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ABSTRACT

POWER STUDIES OF MULTIVARIATE TWO-SAMPLE TESTS OF

COMPARISON

IAN JOHN SILUYELE

MSc Statistics Thesis, Department of Statistics, University of the Western Cape.

The multivariate two-sample tests provide a means to test the match between

two multivariate distributions. Although many tests exist in the literature,

relatively little is known about the relative power of these procedures. The

studies reported in the thesis contrasts the effectiveness, in terms of power, of

seven such tests with a Monte Carlo study. The relative power of the tests was

investigated against location, scale, and correlation alternatives. Samples were

drawn from bivariate exponential, normal and uniform populations. Results

from the power studies show that there is no single test which is the most

powerful in all situations. The use of particular test statistics is recommended

for specific alternatives.

A possible supplementary non-parametric graphical procedure, such as the

Depth-Depth plot, can be recommended for diagnosing possible differences

between the multivariate samples, if the null hypothesis is rejected.

As an example of the utility of the procedures for real data, the multivariate

two-sample tests were applied to photometric data of twenty galactic globular

clusters. The results from the analyses support the recommendations associ-

ated with specific test statistics.
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Chapter 1

General Introduction and

Objectives

1.1 Introduction

A statistical problem, which is common in many areas of research, is the need to test

whether two samples drawn independently have the same underlying distribution.

Such statistical problems are known as two-sample problems. Often, researchers

are interested in determining whether the two samples observed from some specific

studies or phenomena are statistically different or not. Detailed explanation of the

two-sample problem is given in Chapter 2. In particular, this thesis focuses on the

multivariate two-sample problem. A statistical measure of the degree of compati-

bility of the two samples is the basis of the two-sample statistics (see Friedman and

Rafsky, 1979; Baringhaus and Franz, 2001; Hall and Tajvidi, 2002; Maa, Pearl and

Bartoszyński, 1996; Henze, 1988; Greenberg, 2006; Rosenbaum, 2005; Weiss, 1960).

Primarily, the objective of two-sample tests of comparison treated here is to test the

validity of the hypothesis that:

The two observed samples come from populations with identical

distributions.

Generally, the form of the common distribution assumed under the null hypothesis is

not known. For this reason, a parametric approach is ruled out, and non-parametric

methods indicated.

1

 

 

 

 



Chapter 1: General Introduction and Objectives 2

Ideally, any statistical test for assessing the hypothesis above should satisfy the

following properties:

1. it should be consistent and have good power against all alternatives;

2. the test statistic should be distribution-free and have a known null distribution.

The implication of property (1) is that as the number of observations in the samples

increase, the test should be able to reject the hypothesis if the distributions of the

parent populations of the two samples are different. As far as property (2) is con-

cerned, it has been difficult to determine the exact null distributions of two-sample

test statistics and, therefore, asymptotic approximations have been used instead.

Asymptotic approximations depend on assumptions which may not always be met

and, furthermore, asymptotic distributions are not available for all multivariate two-

sample test statistics (for example the Baringhaus-Franz statistic (Baringhaus and

Franz, 2001)). Therefore, because of the potential difficulties of satisfying property

(2) stated above, the distribution of the test statistic under the null hypothesis can

be approximated very accurately by the permutation method described in Section

2.4.1 of Chapter 2. The permutation approximation of the null distribution is also

possible even if the assumptions required for an asymptotic distribution are satisfied.

1.2 The Research Problem

The validity of the null hypothesis is not difficult to assess when the two independent

samples being investigated are univariate. In this case, there are several well-known

two-sample tests which genuinely satisfy the aforementioned properties. Some of the

most commonly used include the Mann-Whitney, two-sample Kolmogorov-Smirnov,

Smirnov deviation, Wald-Wolfowitz runs, Cramér-von Mises, Anderson-Darling, and

χ2 tests. Descriptions of these tests can be found in, for example, (Fisz, 1963; Fried-

man and Rafsky, 1979; Gibbons, 1985; Rohatgi, 1984; Thas, 2001).

Conceptually, some of the univariate tests can be extended to multivariate set-

tings albeit for large sample sizes. One such example is the χ2 test. Although it

can be applied to multidimensional cells, it requires binning and the choice of bin

sizes is arbitrary. Many suggestions on binning procedures exist in literature (see

Steele (2002) for references). However, in high dimensional space finite, samples are

 

 

 

 



3 1.2 The Research Problem

sparse, a phenomenon referred to in the literature by the term curse of dimension-

ality (Annis, 2006). Therefore, tests based on binning are inefficient (have lower

power), unless the sample sizes are very large. On the other hand, tests which

are based on the ranks have no obvious nor unique extension to multivariate set-

tings because there is essentially more than one way of ranking higher dimensional

observations (Friedman and Rafsky, 1979; Liu, Parelius and Singh, 1999). When

applied to marginal distributions, as some researchers have suggested, they neglect

information embedded in the dependence structures of the data sets that may be

essential in accounting for the degree of similarity between them. Consequently, re-

search has been prompted in the area of new non-parametric two-sample procedures.

Various multivariate two-sample tests satisfying the two aforementioned require-

ments have been proposed independently. The number of these tests has increased

because of recent theoretical developments, for example, Morgenstern’s proof of

Deuber’s theory (Morgenstern, 2001; Baringhaus and Franz, 2001); the theoretical

framework for dimension reduction by Maa, Pearl and Bartoszyński (1996); and the

expanding capabilities of modern high speed computers which can cope with the

heavy computational demand involved. The earliest studies date at least as far back

as 1960 (Weiss, 1960). In some papers, theoretical properties of practical impor-

tance such as distribution-freeness, consistency against all alternative hypotheses,

and relative power performance of the proposed tests have been studied and illus-

trated via Monte Carlo experiments (Friedman and Rafsky, 1979; Baringhaus and

Franz, 2001; Hall and Tajvidi, 2002), while in others these properties have not been

investigated (for example Maa, Pearl and Bartoszyński, 1996).

The lack of information about the comparative power properties of the available

tests motivated this study. The power of a selection of multivariate two-sample

statistics is investigated in the thesis for a variety of distributions. Bivariate normal

(symmetric, mesokurtic and infinite support), bivariate exponential (highly skewed

and infinite support) and bivariate uniform (symmetric, highly platykurtic and finite

support) are used in the studies. The variety of distributions considered will enable

users to make informed decisions concerning the test to use.

Power against differences in location (shift), scale (dispersion), and correlation are

studied. Fixed sample sizes are used. The significance levels in the power studies

 

 

 

 



Chapter 1: General Introduction and Objectives 4

are fixed at a nominal standard value of 5%.

1.3 Objectives

In summary, the work presented in the thesis aims to:

1. provide a review of the literature on multivariate two-sample test statistics for

continuous data;

2. conduct power studies of the multivariate two-sample test statistics for selected

bivariate distributions;

3. compare the relative power of the selected test statistics.

1.4 The Thesis Structure

Chapter 2 states the two-sample problem, and introduces various terminology, no-

tation and concepts which are used in the rest of the thesis.

Chapter 3 reviews the test statistics studied, including a few not used in the power

study. The selection of the tests is primarily based on three criteria including ap-

plicability in arbitrary dimensional settings (although only bivariate examples are

studied), appealing logic, and, most importantly, simplicity. The study of the liter-

ature is mainly limited to statistical tests but also includes an informal exploratory

tool for assessing the equality of two multivariate distributions by graphical means.

Although there are multivariate two-sample tests for both continuous and discrete

data, this thesis concentrates on tests developed for continuous data.

A distinction is made between three broad classes of multivariate two-sample tests

investigated in the thesis, namely:

1. graphical exploratory techniques;

2. empirical distribution function type;

3. interpoint distance type.

 

 

 

 



5 1.4 The Thesis Structure

The general methodology for computing the power of multivariate two-sample statis-

tics, described in Chapter 3, is outlined in Chapter 4. The results from power studies

performed through Monte Carlo simulations for a variety of distributions and pa-

rameter values, are presented and discussed.

Applications of the studied multivariate two-sample statistics to real data are re-

ported in Chapter 5. More applications of the statistics are given by Koen and

Siluyele (2007) (see the article in the directory Accepted Paper, on the accompany-

ing CD).

The thesis concludes in Chapter 6 with recommendations and an outlook for possi-

ble extensions.

Computer programs, which were used to obtain the results reported, are included

on the accompanying compact disc (CD). All programming was done in MATLAB.

The CD also includes auxilliary programs.

 

 

 

 



Chapter 2

An Introduction to Two-Sample

Testing

This chapter gives a formal definition of the two-sample problem. Some basic ter-

minology and notation that are used in the thesis are also presented. Some of

the terminology given here is drawn from probability theory, hence, for a detailed

exposition see the probability literature (for example Bauer, 1972).

2.1 Basic Definitions

The notation X={X1, . . .} and Y={Y1, . . .} will be used to represent collections

of d-dimensional random vectors (d > 1), defined on sample spaces SX and SY,

respectively. Realizations of X and Y will be denoted by respectively x and y. The

sets X and Y will be called continuous if all their elements Xi, for all i, and Yj, for

all j, are continuous random vectors. Throughout this thesis, X and Y are assumed

to be continuous random vectors drawn from continuous multivariate distributions.

For continuous X and Y, we assume that the cumulative distribution functions

denoted respectively by F (x) and G(y) are differentiable. Hence, the multivariate

probability density functions of both x and y exist and will be denoted by f(X) and

g(Y). Finite sample sizes of X and Y will be represented by m and n respectively.

The combined sample shall be denoted by

Zi =

{
Xi , 1 ≤ i ≤ m,

Yi−m , m + 1 ≤ i ≤ N,

6

 

 

 

 



7 2.2 The Two-Sample Problem

where N = m + n. This notation is used for both random vectors Xi and Yj, and

their realizations xi and yj.

We digress slightly in order to clarify the meaning of the underlying distribution

function of the observed sample. The cumulative distribution function is uniquely

related to a specifically constructed probability law PF and choice of an appropriate

σ-algebra B on the sample space S. The three mathematical objects together form

a probability space (S, B, PF) (Bauer, 1972). When an experiment is conducted, a

point x in the sample space S is randomly sampled according to the probability

law PF. The process PF is called the underlying data generating mechanism. Ad-

ditionally, PF is regarded as an abstract formulation of a statistical or probabilistic

model of the mechanism that generates the sample points. The point x which is

chosen determines the outcome of the experiment. According to the definition of

a probability space, the event x is in the σ-algebra B, and the measure PF(x) de-

notes the probability of observing an experimental outcome x (Bauer, 1972). In

this thesis, we will not make explicit reference to the probability space but, instead,

assumptions about the uniquely constructed cumulative distribution function and,

where necessary, the probability density function of the probability space will be

made. The cumulative distribution function denoted by F (x), is regarded as the

statistical or probabilistic model that generates the sample which is observed in the

experiment.

2.2 The Two-Sample Problem

A classical problem in statistical analysis is testing the equality of two distributions

based on independent multivariate samples. Several proposals have been made in

the literature (Baringhaus and Franz, 2001; Hall and Tajvidi, 2002; Friedman and

Rafsky, 1979; Henze, 1988; Greenberg, 2006; Maa, Pearl and Bartoszyński, 1996).

The question can be addressed by the application of one of the multivariate two-

sample testing procedures outlined in Chapter 3. This kind of problem is generally

referred to as the two-sample problem.

As in classical hypothesis testing, two hypotheses are constructed in the context

of the two-sample problem: the general null hypothesis, the assertion of equality

 

 

 

 



Chapter 2: An Introduction to Two-Sample Testing 8

of distributions; and the general alternative hypothesis, the negation of the null

hypothesis.

2.2.1 The General Null Hypothesis

Generally, the hypothesis given on page 1 is symbolically stated as:

H0 : F≡G, (2.1)

where F and G are the true but unknown cumulative distribution functions of the

random variables Xi and Yj, respectively.

In practice, the assumptions, as aforementioned, are that the cumulative distri-

bution functions, F (x) and G(y) with densities f(x) and g(y) are assumed to be

continuous on their supports (sample spaces) and when the null hypothesis is true,

the cumulative distribution functions have identical sample spaces. If the sample

spaces were not identical, the potential differences in sample space might be used

to test for differences between cumulative distribution functions (Hall and Tajvidi,

2002). No knowledge of F and G is proclaimed by the researcher under the hypoth-

esis (2.1), only their equivalence.

2.2.2 The Alternative Hypothesis

In the general setting, when the null hypothesis is not true, we do not know in

what sense the true distributions F (x) and G(y) of the two populations differ from

each other. Therefore, the alternative hypothesis is taken to be the negation of the

hypothesis at (2.1) represented symbolically by

H1 : F (x) 6=G(x) for at least one x. (2.2)

Two-sample tests constructed for this purpose, and which are sensitive to all types of

deviations from the null hypothesis, are called omnibus tests. Unfortunately, tests of

this nature possess very low power for some specific alternatives compared to those

two-sample tests which are designed to detect very specific deviations from the null

hypothesis in the direction of the alternatives.

 

 

 

 



9 2.3 Significance Testing

2.3 Significance Testing

In the present context, significance tests indicate whether an observed measure of

discrepancy between the distributions of two samples could reasonably occur just

by chance in the selection processes of the random samples. Highly significant

discrepancies imply that there are differences between the respective populations

from which the samples were drawn. Generally, testing for significance involves the

following procedures:

a. choose the test statistic which measures possible differences;

b. determine the sampling distribution which the statistic would have if the pop-

ulations were the same, that is when the null hypothesis is true;

c. locate the observed value of the statistic on the distribution in (b).

The statement that the discrepancy we test for is not present in the population

implies the null hypothesis (2.1). The probability of the value of a statistic as

extreme or more extreme than the observed, calculated taking the null hypothesis

to be true, is the p-value. P -values smaller than the level of significance are evidence

against the null hypothesis and in favour of a true discrepancy in the populations

from which the samples were drawn.

2.4 Estimation of Sampling Distribution

The sampling distribution is the distribution of a statistic based on a random sample

from the population. Statistical inference relies on the sampling distribution of the

statistics. However, if the exact or asymptotic null distribution of the statistic is

unknown, then it may still be possible to estimate the null distribution and the p-

value of the statistic by either bootstrapping or permutation methods (Baringhaus

and Franz, 2001). The latter method is used for two-sample problems considered

in the thesis. Bootstrapping can also be applied (for details regarding this method

see Baringhaus and Franz (2001)). In implementing the permutation method to

estimate the sampling distribution of the statistic, the observed random sample is

taken to be the “population”. Then, in the place of many random samples from the

population, many resamples are created by repeatedly sampling without replacement

from the original samples as is explained below.

 

 

 

 



Chapter 2: An Introduction to Two-Sample Testing 10

2.4.1 The Permutation Method

Permutation distributions provide reliable substitutes for formula-based asymptotic

distributions of statistics. The main step in the general procedure of permutation

tests is to form permutation samples in a way that is consistent with the null hypoth-

esis. Below is an outline of the permutation procedure for testing the compatibility

between distributions of two multivariate samples.

Consider two multivariate samples X and Y of sizes m and n drawn independently.

We merge the samples, since under the null hypothesis the underlying multivariate

distributions of the parent populations are presumed to be the same. Thus the

population under the null hypothesis is represented by the original pooled sample

Z. From this sample, we randomly choose a subsample of size m and assign it to

sample X(1). The remaining subsample of size n becomes sample Y(1). The sam-

ple X(1) is an ordinary simple random sample (SRS) drawn without replacement

(sampling without replacement means that, after we randomly draw an observa-

tion from the pooled sample it cannot be drawn again). The statistic of interest

is computed - in the context of this thesis it is a measure of discrepancy between

the two observed multivariate samples. The resampling process and computation

of the statistic are repeated for all Q =
(

N
m

)
possible permutations of the two sam-

ple combinations from the pooled sample Z, where N = m + n. The distribution

formed by the statistics from the resamples estimates the sampling distribution of

the statistic when the null hypothesis is true, and is called a ”permutation distri-

bution conditioned on the pooled samples” (Hall and Tajvidi, 2002). Obtain order

statistics and then choose an integer V0 from the set {1, . . . , V0, . . . , Q}, such that

α
′
= 1− V0

Q
is as large as possible, without exceeding the nominal significance level

α. Take as the critical point the V0th order statistic. Label this value tα′ . Then

α
′
will accurately approximate the exact level of the resulting test. The hypothesis

at (2.1) is rejected if the observed value of the statistic is greater than tα′ , for tests

with upper tail rejection regions, for example, the Henze’s nearest neighbour test

(Henze, 1988). For tests with lower tail rejection region, for example, the Friedman-

Rafsky statistic (Friedman and Rafsky, 1979), an analogous procedure is carried out.

For large N , the value of Q is very large making this procedure laborious and

expensive in terms of computer power and time. Therefore, in circumstances where
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α is given, choose integers V and B, which are such that V < B, B < Q and

α ≈ 1 − V
B+1

, where V is the position of the V th order statistic of permutation

statistics and B is the number of permutations, and proceed as outlined above (Hall

and Tajvidi, 2002). In order to obtain accurately estimated p-values, the value of

B must be sufficiently large because accuracy of estimation improves as B becomes

larger. In the studies reported below, B = 500. The procedure was implemented in

MATLAB using the routine permutation_resamples.m in the folder Statistics

on the accompanying CD.

 

 

 

 



Chapter 3

Literature Review

In view of the large literature on multivariate two-sample tests of comparison, we

cannot describe adequately in this work all the important developments on the sub-

ject. We confine the review to multivariate two-sample tests, which are investigated

in the power study, and mention a few others. Various informal and formal proce-

dures have been proposed in the literature to test the hypothesis (2.1). Generally,

the tests studied in this work are grouped into three categories, namely, the graphical

approach, empirical distribution function based tests, and those based on interpoint

distances of observations in the samples.

3.1 The Graphical Approach To Multivariate

Two-Sample Testing

This is an exploratory visual approach to comparing the underlying distributions

of two multivariate samples. It involves computing the depth of each data point

with respect to the centroids of each of the two samples, giving N pairs of depth

values (the depth is a measure of ”closeness” to the centroid). A plot of the N depth

pairs constitutes a ”depth-depth plot” or DD-plot. In their work, Liu, Parelius and

Singh (1999) observed that different distributional characteristics of the data exhibit

different patterns in DD-plots. Distributional differences studied by them included

location and scale among others.

The procedure is presented in more detail as follows. Consider samples X and

Y of sizes m and n respectively. Denote their population distributions by F and G

12
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3.1 The Graphical Approach To Multivariate

Two-Sample Testing

respectively. Let Z be the pooled sample. Generally, data depth is a way of measur-

ing how central a given observation x ∈ Rd is with respect to a given distribution or,

alternatively, a data cloud. Thus, given the two multivariate samples, the DD-plot

is the plot of the depth values of each observation from the pooled sample Z, relative

to F (or sample X) and relative to G (or sample Y). If both samples are from the

same population, we would expect to see points in the DD-plot cluster around a

45 degree line passing through the origin. Changes in the relation between the two

samples will result in changes in the DD-plot.

Several methods of measuring data depth have been proposed (see Liu, Parelius

and Singh (1999) for references). Some examples of data depth discussed in Liu,

Parelius and Singh (1999) include Euclidean depth, Oja depth, simplicial depth,

likelihood depth, and Mahalanobis depth. The usefulness of this method is demon-

strated in this thesis via the Mahalanobis depth function.

The Mahalanobis depth MhD of u ∈ Rd with respect to F is defined by

MhDF (u) =
1

1 + (u− µF )Σ−1
F (u− µF )′

, (3.1)

where µF and ΣF are the mean vector and covariance matrix of F respectively. The

DD-plot is

DD(F, G) = {(MhDF (z),MhDG(z)) , for all z ∈ Z} , (3.2)

where MhDF (z) and MhDG(z) are depth values of z with respect to F and G

respectively. Since F and G are unknown, we construct a DD-plot using a sample

version of (3.2):

DD(Fm, Gn) = {(MhDFm(zi),MhDGn(zi)), i = 1, . . . , N} , (3.3)

where

MhDFm(zi) =
{

1 + (zi −X)Σ̂−1
X (zi −X)′

}−1

and

MhDGn(zi) =
{

1 + (zi −Y)Σ̂−1
Y (zi −Y)′

}−1

. (3.4)
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In (3.4), X and Y are sample mean vectors and Σ̂X and Σ̂Y are sample covariance

matrices of X and Y, respectively.

A MATLAB implementation is given on the accompanying CD in the folder

Data Depth.

3.2 Tests Based on the Empirical Distribution

Function (EDF)

These tests compare two multivariate samples by assessing the proximity of their

sample EDFs. To describe the test statistic, the definition of the EDF is critical

and, therefore, I begin by giving it here.

In one dimension, the cumulative distribution function is defined as F (x) = P (X ≤
x) and is estimated from the sample by the EDF

Fn(x) =
number of observations ≤ x

n

=

∑n
j I(Xj ≤ x)

n
. (3.5)

In (3.5), I(Xj ≤ x) is an indicator function which assumes the value one, when the

inequality is satisfied, and zero when it is not. Therefore, in one dimension, the EDF

is a step function with jumps of size 1/n at every observed point. In more than one

dimensional the cumulative distribution function (CDF) F (x, y, . . .), analogous to

the one dimension case, could be defined as

F (x, y, . . .) = P (X ≤ x, Y ≤ y, . . .). (3.6)

The definition of the cumulative distribution function in (3.6) is non-unique because

the direction of ordering of the observations {x, y, . . .} is arbitrary. In one dimension,

the direction of ordering is immaterial because P (X ≤ x) = 1 − P (X ≥ x), so

that the only two realistic data orderings give equivalent distribution functions. In

two dimensions there are four evident ways of ordering the observations, given by

(X ≤ x, Y ≤ y), (X ≤ x, Y ≥ y), (X ≥ x, Y ≤ y), and (X ≥ x, Y ≥ y), and each
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3.2 Tests Based on the Empirical Distribution

Function (EDF)

is equally valid for the definition of the cumulative distribution function (Peacock,

1983). The corresponding forms of the CDFs are given by

F 1(x, y) = P (X≤x, Y≤y),

F 2(x, y) = P (X≤x, Y≥y),

F 3(x, y) = P (X≥x, Y≤y),

F 4(x, y) = P (X≥x, Y≥y). (3.7)

The corresponding EDFs are defined as:

F̂ 1(x, y) =
1

N

N∑
j

I(Xj ≤ x, Yj ≤ y),

F̂ 2(x, y) =
1

N

N∑
j

I(Xj ≤ x, Yj ≥ y),

F̂ 3(x, y) =
1

N

N∑
j

I(Xj ≥ x, Yj ≤ y),

F̂ 4(x, y) =
1

N

N∑
j

I(Xj ≥ x, Yj ≥ y), (3.8)

where I(·, ·) is an indicator function, which assumes the value one, when the ar-

gument is true, and zero, when the argument is false. The empirical distribution

functions defined in (3.8) are all consistent estimators for the corresponding CDFs

in (3.7). By contrast with the one-dimensional case they are not all equivalent.

Justel, Peña and Zamar (1997) presents an alternative procedure for defining higher

dimensional empirical distribution functions.

One example of a test statistic based on the empirical distribution function is the

simplified Kolmogorov-Smirnov form described in subsection 3.2.1. It is the only

test investigated in this thesis which involves the empirical distribution functions

of the samples. In the test, the goal is to find the largest difference between the

two empirical distribution functions of the samples and this is adopted as the test

statistic (Greenberg, 2006).
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3.2.1 The Simplified Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov test was generalized to two dimensions origi-

nally postulated by Peacock (1983) and later modified by Fasano and Franscechini

(1987). In Peacock’s procedure, one searches for the largest difference between the

two empirical distribution functions of the two dimensional samples. Implemen-

tation of his test requires that the EDFs of the two samples be evaluated in all

the N2 points z = (zk1, z`2) (k, ` = 1, . . . , N) where z ∈ Z. Therefore, the test

of Peacock (1983) is computationally prohibitive especially when the sample sizes

are large. In dimensions higher than two the computational problem is exacerbated

further. Therefore, Fasano and Franscechini (1987) proposed a variant of Peacock’s

test which requires the evaluation of the empirical distribution functions of the two

samples only in the N observed points. Their test is significantly quicker, compu-

tationally, and in fact it has similar power characteristics (Greenberg, 2006). They

adopted as a test statistic the largest cumulative difference evaluated by ranging over

the two samples in turn in all the four quadrants around observed sample points

i.e. using all four definitions of the EDFs in (3.8). Computer routines for their test

are given in Press, Teukolsky, Vetterling and Flannery (1992). Greenberg (2006)

further simplified the forms of the statistic by restricting evaluation of the EDF to

F̂ 1(x, y) in (3.8). Therefore, for two samples with a combined sample of size N ,

Greenberg’s simplified Kolmogorov-Smirnov (SKS) test requires only N evaluations

of each of the two EDFs. Obviously, this is a huge improvement as regards the com-

putation burden involved compared to the tests by Peacock (1983) and Fasano and

Franscechini (1987). Nevertheless, it comes at the expense of power because results

from an empirical investigation into the power performance of the three versions of

the test, as reported in Greenberg’s thesis (Greenberg, 2006), indicate that the SKS

test possesses the lowest power. The lower power of the SKS test is attributable

to fact that less information from the data is used, as compared with the Peacock

(1983) and Fasano and Franscechini (1987) statistics. Nonetheless, empirical studies

suggest that the SKS test is consistent and has reasonable power properties (Green-

berg, 2006). The SKS test is preferable for application in more than two dimensions

because it is currently the only computationally feasible form.

To see the convenience of the SKS test in more than two dimensions, consider the

case of two trivariate samples with combined size N . Peacock’s test will require that
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the EDFs of the two samples be evaluated in 8N3 points. For the test of Fasano

and Franscechini (1987), the evaluations reduce to 2×8N , whereas, for the SKS test,

only 2N evaluations are required. In general, 2d+1Nd evaluations of the EDFs are

needed for the test of Peacock (1983), 2d+1N for the test of Fasano and Franscechini

(1987), and 2N for the SKS test. The computational burden of the other tests

(Peacock, 1983 and Fasano and Franscechini, 1987) in arbitrary dimensions renders

them impracticable.

Formally, for bivariate samples X = {(x1j, y1j); 1≤j≤m} and Y = {(x2k, y2k); 1≤k≤n},
with respective empirical distribution functions Fm and Fn,

Ti
SKS =

√
mn

m + n
sup

(x,y)∈Z

∣∣∣F̂ i
m(x, y)− F̂ i

n(x, y)
∣∣∣ . (3.9)

For the bivariate SKS statistic investigated in the thesis only the form F̂ 4(x, y) of

the EDF is used [see (3.8)]. For convenience T4
SKS will simply be denoted by TSKS.

The MATLAB routine for calculating the statistic TSKS is SKS_perm_test.m (Green-

berg, 2006), given in the directory Statistics on the accompanying CD.

The test statistic (3.9) is used to assess the hypothesis (2.1) against the alterna-

tive hypothesis (2.2). The null distribution of TSKS is not known and, therefore,

the critical value and the p-value of TSKS are estimated by the permutation method

described in Section 2.4.1. Values of TSKS greater than the critical value, estab-

lishes the difference between population distributions of the observed multivariate

samples.

3.3 Statistics Based on Interpoint Distance

The majority of multivariate tests investigated in this thesis are based on interpoint

distances of the samples. Some typical examples of distance functions are

max
1≤i≤d

|ui − vi| , (3.10)
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d∑
i=1

|ui − vi| , (3.11)

{
d∑

i=1

(ui − vi)
2

} 1
2

, (3.12)

where ui and vi are components of d-dimensional vectors u and v, observations from

multivariate samples X or Y or Z. The Euclidean metric in (3.12) is used through-

out the thesis, unless stated otherwise.

Henze (1988), Schilling (1986), Weiss (1960), Hall and Tajvidi (2002), and Friedman

and Rafsky (1979) have used interpoint distances for determining nearest neighbours

in their proposed multivariate two-sample tests of comparison. Other tests discussed

in this chapter which are based on interpoint distances are those proposed by Bar-

inghaus and Franz (2001) and Rosenbaum (2005), while the work of Maa, Pearl

and Bartoszyński (1996) is a theoretical framework for dimension reduction which

results in univariate distributions of interpoint distances. The tests are explained in

detail in the following sections.

3.3.1 The Henze Nearest Neighbour Statistic

The statistics proposed by Henze (1988) and Schilling (1986) are quite similar. The

test statistic by Henze (1988) is preferable because unlike Schilling’s (Schilling, 1986)

which is restricted to the Euclidean metric for determination of nearest neighbours,

it is available for general distance metrics [see equations (3.10), (3.11) and (3.12) for

some examples of distance metrics available]. Schilling (1986) studied the theoretical

properties of his statistics, including consistency and power. Power performance of

the various statistics introduced in his paper was studied in a simulation experiment

in which conditions were matched with those used by Friedman and Rafsky (1979)

in their power studies. The conclusions which were drawn from their investigations

are also true for the statistic proposed by Henze (1988), as stated in the latter paper.

In this thesis, the test statistic by Henze (1988) is preferred.

The test proposed by Henze (1988) is defined in the following way (see Section 2.2 for

notation). Let ‖·‖ represent a general norm on Rd. Define the rth nearest neighbour

of Zi by Nr(Zi), as that observation Zj which is such that ‖Zν − Zi‖ ≤ ‖Zj − Zi‖
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for exactly r − 1 values of ν, 1≤ν≤N ; ν 6=i, j. Define the indicator function

Ii(r) =

{
1 , if Zi and Nr(Zi) are from the same sample,

0 , otherwise.

Let K be a small integer (typically 1 ≤ K ≤ 6). To test the null hypothesis H0, we

use the statistic given by

TH(K) =
N∑

j=1

K∑
i=1

Ij(i),

that is, the number of same-type nearest neighbours amongst the K nearest neigh-

bours, and summed over the pooled samples. If the two populations are not identi-

cal, samples from one population will tend to cluster together in d-space. Therefore,

large values of TH(K) are expected under the alternative hypothesis (2.2). Henze

(1988) showed that for large samples the probability of the error of the first kind

does not depend on the hypothesized distribution and, therefore, the test is asymp-

totically distribution-free. Further, he showed that when the null hypothesis is true,

conditionally on the pooled sample, and for a general distance metric, the statistic

TH(K) is asymptotically normal. The asymptotic distribution of TH(K) is calculated

as follows:

(i) Define an indicator variable a+
ij by

a+
ij =

{
1 , if zj is amongst the set of K nearest neighbours of zi,

0 , otherwise;

(ii) For each observation zj in the K nearest neighbour graph of z1, . . . , zN, the

indegree is given by

d
(K)
j =

N∑
i=1

a+
ij, 1≤j≤N ;

(iii) Define the quantities C
(K)
N and V

(K)
N by

C
(K)
N =

1

NK

N∑
i=1

N∑
j=1

a+
ija

+
ji and V

(K)
N =

1

NK

N∑
i=1

(d
(K)
j −K)2.

(iv) The parameters of the asymptotic distribution of TH(K) are approximated by

E(TH(K)) = K

{
m(m− 1) + n(n− 1)

N − 1

}
, (3.13)
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Var(TH(K)) = K
mn

N − 1
×

{
4(m− 1)(n− 1)

(N − 2)(N − 3)

(
1 + V

(K)
N − 2K

N − 1

)
+ A

}
, (3.14)

where

A =

(
1− 4(m− 1)(n− 1)

(N − 2)(N − 3)

)
C

(K)
N .

For sufficiently large sample sizes m and n,

T̃H(K) =
TH(K) − E(TH(K))√

Var(TH(K))

is approximately standard normal. The null hypothesis (2.1) is rejected at the

nominal significance level α, if

T̃H(K) ≥ Cα,

where Cα is the 100(1 − α)th percentile of the standard normal cumulative distri-

bution function (Henze, 1988).

The MATLAB computer routines for computing the statistic TH(K) are given on

the accompanying CD in the directory Statistics. HenzeNN_perm_test.m is the

permutation implementation of the test which was used. HenzeNN_Asy_test.m is

the asymptotic implementation of the test.

3.3.2 The Hall-Tajvidi Statistics

In a somewhat similar procedure to the work by Henze (1988) and Schilling (1986),

Hall and Tajvidi (2002) made use of interpoint distances to determine the number

of nearest neighbours of each observations in the pooled sample. The interpoint

distances can be computed by any of the equations (3.10), (3.11), and (3.12). Their

test statistic as defined at (3.15) is a weighted sum of absolute deviations of the

number of nearest neighbours of each observation from the respective samples, from

their respective expected values deduced by permutation argument. The power of

the statistics for various combination of weights are investigated in a simulation

study. Hall and Tajvidi (2002) performed the study of power of the two statistics

at (3.15) for location as well as scale alternatives in a multivariate setting, and

included Mann-Whitney and two-sample Kolmogorov-Smirnov for the same distri-
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butional characteristics in a univariate setting.

The computational procedure of the statistics is described in the following way.

The distance measure denoted by D(u,v) on the sample space, is the basis for the

test. Compute distances of each observation to all other observations in the pooled

sample Z, i.e. compute D(Xi,Zk) for Zk∈Z\Xi {i = 1, . . . ,m}, and D(Yi,Zk) for

Zk∈Z\Yi {i = 1, . . . , n}. For {j = 1, . . . , m+n−1}, define the following quantities:

(i) Mi(j) is the number of observations in Y that are among the j nearest neigh-

bours of Xi in Z\Xi (i = 1, . . . , m);

(ii) Ni(j) is the number of observations in X that are among the j nearest neigh-

bours of Yi in Z\Yi (i = 1, . . . , n).

Mi(j) and Ni(j) are computed using the upper portion of the column vector of

ordered distances. For distances of observations from sample X, the number of

nearest observations up to the size of sample Y are used while distances involving

observations from sample Y, number of nearest observations up to the size of sample

X, are used. Hall and Tajvidi (2002) showed that conditional on the pooled sample

Z, Mi(j) and Ni(j) are hypergeometrically distributed random variables when the

null hypothesis is true, with means

E0 (Mi(j)|Z) =
nj

m + n− 1
and E0 (Ni(j)|Z) =

mj

m + n− 1
,

where E0 is the expectation when the null hypothesis H0, is true.

Let DM and DN denote the deviations of M and N from their mean values under

H0, then

DMi(j) =

∣∣∣∣Mi(j)− nj

m + n− 1

∣∣∣∣ and DNi(j) =

∣∣∣∣Ni(j)− mj

m + n− 1

∣∣∣∣ .

Statistics THT and SHT for testing the null hypothesis against the omnibus alternative

are given by

THT =
1

m

m∑
i=1

n∑
j=1

[DMi(j)]
γw1(j) +

1

n

n∑
i=1

m∑
j=1

[DNi(j)]
γw2(j)

SHT =
n∑

j=1

w1(j)sup1≤i≤m[DMi(j)]
γ +

m∑
j=1

w2(j)sup1≤i≤n[DNi(j)]
γ, (3.15)
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where γ is a positive exponents (1 ≤ γ ≤ 2.5 in Hall and Tajvidi (2002)) and wk(j)

(k = 1, 2) are weight functions. Hall and Tajvidi (2002) suggested the possibilities:

(i) w1(j) = 1 and w2(j) = 1;

(ii) w1(j) = j and w2(j) = j;

(iii) w1(j) = n + 1− j and w2(j) = m + 1− j.

The sampling distribution and critical values of THT and SHT under the null hypoth-

esis (2.1) are evaluated by the permutation method. When the samples are from

identical populations, small values of both statistics THT and SHT, are expected.

The MATLAB program Hall_Tajvidi_perm_test.m, in the folder Statistics,

on the accompanying CD was used for the permutation implementation of the two

statistics.

3.3.3 The Friedman-Rafsky Statistic

The test also referred to as the ”multivariate runs test” is a proposition of Friedman

and Rafsky (1979). In essence, it is a multivariate version of the Wald-Wolfowitz

runs test. Friedman and Rafsky (1979) suggested a sorting scheme for higher di-

mensional random variables which is analogous to a sorted list in the univariate

case. They used the minimum spanning tree (MST), constructed from interpoint

distances of the pooled multivariate sample points, as a generalization of the uni-

variate sorted list. Their test statistic is the number of subtrees which result when

incompatible connections (edges connecting points from different samples) are re-

moved. Some theoretical properties of their statistic were investigated by Henze

and Penrose (1999). Henze and Penrose (1999) confirmed its asymptotic normal-

ity and showed theoretically that the multivariate two-sample tests based on it are

universally consistent as conjectured by Friedman and Rafsky (1979). Friedman

and Rafsky (1979) compared the power of their statistics to parametric competitors

(normal likelihood ratio and normal scores test) for location and scale alternatives.

Given a finite set Z of d-dimensional points (d ≥ 1), define the spanning tree on

Z as the set of points all of which are connected, such that the connections (called

edges) have no loops. In other words, starting from any node on the spanning
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tree, it is impossible to return to that point in any way except by backtracking i.e.

retracing the path you have taken. The tree length is the total of its Euclidean

edge lengths. Therefore, an MST is the spanning tree for which the total Euclidean

length of the connections is the smallest possible. That is, if each edge (i, j) of a

spanning tree has a Euclidean length δij, a spanning tree which minimises the sum∑
δij is called an MST. A MATLAB routine for MST is available on the internet

from http://www.models.kvl.dk/users/fans/Some_matlab/MST/index.asp. In

principle the MST is not necessarily unique, since there may be more than one span-

ning tree with the same minimal Euclidean length, if there are two or more edges of

identical Euclidean length.

To perform the test we proceed as follows:

1. Construct the minimum spanning tree of the pooled sample points Z;

2. Remove all edges which connect a point in X to a point in Y;

3. Define the Friedman-Rafsky statistic TFR, as the number of disjointed subtrees

(runs) that results.

Equivalently, TFR is one more than the number of edges in the minimum spanning

tree which joins observations from different samples. We can compute TFR by count-

ing the number of edges linking observations from different samples and then add

one to the total. If samples are from the same population, observations will be well

mixed and large values of the statistic TFR are expected. Hence, small values of TFR

provide evidence against the null hypothesis (2.1).

Under the null hypothesis the permutation distribution of the statistic is asymp-

totically normal with mean and variance given by

E(TFR) =
2mn

N
+ 1 ,

Var(TFR|Z) =
2mn(2mn−N)

N2(N − 1)
+

2mn(C −N + 2) [N(N − 1)− 4mn + 2]

N(N − 1)(N − 2)(N − 3)
. (3.16)
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The parameter C is dependent on the configuration of the MST. It is the number

of edge pairs sharing a common node and is given by

C =
1

2

N∑
i=1

di(di − 1),

where di is the degree of node i. The degree of a node is the number of edges incident

on it.

The standardized statistic is given by

T̃FR =
TFR − E(TFR)√

Var(TFR|Z)
, (3.17)

which is asymptotically standard normal.

The Friedman-Rafsky statistic TFR was calculated using the MATLAB routine

Friedman-Rafsky_Asy_test.m in the directory Statistics on the accompanying

CD. Friedman-Rafsky_perm_test.m is a permutation implementation of the same

test.

3.3.4 An Interpoint Distance Distribution Test

The work by Maa, Pearl and Bartoszyński (1996) proposes a theoretical framework

for dimension reduction of two multivariate samples into three sets of univariate

samples of interpoint distances. Motivated by the recognition that most multivari-

ate two-sample tests are based on interpoint distances of observations in the samples,

they showed that under mild conditions, the parent distributions of the two multi-

variate samples are different, if and only if the distributions of interpoint distances

differ within and between distributions. They further suggested using any three-

sample statistic (see Kiefer (1959) for some of the appropriate statistics) for testing

the homogeneity hypothesis that the three univariate samples have the same distri-

bution. For this thesis, statistics by Kiefer (1959) and Fisz (1963) were preferred

because they are consistent and have good power properties.

To compute the test statistic we need a distance function h defined on Rd. The

function h must satisfy some mild assumptions (see lemma 1 on page 1071 in Maa,
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Pearl and Bartoszyński (1996)). Some suitable examples of h are given in equations

(3.10) to (3.12).

The hypothesis of equality of two independent continuous multivariate populations

is equivalently formulated in terms of the equality of the univariate distributions of

interpoint distances as theorem 3.3.1 due to Maa, Pearl and Bartoszyński (1996)

shows.

Theorem 3.3.1 : Let X1, X2, X3 be independently and identically distributed d-

dimensional random variables with density f and cumulative distribution function

F , let Y1, Y2, Y3 be independently and identically distributed d-dimensional random

variables with density g and cumulative distribution function G, and suppose that the

X’s and Y’s are independent. If the densities f and g, and h satisfy the conditions

of lemma 1 of Maa, Pearl and Bartoszyński (1996), then

h(X1,X2) =` h(Y1,Y2) =` h(X3,Y3) if and only if F = G, (3.18)

where =` indicates equality of distributions.

Maa, Pearl and Bartoszyński (1996) conjectured that the hypothesis of equality of

the distributions of interpoint distances (equation (3.18)) is true for all distributions

F and G, and every h. It is noteworthy that the three sets of interpoint distances

are not independent. This has implications for assessing the differences between the

three underlying distributions.

To test the hypothesis (3.18), choose a function h, such as the Euclidean metric

(equation 3.12) and compute the following pairwise distances

h(xk,x`) =

{
d∑

i=1

(xki − x`i)
2

} 1
2

k = 1, . . . ,m− 1; ` = k + 1, . . . ,m;(3.19)

h(yk,y`) =

{
d∑

i=1

(yki − y`i)
2

} 1
2

k = 1, . . . , n− 1; ` = k + 1, . . . , n; (3.20)

h(xk,y`) =

{
d∑

i=1

(xki − y`i)
2

} 1
2

k = 1, . . . , m; ` = 1, . . . , n. (3.21)
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Then, any omnibus univariate test for assessing the equality of three distributions

is used to test the hypothesis formulated in theorem 3.3.1, namely, h(Xk,X`) =`

h(Yk,Y`) =` h(Xk,Y`). Rejection of the hypothesis is evidence against the of

equality of the underlying distributions of the two independent multivariate popu-

lations.

One possible statistic for testing the hypothesis at (3.18) is the three-sample Kol-

mogorov - Smirnov test proposed by David (1958). However, the statistic is very

restrictive because it requires that the number of observations in the two samples be

equal. This requirement makes it unsuitable for implementation in the IPDD (In-

terpoint distance distribution) test because the sizes of the three univariate samples

of interpoint distances resulting from the multivariate samples are always unequal.

However, a number of suitable tests are available in the literature (Fisz, 1963; Kiefer,

1959). Fisz (1963) discusses tests for assessing the equality of distributions of k inde-

pendent samples. These tests are applicable to the problem above (see Section 10.13

in Fisz (1963)). Kiefer (1959) also gives a method for testing the null hypothesis of

equality of k univariate populations. The tests given by both Fisz (1963) and Kiefer

(1959) are designed for independent samples. Of course, the three sets of interpoint

distances in (3.19) to (3.21) are not mutually independent. This is not important in

the context of this test, as permutation tests rather than asymptotic formulae are

used to calculate significance levels.

Let Sj,nj
(x), j = 1, 2, 3 be the EDFs of the three samples. Define the following

quantities

D1(n1, n2) = max
x
|S1,n1(x)− S2,n2(x)| and

D2(n1, n2, n3) = max
x

∣∣∣∣S3,n3(x)− n1S1,n1(x) + n2S2,n2(x)

n1 + n2

∣∣∣∣ .

The statistic given by Fisz (1963) is

TF = max{A1, A2}, (3.22)

where

A1 =

√
n2n1

n1 + n2

D1(n1, n2) and A2 =

√
n3(n2 + n1)

n1 + n2 + n3

D2(n1, n2, n3).
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The Kiefer (1959) statistic for testing the equality of the three populations is defined

by

TK =

{
max

x

3∑
j=1

nj

[
Sj,nj

(x)− Ŝ(x)
]2

} 1
2

(3.23)

where

Ŝ(x) =
1

n1 + n2 + n3

3∑
j=1

njSj,nj
(x).

The statistics TF and TK will be referred to as ”interpoint distance distribution”

(IPDD) statistics in subsequent chapters.

IPDD_Asy_test.m and IPDD_perm_test.m are the MATLAB programs in the folder

Statistics, on the accompanying CD in which the statistic TF and TK were imple-

mented. In the power studies, the permutation implementation IPDD_perm_test.m,

was used.

A variant of the above is to consider the univariate distributions of the nearest

neighbour interpoint distances only, instead of the full sets of interpoint distances.

The test is referred to as the Nearest neighbour distance distribution test (NNDD).

Denoting by ‖ · ‖ the Euclidean distance in d-dimensional space Rd, the three sets

of distances are:

dj = min
i6=j

‖xi − xj‖ i, j = 1, . . . , m;

dk = min
k 6=`

‖yk − y`‖ k, ` = 1, . . . , n;

dk` = min ‖xk − y`‖ k = 1, . . . , m; ` = 1, . . . , n (3.24)

where x ∈ X and y ∈ Y. The dimension reduction results in three univariate sam-

ples of sizes m, n and m + n. The statistics (3.22) and (3.23) are used to test the

equality of the three univariate distributions. In the sequel, the notation TNN

F and

TNN

K is used for the NNDD statistics.

The MATLAB routine NNDD_perm_test.m in the folder Statistics, on the ac-

companying CD, was used to implement the NNDD test via the statistics TNN

F and

TNN

K .

 

 

 

 



Chapter 3: Literature Review 28

3.3.5 The Baringhaus-Franz Statistic

The statistic due to Baringhaus and Franz (2001) was motivated by a conjecture by

Deuber (see Morgenstern (2001) for references). Deuber conjectured that:

(A) For equal numbers of black and white points randomly distributed in Euclidean

space the sum of the pairwise distances between points of equal colors is less

than or equal to the sum of the pairwise distances between points of different

colour;

(B) Equality holds only in the case when black and white points coincide.

The result is stated equivalently as

∫
‖u− v‖dFn⊗Gn(u,v)− 1

2

∫
‖u1 − u2‖dFn⊗Fn(u1,u2) (3.25)

−1

2

∫
‖v1 − v2‖dGn⊗Gn(v1,v2)≥0,

where U and V represent positions of the black and white points with respective

empirical distributions Fn and Gn (Baringhaus and Franz, 2001), and u1,u2 ∈ U;

v1,v2 ∈ V.

For independent X1, X2,Y1,Y2 Baringhaus and Franz (2001) deduced the inequal-

ity

E‖X1 −Y1‖ − 1

2
E‖X1 −X2‖ − 1

2
E‖Y1 −Y2‖≥0. (3.26)

Equality holds only if the two populations are identical (Baringhaus and Franz,

2001).

The proof by Morgenstern (2001) of the conjecture (3.25) motivated the test of

Baringhaus and Franz (2001). Their test statistic is a weighted sum of interpoint

distances within and between samples. It is shown to be consistent against all

alternatives and has good power performance against some parametric and non-

parametric competitors for location and scale alternatives.

With the assumption that X and Y have finite expectation, Baringhaus and Franz

(2001) proposed using the sample version of (3.26) to assess the validity of the

 

 

 

 



29 3.3 Statistics Based on Interpoint Distance

hypothesis of equality of the distributions i.e.

TBF =
1

m + n

m∑
i=1

n∑
j=1

‖Xi −Yj‖ − mn

2(m + n)m2

m∑
i=1

m∑
j=1

‖Xi −Xj‖ −

mn

2(m + n)n2

n∑
i=1

n∑
j=1

‖Yi −Yj‖ . (3.27)

The hypothesis (2.1) is rejected for large values of TBF.

The critical value and p-value of the statistic are obtainable by either bootstrapping

or the permutation method (Baringhaus and Franz, 2001). In this thesis, the test is

implemented using the permutation method.

The MATLAB routine Baringhaus_Franz_perm_test.m, in the directory

Statistics on the accompanying CD, was used for the implementation of the test.

3.3.6 The Weiss Statistic

The work of Weiss (1960) is similar to the approaches of Henze (1988) and Schilling

(1986). Weiss (1960) used interpoint distances to construct non-overlapping spheres

around observations of one sample and their nearest neighbour from the same sam-

ple. The test statistic is the number of spheres which contain no observations from

the other sample. Few theoretical properties of the statistic are known.

The procedure for computing the statistic is as follows:

(i) For each observation Xi, calculate the Euclidean distance

Ri =
1

2
min
i6=j

{‖Xi −Xj‖, . . . , ‖Xi −Xm‖} , i = 1, . . . , m.

(ii) Denote by Si the number of Yk ∈ {Y1 . . . ,Yn} which are contained in the

open sphere

{u : ‖u−Xi‖<Ri} ,

i.e. the number of Yk lying completely inside the sphere of radius Ri centered

on Xi.

 

 

 

 



Chapter 3: Literature Review 30

(iii) For a non-negative integer r, define the indicator function

Ii(r) =

{
1 , if Si = r

0 , otherwise.

(iv) Taking the case where r = 0, the test statistic is given by

Tm(0) =
1

m

m∑
i=1

Ii(0).

When sample X is different from sample Y, the combined sample is not properly

mixed. Many observations in X are isolated from the observations in Y and, as a

result a large value of the test statistic Tm(0) is expected. Therefore, the test is for

large values of the statistic Tm(0). If the role of X and Y are interchanged, the test

statistic is denoted by Tn(0). Asymptotically, the null hypothesis (2.1) is rejected if

Tm(0) >
2dγ

1 + 2dγ
or

Tn(0) >
2d 1

γ

1 + 2d 1
γ

, (3.28)

where γ = m
n

and d is the dimension (Weiss, 1960).

3.3.7 The Cross-Match Test

In a proposed test similar to that of Friedman and Rafsky (1979), Rosenbaum (2005)

used the interpoint distances to construct an optimal non-bipartite matching (ONM)

of observations from the pooled sample. An ONM is a procedure for matching ob-

servations into disjoint pairs that minimizes the total sum of distances within pairs.

The number of pairs made up of observations from different samples, known as

”cross-matches”, is of interest. The number of cross-matches is the test statistic.

The test is distribution-free and the null distribution of the test statistic is known

for small samples. For large samples, asymptotic normality applies (Rosenbaum,

2005). The power performance of the test statistic was investigated empirically in

the univariate case. However, it is unknown whether the test statistic is universally

consistent, or has satisfactory power in the multivariate setting because such prop-

erties were not ascertained in the study.
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The computation of the test statistic proceeds as follows:

(i) Firstly, the components of the pooled sample Z are ranked individually from

1 to N . The vector Ri is the d-tuple of ranks of the components of Zi.

(ii) The distance D(Ri,Rj) is defined to be the Mahalanobis distance between

vectors Ri and Rj i.e.

D(Ri,Rj) = (Ri −Rj)
T S−1

R (Ri −Rj) i < j,

where SR is the sample covariance matrix of the ranks. Clearly, there are
(
N
2

)

distinct pairwise distances D(Ri,Rj).

(iii) Using the
(
N
2

)
interpoint distances, construct an ONM of the observations

(Rosenbaum, 2005). The procedure requires that N is an even integer. If N

is an odd integer, an (N + 1)th pseudo-observation is created with distances

D(Ri,RN+1) = 0 for i = 1, . . . , N . Construct an ONM with N+1 observations,

and discard the pair containing the pseudo-observation.

(iv) To define the cross-match test statistic, let Tx
k be the number of pairs with k

observations from sample X, k = 0, 1, 2. Interchanging the role of X and Y,

Tx
0 = T

y
2 , Tx

1 = T
y
1 and Tx

2 = T
y
1 all hold. The number of cross-matches Tx

1 ,

henceforth denoted by T1, is invariant and therefore, is taken to be the test

statistic (Rosenbaum, 2005).

(v) If samples X and Y are from identical populations, a large number of Xi are

optimally matched to Yi. Consequently, small values of T1 are significant

(Rosenbaum, 2005).

Under the null hypothesis, the exact small sample permutation distribution of T1 is

given by

P (T1 = t1|Z) =
2t1

(
N
2

)
!

NCmt0!t1!t2!
.

The same distribution is obtained when m and n are interchanged. For sufficiently

large samples, Rosenbaum (2005) showed that the asymptotic distribution of T1 is

normal with parameters approximated by

E(T1) =
mn

N − 1
and
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Var(T1) =
2mn(m− 1)(n− 1)

(N − 3)(N − 1)2
. (3.29)

3.3.8 Notes

(i) Multivariate two-sample tests described in this chapter can be used to perform

goodness-of-fit tests. To perform the goodness-of-fit test, given a sample X,

a Monte Carlo sample Y is drawn from the specified distribution, and the

hypothesis of equality of the two multivariate samples is tested. Of course,

the size of sample Y would need to be generally large, which may render such

an approach cumbersome in practical applications.

(ii) Most of the test statistics described above are based on the distances between

observations. Changing a measure of distance between sample points can po-

tentially influence the value of the test statistic and therefore the result of the

test. The Euclidean distance was used because it is invariant to orthogonal

and some affine transformations. The power against some specific alternatives

may be affected by the choice of the distance metric. All test statistics dis-

cussed, except the SKS and the cross-match statistics, satisfy the invariance

property under orthogonal and some affine transformations. The SKS statis-

tic is invariant to transformations which preserve the ordering of the sample

points in d-space, for example, componentwise standardization and scaling.

The invariance of the cross-match statistic is with respect to transformations

that preserve componentwise rankings of the observations and the Mahalanobis

interpoint distance of the ranks.

(iii) The Hall-Tajvidi statistics THT and SHT allow for choices of the exponents γ and

weights wk(j). Empirical studies of the two statistics, for many combinations

of exponents and weights, have shown that there are only minor differences in

power properties of the different versions of the statistics. Thus, the simplest

versions, with constant weights wk(j) = 1 and exponent γ = 1.0, can be used

confidently with minimal loss of power (Hall and Tajvidi, 2002). In the power

studies reported in Chapter 4, the simplest versions of the statistics THT and

SHT were used.

(iv) Excepting the test statistic by Weiss (1960) , all the test statistics discussed

are symmetric - they give the same value when the roles of X and Y are
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interchanged. Clearly, generally Tm(0) 6=Tn(0) in (3.28). To remove the lack

of symmetry, Weiss (1960) suggested using the mean of Tm(0) and Tn(0) as a

test statistic.

(v) Only seven of the nine multivariate two-sample tests discussed above were

considered in the power studies. The test proposed by Weiss (1960) has some

unknown theoretical properties while the complexity of implementation of the

statistic by Rosenbaum (2005) prompted its omission.

(vi) Results from initial simulations suggested that the powers of the statistics TF

and TK are similar, as are powers of TNN

F and TNN

K . Therefore, in subsequent

chapters, only the powers of TK and TNN

K are reported, for IPDD and NNDD

tests respectively, in all power studies where the similarity in power was ob-

served.
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Power Studies

This chapter gives a discussion of the power performance of some of the multivari-

ate two-sample test statistics described in Chapter 3. Various conditions which were

used in the reported power studies are discussed. The results are reported in Section

4.4. Additionally, a graphical exploration for compatibility between two multivariate

samples based on the DD-plots is included in Section 4.5. The MATLAB routines

used in the power analyses are given in the directory Power Studies, on the accom-

panying CD.

A major concern in application of the proposed multivariate two-sample tests in-

vestigated in this study is the limited information on their performance. In some

studies, this concern was addressed in a limited fashion. For example, Baringhaus

and Franz (2001) studied the power of the test statistic TBF under various condi-

tions, including dimensionality and distributional characteristics like location and

scale. The authors considered sampling from multivariate normal as well as non-

normal populations, including the multivariate logistic population. They compared

the power of the statistic TBF to other test statistics in both the univariate and

multivariate settings. Their results suggest that the power of TBF is very close to

Hotelling’s T2 statistic for multivariate normal location alternatives, and has consid-

erably more power than the statistic TH(K) of Henze (1988) for multivariate logistic

alternatives. Friedman and Rafsky (1979) investigated the power of the TFR rela-

tive to parametric competitors. They studied the sensitivity of TFR, among other

statistics, to the combination of dimensionality and distributional characteristics for

multivariate normal samples. The results revealed that the power of TFR generally

34
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improves when more than one minimum spanning tree (preferably three or more) are

used in high dimensions, when compared to other parametric and non-parametric

competitors, for both multivariate normal location and scale alternatives. Schilling

(1986) conducted a power study based on a combination of dimensionality, dis-

tributional characteristics and the number of nearest neighbours. Schilling (1986)

sampled from the multivariate normal population. Information about the power of

TH(K) can be deduced from his results. The powers of THT and SHT were studied by

Hall and Tajvidi (2002) for bivariate normal scale alternatives and choice of distance

metric [see (3.10) to (3.12)]. The results of the study suggest that SHT has slightly

better power than THT when variables are correlated (ρ = 0.5) (Hall and Tajvidi,

2002).

The power of the test statistics depends not only on the factors such as dimen-

sionality, type of parent distribution, and sample differences, but also on the sample

sizes and level of significance. With increased sample sizes (m and n), test statistics

will detect differences between two samples with higher probability. In other words,

the test statistics have power approaching one when the sample sizes are increased,

a property known as consistency. This property holds for all test statistics described

in Chapter 3. The difficulty regarding the large sample size required to attain good

power was emphasized by Schmidt (1996). Schmidt (1996) suggested that scien-

tific inquiry can be retarded because many worthwhile research projects cannot be

conducted, since the sample sizes required to achieve adequate power of some test

statistics may be difficult, if not impossible, to attain. The power problem of the

test statistics can be ameliorated by capitalizing on the fact that some statistics

are more powerful in detecting specific deviations from the null. As a result, an

investigation into the powers of the test statistics described in the preceding chapter

is worthwhile.

4.1 Sampled Populations

There are many distributions that are of practical interest. The selection of three

distributions for this study at least reflects some variety of properties of distributions.

The power of some of the test statistics described in Chapter 3 was studied for

samples drawn from three bivariate populations. The populations sampled were:

 

 

 

 



Chapter 4: Power Studies 36

bivariate normal; bivariate uniform; and bivariate exponential. The populations are

discussed in the following sections.

4.1.1 Bivariate Normal Population

The bivariate normal population is a symmetric and mesokurtic distribution. Loca-

tion, scale, and correlation alternatives were considered. In all studies for bivariate

normal populations, sample X was drawn from the standard bivariate normal distri-

bution BVN(0,I). For location alternatives, sample Y was drawn from the bivariate

normal distribution BVN(µ,I) with mean vector µ =

(
∆

0

)
, where ∆ ranged over

the interval [0,2]. For the scale alternatives, sample Y was drawn from the BVN(0,

ΣS) with covariance matrix ΣS of the form

(
σ 0

0 1

)
, where σ was varied from 1

to 6.5. In the case of the correlation alternatives, sample Y were drawn from the

BVN(0, ΣC) with covariance matrix ΣC of the form

(
1 ρ

ρ 1

)
, where ρ was ranged

over the interval [0,0.99]. The results are reported in Section 4.4.3.

4.1.2 Bivariate Uniform Population

The bivariate uniform population is a symmetric but highly platykurtic distribution.

The standard bivariate uniform distribution is one with observations uniformly dis-

tributed in the unit square and is denoted by BVU[0, 1]. The power performance

of some of the test statistics was studied for location, scale, and correlation alter-

natives, as in the bivariate normal case. In all simulation experiments of bivariate

uniform population, sample X was drawn from the standard bivariate uniform distri-

bution BVU[0, 1]. For location alternatives, sample Y was drawn from the bivariate

uniform distribution with the mean vector shifted by

(
∆

0

)
. The parameter ∆

was varied from 0 to 0.5. In the case of the scale and correlation alternatives, Y

was sampled from bivariate uniform populations differing from BVU[0, 1] only by

covariance matrices. The conditions used for the scale and correlation alternatives

are the identical to those used for the similar alternatives in the bivariate normal

cases. Results are presented in Section 4.4.4.
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4.1.3 Bivariate Exponential Population

A highly skewed population which was studied, is the bivariate exponential popu-

lation. Scale/location and correlation alternatives were considered. In both cases,

sample X was sampled from the standard bivariate exponential distribution BVE(1),

with independent marginals and marginal means λ1 = λ2 = 1. Sample Y was drawn

from the BVE distribution with covariance matrix ΣS of the form

(
σ 0

0 1

)
, where

σ was varied from 1 to 6.5, for location/scale alternatives. Correlation alternatives

were dealt with as for the bivariate normal case. The results are reported in Section

4.4.5.

4.2 Estimation of Power for Finite Samples

The power of a multivariate two-sample test statistic is the probability of rejecting

the null hypothesis (2.1), given that it is false. For complex non-parametric multi-

variate two-sample test statistics studied, published tables or commercial software

(e.g. SAS, S-Plus, SPSS) are not available like there is for most univariate para-

metric tests. In this case, Monte Carlo simulations provide a very useful way of

estimating power. In the simulation experiments, the simulated samples X and Y

were generated independently.

The algorithm for estimating power of any test statistic numerically is as follows:

1. Simulate a sample, X of size m according to a standard multivariate dis-

tribution F , and a sample Y of size n according to a specified multivariate

distribution G;

2. Calculate the multivariate two-sample test statistic;

3. If the test statistic is statistically significant at the pre-specified α-level, the

result is noted;

4. Return to step one and repeat the procedure a large number of times W .

The estimated power ~̂, the probability of a statistically significant result, is obtained

by computing the proportion of the runs (replicates) which produced significant
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results:

~̂ =
Number of times H0 is rejected at α-level in W replications

Total number of replications (W )
. (4.1)

By sampling theory, ~̂ is a binomial random variable. Therefore, for sufficiently

large W , the distribution of ~̂ is approximately normal with mean ~ and standard

deviation (also known as the standard error of the proportions) of

σ~ ≈
√
~(1− ~)

W
,

≈
√
~̂(1− ~̂)

W
. (4.2)

Equation (4.2) indicates explicitly the dependence of the estimated power on the

number of replicates W . Thus, for a better approximation of the power of a test

statistic, the number of replicates must be sufficiently large.

4.3 Computational Details

Power simulations were done using the MATLAB software package on a 3 Giga-

Hertz Pentium 4 computer. Every point in the parameter range considered, for all

the alternatives reported in the subsequent sections, represents a specific number

of replicates W and permutations B. Due to considerations of computing time and

computing resources, power was approximated for a fairly small number of replica-

tions W = 500 and permutations B = 500, and few points in the parameter ranges

were chosen. For the ranges of location, scale and correlation, ten equally spaced

points were used, hence the non-smooth nature of the reported power functions

appearing below. Therefore, under the conditions for which power studies were con-

ducted, the tests can be arranged in the following ascending order of computational

times: Baringhaus-Franz, SKS, IPDD, NNDD, Henze, Hall-Tajvidi, and Friedman-

Rafsky tests. In general, the computational time for each set of results in Figures

4.9 to 4.17 was approximately 6 days.

The multivariate two-sample tests studied are intensive computationally because

of the nature of the algorithms required to compute the statistics, for example, the
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Friedman-Rafsky and Hall-Tajvidi statistics. If the computer implementation is not

efficient computationally, the demand is exacerbated further. The implementation

of the tests was done by the permutation method except for the Friedman-Rafsky

statistic TFR for which the asymptotic result was used. The latter strategy was

supported by results of trial simulations.

4.4 Power Comparisons

Most of the power studies of multivariate two-sample tests reported in the litera-

ture concentrated on null hypotheses defined by the standard multivariate normal

distribution against location or scale alternatives or both. The Friedman-Rafsky

and Hall-Tajvidi tests are examples. In this thesis, the power performance of some

multivariate two-sample statistics discussed in Chapter 3 viz. Baringhaus-Franz

TBF, Friedman-Rafsky TFR, Hall-Tajvidi THT and SHT, Henze TH(K), IPDD statistics

TF and TK, NNDD statistics TNN

F and TNN

K , and SKS statistic TSKS, are studied for

various alternative distributions discussed in Section 4.1. Figures of the power func-

tions, in different colours, are given in Power_Figures.pdf in the directory Power

Studies, on the accompanying CD.

4.4.1 Estimates of Type I Error Rates

Under the null hypothesis, the power ~ must be equal to the nominal significance

level α (Thas, 2001). In this study, some statistical tests investigated are imple-

mented with approximate critical values and significance level α. The implication

is that the exact p-values were replaced with values approximated from the samples

by the permutation method. As a result, power evaluated under the null hypothesis

may be slightly different from the nominal significance level α for some test statistics.

The lack of conformity of the approximated power ~̂ to α under the null hypothesis

is known as the bias of a test statistic with respect to the given nominal signifi-

cance level α (Greenberg, 2006). Different test statistics deviate differently from

the nominal significance level α, that is, some test statistics underestimate while

others overestimate the power under the null hypothesis. Bias is caused by several

factors viz. sample size, number of permutations and number of replications among

others. The bias is significantly reduced by using large sample sizes m and n, and

a sufficiently large number of permutations B as well as replications W (Thas, 2001).
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To check for accuracy of type I error probabilities for the studied test statistics,

simulations were done for samples of sizes m = 60 and n = 50 with W = 2000

replications. The nominal significance levels used were 0.010, 0.050, and 0.100. The

p-values were approximated by using the empirical results of B = 500 permutations,

conditioned on the pooled samples. The estimate of type I error probabilities are

proportions of the 2000 replicates which were declared significant at the indicated

nominal significance level. Table 4.1 shows empirical levels of all the test statistics

for the populations studied. The results generally indicate good approximations to

nominal significance levels. Approximations for nominal level 0.050 seem equally

good across all test statistics in Table 4.1. On the whole, the deviations of the

estimated probabilities from nominal values are satisfactorily small.

Table 4.1: Estimates of type I error probabilities

Statistics

Bivariate Normal Bivariate Exponential Bivariate Uniform

α=0.01 α=0.05 α=0.10 α=0.01 α=0.05 α=0.10 α=0.01 α=0.05 α=0.10

TBF 0.005 0.043 0.097 0.010 0.049 0.098 0.007 0.049 0.101
TFR 0.007 0.052 0.077 0.008 0.056 0.085 0.007 0.047 0.075
THT 0.009 0.044 0.098 0.010 0.049 0.098 0.008 0.050 0.108
SHT 0.009 0.050 0.097 0.010 0.051 0.095 0.009 0.049 0.097
TH(4) 0.016 0.058 0.108 0.017 0.062 0.108 0.012 0.043 0.091
TF 0.009 0.063 0.109 0.010 0.048 0.092 0.008 0.051 0.096
TK 0.010 0.062 0.108 0.009 0.048 0.093 0.008 0.050 0.096
TNN

F 0.013 0.055 0.100 0.006 0.050 0.101 0.012 0.049 0.096
TNN

K 0.013 0.059 0.105 0.009 0.050 0.105 0.009 0.047 0.095
TSKS 0.007 0.041 0.099 0.010 0.046 0.090 0.013 0.050 0.097

Preliminary empirical studies of the multivariate two-sample tests have shown that

sufficient accuracy in estimating α with W = 500 replicates is guaranteed for a mod-

erate size of B = 500 permutation resamples. Therefore, in the simulation studies

of the tests reported subsequently, sample sizes were m = 60 and n = 50, while

the number of replicates W and permutation resamples P were fixed at 500. The

power properties of the test statistics were investigated for a nominal significance

level α = 0.050.
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4.4.2 The Parameter K in the Henze statistic TH(K)

Henze’s statistic TH(K) is a function of K, the number of nearest neighbours taken

into account. When the value of K is changed, the statistical properties of TH(K) are

significantly influenced. Particularly, the power performance of TH(K) improves with

increasing K. However, beyond a certain value, further increase of K produces a

diminishing return on the power. Figures 4.1 to 4.8 show power functions of TH(K)

at a nominal significance level α = 0.05, for all populations. The value of K was

range from 1 to 9.
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Figure 4.1: Power functions for TH(K) for bivariate normal location alternatives.
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Figure 4.2: Power functions for TH(K) for bivariate normal scale alternatives.
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Figure 4.3: Power functions for TH(K) for bivariate normal correlation alterna-
tives.
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Figure 4.4: Power functions for TH(K) for bivariate uniform location alternatives.
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Figure 4.5: Power functions for TH(K) for bivariate uniform scale alternatives.
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Figure 4.6: Power functions for TH(K) for bivariate uniform correlation alterna-
tives.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Difference in scale/location σ

P
ro

po
rt

io
n 

of
 s

am
pl

es
 r

ej
ec

tin
g 

H
0 a

t 5
%

 le
ve

l

 

 
T

H (1)

T
H (2)

T
H (3)

T
H (4)

T
H (5)

T
H (6)

T
H (7)

T
H (8)

T
H (9)

Figure 4.7: Power functions for TH(K) for bivariate exponential scale/location
alternatives.
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Figure 4.8: Power functions for TH(K) for bivariate exponential correlation alter-
natives.

Some observations can be made based on the results in Figures 4.1 to 4.8. The

number of the nearest neighbours K up to 3 produced test statistics TH(K) with

power functions which are clearly distinguishable from each other. Generally, for

K≥4, the power performance increased more slowly with increasing K except for the

case of bivariate exponential scale/location alternatives (Figure 4.7). This suggests

that when the number of nearest neighbours K is at least 4, the power of the test

statistic TH(K) is minimally affected by the increase in K. The results provide a useful

guideline when selecting the value used in the power study because no criterion

for choosing an optimal value of K is available (Schilling, 1986). Therefore, for

simulations reported subsequently, K = 1 (for comparison) and K = 4 are used.

4.4.3 Bivariate Normal Distribution

This section discusses result of the power studies when the populations sampled are

normal differing in locations (Figure 4.9 ), scale (Figure 4.10 ), and correlations

(Figure 4.12 ). The test statistics compared are TBF, TFR, THT, SHT, TH(K), TNN

K , TK,

and TSKS.
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Location Differences

Figure 4.9 shows results from the power studies of the bivariate normal location al-

ternatives. Empirical results suggest that when there is a location difference between

the two bivariate normal populations, the Baringhaus-Franz statistic TBF performs

better than every other test statistic for the whole range of the location shifts. This

result is not surprising because TBF is known to be relatively sensitive to location

differences between multivariate normal populations (Baringhaus and Franz, 2001).

Baringhaus and Franz (2001) showed empirically that TBF compares satisfactorily

well to the parametric competitor, Hotelling’s T2 statistic, for a similar setting. As

Figure 4.9 shows, the performances of TSKS, THT and SHT are virtually the same.

The statistic TH(4) showed moderate power, while the remainder - particularly TNN

K

- performed poorly.
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Figure 4.9: Power functions for bivariate normal location alternatives.
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Scale Differences

Univariate tests of Kolmogorov-Smirnov type are known to be generally sensitive

non-parametric tests for differences in scale (Hall and Tajvidi, 2002). However, the

theoretical property is not obviously generalizable to the higher dimensional type of

Kolmogorov-Smirnov statistics as attested by the poor performance of TSKS for this

setting. The statistic TK is seen to dominate the other non-parametric statistics

for normal scale alternatives. It is not surprising that the statistic on the full set

of interpoint distances TK is much more sensitive to scale differences than the one

based only on the nearest neighbour distances, TNN

K . Performances of the THT, SHT,

TH(4) and TBF statistics are similar, with TFR somewhat worse. The performances of

the TSKS, TH(1) and TNN

K statistics are poor.
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Figure 4.10: Power functions for bivariate normal scale alternatives.

Sometimes, particular deviations from the null hypothesis are not of interest. I

digress slightly to consider the case where the two sample means are set equal in
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order to eliminate the possibility of a significant result due to different population

means (Figure 4.11).
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Figure 4.11: Power functions for location-adjusted bivariate normal scale alter-
natives.

Additional power studies done for the normal scale alternatives, in which the two bi-

variate normal samples were mean centered, are reported in Figure 4.11. In the case

of the IPDD statistics, the distribution of the between-sample distances [see (3.21)]

of the adjusted samples was ignored and only the distributions of within-sample

distances [see (3.19) and (3.20)] were considered. To assess the equality of the two

resulting univariate distributions, the two-sample univariate Kolmogorov-Smirnov

test statistic was used. Results indicate that the Kolmogorov-Smirnov statistic is

especially sensitive against the scale alternatives. The performance ranking of the

statistics is similar to that in Figure 4.10, with the power of the usual Kolmogorov-

Smirnov statistic matching that of the statistic TK. Noticeable in Figure 4.11 is the

poor performances of the statistics TBF and TSKS for small scale differences.
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Correlation Differences
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Figure 4.12: Power functions for bivariate normal correlation alternatives.

The results in Figure 4.12 show that the performance of statistics TH(4) and TFR are

substantially better than those of the other statistics for the correlation alternatives,

with TH(1) and TNN

K next best. A common feature of these four statistics is that they

are all based in some way on nearest neighbour distances of the sample observations.

Therefore, this suggest that differences in dependence structure could more easily be

detected using nearest neighbour based test statistics. It is clear the test statistics

TFR and TH(4) are recommended for normal correlation alternatives. Note that the

power curves for TF is shown explicitly, as the power for this IPDD statistic is

considerably lower than that of TK in this instance.
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4.4.4 Bivariate Uniform Distribution

Location Differences

The powers of the test statistics are considerably different for sufficiently large lo-

cation differences (Figure 4.13). Generally, TBF is the most powerful. The statistics

T NN
K and TK are poorest.
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Figure 4.13: Power functions for bivariate uniform location alternatives.
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Scale Differences
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Figure 4.14: Power functions for bivariate uniform scale alternatives.

As is apparent from Figure 4.14, the powers of TBF, TK, TSKS, THT, and SHT are high

for this setting. For TFR the performance was moderate while that of the statistic

TNN

K was clearly the worst. Thus, based on these results, it is clear that all the test

statistics except TH(1), TNN

K and TFR, have good power against bivariate uniform scale

differences.
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Similarities and differences between the results from two scale alternatives in Figures

4.10 and 4.14 are:

(i) the statistics TF and TK performs very well against scale alternatives for both

populations;

(ii) TNN

K had the lowest power against scale alternatives for both populations. The

powers of THT, SHT, TH(4)and TBF are generally high against scale alternatives

for both populations;

(iv) the performance of TSKS is very good against bivariate uniform scale alterna-

tives but poor against bivariate normal scale alternatives;

(v) higher powers were generally observed for all the statistics against bivariate

uniform scale alternatives than for the bivariate normal scale alternatives.
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Correlation Differences
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Figure 4.15: Power functions for bivariate uniform correlation alternatives.

The results are shown in Figure 4.15. In general, the power functions show that

the performances of TBF and TH(4) were noticeably better and that of TK was the

poorest for this setting.
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4.4.5 Bivariate Exponential Distribution

Scale/Location Differences
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Figure 4.16: Power functions for bivariate exponential scale/location alterna-
tives.

Figure 4.16 shows the results from the power studies for exponential scale/location

alternatives. There are large differences in power between statistics. Clearly, TBF

has the highest power while TH(1) and TNN

K have the lowest power for this setting. The

performances of TSKS, TK, THT and SHT are intermediate and very similar. Noticeable

in Figure 4.16, is the underperformance of most nearest neighbour based statistics

TFR, TH(4), TH(1) and TNN

K for this setting. This implies that nearest neighbour based

statistics are not appropriate for scale problems when samples are drawn from highly

skewed (exponential) populations.
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Major similarities and differences between the result of the exponential scale/location

alternatives in Figure 4.16 and those observed for location alternatives of the normal

(Figure 4.9) and uniform (Figure 4.13) populations are:

(i) TBF is the most powerful statistic against location alternatives for all three

populations;

(ii) the power of TK is similar to that of TNN

K for bivariate uniform location alterna-

tives but very different for the case of the bivariate normal location alternatives

and bivariate exponential scale/location alternatives. The latter performed

particularly poorly against location alternatives across all populations;

(iii) the powers of TSKS, THT and SHT are high against bivariate normal location

alternatives and bivariate exponential scale/location alternatives but mediocre

against the bivariate uniform location alternatives;

(iv) TH(4) performed very well against bivariate normal and bivariate uniform lo-

cation alternatives, but only moderately against bivariate exponential

scale/location alternatives.

Correlation Differences

Figures 4.17 (a) and (b) show estimated power functions of all test statistics when

populations sampled are bivariate exponential differing in dependence structures.

The results in Figure 4.17 (b) were obtained to verify those in (a) as the curve

shapes for several of the statistics (particularly TK, TF and TH(1)) appear unusual.

The powers of most test statistics are generally high with TH(4) best for this setting.

Clearly, over the whole range of the correlation, TF and TK have far less power than

other test statistics. There are several examples of changes in power of statistics

with changes in the magnitude of correlations (for example TFR and TBF; TSKS and

THT; THT and TH(1)).
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(b)
Figure 4.17: Power functions for bivariate exponential correlation alternatives.
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Some noticeable differences and similarities among the results for correlation differ-

ences in Figures 4.17, 4.12 and 4.15 are:

(i) the powers of TH(4) and TBF were generally the highest in detecting correla-

tion differences, but the latter performed very poorly against bivariate normal

correlation alternatives;

(ii) the performances of TF and TK were the poorest against correlation differences

across all the populations;

(iii) generally, the powers of all the statistics were high against the bivariate uni-

form correlation alternatives;

(iv) the powers of all the statistics are generally low against bivariate normal cor-

relation alternatives. The performances are very similar for small differences

in correlation.

4.4.6 General Discussion and Recommendations

It is not possible to recommend a particular multivariate two-sample test statistic

as having the highest power in all instances discussed. However, some test statis-

tics were shown to have good power against specific types of alternatives for all

populations. Therefore, based on the results from the power studies, recommenda-

tions about the power of the test statistics against specific departures from the null

hypothesis are made with regard to the type alternatives:

(i) The powers of statistics TBF, TSKS, TH(4), THT and SHT were generally high

against location alternatives. This is true regardless of the distribution sam-

pled. These test statistics showed robustness to distributional geometry. The

statistic TBF by Baringhaus and Franz (2001) should be preferred to other

statistics for location-shift problems.

(ii) The statistics TK, TBF, TH(4), THT and TSK were shown to generally be powerful

for scale alternatives. However, the power properties of the statistics exhibited

dependence on the distributional geometry of the sampled populations. The

power of TBF was low for samples from the bivariate normal distribution.

Overall, the statistic TK is good across all populations and therefore should

be given preference for scale problems.
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(iii) The statistics TH(4), TFR and TH(1) were generally powerful for the correlation

alternatives. TBF performed well for uniform and exponential distributions

but very poorly for normal distributions. Particularly, TH(4) and TFR are con-

siderably robust to all the populations investigated and should therefore be

preferred to other test statistics for correlation problems.

4.5 The Depth-Depth Plots

The concept of data-depth has been used for various multivariate analysis tech-

niques, among them multivariate comparison, multivariate classification and multi-

variate outlier detection. In this section, multivariate comparisons of two distribu-

tions based on the data-depth metric are discussed. The technique is illustrated via

the DD-plot. The Mahalanobis depth was used to quantify the depth of the sample

points. DD-plots, which show the depth values of the pooled sample relative to the

two sample centroids are reported. Distributional characteristics studied include

location and scale (for studies of other characteristics see Liu, Parelius and Singh

(1999) and references therein). Sample sizes of m = 100 and n = 100 were used in

all cases.
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Figure 4.18: DD-plot for identical distributions.

If the null hypothesis (2.1) is true, the DD-plot defined in Section 3.1 should be

clustered along the line y = x, as Figure 4.18 shows. The two samples were drawn

from the standard bivariate normal population BVN(0,I). This pattern is expected

irrespective of the sampled population (Liu, Parelius and Singh, 1999).
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Figure 4.19: DD-plot for distributions with location difference.

Figure 4.19 shows the DD-plot with one sample from BVN(0,I) and the other sample

from BVN(µ,I) with the location shifted to µ = (1, 0)T. In this case, the DD-plot

shows an obvious deviation from the line y = x, in a symmetric fashion as if the

DD-plot were a scatter plot. The pattern of departure from linearity characterizes

the location difference (Liu, Parelius and Singh, 1999).
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Figure 4.20: DD-plot for distributions with scale difference.

Figure 4.20 shows the DD-plot with one sample from BVN(0,I) and the other sample

from the BVN(0,4I). Notice the arching of points above the diagonal line (y = x). In

Figure 4.20, the depth values calculated with respect to BVN(0,4I) were plotted as x-

co-ordinates. Typically, this pattern of deviation from linearity, or its reflection with

respect to the line y = x, serves as an indicator of scale differences in multivariate

settings (Liu, Parelius and Singh, 1999).

 

 

 

 



Chapter 5

Analysis of Cluster Data

A globular cluster is a spherical collections of typically tens of thousands of stars,

placed closely together in space. It has relatively high stellar density toward the

centre. In this chapter, data sets used consist of brightness measurements of glob-

ular cluster stars to illustrate comparison of high dimensional data by means of

the multivariate two-sample test statistics. The MATLAB programmes, as well as

the datasets used in the analyses below, are given in the folder Cluster Analysis

Routines, on the accompanying CD.

Piotto et al. (2002) used these data in the investigation of stellar dynamics and stel-

lar evolution in globular clusters. The data sets (available at the Padova Globular

Cluster Group archives at http://dipastro.astro.unipd.it/globular) contain

brightness data of the stars in globular clusters. The measurements were recorded

from the Wide Field and Planetary Camera 2 (WFPC2) images: WFPC2 is a camera

installed on the Hubble Space Telescope (HST). The camera features four detectors.

Three of these, arranged in a reverse L-formation, comprise the Wide Field Camera

(WFC) and adjacent to them is the Planetary Camera (PC), a fourth detector with

different optics to afford more detailed view over a smaller region of the visual field1.

WFC and PC images are typically combined, producing the WFPC2’s characteristic

image shape, such as Figure 5.1, for the cluster NGC 4833. PC image recordings are

identified by “chip number 1” (where “chip” refers to the detector). Measurements

from the WFCs are referred to as chip numbers 2, 3 and 4, depending on which of

the three WFC detectors was used. Photometric (i.e. brightness or intensity) data

1see http://en.wikipedia.org/wiki/Wide_Field_and_Planetary_Camera_2
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from the four detectors are stored in a single file known as a “4-chip-stack file”, for

each globular cluster. Table 5.1 shows a partial 4-chip-stack photometric file of

the NGC 4833 cluster. For each data set, the positions (x, y) of the stars reported

in the photometric files were extracted by chip number and then an appropriate

co-ordinate transformation was applied to find relative spatial positions of the stars.

Figure 5.1 shows the orientations of the four images from the PC, WFC2, WFC3

and WFC4 cameras for the NGC 4833 cluster.

Figure 5.2 illustrates selected stellar positions of the observations on PC, WF2, and

WF4, for the cluster NGC 4833 which were used in the analyses. Geometrically, the

three portions considered in Figure 5.2, for the NGC 4833 cluster, are congruent.

The purpose of the statistical analysis is to study the homogeneity of the stellar

brightness properties across the globular clusters. This aim is facilitated by first

comparing stars from two regions far from the centre - the outer quarters of chips 2

and 4 are used for this purpose [step (i)]. If the null hypothesis of equal populations

is accepted, these two sets of data are combined and compared with the photometric

properties of the stars from the globular cluster centre, that is, chip 1 stars [step (ii)].

Single-chip data sets contain measurements of each star on the chip through two dif-

ferent filters denoted by F439W and F555W. Analysis concentrated on the F439W

and F555W brightness data. These were analyzed as bivariate data on the variables

colour index, X1 = F439W − F555W and brightness, X2 = F555W .

The procedures were performed for all the clusters analyzed. Figures 5.3 to 5.22

show scatter plots of the data sets which were analyzed, with vertical axes inverted.

Tables 5.2 and 5.3 list the cluster ID numbers and the results from the analyses

using the statistics investigated in the power studies. The p-values of all the test

statistics were obtained by 1000 permutation resamplings, for sufficient accuracy of

approximation, except the Friedman-Rafsky statistic TFR, for which p-values were

determined from its asymptotic distribution.
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Figure 5.1: Orientation of chips for the NGC 4833 cluster.
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Figure 5.2: Parts of the chips analyzed for NGC 4833 cluster.
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Table 5.1: Partial 4-chip-stack photometric data file for the NGC 4833 cluster
Star ID x y · · · F555W F439W · · · chip number
5 432.064 61.282 · · · 18.5258 19.1433 · · · 1
6 447.406 65.432 · · · 18.0003 18.4545 · · · 1
7 343.364 66.036 · · · 17.2418 17.8572 · · · 1
8 712.872 66.410 · · · 19.0763 19.7303 · · · 1
9 90.294 68.673 · · · 16.8930 17.5895 · · · 1
10 393.481 71.595 · · · 18.6304 19.1865 · · · 1

· · · · · · · · · · · ·
2 80.910 30.083 · · · 18.5981 18.9999 · · · 2
4 85.712 30.751 · · · 17.9398 18.3337 · · · 2
3 60.687 31.480 · · · 19.9315 20.5668 · · · 2
6 421.098 31.625 · · · 20.0532 20.8092 · · · 2
5 120.278 31.809 · · · 18.7695 19.2286 · · · 2
7 468.331 32.240 · · · 18.4401 18.7697 · · · 2

· · · · · · · · · · · ·
2 187.361 51.371 · · · 18.4786 18.9397 · · · 3
3 159.096 52.139 · · · 17.5431 17.9676 · · · 3
4 212.348 52.254 · · · 18.9388 19.5048 · · · 3
5 224.151 52.374 · · · 18.7031 19.1276 · · · 3
7 83.709 52.742 · · · 19.2547 19.7940 · · · 3
8 143.122 53.230 · · · 15.2634 15.9719 · · · 3

· · · · · · · · · · · ·
2 734.712 47.386 · · · 19.3115 19.9200 · · · 4
1 713.135 47.396 · · · 19.5922 20.1691 · · · 4
4 386.161 49.782 · · · 18.9025 19.3369 · · · 4
3 274.041 49.950 · · · 18.6494 19.2055 · · · 4
6 309.335 51.572 · · · 19.1918 19.7320 · · · 4
5 300.909 51.604 · · · 19.7955 20.1825 · · · 4

· · · · · · · · · · · ·
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Table 5.2: Step (i) p-values of the globular cluster test statistics
TBF TFR TF TK TNN

F TNN
K TSKS TH(4) THT SHT

IC 1257 0.759 0.190 0.769 0.716 0.049 0.085 0.728 0.721 0.781 0.757
IC 4499 0.705 0.615 0.737 0.743 0.455 0.587 0.207 0.829 0.393 0.293
NGC 3201 0.011 0.500 0.032 0.032 0.194 0.250 0.004 0.443 0.002 0.003
NGC 4147 0.259 0.018 0.143 0.121 0.210 0.227 0.756 0.118 0.281 0.426
NGC 4372 0.914 0.916 0.597 0.597 0.081 0.031 0.656 0.972 0.923 0.836
NGC 4590 0.117 0.057 0.067 0.067 0.270 0.115 0.001 0.001 0.196 0.126
NGC 4833 0.050 0.547 0.005 0.005 0.230 0.239 0.030 0.241 0.560 0.531
NGC 5634 0.371 0.752 0.865 0.868 0.305 0.331 0.268 0.702 0.490 0.396
NGC 6171 0.013 0.260 0.525 0.529 0.767 0.809 0.011 0.048 0.049 0.046
NGC 6218 0.753 0.302 0.790 0.799 0.256 0.150 0.594 0.558 0.522 0.370
NGC 6235 0.015 0.022 0.037 0.042 0.663 0.760 0.375 0.186 0.098 0.129
NGC 6256 0.446 0.165 0.855 0.850 0.791 0.733 0.439 0.281 0.210 0.399
NGC 6287 0.002 0.001 0.360 0.304 0.238 0.109 0.001 0.003 0.001 0.001
NGC 6325 0.001 0.285 0.117 0.072 0.457 0.403 0.008 0.015 0.032 0.055
NGC 6342 0.103 0.005 0.346 0.376 0.593 0.628 0.002 0.002 0.276 0.223
NGC 6355 0.001 0.640 0.446 0.454 0.490 0.546 0.003 0.803 0.005 0.001
NGC 6362 0.541 0.281 0.422 0.428 0.959 0.952 0.094 0.116 0.687 0.555
NGC 6380 0.143 0.004 0.472 0.473 0.193 0.237 0.019 0.121 0.073 0.026
NGC 6401 0.161 0.698 0.599 0.597 0.320 0.118 0.109 0.622 0.112 0.087
NGC 6838 0.340 0.514 0.049 0.056 0.557 0.598 0.236 0.234 0.353 0.268
Bold p-values indicate significance of the statistics at 5% nominal level.

Table 5.3: Step (ii) p-values of the globular cluster test statistics
TBF TFR TF TK TNN

F TNN
K TSKS TH(4) THT SHT

IC 1257 0.368 0.015 0.352 0.394 0.043 0.010 0.015 0.028 0.433 0.197
IC 4499 0.001 0.271 0.159 0.052 0.656 0.413 0.001 0.003 0.001 0.001
NGC 3201 0.001 0.003 0.096 0.098 0.800 0.606 0.004 0.001 0.003 0.001
NGC 4147 0.038 0.006 0.016 0.019 0.270 0.317 0.018 0.281 0.056 0.031
NGC 4372 0.001 0.076 0.101 0.089 0.095 0.090 0.011 0.001 0.050 0.014
NGC 4590 0.001 0.017 0.267 0.308 0.424 0.242 0.001 0.001 0.001 0.001
NGC 4833 0.001 0.000 0.079 0.104 0.002 0.001 0.001 0.001 0.001 0.001
NGC 5634 0.001 0.000 0.751 0.718 0.082 0.285 0.001 0.001 0.002 0.003
NGC 6171 0.002 0.032 0.147 0.184 0.914 0.948 0.029 0.011 0.008 0.009
NGC 6218 0.001 0.000 0.016 0.021 0.290 0.014 0.001 0.001 0.001 0.001
NGC 6235 0.001 0.010 0.099 0.148 0.004 0.001 0.001 0.039 0.002 0.001
NGC 6256 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
NGC 6287 0.001 0.000 0.024 0.052 0.001 0.001 0.001 0.002 0.001 0.001
NGC 6325 0.006 0.003 0.094 0.072 0.016 0.103 0.001 0.001 0.002 0.001
NGC 6342 0.001 0.010 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001
NGC 6355 0.001 0.008 0.120 0.177 0.363 0.106 0.001 0.004 0.010 0.001
NGC 6362 0.003 0.330 0.196 0.189 0.148 0.152 0.002 0.279 0.027 0.008
NGC 6380 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
NGC 6401 0.003 0.202 0.679 0.749 0.023 0.036 0.001 0.010 0.008 0.001
NGC 6838 0.416 0.326 0.341 0.332 0.971 0.949 0.254 0.128 0.201 0.259
Bold p-values indicate significance of the statistics at 5% nominal level.
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Interpretation of the results in Tables 5.2 and 5.3 is aided by summarizing as follows:

(a) count the number of rejections at the given nominal level α for step (i) results

in Table 5.2 and compute the percentage for each test statistic;

(b) repeat the procedure for step (ii) results in Table 5.3.

Table 5.4: Percentages (%) of data sets in Tables 5.2 and 5.3 for which the null hy-
pothesis was rejected at the 5% level for each test statistic

TBF TFR TF TK TNN
F TNN

K TSKS TH(4) THT SHT

Step (i) 35 25 20 15 5 5 45 25 25 25
Step (ii) 90 75 30 25 45 45 95 85 85 90

An examination of Table 5.4 suggests that the test statistics TBF, TFR, TSKS, TH(4),

THT, and SHT have similar discriminating ability. The large percentages of rejection

for these test statistics in step (ii) analyses suggest that they are sensitive against the

type of departures from equality that are common in the cluster colour - brightness

data. Moreover, the six test statistics were shown in Chapter 4 to have similarly

high powers against location-shift alternatives.

 

 

 

 



Chapter 5: Analysis of Real Data 68

−1.5 −1 −0.5 0 0.5 1 1.5

12

13

14

15

16

17

18

19

20

21

Colour Index

B
rig

ht
ne

ss
 (

F
55

5W
 m

ag
ni

tu
de

)

 

 
Chip 1
Chip 2
Chip 4

Figure 5.3: Scatter plot for NGC 4833 cluster.
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Figure 5.4: Scatter plot for IC 1257 cluster data.

 

 

 

 



69

−0.5 0 0.5 1 1.5 2 2.5 3

14

15

16

17

18

19

20

21

22

Colour Index

B
rig

ht
ne

ss
 (

F
55

5W
 m

ag
ni

tu
de

)

 

 
Chip 1
Chip 2
Chip 4

Figure 5.5: Scatter plot for IC 4499 cluster data.
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Figure 5.6: Scatter plot for NGC 3201 cluster data.
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Figure 5.7: Scatter plot for NGC 4147 cluster data.
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Figure 5.8: Scatter plot for NGC 4372 cluster data.
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Figure 5.9: Scatter plot for NGC 4590 cluster data.
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Figure 5.10: Scatter plot for NGC 5634 cluster data.
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Figure 5.11: Scatter plot for NGC 6171 cluster data.
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Figure 5.12: Scatter plot for NGC 6218 cluster data.
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Figure 5.13: Scatter plot for NGC 6235 cluster data.
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Figure 5.14: Scatter plot for NGC 6256 cluster data.
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Figure 5.15: Scatter plot for NGC 6287 cluster data.
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Figure 5.16: Scatter plot for NGC 6325 cluster data.
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Figure 5.17: Scatter plot for NGC 6342 cluster data.

−2 −1 0 1 2 3

12

13

14

15

16

17

18

19

20

21

22

Colour Index

B
rig

ht
ne

ss
 (

F
55

5W
 m

ag
ni

tu
de

)

 

 
Chip 1
Chip 2
Chip 4

Figure 5.18: Scatter plot for NGC 6355 cluster data.
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Figure 5.19: Scatter plot for NGC 6362 cluster data.
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Figure 5.20: Scatter plot for NGC 6380 cluster data.
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Figure 5.21: Scatter plot for NGC 6401 cluster data.
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Figure 5.22: Scatter plot for NGC 6838 cluster data.

 

 

 

 



Chapter 6

Conclusion

Little is known about the practical application of multivariate two-sample tests.

Possible reasons are: ignorance about the existence of the variety of statistical tests

for multivariate two-sample problems; unavailability of ready-to-use software; and

the reluctance by practitioners to use tests when little is known about their power

and robustness. It was against this background that studies were done of the rel-

ative power of the selected tests. This thesis investigated the powers of the EDF

and interpoint distance type tests for a range of alternatives from bivariate distri-

butions of the exponential, normal, and uniform types. On the basis of the results

from the power studies, it was established that it is not possible to make a general

recommendation to always use a particular multivariate two-sample test statistic,

irrespective of the sampled distribution. Table 6.1 shows a general summary of the

recommendations based on the study in Chapter 4.

Table 6.1: Statistics recommended for analysis
Alternatives Statistics

Location

TBF

TSKS

THT

SHT

Scale TF

TK

Correlation TH(4)

TFR

Results from the power studies suggest that some tests have power against specific

alternatives and may not be useful for other alternatives. Particular choices de-

pend on the type of potential differences between the populations that are deemed
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important to detect. If the user is going to rely on one and only one multivari-

ate two-sample test, then the Baringhaus-Franz statistic TBF is recommended for

location alternatives; the IPDD test via either TF or TK should be preferred for

scale problems; and the nearest neighbour test statistic TH(4) should be the choice

for correlation alternatives. These recommendations are based on the good power,

which is either comparable or superior to the other tests, against the entire range

of alternatives considered in the power studies. Other multivariate two-sample test

statistics which have good power are those shown in Table 6.1. Moreover, the im-

plementation of these test statistics is fairly easy and computationally fast. The

Baringhaus-Franz statistic is available as a ready-to-use test known as the Cramer

test in the R language (Baringhaus and Franz, 2001).

Since the statistics are omnibus, they are not helpful in diagnosing the nature of the

departure from the null hypothesis. The rejection of the hypothesis can be comple-

mented with a non-parametric graphical procedure such as the DD-plots.

In the power studies, permutation approximations of the exact distributions for

the selected test statistics were used, with the exception of the statistic TFR for

which the asymptotic distribution was used because of considerations of compu-

tation time. The large number of permutations used generally provides a more

accurate approximation of the exact distribution of the test statistic than asymp-

totic forms. Furthermore, for some of the test statistics, asymptotic distributions are

unavailable. However, the use of asymptotic distributions of the multivariate two-

sample tests should be recommended if their accuracy is guaranteed for relatively

small sample sizes, because the permutation method is very demanding computa-

tionally and could take hours to days to produce results. Besides, many potential

users of the multivariate two-sample tests may have neither the necessary skills nor

the inclination to empirically determine p-values each time they apply the tests.

The utility of the multivariate two-sample tests was demonstrated in the analysis of

photometric data sets of twenty galactic globular clusters. An additional application

of the test statistics is given by Koen and Siluyele (2007).
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The determination of the power of the test statistics for different types of bivariate

distributions, and the inclusion of the correlation alternatives, are the much needed

extensions to published studies of the multivariate two-sample tests. However, sub-

stantial scope exists for further extensions:

(i) other significance levels and sample sizes;

(ii) more complicated alternatives to the null hypothesis;

(iii) higher dimensionality of the samples;

(iv) other distributions, which may include mixtures of distributions.
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