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ABSTRACT 

 

Synthesis and Characterization of Nanofluids for Cooling Applications 

S.S. Botha 

PhD Thesis, Department of Chemistry, University of the Western Cape 

 

Low thermal conductivity is a primary limitation in the development of energy-

efficient heat transfer fluids that are required in numerous industrial sectors. 

Recently submicron and high aspect ratio particles (nanoparticles and nanotubes) 

were introduced into the heat transfer fluids to enhance the thermal conductivity of 

the resulting nanofluids. The aim of this project was to investigate the physico-

chemical properties of nanofluids synthesized using submicron and high aspect 

ratio particles suspended in heat transfer fluids.  

 

Ethylene glycol and oil-based nanofluids were prepared containing either silver 

nanoparticles (0.01 - 1.0 vol.%), carbon nanotubes (0.4 – 4.0 vol.%), silica (0.3 – 

4.4 vol.%), silver nanoparticles (0.01 – 0.07 vol.%) supported on carbon nanotubes 

(1.0 – 4.0 vol.%) supported on silica (0.07 – 1.4 vol.%) via a one-step method. The 

reducing ability of ethylene glycol was used to prepare silver nanoparticles at room 

temperature with mechanical agitation. Oil-based nanofluids were prepared using 

higher temperatures (130 °C) and mechanical agitation. The rheological, thermal 

and where applicable, dielectric properties of the nanofluids were investigated.  

 

Ethylene glycol and oil-based nanofluids containing surfactant-stabilized silver 

nanoparticles showed Newtonian behaviour. The average particle sizes were mostly 

between 3-16 nm. Surfactant-stabilized silver-based nanofluids did not show any 

increase in thermal conductivity. 

 

The surfactant, although essential for the stabilization of single digit-sized 

nanoparticles, has been identified as a critical component in the heat transfer 
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process of nanofluids. The surfactant suppresses the heat transfer process to the 

extent where no increase of thermal conductivity was measured. The effect of the 

surfactants on the thermal conductive properties of nanofluids has not been reported 

in the open literature and can be regarded as a breakthrough in nanofluid 

development.  

 

Oil-based nanofluids containing carbon nanotubes showed shear-thinning behaviour 

and 13 % enhancement in thermal conductivity (at 4 % loading). Silver 

nanoparticles with sizes <5 nm were supported on carbon nanotubes and showed a 

further 6 % enhancement in thermal conductivity.   

 

The dielectric strength of the nanofluids containing silver nanoparticles and carbon 

nanotubes were drastically reduced from 56 kV to 2 kV, while the dielectric 

strength of oil-based nanofluids containing silver nanoparticles (size < 5nm) was 

only reduced from 56 kV to 51 kV and can still be considered for application in 

electrical transformers. 

 

Oil-based nanofluids containing silica showed Newtonian behaviour (at lower 

concentrations), the thermal conductivity was found to increase to a maximum of 

5.2 % and the dielectric strength decreased from 56 kV to 34 kV. When silver 

nanoparticles (~5 nm) supported on silica were used to make oil-based nanofluids 

without a surfactant, a 15 % increase in the thermal conductivity was obtained and 

the dielectric strength reduced to 22 kV. 

 

Introducing a suitable support for surfactant-free silver nanoparticles during particle 

formation, agglomeration of particles is drastically reduced, allowing the heat 

transfer process to proceed effectively. A significant thermal conductivity increase 

was measured at very low particle loading, exceeding the predictions of various 

published models on nanofluids. 
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1. Introduction 

1 CHAPTER ONE: INTRODUCTION 

Cooling is one of the most important challenges facing numerous industrial sectors. 

Despite the considerable amount of research and development focusing on industrial 

heat transfer requirements, major improvements in cooling capabilities have been 

lacking because conventional heat transfer fluids have poor heat transfer properties 

[1].  One of the usual methods used to overcome this problem is to increase the 

surface area available for heat exchange, which usually leads to impractical or 

unacceptable increases in the size of the heat management system [2]. Thus there is a 

current need to improve the heat transfer capabilities of conventional heat transfer 

fluids.  

 

Crystalline solids have thermal conductivities that are typically larger than those of 

fluids by 1-3 orders of magnitude. Therefore, fluids containing suspended solid 

particles can be expected to display significantly enhanced thermal conductivities 

relative to those of pure fluids [3]. When crystalline solids with nanometer 

dimensions are suspended in a suitable base fluid to form stable homogeneous 

suspensions, and there is an increase in the thermal conductivity relative to the base 

fluid, the resulting suspensions are called nanofluids [2,4], as opposed to 

nanofluidics, which is concerned with flow in nanoscale channels [5]. The crystalline 

solid can be either spherical nanoparticles, or micrometer long nanotubes [4]. 

Nanofluids can be prepared by a one-step or a two-step method. In the two-step 

method, the preparation of the nanofluid is isolated from the synthesis of the 

nanoparticles. However, this approach may result in the formation of larger 

nanoparticles due to agglomeration which can occur during drying, storage, 

transportation and re-dispersion of nanoparticles. As a result, the thermal conductivity 

may be affected negatively. Hence the current interest is to develop one-step methods 

where nanoparticles are synthesized directly in the heat transfer fluid. Different 

methods have been used for the preparation of nanofluids, namely, thermal 

decomposition pathways [6,7], microwave [8] and laser [9] irradiation, chemical 

reduction [10] and ‘direct-evaporation’ techniques [2]. Nanofluids containing metals 
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such as Cu, Ag and Au have shown an increase in the effective thermal conductivities 

of the heat transfer fluid compared with the base fluid [2]. The large intrinsic thermal 

conductivity of carbon-based nanostructures, combined with their low densities 

compared with metals, make them attractive candidates for use in nanofluids [2, 

4,11,12,13].  

 

Until recently, there have been a limited number of studies on the characteristics of 

dispersion and rheological properties of nanofluids. Since nanofluids are expected to 

be used under flow conditions, the study of the rheological properties of the nanofluid 

is essential. Also, to understand the mechanism of heat transfer enhancement, it is 

crucial to have knowledge on the fluid-particle and particle-particle interactions 

within the fluid [14].  

 

Stability of the suspensions is a crucial issue for both scientific research and practical 

applications. Particle aggregation and the formation of extended structures of linked 

nanoparticles will affect stability, and may be responsible for much of the 

disagreement between experimental results and the predictions of effective medium 

theory [2]. Simultaneous studies of thermal conductivity and viscosity may give 

additional insight [2]. 

 

An overview of the literature is given in Chapter 2 as well as a more detailed thesis 

layout in Section 2.4. All the experimental details of this work are outlined in Chapter 

3. All the results obtained are presented and discussed in Chapter 4 and 5. Chapter 6 

contains a summary of the work presented in this thesis as well as some 

recommendations. 
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2 CHAPTER TWO: LITERATURE OVERVIEW 

2.1 Introduction to novel cooling fluids- Nanofluids 

Modern nanoclusters differ from classical colloids in several important ways. Classic 

colloids typically (i) are larger in size (>10 nm), (ii) have broader size distributions 

(standard deviation >>15% of average particle size), (iii) have a poorly defined 

molecular composition, (iv) are not isolable and redissolvable, (v) are not 

reproducibly prepared, (vi) have irreproducible catalytic activities (up to 500%), (vii) 

contain surface-bound, rate-inhibiting species such as X-, O2-, OH-, and H2O and 

(viii) historically have been H2O, but not organic solvent, soluble [15]. The region 

inbetween colloid and cluster chemistry is where this research lies.  

 

The Argonne National Laboratory (Illinois, U.S.A.) has pioneered the concept of 

nanofluids by applying nanotechnology to thermal engineering. Nanofluids are a new 

class of solid-liquid composite materials consisting of solid nanoparticles (in the 

range of 1-100 nm) or carbon nanotubes, dispersed in a heat transfer fluid such as 

ethylene glycol, water or oil [2,3]. 

 

Heating or cooling fluids are of great importance to many industrial fields, including 

electronics, Heating, Ventilating and Air Conditioning (HVAC), and transportation. 

The thermal conductivity of these fluids plays a vital role in the development of 

energy-efficient heat transfer equipment. Conventional heat transfer fluids have a 

relatively poor thermal conductivity compared to most solids [2,12]. The latter have 

1-3 orders of magnitude greater thermal conductivity than the former. From Table 

2-1, the thermal conductivity of copper, for example, is 700 times that of water and 

3000 times that of engine oil [7]. The orders-of-magnitude larger thermal 

conductivity of most solids compared with conventional cooling fluids such as water, 

ethylene glycol, and engine oil provided the original motivation to investigate the 

thermal transport properties of nanofluids [12]. 
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Table 2-1: Thermal conductivity values for some solids and liquids at RT [12]. 

Material 
 

 Thermal conductivity 
(W/m-K) 

Metallic solids Silver 
Copper 
Aluminum 

429 
401 
237 

Non-metallic solids Diamond 
Carbon nanotubes 
Silicon 
Alumina (Al2O3) 

3300 
3000 
148 
40 

Metallic liquids Sodium at 644 K 72.3 
Non-metallic liquids Water 

Ethylene glycol 
Engine oil 

0.613 
0.253 
0.145 

 

The unique properties of nanomaterials can be used to develop fluids with high 

thermal conductivity. However, nanofluid production faces some major challenges 

such as agglomeration of particles in solution and the rapid settling of particles in 

fluids. The most common techniques used to prepare nanofluids are discussed in 

Section 2.1.1, followed by the structural and physico-chemical properties in Sections 

2.1.2 and 2.1.3 respectively. 

 
2.1.1 Techniques used in the synthesis of nanofluids 

Several studies, including the earliest investigations of nanofluids, used a two-step 

method in which nanoparticles or nanotubes are first produced as a dry powder and 

then dispersed into a fluid in a second processing step. In contrast, the one-step 

method entails the synthesis of nanoparticles directly in the heat transfer fluid. The 

two-step and one-step methods are discussed in more detail in Sections 2.1.1.1 and 

2.1.1.2 respectively. 
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2.1.1.1 Synthesis of nanofluids containing metallic nanoparticles, metal oxide 

particles and carbon nanotubes via. two-step method 

The preparation of nanofluids begins by direct mixing of the base fluid with the 

nanomaterials. In the first step, nanomaterials are synthesized and obtained as 

powders, which are then introduced to the base fluid in a second step. 

Nanoparticles can be produced from several processes [16,17] which can be 

categorized into one of five general synthetic methods. These five methods are: (i) 

transition metal salt reduction [18,19], (ii) thermal decomposition and photochemical 

methods [6,20 ,21], (iii) ligand reduction and displacement from organometallics, (iv) 

metal vapor synthesis, and (v) electrochemical synthesis [22,23]. Transition-metal 

nanoclusters are only kinetically stable because the formation of the bulk metal is its 

thermodynamic minimum. Therefore, nanoclusters that are freely dissolved in 

solution must be stabilized in a way that prevents the nanoclusters from coalescing, 

because such agglomeration would eventually lead to the formation of the 

thermodynamically favoured bulk metal [24]. 

Bönnemann et al. developed a method for the production of very small (< 2 nm) and 

stable nanoparticles via chemical reduction pathways, which might be suitable for 

application in nanofluid synthesis [25]. Organoaluminum compounds have been used 

for the “reductive stabilization” of mono- and bi-metallic nanoparticles [26]. 

Triorganoaluminum compounds were employed as both the reducing agent and 

colloid stabilizer, which lead to the formation of an organo-metallic colloidal 

protecting shell around the particles [27,28]. This “modification” of the Al-organic 

protecting shell leaves the particle size untouched and allows tailoring of the 

dispersion characteristics of the original organosols at will. A vast spectrum of these 

solubilities of the colloidal methods in hydrophobic and hydrophilic media including 

water has been achieved this way [29]. Colloidal copper nanoparticles can be 

prepared by using the triorganoaluminium pathway, however, a large ratio of 

surfactant to metal is necessary in order to obtain stable suspensions. In the event of a 

lower surfactant concentration, precipitation occurs. However, it is possible to 

suspend the precipitated particles again by peptization [7]. 
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Silver nanoparticles are one of the most widely studied nanomaterials because they 

exhibit unusual optical, electronic and chemical properties, which depend on their 

size and shape [30,31,32,33]. Silver is also one of the most thermally conductive 

metals (Table 1) and its use in cooling applications would be interesting.  

 

Besides silver nanoparticles, Xuan et al. [34] have used commercially obtained Cu 

nanoparticles to prepare nanofluids in both water and transformer oil by sonication in 

the presence of stabilizers. Similarly, Kim et al. [14] prepared nanofluids consisting 

of commercially obtained CuO nanoparticles in ethylene glycol by sonication without 

stabilizers. The optimum duration of sonication was found to be 9 hours and the 

average nanoparticle size was 60 nm. 

 

The two-step process is commonly used for the synthesis of carbon nanotube-based 

nanofluids. Single-wall carbon nanotubes (SWCNTs) and multi-walled carbon 

nanotubes (MWCNTs) are cylindrical allotropes of carbon. SWCNTs consist of a 

single cylinder of graphene, while MWCNTs contain multiple graphene cylinders 

nesting within each other [35]. The carbon nanotubes are usually produced by a 

pyrolysis method and then suspended in a base fluid with or without the use of a 

surfactant [2,11,12]. 

 

Some believe that the two-step process works well only for nanofluids containing 

oxide nanoparticles dispersed in de-ionized water as opposed to those containing 

heavier metallic nanoparticles [3]. Since nanopowders can be obtained commercially 

in large quantities, some economic advantage exists in using two-step synthesis 

methods that rely on the use of such powders. 
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2.1.1.2 Synthesis of nanofluids containing metallic nanoparticles, metal oxide 

particles and carbon nanotubes via one-step method 

Few methods exist for the preparation of nanofluids through a one step process. 

These methods include the thermal decomposition of an organometallic precursor in 

the presence of a stabilizer [36], chemical reduction [8], and polyol synthesis 

[37,38,39]. 

 

The polyol method is one of the most well-known pathways to noble metal 

nanoparticles [30,37,38,39,40,41,42,43]. In the polyol process, a metal precursor is 

dissolved in a liquid polyol (usually ethylene glycol), after which the experimental 

conditions are adjusted to achieve the reduction of the metallic precursor by the 

polyol, followed by atomic metal nucleation and metal particle growth [41].  

 

The ‘direct-evaporation’ technique was developed by Choi et al [1]. It consists of a 

cylinder containing a fluid which is rotated. In the middle of the cylinder, a source 

material is vaporized. The vapour condenses once it comes into contact with the 

cooled liquid (Figure 2-1) [1]. The drawbacks of this technique however, are that the 

use of low vapour pressure liquids are essential and only limited quantities can be 

produced. 

 
 

Figure 2-1: Diagram of the one-step nanofluid production system, which simultaneously makes and 

disperses nanoparticles into low vapour-pressure liquids [1]. 
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Various single-step chemical synthesis techniques can also be employed to produce 

nanofluids. For example, Brust and co-workers [44] developed a technique for 

producing metallic nanoparticles in various solvents by the reduction of metal salts to 

produce colloidal suspensions for a wide range of applications, including studies of 

thermal transport. Excellent control of size and very narrow size distributions can be 

obtained by using such methods [2]. 

 

A submerged arc nanoparticle synthesis system (SANSS) was developed to prepare 

CuO nanoparticles dispersed uniformly in a dielectric liquid (deionized water). The 

method successfully produced a stable nanofluid [45]. In principle, a pure copper rod 

is submerged in a dielectric liquid in a vacuum chamber. A suitable electric power 

source is used to produce an arc between 6000 - 12000 ˚C which melts and vaporizes 

the metal rod in the region where the arc is generated. At the same time, the deionized 

water is also vaporized by the arc. The vaporized metal undergoes nucleation, growth 

and condensation resulting in nanoparticles dispersed in deionized water. Nanofluids 

containing CuO particles of size 49.1 ± 38.9 nm were obtained [45]. 

 

Carbon nanotubes have also been synthesized by carbon plasma discharging directly 

in water [46]. The resulting nanotubes, which were also filled with cobalt, are 

believed to have important applications as nanoprobes in the magnetic force 

microscope. 

 

2.1.1.3 Study of the modes of stabilization in nanofluids 

The attractive forces between particles can be balanced, and hence particle 

aggregation prevented, by two mechanisms namely, electrostatic stabilization and 

steric stabilization.  

 

• Electrostatic stabilization 

The existence of an electric charge on the surfaces of particles is a major source of 

kinetic stability. Electrostatic stabilization occurs by the adsorption of ions to the 
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electrophilic metal surface (Figure 2-2 A) [47]. The adsorption creates an electrical 

double/multi-layer which results in a Coulombic repulsion force between the 

nanoclusters [48,49,50]. The electrostatic stabilization is a pH sensitive method and 

of limited use. 

 

• Steric stabilization 

Steric stabilization is achieved by surrounding the metal center by layers of material 

that are sterically bulky, such as polymers [51,52] or surfactants [53,54,55]. These 

large adsorbates provide a steric barrier which prevents the metal particles from 

coming together (Figure 2-2 B) [56]. Carbon nanotube suspensions for nanofluid 

applications are usually stabilized using the steric mode of stabilization [2].  
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Ultraviolet-Visible (UV-VIS) spectroscopy and Transmission Electron Microscopy 

(TEM) are the main characterization tools used to study the formation of silver 

nanoparticles.  

2.1.2.1 UV-VIS 

The oxidation state of silver can be studied with optical methods, such as UV-VIS 

spectroscopy. UV-VIS spectroscopy involves the absorption of electromagnetic 

radiation by the substances in the visible and ultraviolet regions of the spectrum. 

According to Mie theory, the optical absorption and light scattering of metal 

nanoparticles is due to the interaction of small metal particles with an external 

electromagnetic field, induced by light, resulting in a coherent oscillation of the 

conduction (free) electrons on the surface, called the surface plasmon resonance [30].  

 

The presence of zerovalent silver in solution is related to a broad and strong 

absorbance peak whose maximum occurs at approximately 420 nm. In nanoparticles, 

the gap between excitation bands is widened and this implies absorption of a photon 

of a higher energy level (visible spectrum). The chemisorption of a nucleophilic 

molecule on the silver surface is also accompanied by a charge donation to the metal. 

The cumulative affect of the adsorption of many molecules produces a shift of the 

Fermi level energy. The shape and intensity of the absorption band depends on the 

complex dielectric constant of the metal, the cluster size of the metal nanoparticles, 

and the environment [33,34]. UV-VIS spectroscopy therefore, provides information 

on the kinetics as well as an indirect measure of the size and size distribution of the 

silver nanoparticles. A very uniform particle size implies that all particles will absorb 

at the same wavelength and a symmetrical peak is expected, whereas a broader peak 

would be indicative of particle aggregation or the presence of large particles.  

 

It is universally accepted within the community that the surface plasmon resonance 

band for spherical silver particles < 20 nm is ~ 410 nm depending, of course, on the 

host matrix [59]. This band generally red shifts as the silver nanoparticles increase in 

size. Conversely, as silver particles decrease in size, this band will often blue shift to 
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shorter wavelengths. Absorption signals in the 250 – 350 nm range present in Ag 

containing systems have been attributed to the presence of Ag clusters of various 

sizes and charges. Determination of which cluster specie gives rise to which 

absorption signal is still widely debated in literature today. Researchers have varying 

degrees of certainty with respect to peak assignments due to the short lifetime of Ag 

clusters and the fact that the UV-VIS absorption signal positions are system 

dependant [60; and references therein]. 

 

Since the surface plasmon absorption band (SPAB) is extremely sensitive to the 

nanoparticle shape, size, polydispersity, surrounding medium, adsorbed substances on 

their surfaces, aggregation, a change in the particle electron density and geometric 

arrangements of nanoparticles [30], changes in the UV-VIS spectra of silver 

nanoparticles are very informative and have been used to study a vast spectrum of 

parameters such as electromagnetic interactions, changes in particle electron density 

and propositions for formation and growth mechanisms. 

2.1.2.2 TEM 

Transmission Electron Microscopy (TEM) is used to determine the size, distribution 

and the morphology of the synthesized nanoparticles. A transmission electron 

microscope works in much the same way as an optical microscope. A beam of 

electrons, generated by the high voltage electron emitter situated at the top of the lens 

column, interacts with the sample as it passes through the entire thickness of the 

sample and a series of magnifying magnetic lenses, to where they are ultimately 

focused at the viewing screen at the bottom of the column. The image is essentially a 

projection of the entire object, including the surface and the internal structures. 

 

2.1.3 Physico-chemical properties of suspensions containing nanosized 

particles 

The idea of dispersing solid particles into liquids initially came from James Clerk 

Maxwell [61, and references therein]. In previous years, the lack of industrial interest 
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for enhanced thermal properties by those suspensions containing millimeter– or 

micron-sized particles was mainly due to their poor stability and rheological 

problems. Particle sedimentation from the suspensions resulted in clogged channels. 

It has recently been demonstrated that solid nanoparticles with dimensions of ~10-40 

nm are extremely stable and exhibit no significant settling under static conditions, 

even after weeks or months [61]. Conventional heat transfer fluids such as water, 

ethylene glycol or oil, containing ultra-fine metallic particles have been of special 

interest amongst many researchers in recent years [62,63,64,65]. This is because the 

prepared nanofluids gave rise to a heat transfer enhancement compared to the 

conventional heat transfer fluids. 

 

The heat transfer rate of a nanofluid involves three main parameters. These are 

viscosity, thermal conductivity and heat capacity, where one or more of these 

parameters may be quite different from the base fluid [66]. 

 

2.1.3.1 Rheological properties of nanofluids  

Rheological properties play a very important role in fluid flow. During application of 

nanofluids they are likely to flow either by forced or natural convection and hence, 

the flow properties such as viscosity are therefore essential in the study of 

suspensions containing nanosized particles. 

 

All materials that show flow behaviour are referred to as fluids. In all fluids, there are 

frictional forces between the molecules and, therefore, they display a certain flow 

resistance which can be measured as viscosity [67]. Viscosity is a transport property 

which refers to the resistance of a material to flow. When dealing with nanofluids, 

one is often tempted to consider the dispersed medium under question as a 

homogeneous fluid characterized by properties such as density and viscosity which in 

turn will only require a single set of mass and momentum conservation equations. 

However, such a simple picture will not provide useful explanations for cases where 

the fluid is unsteady and non-uniform [34]. 
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i. Newtonian flow behaviour 

Isaac Newton found that the shear force acting on a liquid is proportional to the 

resulting flow velocity [67]. Hence, a fluid is said to be Newtonian if the viscosity 

remains constant with an increase in shear rate. Newtonian flow behaviour is 

observed in low molecular liquids such as water, mineral oils (without polymer 

additives) and solvents. However, more complex flow behaviour is expected for 

fluids containing suspended particles.  

 

ii. Non-Newtonian flow behaviour 

Fluids, whose viscosity changes with an increase in shear rate, are referred to as Non-

Newtonian. These fluids could be further classified according to their flow behaviour. 

Shear-thinning and shear-thickening flow behaviour is discussed in the following 

sections. 

 

a) Shear-thinning flow behaviour 

For samples that display shear-thinning behaviour, the shear viscosity is dependent on 

the degree of shear load. Thus, the viscosity decreases with an increase in shear 

stress. In dispersions, shearing can cause the particles to orient in the flow direction 

and in the direction of the flow gradient. This can lead to disintegration of 

agglomerates or change in particle form. The interaction forces between particles may 

decrease during the process and cause a lowering in the flow resistance. Examples of 

shear-thinning materials include shampoos, paints and polymer solutions [67]. 

 

b) Shear-thickening flow behaviour 

Similar to shear thinning fluids, the shear viscosity of samples displaying shear-

thickening behaviour is also dependent on the degree of shear load. However, the 

viscosity increases with an increase in shear stress. With highly concentrated 

suspensions, the probability of particle interaction is much higher and may result in 
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particles becoming wedged together and thus increase the flow resistance. Particle 

shape plays an important role since during the shear process, particles rotate as they 

move. Cube-shape particles take up more volume when rotating than spherical 

particles and hence less free volume is available for the liquid between the particles. 

Compared to shear thinning materials, shear thickening materials are much less 

common in industrial practice. Examples of shear-thickening materials include 

dispersions with a high concentration of solids or polymers such as ceramic 

suspensions [67]. 

 

c) The yield point 

The yield point or yield stress refers to the external force required before a material 

will start to flow. A typical example is toothpaste; a certain amount of force must be 

applied before the toothpaste starts to flow. Materials with yield points tend to flow 

inhomogeneously.  

 

iii. Model functions used to describe flow behaviour  

This section describes the following model functions; Newtonian, and Non-

Newtonian such as the Ostwald and Bingham flow models. These functions described 

the various nanofluids discussed in this thesis very well. More complex model 

functions such as Steiger/Ory and Eyring/Prandtl/Ree [67] were not required. 

 

Newtonian behaviour: 

Idealviscous (or Newtonian) flow behaviour is described formally using Newton’s 

law: 
γητ ⋅=  

where τ is the shear stress, η is the viscosity and γ the shear rate. Flow behaviour is 

represented graphically using flow curves and viscosity curves. 

 

Non-Newtonian behaviour: 

For shear-thinning and shear-thickening flow behaviour, three model functions are 

available for flow curves without a yield point.  
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The Ostwald/de Waele (or Power Law) refers to the flow curve model function: 
pc γτ ⋅= , 

where c is the flow coefficient (or power-law-index) [Pas] and the exponent p. 

The following applies: 

ρ < 1 for shear-thinning 

ρ > 1 for shear-thickening 

ρ = 1 for idealviscous flow behaviour 

 

This model holds the disadvantage that it cannot be fitted well to curves at very low 

and very high shear rates for most polymer solutions [67]. 

 

iv. Flow curves with yield point 

The Bingham model can be described as follows: 

γηττ ⋅+= BB , 

where τB is the Bingham yield point (intersection of linear graph on τ axis) and ηB is the 

Bingham flow coefficient, as shown below (Figure 2-3). 
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Figure 2-3: Flow curve according to Bingham [67]. 

 

The viscosity of a nanofluid can also be estimated with well-known formulas. 

However, a more reliable and direct way to the apparent viscosity is through 

experimental investigation [66]. 
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2.1.3.2 Heat conduction in solids and heat capacity of nanofluids 

When heat is transferred via conduction it implies that heat is transferred internally, 

by vibrations of atoms and molecules. The vibrations of the atoms which are coupled 

together can be envisaged as giving rise to the vibrations of the whole crystal, that is, 

to lattice vibrations. The energy of the whole vibrating system is quantized and the 

quantum of thermal energy absorbed or emitted by an atom is called a phonon. 

Therefore, a phonon is essentially a quantized mode of vibration occurring in rigid 

crystal lattice and plays a major role in a material’s thermal conduction. A greater 

phonon density exists in a hot region of a crystal than in cooler regions. Therefore, 

heat conduction is essentially due to the diffusion of phonons down the temperature 

gradient from the hot to the cold regions. Electrons can also carry heat and since 

metals have many free electrons which move around randomly, heat can be 

transferred from one part of the metal to another quite effectively. That is why metals 

are generally very good conductors of heat. 

 

Heat capacity is a material property and expresses the fact that the internal energy of 

a substance changes with temperature. It is measured by monitoring the resulting 

temperature increase when heating a sample of known mass. The heat capacity is then 

calculated as the ratio of the heat supplied to the temperature rise. Hence, a large heat 

capacity implies that only small increases in temperature will be observed. The 

specific heat capacity is also useful and is essentially the heat capacity per unit mass, 

usually per gram of material [68].  

 

2.1.3.3 Thermal conductivity of nanofluids  

The apparent thermal conductivity is the most important parameter to demonstrate the 

enhancement potential of heat transfer in nanofluids. It has been shown that the 

thermal conductivity of the nanofluid is influenced by the heat transfer properties of 

the base fluid and nanoparticle material, the volume fraction, the size, and the shape 

of the nanoparticles suspended in the liquid, as well as the distribution of the 

dispersed particles [66]. So far, the development of a sophisticated theory to predict 
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the thermal conductivity of nanofluids has been an unsolved problem, although some 

guidelines exist to calculate the apparent conductivity of two-phase mixtures [34]. 

 

 

Theoretical Study of Nanofluid Thermal Conductivity 

A theory for the thermal conductivity of nanofluids is non-existent. Therefore, 

scientists have used an existing model for estimating the thermal conductivity of 

nanofluids. The Maxwell model was developed in earlier years to explain the heat 

transfer characteristics of larger particles. Due to the developments in nanofluid 

research in recent years, the Maxwell model has served as a foundation for the 

development of models to explain the much higher conductivity increase observed in 

nanofluids [69]. The effective thermal conductivity, keff, according to Maxwell, is 
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Where kp is the thermal conductivity of the particle, k1 is the thermal conductivity of 

the liquid and φ is the particle volume fraction of the suspension. Hence, the Maxwell 

model shows that the effective thermal conductivity of fluids containing ultra-fine 

particles depends on the thermal conductivity of spherical particles, the base liquid 

and the volume fraction of the solid particles [70]. 

 

Hamilton and Crosser (1962) developed a model for the effective thermal 

conductivity of suspensions in which the ratio of conductivity of the two phases is 

larger than 100, taking into account the thermal conductivities of the pure materials, 

the composition of the mixture and the shape of the dispersed particles i.e. 
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where kp is the thermal conductivity of the discontinuous particle phase, kf is the 

thermal conductivity of the fluid, α is the volume fraction of particles, and n is the 

empirical shape factor given by: 

ψ
3

=n  

where ψ is the sphericity defined as the ratio of the surface area of a sphere, with a 

volume equal to that of the particle, to the surface area of the particle [71]. For 

spherical particles, the Hamilton-Crosser model is identical to the Maxwell model. 

For particles of other shapes, n can be allowed to vary from 0.5 to 6.0 [34]. Thus the 

model is a function of the conductivity of both the particle and base fluid as well as 

the shape of the particles. Their predictions agreed well with experimental results for 

spherical particles with volume fractions up to 30% [34]. However, in application, 

nanofluids are more likely to show much lower volume fractions (typically below 1 

%), and therefore another model should be considered. Eastman et al. [3] showed that 

the thermal conductivities predicted by the Hamilton-Crosser model are much lower 

than the measured data for oxide nanofluids and even less for metallic nanofluids.  

 

Wasp [34 and references therein] introduced an alternative means for calculating the 

effective thermal conductivity of solid-liquid mixtures: 
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The model is also identical to the Maxwell model. The volume fraction α of the 

particles is defined as: 
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where m is the number of particles per unit volume and đp is the average diameter of 

the particles [34]. 

 

Keblinski et al. [61] listed four possible explanations to understand the heat transfer 

enhancement in nanofluids: Brownian motion of the nanoparticle, molecular-level 

layering of the liquid at the liquid/particle interface, the nature of heat transport in the 
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nanoparticles, and the effects of nanoparticle clustering. Brownian motion, by which 

particles move through the liquid and possibly collide, thereby enabling direct solid-

solid transport of heat from one particle to another, can be expected to increase 

thermal conductivity. However, it has been found that the movement of nanoparticles 

due to Brownian motion is too slow to transport significant amounts of heat through a 

nanofluid. The interface effect refers to the layers of liquid in direct contact with the 

solid (liquid nanolayer) where the atomic structure of the liquid layer is more ordered 

than that of the bulk liquid. Crystalline solids, which display much better thermal 

transport than liquids, are more ordered and therefore such liquid layering at the 

interface would be expected to lead to a higher thermal conductivity. Although the 

presence of the interfacial layer may play a role in heat transport, it is unlikely to be 

the only parameter responsible for the thermal conductivity increase. The nature of 

heat transport in nanoparticles was found to be ballistic, rather than diffusive since 

phonons, which are essentially the heat carriers in crystalline solids, cannot diffuse 

through the 10 nm particles, but move ballistically across the particle [61]. The 

enhancement in thermal conductivity could also be explained in terms of the packing 

fraction, which is the ratio of the volume of the solid particles in the cluster to the 

total volume of the cluster.  

 

Xuan and Koo [34,72] summarized previous experimental observations and 

concluded that the effective thermal conductivity was a function of both the thermal 

conductivities of the base fluid and the nanoparticles, particle volume fraction, 

nanoparticle distribution in the fluid, surface area of the nanoparticles, and the shape 

of the nanoparticles. 

 

Wang et al. [73] proposed a fractal model for predicting the thermal conductivity of 

liquids containing nanoparticles based on the effective medium and fractal theory. 

However, the proposed fractal model only agreed well with experimental data for 50 

nm CuO particles suspended in deionized water when the particle concentration was 

less than 0.5%.  
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Similarly to Keblinski et al. [61], Yu and Choi [74] suggested that there are ordered 

nanolayers around the nanoparticles (Figure 2-4), and proposed that the solid-like 

nanolayer acts as a thermal bridge between a solid nanoparticle and the bulk liquid 

and hence is the key to enhancing thermal conductivity. The prediction proved to be 

effective when dealing with nanoparticles with diameters less than 10 nm [74]. 

 

Figure 2-4: Schematic cross-section of nanofluid structure consisting of nanoparticles, bulk liquid, and 

nanolayers at the solid/liquid interface [74]. 

 

Kleinstreuer et al. [72] developed a thermal conductivity model that takes into 

account the effects of particle size, the particle volume fraction, temperature 

dependence of the thermal conductivity, the properties of the base fluid and the 

particle phase. They viewed the surrounding liquid traveling with randomly moving 

particles. In contrast to Keblinski et al [61], where Brownian motion was ruled out, 

they believe that Brownian motion is a very important mechanism for augmented heat 

transfer. 

 

Other mechanisms, using more complex models, have also been suggested. Xuan and 

Roetzel [66] suggested a mechanism that assumes that the nanofluid in a tube behaves 

similar to that of a single phase fluid. Xue et al. [69] derived an expression for the 

effective thermal conductivity of nanofluids by taking the effect of particle size and 

interfacial properties, in addition to the relative volume fraction, into account. Their 

theoretical results for the CuO/water and CuO/EG nanofluids agreed well with 

experimental results. However, no clear explanation was given for the use of the 
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assumed values for thickness and thermal conductivity of the interfacial shell [69]. 

The fact that the theoretical results on the effective thermal conductivity of 

nanotube/oil nanofluid and Al2O3 /water nanofluid were in good agreement with the 

experimental data for an assumed interfacial shell thickness and thermal conductivity, 

does not make this an accurate model. 

 

Das et al. [75] developed a comprehensive theoretical model explaining the 

enhancement in thermal conductivity of a nanofluid in terms of particle volume 

fraction, variation in particle size, and temperature. The large surface area of the 

nanoparticles has been shown to be responsible for the enhancement in the effective 

thermal conductivity. In addition, a strong dependence of thermal conductivity with 

temperature is observed, since at higher temperatures, the fluid becomes less viscous 

and in turn the particle velocity also increases. However, this particular model is not 

suitable for large concentrations of particles where inter-particle interactions become 

important. 

 

Leong et al. [76] compared their experimental results and the theoretical predictions 

and concluded that all the traditional models, including Maxwell, Hamilton-Crosser, 

Wasp, and Bruggemann, under-predicted the effective thermal conductivity of the 

nanofluids, their reason being that the models do not account for particle size, particle 

Brownian motion, nanolayering, and the effect of nanoparticle clustering, similar to 

the proposition by Keblinski et al. [2]. 

 

It is evident from all the different models described above that no model exist yet that 

could explain the enhancement in thermal conductivity observed and that all the 

models developed thus far can only account for the results obtained within a specific 

research group.  
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2.1.4 Influence of submicron and high aspect ratio particles on physico-

chemical properties of Newtonian liquids 

In this section, the influence of various submicron and high aspect ratio particles such 

as metals, metal oxides and carbon nanotubes, on the rheological properties and 

thermal conductivity of Newtonian liquids are discussed. 

2.1.4.1 Metals 

• Rheological properties 

Very few studies have been done on the rheological properties of nanofluids. Xuan 

and Li [34] compared their suspensions of Cu in transformer oil and Cu nanoparticles 

in water and suggested that viscosity may be an important factor affecting the 

dispersion of ultra-fine particles and the stability of suspensions.  

Leong et al. [76] showed that the viscosity of nanofluids containing spherical 

particles increases more significantly with an increase in volume fraction, compared 

to those suspensions containing rod-like particles. 

Putra et al. [77] reported that the fluids between 1% and 4% particle volume 

concentration, proved to be Newtonian. The viscosity of the fluids were found to be 

constant against shear rate, higher compared to the base fluid, showed an increase in 

viscosity with particle concentration, and remained Newtonian in nature. 

It would thus appear that not much attention has been given to the rheological 

properties of nanofluids containing submicron and high aspect ratio particles. 

 

• Thermal conductivity 

Thermal conductivity plays a key role in the enhancement of heat transfer 

performance of a heat transfer fluid. Since the thermal conductivity of solid metals is 

much higher than that of fluids, the suspensions containing ultra-fine metal particles 

are expected to show improved heat transfer properties. 
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Hot-wire 

The transient hot-wire method is most widely used for measuring thermal 

conductivity and well documented in literature [14,34,66]. One of the biggest 

advantages of the method is the almost complete elimination of natural convection 

due to the short measurement time, which may give rise to complex problems for 

measurements.  

Many researchers have reported experimental studies on the thermal conductivity of 

nanofluids using the transient hot-wire method, and rarely the temperature oscillation 

and the steady-state parallel plate methods [78]. The hot-wire technique entails 

measuring the temperature/time response of a platinum wire to an abrupt electrical 

pulse. The wire is used as both heater and thermometer 

Xuan and Li [34] presented a study on thermal conductivity of water- and transformer 

oil-based nanofluids containing Cu nanoparticles varying in size up to 100 nm. 

Results showed that the suspended nanoparticles increased the thermal conductivity 

of the base fluid. The thermal conductivity was found to increase with an increase in 

volume fraction of the particles. For the water-based nanofluid containing Cu 

nanoparticles, the ratio of thermal conductivity of the nanofluid to that of the base 

fluid increased from 1.24 to 1.78 when the volume fraction of the nanoparticles 

varied from 2.5 to 7.5%.  

 

Eastman et al. [3] presented results from ethylene glycol-based nanofluids containing 

Cu nanoparticles with average diameter of less than 10 nm and loadings up to 0.5 

vol.%, prepared via a one step method. A significant improvement in thermal 

conductivity enhancement was observed for nanofluids containing Cu nanoparticles 

(up to 40% observed for particle loadings below one volume percent) compared to 

base fluids or those containing oxide particles, which was prepared via a two step 

method. The largest increase in thermal conductivity was from the nanofluids 

containing thioglycolic acid as stabilizing agent. Freshly prepared nanofluids showed 

slightly higher conductivities than those that were stored for up to two months prior 

to measurement. 
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2.1.4.2 Metal oxides 

• Rheological properties 

Kim et al. [14] investigated the rheological properties of copper oxide nanoparticles, 

with an average diameter of 12 nm, dispersed in ethylene glycol. They found the 

viscosities of the nanofluid to be very shear thinning and the infinite shear viscosities 

became almost identical to the solvent viscosity. Based on this result it would appear 

that metal oxide-containing nanofluids are Non-Newtonian in contrast with what has 

been reported for metal-containing nanofluids.  

 

• Thermal conductivity 

Leong et al. [76] reported an experimental study on water-based nanofluids 

containing TiO2 nanoparticles of different shapes. Spherically shaped particles with 

average diameters of 15 nm and rod-shaped particles with average diameters of 10 

nm and average lengths of 40 nm were studied. Different volume fractions of 0.005 - 

0.05 in deionized water were used. A maximum enhancement in thermal conductivity 

of 29.70% and 32.80% for a particle volume fraction of 5% was observed for 

spherically shaped and rod-shaped particles respectively. Hence, the thermal 

conductivity of nanofluids increases with increasing volume fraction of nanoparticles. 

Particle shape and size also influenced the thermal conductivity enhancement of the 

nanofluids. However, it is not clear if the surface area rather than particle shape is the 

determining factor since rods have a larger surface area than spheres. 

 

2.1.4.3 Carbon nanotubes 

• Rheological properties 

Grulke et al. [79] studied the viscosity of nanotube suspensions and found a close 

relationship between viscosity and thermal conductivity where both increased with 

the size of the agglomerates. Most of their samples showed shear-thinning behaviour 

with a yield stress. A similar result was obtained by both Alstaedt et al. [80] and Song 
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[81]. In general, nanofluids containing carbon nanotubes are Non-Newtonian with a 

yield stress. 

 

• Thermal conductivity 

Carbon nanotubes suspended in various base fluids have been prepared and the 

thermal conductivities measured [2,11,12,82,83,84]. Choi et al. [4] reported an 

enhanced thermal conductivity of 160% for nanofluids consisting of oil and 1.0 vol.% 

of carbon nanotubes. In contrast, Liu et al. [12] reported an increase of 30% for 

nanofluids made up of 2.0 vol.% carbon nanotubes in synthetic poly olefin oil.  When 

ethylene glycol was used as a base fluid to prepare suspensions of carbon nanotubes, 

the enhanced thermal conductivities were in agreement between different authors. Liu 

et al. [12] reported a 12.7% increase with a 1.0 vol.% suspension of carbon nanotubes 

in ethylene glycol, and Xie et al. [11] reported a 12.4% increase with a similar 

suspension. Water suspensions containing carbon nanotubes have been shown to have 

increased thermal conductivities. Xie et al. [11] reported a 7.0% increase with a 1.0 

vol.% suspension of nanotubes, and Assael et al. [83] reported a 38.0 % increase with 

a 0.6 vol.% suspension of carbon nanotubes in water with various weight percentages 

of sodium dodecyl sulfate surfactant. When aqueous suspensions of carbon nanotubes 

with hexadecyltrimethyl ammonium bromide (1- and 3 wt.%) and Nanosperse AQ 

(0.7%) surfactants were prepared, the increase in thermal conductivity was 34.0% and 

27.0% respectively [84]. 

 

All the results from all available experimental studies reported thus far indicate that 

the heat transfer properties of the nanofluids are superior to the corresponding base 

fluids. Al2O3 and CuO are the most widely utilized nanoparticles by many researchers 

in their experimental work. An enhancement in thermal conductivity was observed 

irrespective of the size of the particles and type of base fluid [4].  

 
2.1.5 Applications of nanofluids in power generated systems 

The miniaturization of mechanical and electrical components creates a need for 

improved heat transfer characteristics in current cooling fluids. Nanofluids have the 

25 



2. Literature 

potential to be used as cooling fluids since the nanoparticles suspensions are not 

abrasive and will not clog mechanical components. These fluids have also shown to 

exhibit substantially higher thermal conductivities compared to the conventional heat 

transfer fluids. Some useful applications for nanofluids are as alternative coolants, 

greases, or lubricants in automotive applications, coolants for microelectronics etc. 

Possible applications for the nanofluids will be discussed here. 

 

• Ethylene glycol based nanofluids containing silver nanoparticles: 

Ethylene glycol based nanofluids could find use in industry where cooling is required 

for batch processing of pharmaceutical products in multi-purpose reactors [85]. 

Ethylene glycol is currently used by some industrial sectors as a cooling medium; 

however, the need for a better cooling fluid is in demand. 

 

Another possibility for ethylene glycol based nanofluids is in the automotive industry. 

Car radiators are normally cooled using a mixture of ethylene glycol and water. In 

heavy-duty trucks or racing cars, this could lead to smaller cooling systems, which in 

turn, in the case of racing cars, could have a positive effect on the total weight and 

aerodynamics of these vehicles. 

 

• Transformer oil-based nanofluids containing silver nanoparticles 

Oil based nanofluids containing silver nanoparticles could find application in deep-

hole drilling, where it could help improve drilling penetration rate, clean, lubricate, 

and cool the drilling bit. Thus, nanofluids could significantly improve drilling speed 

and hence make it possible to extract more oil [86]. 

 

• Transformer oil-based nanofluids containing carbon nanotubes and silver 

nanoparticles supported on carbon nanotubes 

Although the nanotube dispersions do not form homogeneous suspensions, and 

sedimentation could occur upon standing over long periods, the great demand for 

these fluids lead some research groups into developing an Oscillating Heat Pipe 
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(OHP). The OHP produces oscillating motions that make the nanoparticles suspend in 

the base liquid. [87] 

 

Other high-flux applications include superconducting magnets, novel supersonic jet 

aircraft, high-power microwave tubes and electronic devices such as field effect 

transistor structures. 

 

• Transformer oil-based nanofluids containing silica and silver 

nanoparticles supported on silica 

Nanofluids containing electrically insulating materials could find use in low voltage 

transformers.  

 

Thus, the use of nanofluids, for example in heat exchangers, may result in energy and 

cost savings and should facilitate the trend of device miniaturization. More exotic 

applications of nanofluids can be envisioned in biomedical engineering and medicine 

in terms of optimal nano-drug targeting and implantable nano-therapeutics devices 

[72]. 

 

 

2.2 Conclusions 

Literature review shows that suspensions containing nanometer-sized particles 

(nanofluids) show potential for use as cooling fluids due to enhanced heat transfer 

properties. The two-step method is the most widely used method to prepare 

nanofluids, however, agglomeration during drying, storage and redispersion of the 

nanoparticles in the base fluid are some of the drawbacks which makes the one-step 

method a more attractive route to nanofluids. A surfactant is generally used to prevent 

particle agglomeration during nanoparticle formation and also to ensure very small 

nanoparticles are formed. It is also known that structural differences and defects 

present in most nanostructures have a noticeable effect on their physico-chemical 

properties. The rheological properties of the nanofluids are rarely investigated. 
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Nanofluids containing metal nanoparticles were found to be Newtonian, whereas 

nanofluids containing metal oxides as well as carbon nanotubes showed non-

Newtonian, shear thinning behaviour. Since the interaction forces between particles 

usually decrease during flow conditions, the flow resistance is also decreased. With 

no significant interaction forces between the particles, separation of the particles in 

the form of sedimentation may occur and therefore, rheological studies could possibly 

provide more information about the stability of the nanofluids and also the 

interactions between the particles and fluid molecules. The mechanism of heat 

transfer will also remain a challenge for the future without the necessary theoretical 

background that is lacking in nanotechnology. However, experimental data from 

various research directions could eventually lead to a common basis towards 

understanding the heat transfer process. 

 

The technological barrier is that the preparation of nanofluids using current literature 

methods are expensive and therefore more research is necessary to produce cost-

effective nanofluids which will be easy up scalable.  

 

To solve this problem, additional scientific study needs to be done on the influence of 

submicron and high aspect ratio particles on the physico-chemical properties of heat 

transfer fluids such as ethylene glycol, mineral oil and transformer oil. 

 

2.3 Objectives 

The main research goals are to prepare silver nanofluids (consisting of ethylene 

glycol, mineral oil and transformer oil containing silver nanoparticles, carbon 

nanotubes and silica) that are stable and investigate the effect of the various 

suspended nanoparticles on the thermal conductivity, the viscosity and the dielectric 

strength of the produced nanofluids. Based on the results, a recommendation will be 

given towards the potential application of the nanofluids. The methods used to 

prepare the nanofluids should be economically attractive, simple and reproducible. 

Amongst the various nanofluids, one nanofluid should be prepared with significant 

electrical strength to allow it any chance for application in electrical transformers. 
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The intrinsic properties of noble metal nanoparticle are strongly depended on its 

morphology and structure. Silver nanoparticles with different shapes have attracted a 

lot of interest because silver exhibits the highest electrical and thermal conductivities 

amongst all metals. Carbon nanotubes, however, have ~ 7 times higher thermal 

conductivity compared to silver, a high electric conductivity and good mechanical 

properties, making them ideal for use in nanofluids. Silica, with a much lower 

thermal conductivity than silver and carbon nanotubes, has a high thermal stability 

and is also chemically inert and could provide a good support for silver nanoparticles. 

In order to achieve the main objectives, the following workplan was developed: 

 

1. Synthesize nanofluids based on silver nanoparticles dispersed in Newtonian liquids 

and study:- 

• The stability of silver nanofluids and kinetics of silver nanoparticle evolution  

• Influence of the exposure of wide wavelength spectrum of light on the 

formation of silver nanoparticles 

• The effect of silver concentration during nanoparticle formation 

• The effect of Poly(vinyl)pyrrolidone concentration during silver nanoparticle 

formation 

• Influence of surfactant (nonionic, ionic and zwitterionic) behaviour during 

particle formation 

• Use of Fe(III) as a surfactant free method to silver nanofluids 

• Viscosity of silver nanofluids in ethylene glycol: Influence of silver 

concentration, water and temperature on the viscosity of silver nanofluids 

• Thermal conductivity of silver nanofluids in ethylene glycol: Influence of 

silver concentration, water and absence of stabilizing surfactant on thermal 

conductivity 

 

2.  Synthesize nanofluids based on silver nanoparticles dispersed in Newtonian 

liquid such as mineral oil and study:- 

• Effect of Korantin concentration on particle size 
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• Influence of silver concentration on nanoparticle formation 

• Stability of mineral oil based silver nanofluids 

 

3.  Synthesize nanofluids based on silver nanoparticles dispersed in Newtonian 

liquid such as transformer oil and study:- 

• Silver nanoparticle formation and structure in transformer oil: Oil based Ag-

nanofluid synthesized by using a high temperature method and hydrogen 

reduction method 

• Study of viscosity and thermal conductivity of silver nanofluids 

• Influence of the absence of surfactant on the thermal conductivity of silver 

nanofluids 

• Study of the dielectric strength of transformer oil-based silver nanofluids 

 

4.  Synthesize nanofluids based on silver nanoparticles dispersed in Non-

Newtonian liquids  

 

 A) Synthesis and Physico-Chemical properties of transformer oil doped with 

carbon nanotubes 

• Influence of carbon nanotube doping on Physico-Chemical properties 

of transformer oil 

• Structural studies of carbon nanotubes dispersed in transformer oil 

• Investigations of thermal conductivity of carbon nanotubes dispersed 

in transformer oil 

 

 B) Physico-Chemical properties of nanofluids based on silver nanoparticles 

dispersed in transformer oil modified with carbon nanotubes 

• Synthesis and structural properties of nanofluids  

• Rheological properties, thermal conductivity and dielectric strength of 

nanofluids  
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 C) Synthesis and Physico-Chemical properties of silver nanoparticles 

dispersed in transformer oil doped with silica  

• Synthesis and structural studies of nanofluids dispersed in transformer 

oil modified with silica 

• Rheological properties and thermal conductivity of nanofluids 

containing silver nanoparticles and silica  

• Influence of silica concentration without silver nanoparticles on 

thermal conductivity 

• Influence of silver concentration on thermal conductivity in nanofluids 

containing silver nanoparticles supported on silica 

• Dielectric Strength of nanofluids containing silver nanoparticles and 

silica 

 

By investigating all the parameters described above, it could help solve the main 

objectives of this work. 

 

 

2.4 Thesis layout 

Chapter 1 gives an introduction to the thesis and hence provides the motivation for 

the study. In Chapter 2, an overview of the relevant literature on the synthesis and the 

heat transport properties of nanofluids are provided. In section 2.2, some conclusions 

are drawn from the literature overview. The objectives of the work are stated in 

section 2.3. 

Chapter 3 deals with the methods and materials that were used to prepare and 

characterize the nanofluid systems. Chapter 4 discusses the results obtained for 

investigations into the structural and physico-chemical properties of nanofluids based 

on silver nanoparticles in Newtonian liquids. Chapter 5 discusses the results obtained 

for investigations into the structural and physico-chemical properties of nanofluids 

based on silver nanoparticles in Non-Newtonian liquids. A summary of all the results 

obtained and some recommendations are given in Chapter 6.
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3 CHAPTER THREE: EXPERIMENTAL 

3.1 General 

All glassware was cleaned with concentrated nitric acid (32 %) prior to use.  

 

Ultra-Pure water and de-ionized water were obtained using a Modulab Water System. 

 

All mineral oil based nanofluids (reactions and characterization) was performed at the 

Max-Planck-Institute (MPI), Germany and the results have been published [7]. Other 

sections from the published article are given in the Appendix (8.1). 

 

All ethylene glycol-based and transformer oil-based nanofluids were prepared at the 

University of the Western Cape, South Africa. 

 

The concentration of silver in all experiments is reported as vol.%, which was 

calculated based on the density of the bulk metal (10.49 kg/l) and the mass of the salt 

used. 
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3.2 Chemicals: Source and Purity 

Table 3-1: Gases and chemicals used to perform the reactions 

ACID   
Nitric acid AR Kimix 55% 
Sulfuric acid AR Kimix 98% 

BASE LIQUIDS   
Ethylene glycol Saarchem AR; d = 1.113-1.116 kg/l 
Mineral oil Wunsch TW 12 
Transformer oil Eskom Brackenfell,  d = 0.86 kg/l 

SOLVENTS   
Toluene Saarchem 99% 

STABILIZERS   
Korantin SH BASF  AG 
Oleic acid Alfa Aesar 99% 
Oleylamine Aldrich 70% 
Poly(dipropylene glycol) 
phenyl phosphite  

Aldrich - 

PVA Fluka MW = 15 000 g/mol 
PVP K15  Fluka MW = 10 000 g/mol 
Sulfobetaine Fluka 97% 

NANOFLUID 
PRECURSORS 

  

Ferric nitrate Saarchem Unilab 
Fumed silica, SA 380 m2/g Aldrich 99.8% 
LaNi5 Guangzhou Research Institute 

of Non-Ferrous Metals 
(China) 

- 

MWCNTs Cheap Tubes Inc. (USA) >95 wt% 
Silver nitrate Kimix AR 
Silver lactate Alfa Aesar, Germany AR 

GAS Supplier Purity 
Air  Afrox, South Africa IG 
10 % H2 in Ar Afrox, South Africa Alpha Standard 
LPG Afrox, South Africa IG 
N2 Afrox, South Africa IG 
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3.3 Methods used for structural characterization 

3.3.1 Ultraviolet-Visible Spectroscopy (UV-VIS) 

UV-VIS spectroscopy analyses were performed on a Varian Cary 500 UV 

spectrophotometer. To measure absorbancies during the reaction, known small 

volumes of samples were taken at different times and diluted with base liquid to give 

a final concentration of 0.5 mM. However, colour changes were observed in some 

cases after dilution and therefore it was decided, for further studies, to collect the 

samples straight from the reaction flask without dilution. Most samples were taken 

during and after the reaction and analyzed using 1-cm path length quartz cells. 

 

3.3.2 Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM) is used to determine the size, distribution 

and the morphology of the synthesized nanoparticles. A drop of the sample was 

placed on a Formvar coated Cu grid and dried at room temperature (RT). Selected 

Area Electron Diffraction (SAD) is used to confirm crystallinity of the samples.  

 

TEM measurements were performed using a Hitachi H 800 instrument operated at an 

accelerating voltage of 200 kV (Electron Microscopy Unit, University of the Western 

Cape). The TEM samples were prepared by placing a drop of the colloidal dispersion 

onto a copper grid coated with a carbon film. The oil samples were mixed with 

toluene prior to dispersion on the copper grid. For the mineral oil-based nanofluids a 

Hitachi HF 2000 TEM operating at 200 kV was used. In order to determine the 

particle size, 2-3 of the particle images were taken randomly. The average particle 

size (d) and standard deviation (σ) were obtained from ni number of particles (ni ≥ 

100 particles, unless otherwise specified) and calculated with equations: 
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Some of the TEM micrographs were taken at the Electron Microscopy Department, 

University of Cape Town, using a Leo 912 in-column EFTEM with OMEGA 

spectrometer. 
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3.3.3 Fourier Transform Infrared Spectroscopy (FT-IR) 

Infrared spectra were recorded on a Perkin Elmer FT-IR Paragon 1000 

eter. Solid samples were recorded on potassium bromide pellets. 

olbe 

heim an der Ruhr, Germany. 

5 ng in HNO3:H2SO4 

ed at Stellenbosch 

Energy Dispersive Spectroscopy (EDS) to determine the morphology as well as the 

position of the prepared nanoparticles. Samples are prepared by 

uker AXS D8 

fractometer. XRD data were taken with CuKα radiation (λ = 1.5418 Ǻ), 

in the θ/2θ mode primarily in the 30-90° (2θ) 

range and step-scan of ∆2θ = 0.05°. Liquid samples were prepared using 

spectrophotom

 

3.3.4 Inductively Coupled Plasma Spectroscopy (ICP) 

Microanalysis for mineral oil-based nanofluids was performed by K

Microanalysis Laboratory, Muel

The supernatant solutions, obtained from etching LaNi  by stirri

(1:1) for ½ hr prior the carbon nanotubes synthesis, were analyzed using Inductively 

Coupled Plasma (ICP) Spectroscopy. Analysis was perform

University (Geology Department), South Africa. 

 

3.3.5 Scanning Electron Microscopy/Energy Dispersive Spectroscopy 

(SEM/EDS) 

A Hitachi X650 Scanning Electron Microscope (SEM) was used together with 

elemental com

dropping/glueing some of the prepared nanofluids/solids onto aluminum stubs and 

allowing them to dry at room temperature. Some of the samples were analyzed at the 

Electron Microscopy Department, University of Cape Town. 

EDS measurements of LaNi5 were carried out using Hitachi S-4800 instrument 

located at the Institute for Energy Technology (IFE), Kjeller, Norway. 

 

3.3.6 X-Ray Diffraction (XRD) 

XRD spectra were recorded at iThemba Labs, Cape Town using a Br

Advance dif

on the powder diffractometer operated 
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nanofiltration membranes, where samples were filtered through the membranes and 

analysis was done on the membranes containing the nanoparticles. 

 

3.3.7 Thermogravimetric Analysis 

Oil-based nanofluids containing CNTs were washed with toluene and filtered through 

membrane filters (47 mm Nitrocellulose (Millipore) with pore size of 0.025 µm). 

ogravim e dried CNT and Ag/CNT powders was 

ic Simultaneous Thermal Analyzer (STA) 

.4.1 Rheological properties: Viscosity 

Viscosity measurem

(Cape Peninsula University of Technology (CPUT), Cape Town) at 30 °C. 

 

the fastest and most accurate means to 

l con  of fluids. The apparatus consists of a thin (101 

micrometers coated, 51 micrometers bare) Teflon coated platinum wire (A-M 

m wire was soldered at 

Therm etric analysis (TGA) of th

carried out in air on a Rheometric Scientif

in the temperature range RT-900˚C at a scan rate of 5˚C/min. 

 

3.4 Methods used for characterization of physico-chemical 

properties 

3

ents were performed using a Paar-Physica MCR 300 Rheometer 

3.4.2 Thermal conductivity 

3.4.2.1 The hot-wire apparatus and procedure 

The transient hot-wire method is one of 

therma ductivity measurements

Systems, Inc., 5.8 cm) in a 30.0 mL container. The platinu

each end to tinned copper wire. The soldered points were covered with a layer of 

epoxy which is an electrically insulating polymer. Since the resistance of the Pt wire 

is much higher than the resistance of the relatively thick current leads and tin solder 

points, only the resistance from the Pt wire was taken into account. A schematic of 

the apparatus is shown in Figure 3-1.  
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Figure 3-1: Schematic diagram of Hot-wire apparatus used for thermal conductivity measurements. 

 

In order to derive the thermal conductivity, the temperature/time response of the 

platinum wire was recorded while a known current was passed through the wire. The 

he slope of the resistance versus Log(time) is directly proportional to the thermal 

 of the temperature and the time. In 

wire is used as both a heater and a thermometer.  

T

conductivity. In order to find the thermal conductivity, the “instrument factor” 

(Figure 3-2) was determined using ethanol (thermal conductivity: 0.14 W/Km)). The 

instrument factor was determined by the quotient

order to check the validity of the instrument two other liquids ((methanol, thermal 

conductivity: 0.21 W/Km) and acetone (thermal conductivity: 0.16 W/Km)) were 

subjected to the hot wire experiment. The thermal conductivy was calculated using 

the instrument factor and compared with the theoretical value. The instrument was 

found to be very accurate showing not more than 1% deviation (theoretical/ 

experimental values of the thermal conductivy).  

 

A typical “temperature versus time reponse” is shown in (Figure 3-2). The thermal 

conductivity of the nanofluid is inversely proportional to the slope of the temperature 

versus time response of the platinum wire.  
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Figure 3-2: Validation and principle of Hot-wire method used for thermal conductivity measurements. 

 

In a typical procedure, ~30ml of sample is poured into the reservoir of the hot-wire 

apparatus and allowed to stand for a few minutes before each measurement to 

minimize the effect of convection. A current of 0.1 A was applied. The duration of 

the measurement was 4s with a step of 0.05s.  

 

3.4.3 Karl-Fischer 

Water content of the samples was determined by Karl-Fischer Titration. The sample 

(0.5ml) was pipetted into a titration vessel containing methanol and titrated against 

Iodine. Results are given as % water present. The Karl Fischer Titrator (CPUT, 

Bellville) was used to determine the percentage water present in some samples. 

Some of the oil samples were analyzed at ESKOM Enterprises, Brackenfell, using a 

684 Metrohm KF Coulometer. 

 

3.4.4 Electrical Properties: Dielectric Strength 

All dielectric strength measurements were performed at ESKOM Enterprises, 

Brackenfell, using a BAUR Dielectric tester DTA. 1-Liter samples were needed for 

the analysis. 
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3.4.5  Acidity 

Acid analysis was performed at ESKOM Enterprises, Brackenfell, using acid-base 

titrations. The acid solution consisted of 40% ethanol and 60% toluene and the base 

was KOH. 

 

3.5 Synthesis of nanofluids based on silver nanoparticles in 

Newtonian liquids 

Various nanofluids have been prepared containing silver nanoparticles suspended in 

ethylene glycol, mineral oil and transformer oil. Ethylene glycol based nanofluids 

were used as the model system since the preparation of silver nanoparticles in 

ethylene glycol is well documented in literature and therefore, the effect of various 

parameters, such as the effect of a wide spectrum of light, different surfactants, and 

the addition of Fe(III) on particle formation and structure have been investigated. All 

experimental details pertaining to ethylene glycol-based nanofluids are given in 

Section 3.5.1. Experimental methods for all mineral oil-based nanofluids are 

presented in Section 3.5.2, followed by the experimental details of transformer oil-

based nanofluids in Section 3.5.3. 

 

3.5.1 Synthesis of ethylene glycol based nanofluids containing silver 

nanoparticles 

Chemical reduction pathways have been employed to synthesize ethylene glycol-

based nanofluids, using the base fluid as the reducing agent as well as the solvent. 

PVP was used as the surfactant in most reactions. It has been shown that lower 

molecular weight PVP (MW < 15 000) could arrange itself to provide better coverage 

on the surface of silver colloids than those of higher molecular weight PVP (MW > 

29 000) [97]. Based on this finding, PVP (MW ~10 000) was used in this research. 

Silver and iron oxide containing nanofluids have been synthesized by direct mixing 

of the metal salt, stabilizer and base fluid at room temperature or slightly elevated 

temperatures by means of magnetic stirring. Since all the reactions were performed in 
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glassware, the effect of a wide spectrum of light on silver nanoparticle formation was 

investigated by performing the reactions in a reaction flask covered with aluminium 

foil. 

A typical synthesis for the PVP-stabilized silver nanofluid is as follows: 

 

PVP-stabilized Ag nanofluid  

For 0.5 vol.% (0.5 M) Ag nanofluid: AgNO3 (8.2600 g, 48.63 mmol) was dissolved 

in ~90ml ethylene glycol and PVP (0.5 g, 0.05 mmol) was dissolved in ~10ml 

ethylene glycol at RT. The PVP solution was then added dropwise over 10 minutes to 

the solution containing silver nitrate. A yellow solution resulted immediately upon 

reaction, showing the onset of silver nanoparticle formation. It was then allowed to 

stir at RT for a few days. The reaction conditions of some PVP-stabilized silver 

nanofluids are given in Table 3-2. 

 
Table 3-2: Reaction conditions for EG-based nanofluids containing silver nanoparticles 

5RT100--0.0023.5.1.10

5RT100--0.53.5.1.9

5RT1000.5PVP0.01 
(Foil)

3.5.1.13

5RT1000. 5PVP1.03.5.1.12

5RT1000.1PVP0.33.5.1.7

5RT1000. 5PVP0.53.5.1.8

5RT1000. 5PVP0.73.5.1.11

5RT1000. 5PVP0.33.5.1.6

5RT1000. 5PVP0.13.5.1.5

5RT1000. 5PVP0.073.5.1.4

5RT1000. 5PVP0.043.5.1.3

3RT1000. 5PVP0.013.5.1.2

5RT1000.5PVP0.01 (No 
foil)

3.5.1.14

8RT1000. 5PVP0.013.5.1.1

Rxn
time 

(days)

Rxn
temp
(˚C)

C2H6O2
(ml)

Surfactant 
(mM)

SurfactantAgNO3
(M)

Sample No.

5RT100--0.0023.5.1.10

5RT100--0.53.5.1.9

5RT1000.5PVP0.01 
(Foil)

3.5.1.13

5RT1000. 5PVP1.03.5.1.12

5RT1000.1PVP0.33.5.1.7

5RT1000. 5PVP0.53.5.1.8

5RT1000. 5PVP0.73.5.1.11

5RT1000. 5PVP0.33.5.1.6

5RT1000. 5PVP0.13.5.1.5

5RT1000. 5PVP0.073.5.1.4

5RT1000. 5PVP0.043.5.1.3

3RT1000. 5PVP0.013.5.1.2

5RT1000.5PVP0.01 (No 
foil)

3.5.1.14

8RT1000. 5PVP0.013.5.1.1

Rxn
time 

(days)

Rxn
temp
(˚C)

C2H6O2
(ml)

Surfactant 
(mM)

SurfactantAgNO3
(M)

Sample No.
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Influence of surfactant (nonionic, ionic and zwitterionic) behaviour during silver 

nanoparticle formation 

Besides PVP, other surfactants such as PVA, Poly(dipropylene glycol) phenyl 

phosphite and SB12 were used in order to investigate the effect of different 

surfactants on particle size and morphology, and hence which surfactant offered the 

best capping abilities for silver nanoparticles. 

 

Each surfactant, however, showed a unique contribution towards the formation of 

silver nanoparticles, where in the presence of some, no silver nanoparticles formed 

until the temperature was increased to above 100 °C. The surfactant to metal ratio for 

all the reactions described in this section is 1:1. Typical synthesis procedures are as 

follows: 

 

• EFFECT OF NONIONIC SURFACTANT: Polyvinylalcohol 

PVA (17.8623 g, 1.19 mmol) was dissolved in 80 ml ethylene glycol at 60 °C. A 

solution of AgNO3 (0.2200 g, 1.30 mmol) in 20 ml ethylene glycol was added 

dropwise to the yellow suspension of PVA in ethylene glycol. It was allowed to stir at 

60 °C for 3 hours and overnight at room temperature.  

A summary of the reaction conditions are presented in Table 3-3. 

 

• EFFECT OF IONIC SURFACTANT: Poly(dipropylene glycol) phenyl 

phosphite  

AgNO3 (0.2168 g; 1.28 mmol) and Poly(dipropylene glycol)Phenyl Phosphite (0.2 

ml; 1.20 mmol) were each dissolved separately in 25 ml of EG. The AgNO3 solution 

was then added dropwise to the surfactant solution and the mixture was allowed to 

stir at room temperature. Unlike the PVP-system which resulted in a yellow solution 

once the reactants were reacted together (showing the onset of silver nanoparticle 

synthesis), no colour change was observed for the Poly(dipropylene glycol)Phenyl 

Phosphite-system. The temperature was then increased to ~60 °C. Still no reaction 

41 



3. Experimental 

occurred. The temperature was then increased to 110 °C and allowed to stir at that 

temperature for 2-3 hours. Reaction conditions are summarized in Table 3-3. 

 

• EFFECT OF ZWITTERIONINC SURFACTANT: 3-(N,N-

Dimethyldodecylammonio)propanesulfonate 

AgNO3 (0.2112 g; 1.24 mmol) was dissolved in ~40 ml ethylene glycol. It was then 

added dropwise to a solution of 3-(N,N-Dimethyldodecylammonio)propanesulfonate 

(0.0404 g; 1.20 mmol) in ~60ml ethylene glycol, which was previously dissolved at  

60˚C. No colour change was observed. It was allowed to stir for 30 minutes at 60˚C. 

A colourless solution was obtained. A sample was taken for UV-VIS measurements. 

The temperature was increased to ~157˚C and samples were taken for UV-VIS 

measurements at the following temperatures and time intervals: 120˚C = 1 ½ hrs after 

temperature was increased; 150˚C = 45 min later; 152˚C = 30 min later; 157˚C = 20 

min later; RT = next day. Reaction conditions are summarized in Table 3-3. 

 

Surfactant free method to silver nanofluids: Use of Fe(III) 

Iron is believed to remove oxygen from the surface of the seeds during growth of 

silver particles and thereby prevent etching of the silver nanoparticles [88]. In 

addition, iron is normally found as a contaminant in ethylene glycol due to the steel 

vessels in which ethylene glycol are usually stored in. Therefore, the effect of iron on 

the formation of silver nanoparticles was investigated. Reaction conditions are also 

summarized in Table 3-3. 

Effect of Fe(III) concentration on the stability of silver nanofluids at different 

temperatures: AgNO3 (0.3181 g; 1.87 mmol) and Fe2NO3·9H2O ((0.8175 g; 2.02 

mmol) or (0.3074 g, 0.76 mmol)) was dissolved in 100 ml ethylene glycol at RT. The 

solution was allowed to stir overnight.  

 

Effect of sequence in the preparation of silver nanofluids in the presence of 

Fe(III) 

Dropwise addition:  
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AgNO3 (0.5020 g; 3.00 mmol) was slowly dissolved in 90 ml EG. Ferric nitrate 

(0.0660 g; 0.16 mmol) was dissolved in 10ml EG. The ferric nitrate solution was then 

added dropwise over 15 minutes to the colourless solution containing silver nitrate. It 

was left to stir uncovered overnight and over a few days.  

 

Mixing all reactants at once:  

AgNO3 (0.5166 g; 3.04 mmol) and ferric nitrate (0.0640 g; 0.16 mmol) was dissolved 

in 100 ml ethylene glycol at RT. The solution was allowed to stir overnight.  

 
Table 3-3: Reaction conditions for EG-based nanofluids containing silver nanoparticles and varying 

surfactants and an iron salt. The surfactant concentrations are based on a 1:1 ratio between the silver 

and the surfactant. 

7RT0.01PVP0.008-4.1.2.22

7RT--0.0080.034.1.2.20

3 hrs100--0.0080.034.1.2.21

0.008

0.002

0.002

-

-

-

Fe2NO3
(M)

7RT--0.034.1.2.18

3 hrs100--0.034.1.2.19

3 hrs1570.05 MSB120.014.1.2.17

3 hrs1100.3 MPDPP0.014.1.2.16

3 hrs650.01 MPVA0.014.1.2.15

7RT0.01PVP0.034.1.2.23

Rxn
time 
(days)

Rxn
temp
(˚C)

Surfactant 
(mM)

SurfactantAgNO3
(M)

Sample 
No.

7RT0.01PVP0.008-4.1.2.22

7RT--0.0080.034.1.2.20

3 hrs100--0.0080.034.1.2.21

0.008

0.002

0.002

-

-

-

Fe2NO3
(M)

7RT--0.034.1.2.18

3 hrs100--0.034.1.2.19

3 hrs1570.05 MSB120.014.1.2.17

3 hrs1100.3 MPDPP0.014.1.2.16

3 hrs650.01 MPVA0.014.1.2.15

7RT0.01PVP0.034.1.2.23

Rxn
time 
(days)

Rxn
temp
(˚C)

Surfactant 
(mM)

SurfactantAgNO3
(M)

Sample 
No.

 

 

3.5.2 Synthesis of mineral oil based nanofluids containing silver 

nanoparticles stabilized by Korantin SH 

Ag-colloid was prepared by thermal decompostion of Ag-lactate in the presence of 

Korantin SH. Unlike PVP, which was the surfactant of choice in the ethylene glycol-

based nanofluids, Korantin SH is an apolar surfactant which dissolves easily in oil. 

The experiment was performed under Argon as well as in air. Different 
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concentrations of Ag namely 0.3 vol.%, 0.011 vol.% and 0.001 vol.% were prepared 

and the amount of surfactant was varied. 

A typical procedure is as follows: For 0.011 vol.% Ag-colloid in mineral oil, Ag-

lactate (0.32 g, 1.60 mmol), mineral oil (150 ml) and Korantin SH (1.08 g, 3.05 

mmol) were stirred together at room temperature for ½ hour. The temperature of the 

oil bath was increased from RT to 90ºC. The mixture was heated for a total of 4 

hours.  

 

3.5.3 Synthesis of transformer oil based nanofluids containing silver 

nanoparticles 

Transformer oil based samples were produced in two different ways. In the first 

method, the transformer oil itself was used as reducing agent. In the second method, 

hydrogen was used as the reducing agent. Both methods are described in section 

3.5.3.1 and 3.5.3.2 resepectively. Hydrophobic stabilizers were used to prevent 

particle agglomeration. The complete overview of concentrations and other changing 

parameters is given Table 3-4 below. 

 

A typical synthesis is as follows: AgNO3 (0.2160 g, 1.27 mmol) was dissolved in 50 

ml transformer oil at ~60 °C. Oleylamine (1.0 ml, 3.04 mmol) was dissolved in 50 ml 

transformer oil and the resulting yellow solution was added dropwise over ~15 

minutes to the warm grayish yellow suspension of silver nitrate in transformer oil. 

The suspension was then subjected to each of the following two methods described 

above. A summary of the reaction conditions used for both methods is given in Table 

3-4 and the detailed experimental procedures are presented below. 

 

3.5.3.1 Oil-based Ag nanofluid synthesized by using a high temperature method:  

During addition, the temperature was increased to 130 °C and once addition was 

complete, the heater was switched off and the suspension was allowed to stir 

overnight at room temperature. 
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3.5.3.2 Oil-based Ag nanofluid synthesized by using a hydrogen reduction 

method: Influence of reaction time. 

The orange brown suspension was taken off the stirrer as soon as addition was 

complete. 10% H2 in N2 was then bubbled through the suspension (20 ml/min) using 

a borosilicate Pasteur pippette for 1 hour while sonicating in a 40 °C water-bath.  

 
Table 3-4: Reaction conditions for oil-based nanofluids containing silver nanoparticles 

2oil130--0.53.5.3.7

2oil130--0.013.5.3.6

2oil130--0.0013.5.3.5

6H2403.04Oleylamine0.013.5.3.4

oil

H2

oil

Red. 
agent

21303.04Oleylamine0.013.5.3.3

1403.04Oleylamine0.013.5.3.2

21303.04Oleylamine0.013.5.3.1

Rxn
time 
(hrs)

Rxn
temp
(˚C)

Surfactant 
(mM)

SurfactantAgNO3
(M)

Sample 
No.

2oil130--0.53.5.3.7

2oil130--0.013.5.3.6

2oil130--0.0013.5.3.5

6H2403.04Oleylamine0.013.5.3.4

oil

H2

oil

Red. 
agent

21303.04Oleylamine0.013.5.3.3

1403.04Oleylamine0.013.5.3.2

21303.04Oleylamine0.013.5.3.1

Rxn
time 
(hrs)

Rxn
temp
(˚C)

Surfactant 
(mM)

SurfactantAgNO3
(M)

Sample 
No.

 

3.6 Synthesis of nanofluids based on silver nanoparticles in 

non-Newtonian liquids 

The experimental methods used to study the effect of silver nanoparticles dispersed in 

transformer oil, which was doped with either carbon nanotubes or silica are presented 

in Sections 3.6.1 and 3.6.2 respectively. 

 

3.6.1 Synthesis of transformer oil based nanofluids containing 

nanotubes and silver nanoparticles supported on carbon nanotubes 
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All the homemade nanotubes used were prepared by a hydrocarbon pyrolysis method. 

See Appendix (8.2) for further details. 

 

Various carbon nanotube-based nanofluids have been synthesized and the thermal 

conductivity of the nanotubes has been measured. To prepare the nanotube-based 

nanofluids, carbon nanotubes were mixed with the base fluid and surfactant, followed 

by sonication in an ultrasound bath for 2–5 hours or heat treated at 130˚C for 2 hours. 

However, sonication caused the nanotubes to break. This was also observed by others 

[89] and hence resulted in lower aspect ratios, and in turn lower thermal conductivity 

values were observed. Stirring at increased temperature was used in an attempt to 

disperse the nanotubes in the oil. Oleylamine and oleic acid were used for 

stabilization purposes.  

 

Some of the synthesized carbon nanotubes were subjected to pre-treatment. The pre-

treatment step is an acid reflux treatment whereby various oxygen groups could be 

introduced onto the surface of the nanotubes. The acid reflux treatment consisted of a 

4.0 hour reflux in a 50 ml mixture of concentrated sulphuric and nitric acids (1:1 by 

volume sulphuric: nitric acid), after the mixture had cooled down it was diluted with 

de-ionized water then filtered through a membrane filter (47 mm Nitrocellulose 

(Millipore) with pore size of 0.025 µm). The nanotubes were then washed with de-

ionized water and centrifuged (Sigma 3-18, 10 000 rpm), until the pH of the filtrate 

was between 6 and 7, and then dried in an oven at 200˚C for ½ hr. 

 

Nanofluid containing carbon nanotubes without surfactant 

Homemade or commercial carbon nanotubes (0.3750 g, 1.0 wt%) was mixed with 

transformer oil (50 ml) and allowed to stir for ½ hr at room temperature. The 

temperature of the hotplate was then increased to 130 °C and the mixture was allowed 

to stir at that temperature for ~2hrs. A thick black mixture was obtained, which later 

settled at the bottom of the flask. 
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Nanofluid containing carbon nanotubes stabilized by oleylamine 

Oleylamine (2.0042 g, 7.5 mmol, 4.3 wt%) and commercially obtained carbon 

nanotubes (1.6704 g, 3.5 wt%) were mixed together. Transformer oil (50 ml) was the 

added and the mixture was stirred for 10 minutes at room temperature. The 

temperature of the hotplate was then increased to 130 °C and the mixture was allowed 

to stir at that temperature for ~2hrs. A thick black mixture was obtained, which later 

settled at the bottom of the flask. 

 

Nanofluid containing oleic acid- stabilized silver nanoparticles (0.07 vol.%) on 

3.0 wt%  homemade/commercial carbon nanotubes  

Homemade, acid treated carbon nanotubes (1.4396 g, 3.1 wt%) and AgNO3 (0.5786 

g, 3.4 mmol, 1.2 wt%) were mixed with oleic acid (0.5609 g, 1.99 mmol, 1.2 wt%) in 

transformer oil (50ml) by mechanical aggitation. The mixture was heated at 130 °C 

for 2hrs. A black mixture was obtained, which later settled at the bottom of the flask. 

 

A summary of the reaction conditions of oil-based nanofluids containing CNTs with 

and without silver nanoparticles is given in Table 3-5. 
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Table 3-5: Reaction conditions for CNT-based nanofluids with and without silver nanoparticles. All 

nanofluids were prepared using acid-treated CNTs, except for sample numbers 4.1.4.10, 4.1.4.11, 

4.1.4.12, 4.1.4.13, and 4.1.4.15, where untreated CNTs were used. 

50

50

50

50

50

40

100

50

1000

50

50

50

50

50

100

Oil (ml)

130, 2 hrs-0.4-4.1.4.15 (comm.)

130, 2 hrs-0.4-4.1.4.13 (home)

130, 2 hrsOleic acid (0.04M)1-4.1.4.14 (comm.)

130, 2 hrsOleic acid (0.04M)1-4.1.4.10 (comm.)

130, 2 hrsOleic acid (0.04M)1-4.1.4.11 (home)

130, 2 hrsOleic acid (0.04M)10.074.1.4.8

130, 2 hrsOleic acid (0.08M)10.074.1.4.9

130, 2 hrs-1-4.1.4.12 (home)

130, 2 hrsOl-amine (0.08 M)10.074.1.4.7

3

3

3

3

4

4

CNT’s
(wt%)

130, 2 hrs

130, 2 hrs

130, 2 hrs

130, 2 hrs

130, 2 hrs

130, 2 hrs

Temp (°C)

Oleic acid (0.1M)-4.1.4.3

Oleic acid (0.1M)0.074.1.4.4

Oleic acid (0.04M)0.074.1.4.5

Oleic acid (0.04M)0.074.1.4.6

4.1.4.2

4.1.4.1

Sample #

Ol-amine (0.16M)-

Ol-amine (0.16M)0.07

SurfactantAg 
(vol%)

50

50

50

50

50

40

100

50

1000

50

50

50

50

50

100

Oil (ml)

130, 2 hrs-0.4-4.1.4.15 (comm.)

130, 2 hrs-0.4-4.1.4.13 (home)

130, 2 hrsOleic acid (0.04M)1-4.1.4.14 (comm.)

130, 2 hrsOleic acid (0.04M)1-4.1.4.10 (comm.)

130, 2 hrsOleic acid (0.04M)1-4.1.4.11 (home)

130, 2 hrsOleic acid (0.04M)10.074.1.4.8

130, 2 hrsOleic acid (0.08M)10.074.1.4.9

130, 2 hrs-1-4.1.4.12 (home)

130, 2 hrsOl-amine (0.08 M)10.074.1.4.7

3

3

3

3

4

4

CNT’s
(wt%)

130, 2 hrs

130, 2 hrs

130, 2 hrs

130, 2 hrs

130, 2 hrs

130, 2 hrs

Temp (°C)

Oleic acid (0.1M)-4.1.4.3

Oleic acid (0.1M)0.074.1.4.4

Oleic acid (0.04M)0.074.1.4.5

Oleic acid (0.04M)0.074.1.4.6

4.1.4.2

4.1.4.1

Sample #

Ol-amine (0.16M)-

Ol-amine (0.16M)0.07

SurfactantAg 
(vol%)

 

 

3.6.2 Synthesis of transformer oil based nanofluids containing silica and 

silver nanoparticles supported on silica 

Nanofluids containing silica, with varying concentrations, were prepared by a one-

step method where silica was mixed together with the base fluid by means of 

magnetic stirring and allowed to stir for 2 hours at 130˚C. 

Silver nanoparticles supported on silica were prepared in a similar way by 

introducing the precursors to the base fluid and increasing the temperature to 130˚C 

for 2 hours. A typical procedure is as follows: 

 

Nanofluid containing 0.03 vol.% silver on 0.07 wt% silica: 

AgNO3 (0.2183 g; 1.29 mmol) and SiO2 (0.0294 g; 0.49 mmol) were added to 50 ml 

oil and stirred for ½ hr. The temperature was then increased to 130˚C and allowed to 
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stir at that temperature for 2 hrs. A summary of the reaction conditions of oil-based 

nanofluids containing silica with and without silver nanoparticles is given in Table 3-6. 

 
Table 3-6: Reaction conditions for silica-based nanofluids with and without silver nanoparticles 

50

50

50

50

50

50

50

50

50

50

50

50

Oil (ml)

130, 2 hrs-1.8-4.1.5.2

130, 2 hrs-4.4-4.1.5.1

130, 2 hrs-0.3-4.1.5.9

130, 2 hrs-0.5-4.1.5.5

130, 2 hrs-0.070.064.1.5.11

130, 2 hrs-1.40.064.1.5.3

130, 2 hrs-0.50.064.1.5.6

130, 2 hrs-0.070.034.1.5.10

130, 2 hrs-0.50.014.1.5.8

130, 2 hrs-1.4-4.1.5.4

0.07

0.5

SiO2
(wt%)

130, 2 hrs

130, 2 hrs

Temp (°C)

4.1.5.12

4.1.5.7

Sample #

-0.01

-0.03

SurfactantAg 
(vol%)

50

50

50

50

50

50

50

50

50

50

50

50

Oil (ml)

130, 2 hrs-1.8-4.1.5.2

130, 2 hrs-4.4-4.1.5.1

130, 2 hrs-0.3-4.1.5.9

130, 2 hrs-0.5-4.1.5.5

130, 2 hrs-0.070.064.1.5.11

130, 2 hrs-1.40.064.1.5.3

130, 2 hrs-0.50.064.1.5.6

130, 2 hrs-0.070.034.1.5.10

130, 2 hrs-0.50.014.1.5.8

130, 2 hrs-1.4-4.1.5.4

0.07

0.5

SiO2
(wt%)

130, 2 hrs

130, 2 hrs

Temp (°C)

4.1.5.12

4.1.5.7

Sample #

-0.01

-0.03

SurfactantAg 
(vol%)
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4 CHAPTER FOUR: NANOFLUIDS BASED ON 

SILVER NANOPARTICLES DISPERSED IN 

NEWTONIAN LIQUIDS – RESULTS AND DISCUSSION 

As mentioned in Chapter 2, nanofluids can be prepared by either a one-step or a two-

step method and are usually obtained by combining conventional heat transfer fluids 

with metallic nanoparticles that has a much higher thermal conductivity than the 

former. Most fluids, including heat transfer fluids, show Newtonian flow behaviour, 

implying a constant viscosity with an increase in shear rate.  

 

The preparation of monodisperse metal nano-colloids usually requires the addition of 

a protective agent (a surfactant or polymer), whose main role is to prevent particle 

agglomeration. Polymer coatings on particles are said to reduce susceptibility of 

particle aggregation, enhance compatibility with organic ingredients and protect 

particle surfaces from oxidation [90]. 

 

The synthesis of silver nanofluids via one-step methods for cooling applications is not 

well documented in literature. This method entails the synthesis of the nanoparticles 

directly in the heat transfer fluid such as ethylene glycol, mineral oil, or transformer 

oil. The favorable thermal properties of silver and carbon nanotubes placed them on 

top of the preferential list for enhancing the heat transfer properties of conventional 

cooling fluids. Herein the results obtained for hydrocarbon Newtonian fluids such as 

ethylene glycol, mineral oil and transformer oil, all containing silver nanoparticles, 

are reported and discussed in Sections 4.1, 4.2, and 4.3 respectively.  
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4.1 Nanofluids based on silver nanoparticles dispersed in 

Newtonian liquid -ethylene glycol as model system: 

Synthesis, structure and physico-chemical properties 

Ethylene glycol is a dihydroxy alcohol derivative of aliphatic hydrocarbons. It is a 

Newtonian fluid since its viscosity remains constant with an increase in shear rate. 

Ethylene glycol is most often found in various antifreeze solutions and coolants and 

is commonly used as a coolant for car radiators. Due to its low freezing point, it is 

also used to deice windshields and aircraft. It has also found a use in brake fluid (due 

to its high boiling point), paints, glass cleaners and cosmetics. 

 

The preparation of silver nanoparticles, in contrast to the synthesis of silver 

nanofluids, is well documented in literature [91, 92, 93, 94, 95, 96, 97,21], where 

different surfactants and different solvents have resulted in particles with sizes 

ranging from 20-50 nm, whereas sizes of 4-30 nm have been reported for PVP-

stabilized silver nanoparticles in ethylene glycol. Although silver nanoparticles 

exhibit a number of novel properties, they are particularly characterized by a very 

high thermal conductivity [10]. This is a very important property for heat transfer 

applications. 

 

Due to the reducing ability of ethylene glycol, silver nanoparticles were obtained by 

mechanical stirring at room temperature, in the presence of different stabilizing 

agents. 

 

The structural (sections 4.1.1 and 4.1.2), rheological and thermal properties of various 

ethylene glycol-based nanofluid sytems were investigated. The effect of a wide 

wavelength spectrum of visible light (section 4.1.3), silver concentration (section 

4.1.4), PVP concentration (section 4.1.5), different surfactants (section 4.1.6) and the 

use of iron as a surfactant-free method (section 4.1.7) were studied with respect to 

particle formation, size and morphology. The rheological property under investigation 
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was the viscosity (section 4.1.8) including the effects of temperature and water on it. 

The thermal properties entailed the thermal conductivity (section 4.1.9) and the 

effects of silver concentration, water and surfactant on it. All the experimental details 

pertaining to this work are presented in section 3.5.1. 

 

4.1.1 Silver nanoparticle formation and its structure 

The silver nanoparticles were stabilized by polyvinylpyrrolidone (PVP). PVP is a 

nonionic amphiphilic polymer having a hydrocarbon chain with strongly polar side 

groups [98], exhibiting a high protection function for the stabilization of metal 

nanoparticles [99]. Nonionic surfactants are known to stabilize metal particles 

through steric effects. 

 

Figure 4-1 shows the UV-VIS spectrum obtained for the PVP-stabilized silver 

nanoparticles. Since PVP has no absorption in the ultraviolet spectrum (Figure 4-1), the 

resulting spectrum obtained indicates the presence of silver nanoparticles. 
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Figure 4-1 :UV-VIS spectrum obtained for 0.01 vol.% Ag nanofluid stabilized by 0.5 mM PVP, 

prepared at RT by mechanical aggitation. The spectrum obtained for PVP shows no absorption in the 

region where silver nanoparticles are known to absorb (~420 nm). 
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The nanofluid sample showed a symmetrical peak at 420 nm due to the surface 

plasmon resonance of silver nanoparticles. This peak typically represents the 

formation of small silver nanoparticles in solution. The UV-VIS spectrum suggests 

that the Ag salt has been reduced by ethylene glycol (Figure 4-1). 

The broadband (97 nm) of Full Width at Half Maximum (FWHM) of the absorption 

spectrum suggests the presence of a broad distribution of particle size [100], implying 

standard deviation >>15% of average particle size [15]. 

 

TEM was used to study the size and morphology of the silver nanoparticles, which 

were prepared according to the procedure described in section 3.5.1. Figure 4-2 (A-B) 

shows the TEM micrograph with corresponding particle size distribution. The TEM 

micrograph revealed spherical silver nanoparticles with sizes less than 10 nm and 

agglomerates with sizes between 20-48 nm. A particle size distribution of 6.2 ± 5.8 

nm was obtained, confirming the broad size range of the particles as evidenced by the 

broad UV-VIS spectrum in Figure 4-1. The particles remain well separated, despite 

the drying action during TEM preparation, and therefore is an indirect measure to 

indicate that the silver nanoparticles are well dispersed. 
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Figure 4-2: (A) TEM micrograph of (0.5 mM) PVP–stabilized silver nanofluid (0.01 vol.%), prepared 

at RT by mechanical stirring, with (B) corresponding particle size distribution. 

 

It is well known that the surface free energy for nanoparticles is very high [101]. 

Therefore, aggregation, which is the means by which the system tries to attain the 
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thermodynamic equilibrium by reducing its total surface energy [101], readily occurs. 

For additional confirmation of the result and to exclude the possibility of artifacts 

instead of true silver nanoparticles in the TEM micrographs obtained, EDS analysis 

was performed. Figure 4-3 shows the EDS analysis obtained from TEM. 
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Figure 4-3: (A) TEM micrograph of (0.5 mM) PVP–stabilized silver nanofluid (0.01 vol.%), prepared 

at RT by mechanical stirring with (B) corresponding EDS analysis from TEM confirming the presence 

of silver nanoparticles. 

 

All particles observed in the TEM micrograph are indeed silver nanoparticles and the 

larger particles are aggregates of many small ones (Figure 4-3). XRD analysis further 

confirmed the presence of silver nanoparticles. 
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Figure 4-4: XRD pattern of silver nanoparticles protected by PVP 
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XRD results confirmed that the silver nanoparticles were crystalline (Figure 4-4). The 

diffraction peaks can be indexed to those of pure face-centered cubic (FCC), 

corresponding to the (111), (200), (220), and (311) planes respectively, in good 

agreement with literature [102]. 

The crystallite size was also determined by means of the Scherrer formula: 

θβ
λ
cos2/1

kd =  

 

where β½ is the full-width at half maximum of the strongest peak at 2θ, k is a 

constant (k = 0.9), and λ = 1.5418Å is the CuKα1 wavelength. Considering the 

(111)* direction in the XRD spectrum, a value of d = 5.87 nm was found, compared 

to the 5.80 nm obtained from TEM analysis. Particle size calculated using the 

Scherrer formula agreed well with that observed by TEM. 

 

4.1.2 Studies on the stability of silver nanofluids and kinetics of silver 

nanoparticle evolution 

In order to investigate the kinetics of silver nanoparticle formation and study the 

reaction in more detail, a new nanofluid system was prepared under conditions 

identical to the previously prepared nanofluid system. 
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Figure 4-5: UV-VIS spectra of 0.01 vol.% Ag nanofluid stabilized by 0.5 mM PVP obtained at 

different times during the reaction. A = 1 hr later; B = 2 hrs later; C = 18 hrs later; D = 66 hrs later, E = 

90 hrs later, F = 114 hrs later, G = 190 hrs later, H = 8 days later. 

 

From the UV-VIS spectrum (Figure 4-5), very broad peaks were obtained at the 

initial stages (Times A and B) of the reaction. The absorption peak centered at about 

420 nm (after 18 hours of reaction time) is the characteristic peak for silver 

nanoparticles and is attributed to the plasmon absorption band of silver nanoparticles. 

As the reaction progressed, the peak due to surface plasmon resonance (SPR) became 

more pronounced and highly symmetrical, showing the presence of monodisperse, 

spherical silver nanoparticles at 18 hours reaction time. At 90-114 hours reaction 

time, a slight peak shift to shorter wavelength (blue shift), accompanied by the higher 

absorption intensities is observed, indicating an increase in the amount of silver 

particles with very small sizes. This is due to the band gap increase of the smaller-

sized particles [103]. The silver particles were generated gradually, as is clearly 

indicated by the increasing intensity of the surface plasmon band at ~420 nm in the 

UV-VIS spectra (Figure 4-5). At 190 hours reaction time, a broader peak, which was 

slightly red-shifted, was observed as the particle size started increasing, probably due 

to Ostwald ripening and coalescence [104]. Figure 4-5 also shows the absorption 

spectrum obtained for the Ag nanofluid after 8 days. From the spectrum, a much 
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higher concentration of silver nanoparticles was found and slightly bigger particles 

were expected as a result of the much wider FWHM at the end of the reaction. This 

could be due to the difference in the reaction time since a broadening of the 

absorption peak was observed as the reaction progressed. Time H corresponds to 8 

days of reaction time, whereas Time G only represents 3 days of reaction time. Since 

only one absorption peak was obtained, the particles were mainly spherical [105], in 

agreement with previously discussed TEM results. 

 

It thus follows that the processes involved in the formation of silver nanoparticles 

starts off with the reduction of the soluble silver nitrate by ethylene glycol, followed 

by nucleation of metallic silver and then growth of the individual nuclei in the 

presence of a stabilizer, PVP. 

 

 

4.1.3 Influence of the exposure of wide wavelength spectrum of light on 

the formation of silver nanoparticles 

Xu et al. successfully prepared silver colloids, stabilized by PVP, by photoreduction 

of silver nitrate using UV-light [106]. Since light seemed to play an important role in 

the synthesis of silver nanoparticles, the effect of a wide wavelength spectrum of light 

on the formation of silver nanoparticles was investigated. Ag nanofluids were 

prepared in the absence and presence of a wide spectrum of light, while keeping the 

reaction times constant. Experimental details are given in Table 3-2. 

 

Initial UV-VIS results showed a very broad absorption peak at 420 nm, due to the 

surface plasmon resonance of silver particles with a broad size distribution, and 

another peak around 302 nm, due to the presence of Ag clusters of various sizes and 

charges (Figure 4-6). 
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Figure 4-6: UV-VIS spectrum for silver nanofluid prepared in the absence of a wide spectrum of light 

 

TEM further revealed the nature and size of the particles (Figure 4-7). Particle with 

sizes ranging from 10 nm to 450 nm were visible. Due to the slower reduction rate in 

the absence of light, much larger single platelets formed [107]. The larger flat 

platelets were in the form of irregular shaped hexagons and smaller sized spherical 

particles were also observed. El-Sayed et al. [108] studied the shape of Pt 

nanoparticles at different growth stages, and concluded that anisotropic particles form 

because the growth rates vary at different planes of a particle and that particle growth 

competes with the capping action of the stabilizer. 

 

 

Figure 4-7: TEM micrograph of silver nanofluid prepared in the absence of a wide spectrum of light. 
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In addition, the reaction time of the light protected silver nanofluid was much slower 

compared to previously prepared nanofluids, which were prepared in a wide spectrum 

of light. The surface plasmon resonance peak was only visible ~7 days after the 

reaction was started, compared to the 1-hour reaction time observed for the reaction 

that was performed in a wide spectrum of light (Figure 4-5). Light therefore, plays an 

active role in the formation of silver nanoparticles by accelerating the reduction 

process. This phenomenon is also found in photography, where photons falling on a 

silver halide microcrystal in the emulsion cause a halide ion to lose an electron, which 

is then captured by a silver ion, converting it into a neutral atom and eventually gives 

rise to silver clusters [109]. 

 

4.1.4 Effect of silver concentration on nanoparticle formation 

Various concentrations of silver nanoparticles have been prepared under identical 

reaction conditions and their morphologies studied. PVP was used to stabilize the 

silver nanoparticles. Experimental details for the prepared nanofluids are given in 

Table 3-2. 

 

Figure 4-8 depicts the TEM micrographs with corresponding particle size 

distributions. Spherical particles with a broad size distribution were obtained in all 

cases. At low silver concentration, well-dispersed particles were visible with particle 

size distribution of 15.50 ± 6.98 nm. As the concentration was increased to 1.0 vol.% 

silver, agglomeration was observed since the collisions between particles becomes 

more frequent when a larger number of particles are in close proximity to each other. 

In addition, Ostwald ripening [110,111,112] could also be responsible for the increase 

in particle size observed at high concentrations. Particle size distributions of 16.25 ± 

8.46 nm and 21.10 ± 3.65 nm were obtained for nanofluids containing 0.7 vol.% and 

1.0 vol.% silver respectively.  

 

Since the concentration of the stabilizer was kept constant, the higher concentration 

silver suspensions had insufficient stabilizer to capture all the particles formed during 

the reaction. Hence, sedimentation of silver nanoparticles and accumulation of it on 
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the sides of the reaction flask resulted in silver mirrors. The corresponding diffraction 

pattern showed that the material was polycrystalline (Figure 4-8 (insert)). 
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Figure 4-8: TEM micrographs and corresponding particle size distributions of PVP-stabilized silver 

nanoparticles at various Ag concentrations; A) 0.5 vol.% Ag, B) 0.7 vol.% Ag and C) 1.0 vol.% Ag. 

The inset shows the selected area electron diffraction (SAED) pattern of silver nanoparticles stabilized 

by 0.5 mM PVP in ethylene glycol. 

 

It is evident from the TEM micrographs and in correspondence with literature that 

spherical particles are obtained when PVP is used as surfactant [113] and that the 

average particle size increases with an increase in silver concentration. 
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4.1.5 Effect of Poly(vinyl)pyrrolidone concentration on silver 

nanoparticle formation 

The effect of PVP at a concentration of 0.1 mM compared to previously discussed 0.5 

mM, on the formation of silver nanoparticle, was investigated. Experimental details 

are given in Table 3-2 (sample numbers 3.5.1.6 and 3.5.1.7).  Higher concentrations 

(>0.5 mM) of PVP showed a much reduced or slower solubility.  

 

UV-VIS spectroscopy was used as a first indication for the presence of silver 

nanoparticles. Figure 4-9 shows the UV-VIS spectra obtained for the silver 

nanofluids, which were stabilized using PVP at different concentrations (0.1 mM and 

0.5 mM), as well as the absorption peak for PVP. It is noted that PVP does not absorb 

light in the region where silver nanoparticles are known to absorb. The characteristic 

peak due to the surface plasmon resonance of silver nanoparticles was observed at 

414 nm (Figure 4-9) when a lower concentration of PVP (0.1 mM) was used. The 

absorption peak obtained for silver nanoparticles stabilized by 0.5 mM PVP was red-

shifted and appeared at 430 nm, which indicates the presence of larger particles.  
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Figure 4-9: UV-VIS spectra obtained for silver nanofluid stabilized by PVP at different concentrations 

(0.1 mM and 0.5 mM). The spectrum obtained for PVP shows no absorption in the region where silver 

nanoparticles are known to absorb. 
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Table 4-1 shows the particle size distributions obtained when different concentrations 

of PVP were used to stabilize silver nanoparticles. 
 

Table 4-1: Particle size distributions obtained for 0.3 vol.% silver nanofluids using different 

concentrations of PVP. Experimental details are given in Table 3-2 (sample numbers 3.5.1.6 and 

3.5.1.7).   
PVP concentration 

(mM) 
Particle size 

distribution (nm) 
0.1 10.96 ± 8.71 
0.5 16.75 ± 9.93 

 

Particle size distribution of 10.96 ± 8.71 nm and 16.75 ± 9.93 nm were obtained when 

0.1 mM and 0.5 mM PVP were used to stabilize the silver nanoparticles respectively. 

The particle size distribution for the silver nanoparticles stabilized by 0.5 mM PVP 

was much broader compared to the silver nanoparticles stabilized by a lower 

concentration PVP, which could possibly explain the red-shift observed in the UV-

VIS spectrum (Figure 4-9). The differences in size distributions observed could be due 

to silver mirror formation at lower concentrations (0.1 mM in Table 4-1) of PVP and 

hence less silver was available for particle formation, resulting in a low concentration 

of smaller particles.  

 

4.1.6 Influence of surfactant (nonionic, ionic and zwitterionic) behaviour 

on silver nanoparticle formation 

Small nanoparticles can be obtained by employing either surfactants that bind more 

tightly to the nanoparticle surface or larger molecules providing greater steric 

hindrance (bulkier surfactants). Stable dispersions are those where favorable 

interactions exist between the capping agents and the base fluid. This provides an 

energetic barrier to counteract the van der Waals attractions between nanoparticles 

[114]. 
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The effects of three different kinds of capping agents have been investigated on the 

protecting abilities of silver nanoparticles namely, Poly(vinylalcohol) (PVA), 

Poly(dipropylene glycol) phenyl phosphate and 3-(N,N-

Dimethyldodecylammonio)propanesulfonate (SB12/Sulfobetaine). In contrast to 

PVP, these surfactants needed elevated temperatures before complete dissolution. 

 

• EFFECT OF NONIONIC SURFACTANT: Polyvinylalcohol 

For comparison purposes, silver nanoparticles were prepared and stabilized by 

Poly(vinylalcohol) PVA in ethylene glycol. PVA is a hydrophilic, biocompatible 

polymer [115] which is often used for stabilizing magnetic particles for biomedical 

applications [90]. It has many uses amongst which is as a surfactant for the formation 

of polymer encapsulation of nanobeads. 

 

Figure 4-10 (A) shows the UV-VIS spectrum obtained for PVA-stabilized silver 

nanoparticles. A relatively broad absorption peak at ~423 nm, with a FWHM of 153 

nm compared to the FWHM of 97 nm for PVP-stabilized silver nanoparticles, was 

visible indicating the presence of larger particles. A similar spectrum was obtained by 

Joshi et al. [37]. In their studies, various molecular weights (14,000, 30,000 and 

125,000) of PVA were used to stabilize the silver nanoparticles, and all the UV-VIS 

spectra obtained were broad in nature. 

 

A very wide size distribution is responsible for the broad UV-VIS peak obtained for 

the PVA-stabilized silver nanofluid. Since only one peak was observed in the 

absorption spectrum, the particles are expected to be spherical in shape. The TEM 

micrograph in Figure 4-10 (B) supported the results from UV-VIS. 
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Figure 4-10: (A) UV-VIS spectrum obtained for 0.01 vol.% silver nanoparticles stabilized by 0.01 M 

PVA. (B) TEM micrograph of 0.01 vol.% silver nanoparticles stabilized by PVA (0.01 M) with (C) 

corresponding particle size distribution. 

 

A larger average particle size with size distribution of 12 ± 5.1 nm (Figure 4-10 (C)) 

was obtained for PVA-stabilized silver nanoparticles compared to the 6.2 ± 5.8 nm 

obtained for PVP-stabilized silver nanoparticles produced using similar molar ratios 

of silver to surfactant (See 3.1.2 in Table 3-2 and 3.1.15 in Table 3-3). Particles are 

mainly spherical and well-distributed, similar to PVP-stabilized silver nanoparticles.  

 

It has been found that PVA of high molecular mass (MW~145000) is able to produce 

stable silver nanoparticles [116], however, from the TEM micrograph presented in 

this work, the particles appear much more uniformly dispersed using lower molecular 

weight PVA than that reported in literature for stabilization with higher molecular 

weight PVA. It is believed that ions which are not yet reduced, adsorb onto atoms or 

small clusters formed in the initial stages of the reaction and that at this moment, 

PVA cannot prevent aggregation resulting in a broad size distribution [37]. Dékány et 

al. compared the stabilizing effects of PVP and PVA during the preparation of their 

silver sols using hydroquinone and sodium citrate as reducing agents. They found that 
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PVP provides a more effective steric stabilization and reduced the growth rate of 

silver nanoparticles [117], which can be supported with the results presented here. 

Since the approach taken to synthesize nanoparticles often has an impact on particle 

size, shape and dispersity, the simple method using ethylene glycol as both the 

solvent and reducing agent, provides easy access to spherically-shaped silver 

nanoparticles dispersed in ethylene glycol. 

 

• EFFECT OF IONIC SURFACTANT: Poly(dipropylene glycol) phenyl 

phosphite 

Poly(dipropylene glycol) phenyl phosphate is a long carbon chain containing 

phosphate. The phosphate groups are believed to provide stabilization by complexing 

with silver ions during the reduction process, and hence reduce agglomeration [118]. 

 

Silver nanoparticles were prepared in ethylene glycol and stabilized by 

Poly(dipropylene glycol) phenyl phosphate. Since the solubility of most reagents 

differs from each other, some require a little activation energy in order to increase 

their dissolution rate. Energy in the form of heat was supplied in order to enhance the 

dissolution rate of Poly(dipropylene glycol) phenyl phosphate in ethylene glycol.  

Experimental procedures are discussed in section 3.5.1 and reaction conditions are 

presented in Table 3-3.  

 

Figure 4-11 shows the TEM micrographs obtained. Particles ranging from the 

nanometer to the micrometer range were visible. This is due to agglomeration since 

the mobility of particles increases with an increase in temperature [119]. Hence, the 

chances of collision amongst particles to form bigger particles are much higher. This 

also shows that Poly(dipropylene glycol) phenyl phosphate is not a suitable capping 

agent for silver nanoparticles due to its inability to cap the particles during nucleation, 

resulting in much bigger particles compared to those obtained when PVP and PVA 

was used. In addition, the reaction required some energy in the form of heat to 

enhance the dissolution rate of Poly(dipropylene glycol) phenyl phosphate in ethylene 
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glycol in order to ensure all the surfactant is in solution before silver nanoparticle 

formation takes place. 
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Figure 4-11: (A) TEM micrograph of 0.01 vol.% silver nanofluid stabilized by Poly(dipropylene 

glycol) phenyl phosphate (12 mM) with (B) corresponding particle size distribution. 

 

It would therefore appear that the type of surfactant plays an important role in particle 

formation and size. Thus far, PVP seems to be most capable for stabilizing small 

silver nanoparticles, followed by PVA, then Poly(dipropylene glycol) phenyl 

phosphite. 

 

• EFFECT OF ZWITTERIONINC SURFACTANT: 3-(N,N-

Dimethyldodecylammonio)propanesulfonate 

3-(N,N-Dimethyldodecylammonio)propanesulfonate, or most commonly known as 

Sulfobetaine or SB12, is a strongly hydrophilic zwitterionic surfactant and highly 

soluble in polar solvents. Zwitterionic or amphoteric surfactants have both anionic 

and cationic dissociations and therefore can act as an acid and a base at the same 

time. 

 

Bönnemann et al. [120], in their preparation of heterogeneous hydrogenation 

catalysts, synthesized Pt hydrosols, with average size of 3 nm using SB12 as a 

protecting agent. With the aim of preparing small silver nanoparticles, the possible 

route was investigated using SB12 as a capping agent. 
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UV-VIS spectroscopy was used to monitor the reaction at different temperatures, 

since no reaction was observed at room temperature. Silver nanoparticles normally 

give rise to a distinct peak at around 400-420 nm due to the surface plasmon 

resonance (SPR). However, the UV-VIS results in Figure 4-12 showed that the 

unique SPR peak has been blue-shifted. This could be due to the adsorption of the 

surfactant on the silver surface, which increases the electron density and hence results 

in a blue-shift of the peak position [121]. 
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Figure 4-12: UV-VIS spectra of 0.01 vol.% Ag nanofluid stabilized by 3-(N,N-

Dimethyldodecylammonio)propanesulfonate (12 mM) obtained at different times and temperatures 

during the reaction (A) 50 °C = 3 hrs from start of reaction, B) 150˚C = 2 hrs later and C) RT = next 

day. 

 

During the final stages of the reaction (at RT), a slightly red-shifted broad peak was 

obtained, which could possibly be due to the presence of some bigger particles. High 

temperatures normally elevate the mobility of particles and hence results in particle 

collisions, adhesion and subsequent coalescence. Particle coalescence is the means by 

which the system tries to attain the thermodynamic equilibrium by reducing its total 

surface energy. Consequently, a wide range of shapes may also result arising from the 

coalescence of individual quasi-spherical particles. TEM was employed to confirm 
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the presence of nanoparticles. From Figure 4-13, silver nanoparticles have been 

obtained. A very broad particle size distribution of 15.30 ± 11.07 nm was obtained. 
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Figure 4-13: (A) TEM micrograph of 0.01 vol.% Ag nanoparticles (at time D=152 °C) stabilized by 3-

(N,N-Dimethyldodecylammonio)propanesulfonate (12 mM) with (B) corresponding particle size 

distribution. 

 

The stabilizing ability of 3-(N,N-Dimethyldodecylammonio)propanesulfonate, as 

capping agent for silver nanoparticles, is therefore comparable to PVP. However, 

much higher temperatures were required to obtain silver nanoparticles compared to 

the Ag-PVP system. 

 

4.1.7 Surfactant free method to silver nanofluids: Use of Fe(III) 

It is believed that iron prevents silver nanoparticles etching by removing oxygen from 

the surface of the seeds during growth of the particles [88]. In addition, since ethylene 

glycol is normally synthesized and stored in steel vessels, it often contains iron as a 

contaminant. Therefore it is essential to know the effect of its presence in the 

synthesis of silver nanoparticles. In this section, the effect of iron during the synthesis 

of silver nanoparticles, in the absence of stabilizer was investigated. All experimental 

details pertaining to this section is given in section 3.5.1 and Table 3-3 (Sample 

numbers 3.5.1.18 - 3.5.1.23). 
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Effect of Fe(III) concentration during silver nanoparticle formation at different 

temperatures 

• High temperture 

Introducing a high concentration (0.02 M) of Fe (III) into the system at 100 °C, 

resulted in some changes in the UV-VIS spectrum (see Figure 4-14 (A-i)). The 

spectrum was recorded against a Fe (III) background in order to see the peaks due to 

silver nanoparticles more clearly. A strong absorption peak appeared around 472 nm 

and a smaller peak at 418 nm. The small peak at 418 nm could be due to free silver 

(0) nanoparticles. The strong absorption peak centered at 472 nm could also be due to 

silver nanoparticles. It is slightly red-shifted probably due to their interaction with 

iron oxide in solution.  

 

Results from TEM showed that a mixture of differently shaped particles was 

obtained. Figure 4-14 (B) shows that cube-shaped particles and quasi-spherical 

particles were obtained. Xia et al. [88] have obtained nanocubes and nanowires by 

changing the concentration of iron ions in their polyol synthesis of silver 

nanoparticles in ethylene glycol. It is believed that Fe(II) reacts with and removes the 

adsorbed atomic oxygen that would otherwise etch twinned seeds and block the self-

catalytic addition of silver atoms [88]. Quasi-spherical nanoparticles have lower 

possible surface energy than cubical nanoparticles and are therefore favoured by 

thermodynamics. It is important to control the growth kinetics of a seed to ensure the 

birth of a shape which does not represent an energy minimum. According to Grulke et 

al., the growth kinetics of a solution-phase synthesis are influenced by (i) the 

concentration of metal precursor, (ii) the rate of reduction which essentially depends 

on the concentration and power of the reductant, (iii) the presence of a capping agent, 

and (iv) the specific adsorption of the capping agent to a specific crystallographic 

plane [88]. Since no capping agent was used the presence of agglomerates and also 

quasi-spherical particles are accounted for. The rings obtained in the diffraction 

pattern (Figure 4-14 (C)) confirm the presence of silver metal particles having FCC 

structure. 
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Figure 4-14: (A) UV-VIS spectra for 0.02 vol.% Ag nanofluids containing (i) 0.02 M and (ii) 0.008 M 

Fe (III). The UV-VIS spectra were recorded against a Fe(III) background. (B) TEM micrograph of 

0.02 vol.% Ag nanofluid containing 0.02 M Fe(III) prepared at 100 °C in the absence of stabilizer 

showing silver nanocubes and quasi-spherical silver nanoparticle, with (C) corresponding diffraction 

pattern, (D) TEM micrograph of 0.02 vol.% Ag nanofluid containing 0.008 M Fe(III), prepared at 100 

°C in the absence of stabilizer with (E) corresponding particle size distribution. 

 

 

When a much lower concentration of ferric nitrate precursor was used, spherical and 

quasi-spherical particles could be observed. Figure 4-14 (D) shows the TEM 

micrograph and corresponding particle size distribution (Figure 4-14 (E)) obtained for 

the 0.02 vol.% silver nanofluid containing 0.008 M Fe(III), prepared at 100 °C. Since 

the reaction conditions were too mild to reduce the ferric ions to zerovalent Fe, the 

particles are probably a mixture of silver and iron oxide nanoparticles. The presence 
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of Fe (III) was confirmed by addition of potassium thiocyanate to the suspension, 

which resulted in a blood red color.  

Therefore, an irregular growth of silver nanoparticles and an obvious aggregation, 

which could be due to partially removed oxygen from the silver surfaces [88], was 

observed when a low concentration of Fe(III) was added to the silver system. Particle 

size ranged from 10-40 nm.  

 

• Room temperature 

When the reaction was performed at room temperature, only spherical and quasi-

spherical nanoparticles were obtained at low and high concentrations of Fe(III) 

respectively (Figure 4-15 A-B). Therefore, the presence of small amounts of Fe(III) 

in the silver nanofluids result in the formation of spherically-shaped silver 

nanoparticles compared to the quasi-spherical particles formed when higher 

concentrations of Fe(III) was used.  
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Figure 4-15: TEM micrographs of silver nanofluids containing different concentrations of Fe(III): (A) 

0.02 vol.% Ag nanofluid containing 0.02 M Fe(III) and (B) 0.02 vol.% Ag nanofluid containing 0.008 

M Fe(III), prepared at room temperature. 

 

Since an obvious aggregation is visible in most of the TEM micrographs of silver 

nanofluids containing Fe(III), PVP was added in order to see the effect of the 

surfactant on the nanofluid system. In the presence of PVP, small, well-dispersed 

spherical particles were obtained (Figure 4-16). 
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Figure 4-16: TEM micrograph of 0.02 vol.% silver nanofluid containing 0.008M Fe (III) and 0.01 M 

PVP. 

 

The surfactant therefore plays a vital role during nanoparticle formation in order to 

obtain small, well dispersed spherically shaped particles. 

 

Effect of sequence in the preparation of silver nanofluids in the presence of Fe(III) 

The order in which reactants are introduced into a reaction often plays a role in the 

outcome of the products. Here the effect of sequence is demonstrated in the room 

temperature synthesis of silver nanofluids, in the presence of Fe(III). 

 

Figure 4-17 (A) shows the UV-VIS spectrum obtained for the silver nanofluids 

containing iron ions, which was introduced drop wise to the reaction flask (See Table 

3-3 for summary of experimental details). Silver nanoparticles were obtained since the 

characteristic peak due to the surface plasmon resonance of silver nanoparticles 

appeared at 412 nm (Figure 4-17 (A)). 
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Figure 4-17: (A) UV-VIS spectrum obtained for 0.03 vol.% Ag nanofluid containing 0.002 M Fe (III). 

(B) TEM micrograph and corresponding diffraction pattern of Ag nanofluid containing Fe(III) 

prepared by drop wise addition of Fe(III) with (C) corresponding particle size distribution. (D) TEM 

micrograph of Ag nanofluid containing Fe(III) prepared by introducing all the reactants at once, with 

(E) corresponding particle size distribution. Both reactions were prepared at room temperature. 

 

The well-defined surface plasmon band with a maximum absorbance at 412 nm 

(Figure 4-17 (A)) also implicates well dispersed, small nanoparticles with sizes <10 

nm. TEM micrographs showed that this method of slow addition of one dissolved 

reactant (ferric nitrate in ethylene glycol) into another dissolved reactant (silver 

nitrate in ethylene glycol) resulted in spherical and quasi-spherical particles (Figure 

4-17 (B)). A broad range of particle sizes were obtained, yielding a particle size 

distribution of 9.48 ± 6.91 nm. The observed particles are indeed silver nanoparticles, 

which were confirmed by EDS analysis. The 99.09% silver obtained by EDS analysis 
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corresponds to a series of single particles. The corresponding diffraction pattern also 

shows that the sample is polycrystalline. 

 

Introducing the reactants all at once into the reaction flask resulted in mostly 

spherically shaped particles (Figure 4-17 (D)). The particles appeared well-dispersed 

A few agglomerates are also visible. A particle size distribution of 7.95 ± 7.36 nm 

was obtained, which shows that a broad range of sizes were obtained. 

 

All the abovementioned TEM micrographs of silver nanofluids containing Fe(III) 

showed the presence of nanoparticles. However, the nanoparticles in the TEM 

micrographs could possibly be a mixture of both silver and iron (III) oxide particles. 

In order to investigate if iron (III) oxide particles are indeed obtained in the 

nanometer range during this particular synthesis pathway, a reaction was performed 

in the absence of the silver salt. PVP was added as a capping agent. Figure 4-18 

shows the TEM micrograph obtained for the PVP-stabilized Fe-nanofluid. 

 

 

Figure 4-18: TEM micrograph of PVP-stabilized Fe-nanofluid 

 

Particles appeared to be large, but well dispersed.  This could be due to the low 

concentrations used. Particle size ranged from 10-20 nm. It is unlikely that zerovalent 

iron was obtained since the reactions conditions used in this work were too mild and 

also, iron nanoparticles are pyrophoric and extremely reactive, which has traditionally 

made them difficult to study [122]. Hence, the TEM micrographs for all the silver 
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nanofluids containing Fe(III) represent a mixture of silver and iron (III) oxide 

nanoparticles. EDS analysis on a series of single particles confirmed the presence of 

silver and iron. 

 

It appears that there is no significant difference in the sequence used to prepare silver 

nanofluids in the presence of Fe(III) However, a slightly smaller average size of 

silver nanoparticles was obtained when the reactants were introduced all at once to 

the reaction flask, compared to the slow addition of reactants. 

 

4.1.8 Study of viscosity of silver nanofluids in ethylene glycol 

Heat transfer fluids provide an environment for adding or removing energy to 

systems, and their efficiencies depend on their physical properties, such as thermal 

conductivity, viscosity, density, and heat capacity. Since the density and heat capacity 

were found not to change much compared to the base fluids [79], due to the low 

volume fraction of the particles and moderate temperature change, only viscosity and 

thermal conductivity were investigated. 

 

The viscosity of a suspension depends to a large degree on the particles in the 

suspension. If favourable interactions occur between the particles, then this would 

lead to a higher maximum packing fraction with less void spaces between the 

particles. 

In this section, the viscosity of silver nanofluids with the following influences thereon 

will be presented: 

 Silver concentration 

 Water 

 Temperature 

 

Influence of silver concentration on the viscosity of silver nanofluids 

The nanofluids containing silver nanoparticles stabilized by PVP showed Newtonian 

behavior, whereby the viscosity remained constant with an increase in shear rate 

(Figure 4-19). This could imply that true colloidal solutions have been obtained. 
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Figure 4-19: Viscosity data showing the effect of silver concentration and the Newtonian behavior of 

nanofluids and pure ethylene glycol (EG). 

 

There was no noticeable difference between the viscosity of ethylene glycol and the 

nanofluid containing 0.5 vol.% silver nanoparticles. The viscosity of the nanofluid 

containing 1.0 vol.% silver nanoparticles was much lower than the viscosity of 

ethylene glycol. Wang et al. [[2]; and references therein] measured the viscosity of 

water-based nanofluids containing Al2O3 nanoparticles and found that nanofluids 

have lower viscosities when particles are more dispersed. Therefore, based on their 

findings in would appear that the 1.0 vol.% silver nanofluid contain well-dispersed 

silver nanoparticles. 

 

Influence of Water on the viscosity of silver nanofluids 

Since ethylene glycol is used as a drying agent for some processes, such as in the 

dehydration of natural gas [123], its ability to absorb moisture should not be ignored. 

The effect of water on the viscosity of ethylene glycol was investigated where extra 

care was taken to use ethylene glycol from a freshly opened bottle. Various amounts 

of water were added to ethylene glycol and the viscosity was measured. Figure 4-20 

shows the viscosity data obtained for the mixtures containing water and ethylene 

glycol. The viscosity decreases by ~16% with every 5% water present. This is 

expected since the viscosity of water is much lower than that of ethylene glycol. 
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Figure 4-20: Viscosity graphs obtained for ethylene glycol containing known amounts of water. 

 

Influence of temperature on the viscosity of silver nanofluids 

The effect of temperature on viscosity was investigated. Most liquids become less 

viscous as the temperature is raised [124]. This is because, as the temperature 

increases, the average kinetic energy of the molecules in a liquid increases [125]. The 

greater average kinetic energy of the molecules more easily overcomes the attractive 

forces that tend to hold the molecules together. A nanofluid system containing silver 

nanoparticles and Fe(III) was subjected to a temperature increase to 60 °C and the 

viscosity measured. Figure 4-21 shows the effect of the temperature increase on the 

viscosity of the nanofluid containing silver nanoparticles and Fe(III). A drastic 

decrease in viscosity with an increase in temperature was observed (Figure 4-21), a 

similar phenomenon to a typical liquid without any suspended nanoparticles. This 

could possibly imply that the nanofluids are indeed true colloidal solutions. 
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Figure 4-21: Viscosity data obtained for 0.03 vol.% silver nanofluid system containing 0.002 M Fe(III) 

as a function of temperature 

 

4.1.9 Thermal conductivity of silver nanofluids in ethylene glycol 

Since studies of nanofluid thermal conductivity have been more prevalent than 

studies of other heat transfer properties, this discussion is limited to thermal 

conductivity, i.e. heat transfer by conduction in stationary fluids. 

 

Current mechanisms cannot explain the thermal conductivity enhancement observed 

in nanofluids. Keblinski et al. [2] suggested four possible mechanisms to explain the 

thermal increase observed in nanofluids. Brownian motion was discarded since 

thermal diffusion occurred much faster than Brownian diffusion and hence the 

increase in thermal conductivity could not be explained with this theory. 

 

Kwak et al. [14] studied the viscosity and thermal conductivity of ethylene glycol-

based nanofluids containing CuO nanoparticles and suggested that an enhancement in 

thermal conductivity is attainable only when particle volume fraction is below a 

dilute limit of 0.002. It is therefore clear that different theories exist as to the 

enhancement in thermal conductivities observed in nanofluid systems. 

In this section, the thermal conductivity of silver nanofluids with the following 

influences thereon will be presented: 

 Silver concentration 
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 Water 

 Absence of stabilizing surfactant 

 

Influence of silver concentration on thermal conductivity 

The effect of silver concentration for the PVP-stabilized nanofluid systems was 

investigated. According to most literature, the thermal conductivity of nanofluids 

increases as the concentration of particles increases [14,34,76].  

In this work the thermal conductivity of the freshly prepared nanofluids did not show 

any noticeable increase of thermal conductivity irrespective of the concentration. The 

thermal conductivity did however increase as function of time (see Figure 4-22).  
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Figure 4-22: Thermal conductivity increase as a function of Ag concentration. Thermal conductivity 

was found to increase with time. 

 

Knowing the hydroscopic nature of ethylene glycol [126], the water content of the 

stored samples was determined via Karl Fischer titration. Simultaneously the thermal 

conductivity of EG with different water content was measured (see Figure 4-23) 
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Figure 4-23: Thermal conductivity increase as a function of water present 

 

It appeared that the increase in thermal conductivity was entirely based on the 

increasing water content with time. Samples at this stage were stored in vials covered 

with parafilm. 

 

Although UV-VIS (Figure 4-1) and TEM (Figure 4-8) results confirmed the presence of 

small silver nanoparticles and Karl Fischer results showed no trace of water, no 

increase in thermal conductivity was observed, even with an increase in silver 

concentration. Therefore, the role the surfactant plays during the heat transfer process 

was investigated. 

 

Influence of the absence of the stabilizing surfactant on thermal conductivity 

In order to investigate the effect of the surfactant on the thermal conductivity, the 

reaction was performed without the stabilizing polymer. An increase of 5.2% was 

observed in the absence of PVP (Figure 4-24). 
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Figure 4-24: Thermal conductivity increase of silver nanofluids with and without surfactant 

 

Macroscopic theories assume that heat is transported by diffusion [13]. In crystalline 

solids, phonons and electrons are responsible for carrying heat away. When the size 

of the nanoparticles in a nanofluid becomes less than the phonon mean-free path of 

~250-300 nm [127], phonons move ballistically without any scattering rather than 

diffuse across the nanoparticles, and hence an increase in thermal conductivity is 

observed. Phonons are essentially quantized lattice vibrations and therefore any 

defects within the crystal structure can act as scattering centers for thermal waves 

(phonons) and electrons. The interface between two different materials constitutes an 

interruption in the regular crystalline lattice on which phonons propagate and 

therefore can be regarded as a defect, and thus is an obstacle to heat flow. 

It is suggested that the capping agent form an insulating layer around the silver 

nanoparticles, hence causing a ‘defect’/interruption in the phonon propagation 

pathway and therefore inhibit the phonons and electrons from transporting heat 

energy effectively. Therefore, in the absence of the surfactant, a thermal conductivity 

increase was possible since there was no obstruction in the pathway of the heat 

carriers.    
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Ethylene glycol not only has reducing properties, but can also act as a stabilizer to 

prevent aggregation of particles at low concentrations. At high concentrations such as 

1.0 vol.% Ag, silver mirrors are obtained, which is a clear indication of precipitation. 

TEM micrographs clearly show well-dispersed particles and the corresponding 

diffraction pattern confirmed the crystalline nature of the particles (Figure 4-25), 

which were prepared in the absence of a surfactant. Some amorphicity is also visible 

in the SAD pattern. This is probably due to the formvar subtrate of the TEM-grid. 
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Figure 4-25: TEM micrograph of ethylene glycol stabilized silver nanoparticles and the corresponding 

diffraction pattern 

 

The particles were however, much bigger in size, with an average diameter of 50 nm, 

compared to the 16 nm PVP-stabilized silver nanoparticles at the same concentration 

of silver.  In order to obtain small metallic nanoparticles, surfactants are needed to 

cap particles after nucleation and protect them while growing into small metal 

clusters. Thus, the presence of a surfactant plays a positive role during particle 

formation, but not in the heat transfer process. 

 

In this work it is suggested that the surfactant acts as an insulator around the particles, 

prohibiting heat transport to neighboring particles. Eastman et al. [3] added an acid to 

stabilize their particles and thus obtained a large increase in the effective thermal 

conductivity of their 0.3 vol.% Cu nanofluids. However, Putman et al. [128] did not 
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observe significant enhancement in their Au nanofluids with particle size of 4 nm and 

contradicted the results obtained by Patel et al. [10]. This may explain the disparities 

between different experimental data since many researchers used surfactants and 

others used acids, which could possibly have an effect on the pH of the nanofluid. 

Investigations on the effect of surface charge state of the nanoparticles in suspension 

on the thermal conductivity was done by Lee et al. [96]. Their results showed that the 

pH value of the nanofluid strongly affected the thermal performance of the fluid. In 

this work it has been shown that the surfactant is the inhibiting force in the 

enhancement of thermal conductivity of suspensions containing silver nanoparticles. 

 

So far, there are no general mechanisms to explain the difference in thermal 

conductivities observed and no reliable theory to predict the thermal conductivity of 

nanofluids. However, many different factors have been considered such as Brownian 

motion, solid-liquid interfacial layer, ballistic phonon transport, and surface charge 

state. The thermal conductivity of the nanofluid has been shown, through 

experimental investigations, to depend on parameters such as the thermal 

conductivities of the base fluids and nanoparticles, the volume fraction, surface area, 

nanoparticle shape and temperature. In addition, from the results of this research, the 

surfactant also plays a significant role towards thermal conductivity enhancement. 

 

The role of the surfactant has never been identified as a crucial parameter by previous 

researchers. Therefore this work adds significant information to the science of 

nanofluids. Surfactants do play a major role in thermal conductivity enhancement. 

 

The Maxwell- and the Wasp model were used to determine which could best predict 

the thermal conductivity of the nanofluids prepared without surfactant. However, the 

Wasp and the Maxwell model are identical for spherical particles and therefore only 

the results from the Maxwell model is shown below. The volume fraction of the 

particles at the end of the reaction is assumed to be the same as the calculated 

expected volume fraction. 
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From the Maxwell model, 

 
where kp = 429 W/m-K is the thermal conductivity of the silver particle, kl = 0.250 

W/m-K is the thermal conductivity of ethylene glycol and φ = 0.005 is the silver 

particle volume fraction of the suspension, a value of 0.250 W/m-K was obtained for 

keff, which deviated from the experimental value of 0.263 W/m-K. The thermal 

conductivity enhancement of the nanofluid without surfactant is far greater than what 

is predicted based on the Maxwell model. The observed increase of thermal 

conductivity can, to the best knowledge of the author, not be predicted by any 

published model.  

 

 

4.1.10 Conclusions 

Ethylene glycol based nanofluids containing silver nanoparticles have been prepared 

at room temperature using PVP as the stabilizer. 

The effect of a wide wavelength spectrum of visible light was investigated and results 

showed that light accelerates the reduction process and yields growth of small, 

spherical silver nanoparticles. 

Investigations into the effect of silver concentration showed that much lower 

concentrations of silver nanoparticles yields particles that are more dispersed and 

smaller in size with size distributions of 15.50 ± 6.98 nm for 0.5 vol.% silver 

nanoparticles and 6.2 ± 5.8 nm obtained for 0.01 vol.% silver nanoparticles, both 

stabilized by PVP. 

Different capping agents were also tried and results showed that PVP and PVA 

proved to be the best capping agents for stabilization of silver nanoparticles. A larger 

average particle of 12 ± 5.1 nm was obtained for PVA-stabilized silver nanoparticles 

compared to the 6.2 ± 5.8 nm obtained for PVP-stabilized silver nanoparticles 
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produced using similar molar ratios of silver to surfactant and silver concentrations of 

0.01 vol.%. 

The effect of iron was also investigated as a surfactant free method to silver 

nanofluids since it is believed that iron removes oxygen from the surface of the seeds 

during the growth of the particles. In addition, since ethylene glycol is normally 

stored in steel vessels during production, iron is always found as an impurity in 

ethylene glycol. Different particle shapes have been obtained with the introduction of 

iron to the reaction system. 

 

The viscosity of the PVP-stabilized silver nanofluids (1.0 vol.%) was much lower 

compared to the base fluid, indicating that the particles are well-dispersed. All the 

prepared nanofluids showed Newtonian behaviour, implying true colloidal solutions 

have been obtained. 

 

No thermal conductivity increase was observed irrespective of the silver 

concentration. The role of the surfactant was investigated and it was found to have a 

considerable impact on the thermal conductivity of the nanofluid. A thermal 

conductivity increase of 5.2% was observed when the reaction was performed in the 

absence of stabilizer. It is suggested that the surfactant forms an insulating coating 

around the particles, inhibiting phonons and electrons from transferring heat away 

effectively. The thermal conductivity enhancement of the nanofluid without 

surfactant is far greater than what is predicted based on the Maxwell model. The 

observed increase of thermal conductivity can, to the best knowledge of the author, 

not be predicted by any published model and falls into a whole new area of research. 

 

4.2 Nanofluids based on silver nanoparticles dispersed in 

Newtonian liquid such as mineral oil 

The approach developed for silver nanofluid in ethylene glycol was used for the 

preparation of silver nanofluid system in mineral oil. The mineral oil based 

nanofluids containing suspended silver nanoparticles discussed in this section forms 
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part of an article that has already been published [7]. The rest of the article appears in 

Appendix (8.1). 

 

4.2.1 Studies of synthesis conditions of silver nanoparticles stabilized by 

anionic surfactant such as Korantin SH in mineral oil 

Silver nanoparticles were prepared in mineral oil using a thermal decomposition 

method. Different concentrations of silver nanoparticles in mineral were prepared 

with various concentrations of surfactant, as indicated in Section 3.5.2. 

 

4.2.1.1 Structural studies on mineral oil based silver nanofluids 

Elemental analysis (EA) was performed on the mineral oil based nanofluids 

containing silver nanoparticles in order to determine whether the expected vol.% 

silver nanoparticles was indeed obtained at the end of the reaction. Some precipitation 

were visible towards the end of the reaction, therefore it was decided to investigate 

exactly how much silver nanoparticles were suspended in the mineral oil at the end of 

the reaction. Results from EA (Table 4-2) shows that the amount of Ag lost through 

precipitation increases with an increase in silver concentration. This agrees well with 

the visual observation of a larger precipitate with an increase in concentration after 

reaction was complete. Nanoparticles suspended in a base liquid are constantly in 

random motion under the influence of several acting forces, such as Brownian and 

Van der Waals forces. With such high concentration suspensions and under the 

influence of external and internal forces, the probability for interparticle collisions is 

greater and hence may lead to aggregation. Furthermore, sedimentation may occur 

under gravitational forces if the clusters grow large enough. 
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Table 4-2: Elemental analysis (EA) results for variable silver and surfactant concentrations for 

Korantin SH-stabilized silver nanoparticles suspended in mineral oil. 

Vol.% Ag 
Expected 

Ratio 
Ag:Kor 

EA result (mg 
Ag/ml) 

Calculated 
Vol.% Ag lost 

0.3 1:1 20.4 0.1 
0.011 1:7 0.0975 0.0100 
0.011 1:2 0.0819 0.0102 
0.011 1:1 0.76 0.004 
 

When a large number of atoms are in close proximity to each other, the available 

energy levels form a nearly continuous band wherein electrons may undergo 

transitions. Metal nanocrystallites such as silver nanoparticles have close lying bands 

and therefore outer electrons are free and ready to move at the beckoning of an 

electric field [129]. When the conduction band electrons interact with an 

electromagnetic field, the electrons start to oscillate coherently. This phenomenon is 

called surface plasmon resonance. A typical UV-VIS absorption spectrum of 

Korantin SH stabilized silver colloid in mineral oil is shown in Figure 4-26. 
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Figure 4-26: UV-VIS spectrum of 0.011 Vol.% Ag-colloid stabilized by Korantin SH (Diluted to 0.5 

mM) 

 

The surface plasmon absorption maximum occurs at 420 nm with a FWHM of 80 nm, 

which is characteristic of spherical silver nanoparticles and in good agreement with 

literature [130]. This implies that the colloid system is monodisperse with a narrow 

size distribution. TEM results further supports this result (Figure 4-27). 
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Figure 4-27: (A) TEM micrograph of Korantin SH-stabilized Ag-colloid and (B) corresponding 

particle size distribution 

 

The TEM micrograph in Figure 4-27 (A) shows that the monodisperse nanocrystals 

are self-assembled into superlattice structures. This phenomenon has not been 

observed in the case of the silver nanoparticles suspended in ethylene glycol. Figure 

4-27 (B) provided evidence for the tight size distribution of the silver nanoparticles 

suspended in mineral oil, which was necessary for the superlattice formation. A 

particle size distribution of 9.5 ± 0.7 nm was obtained Figure 4-27 (B). This is a more 

narrow size distribution compared to the 5-20 nm in diameter silver particles prepared 

by Yase et al. [131]. The particles presented here are well separated from each other, 

thereby demonstrating the interaction between the particles and the surfactant. 

 

Effect of Korantin concentration on particle size 

A much lower concentration of Korantin (Ag:Korantin = 4:1) was used to determine 

the degree of aggregation. Figure 4-28 (A) shows the resulting TEM micrograph of a 

Korantin stabilized silver colloid with a reduced surfactant ratio. Some smaller and 

larger particles are visible. The particle size distribution was 8.18 ± 4.4 nm (Figure 

4-28 (B)). 
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Figure 4-28: TEM micrograph of (A) Korantin SH-stabilized Ag-colloid with (B) corresponding 

particle size distribution. 

 

Although at much lower concentration of surfactant a broader size distribution was 

obtained, particles remained well separated. 

It has been reported that long chain carboxylic acids form close-packed monolayers 

on the surface of silver nanoparticles [132]. 

Yu-Tai Tao reported that the two oxygen atoms of the carboxylate bind to the silver 

surface nearly symmetrically, and the molecular chain extends in a trans zigzag 

conformation [133]. In order to gain insight into the interaction between Korantin and 

the silver surface, FTIR was employed. 

 

Due to the lower concentration of the prepared samples (see Table 4-2) the absorption 

spectrum of the Korantin-stabilized Ag-colloid was similar to that of mineral oil. 

Furthermore, mineral oil consists of a high concentration of hydrocarbons, which 

absorbs in the same region as some of the functional groups of Korantin and hence 

covers many peaks in the absorption spectrum. However, the most noticeable 

difference in these complex spectra (Figure 4-29) was the –COO- and the –NCOO- 

stretching frequencies. 
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Figure 4-29: FTIR spectra of (A) Korantin SH in mineral oil, without silver nanoparticles, and (B) 

Korantin SH-stabilized silver nanoparticles suspended in mineral oil. 

 

The strong band at 1736 cm−1 was assigned to the C=O stretching vibration ( C=O) 

of free Korantin. A shift was observed to lower frequency (1725 cm−1) once the 

surfactant coordinated itself to the silver surface via the two oxygen atoms. In 

addition, a slight shift in the amide I band (1611 cm−1) was observed to lower 

frequency (1607 cm−1). It is therefore possible that the amide also coordinates to the 

silver surface [134]. 

 

Combining all the results thus far, colloidal silver nanoparticles were successfully 

synthesized directly in mineral oil. The reaction could be explained as follows: In the 

presence of Korantin, at mild temperature conditions, the silver lactate used was 

oxidized to pyruvic acid, which in turn caused the silver ions to be reduced to silver 

(0). It should also be noted that a much shorter reaction time was observed when the 

reaction was performed in air. Hence in this case, the presence of oxygen plays an 

active role in silver nanoparticle formation [135]. Upon reduction, the carboxylate 

head group of Korantin adsorbed onto the silver surface thereby preventing 

aggregation. This assumption could also provide an indirect explanation to the 

amount of silver nanoparticles lost through precipitation (Table 4-2), since the 

oxidation of silver lactate into pyruvic acid could have lead to a lowering of the pH. 

At lower pH the charge on the particles are weaker and therefore the interactions 
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between the surfactant and the silver nanoparticles would be weaker and hence 

lowers the stability of the dispersions [19]. At high surfactant concentration the pH is 

even lower and hence more unstable dispersions are obtained. 

4.2.1.2  Influence of silver concentration on nanofluid formation 

The formation of silver particles of different concentration (0.3 vol.% and 0.011 

vol.% Ag) was followed by absorbance measurements. 
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Figure 4-30: UV-VIS spectra of 0.3 vol.% silver nanoparticles at different times during the reaction; 

(a) and (b) correspond to samples taken at room temperature (after 15 minutes) and at 60 °C (1/2 hr 

later) respectively, whereas (c) and (d) correspond to samples taken at 90 °C, 40 minutes and 90 

minutes later respectively; (e) was collected at room temperature 1-2 days later. 

 

Initially, more than one absorption band was visible (Figure 4-30 (a) and (b)). This is 

an indication of the polydispersity of the system at that stage. According to Mie’s 

theory, small spherical nanocrystals should exhibit a single surface plasmon band 

whereas larger metal colloid dispersions can have broad or additional bands in the 

UV-VIS range. This is due to excitation of plasmon resonances or higher multipole 

plasmon excitation [136,137]. At 90ºC (Figure 4-30 (c)), the asymmetrical peak blue-

shifted as smaller particles started to form. It is therefore suggested that at the 

beginning of the reaction larger particles were formed, which were later decomposed 

into smaller particles. Approximately 1½ to 2 hours later at 90ºC, only one symmetric 

absorption peak was observed at the wavelength characteristic for spherical Ag-
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nanoparticles with a narrow size distribution (Figure 4-30 (d)). This was confirmed 

with TEM (see Figure 4-27). After stirring for 1-2 days at room temperature (Figure 

4-30 (e)), no further change was observed which implies that the reaction reached 

completion. 

 

Figure 4-31 shows the UV-VIS spectra obtained during the Ag-colloid formation 

studies with a lower concentration of silver.  
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Figure 4-31: UV-VIS spectra of 0.011 vol.% silver nanoparticles in mineral oil at different times 

during the reaction at 90 °C; (a) 20 min, (b) 1 hour, (c) 2 hours, (d) 4 hours, (e) 5 hours, (f) 6 hours (g) 

the next day (room temperature).  

 

From the spectra (Figure 4-31 (a-c)), it is would appear that the reaction should be 

stopped no later than 2 hours (Figure 4-31 (c)) once the abovementioned temperature 

is reached. This will ensure a narrow size distribution of spherical silver 

nanoparticles, since from (d) to (g) a gradual increase in the FWHM was observed 

due to agglomeration. 

 

4.2.1.3 Stability studies of mineral oil based silver nanofluids 

To detect the stability of the Korantin-stabilized silver nanoparticles in mineral oil, 

the absorption spectra were recorded at different times. 
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From Figure 4-32, no obvious difference was detected in the shape and position of 

the absorption peak during the initial two weeks (Figure 4-32 a-d). 
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Figure 4-32: Stability studies of Korantin SH-stabilized silver nanoparticles where (a) and (b) 

corresponds to freshly prepared and a 2-day old sample respectively. Samples (c) and (d) refer to time 

intervals of 1 and 2 weeks respectively. Sample (e) was collected and measured 1 month later, upon 

standing. 

 

However, an increase in intensity is observed which could be due to the formation of 

larger particles. The prepared silver nanoparticle suspensions were stable for about 1 

month since at that time the symmetrical peak broadened showing the onset of 

agglomeration (Figure 4-32 (e)), which shows a decrease in stability. 

 

 

4.2.2 Conclusions 

Mineral oil based nanofluids containing silver nanoparticles with a narrow size 

distribution (9.5 ± 0.7 nm) were prepared by a one step process. The particles 

remained well separated even when a much lower surfactant concentration was used. 

Furthermore, a higher concentration of surfactant yields monodisperse spherical 

silver particles with a narrow size distribution. However, high concentration silver 

leads to a higher loss of silver during reaction, probably due to Brownian motion. The 

particles are stabilized by Korantin, which coordinates to the silver surface via the 
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two oxygen atoms forming a dense layer around the particles. The silver suspensions 

were stable for about 1 month. 
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4.3 Synthesis, structure and studies of physico-chemical 

properties of silver nanoparticles in transformer oil 

Mineral oil, a by-product in the distillation of petroleum to produce gasoline, consists 

mainly of alkanes and cyclic parrafins. Transformer oil is usually a highly-refined 

mineral oil. Some of the properties which make transformer oil unique to other oils 

are the high stability at high temperatures and excellent electrical insulating 

properties. 

The approach developed for silver nanofluid in ethylene glycol and mineral oil was 

used for nanofluid system in transformer oil. Oil-based nanofluids are not well 

documented in literature. 

 

In this work, nanofluids containing silver nanoparticles suspended in transformer oil 

have been prepared via one step methods with and without stabilizer. Two 

hydrophobic surfactants namely oleylamine and oleic acid were used for stabilization 

purposes. However, only the results obtained from oleylamine-stabilized nanofluids 

are reported here since no significant difference was noted in the stabilizing ability of 

the two surfactants as well as the thermal conductivity increases observed. Two 

different synthesis pathways have been employed namely high temperature and 

hydrogen reduction pathways. Herein, the results from these two synthesis pathways 

are presented and discussed in sections 4.3.1 and 4.3.2 respectively. Since 

transformer oil has been used to prepare oil-based nanofluids, the dielectric strength 

has been measured and the results presented and discussed in section 4.3.3.3. 

 

4.3.1 Study of oil based Ag-nanofluid synthesized by using a high 

temperature method: Particle formation and structure 

Nanoparticle synthesis at high temperatures may lead to agglomeration of particles 

since the mobility of the particles is enhanced and frequent collisions between 

particles are unavoidable [138]. Since no reaction occurred at lower temperatures and 

silver mirrors and precipitation were obtained at high temperatures, a suitable 
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surfactant and a reaction temperature of 130 °C, based on trial and error, was chosen 

to minimize particle aggregation and mirror formation during synthesis. 

 

Figure 4-33 shows the UV-VIS spectrum obtained for the 0.01 vol.% silver nanofluid 

prepared using the high temperature method (130 °C). A well-defined peak due to the 

presence of silver nanoparticles was obtained at 423 nm. 
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Figure 4-33: UV-VIS spectrum of 0.01 vol.% silver nanofluid prepared by mechanical agitation at 130 

°C and stabilized by oleylamine. 

 

Particle size and morphology was investigated using TEM. Figure 4-34 shows the 

TEM micrograph obtained for oleylamine stabilized silver nanoparticles in 

transformer oil with corresponding particle size distribution. TEM revealed the 

presence of small silver nanoparticles with particle size distributions of 3.58 ± 1.61 

nm. The particles were mainly spherical. Chen et al. [139] obtained much bigger 

particles (11.6 ± 3.8 nm) during their synthesis of oleylamine-stabilized silver 

nanoparticles in mineral oil at much higher temperatures (180 °C) than was used in 

this work (130 °C). 
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Figure 4-34: TEM micrograph and corresponding particle size distribution of Ag nanofluid prepared 

using high temperature. 

 

Silver nanoparticles have been successfully synthesized using a simple method of 

applying high temperatures to the reactants in oil. The size of the particles were much 

smaller compared to those obtained in the ethylene glycol-based nanofluids since 

ethylene glycol is a much stronger reducing agent compared to oil, resulting in much 

faster reactions and higher particle growth rates at room temperature. 

 

4.3.2 Oil based Ag-nanofluid synthesized by using a hydrogen reduction 

method 

Hydrogen reduction pathways have mostly been used to prepare noble metal 

nanoparticles for use as catalysts. One of the major advantages of using hydrogen 

reduction is the formation of unwanted by-products since oxygen is excluded during 

the reaction. Hydrogen was used as a reducing agent for a possible route to small 

silver nanoparticles in oil. 

 

Influence of reaction time on silver nanoparticle formation in transformer oil 

In order to establish the optimum reaction duration, hydrogen was bubbled for 1 hour 

into the reaction mixture containing silver salt and oleylamine, while sonicating in a 

40 °C ultrasonic water bath. All experimental details are summarized in Table 3-4. The 

TEM micrograph of the oleyamine stabilized silver nanoparticles is shown in Figure 
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4-35 (A). It would appear that, from the TEM micrograph, the reaction time was 

insufficient as only a small amount of particles were visible. The particles appear to 

be in a state of agglomeration. 
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Figure 4-35: TEM micrographs of silver nanofluids prepared by hydrogen reduction (A) r 1 hour 

 was decided to increase the reaction time to 6 hours, while keeping all other 

ydrogen as a reducing agent is a much cleaner synthesis pathway to obtain metal 

es have been successfully prepared in oil by a hydrogen reduction 

pathway, yielding small metal clusters with uniform particle sizes. 

 fo

reaction time and (B) 6 hours reaction time with (C) corresponding particle size distribution 

 

It

parameters constant to ensure that most of the silver salt is reduced. Figure 4-35 (B) 

shows the TEM micrograph obtained and corresponding particle size distribution 

(Figure 4-35 (C)) for the oleylamine-stabilized Ag-nanofluid prepared by hydrogen 

reduction. The particles were mainly spherical with a particle size distribution of 3.0 

± 1.48 nm. It would appear that sufficient reducing agent was present to reduce the 

silver ions, giving rise to small silver particles.  

 

H

nanoparticles, where undesirable by-products are eliminated. Its effect is clearly 

visible in the TEM micrographs. Particles are more uniformly dispersed compared to 

those prepared by the thermal method where high temperatures were used. This is 

probably due to the fact that, in methods where high temperatures are used, particles 

moves faster with the increase in temperature and hence could lead to frequent 

collisions between particles, resulting in some bigger particles in addition to the 

smaller particles. 

Silver nanoparticl
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4.3.3 Investigations of physico-chemical properties of silver nanofluids 

mer oil 

sity of silver nanofluids 

The rheological properties of the oleylamine-stabilized Ag-nanofluid prepared by 

e viscosity curves 

specially with very low concentrations, which display Newtonian 

ehaviour have no (or only few and very weak) interactions between the particles. In 

in transfor

4.3.3.1 Study of visco

hydrogen reduction method, was investigated. Figure 4-36 shows th

for the base oil and oleylamine-stabilized Ag-nanofluid. The nanofluids showed 

Newtonian behaviour, where viscosity remained constant with an increase in shear 

rate. An increase in viscosity was observed with the addition of stabilized silver 

nanoparticles. 

 

Dispersions, e

b

addition, no sedimentation was observed and a totally homogeneous suspension was 

obtained. It can thus be concluded that true colloidal systems have been obtained. 
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Figure 4-36: Viscosity curves obtained for Ag nanofluids and oil, showing the effect of temperature 

and surfactant. 
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Figure 4-36 also shows the viscosity curves obtained for oleylamine stabilized silver 

nanofluid and the silver nanofluid without surfactant. The nanofluid containing 

tabilized silver nanoparticles was found to have a slightly higher viscosity than the 

exponentially with 

increasing temperature. The intermolecular forces between the molecules of a liquid 

govern the magnitude of Ea, however, calculations of it are extremely difficult and 

 nanoparticles is practically the same as the base oil in 

ontrast with the nanofluid at room temperature (see Figure 4-36). 

No difference between the two surfactants was observed with regard to stabilizing 

he thermal conductivity 

results of the oleylamine-stabilized Ag-nanofluids are reported here. Similar to the 

s

nanofluid containing silver nanoparticles without surfactant due to the presence of 

surfactant, since a slight increase in viscosity was observed when oleylamine was 

added to oil compared to that of the base oil. Figure 4-36 also shows the viscosity 

curve obtained for oleylamine-stabilized Ag nanofluid at 60˚C. Most liquids become 

less viscous as the temperature is raised [124]. A drastic drop in viscosity was 

observed for both the oil and the oleylamine stabilized silver nanofluid when the 

analysis was performed at 60˚C. Since a molecule moves only if it acquires at least a 

minimum energy, the probability that a molecule has at least a minimum energy Ea is 

proportional to e-Ea/RT, so the mobility of the molecules in a liquid should follow this 

type of temperature dependence. The coefficient of viscosity η is inversely 

proportional to the mobility of the particles, so it’s expected that 
RTEae /∝η  

This expression implies that the viscosity should decrease 

still largely unsolved [68]. 

 

Furthermore, at higher temperature, the viscosity of the nanofluid containing 

oleylamine-stabilized silver

c

 

4.3.3.2 Study of thermal conductivity of silver nanofluids 

ability as well as thermal conductivity increases observed. T

ethylene glycol based nanofluids, no increase in thermal conductivity was observed, 

even though the suspensions were stable and particles were ~3 nm and well dispersed 
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(Figure 4-34 and Figure 4-35). The relation between the surfactant and the thermal 

conductivity was investigated. 

 

Influence of the absence of surfactant on the thermal conductivity of silver 

nanofluids 

The synthesis of the nanofluid systems were repeated without the surfactant and the 

obtained for

thermal conductivity measured. Figure 4-37 shows the thermal conductivity results 

 the nanofluid with and without surfactant. 
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Figure 4-37: Graph showing the effect of surfactant on thermal conductivity of 0.01 vol.% silver 

nanofluids, prepared with and without surfactant. 

 

act as an insulator around the particles. This 

nding was also observed for the ethylene glycol-based nanofluids. Figure 4-38 

7

In the absence of the surfactant, an increase in thermal conductivity was observed, 

clearly indicating that the surfactant may 

fi

shows the effect of silver concentration on thermal conductivity of silver nanofluids 

prepared without surfactant. 
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Figure 4-38: Graph showing the effect of silver concentration on therma conductivity of silver 

he highest increase in thermal conductivity was observed in the case of the 0.01 

l 

nanofluids prepared without surfactant. 

 

T

vol.% silver nanofluid (Figure 4-38). At higher silver concentration such as 0.5 vol.% 

silver, the increase of thermal conductivity was lower than for the nanofluid with 

0.01% Ag. This unexpected result may be caused by excessive precipitation of Ag to 

the extent that the actual Ag in solution was lower than for the nanofluid with 0.01%. 

Since the surfactant is used to prevent particle aggregation during growth of the 

nuclei, performing the synthesis without surfactant may lead to particle aggregation. 

The TEM micrographs in Figure 4-39 (A-B) shows that the particles are in the 

process of agglomerating and that much bigger particles are obtained when no 

surfactant is used, yet an increase in thermal conductivity was observed. 
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Figure 4-39: (A-B) TEM micrographs of 0.01 vol.% silver nanoparticles prepared with oil as reducing 

agent in the absence of surfactant and (C) XRD pattern of 0.01 vol.% silver nanoparticles prepared in 

oil  without surfactant. 

 

Results from XRD confirmed that the silver nanoparticles were crystalline (Figure 

4-39 (C)). The diffraction peaks can be indexed to those of pure face-centered cubic 

(FCC), corresponding to the (111), (200), (220), and (311) planes respectively. 

 

The surfactant, with a thermal conductivity comparable to oil, and much lower 

compared to silver nanoparticles, coats the particle surface to prevent particle 

agglomeration but also inhibit phonons from transporting heat. The coating around 

the particle could be seen as a defect in the crystalline lattice of the nanoparticle on 

which phonons propagate, causing a resistance to heat flow. 

 

As already explained in section 4.1.9, Maxwell model will not predict any noticeable 

difference for volume fractions >0.05 up until the fraction of Ag in oil. The fractions 

of silver in the samples prepared under this section are much lower. The observed 

increase of thermal conductivity can, to the best knowledge of the author, not be 
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predicted by any published model and currently falls into a whole new area of 

research. 

4.3.3.3 Study of the dielectric strength of transformer oil-based silver nanofluids 

Since the transformer oil-based nanofluids could find possible application in 

transformers, the breakdown voltages of these cooling fluids were determined. 

Transformer oil is an electrically insulating oil which basically functions as a cooling 

medium to dissipate heat generated within the transformer windings. Insufficient 

cooling will lead to disintergration of the insulation layers around the wires and 

eventually to short-circuit or explosion of the transformer. It is important that the oil 

maintains good electrical properties such as high dielectric strength while resisting 

thermal degradation and oxidation. The dielectric strength of transformer oil is 

defined as the maximum electric field strength that the oil can withstand intrinsically 

before breaking down. Any significant reduction in the dielectric strength may 

indicate that the oil is not capable of performing the vital function in offering 

sufficient electrical insulation. 

 

The dielectric strength of the transformer oil-based nanofluids containing 0.06 vol.% 

silver nanoparticles was measured for possible application in transformers. The 

results are summarized in Table 4-3 below. 

 
Table 4-3: Dielctric strength results obtained for transformer oil-based nanofluid containing 0.06 vol.% 

silver nanoparticles. 

Sample Dielectric 
Strength 
(kV) 

Water 
(ppm) 

Acidity 
(mg/KOH/g oil) 

Transformer oil (heat treated, 
without silver nanoparticles) 

56 30 0.01 

Transformer oil-based nanofluid 
containing oleylamine (0.08 M)-
stabilized silver nanoparticles 

28 69 0.09 

Transformer oil-based nanofluid 
containing silver nanoparticles 
without surfactant 

51 34 0.06 
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From Table 4-3, some changes were observed in the dielectric strength of the oil 

when silver nanoparticles were added, with and without surfactant. The dielectric 

strength was greatly reduced with the introduction of oleylamine-stabilized silver 

nanoparticles compared to the pure oil (Table 4-3). The low dielectric strength of the 

prepared nanofluid could mainly be due to the presence of moisture and the slight 

increase in acidity levels, as shown in Table 4-3 above. However, silver nanoparticles 

without added surfactant only caused a small loss in dielectric strength, which could 

also be due to the presence of moisture and a slight increase in acidity (Table 4-3). 

 

4.3.4 Conclusions 

Oil based nanofluids containing silver nanoparticles stabilized by oleylamine were 

successfully prepared using two different pathways. Both the high temperature 

pathway and the hydrogen reduction pathway yielded small silver nanoparticles with 

particle size distributions of 3.58 ± 1.61 nm and 3.0 ± 1.48 nm respectively. All the 

nanofluids showed Newtonian behaviour, implying true colloidal systems.  

 

As in the case of the ethylene glycol-based nanofluids, no thermal enhancement was 

observed and yet again the surfactant was found to be responsible. A 6.4% increase 

was observed for a 0.01 vol.% silver nanofluid when the reaction was performed 

without the stabilizing agent. The dispersion of the particles was somehow affected 

since particles appeared much closer and in the process of agglomerating, resulting in 

much bigger particles with sizes ranging from 30-100 nm. The thermal conductivity 

enhancement of the oil based nanofluid without surfactant is far greater than what is 

predicted based on the Maxwell model. The greatly reduced dielectric strength 

observed with the introduction of oleylamine stabilized silver nanoparticles showed 

that the prepared nanofluid is not favorable for use in high voltage transformers. 

However, silver nanoparticles prepared without a surfactant could possibly be used in 

transformers since only a slight decrease in dielectric strength was observed for the 

suspension of silver nanoparticles in oil compared to the base oil. 
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5 CHAPTER FIVE: NANOFLUIDS BASED ON 

SILVER NANOPARTICLES IN NON-NEWTONIAN 

LIQUIDS – RESULTS AND DISCUSSION 

The same approach as in Chapter 4 was used for nanofluid synthesis in transformer 

oil with carbon nanotubes and silica doping.  

 

Multi-walled carbon nanotubes (CNTs) are tubular structures which are composed of 

multilayered concentric cylinders of single graphene sheets and are many microns in 

length but with nanometer-sized diameters ranging from around 0.4 nm [140] for 

inner tubes and 10 ± 30 nm for the outermost tubes. It would appear that carbon 

nanotubes would be the ideal fibers for heat transport because of their high aspect 

ratios and also because their thermal conductivity is comparable to the in-plane 

conductivity of graphite and approaches or even exceeds that of natural diamond, the 

best room temperature thermal conductor [13]. 

 

Silica is a group IV metal oxide, which has good abrasion resistance, electrical 

insulation and high thermal stability. Fumed silica has chain-like particle 

morphology. When introduced to liquids, the chains bond together via weak 

hydrogen bonds forming a three dimensional network, trapping liquid and effectively 

increasing the viscosity. 

 

The heat management of transformer units determines a great part of the transformer 

cost and are of great importance since the development of so called “hotspots” can 

have disastrous consequences. Hotspots can be formed when the heat generated in the 

coil cannot be removed quickly enough. The high temperatures will attack the 

insulation layers on the coil. It is obvious that proper heat management should 

prevent hot spots or general overheating of the transformer. Installing additional 

radiators or enhancing the oil flow using forced convection do enhance heat 
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management, but require alterations to the transformer. Applying nanofluids, based 

on transformer oil, with enhanced thermal conductivity is another option to improve 

heat management. The capacity and/or the life span of the transformer may increase 

by just changing the oil. 

 

By introducing carbon nanotubes or silica to transformer oil, similar trends in the 

enhancement of thermal conductivity may also be obtained in these systems, as was 

seen with silver nanoparticles suspended in transformer oil. 

 

5.1 Synthesis and Physico-Chemical properties of silver 

nanoparticles dispersed in transformer oil doped with 

carbon nanotubes 

Carbon nanotubes have some limitations to the solution-phase manipulation and 

processability since they are incompatible with most solvents and stabilizers [141]. 

Hence, poor dispersion is one of the main issues around carbon nanotube 

suspensions. However, it is possible to overcome the problem by acid-

treating/oxidizing the carbon nanotubes. It is well known that the most effective 

oxidation method is treatment in a mixture of HNO3 and H2SO4. The acid-treatment 

not only allows for oxidation to take place, but also aids in the purification of the 

nanotubes.  

 

The carbon nanotubes used in most of the experiments in this work, were from a 

commercial source. However, carbon nanotubes have been prepared in-house (see 

Appendix (8.2)) for comparison purposes. The CNTs were acid treated and dispersed 

in oil using different surfactants. In an attempt to increase the thermal properties of 

the oil-based nanofluids containing carbon nanotubes even further, silver 

nanoparticles were deposited on the acid treated CNTs. 

 

Nanoparticles, particularly Pt, supported on CNTs have been prepared by various 

research groups [142,143,144,145,146] for use as catalysts. Refluxing of carbon 
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nanotubes introduces acid sites on the surface of the nanotubes. The acid sites are 

composed of functional groups such as COOH and OH, which can act as nucleation 

centres for metal ions. The decoration of nanotubes by Au, Pt and Ag have been 

reported by Rao et al. In their work, silver nanoparticles were supported on carbon 

nanotubes by refluxing the nanotubes with the silver salt and nitric acid. [147].  

 

However, the one-step synthesis and deposition of silver nanoparticles on carbon 

nanotubes in transformer oil have not been reported before. Herein the results are 

reported from the one-step method used to decorate carbon nanotubes by silver 

nanoparticles directly in transformer oil. 

 

5.1.1 Influence of carbon nanotube doping on Physico-Chemical 

properties of transformer oil 

The most common method for producing carbon nanotubes is by chemical-vapor-

deposition (CVD). Certain parameters, such as the type of catalyst and carbon source 

used during nanotube synthesis, could influence the final properties of the nanotubes 

in terms of purity and size. Choi et al. [4] for example, used xylene as the primary 

carbon source and ferrocene to provide the iron catalyst to prepare multi-walled 

carbon nanotubes, which was then suspended into a synthetic poly(α-olefin) oil. 

LaNi5 is an intermetallic compound that is rich in nickel and is normally used for 

hydrogen storage applications [148]. In this study, LaNi5 served as the Ni catalyst and 

LPG, which is cheap and readily available, was used as a carbon source.  

 

5.1.1.1 Structural studies of carbon nanotubes dispersed in transformer oil 

TEM was used to study the size and morphology of the homemade and commercially 

obtained carbon nanotubes. Figure 5-1 presents the TEM micrographs of the 

homemade and commercial carbon nanotubes before acid treatment. A broad size 

distribution was observed in the case of the homemade nanotubes since a mixture of 
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nanotubes was obtained with diameters of ~10 nm for the smaller sized nanotubes 

and ~70 nm for the larger nanotubes. 

 

(a)  (b)   

Figure 5-1: TEM micrographs of raw (a) homemade, prepared by CVD using LaNi5 as catalyst and 

LPG as carbon source and (b) commercial CNTs before acid treatment 

 

For comparison purposes, the TEM micrograph of the commercial nanotubes used in 

this study (Cheap Tubes, Inc.) is also shown in Figure 5-1. The nanotubes were 

generally shorter and straighter. Hence, a more uniform size distribution was obtained 

in the case of the commercial nanotubes with an average tube diameter of 18.4 nm, 

yielding a much higher aspect ratio of ~1630 compared to the homemade nanotubes 

with broad size distribution and lower aspect ratio of ~500-1000. The nanotubes 

prepared by Choi et al. [4] had an average diameter of ~25 nm and an aspect ratio of 

2000. This is a clear indication that the size of the nanotubes is dependent on the 

method of preparation, which in turn includes the type of catalyst and carbon source. 

 

The crystalline phases of the carbon nanotubes were determined by XRD. The XRD 

patterns in Figure 5-2 show that the homemade carbon nanotubes and the commercial 

carbon nanotubes show similar peaks to CVD-prepared carbon nanotubes that have 

been annealed. Annealing is usually done to improve the crystallinity of CVD-

prepared nanotubes [149]. Several graphite peaks can be distinguished, among which 

the strongest d(002) reflection at 2θ = 26°. 
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Figure 5-2: XRD patterns of the homemade CNTs, prepared by CVD using LaNi5 as catalyst and LPG 

as carbon source, and commercial nanotubes before acid-treatment. 

 

The nanotubes were subjected to acid-treatment in order to purify and introduce some 

oxygen containing groups for better dispersion.  

 

Structural studies of carbon nanotubes after acid treatment 

Acid treatment of nanotubes not only removes all the amorphous material but also 

allow for functionalization of the nanomaterial surface. This in turn allows for better 

dispersion or a means for stabilizers to attach to the nanomaterial surface. Stabilizers 

are often used to either stabilize materials in the nanometer range or improve their 

dispersion behaviour. Oleic acid and oleylamine was used as stabilizers and to 

enhance the dispersion characteristics of the nanomaterial. No noticeable difference 

was observed in the stabilizing ability of the surfactants since similar sedimentations 

were observed after 1 week upon standing. Figure 5-3 shows the TEM micrograph of 

a homemade, acid treated sample stabilized by oleic acid. The hollow core of the 

nanomaterial is clearly visible from the TEM micrograph in Figure 5-3. Hence, the 

nanotubes are in fact carbon nanotubes.  
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Figure 5-3: TEM micrograph of homemade, acid treated (refluxed 4 hours in a mixture of concentrated 

sulphuric and nitric acids (1:1 by volume sulphuric: nitric acid)), CNTs stabilized by oleic acid in 

transformer oil 

 

To establish whether the graphitic structure of the CNTs is affected by the acid 

treatment during the oxidation process, XRD measurements were carried out on the 

acid treated commercial carbon nanotubes. After oxidation, all graphite peaks are still 

visible in the XRD spectrum (Figure 5-4). This observation demonstrates that the 

graphitic structure of the CNTs is unchanged after treatment, which is expected since 

the acid treatment only attacks the outer layer of MWCNTs. 
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Figure 5-4: XRD patterns of untreated and acid-treated commercial carbon nanotubes, showing that the 

graphitic structure is retained after acid treatment. 
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Functional groups introduced during chemical treatment of CNTs were confirmed by 

Fourier Transformation Infrared (FTIR) spectroscopy. Figure 5-5 shows the infrared 

spectrum of carbon nanotubes before and after pretreatment in the 2400 - 500 cm-1 

range. Comparing the two curves, it appears that the pretreatment, i.e. during the 

oxidation process, can lead to some organic functional groups on the surface of 

carbon nanotubes.  
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Figure 5-5: Infrared spectra of carbon nanotubes before (UCNTs) and after acid-treatment (TCNTs) 

showing the presence of the carbonyl group at 1730 cm-1 after acid treatment. 

 

The treated carbon nanotubes (TCNTs) showed an additional peak at 1730 cm-1 

which is assigned to carbonyl (C=O) stretching band. The peaks observed at ~1560 

cm-1 in both the TCNTs and untreated carbon nanotubes (UCNTs) corresponds to the 

carbon skeleton.  

 

In order to gain some more insight into the purity of the carbon nanotubes, TGA was 

performed from RT to 900˚C in air. 
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Figure 5-6: TGA thermograms obtained for commercial CNTs before (UCNTs) and after (TCNTs) 

acid treatment with heating rate of 5˚C/min. 

 

Figure 5-6 shows the TGA thermograms obtained for carbon nanotubes before and 

after acid treatment. Some of the metal impurities were removed during the acid 

treatment as much less residue was observed in the thermograms after acid treatment, 

compared to before the acid treatment step. In addition, the temperature of 

combustion is an indication of the carbon nanotube’s degree of crystallinity. The 

results suggest that the acid treatment increases the crystallinity.  

 

Figure 5-7 shows the decomposition patterns obtained for the acid-treated homemade 

and commercial CNTs. The TGA study of the CNTs showed that its onset 

temperature for the weight loss in air occurred at 500 ˚C (Figure 5-7) and are 

completely oxidized around 650 ˚C. It is also noted that the commercial carbon 

nanotubes oxidized at a lower temperature compared to the homemade nanotubes. 

Smaller diameter nanotubes are believed to oxidize at lower temperatures due to a 

higher curvature strain. Since ~30 % of residue from the homemade CNTs remained 

beyond the decomposition range observed for carbon nanotubes, it implies that the 

homemade nanotubes contained much more impurities compared to the commercial 

CNTs, probably from the starting materials used to provide the catalyst.  
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Figure 5-7: TGA thermograms obtained for acid-treated (a) homemade and (b) commercial CNT’s 

with heating rate of 5 ˚C/min. 

 

EDS analysis of LaNi5 showed that La constitutes ~18 wt% and Ni ~ 43 wt% of the 

total composition (Table 5-1). The energy spectrum is given in Appendix (8.2). 

 
Table 5-1: Quantitative EDS data for the total surface of LaNi5

Element 
  Line 

      Net 
   Counts 

Weight % 
 

Atom % 
 

  Al K          991     3.19     8.44 
  Mn K        2770     7.66     9.96 
  Co K        2242     8.03     9.73 
  Ni L        4330   43.16   52.51 
  La L        8258   17.54     9.02 
  Ce L        5166   13.81     7.04 
  Pr L          970     2.31     1.17 
  Nd L        1697     4.31     2.13 
Total  100.00 100.00  

 

ICP analysis was performed in order to determine the mass % of La and Ni lost 

during acid-treatment. Table 5-2 shows the results obtained from ICP analysis. The 

results not only proved that the acid treatment is more selective towards etching La 

compared to Ni, but also showed that ~7 % of La is still present (Table 5-2) after acid 

treatment. Therefore, a mixture of impurities consisting of La, Mn, Co, Ce, Pr, Nd, as 

shown in Table 5-1, is responsible for the 30 % residue observed during thermal 

decomposition patterns (Figure 5-7). It has been shown that La enhances CNT yield 

114 



5. Results and Discussion: Ag in Non-Newtonian fluids 

[150] and therefore this method of preparing the catalyst may be of use for methods 

to produce bulk quantities, kg’s or more. 

 

Table 5-2: ICP results showing the mass % of La and Ni lost during acid-treatment. 

Time of Acid 
Treatment (min) 

Mass % La 
Lost 

Mass % Ni 
Lost 

15 10.17 0.403 
30 10.88 0.360 
60 11.39 0.396 

 

As mentioned before, oleic acid was used as a stabilizer and a means to improve the 

dispersion behaviour of the CNTs. Figure 5-8 shows the decomposition pattern 

obtained for the commercial carbon nanotube stabilized by oleic acid. The large 

weightloss observed at 130 -250 ˚C could be due to the surfactant as well as some 

moisture, followed by nanotubes oxidation until ~600 °C. No residue was observed in 

the decomposition pattern, which implies that the sample was free of metallic 

impurities. Since surfactants aids in the dispersion of carbon nanotubes, it is possible 

that during this process, some of the surface impurities were left behind. 
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Figure 5-8: TGA thermogram obtained for commercial CNTs stabilized by oleic acid with heating rate 

of 5 ˚C/min. 
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Based on the results obtained, the homemade carbon nanotubes and the commercially 

obtained carbon nanotubes differ from each other by their aspect ratios as well as the 

purity.  

5.1.1.2 Investigations of thermal conductivity of carbon nanotubes dispersed in 

transformer oil 

Since both the homemade and commercial carbon nanotubes have been prepared 

using different catalysts and carbon sources and hence have different levels of 

impurities, one can expect that the two carbon nanotube samples will have different 

thermal conductivities. 

 

In literature, significant increases in thermal conductivity have been observed in 

suspensions of carbon nanotubes, which, in addition to high thermal conductivity, 

have a very high aspect ratio [2]. The thermal conductivity of multi-walled carbon 

nanotubes, at room temperature, is about 20,000 times greater than that of engine oil 

[13]. It is therefore expected that there will be a significantly enhanced thermal 

conductivity in these fluids containing suspended CNTs than the conventional heat 

transfer fluids. 

 

Since impurities could hold a negative or positive effect on some material properties, 

the effect it has towards thermal conductivity enhancement was investigated. Figure 

5-9 shows the difference in thermal conductivity observed for suspensions containing 

the homemade and commercial CNTs, prepared without surfactant. At 0.4 wt% 

carbon nanotube loading, a 2.7 % and 5.4 % increase in thermal conductivity was 

observed for the homemade and commercial carbon nanotubes respectively. When 

the loading was 1.0 wt %, a 3.6 % and 7.3 % increase in thermal conductivity was 

observed for the homemade and commercial carbon nanotubes respectively (Figure 

5-9). The nanofluids containing the commercial nanotubes showed, in general, 

roughly double the thermal conductivity increase (Figure 5-9), possibly due to the 

uniform size of the CNTs and the higher aspect ratio as well as the degree of purity 

found in the commercial carbon nanotubes (see TGA results in Figure 5-7). The level 
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of defects in nanotubes, caused mostly by the presence of impurities which could 

either be found in the structure or on the surface of the carbon nanotubes, can act as 

scattering centers for phonons and hence limit the thermal flow. In addition, the 

higher aspect ratios obtained for the commercial carbon nanotubes allowed for rapid 

heat flow over longer paths without the need to cross an interface. The thermal 

conductivity was found to increase nonlinearly with an increase in carbon nanotube 

loading. Although much larger increases in thermal conductivity of surfactant-free 

multi-walled carbon nanotube suspensions have been presented in literature [4], 

several other studies have shown smaller enhancement in thermal conductivity: Xie et 

al. [11] obtained a 10-20 % increase in thermal conductivity at 1.0 vol.% carbon 

nanotubes in organic liquid and water suspensions.  
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Figure 5-9: Thermal conductivity increase observed between untreated homemade and commercial 

nanotubes. 

 

Before the prominent insulative role of the surfactants on the nanoparticle had been 

identified, it was not clear why Ag-based nanofluids did not show any increase of the 

thermal conductivity. In an attempt to find an explanation, CNT-based nanofluids 
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which were the first nanofluids showing an increase in thermal conductivity, were 

mixed with Ag nanoparticles. 

 

 

5.1.2 Physico-Chemical properties of nanofluids based on silver 

nanoparticles dispersed in transformer oil modified with carbon 

nanotubes 

Oleic acid and oleylamine was used as stabilizers and to enhance the dispersion 

characteristics of the nanomaterials. However, the results obtained for oleylamine-

stabilized silver nanofluids containing carbon nanotubes are presented here since no 

noticeable difference was observed in the stabilizing ability of the surfactants. Similar 

average particle sizes and distributions were obtained for both oleic acid -and 

oleylamine-stabilized silver nanoparticles. 

5.1.2.1 Synthesis and structural properties of nanofluids  

Silver nanoparticles were successfully supported on CNTs by using a one-step 

thermal method. Figure 5-10 shows the TEM micrographs of silver supported on 

homemade (Figure 5-10 (A)) and commercial (Figure 5-10 (C)) CNTs with 

corresponding particle size distributions (Figure 5-10 (B, D)).  
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Figure 5-10: TEM micrographs and corresponding particle size distribution graphs of silver supported 

on (A-B) homemade carbon nanotubes and (C-D) commercial carbon nanotubes. 

 

A silver particle size distribution of 4.97 ± 2.28 nm and 4.0 ± 1.79 nm was obtained 

in the case of the homemade and commercial nanotubes respectively. In both cases, 

particles appeared well-dispersed on the nanotube surface. 

 

In order to support the TEM results showing the deposition of silver nanoparticles on 

the carbon nanotube surfaces, TGA was performed and the decomposition curve of 

the unsupported nanotubes compared with that of the silver supported nanotubes. 

Figure 5-11 shows the thermograms obtained for CNTs stabilized by surfactant and 

surfactant-stabilized silver nanoparticles supported on carbon nanotubes. 
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Figure 5-11: TGA thermograms obtained with heating rate of 5˚C/min. for silver supported on acid-

treated commercial CNTs stabilized by oleic acid and acid treated commercial CNTs stabilized by 

oleic acid. 

 

The mass loss from around 130 -250 ˚C is likely due to the decomposition of the 

surfactant in both samples. Following the decomposition of the surfactant, another 

mass loss percentage was observed, which is attributed to the oxidation of carbon 

nanotubes. Without silver supported on the nanotubes, the decomposition range for 

the nanotubes is from ~250-600 ˚C. However, with silver supported on the carbon 

nanotubes, a change was observed in the decomposition range for the nanotubes. The 

nanotubes were fully oxidized around 474 ˚C, leaving a residue which could be due to 

the presence of oxidized silver nanoparticles (Figure 5-11). The oxidizing 

temperature of decorated carbon nanotubes decreases because transition metals are 

known to catalyze the oxidation of carbon nanotubes. Furthermore, the DSC curve for 

CNTs without silver nanoparticles showed only one exothermic peak at 592 °C 

(Figure 5-12) due to the oxidation of carbon nanotubes, in good agreement with the 

TGA curve shown in Figure 5-11. 
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Figure 5-12: DSC curves of commercially obtained CNTs without silver nanoparticles and silver 

supported on commercial CNTs, stabilized by oleic acid. 

 

Two exothermic peaks were obtained in the DSC curve for silver nanoparticles 

supported on CNTs, one at 474˚C (due to the oxidation of carbon nanotubes) and the 

other at ~552˚C (Figure 5-12). The peak at ~552 °C could possibly be due to the 

oxidation of silver nanoparticles, since the TEM images in Figure 5-10 showed the 

presence of silver nanoparticles on the surface of the carbon nanotubes, and no mass 

loss was observed in the TGA thermograms (Figure 5-11) during that temperature 

range.  

 

5.1.2.2 Rheological properties of nanofluids containing carbon nanotubes 

The rheological properties of nanofluids are often overlooked. As mentioned in 

section 2.1.3.1, the viscosity of a Non-Newtonian fluid will vary with shear rate.  

The prepared nanofluids containing CNTs showed Non-Newtonian behavior (Figure 

5-13). In addition, the fluids were shear thinning.  
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Figure 5-13: Viscosity and flow curve as a function of shear rate, showing that the nanofluid is Non-

Newtonian and shear-thinning. 

 

Shear thinning behaviour can be a result of many causes. Firstly, if aggregates are 

present, the increase in shear rate will cause the agglomerates to break down and 

hence reduce the amount of solvent immobilized by the particles, causing a lowering 

in the apparent viscosity of the system [151]. 

 

Secondly, asymmetric particles can also give rise to shear thinning behavior since 

they disturb the flow lines when they are randomly orientated at low-velocity 

gradients. In addition, particle interaction and solvent immobilization are favoured 

when conditions of random orientation prevail [151].  

 

The high aspect ratio of carbon nanotubes could also be responsible for the observed 

flow behaviour. This means that longer tubes will be detangled and oriented by the 

shearing process which would result in a decrease in viscosity. It would therefore 

appear that the observed flow behaviour could be due to the high aspect ratio, as 

already established in section 5.1.1.1. 

 

Figure 5-13 also shows the flow curve of the shear thinning fluid. A linear behaviour 

of shear stress against shear rate with an apparent yield stress is visible and therefore 
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the nanofluid follows the Bingham flow model [151]. Therefore, for applications 

which require heat transfer fluids that flow homogenously, this nanofluid may not be 

useful. 

 

5.1.2.3 Thermal conductivity of nanofluids  

The effect of silver nanoparticles on the thermal conductivity of nanofluids 

containing commercial CNTs, in the presence of surfactant, is illustrated in Figure 

5-14. The carbon nanotubes without silver nanoparticles showed a 13.3 % increase in 

thermal conductivity at a loading of 4.0 wt%. The introduction of 0.07 vol.% silver 

nanoparticles allowed for a further increase of ~6 %. The growth of silver 

nanoparticles onto dispersed carbon nanotubes leads to further enhancement of the 

thermal conductivity of the nanofluids containing CNTs. 
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Figure 5-14: Graph showing the effect of 0.07 vol.% supported silver nanoparticles on the thermal 

conductivity of nanofluids containing carbon nanotubes, prepared at 130 °C in the presence of 

oleylamine as stabilizer. 

 

Since the nanofluids were prepared in the presence of surfactant, it would appear that 

the results obtained here contradict previous results obtained for nanofluids 

containing unsupported, surfactant-stabilized silver nanoparticles, where no increase 
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in thermal conductivity was observed. A possible justification for the differences in 

thermal conductivity observed based on surfactant coordination to the silver and 

nanotube surface, is therefore given. Previous results for nanofluids containing 

surfactant-stabilized silver nanoparticles have shown that if the surfactant is 

coordinated to the silver nanoparticles, no increase in thermal conductivity was 

observed. Therefore it is unlikely that silver nanoparticles are coordinated to the 

carbon nanotube surface through the surfactant, as shown in Figure 5-15 (Scenario 

A).  

 

Since the surfactant is used to improve the dispersion behaviour of the nanotubes, by 

coordination of the nitrogen atoms of oleylamine to the oxygen groups on the surface 

of the carbon nanotubes [152], it is believed that oleylamine and silver nanoparticles 

may compete for the oxygen groups to coordinate to the carbon nanotube surface. 

Since oleylamine is a long-chain (18-C) surfactant, some of the CNT-coordinated 

surfactant may create a shield for CNT-coordinated silver nanoparticles and hence 

results in surfactant free silver nanoparticles on the surface of the carbon nanotubes 

(Figure 5-15 (Scenario B)).  

 

Scenario AScenario A Scenario BScenario B

 

Figure 5-15: Schematic diagram showing Scenario (A): the unlikely coordination of silver 

nanoparticles, by means of the surfactant (oleylamine), to the carbon nanotubes surface; Scenario (B): 

Proposed coordination of silver nanoparticles and oleylamine to the oxygen groups on the carbon 

nanotube surface. A shielding effect is created for the silver nanoparticles due to the bulky surfactant 
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and hence surfactant free silver nanoparticles are present on the carbon nanotube surface, creating 

alternative phonon pathways. 

 

This also leads to an increase in surface area of the carbon nanotubes. Since it has 

been shown in the case of surfactant-stabilized silver nanoparticles in both ethylene 

glycol and transformer oil, that the surfactant was responsible for inhibiting the heat 

transfer process, the enhanced thermal conductivity observed in the case of silver 

nanoparticles supported on CNTs could be due to alternative phonon pathways 

created by the presence of surfactant free silver nanoparticles on the surface of the 

carbon nanotubes. 

 

5.1.2.4 Dielectric Strength of nanofluids  

Due to the poor dispersion of carbon nanotubes, surfactant is necessary in order to 

obtain stable suspensions. Therefore, carbon nanotube-based nanofluids were 

prepared in the presence of a surfactant. Carbon nanotubes have very high electrical 

conductivity. Introducing carbon nanotubes and silver nanoparticles, which are also 

electrically conductive, into transformer oil could lead to drastic changes in the 

breakdown voltage of the transformer oil. The dielectric strength of transformer oil-

based nanofluids containing surfactant-stabilized silver nanoparticles supported on 

carbon nanotubes was measured. The results are summarized in Table 5-3 below. 

 
Table 5-3: Dielctric strength results obtained with corresponding water and acidity levels for 

transformer oil-based nanofluid containing silver nanoparticles and carbon nanotubes, in the presence 

of a surfactant. 

Sample Dielectric 
Strength 
(kV) 

Water 
(ppm) 

Acidity 
(mg/KOH/g oil) 

Transformer oil (heat treated) 56 30 0.01 
Transformer oil-based nanofluid 
containing oleylamine-stabilized 
silver nanoparticles 

28 69 0.09 

Transformer oil-based nanofluid 
containing oleylamine-stabilized 
silver nanoparticles and carbon 
nanotubes 

2 - - 
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The dielectric strength was greatly reduced with the introduction of silver 

nanoparticles and carbon nanotubes compared to the pure oil and also stabilized silver 

nanoparticles in oil (Table 5-3). The reduction in dielectric strength could be due to 

the nanofluid suspension reaching its percolation threshold, which implies the critical 

concentration where the silver nanoparticles and carbon nanotubes become close 

enough to form a continuous conductive pathway and hence increasing the electrical 

conductivity quite sharply. For future applications it would be important to study the 

dielectric properties in more detail and possibly find solutions to the discrepancies in 

the results observed. However, it would require more intensive research in this 

particular field. 

 

5.1.3 Conclusions 

Oil-based nanofluids containing silver nanoparticles supported nanotubes were 

successfully prepared using a one-step high temperature pathway. Particles were 

uniformly dispersed on the nanotube surface. All the nanofluids containing nanotubes 

were shear-thinning, showing non-Newtonian behaviour and following the Bingham 

flow model, which implies that the nanofluid has a yield value. 

 

The nanofluids containing the commercial carbon nanotubes showed in general a 

much higher thermal conductivity than the homemade nanotubes. The lower aspect 

ratio of the homemade nanotubes, which was confirmed by TEM, can justify the 

difference.  

 

The thermal conductivity was found to increase significantly with the introduction of 

the silver nanoparticles even though Ag has a much lower thermal conductivity (429 

W/m-K) than carbon nanotubes (3000 W/m-K). In addition, the nanofluids were 

prepared in the presence of a surfactant, which was previously shown to inhibit any 

increase in thermal conductivity. The proposed competition between oleylamine and 

silver nanoparticles for the oxygen groups on the surface of the carbon nanotubes 

could cause a shielding effect created by the bulky nature of the surfactant. This 
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shielding effect leaves surfactant free silver nanoparticles on the surface of the 

nanotubes. This could make provision for alternative phonon pathways and hence an 

enhancement in thermal conductivity was observed for the nanofluid containing silver 

nanoparticles supported on carbon nanotubes. The dielectric strength of the oil was 

drastically reduced. The greatly reduced dielectric strength observed showed that the 

prepared nanofluid, containing silver nanoparticles supported on carbon nanotubes, is 

not favorable for use in high voltage transformers, and should find its application 

elsewhere.  
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5.2 Synthesis and Physico-Chemical properties of silver 

nanoparticles dispersed in transformer oil doped with 

silica  

The high thermal and chemical stability of silica makes it an attractive additive in 

heat transfer systems. In this section, the results from various nanofluid systems 

containing silica and silver nanoparticles supported on silica are discussed. Detailed 

experimental procedures of all samples are discussed in section 3.6.2. Low 

concentrations of silver were used due to the poor dissolution of silver salt in the oil. 

All the nanofluids were prepared without any surfactant.  

 

5.2.1 Synthesis and structural studies of silver nanoparticles dispersed 

in transformer oil modified with silica 

Particle size and morphology was studied using TEM. Figure 5-16 (A) shows the 

TEM micrograph of commercially obtained silica in oil. Silver nanoparticles of 

varying concentrations were then synthesized and supported on 0.07 wt% silica in a 

single step. Figure 5-16 (B-C) shows the TEM micrograph of 0.06 vol.% silver 

nanoparticles supported on 0.07 wt % silica with corresponding particle size 

distribution. Well-dispersed silver nanoparticles were successfully deposited on the 

silica surface. Particles are spherical in shape with a particle size distribution of 5.5 ± 

2.4 nm (Figure 5-16 (B-C)). 
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Figure 5-16: (A) TEM micrograph showing commercially obtained silica dispersed in oil, (B) TEM 

micrograph showing the well dispersed silver particles (0.06 vol.%) supported on the silica (0.07 wt%) 

with (C) corresponding particle size distribution graph, (D) TEM micrograph showing the well 

dispersed silver particles (0.06 vol.%) supported on the silica (0.07 wt%) after 4 months with (E) 

corresponding particle size distribution graph 

 

The nanofluid system was stable since after 4 months, the same scenario of well-

dispersed silver particles supported on silica was observed (Figure 5-16 (D)). No free 

particles were visible in the TEM micrograph and it would appear that all the silver 

nanoparticles stayed intact on the surface of silica. Particles are mainly spherical in 

shape with a particle size distribution of 4.5 ± 1.6 nm (Figure 5-16 (E)). 

 

The XRD pattern obtained for silver nanoparticles supported on silica consisted of 

many sharp peaks which revealed the crystalline nature of the material (Figure 5-17). 

The crystallite sizes were determined by means of the Scherrer formula. Considering 

the [111] direction in the XRD spectrum, a value of d = 9.52 nm was found. The 

value obtained from TEM micrographs was much lower (Figure 5-16). 
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Figure 5-17: XRD pattern obtained for 0.06 vol.% Ag supported on 0.07 wt% silica 

 

The disagreement between the crystal size obtained from TEM and XRD data is due 

to the fact that in the x-ray pattern, mainly the large nanocrystals contribute to the 

Bragg peaks. In addition, the Scherrer formula is based on size limited bulk structure. 

Hence, relating particle size to the peak width cannot be used with great accuracy for 

particles of very small size [153]. 

 

Investigation of the optical properties provided a UV-VIS spectrum with more than 

one peak (Figure 5-18). 
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Figure 5-18: UV-VIS spectra obtained for silica without silver nanoparticles and Ag nanoparticles 

supported on silica 
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It is noted that silica has no absorption peak in ultraviolet spectrum (Figure 5-18). 

The Ag supported nanofluid system however, gave rise to two peaks at 384 nm and 

443 nm, which were also very broad. The exact position of this plasmon band is 

extremely sensitive to particle size and shape and to the optical and electronic 

properties of the medium surrounding the particles. Silica is electronically inert (it 

does not exchange charge with the silver particles), but its refractive index is different 

from that of silver. Hence, since all the particles appeared to be spherical and mono-

dispersed on the silica support, the observed spectrum could be as a result of the 

electronic properties of the surrounding medium. 

 

5.2.2 Rheological properties of nanofluids   

Silica (especially fumed silica), is known for its ability to increase the viscosity of 

organic media and nonpolar liquids, such as mineral oil and other hydrocarbons, by 

forming interparticle linkages arising from the net attractive forces between particles. 

When such linkages are formed extensively and span the sample volume, the result is 

a colloidal gel (i.e., a three-dimensional network of particles) [154]. 

 

Since silica forms a colloidal gel at high concentrations, a yield value is expected. 

This is due to intermolecular forces (Van-der-Waals). This includes dipole-dipole 

interactions between the particles and between the particles and the surrounding base 

fluid. In general, samples which display yield points tend to flow inhomogeneously 

and only begin to flow when the external force acting on the material is larger than 

the internal structural forces [151]. 

 

Figure 5-19 shows the viscosity curves for different nanofluid systems. Both 

suspensions containing 1.4 wt% silica showed shear-thinning behaviour at low shear 

rates, after which they showed idealviscous behaviour (Figure 5-19). Shearing 

probably caused the three-dimensional network to disintegrate, resulting in a decrease 

in the interaction forces amongst the particles and hence lowered the flow resistance. 

In addition, the suspension containing Ag supported on silica showed a lower 

viscosity compared to the nanofluid containing silica without Ag. This could be due 
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to the immobilization of silver nanoparticles on the silica, preventing the formation of 

the three-dimensional network that silica is known to form otherwise [154]. 
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Figure 5-19: Viscosity curves for 1.4 wt% silica in oil, 0.06 vol.% Ag/1.4 wt% silica, 0.06 vol.% 

Ag/0.07 wt% silica, 0.03 vol.% Ag/0.07 wt% silica and oil. The nanofluid suspensions containing 

silver nanoparticles supported on 0.07 wt% silica showed Newtonian behaviour and the two viscosity 

curves were identical and slightly more viscous than the oil. 

 

However, when a lower concentration of silica was used, a different picture was 

revealed in the viscosity curves. Both suspensions containing different concentrations 

of silver nanoparticles supported on 0.07 wt% silica showed Newtonian behaviour 

(Figure 5-19). This is possibly due to the much lower concentration of silica that was 

causing the particles to be far apart and hence, no significant interaction forces 

occurred between the particles, which allowed it to have a negligible effect on the 

viscosity. Figure 5-20 shows the behaviour of silica-based nanofluids in terms of the 

applied shear stress and resultant shear rate. The trend line of the correlation was 

calculated and the equation of the relation was investigated. The flow curves revealed 

that both suspensions containing 1.4 wt% silica had yield values and therefore 

followed the Bingham flow model (Figure 5-20). A similar result was obtained for 

the carbon nanotube system.  
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Figure 5-20: Flow curves for 1.4 wt% silica in oil, 0.06 vol.% Ag/1.4 wt% silica, 0.06 vol.% Ag/0.07 

wt% silica and 0.03 vol.% Ag/0.07 wt% silica. 

 

Figure 5-20 also shows the flow behaviour of 0.06 vol.% Ag/0.07 wt% silica and 0.03 

vol.% Ag/0.07 wt% silica. As was shown in Figure 5-19, Newtonian behaviour was 

revealed and this was confirmed in the flow curve (Figure 5-20) showing no yield 

value and therefore follows the ideal Newtonian flow model. The two suspensions, 

although different concentrations of silver were used, had identical flow behaviour. 

Since the silver nanoparticles are fixed on the silica, the resulting flow behavior 

observed is therefore due to the silica and not due to the silver nanoparticles. 

 

5.2.3 Thermal conductivity of nanofluids  

The thermal conductivity of nanofluids containing various concentrations of silica in 

oil, and silica with supported silver nanoparticles in oil were measured. All the 

nanofluids were prepared in the absence of surfactant. A summary of the reaction 

conditions is given in Table 3-6. The effect of silica and silver concentration towards 

thermal conductivity enhancement was investigated.  
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• Influence of silica concentration without silver nanoparticles on thermal 

conductivity 

Due to the electrical insulation that silica offers, silica nanofluids can be very 

important to certain industries where cooling is required for example in high voltage 

applications. With a slightly higher thermal conductivity (1.4 W/m-K) than 

transformer oil (0.110 W/m-K), nanofluids containing silica is likely to enhance the 

heat transfer properties of transformer oil. Oil-based nanofluids with varying 

concentrations of silica were prepared and the thermal conductivity measured.  

 

Figure 5-21 shows the thermal conductivity increase as a function of silica 

concentration. A 1.7% increase in thermal conductivity was observed with 0.5 wt% 

silica and a 3.5% increase for 1.8 wt% silica in oil. The highest concentration of silica 

under investigation was 4.4 wt% and resulted in a 5.2% increase in thermal 

conductivity (Figure 5-21). However, the higher the concentration of silica, the more 

gel-like the suspensions. The nanofluid containing high concentration of silica 

showed shear-thinning behaviour with a yield value (as was shown in Figure 5-19 

and Figure 5-20). For further investigations, a silica wt% of 0.07 was chosen to 

ensure a homogeneous suspension. 
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Figure 5-21: Thermal conductivity increase as a function of silica concentration 
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In order to bring about a further enhancement in thermal conductivity, silver 

nanoparticles were synthesized and deposited onto silica in one single step. Various 

concentrations of silver nanoparticles were deposited on 0.07 wt% silica. 

• Influence of silver concentration on thermal conductivity in nanofluids containing 

silver nanoparticles supported on 0.07 wt% silica  

The effect of silver nanoparticle concentration on the thermal conductivity of 

nanofluids, containing silver nanoparticles supported on 0.07 wt % silica, is shown in 

Figure 5-22. The thermal conductivity was found to increase with an increase in 

silver concentration. A thermal conductivity increase of 15% was obtained when only 

0.06 vol.% Ag was supported on 0.07 wt% silica. It would appear that particles need 

to be close enough for thermal transport to take place between them, and supporting 

the particles on a support provides good grounds for a stable heat transfer system.  

 

0

2

4

6

8

10

12

14

16

0.01 0.03 0.06

Ag (vol%)

Th
er

m
al

 c
on

du
ct

iv
ity

 in
cr

ea
se

 (%
)

 

Figure 5-22: Thermal conductivity increase as a function of Ag concentration, supported on 0.07 wt % 

silica. Due to the poor dissolution of silver salt in oil, a maximum concentration of 0.06 vol.% silver 

was used. 

 

When silver nanoparticles are fixed on a support (Figure 5-23; Scenario B), the 

chances of a phonon reaching another particle is far greater and hence an 

enhancement in the heat transfer process is observed as opposed to free particles in a 

suspension at varying distances from each other (Figure 5-23; Scenario A).  
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Scenario A Scenario BScenario A Scenario B

 

Figure 5-23: Schematic diagram showing (Scenario A) the nanofluid system containing unsupported 

silver nanoparticles at varying distances apart and (Scenario B) silver nanoparticles fixed at short 

distances from each other on the silica support. 

 

In addition, free particles in a suspension are in constant motion due to Brownian 

motion and hence the chances of particles colliding to form bigger agglomerates are 

much greater than when a stable system is created by supporting the particles on a 

suitable support. In previous TEM results for silver nanoparticles suspended in oil 

without a surfactant, larger silver nanoparticles were observed, however, the size of 

the agglomerated particles were less than the phonon mean free path of ~250-300 nm 

[127], and therefore an enhanced thermal conductivity was obtained. Silica is not 

only a good support for silver nanoparticles, but is itself capable of transferring heat 

away. So essentially, it will not inhibit the heat transfer process as evidenced by the 

thermal conductivity results obtained for silica in oil. 

 

Since the prepared nanofluids could possibly be used in transformer applications, the 

dielectric strength of the nanofluids had to be investigated. 

 

5.2.4 Dielectric Strength of nanofluids  

The dielectric strength is the most important electrical property when dealing with 

transformer oils. These oils are designed to provide electrical insulation under high 

electric fields. If the maximum electric field strength is reached, breakdown occurs 

and hence the oil would experience failure of its insulating properties. Therefore, a 

high dielectric strength is a prerequisite for good quality transformer oil. 
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The dielectric strength of the transformer oil-based nanofluids containing silica and 

silver supported on silica were measured for possible application in transformers. The 

results are summarized in Table 5-4 below. 

 
Table 5-4: Dielctric strength results obtained for transformer oil-based nanofluid containing silica and 

silver supported on silica. 

Sample Dielectric 
Strength (kV) 

Water 
(ppm) 

Acidity 
(mg/KOH/g 
oil) 

Transformer oil (heat treated) 56 30 0.01 
Transformer oil-based 
nanofluid containing silica 

34 36 0.01 

Transformer oil-based 
nanofluid containing dried 
silica 

30 34 0.01 

Transformer oil-based 
nanofluid containing silver 
nanoparticles supported on 
silica 

22 64 0.02 

 

The difference in the dielectric strength observed after the introduction of silica to the 

oil could possibly be due to water, which is one of the main factors to reduce the 

breakdown voltage. Since silica is known to absorb moisture, it could possibly be 

responsible for the increase in water content observed (Karl Fischer results). 

However, since the nanofluids were prepared at temperatures above 100 °C, an 

improvement in dielectric strength was expected since the moisture content should be 

significantly reduced at such high temperatures. However, since silica is porous, 

moisture trapped within the pores would not be able to escape, even at such 

temperatures. Temperatures of 600 °C were employed to dry the silica. Some other 

factors such as the presence of oil-degradation by-products and high temperatures 

may possibly have aided in the reduction of the dielectric strength. Furthermore, high 

temperatures could also lead to oxidation of oil which could increase the acidity of 

the resulting nanofluid due to the presence of carboxylic acids. The acidity and the 

moisture content of the nanofluids were determined and the results are given in Table 

5-4. 
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From Table 5-4, the acidity of the nanofluids containing silica seems to be within 

limits compared with the acidity obtained for the pure oil. However, an increase in 

moisture content was found in the nanofluids containing silica, which could possibly 

explain the reduced dielectric strength. The highest moisture content was observed in 

the nanofluid containing silver supported on silica. The reduction in the dielectric 

strength observed when silver nanoparticles were supported on the silica could be due 

to both the amount of moisture present and the presence of electrically conductive 

silver nanoparticles. As mentioned in section 5.1.2.4, more intensive research is 

necessary in this particular field before these nanofluids can be used in for example 

high voltage applications. 

 

5.2.5 Conclusions 

Oil-based nanofluids containing silica have been successfully prepared using a high 

temperature pathway. The viscosity of the silica nanofluids were found to be shear-

thinning and followed the Bingham flow model at high concentrations (1.4 wt%), 

which could be because of 3-dimensional network silica is known to form. However, 

at lower silica concentrations (0.07 wt%), the nanofluids were found to be 

Newtonian, probably due to insignificant interaction between particles at such low 

concentrations. Thermal conductivity was found to increase with silica concentration. 

 

Oil-based nanofluids containing silver nanoparticles with particle size distribution of 

5.5 ± 2.4 nm supported on silica have been successfully prepared using a high 

temperature pathway. Small silver particles were deposited uniformly on the silica 

support. Nanofluids containing Ag supported on silica showed a lower viscosity 

compared to the nanofluid containing unsupported silica. This could be due to the 

immobilization of silver nanoparticles on the silica, preventing the formation of the 

three-dimensional network that silica is known to form otherwise. An enhancement in 

thermal conductivity of 15 % was observed when 0.06 vol.% silver was supported on 

0.07 wt% silica. The enhancement in thermal conductivity could be due to the fixed 

distances of the nanoparticles on the silica support, allowing the phonons to travel 
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shorter distances from particle to particle compared to free particles at random 

distances from each other. Thermal conductivity was found to increase with an 

increase in silver concentration. The dielectric strength measurements showed much 

reduced electrical insulating properties of the oil, due to the introduction of 0.06 

vol.% silver nanoparticles, but requires more intensive research in this particular field 

before use in high voltage transformer applications. In addition, the longterm stability 

of these nanofluids is poor since particles start to sediment after 1 month. 
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6 OVERALL CONCLUSIONS AND 

RECOMMENDATIONS 

Nanofluids based on silver nanoparticles dispersed in Newtonian 

liquid -ethylene glycol as model system: Synthesis, structure and 

physico-chemical properties 

• The effect of a wide spectrum of light during particle formation was found to 

play an important role in the formation of small, spherical silver nanoparticles with 

average size of 6 nm. In the absence of light, nanoparticle formation is slow and 

various shapes such as smaller spherical particles and large irregular-shaped 

hexagons, with sizes ranging from 10 – 450 nm are formed.  

• The particle size of PVP-stabilized silver nanoparticles was found to increase 

with silver concentration and particle size distributions of 6.2 ± 5.8 nm, 15.50 ± 6.98 

nm, 16.25 ± 8.46 nm and 21.10 ± 3.65 nm was obtained for silver concentrations of 

0.01 vol.%, 0.5 vol.%, 0.7 vol.% and 1.0 vol.% respectively.  

• PVP and PVA proved to be the best surfactants to stabilize silver 

nanoparticles since particle sizes were smaller and particles appeared to be more 

dispersed compared to Sulfobetaine-stabilized -and Poly(dipropylene glycol) phenyl 

phosphate-stabilized silver nanoparticles. A particle size distribution of 12 ± 5.1 nm 

was obtained for PVA-stabilized silver nanoparticles compared to the 6.2 ± 5.8 nm 

obtained for PVP-stabilized silver nanoparticles produced using similar molar ratios 

of silver to surfactant and silver concentrations of 0.01 vol.%. 

• The use of Fe(III) as a surfactant free method to silver nanoparticles was 

investigated. The addition of ferric nitrate of varying concentrations resulted in 

particles with different shapes, ranging from cubes to quasi-spherical particles. 

• Ethylene glycol-based nanofluids containing silver nanoparticles are 

Newtonian and have lower viscosities when the particles are well-dispersed. 

140 



6. Overall Conclusions and Recommendations 

• The thermal conductivity was measured as a function of silver particle 

concentration. Surprisingly, no increase in thermal conductivity was obtained even 

with increasing concentration of silver nanoparticles.  

• The surfactant-stabilized silver nanofluids showed an increase in thermal 

conductivity in time, which, due to the hygroscopic nature of ethylene glycol, was 

entirely based on the increasing water content. 

• The role of the surfactant during the heat transfer process was investigated. It 

was found that the surfactant is crucial for stabilization in most cases, but also has an 

unfavourable effect on the thermal properties. The surfactant was found to act as an 

insulator around the particles. A possible explanation is that the surfactant is seen as a 

defect in the crystal structure of the nanoparticles and therefore inhibits the phonons 

and electrons from transporting heat energy effectively. A 5.2 % increase for a 

nanofluid containing 0.5 vol.% silver nanoparticles was observed when no surfactant 

was used. Particles, although bigger in size, still remained well-dispersed due to 

protective ability of EG. 

• The thermal conductivity enhancement of the nanofluid without surfactant is 

far greater than what is predicted based on the Maxwell model. The observed increase 

of thermal conductivity can, to the best knowledge of the author, not be predicted by 

any published model and falls into a whole new area of research. 

 

Nanofluids based on silver nanoparticles dispersed in Newtonian 

liquid such as mineral oil  

• Mineral oil based nanofluids containing silver nanoparticles with a narrow 

size distribution (9.5 ± 0.7 nm) were prepared by a one step process. The particles 

remained well separated even when a much lower surfactant concentration (molar 

ratio Ag/Korantin = 4 compared to Ag/Korantin = 1) was used.  

• A higher concentration of surfactant yields monodisperse spherical silver 

particles with a narrow size distribution. However, high concentration silver leads to 

a higher loss of silver during reaction, possibly due to Brownian motion.  

• The particles are stabilized by Korantin, which coordinates to the silver 

surface via the two oxygen atoms forming a dense layer around the particles.  
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• The silver suspensions were stable for about 1 month before precipitation was 

observed. 

 

Synthesis, structure and studies of physico-chemical properties of 

silver nanoparticles in transformer oil  

• The hydrogen reduction method provided smaller and more uniformly 

dispersed silver nanoparticles, with particle size distribution of 3.0 ± 1.48 nm, 

compared to thermal methods, which yielded a particle size distribution of 3.58 ± 

1.61 nm.  

• The nanofluids showed Newtonian behavior, showing the true colloidal nature 

of the solutions and since particles with sizes less than 5 nm have been obtained, it 

implies that the nanofluid is, for possible future applications, not likely to clog any 

flow channels in cooling equipment.  

• Similar to ethylene glycol-based nanofluids, no increase in thermal 

conductivity was observed, even with the presence of very small, well-dispersed 

silver nanoparticles. Therefore the effect of the surfactant was investigated by 

performing the reactions in the absence of the surfactant. Particle size increased when 

no surfactant was used. A 6.4% increase was obtained for nanofluids containing 

0.013 vol.% silver nanoparticles without a surfactant. Similarly to the ethylene glycol 

based nanofluid, the results showed that the stabilizer acts as an insulator around 

silver nanoparticles, inhibiting phonons and electrons in carrying heat away 

efficiently. This could possibly be due the fact that the surfactant is seen as a defect in 

the crystalline lattice of the nanoparticle on which phonons propagate, causing a 

resistance to heat flow. The observed increase in thermal conductivity is remarkable 

considering the minute volume fraction of Ag. The produced nanofluids outperform 

all models (Maxwell, Wasp, etc.) currently available in literature.  

• The dielectric strength of nanofluids containing silver nanoparticles without 

surfactant was only slightly reduced to 51 kV (possibly due to the presence of 

moisture and some acidity) compared to the 56kV of the base oil.  

• The transformer oil-based nanofluid containing silver nanoparticles could 

possibly find use in transformers due to the higher thermal conductivity, the 
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Newtonian flow behaviour and the only slightly reduced dielectric strength observed 

in these fluids. However, a limiting factor is the long-term stability of the silver 

nanoparticles suspended in transformer oil, which carries no guarantee. Therefore, for 

future applications, more research needs to be conducted on the longterm stability of 

these nanofluids.  

 

Synthesis and Physico-Chemical properties of silver nanoparticles 

dispersed in transformer oil doped with carbon nanotubes  

• Acid treatment of the nanotubes did not alter the graphitic structure of the 

nanotubes and removed some of the impurities found in the nanotubes. In turn, it 

functionalized the tips of the carbon nanotubes with oxygen-containing groups, which 

probably aided in the attachment of silver nanoparticles to the nanotube surface. 

• Silver nanoparticles were supported on CNTs and particle size distributions of 

4.97 ± 2.28 nm and 4.0 ± 1.79 nm was obtained for the Ag/homemade and 

Ag/commercial nanotubes respectively.  

• Nanofluids containing CNTs showed shear-thinning behaviour with yield 

values, implying that slightly more energy will be needed for the fluids to flow in 

cooling application.  

• Thermal conductivity results showed an increase up to 19 % with silver 

supported nanotubes, showing that silver nanoparticles supported on CNTs can lead 

to a further enhancement  in thermal conductivity (~ 6 % for 0.07 vol.% silver 

nanoparticles), with the introduction of the silver nanoparticles with much lower 

conductivity (429 W/m-K) compared to carbon nanotubes (3000 W/m-K). In 

addition, the nanofluids were prepared in the presence of a surfactant, which was 

previously shown to inhibit any increase in thermal conductivity. Despite all these 

factors, an increase in thermal conductivity was observed. This could possibly be due 

to the proposed competition that exists between oleylamine and silver nanoparticles 

for the oxygen groups on the surface of the carbon nanotubes. A shielding effect is 

thereby created due to the bulky nature of the surfactant, leaving surfactant free silver 

nanoparticles on the surface of the nanotubes. This phenomenon made provision for 

alternative phonon pathways and hence an enhancement in thermal conductivity was 
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observed for the nanofluid containing silver nanoparticles supported on carbon 

nanotubes. For future work, Surface Enhanced Raman Spectroscopy (SERS) studies 

and computer modelling could be useful for further insight into the actual interaction 

between the surfactant and the particles. 

• The dielectric strength of the oil-based nanofluid containing silver 

nanoparticles and carbon nanotubes was found to be 2 kV compared to the 56 kV 

obtained for that of pure oil. The greatly reduced dielectric strength observed showed 

that the prepared nanofluid, containing silver nanoparticles supported on carbon 

nanotubes, is not favorable for use in high voltage transformers, and should find its 

application elsewhere. For future applications, more intensive research is therefore 

necessary in this particular field. 

 

 

Synthesis and Physico-Chemical properties of silver nanoparticles 

dispersed in transformer oil doped with silica  

• The thermal conductivity was measured as a function of silica concentration. 

An increase in thermal conductivity was observed with an increase in silica 

concentration. A 5.2% increase in thermal conductivity was observed with a loading 

of 4.4 wt% silica.  

• Since heat transfer fluids are to be used under flow conditions, it is essential 

to know how these fluids will behave then. High concentrations of silica results in 

shear-thinning fluid behaviour with yield values, much lower concentrations are 

required in order to obtain homogeneous suspensions with Newtonian behaviour. 

Hence, at high silica concentrations, some energy will be required before the fluid 

will flow during cooling applications. However, lower concentrations of silica will 

not need any additional pumping power. 

• Silver nanoparticles were synthesized and supported on silica in one single 

step. Very small, uniformly dispersed silver nanoparticles were visible on the silica 

support. A particle size distribution of 5.5 ± 2.4 nm was obtained. 

• The thermal conductivity was measured as a function of silver concentration. 

An increase in thermal conductivity was observed with an increase in silver 
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concentration. A 15 % increase in thermal conductivity was obtained with only 0.06 

vol.% Ag on 0.07 wt% silica. It would appear that one of the main parameters 

affecting the heat transfer process is the distance between individual particles. Since 

free particles in a suspension could be randomly orientated or move in random 

directions at different distances from each other, this could possibly explain the 

varying increases in thermal conductivity observed, not only in this work, but by 

other research groups as well. For efficient heat transfer through the nanofluid, 

particles need to be close to each other so that phonons have a shorter distance to 

travel during the heat transfer process. Supported silver nanoparticles are in fixed 

positions close to each other which allows for phonons and electrons to effectively 

transfer heat through the nanofluid as they move down their paths from particle to 

particle.  Other interesting areas of research such as the temperature dependence of 

thermal conductivity and the critical heat flux of nanofluids also require further 

investigations before nanofluids are used in cooling applications.  

• The dielectric strength of the pure oil was found to be 56 kV. With the 

introduction of 0.07 wt% silica, a decrease was observed resulting in a dielectric 

strength of 34 kV. Supporting silver nanoparticles on the silica resulted in an even 

further reduction of the dielectric strength, yielding a value of 22 kV. The decrease 

due to the introduction of silver nanoparticles was slightly lower in the case of 

supported silver nanoparticles compared with the unsupported silver nanoparticles, 

stabilized by oleylamine, in transformer oil. The poor insulating properties could be 

due to considerable moisture levels found in the nanofluids. More intensive research 

is therefore needed in this particular field before use in high voltage transformer 

applications, especially since the nanofluids showed some sedimentation upon 

standing after 1 month. 
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 8. Appendix 

8. Appendix 
 
8.1 Approaches in the preparation of stable Cu-colloids  
 

8.1.1 Experimental 

 
Materials 
Cu(acac)2 (Sigma-Aldrich) and Al(octyl)3 (Crompton GmbH), were all used as received. 

Cashew Nut Shell Liquid (CNSL) was extracted in-house from Cashew Nut Shells. THF 

was dried under argon. 

 

Preparation of Cu-colloid from Cu(acac)2 and Al(octyl)3  

All experiments were done in an Argon atmosphere and absolute dry THF as the solvent. 

Cu(acac)2 (2.6 g, 10 mmol) was dissolved in 700 ml of THF in a 1 L flask. The solution 

was blue green in colour. Al(octyl)3 (4.4 ml, 10 mmol) in 50 ml THF was added dropwise 

at room temperature within 4 hours.  

The blue colour changed to deep red and traces of shiny elemental Cu was visible. A 

reddish precipitate settled at the bottom of the flask.  

 

A small amount of the obtained suspension was transferred into two separate flasks for 

peptization with KorantinSH and Cashew Nut Shell Liquid (CNSL).  

 

Peptization of Cu-colloid with KorantinSH  

To approximately 0.10g of the Cu-colloid in 3 ml THF, 0.12g of KorantinSH was added.  

The reddish brown suspension changed to a wine red solution. A sample was taken for 

analysis with TEM. 

 

Peptization of Cu-colloid with Cashew Nut Shell Liquid (CNSL)  

Approximately 0.08g mg of Cashew nut shell oil was added to 0.05g of the Cu-colloid in 

1ml of THF. A wine red solution resulted. A sample was taken for analysis (TEM) to see 

if particles were still present in the solution.  
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8.1.2 Results and Discussion 

 

The blue colour of the Cu(acac)2 solution changed to a deep red upon addition of 

Al(octyl)3 which indicated that copper is reduced from Cu2+ to Cu0. The small trace of 

shiny elemental copper, which was visible on the flask, was a clear indication that the 

interaction between the Cu and Al(octyl)3 was not sufficient. Results from elemental 

analysis showed that 2.54% Cu (from expected 10%) was obtained when a 1:1 ratio was 

used, whereas the amount of Cu obtained agreed well with expected 5% when a 1:3 ratio 

was used. Thus, a ratio of 1:3 or above is more favorable for complete reduction. Hence, 

not all the copper particles was stabilized and hence aggregated at the bottom of the flask.  

 

    

Fig. 8.1.1: TEM micrographs of (a) Korantin stabilized Cu-colloid and (b) cashew stabilized Cu-colloid 

 

However, it was possible to solubilize the precipitate by peptization with Korantin or 

Cashew Nut Shell Liquid. From the TEM micrographs in Fig. 8.1.1 it is clear that Cu 

nanoparticles with a uniform particle size were obtained. Particle size of less than 10 nm 

was obtained in the case where Korantin (Fig. 8.1.1 (a)) was employed. In the case where 

CNSL was used, some smaller particles and some larger particles are visible with size 

between 7-15 nm (Fig. 8.1.1 (b)). The influence of the protecting shell is also illustrated 

since the particles appeared well separated from each other. However, the Cu-colloid is 

extremely sensitive to air and remains a challenge. 
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8.2 Preparation of Carbon Nanotubes 
 
 

• Synthesis of CNTS 
 Carbon nanotubes were prepared by hydrocarbon pyrolysis using LPG as carbon 
source with LaNi5 as nickel catalyst at 800°C for 1 hour. 
 

• Oxidation of CNTs (Acid Treatment) 
 CNT’s was added to a mixture of concentrated nitric acid and sulfuric acid (1:1) 
and refluxed for 3 hours. 
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Fig. 8.2.1: Schematic diagram of CVD set-up for LPG pyrolysis 
 
 
 

 

 

 

 

 

 

 155



 8. Appendix 

 

 

Fig. 8.2.2: Energy spectra of secondary X rays collected from the total surface of LaNi5 
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8.3 List of Abbreviations 
 
acac    Acetylacetonate 

AlR3    Trialkylaluminium 

Ar   Argon 

CNSL   Cashew nut shell liquid 

CNTs   carbon nanotubes 

E   Energy 

EA   Elemental analysis 

EDS   Energy Dispersive Spectroscopy 

EDX    Energy dispersive X-ray analysis 

EG   Ethylene glycol 

fcc   Face-centered cubic 

FTIR    Fourier Transform Infrared Spectroscopy 

hrs    Hours 

ICP    Inductively coupled plasma spectroscopy 

MPI   Max-Planck Institute 

MWCNTs  Multi-walled carbon nanotubes 

nm    Nanometer 

PDPP   Poly(dipropylene glycol) phenyl phosphite  

PVA   Polyvinylalcohol 

PVP    Polyvinylpyrrolidone 

RT    Room temperature 

SAD   Selected Area Electron Diffraction 

SB12   Sulfobetaine/ 3-(N,N-Dimethyldodecylammonio)propanesulfonate 

SCNTs   Single-wall carbon nanotubes 

SEM   Scanning electron microscopy 

t    Time 

T    Temperature 

TCNTs  Treated carbon nanotubes 

TEM    Transmission electron microscopy     

Temp.   Temperature 
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TGA    Thermogravimetric analysis 

UCNTs  Untreated carbon nanotubes 

UV-VIS  Ultraviolet-Visible spectroscopy 

XRD    X-ray powder diffraction 

  

Symbols 

 

Å   Angstroms 

λ    Wavelength 

2Θ    Scattering angle 
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8.4 Glossary of Terms 
 

Aggregation: The direct mutual attraction between particles (atoms or molecules) via 

van der Waals forces or chemical bonding. When there are collisions between particles in 

fluid, there are chances that particles will attach to each other and become larger particle. 

There are 3 major physical mechanisms to form aggregate: Brownian motion, Fluid shear 

and differential settling. 

 

Aspect ratio: The ratio of the longest Feret’s diameter of a particle to the shortest 

perpendicular one. 

 

Brownian motion: The random motion of minute particles suspended in a fluid and 

provides a mechanism for diffusion. 

 

Carbon nanotube: Nanotube consisting of one or several graphene sheets rolled up into 

a seamless tube, forming single-walled (SWCNT) or multi-walled (MWCNT) tubes.  

 

Chemical Vapour Deposition: A top-down production method where vapour is formed 

in a reaction chamber and condensed onto a solid substrate to form a thin film. 

 

Coalescence: The disappearance of the boundary between two particles in contact, or 

between one of these and a bulk phase followed by changes of shape leading to a 

reduction of the total surface area.  

 

Dielectric strength: The maximum electric field strength that the oil (transformer oil) 

can withstand intrinsically before breaking down.

 

Hydrophilic: Having an affinity for water. 

 

Hydrophobic: Compounds that do not dissolve easily in water easily and are usually 

non-polar. 
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Hydrosol: Sol in which water forms the dispersion medium. 

 

Interface: The plane ideally marking the boundary between two phases.  

 

Ionic surfactant: A surfactant carrying a net charge. If the charge is negative, the 

surfactant is more specifically called anionic; if the charge is positive, it is called cationic. 

 

Monodisperse: Powder or particle suspension containing primary particles with a narrow 

size distribution. 

 

Nanofluid: A new class of solid-liquid composite materials consisting of solid 

nanoparticles (in the range of 1-100 nm) or carbon nanotubes, dispersed in a heat transfer 

fluid such as ethylene glycol, water or oil. 

 

Nanomaterial: Is categorized as those which have structured components with at least 

one dimension less than 100 nm. 

 

Nanoparticle: Particle 1 to 100 nm in diameter. 

 

Nanostructured: Having identifiable structure at the nanoscale. 

 

Nanotube: Hollow nanofibre. 

 

Newtonian fluid: A fluid is said to be Newtonian if the viscosity remains constant with 

an increase in shear rate.

 

Non-Newtonian fluid: Fluids, whose viscosity changes with an increase in shear rate.

Nonionic surfactant: A surfactant with no positive or negative charge. 

 

Ostwald ripening: The growth of larger crystals from those of smaller size which have a 

higher solubility than the larger ones.  
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Rheology: The study of the deformation and flow of matter. 

 

Sedimentation: The settling of solid particles from a suspension, either naturally by 

gravity, or as a result of centrifugation. 

 

Shear-thinning: A non-Newtonian fluid which exhibits higher viscosities at lower shear 

rates and vice-versa. 

 

Sonication: High-frequency sound waves typically used to aid the dispersion of 

nanoparticles in a liquid. 

 

Surfactant: A substance which lowers the surface tension of the medium in which it is 

dissolved, and/or the interfacial tension with other phases, and, accordingly, is positively 

adsorbed at the liquid/vapour and/or at other interfaces.  

 

Suspension: A liquid in which solid particles are dispersed.  

 

Thermal conductivity: The quantity of heat that will flow through a unit area of a 

substance in unit time under a unit temperature gradient. 

 

Viscosity: The resistance of a fluid to flow. 

 
Well-dispersed: Fine particles that are evenly distributed in a medium. 

 

Yield stress/value: The external force required before a material will start to flow.

 

Zwitterionic surfactant: Neutral compounds having formal unit electrical charges of 

opposite sign. Some chemists restrict the term to compounds with the charges on non-

adjacent atoms.  
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