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ABSTRACT 

 

Generation of a human gene index and its application to disease candidacy. 

Alan Christoffels 

PhD Thesis, South African Bioinformatics Institute, Department of Biochemistry, University 

of Western Cape. 

 

With easy access to technology to generate expressed sequence tags (ESTs), several groups 

have sequenced from thousands to several thousands of ESTs. These ESTs benefit from 

consolidation and organization to deliver significant biological value. A number of EST 

projects are underway to extract maximum value from fragmented EST resources by 

constructing gene indices, where all transcripts are partitioned into index classes such that 

transcripts are put into the same index class if they represent the same gene. Therefore a gene 

index should ideally represent a non-redundant set of transcripts. Indeed, most gene indices 

aim to reconstruct the gene complement of a genome and their technological developments 

are directed at achieving this goal. The South African National Bioinformatics Institute 

(SANBI), on the other hand, embarked on the development of the sequence alignment and 

consensus knowledgebase (STACK) database that focused on the detection and visualisation 

of transcript variation in the context of developmental and pathological states, using all 

publicly available ESTs. Preliminary work on the STACK project employed an approach of 

partitioning the EST data into arbitrarily chosen tissue categories as a means of reducing the 

EST sequences to manageable sizes for subsequent processing. The tissue partitioning 

provided the template material for developing error-checking tools to analyse the information 

embedded in the error-laden EST sequences. However, tissue partitioning increases 

redundancy in the sequence data because one gene can be expressed in multiple tissues, with 

the result that multiple tissue partitioned transcripts will correspond to the same gene. 

Therefore, the sequence data represented by each tissue category had to be merged in order to 

obtain a comprehensive view of expressed transcript variation across all available tissues. 

The need to consolidate all EST information provided the impetus for developing a STACK 

human gene index, also referred to as a whole-body index. 

 

In this dissertation, I report on the development of a STACK human gene index represented 

by consensus transcripts where all constituent ESTs sample single or multiple tissues in order 
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to provide the correct development and pathological context for investigating sequence 

variation. Furthermore, the availability of a human gene index is assessed as a disease-

candidate gene discovery resource.  

 

A feasible approach to construction of a whole-body index required the ability to process 

error-prone EST data in excess of one million sequences (1,198,607 ESTs as of December 

1998). In the absence of new clustering algorithms, at that time, we successfully ported 

D2_CLUSTER, an EST clustering algorithm, to the high performance shared multiprocessor 

machine, Origin2000. Improvements to the parallelised version of D2_CLUSTER included: 

(i) ability to cluster sequences on as many as 126 processors. For example, 462000 ESTs 

were clustered in 31 hours on 126 R10000 MHz processors, Origin2000.  

(ii) enhanced memory management that allowed for clustering of mRNA sequences as long 

as 83000 base pairs. 

(iii) ability to have the input sequence data accessible to all processors, allowing rapid access 

to the sequences. 

(iv) a restart module that allowed a job to be restarted if it was interrupted. 

 

The successful enhancements to the parallelised version of D2_CLUSTER, as listed above, 

allowed for the processing of EST datasets in excess of 1 million sequences. An hierarchical 

approach was adopted where 1,198,607 million ESTs from GenBank release 110 (October 

1998) were partitioned into "tissue bins" and each tissue bin was processed through a pipeline 

that included masking for contaminants, clustering, assembly, assembly analysis and 

consensus generation. A total of 478,707 consensus transcripts were generated for all the 

tissue categories and these sequences served as the input data for the generation of the whole-

body index sequences. The clustering of all tissue-derived consensus transcripts was followed 

by the collapse of each consensus sequence to its individual ESTs prior to assembly and 

whole-body index consensus sequence generation.  

 

The hierarchical approach demonstrated a consolidation of the input EST data from 1,198607 

ESTs to 69,158 multi-sequence clusters and 162,439 singletons (or individual ESTs). 

Chromosomal locations were added to 25,793 whole-body index sequences through 

assignment of genetic markers such as radiation hybrid markers and généthon markers. The 

whole-body index sequences were made available to the research community through a 

sequence-based search engine (http://ziggy.sanbi.ac.za/~alan/researchINDEX.html). 
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The accuracy of the whole-body index was assessed using the genomic sequence for the 

annotated 599 chromosome 22 genes. A total of 63.3% of the chromosome 22 genes had 

significant identity to whole-body index sequences. In addition, 25 whole-body index 

sequences matched regions of chromosome 22 that were not previously annotated. Alignment 

of whole-body indices to chromosome 22 genes demonstrated a 0.96 fold redundancy in 

STACK, similar to the radiation hybrid mapping data. A total of 84,387 genes in the human 

genome were estimated from the chromosome 22 verified whole-body index sequences. Two 

novel splice variants were identified in the whole-body index clusters corresponding to 

neurofibromatosis2 gene and fibulin1 gene. A detailed report for the characterised events in 

25 known alternatively spliced genes, present in EST assemblies, can be viewed at 

http://www.sanbi.ac.za/~alan/twentyfive_splicegenes.htm). In addition, 493 indices that 

mapped onto chromosome 22 genes were analysed and classified as exon sequence (349/493; 

5 exon-skips), intron sequences (3/493), gapped exons (8/493; 3 exon skips) and combined 

intron-exon transcripts (133/493; 8 exon skips). 

 

The STACK human gene index was applied to a human genetic project aimed at identifying 

the causative gene for progressive familial heartblock1 (PFHB1) on chromosome 19. The 

work presents an integration of the genetic and physical maps for the PFHB1 locus, STACK 

and BodyMap transcripts, mouse developmental ESTs and RefSeq contigs. Potential novel 

microsatellites were identified in 29 out of 36 BAC and cosmid clones. PHRAP assembly 

reduced the 1184 chromosome 19 genomic fragments to 370 contigs and 874 singletons. The 

assemblies were annotated by mapping 119 STACK transcripts, 24 BodyMap transcripts, 54 

mouse ESTs and six RefSeq contigs. Seven positional candidates, previously demonstrated to 

be expressed in heart tissue, have been identified including GLTSRC2, DKF2P761A179, 

Kaptin, T-elongation factor 4, nucleobindin, CHI-123 protein and CD37-antigen. 
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1 The development of a human gene index 

1.1 What is a gene index? 

A gene index is ideally a collection of information about genes in which all the information 

pertaining to a particular gene is organised into a single gene class, and each gene class is 

distinct from all other gene classes (Aaronson et al., 1996; Burke et al., 1999; Jongeneel 

2000). The information needed to generate such an index (or catalog) of human genes has 

been provided by the high sequence coverage resulting from the recently completed draft 

sequence of the human genome together with the ongoing high throughput efforts to 

sequence the transcribed portions of the human genome, hereafter referred to as the 

transcriptome (International Genome Consortium 2001; Celera 2001). However, despite this 

wealth of information, there remains disagreement as to the number of genes in the human 

genome (Ewing and Green 2000; Liang et al., 2000a; International Genome Consortium 

2001). The varying gene numbers derived for the human genome potentially arise from the 

different methods used to analyse the transcriptome, specifically the analysis of expressed 

sequence tags (ESTs).  

 

Expressed sequence tags (ESTs) represents partial cDNA sequences that have been 

sequenced once (also referred to as single-pass) and have provided the most comprehensive 

window into the transcriptome (Bortoluzzi et al., 2000; Rezvani et al., 2000). The partial and 

error-prone nature of ESTs have complicated the definition of a set of gene classes that form 

an index. However, the ability to deal with partial reads and low quality sequences result in 

more accurate gene indexing that facilitate expression studies (Schmitt et al., 1999; Piétu et 

al., 1999; Claverie 1999), highlight gene sequence diversity and splicing (Wolfsberg and 

Landsman 1997; Miller et al., 1999; Christoffels et al., 2001) and accelerate gene discovery 

(Bortoluzzi et al., 2000). The objective of this review is two-fold namely, (1) to describe the 

characteristics of EST data and how it influences the approaches taken to develop gene 

indices and (2) the utility of EST resources to accelerate candidate disease gene discovery. 

 
1.2 Expressed sequence tags (ESTs) 
1.2.1 Generation of ESTs 
Random sequencing of cDNA clones has been used for nearly 20 years as a method for gene 

discovery (Costanzo et al., 1983). This technique more recently has been termed expressed 

sequence tag analysis and has resulted in the discovery of a variety of human genes (Adams 
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et al., 1991, 1995; Wilcox et al., 1991; Okubo et al., 1992; Houlgatte et al., 1995). An EST, is 

a fragment of a cDNA clone that has been sequenced and represents a tiny portion of an 

entire gene. The process by which ESTs are manufactured requires the construction of a 

cDNA library (Figure 1.1; Bonaldo et al., 1996).  

 

Bonaldo et al. (1996) have provided a detailed description of how cDNA libraries are 

constructed and how normalisation and library subtraction can be used to increase relative 

representation of less abundantly transcribed mRNAs. Briefly, the starting material for the 

construction of a cDNA library includes total RNA from a specific tissue or specific 

developmental stage of embryogenesis. From this material, poly(A) mRNA is extracted by 

specifically binding to a complementary polynucleotide which is bound to a solid matrix (eg., 

oligo(dT) bound to cellulose). The poly(A) mRNA selectively binds to the oligo(dT) 

components and can then be eluted using buffers of high ionic strength to dissociate the 

hydrogen bonding. The isolated poly(A) mRNA can then be converted to a double-stranded 

mRNA/cDNA hybrid using reverse transcriptase. The double-stranded hybrid is rendered 

single-stranded by the addition of RNase H, which specifically digests RNA that is bound to 

DNA. The single-stranded cDNA can be used as a template to synthesis a complementary 

strand using DNA polymerase and the double-stranded cDNA can then be cloned (Figure 

1.1). The collection of clones produced for the total mRNA represents the cDNA library.  

 

Each clone contains cDNA whose sequence length varies depending on the time taken for the 

reverse transcriptase to terminate the production of cDNA. The varying cDNA length is an 

important factor for development of coverage for each mRNA template of an available gene. 

Clones are sequenced once, from one or both ends of the DNA insert, using universal primers 

that are complementary to the vector at the multiple cloning site. The M13 forward primer 

may be located near the 5’ or the 3’ end of the cloned insert, depending on how the inserts 

were directionally cloned. Certain EST generation techniques use random primers, which 

results in production of fragments without direction, originating from different non-

overlapping parts of the same mRNA (Kapros et al., 1994). Irrespective of the type of 

protocol used to generate the ESTs, approximately 300-500 readable bases are produced from 

each sequencing read, yet a full gene transcript may be several thousands of bases long. ESTs 

therefore serve as a tag for an expressed gene sequence, trading quality and total sequence 

length for the high quantity of genes that can be tagged in a given amount of time. 
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Figure 1.1 Diagram illustrating the manufacture of ESTs from poly-T primed mRNA 
cDNA library construction (a-g). Total RNA is extracted from a specific tissue or specific developmental stage 
(a-b). From this material, poly(A) mRNA is extracted by specifically binding to a complementary 
polynucleotide which is bound to a solid matrix (eg., oligo(dT) bound to cellulose) (c). The poly(A) mRNA 
selectively binds to the oligo(dT) components and can then be eluted using buffers of high ionic strength to 
dissociate the hydrogen bonding. The isolated poly(A) mRNA can then be converted to a double-stranded 
mRNA/cDNA hybrid using reverse transcriptase (d). The double-stranded hybid is rendered single-stranded by 
the addition of RNase H, which specifically digest RNA that is bound to DNA (e). The single-stranded cDNA 
can be used a a template to synthesis a complementary strand using DNA polymerase and the double-stranded 
cDNA can then be cloned (f). The collection of clones produced for the total mRNA represents the cDNA 
library (g). An EST is generated by sequencing a clone insert once from the 5’ and/or 3’ end (h). The clone 
insert lengths vary from clone to clone. ESTs are generated that range approximately from 300-500 bases. 
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1.2.2 EST quality 

1.2.2.1 Errors arising from the EST manufacture process 

Generation of EST data results in ‘low quality’ sequence information. A single read is 

generated for each EST, and as such will contain errors from its generation at each step 

including basecalling and compression errors that result in frameshifts 

(http://genome.wustl.edu/est/esthmpg.html). In addition, Aaronson et al (1996) assessed a 

variety of error types in EST data including (a) lane-tracking errors, (b) insert lengths, (c) 

clone end reversal and (d) internal priming. The aforementioned EST error classes are 

detailed below.  

 

Lane-tracking errors 

The rate of sequences exhibiting lane-tracking errors was approximately 0.5% (Aaronson et 

al., 1996). The accuracy with which sequences are mapped onto clones has implications for 

generating a human gene index as it provides a level of confidence that all sequences with the 

same cloneID are derived from the same transcript and should be present in the same gene 

class if there exist some degree of sequence overlap. 

 

Insert lengths 

Accurate insert size data for cDNA clones enables the selection of the longest clone for each 

index class which is valuable for performing assemblies within a class. However, the average 

error over most EST clones was reported to be between 15-20% (Aaronson et al., 1996).  

 

Clone end reversal and internal priming 

Reversed clones and internal priming can result in the incorrect identification of sequences as 

3’ ends of genes. The error rates for reversed clones and internal priming were estimated at 

5% and 2-3% respectively (Aaronson et al., 1996).  

 

The EST error types outlined above contribute to regions of high quality very close to regions 

of low quality, where quality can be defined as the number of correctly sequenced bases 

within a known window of reference. It is possible to utilise poor quality sequence as long as 

relevant strategies for maximising their utility are taken. 
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1.2.3 EST clustering 

With easy access to technology to generate ESTs (Figure 1.1), several groups have sequenced 

from thousands to several thousands of ESTs (Adams et al., 1991, 1995). The fragmented 

nature of ESTs (section 1.2.2) hinders the discovery of full-length cDNAs for each human 

gene. However, in the absence of a reference sequence for each human gene, increased value 

is added to the redundant, low quality fragmented EST data by attempting to piece together 

the gene sequences from which the ESTs were derived.  

 

1.2.3.1 What is an EST cluster? 

An EST cluster has been defined by Burke et al (1999) as “fragmented EST data (DNA or 

protein) and (if known) gene sequence data, consolidated, placed in correct context and 

indexed by gene such that all expressed data concerning a single gene is in a single index 

class, and each index class contains the information for only one gene”. However, there are 

EST clustering systems that deviate slightly from the above definition or add additional 

criteria to the concept of an EST cluster. For example, earlier releases of the STACK 

database have ignored mRNA and genomic DNA information even though this information 

was available. STACK clusters were identified according to the tissue of origin for each EST 

(Miller et al., 1999). There are other databases that do not use tissue of origin as one of the 

clustering criteria but instead makes this tissue information available (Bouck et al., 1999). 

The definition of an EST cluster is further complicated by the way in which alternative gene 

variants are handled. For example, TIGR human gene index separates each alternative variant 

to a separate cluster (Adams et al., 1995; Quackenbush et al., 2001). UniGene keeps all 

variants in one group as long as they have some common part.  

 

1.2.3.2 Overview of EST clustering 

The earliest reported implementation of an EST clustering procedure was two-fold: (i) ESTs 

were first submitted to a fast pair-wise sequence comparison to build seed clusters and (ii) 

These initial clusters were then treated by a slow but accurate alignment procedure (Hiller et 

al., 1996). This general concept of EST clustering has been adopted by a number of EST 

projects for the initial stages of data preparation (Cariaso et al., 1999; Quackenbush et al., 

2001). 

 

EST clustering is performed as a process that utilises ‘clustering information’ that is less and 

less definitive. Initially sequence identity provides a good guide to cluster membership. 
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Shared annotation provides joining information that can be of more variable quality. Thus the 

number of accurately clustered ESTs is heavily dependent on a strategy that can assign 

cluster membership based on verifiable criteria; sequence identity is currently the most useful 

of these. Clustering can be performed with or without sequence consensus generation as 

detailed in a modern clustering procedure (Hide et al., 1999; 

http://www.sanbi.ac.za/submissionl.PDF). It is preferable, although more difficult, to 

manufacture a consensus sequence from each cluster.  

 

A brief description of a modern clustering procedure is outlined below as defined by Hide et 

al. (1999).  

 

• Preprocessing 

EST data are known to contain a variety of contaminating sequences that will alter the 

outcome of a clustering procedure intended to group together sequences that share identical 

regions. For this reason, all input sequences are masked for repeats and vectors, and 

formatted for the clustering engine. Sequence quality is often assessed at this step. A 

minimum number of residues are accepted above a known quality threshold. For example, the 

South African National Bioinformatics Institute (SANBI) implementation of STACK accepts 

only masked sequence data above 50 bases in length. The National Center for Biotechnology 

and Information (NCBI) discards ESTs with a window of less than 100 bases of ‘clean’ data. 

 

• Initial clustering 

An initial clustering is performed based on a fast measure of high sequence identity like 

D2_CLUSTER (Burke et al., 1999). ESTs having a high degree of similarity, detected by 

such fast, although rough measure are grouped in one cluster. Clusters, formed at this stage 

require further verification.  

 

• Assembly 

Assembly is either part of the initial clustering (as used in TIGR_ASSEMBLER (Sutton et 

al., 1995)) or separated into clustering followed by assembly performed by an assembly 

package such as PHRAP (P. Green, unpublished, 

http://www.genome.washington.edu/uwgc/analysistools/phrap.htm) or CAP3 (Huang and Madan 

1999). 
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• Alignment Processing 

Aligned clusters, particularly those generated by a loose clustering engine, need to be 

processed for errors and alternate forms of expressed sequences. Consensus generation may 

be a result of this step or a consensus can be accepted directly from the assembly step where 

the consensus sequence is determined by a majority rule for each nucleotide position. 

Consensus sequences are chosen based on maximal length. 

 

• Clone linking 

Cluster consensus sequences can be linked by available information contained in annotation 

such as cloneID. Clone linking utilises the physically shared cloneID between 3’ and 5’ 

EST fragments sequenced from the same starting clone. Linking by clone annotation is an 

error-prone step as it relies entirely on the accuracy of the sequence annotation and the 

uniqueness of cloneIDs if data from disparate sources is to be used (Miller et al., 1999). 

  

1.2.3.3 Supervised and unsupervised clustering 

EST clustering methods can be divided into two general classes, supervised and unsupervised 

clustering. In supervised EST clustering, sequences are classified with respect to known 

reference sequences. In unsupervised clustering, no pre-defined sequences are used and the 

number of resulting clusters is typically unknown until the end of the clustering procedure. 

Some EST clustering systems are strictly or partly supervised, like TIGR Gene Index 

(Quackenbush et al., 2001) and IMAGene (Cariaso et al., 1999), some are totally 

unsupervised like STACK (Miller et al., Christoffels et al., 2001) and some use a 

combination of two approaches, like UniGene (Wagner et al., 2000). In the systems using 

some form of supervision, a genomic DNA and/or a mRNA sequence is used as a core to 

assemble ESTs. 

 

1.2.3.4 EST clustering approaches 

EST clustering methods used in contemporary EST projects can be classified into and not 

restricted to (i) contig assembly tools (implemented in TIGR’s gene index reviewed in 

section 1.4.1.1), (ii) alignment scoring methods such as FASTA and BLAST (implemented in 

IMAGene reviewed in section 1.4.2 and UniGene reviewed in section 1.4.1.2), and (iii) non-

alignment based scoring methods such as D2_CLUSTER (implemented in STACK reviewed 

in section 1.4.1.3) 
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1.2.4 EST contamination 

EST data are known to contain a variety of contaminating sequences that will alter the 

outcome of a clustering procedure intended to group together sequences that share identical 

regions. These sequence contaminants include (i) vector, bacterial and mitochondrial 

sequences, (ii) repeats, (iii) microsatellites, (iv) low-complexity regions and (v) chimeric 

clones 

 

(i) Vector and mitochondrial sequence contamination 

The presence of contaminating sequences in the public database, GenBank, was first reported 

by Lamperti et al (1992). In this study, vector fragments were found in 0.23% of all 

sequences available at the time. Miller et al (1998) identified slightly more vector 

contamination in a study that focused on vector contamination dynamics in GenBank from 

1992 to 1996. In addition, Miller et al (1998) showed that the percentage of contaminated 

ESTs were lower than the average contamination for GenBank for the period from 1992 to 

1996. Insight into the level of EST contamination was obtained from Hiller et al (1996), who 

provided a quantitative estimation of the level of contamination in EST libraries. In this 

study, EST sequences were screened against databases of bacterial sequences, mitochondrial 

sequences and vector sequences. All libraries contained mitochondrial sequences ranging 

from a high of 16% of ESTs to as low as 1% of ESTs. Some EST libraries were found to 

contain as much as 20% of bacterial contamination.  

 

The ability to “clean” EST data from contaminants such as vector sequences require a 

collection of possible contaminating fragments that can be used as a reference database for 

identifying the specific contaminant. A collection of cloning vectors, specifically prepared for 

this purpose is available from NCBI ftp site (ftp://ncbi.nlm.nih.gov/blast/db/vector.Z).  

 

The human genome comprise two genomes: a complex nuclear genome and a simple 

mitochondrial genome. The bulk of the mitochondrial polypeptides are encoded by the 

nuclear genes and are synthesized on cytoplasmic ribosomes, before being imported into the 

mitochondria (Strachan and Read 1997). The presence of mitochondial transcripts in the 

nuclear genome can result in EST capturing of mitochondrial genes during the sequencing of 

a cDNA library. 
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(ii) Repeat sequences 

Unlike cloning vector fragments, repeats cannot be regarded as contaminating sequences. 

Repetitive sequences include LINES (Fanning and Singer 1987), SINES (Singer 1982a), 

ALU (Deininger 1989) and satellite repeats (Singer 1982b). Despite recent evidence for ALU 

repetitive sequences as functional binding sites for retinoic acid reponse elements and 

estrogen receptors (Vansant et al., 1995; Norris et al., 1995 respectively), the functional 

significance of repetitive sequences remains unclear. However, the unique portion of the 

genome is thought to comprise the functional constituents of the human genome, including 

exons, introns and regulatory DNA elements. It is the unique DNA pieces within EST 

sequences that are being brought together in any effort to cluster ESTs. The unique portions 

of an EST can be obscured by repetitive sequence and represent a serious challenge for EST 

clustering. 

 

In newly sequenced genomes, such as plant and other eukaroyte systems, repeat sequences 

represent a common and frustrating clustering problem. Repeat databases provide a resource 

against which repeats can be detected. The repeat databases are dependent on continuing 

curation and detection of novel repeats in genomes and thus provide a valuable resource. 

Since the early 1990’s, the most comprehensive repeat collection, Repbase, has been 

supported by Genetic Information Research Institute (http://www.girinst.org) (Jurka et al., 

1992; 1998). 

 

(iii) Microsatellites 

Microsatellite DNA families comprise tandem repeats that have repeating units of length 1-6 

base pairs, which are interspersed throughout the genome (Tóth et al., 2000). They have been 

used extensively for genetic mapping and population studies (Gyapay et al., 1994). However, 

much remains unknown about the possible functions microsatellites may have in the genome. 

Microsatellite repeats are remarkably variable by number of copies, small deletions, 

insertions and single base mutations inside the repeat (Bull et al., 1999). The variability and 

multiplicity of the microsatellite repeats makes their recognition by comparison to a sample 

sequence, stored in a database, ineffective. 

 



 13

(iv) Low complexity sequences 

Low complexity sequence is a more general term for stretches of DNA of low complexity 

with or without detectable repetitive structure (Jurka 1998). Lack of a certain consensus 

makes them impossible to detect by comparison to a sample. But like interspersed repeats and 

microsatellite repeats, low complexity regions also have the potential to provide an artifactual 

basis for cluster membership. The problem is more significant for strategies that employ 

alignable similarity in the first pass cluster assignment. Word-based cluster assignment can 

be modified to provide low weight to low complexity words. The latest version of BLAST 

(Altschul et al., 1997) widely used as a sequence comparison engine in EST clustering, is 

capable of filtering out low complexity sequences. In a new EST clustering algorithm 

developed at SANBI (Ptitsyn 2001), there is no need for masking of low complexity DNA as 

such regions tend to have a highly redundant oligonucleotide composition. The new sequence 

comparison algorithm (Ptitsyn 2001) scale oligonucleotides according to their potential 

information content with the result that highly redundant oligos are given very low weight 

and low complexity regions are excluded from consideration.  

 

(v) Chimeric clones 

Cloning artifacts, i.e., co-ligation of two different restriction fragments, can produce cells that 

contain two non-contiguous pieces of DNA from the desired genome (Larionov et al., 1994). 

5’ and 3’ ends sequenced from a chimeric clone will result in EST pairs sampled from 

different portions of the genome. EST clustering tools that rely on the clone information of 

ESTs to determine cluster membership will generate false EST clusters. For example, 

UniGene assigns ESTs to a cluster based on cloneID. Any 5’and 3’ ESTs that originate from 

a chimeric clone will result in one EST cluster representing more than one gene. The STACK 

implementation uses cloneIDs in its clone linking step when EST clusters are joined to 

generate linked clusters. The occurrence of ESTs from chimeric clones will produce linked 

clusters that do not sample the same gene. 

 

1.3 Masking strategies 

The most effective method to remove contaminants is to compare each read against a 

reference database of repeats such as RepBase (Jurka et al., 1998) and vector sequences 

(VecBase, http://vectordb.atcg.com or vector collection at NCBI, 

ftp://ncbi.nlm.nih.gov/blast/db/vector.Z) using an algorithm that is reasonably fast and accurate. 

XBLAST (NCBI tools, ftp://ncbi.nlm.nih.gov/toolbox/ncbi_tools) and CROSS_MATCH, an 
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implementation of the Smith-Waterman-Gotoh algorithm developed by Phil Green (Green, 

unpublished, http://www.genome.washington.edu/uwgc/analysistools/swat.htm) has been 

used successfully, with CROSS_MATCH demonstrating greater flexibility than XBLAST 

(Miller et al., 1999). DUST is used for masking repetitive sequences at NCBI (unpublished; 

http://www.ncbi.nlm.nih.gov/UniGene/Build.html). DUST is able to reveal and mask low-complexity 

sequences as well. Another recent development, RepeatMasker (Smit and Green 1999), 

available from Washington University (http://ftp.genome.washington.edu/RM/RepeatMasker.html) is 

able to mask huge amounts of data and recognise low-complexity DNA, for example, regions 

of DNA consisting of greater than 84% of CA’s or greater than 87% GT’s (default settings). 

Recently, MaskerAid was developed as an enhancement to RepeatMasker where 

CROSS_MATCH was replaced with WUBLAST (W. Gish, unpublished, 

http://blast.wustl.edu). MaskerAid was written in PERL and represents a software wrapper 

around WUBLAST (Korf et al., 2000). 

 

1.4 Implementation strategies of gene indexing projects 

1.4.1 Overview of TIGR human gene index, UniGene and STACK 

Over the past five years a number of gene indices have been produced that were aimed at 

addressing the problems associated with ESTs as described in section 1.2.2. At the start of 

1996 there were essentially two gene indices being developed namely (a) UniGene at NCBI 

and (b) the human gene index at the Institute for Genome Research (TIGR). The protocols for 

the generation of UniGene were not available at that time, but over the past 12 months there 

has been a release of publications pertaining to the UniGene build in the form of poster 

presentations (Wagner et al., 2000), manuscripts (Zhang et al., 2000) and internet webpages 

(http://www.ncbi.nlm.nih.gov/UniGene/build.html). Clues to the approach adopted by TIGR, 

at that time, to generate its human gene index came from the release of the 

TIGR_ASSEMBLER (Sutton et al., 1995) and its subsequent application to EST sequences 

(TIGR_ASSEMBLER-EST). The protocols for the development of gene indices by NCBI 

and TIGR suggested that strict approaches were being implemented in order to reconstruct 

the expressed gene complement of the human genome. For example, TIGR_ASSEMBLER 

approach grouped sequences into a cluster if they shared a minimum of 95% identity over a 

40 nucleotide or longer region with fewer than 20 bases of mismatched sequence at either end 

(Sutton et al., 1995). Besides the use of TIGR_ASSEMBLER, many academic institutions 

were using PHRAP (P. Green, unpublished, 

http://www.genome.washington.edu/uwgc/analysistools/phrap.htm), an alignment-based 
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assembly tool that is based on the Smith-Waterman algorithm, for the assembly of shotgun 

sequences. 

 

During 1996, the South African National Bioinformatics Institute embarked on the Sequence 

Tag Alignment and Consensus Knowledgebase (STACK) project aimed at capturing 

transcript variation in the context of developmental and pathological states. This approach 

required additional steps tolerant of sub-sequence diversity, the ability to perform assembly 

analysis and the ability to handle the exponential increase in EST data (Benson et al., 1999). 

 

The gene indexing projects described below implement a combination of data preparation, 

clustering, assembly, alignment analysis, consensus generation, clone linking and 

visualisation.  

 

1.4.1.1 The Institute for Genome Research (TIGR) human gene index 

The protocol described below focuses specifically on the TIGR human gene index but can be 

applied to any of its 29 indices (Liang et al., 2000b; Quackenbush et al., 2001). 

 

a. Data preparation 

TIGR human gene index (HGI) incorporates both ESTs and annotated gene sequences that 

have been submitted to dbEST and GenBank respectively. The first step in the process 

involves the construction of a database of annotated gene sequences. All sequences from 

GenBank are downloaded and the CDS and CDS join features for full-length genes and 

mRNA sequences are parsed from the records. One representative sequence is chosen for 

each redundant entry but all links to alternative GenBank records are maintained. The 

annotation of all the human expressed transcripts (HT) are checked for consistency before 

being loaded into the Expressed Gene Anatomy Database (EGAD; 

http://www.tigr.org/tdb/egad/egad.html). ESTs are downloaded from dbEST daily and 

screened for contaminating sequences as outlined in section 1.1.3. 

 

b. Clustering 

Clean ESTs, HT sequences from EGAD, tentative human consensus sequences (THCs) from 

a previous build and singletons are compared pairwise to identify overlaps using a program 

called FLAST that is based on DDS (Huang et al., 1997). Sequences are grouped into a 

cluster if they share a minimum of 95% identity over a 40 nucleotide or longer region with 
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fewer than 20 bases of mismatched sequence at either end. THCs are collapsed to their 

component ESTs and HT sequences prior to cluster assembly using CAP3 (Huang and 

Madan 1999). Recent articles have reported that a strict pairwise comparison using 

WUBLAST (W. Gish, unpublished, http://blast.wustl.edu) is being implemented to generate 

TIGR’s gene index clusters (Liang et al., 2000b). All newly constructed THCs are passed 

through a second round of clustering and assembly to identify and eliminate most of the 

redundancy introduced during the first phase. The resulting THCs are loaded into the Gene 

Index database for annotation. 

  

c. Annotation and display 

THCs containing a known gene are assigned the function of the gene whereas THCs without 

assigned functions are searched using DPS (Huang et al., 1997) against a non-redundant 

protein database. The highest-scoring hits are assigned a putative function. The THC is 

presented as a FASTA-formatted consensus sequence together with a graphical representation 

of each component sequence within the cluster, links to GenBank and functional and 

mapping information where available. A novel assembly, caused by joining or splitting a 

previous THC assembly, is assigned a new unique identifier. Previously used identifiers are 

never reused and information regarding previous assemblies is never lost. Database queries 

using a THC identifier from a previous build return the most current version of that assembly. 

 

d. TIGR’s human gene index availability 

TIGR maintains gene indices for 33 organisms as of 1st July 2001. All of the TIGR databases 

can be accessed from the TIGR Database page at http://www.tigr.org/tdb/tdb.html. HGI has been 

generated every 12 months (current release, version 6.0, 30th June 2000) 

(http://www.tigr.org/tdb/hgi/index.html). Current development at TIGR is focused on a 

scheduled release where each gene index is updated every three months 

(http://www.tigr.org/tdb/gifaq.html). The TIGR human gene index (HGI) in particular, can be 

queried with a sequence or a text string at http://www.tigr.org/. TIGR offers sequence 

searches at both nucleotide and protein level using WU-BLAST2.0 

(http://www.tigr.org/docs/tigr-scripts/nhgi_scripts/tgi_blast.pl?organism=Human).  
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e. TIGR’s human gene index utility 

The HGI can be queried for tissue expression information such as (i) tissue specific 

transcripts, (ii) cDNA libraries by keyword and (iii) cDNA libraries by catalog 

(http://www.tigr.org/tdb/hgi/searching/xpress_search.html).  

 

1.4.1.2 UniGene 

The National Center for Biotechniology Information (NCBI) at the National Institutes of 

Health was created in 1988 to develop information systems for molecular biology. NCBI 

provides data retrieval systems and computational resources for the analysis of GenBank data 

(i.e., nucleic acid sequence database) and a variety of other biological data. UniGene 

(http://www.ncbi.nlm.nih.gov/UniGene; Schuler 1997) represents an example of a 

computational resource, developed at NCBI, for automated partitioning of GenBank 

sequences, including ESTs, into a non-redundant set of gene-oriented clusters. Each UniGene 

cluster contains sequences that represent a unique gene, and is linked to related information 

such as tissue types in which the gene is expressed, model organism protein similarities and 

its chromosomal map location (Wheeler et al. 2001).  

 

a. Data preparation 

ESTs and annotated mRNA sequences obtained from dbEST and GenBank respectively, are 

utilised in the UniGene build as described below (section 1.4.1.2b). Sequences are screened 

for contaminants such as mitochondrial, ribosomal, and vector sequences as outlined in 

section 1.3. Cleaned sequences have to meet the requirement of at least 100 informative 

nucleotides before it is can be considered for inclusion into UniGene.  

 

b. Clustering 

mRNA sequences are compared to each other and significantly similar sequences are grouped 

to form the initial clusters. ESTs are compared with these initial clusters using megablast 

(http://www.ncbi.nlm.nih.gov/UniGene/build.html; unpublished). Megablast incorporates a 

greedy algorithm (Zhang et al., 2001) as suggested on the UniGene website. No 

documentation exists for the implementation of "the greedy algorithm" in megablast but 

certain inferences can be made from a similar implementation (Zhang et al., 2001). In their 

publication, Zhang et al (2001) provides an example of the use of their "greedy algorithm" in 

one of the BLAST tools (unnamed) at NCBI. In this example, the genomic sequences of two 

strains of M. tuberculosis sequences were aligned. The unnamed NCBI program begins by 
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making a table of 12-mers in the one genomic sequence (a typical BLAST -like approach). 

The second sequence is scanned for matching 12-mers that are included in a 30bp exact 

match. At this point the "greedy algorithm" was applied to knit the 30bp matches together 

into long gapped alignments by recursively picking a longest exact match that does not 

intersect one of the earlier gapped alignments while extending in both directions.  

 

After comparing ESTs to mRNAs, any links that join two gene clusters that were not joined 

before the addition of ESTs are discarded. The resulting clusters are kept if they contain a 

sequence with a polyadenylation site or at least two ESTs that are labelled as 3' ends. These 

"anchor" clusters are merged if they share at least two identical cloneIDs with both 5' and 3' 

ends. ESTs that do not belong to an anchored cluster are rechecked at a lower megablast 

stringency (unpublished). ESTs that find matching anchor clusters, as a result of the lower 

level of stringency, are added to the cluster that showed the best match. Singletons are 

compared against the rest of the UniGene sequences at a lower level of stringency 

(unpublished) and added to the cluster that contains the most similar sequence. Clusters are 

then compared with the previous week's build and renumbered.  

 

c. UniGene availability 

UniGene databases exist for human, mouse, rat and zebrafish sequences and are updated 

weekly with new ESTs and bimonthly with newly characterised sequences (Wheeler et al., 

2001). Clustered sequences can be download via the ftp (ftp://ncbi.nlm.nih.gov/repository/UniGene). 

 

UniGene clusters may be searched by gene name, chromosomal location, cDNA library, 

accession number and ordinary text words. Sequence-based searching against the UniGene 

database is available at the Swiss Institute for Bioinformatics (http://www.ch.embnet.org).  

 

d. UniGene utility 

The UniGene collection has been used as a source of mapping candidates for the construction 

of a human gene map (Deloukas et al., 1998). In this study, 3’ untranslated regions (UTRs) 

are converted to sequence tag sites (STSs; see section 2.1.1) that are then placed on physical 

maps and integrated with pre-existing genetic maps of the genome (Deloukas et al., 1998). 

 

The UniGene collection has been used as a source of unique sequences in micro-array chip 

design for large-scale study of gene expression (Ermolaeva et al., 1998). 
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1.4.1.3 Sequence Tag Alignment and Consensus Knowledgebase (STACK) 

STACK is a tool for detection and visualisation of expressed transcript variation in the 

context of developmental and pathological states. The data system organises and reconstructs 

human transcripts from available public data in the context of expression state that is the 

captured expression of a transcript such as developmental state, pathological association, site 

of expression and/or isoform of expressed transcript. Comprehensive capture of transcript 

variants is achieved by the use of a novel clustering approach that is tolerant of sub-sequence 

diversity and does not rely on pairwise alignment (Christoffels et al., 2001). The STACK 

database represents a consolidation of all publicly available EST data through clustering after 

characterising ESTs into arbitrary tissue bins. The clustering procedure includes 

subpartitioning, masking, clustering, assembly, alignment analysis, consensus partitioning 

and clone linking (Miller et al., 1999). 

 

a. Subpartitioning 

The first step involves selection of human ESTs from GenBank and their partitioning into 

arbitrary-selected tissue bins. The tissue-partitioning step generates EST data sets that have a 

managable size for input into the clustering and assembly engines. Sequences that are 

annotated as derived from a disease-related tissue are duplicated and placed in a single set to 

facilitate exploration of cross-tissue similarities between these ESTs. The "tissue_type" 

subkey of the "FEATURES" key is only provided sometimes with nonstandardised terms in 

the data field. As a result, the assignment of an output file name for each sequence is based 

on (1) FEATURES/tissue_type, (2) FEATURES/cell_type, (3) FEATURES/clone_lib or 

SOURCE/library, (4) FEATURES/chromosome or (5) FEATURES/map.  

 

b. Masking 

Sequences are masked as outlined in section 1.3. 

 

c. Clustering 

SANBI has implemented a clustering approach that differs from the TIGR gene index and 

UniGene. The use of D2_CLUSTER for the clustering step in STACK is central to the 

detection of sequence variation. D2_CLUSTER (Hide et al., 1994, 1997) is a word 

multiplicity comparison method that utilizes an agglomerative algorithm that has been 

specifically developed for rapidly and accurately partitioning transcript sequences into index 
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classes by clustering ESTs and full-length sequences according to minimal linkage or 

"transitive closure" rules. Agglomerative clustering method means that every sequence begins 

in its own cluster and the final clustering is constructed through a series of merges that may 

be described in terms of minimal linkage, sometimes called single linkage or "transitive 

closure". The term transitive closure refers to the property that any two sequences with a 

given level of similarity will be in the same cluster, hence A and B are in the same cluster 

even if they share no similarity but there exists a sequence C with enough similarity to both A 

and B (Burke et al., 1999). The criterion for joining clusters is the detection of two sequences 

that share a window of (Window_Size) bases that is (Stringency) percent or more identical. 

The only criterion for clustering is sequence overlap and source or annotation information is 

not used. To detect the overlap criterion, the d2 algorithm is used with parameters and 

threshold values as described in (Torney et al, 1990; Hide, et al, 1994; Wu et al, 1997). The 

initial and final state of the algorithm is a partition of the input sequences where each 

sequence is in a cluster and no sequence appears in more than one cluster. D2_CLUSTER 

uses an approach of word matching within a window, together with a measure of the 

multiplicity (if any) of that word within a window. The principal concept is that it doesn't 

attempt an alignment, not even in a reduced form. The results of comparison are derived 

directly from the comparison of word composition (word identity and multiplicity) of two 

sequence windows. Thus, the algorithm can be significantly faster than BLAST. Speed comes 

with a price: to collect significant statistics, the fragments must be long enough (about 50 bp) 

and only very high similarities can be detected (above 96% identity within a window). 

D2_CLUSTER is used to produce initial loose clusters in the STACK clustering system. The 

results of D2_CLUSTER alone are between 8% and 20% less fragmented than Unigene 

(Burke et al., 1999) and the STACK data system produces clean clusters that are 16% less 

fragmented than Unigene (Miller et al., 1999). 

 

d. Assembly 

PHRAP (P. Green, unpublished, 

http://www.genome.washington.edu/uwgc/analysistools/phrap.htm) is used for the assembly 

of all clusters.  

 

SANBI and TIGR implement strategies that generate consensus sequences during or after the 

sequence assembly step. STACK does not rely on the consensus sequences generated by the 

PHRAP assembly and instead a consensus sequence is generated during its assembly analysis 
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phase. Recent reports by TIGR have documented the use of CAP3 (Huang and Madan 1999) 

to generate the consensus sequences for the TIGR gene indices (Liang et al., 2000b). 

UniGene on the other hand does not produce alignments and therefore does not generate 

consensus sequences. The absence of alignments in UniGene can be explained by the 

presence of non-overlapping sequences that have been assigned to a cluster based on the 

sequence origins from the same clone. 

 

e. Alignment Analysis 

To distinguish alternative splicing from problematic alignments introduced by low quality 

sequence or partially divergent members of otherwise closely related families, cluster 

alignments in STACK undergo additional processing that produces sub-clusters (Miller et al., 

1999; Christoffels et al., 2001). CRAW and STACK_analysis have been developed to 

address post-clustering and assembly artifacts. CRAW is used to maximize consensus length, 

partition subassemblies and provide a simple means to view clusters (Burke et al. 1998). 

CRAW checks the agreement along the columns of a multiple sequence alignment and uses 

this information to sort related sequences within each cluster and generates a consensus 

sequence for each sub-cluster. A sub-cluster is generated if 50% or more of a 100-base 

window differs from the remaining sequences of a cluster, excluding the initial 100 bases of 

any read. The approach depends fundamentally on the alignment quality of each assembly 

generated by the assembly tool. For example, a poor alignment will yield erroneous sub-

clusters, and too low a gap penality may yield too many columns in agreement and thus not 

create subclusters where they would be appropriate. 

 

f. Consensus Partitioning 

STACK_analysis independently partitions the aligned sequences generated from the CRAW 

consensus sequences then ranks the consensus sequences according to the number of assigned 

sequences and number of called bases. The best ranking consensus sequence, defined as the 

sequence with the most contributing ESTs, is taken as the primary representative of a cluster, 

whereas the remaining consensus sequences are logged with the best consensus sequence in 

Genetic data environment (GDE, Smith et al., 1994) file format (Miller et al., 1999; 

Christoffels et al., 2001). The 5' or 3' orientation of each cluster is determined by a vote of the 

individual EST annotations and all output consensus sequences are arranged to read 5' to 3'. 

Low-quality regions defined as 2 N's followed by at least thirteen IUPAC codes with four or 

less clear A, T, C or G calls are replaced by a single run of 10 N's.  
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g. Clonelinking 

The clone information is used to extend the length of the cluster consensus sequences by 

joining clusters containing ESTs with shared cloneIDs. Clone-links are accepted if two 

independent clones link the same two clusters (Figure 3.3). Each EST from GenBank is 

searched for clone information to trace the transcripts corresponding to the same gene. Clone-

linked consensus sequences are ordered 5'-unassigned-3' based on a majority rule from the 

EST annotations in each cluster (Miller et al., 1999). 

 

h. STACK availability 

A new release of the STACK database is made available at least four times a year. STACK is 

freely available to academia and is distributed via the Web at 

http://www.sanbi.ac.za/CODES. The stackPACK tool set performs clustering, clustering 

management, alignment processing and analysis and is freely available to academic 

institutions and is distributed from http://www.sanbi.ac.za/CODES. 

 

i. STACK utility 

The STACK database can be queried via the Web at http://www.sanbi.ac.za/stacksearch.html 

using a sequence as input. The BLAST search algorithms implemented in the search engine 

allow for both DNA and protein queries. The results of a blast query are hyperlinked to the 

STACK viewer, which allows for the extraction of detailed information pertaining to the 

matching STACK sequence. STACK consensus sequences matched to Drosophila  sequences 

are searchable on the Drosophila Related Expressed Sequences (DRES) home page at the 

Telethon Institute of Genetics and Medicine (http://www.tigem.it). Alternately, all clustered 

data for a specific STACK tissue category can be accessed via WebProbe 

(http://www.sanbi.ac.za/stackpack/webprobe.html). A query from this page returns a 

summary report with links to detailed information for all clusters and linked clusters 

contained within the specified tissue category. 

 

1.4.2 Other gene index implementations 

IMAGene 

A large scale and systematic public effort to isolate all human genes began in 1993 when the 

Integrated Molecular Analysis of Genomes and their Expression (I.M.A.G.E) consortium was 

formed to create, collect and characterize cDNA libraries from various tissues and states of 
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normalization (Lennon et al., 1996). The ultimate goal of the I.M.A.G.E consortium was to 

provide a collection of clones that best represent the mRNAs found in GenBank for use in re-

arraying of clones into minimal redundant micro-arrays (Cariaso et al., 1999). To this end, the 

IMAGene suite of tools was designed to analyse and organise ESTs associated with 

I.M.A.G.E clones, which constitute approximately 75% of all human dbEST sequences. The 

first release of IMAGene (IMAGene1) was focused on clustering I.M.A.G.E clones 

associated with mRNAs obtained from GenBank (Cariaso et al., 1999). A recent poster 

publication suggested the availability of IMAGene3, a program to cluster human ESTs 

against NCBI's reference set of genes (Refseq) (Prange et al., 2000). The absence of 

information for the implementation of IMAGene2 and IMAGene3 has limited this review to 

IMAGene1, which is outlined below. 

 

a. Data preparation 

Human ESTs derived from the I.M.A.G.E Consortium clones are extracted from dbEST and 

screened for poor text annotation and low quality regions. Key features such as cloneID, 

library name, EST orientation (i.e., 5' or 3') and sequence are identified and formatted into an 

annotated FASTA record prior to entry into IMAGene. The FASTA records are indexed by a 

GenBank accession number and I.M.A.G.E cloneID and made blast searchable. Human genes 

are extracted from the mRNA records in GenBank and redundant entries are removed. The 

gene set together with the EST data are generated with each build of IMAGene. The first 

release of IMAGene contained repeats that were not masked. 

 

b. Clustering 

For the clustering procedure, IMAGene uses a combination of BLAST and FASTA with 

wraparound scripts. mRNA sequences are compared against all ESTs using BLAST. The 

default parameters for BLAST are used as a theshold for candidate EST selection and the 50 

best hits are extracted from the indexed EST file. These candidates are copied to a temporary 

database and examined by FASTA. The speed of BLAST is balanced by the quality of 

FASTA, as only matches, confirmed by FASTA are accepted. For example, clones are 

selected from sequences that match a FASTA opt score of 1300 and ESTs derived from those 

clones are included in the cluster. A number of factors could affect the incorrect assignment 

of ESTs to a IMAGene cluster. For example, ESTs sharing a conserved domain in different 

genes could result in multiple assignment of the same EST. Sequencing artifacts where the 5' 
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and 3' ends originate from different clones and alternative splicing could affect a cluster 

membership. 

 

c. Alignment 

The FASTA tool used in the clustering stage generates alignments but this may not find the 

optimal overall match since FASTA uses a heuristic to locate regions of high similarity. 

Alignments are therefore generated in a separate step using SIM4 (http://globin.cse.psu.edu; 

Florea et al., 1998). SIM4 has been written for the purpose of aligning a cDNA sequence to 

its genomic counterpart under the assumption that the only differences between the two 

sequences are (1) introns in the genomic sequnece and (2) sequencing errors in either 

sequence (Florea et al., 1998). Each EST is locally aligned to its associated gene, using SIM4, 

and the coordinates of the regions that align well are reported. Where necessary the matching 

regions are extended to ensure full coverage of the EST. These alignments are constructed 

into a multiple alignment table in which the known gene serves as a consensus sequence. 

 

c. Sorting 

Since IMAGene is intended as a tool for re-arraying (see above), its ability to pick the best 

clone is crucial. All clones within a cluster are sorted by preference; the highest one is 

considered the tentative candidate for a master array. The factors affecting the preference are: 

coverage of the coding area, reliability rating of the library and the length of the clone (i.e., 

clone coverage). The ranking of clones based on clone coverage has demonstrated that genes 

that average 1580 bases in length are represented in cDNA clones covering the entire coding 

region, while genes represented by partial length clones average 3063 bases in length 

(Cariaso et al., 1999). This suggests that the current methods for cDNA clone construction 

are insufficient to reliably produce clones long enough to fully represent many genes.  

 

d. Display 

A web-based user interface allows for a clone search based on the GenBank accession 

number of a gene or EST, an I.M.A.G.E cloneID or a sequence comparison (http://www-

bio.llnl.gov/imagene/bin/search). Initial queries return a table containing information on each 

cluster that matches the search criteria. Each row of the table of results contains the geneID 

for that cluster, a description of the gene and the number of full coding and partial length 

clones contained within the cluster. The geneID is linked to a detailed description that 

provides a tabular description of each clone on the top of the page and the alignments of each 



 25

clone or ESTs with the gene on the bottom. A master listing and a candidate_gold listing are 

generated for public use. The master listing contains the top ranked clone for each known 

gene cluster and the candidate_gold listing is a subset of the master list containing only 

clones that cover the coding region. 

 

Merck gene index  

In September 1994 Merck announced their plan to develop a collection of ESTs of human 

genes with associated cDNA clones as a publicly available resource. One year later, the 

Merck gene index project (MGIP) was initiated as a multicenter collaboration organised and 

managed by Merck where the sequence data would be generated and processed by the 

I.M.A.G.E consortium and the Genome Sequencing Center. The design of the MGIP 

incorporated the use of normalised cDNA libraries and sequencing clones from the 5' and 3' 

end (Williamson 1999). The use of normalised cDNA libraries provided equal representation 

of each expressed gene with the result that rare and common transcripts would be present at a 

similar frequency. These libraries reduced the sequencing redundancy and increased the 

efficiency as demonstated by Hillier at al (1996). Hiller and coworkers confirmed the 

reduction in redundancy of cDNA clones due to normalisation and provided evidence for the 

detection of rarely expressed genes ranging from 0-11.9% novel ESTs.   

 

Overview 

cDNA libraries are produced by M. Bento Soares and arrayed, through collaboration with the 

I.M.A.G.E laboratory of G. Lennon. The arrayed cDNA clones are sent to the Genome 

Sequence Center for single pass sequencing from each end and then submitted to dbEST. The 

original ABI sequence trace files for these ESTs are made available from 

http://genome.wustl.edu/est/est_search/ftp_guide.html. The computational biology and 

informatics laboratory at the University of Pennsylvania School of Medicine manages the 

LENS database that provides integration of data and monitors consistency. To date, the 

MGIP has contributed 79% of the human ESTs deposited into dbEST.  

 

Merck generates and supports the Merck gene index (MGI) for use by in-house researchers. 

The MGI is a non-redundant set of clones and sequences, each representing a distinct gene, 

constructed from the 3' EST sequences present in dbEST. The construction of the index is 

iterative from all index-quality 3' ESTs. Poor quality sequences are eliminated and ESTs have 

to be at least 100 bases in length to be accepted. Each 3' EST is compared against the index 
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and if it is equivalent to an index entry then that EST is added to that index class. However, if 

the EST is novel with respect to the index then a new class is created where the 3' EST 

becomes the representative sequence. Incremental runs are preformed nightly on any new 

EST data and the results are loaded into a relational database that underlies the MGI browser.  

 

The MGI browser integrates data from different sources including LENS cDNA clones and 

ESTs, dbEST protein and non-EST nucleic acid similarity data, Washington University 

sequence chromatograms, Entrez sequence, Medline entries and UniGene gene clusters. 

 

1.4.3 Gene indices incorporating genome data 

National Center for Biotechnology and Information 

The National Center for Biotechnology and Information has started a project, RefSeq, aimed 

at providing a single set of reference sequences for each gene, with a consistent and curated 

annotation (http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html). There are currently three 

primary RefSeq projects namely; curated RefSeq 

(http://www.ncbi.nlm.nih.gov/LocusLink/build.html), genome annotation 

(http://www.ncbi.nlm.nih.gov/genome/guide/build.html) and complete genomes (no 

documentation available as of 8 June 2001). Predicted genes are represented in a minority of 

RefSeq records and only if strong inferences exist for gene structure and corresponding 

protein. RefSeq captures the redundancies and inconsistencies in the GenBank/EMBL/DDBJ 

repositories but it does not provide an index to genes for which there are very fragmented 

data such as a few ESTs. 

 

AllGenes 

The AllGenes website (http://www.allgenes.org) provides access to an integrated database of 

every identified and predicted human and mouse gene. The AllGenes effort focuses on 

integrating various types of data including EST sequences, genomic sequence, expression 

data and functional annotation. The backbone to the AllGenes database is a relational 

database that uses controlled vocabularies and ontologies to ensure that biologically 

meaningful queries can be addressed (Stoeckert et al., 2001). The AllGenes database is built 

around a gene index comprising predicted human and mouse genes. The predicted genes are 

obtained from (1) the Database of Transcribed Sequences (DoTs), which represents clustered 

and assembled ESTs and mRNAs, and (2) genes predicted by running gene finders GRAIL-

EXP and GENSCAN on available human and mouse genomic sequences. 
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Swiss Institute of Bioinformatics 

The most recent attempt at generating a gene index has focused on the goal of obtaining "true 

mRNA 3' ends" as reported in a recent editorial (Jongeneel 2000; 

ftp://ftp.licr.org/pub/databases/tags). A small region proximal to the poly(A) is extracted from 

each of the ESTs and mapped to the genome data. These mapped locations provide the 

starting point from which transcripts can be reconstructed with a genome scaffold (Jongeneel 

2000). The uniqueness of each 3' tag as an index for each transcript is hampered by 

alternative polyadenylation (Gautheret et al., 1998; Beaudoing et al., 2000), which allows for 

more than one tag per transcript. The generation of a database of 3' tags that are extracted 

proximal to the poly(A) tails of ESTs require the use of trace files since many of the publicly 

available ESTs have had their poly(A) tails removed (http://genome.wustl.edu/est).  

 

1.4.4 The need for ESTs in the wake of genome data 

The interpretation of EST data in the context of genomic sequence provides added value to 

gene finding projects as it confirms the identification of exon/intron boundaries for plausible 

candidate genes (eg., Ensembl (http://www.enseml.org). In addition, mapped EST data 

provide immediate gene expression patterns for a defined chromosomal region. The mapping 

of processed EST data onto genomic sequence is being incorporated into the STACK project. 

The expression information gleaned from the EST libraries have been organised into a 

dictionary of physiological terms that allows the user to retrieve data relevant to a specific 

developmental or disease stage. A similar implementation has been incorporated into the 

database of transcribed sequences (http://www.allgenes.org). The STACK and AllGenes 

projects have developed their expression tissue vocabulary independently. The Allgenes 

database allows for the retrieval of map coordinates for ESTs positioned on the genome 

assemblies generated at the University of California Santa Cruz genome center 

(http://genome.ucsc.edu). The STACK project uses the genome assemblies from the Santa 

Cruz genome center and provides a genome mapping data and querying tool as part of the 

STACK clustering system.  

 

1.6 Utilising ESTs as a disease candidate gene discovery resource. 

A variety of protocols have incorporated the use of ESTs as a disease-candidate gene 

discovery resource. These strategies include (a) positional candidate gene approach (Levy-

Lahad et al., 1995b; Brown et al., 1998; Hey et al., 1998; Semple et al., 2000), (b) functional 
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candidate gene approach (Hwang et al., 1997; reviewed in Rezvani et al., 2000) and (c) in-

silico differential display (Ji et al., 1997; Schmitt et al., 1999; Bortoluzzi et al., 2000). 

 

1.6.1 Positional candidate gene approach 

The approaches used to identify disease genes generate a list of candidate genes, which have 

to be tested individually to see if there is evidence that they are associated with a disease in 

question (reviewed in Keating 1992; Putnam et al., 1995). Candidate gene approaches may be 

based on particular properties of the product of the candidate genes that are consistent with 

their involvement in pathogenesis. Confidence in a particular candidate disease gene is 

increased substantially if it can be shown to map to the same subchromosomal region as the 

disease gene. This approach is referred to as a positional candidate gene approach and has 

been used successfully in a number of disease gene studies including, the search for the 

Alzheimer's disease genes (Goate et al., 1991; Schellenberg et al., 1992; Sherrington et al., 

1995) and the hereditary nonpolyposis colon cancer gene (Wildrick and Boman 1988; Sarraf 

et al., 1999), Retinitis pigmentosa (Dryja et al., 1990; Sullivan et al., 1999) and Waardenburg 

syndrome type1 (Tassabehji et al., 1994). The positional candidate gene approach has 

become the choice for disease gene discovery because of the accelerated chromosomal 

mapping of genes and EST sequences (Schuler et al., 1996; Genome Consortium 2001). 

 

1.6.1.1 ESTs as mapping reagents 

The availability of a small amount of DNA sequence for a specific clone allows the synthesis 

of oligonucleotide primers, complementary to a short region of the DNA sequence, that can 

be used in the development of a PCR assay (Strachan and Read 1998). The site on the 

original genomic DNA from which the sequence was derived is described as a sequence 

tagged site (STS) (Olson et al., 1989). Mapping methodologies have centered around the use 

of STSs as unique landmarks across the genome (Olson et al., 1989). Wilcox et al (1991) 

demonstrated that single-pass sequences (ESTs) provide suitable templates for the design of 

gene-based STSs. Several reasons have been put forward for the use of 3' transcripts for the 

purpose of generating STSs (review Schuler 1997). For example, several mapping 

technologies incorporate the use of rodent material as the carrier of human genomic 

fragments. The use of rodent material could potentially show cross-reactivity with human 

STSs. However, the sequences near the 3' end of transcripts lie within untranslated regions 

and it has been demonstrated that such regions show less cross-species conservation than do 

coding regions (Makalowski et al., 1996).  
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An international consortium was established to develop STSs from ESTs for mapping studies 

(Schuler et al., 1996). In summary, a non-redundant set of 3' end sequences was selected from 

UniGene and distributed to participating laboratories where STSs were developed and 

mapped using primarily radiation hybrid (RH) techniques. The first report of the RH 

consortium provided map positions for 16000 genes (Schuler et al., 1996). Approximately 

1000 genetic markers from the Genethon map were included in the analysis to serve as a 

mapping framework and to allow gene positions to be related to genetic linkage information. 

The latest version of Genemap99 incorporates approximately 52,000 RH markers that serves 

as a resource for identification of candidate genes once a disease gene has been localized to a 

chromosomal position.  

 

1.6.1.2 Disease gene discovery 

Mapping of ESTs to genomic regions containing disease-linked genes can help to identify 

mutations in candidate genes that may lead to disease susceptibility. Examples of discoveries 

made through identity to EST data include a novel gene, presenilin-2, associated with 

Alzheimer's Disease (Rogaev et al., 1995), LRP5 and LRP6 associated with type 1 diabetes 

(Brown et al., 1998; Hey et al., 1998) and candidate genes for bipolar disorder (Semple et al., 

2000). 

 

1.6.1.2.1 Alzheimer's Disease 

Multiple loci were identified to be responsible for Alzheimers disease (AD) (Goate et al., 

1991; Schellenberg et al., 1992; Sherrington et al., 1995). The Volga-german kindreds 

represent a group of seven AD families that showed autosomal dominant inheritance (Bird et 

al., 1988). AD-related loci on chromosome 21 and 14 were excluded but recently these 

families showed linkage to chromosome 1 (Levy-Lahad et al., 1995a).  

 

A candidate gene for chromosome 1 AD locus (AD4) was identified with the aid of ESTs 

(Levy-Lahad et al., 1995b). YACs were used to clone the region as defined by linkage 

analysis. A total of 60 YACs were isolated and flanked by D1S229 and D1S103. Genes 

residing in this region were tested as candidates for the AD4 locus. In the same report, a 

candidate gene for alzheimer’s disease subtype 3 (AD3) was used to fish out an EST from 

dbEST namely T03796. T03796 was identified in the translated EST database and was 80.5% 

identical in amino acid sequence to S182 (AD3 candidate gene). The chromosome 1 map 
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position for T03796 was confirmed by using a radiation hybrid panel followed by its 

(T03796) localisation to a single YAC. Brain and fibroblast cDNA libraries were screened 

using T03796 as a probe. Clones of 2.3kb were obtained and sequencing identified a 448 

amino acid open reading frame (L43964) that showed 65% identity to S182. Affected people 

were screened for mutations in the entire coding region of this gene and resulted in the 

identification of an isoleucine substitution for an asparagine (N141I mutation). 

 

1.6.1.2.2 Type 1 diabetes 

Type 1 diabetes (insulin dependent diabetes mellitus, IDDM) is an autoimmune disease that 

develops as a consequence of the interaction of both genetic and environmental factors 

(Atkinson and Maclaren 1994). The genetic component of type 1 diabetes involves multiple 

genes (Tisch and McDevitt 1996; Todd and Farrall 1996 and Todd 1996) including the MHC 

locus on chromosome 6p21 (IDDM1) and the insulin gene in the IDDM2 locus on 

chromosome 11p15 (Bell et al., 1974; Bennett and Todd 1996; Tisch and McDevitt 1996 and 

Vyse and Todd 1996). The IDDM4 locus on chromosome 11q13 was one of 18 chromosomal 

regions that showed genetic linkage to type 1 diabetes and was identified by genome-wide 

scans of affected sib-pairs (Davies et al., 1994; Hashimoto et al., 1994). Independent studies 

confirmed the evidence for a susceptibility locus on chromosome 11q13 in a region that 

spanned 15 centimorgans (cM) (Field et al., 1994 and Luo et al., 1996). A portion of the 

IDDM4 locus was shown to be in linkage disequilibrium with the disease and this refined 

region was used as a target for high-throughput DNA sequence analysis. (Hey et al., 1998).  

 

A microsatellite marker (D11S1337) was used to screen a human BAC library resulting in the 

identification of a BAC clone (HBAC 14-1-15). The clone was shotgun sequenced and all 

fragments were used to retrieve matching ESTs from GenBank. ESTs were grouped into two 

UniGene clusters and one singleton EST (accession number F07016) not present in UniGene. 

Assembly of the shotgun sequences indicated that EST-F07016 was located between the two 

UniGene clusters. The observation that the two UniGene clusters showed similarity to the 

LDL-receptor family suggested that these clusters were part of the same gene. PCR primers 

were designed to the two UniGene clusters and EST F07016 and used to amplify products 

from human liver cDNA. This PCR strategy resulted in the isolation of 4.8kb of the low-

density lipoprotein receptor related protein 5 (LRP5) cDNA sequence. This sequence did not 

encode the entire gene because the complete open reading frame lacked the potential to 

encode a N-terminal signal peptide for protein export, a common property of the members of 
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the LDLR family (Herz et al., 1988).  

 

A mouse ortholog of LRP5 was isolated from a mouse liver cDNA library and provided the 

remaining 5' end sequence needed to encode the entire gene (Herz et al., 1988). LRP5 serves 

as a positional candidate for the IDDM4 locus and is supported by evidence from association 

studies using markers that map to the same cosmid containing a portion of the LRP5 gene. 

Additional genetic analysis is required to determine whether this gene is a diabetes 

susceptibility gene. For example, specific polymorphisms must be identified that are 

associated with the disease and have the potential to alter the level of LRP5 biological 

activity. 

 

1.6.1.2.3 Bipolar disorder 

Semple et al (2000) described the identification of transcripts and associated SNPs in an 

11cM region of 4p (D4S394-D4S403), that showed linkage to bipolar affective disorder 

(BPAD) (Blackwood et al., 1996; Kennedy and Macciardi, 1998). In their study, one hundred 

and ninety publicly available marker sequences that mapped within the D4S394-D4S403 

interval were retrieved from GeneMap99, Genethon and the collection of STS sequences at 

the Whitehead Institute and the Stanford Human Genome Center. These marker sequences 

were masked and then searched against Unigene, TIGR gene index, dbEST and STACK. The 

dbEST database and the consensus sequences of TIGR and STACK were searched using 

BLASTN (Altschul et al., 1997). UniGene was searched via a text query (GenBank 

EST/mRNA accessions) and the longest sequences from each UniGene cluster were searched 

using BLASTN to confirm the text-based search. BLAST searches of clustered EST 

databases were deemed significant at an arbitrary level (1e-100) and the resulting alignments 

were verified manually (Semple et al., 2000). 

 

Semple and colleagues (2000) identified a higher number of transcripts in UniGene. Contrary 

to the author's reasoning that UniGene has less strict clustering criteria, it has been 

demonstrated that STACK employs a loose clustering approach (Miller et al., 1999; Burke et 

al., 1999; Christoffels et al., 2001). The difference in transcript numbers could reflect the fact 

that the three databases were not in-synch with respect to the GenBank release. For each of 

the three databases under investigation, a small number of ESTs were assigned to clusters 

when the other two databases failed to do so. STACK represents the earliest GenBank release 

(relative to UniGene and TIGR's gene index) and therefore the absence of some EST 
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sequences could be explained. Examination of the sequences unique to STACK should 

highlight the quality of data accepted for clustering where the other two databases failed to 

cluster. The transcripts identified by the different indices are being followed up as candidates 

for bipolar disorder. 

 

1.6.2 Functional candidate gene approach 

A functional candidate gene approach can be described as method that selects candidate 

genes based on the particular properties of the product of a candidate gene that is consistent 

with its involvement in pathogenesis. This approach has been used to search for apoptosis-

related genes expressed in cardiac development and disease (Hwang et al., 1997; reviewed in 

Rezvani et al., 2000). 

 

1.6.2.1 Apoptosis-related genes expressed in cadiovascular development and disease 

Apoptosis (programmed cell death) is an important process, which in conjunction with cell 

proliferation, maintains cell number homeostasis. Recently, apoptosis has been suspected as a 

significant contributor to both disease and normal development of the cardiovascular system 

(Colucci 1996; Narula et al., 1996 and Olivetti et al., 1997). Identifying key genes that are 

involved in the regulation of apoptosis in the cardiovascular system serves as a basis for 

understanding how cardiac development is modulated (reviewed in Rezvani et al., 2000). The 

search for these apoptosis regulatory genes was undertaken with large-scale sequencing of 

ESTs from cardiovascular cDNA libraries (Hwang et al., 1997). In excess of 5000 genes from 

the cardiovascular system were characterised further as either effectors, suppressors or 

intermediate regulators of apoptosis depending on the functional classifications that are 

described in the literature. Examples of apoptotic regulators include (a) the interleukin-

converting enzyme (ICE) family and (b) the Bcl-2 family. 

 

a. Interleukin-converting enzyme (ICE) family 

Two death effector genes namely ced-3 and ced-4 were discovered in C. elegans and 

provided the basis for an understanding of apoptosis in higher organisms. Recently caspases 

have been found to play an important role in regulating apoptosis in the cardiovascular 

system particularly in vascular smooth muscle cells (Horiuchi et al., 1999) and cardiac cells 

(Loppnow et al., 1998). The ced-3 protein was found to be homologous to the mammalian 

cystein protease, interleukin-1beta-converting enzyme (ICE), that is considered as a prototype 

of the caspase family of proteins. There are at least 14 known members of this family in 
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human (Davis and Wells 1999), and they can be inhibited to block apoptosis (Fraser et al., 

1996). Caspase proforms are proteolytically cleaved to generate activated forms of the 

enzyme. Two members of the ICE family, Ich-1L and Ich-1S, have been uncovered through 

random sequencing of a heart cDNA library ( Hwang et al., 1997). Ich-1L is a gene encoding 

a 435 amino acid protein that induces programmed cell death and Ich-1S is a truncated 

version of Ich-1L that suppresses apoptosis when it is overexpressed (Wang et al., 1994). 

These two genes might provide a link in the future between apoptosis regulation and cardiac 

development.  

 

b. Bcl-2 family 

A number of reports have been published indicating the crucial roles of Bcl-2 and its family 

members in the progression of apoptosis during ischemia (Park et al., 1996; Saikumar et al., 

1998; von Harsdorf et al., 1999; Maulik et al., 1999). A homologue to the death suppressor 

gene ced-9, Bcl-2, was identified in mammals and was found to be required for cell survival 

in human B-cell lymphoma (i.e., anti-apoptotic activity). Bcl-2 is able to form homodimers 

and heterodimers, a trait that is significant for its role in controlling apoptosis (Kroemer 

1997; MacLellan and Schneider 1997). Rezvani et al. (2000) identified several of the Bcl-2 

family members through EST sequencing of heart cDNA libraries. In addition, genes 

including Bcl-x, Bcl-2 binding components, BID and Bak were identified (Rezvani et al., 

2000b). Bak and Bcl-x have been implicated in cytokine-induced cardiac myocyte apoptosis 

(Ing et al., 1999) whereas BID binds to other protein family members to induce apoptosis 

(Wang et al., 1998). 

 

A number of apoptosis-related genes were identified through heart cDNA library sequencing 

as expressed in the cardiovascular system that were previously only characterised in other 

tissues or organisms. These include MA-3 a novel mouse gene (Shibahara et al., 1995), the 

Nip family of proteins that are involved in cell survival (Boyd et al., 1994) and DAD-1 that 

was shown to be an apoptotic suppressor in hamster cell lines (Nakashima et al., 1993). In 

addition, DAD-1 was found to be more highly expressed in cardiac hypertrophy compared to 

normal adult heart and therefore may play a role in controlling cell numbers during disease 

(Rezvani et al., 2000b). Understanding the involvement of novel cardiac cell modulators is 

important considering that in humans, myocytes irreversibly exit the cell cycle just before 

birth. Cardiomyocytes are particularly prone to abnormal imbalances in cell numbers, such as 

the case of myocardial infarction, where prolonged deprivation of oxygen leads to local 
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necrosis of cardiomyocytes. This is damaging to the organism because of the inability of 

cardiomyocytes to re-enter a proliferating mitotic cell cycle thus preventing replacement of 

lost tissue. The damage is patched up with non-contractile fibroblasts that form fibrous scar 

tissue.   

 

1.6.3 In-silico differential display 

Gene expression is a process composed of several different steps. First, in the nucleus, 

genomic DNA serves as a template for RNA synthesis during transcription. The product of 

this process is various kinds of RNA, synthesised by RNA polymerases. The messenger 

between DNA in the nucleus and protein synthesis in the cytoplasm is messenger RNA 

(mRNA), a short-lived RNA that is easily degraded by nucleases. Proteins are then 

synthesised in a translation process according to instructions given by the mRNAs (Rawn 

1989). Gene expression level is tightly regulated at several different levels, such as 

transcription, mRNA processing, transport and stability, translation and post-translational 

modification (Lewin 1997). However, transcription is the major control point for many genes 

(Lewin 1997) and therefore measuring the amount of a mRNA transcript is a way of 

quantifying the expression of the gene. 

 

Gene expression levels can be measured for one gene at a time, using traditional methods 

such as Northern Blots (Alwine et al., 1977) or nuclease protection assays (Berk and Sharp 

1977). However, large-scale EST sequencing provides for example, complete mRNA 

populations to compare gene expression patterns (or profiles), for multiple genes, between 

two tissues showing different disease states. Using the example of two tissues, ESTs can be 

used to create transcript expression profiles for the two tissue libraries. The frequencies at 

which the transcripts appear in different libraries can be re-calculated into expression patterns 

since they reflect the actual composition of a mRNA pool. If large amounts of transcripts are 

sequenced, the frequencies become statistically significant (Okubo et al., 1992). However, 

recent reports have shown that small amounts of ESTs are sufficient to provide statistically 

significant results (Hwang et al., 1997; Bortoluzzi et al., 2000). In this section, I review 

examples of (i) in-silico based studies that identify candidate differentially expressed genes in 

breast (Ji et al., 1997; Schmitt et al., 1999), prostate (Vasmatzis et al., 1998), heart (Reszvani 

et al., 2000) and muscle (Bortoluzzi et al., 2000) and (ii) the use of co-ordinated expression of 

genes as a method of assigning functions to novel genes.  
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1.6.3.1 Breast cDNA libraries 

A breast cancer specific candidate gene 1 (BSCG1) was identified as a molecular marker for 

infiltrating breast carcinoma by comparing a normal breast library with that of a disease 

library and subsequent sequencing of specific clones (Ji et al., 1997). ESTs were generated 

from the breast cancer library and a matching normal breast library. Overlapping ESTs were 

merged into one group and the list of non-overlapping EST groups were compared for the 

quantity of EST members originating from the normal and cancer breast libraries. Cathepsin 

D was sampled by more ESTs from the breast cancer library than the normal breast library. 

This suggested a role for Cathepsin D in breast cancer metastasis. This finding supported 

previous studies that suggested a role for Cathepsin D in breast cancer (Rochefort et al., 

1987; Capony et al., 1990; Cavailles et al., 1991). 

 

The average size of EST libraries ranges from between 1000 and 10000 entries and therefore 

an EST library cannot be regarded as faithfully representing the gene expression pattern of a 

tissue (Vingron and Hoheisel 1999). It has been estimated that between 10000 and 30000 

different genes are expressed in a given cell with an average of about 300000 mRNA 

molecules per cell (Bishop et al., 1974; Axel et al., 1976). However, the availability of EST 

libraries derived from the same type and state of tissue led to the pooling of equivalent EST 

libraries. Schmitt et al (1999) used such pools of libraries with the assumption that EST 

numbers that reach tens of thousands for a library pool would be a proportional representation 

of all abundant and moderately expressed genes. Schmitt and coworkers (1999) carried out 

mRNA analysis on non-normalised libraries and provided a procedure for mining of EST 

libraries for differentially expressed genes. In summary, for a given tissue a pool of ESTs 

from both tumour and normal tissues was created and a minimum of 10000 ESTs was 

required for each pool. A non-redundant set of ESTs was generated for the EST library under 

investigation using BLAST. These sequences were searched against dbEST, GenBank and 

two propriety databases to try to extend the length of the sequences. The non-redundant set of 

sequences retrieved from GenBank for a specific library (eg., NCI_CGAP_Br1.1) was 

compared against the EST pool of a normal and disease state for the same tissue (eg., ESTs 

derived from breast tissue).  

 

The relative abundance of a gene was defined by Schmitt et al (1999) as the ratio of the 

number of homologous ESTs to the total number of ESTs in the corresponding pool. Relative 

abundance figures were determined for normal and tumour pools separately, and the ratio of 
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the normal and tumour relative abundances was used as a measure for the down or up-

regulation of a gene in tumour tissue with respect to normal tissue. Fisher's exact test (see 

section 2.3.6 for a description) was used to assess the distribution of hits between the normal 

and affected tissues observed in a BLAST search.  

 

 1.6.3.2 Prostate cDNA libraries 

Vasmatzis and coworkers (1998) used a crude assembly system employing BLAST to 

identify prostate specific ESTs. Fifteen prostate-specific ESTs were identified that had no 

database homologs. Seven of fifteen prostate-specific ESTs were screened by northern blot 

hybridisation, of which three ESTs showed no hyridisation signal to any tissue other than 

prostate.  

 

There are problems associated with identifying tissue-specific genes using EST data. Firstly, 

The EST database is incomplete and there is a possibility that there is not enough sampling of 

a specific gene transcript to identify other tissue locations. Secondly, tissue-specific ESTs 

could represent false positives. An EST might not match other ESTs from different tissues 

but they could all belong to the same gene. The probe sequence length might be too short to 

match the target sequence and this will give the impression of distinct genes. 

 

1.6.3.3 Heart cDNA libraries 

The generation of ESTs from human heart cDNA libraries has been used to characterise gene 

expression in various developmental and pathological states of the cardiovascular system 

(Liew 1993; Liew et al., 1994; Hwang et al., 1994; Hwang et al., 1995). Hwang et al (1997) 

reported on the analysis of 84904 ESTs from 13 cDNA libraries of the cardiovascular system. 

The entire cardiovascular data set could be divided into three classes, (i) ESTs with 

significant identity to known sequences in the non-redundant nucleotide and peptide 

databases (55%), (ii) ESTs that match other ESTs in dbEST but do not match any published 

gene sequences (33%) and (iii) ESTs that represent novel transcripts (12%). There were 

approximately 4575 previously identified genes in this data set. The relative level of 

expression for each gene identified in the EST data was calculated as the total number of 

ESTs that match a particular gene divided by the total number of ESTs matching all the genes 

in the data set. After assigning each gene and it corresponding ESTs to one of seven 

functional classes, expression patterns for each functional class were reported. For example, 

expression of cell motility genes in adult hypertrophic hearts was significantly diminished 
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compared to normal adult hearts, whereas expression of transcripts involved in cell defense 

was slightly increased in both hypertrophic heart libraries compared to other cardiac libraries. 

These expression patterns and other patterns documented in the same study verified previous 

work by Hwang et al. (1995), who established that fetal heart exhibited fewer transcripts 

representing contractile proteins and more transcripts representing signal transduction and 

cell regulatory proteins than adult heart.  

 

In-silico northern analysis was used to identify genes potentially over-expressed in cardiac 

hypertrophy compared with normal myocardium (Hwang et al., 1997). A small sample of 

ESTs was generated from each of two independent hypertrophic heart cDNA libraries (1089 

EST and 474 ESTs respectively). Potentially differentially expressed genes were grouped as 

strong, good and weak candidates based on Poisson probabilities (P-value < 0.05 for a strong 

differentially expressed candidate gene). Myoglobin was identified as strong candidate for 

differential expression in the hypertrophic heart. For example, myoglobin was sampled by 

five ESTs in a total of 34736 ESTs from normal adult and fetal heart cDNA libraries whereas 

seven myoglobin ESTs were present in 474 ESTs from a hypertrophic heart cDNA library. 

The expected number of observations of myoglobin in a set of 474 ESTs is (474 x (5/34736) 

= 0.068 ESTs). Using the expected number of observations for myoglobin, the Poisson 

probability of observing 7 or more ESTs in the hypertrophic heart cDNA library by chance 

alone was calculated as 1.29x1e-12. 

 

At least 10 genes out of 23 genes identified as strong candidates in the above experiment 

have previously been demonstrated to be involved or elevated in cardiac hypertrophy 

including atrial natriuretic factor (Buttrick et al., 1994; Poulos et al., 1996), brain natriuretic 

factor (Nakagawa et al., 1995), myosin light chain-2 (Doud et al., 1996), desmin (Collins et 

al., 1996; Watson et al., 1996) and superoxide dismutase (Kirshenbaum et al., 1995; Gupta 

and Singal 1989). The combined in-silico and experimental evidence suggest that a combined 

Poisson probability cutoff of P < 0.05 is appropriate for screening EST data sets with 

relatively low numbers and that this method has potential for genome-wide searching for 

novel genes involved in cardiovascular disorders. The application of this technique to ESTs 

without a parent mRNA match represents a problem because of the uncertainty whether two 

ESTs represent non-overlapping segments of the same gene. The use of a non-redundant gene 

index such as STACK that contains entries for clusters joined by their cloneIDs could help 

overcome the problem of non-overlapping ESTs from the same gene. A large number of 
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published disease genes were identified in the cardiovascular EST data set. To assist in the 

identification of novel cardiovascular genetic disorders, 1048 out of 22,623 ESTs were 

mapped to their chromosomal loci. These ESTs, if mapped to a documented disease locus, 

would serve as a candidate gene for that disorder.  

 

1.6.3.4 Adenomatous Polyposis Coli (APC) gene product in human cardiac development 

and disease 

Sequence analysis of over 50000 ESTs generated from 11 cDNA heart libraries revealed 

several cDNA clones significantly matching (E < 10-10) Adenomatous polyposis coli (APC) 

and its interacting protein, beta-catenin (Rezvani and Liew 2000). Digital nothern analysis 

indicated a differential expression of these genes during cardiac development and disease as 

they were tagged in different frequencies in fetal, adult and hypertrophic heart libraries. The 

frequency of gene expression was calculated as a percentage where the total number of ESTs 

representing a specific gene sampled from a heart library was divided by the total number of 

ESTs sampled from that heart library. Subsequent experimental evidence, using reverse 

transcriptase polymerase chain reaction analysis (RT-PCR), showed that APC was expressed 

at higher levels in adult heart compared with fetal heart in human and mouse while having no 

effect on the beta-catenin. This same effect of APC expression was observed in different 

developmental stages of a mouse heart. However, western blot analysis revealed higher levels 

of beta-catenin protein in a fetal and hypertrophic heart compared with adult heart. The up-

regulation of APC in adult heart suggest that APC plays a role in the cardiomyocytes 

withdrawal from the cell cycle. The protein analysis suggests that APC plays has a regulatory 

role on beta-catenin.  

 

1.6.3.5 Human skeletal muscle transcriptional profiles 

The Genexpress knowledge base represents the integration of expression, sequencing and 

mapping data with the goal of identifying positional and functional muscular disease 

candidate genes (Houlgatte et al., 1995; Auffray et al., 1995; 

http://idefix.upr420.vjf.cnrs.fr/IMAGE/Page_unique/welcome_muscles.html). The value of 

integrating sequence, map and expression information has been illustrated by the 

identification of a gene responsible for a form of limb-girdle muscular dystrophy through 

positional cloning and subsequent confirmation by functional candidate studies (Fougerousse 

et al., 1994; Chiannikulchai et al., 1995; Richard et al., 1995). Expression profiles of human 
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skeletal muscle involving less than 1000 genes have been produced with a combination of 

wet bench and in-silico aproaches (Pietu et al., 1996; Lanfranchi et al., 1996; Murano et al., 

1997; Bortoluzzi et al., 1998). Recently, an in-silico approach was applied to human skeletal 

muscle where each transcript was classified according to its level of expression (Bortoluzzi et 

al., 2000). The aim of this approach was to provide a method to describe the transcriptional 

profile of single human tissues using data extracted from UniGene (4080 transcripts). A 

number of assumptions were made by the authors (Bortoluzzi et al. 2000) including:  

(i) A redundancy of 1.3% was calculated for the 4080 UniGene clusters. The redundancy was 

based on the following calculation: 52 (1.3%) clusters contained 5’ ESTs only. Since these 5’ 

ESTs could refer to transcripts already identified by clusters containing 3’ ESTs (90% of the 

UniGene clusters), it was assumed that the 5’ ESTs (1.3%) represent the maximum 

redundancy in the data. 

(ii) The level of expression for each cluster was quantitatively estimated as the number of 

skeletal muscle ESTs corresponding to a cluster over the total number of skeletal muscle 

ESTs for all the clusters. The use of EST number per cluster (or gene) to quantify gene 

expression has been adopted by a number of tools that are aimed at detecting differences in 

gene expression activity including X-Profiler 

(http://ww.ncbi.nlm.nih.gov/ncicgap/cgapxsetup.cgi) and digital differential display 

(http://www.ncbi.nlm.nih.gov/cgi-bin/UniGene/ddd?ORG=Hs; Strausberg et al., 1997). 

Highly expressed genes were classified as clusters containing nine or more ESTs (i.e., >= 

0.0363% of the total ESTs). Moderately expressed genes were classified as clusters 

containing between three and nine ESTs, and weakly expressed genes were classified as 

clusters containing one or two ESTs. 

 

In summary, three non-normalised and non subtracted skeletal muscle cDNA libraries with 

the maximum assigned ESTs were extracted from UniGene and accounted for 4080 clusters. 

A set of 417 transcripts was identified as the skeletal muscle transcriptional profile and 

included 370 highly expressed skeletal muscle transcripts and 47 putatively skeletal muscle-

specific transcripts. The results were validated using 120 genes that were sampled in both the 

in-silico reconstructed transcriptional profile and the Rochester SAGE catalog 

(http://www.urmc.rochester.edu/smd/crc/Swindex.html; Welle et al., 1999). Additional 

validation for 13 of the 417 transcripts came from an independent study by Pietu et al. (1999), 

who reported the expression profiles of 910 genes expressed in skeletal muscle. These 

independent studies (Welle et al., 1999; Pietu et al., 1999) validated the detection of highly 
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expressed skeletal muscle genes by Bortoluzzi et al. (2000), illustrating the effectiveness the 

methodology in estimating the expression levels of highly expressed genes. Given that each 

tissue is characterised by a relatively small number of highly expressed genes (Bishop et al., 

1974; Axel et al., 1976), this approach might be applied to situations where only a small 

number of transcripts are available.  

 

1.6.3.6 Fisher's exact test 

Statistical methods which depend on the parameters of populations or probability 

distributions are referred to as parametric tests. Parametric tests includes t-test, ANOVA, 

Regression and Correlation. These tests are only meaningful for data that is sampled from a 

population with an underlying normal distribution or whose distribution can be rendered 

normal by mathematical transformation. A normal distribution, also referred to as a bell-

shaped distribution, describes a data set that is characterised by many independent random 

factors acting in an additive manner to create variability.  

 

Nonparametric methods require fewer assumptions about a population or probability 

distribution, i.e., neither the values obtained nor the population from which the sample was 

drawn need to have a normal distribution. A nonparametric test such as the Chi-squared test 

assumes that no single data point is zero and that at least 80% of the expected frequencies are 

five or more. These assumptions cannot be guaranteed in EST sampling and therefore the 

fisher's exact test is preferred. Fisher's exact test is a non-parameteric test used for testing the 

hypothesis that there is a statistically significant difference between two groups. It has the 

advantage that it does not make any approximations and so is suitable for small sample sizes.  

 

Fisher's exact test is used to evaluate representations of yes/no outcomes obtained from two 

disjoint samples. The outcome of the 'Fisher's exact test' is a significance value, P, ranging 

between 0 and 1 that describes the likelihood of the null hypothesis being true: "The 

frequency of an event is the same in either of two samples" or as applied to differential 

expression: "The frequency of a gene is the same in normal and disease tissue”. A P value 

closer to 0 is indicative of significant differential expression of the gene under consideration. 

However, Fisher's exact test is a conservative test as compared to other statistical tests (Audic 

and Claverie 1997) and it has been suggested that the selection of genes for further 

investigation based upon the criterion of small P values can be considered restrictive (Schmitt 

et al., 1999). 
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1.6.4 Coordinated gene expression 

A cDNA microarray approach provide an efficient technique to monitor expression levels of 

many different genes simultaneously (Welsh et al., 1992). The microarray approach is not 

based on sequencing, but on hybridisation between nucleic acids. Large-scale expression 

data, generated by hybridisation of DNA to microarrays, is potentially a rich source of 

information on gene function and regulation. However, the use of EST data to monitor gene 

expression patterns or profiles has been demonstrated (Ewing et al., 1999). For example, by 

clustering genes according to their expression patterns (profiles), groups of genes involved in 

the same pathways or sharing common regulatory mechanisms may be identified (reviewd in 

Claverie 1999). Using publically available ESTs, Ewing et al. (1999) generated 'digital 

expression profiles" by counting the frequency of tags for different genes sequenced from 

different cDNA libraries. A statistical test was used to associate genes having similar 

expression profiles. This approach was extended to using larger EST samples from UniGene 

projects (mouse, man and rat ESTs) where Ewing and Claverie (2000) showed that genes 

clustered on the basis of expression profile may represent genes implicated in similar 

pathways or coding for different subunits of multi-component enzyme complexes. 

 

Expression profile clustering in the context of disease candidate gene selection could be applied to 

unraveling regulatory pathways that are affected by unannotated disease candidate genes. In 

particular, uncharacterized genes have been identified for their involvement in sudden cardiac death in 

a mouse model. Pathways implicated in sudden cardiac death could be identified by clustering the 

expression profiles of characterized genes with the novel mouse genes (Nguyên-Tran et al., 2000). 

 

1.7. Thesis rationale 

Unlike most gene indices, aimed at reconstructing the gene complement of the human 

genome (see chapter 1 section 1.4), the South African National Bioinformatics Institute 

(SANBI) has embarked on the development of the sequence alignment and consensus 

knowledgebase (STACK) database that focused on the detection and visualisation of 

transcript variation in the context of developmental and pathological states, using all publicly 

available ESTs. Preliminary work on the STACK project employed an approach of arbitrarily 

partitioning the EST data into tissue categories as a means of reducing the EST sequences to 

managable sizes for subsequent processing. The tissue partitioning provided the template 

material for the development of error-checking tools to analyse the information embedded in 
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the error-laden EST sequences. However, tissue partitioning increases redundancy in the 

sequence data because one gene can be expressed in multiple tissues, with the result that 

multiple tissue partitioned transcripts correspond to the same gene. Therefore, the sequence 

data represented by each tissue category had to be merged in order to obtain a comprehensive 

view of expressed transcript variation. 

 

This dissertation reports on the development of a human gene index where all EST sequences 

have been processed irrespective of tissue origins in order to provide the correct 

developmental and pathological context for investigating sequence variation. Furthermore, 

the availability of a human gene index was assessed as a disease candidate gene discovery 

resource. The development of a STACK human gene index as a disease gene discovery 

resource required (i) the ability to cope with the deluge of EST data in the public arena 

(1,198,607 ESTs GenBank 110, release 15th October 1998 and increasing) (ii) processing of 

all EST data through a pipeline that would generate consensus sequence transcripts from the 

fragmented EST data, (iii) validating the accuracy of the gene indices the ability to capture 

sequence variation, and (iv) an application of the human gene index to a disease gene 

discovery project to verify the utility of the STACK gene index as a disease gene discovery 

resource. In order to provide a comprehensive report of the above-mentioned considerations, 

the dissertation was organised into six chapters as follows: 

 

- Chapter One provides the background to the approaches taken to generate gene indices 

and the use of EST data for disease gene discovery. The approaches implemented in four 

gene index projects are outlined including the approach developed during the course of 

this thesis. 

 

- Chapters two, three, four and five are experimental chapters that are divided into five 

sections i.e., Introduction, Methods, Results, Discussion and References. Chapters two, 

three and four deals with different aspects of the generation of a human gene index. 

Chapter five explores the use of such a gene index for the identification of disease 

candidate genes. 

 

- Tools available at the start of this thesis were inadequate to deal with the large volume of 

EST data put into the public arena. Chapter Two describes the optimisation of an EST 

clustering tool, D2_CLUSTER, for clustering large EST data sets.  
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- Chapter Three focuses on the generation of a human gene index (Sequence tag 

alignment and consensus knowledgebase (STACK)). A pipeline is described that includes 

tissue partitioning of ESTs, subsequent cleaning, clustering, assembly analysis, consensus 

generation, integration of genetic markers and clone linking. 

 

- Chapter Four describes the accuracy of the STACK human gene index by comparing it 

to human chromosome 22. In addition, the ability to detect alternate splice events within 

the EST assemblies is illustrated. 

 

- Chapter Five explores an approach to disease gene candidate discovery using the 

STACK human gene index 

 

- The conclusions drawn from each aspect of this project are discussed at the end of the 

relevant chapters. Chapter Six provides a final comment and includes (i) future 

development prospects of the STACK gene index and (ii) future research prospects for 

the identification of the PFHB1 gene. 
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Summary: 

Maximum value is extracted from fragmented EST resources by constructing gene 

indices, where all transcripts are partitioned into index classes such that 

transcripts are put into the same index class if they represent the same gene or 

gene isoform. EST projects implement different EST clustering methodologies to 

partition ESTs into index classes. The use of a non-alignment based algorithm, 

such as D2_CLUSTER is ideal for clustering ESTs that are known to contain 

sequence errors. However, the millions of ESTs in the EST databases present a 

formidable task for EST clustering tools such as D2_CLUSTER, because the 

computational cost of clustering a set of sequences is quadratic in the number of 

sequences. Therefore, the ability to cluster all human ESTs, in view of generating 

a STACK human gene index, required new algorithms or high performance 

machines. In the absence of new EST algorithms to cope with the deluge of EST 

data (at the time), we embarked on an approach to utilise high performance 

multiple processor machines to accelerate D2_CLUSTER processing. In this 

chapter, I report on the optimisation for porting D2_CLUSTER to the Origin2000 

architecture and the modifications made to the code in order to accelerate EST 

clustering on multiple processors. Test data sets ranging from 4000-100000 

sequences were used to bench-mark D2_CLUSTER performance on a multi-

processor Origin2000. A restart capability was added to D2_CLUSTER that 

allowed the clustering procedure to be restarted at the same point at which it was 

interrupted. The implementation of restart functionality was enhanced by the 

ability to break the work into a number of pieces such that each piece processes 

more sequences and each successive piece uses less time. The ability to cluster 

large data sets was enhanced by replicating the database onto each of 128 

processors.  

A test data set of 15876 sequences demonstrated a reduction in time from 1000 

CPU seconds to 800 CPU seconds on a 16 CPU Origin2000. D2_CLUSTER was 

used to cluster 490293 sequences on 128 CPU R12000 300 MHZ Origin2000 in 31 

hours. The successful porting of D2_CLUSTER to the Origin2000 put the 

generation of a STACK human gene index into the realm of feasibility. 
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2.1 Introduction 

D2_CLUSTER uses a word multiplicity comparison method that does not rely on alignment 

to derive a distance measure (referred to as the d2 score in this chapter) between two 

sequences (Torney et al., 1990; Burke et al., 1999). Instead, D2_CLUSTER utilises an 

agglomerative algorithm where each sequence begins in its own cluster and the final 

clustering is constructed through a series of mergers that have been described in terms of 

minimal linkage by Burke et al (1999)(see chapter1 section 1.4.1.3b). Briefly minimal 

linkage (also referred to as transitive closure) refers to the property that two sequences (A and 

B) are in the same cluster even if they share no similarity but there exists a sequence C with 

enough similarity to both A and B. The d2 score (i.e., measurement of similarity) between 

two sequences is calculated based on word matching within a window, together with a 

measure of the multiplicity of that word within a window. Therefore, the results of 

comparison are derived directly from the comparison of word composition (word identity and 

multiplicity) of sequence windows where very high similarities are detected (i.e., above 96% 

identity within a window as defined in Miller et al. (1999)).  

 

The use of a non-alignment based algorithm, such as D2_CLUSTER is ideal for clustering 

ESTs that are known to contain sequence errors. However, the millions of ESTs in the EST 

databases present a formidable task for EST clustering tools such as D2_CLUSTER, because 

the computational cost of clustering a set of sequences is quadratic in the number of 

sequences and this quadratic cost arises from the need to compute the d2 score for all pairs of 

sequences in the database and then merge the results into a growing set of clusters.  

 

In order to reduce the computational cost of clustering large EST datasets in the initial 

versions of STACK production, input sequences for D2_CLUSTER processing were reduced 

in size based on arbitrary tissue partitioning (Miller et al., 1999). These “tissue bins” 

represented managable data sizes (maximum of 60000 EST sequences) for clustering on the 

MasPar MP 22-16 SIMD architecture. However, the MasPar implementation of 

D2_CLUSTER failed to meet the demands of an exponentially increasing EST database 

(Benson et al., 1999), as 100000 ESTs required six days of processing time on 16000 SIMD 

processors. The human division of dbEST (GenBank 110 release) was approaching 1.3 

million ESTs, at that time, and the ability to cluster all human ESTs in view of generating a 

STACK human gene index required new algorithms or high performance machines.  
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In the absence of new EST algorithms to cope with the deluge of EST data, we embarked on 

an approach to utilise high performance multiple processor machines to accelerate 

D2_CLUSTER processing. A United States Department of Energy grant (DE-FCO3-

95ER62062) was successfully obtained to develop clustering on multiple processor machines 

at the National Center for Super Computing Applications (NCSA). D2_CLUSTER had 

undergone initial parallelisation (Yael Weinbach, SGI, pers comm.) but had not been 

exhaustively tested on an Origin2000. Therefore, we set out to cluster sequence sets ranging 

from 4,000 to 100,000 sequences using D2_CLUSTER on multiple processors on an 

Origin2000 in order to benchmark D2_CLUSTER performance with a view of clustering 

sequences in excess of 500000 sequences on 128 processors. The development of a high 

performance shared memory parallel (SMP) model for D2_CLUSTER required: 

1. hardware configuration tuning 

The high performance NCSA Origin2000 machines are modified weekly with respect to 

hardware configuration including total memory, CPU availability and programming 

language-specific compilers. These factors need to be taken into account while optimising 

D2_CLUSTER’s parallel performance. 

 

2. isolating parts of the D2_CLUSTER code for parallelisation 

Sections of the D2_CLUSTER code that require little processing time will not benefit from 

parallel processing and therefore only parts of the code that are computationally expensive 

needs to be parallelised. 

 

3. memory management 

ESTs have been the main focus for the application of D2_CLUSTER. However, mRNA 

sequences are becoming readily available and their increased length comapred to ESTs 

requires additional computer memory for clustering purposes. Therefore, the parallel version 

of D2_CLUSTER needs to cope with additional memory demands placed on it. 

 

4. Verification (i.e., verifying consistent results between serial and parallel clustering 

using D2_CLUSTER) 

The parallel version of D2_CLUSTER has to produce consistent results for clustering when 

compared to EST clusters generated by a serial run of D2_CLUSTER. Any conflicting results 

need to be analysed in order to understand how the code is behaving. 
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2.2 D2_CLUSTER program 

The three steps involved in clustering sequence data using D2_CLUSTER are:  

(1) Preprocessing of the input data set with a program called enc_db that generates a file of 

compressed sequence data and an index file giving the start position of every sequence in the 

compressed file. 

(2) Clustering the input data using D2_CLUSTER. D2_CLUSTER saves all relationships 

between clustered sequences in a five-column matrix that is stored in a text file called 

"CLUSTER_TABLE" (see Appendix 1.6 for a description)  

(3) interpretation of the CLUSTER_TABLE by a program, post_proc, in which each cluster 

of ESTs is transformed into a FASTA file of sequences. 

 

2.2.1 D2_CLUSTER algorithm description 

A description of D2_CLUSTER has been given in the context of its implementation in the 

STACK database as an EST clustering tool (chapter one section 1.4.1.3b). However, a 

description of the D2_CLUSTER algorithm is provided below to place the D2_CLUSTER 

optimisation in its proper context. 

 

D2_CLUSTER comprises different blocks of code or routines that perform a specific 

function. The “bin2” routine converts each sequence to an array of “word scores” where 

“word scores” refer to the occurrence of all words (length = 6) in a sequence. The 

“compare2” routine then proceeds to compare all sequences to each other by comparing the 

array of word scores for each pair of sequences to calculate a d2 score utilising a window of 

WINDOW_SIZE length (WINDOW_SIZE = 150bp) (Figure 2.2 line5). For example, if the 

database contains 5 sequences then for I=1,the iterations occur over J=2 through J=5, so that 

each of the four sequences (2-5) are compared with the first sequence (I=1) (Figure 2.2 lines 

4-11). When I=2, then the iterations occur over J=3 through J=5, and each of the three 

sequences are compared with the second sequence (I=2) etc. The loop is decremented each 

time (J> I) so that a sequence is never compared to itself. This comparison results in sequence 

combinations: 1-2,1-3,1-4,1-5,2-3,2-4,2-5,3-4,3-5,4-5. The sequence windows of identical 

length can be visualised as a square matrix where an "x" represents the comparisons (Figure 

2.1). All sequence pairs with a d2 score above a theshold value are passed to the MERGE 

function (Figure 2.2, line6-8). Therefore the decision as to which sequences are identical is 

made prior to arriving at the MERGE function. The MERGE function sees sequences of (I,J) 
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pairs and assigns sequence J to the cluster that represents sequence I or vice versa (figure 2.2 

line7-8). The order of these (I,J) pairs varies depending on the number of processors being 

used. The MERGE function updates the variables that hold the sequence relationships such as 

the variables captured in the CLUSTER_TABLE (ie., LINK, MEMB and ORIENT variables, 

see Appendix I).  

 

 1 2 3 4 5 
1 x x    x x 
2  x    x x 
3      x x 
4    x 
5     

 
Figure 2.1 Square matrix indicating sequence windows of identical length. The “x” represets 
the comparison between two sequences. A sequence is never compared to itself. 
 
2.3 Glossary of terms 

A list of definitions is provided below that describes the Origin2000 hardware and software 

environment at NCSA. All terms are defined by the free online dictionary of computing 

(http://foldoc.doc.ic.ac.uk/foldoc/index.html) unless otherwise stated. 

 

2.3.1 Mass storage system (mss) (http://archive.ncsa.uiuc.edu/SCD)  

The UniTree system is a data storage system for NCSA users and comprises a single node 

Origin2000 server. The server contains eight 250MHz R10000 processors with 8Gb of 

memory. In addition, 18 tape drives provides 2 terabytes of disk space. Access to the UniTree 

system is only via ftp.  

 

2.3.2 Compiler 

A program that converts another program from some programming language (source) to 

machine language (i.e., representation of a computer program which is actually read and 

interpreted by the computer.  

 

2.3.3 MIPSpro Compilers 

(http://www.sgi.com/developers/devtools/languages/mipspro.html) 

The MIPSpro compilers represent parallelised compilers from SGI and support C, C++ and 

Fortran 77/90 prorgamming languages. The MIPSpro compilers carry out high-level and 
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architecture-specific optimisations to automatically improve the performance of a wide range 

of applications. Optimisation is achieved through the performance-orientated features in the 

MIPS microprocessors such as high-speed calling conventions and 32 -bit and 64-bit floating-

point registers.  

 

2.3.4 Modules (http://www.mcsr.olemiss.edu/cgi-bin/man-cgi?mmci+5) 

Modules control the environment used to access software on the Origin2000 machines.The 

use of modules allows the user greater control over which programs and what versions of 

those programs are available for use. Modules works by bundling all the setup routines for a 

program into a single "modulefile". These modulefiles can be loaded or unloaded through a 

"module" command. For example, the MIPSpro compilers are loaded by the MIPSpro 

modules. Since different modules exist for various releases of the compilers including 

MIPSpro 7.2.1.3 and MIPSpro 7.3, a user can change the version of the MIPSpro compiler by 

loading the specific modulefile. Modulefiles are usually loaded  by specifying the modulefile 

in the ".cshrc" file: a file that controls a user's unix environment. 

 

2.3.5 Policy modules 

The ability of applications to control memory management becomes an essential feature in 

multiprocessor system in order to maximise code performance. A policy module contains 

methods used to handle operations pertaining to memory management. For example, "initial 

memory allocation" is an operation that is handled by the "placement policy module" that 

determines what memory to use when memory is being allocated. Policy modules are created 

using a built-in function, policy_set_t, and a reference to the newly created policy module is 

returned using the "pm_create” routine. The "pm_create" routine returns a negative number 

when an error has occured in the policy module creation step.  

 

2.3.6 Routine 

A sequence of instructions for performing a particular task.  

 

2.3.7 batch processing 

A system that takes a set of commands or jobs, executes them and returns the results, all 

without human intervention. This contrasts with an interactive system where the user's 

commands and the computer's responses are interleaved during a single run. 
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2.3.8 LSBATCH 

A load sharing system that provides distributed batch job scheduling services. 

 

2.3.9 stack 

A data structure for storing items which are to be accessed in “last-in first-out” order. The 

operations on a stack are to create a new stack, to add a new item onto the top of a stack and 

to remove the top item off. Errors occur when an attempt is made to remove items from an 

empty stack or add items to a stack that has no more room. A stack is used to store subroutine 

arguments and return calls at the machine code level. The user defines an area of memory for 

use as a stack. 

 
2.4 D2_CLUSTER and the hardware environment optimisation 

The human division of dbEST (GenBank release 110) was extracted and partitioned into 

"tissue-bins" using the protocol described in chapter one section 1.4.1.3a. All the sequence 

data was stored on a mass storage system (mss) (see section 2.3.1) at NCSA and transferred 

to a computer named modi4 (64 CPU Origin2000, 195Mhz) when needed. The Origin2000 

machines at NCSA operate on a batch submission process (see section 2.3.7) that had 

undergone modification during our usage of modi4. This new environment provided initial 

problems for our development work as we had to benchmark the parameters needed to run 

our clustering on multiple processors. D2_CLUSTER was used successfully to benchmark 

clustering of sequences ranging from 15,000-56,000 on 3 processors (Table 2.1). However, 

errors were encountered when D2_CLUSTER was used to cluster data sets larger than 56,000 

sequences. The errors were related to (a) the hardware configuration and (b) the 

D2_CLUSTER code. 
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Line1 Start program 
line2  Read in database of sequences into memory 
line3  loop over sequence I 
line4   loop over sequence J > I 
line5    compute d2(I, J) 
line6    if d2(I,J) < threshold 
line7     merge J into I's cluster.tar   
line8     or vice versa 
line9    end if 
line10   end loop 
line11  end loop 
line12  write cluster membership to disk 
line13 end program 

Figure 2.2 Pseudo code for D2_CLUSTER. The line numbers are indicated at the far left. 

 

2.4.1 Hardware configuration errors 

2.4.1.1 Insufficient memory to grow stack 

On the assumption that a linear relationship exists between the size of the data and number of 

processors required, data sets ranging from 60,000 to 200,000 sequences would be clustered 

within 48 hours on 32 processors (extrapolated from Table 2.1). Attempts to cluster data sets 

in excess of 60,000 sequences using 32 CPUs failed due to insufficient memory to grow the 

stack. The "stack" refers to the portion of memory that is used for procedure calls and storage 

of temporary variables (see section 2.3.9). A detailed description of the errors causing the 

core dumps were located in "/var/adm/SYSLOG/". The use of 32 CPU exceeded the 

maximum memory (15GB) if no change was made to the stack parameter (i.e., 4GB x 32 

processors =128GB). The stack limit was reduced to 200MB (see appendix 1 for parameter 

usage) which translated to about 6.4GB for 32 CPU (200 x 32), well within the boundary of 

the 15GB limit. Two large sequence sets namely reproductive and gland were successfully 

clustered and the clustered data was transferred, using the file transfer protocol (ftp), to 

SANBI for further processing. 

 

2.4.1.2 Error message: "error:pm_create: Invalid argument" on one CPU 

The clustering code was transferred from the 48 CPU Origin2000 machine to 64CPU and 128 

CPU Origin2000 machines, named arctic and flurry respectively, in order to derive 

D2_CLUSTER benchmarks for a broaded range of CPUs. The first attempt at running 

D2_CLUSTER on arctic failed with an error message, "error:pm_create: Invalid argument". 

Attempts to reduce the stack limit (see section 2.3.9) on arctic failed to resolve the problem. 

Initially it was thought that there were problems with the default modules on the Origin2000 
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machines but addition of the latest MIPSpro module (section 2.3.4) did not correct the 

problem. The MIPSpro module ensures the loading of the correct MIPSpro compiler (see 

section 2.3.3) but since the latest MIPSpro compiler was installed on arctic, there was no 

need to load any MIPSpro module. Therefore, the module specification was removed from 

the user defined environment (.cshrc file) and the "pm_create" problem disappeared. Batch 

submission (see section 2.3.7 and 2.3.8) parameters are processed via a queueing system and 

once these parameters were optimised (Appendix I), it resulted in the successful clustering of 

a test data set of 24000 sequences using 22MB of memory on four processors within 26 

hours. 

 
2.4.1.3 SIGTTOU signal 

A signal is a way of telling a process that “something” has happened and this “something” 

needs to be delt with. A process can be defined as a UNIX abstraction that manages the 

memory, CPU and input/output resources for a specific program that has been executed. 

When a signal is delivered, one of two things happen: (1) a routine that handles this specific 

signal is called with the information about the context in which the signal was delivered or 

(2) a default action is taken on behalf of the process such as terminating the process (Nemeth 

E et al., 1995). SIGTTOU, represents one of more than 30 signals that are defined for a 

UNIX system. SIGTTOU signals are sent to a process that attempts to write information to 

disk without the necessary permissions. 

 

SIGTTOU errors were generated if the time limit for a batch submission was exceeded. The 

choice of queues for batch submission can be made by examining the output of the "qstat" 

command (Appendix 1). A 32 processor queue with 500MB memory constraint 

(cpu32_unl_500Mb) was used for sequence sets that had less than 80,000 sequences. The 

clustering of data sets containing greater than 80,000 sequences required clustering with 64 

processors in order to reduce the processing time. 

 

2.4.2 Restart module development  

Availability of 64 CPUs for clustering was restricted to a 48 hour session over a weekend. 

Clustering jobs were checkpointed (i.e., temporarily interrupted) if they were not completed 

within 48 hours. D2_CLUSTER processing could not be resumed after checkpointing. The 

loss of clustering information due to the interruption of a D2_CLUSTER run led to the 
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development of a version of D2_CLUSTER that was restartable , ie., the information for a 

D2_CLUSTER run would  be saved if the code was interrupted before completion.  

 
Information relating to a cluster's membership, after comparing two sequences, is saved in the 

MEMB, LINK, ORIENT and SEQ variables (Appendix 1.6). These variables only store data 

and all four variables are used by iterations over a specific loop (initialization loop; Figure 

2.2, line3-11), within compare.c (virt_start_pos). The capture of information within the 

initialisation loop would be sufficient to recover an interrupted clustering job. The "loop over 

sequence I" (Figure 2.2, line 5) was split up into a number of pieces so that each piece, once 

completed, would be written to the disk. This rationale was used to produce a version of 

D2_CLUSTER that was restartable. Two arguments were added to the program input namely, 

"number of pieces" and "restart flag" where "number of pieces" is the number of pieces to 

break the outer loop into, and "restart flag" that refers to the restart file that is written at the 

end of each loop (Figure 2.2). The use of "pieces" refers to the change introduced in the loop 

structure (illustrated in bold text) from: 

 
  for (virt_start_pos=0;virt_start_pos<num_seq;   
       virt_start_pos++){ 
      for (l=virt_start_pos+1; l < num_seq: l++){ 
                     compare sequences 
                                merge scores in cluster arrays 
      } 
  } 
 
 to  
 
 
  for (ipiece=0;ipiece < npieces; ipiece++) { 
     for (virt_start_pos=vstart;virt_start_pos<vend;   
          virt_start_pos++){ 
         for (l=virt_start_pos+1; l < num_seq: l++){ 
                        compare sequences 
                                 merge scores in cluster arrays 
         } 
     } 
            write restart file 
  } 
 
 
The contents of a "restart" file are the number of pieces, current piece, number of sequences, 

MEMB array, LINK array, ORIENT array and NEW array. Improvements to this code could 

include storage of the whole input state so that inconsistent restarts would not be possible. 

The ipiece loop starts at 0 and writes the information for that loop to RESTART.1. Therefore 

ipiece=1 writes RESTART.2 and ipiece=2 writes RESTART.1, with the result that if the last 
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ipiece done is odd, then RESTART.2 is the most recent restart file whereas if the last ipiece 

done is even, then RESTART.1 is the most recent restart file.  

 
2.4.3 D2_CLUSTER errors 

2.4.3.1 CLUSTER_TABLE inconsistencies 

Differences in the content of each CLUSTER_TABLE were observed when D2_CLUSTER 

was executed on different number of processors, i.e., cluster assignments varied with a 

change in the number of processors. A test data set of 2826 sequences was used to try and 

debug the code on more than 32 CPUs. The test data set was successfully clustered on 1, 2, 4, 

8, 16, 32, 44, 64, 80, 96, and 120 processors where the 120 processor clustering ran to 

completion within five minutes. The CLUSTER_TABLES for the use of more than 32 CPUs 

consistently showed differences from the 1 CPU job for the 2826 sequence set. For example, 

four ESTs were assigned to a cluster using 32 CPU, whereas the same four ESTs were 

partitioned into a two member cluster and two singletons. Another example shows that 15 

ESTs were assigned to one cluster when run on 32 CPU but three of the 15 ESTs were placed 

in a separate cluster when using 2 CPU. 

 

In order to determine the basis for this bug, the MERGE operation was isolated from the d2 

computation so that all the d2(I,J) scores were stored in an array before being presented to the 

MERGE operation. This rationale meant that the order of presentation of d2(I,J) pairs to the 

MERGE operation was independent of the order in which d2(I,J) was calculated. The results 

showed a consistent CLUSTER_TABLE regardless of the number of processors. The 

MERGE operation could be restricted to a single processor without affecting the parallel 

performance because the time needed to perform the MERGE operation was 0.1 

microseconds on a single processor compared to 99 microseconds for the d2 computation. 

The storage of d2 scores in an array meant that 500GB would be required for 1 million 

sequences. The memory cost was reduced by splitting the clustering into a number of 

"pieces" (Figure 2.2, line 4) as outlined in section 2.4.2. 

 

2.4.3.2 Segmentation faults in compare.c 

Segmentation faults and bus errors occurred because the compare routine was being executed 

beyond the length of a predefined hash query sequence array (query_arr) that indexes the 

word count array. In compare.c, there is a loop toward the end of the routine that is labeled as 

an initialization loop that ranges from Q_start to Q_start+Q_windowsize+n+1 (Figure 2.3). 
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The loop reads in an index from the set of words in the query sequence and then uses that 

index as an offset into the count2 and VISIT arrays. The original loop runs over the end of 

the query sequence words and then tries to initialize some random location. The segmentation 

faults would occur when executing the count2[pos] = MIN_FREQ statement (Figure 2.3) 

because "pos" was out of bounds, i.e., the summation was extending the prefined query_arr 

by 1. The actual error was very dependent on the size of the stackspace, the number of CPUs 

and the parameters in the header2.h as was expected  from an "array out of bounds" error. 

The maximum limit for the initialisation loop was changed to "Q_start + Q_windowsize" 

(figure 2.3) to compensate for violating the predefined hash query array (i.e., query_arr). The 

code was tested on 2,4,16,32 and 48 CPU and each CLUSTER_TABLE gave the same 

results. The consistent CLUSTER_TABLE on multiple CPU prompted the generation of the 

whole-body index1.0, that included clustering of 330000 sequences in 400 pieces on 128 

CPU (Table 2.2).  

 

2.4.3.3 Memory allocation management. 

A mRNA data set of 15000 sequences were downloaded from Baylor College of Medicine 

(ftp://ftp.hgsc.bcm.tmc.edu/pub/data/HTDB/HTDB_unique) and used as a test data set for 

clustering sequences in excess of 700 bases with D2_CLUSTER (average EST length of 700 

bases defined by Miller et al., 1999). The mRNA clustering failed due to insufficient memory 

and resulted in a stack_ptr is NULL”error. 

 

Memory is dynamically allocated in two places in D2_CLUSTER. The first is for a large 

array to hold the database in memory. Insufficient memory will lead to failure to print the 

message “nnnnn packed words read ...". Memory is also allocated for arrays used by each 

parallel thread. Each parallel thread uses three character arrays and two integer arrays to hold 

unpacked sequence data and word count data. In order to do this allocation, one needs to 

know how long the input sequences are. This was simplified by calculating the length of each 

sequence in the database and using the value for the longest sequence for the memory 

allocation in each parallel thread. Clearly, that is inefficient for a data set where the data 

includes a few long sequences and many short sequences. A data set was used where the 

longest sequence was 83,000 nucleotides in length and the majority of sequences were on 

average 2172 nucleotides long. Given the longest sequence length of 83000, each parallel 

thread is trying to allocate just under 1MB of memory for each sequence.  
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The mRNA data set required a lot of memory because of the 83000 nucleotide sequence. The 

memory estimate on 16 CPU for this case was 213 MB when a copy of the database was 

accessible from each CPU, but only 60 MB when one copy of the database was accessed by 

16 CPU at the same time. On 32 processors, the memory estimate essentially doubled for 

each case. D2_CLUSTER allocates six scratch arrays based on the maximum sequence 

length. Additional modifications (section 2.3.3) were added to the code that (a) prints the 

estimated memory usage at the start of a D2_CLUSTER run and (b) allows the decision of 

replicating the database on all processors, to be made on the command line.  

 

A "stack_ptr is NULL" error was corrected when the MAX_LIB_SEQ, MAX_QUERY_SIZE 

and TABLESIZE parameters were made irrelevant by making the variables dynamic and 

dependent on the real maximum sequence size in the database. One significant parameter that 

was left was MAX_DIM which is the maximum number of sequences in the database. This 

parameter could be made irrelevant too, but it would require reading the ".ind" file twice. 

 

Clustering the mRNA on 32 CPU exceeded the 500MB memory limit for the specific queue 

with "Unable to allocate db_private" error message. The mRNA data set was 10MB in size 

but the NQE batch submission system had miscalcuated the amount of memory needed by 

using the memory usage values (RSS value) from the "ps" command. The required memory 

was calculated to be 12GB (377MB x32 processors) whereas the true memory being used 

was 377MB in total. This problem was overcome by setting the memory requirement for each 

processor to 1GB and used a queue of unlimited memory (32_CPU_unlimited). 

 

 

  for (k=Q_start;k<Q_start+Q_windowsize+n+1;k++) { 
   pos = query_arr[k]; 
   count2[pos] = MIN_FREQ; 
   VISIT[pos] = 0; 
  } 
 
changed to: 
   
  for (k=Q_start;k<Q_start+Q_windowsize;k++) { 
   pos = query_arr[k]; 
   count2[pos] = MIN_FREQ; 
   VISIT[pos] = 0; 
  } 

Figure 2.3 Change made to the compare.c (initialization loop) to avoid having to over run the 

query_arr by 1 (bold text). 
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2.4.4 Speed Improvements in view of clustering 500,000 sequences 

As outlined in section 2.2, the sequence database is uncompressed and word values are 

calculated for each sequence every time the sequence is required for a d2 computation. While 

this is most efficient memory wise, redundant work is being done since the word values of a 

given sequence do not change. D2_CLUSTER was modified in order to remove the 

redundant work at the expense of using more memory. Four programs, namely version 1.1, 

1.2, 1.25 and 1.3 were generated while trying to change the way the program stores its 

sequences and the optimisation for each program was tested with the 15,876 sequence set on 

16 CPU (Table 2.3).  

 

Versions 1.25 and 1.3 should not have taken longer to complete its processing because 

theoretically they were doing fewer operations. For example, version 1.25 and 1.3 did require 

repeated unpacking of a compressed database each time a sequence was required. However, 

this observation could be attributed to a cache effect: The compressed database of sequences 

for version 1.2 (1.2MB) fits in the 4MB secondary cache of the Origin2000 whereas the 

5.0MB and 19MB databases of version 1.25 and 1.3 respectively do not fit into the secondary 

cache. The larger sizes of the databases for version 1.25 and 1.3 is due to the storage of 

uncompressed bases as characters (char). Assuming, that 120 CPU will be 7.2 times faster 

than 16 CPUs, version1.2 will need 1.1 microseconds per d2 calculation. An estimated 38 

hours on a 128 CPU Origin (R12K, 300 Mhz) would be required to cluster 500,000 

sequences using the formula t = (1.1 usecs)*n*(n-1)/2 where n is 500,000. 

 

Additional optimisations were incorporated into D2_CLUSTER (version 1.21) prior to 

carrying out the clustering of 470,293 sequences. The optimisations included; 

(a) Changes to the algorithm for breaking the work into pieces. 

(b) Printing a histogram of cluster sizes versus number of clusters 

(c) Replicating the database onto all the processors. 

 

(a) Changes to the algorithm for breaking the work into pieces.  

Since the j loop runs from i to N (figure 2.2 line 4; figure 2.4 lines 4-8), later pieces take less 

time if the pieces have a constant number of sequences. The algorithm was changed so that 

each successive piece does more sequences and at the same time each piece takes roughly the 
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same amount of time (see Table 2.5 for mathematical formula). A consequence of this was 

that the program set the number of pieces. 

 

(b) Printing a histogram of the clustering output 

The code outputs a distribution of number of clusters versus cluster size.  

 

(c) Replicating the database onto multiple processors. 

To improve scalability, a copy of the packed database was made available to each CPU. On 

16 CPU the database was accessed every 80 microseconds whereas on 128 CPU, the database 

was accessed every 8 microseconds. The increased memory usage had a negligible effect 

since the packed database was only 1.6 MB for the test data set of 15,876 sequences. 

However, for 1 million sequences with an average length of 600 bases, the packed database is 

150 MB in size. A routine was embedded in the code that will not replicate the database if the 

computer's memory was limiting (see Table 2.5 for memory calculation).  

 

Benchmarks were generated using the 15876 sequence data set on 128 CPU, R12000 300 

Mhz (Table 2.4). A reduction in time from 1000 seconds to 800 seconds on 16 CPU was 

observed when compared to the previous benchmark (Table 3 and 4). This increase in 

scalability was due to a copy of the database being accessed on all the processors. The above-

mentioned improvements marked the possibility of clustering 500,000 sequences. The 

modified D2_CLUSTER was used to cluster the STACKv2.3 tissue data sets on 126CPU 

(Table 2) to generate the whole-body index2.0. The D2_CLUSTER run was completed over 

74 pieces in 31 hours on 128 R12000 300Mhz CPU. The postclustering processing of the 

whole-body index is discussed in chapter 3. 

 

2.5 Future directions 

D2_CLUSTER reads in a database of sequences into memory as a compressed file that is 

created by "enc_db". Each sequence has to be uncompressed before the wordsizes are 

calculated. Once the d2 comparisons are completed, the sequences are compressed again with 

the result that each sequence is uncompressed multiple times. An improvement could be to 

calculate the wordsizes on the compressed database. Alternately, the step of uncompressing 

the database can be circumvented by reading in the sequences directly from the FASTA file.  
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Profiling tests run on D2_CLUSTER has demonstrated that the bulk of the computational 

time is spent in the compare routine (90%, Cofer H. pers. comm). Any significant speed 

improvements have to be focused on modifications to the code that calculates the d2 scores 

for all sequence pairs. 

 

 

Line 1 Read database of sequences 
Line 2 LOOP OVER PIECE K 
Line 3 #pragma parallel 
Line 4  LOOP OVER SEQUENCE I in PIECE K 
Line 5   LOOP OVER SEQUENCE J > I 
Line 6    COMPUTE d2 
Line 7   END LOOP OVER J 
Line 8  END LOOP OVER I 
Line 9 #pragma end parallel 
Line 10  LOOP OVER SEQUENCE I in PIECE K 
Line 11   LOOP OVER SEQUENCE J > I 
Line 12    IF (d2 > THRESHOLD) MERGE(J,I) 
Line 13   END LOOP OVER J 
Line 14  END LOOP OVER I 
Line 15  Write restart file 
Line 16 END LOOP OVER K 
Line 17 Write cluster membership 
Figure 2.4 The final structure of the shared memory parallel version of D2_CLUSTER 

 

 

Table 2.1 Memory usage to cluster sequences ranging from 15712 to 56141 sequences. 

Tissue type Number of 
sequences 

CPU time 
(hours) 

Max. Memory 
(megabytes) 

Max. Swap 
(megabytes) 

Processors 

Connective 15712 11 8 33 3 
      
Eye 24878 31.9 8 33 2 
      
Lung 25555 28.97 8 33 3 
      
Genomic 38424 63.12 8 33 3 
      
Gland 50710 295.5 8 33 2 
      
Heart 56141 131.88 8 33 3 
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Table 2.2 Benchmarks for clustering two large EST data sets 
Tissue Number of 

sequences 
Number of 
processors 

Stacksize 
(MB) 

TABLE_SIZE Time (hours) 

Whole-body 
index1.0 

330000 128 (R10000, 
195Mhz) 

32 200000 35 

Whole-body 
index2.0* 

470293 128 (R12000, 
300Mhz) 

  31 

*Average length of each EST was 379 bases. The longest sequence was 6741 bases and the shortest sequence 

was 50 bases in length. 

 

 

 

Table 2.3 Four versions of D2_CLUSTER tested with a lung data set (15,876 sequences) on 
16 CPU (Origin2000 R12000, 300Mhz processors). 
 
Version Description of d2 modification Time 

(seconds) 
Time per d2 
comparison 
(microseconds) 

1 Current program 1351.5 10.7 
1.1 Optimised compare.c 1211.9 9.6 
1.2 Optimised compare.c, unpack.c and 

bin.c 
981.8 7.8 

1.25 Optimised compare.c, unpack.c and 
bin.c; store uncompressed bases as 
char 

1145 9.1 

1.3 Optimised compare.c; store 
uncompressed word values as int; 
remove unpack() and bin() from loops; 
rewrite revcomp word value operation 

1025 8.1 

 

 

Table 2.4 Additional optimisations of D2_CLUSTER tested on 128 CPU, R12000, 300Mhz 

Origin2000. 

Number of processors Time (seconds) Speedup 
4 3106.42 4 
8 1586.13 7.84 

16 809.44 15.36 
32 422.1 29.44 
48 303.67 40.92 
64 230.45 53.92 
96 154.66 80.36 
126 123.5 100.61 
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Table 2.5 Formulas used in the optimisation of D2_CLUSTER 
Implementation Formula 
Calculate the number of pieces needed to 
complete a clustering run such that more 
sequences are processed with successive 
pieces and the time taken remains constant 

Ak = N(1-sqrt(P-k)/P) 
where P = number of pieces 
N= number of sequences 
The integral runs from Ak to Ak+1. 

Memory estimate at the start of 
D2_CLUSTER: 
(i) if the database is replicated then the 
memory estimate is the sum of (a) and (c). 
(ii) if the database is not replicated then the 
memory estimate is the sum of (b) and (c) . 

(a) memory_estimate = 
ncpus*(1.2+((float)(len_db+20*maxlen)/(1024.0*1024.0))) 
(b) memory_estimate = 
ncpus*(1.2+((float)(20*maxlen)/(1024.0*1024.0))) 
(c) memory_estimate +=  
10.0 + 20.0*num_seq/ (1024.0*1024.0)  
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Summary: 

Expressed sequence tags (ESTs) remain an important resource for gene discovery, 

mapping and genome annotation. Given that EST data is fragmented and error-

prone, a number of groups have attempted to add value to EST data by generating 

indices where ESTs are placed into categories such that each category represents a 

gene. Gene index formation through EST clustering is hindered by transcript 

variation, sequence and annotation errors, paralogous expressed genes and 

artifactual matches. The South African National Bioinformatics Institute has 

initiated the sequence tag alignment and consensus knowledgebase (STACK) 

aimed at detecting and visualising expressed transcript diversity in the context of 

developmental and pathological context. The initial implementation of STACK 

focused on tissue partitioned EST data arising from the limitation of EST 

clustering algorithms, at that time, to process large EST data sets. However, a 

comprehensive view of sequence variation in its proper context requires EST 

assemblies sampling genes expressed in multiple tissues and expression states (i.e., 

developmental and pathology). 

 

An hierarchical approach for generating the STACK human gene index (i.e., 

whole-body index) was undertaken where 1,198,607 sequences from the human 

EST division of GenBank were partitioned into tissue categories and processed 

through the pipeline of tissue partitioning, masking, clustering, assembly, 

assembly analysis, clone linking and radiation hybrid mapping. The resulting 

consensus sequences for each tissue category were clustered followed by assembly 

of all constituent ESTs to construct the whole-body index sequences. A non-

redundant data set of whole-body index sequences was made blast searchable 

(http://ziggy.sanbi.ac.za/alan/researchINDEX.html). 

An update schema (STACK_ADD) is described for the addition of sequences to 

pre-existing EST clusters. The STACK_ADD protocol was implemented by 

adding mRNA and EST sequences extracted from UniGene (build #106) to an 

existing STACK whole-body index database.  
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3.1 Introduction 

Expressed sequence tags (ESTs) remain an important resource for gene discovery (Matsubara 

and Okubo 1993; Vasmatzis et al., 1998), mapping (Schuler et al., 1996; Deloukas et al., 

1998) and genome annotation (http://www.ensembl.org). Given that EST data is fragmented 

and error-prone, a number of groups have attempted to add value to EST data by generating 

indices where ESTs are placed into categories such that each category represents a gene 

(Schuler et al., 1996; Cariaso et al., 1999; Quackenbush et al., 2001; see chapter1). Gene 

index formation through EST clustering is hindered by transcript variation, sequence and 

annotation errors, paralogous expressed genes and artifactual matches (Jongeneel 2000). 

Most EST clustering methods employed in gene index projects rely on alignment-based 

algorithms to assign ESTs to specific clusters (Sutton et al., 1995), and are often intolerant of 

sequence errors (Liang et al., 2000). However, use of a non-alignment based methodology 

such as D2_CLUSTER has been shown to be tolerant of sequencing errors (Hide et al., 1994; 

Burke et al., 1999; Miller et al., 1999; Christoffels et al., 2001).  

 

A non-alignment based approach tends to capture gene variants and contaminating sequences 

that could represent chimeric clones (Hide et a., 1997; Burke et al., 1999; Miller et al., 1999). 

The use of a loose clustering approach such as D2_CLUSTER also allows for the 

incorporation of sequences that would otherwise be discarded as error-laden. An accurate 

assembly of this error-prone sequence data require the use of additional error checking tools 

to extract high quality bases and the ability to partition different isoforms corresponding to 

the same gene. Shotgun assembly tools such as MSA_CONTIG and PHRAP were available 

at the start of this project and were considered for integration into our gene indexing system 

even though these tools were not designed initially for EST processing. For example, shotgun 

sequences usually have a high degree of identity and they are derived from a single clone 

source (Liang et al., 2000). ESTs, on the other hand, have numerous sequence irregularities 

and are derived from a variety of DNA sources and therefore contain more sequence variation 

than shotgun sequences. The variation in EST data cannot necessarily be assessed by shotgun 

assembly tools. STACK clustering was initially performed on the MasPar architecture, as 

outlined in chapter 2, followed by assembly using the MasPar implementation of 

MSA_CONTIG, a multiple sequence alignment program. The size of the EST clusters soon 

exceeded 60,000 sequences and placed memory constraints on MSA_CONTIG that affected 

the alignment quality. The MasPar machines were decommissioned a year after the initiation 

of the STACK project and the STACK development shifted to the SGI high performance 
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architecture where MSA_CONTIG was replaced with PHRAP as the assembly tool. Over the 

past year there has been reports documenting the advantages of tools such as CAP3 over 

PHRAP (Liang et al., 2000). However, in the absence of other assembly tools, at that time, 

PHRAP was chosen as a replacement for MSA_CONTIG. STACK technology was 

developed with the ability to replace any external software as publicly available assembly 

tools undergo improvements (Christoffels et al., 2001). The optimisation of D2_CLUSTER 

for use on high performance architecture has allowed for the processing of large quantities of 

EST data needed to generate the STACK human gene index (see Chapter 2). In addition to 

consolidating all ESTs from dbEST human division, the STACK human gene index can 

provide added value (i.e., accelerate disease gene discovery) if the reconstructed transcripts 

can be positioned into context of the genetic mapping information. 

 

Radiation hybrid mapping information 

Integration of chromosomal mapping information with EST assemblies provide an enriched 

resource for disease gene discovery (Deloukas et al., 1998). Historically, mapping 

methodologies have centered around the use of sequence tag sites (STSs) as unique 

landmarks across the genome (Olson et al., 1989). EST-based landmarks entered the realm of 

feasibility when it was demonstrated that single-pass sequences provide suitable templates for 

the design of gene-based STSs (Wilcox et al., 1991). An international consortium was 

established to develop STSs from expressed sequence tags for mapping studies using 

primarily radiation hybrid (RH) techniques (Schuler 1997a). Recently, about 45,000 markers 

were placed onto radiation hybrid panels and formed the basis of Genemap'98 (Deloukas et 

al., 1998). The in-silico assignment of radiation hybrid markers to transcripts was achieved 

through the development of the electronic polymerase chain reaction tool (ePCR; Schuler 

1997b) which was used in the integration of mapping information with the STACK gene 

indices. 

 

3.2 Methods 

All methods summarised below have been semi-automated as detailed in Appendix III. 

 

3.2.1 Generation of the STACK whole-body index 

3.2.1.1 Subpartitioning 

The EST division of GenBank (Release 110) was downloaded from the National Center for 

Biotechnolgy and Information (http://www.ncbi.nlm.nih.gov). All human ESTs were 
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extracted from GenBank formatted EST files and partitioned into tissue bins (Table 3.1). The 

tissue sets were organised arbitrarily according to organ system relationships. The 

"tissue_type" subkey of the "FEATURES" key is only provided sometimes with 

nonstandardised terms in the data field. As a result, the assignment of an output file name for 

each sequence is based on (1) FEATURES/tissue_type, (2) FEATURES/cell_type, (3) 

FEATURES/clone_lib or SOURCE/library, (4) FEATURES/chromosome or (5) 

FEATURES/map. These rules were incorporated into a script that provides automation of the 

tissue paritioning step (see Appendix II). The resulting sequence files were placed directly 

into a hierachy (Table 3.1). All sequences that were annotated as derived from a disease-

related tissue were duplicated and placed in a single set to facilitate the exploration of 

differentially expressed genes in the context of disease.  

 

3.2.1.2 Masking 

The clustering procedure is intended to group together those sequences that share identical 

regions. It is therefore necessary to ensure that ESTs submitted for clustering are free of 

artifactual sequence identical to the expressed transcript under study. All input sequences 

were subjected to masking against human repeat sequences using RepBase (Jurka 1998), 

common vector sequences (ftp://ncbi.nlm.nih.gov/repository/vector), and potentially 

contaminant species such as rodent, human mitochondrial and ribosomal DNA. Sequences 

were masked using CROSS_MATCH (P.Green, unpublished, 

http://www.genome.washington.edu/uwgc/analysistools/swat.htm) and later replaced with 

RepeatMasker (Smit and Green 1999).  

 

3.2.1.3 Clustering 

Clustering of the GenBank human EST division (Release 110) was achieved through a 

hierachical approach whereby ESTs for each tissue data set were clustered and assembled and 

followed by clustering of all tissue consensus sequences. The tissue data were transferred 

using ftp to NCSA (64 CPU Origin2000, 195Mhz) and SGI (64 CPU Origin2000, R12000 

300 Mhz) for clustering using D2_CLUSTER (Torney et al., 1990; Burke et al., 1999). The 

clustering of all tissue-level data was used to optimise the D2_CLUSTER code (see chapter 

2; Carpenter et al. in prep). The successful clustering and assembly of all tissue data sets was 

followed by the clustering of all tissue consensus sequences on a 126 CPU, R12000 300MHz 

Origin2000. Two sequences or their reverse complement fall into the same cluster if they 



 90

share word multiplicities (where word length=6) of at least 96% identity in a 150-base 

window (see Appendix III for command line usage).  

 

3.2.1.4 Alignment  

Initial STACK development relied on the MasPar implementation of MSA_CONTIG for its 

cluster alignments. However, memory constraints on data sets in excess of 60000 sequences 

prompted the use of PHRAP for cluster alignments. At the level of the whole-body index 

PHRAP assembly, the tissue consensus sequences within a cluster are decomposed into their 

constituent ESTs. Clusters generated by D2_CLUSTER that were fragmented into 

subclusters during the PHRAP assembly, can be identified by their clusterID . For example, 

clusters 3_1 and 3_2 refer to “cluster 3” generated by D2_CLUSTER that was subsequently 

fragmented by PHRAP into two subclusters namely “3_1” and “3_2. The accuracy of the 

EST orientation description (as captured in the GenBank record), the cluster assembly and the 

alignment cannot be guaranteed. PHRAP generates sequence alignments but does not provide 

any subclusters to distinguish alternative splice or other scientifically interesting data from 

alignment problems induced by low sequence quality or experimental artifacts. To leverage 

the availability of loose clusters, the alignments have to undergo additional processing. 

CRAW and CONTIGPROC were developed to address postclustering and assembly artifacts 

(Miller et al., 1999; Christoffels et al., 2001).  

 

3.2.1.5 Assembly analysis 

CRAW is used to maximize consensus length, partition subassemblies and provide a simple 

means to view clusters (Burke et al., 1998). CRAW checks the agreement along the columns 

of a multiple sequence alignment and uses this information to sort related sequences within 

each cluster and generates a consensus sequence for each subcluster. A subcluster is 

generated if 50% or more of a 100-base window differs from the remaining sequences of a 

cluster, excluding the initial 100 bases of any read. The approach depends fundamentally on 

the alignment quality of each assembly generated by the assembly tool. For example, a poor 

alignment will yield erroneous sub-clusters, and too low a gap penality may yield too many 

columns in agreement and thus not create subclusters where they would be appropriate. 

 

3.2.1.6 Consensus Partitioning 

CONTIGPROC independently partitions the aligned sequences generated from the CRAW 

consensus sequences then ranks the consensus sequences according to the number of assigned 
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sequences and number of called bases. The best ranking consensus sequence is taken as the 

primary representative of a cluster, whereas the remaining consensus sequences are logged 

with the best consensus sequence in the Genetic data environment (GDE, Smith et al., 1994) 

file format. The 5' or 3' orientation of each cluster is determined by a vote of the individual 

EST annotations and all output consensus sequences are arranged to read 5' to 3'. Low-quality 

regions defined as 2 N's followed by at least thirteen IUPAC codes with four or less clear A, 

T, C or G calls are replaced by a single run of 10 N's. A high-confidence subset called 

SANIGENE, consisting of only those consensus regions representing at least two reads, is 

also generated from the multi-sequence clusters. 

 

3.2.1.7 Clonelinking 

Each EST from GenBank is searched for clone information to trace the transcripts 

corresponding to the same gene. The clone information is used to extend the length of the 

cluster consensus sequences by joining clusters containing ESTs with shared cloneIDs. The 

presence of inaccurate cloneID names in EST records can cause false clone links between 

clusters (Aaronson et al., 1996). A stringent clone-linking criterium was used for the whole-

body index to avoid the joining of false links between clusters (Figure 3.3). Clone links were 

accepted if two EST pairs joined two clusters where each EST pair had a different cloneID 

(Miller et al., 1999). 

 

3.2.1.8 Clone-library information 

The organ categories used to describe the STACK tissues included a range of different 

tissues. These tissue descriptions could not accurately describe the whole-body index because 

there was an integration of ESTs originating from different clone libraries. A library field was 

added to the FASTA header line for each whole-body entry and the information was 

extracted from the original EST record via a lookup table (Figure 3.6). 

 

3.2.1.9 Incorporating radiation hybrid mapping data 

The whole-body index consensus sequences were assigned radiation hybrid map positions 

using the e-PCR program developed by Schuler (1997b) 

(ftp://ncbi.nlm.nih.gov/pub/schuler/e-PCR) which uses published primer sequences and PCR 

product size (ftp://ncbi.nlm.nih.gov/repository/genemap/) to electronically map markers onto 

the consensus sequences.  
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3.2.2 Development of an updating schema 

The STACK_ADD phase (Figure 3.1, blue arrows) is a protocol for the addition of sequences 

to an existing gene index without the need to re-cluster the data present in the existing 

database. The process involves an initial pairwise comparison between the exisiting database 

and new sequence data, reprocessing of clusters that have expanded due to incorporation of 

new data and the clustering of all sequences that do not match any existing indices. The 

STACK_ADD schema was implemented with the addition of UniGene's consensus sequences 

(mRNA and ESTs) to the STACK whole-body index. The UniGene consensus sequences 

refer to the representative sequence for each cluster that usually reflects the longest sequence 

in the cluster. 

 

All representative sequences for UniGene (build #106) were downloaded from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/repository/unigene/Hs.seq.uniq.Z) and cleaned to remove 

untrimmed vector, ribosomal, mitochondrial and low quality sequences using 

CROSS_MATCH. Cleaned sequences were compared to the whole-body index using 

CROSS_MATCH. All matching entries were traced using a method called transitive closure 

where a sequence A can be in the same cluster as sequence C if both sequence A and C match 

sequence B. The expanded clusters were collapsed such that the matching gene indices were 

replaced with their constituent ESTs. Inspection of these clusters led to the detection of 

erroneous cluster memberships due to inclusion of repetitive sequences (see section 3.2.3). 

UniGene sequences that did not find matching gene indices were clustered using 

D2_CLUSTER. The clusters generated by CROSS_MATCH and those generated by 

D2_CLUSTER were assigned new clusterIDs so that each clusterID would remain unique in 

the database. These clusters were assembled using PHRAP and subjected to error analysis 

using CONTIGPROC. The expanded clusters were represented at different levels in the 

database including initial PHRAP alignments, CRAW reports, consensus sequences and final 

cluster alignments. These clusters were removed from the existing database at all levels of 

representation to avoid the duplication of cluster records. A total of 145053 whole-body 

index sequences did not match any UniGene data and were compared all-versus-all to 

identify any redundancy in the existing database. As few as 21097 sequences found matching 

entries and were reassembled into 10,063 clusters.  

 

The clusters derived from merging UniGene and STACK sequences and the unique UniGene 

clusters were appended to the existing whole-body index clusters and all existing 
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clonelinking data was removed. The memory requirements for clonelinking during the 

processing of the whole-body index exceeded the 1gigabyte memory limit on the Origin2000 

(the machine on which this processing was executed) because all clone links and EST 

orientations were stored in memory. The code was modified so that all data relating to the 

clonelinking phase could be accessed from the disk. Clone library information was appended 

to a consensus sequence record to reflect the origin of all ESTs contributing to the STACK 

multi-sequence cluster or singleton. Chromosomal locations were electronically mapped onto 

the consensus sequences using e-PCR. The entire process outlined above has been semi-

automated. 

 

3.2.2.1 Sequence contamination 

The identification of a cluster containing 18000 sequences after the pairwise comparison 

between the whole-body index and UniGene data suggested the presence of contaminating 

sequences. The 18000 sequences were masked using RepeatMasker and then reassembed. 

Contaminants identified by RepeatMasker included ALU repeats and low complexity regions 

such as consecutive copies of A’s and T’s. The effect of masking with RepeatMasker was 

seen when the 18000 sequences were partitioned into 934 clusters. The removal of repetitive 

sequences and low complexity regions using RepeatMasker led to the screening of all 

sequences comprising the whole-body index consensus sequences and the UniGene 

sequences. The cleaned data (whole-body index and UniGene sequences) were then passed to 

the start of the STACK_ADD pipeline where the whole-body index sequences were 

compared against the UniGene sequences and the resulting clusters assembled.  

 

3.2.3. Annotation 

A nonredundant protein data set was downloaded from NCBI 

(ftp://ncbi.nlm.nih.gov/blast/db/nr.Z) on the 7th July 2000. All singletons and multi-sequence 

cluster consensus sequences were searched locally against the non-redundant protein data set 

using BLASTX. Sequences that matched with an E-value of 1x10-10 or lower were retained 

for putative functional assignment. The protein annotations were incorporated into the 

STACK whole-body index web search engine 

(http://ziggy.sanbi.ac.za/alan/researchINDEX.html).  
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3.2.4 Web-based searching 

The whole-body index data is represented by multi-sequence clusters, singletons and 

clonelinked sequences. All clusters that did not contribute to the clonelinked entries were 

concatenated to the clonelinked records to provide a non-redundant data set for BLAST 

searching (http://ziggy.sanbi.ac.za/alan/researchINDEX.html). The UniGene cluster 

descriptions (ftp://ftp.ncbi.nlm.nih.gov/repository/unigene/Hs.data) were parsed to create a 

lookup table of UniGene clusterIDs and EST assigments so that all whole-body index 

BLAST hits could be cross-referenced to UniGene. A perl extraction tool was added to the 

BLAST search engine so that detailed information could be retrieved across the internet for 

each matching STACK cluster. All whole-body index clusters that are retrieved from the 

BLAST search engine are searched on-the-fly for any protein matches using the BLASTX 

results that were described in section 3.2.3. 

 

3.3 Results 

Tissue-level and whole-body index clustering 

A total of 1,198,607 sequences were downloaded from the EST division of GenBank and 

cleaned as described in the section 3.2.1. The 50 base limit for the number of informative 

bases were not met by 32,240 (2.7%) sequences after masking, and these were removed from 

the input data. A total of 1,166,367 sequences were partitioned into 334,822 singletons and 

143,885 multi-sequence clusters (Table 3.2). CloneID tracking led to the creation of 68,701 

linked sets which represents 50% of the total cluster consensus sequences and 30% of the 

total singletons. Complete results are given in Tables 2 (clustering), 3 (linking) and 4 (errors).  

 

The tissue-level consensus sequences were clustered on a 126 CPU 12000 300Mhz 

Origin2000 in 31 hours. A total of 470,293 consensus sequences were partitioned into 

162,439 singletons and 69,158 multi-sequence clusters (Table 3.5). A fraction (5%) of the 

multi-sequence clusters (whole-body index2.30) generated by the clustering step were 

fragmented during assembly by PHRAP such that D2_CLUSTER-generated clusters were 

subdivided into multiple subclusters. Clone linked entries reduced dramatically from 30,665 

to 8638 when the clone link criteria were increased to two EST pairs sharing two independent 

cloneIDs (Table 3.5). The effect of false clone links between two clusters due to incorrect 

annotation is illustrated in Figure 3.3.  
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mRNA incorporation into the whole-body index 

The STACK_ADD protocol was implemented to add mRNA and EST sequences extracted 

from UniGene (build #106) to an existing STACK whole-body index. A total of 92,182 

sequences were downloaded from UniGene and compared with the whole-body index (Figure 

3.2). The pairwise comparison between the whole-body index and UniGene data merged a 

total of 96,618 STACK sequences (multisequence cluster and singletons) and 34,779 

UniGene sequences into 50,201 clusters, also termed UniSTACK clusters of which 17853 

(36%) were contaminated with repetitive elements. The presence of repetitive elements in the 

UniSTACK clusters was exposed through the capture of one cluster containing 18,000 

sequences. The whole-body index clusters that did not match any UniGene sequences were 

found to contain 21,097 clusters (14.5%) that were redundant. The redundant clusters were 

collapsed into 10,063 clusters. UniGene sequences that did not match any whole-body index 

clusters were clustered using D2_CLUSTER after masking for repeats. A total of 6589 

sequences were removed by the masking step and the remainder 51,085 sequences were 

partitioned into 50352 singletons and 310 multi-sequence clusters.  

 

Sequence contamination 

The UniGene data was added to the whole-body index by a pairwise comparison and resulted 

in the generation of 50,201 clusters that represent merged whole-body index and UniGene 

sequences. All matching whole-body index sequences and UniGene sequences were screened 

for additional repeats which resulted in the trimming of 28,513/96,618 (29.5%) of the whole-

body index sequences. These contaminating sequences contributed to 17,853 clusters (14.5%) 

of the UniSTACK clusters. These clusters were collapsed to their original ESTs and mRNA 

and masked using RepeatMasker. The additional masking identified a range of repeat 

sequences (Figure 3.5). The cleaned data was clustered using D2_CLUSTER. 

 

Capture of alternate gene expression forms 
Alternatively spliced transcripts represent important biological information that has to be 

handled appropriately within a cluster assembly. Two or more alternatively spliced transcript 

isoforms may contain regions of identity as well as disparate regions and so require 

specialised tools to capture the regions of dissimilarity. STACK incorporates CRAW as a 

post assembly step to clustering and alignment in order to facilitate discrimination between 

distinct gene isoforms (Burke et al., 1998). Transcript variants are partitioned into sub-

clusters that allow for simultaneous viewing of inconsistencies within a cluster. An example 
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is fibulin (expressed in brain, parathyroid tumor, placenta, fibroblast, pancreas, heart, lung, 

testis, skin tumor) which exists as four or more isoforms(A-D) and each is clearly partitioned 

within the STACK whole-body index cluster 133232_3 (Figure 3.4). Fibulin’s B isoform 

(X53742) and its corresponding ESTs are displayed as a stretch of 1’s in the ASCII 

representation of each sequence (blue box Figure 3.4). Sequences corresponding to isoform C 

have been partitioned into a sub-cluster displayed as a string of 2’s (red box Figure 3.4). 

 

Assessing the STACK whole-body index consensus sequence fidelity by e-PCR 

Of the 52,825 EST-based markers placed on the radiation hybrid maps, 25793 markers were 

assigned to one or more consensus sequences. STACK clusters are defined as redundant if 

there are multiple clusters that potentially represent the same gene. In total, 26,944 map 

assignments were made, suggesting a redundancy in the whole-body data set of 1.04-fold 

(26944/25793), i.e., multiple assignments to the same marker could reflect fragments of the 

same gene that could not be clustered because of insufficient overlapping sequences. 

Mapping inconsistencies, i.e., one sequence with different chromosome locations,  accounted 

for 135 (0.5%) clusters.  

 

Sequence Annotation 
The construction of a consensus sequence from a set of clustered ESTs has the advantage that 

the sequence is longer than its component ESTs. This increase in sequence length facilitates 

functional assignment, transcript mapping and genomic annotation. The consensus sequences 

were assigned a function based on significant (E value = 1e-10) similarity to known 

SWISSPROT records and served as an indirect measure for assessing the consensus 

sequences. An in depth assessment of the consensus sequences was carried out on known 

genomic sequences (see chapter 4).  

 

A total of 54354/66188 (82.1%) whole-body index sequences did not show any significant 

matches with database entries. A putative function could be assigned to 11834 (17.8%) 

whole-body index sequences based on a significant match to a SWISSPROT entry. The 

functional assignments provided evidence to assess the accuracy of 272 clone linked entries. 

A total of 232/272 (85%) linked clusters showed the correct SWISSPROT annotation for all 

constituent multi-sequence clusters. False clone links were generated for 21/272 (8%) linked 

clusters. A total of 19/272 (7%) linked clusters demonstrated clone links between 

SWISSPROT annotated clusters and clusters with hypothetical annotations.  
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Figure 3.1 STACK Overview 
STACK processing overview. Inputs are shown in single-line ellipses, outputs in double-line ellipses. STACK 
first iteration, ADD, INDEX phases, and the repair facility are indicated by black, blue, red and black-dotted 
arrows respectively. The red and blue arrows indicate the contribution made by this thesis. In the first iteration 
(black arrows), human sequences from GenBank dbEST are partitioned into manageable, tissue-related sets. 
Common vector and repeat sequences are masked, and the resulting entries are subjected to loose clustering by 
d2_cluster. Clusters of related sequences are assembled by PHRAP, and their alignments are analyzed by 
CRAW. GDE format assembly data are output, and CONTIGPROC selects appropriate consensus and 
subconsensus sequences. Available clone-ID information is used to identify clone-linked clusters, after which 
full-length, joined consensus sequences are output in FASTA (Pearson) format. ADD (blue arrows) incorporates 
new sequence data by comparison to existing STACK consensus sequences. Existing clusters that are identified 
as members of the same group are reassembled and submitted as a single set to d2_cluster during the whole-
body index phase (red arrows). The resulting index clusters are then expanded prior to assembly by replacing 
each consensus with the sequences that contribute to it. A library field is added to the header line of the 
sequence to reflect the origins of all the constituent ESTs. The EST accessions within the CRAW report are 
appended with their clone library names. Radiation hybrid markers are added to the consensus sequences using 
ePCR. The final consensus sequences are added to the blast search engine. Visualisation of the BLAST results 
include cluster consensus sequences, constituent EST sequencse and updated hyperlinks to UniGene. 
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Summary of mRNA and EST incorporation into the STACK wholebody index

STACK wholebody index
237249

UniGene mRNA/ESTs
92182

Masking

UniGene sequences
57403 sequences

d2_cluster
rename clusterIDs

UniSTACK
(50201 clusters)

34779 UniGene sequences: 96618 STACK sequences
RepeatMasker

Wholebody index
(145053 clusters)
all versus all
cross_match

Unique sequences
123956 clusters

Merged sequences
21097 sequences
(10063 clusters)

rename clusterIDs

Cross_match

Clean clusters
(32348)

rename clusterIDs

Contamination
(17853 clusters)
collapse clusters
RepeatMasker

d2_cluster

Clean clusters
rename clusterIDs

Assembly
assembly analysis 

consensus generation

Clone linking

Sequences >50
bases in length

Short sequences
<50 bases

 
 
Figure 3.2 Summary of mRNA sequence incorporation into the whole-body index 
UniGene’s representative sequences were masked and compared to the STACK whole-body 
index sequences using cross_match. STACK sequences that did not overlap with UniGene 
sequences were searched for redundancy using cross_match. A total of 21,097 consensus 
sequences collapsed to 10,063 clusters that had to be assembled prior to clone linking. 17,853 
UniSTACK (UniGene + STACK sequences) clusters contained contaminating sequences 
(i.e., repeats). ESTs corresponding to the contaminant clusters were masked for repeats using 
RepeatMasker prior to re-clustering. All clusterIDs were renamed to ensure their uniqueness. 
UniSTACK clusters that were free of contamination were assembled using PHRAP prior to 
clone linking. UniGene clusters that do not match any STACK sequences were clustered 
using d2_cluster prior to assembly and clonelinking. 
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Figure 3.3 Diagram illustrating the erroneous clonelink relationships between clusters 
Clusters that share at least one cloneID were joined during the clonelinking step to create 
extended entries as indicated by STACK whole-body entry index2607 (release 2.31). STACK 
clusterIDs (bold) are indicated above each cluster of ESTs (oval shapes). The ESTs are 
depicted as horizontal lines and each clonelink between two ESTs is shown by a blue double-
headed arrow. Clusters 424446 and 142868 represent portions of the myosin-binding protein 
(NM_004997.1 e-value=0.0). Cluster 29840 represent an anti-oncogene on chromosome 
8p21.3-p22 (AK001608 e-value=0.0) and cluster 141053 represent a fragment of the REC 
mRNA (NM_016353.1, e-value=0.0). Clusters 205168, 68419 and 458794 have no identity to 
any sequence in the non-redundant database (GenBank 27July2000). Accurate clone-links 
have been generated between clusters 424446 and 142868 that share at least two EST pairs 
with different  cloneIDs.  

424446
142868 29840 141053

205168 68419 458794
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Figure 3.4 CRAW output for a whole-body index cluster displaying alternate gene isoforms of the fibulin gene.  
The blue box indicates the region capturing the fibulin-1B isoform whereas sequences capturing fibulin-1C are surrounded by a red box. 
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Figure 3.5 Range of repeats found with RepeatMasker. 
A number of repeats were not found when sequences were masked using cross_match. A 
second round of masking using RepeatMasker identified additional repeat regions that caused 
incorrect cluster assignments. 
 
 
 
>100037-0-index-001-2000-2.35 COVERAGE: 0.9924 OTHER_CONSENSI: 0   ASSIGNED: AA348809 
R77952 R85973 AA973910 LIBRARY: Right_hemisphere Soares_placenta_Nb2HP Soares_retina_N2b4HR 
NCI_CGAP_Lu5 MAP: 14 
CCCTACAAGnGGGGCAACCTTAnGATTACCTATTATTGGGGCCTTAAGAGATTTGAGAAGTTGGGGAGCTAACCA
AATTAAGACCCCTAAnGGTATATGTCCCTTAACCCTGTAAACAGGAGTTTATTTTGTCAAGCCTATTTTTCCCCA
TCCCTATTCATTACCTACCTAAAAAATATTGCCTTAAAAACATTTTCTTCCTTCGTGAGGCTTCTTAGAATGTTA
AATTTACCTTCTAAAAATTATACACTAAGTTATTTTACAGGAAAACAGCTTCTATAGGATTAATGTAATATATAT
ATGCAAAGGTCAAATGAAATATTTTTGTGGATGGTAAGAAAAATTTCAACTTACATTTTTGCAACTTCTTTAACG
ATATCACGGCAGGTCATTTCTTTCATCTATAGAAAATAAAATGTATACTGTTCATCAGAAGAACATTTTCCACTT
GTGTAATAACTATTTTCACTTTTATACTCAGATATAAAACCAAGGAAAATAACCTAAAGTCTGAAAAAGACCAGA
ATCGAAGTTTCCTGATTCATATTTTAATGTTTTGGAAATTTATAGACCGGGGTGGGTGCAGTGGCTTGTGC 
Figure 3.6 FASTA formatted multi-sequence cluster consensus sequence. 
The headerline documents the unique stackID, the ESTs used to generate the cluster, the 
clone libraries and the chromosomal position (radiation hybrid mapped) if it is known. 
 
 
 

Types of repeats identified by a second round of 
masking using RepeatMasker 
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Table 3.1 List of arbitrary tissue divisions used by STACK 
 

dbEST 101598 Homo Sapiens tissue partitioning 
Abitrary tissue partitions Substituent tissues types Total ESTs 
Adipose Brown, white 2376
Brain Frontal lobe, cerebrum, 

cerebellum, cortex,  
177719

Cochlea Fetal cochlea 4304
Connective Bone, skin, synovial membrane 40753
Digestive Stomach, colon, gall bladder 51032
Disease Duplicates of ESTs annotated as 

tumors 
114496

Eye Retina, cornea, ocular  28514
Genomic Specified chromosomes 101986
Glands Breast, endocrine 112346
Heart Fetal heart, aorta 69830
Hemato-lymphatic Blood, kidney, liver-spleen 255565
Lung Trachea, larynx, lung 70259
Muscle Leg, pectoral 16237
Olfactory Olfactory epithelium 2600
Other Monocytes, mononuclear cells 25925
Reproductive Ovary, testis, uterus 239161
Sequences were partitioned over an arbitrarily defined tissue hierarchy designed to group physically 
related tissues and remain within constraints of computational resources. Genomic tissue is a set of 
ESTs labeled only as having a genomic region of hybridisation without a tissue source. The set of 
duplicate copies of disease-related sequences is loosely referred to as a tissue. 
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Table 3.2 STACK tissue-level clustering and alignment analysis results 
 

Singletons Multi-sequence clusters Small sequences 
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Adipose 1693 71 181 572 24 111 5 2376
Brain 42245 24 22848 130573 73 4458 3 177719
Cochlea 1973 46 710 2213 51 118 3 4304
Connective 12652 31 4646 26210 64 876 2 40753
Digestive 17398 34 6734 32124 63 1481 3 51032
Disease 29139 25 12513 79433 69 4056 4 114496
Eye 13867 49 3448 12933 45 1388 5 28514
Genomic 38481 38 16314 72066 71 4457 4 101986
Gland 25836 23 12307 62176 55 1672 1 112346
Heart 20782 30 8341 45795 66 217 0.3 69830
Hemato-
lymph 

51654 20 17378 113147 44 2582 1 255565

Lung 20129 29 8554 47151 67 2726 4 70259
Muscle 4534 28 1183 8792 54 1037 6 16237
Olfactory 1478 56 248 830 32 283 11 2600
Other 9392 36 4315 15663 60 575 2 25925
Reproductive 43569 18 24165 188088 79 6321 3 239161
Totals 334822 26 143885 837766 64 32240 2 1313103 
 
The total sequences in each tissue set are partitioned by d2_cluster into unique sequences (singletons) 
and clusters containing multiple related sequences, whereas sequences of <50 bases are excluded from 
clustering (small sequences). 
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Table 3.3 STACK tissue-level clone linking results 
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Adipose 0 0 181 100 1693 100 0 0 181 100 

Brain 13157 35123 4282 19 25688 61 52909 11490 11358 50 

Connective 1561 3433 3266 71 10599 84 10 20 690 97 

Cochlea 323 666 601 85 1416 72 86 183 4462 96 

Digestive 2165 4915 4761 71 14456 83 188 384 6350 94 

Disease 6106 14103 6623 53 20926 72 725 1477 11036 89 

Eye 3988 8616 1027 30 7672 55 699 1424 2024 59 

Genomic 4168 9131 9997 74 29221 84 665 1358 10949 89 

Gland 5056 11275 7242 59 19624 76 323 655 14070 96 

Heart 3630 7937 5462 65 15724 76 295 594 7747 93 

Hemato-lymph 10952 25388 9648 56 33996 66 1432 2958 14419 83 

Lung 4222 9640 5142 60 13901 69 339 694 7860 92 

Muscle 1164 2694 622 53 2400 53 52 112 1071 91 

Olfactory 458 944 138 56 644 44 21 42 206 83 

Other 3700 8901 929 22 3877 41 656 1346 2969 69 

Reproductive 8051 26475 11268 47 29991 69 1854 3916 20249 84 

Totals: 68701 169241 71189 50 231828 70 12635 26653 115641 81 
 
Clone-ID annotations are grouped for all ESTs in a cluster, after which clusters or singletons containing 
matching cloneIDs are added to a linked set. The process is continued until no additional cloneID partners can 
be found. Each linked set may therefore contain singleton sequences and a cluster consensus; hence, the linking 
success rate is expressed in terms of the fraction of consensus and singletons that remain non-linked 
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Table 3.4 STACK tissue-level error analysis. 
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Adipose 173 96 5 3 3 2 23 13

Brain 19933 87 1850 8 296 1 2552 11

Cochlea 689 97 13 2 4 6 18 3

Connective 4098 88 316 7 93 2 358 8

Digestive 6089 90 370 6 82 1 493 7

Disease 10845 87 989 8 198 1 2589 21

Eye 2799 81 288 8 229 7 303 9

Genomic 14924 91 792 5 177 1 2550 16

Gland 10843 88 820 7 237 0.2 1096 9

Heart 7341 88 622 7 104 1 699 8

Hemato-lymph 14639 84 1774 10 271 2 2731 16

Lung 7483 87 667 8 137 2 1828 21

Muscle 1084 92 64 5 12 1 67 6

Olfactory 238 96 7 3 2 1 4 2

Other 3675 85 285 67 184 4 172 4

Reproductive 19178 79 3196 13 533 2 3373 14

Totals: 124031 86 12058 8 2562 2 18856 13
 
CRAW analyzes cluster alignments generated by PHRAP and partitions consistent ESTs into subclusters based 
on agreement with other sequences. The ideal result is a single consensus cluster, accounting for 86% of the 
STACK output, while the remaining clusters may contain multiple sequence subclusters (resulting a 
multiconsensus cluster), a primary consensus with one or more singleton sequences (data not shown), singleton 
ESTs according to the CRAW parameters. STACK clusters are generated by word identity counts and their read 
direction determined by majority vote of the annotations of constituent ESTs; clusters for which this vote is not 
unanimous are noted in the right-most two columns. 
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Table 3.5 Cluster analysis and clone-link information for two releases of the whole-body index. 
The steep drop in clone-linked entries are due to stringent criteria that were implemented in the recent release of the whole-body index. Two 
EST pairs and two different cloneIDs were required to create a clone-link. 
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Index2.31a 162439 69158 3455 (5) 30665 1276.1 26889 118561 457.3 8638 1044.4 50219 344.9 
Index2.35b 159840 66188 5634 (8) 7133 1948.4 50591 159840 700.0 7108 1346.7 50591 437.6 
 
aWhole-body index2.31 was generated by clustering 470293 tissue-level consensus sequences 
bWhole-body index2.35 was generated by adding UniGene(build #106) to an existing whole-body index2.30. 
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Table 3.6 Orientation for all consensus sequences in the whole-body index2.35 
 

Singletons* Multi-sequence clusters  
 
Orientation 

Clusters not 
contributing to 
the clonelinked 
entries 

 Clusters 
contributing to 
the clonelinked 
entries 

 Clusters that do 
not contribute to 
the clonelinked 
entries 

 
Clone-linked 
sequences 

 
 
Totals 

3’ 67451  6260 24423 5460 97334** 
5’ 57026 7016 16765 1410 75201 
End-not-specified 35361 2311 9406 263 45030 
Totals 159838 15587 50594 7133  
 
*No singleton records contributed to the clonelinked entries 

** The total number of 3’ end sequences do not include the number of multi-sequence clusters that were 

clonelinked. The  

latter sequences have been accounted for in the clonelinked entries. 
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3.4 Discussion 

The STACK gene index represents an attempt to add value to the EST data by generating 

unique indices and providing a resource to capture sequence variation. A hierarchical 

approach was implemented with the clustering of EST data captured in “tissue bins” followed 

by clustering of all tissue datasets. 

 

The process of  tissue partitioning highlighted the use of non-standardised terms in the EST 

GenBank records and the need to parse multiple features keys. The recent development of a 

controlled vocabulary at SANBI has used the cDNA library (clone_lib feature) names to 

partition sequences into different organ and tissue categories. As of February 2001, there 

have been approximately 5700 clone libraries represented in the EST database. In retrospect, 

tissue partitioning of EST data in STACK can be more easily automated by subdividing a 

finite set of clone libraries followed by the importing of EST records based on the clone 

library field. 

 

The correct assignment of ESTs to specific clusters is hampered by inadequate masking of 

repetitive elements (Jongeneel 2000). The removal of 2.7% of ESTs during the STACK 

masking step ensured minimal generation of chimeric clusters. RepeatMasker was shown to 

be a more sensitive technique in comparison to command-line execution of cross_match for 

the removal of repetitive elements and low complexity sequences from an additional 28,513 

consensus sequences. UniGene on the other hand, uses the DUST program at NCBI to 

remove low complexity regions from the EST data. 

 

A total of 1,166,367 ESTs were partitioned into 162,439 singletons and 69,158 multi-

sequence clusters by d2_cluster. A subset of 21,097 clusters (8.8%) represented sequences 

that should have been merged by d2_cluster. Type I errors (i.e., sequences that should be 

merged by d2_cluster) for d2_cluster were reported by Burke et al (1999) in 4.4% of clusters. 

The increased proportion of type I errors reported in the STACK gene index reflects the 

fragmentation of the assembly process where PHRAP was reported to partition 5% of the 

gene indices. The redundancy in the STACK gene index was resolved by a final round of 

pairwise comparison between all consensus sequences using cross_match (Figure 3.2). 

Indices such as TIGR and UniGene employ additional alignment-based processing to merge 
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redundant clusters that are generated during the initial clustering stage (Liang et al., 2000). 

 

Assembly analysis 

The most extensively used assembly programs in genomic sequencing projects include 

PHRAP (http://www.genome.washington.edu/uwgc/analysistools/phrap.htm), TIGR 

assembler (Sutton et al., 1995) and CAP3 (Huang and Madan 1999). Recent reports by Liang 

et al (2000) suggested that PHRAP and CAP3, in comparison to TIGR assembler-EST, are 

more tolerant of sequencing discrepencies. The initial STACK development incorporated the 

use of PHRAP as an assembly tool due to the inability of MSA_CONTIG to handle EST 

datasets in excess of 60,000 sequences (see chapter 2). TIGR’s gene indices have adopted 

CAP3 as their assembly tool because it provided higher fidelity consensus sequences and 

generated few assemblies for each gene (Liang et al., 2000; Quackenbush et al., 2001). 

STACK, however, does not rely on PHRAP to generate its consensus sequences because of 

the inherent problems associated with using PHRAP in the absence of trace files for EST 

data. For example, quality values indicate how accurate the base call is (i.e., values > 20 

(99% confidence) represent high confidence calls) (Ewing and Green 1998). In the absence of 

quality values, PHRAP assigns a default quality of 15 to each base. During the consensus 

generation, when several sequences disagree, PHRAP resolves the problem by inserting two 

different bases in the final consensus sequences, producing insertion errors (Ewing and Green 

1998; Liang et al., 2000). Despite recent evidence that CAP3 produces fewer assemblies than 

PHRAP (Liang et al., 2000), only 5% of the STACK gene indices were split into multiple 

assemblies during the assembly stage.  

 

Radiation hybrid mapping 

EST sequencing is intrinsically inadequate for identifying truly rare transcripts (Bortoluzzi et 

al., 2000). Therefore, the use of EST-based STSs will tend not to capture rare transcripts and 

as a result, STSs would provide optimistic estimates of cluster accuracy. However, we have 

used radiation hybrid markers to assess the fidelity of the STACK consensus sequences. An 

analysis of our mapping information suggest a 1.08-fold redundancy in the STACK clusters 

and approximately 0.5% of clusters represented inconsistent mapping information. The level 

of error reported in the stack gene index mapping data is supported by the 1% error reported 

in mapping laboratories. On the other hand, the possibility exists that the assignment of more 

than one cluster to a STS could represent the capture of paralogous genes in different clusters. 

Map locations were assigned to 40% (26944/66188) of the STACK gene indices and provide 
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a resource for positional candidate gene selection relevant to both physical location and 

source of gene expression.  

 

Capture of alternate gene expression forms 

Databases such as TIGR and UniGene have focused on reconstructing the gene complement 

of the human genome and their technological developments have been directed towards 

achieving that goal. STACK, however, focuses on the detection and visualisation of transcript 

variation in the context of developmental and pathological states. Alternatively spliced 

transcripts that capture important biological information within the same cluster assembly are 

handled by specialised tools, CRAW and CONTIGPROC, within the STACK process (Miller 

et al., 1999; Christoffels et al., 2001). The ability to discriminate between distinct gene 

isoforms was illustrated by the partitioning of isoforms of fibulin within the STACK whole-

body index cluster 133232_3 (Figure 3.4; see chapter 4 for additional illustrations of 

detecting transcript diversity).  

 

Ongoing STACK development 

STACK will make increasing use of the relational database architecture to enhance data 

access. The maintenance of clusterIDs or links to new IDs from release to release, are being 

planned. Inclusion of genomic information will be used to map clusters and expression states 

to genome location. 
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Summary 
This chapter describes the use of the completed chromosome 22 sequence to assess 

the accuracy of the whole-body index consensus sequences, the identification of 

the range of transcript structures identified in the whole-body index, and the 

application and context of singletons and EST assemblies for identifying 

alternative splicing events.  

Overall 63.3% of the annotated chromosome 22 genes had significant hits to 

whole-body index sequences. Twenty-five whole-body indices matched regions of 

chromosome 22 that had not been described in the past. Alignment of whole-body 

indices to chromosome 22 genes demonstrated a 0.96 fold redundancy in STACK, 

similar to the radiation hybrid mapping data. A total of 84,387 genes in the human 

genome were estimated from the chromosome 22 verified STACK sequences. 

Two novel splice variants were identified in the whole-body index data 

corresponding to neurofibromatosis2 gene and fibulin1 gene. A detailed report for 

the characterised events in the 25 known alternatively spliced genes can be viewed 

at http://www.sanbi.ac.za/~alan/twentyfive_splicegenes.htm. Sim4 alignments for 

493 indices mapped onto the chromosome 22 genes were analysed and classified as 

exon sequence (349/493; 5 exon-skips), intron sequence (3/493), gapped exons 

(8/493; 3 exon skips) and combined intron-exon transcripts (133/493; 8 exon 

skips).  

 

4.1 Introduction 

Gene identification in eukaryotic genomes is more difficult than in prokaryotes because of 

multiple exons separated by large intronic sequence. Current gene finding programs identify 

exons based on multiple properties such as identification of potential coding regions 

combined with matches to the consensus splice sites (Burge and Karlin, 1997; Haussler 

1998). These computational methods have been shown to be inadequate for the identification 

of genes in eukaryotes. For example, almost 40% of GENSCAN-predicted genes on 

chromosome 22 did not form part of any gene confirmed by other means and included an 

unknown proportion of false positives (Durham et al., 1999). The failure rate of 

computational tools designed for gene finding can be attributed in part to our inability to 

understand the rules governing the choice of splice sites. However, recent studies on the 

spliceosome machinery in eukaroytes have revealed new insights into the mechanism of RNA 

splicing and mRNA stability (Mitchell and Tollervey 2000).  
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The absence of adequate computational tools for gene finding and the ever -increasing human 

genomic sequence data (Durham et al., 1999; Hattori et al., 2000) have spawned protocols 

that align genomic sequence to transcribed sequences in order to define exon boundaries and 

ultimately mRNA structure (Ewing and Green 2000; Liang et al., 2000; de Souza et al., 

2000). Variation in mRNA structure occurs through alternative splicing and is very common 

in vertebrates. For example, a minimum estimate that 35% of human genes show variably 

spliced products has been derived from aligned ESTs that were mapped to the human genome 

sequence (Croft et al., 2000). The true estimate is probably much higher, considering that 

ESTs sample a portion of each mRNA and the origins of each EST is biased towards certain 

tissue types and developmental states. A variety of mRNA structures are produced through 

splicing (Lopez, 1998; review by Black 2000). Exons can be spliced into the mRNA or 

skipped; introns that are normally excised can be retained in the mRNA; the positions of 

either 5’ or 3’ splice sites can shift to make exons longer or shorter and alterations in 

transcriptional start sites or polyadenylation sites also allow production of multiple mRNAs 

from a single gene (Gautheret et al., 1998; Beaudoing et al., 2000).  

 

In this chapter, I report on the use of the completed chromosome 22 sequence to assess the 

accuracy of the whole-body index consensus sequences, the identification of the range of 

transcript structures identified in the whole-body index, and the application and context of 

singletons and EST assemblies for identifying alternative splicing events.  

 

4.2 Method 

Comparison to chromosome 22 genomic data 

EMBL records for the published 311 mRNAs and 234 predicted genes on chromosome 22 

were downloaded from the Sanger ftp site on the 7 November 2000 

(ftp.sanger.ac.uk/pub/human/chr22/sequences/Chr_22/). The 134 pseudogenes were extracted 

from the chromosome 22 genomic sequence 

(ftp.sanger.ac.uk/pub/human/chr22/sequences/Chr_22/complete_sequence/chr_22_analysis_v

ersion_22-10-1999.fa.gz) using the start and end positions of each pseudogene as reported in 

the gene table on the Sanger website (http://www.sanger.ac.uk/cgi-bin/c22_genes_table.pl). 

The 679 chromosome 22 genes were masked for contaminating sequences as outlined in 

chapter 3 using RepeatMasker (Smit and Green 1999). The 226,028 whole-body index 

sequences were searched against the database of chromosome 22 genes using BLASTN. A 



 118

whole-body index sequence was accepted as a significant match to the chromosome 22 genes 

if it had at least 94% identity over more than 80% of the whole-body index sequence length. 

The whole-body index sequences that did not match to the documented chromosome 22 

genes were searched against the masked version of the chromosome 22 genomic sequence 

(1999 release: 

ftp.sanger.ac.uk/pub/human/chr22/sequences/Chr_22/complete_sequence/Chr_22_analysis_v

ersion_22-10-1999) to identify unreported transcribed genes on chromosome 22. The results 

were compared to the gene table on the Sanger website (http://www.sanger.ac.uk/cgi-

bin/c22_genes_table.pl). This process was repeated for the updated chromosome 22 genomic 

sequence 

(ftp.sanger.ac.uk/pub/human/chr22/sequences/Chr_22/complete_sequence/Chr_22_19-05-

2000.masked.fa.gz) and the updated list of genes published on the Sanger website on the 15th 

November 2000.  

 

Identification of splice events in the whole-body index data 

Twenty-five experimentally identified alternatively spliced genes on chromosome 22 were 

extracted in FASTA and EMBL format. The whole-body index sequences that capture the 25 

alternatively spliced genes were identified by BLASTN and aligned to the alternatively 

spliced genes using Sim4 (Florea et al., 1998). The alignment coordinates were cross-

referenced against the exon boundaries documented in the EMBL records for each of the 

alternatively spliced genes. The known exon boundaries for all the splice variants allowed for 

the identification of novel splice variants, exon skipping and alternate donor and acceptor 

sites. This protocol was semi-automated and applied to 226 chromosome 22 genes that 

encoded more than 2 exons and for which there were documented intron-exon boundaries. 
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4.3 Results 

Comparison to chromosome 22 genomic data 
Six hundred and seventy seven of the whole-body index sequences matched 345/545 

chromosome 22 genes (excluding the pseudogenes) and demonstrated a 1.9-fold redundancy 

in the whole-body index sequences that occurred as a result of non-overlapping fragments. 

The remainder of the whole-body index sequences (225,351) were searched against the 

masked chromosome 22 genomic sequence (release 1999). A total of 1691 consensus 

sequences matched regions of the chromosome 22 genomic sequence that did not overlap 

with the 545 known genes and predicted genes.  

 
All the whole-body index sequences were searched against the most recent release of the 

masked chromosome 22 genomic sequence (release 2000) using BLASTN. Twenty-five 

consensus sequences matched regions of chromosome 22 (release 2000) that did not match 

any of the annotated genes on chromosome 22. The twenty-five unique consensus sequences 

represent a more accurate data set compared to the 1691 sequences that were searched against 

an older version of chromosome 22 genomic sequence. The twenty-five unique consensus 

transcripts were not identified in the list of genes published for chromosome 22 on the Sanger 

website (15th November 2000). No putative function could be assigned to the twenty-five 

novel genes identified on chromosome 22 after searching the protein non-redundant database 

(release January 2001). However, 318/677 STACK sequences that did match the 

chromosome 22 genes were assigned putative functions based on the outcome of a search 

against the non-redundant protein database (January 2001) 

(http://www.sanbi.ac.za/~alan/677chr22putativefunction.htm). 

 

Identification of splice events 
A splice variant for each of 11/25 (44%) alternate splice genes on chromosome 22 was 

captured by 1 or more whole-body index multi-sequence cluster or singleton. Of the 

remaining 14 alternate splice genes, all were identified in the whole-body index data but no 

distinction could be made between the various isoforms. Three multi-sequence clusters 

showed partitioning of the splice variants for 3/11 alternatively spliced genes namely; 

BK1191B2.3.1 (similar to Malonyl coA-acyl carrier, Figure 4.4), DJ1042K10.1.2 

(adenylosuccinate lyase gene, Figure 4.3) and BK941F9.1 (fibulin, Figure 4.2). Two novel 

splice variants were identified in the whole-body index data corresponding to 

neurofibromatosis2 gene and fibulin1 gene (Figure 4.5a and b). Nine exon skipping events, 

twenty one alternate acceptors and eleven alternate donors were observed by comparing the 
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25 known alternatively spliced genes with the whole-body index sequences (Table 4.1). A 

summary of the captured events in the alternatively spliced genes using processed ESTs is 

presented in Table 4.1. A detailed report for the characterised events in the 25 known 

alternatively spliced genes can be viewed at 

http://www.sanbi.ac.za/~alan/twentyfive_splicegenes.htm. 

 

A total of 493 whole-body index transcripts matched 226 chromosome 22 genes for which 

there was evidence of intron-exon boundaries and the presence of at least two exons in the 

chromosome 22 genes. Sim4 alignments for 493 indices mapped onto the chromosome 22 

genes were analysed and classified as exon sequence (349/493; 5 exon-skips), intron 

sequence (3/493), gapped exons (8/493; 3 exon skips) and combined intron-exon transcripts 

(133/493; 8 exon skips).  
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Figure 4.1 Distribution of 677 whole-body index sequences across the 545 chromosome 22 
genes (mRNA sequences) (excluding the pseudogenes). The whole-body index sequences 
that are plotted on the x-axis represent redundant sequences because more than one sequence 
match the same mRNA. In these multiple hits to the same mRNA there are no overlapping 
regions between the whole-body index sequences. 
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Figure 4.2 CRAW output for a whole-body index cluster displaying alternate gene isoforms of the fibulin gene. The blue box indicates the 
region capturing the fibulin-1B isoform whereas sequences capturing fibulin-1C are surrounded by a red box. 
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Figure 4.3 CRAW output for a whole-body index cluster displaying alternate gene isoforms of the 
adenylosuccinate lyase gene. (a) The sequences depicted by a string of 1’s represent exons 11, 12 and 13 (red, 
blue and green boxes respectively; isoform II). The sequences depicted by a string of 1’s followed by 2’s 
represent exons 11 and 13 (red and green boxes respectively; isoform I, III or IV). There is not enough sequence 
to distinguish isoform I, III and IV). (b) A diagram illustrating the variety of isoforms identified for the ADSL 
gene. 
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Figure 4.4 CRAW output for a whole-body index cluster displaying alternate gene isoforms for the gene similar 
to Malonyl coA-acyl carrier gene. (a) Sequences depicted by a string of 1’s represent isoform II capturing exon 
1 followed by exon3 (red and bright geen boxes respectively). Sequences depicted by a string of 2’s represent 
isoform I capturing exon 2 and three (blue box). (b) Illustration of all the exons for the two isoforms.  
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(a) 

 
 
(b) 
 

 
Figure 4.5 Novel alternative splice events captured in the whole-body index data. 
(a) Seven documented isoforms for neurfibromatosis2 gene (blue lines; exons depicted as blue rectangles). A 

novel isoform identified in an EST representing exons 15, 16 and 17(red line). 
(b) Four documented isoforms of fibulin (blue lines; exons depicted as blue rectangles). A novel isoform 

captured in a EST representing exons1-16 where exon 16 has a deleted middle portion 
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Table 4.1. List of all the captured events when comparing processed ESTs to 25 
chromosome 22 alternatively spliced genes. 

Number of processed ESTs capturing alternate splice 
genes on chromosome 22 

Captured events 

Singletons (65) Multi-sequence clusters 
(50) 

exon sequence 39 23 
cryptic intron 1 1 
splice variants* 7 17 
exon skipping++ 8 [2,3,4 and 9 exons] 2 [1 exon] 
Alternate donor 8 [intron] 3 [intron] 
Alternate acceptor 12 [3 intron] 9 [7 intron] 
novel splice variant 0 2 
*The splice variants also captured alternate donor and acceptor sites and therefore the 
numbers in each column do not equal the total singletons and multi-sequence clusters. 
++All the singletons capturing exon skip events have been found in multi-sequence clusters in 
the recent release of UniGene (30Th November 2000) 
 
 

 

4.4 Discussion 

Comparison between the whole-body index2.35 and chromosome 22 

The whole-body index2.35 was searched against the 679 chromosome 22 genes and captured 

677 (including 349 singletons) index sequences with more than 93% identity to 345/659 

(52%) chromosome 22 genes where each gene spanned at least 80% of the matching whole-

body index sequence. This finding is consistent with previous observations that 

approximately half of the identified genes have EST support (Liang et al., 2000). Overall 

63.3% of the annotated chromosome 22 genes (excluding pseudogenes) had significant hits to 

the whole-body index2.35. If we only consider multi-sequence clusters that match 

chromosome 22 genes, then despite the difference in assembly methodologies, consistent 

reports are published for significant hits of annotated genes to cluster consensus sequences 

for STACK, TIGR's THCs and ORESTES namely 60.2% (extrapolated from 677 minus 349 

singletons), 60.7% (Fiang et al., 2000 and 50.2% (de Souza et al., 2000) respectively. The 

increased number of identified annotated genes (10%) using STACK and TIGR’s THCs as 

compared to the ORESTES data suggests that there is added value provided by the assembled 

ESTs. 
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The whole-body index2.35 sequences that match to chromosome 22 genes also provide an 

independent assessment of the redundancy in the whole-body index sequences. Singletons 

have been reported to represent low quality and intron-containing sequences (Liang et al., 

2000, de Souza et al., 2000). However, the 349 singletons captured as part of the 677 whole-

body index sequences were incorporated into the assessment because of the high degree of 

similarity to the chromosome 22 genes. Burke et al. (1999) characterised type I error rate 

(i.e., inability to join to sequences that belong in the same cluster) in d2_cluster, (the 

algorithm used to cluster the whole-body index sequences) and found an upper limit for this 

error rate to be 0.4%. Applying the type I error rate in d2_cluster, reduces the 677 matching 

whole-body index sequences to 676 sequences that actually match 345 chromosome 22 

genes. This accounts for a 1.95 fold redundancy that is higher than our radiation hybrid 

mapping estimate of 1.04 fold. The discrepancy in the whole-body index2.35 redundancy 

values is a result of the absence of singletons in the mapping of RH marker data. Excluding 

the singletons from the indices that match chromosome 22 genes produces a 0.96 fold 

redundancy (677-349/345) that similar to the results obtained with the RH mapping data 

(Chapter 3 section 3.3).  

 

The whole-body index2.35 was searched against the chromosome 22 genomic sequence. A 

total of 2368 whole-body index sequences were identified with at least 93% identity and a 

minimum of 80% coverage across the length of the whole-body index consensus sequences. 

A subset of these sequences (1691 sequences) represented unique matches to the 

chromosome 22 genomic sequence that did not match any annotated regions of chromosome 

22 (Durham et al., 2000; http://www.sanger.ac.uk/cgibin/c_22genes.pl). The unique whole-

body index2.35 sequence matches were reduced from 1691 to 25 when compared to the 

updated chromosome 22 genomic sequence 

(ftp.sanger.ac.uk/pub/human/chr22/sequences/Chr_22/complete_sequence/Chr_22_19-05-

2000.masked.fa.gz). The high number of whole-body index sequence matches are consistent 

with previous reports of high gene density on chromosome 22 (Deloukas et al., 1998; 

Saccone et al., 1996). 

 

The 702 (677+25) whole-body index sequences that mapped to chromosome 22 allows for an 

estimation of the number of genes in the genome. Using an approach reported by Fiang et al. 

(2000); if we combine the measurement of redundancy for the whole-body index2.35 using 

RH markers and the multi-sequence cluster hits to the annotated genes on chromosome 22 
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(average 1.0-fold), then there is EST support for approximately 702 genes on chromosome 

22. Fiang et al. (2000) reported that approximately 54.8% of genes are represented by ESTs. 

Our data suggests that chromosome 22 contains as many as 1281 genes (100/54.8x702). 

Chromosome 22 is reported to represent 1.1% of the genome (Dunham et al., 1999) and is 

1.38-fold gene rich (Deloukas et al., 1998) that suggests that the genome could contain 

approximately 84387 genes (1281x(100/1.1)/1.38). A number of reports have been published 

where the total genes in the human genome has been as low as 35000 (Ewing and Green, 

2000) and as high as 140000 (Fiang et al., 2000). The discrepancy in gene numbers arises 

from the different approaches used by independent laboratories. Genes numbers derived from 

ESTs should be accepted with caution because the EST data represent a resource that is 

riddled with errors including unprocessed mRNA, low quality sequence and alternatively 

spliced genes.  

 

The international human genome consortium predicted a total of 30000-40000 genes after 

generating an international gene index (International Genome Consortium 2001). The 

international gene index was generated using ENSEMBL, RefSeq, SWISSPROT and Trembl 

and each of these genes are either protein computer predictions. The approach adopted taken 

by the international consortium does not take into account genes that are expressed at low 

levels or in rare tissues. These genes will be missing or under represented in mRNA 

databases and hard to detect by protein homology. Single-exon genes encoding small proteins 

may also be missed as it is difficult to distinguish them from genome contamination. These 

considerations could inflate the total number of genes predicted by the international 

consortium. On the other hand, the total number of genes predicted from the STACK gene 

index could be an overestimate based on the fragmentation of sequence data in the absence of 

mRNA and other full length sequences.  

 

Capturing alternate splicing events 

Alternative splicing is seen as a means of producing functionally diverse polypeptides from a 

single gene especially in vertebrates (Lopez et al., 1998). A range of reports have 

documented occurrence of alternative splicing. Prevalence figures range from 35-38% 

(Mironov et al., 1999; Brett et al., 2000; Croft et al., 2000). Using the whole-body index 2.35, 

11/25 (44%) of the known alternatively spliced genes on chromosome 22 were detected. 

Approximately 46% of the processed EST data matching the 25 alternatively spliced genes 

capture some form of alternate splicing namely, alternate donor/acceptor sites, exon skipping 
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and intron retention. This data represent a comparison against the known exon-intron 

boundaries documented in EMBL. These alternate splicing events may represent artifacts of 

incomplete mRNA processing as suggested by Wolfsberg and Landsman  (1997) who 

reported that approximately 1/5th of the EST database contains aberrant or incomplete 

mRNA.  

 

Alternative splicing is a key problem in clustering as it results in fragmentation of EST 

clusters especially in strict alignment-based algorithms (Fiang et al., 2000). The use of a non-

alignment based clustering system in STACK results in tolerance of variation in EST data 

and subsequent capture of alternative splicing events (Burke et al., 1999; Miller et al., 1999; 

Christoffels et al., 2001). This has been clearly demonstrated in the capture of three 

alternatively spliced genes that map to chromosome 22 (Figures 4.2-4.4). The use of error-

checking tools during STACK processing ensures that the gene variants are partitioned within 

a cluster of ESTs. It is interesting to note that each of the identified alternatively spliced 

genes was detected using assembled EST data. The advantage of an EST assembly is 

demonstrated by the wealth of information that can be extracted from the STACK cluster 

analysis records (Figures 4.2-4.4). 
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Summary: 

Progressive familial heart block1 (PFHB1) is a cardiac conduction disorder that 

has been mapped to chromosome 19q13.3. The release of chromosome 19 draft 

sequence (June 2000) included 36 BAC and cosmid clones (1184 fragments) 

spanning the PFHB1 locus for which there were no assemblies available. In an 

attempt to reduce the size of the PFHB1 disease locus and accelerate the 

identification of candidate genes, we (i) performed in-silico screening for 

microsatellites, (ii) assembled the 1184 genomic fragments and (iii) mapped 

expressed transcripts including STACK and BodyMap onto the assembled data. 

This work presents the integration of the genetic and physical maps for the 

PFHB1 locus, STACK and BodyMap transcripts, mouse developmental ESTs and 

RefSeq contigs. Potential novel microsatellites were identified in 29 out of 36 BAC 

and cosmid clones. PHRAP assembly reduced the 1184 chromosome 19 genomic 

fragments to 370 contigs and 874 singletons. The assemblies were annotated by 

mapping 119 STACK transcripts, 24 BodyMap transcripts, mouse ESTs and six 

RefSeq contigs. Seven positional candidates, previously shown to be expressed in 

heart tissue, have been identified including GLTSRC2, DKF2P761A179, Kaptin, 

T- elongation factor 4, nucleobindin, CGI-123 protein and CD37-antigen.  

 
5.1 Introduction 

During the last fifteen months we have witnessed accelerated sequencing of the human 

genome which has culminated in the release of draft sequence for 94% of the 24 individual 

human chromosomes (Genome Consortium 2001). The draft sequence provides a readily 

available resource that needs to be exploited, in tandem with wet-bench techniques, in order 

to accelerate the discovery of disease genes. The first steps in disease gene identification 

usually include genetic linkage analysis and fine mapping, which rely on the availability of 

an abundance of highly polymorphic markers (see section 5.1.2) spaced at relatively short 

intervals along the genome (reviewed in Keating 1992).  

 

5.1.1 Genetic linkage analysis 

Genetic linkage analysis facilitates the identification of the chromosomal location of a gene 

without any prior knowledge of its function. In order to map a disease gene, a search is 

undertaken for the co-inheritance of alleles at a specific genetic marker (see section 5.1.2 for 

an example) with the clinical phenotype of the disease within a family. The alleles at two loci 
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that are situated physically very close to each other tend to be co-inherited but as the distance 

between them increases, the creation of new combinations of alleles by recombination 

becomes more likely (Terwilliger and Ott 1994). Recombination occurs during meiosis when 

two homologous chromosomes line up on the spindle and exchange DNA segments by a 

process termed “crossing over”. Crossing over event occurs between precisely corresponding 

sequences, so that no base pairs are added to or lost from the recombinant chromosome. The 

probability of a recombination occurring between two loci is termed the “recombination 

fraction” (denoted θ) and ranges in value from 0.00 (for loci next to each other) to 0.5 (for 

unlinked loci situated either far apart or on different chromosomes). In linkage analysis a 

calculation is made for the probability of an observed association between the inheritance of a 

specific DNA marker allele and the presence of a phenotypic trait. A comparison is made 

between the probability that the observed distribution of alleles would arise under the 

hypothesis of linkage (i.e., 0.000 < θ < 0.5) to the probability that this distribution would 

occur randomly (i.e., θ = 0.5). The ratio of these two possibilities is the odds ratio (L). For 

convenience, L is converted to a decimal logarithm termed a lod score (“log of the odds”).  

 

The formula of the lod score (Z) is as follows: 

 Z(θ) = log10  L(0.00 < θ < 0.5) 

   L (θ = 0.5) 

 

Odds of more than 1000 to 1 (lod score of > 3) are necessary to prove significant evidence for 

linkage and odds of less than 1 to 100 (lod score of < -2.00) are sufficent to reject linkage. 

Lod scores between –2 and +3 are inconclusive (Terwillinger and Ott 1994).  

 

5.1.2 Microsatellite DNA markers 
In the past, human genetic markers included: (i) blood groups (Emery et al., 1969; Ghosh 

1977), (ii) electrophoretic mobility variants of serum proteins (Hill et al., 1975; Johnson et 

al., 1981), (iii) human leukocyte antigen (HLA) tissue types (Wastiaux et al., 1978), (iv) 

DNA restriction fragment length polymorphisms(RFLPs) (Donis-Keller et al., 1987), (v) 

DNA mini satellites (Jeffreys et al.,1985) and variable number tandem repeats (VNTRs) 

(Nakamura et al., 1987). However, the discovery of microsatellite DNA families (Weber and 

May 1989) together with the development of the polymerase chain reaction (PCR) (Saiki et 

al., 1985; Mullis and Faloona 1987) has made genetic linkage analysis more powerful and 

informative than was previously possible with RFLPs.  
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Microsatellite DNA families comprise tandem repeats that have repeating units of length 1-6 

base pairs, which are interspersed throughout the genome (Tórth et al., 2000). A class of 

dinucleotide repeats, designated (CA)n.(GT)n (hereafter referred to as CA) constitute one of 

the most abundant families of human repetitive DNA elements, accounting for 50,000-

100,000 stretches of repeats (Hamada 1982; Jeang 1983; Tautz 1984). CA repeats represent 

the most frequent simple sequence repeats found in the human genome and are interspersed 

every 30-60kb (Weber and May 1989; Beckman et al., 1992). CA repeats have been shown to 

be spaced at 5kb and 18 kb intervals on chromosome 21 and 22 respectively (Durham et al., 

1999; Hattori et al., 2000). Tautz (1989) demonstrated hypervariability in the length of CA 

repeats when he observed length polymorphisms for two loci in three generations of a family, 

where corresponding alleles showed a Mendelian pattern of inheritance. This length 

polymorphism was later exploited as a general source of polymorphic markers for genome 

mapping and linkage studies (Gyapay et al., 1994).  

 

Trinucleotide repeats, depending on the repeat class, are one to two orders of magnitude less 

frequent than CA repeats (Gastier et al., 1995). Database searches to estimate the distribution 

of trinucleotide repeats in the human genome have revealed that (AAT)n, (AAC)n and 

(AGC)n repeats are the most frequent in the human genome (Stallings 1994). Gastier et al. 

(1995) confirmed the abundance of (AAT)n and (AAC)n in the human genome but could not 

replicate the result for (AGC)n. Recently, (AAC)n repeats were shown to be the most 

frequent triplet repeat in mammalian introns (Tórth et al., 2000). Expansions of trinucleotide 

repeat length in the coding regions of genes are known to cause neurodegenerative diseases 

such as fragile X syndrome, Huntington's disease, myotonic dystrophy and spinocerebellar 

ataxia) (reviewed in Warren and Nelson 1993; Bates and Lehrach 1994; Reddy and Housman 

1997) and human cancers (Wooster et al., 1994; Arzimanoglou et al., 1998). 

 

Tetranucleotide repeats have been reported to be advantageous because they produce cleaner 

PCR amplification products than dinucleotide repeats and are more readily co-amplified 

(Gastier et al., 1995). Exons seldom contain tetranucleotide repeats and the intronic and 

intergenic regions of vertebrate genomes have been shown to contain more tetranucleotide 

repeats than trinucleotide repeats (Tórth et al., 2000). 
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Currently, numerous positional cloning projects are hampered by a lack of known 

polymorphic genetic markers situated within the disease gene critical interval. The detection 

of such markers could be used to (i) improve lod scores and (ii) identify recombination 

events, thereby narrowing the search area, and, ultimately, reducing the number of candidate 

genes to be screened. Traditional methods for the isolation and characterisation of 

microsatellites using molecular biology techniques have included southern blotting, in order 

to detect the genomic clone containing a di-, tri- or tetra-nucleotide repeat, followed by sub-

cloning and sequencing of the desired fragment. Primers are then, designed to the regions 

flanking the stretch of repeats and PCR amplification carried out on a group of unrelated 

individuals to test the marker's polymorphic information content (Christoffels A, thesis 1997; 

GenBank submissions: U89020, U89021, U89022, AF003935, U88960, G31336). Recently, 

an in-silico method for identifying tandem repeats has been described which paved the way 

for accelerating microsatellite detection (Benson et al., 1999). 

 

The generation of chromosome maps has included transcript maps for defined regions of 

human chromosomes (Wang et al., 1999; Hamshere et al., 2000; Lee et al., 2000) and 

mapping cDNA sequences for particular cell types, eg., skeletal muscle, onto a physical map 

(Pallavicini et al., 1997). These maps rely on radiation hybrid panels for their mapping, which 

allows for assignment of sequences to a region of about 1Mb. Recently, Hamshere et al. 

(2000) reported a kilobase resolution transcript map of a 10Mb region of the chromosome 19 

cosmid library together with an in-silico northern analysis of these transcripts. The region 

covered by this refined map covers at least nine human diseases, of which five are still 

unidentified namely; nonsyndromic deafness (Chen et al., 1995), retinitis pigmentosa locus 

(RP11) (McGee et al., 1997), isolated cardiac conduction disease (de Meeus et al., 1997), 

progressive familial heart block type 1 (PFHB1) (Brink 1997), nonsyndromic orofacial cleft 

malformation (Martinelli et al., 1998) and asthma susceptibility loci (Ober et al., 1998).  

 

PFHB1 is a cardiac conduction disorder that has been mapped to chromosome 19q13.3 in 

South African families (Brink et al., 1995). Recently, PFHB1 has been fine mapped to a 

region flanked by D19S606 and D19S866 that spans a genetic map distance of 4 

centimorgans (cM) (Arieff et al., 1999) (Figure 5.1). The limited number of known 

polymorphic markers in this region has hindered the fine mapping efforts to reduce the 

PFHB1 locus. Refining the region harboring the PFHB1 gene would reduce the selection of 

plausible candidate genes from a chromosome that has been reported to be particularly gene 
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rich (Ashworth et al., 1995). Identification of novel genes on chromosome 19 through 

annotation has been made possible through the availability of the completed first draft 

sequence for chromosome 19 (June 2000). An assembly of the draft sequence in the PFHB1 

region would provide the scaffold for annotation using processed ESTs, such as the STACK 

whole-body index (Miller et al., 1999; Christoffels et al., 2001).  

 

I report on the identification of potential novel microsatellite markers and the assembly of 

chromosome 19 draft sequences (release November 2000) across the PFHB1 disease-gene 

region. In addition, the chromosome 19 contigs were annotated using the STACK whole-

body index in order to identify candidate genes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 An ideogram of chromosome 19 depicting the position of the PFHB1 locus 
relative to microsatellite markers on 19q13.3. The PFHB1 locus is indicated by a double-
headed arrow. 
 

5.2 Methods 

All methods summarised below have been semi-automated as detailed in Appendix IV. 

5.2.1 Data acquisition 

The first completed draft sequence of chromosome 19 has been made available to the public 

through the Joint Genome Initiative (JGI) in the form of sequenced cosmid and BAC clones. 

A total of 1184 sequences, representing 23 BAC and 13 cosmid clones, spanning a 4Mb 

region harbouring the PFHB1 disease gene, on chromosome 19q13.3, were downloaded from 

the JGI ftp site (ftp://sawdoff.llnl.gov/pub/JGI_data/Human/Ch19). The header line for each 

FASTA record was transformed so that the BAC and cosmid names were captured. 

Standardisation of each record was essential for semi-automating the analysis of the PFHB1 

locus 

D19S606 
 
D19S596 
 
D19S879 
 
D19S604 
 
D19S866 

4 cM 
PFHB1 locus locus 

19q13.3 
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Sequences were masked for E. coli (ftp://ncbi.nlm.nih.gov/repository/genomes/ecoli) using 

cross_match (P.Green, unpublished, 

http://www.genome.washington.edu/uwgc/analysistools/swat.htm) prior to screening for 

tandem repeats. The E. coli masked sequences were then screened for other contaminating 

sequences such as vector, simple repeats, mitochondrial and ribosomal regions using 

RepeatMasker (Smit and Green 1999), prior to the PHRAP assembly.  

 

One hundred and sixteen chromosome 19 Refseq sequences (i.e., NCBI reference sequences) 

were retrieved from NCBI using the batch entrez system 

(http://www.ncbi.nlm.nih.gov/Entrez/batch.html). A total of six of the 116 Refseq sequences 

were mapped to the sequences that span the PFHB1 region. The six records were processed 

to remove sequences that do not lie within the PFHB1 region.  

 

5.2.2 Screening the BAC and cosmid fragments for tandem repeats 
Tandem Repeat Finder (TRF) (trf.irix.exe), a program designed to detect long stretches of 

tandem repeats (Benson 1999), was downloaded from http://c3.biomatch.mssm.edu/trf.html. 

All chromosome 19 sequences, masked for E.coli sequences, were screened for tandem 

repeats with a maximum period size of four.  

 

5.2.3 Detection of known microsatellites 
Four genetic markers are known to rivet onto five of the clones (D19S604 onto R29295; 

D19S596 onto R31763; D19S879 onto BC52309 and D19S866 onto BC61330/R28901) (S. 

Bardien-Kruger pers. comm.). These were used as positive controls to verify our in-silico 

screening for tandem repeats. The fragments containing the above-mentioned microsatellites 

were extracted from Entrez (http://www.ncbi.nlm.nih.gov/Entrez) and searched against the 

1184 sequences using est2genome (Mott 1997) to confirm that they were present only in the 

five clones described. The clones harbouring the above-mentioned microsatellites were 

compared with the in-silico identified tandem repeats to confirm the accuracy of TRF. 

 

5.2.4 Genomic sequence assembly of the PFHB1 disease-gene region 
The masked chromosome 19 sequences were assembled using PHRAP (P.Green, 

unpublished, http://www.genome.washington.edu/uwgc/analysistools/phrap.htm) with the 

implementation of the default PHRAP parameters. The data represented in the “ace” (phrap 

output file) file was parsed in order to determine the sequence membership of each contig. 
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5.2.5. Annotating the PHRAP contigs and singletons 

The contigs and singletons generated by PHRAP (hereafter referred to as phrap contigs and 

singleton contigs, respectively) were searched against the stack whole-body index2.35 using 

BLASTN with a score of 1e-40. The matching stack consensus sequences were searched 

against a protein non-redundant database (27 April 2000) and a DNA non-redundant database 

(7 July 2000). 

 

BodyMap (http://bodymap.ims.u-tokyo.ac.jp) represents a database of expression profiles of 

human and mouse genes, known and novel, in various tissues. Approximately 18,000 

transcripts were downloaded (release 27 November 2000; http://bodymap.ims.u-

tokyo.ac.jp/datasets/gs_seq.all), together with gene expression information for each of the 

Bodymap transcripts (http://bodymap.ims.u-tokyo.ac.jp/datasets/gene_tissue_matrix). The 

Bodymap transcripts were searched against the PHRAP contigs using BLASTN to identify 

gene expression information pertaining to the matching coding portions of the PHRAP 

contigs. 

 

A total of 110,000 mouse ESTs were obtained from the National Institute of Aging of the 

National Institutes of Health, and used to identify mouse genes that show similarity to the 

phrap contigs. The mouse ESTs were used as a blast database and each phrap contig was 

searched against the mouse database using BLASTN.  

 

5.3 Results 

5.3.1 Identification of tandem repeat regions using Tandem Repeat Finder 

Tandem repeats (di, tri and tetra nucleotides) were identified in 29 out of the 36 BAC and 

cosmid clones (Figure 5.2). A detailed list of the in-silico identified tandem repeats can be 

viewed at http://ziggy.sanbi.ac.za/alan/TandemRepeats.html.  

 
5.3.2 PHRAP assembly of chromosome 19 data 
The screening for contaminating sequences resulted in the removal of 150 out of the 1188 

chromosome 19 fragments that were masked across most of its length barring 10 nucleotides. 

A total of 118 sequences of the 1188 sequences contained E.coli contamination and 

represented 23 BAC/cosmid clones. Twenty six out of 118 sequences were masked across the 

entire length of the sequence for E.coli contamination. Eleven of the 23 E. coli-containing 
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BAC/cosmid clones were “finished” phase sequences and contained a stretch of E.coli 

sequences ranging from 24-119 bases. The presence of E. coli contamination was not 

unexpected, given the disclaimer by genome centers that their draft sequences have not been 

cleaned from contaminating sequences (FTP site at http://www.jgi.doe.gov/JGI_home.html). 

 

The phrap assembly of 1038 fragments was condensed into 313 contigs and 528 singletons. 

The contigs represent (i) overlapping fragments from adjacent clones (14), (ii) overlapping 

fragments from clones that do not map adjacent to each other (errors) (62), (iii) overlapping 

sequences within the same clone (35) and (iv) PHRAP generated singletons that represent 

high quality bases (202) (Figure 5.2). 

 

5.3.3 Annotation of the PHRAP assemblies 

One hundred and ninety one stack whole-body index sequences matched 243 phrap contigs. 

A total of 34/191 stack consensus sequences showed heart tissue expression. A total of 113 

stack sequences showed significant similarity to genes in the non-redundant DNA database 

(Table 5.1, Figure 5.3). A search of the protein database identified significant hits for 53/191 

stack sequences (Table 5.2). 

 

Twenty-four BodyMap transcripts were identified with significant similarity to 13 PFHB 

contigs. A total of 20 out of the 24 BodyMap transcripts showed gene expression in portions 

of the heart (Table 5.3). Fifty-two mouse EST matched nine PFHB1 contigs (Table 5.4). 
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Figure 5.2 Diagram illustrating the position of identified tandem repeats and PHRAP assembled 
chromosome 19 fragments relative to the ordered chromosome19 BAC/cosmid clones. 
From top to bottom, LLNL clone names are prefixed with “BC”, “R” or “F”. The number of fragments 
corresponding to each clone are indicated in brackets and precedes the JGI clone names. The JGI clones that 
represent finished phase sequence are indicated by bold text. All the “finished” clones are represented by one 
sequence. Vertical dotted lines indicate the clones that were used to produce the assembled data (horizontal 
bars). PHRAP assembly produced overlapping fragments between adjacent clones (long horizontal bars). The 
multiple sequences corresponding to the draft clones were assembled into non-overlapping contigs (short 
horizotal bars). Di-, tri- and tetra- repeats were found in most of the clones and indicated by circles, triangles 
and squares, respectively. 
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Figure 5.3 Diagram integrating the positions of genes, STACK sequences (grey vertical bars), BodyMap 
transcripts, RefSeq sequences (black vertical bars) and mouse ESTs relative to the chromosome 19q13.3 
BAC/cosmid mapped clones and known microsatellites. Seven genes that demonstrate heart expression are 
indicated by bold text. The arrows point a collection of genes to one clone 
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Table 5.1 Summary table for stack consensus sequence hits to PHRAP contigs and hits for 
stack sequences to the DNA non-redundant database. BLASTN scores for the PHRAP 
contigs in square brackets. STACK sequences with heart expression are indicated in bold 
font. 
 
Phrap Contigs 
[BLASTN exp 
score for best hit 
to stack 
consensus 
sequences] 

STACK 
ID (stack 
sequences 
matching 
the phrap 
contigs) 

BLASTN results for STACK sequences matching a DNA non-redundant 
database 
(DNA non-redundant database 7 July 2000) 

Exp score 
(1e-40 
cutoff) 

Contig175[1e-68] 463864     Homo sapiens chromosome 19 clone LLNLR-254A7, complete sequence 6e-69 
Contig137[1e-
157] 

3274       Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 1e-158 

Contig229[7e-56] 13325      Homo sapiens CD37 antigen (CD37) mRNA 3e-66 
Contig229[3e-67] 13323      Homo sapiens CD37 antigen (CD37) mRNA 1e-122 
Contig229[5e-66] 13322      Homo sapiens CD37 antigen (CD37) mRNA 0.0 
Contig68[3e-80] 122914_1   Human dehydroepiandrosterone sulfotransferase (STD) gene, exon 6 and 

complete cds 
5e-80 

Contig66[1e-99] 
Contig68[1e-139] 
Contig69[5e-67] 

122914_2   Human sulfotransferase-related mRNA sequence 0.0 

Contig290[1e-
128] 
Contig137[1e-
127] 

115913_1   Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 1e-128 

Contig137[1e-
106] 

122927     Homo sapiens sulfotransferase family 2B, member 1 (SULT2B1) mRNA 0.0 

Contig68[1e-133] 122921     Human dehydroepiandrosterone sulfotransferase (STD) gene, exon 6 and 
complete cds 

1e-133 

Contig307[0.0] 141012_2   Homo sapiens mRNA; cDNA DKFZp564O0463 (from clone 
DKFZp564O0463); partial cds 

0.0 

Contig290[1e-
108] 
Contig137[1e-
107] 

22725      Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 1e-108 

Contig290[0.0] 
Contig137[0.0] 

22723      Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 0.0 

Contig137[1e-47] 12023      Homo sapiens ribosomal protein L18 (RPL18) mRNA 1e-71 
Contig290[0.0] 
Contig137[0.0] 

2036       Homo sapiens ataxin-7 (SCA7) gene, partial cds 0.0 

Contig137[6e-50] 12003      Homo sapiens ribosomal protein L18 (RPL18) mRNA 1e-83 
Contig137[1e-78] 12014      Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 2e-79 
Contig137[1e-41] 12019      Homo sapiens ribosomal protein L18 (RPL18) mRNA 7e-77 
Contig180[1e-
148] 

22110      Homo sapiens mRNA; cDNA DKFZp547L134 (from clone DKFZp547L134); 
complete cds 

0.0 

Contig293[0.0] 52299      Expression vector Ad5CMV-p53 tumor suppressor protein p53 (p53) 
expression cassette, complete sequence 

0.0 

Contig288[0.0] 32320      Homo sapiens inward rectifier potassium channel (KIR2.4), mRNA 0.0 
Contig74[3e-72] 162300     Homo sapiens CaBP3 (CABP3) mRNA, complete cds 1e-163 
Contig288[1e-
123] 

32319      Homo sapiens inward rectifier potassium channel (KIR2.4), mRNA 1e-123 

Contig229[1e-
130] 

13320_1    Homo sapiens CD37 antigen (CD37) mRNA 1e-94 

Contig229[1e-
134] 

13320_2    Homo sapiens CD37 antigen (CD37) mRNA 7e-97 

Contig229[7e-96] 121013_3   H.sapiens mRNA for TEF-4 protein 1e-135 
Contig137[7e-65] 12002      Homo sapiens ribosomal protein L18 (RPL18) mRNA 0.0 
Contig270[7e-89] 113526_2   Homo sapiens protein tyrosine phosphatase, receptor type, H (PTPRH) mRNA 0.0 
Contig265[3e-56] 51811      Homo sapiens protein arginine N-methyltransferase 1 (HRMT1L2) gene, 

complete cds, alternatively spliced 
6e-51 

Contig180[1e-
151] 

139723_1   Homo sapiens activating transcription factor 5 (ATF5), mRNA 1e-168 

Contig180[0.0] 139723_3   Homo sapiens activating transcription factor 5 (ATF5), mRNA 0.0 
Contig227[1e-
134] 

71906      Homo sapiens mRNA; cDNA DKFZp434D2472 (from clone 
DKFZp434D2472); partial cds 

1e-128 

Contig265[1e- 51797      Homo sapiens protein arginine N-methyltransferase 1 (HRMT1L2) gene, 1e-111 
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111] complete cds, alternatively spliced 
Contig290[2e-78] 
Contig137[5e-78] 

211147     Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 6e-79 

Contig212[1e-92] 140634     Homo sapiens glioma tumor suppressor candidate region protein 2 
(GLTSCR2) mRNA, complete cds 

0.0 

Contig250[0.0] 
Contig173[1e-
146] 

140137_5   Homo sapiens mRNA for KIAA0955 protein, complete cds 0.0 

Contig173[3e-91] 140137_1   Homo sapiens mRNA for KIAA0955 protein, complete cds 1e-173 
Contig250[1e-
179] 

140137_2   Homo sapiens mRNA for KIAA0955 protein, complete cds 1e-179 

Contig229[4e-51] 150584     Homo sapiens CD37 antigen (CD37) mRNA 1e-117 
Contig75[2e-49] 100115     Human steroid hormone receptor Ner-I mRNA, complete cds 1e-103 
Contig137[0.0] 30163      Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 0.0 
Contig175[3e-82] 410148     Homo sapiens chromosome 19 clone LLNLR-254A7, complete sequence 9e-83 
Contig273[1e-
111] 
Contig98[1e-103] 

130208     H.sapiens CpG island DNA genomic Mse1 fragment, clone 54d4, reverse read 
cpg54d4.rt1a 

1e-65 

Contig180[3e-57] 50265      Homo sapiens VRK3 mRNA for vaccinia related kinase 3, complete cds 0.0 
Contig254[1e-
133] 

140137_6   Homo sapiens mRNA for KIAA0955 protein, complete cds 1e-105 

Contig99[0.0] 
Contig103[8e-70] 
Contig141[1e-
101] 

160574     Homo sapiens kaptin (actin-binding protein) (KPTN), mRNA 0.0 

Contig267[1e-77] 133446_3   Homo sapiens nucleobindin 1 (NUCB1), mRNA 0.0 
Contig137[4e-57] 277407     Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 5e-58 
Contig288[0.0] 47458      Homo sapiens inward rectifier potassium channel (KIR2.4), mRNA 0.0 
Contig137[1e-90] 467531     Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 5e-90 
Contig79[1e-179] 27762      Homo sapiens mRNA; cDNA DKFZp761A179 (from clone 

DKFZp761A179); partial cds 
1e-179 

Contig9[6e-56] 107099     Homo sapiens aspartyl protease 3 mRNA, partial cds 4e-56 
Contig75[9e-55] 107097     Homo sapiens aspartyl protease 4 mRNA, complete cds 9e-56 
Contig75[6e-59] 107103     Homo sapiens aspartyl protease 4 mRNA, complete cds 2e-64 
Contig267[6e-86] 133446_4   Homo sapiens nucleobindin 1 (NUCB1), mRNA 0.0 
Contig75[6e-96] 100056_1   Human steroid hormone receptor Ner-I mRNA, complete cds 1e-126 
Contig75[0.0] 100056_2   Human steroid hormone receptor Ner-I mRNA, complete cds 0.0 
Contig62[1e-131] 156637     Homo sapiens cone rod homeobox protein (CRX) gene, complete cds 1e-131 
Contig56[1e-102] 166737     human STS SHGC-30732           1e-154 
Contig79[1e-156] 276003     Homo sapiens mRNA; cDNA DKFZp761A179 (from clone 

DKFZp761A179); partial cds 
1e-156 

Contig180[0.0] 26212      human STS WI-15269             0.0 
Contig290[0.0] 
Contig137[0.0] 

16371      Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 0.0 

Contig44[1e-53] 
Contig90[1e-44] 

56389      Homo sapiens CGI-123 protein mRNA, complete cds 0.0 

Contig180[0.0] 128364_1   Homo sapiens nucleoporin 62kD (NUP62), mRNA 0.0 
Contig180[0.0] 128364_3   Homo sapiens mRNA; cDNA DKFZp547L134 (from clone DKFZp547L134); 

complete cds 
0.0 

Contig180[0.0] 128364_2   Homo sapiens mRNA; cDNA DKFZp547L134 (from clone DKFZp547L134); 
complete cds 

0.0 

Contig298[0.0] 95925      Homo sapiens mRNA for KIAA1141 protein, partial cds 0.0 
Contig29[0.0] 5955       human STS WI-14126             0.0 
Contig41[1e-48] 
Contig56[3e-61] 

145671     Homo sapiens CaBP5 (CABP5) mRNA, complete cds 1e-140 

Contig251[4e-55] 
Contig75[3e-54] 

85686      Homo sapiens polymerase (DNA directed), delta 1, catalytic subunit (125kD) 
(POLD1) mRNA 

0.0 

Contig62[1e-167] 35740      Homo sapiens cone rod homeobox protein (CRX) gene, complete cds 1e-166 
Contig265[1e-
135] 

5024       Homo sapiens protein arginine N-methyltransferase 1 (HRMT1L2) gene, 
complete cds, alternatively spliced 

3e-67 

Contig211[1e-
163] 

315281     Homo sapiens cDNA FLJ10922 fis, clone OVARC1000420 1e-160 

Contig266[0.0] 
Contig274[8e-66] 
Contig278[0.0] 
Contig123[2e-65] 
Contig282[7e-44] 
Contig34[7e-52] 

137874_2   Homo sapiens mRNA for KIAA1087 protein, partial cds 0.0 

Contig214[1e-
105] 

134410     H.sapiens Spi-B mRNA           0.0 

Contig29[7e-46] 84599      Homo sapiens branched chain aminotransferase 2, mitochondrial (BCAT2) 
mRNA 

1e-101 

Contig180[3e-66] 164712     Homo sapiens sialic acid binding Ig-like lectin 5 (SIGLEC5), mRNA 0.0 
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Contig59[4e-55] 64091      Rattus rattus K+ channel protein (KSHIIIA3) mRNA, complete cds 7e-87 
Contig59[1e-73] 64099      Human Chromosome 11p14.3 PAC clone pDJ1082L12 containing KNCN1 

and MyoD, complete sequence [Homo sapiens] 
0.0 

Contig59[1e-58] 64105      Homo sapiens potassium voltage-gated channel, Shaw-related subfamily, 
member 4 (KCNC4) mRNA 

1e-142 

Contig59[6e-42] 64103      Homo sapiens potassium voltage-gated channel, Shaw-related subfamily, 
member 4 (KCNC4) mRNA 

1e-152 

Contig137[0.0] 174327     Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 0.0 
Contig242[2e-83] 97440_7    Homo sapiens monocyte/macrophage Ig-related receptor MIR-7 (MIR cl-7) 

mRNA, complete cds 
0.0 

Contig242[1e-
147] 

97440_6    Homo sapiens monocyte/macrophage Ig-related receptor MIR-10 (MIR cl-10) 
mRNA, complete cds 

0.0 

Contig9[6e-56] 
Contig75[1e-173] 

107089_1   Homo sapiens napsin A mRNA, complete cds 1e-172 

Contig9[2e-71] 
Contig75[1e-172] 

107089_2   Homo sapiens napsin A mRNA, complete cds 0.0 

Contig9[1e-159] 
Contig75[2e-61] 

107089_3   Homo sapiens aspartyl protease 3 mRNA, partial cds 0.0 

Contig288[2e-82] 113290_2   Human cytohesin-2 mRNA, complete cds 0.0 
Contig175[0.0] 149850     Homo sapiens chromosome 19 clone LLNLR-254A7, complete sequence 0.0 
Contig298[0.0] 95099_1    Homo sapiens mRNA; cDNA DKFZp434N043 (from clone 

DKFZp434N043); partial cds 
0.0 

Contig298[0.0] 95099_2    Homo sapiens mRNA; cDNA DKFZp434N043 (from clone 
DKFZp434N043); partial cds 

0.0 

Contig173[1e-56] 129590     Homo sapiens mRNA for KIAA0955 protein, complete cds 1e-131 
Contig290[1e-
163] 
Contig137[4e-54] 

79654      Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 1e-163 

Contig137[2e-43] 149711     Homo sapiens chromosome 19 clone LLNLR-221E8, complete sequence 7e-96 
Contig76[2e-53] 49728      Homo sapiens cDNA FLJ10922 fis, clone OVARC1000420 1e-115 
Contig62[2e-43] 159738     human STS SHGC-31437           5e-44 
Contig180[4e-53] 139726     Homo sapiens activating transcription factor 5 (ATF5), mRNA 2e-54 
Contig81[3e-65] 69719      Homo sapiens ligase I, DNA, ATP-dependent (LIG1) mRNA 2e-69 
Contig53[0.0] 
Contig302[0.0] 

69718      Homo sapiens ligase I, DNA, ATP-dependent (LIG1) mRNA 0.0 

Contig180[2e-61] 139722     Homo sapiens activating transcription factor 5 (ATF5), mRNA 9e-63 
Contig229[9e-74] 279757     Homo sapiens CD37 antigen (CD37) mRNA 8e-74 
Contig265[0.0] 51794_3    Homo sapiens protein arginine N-methyltransferase 1 (HRMT1L2) gene, 

complete cds, alternatively spliced 
0.0 

Contig265[1e-80] 51794_2    Homo sapiens HMT1 (hnRNP methyltransferase, S. cerevisiae)-like 2 
(HRMT1L2) mRNA 

0.0 

Contig85[5e-60] 
Contig89[8e-74] 
Contig18[2e-53] 
Contig91[0.0] 
Contig60[1e-159] 
Contig70[3e-50] 

159569     Homo sapiens phospholipase A2, group IVC (cytosolic, calcium-independent) 
(PLA2G4C) mRNA, and translated products 

0.0 

Contig211[0.0] 38481      Homo sapiens cDNA FLJ10922 fis, clone OVARC1000420 0.0 
Contig211[0.0] 38482      Homo sapiens cDNA FLJ10922 fis, clone OVARC1000420 0.0 
Contig265[1e-
115] 

48756      Homo sapiens protein arginine N-methyltransferase 1 (HRMT1L2) gene, 
complete cds, alternatively spliced 

1e-115 

Contig288[0.0] 148393     Homo sapiens inward rectifier potassium channel (KIR2.4), mRNA 0.0 
Contig180[2e-55] 128384     Homo sapiens mRNA; cDNA DKFZp547L134 (from clone DKFZp547L134); 

complete cds 
5e-57 

Contig273[3e-73] 77580_1    Homo sapiens N-ethylmaleimide-sensitive factor attachment protein, alpha 
(NAPA), mRNA 

2e-71 

Contig239[0.0] 77580_3    Homo sapiens N-ethylmaleimide-sensitive factor attachment protein, alpha 
(NAPA), mRNA 

9e-81 

Contig273[9e-64] 77580_2    Homo sapiens N-ethylmaleimide-sensitive factor attachment protein, alpha 
(NAPA), mRNA 

1e-117 
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Table 5.2 Summary table for stack consensus sequence hits to phrap contigs and hits for 
stack sequences to the protein non-redundant database. BLASTX scores for the phrap contigs 
in square brackets. STACK sequences with heart expression are indicated in bold font. 
 
Phrap Contigs 
[BLASTX exp 
score for best hit 
to stack 
consensus 
sequences] 

STACK ID 
(stack 
sequences 
matching 
the phrap 
contigs ) 

BLASTX results 
(Protein non-redundant database 27April2000) 

Exp 
score 
(1e-20 
cutoff) 

Contig137[1e-157] 3274       (AK000207) unnamed protein product [Homo sapiens] 2e-36 
Contig229[5e-66] 13322      CD37 antigen sp|P11049|CD37_HUMAN LEUKOCYTE ANTIGEN CD37  1e-22 
Contig66[1e-99] 
Contig68[1e-139] 
Contig69[5e-67] 

122914_2   ALCOHOL SULFOTRANSFERASE (HYDROXYSTEROID 
SULFOTRANSFERASE) (HST)  

1e-159 

Contig290[1e-128] 
Contig137[1e-127] 

115913_1   DNA-binding protein TAXREB302 - human T-cell lymphotropic virus type 1e-27 

Contig137[1e-106] 122927     (U92322) hydroxysteroid sulfotransferase SULT2B1a [Homo sapiens] 1e-165 
Contig307[0.0] 141012_2   transposase - Escherichia coli insertion sequence IS10 gb|AAB28848.1| 

(S67119)  
0.0 

Contig137[6e-50] 12003      ribosomal protein L18 sp|Q07020|RL18_HUMAN 60S  6e-26 
Contig137[1e-41] 12019      ribosomal protein L18 sp|Q07020|RL18_HUMAN 60S  7e-22 
Contig293[0.0] 52299      (X01405) p53 [Homo sapiens]    2e-72 
Contig288[0.0] 32320      inward rectifier potassium channel gb|AAD51376.1|AF081466_1 (AF081466)  2e-50 
Contig74[3e-72] 162300     (AF224511) Ca2+-binding protein CaBP3  8e-34 
Contig288[1e-123] 32319      (AJ003065) Kir2.4 protein [Rattus norvegicus] 1e-42 
Contig229[7e-96] 121013_3   TEA domain family member 2 sp|P48301|TEF4_MOUSE 

TRANSCRIPTIONAL ENHANCER FACTOR TEF-4  
4e-54 

Contig137[7e-65] 12002      ribosomal protein L18 sp|Q07020|RL18_HUMAN 60S  1e-104 
Contig270[7e-89] 113526_2   protein tyrosine phosphatase, receptor type, H pir||A49724 protein-tyrosine-

phosphatase  
0.0 

Contig212[1e-92] 140634     (AF182076) glioma tumor suppressor candidate region protein 2  2e-65 
Contig250[0.0] 
Contig173[1e-146] 

140137_5   (AB023172) KIAA0955 protein  0.0 

Contig173[3e-91] 140137_1   (AB023172) KIAA0955 protein  8e-59 
Contig180[3e-57] 50265      (AB031052) vaccinia related kinase 3  2e-67 
Contig99[0.0] 
Contig103[8e-70] 
Contig141[1e-101] 

160574     kaptin (actin-binding protein) gb|AAD39358.1|AF105369_1 (AF105369)  0.0 

Contig267[1e-77] 133446_3   nucleobindin 1 sp|Q02818|NUBN_HUMAN NUCLEOBINDIN PRECURSOR 
(NUCB1) gb|AAB60431.1| (U31342 

1e-107 

Contig79[1e-179] 27762      (AL137451) hypothetical protein  7e-63 
Contig9[6e-56] 107099     (AF200344) aspartyl protease 3  1e-24 
Contig75[6e-59] 107103     pronapsin A precursor sp|O96009|NAP1_HUMAN NAPSIN 1 PRECURSOR  6e-35 
Contig267[6e-86] 133446_4   nucleobindin 1 sp|Q02818|NUBN_HUMAN NUCLEOBINDIN PRECURSOR 

(NUCB1) gb|AAB60431.1| 
0.0 

Contig75[0.0] 100056_2   OXYSTEROLS RECEPTOR LXR-BETA (LIVER X RECEPTOR BETA) 
gb|AAA61783.1| (U07132)  

1e-157 

Contig307[1e-100] 106641     (AB022023) nonmuscle myosin heavy chain B [Bos taurus] 2e-60 
Contig79[1e-156] 276003     (AL137451) hypothetical protein  9e-27 
Contig44[1e-53] 
Contig90[1e-44] 

56389      ring finger protein 11 (AB024427) Sid1669p [Mus musculus] 1e-71 

Contig180[0.0] 128364_1   nucleoporin 62kD sp|P37198|NU62_HUMAN NUCLEAR PORE 
GLYCOPROTEIN P62 (X58521 

1e-152 

Contig180[0.0] 128364_3   nucleoporin p62 - human emb|CAB82399.1| (AL162061) hypothetical protein  3e-68 
Contig180[0.0] 128364_2   nucleoporin p62 - human emb|CAB82399.1| (AL162061) hypothetical protein  3e-22 
Contig251[4e-55] 
Contig75[3e-54] 

85686      DNA-directed DNA polymerase delta - human gb|AAA35768.1| (M81735)  2e-81 

Contig266[0.0] 
Contig274[8e-66] 
Contig278[0.0] 
Contig123[2e-65] 
Contig282[7e-44] 
Contig34[7e-52] 

137874_2   (AB029010) KIAA1087 protein [Homo sapiens] 0.0 

Contig214[1e-105] 134410     TRANSCRIPTION FACTOR SPI-B pir||S25655 Spi-B protein - human 
emb|CAA46878.1| (X66079)  

1e-128 

Contig29[7e-46] 84599      branched chain aminotransferase 2, mitochondrial 
sp|O15382|BCAM_HUMAN  

4e-31 

Contig180[3e-66] 164712     sialic acid binding Ig-like lectin 5 gb|AAB70703.1| (U71383)  0.0 
Contig59[4e-55] 64091      VOLTAGE-GATED POTASSIUM CHANNEL PROTEIN KV3.2 (KSHIIIA) 4e-32 
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gb|AAA41819.1| (M59211) potassium channel Kv3.2b [Rattus norvegicus] 
gb|AAA42143.1| (M84203)  

Contig59[1e-73] 64099      potassium channel gene 1  (alternative splicng product described in Luneau et 
al 1991) sp|P25122|CIKD_RAT VOLTAGE-GATED POTASSIUM 
CHANNEL PROTEIN KV3.1 (KV4) (NGK2) (RAW2) gb|AAA41501.1| 
(M68880)  

5e-82 

Contig59[1e-58] 64105      potassium voltage-gated channel, Shaw-related subfamily, member 4 
sp|Q03721|CIKG_HUMAN VOLTAGE-GATED POTASSIUM CHANNEL 
PROTEIN KV3.4 (KSHIIIC) gb|AAA57263.1| (M64676) 

3e-23 

Contig242[2e-83] 97440_7    (AF004230) MIR-7 [Homo sapiens] 0.0 
Contig242[1e-147] 97440_6    (AF009637) immunoglobulin-like transcript 5 protein [Homo sapiens] 1e-130 
Contig9[6e-56] 
Contig75[1e-173] 

107089_1   pronapsin A precursor sp|O96009|NAP1_HUMAN NAPSIN 1 PRECURSOR 
(NAPSIN A) (NAPA) (TA01/TA02) gb|AAD04917.1| (AF090386)  

6e-58 

Contig9[2e-71] 
Contig75[1e-172] 

107089_2   pronapsin A precursor sp|O96009|NAP1_HUMAN NAPSIN 1 PRECURSOR 
(NAPSIN A) (NAPA) (TA01/TA02) gb|AAD04917.1| (AF090386) napsin A  

0.0 

Contig9[1e-159] 
Contig75[2e-61] 

107089_3   pronapsin A precursor sp|O96009|NAP1_HUMAN NAPSIN 1 PRECURSOR 
(NAPSIN A) (NAPA) (TA01/TA02) gb|AAD04917.1| (AF090386)  

0.0 

Contig288[2e-82] 113290_2   (U70728) cytohesin-2 [Homo sapiens] 1e-167 
Contig298[0.0] 95099_2    hypothetical protein DKFZp434N043.1 - human (fragment) emb|CAB45736.1| 

(AL080143) hypothetical protein  
0.0 

Contig173[1e-56] 129590     (AB023172) KIAA0955 protein  8e-41 
Contig53[0.0] 
Contig302[0.0] 

69718      DNA ligase I sp|P18858|DNL1_HUMAN DNA LIGASE I gb|AAA59518.1| 
(M36067)  

4e-66 

Contig265[1e-80] 51794_2    (AF232716) protein arginine N-methyltransferase 1 [Mus musculus] 3e-64 
Contig85[5e-60] 
Contig89[8e-74] 
Contig18[2e-53] 
Contig91[0.0] 
Contig60[1e-159] 
Contig70[3e-50] 

159569     phospholipase A2, group IVC (cytosolic) gb|AAC32823.1| (AF058921) 
cytosolic phospholipase A2-gamma  

0.0 
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Table 5.3 Tissue expression information for all BodyMap accessions that match the PFHB1 contigs 
 

Expression information associated with each BodyMap accession 
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GS006399 CITB-E1_2639E6#46          X X X        X  
GS002424 pfhb_seq.Contig75  X   X   X  X X X  X X     X  
GS011545 pfhb_seq.Contig265  X   X   X  X X X  X X    X X  
GS008226 CITB-H1_2226J19#22  X   X  X X  X X X  X X    X X  
GS014942 pfhb_seq.Contig211  X   X  X X  X X X   X    X X X 
GS001092 pfhb_seq.Contig290  X   X  X X X X X X  X X  X  X X X 
GS007122 pfhb_seq.Contig91  X   X  X X X X X X  X X  X  X X X 
GS013452 pfhb_seq.Contig180     X  X X X X X X  X X X X  X  X 
GS014638 pfhb_seq.Contig301  X   X X X X X X X X X X X X X  X X X 
GS014840 CITB-E1_2545M3#49  X   X X X X X X X X X X X X X  X X X 
GS002554 pfhb_seq.Contig68  X   X X X X X X X X X X X X X  X X X 
GS004097 pfhb_seq.Contig288  X  X X X X X X X X X X X X X X  X X X 
GS012255 pfhb_seq.Contig290  X X X X X X X X X X X X X X X X  X X X 
GS012484 pfhb_seq.Contig290  X X X X X X X X X X X X X X X X X X X X 
GS013737 pfhb_seq.Contig99 X X X X X X X X X X X X X X X X X X X X X 
GS014545 CITB-E1_2545M3#43 X X X X X X X X X X X X X X X X X X X X X 
GS014861 CITB-E1_2545M3#43 X X X X X X X X X X X X X X X X X X X X X 
GS016292 Pfhb_seq.Contig75 X X X X X X X X X X X X X X X X X X X X X 
GS016649 Pfhb_seq.Contig68 X X X X X X X X X X X X X X X X X X X X X 
GS016976 CITB-E1_3148I10#31 X X X X X X X X X X X X X X X X X X X X X 
GS017113 Pfhb_seq.Contig239 X X X X X X X X X X X X X X X X X X X X X 
GS018542 CITB-E1_2639E6#46 X X X X X X X X X X X X X X X X X X X X X 
GS018674 Pfhb_seq.Contig137 X X X X X X X X X X X X X X X X X X X X X 
GS020663 CITB-E1_2639E6#46 X X X X X X X X X X X X X X X X X X X X X 

 



 152

 
Table 5.4 Significant similarity hits to a non-redundant DNA database for mouse ESTs that 
match to the PFHB1 contigs. 
 
Mouse ID PFHB contig BLASTN non-redundant DNA search (27th April 2000) Exp. 

score 
H3057G10-5 pfhb_seq.Contig288 gi|3885502|gb|AF079971.1|AF079971 Mus musculus 

cytohesin-2 mRNA, 
0.0 

H3057G10-3 pfhb_seq.Contig288 gi|3885502|gb|AF079971.1|AF079971 Mus musculus 
cytohesin-2 mRNA, 

0.0 

H3057H11-5 pfhb_seq.Contig75 gi|6678506|ref|NM_009473.1|| Mus musculus nuclear 
receptor 

0.0 

H3057H11-3 pfhb_seq.Contig75 gi|6678506|ref|NM_009473.1|| Mus musculus nuclear 
receptor subfamily 

0.0 

L0032D11-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

C0628E12-3 CITB-E1_2545M3#47 gi|438133|emb|Z21848.1|MMDPDCS M.musculus mRNA for 
DNA-polymerase 

0.0 

K0633C12-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

L0547B12-3 CITB-E1_3148I10#30 gi|6678392|ref|NM_009406.1|| Mus musculus troponin I, 
cardiac 

0.0 

L0507C10-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

e-167 

L0526A11-3 CITB-E1_3148I10#30 gi|6678392|ref|NM_009406.1|| Mus musculus troponin I, 
cardiac 

0.0 

L0800A10-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

K0342D07-3 CITB-E1_2545M3#47 gi|438133|emb|Z21848.1|MMDPDCS M.musculus mRNA for 
DNA-polymerase 

0.0 

L0213G08-3 CITB-E1_2545M3#47 gi|438133|emb|Z21848.1|MMDPDCS M.musculus mRNA for 
DNA-polymerase 

0.0 

L0292F04-3 pfhb_seq.Contig180 gi|558040|gb|S71575.1|S71575 ADS39 [mice, DDS, 
androgen-dependent 

0.0 

C0285H02-3 CITB-E1_2545M3#47 gi|438133|emb|Z21848.1|MMDPDCS M.musculus mRNA for 
DNA-polymerase 

0.0 

C0254F01-3 pfhb_seq.Contig180 gi|558040|gb|S71575.1|S71575 ADS39 [mice, DDS, 
androgen-dependent 

0.0 

C0359E09-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

C0183A05-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

G0112F05-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

C0100E02-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

C0114F03-3 pfhb_seq.Contig180 gi|558040|gb|S71575.1|S71575 ADS39 [mice, DDS, 
androgen-dependent 

0.0 

C0196D01-3 CIT978SKB_33G10#59 gi|6754695|ref|NM_010798.1|| Mus musculus macrophage 
migration 

0.0 

H3116G01-5 pfhb_seq.Contig180 gi|236260|gb|S59342.1|S59342 nuclear pore complex 
glycoprotein p62 

0.0 

H3004H06-5 pfhb_seq.Contig265 gi|7141327|gb|AF232717.1|AF232717 Mus musculus protein 
arginine 

0.0 

H3004H06-3 pfhb_seq.Contig265 gi|7141327|gb|AF232717.1|AF232717 Mus musculus protein 
arginine 

0.0 

L0030G06-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

H3098E07-5 pfhb_seq.Contig307 gi|6752235|emb|AL133224.2|CNS01DU9 Human 0.0 
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chromosome 14 DNA sequence *** 
H3019C07-5 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 

factor-induced 
0.0 

H3019C07-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

C0029D04-5 pfhb_seq.Contig265 gi|7141327|gb|AF232717.1|AF232717 Mus musculus protein 
arginine 

0.0 

H3075C01-3 CITB-E1_2545M3#47 gi|438133|emb|Z21848.1|MMDPDCS M.musculus mRNA for 
DNA-polymerase 

0.0 

C0674E08-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

K0647D06-3 pfhb_seq.Contig180 gi|558040|gb|S71575.1|S71575 ADS39 [mice, DDS, 
androgen-dependent 

0.0 

C0653F07-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

C0602C04-3 pfhb_seq.Contig75 gi|6678506|ref|NM_009473.1|| Mus musculus nuclear 
receptor subfamily 

0.0 

C0666D05-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

C0674C05-3 CITB-E1_2545M3#47 gi|438133|emb|Z21848.1|MMDPDCS M.musculus mRNA for 
DNA-polymerase 

0.0 

C0651E01-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

L0604G01-3 CITB-E1_3148I10#30 gi|6678392|ref|NM_009406.1|| Mus musculus troponin I, 
cardiac 

0.0 

L0508F07-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

L0531E04-3 CITB-E1_3148I10#30 gi|6678392|ref|NM_009406.1|| Mus musculus troponin I, 
cardiac 

e-152 

L0506A05-3 CITB-E1_3148I10#30 gi|6678392|ref|NM_009406.1|| Mus musculus troponin I, 
cardiac 

0.0 

L0509D02-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

L0549B03-3 CITB-E1_3148I10#30 gi|6678392|ref|NM_009406.1|| Mus musculus troponin I, 
cardiac 

0.0 

J0543C01-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

e-177 

L0506A01-3 CITB-E1_3148I10#30 gi|6678392|ref|NM_009406.1|| Mus musculus troponin I, 
cardiac 

0.0 

H0520A01-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

e-121 

L0538C01-3 CITB-E1_3148I10#30 gi|6678392|ref|NM_009406.1|| Mus musculus troponin I, 
cardiac 

0.0 

C0459F06-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

0.0 

L0405E03-3 CIT978SKB_33G10#59 gi|193641|gb|L02913.1|MUSGROEARA Mouse growth 
factor-induced 

e-169 

C0932C01-3 CITB-E1_3148I10#30 gi|6678392|ref|NM_009406.1|| Mus musculus troponin I, 
cardiac 

0.0 
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Table 5.5 Summary of candidate genes identified through annotation of STACK transcripts 
that were mapped to the PFHB1 disease locus. 
 

Candidate genes classified by functional classes 
  
Enzymes 
Napsin A (proteinase) 
Sulfotransferase 
SULT2B1 
LIG1 (ligase) 
phospholipase A2 
Aspartyl protease 3-4 
HRMT1L2 (methyl transferase) 
POLD1 (DNA polymerase 

Unknown mRNA 
KIAA1087 
GLTSCR2 
KIAA0955 
FLJ10922 
DKF2P547434 
DKF2P761A179 
DKF2P434D2492 
 

  
Transcription Factors 
Activating transcription factor 5 (ATF-5) 
T- elongation factor 4 (TEF-4) 
Cone rod homeobox gene (CRX) 
Spi-B (expressed in lymphoid cells) 

Binding proteins 
Calcium binding protein (CABP3-5) 
KAPTIN (KPTN, actin-binding) 
nucleobindin (NUCB1) 
CGI-123 protein 

  
Channels 
Rat potassium channel 
Nucleoporin 
 

Receptors 
Steroid receptor (Ner1) 
Phospho-tyrosine phospho- 
tase receptor H2 (PTPRH2) 

  
Immune system 
CD37-antigen 
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5.4 Discussion 
Tandem Repeats 

The informativeness of the tandem repeats increases with increasing average number of 

repeats (Weber 1990). The polymorphic information content (PIC) is used as a measure of 

the variability/informativeness for a microsatellite and is reported between 0 and 1.0 

(Strachan and Read 1997). Weber (1990) reported that tandem repeats as short as 10 

repeating units and lower had PIC values of zero whereas tandem repeating units of 24 and 

greater had PIC values as high as 0.8. Therefore, in the present study, a minimum of 12 

repeating units was used for the screening of the chromosome 19 BAC/cosmid fragments. 

Tandem repeats were identified in 29 out of 36 BAC/cosmid clones. The length of the 

identified tandem repeats ranged between 12 and 58 for di-nucleotides, 16-76 for tri-

nucleotides and 8-171 for tetra-nucleotides. Draft phase sequence accounts for 19 out of the 

29 clones for which tandem repeats were identified. The remainder ten clones represent 

finished phase sequence therefore represent an accurate, valuable source of potential novel 

microsatellites for saturating the PFHB1 disease-gene region. 

 

PHRAP assembly 
The draft and finish phase sequence for chromosome 19 has not been free of E. coli 

contamination and users are warned about the quality of the sequence data when accessing 

the JGI ftp site (http://www.jgi.doe.gov). One hundred and eighteen out of the 1184 

BAC/cosmid fragments contained some form of E. coli contamination. These E. coli-

containing sequences accounted for 11 BAC/cosmid clones that were classified as “finished 

phase” clones by the sequence center. Masking across the entire sequence length of a 

chromosome 19 fragment occurred for 12.6% of the sequences.  

 

The remainder of the sequences were assembled into 310 contigs and 874 singletons. The 36 

BAC/cosmid clones across the PFHB1 locus represent overlapping clones (Ashworth pers. 

comm). The absence of overlapping contigs across the entire PFHB1 locus together with the 

large amount of singletons suggest that the draft sequence for the PFHB1 locus is incomplete.  

 

Four reference sequences have been generated for the PFHB1 region but on closer 

examination it is clear that a number of gaps exists in these reference sequence data (Figure 

3). The combined PHRAP assembly and reference sequences (NCBI 14th January 2001) 

represent the most complete status on the sequence coverage for the PFHB1 region. 
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Chromosome 19 has been reported to be a rich source of repeats (Ashworth et al., 1995; 

Puttagunta et al., 2000; Ashworth pers. comm). The prevalence of repeats was observed with 

the erroneous assembly of 57 contigs. The reference sequences obtained from NCBI had to 

be further processed to remove any genomic segments that did not follow the same order as 

that which appears on the chromosome 19 map at LLNL. For example, NT_011157 shows 

clone CTB-33G10 (AC011495) followed by a portion of clone CTD-2560K21 (AC008743). 

This chromosome map order is incorrect as there at least 9 other clones placed between CTb-

33G10 and CTD-2560K21 (Figure 5.3).  

 

The recent publication of the draft sequence for the human genome has documented the 

assembly process using the GigAssembler (Genome Consortium 2001). GigAssembler has 

been used at the Santa Cruz Genome Center to assemble each of the human chromosome 

genomic sequence fragments (http://genome.ucsc.edu/). An assembly of chromosome 19 

using the GigAssembler has generated a reference sequence interspersed with regions of 

unknown nucleotides (i.e., stretches of N’s). This illustrates the gaps that have yet to be filled 

in the chromosome 19 sequencing effort at JGI. However, the chromosome 19 scaffold 

generated at the Santa Cruz Genome Center has been integrated with EST and mRNA data 

available for chromosome 19 and represent a framework on which to validate the assembly 

across the PFHB1 region. 

 

Candidate genes 

PFHB1 is a cardiac conduction disorder probably of the bundle of His and the bundle 

branches (Brink  and Torrington 1977; Brink et al., 1995). Clinical features of PFHB1 

include right bundle branch block, and/or left anterior hemiblock and complete heart block. 

Evidence suggests that familial bundle branch diseases similar to PFHB1 do occur, although 

identified under different names (Mosetti 1954; Trivella et al., 1960; Steenkamp et al., 1973; 

Vallianos et al., 1974; Stephan 1979 and van der Merwe 1988). The identification of genes 

that are expressed in the conduction system would provide plausible candidates for PFHB1. 

Recently, Nguyên-Tran et al. (2000) elucidated a novel genetic pathway for sudden cardiac 

death via defects in the transition between ventricular and conduction system cell lineages. 

Using a knockin of lacZ into the endogenous HF1-b locus, Nguyên-Tran et al. (2000) 

demonstrated that HF1-b displayed a restricted pattern of expression within the ventricular 

chamber and was preferentially expressed in conduction system lineages, including the 
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atrioventricular (AV) node, atrioventricular  ring, branching bundles in the interventricular 

node and the distal His-Purkinje fibres. HF1-b deficient mice displayed an increased 

incidence of postnatal mortality. The sudden death of HF1-b mutant mice was examined 

using implanted radio telemetry to monitor electrocardiographical data from wild type and 

mutant mice. No arrhythmias or conduction abnormalities were observed in the wild type 

mice. However, conduction defects were observed in the mutant mice that indicated 

physiological dysfunction at all levels of the conduction system including, ie., sino-atrial 

node and AV node, His bundle and the distal Purkinje fibres. HF1-b and genes involved in 

the HF1-b-associated pathway therefore serves as plausible candidate genes for conduction 

disorders based on the anatomical localisation of HF1-b and its association with 

malfunctioning of the conduction system. 

 

A search for the human homolog of HF-1b was performed in the SWISSPROT protein 

database, where the map position of the HF1-b encoding gene is recorded as chromosome 7. 

No genes similar to the HF-1b were identified in the BAC/cosmid fragments that map to the 

PFHB1 region. The absence of overlapping fragments covering the PFHB1 region suggests 

that a thorough screen of chromosome 19 BAC and cosmid libraries at the wetbench is 

essential for determining the presence or absence of an HF-1b-like transcription factor within 

the PFHB1 locus. Additional evidence that warrants the investigation of transcription factors 

as causative agents for PFHB1 has been provided recently by Jimenez-Sanchez et al. (2001). 

In this study, Jimenez-Sanchez et al (2001) compared phenotypes of known diseases to their 

corresponding disease genes and found that, for a subset of 1000 genes, autosomal dominant 

diseases were associated with genes that encode transcription factors. 

 

The connexin family represent candidate genes that have not been examined in this study. 

Increasing evidence support the role for altered connexin distribution in arrhythmogenesis 

(Kirchoff et al., 1998; Simon et al., 1998; van der Velden et al., 1998). Connexin 40 (Cx-40) 

has been shown to be a sensitive marker for central and peripheral conduction system in the 

murine heart (Gourdie et al., 1993; Delorme et al., 1995). Nguyên-Tran et al. (2000) 

demonstrated distinct differences in the cellular distribution of Cx-40-containing gap 

junctional plaques between wild type mice compared to HF1-b mutant mice, particularly in 

the distal Purkinje cells. In addition, the distribution of Cx-40 within the cells themselves was 

altered in the HF1-b mutant hearts. Normally Cx-40 is redistributed from the cytosol to the 
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cell membrane during early postnatal development representing formation of functional gap 

junction plaques at the cell membrane (Litchenberg et al., 2000). HF1-b mutant mice showed 

significantly fewer Cx40-positive staining at the cell borders and more random distribution of 

Cx-40 compared to wildtype mice. Future studies in search for the PFHB1 causative gene 

should include the screening for connexin genes. 

 

The zinc finger protein family (ZFP) contains many of the currently known transcription 

factors (Dai and Liew 1999).  Seven types of ZFPs have been described in a human heart 

EST database (Dai and Liew 1998). The function of most ZFPs have not been completely 

characterised but some have been implicated in cardiac developmental or pathological 

processes (Molkentin et al., 1994, 1997, 1998; Hasegawa et al., 1997; Dai and Liew 1998; 

Margolin et al., 1994; Witzgall et al., 1994; Vissing et al., 1995; Mendelsohn et al., 1994; 

Arber et al., 1997). Dai and Liew (1999) reported on the enrichment of chromosome 19 for 

ZFP-encoding genes and mapped a total of 6 out of 126 cardiovascular-based ZFPs 

(cvbZFPs) to chromosome 19p (Dai and Liew 1999; GenBank: R98367, X82125, U52096, 

M99593, U37263 and M63625). However, none of the six chromosome 19 ZFP genes 

showed identity to the chromosome 19 BAC/cosmid fragments when screened with SIM4 

(data not shown). The absence of similar ZFP genes from the PFHB1 region does not exclude 

them as candidates because the region covered by the BAC/cosmid sequenced clones is 

incomplete. Stronger supporting evidence for ZFPs as candidate genes by position as well as 

function could be saught after by probing BAC/cosmid libraries using the six chromosome 19 

ZFPs as probes.  

 

Kaptin (KPTN), glioma tumor suppressor candidate region protein 2 (GLTSCR2), 

KIAA0955, transcriptional enhancer factor (TEF-4), CD37, nucleobindin1, Steroid hormone 

receptor Ner1, cyclic AMP-dependent transcription factor (ATP5), aspartyl protease 3 and 4 

and protein tyrosine phosphatase receptor type H (PTPRH) were identified through stack 

consensus sequence BLAST searches of the DNA non-redundant database. Seven of the 11 

genes mentioned above show identity to heart expressed sequences in STACK (bold text 

Figure 5.3). Kaptin, an actin-binding protein, was isolated originally from platelets and 

recently localised to the tips of elongating stereocilium found in the embryonic inner ear and 

correspond to sites of actin polymeristaion (Brearer and Abraham 1999). Additional evidence 

is required to exclude this gene as a plausible candidate, including absence of expression in 

cardiac tissue. 
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Twenty-four BodyMap transcripts had significant identity with the PFHB1 genome 

fragments and twenty of the twenty-four BodyMap transcripts code for genes that are 

expressed in the heart (Table 5.4). 

 

In summary, this work-in-progress presents a list of STACK consensus sequences, BodyMap 

transcripts, mouse ESTs and known genes that have been extracted and placed relative to the 

BAC/cosmid clones and the genetic markers. The integration of information, in this study, 

from a range of resources provide the platform for further study in order to reduce the PFHB1 

candidate gene list. Functional assignments of the identified candidate transcripts provide an 

immediate way forward in reducing the PFHB1 candidate genes. 
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CONCLUDING REMARKS 
 
 

The primary goals of this dissertation were the generation of a human gene index and its 

application to disease candidate gene discovery. Preliminary work on the STACK database 

circumvented the problem of large sequence data sets and limited algorithms  by producing a 

tissue partitioned database of processed ESTs. However, the generation of a STACK human 

gene index required the ability to cluster as many as 500,000sequences, within a limited time 

frame. To this end, chapter 2 reports the successful porting of D2_CLUSTER to the 

Origin2000 architecture and the modifications made to the code in order to accelerate EST 

clustering on multiple processors. Modifications included (1) a restart capability that allowed 

the clustering procedure to be restarted at the same point at which it was interrupted, (2) the 

ability to break the work into a number of pieces such that each piece processes more 

sequences and each successive piece uses less time, and (3) the ability to make the database 

available to each of the processors in order to enhance the speed performance. The modified 

version of D2_CLUSTER was used successfully to cluster 490,293 sequences on 128 CPU 

R12000 300 MHZ Origin2000 in 31 hours. D2_CLUSTER  performs redundant tasks that 

need to be addressed for future implementations of the code. For example, a database of 

sequences is read into memory as a compressed file and each sequence has to be 

uncompressed before the wordsizes are calculated. Once the d2 comparisons are completed, 

the sequences are compressed again with the result that each sequence is uncompressed 

multiple times. Future improvements to D2_CLUSTER should attempt to calculate the 

wordsizes on the compressed database. Alternately, the step of uncompressing the database 

can be circumvented by reading in the sequences directly from the FASTA file. The addition 

of ESTs to an existing STACK database requires minimal processing time in order to cope 

with demands of an exponential increase in the release of EST data. The time taken to 

generate a new release of STACK can be reduced by not clustering sequences that have been 

processed in a previous release. Functionality could be built into D2_CLUSTER so that each 

sequence comparison is only done on sequences that have not processed before (i.e., some 

mechanism needs to be put in place that tracks an "old" cluster membership). 

 

A hierarchical approach was used to generate the STACK gene index. ESTs were partitioned 

into arbitrary tissue categories and clustered using high performance computing resources. 

Consensus sequences were generated using inhouse tools and these sequences were used to 
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generate a whole-body index. The tools used to generate the STACK reconstructed 

transcripts capture alternative splicing events (Miller et al., 1999; Christoffels et al., 2001). 

The exponential increase of EST data in GenBank requires rapid processing in order to 

ensure the STACK database remains current. To this end, I have implemented a 

STACK_ADD protocol that incorporates new sequences to an existing database and ensures 

that sequences are not processed more than once. This STACK_ADD implementation was 

tested on UniGene build #106.  

 

STACK development represents a work-in-progress. Future development of STACK focuses 

on linking the underlying data more firmly to biological processes and making the resultant 

information accessible to a widening range of users. Protein predictions from transcript 

isoforms and cross-references to known protein records will allow for association with 

standardised anntations such as gene ontology (http://www.geneontology.org). 

 

The implementation of STACK, as described in this thesis does not keep track of clusterIDs 

from one release to the next i.e., new clusters are generated for each release of STACK. 

Organisationally, STACK will make increasing use of the relational database architecture to 

enhance data access. This will pave the way for maintenance of clusterIDs, or links to new 

clusterIDs from release to release. Entrez-styled querying capabilities are needed to allow for 

(i) access to specialised subsets of the STACK database, (ii) identification of isoforms based 

on phyiscal or developmental expression states and (iii) locating entries based on physical 

location within the genome. The above-mentioned functionality should accelerate gene 

candidate discovery and provide an enhancement on the methodolgy described in chapter 

five.  

 

The STACK technology (STACK_PACK) represent a distributable clustering system and 

management tool set that can be applied to any genome project. The ongoing development of 

a visualisation tool for STACK-processed transcripts will be distributed with the 

STACK_PACK tools. 

 

Progressive familial heart block1 
Chapter five details an approach for reducing the PFHB1 disease locus and accelerating the 

identification of candidate genes. A three-fold approach was undertaken namely, (a) in-silico 

screening for microsatellites, (b) assembly of the 1184 chromosome 19 genomic fragments 
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mapping to the PFHB1 locus and (c) mapping expressed transcripts including STACK and 

BodyMap onto the assembled data. The successful in-silico detection of tandem repeats, 

which are potential microsatellite markers, in genome data represent a means of integrating 

the genetic and physical maps for an unidentified disease gene. The in-silico identified 

tandem repeats are in excess of 12 repeating units and therefore potential polymorphic and 

justify further analyses in the laboratory for their informativeness as microsatellites. A 

plausible approach includes the design of primers that will allow for the PCR amplification of 

these loci in a panel of unrelated individuals to test the variability of the amplified alleles. 

Expression information and sequence coverage were integrated from resources such as 

STACK and BodyMap transcripts, mouse developmental ESTs and RefSeq contigs. Seven 

positional candidates, previously shown to be expressed in heart tissue, have been identified: 

GLTSRC2, DKF2P761A179, Kaptin, T- elongation factor 4, nucleobindin, CGI-123 protein 

and CD37-antigen. In addition, a list of unidentified transcripts were mapped to the PFHB1 

locus. Functional assignment of the mapped transcripts is required to prioritise the disease 

candidate gene list. For example, tools such as Interpro (http://www.ebi.ac.uk/interpro) 

provide automation for an ongoing assessment of the functional classes represented by the 

PFHB1 candidate transcripts. 

 

The Santa Cruz Genome Center has generated assemblies for each of the human chromosome 

genome sequence fragments (http://genome.ucsc.edu/, Genome Consortium 2001). The 

chromosome 19 scaffold generated at the Santa Cruz Genome Center has been integrated 

with EST and mRNA data available for chromosome 19 and represents a framework on 

which to validate the assembly across the PFHB1 region. For example, PFHB1 flanking 

markers could be mapped on the Santa Cruz assembled chromosome 19 genome sequence 

using ePCR. The ePCR mapped segment should be extracted and assembled with the JGI 

assemblies generated in chapter five. Memory constraints for PHRAP will require the 

generation of overlapping fragments of the 4Mb region extracted from the Santa Cruz data.  
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Appendix I (Chapter 2) 
 
Protocol for using the supercomputers at the National Center for Supercompting 
Applications (NCSA) 
 
1.1 Commands on the NCSA machine (modi4) 

The history of a job “bhist -l jobnumber”  

set the number (##) of processors on a machine “setenv MP_SET_NUMTHREADS ##” 

 

1.2 batch script for modi4 

#!/bin/sh 

#BSUB -M 6g  '164MBx32' 

#BSUB -n 32   'processors' 

#BSUB -c 1536:00  'time 48hours x32' 

#BSUB -o brain.out  'outfile' 

#BSUB -N   '' 

#BSUB -J brain  'job name' 

limit 

limit stacksize 200000 

cd /scratch/$USER 

/bin/rm -r brain 

mkdir brain 

cd brain 

msscmd cd d2_cluster, get brain.out.gz 

gunzip brain.out.gz 

mkdir clusters 

touch fastafiles 

echo "brain.out" >> fastafiles 

echo " clustering started at " >& brain.log 

date >>  brain.log 

enc_db brain.out 

setenv MP_SET_NUMTHREADS 32 

d2_cluster 6 ./brain.out 0.96 50 150 1 0 1 

post_proc 
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tar cvf brain_cluster.tar clusters 

gzip brain_cluster.tar 

mv brain_cluster.tar.gz /scratch-modi4/n8644 

tail \20 /var/adm/SYSLOG >> brain.log 

 

1.3 batch script for CRAY/SGI machine (eg., arctic and flurry) 

#QSUB -r name_of_job 

#QSUB -s /bin/csh 

#QSUB -o 

#QSUB - eye.log 

#QSUB -l mpp_p =4 

#QSUB -lT 7200 -lt 7200 

#QSUB -j eye.joblog 

#QSUB -lM 800Mb -lm 800Mb 

#QSUB -mb 

#QSUB -me 

#QSUB -mu alan@sanbi.ac.za 

cd $QSUB_WORKDIR 

setenv MP_SET_NUMTHREADS 4 

 

1.4 commands on arctic 

qstat -f cpu1_unl | egrep -i "stack|mem" 

qstat -u  name  "list the queues used by 'name'" 

ps -flu   "status of jobs in the queue" 
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1.5 Queues on arctic 

NQE queues on arctic are listed using the qstat command. 

Queue Name CPU_limit Time_limit Memory_limit Off/On 
cpu1_unl_1.5Gb 1 Unlimited 1.5Gb  
cpu1_6hr 1 6hr unlimited Off 
cpu1_unl 1 Unlimited Unlimited Off 
cpu4_unl_1Gb 4 Unlimited 1Gb  
cpu4_6hr 4 6hr Umlimited  
cpu4_unl 4 Unlimited unlimited Off 
cpu16_6hr 16 6hr Unlimited  
cpu16_24hr_1Gb 16 24hr 1Gb  
cpu16_24hr 16 24hr unlimited  
cpu16_unl_1Gb 16 Unlimited 1Gb  
cpu16_unl 16  Unlimited Unlimited Off 
cpu32_6hr 32 6hr unlimited  
cpu32_24h_500Mb 32 24hr 500Mb  
cpu32_24hr 32 24hr unlimited  
cpu32_unl_500Mb 32 Unlimited 500Mb  
cpu32_unl 32 Unlimited Unlimited Off 
cpu64_24hr 64 24hr Unlimited Off 
cpu64_unl 64 Unlimited Unlimited  
 

A list of queues are provided with information such as "STS=on", "TOT =0" and "LIMIT=1". 

STS indicates whether a queue is open for use. "TOT" indicates the number of jobs present in 

a specific queue and "LIMIT" indicates the maximum jobs that can be submitted for a queue.  

 

1.6 Description of a D2_CLUSTER CLUSTER_TABLE 

The syntax of the CLUSTER TABLE is one line per sequence in the database. Each line 

contains five columns namely; SEQ, MEMB, LINK, ORIENT and NEW. 

(i) SEQ refers to the sequence number ranging from 0 to N. 

(ii) MEMB is an integer indicating cluster membership. If it is equal to -1, then the sequence 

was too short to be evaluated.  

(iii)LINK is an integer that gives identity of another sequence in that cluster by having a low 

score with the current sequence. If LINK equal -1 (and MEMB is not equal to -1), then 

this sequence is the last in the cluster. The entire membership of a given cluster can be 

found by following LINK numbers. 

(iv) ORIENT is a product of three integers. The orientation of the current i j pair (1 for i j; -1 

for i rev j where rev j denotes the complement of sequence j), the orientation of i with its 



 175

current LINK sequence and the orientation of j with its current LINK sequence). ORIENT 

can be either 1 or -1 and i and j denote sequence numbers. 

(v) NEW means nothing. It is always equal to zero. 

 

For example,  

  

SEQ MEM LINK ORIENT NEW 
0 -1 -1 1 0 
1 -1 -1 1 0 
2 2 8 1 0 
3 3 9 -1 0 
4 4 -1 1 0 
5 3 -1 -1 0 
6 2 -1 1 0 
7 3 5 1 0 
8 2 6 -1 0 
9 3 7 -1 0 

 

There are three clusters originating with three sequences: 2, 3, and 4. The clusters are (i) 2, 8 and 6 (ii) 3, 9, 7 

and 5, and (iii) 4. Sequence 0 and 1 were too short. 
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Appendix II (Chapter3) 

Protocols developed for generating a STACK human gene index and its visualisation on 

the world wide web 

Scripts written for this project are indicated in bold. 

 
Running D2_CLUSTER 
make a "clusters directory for d2 output 
#mkdir clusters 
 
set num of processors 
#setenv MP_SET_NUMTHREADS ## 
 
convert input file to binary 
#enc_db inputfile 
 
d2_cluster [wordsize] [inputseq] [%similarity] [minseqlen] [windowsize] [revcomp] [restart] 
[replicate database] 
#d2_cluster 6 ./inputseqs 0.96 100 150 1 0 1 
=>output at this stage is a CLUSTER_TABLE (5 column matrix showing the relationships 
between sequences 
 
extract FASTA files using the CLUSTER_TABLE 
#post_proc 
 
 
ADD_schema 
Remove sequences that are shorter than 50bases 
#removeShortseq.pl newsequence_file > newseq 
 
Comparison of old and new data 
compare the present database consensus sequences against the 
new data set using crossmatch. 
#cross_match database.seq newseq -masklevel 101 > crossmatch.log 
 
extract all the matching entry names from the crossmatch output 
#parse_cross_match2.pl [crossmatch.log] [newseq] [tissue] [cutoff] 
=>output files are  
crossed -> list of stackIDs vs newsequence IDs 
cross.parsed-> list of newsequence IDs vs all the matching stackIDs 
 
All newsequence IDs that share stackIDs are merged with the stackIDs 
through a process of transitive closure. 
#MatchSequence cross.parsed > newclusterlist 
 
Remove traces of the old data that is now expanded by the new 
Copy the old database directory to a working directory (eg., /work/) 
change directory to /work/tissue/ 
use the stackIDs inthe crossmatch output to remove all affected clusters 
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from the tissue.contiglist, all.* files, gde directory and the crawlog 
#destackFASTA_SINGLES.pl [crossed] [tissue] [oldcontiglist] 
=>output 
destack.contiglist -> contains only those clusters not affected 
fasta and singles directories of all unaffected clusters. 
new gde directory of all unaffected clusters 
new crawfile called crawfile.new 
 
Expanded clusters are collapsed 
Collapse the consensus sequences within the expanded clusters to their constituent ESTs so 
that the assembly step can begin. At the same timewe make a lookup table of the mRNA 
sequences to that we can add them. 
Each stack consensus sequence is replaced with the ESTs in the gde file 
#stackCollapsed.pl -u unigenefasta singletonfasta outdir tissue 
=>output 
the FASTA formatted cluster files are saved in the outdir. 
 
PHRAP assembly 
assemble the sequences in the 'outdir'. 
#runphrap.pl outdir outdir.contig_set 
=>alignments are saved in 'outdir.contig_set'. These assemblies have 
to be analysed by the stack_pack system and appended to the old 
data.  
 
copy the above assemblies to the working directory 
#cp outdir.contig_set /work/tissue/ 
#../stack.bin/contiglist outdir.contig_set > outdir.contiglist 
 
STACK_PACK 
run contigproc4.pl  
#../stack.bin/contigproc4.pl tissue outdir.contiglist > tissue.cp_log 
 
append this contiglist to the contiglist of all the clusters that 
remained unchange after the addition of new sequences 
#cat outdir.contiglist >> destack.contiglist 
#mv destack.contiglist tissue.contiglist 
 
run contigclone,clustlink,join and finish.pl. These are run from the shell script (cpj.sh). 
#cd /work/ 
#./stack.bin/indexcpj.sh tissue tissue > tissue.log  
 
 
Need to add the LIBRARY field. 
UniGene library information 
extract the library information from the unigene datafile (Hs.data) 
#extractUGexpression.pl Hs.data > unigentissue 
=>output 
file containing Hs IDs and tissue names 
 
 



 178

GenBank EST library information 
print a list of ESTs with its clone libraries using the raw est file 
#extractLibrary.pl [estfile] > tissuelist 
 
Integrating library info onto headerline 
#printOriginalLibrary.pl -l tissuelist -t unigentissue -u unigeneACC -s seqfile 
where -> -l will create a hashtable of the stack EST accessions 
  -> -L will create a hashtable of ETSs vs library info 
  -> -t create a hashtable of UniGene clusterIDs and tissues 
  -> -u create a hashtable of UniGene accessions (Hs### or GenBank) 
  -> -s FASTA formatted file of stack consensus sequences 
=>output 
seqfile.originTissue ->contain a LIBRARY field with original library 
Once all the hashtables have been written to disk you can just run the  
script on each of the all.* files. 
eg., printOriginalLibrary.pl -s all.fasta 
:mv all.fasta.originTissue all.fasta 
:mv all.fasta_link_duplicates.originTissue all.fasta_link_duplicates 
:mv all.singles.originTissue all.singles 
:mv all.singles_link_duplicates.originTissue all.singles_link_duplicates 
 
Addition of Radiation hybrid mapping information 
#cat all.* > totalseq 
#mv totalseq /data4/alan/EPCR/ 
#cd /data4/alan/EPCR/ 
#/data9/alan/EPCR/bin/sgi/e-PCR /data9/alan/EPCR/db/genemap99.sts totalseq > 
totalseq.genemap 
 
The ePCR output represents a list of stackIDs vs RH markers.  
#processEPCR.pl totalseq.genemap genemap 
=>output 
stackMarkerlist.genemap ->list of each stackID and its corresponding RH markers 
bogusmap.genemap     -> list of stackIDs with different RH markers 
markerERRORS.genemap -> list of RH markers that map to two clusters (these stack clusters 
are mostly phrap-fragments) 
statistics.genemap   -> gives the summary of the mapping information (this includes; total 
hits, unique RHmarkers, unique clusters, mapping errors 
 
The mapping info gets incorporated into the FASTA records 
#addMap.pl [stackMarkerlist] [FASTA seq] .... 
=>output 
FASTAfile.new -> contains a MAP field after the library field. 
#mv FASTAfile.new FASTAfile 
 
Determine the orientation of all clusters(3/5 prime or end-not-spec) 
cluster data (eg., all.* files) 
#countOrientation.pl -l clonelist -s stack_fasta_file(eg., all.fasta) 
where -> -l creates a list of accession vs orientation 
 -s seq file such as all.fasta 
=>output 
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stack_fasta_file.stat containing a list of each clusterID and its orientation (3-PRIME, 5-
PRIME or end-not-spec) 
#grep "3-PRIME" stack_fasta_file.stat | wc -l 
#grep "5-PRIME" stack_fasta_file.stat | wc -l 
#grep "end-not-spec" stack_fasta_file.stat | wc -l 
 
linked fasta file 
use the all.fasta_link_duplicate.stat and all.singles_link_duplicate.stat 
files to find out what the orientation is of the linked clusters 
# linkdirection.pl [file.stat] link_tissue.fasta > outfile 
=>output 
outfile contains a list of linked entries with their orientation 
 
Make the data ready for the BLAST web-interface 
make file blastable for blast1 (only blast1 webinterface ready) 
#cat all.fasta all.singles and link_tissue.fasta > researchINDEX.seq 
 
The X's in the sequence causes problems for blast1 so I replace then with N's 
#replaceX.pl researchINDEX.seq > newfile 
#mv newfile researchINDEX.seq 
 
#pressdb researchINDEX.seq 
=>output 
researchINDEX.seq.csq 
researchINDEX.seq.nhd 
researchINDEX.seq.ntb 
 
Web interface 
http://ziggy.sanbi.ac.za/alan/researchINDEX.html is stored in 
/var/www/htdocs/alan/researchINDEX.html 
 
This html page calls the cgi-script (/var/www/cgi-bin/researchINDEX.pl) 
 
researchINDEX.pl uses a configuration file called (/usr/local/lib/blast_search/research-
config.pl) 
This script sets the blastdatabase location to "/data4/blast" 
It also sets the lookup for the blastable file to "'researchINDEX' =>  
'researchINDEX.seq' 
 
researchINDEX.pl calls an extract script (stackextract_AGC.cgi) to pull out the stack 
consensus sequences. The extraction process needs two files (index.clonecluster.tab and 
index.clonelink.tab) 
#cloneCluster_tabINDEX.pl all.fasta* > index.clonecluster.tab 
#cloneLink_tabINDEX.pl index.link.table > index.clonelink.tab 
 
create an indexing file for researchINDEX.seq 
#index researchINDEX.seq 
=>output 
researchINDEX.seq.ndx 
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stackextractINDEX.cgi is called from within the stackextract_AGC.cgi.  
 
researchINDEX.pl returns a webpage that has created links on_the_fly to the 
stackextract_AGC.cgi. Each stackID in the blast output can be clicked on and the 
stackextract_AGC.cgi sets up a webpage with links to each EST and the consensus sequence 
and UniGene links. The consensus link is executed by stackextractINDEX.cgi. 
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Appendix III (Chapter4) 
 
Protocols developed for mapping STACK transcripts to the human genome 
Scripts written for this project are indicated in bold. 

 
Find novel genes on chr22 using STACK gene index 
download the chr22 gene table from http://www.sanger.ac.uk/cgi-bin/c22_genes_table.pl 
save the table as text 
extract the start and stop positions and then accessions and 
save it in three files (genes, predicted and pseudogenes) 
foreach table { 
 run printPseudogene.pl [seqfile] [genetable] 
 sequences are saved in a directory for each table 
} 
cat all sequences in a dir using : 
#/data4/alan/bin/MRNA/cat_long_list.pl [dir] [outfile] 
 
formatdb -i above_outfile -p F 
search the index against this database. 
#blastall -p BLASTN -d aboveoutfile -i stackindex -e 1e-40 -o outfile 
 
all blast results in the file that meet the criteria are printed to a directory. #parse_blastFile.pl 
blastfile [outdir] 
Then run parse_STACK_blast.pl on the above blast dir.the results show the stackids that 
found matches. 
 
print the stackids that do not find matches.use these sequences to search the chr22 data. 
#blastall -p BLASTN -d chr22genomeseq -i remainder stackindexseq -e 1e-40 -o 
uniquematches 
 
print each blast record that meet criterium of 1e-40 to a directory 
#parse_blastFile.pl uniqueINDEX.blast_2000chr22 novelhits_2000 > & novelog2000 & 
 
parse all stack sequences that match 94% and over 80% of its length. 
#parse_swissprot_identities.pl novelhits_2000 > novelhits_2000_blast 
awk '{if ($4 > 80 && $5 >=94) print $0 }' novelhits_2000_blast > novelchr22_2000.hits 
 
#mkdir old 
leave only the accurate matches in the novelhits_2000 directory 
#move.pl novelhits_2000_blast novelhits_2000   
#this will look at the IDs in the first file and then move all other sequence IDs to another 
directory. NOw the novelhits_2000 directory contain the accurate matches. These hits has to 
be parsed so that we print the start and end positions of the matching bases 
#printSubjectStartStop.pl novelhits_2000 > novelhits_2000.positions 
 
compare the above matching bases to the genetable 
#compare_chr22_genePos.pl /deepsea/alan/validity/Chr22/oldsanger/Sanger_genetable 
novelhits_1999.positions 
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The updated gene table at the sanger site (15th Nov2000) reported 802 genes as oppose to the 
545 genes in 1999. There does not appear to be any standardisation of gene names so I 
searched the entire stack gene index against the new chr22 genome sequence. These results 
were then compared to the sanger gene table to find the unique hits. 
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Appendix IV (Chapter 5) 
Protocol for candidate gene discovery on chromosome 19q13.3 
Scripts written for this project are indicated in bold. 

download sequences 

download sequences from ftp://sawedoff.llnl.gov/pub/JGI_data/Human/Draft/ 

Each sequence file contain multiple sequences.Concatenate all the sequences in one file and 

rename the sequences so that the BAC clone name is reflected in the headerline 

#renameCHR19clonesFILE.pl [directory of sequences] > newfile 

 

produce stack header: standardise header for automation 

#printPFHB_header.pl [newfile] > nefile.stackheader 

 

masking 

Ecoli- masking prior to tandem repeat screen 

downloaded the ecoli genome and split it into fragments 

#cross_match seqfile ecoli.seq -minmatch 12 -minscore 20 -screen 

 

RepeatMasking prior to PHRAP assembly 

#RepeatMasker -x seqfile 

 

Tandem repeat finder 

downloaded the Tandem RepeatFinder for sgi platform (trf.irix.exe)  

from http://c3.biomatch.mssm.edu/trf.html  

processed all the chromosome 19 sequences for tandem repeats using 

the following parameters: 

trf.irix.exe seqfile 2 7 7 80 10 40 500 -f 

where 2=match weight; 7=mismatch; 7=indel; 80=matching prob;  

10=indel prob; 40=min align_score; 500 max periodsize; -f print flank 

sequence 

 

#runRepeatfinder.pl [seqdir]  

output: TANDEM_REPEATS directory 

 

parse the data in TANDEM_REPEATS 



 184

#runTandemRepeatParser.pl [tandem_outputdir] [max period size] 

 

  

search STACK whole-body index 

#blastall -p blastn -d /data4/blast/researchINDEX.seq -i PFHB.phrapseq -e 1e-20 -o 

PFHB.phrapseq.stackblastn 

 

split blastfile into multiple files 

#parse_blastFile.pl blastfile [outdir] 

 

parse stackdata 

#print_blastDetails.pl [outdir]  

output: pfhb.StackLibrary   # print stack library field 

  pfhb.StackDescription # print stack header line 

  pfhb.StackExpectScore # print expection scores 

  pfhb.stackseq    # print the matching stackseq 

#finddupstackSeq.pl [pfhb.StackExpectScore] [../phrap.multicontigs] 

[../phrap.mergedclones] 

output: UniqueStackIDs - stackids that match one contig 

   duplicateStackIDs - stackids that match to more than one contig 

 

annotate stack seqs with nonredundant blast search 

#blastall -p blastn -d /data10/nr/nt -i stackseq -e 1e-20 -o pfhb.stackseq.blastnr 

#blastall -p blastx -d /angis/dbases/nr/nr -i stackseq -e 1e-20 -o pfhb.stackseq.blastx 

 

#printStackblastn.pl [pfhb.StackExpectScore] [pfhb.stackseq.blastnr] 

output: phrapcontig stackID blastDescription ExpectScore 

blast phrapcontigs against nonredundant database 

#blastall -p blastn -d /data10/nr/nt -i phrap.mergedclones -e 1e-20 -o mergedclones.blastn 

#blastall -p blastn -d /data10/nr/nt -i phrap.multicontigs -e 1e-20 -o multicontigs.blastn 

 

download the bodymap matrix from bodymap and save it as text with tab delimiters. 

download the bodymap sequences. 

search it against the PFHB contigs 
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#blastall -p -d PFHB -i bodymapseq -o bodymap.blast 

 

parse blastdata 

#parse_blastFile.pl bodymap.blast outdir 

#parse_blastMatches.pl outdir > bodymap.out  

output is a list of query|hit|exp|match%|matchlen| 

 

find the expression for each matching bodymap seq 

#bodymap.pl bodymapMatrix bodymap.out > bodymap.chr19 

output is a list of bodymapIDs and tissues 

 

Mouse data obtained from Minoru Ko 

search these against PFHB sequences 

# blastall -p blastn -d PFHB -i mouseseq -o mouse.blast 

parse mousedata 

# parse_blastFile.pl mouse.blast mousedir 

# parse_blastMatches.pl mousedir > mouse.ch19hits 

 

fetch the mouse sequences that match 

#fetchmouse.pl mouse.chr19hits mouse.seq > mousechr19.seq 

 

annotate the mouse sequences 

# blastall -p blastn -d /data10/nr/nt -i mousechr19.seq -o mousechr19.blast 

# parse_blastFile.pl mousechr19.blast outdir 

# parse_blastMatches.pl outdir > mousechr19.dnanr 
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