvement in their bond strength and a decrease in the number of clinical 

steps involved in the adhesion process (Burrow and Tyas, 2003). 

2.2.3. Mechanism of adhesion: 

The basic mechanism of adhesion is regarded as an exchange process of the 

inorganic tooth material by resin monomer in which the resin monomer 

becomes micro-mechanically interlocked upon setting in the created micro-

porosities within the tooth structure (Van Meerbeek et al, 2001). This type of 

adhesion is micro-mechanical in nature. Recently chemical adhesion has been 
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possible through an interaction of specific monomers and the calcium in the 

hydroxyapatite of tooth structure (Yoshida et al, 2004). 

2.2.3.1. Adhesion to enamel: 

Enamel is the strongest and hardest human tissue (He and Swain, 2008). It 

consists of 85% hydroxyapatite crystals, 12% water, and 3% organic matrix by 

volume. Microscopically the enamel consists of enamel rods 5µm in diameter 

that extend from the dentin-enamel junction to approximately 6-12µm below the 

tooth surface. Each rod consists of bundles of hydroxyapatite crystals, and 

each crystal is 50nm in diameter and 100µm long. The hydroxyapatite crystal is 

covered by an organic layer (Bechtle et al, 2010). There are hydroxyapatite 

crystals between the rods that are arranged parallel to each other to form the 

interred region, and they have a particular inclination to the adjacent enamel 

rod axis (He and Swain, 2008). The water and the organic matrix which is 

mainly protein accumulate between the rod and  the interred region, giving rise 

to the rod sheath. The accumulation in this area is assumed to be due to the 

lower hydroxyapatite density in this area (Bechtle et al, 2010). 

The first step in adhesion is the creation of a rough or porous surface to 

enhance the bonding capacity. This surface is created by the application of a 

30 to 40% phosphoric acid to both enamel and dentin (Van Meerbeek et al, 

2005). Considering adhesion to enamel, the acid etching technique causes 

demineralization of the inorganic part exposing the organic framework of the 

enamel (McLean, 2000). This procedure increases the surface roughness and 

raises the surface energy of the enamel surface thus facilitating adhesion (Van 

Noort, 2002 (b)). 

2.2.3.2. Adhesion to dentin: 

Compared to enamel, dentin has a complex hydrated structure (Marshall et al, 

1997). In 1996 Pashley described the dentin as a porous, biologic composite 

made up of apatite crystal filler particles in a collagen matrix (Perdigăo, 2010). 

It consists of 69% polycrystalline apatite, 13% water, and 18% proteins that are 

mainly type I collagen by weight (DiRenzo et al, 1995). By volume the dentin 

consists of 50% minerals in the form of carbonate rich, calcium deficient 
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apatite; 30% organic material in the form of collagen type I in addition to other 

non collagenous proteins, and 20% fluid similar to plasma (Marshall et al, 

1997). 

Structurally dentin consists of a network of dentinal tubules. Each tubule has a 

diameter of 1 - 3µm. The average density of the dentinal tubules is about 

30,000 tubules/mm2. The dental pulp gives rise to elongated cell bodies that 

radiate throughout the entire dentin encased by the dentinal tubule. 

Surrounding the dentinal tubule is the peri-tubular dentin while the intertubular 

dentin lies between the tubules. Both the peri- and intertubular dentin form the 

circumpulpal dentin which results in the greater surface area. Mineral crystals 

of calcium hydroxyapatite [Ca10(PO4)6(OH)2] are deposited between the peri- 

and intertubular dentin. These apatite crystals are associated with a network of 

collagen fibers. A characteristic feature of the peritubular dentin is the lack of a 

fibrous structure and the presence of a highly mineralized sheath surrounding 

the tubules (DiRenzo et al, 1995).  

Adhesion to dentin is more complicated because it is more hydrated as a result 

of its intrinsic wetness through the dentinal tubules (Marshall et al, 1997). The 

use of phosphoric acid as an etching media was found to have a severe pulpal 

reaction in the early dentin bonding studies (Retief et al, 1974). As a result; it 

was accepted at that time to avoid any contact of the phosphoric acid with the 

dentin, but Davis et al (1992) showed that the use of 37% phosphoric acid was 

effective in dentin etching and did not cause post-operative sensitivity provided 

it was only used for a very short period (10 seconds). The phosphoric acid 

caused demineralization of the inorganic matrix over a depth of 3 to 5µm 

thereby exposing collagen fibrils depleted of hydroxyapatite (Van Meerbeek et 

al, 2005).  

The micro-mechanical adhesion resulted from the mechanical interlocking of 

the exposed collagen fibrils to the resin polymer i.e. the exposed collagen fibrils 

acted as a micro-retentive network for the micro-mechanical interlocking. The 

main drawback of the acid etch technique of dentin was that the collagen fibrils 

collapsed and shrunk following drying of the acid-etched dentin, thereby 
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jeopardizing the monomer infiltration into the dentin with a resultant diminishing 

of the bond strength (Gwinnett, 1994). 

The next step was the application of an adhesion promoting monomer “primer” 

to the dentin surface in order to overcome the shrinkage of the collagen fibrils 

that followed the acid etching and drying steps. The primer consisted of a 

mixture of monomers that possessed hydrophilic properties. An example of 

these monomers is HEMA (Hydroxy Ethyl Methacrylate) which has a low 

molecular weight and hydrophilic properties. The primer prepares the dentin 

surface for the adhesive resin penetration into the dentinal tubules by providing 

sufficient wetting of the exposed collagen fibrils and removing the remaining 

water from the dentinal tubules (Van Meerbeek et al, 2005). 

Following this preparation of the dentin surface for adhesive resin penetration, 

the formation of a hybrid layer resulted. Its formation was considered as the 

basic mechanism for resin-dentin bonding. It results from the intertwining of the 

resin into the demineralized dentin collagen fibril network (Yang et al, 2005). 

The hybrid layer consisted of resin that infiltrated into the collagen network, 

residual hydroxyapatite, and traces of water (Perdigăo, 2007). The resin filled 

up the interfibriller spaces between the collagen fibrils and formed resin tags 

upon curing thus forming a hybrid layer that provided the bases of 

micromechanical retention to dentin (Van Meerbeek et al, 1993). 

Considering adhesion to dentin two problems could occur. The first involves the 

collapse and shrinkage of the collagen fibrils that follows acid etching; this 

would prevent proper infiltration of the adhesive resin. The second is that; 

etching of the dentin surface removes the minerals from the surface leaving the 

collagen fibrils suspended in water. However a certain amount of water is 

needed to prevent collagen fibril shrinkage. To overcome these two problems 

two different techniques were suggested depending on the composition of the 

primer in the adhesive system (Van Meerbeek et al, 2005). 

The first technique involves air-drying of the dentin following acid etching and 

applying a water-based primer which re-expands the collagen fibrils; this 

technique is known as dry-bonding. The second technique involves leaving the 

dentin surface slightly wet and the use of an acetone based primer to remove 
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the water during the infiltration of the resin; this technique is known as wet-

bonding (Pashley et al, 2007). 

2.2.4. Classification of dentin bonding agents: 

There are different classification systems for dentin bonding agents. Most 

dental companies classify dentin bonding systems into six generations 

according to the chronology of their release to the dental market (Murray et al, 

2003).  

The first generation of dentin bonding agents were developed during the period 

1950 to 1970. This generation of dentin bonding agents were based on the use 

of an adhesive containing polymerized compound with polar groups that had an 

affinity to bond to the tooth structure (Bayne, 2002, Burke and McCaughey, 

1995). In 1955 Buonocore used cavity primer that containd glycerophosphoric 

acid dimethacrylate that interacted with the calcium ions of the dentin structure. 

This link between the phosphate group and the calcium ion was easily 

hydrolyzed resulting in weak bond strength values (Stangel et al, 2007). 

In Masuhara et al (1962), cited by Bayne (2002), used tri-n-butyl-borane to 

facilitate adhesion to dentin collagen. The main drawback of this system was 

the weak bond strength that resulted from poor surface wetting of the dentin 

surface. Bowen improved the surface wetting of the dentin by introducing the 

surface active N-phenylglycine and glycidymethacrylate (NPG-GMA) in 1965 

(Burke and McCaughey, 1995). All of these materials had weak bond strength 

values between the dentin and the composite resin and were termed the first 

generation dentin bonding systems (Bayne, 2002). 

The second generation dentin bonding agents were introduced in the early 

1970s (Bayne, 2002). This generation used Bis-GMA as a replacement of the 

methacrylate. The basis of the adhesion was the phosphate-calcium bond type. 

The bond strength values were greater than the first generation but nowhere 

near those achieved with enamel bonding. Other materials in this group used a 

2-hydroxyethyl methacrylate (HEMA) and phenyl phosphate ester which 

resulted in slightly better bond strength values (Burke and McCaughey, 1995). 
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The third generation dentin bonding agents were developed in the late 1970s 

(Bayne, 2002) by using a solution that modified the dentin surface before the 

application of the resin. This generation produced a mechanical basis of 

adhesion by using hydrophilic and hydrophobic groups that penetrated the 

dentin tissue and polymerized in that position creating a hybrid layer that was 

neither resin nor tooth structure but an integrated mixture of the two (Burke and 

McCaughey, 1995). This was in contrast to just the chemical bond utilized by 

the first two generations of dentin bonding agents. 

The fourth generation dentin bonding system was introduced in the 1990s 

(Combe et al, 1999) or mid to late 1980s (Bayne, 2002). These systems used 

phosphoric acid for etching both the enamel and the dentin followed by the 

application of a primer and a bonding agent (Combe et al, 1999). The use of 

phosphoric acid removed the smear layer (Bayne, 2002) and resulted in an 

improvement in the bond strength values with a subsequent improvement in the 

resistance of the restorative material to displacement and marginal leakage 

(Combe et al, 1999). 

Also in the 1990s the fifth generation dentin bonding agents were introduced 

(Bayne, 2002). There were based on a reduction in the number of clinical 

application steps by combining the primer with the adhesive in one bottle 

(Combe et al, 1999). This system used a hydrophilic agent for both enamel and 

dentin giving the benefit of bonding to moist dentin (Bayne, 2002). 

The sixth generation of dentin bonding agents were developed in the late 

1990s and had the etchant and the primer combined in one step and hence the 

name self-etching primers. While in the seventh generation all the clinical 

application steps were combined in a single step (Bayne, 2002) and hence the 

name one-step bonding agents. 

In recent years, the eighth generation dental adhesive system was introduced 

as a self-adhering composite resin (Vertise Flow, Kerr, Orange, CA, USA) in 

which the bonding agent is combined with a flowable composite, thus 

eliminating the step of application of the adhesive system. Vichi et al, 2010 

investigated the clinical behaviour of Vertise Flow the self-adhesive composite 

resin in small sized class I restorations for a 6 month period. They assessed the 

 

 

 

 



11 

 

post-operative sensitivity, marginal discoloration, marginal integrity, secondary 

caries, maintenance of interproximal contact, and fracture at baseline. They 

concluded that; Vertise Flow (self-adhesive composite resin) had a successful 

clinical outcome when used to restore small class I cavities (Vichi et al, 2010). 

The other classification system of dentin bonding agents is a little confusing. In 

the Buonocore memorial lecture in 2003 Van Meerbeek et al, named three 

categories of dentin bonding systems according to their adhesive strategy. 

These were classified as the etching and rinse adhesives, the self-etch 

adhesives, and the glass ionomer adhesives (Van Meerbeek et al, 2003, Van 

Meerbeek et al, 2005). Another name for the etching and rinse adhesive is the 

total-etching technique. The system based on the etch-rinse and the self-etch 

techniques are bonded to the dentin through micromechanical retention as a 

result of the formation of the hybrid layer. While the glass ionomer adhesives 

bond to tooth structure through micromechanical and chemical retention after 

the formation of the hybrid layer and the ion exchange that occur between the 

glass ionomer and the tooth structure (Van Meerbeek, 2005). 

Another classification system is based on the number of the clinical application 

steps involved in the process of bonding namely etching, priming, and bonding 

to tooth structure and are therefore categorized into three groups; the three-

step, the two-step, and the single-step bonding systems (Van Meerbeek et al, 

2003). 

The three-step adhesive system consists of etching, priming, and the 

application of the adhesive in which each agent is applied separately (Tay et al, 

2004). The three-step adhesive system uses phosphoric acid for etching both 

the enamel and the dentin and hence the name total-etch. The acid etching 

produces microporosities so that the resin binds micromechanically to the tooth 

structure through resin tag formation. An adequate seal of the pulp or an 

adequate remaining dentin thickness is necessary for this in process order to 

prevent the adverse effect of the acid on the pulp during the acid etching phase 

(Naughton and Latta, 2005). The application of the dentin primer to the 

demineralized dentin enhances the monomer diffusion and facilitates the 

formation of the hybrid layer after the application of the bonding agent 
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(Hayakawa et al, 1998). The system also contains hydrophilic monomers that 

enhance the wettability of the hydrophobic resin thereby enhancing the bond 

(Miyazaki et al, 1998). 

In comparison the two-step dentin bonding systems have eliminated an 

application step from the three-step systems and can be further subdivided into 

self-priming adhesives and self-etching adhesives combining the chemical 

components. The self-priming adhesives combine the priming and the 

application of the adhesive into a single step while keeping the etching step 

separated. The self-etching adhesives on the other hand use an acidic 

monomer in a high concentration in the primer so that a self-etching primer is 

created i.e. enabling the system to combine the etching and the priming in one 

step (Tay et al, 2004). An example of the acidic monomer is the phosphate 

ester or carboxylic acid, and hydroxyethyl methacrylate (HEMA) (Hayakawa et 

al, 1998). The acidic monomer is ionized by the addition of water to the 

adhesive system. This ionization allows the acid to cause demineralization of 

the tooth structure. Unlike the total-etching adhesives the self-adhesive system 

has the advantage of better resin infiltration into the hybrid layer (Tay et al, 

2004). 

The single-step adhesive system consists of etching, priming, and the 

application of the adhesive all being combined in one step (Tay et al, 2004). 

The demineralization, conditioning and infiltration of the adhesive into the 

enamel and dentin occur simultaneously without the rinsing that normally 

follows the etching procedure. This results in an alteration of the smear layer 

without its removal (Naughton and Latta, 2005). The primer substance is either 

HEMA (hydroxyethyl methacrylate) or PENTA (di-pentaerythritol penta-acrylate 

monophosphate) together with a low viscosity resin. Ethanol or acetone is 

added as a solvent so that it acts as a water chaser and facilitates the 

exchange of the water for the monomer inside the collagen web (Cardoso et al, 

1998). 

The bond strength values of the three step dentin bonding agents are high, but 

these values can be affected by some factors such as excessive etching of the 

dentin in which case weak bonds will be produced as a result of the incomplete 
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resin infiltration into the base of the collagen fibers (Paul et al, 1999). In 

addition to that the collagen fibers also shrink during the air drying procedure 

following acid etching resulting in poor resin infiltration between these fibers 

and thus reducing the bond strength. Furthermore the moisture contamination 

after etching can affect the bond strength when using the three step adhesive 

system (Bouillaguet et al, 2001). The later products in the generation of the 

three-step dentin bonding systems were able to produce bond strength values 

varying from 9 to 18 MPa (Naughton and Latta, 2005). 

The difference between the shear bond strength of a two-step dentin bonding 

agent and a single-step dentin bonding agent was investigated by Hegde and 

Bhandary in 2008, and they concluded that the two-step dentin bonding agent 

produced higher bond strength values to dentin when compared to that of the 

single-step dentin bonding agent (Hegde and Bhandary, 2008). 

Miyazaki et al investigated the shear bond strength of the two-step dentin 

bonding systems following thermal cycling and found that there was no 

significant difference in the bond strength in the self-etching primer sub-system, 

while there was a significant decrease in the bond strength in the self-priming 

sub-system (Miyazaki et al, 1998).  

Other studies suggested that the combination of the etching and the priming in 

a single step as in the self etching adhesive system reduced the effectiveness 

of the hybrid layer (Bouillaguet et al, 2001); however the effect of the 

combination on the bond strength was unclear (Sano et al, 1999).  

Bouillaguet et al investigated the microtensile bond strength of composite resin 

to dentin using a one step adhesive system and found that it ranged between 

13.8 and 18.9 MPa with most of the failures occurring at the top of the hybrid 

layer when using scanning electron microscopy (SEM) to view the fractured 

sites (Bouillaguet et al, 2001). 

2.3 Bond strength 

2.3.1 Bond strength tests: 

Bond strength tests are used for the determination of the strength of the bond 

between the restorative material and the tooth structure (Cheng et al, 1999). 
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There are several bond strength test methods that have evolved as a result of 

the continuous development and improvements in the adhesive systems that 

are introduced into the dental market on a regular basis. As a result of this 

improvement in the materials, the adhesion testing methods have also 

improved over time. However this improvement in testing methods has resulted 

in a lack of standardization between these test methods. The lack of 

standardization has resulted in the influence of numerous variables that could 

affect the bond strength values. These variables include substrate type and 

preparation, etching, priming, bonding, storage and testing methods (Pashley et 

al, 1995). Although the bond strength tests are used to evaluate the adhesive 

strength of a restorative material, there is little correlation between these tests 

and in vivo findings (Rasmussen, 1996).  

Bond strength values are determined by tensile or shear bond strength tests. 

The bond strength value is obtained by dividing the load at failure by the cross 

sectional area of the bonded surface (Cheng et al, 1999). This is referred to as 

the nominal or average bond strength value (Placido et al, 2007). In a tensile 

test the material is stretched in a uni-axial direction in a tensile tester. While in a 

shear bond strength test pressure is applied to the material until it fractures. 

The shear bond strength test has the advantage of ease of specimen 

preparation and is a relatively simple test procedure. However cohesive failure 

in the substrate is observed with the newer adhesive systems resulting in the 

conclusion that this test is unsuitable to determine the true bond strength with 

especially materials with high bond strength values (Placido et al, 2007). Della 

Bona and Van Noort explained that this cohesive failure was due to the fact that 

the stress was concentrated in the substrate rather than in the adhesive which 

resulted in a premature failure prior to the failure at the interface itself (Della 

Bona and Van Noort, 1995). 

Van Noort et al, 1989 compared the nominal bond strength value between the 

tensile and the shear bond strength tests and found that it varied according to 

the specimen geometry, loading configuration and material properties. The 

bond strength value was found to be more sensitive in the shear tests than in 

the tensile tests. Based on this study the tensile bond strength test is preferred 

to the shear bond strength test (Van Noort et al, 1989). 
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In 1994 the microtensile bond strength test was introduced. It uses a very small 

surface area of the specimen (1mm2) (Scherrer et al, 2010). However this test 

is very sensitive and time consuming, but it allows a uniform distribution of 

stress due to the small surface area of the specimen and allows the use of 

multiple specimens from a single tooth (Goracci et al, 2004). Pashley et al listed 

several advantages of the microtensile bond strength test including; the 

exclusive ability to test adhesive bond failure of a material if the bonded surface 

area is 1mm2, high interfacial bond strength values that could be easily 

measured, it also permits the measurement of regional bond strength values, it 

also allows for means and variances to be calculated for a single tooth, it also 

permits testing of bonds made to irregular surfaces, permits testing of very 

small areas, and facilitates SEM examination of the failed bonded surfaces as 

the surface area in only 1mm2. They also listed several disadvantages of the 

microtensile bond strength test namely that it technically demanding, difficult to 

measure the bond strength values if it is less than 5MPa, requires special 

equipment to prepare the specimens , and samples are so small that they can 

be hydrated very rapidly (Pashley et al, 1995). 

Recently other methods were advocated by McDonough et al (2002) to 

measure the bond strength under shear load. One such method called the 

micro-shear or micro-bond strength test uses specimens with a small 

dimension and allows testing the bond strength in a small area. In this way the 

test permits regional mapping or depth profiling of different substrates. It also 

allows the use of different specimens from the same tooth as in the microtensile 

bond strength test with the main difference being the lack of a sectioning 

procedure in the micro-shear bond strength test (McDonough et al, 2002). 

2.3.2 Thermal effect on bond strength: 

The oral cavity is constantly subjected to thermal change as a result of the 

intake of food and fluid at varying temperatures. This temperature change can 

cause dimensional changes of the tooth structure as well as the restorative 

material. This temperature change is expressed as the coefficient of thermal 

expansion (Sidhu et al, 2004). The coefficient of thermal expansion of the 

restorative material should be similar to or near to that of the coefficient of 
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thermal expansion of the tooth; otherwise a gap will be formed between the 

restorative material and the tooth structure (Nelsen et al, 1952). Furthermore 

loosening and debonding of the restorative material can also occur (Yamaguchi 

et al, 1989). The coefficient of thermal expansion of the tooth structure has 

been found to be between 11 – 14x10-6 0C (Sidhu et al, 2004) while that of the 

restorative material such as a composite resin is in the range of 20 to 80 x 

106/0C (Versluis et al, 1996). 

Rossomando and Wendt defined the thermal-cycling as an in vitro process of 

subjecting a restoration and a tooth to temperature extremes that resemble to 

those found in the oral cavity (Rossomando and Wendt, 1995). The different 

thermal changes that the dentition is subjected to during food consumption can 

be simulated in in vitro studies by thermal-cycling of the specimens to 

temperatures ranging between 5 and 550C (Soh and Selwynb, 1992). The 

thermal-cycling regimen in most studies is comprised of 500 cycles in water 

between 5oC and 55oC as indicated by the ISO TR 11450 standard established 

in 1994 (De Munck et al. 2005). However 10,000 in vitro cycles correspond to 

one year of in vivo functioning as concluded from the work of Gale and Darvell 

in 1999. 

In adhesive dentistry more so than in other aspects of dentistry the influence of 

the intra-oral thermal changes can be substantial as it affects the restorative 

material and/or the adhesive system. The composite resin restorative material 

adheres micromechanically to the dentin after formation of the hybrid layer by 

the dentin bonding systems (Yang Lee et al, 2001). During visible light 

polymerization of the composite resin the temperature of the composite resin 

increases as a result of the polymerization reaction within the composite resin 

and due to the heat output from the dental light curing unit (Stewardson et al, 

2004). According to Strang et al the most significant source of heat during the 

polymerization of a light activated restorative material is from the light activation 

unit and not from within the material itself (Strang et al, 1988). To reduce the 

amount of the rise in temperature during visible light polymerization of 

composite resin Masutani et al recommended an incremental placement and 

polymerization of the composite resin together with the use of a moderate 

intensity light for the polymerization process (Masutani et al, 1988). Goodis et al 
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(1990), Hannig and Bott (1999), and Porko and Hietala (2001) investigated the 

effect of thermal changes during the polymerization of the composite resin on 

the pulp. They concluded that all the visible light-curing units tested caused a 

measurable increase in the pulpal temperature within the range of pulpal 

physiology. Moreover the type of the light curing unit also influenced the 

amount of the rise in temperature that resulted during the curing of the 

composite resin in that the newer model lights caused a lower increase in 

pulpal temperature. On the other hand, the cooling effect of the rinsing water 

following acid etching could also cause a rapid decrease in the pulpal 

temperature, but the overall effect of thermal changes during polymerization on 

the bond strength of dentin bonding agents is not completely resolved. 

During consumption of hot foods heat is generated that can reach a maximum 

of 470C during consumption (Musanje and Darvell, 2004). This increase in 

temperature generates heat on the composite resin that affects the expansion 

of the material as well as the dentin bonding agent due to the difference in the 

coefficient of thermal expansion resulting in stresses that are generated that 

are sufficient to cause interfacial debonding between the different components 

involved in the bond. The amount of temperature needed for the debonding 

gives an indication of the bond strength of the adhesives (Yang Lee et al, 

2001). 

The thermal changes experienced in the mouth induce stresses in the bonded 

interface between the restorative material and the tooth structure; 

compromising the adhesive material and resulting in reduced bond strength 

values (Asaka et al, 2007). Another effect of the repeated thermal changes is 

the acceleration of the hydrolysis of the bonded interface component by the 

fluids resulting in debonding of the restoration (De Munk et al, 2005). 

The effect of thermal-cycling on the shear bond strength of the single-step 

dentin bonding agent was investigated by many researchers including Asaka et 

al 2007 who concluded that the thermal cycling generated different thermal 

conductivities that resulted in mechanical stresses on the bonding agent. They 

also concluded that the size of the bonded composite resin influenced the 

durability and the strength of the adhesive system implying that in large 
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composite fillings a portion of the bonded interface may be protected from the 

thermal changes (Asaka et al, 2007). 

Naughton and Latta (2005) also investigated the effect of thermal-cycling on the 

shear bond strength of a self-etching single step adhesive system like Xeno III 

and concluded that thermal-cycling did not affect the shear bond strength value 

of this material (Naughton and Latta, 2005). However this finding differed from 

the findings reported by El Araby and Talic in 2007 (El Araby and Talic, 2007) 

On the other hand the effect of thermal-cycling on the two-step dentin bonding 

agent was also investigated by a number of researchers including, Miyazaki et 

al (1998) who investigated the influence of thermal-cycling on the dentin bond 

strength of a two-step bonding system using a self-etching primer system and a 

self-priming adhesive system and found that the dentin bond strength values 

decreased as the number of thermal cycling episodes increased with a 

significant decrease in the bond strength values of the self-priming systems 

with only a small decrease in the bond strength of the self-etching primer 

systems (Miyazaki et al, 1998). This result was similar to that reported by Alaa 

and Talic in 2007 (El Araby and Talic, 2007). However Santos et al (2005) 

showed that thermal-cycling did not affect the shear bond strength value of the 

two-step dentin bonding agent like Prime and Bond NT (Santos et al, 2005). 

2.4 Failure of adhesive bond caused by thermal-cycling: 

The stresses that are created by repeated contraction and expansion due to 

thermal changes may lead to crack formation along the bonded interface. Once 

this crack is formed, it continues to increase as a result of the movement of the 

oral fluids into and out of the gap (Gale and Darvell, 1999). 

Furthermore water within the gaps causes hydrolysis of the resin by the 

breakdown of the covalent bonds between the polymers. The degree of resin 

hydrolysis is also related to the amount of water sorption by the hybrid layer. 

Studies have shown that the hydrophilic acidic resin systems that are used with 

the self-etch adhesives have a higher water sorption ability when compared to 

the hydrophobic resins which have a low water sorption capacity. Other than 

resin hydrolysis by water, water sorption also causes a significant decrease in 
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the modulus of elasticity of the resin with a subsequent decrease in the bond 

strength (Breschi et al, 2008). 

Moreover this water sorption also results in a loss of the resin from the 

interfibrillar spaces, resulting in a disorganization of the collagen fibrils with a 

subsequent degradation of the collagen fibers in the hybrid layer, thereby 

further weakening the physical properties of the bonded resin-dentin interface 

(Hashimoto et al, 2003). 

2.5 Composite resin: 

Composite resin is one of the direct esthetic restorative materials that is used 

daily in dental practice. It is defined as a multiphase material that exhibits the 

properties of both phases and results in a new enhanced material (Roberson et 

al, 2002). According to Rawls and Esquivel-Upshaw, (2003) a dental composite 

is defined as a highly cross-linked polymeric material reinforced by a dispersion 

of amorphous silica, glass, crystalline, or organic resin filler particles and/or 

short fibers bonded to the matrix by a coupling agent. 

2.5.1 Historical background: 

The first tooth-colored filling material was introduced in the 1870s as a silicate 

cement which was based on an alumino-fluro-silicate glass as the “dispersed 

phase” and phosphoric acid (Puckeet, et al, 2007). In the 1940s the first 

polymeric tooth-colored composite was introduced to minimize the 

disadvantages of the acrylic resin and the silicate cements (Hervás-Garcia et 

al, 2006). This new material consisted of a poly (methylmethacrylate) powder, 

methyl-methacrylate monomer, benzoyl peroxide, and n,n-

dimethylparatoluidine. However this material had a number of disadvantages 

including poor color stability, high polymerization shrinkage, lack of bonding to 

tooth structure, and a large coefficient of thermal expansion (Roberson et al, 

2002). In 1962 Bowen attempted to improve the physical properties of acrylic 

resin by developing the Bis-GMA compound (Bowen, 1963). Since that time the 

dental composite resins have undergone continuous improvement in their 

mechanical and esthetic properties. 
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2.5.2 Chemical composition of composite resin: 

Chemically, composite resins consist of two phases an organic matrix phase 

and an inorganic dispersed phase. The two phases are combined by a surface 

interfacial phase (Hervás-García et al, 2006). 

2.5.2.1 Organic matrix phase: 

The organic matrix phase represents 40% to 50% of the composite by volume. 

It consists of polymers and remnants from monomers, organic compounds, 

polymerization inhibitors, chemical initiators, accelerators, and ultraviolet and 

visible photoactivators (Craig, 1981). 

The major component of the organic matrix phase is the Bisphenol-A 

glycidylmethacrylate (Bis-GMA) or Bowen’s resin (table 2.1) which is a high 

molecular weight monomer that has high viscosity (Bowen, 1958). Other 

composites also use additional high molecular weight monomers based on a 

urethane dimethacrylate (UDMA) in conjunction with Bis-GMA and diluents 

(Puckeet, et al, 2007). Recently the use of a liquid crystalline monomer and a 

ring opening resin such as oxiranes, spiro ortho ester, spiro ortho carbonates, 

and silorane as a resin matrix have been introduced to decrease the 

polymerization shrinkage in the composite resin (Weinmann. 2005). 
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Table 2.1: Characteristics of composite resins based on Puckeet et al, 2007; 

Composite 

classification 

Weight % Volume % Volume 

shrinkage % 

Average 

particle size 

(µm) 

Hybrid 74-87 57-72 1.6-4.7 0.2-3.0 

Macrohybrid 72-87 58-71 2.0-3.4 0.4-0.9 (macro) 

Nanohybrid ____ ____ ____ 0.015-0.05 

(nano) 

Microfills 35-80 20-59 2-3 0.04-0.75 

Flowable 40-60 30-55 4-8 0.6-1.0 

Compomers 59-77 43-61 2.6-3.4 0.7-0.8 

 

To overcome the high viscosity of the resin matrix, an organic compound such 

as bisphenol A dimethacrylate (Bis-DMA), ethylene glycol dimethacrylate 

(EGDMA),  triethylene glycol dimethacrylate (TEGDMA), methyl methacrylate 

(MMA), or urethane dimethacrylate (UDMA) is added to the resin matrix 

(Puckeet et al, 2007). 

The organic matrix of the light-cured composites also contain photoinitiators 

such as alpha diketone (camphoroquinone) and co-initiators like amines that 

when exposed to light in the proper wave length produce free radicals that 

initiate the polymerization reaction (Benjamin, 2003).  Whereas in the 

chemically-cured composite resins the chemical initiators consist of benzoyl 

peroxide that is used in combination with an aromatic tertiary amine (n,n-

dihydroxyethyl-p-toluidine) and an acceleration system (dimethylaminoethyl 

methacrylate or DMAEM, ethyl-4-dimethylaminobenzoate or EDMAB, or N,N-

cyanoethyl-methylaniline or CEMA) which initiates the polymerization reaction 

(Koblitz et al, 1977). 

To maximize the shelf life of the composite resin before curing a stabilizer or an 

inhibitor such as hydroquinone monomethyl ether is added to the resin matrix. 

In addition to that an ultra-violet light absorber such as 2-hydroxy-4-

methoxybenzophenone is also added to the resin matrix (Hervás-García et al, 

2006). 
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2.5.2.2 Inorganic dispersed phase: 

The filler content varies from one product to another but usually represents 

55% by volume and 78% by weight of the composite resin (Dennison and 

Craig, 1972). The filler particles are added to the resin matrix in order to 

improve the physical and mechanical properties of the material as the filler 

particles reduce the coefficient of thermal expansion, reduce the polymerization 

shrinkage, provide radio-opacity, and improve the handling and aesthetic 

properties of the material (Labella et al, 1999). The main filler particles found in 

dental composite resins include silicon dioxide, boron silicate and lithium 

aluminium silicates (Xu, 1999). 

Lutz and Philips, (1983) classified the inorganic filler particles according to the 

size of the particles into three types namely; traditional macrofillers, microfillers 

(pyrogenic silica), and microfiller-based complexes in which the traditional 

macrofillers have a particle size ranging from 0.1 to 100 µm while the 

microfillers have an average particle size of 0.04 µm. The microfiller based 

complexes can be further subdivided according to the manufacturing technique 

into splintered prepolymerized microfilled complexes, spherical polymer-based 

microfilled complexes, and agglomerated microfiller complexes. The microfiller 

based complexes have a particle size ranging from 1 to 200 µm. 

2.5.2.3 Interfacial phase: 

In order to improve the mechanical properties of the resin composite and to 

transfer the high stresses from the high strength filler particles to the more 

delicate resin matrix a good bond must exist between the resin matrix and the 

inorganic filler particles. This bond is achieved by addition of a coupling agent 

such as Ƴ-methacryloxpropyl-trimethoxy silane or vinyl triethoxysilane to the 

filler particles (Puckeet et al, 2007). 

The mechanism by which the coupling agent binds the resin matrix to the 

inorganic filler particles is thought to be due to hydrolysis of the methoxy groups 

with bound surface water on the inorganic filler particles or with the silanol 

group of the filler (Craig, 1981). 
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2.5.3 Classification of dental composites: 

There have been a number of classification systems for composite resins. One 

of the most common used classification systems is based on the size of the 

filler particles. 

In 1983 Lutz and Philips classified composite resins according to the type of the 

filler particles they contained into the traditional composite resin, the hybrid 

composite resin, the homogeneous microfilled composite resin, and the 

heterogeneous microfilled composite resin. The traditional composite resin is 

composed of traditional macrofillers, the hybrid composite resin is composed of 

traditional macrofillers and microfillers, the homogeneous microfilled composite 

resin is composed of microfiller, while the heterogeneous microfilled composite 

resin is composed of microfillers and microfiller-based complexes (Lutz and 

Philips, 1983). This classification is illustrated in figure 2-1 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Classification of composite resin based on the content of the filler type. 
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Another classification promoted by Roulet in 1987 was similar to the Lutz and 

Philips classification with the only difference being in the number of composite 

resin classes. Roulet classified the composite resins into; traditional 

composites, hybrid composites, homogenous microfilled composites, and 

inhomogeneous microfilled composites. The inhomogeneous microfilled 

composites were further sub-classified into the splintered pre-polymerized 

particles, spherical polymer-based microfilled complexes, and the 

agglomerated microfilled complexes (Lang et al, 1992). 

In 1988 Marshall et al, cited by Lang et al (1992), classified composite resins 

according to the amount of filler by volume and weight into; unfilled composite 

resins, microfilled composite resins, hybrid composite resins for anterior 

restorations, macrofilled composite resins, midifilled composite resins, and 

hybrid composite resins for posterior restorations (Lang et al, 1992). 

The most common classification used is based on the size and distribution of 

the filler particles. This classification classifies the composite resins into; 

microfills, hybrid, packable, and compomers. The microfill composite resins are 

further subclassified into flowable composite resins, and hybrid composite 

resins. The hybrid composite resins are subdivided into the nano-and 

microhybrid composite resins (Puckeet et al, 2007). The packable composite 

resins were developed to improve the handling properties of the composite 

resins. This property was obtained by the addition of fibers to its composition. A 

summary of the attributes of each type of composite resin is presented in table 

(2.1). 

The other system used for the classification of composite resins is based on its 

polymerization initiation technique where they are classified into chemical, light 

and dual-curing composite resins (Willems et al, 1992). 

2.5.4 Properties of composite resins: 

The properties of the composite resins are continuously changing as a result of 

the continuous development in their composition, the size and distribution of the 

filler particles, and also due to the different methods of curing of the composite 

resin (Von Fraunhofer and Curtis, 1989). 
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2.5.4.1 Polymerization shrinkage: 

Composite resins undergo volumetric shrinkage as a result of the 

polymerization process. This shrinkage results in the loss of marginal 

integration at the cavosurface margin and can induce destructive stresses in 

the bonded esthetic restorations which ultimately affects the quality of the 

composite restoration (Visvanathan et al, 2007). 

In addition post operative sensitivity, marginal staining, and eventually recurrent 

caries can result from polymerization shrinkage. The polymerization shrinkage 

can also lead to cuspal displacement and even crack propagation of the healthy 

tooth structure as a result of the stresses created in the tooth-restorative 

interface (Weinmann et al, 2005). 

The intensity of the curing light and the time of application will determine the 

efficiency of polymerization (Strydom, 2002). The use of a high intensity curing 

unit decreases the curing time but it creates high polymerization stresses at the 

tooth-restorative interface which can result in microleakage (Silikas et al, 2000). 

As a result the use of a two-step polymerization technique in which the 

composite resin is cured initially using a low intensity curing unit followed by a 

high intensity unit, can result in a decrease in the polymerization shrinkage 

stress as a result of prolonging the composite resin polymerization time 

(Visvanathan et al, 2007). 

In addition to the intensity of the curing unit, polymerization shrinkage can also 

be affected by the filler content of the composite resin. The polymerization 

shrinkage is known to decrease as the filler content increases (Herrero et al, 

2005). 

Polymerization shrinkage tends to be towards the acid-etched enamel more 

than to the bonded dentin. This is based on the premise that the bonded 

strength to enamel is greater than that to dentin. As a result of this the 

composite resin tends to move towards the enamel surface leading to the 

creation of a microgap between the dentin and the restorative resin which could 

result in post-operative sensitivity and marginal leakage at the dentin margin 

(Gamborgi et al, 2007). 
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Several options have been suggested to overcome this problem. The use of a 

chemically cured composite resin as a base under the light cured composite 

resin can be one of the options. The chemically cured composite resin is 

thought to shrink towards the dentin surface (Kinomoto et al, 1999). In addition 

an incremental pattern of placement of the composite resin will also facilitate 

the polymerization shrinkage of the composite resin towards the cavity wall 

(Van Noort. 2002 (b)). 

Polymerization shrinkage can also be minimized in deep cavities by curing 

some of the composite resin outside the cavity and then placing it in the cavity 

and continuing with composite resin application incorporating the extraorally 

cured composite resin (Braga et al, 2003). 

Recently attempts were made to reduce polymerization shrinkage by changing 

the nature of the resin matrix to that of a liquid crystalline monomer as the resin 

matrix, and silorane resin (Weinmann et al, 2005). 

2.5.4.2 Thermal properties: 

The coefficient of thermal expansion of composite resins depends on the 

inorganic filler content. It was found that the coefficient of thermal expansion 

decreases as the filler content of the composite resin increases (Chung, 1990). 

Craig, (1981), showed that the coefficient of thermal expansion of the unfilled 

composite resin to be in the range between 80 to 90x10-6 per 0C, while that of 

the filled composite resin to be in the range between 46 to 70x10-6 per 0C. 

While the coefficient of thermal expansion of the tooth structure was found to 

be in the range between 26 to 40x10-6 per 0C (Craig, 1981). 

This difference in the coefficient of thermal expansion of the tooth structure and 

the composite resin can result in the formation of a gap between the composite 

resin and the tooth structure (Asmussen, 1985). 

2.5.4.3 Mechanical properties: 

Craig, (1981) listed a number of mechanical properties of composite resins that 

include compressive strength, compressive fatigue limit, diametral tensile 

strength, yield strength, transverse strength, shear strength, elastic modulus, 
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Pisson’s ratio, modulus of elasticity, fracture toughness, Rockwell hardness, 

indentation depth, recovery from indentation, and wear. The mechanical 

properties are some of the factors that determine the longevity of composite 

resins in vivo (Von Fraunhofer and Curtis, 1989). The mechanical properties of 

the composite resins are expressed in the compressive strength and the tensile 

strength of the material (Asmussen, 1985). 

2.5.4.3.1 Compressive and tensile strength: 

Anusavice, (2003) defined compressive strength as “the compressive stress (in 

a compression test specimen) at the point of fracture” and he also defined 

tensile strength as “the tensile stress (in a tensile test specimen) at the point of 

fracture”. 

The compressive strength of the microfilled composite resin is usually higher 

than that of the macrofilled composite resin. However the compressive strength 

has no clinical significance (Asmussen, 1985). 

On the other hand the tensile strength is an indicator of the cohesion of the 

material (Von Fraunhofer and Curtis, 1989). The tensile strength of composite 

resin is dependent on the filler particle size and its concentration (Covey et al, 

1992). Asmussen, (1985) showed that the macrofilled composite resins had a 

higher tensile strength compared to the microfilled composite resins. In addition 

to that, the degree of conversion of the resin monomer to polymer during 

composite resin polymerization had a direct relationship to the tensile strength, 

implying that a high degree of conversion could result in a higher tensile 

strength (Covey et al, 1992). 

2.5.4.5 Fracture toughness and mode of fracture: 

Fracture toughness is one of the intrinsic features of a composite resin material 

that measures the resistance of that material to the spreading of a crack 

(Kovarik et al, 1991). Regarding the failure of a composite resin restorative, 

fracture within the body of the restoration and at the margin are the major types 

of failure modes (Roulet, 1988). It has been shown that the filler volume 

fracture and filler load level of the composite resin has a direct relation with the 

material strength and fracture toughness of the material (Germain, et al, 1985). 
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Chapter 3 
Aims and Objectives 
 

3.1. Aims of the study: 

 To compare the bond strength of a two-step and a single-step dentin 

bonding agent to dentin. 

 To compare the effect of thermal-cycling on these bond strength values.  

3. 2. Objectives of the study: 

 To determine the bond strength of a two-step and a single-step dentin 

bonding agent to dentin. 

 To determine the effect of thermal-cycling between 50C and 550C on the 

bond strength of these dentin bonding agents.  

3. 3. Null hypothesis: 

 There is no significant difference in the bond strength of the two-step 

and the single-step dentin bonding agents. 

 Thermo-cycling between 50C and 550C has no effect on the bond 

strength of the two-step and the single-step dentin bonding agents. 
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Chapter 4 
Materials and Methods 
4.1 Study design: 

This was an in vitro experimental study. 

4.2 Sample size: 

100 extracted human molar teeth were used in this study. 

4.3 Inclusion criteria: 

Only non-carious and non-restored human molar teeth extracted for orthodontic 

or prophylactic reasons were used in the study. 

4.4 Exclusion criteria:  

 Teeth extracted due to dental caries. 

 Extracted teeth with restorations or cracks. 

 
4.5 Ethical considerations: 

 The teeth collected for this study were extracted for reasons other than 

the purpose of this study. 

 On completion of this study, the teeth were disposed according to the 

current medical waste disposal practice at the Faculty of Dentistry/ Oral 

Health Centre, University of the Western Cape.  

 The materials used in this study were supplied by the Faculty of 

Dentistry/Oral Health Center, University of the Western Cape. 

 No financial support neither before nor after the completion of this study 

was received from the company producing the materials used in this 

study. 
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4.6 Materials used: 

 TPH®3 Spectrum Micro Matrix composite restorative material by 

Dentsply (Canada): 

Resin matrix: Bis-EMA and triethylene glycol dimethacrylate. 

Photoinitiator: Camphorquinone (CQ). 

Stabilizer. 

Pigments. 

Filler type: barium alumino baro silicate glass and barium fluoro alumino 

baro silicate glass. 

 

 

Figure 4.1: TPH®3 Spectrum (micro matrix composite restorative material). 
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 Xeno V: one component light-cured self-etching dental adhesive by 

Dentsply, (Canada): 

Bifunctional acrylates. 

Acidic acrylate. 

Functionalized phosphoric acid ester. 

Acrylic acid. 

Water. 

Tertiary butanol. 

Initiator. 

Stabilizer. 

 

Figure 4-2: Xeno V (single-step dentin bonding agent). 
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 Prime and Bond NT (nano-technology dental adhesive): light-cure self 

priming dental adhesive by Dentsply (Canada): 

Di-and Trimethacrylate resin. 

Dipentaerythritol penta acrylate monophosphate (PENTA). 

Nanofillers-Amorphous Silicon Dioxide. 

Photoinitiators. 

Stabilizer. 

Cetylamine hydrofluoride. 

Acetone. 

 

Figure 4.3: Prime and Bond NT (two-step dentin bonding agent). 
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4.7 Procedure:  

One hundred non carious freshly extracted molar teeth were stored in saline 

solution with 0.2% thymol to prevent any bacterial infection during storage at 

room temperature (Goracci, et al, 2004). Samples were prepared as follows. 

The teeth were cleaned using a sharp knife to remove any calculus or soft 

tissue debris from the tooth surface. The roots of the teeth were sectioned 

with a separating disc at the crown-root junction and the teeth were 

embedded in a chemically-cured acrylic resin so that the buccal surfaces 

projected just above the acrylic resin (figure 4.4) (Hasegawa, et al.1995). A 

portion of tooth 2.5mm in dimension was cut off from the buccal surface of 

the teeth using a water-cooled diamond disk-cutter at slow speed (Minitom, 

Struers, Denmark) (Figure 4.5) to expose a flat dentin surface (figure 4.6) 

(Miyazaki, et al.1998). The flat buccal surface was then finished using a 

universal polisher with a 1200 grit silicon finishing paper (figure 4.7) (Retief, 

1991).  

 

          
Figure 4.4: Embedded teeth in cold-cure acrylic resin. 
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Figure 4.5: Water-cooled diamond disk-cutter (Minitom, Struers, Denmark). 

 

 
Figure 4.6: Exposed flat dentin surface 2.5mm depth from the buccal surface. 

 

 
Figure 4.7: Universal polisher with 1200 grit silicon finishing paper. 
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Each tooth was labeled with a different number and the teeth were randomly 

divided into two groups (n= 50). In the first group Prime and Bond NT a two-

step dentin bonding agent was used to bond the composite mold to the flat 

dentin surface while in the second group Xeno V a single-step dentin bonding 

agent was used to bond the composite mold to the flat dentin surface. Random 

division of the specimens provided each tooth an equal chance to fall into any 

group.  

 Prime and Bond NT (Two-step dentin bonding agent): 

In the first group, Prime and Bond NT (two step dentin bonding system) was 

applied to the flat dentin surface as follows: 

 Acid conditioning (total etch technique): 

The flat dentin surface was etched with Caulk 34% a tooth conditioner gel (34% 

phosphoric acid) for 15 seconds. The etchant gel was removed by rinsing the 

flat dentin surface with water using a dental syringe for 10 seconds until all the 

etchant gel was removed. The etched dentin surface was then blotted using a 

moist cotton pellet without rubbing until there was no pooling of water. 

 Application of prime and bond: 

A single layer of Prime and Bond NT was applied to the flat etched dentin 

surface using an application tip for 20 seconds in a light brushing motion as 

recommended by the manufacturer. The Prime and Bond NT was air thinned 

for 5 seconds and then light-cured for 10 seconds using a halogen light curing 

unit (Demetron LC, sdsKerr, USA). 

 Application of TPH ®3 Spectrum composite resin: 

A Teflon mold, 2mm high and 4 mm in diameter was used to form and contain 

the composite restorative material against the tooth surface. TPH®3 Spectrum 

Composite resin was condensed through the Teflon mold onto the  prepared 

flat dentin surface immediately after the application and curing of the Prime and 

Bond NT. The TPH®3 Spectrum Composite resin was then light-cured with a 

halogen light curing unit (Demetron LC, sdsKerr, USA) for 20 seconds following 

the manufacturer’s instructions (figure 4-9 and 4-10). 
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The teeth were then subdivided randomly into another two groups of 25 each 

(n1=25). Random division provided each tooth an equal chance to fall into any 

group. The number of the teeth in each group was recorded in an excel 

spreadsheet. 

In the first group the samples were stored in water at 370C for 24 hours 

(Holderegger et al, 2008) and the group was labeled as the Prime and Bond NT 

(two-step) without thermal-cycling group. 

In the second group the samples were thermal-cycled between 50C and 550C 

for 500 cycles. Following thermal-cycling the samples were stored in water at 

370C for 24 hours (Holderegger et al, 2008) and the group was labeled as the 

Prime and Bond NT (two-step) with thermal-cycling group.  

 Xeno V (single-step dentin bonding agent): 

In this group, Xeno V (a single-step dentin bonding agent) was applied to the 

flat dentin surface as follows: 

 

 Application of Xeno® V: 

Two layers of Xeno® V (a single-step dentin bonding agent) were applied to the 

prepared flat dentin surface following the manufacturer’s instructions. The flat 

dentin surface was cleaned with a water spray and air dried lightly without 

desiccating the dentin using a dental syringe. Xeno® V was applied with a 

disposable microbrush applicator tip twice onto the dentin surface generously. 

The two layers of Xeno® V were gently agitated for 20 seconds. The excess 

solvent was removed gently by drying with clean, dry air from a dental syringe 

for 5 seconds. The Xeno® V adhesive system was then light-cured for 20 

seconds using a halogen light curing unit (Demetron LC, sdsKerr, USA). 

 Application of TPH ®3 Spectrum composite resin: 

A Teflon mold, 2mm high and 4 mm in diameter was used to form and contain 

the composite restorative material against the tooth surface. TPH®3 Spectrum 

Composite resin was condensed through the Teflon mold onto the prepared flat 

dentin surface immediately after the application and curing of the Xeno® V. The 
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TPH®3 Spectrum Composite resin was then light-cured with a halogen light 

curing unit (Demetron LC, sdsKerr, USA) for 20 seconds following the 

manufacturer’s instructions (figure 4-9 and 4-10). 

The teeth were then subdivided randomly into another two groups of 25 each 

(n1=25). Random division provided each tooth an equal chance to fall into any 

group. The number of the teeth in each group was recorded in an excel 

spreadsheet. 

In the first group the samples were stored in water at 370C for 24 hours 

(Holderegger et al, 2008) and the group was labeled as the Xeno® V (single-

step) without thermal-cycling group. 

In the second group the samples were thermal-cycled between 50C and 550C 

for 500 times. Following thermal-cycling the samples were stored in water at 

370C for 24 hours (Holderegger et al, 2008) and the group was labeled as the 

Xeno® V (single-step) with thermal-cycling group. The method of the study is 

graphically illustrated in figure 4-8. 
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Figure 4.8: Flow chart depicting the study. 

 

Hundred teeth 
(Molars) 

The roots of the teeth were sectioned with a separating 
disc at the crown-root junction. 

Teeth were embedded in a chemically-cured acrylic 
resin so that the buccal surfaces projected just above 
the acrylic resin 

Teeth will be divided into two 
groups (n=50) 

A 2.5mm in dimension was cut off from the buccal 
surface of the teeth using a water-cooled diamond 
disk-cutter at slow speed 

The flat buccal surface was then finished using a 
universal polisher with a 1200 grit silicon finishing 
paper 

The flat dentin surface was 
etched with Caulk 34% a tooth 
conditioner gel (34% 
phosphoric acid) for 15 
seconds. 

The flat dentin surface was 
cleaned with a water spray and air 
dried lightly without desiccating the 
dentin using a dental syringe. 
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Figure 4.8 (continued): Flow chart depicting the study. 

 

 
 
 

A single layer of Prime and 
Bond NT was applied to the 
flat etched dentin surface 
using an application tip for 20 
seconds in a light brushing 
motion 

The Prime and Bond NT will be 
air thinned for 5 seconds 
followed by light curing for 10 
seconds. 

TPH®3 Spectrum Composite 
resin was condensed through 
a 2mm high and 4 mm in 
diameter Teflon mold onto the  
prepared flat dentin surface 
and light cured for 20 seconds 

Xeno V was air thinned for 5 
seconds followed by light 
curing for 10 seconds. 

TPH®3 Spectrum Composite 
resin was condensed through 
a 2mm high and 4 mm in 
diameter Teflon mold onto the  
prepared flat dentin surface 
and light cured for 20 seconds 

The etchant gel was removed 
by rinsing the flat dentin 
surface with water using a 
dental syringe for 10 seconds 

 

Xeno® V was applied with a 
disposable microbrush 
applicator tip twice onto the 
dentin surface generously 
and gently agitated for 20 
seconds. 

 

 

 

 

 



40 

 

 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 4.8 (continued): Flow chart depicting the study. 
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The samples 
were stored in 
water at 370C for 
24 hours. 
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A      B   

Figure 4.9: (A) Assembly of specimen and Teflon mold containing composite 

resin; (B) Magnified view of the Teflon mold to retain composite resin. 

 

 
Figure 4.10: Composite mold bonded to prepared specimens  

after releasing from assembly. 

 
 

Specimen 2mm high and 4 
mm in diameter 
Teflon mold to 
contain composite 
resin. 
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All samples were arranged haphazardly before measuring the shear bond 

strength so that the examiner did not know which sample belonged to which 

group. The shear bond strength values were measured for each sample from 

each group using an Instron (Zwick 1644) testing machine. The machine was 

adjusted so that the force was applied to the base of the composite-tooth 

interface at a crosshead speed of 0.5 mm/minute with a knife-edged rod 0.5mm 

thick (figure 4.11). The shear bond strength values were calculated and 

expressed in megapascals (MPa). Any value less than 2 MPa was not recorded 

by the testing machine and the sample was discarded. 

 
 

 

Figure 4.11: Shear load applied to the composite-tooth interface with Instron (Zwick 
1644). 
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Chapter 5 
Data analysis 
 

All results for each group were transfered to an Excel spreadsheet (Microsoft 

Corporation, USA) for further analysis (Appendix 1,). The data of each group 

was tested for their distribution as regards normality. All groups showed an 

abnormal distribution of results. A Mann-Whitney U test (non-parametric test for 

independent values) was then used to determine a statistically significant 

difference, if any, between the bond strength values of Prime and Bond NT 

(two-step dentin bonding agent) and Xeno V (single-step dentin bonding agent) 

without thermal-cycling, between Prime and Bond NT (two-step dentin bonding 

agent) before and after thermal-cycling, between Xeno V (single-step dentin 

bonding agent) before and after thermal-cycling, and between Prime and Bond 

NT (two-step dentin bonding agent) and Xeno V (single step-dentin bonding 

agent) after thermal-cycling. These variables are summarized in table 5.1. Only 

P-values less than 0.05 were regarded as statistically significant differences. All 

statistical analysis were carried out using SPSS 14.0 for windows (SPSS©, Inc. 

Chicago, IL, USA) and Microsoft Excel 2007 (Microsoft Corporation, USA). 

Table 5.1: Summery of variables being compared in the study. 

Prime and Bond NT (two-step) 

without thermal-cycling. 

Vs Xeno V (single-step) 

without thermal-cycling. 

Prime and Bond NT (two-step) 

Without thermal-cycling. 

Vs Prime and Bond NT (two-step) 

with thermal-cycling. 

Xeno V (single-step) 

without thermal-cycling. 

Vs Xeno V (single-step) 

with thermal-cycling. 

Prime and Bond NT (two-step) 

with thermal-cycling. 

Vs Xeno V (single-step) 

with thermal-cycling. 
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Chapter 6 
Results 
 

The raw data of the study for all bond strength values appear in (Appendix 1, 2, 

3, and 4). All values were expressed as a median (Interquartile range). 

6.1 Bond strength values of Prime and Bond NT (two-step dentin bonding 
agent) and Xeno V (single-step dentin bonding agent): 

Following removal of any bond strength value less than 2 MPa, the median and 

interquartile range of the remaining 24 samples in the Prime and Bond NT 

without thermal-cycling group was compared to the median of the samples of 

the Xeno V without thermal-cycling using a Mann-Whitney U-test (non-

parametric test for independent samples) to determine if there is any 

statistically significant difference between the two groups (table 6.1). A P-value 

of 0.810 indicates that; there is no statistically significant difference in the bond 

strength of Prime and Bond NT (two-step dentin bonding agent) and Xeno V 

(single-step dentin bonding agent). 

Table 6.1:  Comparison between the bond strength values of Prime and Bond NT (two-step 

dentin bonding agent) and Xeno V (single-step dentin bonding agent) without thermal-cycling 

(Values presented as median (Interquartile range): 

 
Percentile 

25 
Percentile 

75 
Median 

Interquartile 
range 

P-
value 

Prime and Bond NT 
(two-step) without 

thermal-cycling 
5 7 6.14 3.08 

0.810 

Xeno V (single-step) 
without thermal-cycling 3.72 9.12 6.13 6.06 

 
The distribution of the bond strength values of each group is graphically 

illustrated in figure 6.1. It is evident from figure 6.1 and appendix 1 and 2 that 

the bond strength values of Prime and Bond NT without thermal-cycling ranged 

from 2.29 to 10.43 MPa with only one value less than 2 MPa. On the other 
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hand the bond strength values of Xeno V without thermal-cycling ranged from 

2.33 to 17.44 MPa with no value less than 2 MPa. 
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Figure 6.1: Distribution of bond strength values of Prime and Bond NT  two-step dentin bonding agent) and Xeno V (single-step dentin bonding agent). 
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6.2 Effect of thermal-cycling on the bond strength values of Prime and 
Bond NT (two-step dentin bonding agent): 

Following removal of any bond strength value less than 2 MPa, the median and 

interquartile range of the remaining 24 samples in the Prime and Bond NT 

without thermal-cycling group was recorded and compared to the median of the 

22 samples in the Prime and Bond NT with thermal-cycling group using a 

Mann-Whitney U test (non-parametric test for independent samples) to 

determine if there is any statistically significant difference between the two 

groups table 6.2. A P-value of 0.692 indicates that; there is no statistically 

significant difference in the bond strength of Prime and Bond NT before and 

after thermal-cycling between 50C and 550C for 500 times.  

Table 6.2:  Comparison between the bond strength values of Prime and Bond NT (two-step 

dentin bonding agent) with and without thermal-cycling (Values presented as median 

(Interquartile range): 

 Percentile 
25 

Percentile 
75 Median Interquartile 

range 
P-

value 

Prime and Bond NT 
(two-step) without 

thermal-cycling 
5 7 6.14 3.08 

0.692 
Prime and Bond NT 

(two-step) with thermal-
cycling 

4 7 5.60 3.13 

 

The distributions of the bond strength values for each group are graphically 

illustrated in figure 6.2. It is evident from figure 6.2 and appendix 1 and 3 that 

the bond strength values of Prime and Bond NT without thermal-cycling ranged 

from 2.29 to 10.43 MPa with only one value less than 2 MPa. On the other 

hand the bond strength values of Prime and Bond NT with thermal-cycling 

ranged from 2.35 to 14.98 MPa with three values less than 2 MPa. 
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Figure 6.2: Distribution of bond strength values of Prime and Bond NT (two-step dentin bonding agent) with and without thermal-cycling. 
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6.3 Effect of thermal-cycling on the bond strength value of Xeno V (single-
step dentin bonding agent): 

All the bond strength values for the two groups using the single-step dentin 

bonding agent were above 2 MPa, so no sample was removed. The median 

and interqurtile range of the Xeno V without thermal-cycling group was 

compared to the Xeno V with thermal-cycling group using a Mann-Whitney U 

test (non-parametric test for independent samples) to determine if there was 

any statistically significant difference between the two groups table 6.3. The P-

value was 0.861 indicating that there was no statistically significant difference in 

the bond strength of Xeno V before and after thermal-cycling between 50C and 

550C for 500 times. 

Table 6.3:  Comparison between the bond strength values of Xeno V (single-step dentin 

bonding agent) with and without thermal-cycling (Values are presented as median (Interquartile 

range): 

 Percentile 
25 

Percentile 
75 Median Interquartile 

range 
P-

value 

Xeno V (single-step) 
without thermal-cycling 3.72 9.12 6.13 6.06 

0.861 
Xeno V (single-step) 
with thermal-cycling 4.01 7.11 5.83 3.28 

 

The distribution of the bond strength values of the two groups is graphically 

illustrated in figure 6.3. It is evident from figure 6.3 and appendix 2 and 4 that 

the bond strength values of Xeno V without thermal-cycling ranged from 2.33 to 

17.44 MPa with no value less than 2 MPa. On the other hand the bond strength 

values of Xeno V after thermal-cycling ranged from 2.25 to 16.14 MPa with no 

value less than 2 MPa. 
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Figure 6.3: Distribution of bond strength values of Xeno V (single-step dentin bonding agent) with and without thermal-cycling. 
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6.4. Effect of thermal-cycling on bond strength value of Prime and Bond 
NT (two-step dentin bonding agent) and Xeno V (single-step dentin 
bonding agent): 

Following removal of any bond strength value less than 2 MPa, the median and 

interquartile range of the remaining 22 samples of the Prime and Bond NT with 

thermal-cycling group was recorded and compared to the median of all samples 

of the Xeno V with thermal-cycling group using a Mann-Whitney U test (non-

parametric test for independent samples) to determine if there was any 

statistically significant difference between the two groups table 6.4. The P-value 

was 0.932 indicating that there was no statistically significant difference in the 

bond strength of Prime and Bond NT with thermal-cycling and Xeno V with 

thermal-cycling.  

Table 6.4:  Comparison between the bond strength values of Prime and Bond NT (two-step 

dentin bonding agent) with thermal-cycling and Xeno V (single-step dentin bonding agent) with 

thermal-cycling (Values are presented as median (Interquartile range): 

 Percentile 
25 

Percentile 
75 Median Interquartile 

range 
P-

value 

Prime and Bond NT 
(two-step) with thermal-

cycling 
4 7 5.60 3.13 

0.932 

Xeno V (single-step) 
with thermal-cycling 

4.01 7.11 5.83 3.28 

 

The distribution of the bond strength values of the two groups is graphically 

illustrated in figure 6.4. It is evident from figure 6.4 and appendix 3 and 4 that 

the bond strength values of Prime and Bond NT with thermal-cycling ranged 

from 2.35 to 14.98 MPa with three values less than 2 MPa. On the other hand 

the bond strength values of Xeno V with thermal-cycling ranged from 2.25 to 

16.14 MPa with no value less than 2 MPa. 

All the results are summarized in table 6.5 
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Figure 6.4: Distribution of bond strength values of Prime and Bond NT (two-step dentin bonding agent) with thermal-cycling and Xeno V (single-step dentin 

bonding agent) with thermal-cycling. 
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Table 6.5: Summery of the results. 

 Table 
number 

P-value 

Bond strength values of Prime and Bond NT (two-step) 
without thermal-cycling  

Vs 

Bond strength values of Xeno V (single-step) without 
thermal-cycling 

6-1 0.810 

Bond strength values of Prime and Bond NT (two-step) 
without thermal-cycling 

 Vs 

Bond strength values of Prime and Bond NT (two-step)  with 
thermal-cycling 

6-1 0.692 

Bond strength values of Xeno V (single-step) without 
thermal-cycling  

Vs 

Bond strength values of Xeno V (single-step) with therml-
cycling 

6-3 0.861 

Bond strength values of Prime and Bond NT (two-step) with 
thermal-cycling  

Vs 

Bond strength values of Xeno V (single-step) with thermal-
cycling 

6-4 0.932 
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Chapter 7 
Discussion 
 

7.1 Introduction: 

In vitro bond strength tests were introduced to evaluate the clinical performance 

of different adhesive systems currently used (Retief, 1991). There is a great 

diversity in the techniques used for these types of tests (Van Meerbeek et al, 

2003). The bond strength can be evaluated either by tensile bond strength test, 

shear bond strength test (Retief, 1991), microtensile bond strength test (Van 

Meerbeek et al, 2003), and most recently microshear bond strength test 

(Placido et al, 2007). However the restorative material and the teeth are 

subjected to a complex type of forces intraorally which is difficult to be 
simulated in in vitro studies. 

In addition thermal-cycling is one of the in vitro methods that are used for the 

evaluation of the bond strength values of the adhesive systems following 

repeated thermal change (De Munk et al, 2005).  

In the present study the bond strength values of a two-step dentin bonding 

agent and a single-step dentin bonding agent were evaluated. The effect of 

thermal-cycling on these bond strength values was also evaluated. A shear 

bond strength test was used to measure the bond strength values of these 

adhesive systems due to its simplicity and good predictive result. 

7.2 Discussion of the methodology: 

Extracted human teeth have the potential for multiple uncontrollable variations 

when used for in vitro studies. In the present study, the samples were 

standardized as much as possible, regarding the tooth type, the depth of 

exposed dentin, preparation technique of the dentin surface, and the diameter 

of the bonded area. 

 

 

 

 



55 

 

The selected teeth were human molar teeth due to their large surface area. The 

buccal surfaces were used rather than the occlusal surface so that sufficient 

distance from the pulp and the pulp horn can be obtained. A 2.5 mm section 

was cut off from the buccal surface so that an even depth of exposed dentin 

was obtained for the entire sample. The finishing procedure for the dentin 

surfaces were the same for all the samples in that they were all finished using a 

universal polisher with a 1200 grit silicon finishing paper. A Teflon mold of 4 

mm diameter was used to control the diameter of the composite resin-

adhesive-dentin complex bonded area in all the samples. The Teflon mold that 

was used to maintain the composite resin during condensation was of a 2 mm 

thickness. This thickness was selected to ensure that complete curing for 

composite resin was obtained. All the samples were stored in the same storage 

media for an equal time. 

The number of thermal-cycles was selected according to the ISO TR 11450 

standard (1994). 

7.3 Discussion of the results: 

7.3.1 Bond strength values of Prime and Bond NT (two-step dentin 
bonding agent) and Xeno V (single-step dentin bonding agnet): 

One of the aims of this study was to test and compare the bond strength values 

of a two-step dentin bonding agent and a single-step dentin bonding agent. The 

adhesive systems used in this study were Prime and Bond NT (two-step) and 

Xeno V (single-step). 

Figure 6-1 and appendix1 and 2 reflect the shear bond strength values of each 

adhesive system. The bond strength values are represented as mega pascal 

(MPa). It is clear from figure 6-1 and appendix 1 and 2 that the bond strength 

values of Prime and Bond NT (two-step) were ranged from 2.29 to 10.43 with 

only one value that was less than 2 MPa. On the other hand the bond strength 

values of Xeno V (single-step) ranged from 2.33 to 17.44. The median of the 

Prime and Bond NT (two-step) without thermal-cycling group was 6.14 and the 

median of the Xeno V (single-step) without thermal-cycling group was 6.13. It is 

clear that the range between the two medians was very close. The P-value was 
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0.810. Statistical analysis showed no statistically significant difference in the 

bond strength values between Prime and Bond NT (two-step) and Xeno V 

(single-step).  

This means that Prime and Bond NT (two-step) and Xeno V (single-step) used 

in this study had the same bonding performance to dentin, although they are 

different in their chemical composition and in the number of steps involved in 

the bonding process. Prime and Bond NT (two-step) uses 34% phosphoric acid 

for dentin etching, while Xeno V (single-step) uses a weak acid such as acrylic 

acid. 

The results of this study differed from those obtained by Hegde and Bhandary 

(2008). They showed that Prime and Bond NT (two-step) had a higher shear 

bond strength value compared to a single step dentin bonding agent (Xeno III) 

they used. However Xeno V may be an improvement on the Xeno III used in 

this study and this may explain the difference in the results obtained.  

The difference in composition between the Xeno III and Xeno V is largely in the 

chemical composition. Xeno III consisted of two liquids in which the first liquid 

contained 2-hydroxyethyl methacrylate (HEMA), purified water, 

ethanolurethane dimethacrylate resin, butylated hydroxy toluene (BHT), and 

highly dispersed silicon dioxide, while the second liquid  contained phosphoric 

acid modified polymethacrylate resin, mono fluoro phosphazene modified 

methacrylate resin, urethane dimethacrylate resin, butylated hydroxyl toluene 

(BHT), and camphorquinone, ethyl-4-dimethylaminobenzoate. On the other 

hand Xeno V (single-step) consists of one liquid that contains bifunctional 

acrylic, acidic acrylate, functionalized phosphoric acid ester, acrylic acid, water, 

tertiary butanol, initiator, and stabilizer. 

El Araby and Talic (2007) also showed different results from the results of the 

present study. They showed that Xeno III acheived high bond strength values 

to dentin when compared to the bond strength of Prime and Bond NT used in 

the same study. 
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7.3.2 Effect of thermal-cycling on the bond strength values of Prime and 
Bond NT (two-step dentin bonding agent) and Xeno V (single-step dentin 
bonding agent): 

The other aim of this study was to evaluate the effect of thermal-cycling on the 

bond strength values of Prime and Bond NT (two-step) and Xeno V (single-

step) dentin bonding agents. 

 Prime and Bond NT (two-step): 

 Appendix 1 and 3 and figure 6-2 represent the shear bond strength values and 

their distribution for the Prime and Bond NT group (without thermal-cycling and 

with thermal-cycling groups). The highest and lowest bond strength values for 

Prime and Bond NT without thermal-cycling group were 10.43 and 2.29 

respectively with only one value less than 2 MPa, while for Prime and Bond NT 

with thermal-cycling group the highest and lowest bond strength values were 

14.98 and 2.35 respectively with 3 bond strength values less than 2 MPa. The 

median was 6.14 for the Prime and Bond NT without thermal-cycling group and 

5.60 for Prime and Bond NT with thermal-cycling group. The P-value was 

0.692. Statistical analysis showed no statistically significant difference in the 

shear bond strength value of Prime and Bond NT with and without thermal-

cycling.  

The results of this study indicated that, the shear bond strength value of Prime 

and Bond NT did not changed after the specimen were subjected to thermal-

cycling. 

This result was similar to other results obtained by Santos et al, (2005). 

However El Araby and Talic, (2007) showed that the bond strength value of 

Prime and Bond NT decreased after thermal-cycling. Moreover Miyazaki et al, 

(1998) also showed a significant decrease in the bond strength value of another 

two-step dentin bonding agent following thermal-cycling. 

 Xeno V (single-step): 

Appendix 2 and 4 and figure 6-3 represent the shear bond strength values and 

their distribution for the Xeno V groups (without thermal-cycling and with 
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thermal-cycling groups). The highest and lowest bond strength values for Xeno 

V without thermal-cycling group were 17.44 and 2.33 respectively with no value 

less than 2 MPa, while for Xeno V with thermal-cycling group the highest and 

lowest bond strength values were 16.14 and 2.52 respectively with no value 

less than 2 MPa. The median was 6.13 for the Xeno V without thermal-cycling 

group and 5.83 for Xeno V with thermal-cycling group. The P-value was 0.861. 

Statistical analysis showed no statistically significant difference in the shear 

bond strength value of Xeno V with and without thermal-cycling.  

In the present study there was no statistically significant difference in the shear 

bond strength value of Xeno V with and without thermal-cycling indicated that 

thermal-cycling had no influence in the bond strength value of Xeno V.  

Naughton and Latta, (2005) also showed similar results to the results of the 

present study although they used other single-step dentin bonding agents 

(Clearfil SE Bond, Optibond Solo Plus, Xeno III, Tyrian SPE, and Adper Prompt 

L-Pop). However El Araby and Talic, (2007) showed that the bond strength 

value of other single-step dentin bonding agents (Xeno III (XE3) and Prompt L-

Pop) decreased after thermal-cycling.  

7.4 Mode of Failure: 

In trying to understand the failure pattern of the bonded interface it was decided 

to study the fractured surface. Because examination of the mode of failure of 

the adhesive bond was not one of the aims of this study, only four samples 

were selected from each group. The selected samples were the two samples 

that exhibited the highest and the lowest shear bond strength values. The mode 

of bond failure was investigated under a conventional microscope with 300 

times magnification by two investigators.  
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 Prime and Bond NT (two-step): 

The modes of bond failure for the Prime and Bond NT with and without thermal-

cycling groups were as follows 

Table 7.1: Description for the mode of failure of selected samples from the Prime and Bond NT 

groups (with and without thermal-cycling): 

 Prime and Bond NT without 
thermal-cycling 

Prime and Bond NT with 
thermal-cycling 

Sample 1: (high value) 

 95% from the total 
bonded area break 
between the dentin and 
the adhesive system. 
 

 5% from the total 
bonded area break 
between the composite 
and the adhesive 
system. 

 55% from the total 
bonded area break 
between the dentin and 
the adhesive system. 
 

 45% from the total 
bonded area break 
through the composite. 

Sample 2: (high value) 

 90% from the total 
bonded area break 
between the dentin and 
the adhesive system. 
 

 10% from the total 
bonded area break 
between the composite 
and the adhesive 
system. 

 45% from the total 
bonded area break 
between the dentin and 
the adhesive system. 
 

 20% from the total 
bonded area break 
between the composite 
and the adhesive 
system. 

 
 35% from the total 

bonded area break 
through the composite. 

Sample 3: (low value) 

 90% from the total 
bonded area from the 
total bonded area break 
between dentin and 
adhesive system. 
 

 10% from the total 
bonded area break 
between the composite 
and the adhesive 
system. 

 75% from the total 
bonded area break 
between the dentin and 
the adhesive system. 
 

 25% from the total 
bonded area break 
between the composite 
and the adhesive 
system. 

Sample 4: (low value) 

 75% from the total 
bonded area break 
between the dentin and 
the adhesive system. 
 

 25% from the total 
bonded area break 
between the composite 
and the adhesive 
system. 

 75% from the total 
bonded area break 
between the dentin and 
the adhesive system. 
 

 25% from the total 
bonded area break 
between the composite 
and the adhesive 
system. 
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It can be suggested from table 7.1 that most of the bond failure in both Prime 

and Bond NT groups (with and without thermal-cycling) was between the dentin 

and the adhesive system. An example of this mode of failure is shown in figure 

7.1. However this result cannot be conclusive because of the small number of 

the selected samples from each group subjected to this examination.  

           

Figure 7.1: Mode of failure of Prime and Bond NT (two-step) shows 45% break 

between the dentin and the adhesive system, 20% break between the composite and 

the adhesive system, and 35% break through the composite. 

 

 Xeno V (single-step): 

The modes of bond failure for the two Xeno V groups (with and without thermal-

cycling) were as follows: 

 

 

 

 

 

 

 

Break between 
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adhesive system 
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the composite 
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Table 7.2: Description for the mode of failure of selected samples from the Xeno V groups (with 

and without thermal-cycling): 

 Xeno V without thermal-
cycling Xeno V with thermal-cycling 

Sample 1: (high value) 

 60% break through the 
dentin. 
 

 30% break through the 
composite. 
 

 10% break between the 
composite and the 
adhesive system. 

 80% break between the 
composite and the 
adhesive system. 
 

 20% break between the 
dentin and the adhesive 
system. 

Sample 2: (high value) 

 90% break through the 
dentin. 
 

 10% break through the 
composite. 

 80% break between the 
composite and the 
adhesive system. 
 

 20% break between the 
dentin and the adhesive 
system. 

Sample 3: (low value) 

 60% break between 
dentin and adhesive 
system. 
 

 40% break between the 
composite and the 
adhesive system. 

 100% break between 
the dentin and the 
adhesive system. 

Sample 4: (low value) 

 100% break between 
the composite and the 
adhesive system. 
 

 100% break between 
the dentin and the 
adhesive system. 

 

 

It can be suggested from table 7.2 that Xeno V (single-step) can produce 

different patterns of bond failure. An example of this mode of failure is shown in 

figure 7.2, and 7.3. However this result cannot be conclusive because of the 

small number of the selected samples from each group subjected to this 

investigation, further investigation is needed in this area to explore the mode of 

failure of the bonded interface. 
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Figure 7.2: Mode of failure of Xeno V (single-step) shows 60% break through 

the dentin, 30% break through the composite, and10% break between the 

composite and the adhesive system. 

 

 

Figure 7.3: Mode of failure of Xeno V (single-step) shows 100% break 

between the composite and the adhesive system. 
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Chapter 8 
Limitations of the study 
 

With respect to this study, limitations that could have affected the outcome of 

the study are as follow: 

 Only two materials were used to evaluate the bond strength of the two-

step dentin bonding agents and the single-step dentin bonding agents. 

 500 thermal-cycles were used in this study, this could affect the bond 

strength values following thermal-cycling. 

 The age of the selected teeth was not considered in this study. 

 Results were based on a sample size of 25 specimens per group and 

may be differed if the samples were increased. 

 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 

 

 

 

 



64 

 

Chapter 9 
Conclusion and recommendations 
 

9.1 Conclusion: 

The result of this study supports the null hypothesis that is there is no 

significant difference in the bond strength between the two-step and the single-

step dentin bonding agents, and thermo-cycling for 500 cycles between 50C 

and 550C has no effect on the bond strength of these dentin bonding agents. 

When comparing the results from this study with the results from other studies 

that used different materials, it can be suggested that the bond strength values 

with and without thermal-cycling can be variable among the different products 

used. 

9.2 Recommendations: 

1. Based on the results of this study both the two-step and the single-step 

dentin bonding agents could be as effective in bonding to dentin. 

2. Also based on the results of this study the thermal changes in the mouth 

will equally affect both the two-step and the single-step dentin bonding 

agents. 
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Appendixes: 
 Appendix 1: Bond strength values of Prime and Bond NT (a two-step dentin bonding 

agent) without thermal-cycling: 

Sample number 
Prime and Bond NT without thermal-

cycling group 

1 
2.29 

2 
2.6 

3 
2.66 

4 
2.68 

5 
4.13 

6 
4.13 

7 
5.16 

8 
5.2 

9 
5.75 

10 
6.02 

11 
6.03 

12 
6.08 

13 
6.19 

14 
6.38 

15 
6.53 

16 
6.84 

17 
7.04 

18 
7.11 

19 
7.59 

20 
7.89 

21 
8.07 

22 
8.77 

23 
9.58 

24 
10.43 

25 
<2 
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 Appendix 2: Bond strength values of Xeno V (a single-step dentin bonding agent) 

without thermal-cycling: 

Sample number 
Xeno V withouth thermal-cycling 

group 
 

1 
2.33 

2 
2.33 

3 
3 

4 
3.35 

5 
3.43 

6 
3.67 

7 
3.72 

8 
4.1 

9 
4.2 

10 
4.44 

11 
4.49 

12 
4.88 

13 
6.13 

14 
6.8 

15 
7.02 

16 
7.31 

17 
7.34 

18 
7.48 

19 
9.12 

20 
10.39 

21 
11.45 

22 
11.9 

23 
12.79 

24 
14.07 

25 
17.44 
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 Appendix 3: Bond strength values of Prime and Bond NT with thermal-cycling group: 

Sample number 
 Prime and Bond NT with thermal-

cycling 
 

1 
2.35 

2 
2.85 

3 
3.6 

4 
3.78 

5 
3.8 

6 
4.49 

7 
5.06 

8 
5.2 

9 
5.32 

10 
5.49 

11 
5.57 

12 
5.62 

13 
5.82 

14 
6.03 

15 
6.07 

16 
7.01 

17 
7.27 

18 
7.97 

19 
8.75 

20 
10.73 

21 
14.27 

22 
14.98 

23 
<2 

24 
<2 

25 
<2 
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 Appendix 4: Bond strength values of Xeno V with thermal-cycling group: 

Sample number Xeno V with thermal-cycling group 
 

1 
2.52 

2 
3 

3 
3 

4 
3.11 

5 
3.45 

6 
3.75 

7 
4.01 

8 
4.44 

9 
4.69 

10 
5 

11 
5.11 

12 
5.3 

13 
5.83 

14 
6.26 

15 
6.57 

16 
6.66 

17 
6.67 

18 
7.06 

19 
7.11 

20 
7.2 

21 
8.21 

22 
11.72 

23 
12.62 

24 
14.91 

25 
16.14 
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