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ABSTRACT 
 

SPECIES-LEVEL PHYLOGENETIC RECONSTRUCTION OF THE AFRICAN 
CYCAD GENUS ENCEPHALARTOS (ZAMIACEAE). 
 

Makhegu Amelia Mabunda 

 

M. Sc. Thesis, Department of Biodiversity and Conservation Biology, University of the 

Western Cape. 

 

This thesis explores species-level phylogenetic relationships of the African cycad genus 

Encephalartos, which is one of the eleven genera of cycads. The genus is confined to 

Africa and comprises approximately 65 species, 38 of which are found naturally in South 

Africa. The phylogenetic studies on Encephalartos to date still result in many unresolved 

polytomies so it is not possible to fully understand the relationships between different 

taxa. In this study, AFLPs were used together with DNA sequencing to reconstruct the 

phylogenetic relationships of the genus. This study is the first to be presented with aims 

of resolving the relationships of Encephalartos using AFLPs together with DNA 

sequences. Total DNA was extracted from accessions sampled from the Kirstenbosch 

Botanical Garden and the Montgomery Collection, representing the majority of 

Encephalartos species listed in the most recent world list of cycads. Sequences of the 

trnL intron, rpoC1, ITS 1, ITS 2, and AFLP profiles from two sets of selective primers 

were used to reconstruct the phylogenetic relationships within the genus using maximum 

parsimony methods. As in earlier studies, unresolved polytomies were recovered from the 

sequencing data. The AFLP trees have some resolution but CI and RI indices were low 

indicating high levels of homoplasy in the data. The relationships resolved by this study 

for all the data sets separately and combined were different to those previously suggested 

for the genus. The biogeography of Encephalartos is also investigated by habitat 

optimization of the genus to estimate the origin of the genus with respect to its current 

distribution. 
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-CHAPTER 1- 

INTRODUCTION 

 
1. General background of cycads 
 

Cycads are the most primitive living seed plants with a fossil record dating back to the 

Permian 248-290 million years ago (MYA) and possibly the Carboniferous 290-354 

MYA (Gonzales-Astorga et al., 2003). They are one of five cone-bearing groups of seed 

plants (Rai, 2003), but they may be mistaken for unrelated palms and ferns when not in 

cone (Jones, 1993). Paleontological studies place cycads within the earliest diverging 

group of seed plants, Cycadophytes. This group includes the seed ferns (also unrelated to 

ferns) and the cycads but cycads are the only living survivors of this group (Brenner, 

2003). Previous studies have grouped cycads with conifers and Ginkgo as gymnosperms 

but more recent studies based on molecular and morphological data indicate that the 

gymnosperms are paraphyletic and thus the cycads are currently placed in a single order 

Cycadales, in a separate class Cycadophyta (Hill, 1999). 

 

1.1. Diversity and geographical distribution 

 

Cycads have been shown to be monophyletic by both morphological and molecular 

phylogenetic studies. Synapomorphies in structural features such as girdling leaf traces, a 

specialized pattern of vascular bundles in the petiole, the presence of mucilage canals, 

distinctive meristems and poisonous glycosides (methylating compounds  synthesized in 

cycad seeds that act as mutagens) called cycasins are evidence of their monophyly 

(Campbell et al., 1999). All living genera of cycads were originally classified within a 

single family, the Cycadaceae. Later, the cycads were reassigned into three families 

(Chaw et al., 2005) with Cycas belonging to the suborder Cycadineae and Stangeriaceae 

and Zamiaceae belonging to the suborder Zaminiineae (Stevenson, 1992). The three  

extant families and their genera are as follows: Cycadaceae (Cycas); Stangeriaceae 

(Stangeria, Bowenia) and Zamiaceae (Dioon, Lepidozamia, Encephalartos, Ceratozamia, 

Macrozamia, Microcycas, Zamia, and Chigua) (Hill et al., 2004). 
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All three families are represented in Australia and Africa, whereas the New World and 

Asia each have only one family, Cycadaceae and Zamiaceae respectively. The greatest 

diversity of cycads is found in South Africa, Australia and Mexico, although the diversity 

varies at family, genus and species levels. There has been wide evolutionary radiation 

within Dioon, Encephalartos, Macrozamia, Zamia, Ceratozamia and Cycas. A probable 

explanation as to why cycads have survived to the present day is that they are well 

equipped to overcome environmental stresses. They are able to survive drought and fires 

and are resistant to many pathogens and predators. It is thought that their secondary 

chemical compounds may contribute to their tolerance of these extreme conditions 

(Brenner et al., 2003).  

 

For much of the Earth’s history, there existed a single large continent which broke apart, 

forming two large fragments, Gondwana and Laurasia. These subsequently underwent 

further fragmentation to produce the present continents (McCarthy and Rubidge, 2005). 

Studies on fossil cycads suggest that these plants may have originated before the split of 

the super continent and this also explains their present distribution around the five 

continents (Jones, 1993). Presently, the Cycadaceae has only one genus (Cycas), which is 

distributed along the West African coast, Madagascar, Asia, India, China, Japan, 

Northern Australia as well as a large number of oceanic islands of the Pacific. 

Stangeriaceae has two genera, Stangeria with one species in Africa and Bowenia with 

two species that are endemic to Australia. Zamiaceae is the largest family with eight 

genera and a total of 202 species (Hill et al., 2004), of which only the genus 

Encephalartos occurs in Africa (Goode, 1989), see Figure 1.1. Encephalartos is the 

second largest cycad genus with 65 species (Hill et al., 2004), of which 38 are found 

naturally in South Africa (Donaldson, 2003). Recently, Cooper and Goode (2004) 

recognized 70 species of Encephalartos, but their interpretation of cycad taxonomy 

remains controversial and largely invalid (see later discussion). There is considerable 

structural and morphological diversity in growth form, cone structure, pubescence and 

leaf shape within this genus (see Figure 1.2).  
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The Cycadales have a substantial fossil record that dates back at least 70 MYA (Rai et 

al., 2003). However, the fossil record of the extant Cycadales extends only to the 

Tertiary. It has been suggested that the earliest relatives of cycads arose as early as the 

Pennsylvanian ((Norstog and Nicholls, 1997; Hermsen et al., 2006)), approximately 

300MYA (Chaw et al., 2005). These fossil cycads are doubtful in terms of identity and 

many seem to be intermediates in evolutionary stage (Osborne, 2002). Cycads have been 

present long enough to have experienced and survived several mass extinction events 

including the ones that took place at the beginning and end of the Mesozoic era (Cáceres, 

1998). Cycads represent the oldest surviving lineage of seed plants and hence play a 

significant role in our understanding of the evolution of morphological characters in 

angiosperms and gymnosperms (Brenner et al., 2003). 
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Figure 1.1 – Distribution map of Encephalartos in Africa and Madagascar (copied 
directly from Donaldson, 2003) illustrated by dark grids. 
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E. altenstenii Lehm.     E. horridus (Jacq). Lehm. 

Suckers of E. friderici-guilielmi Lehm.   E. gratus Prain    
     

Woolly cones of E. friderici-guilielmi Lehm.   Cone of E. Horridus (Jacq). 
 
Figure 1.2 – Pictures of Encephalartos species showing the variation in growth and cone 
form taken from the Kirstenbosch Collection, National Botanical Garden, Kirstenbosch. 
Photos: Amelia Mabunda 
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1.2. Threats to cycads 

 

There are still new species of cycads being discovered in tropical Africa, especially north 

of the Limpopo River (which forms a border between South Africa, Botswana and 

Zimbabwe). In this area, many species of Encephalartos are on the brink of extinction in 

their natural habitat (Donaldson et al., 2003 and Goode, 2001) largely due to a 

combination of reproductive failure and illegal collecting. Other factors include the 

combined effects of man’s domestic and agricultural demands. Due to over-exploitation, 

conservation efforts of these plants are hindered by their slow growth rates - they only 

produce cones when they reach maturity and this can take up to 15 years (Norstog and 

Nicholls, 1997), coupled with their limited potential for vegetative propagation (Osborne, 

1989).  

 

It has also been demonstrated that pollinator survival is linked to the size and 

composition of the cycad flora and that decreasing cycad populations could lead to 

decreasing pollinator populations and vise versa (Donaldson, 2004). Thus the extinction 

of these pollinators is also one of the factors that may be contributing to the decline of 

cycad populations. Evidence is accumulating that cycads have symbiotic relationships 

with specific insects (weevils), and it is these insects that have been recorded to play a 

major part in cycad pollination (Oberprieler, 2004; Jones, 2002; Norstog and Nicholls, 

1997; Oberprieler, 1995(a, b); Norstog and Fawcetti, 1995 and Vorster, 1995). There are 

60 species of weevils belonging to 14 genera that have been recorded to have a close 

affinity to cycads, and thus a close association in diversity between cycads and their 

pollinators is perhaps to be expected. Therefore, these weevils may also shed light into 

the evolution of the cycads (Oberprieler, 1995a). An interesting example of co-evolution 

of plants and their pollinators is that between figs (Ficus) and fig wasps (Hymenoptera, 

Agaonidae). The figs comprise of about 750 species and the wasps of more than 700 

species-specific couples. Co-evolution of the fig and fig wasps has been used as an aid to 

explore the evolutionary pathways of Ficus. However, it was found later than there may 

be independent evolution of some Ficus traits, associated with differences in the 

pollination behaviors of the wasps (Michaloudi et al., 2005 and Jousselin et al., 2003).
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Michaloudi et al. (2005) confirmed that there may be host-switching of wasps between 

the fig species. These sorts of relationships help to clarify taxonomic uncertainties in 

species that lack distinct morphological, ecological, geographical etc. characters. The 

nature of plants and their pollinators fosters new awareness into the organism’s evolution. 

The biogeography of pollinators may also provide substantial evidence on the evolution 

of their host species when molecular data on its own fails.  

 

2. Sequencing data and AFLP markers, uses, advantages and disadvantages 
 

DNA sequence data have played a fundamental role in reconstructing phylogenies of a 

wide range of organisms. In plants, the most commonly used DNA markers are from the 

plastid genome. They are generally easy to amplify and have high levels of variation at 

higher taxonomic levels (Bailey et al., 2004). Plastid DNA sequences have been shown to 

be powerful at resolving family and generic-level relationships using regions such as 

rbcL. There has however been a common problem with low variation and resolution 

when attempting to resolve relationships within closely related or morphologically 

diverse species representing large genera (Bailey et al., 2004; Crawford, et al., 2002). 

The most common alternative region for reconstruction of species-level phylogenies is 

the internal transcribed spacer (ITS) region from the nuclear genome. However, due to its 

presence in multiple repeat units in the genome, this region can suffer from problems 

associated with paralogy (Bailey et al., 2003) and still in many cases it fails to provide 

sufficient phylogenetically informative characters at low taxonomic levels due to low 

variation.  

 

Sequencing data has been used by many authors to infer species-level relationships of 

various plant genera (e.g. Ahmed et al., 2006; Tsai et al., 2006; Lee and Wen 2004; Shaw 

and Small, 2004; Pelser et al., 2002; and Richardson et al., 2001), in animal studies (e.g. 

Duftner et al., 2006; Tolley et al., 2006; Baker et al., 2005 and Weins and Pankrot, 

2002), inferring relationships at higher taxonomic levels (e.g. Chaw et al., 2005; Bogler 

and Francisco-Ortega, 2004; Simões et al., 2004; Hill et al., 2003; Rai et al., 2003 and 

Klak et al., 2003) and also hybridization studies (e.g. Baumel et al., 2002). 
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In cases where DNA sequence data has been shown to be inadequate for species-level 

phylogenetic reconstruction, many investigators (e.g. Mekanawakul et al., 2004; Després 

et al., 2003; Badr et al., 2002; Gimenes et al., 2002 and Koopman et al., 2001) have 

turned to alternative markers such as AFLPs which have been shown to have the potential 

to resolve relationships at lower taxonomic levels. 

 

The AFLP technique developed was by Vos et al. (1995) for DNA fingerprinting. It is 

based on the selective PCR amplification of restriction fragments from a total digest of 

genomic DNA. It is used to visualize hundreds of amplified DNA restriction fragments 

simultaneously and can generate fragments of 50 to 500 base pairs in size. The 

dependence on sequence knowledge of the target genome is eliminated by the use of 

adapters of a known sequence that are aligned to the restriction fragments (Muluvi, 1999; 

Palacios et al., 1999; Vos et al., 1995). One of the advantages of using multilocus 

markers like AFLPs over DNA sequencing is that the numerous fragments generated 

come from different linkage groups in the nuclear genome. Therefore, the potential 

problem of producing a phylogeny with a small region of the genome is diminished 

(Crawford et al., 2004). Because of the numerous numbers of markers that are generated, 

some AFLP markers will be located in variable regions and therefore revealing minor 

differences between the species studied. The AFLP markers are also treated as dominant 

since the identity of homo/heterozygotes cannot be established unless breeding/pedigree 

studies are carried out to determine the inheritance patterns of each band. They are 

therefore scored as either present or absent. However, the large number of bands gives an 

estimate of variation across the entire genome, thus giving a good general picture of the 

level of genetic variation (Mueller and Wolfebarger, 1999). The technique has also been 

shown to have a high rate of polymorphism in a single assay when compared with other 

fingerprinting techniques such as RFLPs (restriction fragment length polymorphisms) or 

RAPDs (randomly amplified polymorphic DNAs) (Federici et al., 2001 and Mueller and 

Wolfebarger, 1999).  

 

AFLPs have recently been found to have a broad taxonomic applicability in studying 

relationships within members of various taxa. The technique has been used in plants for
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 species-level phylogenies (e.g. Mekanawakul et al., 2004; Després et al., 2003; Badr et 

al., 2002; Gimenes et al., 2002 and Koopman et al., 2001), population genetics studies of 

both endangered and cultivated plants (e.g Da Silva, 2005; Lin et al., 2004 and Palacios 

et al., 1999). The technique has also been applied increasingly in animal studies (e.g 

Sullivan et al., 2004; Allender et al., 2003; Ogden and Thorpe, 2002; Parsons and Shaw, 

2001 and Albertson et al., 1999). All the studies highlighted the usefulness and 

reproducibility of the AFLP technique in resolving phylogenetic relationships within the 

various studied taxa.  

 

3. Phylogenetic Reconstruction of cycads  

 

3.1. Phylogenetic reconstruction in genera of Cycads 

 

One of the first molecular systematic studies of cycads by Caputo et al. (1991) showed 

the potential of using molecular markers to resolve relationships among the genera in this 

group. Phylogenetic analyses using parsimony showed that Dioon was sister to the rest of 

the American genera. The topology of the trees was also congruent with that of previous 

morphological data, making the Zamioideae a monophyletic unit and Dioon their sister 

group. Caputo et al. (1993) extended the study by including Old World genera and the 

results did not conform to previous morphological results when Macrozamia was 

included. The past few years have seen several phylogenetic relationships hypothesized 

using morphological characters (de Laubenfels, 1999 and Schutzman et al., 1993) and 

molecular data (Chaw et al., 2005; Bogler and Francisco-Ortega,  2004; Hill et al., 2003; 

Rai et al., 2003; Treutlein and Wink, 2002). Most if not all the studies used the formal 

classification of the extant cycads by Stevenson (1992) as a platform to compare their 

current findings. These studies are however not congruent with each other in terms of tree 

topologies in that they depict different phylogenetic relationships between the genera. 

The African genus Encephalartos was found by the studies to be closely related to 

Macrozamia and Lepidozamia, which are endemic to Australia. The sister relationships 

between Encephalartos and Lepidozamia remains unclear though due to lack of fossil 
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record (Chaw et al., 2005). A simplified phylogeny of the genera is illustrated in Figure 

1.3. below.  

 

 

 

 
Figure 1.3 – Cladogram of cycad living genera and outgroups based on molecular data 
(reproduced directly from Chaw et al., 2005). 
 

3.2. Phylogenetic reconstruction in Encephalartos 
 

The taxonomy of the South African Encephalartos species was well defined by Dyer 

(1965b) and the description only included 26 species of the genus. Until recently, most 

research into the evolutionary relationships within the genus Encephalartos has been 

based upon morphological and biochemical characters (e.g. Osborne et al., 1993). From a 

morphological perspective, Vorster (1993) reviewed the macroscopical external 

characteristics of the species of Encephalartos in South Africa in search of characters 

with taxonomic value to describe the species. However, he did highlight that these 
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characters did not render a full circumscription of phylogenetic groupings of species 

within the genus. In 1999, the same author presented a revision of the tropical species of 

Encephalartos. His conclusion was that the species have very little diversity in both 

vegetative and cone characteristics, providing very few distinguishing features. 

 

A preliminary non-molecular study of Encephalartos by Osborne et al. (1993) used 86 

morphological, vegetative and biochemical characters to reconstruct relationships among 

52 species of the 65 species currently described (Hill et al., 2004). The relationships 

between species were analyzed using phenetic methods and a phenogram was produced 

to reflect evolutionary relationships. The outcome of this analysis was the identification 

of five groups within the genus, with five of the 52 species in an unresolved position. 

This study has created a platform from which patterns of relationships can be tested in 

future phylogenetic reconstructions within the genus.  

 

The most recent publication on the molecular phylogenetics of the African genus 

Encephalartos is by Treutlein et al. (2005) (Figure 1.4). Their study of 51 species 

distributed from Nigeria through to South Africa, and using ITS 1 and ITS 2 sequences as 

well as rbcL and genomic ISSR fingerprinting techniques, showed that most of the 

recovered relationships agreed with previous morphological data and three major clades 

within the genus were identified. These clusters have overlapping distribution ranges in 

the eastern parts of South Africa. The study recovered similar groupings to those of 

Osborne et al., (1993), although the relationships between some terminal taxa were 

different. There was distinctive clustering which agreed with both morphology and 

geographical distribution, although there was very little resolution within the rbcL and 

ISSR data. This study confirmed the work by Van der Bank et al. (2001) that the genus 

displays maximum genetic diversity in the mountain regions of the eastern parts of South 

Africa as it contains the largest diversity of Encephalartos genotypes.  
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In a controversial contribution to the taxonomy of Encephalartos, Cooper and Goode 

(2004) split the genus into eleven genera, which they regard as natural groupings.  No 

formal phylogenetic analysis was used to derive the groupings and the nomenclatural 

changes are largely invalid, as they do not follow the international code for botanical 

nomenclature. Although Treutlein et al. (2005) resolved three main clades, there were 

still many unresolved polytomies (Fig. 1.4). Lack of resolution hinders our understanding 

of the basic taxonomy as well as the evolutionary relationships among taxa, and makes 

the controversial taxonomy of Cooper and Goode difficult to test. 
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Figure 1.4 – A strict consensus tree of the recent phylogenetic reconstruction of 
Encephalartos based on ITS 1 & 2 data by Treutlein et al., (2005). The three clusters are 
labeled as ITS groups 1, 2 and 3 with their subgroups labeled as 1.1, 2.1 etc. Bootstrap 
values are indicated above the branches. Reproduced directly from Treutlein et al., 2005.
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4. Habitat types 

All cycads are considered to be xerophytes (inhabit a variety of dry habitats). They 

reached their peak in the late Triassic and inhabited various ecological habitats (riverine 

forests to grassland) along with other species (McCarthy and Rubidge, 2005). The family 

Zamiaceae is more diverse in terms of its geographical distribution as it is not confined to 

one continent (Donaldson, 2003), implying that it may have been present before the 

break-up of the super continent Pangaea. The current distribution of cycads may also be 

due to radiations from a few ancestral types isolated on Laurasia and Gondwana, or could 

be explained by genetic drift following the separation of already evolved genera. 

Optimizing the habitat types of Cycads would also open up new possibilities into 

interpreting the history of the genus Encephalartos. The separation of sister taxa 

Encephalartos (Africa) and Lepidozamia (Australia) could be correlated with the 

separation of Africa and Australia approximately 80MYA (Hill et al., 2003) as they 

appear to have evolved from a common ancestor perhaps in Gondwana (200-135MYA), 

before Africa and Australia split (Bogler and Francisco-Ortega, 2004).  Treutlein et al. 

(2002) suggested that the divergence between these three genera could be explained more 

easily by Miocene long distance dispersal than by continental drift. Hermsen et al. (2006) 

found, using minimum age mapping techniques that Encephalartos appears to have split 

from the Lepidozamia-Macrozamia lineage at approximately 33 MYA and no later than 

the Eocene. Because these genera are thought to have split during the breakup of 

Gondwana which started approximately 140MYA (McCarthy and Rubidge 2005), it 

would be feasible to criticize the latest date by Hermsen et al. (2006) for their split in that 

the date contradicts what the previous authors have concluded. Therefore, optimizing the 

habitats of Encephalartos in Africa may give clarity as to which habitat is most ancestral 

and thus giving insight into how and when the habitats evolved. Dating the divergence of 

Encephalartos and the diversification of different groups within the genus would provide 

valuable insights into the evolution of these groups in relation to major geomorphological 

and climatic events. However, this remains difficult when several clades remain poorly 

resolved in existing phylogenies. 
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To date, phylogenetic relationships within Encephalartos remain poorly understood. This 

is largely due to the problem of unresolved polytomies and weakly supported clades 

within the existing phylogenetic studies and thus there remains a gap to look for 

additional molecular markers to resolve the relationships of the genus.  

 

Therefore, the aims of this study are: 
 

1.To reconstruct and investigate phylogenetic relationships among species of the 

genus Encephalartos in Africa using AFLP and sequencing data to complement 

previous studies that used DNA sequencing and morphological characters. 

 

2.To test the phylogenetic hypothesis from this study against the taxonomic 

relationships for Encephalartos proposed by Cooper and Goode (2004), and to 

compare the phylogenetic hypothesis from this study with that suggested by 

previous studies using DNA markers. 

 

3.To map habitat types on the obtained phylogeny to make inferences regarding 

ancestral habitat types.  

 

4.To evaluate the utility of the AFLP and DNA sequencing methods in reconstructing 

the phylogeny of the genus and make recommendations for follow-up studies.  

 

The chapter outline for the rest of the thesis is as follows: 

 

 Chapter 2- Materials and Methods. 

 Chapter 3- Results of all analyses done. 

 Chapter 4- Discussion of results, conclusions and technical recommendations for 

future studies. 
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-CHAPTER 2- 

MATERIALS AND METHODS 

 

2.1. Plant material  

 

The plant material used in this study was collected from the National Botanical Garden in 

Kirstenbosch (KBG), South Africa and from the Montgomery Botanical Center (MBC) in 

Miami, United States of America (Appendix 1). In total, 47 species of Encephalartos 

were sampled, 29 from Kirstenbosch and 18 from the MBC. The following taxa Dioon 

edule, Dioon merolae, Macrozamia riedlei and Zamia furfuracea were obtained from the 

Conservation Biology greenhouse in Kirstenbosch and sampled as outgroups. Dr. J. S. 

Donaldson, from the South African National Biodiversity Institute (SANBI) verified the 

identification of the plant samples collected from the Kirstenbosch collection. Fifty one 

internal transcriber spacer (ITS 1 and 2) sequences of Encephalartos previously published 

by Treutlein et al. (2005) were also extracted from GenBank (see Appendix 1).  

 

2.2. DNA Extraction 

 

Total genomic DNA was extracted from 0.5-1.0 g silica dried or fresh leaf material using 

the 2XCTAB protocol described by Doyle and Doyle (1987) modified by the addition of 

2 % PVP to the extraction buffer. All DNA extracts were purified using QIAquick silica 

columns (QIAGEN) and the remaining supernatant suspended in 100 % ethanol and 

allowed to precipitate in a –20 ºC freezer. Further purification was carried out using a 

cesium-chloride ethidium-bromide density gradient (1.55 g/ml) (Savolainen et al., 2006).  

 

2.3. PCR and DNA Sequencing  

 

DNA amplification was performed using 100 µl reactions containing Promega 

magnesium thermophilic buffer (50 mM KCL, 10 mM Tris-HCL and 0.1% Triton X-

100), 3 mM MgCl2, 0.004% BSA (Savolainen et al., 1995), 0.2 mM of each dNTP, 10µM 

of each primer and 2.5 U Taq polymerase. The plastid trnL intron was amplified using 
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primers ‘c’ (5’-CGA AAT CGG TAG ACG CTA CG-‘3) and ‘d’ (5’-GGG GAT AGA 

GGG ACT TGA AC-‘3) (Taberlet et al., 1991). A partial sequence of the plastid rpoC1 

intron♣ was amplified using primers 1F (GTGGATACACTTCTTGATAA) and 3R 

(TGAGAAAACATAAGTAAACG). The trnL-F intergenic spacer (‘e’ and ‘f’ primers of 

Taberlet et al., 1991) proved impossible to sequence for most taxa due to several long 

homopolymer (A or T) regions.  

 

Amplification was carried out in a Gene Amp PCR System 9700 (Applied Biosystems) 

using the following program for the trnL intron: initial denaturing at 94 °C, two minutes; 

then 30 cycles of denaturing, 94 °C, one minute; annealing 52 °C, one minute; extension, 

72 °C, one minute and final extension 72 °C, seven minutes. The following program was 

used for the rpoC1 intron: initial denaturing at 94 °C, one minute; then 32 cycles of 

denaturing, 94 °C, 30 seconds; annealing 48 °C, 40 seconds; extension, 72 °C, 40 seconds 

and final extension 72 °C, five minutes. The amplified fragments were verified by 

electrophoresis on a 1% agarose gel stained with ethidium bromide and visualized under 

ultraviolet light. Purification of successfully amplified fragments was carried out using 

GFXTM columns (Amersham Bioscience) and sequenced using PCR primers as 

sequencing primers and Big Dye terminator mix (Applied Biosystems) following the 

manufacturer’s protocol. The products were separated on a denaturing polyacrylamide gel 

and run on an ABI 377 automated sequencer. 

 

Sequences were edited and assembled using Sequencher 4.1 (Gene Codes Corporation). 

All assembled sequences were transferred to PAUP* version 4.02b (Swofford, 2000) and 

aligned manually.  
 

 

 

 

 

                                                           
♣ Special thanks to the DNA barcoding of land plants project as part of the Consortium for the barcoding of life funded by the Sloan 

and Betty Moore foundations for allowing me to use the sequences as part of my thesis.  
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2.4. Amplified fragment length polymorphism (AFLP) procedure. 

 

AFLP markers were generated according to the AFLPTM Plant Mapping Protocol 

(Applied Biosystems). The three main steps are outlined below: 

 

2.4.1. Restriction ligation 

 

Genomic DNA was digested with two restriction enzymes: EcoRI (a rare cutter with a six 

base pair recognition site) and MseI (a frequent cutter with a four base pair recognition 

site) to generate a large number of fragments. EcoRI - MseI fragments are preferentially 

amplified (rather than EcoRI - EcoRI or MseI - MseI fragments). In the same reaction, the 

digested DNA was ligated using adapters (MseI and EcoRI adapters) to generate template 

DNA for amplification and also to prevent a second restriction from taking place after the 

ligation has occurred. These adapter sequences served as primer-binding sites to amplify 

the restriction fragments.  

 

2.4.2. Pre-selective amplification 

 

The purpose of this step was to increase the amount of template available for mapping 

and to reduce the number of amplified fragments by 16-fold. The pre-selective primers 

used consisted of a core sequence, an enzyme specific sequence and a selective single-

base extension at the 3’-end. The adapters from the previous reaction served as primer-

binding sites for the restriction fragments, making it possible to amplify many DNA 

fragments without prior knowledge (Vos et al., 1995).  

 

2.4.3. Selective amplification 

 

The AFLPTM Plant Mapping protocol from Applied Biosystems provides eight EcoRI and 

eight MseI primers, which yield a possible 64 primer combinations to use for selective 

amplification. 
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This step was performed by using the pre-selective amplification products as a template 

for a second amplification step using fluorescently labeled primers that consisted of an 

identical sequence to the pre-selective primers, with three selective nucleotides at the 3’-

end. From the large amount of fragments generated by the restriction enzymes, only the 

subset of fragments with the matching nucleotides were amplified, thereby reducing the 

complexity of the products (Vos et al., 1995). AFLP profiles were generated with two 

selective PCR primer pairs MseI-CAT/EcoRI-ACA (FAM) and MseI-CTA/EcoRI-ACT 

(FAM). From now on these primer combinations are referred to as B4 and B13 

respectively. Only the EcoR1 primers are fluorescently labeled.  

 

The final PCR products were denatured in a mixture containing deionised formamide, 

loading dye and GeneScan 500 ROXTM size standard at 95 ºC for 3 minutes. The samples 

were then run on a 5% denaturing polyacrylamide gel according to manufacturer’s 

protocols on an ABI 377 automated sequencer. 

 

The generated fragment data were analyzed using GeneScan version 3.1.2 and Genotyper 

version 2.5 (Applied Biosystems). The latter program allowed for the visualization of 

band patterns as a fingerprint trace that could be further inspected by eye for any possible 

misinterpretation from automated procedures. Fragments of 50-500 base pairs (bp) were 

scored as either present or absent. The use of internal size standards in each lane 

permitted exact calibration of different fragments against each other and made possible 

separation of non-homologous fragments that were nearly equal in length. Additional 

bands that were not automatically scored by Genotyper were scored where the presence 

of fragments was obvious as distinct shoulders of more intense bands of an adjoining size 

class. Additional bands for samples with weak signals were also scored. The data were 

extracted as a table scored as either present (1) or absent (0) to produce a binary matrix. 

 

2.5. Data analysis  

2.5.1. AFLP markers 

The primer combinations used for Encephalartos did not work well for the outgroup taxa 

(this is not surprising as AFLP primer combinations are often species specific and in this
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case specific to this genus). As a result the AFLP trees were rooted using information 

from the ITS phylogeny by Treutlein et al. (2005) and also Osborne et al. (1993) and 

Oberprieler (1995). The latter author concluded that E. cycadifolius, E. friderici-guilielmi, 

E. ghellinckii, E. humilis and E. lanatus belong to a complex that appears to have split 

from the rest of the group at an earlier age, this split is also evident in the ITS tree of 

Treutlein et al. (2005).  

 

2.5.1. Parsimony analyses 

 

In total five data matrices were available for analysis - two AFLP (B4 and B13), two 

plastid (trnL intron and rpoC1 intron) and one nuclear (ITS1&2 were treated as one data 

set). Topological congruence of the data sets was evaluated using the partition 

homogeneity test (Farris et al., 1995) implemented in PAUP*. One hundred partition 

homogeneity replicates with 100 replicates of random taxon addition and tree bisection 

reconnection (TBR) branch swapping were used. The congruence of the phylogenetic 

signal was evaluated between each possible pair of data matrices that were analyzed 

(AFLP B4 versus AFLP B13, AFLP B4 versus ITS, AFLP B13 versus ITS and combined 

AFLP versus ITS sequences). The statistical P-value was recorded as an indication of 

significant incongruence between the data sets. 

 

All phylogenetic analyses for the following data matrices were performed using the 

parsimony algorithm PAUP* version 4.02b (Swofford, 2000) using the maximum 

parsimony algorithm: 

 

 trnL intron for 49 taxa 

 rpoC1 intron for 35 taxa 

 ITS 1&2 for 51 taxa 

 AFLP B4 for 44 taxa 

 AFLP B13 for 44 taxa 

 AFLP B4 and B13 combined for 42 taxa 

 AFLP B4 and B13 and ITS 1&2 combined for 46 taxa
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Heuristic searches were conducted with 1000 replicates of random taxon addition and 

TBR branch swapping, saving 10 trees per replicate. All characters were treated as 

unordered, weighted equally and gaps were treated as missing data. Internal nodal 

support was assessed using 1000 bootstrap replicates with simple taxon addition saving 

10 trees per replicate. Only those groups with bootstrap values above 50% were reported.  

  

2.5.3. Enforcing monophyly 

 

The ITS tree published by Treutlein et al. (2005) was used to evaluate the groupings 

within Encephalartos (Appendix 2) proposed by Cooper and Goode (2004). Using 

MacClade v4.01 (Maddison and Madison, 2001) the monophyly of the species-groups in 

Appendix 2 was enforced onto one of the equally most parsimonious trees obtained in this 

present study from the analysis of ITS sequences. In order to examine the statistical 

significance of the tree topologies, the Kishino-Hasegawa test (Kishino and Hasegawa, 

1989) was performed using both likelihood and parsimony criteria to assess whether there 

was substantial difference in tree length between the original tree and that with Cooper 

and Goode’s groups enforced. The number of additional steps and likelihood scores were 

used as an indication as to whether Cooper and Goode’s groupings represent a significant 

deviation from those recovered in the ITS tree.  

 

2.5.4. Habitat optimization 

 

The habitat in which each species occurs was mapped onto one of equally most 

parsimonious trees (chosen at random) obtained from the analysis of ITS sequences. A 

habitat matrix was drawn-up in MacClade v4.01 (Maddison and Maddison, 2001). Seven 

habitat types were determined from the literature and were defined as follows: forest, 

grassland, woodland/savannah, shrub land, granite outcrop, quartzite hills and cliffs/river 

gorges (Appendix 3). Most species were allocated their primary habitats; however, some 

of them occur in places in which the surrounding habitat is not necessarily their primary 

habitat. These species were therefore given multiple habitat scores. 
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-CHAPTER 3- 

RESULTS 

 

3.1. Analysis of DNA sequence data: 

 

trnL intron – trnL intron sequences were generated for 49 ingroup and four outgroup taxa. 

Of the 480 characters included in the parsimony analysis 413 were constant, 67 were 

variable and of these 15 were potentially parsimony informative (however most of these 

characters represented informative variation between Encephalartos and the outgroup 

taxa). One thousand replicates of random taxon addition resulted in 10 000 equally 

parsimonious trees of length 74 and consistency index (CI) = 0.973 and retention index 

(RI) = 0.926. Very few variable characters (most of which were autapomorphic) were 

found within Encephalartos and therefore this region provided very little information to 

infer species-level relationships. Due to the lack of variability in this region the trees have 

not been shown. However, the tree statistics corresponding to this analysis and those to 

follow are summarized in Table 3.1. 

 

rpoC1 intron – rpoC1 intron sequences were generated for 35 taxa. Of the 509 characters 

included in the analysis 489 were constant, 20 were variable and of these 3 were 

potentially parsimony informative. The analysis using 1000 replicates of random taxon 

addition yielded 7020 equally parsimonious trees with tree length of 32 steps, CI=1.000 

and RI=1.000. As for the trnL intron, levels of sequence variability were extremely low 

and yielded no information regarding species-level relationships. For this reason the trees 

have not been shown here. 

  

ITS region – ITS 1 & 2 sequences for 51 taxa were downloaded from GenBank. A total of 

605 characters were analyzed, of which 525 were constant, 80 were variable and of these 

45 were potentially parsimony informative. Parsimony analysis using 1000 replicates of 

random taxon addition yielded 258 equally parsimonious trees with tree length of 96 

steps, CI=0.885 and RI=0.956. The groups retrieved in this analysis were the same as 

those presented by Treutlein et al. (2005). One of the equally most parsimonious trees 
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was chosen at random and is shown in Figure 3.1. The groups and subgroups as presented 

by Treutlein et al. (2005) are indicated on Figure 3.1.  Bootstrap percentages >50% are 

shown below branches, and those nodes not recovered in the strict consensus of 258 trees 

are indicated by green circles.  

 

3.2. Analysis of AFLP data: 

 

B4 data set – In total 44 taxa were analyzed for which a total of 384 fragments were 

scored. Of the 384 characters included in the analysis eight characters were constant, 376 

characters were variable and of these 305 characters were potentially parsimony 

informative. A heuristic parsimony search using 1000 replicates of random taxon addition 

yielded 190 equally parsimonious trees with tree length 1500, CI= 0.251 and RI = 0.362. 

One of the equally most parsimonious trees was chosen at random and is shown in Figure 

3.2. Only three nodes were retained in the strict consensus tree and these are indicated 

with red circles. The bootstrap analysis recovered six nodes with bootstrap support >50% 

-these values are indicated below branches. 

 

Taxon relationships that are highlighted according to their similarity in the ITS tree of 

Treutlein et al. (2005) are those of E. inopinus and E. umbeluziensis representing 

subgroup 2.0; E. heenanii, E. longifolius, E. natalensis and E. princeps representing 

group 3; E. concinnus and E. pterogonus representing subgroup 2.1; E. arenarius, E. 

senticosus and E. trispinosus representing group 3 and E. cupidus, E. laurentianus, E. 

manikensis and E. tegulaneus representing group 2. While some groupings were 

recovered that were similar to those found in the ITS tree, the split between the grassland 

species (E. cycadifolius, E. friderici-guilielmi, E. ghellinckii, E. humilis and E. lanatus) 

belonging to a complex that appears to have split from the rest of the group at an earlier 

age was not evident in the trees recovered from analysis of this AFLP data set and the 

data sets that follow. 

 

B13 data set – A total of 44 taxa were included for which 394 fragments were scored. Of 

the 394 characters included in the analysis 20 characters were constant, 374 characters 
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were variable and of these 307 were potentially parsimony informative. One thousand 

replicates of random taxon addition gave two equally parsimonious trees with tree length 

1567, CI= 0.234 and RI = 0.381. One of the two equally parsimonious trees was chosen 

at random and is shown in Figure 3.3. Only one node collapsed in the strict consensus 

tree and this is indicated by a green circle. Six nodes received bootstrap support of >50% 

and these are indicated below branches. 

 

Taxon relationships that are highlighted according to their similarity in the ITS tree of 

Treutlein et al. (2005) are those of E. altensteinii and E. horridus representing subgroup 

3.1; E. concinnus, E. gratus, E. latifrons, E. longifolius and E. sclavoi representing 

subgroup 2; E. manikensis and E. pterogonus representing subgroup 2.1 and E. 

paucidentatus and E. woodii representing group 3. 

 

3.3. Results of partition homogeneity tests: 

 

This method tests for congruence between trees derived from different sources of 

evidence. If the comparison between two tree topologies receives a P-value >0.05 the 

difference in tree topologies is considered not-significant, and suggests that the two data 

sets are congruent with respect to their phylogenetic signal and can be combined into a 

single analysis (Farris et al., 1995).  

Of the four incongruence tests performed all comparisons resulted in p-values showing 

significant incongruence (all p=0.01; see Table 3.2).  

 

Table 3.1:  Summary statistics for the partition homogeneity test showing the data 

partitions and their corresponding p-values. 

Partition P-value 

AFLP B4 vs AFLP B13 0.01 

AFLP B4 vs ITS 0.01 

AFLP B13 vs ITS 0.01 

AFLP B4 and B13 

combined vs ITS 

0.01 
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Despite the negative results of the partition homogeneity test there were no strongly 

(>90%) supported and incongruent clades in the separate analyses, and thus the AFLP 

data sets and ITS data were combined directly. 

 

3.4. Combined Analyses: 

 

Analysis of B4 and B13 AFLP markers combined – One thousand replicates of random 

taxon addition gave 30 equally parsimonious trees with tree length 3138, CI= 0.233 and 

RI = 0.303. One of the equally most parsimonious trees was chosen at random and is 

shown in Figure 3.4. Nine nodes were retained in the strict consensus tree and these are 

indicated with a red circle. Only eight nodes received bootstrap support >50% and these 

are indicated below branches. 

 

Taxon relationships that are highlighted according to their similarity in the ITS tree of 

Treutlein et al. (2005) are those of E. cupidus and E. manikensis representing group 2; E. 

altensteinii and E. horridus representing group 3; E. natalensis and E. princeps 

representing group 3; E. concinnus, E. gratus, E. ituriensis and E. pterogonus 

representing group 2. 

 

Combined ITS and AFLP analysis – In total 1383 characters were analyzed for 58 taxa. 

Of the 1383 characters included in the analysis 558 were constant, 825 were variable and 

of these 658 were potentially parsimony informative. The heuristic tree search using 1000 

replicates of random taxon addition recovered 3 equally parsimonious trees with tree 

length of 3557, CI=0.233 and RI=0.304. One of the equally most parsimonious trees was 

chosen at random and is shown in Figure 3.5. Sixteen nodes collapsed in the strict 

consensus tree and these are indicated by green circles; five nodes received bootstrap 

support of >50% and these are shown below branches.  

 

Taxon relationships that are highlighted according to their similarity in the ITS tree of 

Treutlein et al. (2005) are those of E. altensteinii and E. horridus representing group 3; E. 

laurentianus and E. tegulaneus representing subgroup 2.4; E. cerinus, E. cupidus, E. 
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inopinus and E. manikensis representing group 2, E. natalensis and E. princeps 

representing group 3 and E. concinnus and E. pterogonus representing subgroup 2.1. 

 

3.5. Testing the monophyly of Cooper and Goode’s groupings 

 

Tree 1 represents the parsimony tree that was generated using the downloaded ITS 

sequences (Treutlein et al., 2005) as described earlier in the chapter, and Tree 2 was the 

ITS tree constrained to reflect monophyletic groupings as described by Cooper and 

Goode (2004). A P-value of <0.05 was considered to indicate that the two trees being 

compared were significantly different from each other, whereby the tree with the shortest 

branch length and lowest –lnL score is considered to be the best hypothesis to describe 

relationships in the genus (Table 3.3). On this basis the monophyly of the groups as 

suggested by Cooper and Goode (2004) can be rejected (using both parsimony and 

likelihood scores).  

 
Table 3.3: Results of the Kishino-Hasegawa tests using both parsimony and likelihood 

scores for two trees – the first representing the shortest ITS tree, and the second 

representing the ITS tree with Cooper and Goode’s grouping enforced. 

 

Phylogenetic Hypothesis -lnL Tree Length 

ITS * (tree 1) 3484.24 106 

ITS tree with Cooper & 

Goode’s groups enforced 

(tree 2) 

3846.73 165 

P value <0.001 <0.001 
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Table 3.2: Summary table of tree statistics for each of the analyses. 
 

Constant 
characters 

Variable 
characters 

Informative 
characters^ 

 # of 
characters 

 No. ~ % No, ~ % No. ~ % 

# of equally 
parsimonious 

trees 

Trees length Consistency 
index (CI) 

Retention 
index (RI) 

trnL intron 480 413 86 67 14 15 22 10 000 74 0.973 0.926 
rpoC1 intron 509 486 95.4 23 4.5 3 15 7020 34 1.000 1.000 
ITS 1 & 2 605 525 87 80 13 45 56 258 96 0.885 0.956 
B4 384 8 2 376 98 305 81 190 1500 0.251 0.362 
B13 394 20 5 374 95 307 82 2 1567 0.239 0.381 
B4 + B13 
combined 

778 38 5 740 95 594 80 30 3181 0.233 0.303 

AFLP B4, 
AFLP B13 + 
ITS 
combined 

 
1383 

 
558 

 
40 

 
825 

 
60 

 
658 

 
80 

 
3 

 
3557 

 
0.233 

 
0.304 

^Informative characters are calculated as a percentage of the variable characters and as a percentage of the overall characters. 
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Fig. 3.1 – One of the equally most parsimonious trees found from analysis of 605 ITS 
characters. Bootstrap percentages are shown in bold beneath branches. Those nodes 
which collapsed in the strict consensus of 258 trees are marked by a green circle. The 
highlighted branches represent groups that were also found in the ITS tree of Treutlein et 
al. (2005). 
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Fig. 3.2 – One of the equally most parsimonious trees found from analysis of 384 AFLP 
markers (using primer combination B4). Bootstrap percentages are shown in bold beneath 
branches. Those nodes retained in the strict consensus of 190 trees are marked by a red 
circle. The highlighted branches represent groups that were also found in the ITS tree of 
Treutlein et al. (2005). 

  29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



E. aemulans K
E. altensteinii K

E. horridus K
E. middelburgensis K

E. eugene-maraisii K
E. princeps K

E. bubalinus M
E. ferox M

E. heenanii K
E. arenarius K

E. tegulaneus M
E. ituriensis M

E. latifrons K
E. longifolius K

E. laurentianus M
E. concinnus M

E. sclavoi M
E. gratus M

E. lanatus K
E. manikensis M

E. pterogonus M
E. paucidentatus M
E. woodii K

E. cerinus K
E. inopinus K

E. caffer K
E. trispinosus K

E. cupidus K
E. septentrionalis M

E. villosus K
E. ghellinckii K

E. natalensis K
E. ferox K
E. hildebrandtii M

E. sp .Chinyazange M
E. lehmannii K

E. macrostrobilus M
E. friderici-guilielmi K

E. senticosus M
E. turneri M

E. umbeluziensis M
E. msinganus K

E. ngoyanus K
E. cycadifolius K
10 changes

29

13

23

7

7

6

6

36

11

6

5

4
14

11
8

25
27

29
24 40

68
25

24
62

23

10
35

25
17

6

6
11

8
10 32

31
11

6
8 21

15
17

4

4
14

5
8
18

4
10
12

17
13

14 55
29

14
4
10

10 30
42

13 30
61

33

11
29

16
30 15

15
28

28
13

7
10

21

14
40

31
18

21
59

3

3.1

3.1

2.1

3

76

86

93

98

56
100

AFLP B13

 
Fig. 3.3 – One of the equally most parsimonious trees found from analysis of 394 AFLP 
markers (using primer combination B13). Bootstrap percentages are shown in bold 
beneath branches. Those nodes collapsed in the strict consensus of two trees are marked 
by a green circle. The highlighted branches represent groups that were also found in the 
ITS tree of Treutlein et al. (2005). 
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Fig. 3.4 – One of the equally most parsimonious trees found from analysis of 778 AFLP 
markers (using primer combinations B4 and B13). Bootstrap percentages are shown in 
bold beneath branches. Those nodes retained in the strict consensus of 30 trees are 
marked by a red circle. The highlighted branches represent groups that were also found in 
the ITS tree of Treutlein et al. (2005). 
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Fig. 3.5 – One of the equally most parsimonious trees found from analysis of 778 AFLP 
markers (using primer combinations B4 and B13) and 605 ITS characters. Bootstrap 
percentages are shown in bold beneath branches. Those nodes collapsed in the strict 
consensus of three trees are marked by a green circle. The highlighted branches represent 
groups that were also found in the ITS tree of Treutlein et al. (2005). 
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Fig. 3.6 –One of the equally most parsimonious trees found from analysis of ITS sequences with habitat optimized using McClade 
v4.01 (Appendix 2). The colors represent the different habitats as indicated on the legend. Polymorphic in this instance indicates that 
the species occurs in multiple habitats and equivocal indicates that the habitat for that species is uncertain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 

The habitat optimization procedure illustrates that woodland/savannah habitat is occupied 

by the majority of species indicating that the spread into these habitats is associated with 

the most substantial diversification. There is a basal split in the Encephalartos cladogram 

that separates the grassland specialists, i.e. E. cycadifolius, E. friderici-guilielmi, E. 

ghellinckii, E. humilis and E. lanatus, from species that occur in either forests or 

grassland/savannah. These species seem to have diversified after they had occupied 

grassland habitat and there has been no secondary reversion to either forest or savannah. 

There are a few other grassland species (E. aemulans, E. caffer, E. heenanii and E. 

longifolius) but these seem to have evolved independently from the specialists with 

limited subsequent diversification. These results also suggest that there has been almost 

no diversification within forest habitats.  
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-CHAPTER 4- 

DISCUSSION 

 

The main aim of this study was to reconstruct evolutionary relationships between species 

of the genus Encephalartos using AFLP and sequencing data. The intention was to 

complement earlier studies based on morphological characters (e.g. Osborne et al., 1993), 

molecular data (e.g. Van der Bank et al., 2001) or both (e.g. Treutlein et al., 2005), and 

which provided only limited resolution of evolutionary relationships. Two plastid non-

coding regions, the trnL intron and rpoC1 intron, were evaluated for genetic variation. 

The rpoC1 intron sequences for Encephalartos were generated by the author as part of 

the DNA barcoding project and were reproduced and incorporated with permission from 

the funders. The sequences of both these regions contained very little genetic variation 

for phylogenetic analysis and, therefore, will not be discussed in isolation. The difficulty 

in finding DNA sequences with sufficient variability was partly anticipated at the start of 

this thesis and was the justification for investigating the use of AFLP data to infer 

species-level relationships. This discussion will compare the current results with previous 

phylogenetic inferences in the genus Encephalartos. Possible explanations for difficulties 

experienced in building a species-level phylogeny for Encephalartos will also be 

discussed and recommendations will be given for future studies on the genus. 

 

Phylogenetic analysis 

 

The overall relationships resolved by the AFLP results for both the data sets separately 

and combined were different to those relationships previously suggested. A conspicuous 

feature in the analyses was the lack of support for the internal branches in the trees. The 

tree topologies for the AFLP analyses had short internal and long terminal branches. Lack 

of internal branch support is one of the challenges in phylogenetic reconstruction as a 

high frequency of short internal branch lengths makes it difficult to infer relationships. 

Whether this pattern results from insufficient data, species extinction, or rapid radiation is 

often not clear (Morrison et al., 2004). The AFLP data sets had high percentages of 

potentially phylogentically informative characters, but the CI and RI indices were
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 extremely low. It would be important to determine whether this is as a result of 

homoplasies or if it reflects true synapormorphies. The high level of potentially 

informative characters displayed by the AFLP data can give the impression that the data 

sets are comparatively information rich (Cronn et al., 2002). However the low CI and RI 

indices rather suggest that the characters are not in agreement with respect to their 

phylogenetic signal, and these data do not represent a very reliable source of informative 

characters. 

 

The levels of phylogenetic signal were so poor that the plastid DNA sequence data 

produced here were not even able to separate the chosen outgroups from the in-group. 

Thus the regions sampled were not even sufficiently variable to discriminate evolutionary 

relationships at generic level (Dioon edule, Dioon merolae, Macrozamia riedlei and 

Zamia furfuracea sampled as outgroups).  

 

ITS 1 and ITS 2 sequences were downloaded from GenBank and added to the existing 

data set in order to determine whether the added sequences would influence the current 

results and if there would be greater resolution of phylogenetic relationships, additional 

support for nodes within the phylogeny, or changes to the taxa constituting these clades 

when compared to previous phylogenetic hypotheses. The topology of the AFLP 

phylogeny after addition of the ITS results was similar to the phylogeny before addition 

of these sequences in terms of short internal branches, long terminal branches as well as 

little bootstrap support. The relationships resolved by the addition of these sequences do 

not support previous phylogenetic relationships. For instance, a group of cycads from the 

Eastern Cape province with blue-green and strongly dentate leaflets form a distinct 

cluster from the rest of the group (e.g. Treutlein et al., 2005, Van der Bank et al., 2001 

and Osborne et al., 1993), however, in this current study this cluster is not evident from 

any of the analyses. The lack of sequence variability for all the DNA sequence regions 

may be suggestive of a recently and rapidly speciating group, diverging into new habitats. 

Even though hints of clades appear on all the phylograms, the different genes give 

different results and are all weakly supported.  

  36 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



Another important aspect of this study was to test the phylogeny proposed by Cooper and 

Goode (2004) by enforcing monophyly on the groups (Appendix 1) they suggested. This 

was done by enforcing their groups onto the already published ITS phylogeny by 

Treutlein et al. (2005) (which despite the DNA sequencing and AFLP efforts made in this 

study still appears to be the best available hypothesis of evolutionary relationships in the 

genus to date). The groups proposed by Cooper and Goode are not backed-up by detailed 

phylogenetic/taxonomic analyses or motives; they also provide no evidence on how they 

came to their conclusions for the different groups. Therefore, their groupings have raised 

substantial controversy and curiosity among taxonomists in terms of evaluating if the 

groups warrant recognition. Enforcing the monophyly on the groups suggested by Cooper 

and Goode onto the ITS phylogeny by Treutlein et al. (2005) showed that the new 

classification cannot be justified based on the available data. The groups as suggested by 

Cooper and Goode (2004) are not supported (using both parsimony and likelihood scores) 

because of the significance in the additional steps and likelihood scores of the tests 

performed. The values showed that that the proposed groups by Cooper and Goode 

represented a significant deviation compared to those recovered by Treutlein et al., 

(2005).  

 

The utility of molecular markers in reconstructing the phylogeny of Encephalartos 

 

AFLP techniques - The key feature of this technique is the ability to assay many different 

DNA regions throughout the genome simultaneously (Crawford et al., 2004; Desprès et 

al., 2003; Mueller and Wolfenbarger, 1999 and Vos et al., 1995). Amplified fragment 

length polymorphisms have been found to be widely distributed throughout the nuclear 

genome (Fay et al., 2005) and this gives them several more advantages for resolving 

phylogenetic relationships of closely related species (Hodkinson et al., 2000). This 

technique has also been a common alternative approach to resolve phylogenetic 

relationships between taxa where both cpDNA and ITS sequencing have failed. Several 

studies (Sullivan et al., 2004; Allender et al., 2003; Desprès et al., 2003; Badr et al., 

2002; Gimmens et al., 2002 Koopman et al., 2001 and Albertson et al., 1999) have used 
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AFLPs to answer various questions and have proven them to be successful, particularly 

among closely related species or at the intraspecific level.  

 

For the current study, the generation of profiles for the Encephalartos species was 

challenging and inconsistent. The PCR reactions were replicated several times to evaluate 

if the results could be optimized to gain consistency in the quality of the profiles. Each 

time the reactions were optimized, the profiles were different from the previous profiles 

in terms of band size or the quality of the AFLP fingerprint. This made it difficult to 

interpret which fingerprints were the “true” ones for specific taxa. This predicament 

could have been solved if multiple individuals were sampled for the different species. 

The weak signal in the profiles may also be attributed to the genomic size of the taxa. 

Another factor is that the primer combinations used for Encephalartos did not work well 

for the outgroup taxa. The failure to get profiles from the outgroups could be because 

many of the loci were not amplified strongly enough to be scored. This was evident from 

the noisy baselines of the profiles which are an indication of weakly amplifying loci that 

do not reach the threshold for detection (Fay et al., 2005). 

 

The profiles generated for Encephalartos species in this study differed in terms of their 

signal. This may be attributed to the genomic size for some of the taxa. Suggestions have 

been made that genome size is likely to have an effect on multilocus DNA fingerprinting 

that assays the whole nuclear genome (Fay et al., 2005). There is also a concern as to 

whether co-migrating bands are truly homologous when scoring AFLP bands (Goldman 

et al., 2004). However, the overall errors, including mispriming and scoring error 

generally amount to less than 2% (Mueller and Wolfenbarger 1999). The sizing of 

profiles using automated methods however is said to reduce the probability of two 

differently sized peaks or bands being scored as one. This also reduces the concern for 

homology associated with AFLP data whereby it is assumed that the homology of the 

peaks cannot be determined. Noise (uncertain peaks) in AFLP data has also been shown 

to pose no problem if the species are distantly related (Goldman et al., 2004). It cannot be 

assumed that the noise in the AFLP data did not have an affect on the results due to the 

fact that the species of Encephalartos are very closely related. Though all the profiles

  38 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 were sized equally, this did not reduce the likelihood that uncertain peaks were scored as 

present or absent and this introduces homoplasies in the data sets, even though the affects 

may be minor.  

 

DNA sequence utility – The challenge of acquiring DNA sequences that were variable 

enough to infer phylogenetic relationships from Encephalartos was evident in both the 

plastid trnL and rpoC1 introns. While nuclear and chloroplast DNA sequences routinely 

provide sufficient characters to resolve higher level and generic relationships, low 

variation and resolution have been common problems encountered when attempting to 

resolve relationships among closely related plant species (Bailey et al., 2004). In this 

study, DNA sequence variation has been the major limiting factor. Individuals of 

Encephalartos have also been sequenced as part of the barcoding project for five primers 

(including the rpoC1 intron used in this study). All the primer combinations that were 

tested proved to be difficult in generating sequences for Encephalartos. Where regions 

have worked, the sequence variation has been too small to infer a robust phylogeny of 

Encephalartos. Therefore, it is clear from this study that a gene region that evolves at a 

reasonable rate for species-level phylogeny of the genus may need to be identified in 

order to get sufficient variation to resolve the relationships. The low evolutionary rate of 

chloroplast DNA sequences limits the power of these sequences for species-level 

phylogenetics (Després et al., 2003). 

 

Habitat optimization of Encephalartos 

 

Taxon phylogenies based on molecular data can be translated into area cladograms for the 

analysis of relationships among geographic areas (Samuel et al., 2003). In this case, 

habitat preferences of Encephalartos species were analyzed using the phylogeny derived 

by Treutlein et al. (2005). This was an attempt to understand the evolution of the genus 

with respect to its current distribution in different habitats and to interpret this in the 

context of divergence times of the different clades as suggested by previous authors (e.g. 

Treutlein et al., 2005). 
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The habitat optimization procedure showed that a basal split in the Encephalartos 

cladogram separates the grassland specialists, i.e. E. cycadifolius, E. friderici-guilielmi, 

E. ghellinckii, E. humilis and E. lanatus, from species that occur in either forests or 

grassland/savannah. Savannah habitats are estimated to have emerged approximately 

30MYA (McCarthy and Rubidge, 2005), and grasses may only have become widespread 

as recently as 5 MYA. A lot of climatic fluctuations and long-term shifts towards cooler 

and drier conditions in east and central Africa were taking place during this time, which 

resulted in the gradual replacement of forest habitats by savannah and woodlands 

(McCarthy and Rubidge, 2005). Treutlein and Wink (2002) hypothesized that the extant 

species of the genus spread over southern and central Africa in the late Miocene and 

Pliocene 1.6-5MYA. This implies that the major ancestral split in Encephalartos between 

grassland species and forest/savannah species only took place relatively recently and that 

diversification in these habitats may have occurred within the past 5-10 million years. 

The greatest diversification has occurred in the clades associated with savannah and 

shrublands (often arid savannah) and it seems that expansion into grassland habitat has 

also occasionally occurred independently in several of these lineages (E. aemulans, E. 

caffer, E. longifolius and E. heenanii). Based on the vegetation history of South Africa, 

and the current habitat of the related genus Lepidozamia (Chaw et al., 2005), the ancestral 

habitat for Encephalartos is probably forests. However, whereas Lepidozamia still occurs 

in forest habitat, there is little retention of the forest habitats within Encephalartos. It is 

not known whether the reduction in forest habitat within the past 30 MYA has resulted in 

lineage extinctions that may explain some of the unresolved polytomies in the existing 

phylogenies (this study, Treutlein et al., 2005).  

 

Phylogenetic studies of cycad weevils may assist in the dating of the divergence of 

cycads in different habitats. A number of species complexes within Encephalartos were 

discussed by Oberprieler (1995) in conjunction with their weevil fauna and suggestions 

were made that this weevil fauna could aid in clarifying the taxonomic status and 

relationships of the species. There are 14 genera of weevils (Coleoptera: Curculionoidea) 

that are associated with cycads and of these only five genera are regarded as sufficiently 

specific to be suitable candidates for resolving relationships and species-limits among the
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 cycads. The oldest diversification of these weevils dates back to the Cretaceous 

(140MYA) when the extant cycad genera were already established (Oberprieler, 1995b). 

Because these insects are dependent on the existence of Encephalartos for survival, their 

diversification may be correlated with the diversification of Encephalartos.   

 

The weevil genus Platymerus is only associated with the complex comprising of E. 

cycadifolius, E. humilis, E. lanatus, E. friderici-guilielmi and E. ghellinckii that appears 

to have split from the rest of the group at an earlier age. This Encephalartos complex is 

totally avoided by the weevil genus Antliarhinus (Oberprieler, 1995b). These two weevil 

genera may give insight into the divergence of Encephalartos in terms of the 

phylogenetic position of its “most ancient” species complex. This split is also evident in 

the ITS tree of Treutlein et al. (2005) and partial study by Osborne et al. (1993) and it 

would appear that the divergence of this weevil genus may be correlated with this 

division. The split has been dated to have occurred perhaps during the Tertiary (65-

2MYA) judging from the age of the weevils (Oberprieler, 1995b). During this time, a lot 

of climatic fluctuations took place that may have influenced the distribution of some 

African plant taxa. For instance, Galley et al. (2006) showed that the migration of flora 

from the Cape to the Afrotemperate regions is congruent with the formation of the 

uplands in tropical Africa which dates back to the Miocene (25MYA), with further uplifts 

later in the Pliocene and the Pleistocene. The authors showed that because of this, there 

have been numerous migrations from the Cape to north of the Limpopo river. This may 

support the hypothesis that Encephalartos shows its maximum diversity in the Eastern 

Cape (Treutlein et al., 2005), and thus making this region its evolutionary center. The 

radiation might be correlated with the subsequent habitat changes in the Miocene. Dating 

the divergence times and exploring the historical biogeography of Encephalartos would 

therefore give clarity on these suggestions. The technique will also help to reveal the 

environmental conditions and changes that have modeled the evolutionary processes 

producing the present genetic structure. 

 

 

  41 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



Biological phenomena that may lead to conflicting phylogenetic inferences 

 

There have been debates surrounding the combination of multiple data sets for 

phylogenetic inference (Soltis et al., 1998). It has been recognized however that there is a 

benefit in analyzing multiple data sets. The application of combining multiple data sets to 

a common group of taxa is becoming increasingly common. One of the consequences of 

analyzing multiple data sets is that the phylogenies inferred may differ in certain details, 

and this many be incongruent with respect to their phylogenetic signal (Soltis et al., 1998 

and Huelsenbeck, et al., 1996). When different phylogenetic estimates are in agreement 

with each other, there is strong probabilistic evidence supporting the phylogeny. 

However, this may not always be the case when the estimates disagree with each other 

interesting patterns of evolution may be learned from such incongruence. Pursuing the 

matter makes it possible to identify possible information on the biological processes that 

may have lead to the incongruence (McCracken et al., 1999). The underlying causes of 

incongruence remain unknown but may include introgressive hybridization among 

allopatric species, rapid diversification and lineage sorting to name a few (Cronn et al., 

2002). Irrespective of the source of incongruence, the underlying results is that the data 

will fail to accurately resolve the evolutionary history of the species being studied. This 

section therefore suggests possible events or evolutionary phenomena that may have 

taken place within Encephalartos that have influenced its evolutionary pattern and thus 

the resulting conflicting tree topologies in this study.  

 

Hybridization and introgression - It would be easy to hypothesize that the relationships 

illustrated by the results may be a result of hybridization within the genus. This 

phenomenon is common in plants and phylogenetic analyses of some plant genera have 

shown incongruence between data sets, suggesting that hybridization has been prevalent 

(Álvarez and Wendel, 2006). The term hybridization is usually employed in a broad sense 

to refer to crosses between genetically differentiated forms regardless of their taxonomic 

status (Avise, 2004). This phenomenon may have several consequences ranging from 

hybrids of limited adaptive value to successful introgression involving repeated 

backcrosses with parental genotypes (Baumel et al., 2002). Plant species are often
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 geographically isolated from their relatives due to past vicariance or long-distance 

dispersal. These geographically dispersed species may have gained contact with their 

related species due to changes in climate or geology, opening corridors for migration. 

Some species may occur in geographic proximity to their relatives but be ecologically 

isolated from them. Under these circumstances, the opportunity for hybridizing would 

increase between plants that were previously isolated from each other. The likelihood for 

contact between previously isolated species has increased due to human activities, 

resulting in the breaking down of ecological barriers (Abbott et al., 2003).  

 

Although interspecific hybridization is recorded in the plant kingdom, it tends to be 

restricted to specific taxa (Abbott et al., 2003). Natural hybrids can only occur if the two 

species share the same pollination vector and if their cones reach maturity at the same 

time (Jones, 2002). There have been reported instances of natural hybridization to date 

where two species occur sympatrically (Treutlein, et al., 2005). A number of natural 

hybrids in Encephalartos have been recorded but they are relatively rare because most 

species either don’t overlap or they cone at different times. One well-known hybrid is 

between E. altensteinii and E. trispinosus. The parent species occur together in some 

areas and appear to hybridize freely. Intermediate forms of the hybrids also occur, 

suggesting backcrossing with the parent species. There are a number of other suspected 

hybrids that have not been confirmed in species that occur close together (Vorster, 1987). 

Hybridization and introgression may influence the interpretation of phylogenetic trees 

(Wendel and Doyle, 1998) and their effects cannot be ruled out as one source of the 

conflicting results for this current study. Hybrids and introgressants may be misidentified 

as the true parental species due to a mixture of phenetic characteristics that make it 

difficult to distinguish between species. A majority of the consensus trees resulted in 

polytomies, possibly suggesting a mixture of genes due to possible hybridization. The 

separate and combined analyses of the data sets were incongruent with each other. 

According to Álvarez et al. (2006), hybridization may result in incongruence between 

two or more data sets for the same species. If each morphologically defined group formed 

a discrete clade, it would suggest that hybridization is not a frequent occurrence in this 

genus. However, the phylogenetic structure of the results illustrates the possibility that
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hybridization may have been widespread. One way in which phylogenetic trees can be 

used to uncover potential hybridization events is to compare trees derived from nuclear 

and plastid data sources. Due to the difference in inheritance patterns in these two 

genomes hard incongruence can identified by well supported conflicting tree topologies. 

However, although hybridization is a real possibility within the genus Encepalartos, is 

has not been possible to thoroughly evaluate incongruence between the nuclear and 

plastid trees due to the lack of signal, particularly in the plastid data sets. Even the ITS 

tree of Treutlein et al. (2005) is not particularly well supported by the bootstrap, and thus 

it is hard to differentiate between hard incongruence and soft incongruence (i.e. 

differences in tree topology caused by sampling error – too few informative characters or 

taxa). 

 

Rapid/recent diversification or evolution - One of the problems in phylogenetic analysis 

is the occurrence of short internal branches. Because short internal nodes often have weak 

support when measured by jackknife and bootstrap re-sampling or other indicators of 

relative confidence and subsequent phylogenetic analyses, using additional molecular 

markers often fails to yield the same topology. Short internal nodes are frequently 

observed in phylogenetic trees and are thought to be a common cause of misleading 

phylogenetic inference as well as topological incongruence among data sets. The short 

internal branches in the sequencing results may reflect the rapid diversification of the 

genus shortly after its origin (Cronn et al., 2002). However, this representation of rapid 

radiation is often not clear (Morrison et al., 2004). In this study, short internal branches 

followed by long terminal branches in the phylograms do indicate possible radiation at 

some point, which is also supported by incongruence between the different genomic 

compartments. This may be true since the extant lineages of Encephalartos occurred in 

the Pliocene/Pleistocene (approximately 5-20MYA) and species of Encephalartos show 

very little genetic variation, suggesting recent speciation (Treutlein et al., 2005). Van der 

Bank et al. (2001) showed also in their allozyme study on nine Eastern Cape 

Encephalartos species that there may have been recent speciation within the group, which 

was illustrated by small genetic differences between the species. 
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Extinction - Species are lost by extinction and subsequent phenotypic evolution might 

obscure the ecological pattern of speciation events. Extinction can leave a gap on the 

shape of a phylogenetic tree and to obtain an accurate phylogeny, nearly all the species 

from the particular group need to be sampled (Barraclough and Nee, 2001). There have 

been recorded extinct species within Encephalartos, but there are also possibly more 

species that have not been collected from the war stricken countries of Africa, and which 

may be the missing link between the long and short branches. These may help to resolve 

relationships within the genus once sampled. 

 

Different genomic compartments - The possibility of obtaining the same or even similar 

tree topologies for the datasets is very small for any given number of species. If they give 

similar topologies, it shows that they reflect the same underlying evolutionary history 

(Page and Holmes, 1998). Combining data sets from different phylogenetic analyses and 

genomic compartments is a very common approach to increase phylogenetic signal. The 

disadvantage however lies in that different genomic compartments evolve at different 

rates and therefore have differential patterns of inheritance. Incongruence between the 

data sets has therefore been the cause of inaccurately estimated phylogenetic hypotheses. 

Several authors have however suggested that combining the data sets irrespective of the 

incongruence will allow those clades for which there is congruence to gain increased 

support (Goldman et al., 2004). This however cannot be said for this current study. The 

combined analysis of the sequencing and AFLP data had no significant support for the 

nodes in the analyses; the relationships resolved by the study also do not support previous 

phylogenetic relationships of the genus.  

 

Conclusions 

 

Species-level phylogenies are important and necessary for understanding the evolution of 

particular groups and for interpreting and understanding ecological adaptations. However, 

this may be impossible if the relationships of the species are not fully resolved. 

Systematists generally seek fully resolved trees, which may yield stronger inferences 

about character evolution or biogeographic history and usually view polytomies a
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reflecting uncertainty about relationships (Hewitt, 2004). The results of this study are a 

significant contribution to the attempts in resolving the phylogenetic relationships of 

Encephalartos. This study is the first to use AFLPs together with DNA sequence data in 

an attempt to resolve the relationships within Encephalartos and to reduce the uncertainty 

that remains from previous molecular and morphological studies. Despite the positive 

results obtained using AFLPs in other groups, the data obtained from Encephalartos were 

inconsistent and incongruent with DNA sequence data. The species level relationships 

within Encephalartos therefore remain problematic and unresolved. These results show 

that even though there was sufficient signal for analysis, there may be incomplete lineage 

sorting within the group due to recent speciation. This phenomenon of incomplete lineage 

sorting does pose a challenge to the phylogenetic reconstruction of recently derived 

species. Further phylogenetic studies of Encephalartos should include the combination of 

molecular and morphological data with additional DNA sequence data that has sufficient 

variability for phylogenetic analysis. This may provide greater resolution and clarity on 

the phylogenetic relationships.  
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APPENDIX 1 
Taxa included in this study, along with their accession numbers from both the National Botanical Garden in Kirstenbosch (KBG) and 
the Montgomery Botanical Center (MBG). ITS 1 & 2 sequences imported from Genbank are also given with their Genbank accession 
numbers and herbarium numbers. DNA regions that were sequenced for each taxon and AFLP profiles generated are indicated by a 
tick.  
 

Genbank accession numbers 
for ITS sequences 

trnL intron 
 

Partial rpoC1 
intron 

AFLP 
markers 

Taxon Collection 
accession 
numbers ITS 1 ITS 2  1F B4 B13 

Dioon edule Lindl - - -  - - - 
Dioon merolae De Luca, Sabato & Vázq. 
Torres 

KBG Cons. N** - -  - - - 

E. aemulans Voster KBG 108/1996 - -  -   
E. aemulans Voster 031001 AY335321 AF394427 - - - - 
E. aplanatus Voster 031003 AY335266 AF394383 - - - - 
E. altenstenii Lehmann KBG 2497/1916 - -  -   
E. altenstenii Lehmann 031002 AY335319 AF394424 - - - - 
E. arenarius R. A. Dyer KBG 132/1983 - -  -   
E. arenarius R. A. Dyer 031004 AY335314 AF394416 - - - - 
E. barteri sp. allocchrous  L. E. Newton 031005 AY335310 AF394412 - - - - 
E. bubalinus Mellville MBC 95914*C - -  -   
E. bubalinus Mellville 031006 AY335309 AF394411 - - - - 
E. caffer (Thunb.)Lehmann   KBG 1725/1914 - -  Partial   
E. caffer (Thunb.)Lehmann 031007 AY335296 AF394388 - - - - 
E. cerinus Lavranos and Goode  KBG 356/1994 - -     
E. cerinus Lavranos and Goode 031008 AY335288 AF394379 - - - - 
E. chimanimaniensis R. A. Dyer & I. 
Verdoorn 

031009 AY335299 AF394393 - - - - 

E. concinnus R. A. Dyer & I. Verdoorn MBC 
20011086*A 

- -  -   

E. concinnus R. A. Dyer & I. Verdoorn 031010 AY335300 AF394394 - - - - 
E. cupidus R. A. Dyer KBG 705/1997 - -     
E. cupidus R. A. Dyer 031011 AY335277 AF394395 - - - - 
E. cyacadifolius (seedling) (Jacquin) Lehm. KBG (Cons. N**) - -  Partial   
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Genbank accession numbers 
for ITS sequences 

trnL intron 
 

Partial rpoC1 
intron 

AFLP 
markers 

Taxon Collection 
accession 
numbers ITS 1 ITS 2  1F B4 B13 

E. cyacadifolius (Jacquin) Lehm 031012 AY335274 AF394374 - - - - 
E. dolomiticus Lavranos & D. L. Goode 031013 AY335301 AF394396 - - - - 
E. dyerianus Lavranos & D. L. Goode KBG 695/1997 - -    - 
E. dyerianus Lavranos & D. L. Goode 031014 AY335278 AF394399 - - - - 
E. eugene-maraisii I. Verdoorn KBG 4/1932 - -  Partial   
E. ferox Bertolini f. MBC 614*X - -  -   
E. ferox Bertolini f. 031015 AY335269 AF394384 - - - - 
E. ferox Bertolini f KBG 139/1983 - -     
E. friderici-guilielmi  Lehmann KBG 19/1913 - -     
E. ghellinckii Lamaire KBG 160/1915 - -  -   
E. ghellinckii Lamaire 031017 AY335273 AF394375 - - - - 
E. gratus Prain 031018 AY335279 AF394405 - - - - 
E. gratus Prain MBC 64561*C - -  -   
E. heenanii R. A. Dyer KBG 964/1986 - -  -   
E. heenanii R. A. Dyer 031021² AY335283 AY335262 - - - - 
E. hildebrandtii A. Braun & C. D. Bouché MBC 64575*S - -     
E. hildebrandtii A. Braun & C. D. Bouché 031022 AY335287 AF394404 - - - - 
E. horridus (Jacquin) Lehmann KBG 669/1915 - -  -   
E. horridus (Jacquin) Lehmann 031023 AY335315 AF394417 - - - - 
E. humilis I. Verdoorn KBG 270/1984 - -  -  - 
E. humilis I. Verdoorn 031024 AY335263 AF394378 - - - - 
E. inopinus R. A. Dyer KBG 41/1983 - -     
E. inopinus R. A. Dyer 031025 AY335284 AF394387 - - - - 
E. ituriensis Bamps & Lisowski MBC 20020330  - -  -   
E. kisambo Faden and Beentjie 031026 AY335280 AF394402 - - - - 
E. laevifolius Stapf & Burtt Davy 031027 AY335281 AF394377 - - - - 
E. lanatus Stapf & Burtt Davy KBG 269/1984 - -   -  
E. lanatus Stapf & Burtt Davy 031028 AY335275 AF394376 - - - - 
E. latifrons Lehmann KBG 111/1983 - -     
E. latifrons Lehmann 031029 AY335290 AF394418 - - - - 
E. laurentianus De Wildeman MBC 96259  - -  -   
E. laurentianus De Wildeman 031030 AY335313 AF394415 - - - - 
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Genbank accession numbers 
for ITS sequences 

trnL intron 
 

Partial rpoC1 
intron 

AFLP 
markers 

Taxon Collection 
accession 
numbers ITS 1 ITS 2  1F B4 B13 

E. lebomboensis I. Verdoorn 031060 AY335324 AF394430 - - - - 
E. lehmannii Lehmann KBG 573/1982 - -     
E. lehmannii Lehmann 031031 AY335276 AF394419 - - - - 
E. longifolius (Jacquin) Lehmann KBG 574/1982 - -     
E. longifolius (Jacquin) Lehmann 031033 AY335265 AF394421 - - - - 
E. macrostrobilus S. Jones & J. Wynants MBC 981917 - -   -  
E. manikensis (Gilliland) Gilliland 031034 AY335285 AF394389 - - - - 
E. manikensis (Gilliland) Gilliland MBC 64531*H - -     
E. middelburgensis Voster LHMS 4019 - -  -   
E. middelburgensis Voster 031035 AY335304 AF394400 - - - - 
E. msinganus Voster KBG 13/2000 - -  -   
E. msinganus Voster 031036 AY335323 AF394429 - - - - 
E. munchii (R. A. Dyer) and I. Verdoorn 031037 AY335286 AF394391 - - - - 
E. natalensis (R. A. Dyer) and I. Verdoorn  KBG 129/1983 - -     
E. natalensis (R. A. Dyer) and I. Verdoorn 031039 AY335268 AF394432 - - - - 
E. ngoyanus I. Verdoorn KBG 86/1945 - -  -   
E. ngoyanus I. Verdoorn 031040 AY335264 AF394386 - - - - 
E. paucidentatus Stapf & Burtt Davy 031042 AY335322 AF394428 - - - - 
E. paucidentatus Stapf & Burtt Davy MBC 97199*A - -     
E. princeps R. A. Dyer KBG 571/1982 - -  -   
E. princeps R. A. Dyer 031043 AY335272 AF394425 - -  - 
E. pterogonus R. A. Dyer & I. Verdoorn 031044 AY335297 AF394390 - - - - 
E. pterogonus R. A. Dyer & I. Verdoorn MBC 84207*C - -  -   
E. sclavoi Moretti, D. W. Stevenson & De 
luca 

MBC 95940*A - -     

E. sclavoi Moretti, D. W. Stevenson & De 
luca 

031045 AY335306 AF394403 - - - - 

E. senticosus Voster 031046 AY335270 AF394426 - - - - 
E. senticosus Voster MBC 95947*C - -     
E. septentrionalis  Schweinfurth MBC 961303 - -  - -  
E. septentrionalis  Schweinfurth 031047 AY335311 AF394413 - - - - 
E. sp.(Chinyazange) MBC 951026 - -     
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Genbank accession numbers 
for ITS sequences 

trnL intron 
 

Partial rpoC1 
intron 

AFLP 
markers 

Taxon Collection 
accession 
numbers ITS 1 ITS 2  1F B4 B13 

E. tegulaneus Mellville MBC 95939*A - -  -   
E. tegulaneus Mellville 031048 AY335312 AF394414 - - - - 
E. tegulaneus Mellville MBC 591116*A - -  -   
E. transvenosus Staff and Burtt Davy 031059 AY335325 AF394431 - - - - 
E. trispinosus (Hook)R. A. Dyer KBG 110/1983 - --     
E. trispinosus (Hook)R. A. Dyer 031049 AY335317 AF394422 - - - - 
E. turneri Lavranos & Goode MBC 97219*B - -     
E. turneri Lavranos & Goode 031051 AY335308 AF39408 - - - - 
E. umbeluziensis R. A. Dyer 031052 AY335289 AF394380 - - - - 
E. umbeluziensis R. A. Dyer MBC 9867 - -  -   
E. villosus Lehmann KBG 2687/1915 - -  Partial   
E. villosus Lehmann 031053 AY335267 AF394381 - - - - 
E. whitelockii P. J. H. Hunter 031055 AY335290 AF394409 - - - - 
E. woodii Sander KBG 1895/1916 - -  -   
E. woodii Sander 031057 AY335271 AF394433 - - - - 
Macrozamia riedlei (Gaudich) C. A. Gardner Cons. Bio** - -  - - - 
Dioon edule Lindl Cons. Bio**  -  - - - 
Dioon merolae De Luca, Sabato & Vázq 
Torres 

Cons. Bio** - -  - - - 

Zamia furfuracea L. F. Cons. Bio** - -  - - - 
** Conservation Biology green house, Kirstenbosch; KBG- Kirstenbosch Botanical Garden; MBC- Montgomery Botanical Center; 
LHMS-Leslie Hill Molecular Systematic Laboratory, DNA Bank; - Missing data (profiles/sequences);  Profiles and sequences 
generated from this study. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



APPENDIX 2- Groupings by Cooper and Goode (2004) 
 

Genus Species in the genus Geographical distribution 
Encephalartos caffer, cerinus, ngoyanus, 

umbeluziensis, aplanatus and 
villosus 

*Eastern Cape, *Kwa-Zulu 
Natal and ^Swaziland 

Dracostrobus ghellinkii, lanatus, humilis, 
laevifolius, dedekindii, 
brevifoliatus, cycadifolius, 
mkomaasiana sp. nov. and 
friderici-guilielmi 

*Eastern Cape to *Mpumalanga 
Drakensberg 

Rugostrobus longifolius, latifrons, and  
arenarius 

*Southern and *Eastern Cape 

Acanthozamia lehmannii, trispinosus and 
horridus 

*Southern and *Eastern Cape 

Pyrrostrobus ferox *Eastern Cape to ^Mozambique 
Xanthostrobus natalensis, aemulans, 

altenstenii, msinganus, woodii, 
lebomboensis, curachii sp. 
nov., pietretief sp. nov. and 
senticosus 

*Eastern Cape, *Kwa-Zulu 
Natal, *Mpumalanga, 
^Swaziland and ^Mozambique 

Inezamia transvenosus, heenanii, relicta 
and paucidentatus 

*Limpopo and *Mpumalanga 

Glaucostrobus dyerianus, eugene-maraisii, 
dolomiticus, hirsutus, 
nubimontanus,  
middelburgensis and cupidus 

*Gauteng, *Mpumalanga, 
*Limpopo 

Dyerstrobus inopinus *Limpopo 
Viridestrobus manikensis, concinnus, 

munchii, chimanimaniensis,  
and pterogonus 

^Southern Mozambique, 
^Malawi and ^Zimbabwe 

Tanzamia hildebrandtii, kisambo, 
equatorialis, tegulaneus, 
whitelockii, powysii, 
septentrionalis, mackenziei, 
gratus, ituriensis, 
macrostobilus, laurientianus 
and turneri 

^Kenya, ^Tanzania, ^Uganda, 
^Sudan, ^Angola, ^Mozambique 

Congostrobus bubalinus, schmitzii, poggei, 
delucans, marunguesis, 
schaijesii, allochrous and 
barteri 

 ^Kenya, ^Zaire, ^Angola, 
^Ghana and ^Nigeria. 

*Province; ^Country 
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APPENDIX 3- Habitat matrix 
 

Taxa Name Habitats*
E. aplanatus  1 
E. aemulans  2 
E. altensteinii  4 
E. arenarius  4 
E. barteri ssp. allochrous 5 
E. bubalinus  6 
E. caffer  2 
E. cerinus  2,7 
E. concinnus  3 
E. cupidus  3,7 
E. chimanimaniensis  3 
E. cycadifolius  2,7 
E. dolomiticus  3 
E. dyerianus  3 
E. ferox  4 
E. ghellinckii  2 
E. gratus  3 
E. heenanii  2 
E. hildebrandtii  3 
E. horridus  4,6 
E. humilis  2 
E. inopinus  3,7 
E. kisambo  3 
E. laevifolius  2,3 
E. lanatus  2,3 
E. latifrons  2,4 
E. laurentianus  1 
E. lebomboensis  3 
E. lehmannii  4 
E. longifolius  2 
E. manikensis  3 
E. middelburgensis  3 
E. msinganus  3 
E. munchii  3 
E. natalensis  3,7 
E. ngoyanus  2,3 
E. nubimontanus  3 
E. paucidentatus  3 
E. princeps  2,4 
E. pterogonus  3 
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E. sclavoi  2,3 
E. senticosus  3 
E. septentrionalis  3 
E. tegulaneus  3,7 
E. transvenosus  1,3 
E. trispinosus  4 
E. turneri  3.5 
E. umbeluziensis  3 
E. villosus  1 
E. woodii  1 
E. whitelockii  1 
*1-forest, 2-grassland, 3-woodland/savannah, 4-shrubland, 5-granite outcrop, 6-quartzite 
hills, 7-cliffs/gorges. 
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SUMMARY 

 
Species-level phylogenetic reconstruction of the African cycad genus Encephalartos 

(Zamiaceae). 

 

The main aim of the study was to reconstruct the phylogenetic relationships of the genus 

Encephalartos using DNA sequencing and AFLP data. The taxonomy of this genus 

remains uncertain and there has not been enough comprehensive molecular studies 

undertaken to resolve the surrounding uncertainties. This study is the first to use AFLPs 

together with DNA sequence data in an attempt to resolve the relationships within 

Encephalartos and to reduce the uncertainty that remains from previous molecular and 

morphological studies. The motivation for this study was therefore to clarify the 

uncertainties that still remain when it comes to the phylogenetic relationships pf the 

genus. Initially, sequencing data was generated but there were insufficient variable 

characters for phylogenetic reconstruction. Therefore, the four main objectives of the 

study were to:  

 

1.Reconstruct and investigate phylogenetic relationships among species of the genus 

Encephalartos in Africa using AFLP and sequencing data to complement 

previous studies that used DNA sequencing and morphological characters. 

2.Test the phylogenetic hypothesis from this study against the taxonomic 

relationships for Encephalartos proposed by Cooper and Goode (2004), and to 

compare the phylogenetic hypothesis from this study with that suggested by 

previous studies using DNA markers. 

3.Map habitat types on the obtained phylogeny to make inferences regarding ancestral 

habitat types.  

4.Evaluate the utility of the AFLP and DNA sequencing methods in reconstructing 

the phylogeny of the genus and make recommendations for follow-up studies. 

 

Sequencing and AFLP primers were evaluated thoroughly to find those that would give 

data that was sufficiently variable for phylogenetic reconstruction. This led to my 
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proficiency in generating and analyzing DNA and AFLP data. The results generated from 

this study were compared with previous phylogenetic hypotheses of the genus. In terms 

of the relationships that were obtained, there was a high level of incongruency between 

different data sets and also several unresolved polytomies.  Habitat optimization was also 

performed using downloaded ITS sequences to make inferences regarding ancestral 

habitat types. This was an attempt to understand the evolution of the genus with respect 

to its current distribution in different habitats and to interpret this in the context of 

divergence times of the different clades as suggested by previous authors. This analysis 

showed that there is a basal split in the Encephalartos cladogram that separates the 

grassland specialists, i.e. E. cycadifolius, E. friderici-guilielmi, E. ghellinckii, E. humilis 

and E. lanatus, from species that occur in either forests or grassland/savannah. This 

analysis shed some light into the possible divergence times of the genus and with further 

studies including dating the divergence for the genus, more accurate inferences could be 

made. 

 

Regardless of the inconclusive results, the thesis initiates a foundation for future studies 

using AFLP data which can include more individuals per species of Encephalartos and 

also the combination of molecular and morphological data with additional DNA sequence 

data that has sufficient variability for phylogenetic analysis. This may provide greater 

resolution and clarity on the phylogenetic relationships.  

 

Future phylogenetic studies on Encephalartos should include the combination of 

molecular and morphological data with additional DNA sequence data that has sufficient 

variability for phylogenetic analysis. This may provide greater resolution and clarity on 

the phylogenetic relationships and resolve the uncertainties surrounding the phylogenetic 

relationships between the species.   
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