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Abstract 

 Elevated temperatures accompanying climate warming are expected to have 

adverse effects on sensitive lichen species. This premise was examined by measuring the 

sensitivity of different lichen species to elevated temperatures in the laboratory and in the 

field. Laboratory studies involved the exposure of nine hydrated lichen species 

(Xanthoparmelia austro-africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina 

hottentotta, Teloschistes capensis, Ramalina sp., Flavopuntelia caperata, Lasallia papulosa, 

Parmotrema austrosinensis) collected from sites of different aridity and mean annual 

temperature for 2 hourly intervals to temperatures ranging from 24ºC to 48ºC in a forced daft 

oven and measuring their respiration rates and maximum quantum yield of PSII. Field 

studies involved simultaneous hourly measurements of ground surface air temperatures and 

Lichen effective quantum yield of PSII of hydrated lichen species populations under ambient 

and artificially modified environmental conditions. Artificial modification of the ambient 

environment (2.1oC - 3.8oC increase; 31.9% - 46.1% precipitation decrease), approximating 

future climate change scenarios, was achieved by covering lichen populations at a hot arid 

and warm coastal site with transparent hexagonal open-top chambers. All lichen species 

displayed diminished maximum quantum yield of PSII with elevated temperatures. The 

temperatures limiting lichen maximum quantum yield of PSII were condsiderably lower than 

those limiting respiration. They were higher in lichens from hot arid than cool motane sites, 

with limiting photosynthetic temperatures under natural conditions also substantially (up to 20 

oC) lower than those under laboratory conditions. Under natural conditions, all lichen species 

displayed early morning peaks in photosynthetic quantum yield which subsequently declined 

with increasing temperatures towards midday with a second phase of elevated 

photosynthetic quantum yield also apparent in the cooler late afternoon. All these findings 

indicated that even small increases in temperature, especially during early morning and late 

afternoon periods of peak photosynthetic activity, or just a shift from a winter to summer 

precipitation pattern, could negatively affect the carbon balance of lichens resulting in 

localized extinctions.  

In addition to the studies of lichen thermal sensitivity, moisture interception and 

elemental accumulation by lichens in a coastal subtropical desert were investigated. Two 

dominant lichen species (T. capensis and Ramalina sp.) were cultivated on their gypsum 

substrates in automated weighing micro-lysimeters which measured at hourly intervals their 

changes in mass due to fog and dew interception and loss from which net daily, monthly and 

annual amounts were computed. Also, samples of lichen tissue were collected monthly for 

analysis of eleven elemental concentrations. T. capensis with its thinner thallus displayed 
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larger daily fluctuations in moisture gain and loss and intercepted greater net amounts of fog 

and dew annually (502.3 mm a-1) than Ramalina sp. (372.4 mm a-1), both of which were up to 

ten times greater than the rainfall amount of 42.6 mm a-1. Measured elemental 

concentrations in the two lichens were in the range of background concentrations reported in 

other lichen species, except Fe, Mg and Na which more closely approximated concentration 

ranges reported for lichens in other seashore ecosystems. Rainfall appeared a more 

important source of elements for the lichens than fog and dewfall as it was positively 

correlated with Ca, N and B concentrations in these lichens compared with fog and dewfall 

correspondence with only K concentrations.  
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Chapter 1 

A review of lichen biology 

1.1. Introduction  

Lichens are by definition symbiotic organisms, usually composed of a fungal partner, 

the mycobiont, and one or more photosynthetic partners, the photobiont, which is most often 

either a green alga or cyanobacterium (Nash, 2008).  Each partner contributes in different 

ways to the symbiosis. The fungus protects the photobiont from intense isolation and 

dehydration, and absorbs mineral nutrients from the substratum and the atmosphere. The 

photobionts synthesize organic compounds by the photosynthesis process and 

cyanobacteria are able to produce organic nitrogen compounds by nitrogen fixation (Zedda & 

Rambold, 2006). These organisms are perennials and maintain a uniform morphology over 

time. They grow slowly, have a large-scale dependence upon the environment for their 

nutrition, and in contrast to vascular plants they do not shed their parts during growth (Nash, 

2008). 

1.2. Morphology 

Lichens are traditionally classified into three main growth forms: crustose, foliose and 

fruiticose. These forms, which are in no sense natural divisions, are at best points on a scale 

of continuous differentiation from primitive to highly structured thalli with many intermediates. 

Each form is characterized by a particular arrangement of cortical, algal and medullary 

tissues and by different modes of attachment to the substrate (Hale, 1983).  

The simplest crustose lichen growth forms, the leprose one, lack an organized thallus 

which is composed of an indeterminate hyphal mat which entraps and encloses algal 

colonies (Hale, 1983), while other crustose forms are tightly adhered to substrates and 

extremely difficult to remove. Lichens of this grow-form are often found in extreme habitats 

such as bare, exposed rock surfaces or arid soils and very common in semiarid and arid 

regions of the world (Zedda & Rambold, 2006). 

Typical foliose lichens differ from the crustose type in being dorsiventral with distinct 

upper and lower surfaces free of the substrate but usually attached to it by rhyzines. The 

thallus is typically divided into branching lobes, and most commonly represented in the 

genera Anaptychia, Cetraria, Heterodermia, Parmelia s.l., Physcia, and Xanthoria. This 

highly developed form has given rise to a great range of thallus size and diversity (Hale, 

1983). 

Fruiticose lichens are hair-like, shrubby, finger-like, or strap shaped with a wide range 

in size, i.e. from minute thalli of Siphula only a few mm tall to strands of Usnea up to several 
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meters long. Their internal structure can be radial with a dense outer cortex, a thin algal 

layer, a medulla and a more or less hollow centre or a dense central cord. The thallus may 

be round or flattened and often richly branched. Fruticose lichens are anchored by basal 

rhizoidal strands derived from the cortex, although many species are without any attachment 

to the substrate (Hale, 1983).     

 Among the various species, a wide range of subtypes can be observed within this 

major growth type however crustose lichens can have a powdery surface, or present 

squamulose or peltate structures, or can even have some lobes at thallus border (placoid). 

Foliose lichen may be umbilicate, the more or less circular thalli being attached to the 

substrate by a central umbilicus of the lower surface (Zedda & Rambold, 2006). Lichens 

grow on bark, leaves and wood, rock and soil, (Ahmadjian & Hale, 1973). 

1.3. Identification 

Morphological and anatomical traits, especially lichen growth form, the type of 

photobiont and its pigmentation, mycobiont fruiting bodies, spores and conidia and chemical 

analyses of secondary metabolites present in lichens are all used for their identification 

(Hale, 1983). Colour tests and fluorescence analysis give indications of which groups of 

compounds might be present in a lichen sample and microcrystalization, chromatography 

and mass spectrometry techniques are used for their tentative identification (Ahmadjian & 

Hale, 1973). Thin layer chromatography (TLC) and high performance liquid chromatography 

(HPLC) are usually applied for a more precise identification of lichens substances with gas-

liquid chromatography also applied in some cases (Ahmadjian & Hale, 1973).  

Four colour tests are used routinely in lichen identification. These include: application 

of 1. pure bleach, 2. 10% potassium hydroxide individually or in combination with bleach, 3. 

paraphenylenediamine and 4. 50 % nitric acid. These colour tests are performed by applying 

the appropriate reagent to lichen fragments by means of a pointed glass rod and observing 

the colour changes with hand lens or under binocular microscope. The lichen cortex and 

medulla are usually tested separately (Ahmadjian & Hale, 1973). 

Examination of lichen specimens under UV light also provides valuable clues to the 

presence or absence of certain compounds (Hale, 1956) such as anthraquinones, pulvinic-

acid derivatives and xanthones. Some depsides and depsidones fluoresce bright white to 

bluish or greenish white under UV light (Ahmadjian & Hale, 1973).  

1.4. Southern African lichen species 

Lists of lichen species collected in South Africa have been published by Massalongo 

(1861), Crombie (1876a; 1876b), Doidge (1950), Almborn (1988), Jürgens & Niebel-

Lohmann (1995), Schultz et al. (2009), Zedda & Rambold (2004, 2009), Zedda et al. (2010) 
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and numerous taxonomical revisions have been carried by different authors. A checklist of 

South African lichens has been published by Feuerer & Zedda (2001). However, wide 

regions of Southern Africa are still lichenologically unexplored. A brief overview of 

lichenological activities in South Africa was recently published given by Crous et al. (2006) 

who concluded that much work needs to be done, especially among microlichens, the major 

obstacle being a lack of critical checklists of sterile specimens.  

1.5. Ecological importance 

Lichens cover about 8% of the Earth’s land surface and are the dominant vegetative 

form in extreme habitats, like the arctic tundra and fog deserts, where they can cover several 

square kilometers. As a consequence, they are important carbon sinks through their 

consumption of atmospheric carbon dioxide during photosynthesis and therefore have an 

important role in mitigating climate warming. Lichens also contribute to soil formation through 

physical and chemical breakdown of rock minerals, and enrich the soil with nutrients and 

organic matters. Physical breakdown occurs through the immense turgor pressure exerted 

by hyphae and rhizines in penetrating rocks. Chemical breakdown occurs in various ways, 

namely through secretion of oxalic acids which react with mineral components of rocks to 

form various metal oxalates and acidic polysaccharides which dissolve the cementing 

material in sandstones releasing the quartz crystals (Nash, 2008). Examples include the 

characteristic dark-brown stain caused by iron oxalates associated with the lichen Lecidea 

lactea colonizing dunite rock (Purvis, 2000) and the abundant calcium oxalates associated 

with lichens such as Dirina massiliensis f. sorediata colonizing limestones (Purvis, 2000).  

Lichens accumulate large amounts of elements from wet and dry deposition sources 

(Nash, 1996) that mostly exceed their physiological requirements (Nash, 2008) making them 

useful biomonitors of the environment (Puckett, 1988; Garty, 2001). Wet deposition of 

elements by fog and dew precipitation is more important than that of intermittent rainfall 

events as it contains higher undiluted elemental concentrations (Nash, 2008). Dry deposition 

of elements is by sedimentation, impaction, and gaseous absorption (Knops et al., 1991). 

The influence of substrate on elemental accumulation by lichens has been studied 

extensively (Nieboer et al., 1978; Prussia & Killingbeck, 1991). Elevated concentrations of 

some elements in lichen tissues suggest that lichens may accumulate substrate elements 

(Lawrey & Rudolph, 1975; Goyal & Seaward, 1981; Garty et al., 1986; Garty & Ammann, 

1987). De Bruin & Hackenitz (1986) and Sloof & Wolterbeek (1993), for example, showed 

that lichens may absorb small amounts of some elements such as Ca, Mn, Zn, Cd, and B 

from bark, and Acarospora clauzadeana restricted to gypsum substrates has been reported 

to accumulate calcium and sulphate ions (Nash, 2008). Also, soil particles are readily 
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incorporated into intracellular spaces within lichen thalli resulting in relatively high 

concentrations of Al, Fe, Sc, Ti, and other elements of lithic origin (Nash, 2008). The surface 

characteristics of lichen thalli, such as the incidence of cilia, pits, isidia, and its rugosity 

determine the efficiency of particle entrapment (Puckett & Finegan, 1980). Also, lichen 

morphological and structural features (Chiarenzelli, et al., 1977; Clair, et al., 2002) determine 

the quantity of elements accumulated by lichens with several examples of foliose lichens with 

thin flat thalli, which provide a high ratio of surface area to dry weight (Nieboer et al., 1972), 

being more effective at accumulating elements in airborne particles than fruticose lichens 

(Lawrey & Hale, 1981; Gough et al., 1998; Glenn et al., 1995; Garty, 2001). These elemental 

accumulations play a crucial role in ecosystems by incorporating atmospheric nitrogen 

through N-fixation by photobionts of some lichen species and other elements into nutrient 

poor soils (Kallio 1975; Crittenden, 1983; Nash 1996; Longton, 1997), by contributing to 

nutrient cycling (Crittenden 1983; Crittenden 1989; Nash 1996; Kielland 1997; Longton 

1997), by improving seedling establishment (Brown & Mikola, 1974; Kershaw, 1985) and 

acting as carbon sinks (Nash, 1996; Lange et al., 1998) 

High ground cover of terricolous lichens prevents water loss and soil erosion, even in 

arid to semiarid habitats (Purvis, 2000; Belnap & Lange 2001). Also, the release by 

decomposing lichens of nitrogen fixed by cyanobacterial symbionts and other nutrients 

accumulated during growth are essential for plant growth on nutrient poor soils. Soil growing 

lichens are also an important component of arid to semi-arid ecosystems where they 

contribute, together with bryophytes, algae, cynobacteria and non-lichenized fungi, to the 

formation of biological soil crust and to soil formation by building up organic matter (Zedda & 

Rambold, 2009). 

Lichens provide an important food source for many animals. Cladonia species are 

consumed by many small vertebrates (Kershaw & Alvin, 1963), including reindeer (Rangifer 

tarandus), black tail deer (Odocoileus hemionus) and Chinese musk deer (Moschus 

moschiferus) as well as birds such as spruce grouse (Canachites canadensis) and wild 

turkey (Meleagris gallopavo) in North America. Sheep in Lybian deserts graze extensively on 

the subfoliose lichen Rhizoplaca (Lecanora) esculenta which is the fabled manna of the 

ancient Israelites (Hale, 1967, 1983). Birds also use lichen material to build their nests. 

Typical examples are the Madagascar olive-headed weaver (Ploceus olivaceiceps) and the 

European goldfinch (Carduelis spinus) which both construct their nests entirely from Usnea 

species (Purvis, 2000). Northern flying squirrels, Glaucomys sabrinus, use the beard-lichen 

Bryoria fremontii as a nesting material and food, and many birds, rodent and invertebrate 

species also use pendulous, hair-like lichens for nesting materials and shelter (Hayward & 

Rosentreter, 1994; Pettersson et al., 1995). Humming birds in Colombia and in Arizona and 

 

 

 

 



5 

 

gnat catchers in Virginia both cover the outside of their nests with the foliose lichen 

Parmotrema reticulatum (Hale, 1983). Also several insects, such as the peppered moth 

(Biston betularia) and the grey dagger moth (Acronicta psi) use lichens for camouflage, and 

some butterflies store lichen compounds in their tissues for chemical defence (Purvis, 2000).  

1.6. Economic importance 

The most important use of lichens has been in the production of dyes, perfumes, 

cosmetics and medicines. The lichens traditionally most used for dying wool and clothes in 

Europe and North America belong to the genera Roccella, Evernia, Ochrolechia and 

Parmelia. The most characteristic pigmentations are reddish purple (orchil), orange, yellow 

and brown (Hale, 1983).  

Since the 16th century, lichens such as Evernia prenastri and Pseudevrnia furfuracea 

have been used as raw materials for the production of perfumes which are highly valued for 

their musk like fragrances and often used in scenting soaps (Hale, 1983; Purvis, 2000; Nash, 

2008). 

Lichens have persisted in folk medicine into recent times and illustrated in early 

herbals, for example Gerad’s Herball 1597. Some species, like Cetraria islandica, Lobaria 

pulmonaria, Parmelia sulcata and Usnea are still used in the Northern Hemisphere, for 

treating respiratory diseases and other kinds of maladies (Kershaw & Alvin, 1963; Hale, 

1983; Purvis, 2000). In southern Africa, species of Parmelia ("Klipblomme") are used as 

medicines in rural areas in the Cape against different diseases, and Xanthomaculina 

hottentotta is used as deodorant or perfume in Namibia. Some lichens are also used as dye 

source for colouring wool in the Cape (Van Wyk & Gerike, 2000). Recently a number of 

substances found in lichens have been shown to have antibiotic properties. One example is 

the yellowish usnic acid found in Usnea and in certain other lichens which is effective as an 

ointment for wounds and burns and in the treatment of infections, and for some purpose has 

been found to be more effective than penicillin (Kershaw & Alvin, 1963). 

1.7. Lichens responses to the environment 

Lichens possess certain anatomical and physiological characteristics which render 

them highly sensitive to environmental changes. These include: 1. the absence of stomata 

and a protective cuticle allowing little control over gas and moisture exchange and diffusion 

of atmospheric pollutants concentrated in fog and dew, a major source of water for lichens, 

into the sensitive photobiont layer (Rope & Pearson, 1990; Nash, 2008), 2. an elevated 

metabolic rate under hydrated conditions which persists even at low temperatures, 3. a high 

susceptibility to persistent damage due to a slow growth rate which restrains injury repair, 

and 4. long-lived perennial bodies which concentrate elements absorbed from their 
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environment (Nimis et al., 1990; Purvis, 2000; Conti & Cecchetti, 2001; Zedda & Rambold, 

2006; Tiwari, 2008).  

Lichen responses to environmental changes have been determined from 

measurements of thallus size and fertility, thallus bleaching and convolution, photosynthetic 

and respiration rate (Sigal & Nash, 1983; Conti & Cecchetti, 2001; Bartók et al., 1992; Garty 

et al., 2000; Egger et al., 1994), rate of nitrogen fixation by blue green algal photobionts 

(Hawksworth & Rose, 1976; Sigal & Nash, 1983), ATP levels (Kardish et al., 1987; Garty et 

al., 1988), concentration of stress ethylene (Epstein et al., 1986; Garty et al., 2000) leakage 

of electrolytes (Silberstein et al., 1996a), glutathionine and amino acid content (Silberstein et 

al., 1996b), reduction of 2,3,5-triphenyltetrazolium chloride to triphenyl formazan (Bačkor & 

Fahselt, 2005), chlorophyll concentration and degree of phaeophytinization (Ronen & Galun, 

1984; Garty et al., 1992; Chettri et al., 1998) and chlorophyll a fluorescenece (Garty et al., 

2000).  

In foliose lichens the centre often dies first leaving an arc of marginal lobes. A 32% 

reduction in thallus expansion has been reported in Parmelia saxatilis at a polluted site over 

a three year period as well decreases in thallus size and ascocarp production along transects 

from unpolluted to polluted areas (Sanz et al., 1992). Also, diminished photosynthetic and 

respiration rates have been reported in lichens at polluted sites (Sanz et al., 1992) with 

photosynthesis more sensitive to pollution than respiration (Hale, 1983) and nitrogen fixation 

by blue green algal photobionts markedly reduced by pollution. The latter exemplified by an 

observed 80-90% reduction in N2 fixation over 3 to 4 week period by lichens transplanted into 

an urban polluted area (Hawksworth & Rose, 1976; Sigal & Nash, 1983).   

In addition to rain, lichens utilize a variety of water sources, such as fog, dew and 

even elevated water vapour, to activate gas exchange. There is an abundance of lichens in 

coastal deserts where rainfall is minimal and sporadic, but fog, dew and elevated humidity’s 

occur very frequently (Kappen, 1988). The utilization of water vapour alone as a moisture 

source by lichens is remarkable (Butin, 1954; Lange & Bertsch, 1965) and as a consequence 

lichens are successful colonizers of the deserts of the world, because they do not rely on rain 

but can become active after moistening by fog, dew, or even high air humidity alone 

(Matthes-Sears & Nash, 1986). Lange et al. (1990) reported that Teloschistes capensis is 

able to collect sufficient fog and early morning dewfall to sustain positive net photosynthesis 

for a considerable portion of the day. Dew and fog favours lichen productivity also in other 

climatic regions, such as in the Alps, in Mediterranean-climate areas and in temperate zones 

(Nash, 2008). The importance of non precipitation sources of water is well demonstrated by 

the abundance of lichens in coastal deserts where precipitation is minimal, but fog, dew, or 

elevated relative humidity’s occur almost daily (Kappen, 1988).  
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The uptake of water from unsaturated atmospheres by lichens is extraordinary as it 

represents essentially the reverse of evaporation and is a process that does not occur in the 

relatively homoiohydric vascular plants. The water moves between the lichen and the air 

along a decreasing water potential gradient (Rundel, 1982, 1988; Nash et al., 1990) until the 

lichen water content has equilibrated with the surrounding environment. The lichen will 

absorb water when the water potential of the lichen (matrix þ solute) is lower than the water 

potential of the air (Nash, 2008). Although it has yet to be quantified, the interception of fog 

and dew water by lichens in coastal deserts may well represent a significant fraction of 

hydrological inputs to those systems, particularly in regions where precipitation rarely occurs, 

such as the Atacama Desert of South America. In interior arid and semi-arid regions lichens 

occur commonly as part of the cryptogamic crusts that are particularly extensive on 

undisturbed soils. These crusts not only intercept precipitation, but also facilitate infiltration of 

water into the soil, which, in the absence of the cryptogams, frequently has an impervious 

CaCO3 layer at or near the soil surface (Harper & Marble, 1988). Lichens are particularly 

effective at capturing both dew and fog and these sources are frequently richer in nutrients 

than rain (Nash, 2008). 

Lichens in the hydrated state have also been reported more susceptible to 

environmental stress than in a dehydrated state. This exemplified by 16%, 13% and 18% 

greater reductions in chlorophyll contents measured in Cladonia coniocraea, C. cristatella 

and Parmelia rudecta respectively in hydrated than dehydrated states when fumigated with 

SO2 (Nash, 1973). Fruticose lichens are well established as being the most sensitive to 

environmental stress, foliose lichens of intermediate sensitivity and crustose lichens the least 

sensitive (Zeran et al., 2007; Tiwari, 2008). However, under natural conditions lichens are 

potentially able to avoid adverse environmental conditions through their production of large 

number of minute diaspores which are known to be dispersed over large distances (van Herk 

et al., 2002). 

1.8. Lichen responses to atmospheric pollution 

Lichens were recognized as potential indicators of air pollution as early as the 1860’s 

in Britain and Europe where a progressive loss of lichens in major European cities was 

noticed (Hale, 1967). Since then, lichens have played prominent roles as indicators of sulfur 

dioxide air pollution throughout the world (Tiwari, 2008). Several authors maintain that SO2 

pollution is the primary cause of death of lichens in most urban and industrial areas (Gilbert, 

1970; Tiwari, 2008) though some species are resistant to this pollutant (Conti & Cecchetti, 

2001; Zeran et al., 2007). The observed adverse effects of SO2 pollution on sensitive lichens 

include decrease in respiration and photosynthesis, with photosynthesis more sensitive than 
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respiration (Showman, 1972; Beekley & Hoffman, 1981), increase in membrane permeability, 

K+ influx and loss of ions, and ultra structural changes (Belnap et al., 1993). Photosynthetic 

depression by SO2 is due mainly to chlorophyll breakdown with chlorophyll damage most 

severe under moist conditions at low pH of 3.2 to 4.4 (Hawksworth & Rose, 1976).  

The United Kingdom clean air act of 1956 and changes in energy policy compliant 

with directives set by European Economic Community (European Union) have dramatically 

reduced emissions of SO2 by 80% since 1982. As a consequence, lichens are again 

colonizing young native oak trees in London (Larsen et al., 2007), a trend mirrored in other 

cities throughout the world (Eversman, 1978; Aarrestad & Aamlid, 1999). For example, the 

famous Jardin du Lexembourg in Paris, where in 1866 William Nylander made his first 

pioneering observation on the decline of lichens, today supports a wide range of lichen 

species. Seventy-two lichens were recorded recently from Kew Gardens in London where 

previously fewer than six were reported (Purvis, 2000). The slow rate of lichen colonization of 

trees in urban areas has been attributed partly to acidification persisting on the bark of older 

trees. For example, lichens sensitive of acidic conditions, such as Pseudevernia furfuracea 

and Bryoria species, have been confined to trees with alkaline barks, such as ash (Fraxinus 

excelsior), which may neutralizing acidification caused by SO2 pollution (Purvis, 2000). 

However, despite the reductions in SO2 levels other atmospheric pollutants such as ammonia 

have appeared, this exemplified by the proliferation of the nitrophilous lichen Xanthorion in 

the Netherlands. Noteworthy, in this regard is the decline in the pollution lichen Lecanora 

conizaeoides, formerly ubiquitous in many industrial areas of Europe (Purvis, 2000).  

Apart from SO2, there is a large variety of elements and chemicals compounds 

present in the atmosphere that affect lichen growth and distribution. These include nitrous 

oxides and fluoride and other secondary pollutants formed through chemical reactions in the 

atmosphere such as ozone, peroxy-acetyl nitrate, sulphuric and nitric acids (Tiwari, 2008). 

Nitrous oxides produced by coal burning and by automobile emissions have been reported to 

reduce chlorophyll concentrations in the crustose lichen Lecanora chrysoleuca, the foliose 

lichens Anaptychia neoleucomelaena and Paremelia praesignis as well as the fruticose 

lichen (Usnea cavernosa) at concentrations of only 4 ppm NO2 (Nash, 1976; Tiwari, 2008). 

Also, many lichens are adversely affected by high levels of fluoride emanating from 

aluminum smelters and brickworks which causes chlorosis, necrosis and thallus 

disintegration (Nash, 1971, 2008; Hawksworth & Rose, 1976). Differential lichen species 

sensitivity to fluoride often results in zonation patterns developing around fluoride sources. 

Generally, visible damage to lichens begins at fluoride concentrations of 50-70 ppm (Hale, 

1983). Studies of the fluoride content of lichen thalli in zonation patterns around a fluoride 

source at Fort Williams in Scotland have shown the affected area restricted to an ellipse 

 

 

 

 



9 

 

ranging from 1 km to 4 km from the source. This localized effect is apparent around other 

aluminum smelters in the United Kingdom such as at Holyhead, Invergordon and 

Kinlochleven (Hawksworth & Rose, 1976).  

1.9. Lichen responses to global warming  

Reductions in lichen cover and diversity in response to experimental warming have 

been reported in the Alaskan arctic tundra (Wahren et al., 2005), these changes qualitatively 

similar to those measured in standardized warming experiments at several other locations 

across the arctic tundra (Walker et al., 2006), with proportionally greater reductions in lichen 

cover and diversity observed in dry than moist sites (Wahren et al., 2005). Also, there is 

increasing evidence that lichens are responding to climate warming in Western Europe with 

observed changes in the distribution and ecology of epiphytic and terricolous lichens 

seemingly affected by global warming (Aptroot & van Herk, 2007). In Denmark and in the 

Netherlands, growth rates of Flavoparmelia caperata, a drought resistant, warm temperate 

lichen, have increased over the last 100 years. This appears to be linked to the increase of 

temperatures during the last 20 years (Søchting, 2004; van Herk & Aptroot, 1996, 2004). A 

recent study in the Netherlands has identified major changes in epiphytic lichen distributions 

since 1979. Warm-temperate species such as Candelariella reflexa, Lecidella flavosorediata, 

Parmelia borreri and P. soredians have increased in frequency, while species characteristic 

of colder environment have either decreased or disappeared (van Herk et al., 2002; Hauck, 

2009). One striking example is Flavoparmelia soredians, a drought resistant, warm 

temperate lichen species presently common in the Netherlands (van Herk & Aptroot, 1996, 

2004). This species was absent from the Netherlands prior to 1900, rare in the Netherlands 

prior to 1987, and until recently had its northernmost limit in Southern England (Seaward & 

Coppins, 2004). Also, several new epiphytic lichen species such as Protoparmelia 

hypotremella (Aptroot et al., 1997) and Fellhanera viridisorediata (Aptroot et al., 1998) have 

recently been documented in the Netherlands. In contrast, lichen species preferring colder 

environments, such as Peltigera leucophlebia, Peltigera malacea and Stereocaulon 

tomentosum, have declined in numbers, though not at the same rate as increases in those 

preferring warmer environments (Hauck, 2009). Lichen species responding positively to 

climate warming contain the alga Trentepohlia as photobionts suggesting these may be the 

most useful as indicators of global warming (Aptroot & van Herk, 2007). 

Reports on the effects of on-going climatic warming on lichen and other non-vascular 

epiphyte distributions from the tropics are scant. However, two experimental studies show 

pronounced short-term effects. In a recent study in Bolivia, branches with dense bryophyte 

cover transplanted to warmer and drier climates at lower altitudes resulted in changes in the 
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relative species abundance after a 2 year period (Jacome et al., 2010). In a similar study in 

Costa Rica, where epiphyte mats were transplanted, the fate of the abundant mosses and 

lichens were not quantified (Nadkarni & Solano, 2002), but after 1 year a clear deterioration 

of the entire epiphyte mat was apparent (Zotz & Bader, 2009). For poikilohydric plants like 

bryophytes and lichens, the effects of warming will interact strongly with effects of altered 

precipitation. Increased temperatures affect poikilohydric organisms through direct effects on 

metabolic rates and by increasing evaporation, thereby reducing activity time or increasing 

desiccation damage in sensitive species. Increasing temperatures could shift species 

distributions to cooler and moister habitats. However, in tropical lowland forests no better 

heat-adapted bryophytes and lichens are available to replace those species that may 

disappear. Similarly, in cloud forests no wetter habitats are available for species to escape 

to. This is a specific example of a much more general issue (Williams et al., 2007), namely 

the fate of ecosystems in novel climates and species in disappearing climates.  

The reasons for the limited development of non-vascular epiphytes in tropical 

lowlands are not known with certainty, but a popular hypothesis involves a combination of 

high night temperatures causing strong carbon losses to respiration and high day 

temperatures causing dehydration, thereby restricting the time available for carbon gain by 

photosynthesis (Zotz, 1999). Thus, two crucial factors are night time temperature and day-

time activity time. CO2-exchange data from tropical lowland bryophytes are not available, 

while two foliose lowland lichen species have been studied in some detail (Zotz & Winter, 

1994; Zotz et al., 2003). Diurnal field measurements on Parmotrema endosulphureum and 

Leptogium azureum showed consistently that almost the entire daily carbon gain was 

respired at night. A simple model developed from the temperature response of CO2 

exchange in Parmotrema endosulphureum indicated how future temperature change could 

shift this lichen’s carbon balance. Assuming typical current lowland conditions, maximum net 

photosynthesis rates under otherwise optimal conditions are only twice as high as respiration 

rates. The ratio of daily carbon gain to respiration is much lower, because the former is often 

strongly reduced due to desiccation, while these epiphytes are usually moist and active 

during the entire night. Currently, Parmotrema endosulphureum must take up CO2 at 

maximum rates for at least 40% of the light period just to balance 12-h nocturnal respiration. 

A predicted temperature increase of 3°C without acclimatisation would make it necessary to 

photosynthesize at maximum rates for more than 90% of the day to achieve a positive 

carbon balance. This is not feasible, since in somewhat cooler montane habitats lichens 

show net photosynthesis for only 30–80% of the light period, and at mostly suboptimal rates 

(Lange et al., 2004). However, assuming a shift in the temperature response of 2°C due to 

acclimatization, a 3°C increase would effectively represent a 1°C increase, thus requiring 
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photosynthetic activity during “only” 50% of the day for a balanced budget. The potential for 

acclimatization of tropical lichens is obviously a crucial question, but completely unexplored. 

The conclusions are dim, since lowland lichens are arguably already living close to the edge 

of their physiological abilities. Thus, even a slight increase in temperature could make 

tropical lowlands completely uninhabitable to them. 

The negative effects of warming on the carbon balance of lichens may be at least 

partly counteracted by increases in atmospheric CO2 levels. In poikilohydric plants, the 

inability to regulate water loss limits the possible responses to CO2 as compared to those of 

vascular plants, although the trade-offs related to, for instance, nitrogen allocation occur here 

just as much. In terrestrial bryophytes, the stimulating effect of higher CO2 levels may be 

limited, because their close proximity to the respiring soil already exposes them to increased 

CO2 levels (DeLucia et al., 2003). This could also be the case for those epiphytic lichens that 

grow closely attached to canopy soil or directly on living branches. For such species, 

increased respiration of the substrate due to higher temperatures may provide more extra 

CO2 than the increased atmospheric levels (Sveinbjörnsson & Oechel, 1992; Tuba et al., 

1999). However, generally, such epiphytes are much better coupled to the atmosphere than 

terrestrial species, so that global atmospheric CO2 levels can certainly be of influence. An 

additional advantage of higher CO2 levels under a warming scenario is that the temperature 

optimum for net photosynthesis is shifted to higher temperatures (Sveinbjörnsson & Oechel, 

1992). Light compensation points are also lowered, so that species can grow at darker 

microsites, where they dry out more slowly and stay active for longer. Activity time is also 

prolonged because net photosynthesis can take place down to lower and up to higher water 

contents (Tuba et al., 1999). This can be particularly beneficial for tropical lowland species, 

for which it has been hypothesized, that carbon gain may become negative at higher 

temperatures due to lower net photosynthesis and through shorter activity times. As in 

vascular plants, acclimatization to high CO2 levels can cause a return to the low-CO2 

photosynthesis rates. However, species differ in their acclimatization potential. For instance, 

the moss Polytrichum formosum clearly down-regulated its chlorophyll and RuBisCO 

contents after several months at 700 ppm CO2, while the moss Tortula ruralis and the lichen 

Cladonia convulata maintained their positive response (Tuba et al., 1999). However, 

increased photosynthesis is also not necessarily invested in growth but in defensive phenolic 

compounds (Tuba et al., 1999).  
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Chapter 2 
 

Lichen species selection and identification, experimental site 

description, study objective and key questions 

 

2.1. Selection of lichens for study 

A Global Information System for the Biodiversity of Lichens and Lichenicolous Fungi 

lists 1730 lichen species for South Africa (http://www.biologie.uni-

hamburg.de/checklists/lichens/africa/south-africa_l.htm) which comprises 9.2% of the total 

global list of 18 882 lichen species (Feuerer & Hawksworth, 2007; Feuerer, 2009) but 

exceeds the numbers of lichen species listed for surrounding countries of Angola (98), 

Namibia (158), Zimbabwe (262), Mozambique (171), Lesotho (55) and Swaziland (11). The 

Pretoria Centralized Information System data base (PRECIS) registers 1 460 quarter degree 

square distribution records for 412 lichen species comprising 105 genera in South Africa. 

Records of the 30 most collected South African lichen genera and species extracted from 

PRECIS are presented in Figures 2.1A & B. These show that 80% of the 105 listed genera 

comprise less than 20 records and 85% of the 412 listed species comprise less than 5 

records. Geographical distribution records for all PRECIS registered lichen species as well 

as the two most common lichen genera and the most common lichen species are presented 

in Figures 2.2 A, B, C & D. The recorded distributions indicate a collecting bias around the 

major metropolitan centers of Cape Town, Pietermaritzburg, Nelspruit, Polokwane and 

Johannesburg which prevented the selection of lichen species for this study purely on the 

basis of their geographical distributions. 

A stepwise regression revealed a significant (P ≤ 0.01) correspondence between 

PRECIS registered lichen species records per quarter degree square and mean annual 

precipitation (MAP) with mean daily maximum and minimum temperature and relative 

humidity not corresponding significantly with total lichen species records (Table 2.1). In view 

of this, lichen species for this study were selected from habitats of different aridity. In total, 

nine lichen study species were selected, four species from a hot arid site, two species from a 

warm coastal site and three species from two cool montane sites. 
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Table 2.1. Stepwise regression of PRECIS registered lichen species records per quarter 

degree square against mean annual precipitation, minimum and maximum daily 

temperatures and humidity. 

 
 
** Forward Selection ** 
 
Valid Number of Cases: 294, 3 Omitted 
Dependent Variable: Total Lichen spp 
Tolerance: 0.001 
F-to-Enter: 3.8416 (5.0%) 
F-to-Remove: 2.7056 (10.0%) 
 
** Step 1: Variable Entered: MAP ** 
 
                      Multiple                      Adjusted         Change 
 Standard Error    Correlation      R-squared      R-squared   in R-squared 
--------------------------------------------------------------------------- 
         6.0540         0.1524         0.0232         0.0199         0.0232 
 
             Due To| Sum of Squares   DoF    Mean Square      F-Stat      Signif 
-------------------+------------------------------------------------------------ 
         Regression|        254.575     1        254.575       6.946      0.0088 
              Error|      10702.065   292         36.651                         
 
          Variables|                Standard                        
        in Equation| Coefficient       Error t-Statistic Signif      F-to-Remove 
-------------------+------------------------------------------------------------ 
           Constant|      2.9242                                                 
                MAP|      0.0033      0.0013      2.6355      0.0088      6.9459 
 
          Variables| 
    not in Equation|   Partial Corr      Tolerance     F-to-Enter 
-------------------+--------------------------------------------- 
           HUMIDITY|         0.0653         0.7412         1.2447 
           MIN_TEMP|         0.0060         0.9772         0.0104 
           MAX_TEMP|        -0.0409         0.9478         0.4879 
 
** Summary Table ** 
 
      |                            Multiple                                     
  Step|  In/Out       Variable         Corr    R-squared      F-Stat      Signif 
------+------------------------------------------------------------------------- 
     1|      In            MAP       0.1524       0.0232      6.9459      0.0088 
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Figure 2.1. A & B. Records of 30 most common South African lichen genera and species derived from PRECIS data base. 
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Figure 2.2 A. Distribution records for A. all lichen species, the two most common lichen genera B. Buellia and C. Cladonia and the most 

common lichen species D. Xanthomaculina hottentotta (Ach.) Hale. 
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2.2. Identification of selected lichens 

Provisional identification of the selected study lichens was achieved by their 

comparison with herbarium specimens. Precise identification was performed at the 

universities of Bonn and Bayreuth in Germany under the guidance of Dr Luciana Zedda and 

Professor G. Rambold. Thin vertical slices of lichen thalli cut with a razor blade were placed 

in a drop of water on a microscope slide and their fruiting bodies microscopically examined 

(Figure 2.3A) as described by Nash et al. (2002). Spot tests for colour reaction of thalli were 

also perfomed during microscopic examination using pure bleach, 10% potassium hydroxide, 

paraphenylenediamine and 50% nitric acid. The lichen compounds relating to the colour 

reactions were identified with the database MACTABOLITES and species were identified by 

using the LIAS Light online identification keys computer program (http://www.lias.net) and 

identification keys published in Hale (1990) for Xanthoparmelia and Paraparmelia.  

Thin layer chromatography was carried out on all the collected lichens which 

comprised the genera Teloschistes, Xanthoparmelia, Flavopuntelia, Parmotrema, 

Xanthomaculina and Lasallia following White & James (1985). Thin vertical slices of dry 

lichen material were cut with a razor blade and placed in numbered plastic phials into which 

cold acetone was added to extract lichen substances. Glass capillary tubes were used to 

transfer the acetone extracts from each phial to corresponding numbered points on the TLC 

plates. Three applications per spot were used. The prepared plates from each application 

were placed into three developing chambers each containing a different solvent (Figure 

2.3B). The solvents used were toluene-dioxan-acetic acid, hexane-diethylether-formic acid 

and toluene-acetic acid. The plates were removed from the developing chambers when the 

solvent reached the terminating front line and dried with hair-drier (Figure 2.3C). Acetone 

extracts from voucher specimens of Pleurosticta acetabulum, Parmelia sulcata, Physcia 

adscendens, Platismatia glauca and Evernia prunastri were used as references for atranorin, 

norstictic acid and other lichen substances. The coloured spots on the dried plates were 

examined under natural light and also under UV-B (254 µm) and UV-A (350 µm) light. All 

spots illuminated under UV-B light were marked by circling the darkened area with an 

unbroken outline and those illuminated under UV-A light by circling the darkened area with a 

dotted outline. A 10% solution of sulphuric acid was brushed over the spots on one of the 

three plates (Figure 2.3D) which was subsequently transferred to a pre-heated oven at 110ºC 

for few minutes for colour development. The lichen compounds relating to the coloured spots 

were identified with the aid of the LIAS Light computer program. 

After identification, the specimens were sealed in paper envelops and labels  

prepared giving the taxon name, the collection site, the collectors name, the date of 
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collection and the name of the identifying person. Vouchers speciments were lodged in the 

Compton Herbarium of the South African National Biodiversity Institute.  

The selected study lichens from the hot arid site in the Succulent Karoo Biome were 

identified as Xanthoparmelia austro-africana (Stirt.) Hale., Xanthoparmelia hyporhytida (Hale) 

Hale., Xanthomaculina hottentotta (Ach.) Hale. and Xanthoparmelia sp. (undescribed 

species). The last could not be matched with any previously described species based on 

colour and TLC assays. The selected study lichens from the warm coastal site in the 

Succulent Karoo Biome were identified as Teloschistes capensis (L.f.) Müll. and Ramalina 

sp. (undescribed species). The last also could not be matched with any previously described 

species based on colour and TLC. The selected study lichens from cool moist montane sites 

in the Fynbos Biome were identified as Lasallia papulosa (Ach.) LIano., Parmotrema 

austrosinesis (Zahlbr.) Hale. and Flavopuntelia caperata (L.)Hale.  

 

 

Figure 2.3 A. Lichen microscopic identification, B. Developing chambers containing thin layer 

chromatography plates, C. Drying of plates after running in solvents; and D. Brushing 

of plates with a 10% solution of sulphuric acid for spot colour development.  
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2.3. Study sites 

The farm Quaggaskop (31o 24.6’ S, 18o 37.8’ E) was selected as an example of a hot 

arid site. The site occurs in the Knersvlakte, an acknowledged centre of diversity and 

endemism (Hilton-Taylor 1994, 1996), in the Succulent Karoo Biome (Rutherford & Westfall, 

1986), ranked among 34 global biodiversity hot spots (Myers et al., 2000; Mittermeier et al., 

2000). It is situated 20 km north of the town of Vanrhynsdorp at an elevation of ±160 m and 

has a mean annual precipitation of 145 mm occurring mainly in winter, and mean daily 

maximum air temperature of 25.7°C, determined from the nearby Vredendal weather station 

(Climate of South Africa, 1986). The site comprises quartz-gravel fields which house a 

globally unique flora where specialized dwarf succulents dominate (Schmiedel & Jürgens, 

1999; Schmiedel, 2001, 2002) as well as an extraordinary and peculiar diversity of lichen 

taxa which is even greater than that of lichen fields of the Namib Desert. Thirty-five 

terricolous lichen taxa have been recorded at this site, 52% of which are endemic to 

Namaqualand. Squamulose and crustose lichens are the most common and mostly contain 

green algal photobionts (Zedda & Rambold, 2009). Inter-dispersed among the quartz-gravel 

fields are areas devoid of quartz covered with shale, phyllite and limestone derived 

substrates of the Nama Group (Schmiedel & Jürgens, 1999) where larger succulent shrubs 

dominate (Figure 2.4).  

A large lichen field situated a few kilometers South East of the mining city of 

Alexander Bay 3.2 km distant from the Atlantic coast (28o 37’S, 16 o 30’E)  and 4.5 km south 

of the Orange River delta was selected as the warm moist coastal site (Figure 2.5). The 

lichens at this site cover an area of approximately 75 ha forming 10 cm high dense carpets of 

fruticose individuals which are most prominent on west, southwest and south exposed slopes 

(Jürgens & Niebel-Lohmann, 1995). Thirty-one lichens species have been recorded at this 

site. Two lichen species are clearly visible as a well-developed, striking upslope zonation. 

The upper parts of the slopes, characterized by gypsum-rich topsoil, are dominated by the 

orange coloured lichen Teloschistes capensis. Further downslope, with gypsum only at 

deeper positions in the soil, the light green Ramalina sp. is more common. This lichen also 

grows abundantly as epiphyte on the very few angiosperms, such as Asparagus capensis 

(Muciana & Rutherford, 2006). The site has a mean annual temperature of 17.2o C and an 

erratic low rainfall of about 45 mm per annum, occurring predominately in winter. The low 

rainfall is supplemented by a high frequency of fog, estimated to be greater than 100 days 

per year. Fog carried inland by strong winds during the day makes close contact with the 

lichens more intensively in the range of the vegetation belts characterized by Ramalina sp. 

and Teloschistes capensis (Jürgens & Niebel-Lohmann, 1995). 
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Jonaskop and Bainskloof were selected as cool moist montane sites. Both occur in 

the Fynbos Biome also ranked among 34 global biodiversity hot spots (Myers et al., 2000; 

Mittermeier et al., 2000). Jonaskop (33°58’00 S 19°30’00 E) is located within the 

Riviersonderend Mountain Catchment. It is situated 23 Km SE of Worcester at elevations of 

between 600m and 1300m (Figure 2.6). It has a mean annual precipitation of 315 to 720 mm 

occurring mainly in winter and mean daily maximum and minimum air temperatures of 

16.5°C and 12.1°C respectively (Muciana & Rutherford, 2006). Sixteen lichen species are 

listed in PRECIS in the vicinity of this site, the most common including Lasallia papulosa 

(Ach.) Llano and Hypogymnia subphysodes (Kremp.) Filson. Bainskloof (33° 36’ 8.6 S, 19° 6’ 

42.2 E) is located in the Du Toitskloof and Stettyns mountains at an altitude ranging from 

250-1800m. It has a mean annual rainfall of 1200 mm occurring mainly in winter (Figure 2.6) 

and mean daily maximum and minimum temperatures of 16.5°C and 12.5°C respectively. 

Twenty-nine lichen species are listed in PRECIS in the vicinity of this site the most common 

including Cladonia portentosa (Dufour) Coem. Neofuscelia crustulosa (Essl.) Essl. and 

Cladonia portentosa (Dufour) Coem.  
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Figure 2.4. Location of the Quaggaskop experimental site and some common lichen species 

occurring on quartz gravel sites at the site. 
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Figure 2.5. Location and typical topography of the lichen field at the Alexander Bay 

experimental site. 
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Figure 2.6. Location of the Bainskloof and Jonaskop sites and some common lichen species 

occurring on bark and granites. 

2.4. Study objectives and hypotheses 

The study’s main objectives were to examine the thermal sensitivity of lichens from 

habitats of different aridity under laboratory and natural conditions and their interception of 

moisture and elements from different precipitation sources. The following key questions were 

addressed: 

1. Is lichen photosynthesis a more sensitive indicator of heat stress than respiration? 

2.  Are lichens from the cooler and wetter sites more sensitive to heat stress than those 

from hotter and drier sites? 

3.  Are lichen thermal sensitivities determined under laboratory and natural conditions 

comparable? 

4.  Will future temperature increases, predicted by climate change scenarios, inhibit the 

lichen photosynthesis and growth of the selected species? 

5.  Will the selected lichens from drier sites be more severely affected by future 

temperature increases predicted by climate change scenarios than those from wetter 

sites? 
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6. Is fog and dew more important sources of moisture and nutrients for lichens than 

rainfall? 

 

2.5. Thesis structure 
The thesis comprises six chapters. The first chapter includes a comprehensive review 

of lichen biology based on 112 sources of reference. The second chapter presents the lichen 

species selected for study, the methods employed in their identification, as well as a 

description of the experimental site, the study objective and key questions. The third chapter 

describes the results obtained from measurements of the thermal sensitivities of nine 

different lichens species from three sites of different aridity and mean annual temperature 

under both laboratory and field conditions. The fourth chapter assesses the effects of 

experimental climate warming on lichen photosynthesis and growth under field conditions. 

The fifth chapter investigates moisture interception and elemental accumulation by two 

dominant lichen species in a South African coastal subtropical desert. The sixth chapter 

presents study conclusions and recommendations. Chapter three, four and five are 

presented as scientific manuscripts, the literature references and citations presented in 

accordance with provisions of the Journal of Environmental and Experimental Botany.   
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Chapter 3 

A comparison of the thermal sensitivities of lichens from different 

environments under laboratory and natural conditions 

Abstract 

Thermal sensitivities of nine different lichens species from three sites of different 

aridity and mean annual temperature were measured under laboratory and field conditions. 

In the laboratory studies, the 9 lichen species collected from the 3 sites were allowed to 

acclimatize in a growth chamber for 8 days after which they were hydrated and exposed in 

forced draft ovens for 2 hour intervals to 7 different temperatures ranging from 24ºC to 48ºC. 

Following heat exposure, the lichens were rehydrated and their respiration rates and 

maximum quantum yields of PSII determined. In the field studies, effective quantum yields of 

PSII of hydrated thalli of 6 lichen species were measured monthly at hourly intervals 

throughout the day at 2 sites and these matched with simultaneously recorded ground 

surface air temperatures. A residual maximum likelihood variance components analysis 

tested at which exposure temperatures lichen respiration and maximum quantum yield of 

PSII declined significantly from ambient, these designated effective temperatures. Exposure 

temperatures at which lichen respiration and maximum quantum yield of PSII ceased were 

designated lethal temperatures. These were derived from regression functions that quantified 

relationships between measured lichen respiration rate, maximum quantum yield of PSII and 

exposure temperature. Laboratory determined effective and lethal temperatures limiting for 

lichen respiration were higher than those limiting for lichen maximum quantum yield of PSII 

which displayed a general declining trend for lichens occurring along an environmental 

gradient of decreasing temperature and increasing precipitation, this extending from the hot 

arid site to the warm coastal site to the cool montane site. Field determined quantum yields 

of PSII in hydrated lichens displayed an early morning peak which subsequently declined 

with increasing temperatures towards midday with a second phase of elevated quantum yield 

of PSII also apparent in the cooler late afternoon. Field derived lethal temperatures for lichen 

quantum yield of PSII were similar to those determined under laboratory conditions but field 

derived effective temperatures for lichen quantum yield of PSII were up to 20oC lower than 

those determined under laboratory conditions. The exceptionally low effective temperatures 

limiting lichen quantum yield of PSII under natural conditions suggest that even small 

increases in temperature, especially during early morning periods of peak photosynthetic 

activity, could negatively affect the carbon balance of lichens already living close to the edge 

of their physiological abilities. 

 

 

 

 



34 

 

Key words: Lichens, photosynthetic quantum yield, respiration, effective temperature, lethal 

temperature. 

3.1. Introduction  

Lichens possess certain anatomical and physiological characteristics which render 

them highly sensitive to environmental changes. These include 1. the absence of stomata 

and a protective cuticle, this causing little control over diffusion of atmospheric pollutants 

concentrated in fog and dew, a major source of water for lichens, into the sensitive 

photobiont layer (Rope & Pearson, 1990; Nash, 2008),  2. elevated metabolic rates under 

hydrated conditions which persist even at low temperatures, 3. high susceptibility to 

persistent damage due to a slow growth rate which restrains injury repair, and 4. long lived 

perennial bodies which concentrate elements absorbed from the environment (Nimis et al., 

1990; Purvis, 2000; Conti & Cecchetti, 2001; Zedda & Rambold, 2006; Tiwari, 2008).  

Physiological measurements used to determine changes in lichen metabolic activity 

and vitality in response to stress include changes in photosynthetic and respiration rate 

(Sigal & Nash, 1983; Bartók et al., 1992; Egger et al., 1994; Garty et al., 2000; Conti & 

Cecchetti, 2001) with  photosynthesis more sensitive to stress than respiration (Hale, 1983), 

rate of nitrogen fixation by blue green algal photobionts (Hawksworth & Rose, 1976; Sigal & 

Nash, 1983), ATP levels (Kardish et al., 1987; Garty et al., 1988), concentration of stress 

ethylene (Epstein et al., 1986; Garty et al., 2000), leakage of electrolytes (Silberstein et al., 

1996; Shiraz et al., 1996), glutathionine and amino acid content (Silberstein et al., 1996), 

reduction of 2,3,5-triphenyltetrazolium chloride to triphenyl formazan (Bačkor & Fahselt, 

2005), chlorophyll concentration and degree of phaeophytinization (Ronen & Galun, 1984; 

Garty et al., 1992; Chettri et al., 1998) and chlorophyll a fluorescence (Garty et al., 2000). 

The latter has proved a particularly useful tool for vitality screening of lichen photosynthetic 

responses to extreme temperatures, light, water availability, air pollution, heavy metal 

contamination and ultraviolet-B radiation (Paul & Hauck, 2006; Baruffo & Tretiach, 2007; 

Scheidegger & Schroeter, 1995; Calatayud et al., 1996; Branquinho et al., 1997; Hájek et al., 

2001; Garty et al., 2007) both in the laboratory and in the field (Jensen, 2002; Jensen & 

Kricke, 2002).   

Several studies have examined the responses of lichens from different environments 

to heat stress in dehydrated and hydrated states (Rogers, 1971; Kappen, 1973; Macfarlane 

& Kershaw, 1980 Larson, 1982; Larson, 1989). These have shown that lichens are more 

susceptible to heat stress in hydrated than dehydrated states (Larson, 1982) with those 

lichens from cooler sites more sensitive to heat stress than those from warmer sites (Larson, 

1989). However, the exposure temperatures applied in these studies (Rogers, 1971; Larson, 
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1982; Larson, 1989) were considerably higher than those found under natural conditions. 

Since laboratory determined heat tolerance does not always reflect the injurious 

temperatures in the natural habitat (Kappen, 1973), this study compared the thermal 

sensitivities of lichens from different environments under both laboratory and natural 

conditions.  

 

3.2. Methods and materials 

3.2.1. Study sites and species 

Lichen species for study were collected from 4 different sites. The first, a hot arid site 

was the farm Quaggaskop (31o 24.6’ S, 18o 37.8’ E) at an elevation ±160 m situated in the 

Knersvlakte, a semi-arid winter rainfall region within the South African Succulent Karoo 

Biome (Rutherford & Westfall, 1986) listed among 34 global biodiversity hot spots (Myers et 

al., 2000; Mittermeier et al., 2004), with a mean annual precipitation and daily maximum air 

temperature recorded at the nearby Vredendal weather station between 1957 and 1984 of 

145 mm and 25.7°C respectively (Climate of South Africa, 1986). Lichen species examined 

from this site comprised  the foliose Xanthoparmelia austro-africana, X. hyporhytida, 

Xanthoparmelia sp. and Xanthomaculina hottentotta.  

The second, a warm coastal, site comprised a large lichen field (28o 37’S, 16 o 32’E) 

situated a few kilometers South East of the mining city of Alexander Bay 3.2 km distant from 

the Atlantic coast. The site has a mean annual temperature of 17.2o C and an erratic low 

rainfall of 39 mm per annum (1951 – 1984 average) occurring predominately in winter, this 

supplemented by high frequencies of fog averaging 61 days per year and most common in 

May late autumn (Climate of South Africa, 1986). Of the 31 lichens species recorded at this 

site, two dominant fruticose lichen species were selected for study, namely Teloschistes 

capensis common on slope apices, characterized by gypsum-rich topsoil, and Ramalina sp. 

more common at the bases of slope with deeper gypsum rich soils.  

The third cool, moist montane sites were Jonaskop (33° 58’ 00’’S, 19° 30’ 00’’E) and 

Bainskloof (33° 36’ 8.6’’S, 19° 6’ 42’’E). Jonaskop is located within the Riviersonderend 

Mountain Catchment situated 23 km SE of Worcester ranging at elevations of between 600m 

and 1300m with mean daily maximum and minimum air temperatures of 16.5°C and 12.1°C 

respectively and a mean annual precipitation of 315 to 720 mm occurring mainly in winter 

and (Muciana & Rutherford, 2006). Bainskloof is located in the Du Toitskloof and Stettyns 

mountains ranging in altitude from 250 -1800m with mean daily maximum and minimum 

temperatures of 16.5°C and 12.1°C respectively and a mean annual rainfall of 1200 mm also 

occurring mainly in winter. Lichen species examined from these two sites comprised 

Flavopuntelia caperata, Lasallia papulosa and Parmotrema austrosinensis.  
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3.2.2. Laboratory studies 

Thirty-five thalli of each of 9 different lichen species were collected on their original 

substrates from the 3 different sites. The 315 lichen thalli were transferred to a growth room 

and allowed to acclimatize for 8 days at 18oCday/10oC night at a 16h daily photon flux 

density of ca 200 µmol m-2 s-1. During the acclimation period, the lichens were hydrated every 

second day by applying a fine distilled water mist spray to their thalli. Hydrated lichen thalli 

were exposed in forced draft ovens for 2 hour intervals to temperatures ranging from 24ºC to 

48ºC at 4ºC intervals, the highest oven exposure temperature slightly above the average 

temperature extreme of 44.4oC recorded at the Vredendal weather station in close proximity 

to the Quaggaskop site between 1957 and 1984 (Climate of South Africa, 1986). The 2-hour 

oven exposure periods adopted corresponded with diurnal temperature maxima confined to 

one hour periods on either side of the solar noon. There were 5 replicated lichen thalli per 

species for each of the seven heat treatments. Following heat exposure, the lichens were 

returned to the growth room for an additional 24 hour period.  

The following day the heat-treated lichens were hydrated with a fine distilled water 

mist spray and dark adapted for a one hour period. Subsequently, measurements of initial 

(Fo) and maximal (Fm) fluorescence emissions from the hydrated, heat treated lichen thalli 

were taken with a Plant Efficiency Analyser (PEA, Hansatech Instruments Ltd., King’s Lynn, 

Norfolk, UK) following a 1 s saturating photosynthetic photon flux density (PPFD) of 3500 

µmol m−2 s−1. Three fluorescence measurements were performed on five thalli of each lichen 

species from each oven exposure temperature (15 measurements per lichen species per 

oven exposure temperature). Ratios of variable to maximal fluorescence (Fm-Fo/Fm), an 

indicator of the maximum quantum yield of Photosystem II (PSII) were computed. 

Following the chlorophyll fluorescence measurements, the hydrated, heat treated 

lichen thalli of each species were placed in polyvinyl chloride (PVC) collars with an internal 

diameter of 10 cm and a length of 5cm installed on a wooden board. Measurements of lichen 

mycobiont and photobiont dark respiration rate (RD) as µmol CO2 efflux m-2 s-1 were 

performed on 3 randomly selected lichen thalli of each species from each oven exposure 

temperature (3 measurements per lichen species per oven exposure temperature) with a Li-

Cor 8100 infrared gas analyzer (Li-Cor BioSciences, Lincoln, Nebraska, USA). After the 

respiration measurements, the lichen thalli were removed from their substrates, dried in a 

forced draft oven at 60oC, and weighed on a fine electronic balance. Measured respiration 

rates were expressed as µmol CO2 efflux m-2 s-1 per gram of dry lichen thallus. 
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3.2.3. Field studies 

Demarcated plots 120 cm in diameter constructed from 40 cm high steel fencing with 

a 5 cm diameter mesh were installed at random over populations of the four lichen species at 

the hot arid site and populations of the two lichen species at the warm coastal site (6 

replicated plots per lichen species per site). Lichen thalli were hydrated with a fine distilled 

water mist spray and their effective quantum yields of PSII at a steady state (Ys = Fms-

Fs/Fms = ΔF/Fm’) measured with a portable modulated fluorometer (OSI-F1, Opti-Sciences 

Inc., Hudson, USA) following exposure to 0.8s saturating light pulses of 15 000 μE. Five 

replicated fluorescence measurements were taken hourly from 08h00 to 17h00 on four 

randomly selected thalli of each lichen species at each site. Fluorescence measurements 

were repeated monthly over a 12 moth monitoring period and these matched with 

simultaneously recorded ground surface air temperatures using radiation shielded 

thermocouples interfaced with miniature Watchdog Model 450 data loggers (Spectrum 

Technologies Inc., Plainfield, Illinois, USA)  

3.2.4. Statistical analyses 

Fluorescence measurements were normally distributed but respiration measurements 

were not and consequently were loge transformed before statistical analysis to reduce the 

inequality of variance in the raw data (Figure 3.1A and B).  

Both the laboratory and field trials were not fully balanced due to missing 

measurements. Consequently, a REML (residual maximum likelihood) variance components 

analysis was used to test for differences in measured lichen respiration rates and quantum 

yields of PSII between laboratory exposure temperatures, species and their interactions 

(linear mixed model) and also for differences between field exposure temperatures, 

corresponding with different times of the day, species and their interactions (repeated 

measures mixed model) using the Wald Х2 statistics generated by REML (GENSTAT 

Discovery Edition 3, VSL Lty, UK). In the laboratory trials, oven exposure temperature and 

species were fitted in the fixed model and treatment and species replications in the random 

model. In the field trials, lichen species and time of the day were fitted in the fixed model and 

monthly replications grouped into seasons in the random model. Differences exceeding twice 

the average standard error of differences were used to separate significantly different 

treatment means at P ≤ 0.05. This based on the fact that for a normal distribution from REML 

estimates, the 5% two-sided critical value is two.  

In the laboratory trials, the oven exposure temperatures at which respiration rate and 

PSII efficiency declined significantly (P ≤ 0.05) from ambient (24oC) were designated as 

effective temperatures. In the field trials, the recorded temperatures corresponding with the 
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time of the day at which PSII efficiency declined significantly (P ≤ 0.05) from an early 

morning optimum were designated effective temperatures and these averaged over the 12 

month recording period for each species.  

In both the laboratory and field studies, least squares regressions quantified the 

relationships between oven and field exposure temperatures and measured respiration rates 

and quantum yields of PSII. A Students t-test tested the slopes and the intercepts of the 

linear regressions for significance at P ≤ 0.05.  The regression equations were used to 

compute the temperatures at which respiration rate and PSII efficiencies attained zero, which 

were designated as lethal temperatures.  

 

 

Figure 3.1. Normal plots for A. non-transformed and B. loge transformed lichen respiration 

rates. 
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3.3. Results 

3.3.1. Laboratory studies 

Respiration rates and maximum quantum yields of PSII differed significantly (P ≤ 

0.001) between lichen species (Table 3.1) and decreased significantly (P ≤ 0.05) with 

increased oven exposure temperature (Figure 3.2A & B). However effective temperatures 

(range: 40oC – 48oC) limiting for lichen respiration were higher than effective temperatures 

(range: 32oC - 44oC) limiting for lichen maximum quantum yield of PSII (Table 3.2). Also, 

there were significant (P ≤ 0.001) species versus oven exposure temperature interactions 

(Table 3.1) with effective temperatures for respiration rates and maximum quantum yields of 

PSII differing significantly (P ≤ 0.05) between species. The effective temperatures of 32oC to 

36oC limiting for maximum quantum yield of PSII in L. papulosa, P. austrosinesis and F. 

caperata from cool, montane environments, for example, were significantly (P ≤ 0.05) lower 

than those of 40oC to 44oC limiting for maximum quantum yield of PSII in X. austro-africana, 

X. hyporhytida, X. hottentotta and Xanthoparmelia sp. from hot arid environments.  

Least squares regressions quantifying the relationships between oven exposure 

temperatures, respiration rates and maximum quantum yields of PSII are presented for X. 

hyporhytida in Figure 3.3A & B and for all other lichen species from the hot arid, warm 

coastal and cool montane sites in Appendix 3.1A to F, Appendix 3.2A to D and Appendix 3.3 

A to F respectively. All 9 species had significant (P ≤ 0.001) slopes and intercepts for 

respiration rate and maximum quantum yield of PSII (Table 3.3), except in P. austrosinesis 

where the slope of the regression between respiration rate and oven exposure temperature 

was not significant (P ≥ 0.05) and consequently also the lethal temperature for respiration 

derived from the regression function for this species. Lethal temperatures for respiration and 

maximum quantum yield of PSII derived from the regression equations for the other lichen 

species were statistically significant (P ≤ 0.05) and presented in Table 3.2. There was a 

general trend of declining lethal and also effective temperatures for lichen maximum 

quantum yield of PSII along the environmental gradient of decreasing temperatures and 

increasing precipitation extending from the hot arid site to the warm coastal site to the cool 

montane site (Table 3.2). Lethal temperatures (range: 45.7oC – 62.2oC) for lichen respiration 

were also substantially higher than those (range: 44.6oC – 53.0oC) limiting for lichen 

maximum quantum yield of PSII (Table 3.2) and did not exhibit a declining trend along the 

environmental gradient of decreasing temperatures and increasing precipitation. 
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Table 3.1. Wald statistics derived from REML (linear mixed model) which tested the effects of 

different oven exposure temperatures on respiration rate (RD) and maximum quantum 

yield of PSII (Fv/Fm) in nine different lichen species. Values presented in bold 

significant at *P <0.05, **P <0.01, ***P <0.001.  

 

  Wald χ2 statistic 
Factor df RD Fv/Fm 
   
Oven exposure temperature 6 4087.7*** 175.4*** 
Species 8 11037.0*** 1154.8*** 
Oven exposure temperature x species 48 2367.2*** 2046.7*** 
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Figure 3.2. Effects of different temperatures on A, respiration and B, maximum quantum yield 

of PSII in nine lichen species from three different environments. Average standard 

errors of differences derived from REML shown by bars. Values with non-overlapping 

bars significantly different at P ≤ 0.05. 

A

B

 

 

 

 



42 

 

 

Figure 3.3. Least square regressions for (A) lichen respiration, (B) dark adapted and (C) light 

adapted photosynthetic quantum yields derived under laboratory and field conditions 

for X. hyporhytida. 

A
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Table 3.2. Effective and lethal temperatures for lichen respiration (RD) and maximum quantum yields of PSII derived under laboratory (Fv/Fm) 

and field (Ys) conditions for lichen species from different environments. 

 

Site Species Effective temperature oC Lethal temperature oC 
  Laboratory Field Laboratory Field 
  RD Fv/Fm Ys RD Fv/Fm Ys 
        

Hot arid site 

X. austro-africana 48.0 44.0 25.2 58.4 52.8 49.7 
X. hottentotta 48.0 40.0 26.7 57.4 48.7 69.2 
X. hyporhytida 48.0 40.0 22.6 61.0 49.3 48.9 
Xanthoparmelia sp. 48.0 40.0 24.9 61.9 53.0 57.8 

        

Warm coastal site 
Ramalina sp. 40.0 36.0 21.7 47.5 46.9 42.0 
T. capensis 44.0 40.0 21.7 49.2 48.2 44.0 

  

Cool montane site 
F. caperata 40.0 32.0 - 55.1 45.3 - 
L. papulosa  44.0 36.0 - 62.8 45.4 - 
P. austrosinensis 48.0 32.0 - 62.2 44.6 -

        
 

 

 

 

 

 



44 

 

Table 3.3. Coefficients of determination (r2), degrees of freedom (df) and t-statistics (t) for slopes and intercepts of least squares regressions of 

exposure temperature against respiration rate (RD) and maximum quantum yields of PSII derived under laboratory (Fv/Fm) and field 

(Ys) conditions for  lichen species from different sites. Significant at *P ≤ 0.05, **P ≤  0.01, ***P ≤  0.001. 

 

 Hot arid site Warm coastal site Cool montane site 
Parameters X. aus X. hot X.hyp X.spp R.spp T.cap F.cap L.pap P.aus
          
RD          
df 19 19 19 19 19 19 19 17 19 
r2 0.4864 0.5876 0.4194 0.5138 0.8027 0.7568 0.4028 0.2679 0.1767 
slope  t = -4.2*** t = -5.2*** t = -3.7** t = -4.4*** t = -8.7*** t = -7.6*** t = -3.5** t = -2.4* t = -2.0 
intercept t = 6.7*** t = 8.1*** t = 6.1*** t = 7.4*** t =11.2*** t =10.2*** t = 5.35*** t = 4.2*** t = 3.4** 
          
Fv/Fm          
df 102 103 103 103 102 103 103 103 100 
r2 0.6835 0.8026 0.7837 0.781 0.869 0.8466 0.8068 0.7944 0.8681 
slope  t = -14.8*** t = -20.4*** t = -19.3*** t = -19.1*** t = -26.0*** t = -28.4*** t = -20.7*** t = -19.9*** t = -26.6*** 
intercept t = 21.2*** t = 27.0*** t = 25.8*** t = 27.6*** t =33.2*** t = 31.2*** t = 25.5*** t = 24.6*** t = 31.3*** 
          
Ys          
df 98 98 98 98 91 91 - - - 
r2 0.2008 0.1295 0.2602 0.1529 0.2086 0.1214 - - - 
slope  t = -4.9*** t = -3.8*** t = -11.3*** t = -4.2*** t = -4.8*** t = -3.6*** - - - 
intercept t = 9.7*** t = 10.5*** t = 5.8*** t = 9.7*** t = 9.1*** t = 6.9*** - - - 
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Table 3.4. Wald statistics derived from REML (repeated measures mixed model) which 

tested the effects of different field exposure temperatures corresponding with different 

times of the day in different seasons on effective quantum yield of PSII at a steady 

state (Ys) in lichen species from a hot arid site and a warm coastal site. Values 

presented in bold significant at *P <0.05, **P <0.01, ***P <0.001.  

 

 Hot arid site Warm coastal site 
 df Wald χ2 statistic df Wald χ2 statistic 
Main  effects     
Season 3 2809.2*** 3 976.8*** 
Species  3 193.32*** 1 62.7*** 
Time 9 149.4*** 10 202.3*** 
2-way interactions     
Season x Species  9 82.0*** 3 138.4*** 
Season x Time 23 158.3*** 24 134.2*** 
Species x Time  27 73.4*** 10 24.2** 
3-way interactions     
Season x Species x Time 69 136.3*** 24 68.3*** 
 

3.3.2. Field studies 

Effective quantum yields of PSII (Ys) at a steady state differed significantly (P ≤ 

0.001) between seasons, lichen species and time of the day at both the hot arid and warm 

coastal sites (Table 3.4). At hot arid site, the highest quantum yields of PSII were observed in 

winter (range: 0.3978 to 0.4915), followed by spring and autumn with lowest values 

measured in summer (range: 0.0919 to 0.1782). At the warm coastal site, the highest 

quantum yields of PSII were observed in winter (range: 0.3076 to 0.4585), followed autumn 

and spring with lowest values also measured in summer (range: 0.01397 to 0.1968). An 

examination of diurnal fluctuations in lichen quantum yields of PSII showed that highest 

values occurred in the early morning period mostly between 08h00 and 09h00 at both the hot 

arid site (winter range: 0.4826 to 0.5386) and the warm coastal site (winter range: 0.3522 to 

0.5716), and the lowest quantum yields of PSII in the afternoon between 14h00 and 15h00 at 

both the hot arid site (winter range: 0.3080 to 0.4445) and the warm coastal site (winter 

range: 0.2680 to 0.3563) when temperatures reached their maximum levels. With decreasing 

temperatures towards the evening, second phases of elevated quantum yields of PSII were 

also apparent in the late afternoon after 16h00 (Figures 3.3 & 3.4). The magnitude of these 

late afternoon quantum yields of PSII increases differing with species and season. This 

apparent from the significant (P ≤ 0.001) interactions for quantum yield of PSII between 

season, lichen species and time of the day at both the hot arid and warm coastal sites (Table 

3.4). Annually averaged effective temperatures limiting for effective quantum yield of PSII 
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(Table 3.2) for lichen species from the hot arid site (range: 22.6oC – 26.7oC) were higher than 

those limiting for quantum yield of PSII for lichen species from the warm coastal site 

(21.7oC). Both sets of these field determined effective temperatures limiting for lichen 

effective quantum yield of PSII were substantially (up to 20oC) lower than corresponding 

effective temperatures limiting for lichen maximum quantum yield of PSII determined under 

laboratory conditions (Table 3.2). 

Least squares regressions of measured effective quantum yields of PSII at a steady 

state against simultaneously recorded air temperatures had significant (P ≤ 0.001) slopes 

and intercepts (Table 3.3) in X. hyporhytida  (Figure 3.2C) and in all other lichen species 

from the hot arid site (Appendix 3.4A to C) and the warm coastal site (Appendix 3.4D &E). 

Lethal temperatures derived under field conditions were only slightly different from 

corresponding lethal temperatures determined under laboratory conditions (0.6oC to 4.9oC 

difference) with one exception (Table 3.2). 

3.4. Discussion 

The measured effective temperature range of 32oC to 44oC limiting for lichen 

maximum quantum yield of PSII determined under laboratory conditions corresponded with 

the thermal sensitivity range of 35oC to 46oC reported for photosynthetic gas exchange in 

other hydrated lichen species exposed to artificially elevated temperatures also under 

laboratory conditions (Kappen, 1973; Macfarlane & Kershaw, 1978). The greatest 

photosynthetic resilience to an elevated temperature of 46.5oC of 30 minutes duration was 

reported in Cladonia rangiformis var. pungens (Kappen, 1973) whereas in this study the 

greatest photosynthetic resilience to an elevated temperature of 44oC of 2-h duration was 

displayed by X. austro-africana.  

Kappen (1973) reported temperatures inhibiting for photosynthesis in the hydrated 

lichen Lobaria pulmonaria and Umbilicaria vellea of 35oC and 36.5oC respectively and for 

respiration of 42.5oC and 44.0oC respectively. This and other authors report of a greater 

sensitivity of lichen photosynthesis than respiration to heat stress (Macfarlane & Kershaw, 

1978, 1980; Larson, 1982) which were supported by the higher effective and lethal 

temperatures measured for respiration than for maximum quantum yield of PSII among all 9 

lichen species in this study. Also, the reported greater sensitivity to heat stress of lichens 

from warmer sites than those from cooler sites (Larson, 1989) was supported by the lower 

effective and lethal temperatures for respiration and maximum quantum yield of PSII 

measured in lichens from the hot arid site than in those from the cool montane site in this 

study.  
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The lethal temperatures for maximum quantum yield of PSII of 44.6oC to 53.0oC 

derived for hydrated lichens under laboratory conditions were similar to those of 42.0oC to 

69.2oC derived for hydrated lichens under natural conditions. Both generally corresponded 

with lethal temperatures for photosynthetic gas exchange reported for other lichen species. 

Examples include 40oC and 50oC for hydrated Umbilicaria vellea and U. mammulata 

respectively, 55oC for hydrated Chondropsis semiviridis (Rogers, 1971), 54°C for hydrated 

Lobaria pulmonaria (Gauslaa & Solhaug, 1999), 50oC and 60oC for hydrated Ramalina 

menziesii from cool and hot sites respectively (Larson, 1989), 50oC for hydrated Caloplaca 

elegantissima and 55oC for hydrated Teloschistes capensis, Neofuscelia namibiensis and 

Xanthoparmelia walteri (Lally & Viles, 2006). The above reported lethal temperatures for 

hydrated Ramalina menziesii and Teloschistes capensis were slightly higher than the lethal 

temperatures for maximum quantum yield of PSII of 46.9oC and 48.2oC derived under 

laboratory conditions and those of 42.0oC and 44.0oC derived under natural conditions for 

Ramalina sp. and T. capensis respectively in this study. These discrepancies possibly due to 

differences in habitat environments and/or heat induced reductions in PSII electron transport 

commencing at temperatures much lower than the threshold for de-activation of the 

photosynthetic gas exchange enzyme Rubisco (Musil et al., 2009).  

Also, the lethal temperature for maximum quantum yield of PSII derived for hydrated 

lichens under laboratory and natural conditions in this study closely overlapped with lethal 

temperatures of 45.3°C and 44.1°C reported for the mosses Plagiomnium acutum and 

Thuidium cymbifolium (Liu et al., 2003) and 51°C reported for the moss Racomitrium 

canescens (Richardson, 1981). These lethal temperatures for lichen maximum quantum yield 

of PSII were also in the range of lethal temperatures of 50oC to 55°C reported for terrestrial 

sun plants (Larcher, 1980), 47°C reported for wheat (Zou, 1998) and 54.6°C to 56.2°C 

reported for Betula nigrahas (Ruter, 1996), the temperature threshold of 55oC considered 

close to the maximum tolerable by most vascular plants (Larcher, 1980; Kappen, 1981). 

However, the measured lethal temperatures for lichen maximum quantum yield of PSII were 

slightly higher than the lethal temperature of 43oC reported for the aquatic fern Salvinia 

molesta (Whiteman & Room, 1991) but were mostly below those reported for succulent 

plants from hot arid environments. In these environments, much higher lethal temperatures 

of 70°C to 74°C have been reported for cacti (Nobel, 1988), 66.4oC to 66.9oC for rosette 

leafed Haworthia species (H. retusa and H. turgida), 68.3oC to 68.7oC in spherical leafed 

Lithops species (L. leslie and L. turbiniformis), and 69oC to 70oC in seedlings of Ferocactus 

(F. covillei and F. wislizenii) and in detached stem segments of Opuntia (O. ficus-indica) 

species (Smith et al., 1984; Nobel et al., 1986; Nobel, 1989). 

 

 

 

 



48 

 

 

Figure 3.4. Diurnal effective quantum yields of PSII (seasonal averages) for 4 lichen species at the hot arid site. Average standard error of 

differences shown by bars. 
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Figure 3.5. Diurnal effective quantum yields of PSII (seasonal averages) for 2 lichen species 

at a warm coastal site. Average standard error of differences shown by bars.
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Despite the similar laboratory and field derive lethal temperatures for lichen maximum 

quantum yield of PSII, effective temperatures limiting lichen effective quantum yield of PSII 

under natural conditions (range: 21.7oC to 26.7oC) were up to 20oC lower than those limiting 

lichen maximum quantum yield of PSII under laboratory conditions (range: 32oC to 44oC). 

The field exposure temperature of 21.7oC limiting for Ramalina sp. maximum quantum yield 

of PSII in this study only slightly lower than the 25oC exposure temperature reported to cause 

irreversible depression of CO2 assimilation in the closely related Ramalina farinaceae 

(Stålfelt, 1939). Measured wintertime lichen quantum yields of PSII (range: 0.2680 to 0.4445) 

in this study were indicative of moderately stressed lichens (Nayaka et al., 2009) and 

corresponded with a daily maximum temperature range of 23.0oC to 25.7oC. The even lower 

measured summertime lichen quantum yields of PSII (range: 0.1063 to 0.2045), indicative of 

severely stressed lichens (Nayaka et al., 2009), corresponding with a higher daily maximum 

temperature range of 26.2oC to 38.2oC. The depressed summertime quantum yields of PSII 

due not only elevated temperatures but possibly also to increased daylight intensities which 

are a significant stress factor that not only promote rapid desiccation in lichens, but also 

induce severe and extensive photo inhibition (Gauslaa & Solhaug, 1996, 2000).  

It is concluded that the exceptionally low temperatures limiting lichen quantum yield of 

PSII under natural conditions suggest that even small increases in temperature especially 

during early morning periods of peak photosynthetic activity during wintertime could 

negatively affect the carbon balance of lichens (Zotz et al., 2003) already living close to the 

edge of their physiological abilities.   
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Chapter 4 

Effects of experimental climate warming on lichen photosynthesis 

and growth 

Abstract 

Elevated temperatures accompanying climate warming are expected to have adverse 

effects on sensitive lichen species which may serve as indicators of environmental change. 

This premise was examined by artificially elevating temperatures and reducing fog and dew 

precipitation amounts with transparent hexagonal open-top chambers around natural 

populations of 6 lichen species at a hot arid site (3.8oC increase; 46.1% precipitation 

decrease) and warm coastal site (2.1oC increase; 31.9% precipitation decrease). 

Demarcated plots of equivalent open-top chamber dimensions constructed from 5 cm 

diameter mesh steel fencing comprised the controls and represented ambient conditions. 

Lichen populations were photographed with a high resolution digital camera at the 

commencement and termination of the 12-month artificial warming period and their changes 

in cover precisely measured with the aid of image analysis software. Also, at monthly 

intervals quantum yields of PSII of hydrated lichens were measured in the warming 

chambers and control plots hourly throughout the day. The artificially elevated temperatures 

and precipitation reductions resulted in slight yet statistically insignificant reductions in growth 

of lichen thalli but substantial declines in lichen quantum yields of PSII which were of 

generally much greater magnitude at the hot arid site than at the warm coastal site and most 

prominent during the cool wet winter season of peak photosynthetic activity. Diurnal 

responses of the lichens to experimental warming were site, season and species specific 

with reductions in lichen photosynthetic quantum yield in the open top warming chambers 

usually evident throughout the day during the cool wet winter season but confined mostly to 

the early morning and/or late afternoon periods of elevated photosynthetic activity during the 

hot dry summer season. It is concluded that diminished fog and dew frequencies and 

elevated lichen respiration rates associated with climate warming as well as a potential 

climatic shift from a winter to summer rainfall pattern could negatively affect lichen carbon 

balances leading to a greater incidence of mortality and localized extinction especially among 

lichens in arid areas.  

Key words: Lichens, climate warming, photosynthetic quantum yield, diurnal measurements 
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4.1. Introduction 

The unprecedented accumulation of CO2 and other greenhouse gases in the 

atmosphere since pre-industrial times has already had a discernible influence on global 

temperature and is forecast to cause further warming this century (IPCC, 2001). Direct and 

dramatic biotic responses to global warming are anticipated (Thomas et al., 2004) as are 

feed back effects whereby ecological responses generate additional climatic impacts by 

modifying transfer rates of energy, water, and trace greenhouse gases at the planetary 

surface (Rosenberg et al., 1983). Progressive migration of plants to more congenial thermal 

climates will be difficult, since altitudinal and latitudinal movements of isotherms in response 

to global warming are predicted to be more rapid than the rate at which plants can migrate 

(Callaghan & Jonasson, 1995; Grabherr et al., 1995). 

It is presumed that global warming will have the greatest impact on climatic conditions 

and terrestrial ecosystems in the arctic tundra and high mountain regions (Grabherr et al., 

1994; Oechel & Vourlitis, 1994). Diminished cover of mosses and lichens and increased 

cover and heights of deciduous shrubs and graminoids have been reported from 

standardized warming experiments at 11 locations across the tundra biome, these findings 

confirming that recently observed increases in shrub cover in many tundra regions are 

indeed a response to climate warming (Cornelissen et al., 2001; Walker et al., 2006). In 

contrast to the intensive studies conducted in the sub-arctic and arctic tundra, there are few 

data on other biomes. A meta-analysis of plant productivity responses to experimental 

warming in 20 of 32 global sites representing Forest, Grassland, high and low 

latitude/altitude Tundra biomes revealed a diminished relative productivity response to 

experimental warming with increasing site mean annual temperature (Rustad et al., 2001) 

implying that plant productivity could be expected to decrease further with experimental 

warming at lower latitude, subtropical and tropical sites.  

Biological activity of lichens in subtropical arid and semi-arid ecosystems is 

determined primarily by the size, frequency, and timing of precipitation pulses (Noy_Meir, 

1973) because lichens are metabolically active only when wet and their physiological 

functions are highly responsive to temperature (Lange et al., 1999; Lange, 2003). Even moist 

tropical lowland lichens are considered living close to the edge of their physiological abilities 

with slight increase in temperature likely to make their current habitats unsuitable (Zotz & 

Bader, 2009). High air temperature is a major environmental stressor for lichens as it 

contributes also to thallus dehydration resulting in an inhibition of photosynthetic processes 

which manifest as a decrease in the efficiency of absorbed energy transfer through 

Photosystem II (PS II) and net CO2 fixation (Hájek et al., 2006). As a consequence, it is not 

surprising that lichens and other non-vascular epiphytes have already been affected by 
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global warming. This evident from the new and increased occurrences of sub-tropical 

epiphytic lichen species in the Netherlands between 1980 and 2001 (van Herk et al., 2002; 

Aptroot & van Herk, 2007), by northward and eastward range extensions of Atlantic and 

Mediterranean bryophyte species in Central Europe over the same period (Frahm, 2001), 

and reported changes in the lichen flora from other parts of Europe (Aptroot & van Herk, 

2007). In the Netherlands warm-temperate lichen species have significantly increased and 

species characteristic of cold environments have either decreased or disappeared (van Herk 

et al., 2002). One example is that of Flavoparmelia soredians a drought resistant, warm-

temperate lichen species presently common in the Netherlands but rare before 1900 with its 

northern most limit until recently in southern England (Seaward & Coppins, 2004). In 

Denmark, growth rates of the drought resistant, warm temperate lichen Flavoparmelia 

caperata, have increased over the last 100 years, this seemingly linked to increased 

temperatures during the last 20 years (Søchting, 2004). Also, several new warm temperate 

epiphytic lichen species have recently been documented in the Netherlands (Aptroot et al., 

1997, 1998; Aptroot & van Herk, 1999a, 1999b; van Herk & Aptroot, 1999; Sparrius & 

Aptroot, 2000, 2003) with lichen species preferring colder environments having declined in 

numbers (Aproot & van Herk, 2007; Hauck, 2009).   

In arid subtropical ecosystems, global warming could potentially exceed native 

species thermal thresholds. A recent population census of the Namib Desert tree Aloe 

dichotoma over its entire geographic range revealed enhanced mortalities and declines in 

equatorial populations, this attributed to the surpassing since 1960 of critical climate 

thresholds at the equatorial sites due to recent climate warming (Foden et al., 2007). In 

another study of endemic succulent species in the arid southern African Succulent Karoo 

biome, massively reduced leaf densities and canopy covers were observed, especially 

among small sparsely branched species comprising single leaf pairs, following one year’s 

exposure to daytime air temperature increases consistent with a future global warming 

scenario (Musil et al., 2005). This and a subsequent study showed that even mild 

anthropogenic warming could exceed the thermal thresholds of many southern African quartz 

field succulents leading to increased plant mortalities and metabolic impairment. This 

impairment attributed to a loss in the catalytic efficiency of Rubisco which was preceded by a 

decrease in PSII electron transport commencing at temperatures much lower than the 

threshold for Rubisco de-activatio (Musil et al., 2009).  

Consequently, it seems likely that increased temperatures and diminished 

precipitation frequencies and air humidity’s associated with climate warming could cause a 

reduction in lichen species richness. Especially those morphological types most sensitive to 

aridity are threatened in the southern African Succulent Karoo biome, which is characterized 
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by an extraordinary and peculiar diversity of lichen taxa. A consequence of climatic changes 

could be the colonization of widespread cyanolichens and the loss of endemic species 

(Zedda & Rambold, 2009). Such changes could have many profound effects on ecosystem 

function (Belnap & Eldridge, 2003). In view of these findings, this study’s objective was to 

test the effects of experimental climate warming approximating a future climate scenario on 

the photosynthesis and growth of lichens from habitats of different aridity in the southern 

African Succulent Karoo biome.   

  

4.2. Materials and Methods 

4.2.1. Study sites, species and warming treatments 

There were two study sites. The first hot arid site was the farm Quaggaskop (31o 24.6’ 

S, 18o 37.8’ E) situated at an elevation ±160 m in the Knersvlakte, a semi-arid winter rainfall 

region within the South African Succulent Karoo Biome (Rutherford & Westfall, 1986) listed 

among 34 global biodiversity hot spots (Myers et al., 2000; Mittermeier et al., 2004), with a 

mean annual precipitation and daily maximum air temperature recorded at the nearby 

Vredendal weather station between 1957 and 1984 of 145 mm and 25.7°C respectively 

(Climate of South Africa, 1986). The second warm coastal site comprised a large lichen field 

(28o 37’S, 16o 30’E) situated a few kilometers South East of the mining city of Alexander Bay, 

3.2 km distant from the Atlantic coast. The site has a mean annual temperature of 17.2oC 

and an erratic low rainfall of 39 mm per annum (1951 – 1984 average) occurring 

predominately in winter, this supplemented by high frequencies of fog averaging 61 days per 

year and most common in May late autumn (Climate of South Africa, 1986). 

Daytime passive heating of the lichen populations at each site was achieved with 

clear acrylic (transmission down to 280 nm) hexagonal open-top chambers (basal diameters: 

120 cm between parallel sides) of 50 cm height (Figure 4.1). Such open-top chambers have 

been applied extensively in the International Tundra Experiment (ITEX) organized to 

investigate how vegetation in arctic tundra and high alpine regions may be affected by global 

warming (Henry & Molau, 1997), and their efficacy as analogues of climate warming has 

received biotic validation (Hollister & Weber, 2000). Demarcated plots of equivalent open-top 

chamber basal dimensions enclosed by 40cm high steel fencing with a 5 cm diameter mesh 

comprised the controls which represented ambient conditions (Figure 4.1). Twelve open-top 

chambers and 12 control plots were installed over four different lichen species (X. 

anthoparmelia austroafricana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina 

hottentotta) occurring on quartz gravel substrates at the Quaggaskop site and 3 open top 

chambers and 3 control plots installed over the two dominant lichen species (Teloschistes 

capensis and Ramalina sp.) on gypsum-rich topsoil at the Alexander Bay site. Placement of 
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the open-top chambers and control plots during early winter (June) allowed gradual 

acclimation of the lichens within each chamber to the artificially elevated temperatures.  

 

4.2.2. Ambient and open-top chamber microenvironments 

Miniature Watchdog Model 450 data loggers (Spectrum Technologies Inc., Plainfield, 

Illinois, USA) set to record at hourly intervals connected to radiation shielded thermocouples 

and leaf wetness resistance sensors were installed in randomly selected control plots and 

open-top chambers at the Quaggaskop and Alexander Bay sites. Thermocouples were 

positioned at ground level at the centers of the open top chambers as a slight temperature 

gradient was previously reported between the southern and northern sides of these open-top 

chambers (Musil et al., 2005). Leaf wetness resistance sensors were positioned 50mm 

above ground level at the centers of the open top chambers. The volume of fog and dew 

moisture present on the active surface of the leaf wetness sensor was derived from 

measured leaf wetness resistance readings using a published formula (Musil et al., 2009). 

Measured hourly fog and dew moisture volumes were summed for each day to provide the 

total daily apparent fog and dew precipitation amounts from which monthly and seasonal 

means were calculated. Those that coincided with rainfall measurements recorded 

concurrently with a tipping gauge rain sensor interfaced with a Watchdog 450 data logger at 

the study sites were excluded.  

4.2.3. Lichen growth  

Lichen populations present in the open-top warming chambers and control plots at each site 

were photographed on their installation in June 2008 (early winter) and again in May 2009 

(late autumn) of the following year using a high resolution 3.4 effective mega pixel (Sigma 

SD10) digital camera with a three-band Foveon X3 sensor (3 sensor photo detectors per 

pixel location). The camera was fitted with semi-wide angle lenses (24-70mm zoom, 20 mm 

fixed) and suspended 1.5m above ground surface on a tripod whose precise orientation was 

enabled by numbered aluminium tags affixed to the open-top chambers and control plots. A 

graduated ruler and compass placed on the ground provided indicators of scale and 

direction. In each digital image, the precise locations of individual thalli of the common 

crustose lichen X. austro-africana and the foliose lichen X. hottentotta in the control plots and 

open top chambers were labeled and their areas measured at the commencement and 

termination of the warming treatments with the aid of image analysis software (Image-J 

ver.1.34I, National Institute of Health, USA - http://rsb.info.nih.gov/ij/). The changes in areas 

of individual thalli of each lichen species measured in the control plots and open top warming 

chambers over the one year treatment period were expressed as percentages.  
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Figure 4.1. A. Alexander Bay lichen field experimental site. B. open-top warming chamber 

with automated environmental monitoring sensors and logger, C. control plot, D. 

measuring steady-state fluorescence of lichens in open top-warming chamber at 

Quaggaskop site. 

4.2.4. Lichen effective quantum yield of PSII 

Chlorophyll a fluorescence is a particularly useful tool for vitality screening of lichen 

photosynthetic responses to extreme temperatures (Bilger et al., 1989; Baruffo & Tretiach, 

2007) and provides a sensitive indicator of photosystem II (PS II) efficiency (Golding & 

Johnson, 2003). In this study, chlorophyll fluorescence measurements were conducted with a 

portable modulated fluorometer (OSI-F1, Opti-Sciences Inc., Hudson, USA). In both early 

morning and diurnal hourly measurements (details presented below), lichen thalli were first 

hydrated with a fine distilled water mist spray. After a one hour period, randomly selected 

thalli of each lichen species in the warming chambers and control plots were exposed to an 

0.8s saturating light pulse of 15 000 μE and their effective quantum yields of PSII at a steady 

state (Ys = Fms-Fs/Fms = ΔF/Fm’) determined.  

4.2.4.1. Early morning measurements 

The first set of fluorescence measurements conducted monthly over a 12-month period were 

confined to the early morning period between 08h00 and 10h00 when the lichens exhibited 
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the highest effective quantum yields of PSII. Five replicated fluorescence measurements 

were taken monthly on 12 randomly selected thalli of each lichen species in the warming 

chambers and control plots (60 measurements per species per treatment per month). 

4.2.4.2. Diurnal measurements 

The second subsequent set of diurnal fluorescence measurements taken at hourly intervals 

from 09h00 to 16h00 were also conducted monthly, but only over an 8-month period 

extending from July (mid winter) through to February (late summer). Five replicated 

fluorescence measurements were taken hourly on four randomly selected thalli of each 

lichen species in the warming chambers and control plots (20 measurements per species per 

hour per treatment per month). 

 4.2.5 Data synthesis and statistical analysis 

4.2.5.1. Ambient and open-top chamber microenvironments 

Daily maximum and minimum temperatures and maximum fog and dew precipitation 

amounts in the open top warming chambers and control plots were extracted for each 24 

hour period. An analysis of variance tested for differences in maximum and minimum 

temperatures and fog and dew precipitation amounts between the open top warming 

chambers and control plots in the different seasons. 

4.2.5.2. Lichen growth  

Measured percentage changes in lichen species thalli areas were arcsine transformed to 

correct for non normality in proportions. Since the experimental design was not fully balanced 

due to missing measurements, a residual maximum likelihood variance component analysis 

(REML - linear mixed model) was used to test for differences in the magnitude of change in 

lichen species thalli areas between the control plots and warming chambers using the Wald 

Х2 statistic generated by REML (GENSTAT, Discovery Edition 3, VSL Lty, UK). Warming 

treatments and lichen species were fitted in the fixed model and treatment and species 

replications in the random model. 

4.2.5.3. Lichen effective quantum yield of PSII 

Measured effective quantum yields of PSII at a steady state were normally distributed. 

However, the experimental design was also not fully balanced due to missing 

measurements, and consequently a REML (residual maximum likehood) variance 

components analysis (repeated measures mixed model) was used to test for differences in 

effective quantum yield of PSII between the control plots and warming chambers using the 

Wald χ2 statistic generated by the REML (GENSTAT Discovery Edition 3, VSL Lty, UK). In 

the first set of early morning fluorescence measurements, the REML was conducted 
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separately on the groups of lichen species from the hot arid and warm coastal sites. Here, 

warming treatments and lichen species were fitted in the fixed model and monthly 

replications grouped into seasons in the random model. In the second set of diurnal 

fluorescence measurements, the REML was conducted separately on each lichen species. 

Here warming treatments and time of the day were fitted in the fixed model and monthly 

replications grouped into seasons in the random model. Differences exceeding twice the 

average standard error of differences were used to separate significantly different treatment 

means at P ≤ 0.05. This based on the fact that for a normal distribution from REML 

estimates, the 5% two-sided critical value is two.  

4.3. Results 

4.3.1. Ambient and open-top chamber microenvironments 

Average minimum daily air temperatures were not significantly (P ≥ 0.05) different in the 

open top warming chambers and control plots in all seasons (Table 4.1).  However, 

maximum daily air temperatures were significantly (P ≤ 0.05) higher and apparent fog and 

dew precipitation amounts were significantly (P ≤ 0.05) lower in the open top warming 

chambers and control plots at both the hot arid and warm coastal sites. Moreover, at the hot 

arid site the magnitude of maximum daily air temperature increases (seasonal range: 2.6oC 

to 4.9oC) and fog and dew precipitation decreases (seasonal range: 46.5% to 52.2%) in the 

open top chambers were greater than the temperature increases (seasonal range: 1.9oC to 

2.4oC) and fog and dew precipitation decreases (seasonal range: 14.5% to 39.4%) in the 

open top chambers at the warm coastal site (Table 4.1).  

4.3.2. Lichen growth  

Both Xanthoparmelia austro-africana and Xanthomaculina hottentotta did not display 

significantly (P ≥ 0.05) greater changes in thalli area in the artificially warmed than ambient 

environments and no significant (P ≥ 0.05) interaction between species and warming (Table 

4.1). Despite the latter, a larger (P ≥ 0.05) decrease in lichen thallus area (Figure 4.2) was 

displayed by X. hottentotta in the artificially warmed (-32.5%) than ambient environment (-

22.3%).  

4.3.3. Lichen effective quantum yield of PSII 

4.3.3.1. Early morning measurements 

Lichen effective quantum yields of PSII at the hot arid and warm coastal sites differed 

significantly (P ≤ 0.001) between seasons, ambient and warming treatments and species 

(Table 4.2). 
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The highest quantum yields of PSII at the hot arid site were observed in winter (range: 

0.4874 to 0.5528) followed by autumn and spring with lowest quantum yields of PSII (range: 

0.1269 to 0.2254) observed in summer. 

At the warm coastal site, the highest quantum yields of PSII were observed in autumn 

(range: 0.5369 to 0.6163) followed by winter and summer with lowest quantum yields of PSII 

(range: 0.2450 to 0.3578) observed in spring.  

There were significant (P ≤ 0.001) three way interactions between season, warming 

treatment and species on effective quantum yield of PSII at both sites (Table 4.2). At the hot 

arid site, effective quantum yields of PSII of all four lichen species displayed significantly (P ≤ 

0.05) lower values in the open-top warming chambers than in the ambient environment in all 

four seasons with the largest reductions in effective quantum yields of PSII (range: 59% to 

73.5%) in the warming chambers apparent during summer (Figure 4.3A). Average annual 

reductions in effective quantum yield of PSII in the open-top warming chambers ranged from 

40.1% to 47.5% in X. austro-africana, X. hyporhytida and Xanthoparmelia sp. with a 34.2% 

reduction in effective quantum yield of PSII observed in X. hottentotta the most resilient of 

the four lichen species.  

At the warm coastal site, where the temperature increases in the warming chambers 

were not as large as at the hot arid site, both Ramalina sp. and Teloschistes capensis 

displayed insignificantly (P ≥ 0.05) different effective quantum yields of PSII in the open-top 

warming chambers and ambient environment during autumn (Figure 4.3B). T. capensis 

exhibited significantly (P ≤ 0.05) lower effective quantum yields of PSII in the open-top 

warming chambers than in the ambient environment in summer and winter with Ramalina sp. 

only exhibiting significantly (P ≤ 0.05) lower effective quantum yields of PSII in the open-top 

warming chambers in spring. Average annual reductions in effective quantum yield of PSII in 

the open-top warming chambers ranged from only 7.0% in Ramalina sp. to 9.3% in T. 

capensis.  
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Table 4.1. Seasonal temperature and moisture statistics for controls (ambient environment) and open top chambers and (warmed environment) 

at a hot arid and warm coastal site. Treatment means within each season with dissimilar letters significantly different at * P ≤ 0.05.  

 

Season Treatment Apparent fog/dew  precipitation mm d-1  Maximum air temperature oC Minimum air temperature oC 
  Hot arid site Warm coastal site Hot arid site Warm coastal site Hot arid site Warm coastal site 
  Mean Change 

% 
Mean Change 

% 
Mean Change 

oC 
Mean Change 

oC 
Mean Change 

oC 
Mean Change 

oC 
              
Winter Control 0.1070a  31.9a  25.7a  23.0a  6.7a  9.6a  
 Warm 0.0572b -46.5 19.9b -37.6 28.3b 2.6 24.9b 1.9 7.2a 0.5 10.0a 0.4 
              
Spring Control 0.0479a  38.5a  33.8a  23.8a  11.5a  10.8a  
 Warm 0.0233b -51.4 23.5b -38.9 38.5b 4.7 26.2b 2.4 12.3a 0.8 11.2a 0.4 
              
Summer Control 0.0225a  38.6a  38.2a  26.2a  16.4a  14.0a  
 Warm 0.0108b -52.2 33.0b -14.5 43.1b 4.9 27.6b 1.4 17.2a 0.8 14.1a 0.1 
              
Autumn Control 0.0778a  41.6a  30.7a  24.5a  12.8a  11.0a  
 Warm 0.0439b -43.5 25.2b -39.4 33.9b 3.2 27.2b 2.7 13.4a 0.6 11.4a 0.4 
              
Annual Control 64.0a  37.3a  32.1a  24.3a  11.8a  11.4a  
 Warm 34.0b -46.9 25.4b -31.9 35.9b 3.8 26.4b 2.1 12.5a 0.7 11.7a 0.3 
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Figure 4.2. Changes in thalli areas (arcsine transformed percentages) of two lichen species 

after one year’s growth in ambient and artificially warmed environments. Average 

standard errors of differences shown by bars.  
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4.3.3.2. Diurnal measurements 

Effective quantum yields of PSII of all 6 lichen species differed significantly (P ≤ 

0.001) with season, time of the day and experimental warming, except in X. austro-africana 

(Table 4.2). The highest quantum yields of PSII in lichen species from both the hot arid and 

warm were observed in the early morning period between 09h00 and 10h00, with second 

phases of elevated quantum yields of PSII also apparent in the late afternoon after 16h00 

(Figure 4.4A to D and 4.5A & B). The greatest reductions in lichen effective quantum yield of 

PSII in response to experimental warming were observed in winter, followed by spring and 

summer. However, the lichen species differed in the magnitude of their effective quantum 

yield of PSII reductions to experimental warming at different times of the day in the different 

seasons with no distinct common patterns apparent. 

At the hot arid site, for example, Xanthoparmelia sp. effective quantum yields of PSII 

were significantly (P ≤ 0.05) reduced in the warming chambers throughout the day in winter 

and spring but only between 09h00 and 12h00 in summer, the largest declines in summer 

apparent during early morning peak periods of peak photosynthetic activity (Figure 4.4D). In 

contrast, in X. austro-africana effective quantum yields of PSII were significantly reduced in 

the warming chambers only at 16h00 in winter and at 14h00 in spring but not at any time of 

the day in summer (Figure 4.4A). These discrepancies supported by the significant (P ≤ 0.05) 

three way interactions between season, warming treatment and time of the day (Table 4.3). 

At the warm coastal site, where the temperature increases in the warming chambers were 

not as large as at the hot arid site the observed significant (P ≤ 0.001) reductions in effective 

quantum yield of PSII in Ramalina sp. and T. capensis were confined mostly to the afternoon 

between 12h00 and 16h00 (Figure 4.5A & B). 

 

 

 

 



67 

 

Table 4.2. REML statistics for tests of experimental warming on lichen growth and Effective quantum yield of PSII at two sites. Significantly 

different at *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. 

REML Hot arid site Warm coastal site 
 Thallus area Effective quantum yield of PSII Effective quantum yield of PSII 
 df Wald χ2 statistic df Wald χ2 statistic df Wald χ2 statistic 
Main  effects       
Season - - 3 4447.1*** 3 416.8*** 
Species  1 2.14 3 87.2*** 1 42.1**8 
Warming 1 2.02 1 1216.5*** 1 12.0*** 
2-way interactions       
Season x Species  - - 9 93.1*** 3 12.6** 
Season x Warming - - 3 207.7*** 3 5.5 
Species x Warming  1 2.85 3 62.6*** 1 0.5 
3-way interactions       
Season x Species x Warming  - - 9 52.4*** 3 26.9*** 
 

Table 4.3. REML statistics for tests of experimental warming on effective quantum yield of PSII different times of the day at two sites. 

Significantly different at *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. 

REML  Wald χ2 statistic 
  Hot arid site Warm coastal site 
 df X. austro-

africana 
X. hottentotta X. hyporhytida Xanthoparmelia 

sp. 
Ramalina sp. T. capensis 

Main  effects        
Season 2 1352.9*** 417.4*** 534.2*** 1189.7*** 673.8*** 1165.2*** 
Warming 1 1.4 86.9*** 87.4*** 372.9*** 29.2*** 63.1*** 
Time 7 126.4*** 33.1*** 56.3*** 70.7*** 63.8*** 116.*** 
2-way interactions        
Season x Warming 2 0.1 1.4 52.4*** 13.5*** 105.2*** 11.2** 
Warming x Time 14 42.6*** 100.4*** 40.1*** 53.5*** 24.4* 23 
Species x Warming  7 26.7*** 54.9*** 29.3** 8.7 19.7** 11.1 
3-way interactions        
Season x Warming x Time 14 34.6** 29.3* 30.8** 31.5** 36.8*** 13.8 

 

 

 

 



68 

 

 

Figure 4.3. Effective quantum yields of PSII (seasonal averages) under ambient and 

artificially warmed conditions for A. 4 lichen species at a hot arid site and B. 2 lichen 

species at a warm coastal site. Average standard error of differences shown by bars.
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Figure 4.4. Diurnal effective quantum yields of PSII (seasonal averages) under ambient and artificially warmed conditions for 4 lichen species at the hot arid 

site. Average standard error of differences shown by bars.  
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Figure 4.5. Diurnal effective quantum yields of PSII (seasonal averages) under ambient and 

artificially warmed conditions for 2 lichen species at a warm coastal site. Average 

standard error of differences shown by bars. 
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4.4. Discussion 

Larson (1980) reported that lichens exhibit seasonal changes in their photosynthetic 

capacity which could, at least partly, be interpreted as an acclimation to prevailing weather 

conditions. This is in agreement with the results of this study where hydrated lichens from 

both the hot arid and warm coastal sites displayed the highest quantum yields of PSII during 

winter which is usually regarded as the period of greatest metabolic activity for lichens in 

temperate climates (Nash, 1996) and the lowest during summer season. The winter quantum 

yields of PSII (range: 0.3978 to 0.4915) indicative of healthy to moderately stressed lichens 

and summer quantum yields of PSII (range: 0.0919 to 0.1782) indicative of severely stressed 

lichens (Nayaka et al., 2009).  

Lange et al. (2006) concluded that nocturnal moistening by fog and/or dew drives a 

subsequent short phase of peak lichen photosynthetic activity in the early morning hours 

which is almost the only diurnal pattern for lichen productivity throughout the year. In the 

Namib desert, peaks in photosynthetic activity observed in Ramalina maciformis and 

Teloschistes lacunosus in the 3 hour period after sunrise are complemented by short second 

phases of enhanced photosynthetic activity driven by increased humidity in the late afternoon 

(Lange et al., 1991) with crustose and foliose lichens from the Negev desert displaying 

similar characteristics (Lange, 1970). These typical response patterns for lichens in arid and 

semiarid desert climates (Kappen, 1988) are also found in lichens in Mediterranean (Lange 

et al., 1985) and temperate climates (Lange, 2003). Similarly, in this study, peak quantum 

yields of PSII in the lichens from both the hot arid and warm coastal sites were observed in 

the early morning period between 09h00 and 10h00 with second phases of elevated effective 

quantum yields of PSII also apparent in the late afternoon after 16h00.  

The diminished effective quantum yields of PSII observed in the hydrated lichen 

species around the solar noon in this study were attributed to the elevated midday 

temperatures though photo inhibition of photosynthesis by the high light intensities 

(photosynthetic photon flux densities) around solar noon may also have been a factor. 

Although, the amount of light received by the photobiont during periods of thallus hydration 

may determine lichen growth (Dahlman & Palmqvist, 2003), it also represents a significant 

stress factor in that a high light intensity not only promotes rapid desiccation in lichens, but 

also induces severe and long-lasting photoinhibition (Gauslaa & Solhaug, 1996, 2000). 

However under natural conditions, lichens experience considerably longer periods of high 

solar radiation in the desiccated than hydrated state (Lange et al., 1999) with a functional 

disconnection of photosynthetic components (Sigfridsson, 1980; Bilger et al., 1989) and 

diminished transmittance of solar radiation through the protective upper cortex apparent in 

desiccated lichens (Ertl, 1951; Gauslaa & Solhaug, 2001). Despite this, extended high light 
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intensities have been reported to cause more damage in air-dry than hydrated forest lichens 

(Gauslaa & Solhaug, 1999, 2004), a possible consequence of switched off repair 

mechanisms during desiccation. 

The elevated air temperatures of 2.1oC and 3.8oC and reduced precipitation amounts 

of 31.9% and 46.1% measured in the open-top chambers at the warm coastal and hot arid 

sites respectively approximated mean annual air temperature increases of 1.5oC to 5.0oC 

and precipitation reductions of about 30% predicted (means of 7 GCM models) by the SRES 

B1-low and A2-high climate sensitivity scenarios respectively for the Succulent Karoo biome 

towards the end of the century (Hulme et al., 2001). These temperature increases and 

precipitation reductions in the open top warming were accompanied by slight yet statistically 

insignificant reductions in growth of lichen thalli but substantial declines in lichen effective 

quantum yield of PSII. Kershaw & Alvin (1963) reported radial growth increments for lichen 

thalli in general of about 1 mm to 10 mm per year and Hawksworth & Rose (1976) reported 

radial growth increments for British crustose and foliose lichens in the order of 0.5 mm to 5.0 

mm year. These small growth increments made it difficult to detect statistically significant 

changes in lichen thalli areas in response to artificial climate warming over the short one year 

treatment period in this study. However, over longer treatment periods of 8 years, statistically 

significant reductions in lichen cover and diversity have been reported in open top warming 

chambers in the Alaskan arctic tundra (Wahren et al., 2005), these changes qualitatively 

similar to standardized warming experiments at several other locations across the arctic 

tundra (Walker et al., 2006)  

In contrast to lichen growth, significant reductions in lichen effective quantum yield of 

PSII were observed in the open top warming chambers. The reductions in lichen effective 

quantum yields of PSII at the hot arid site were of generally much greater magnitude that 

those at the warm coastal site and most prominent during the cool wet winter season of peak 

photosynthetic activity. Diurnal responses of the lichens to experimental warming were site, 

season and species specific with reductions in lichen effective quantum yield of PSII in the 

open top warming chambers usually evident throughout the day during the cool wet winter 

season but confined mostly to the early morning and/or late afternoon periods of elevated 

photosynthetic activity during the hot dry summer season. Since the lichens were hydrated 

prior to each set of fluorescence measurements, the observed reductions in effective 

quantum yield of PSII reflected their acclimation mainly to the prevailing temperature 

conditions in the warming chambers.  

It has been proposed that a combination of high night temperatures that enhance 

carbon loss due to elevated respiration rates and high day temperatures that promote more 

rapid dehydration of lichen thalli restrict the time available for carbon gain by photosynthesis 
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(Zotz, 1999). Studies on cyanobacterial lichens in a Panamanian lower montane rain forest 

have revealed that nocturnal respiration losses are often higher than carbon gains during the 

day (Lange et al., 2000, 2004). The lichens Parmotrema endosulphureum and Leptogium 

azureum, for example, respiring their entire day time carbon gain at night (Zotz & Winter, 

1994; Zotz et al., 2003) with their virtual absence from lowland forests explained by negative 

carbon balances resulting from the higher nighttime temperatures (Lange et al., 1994; Zotz & 

Winter, 1994; Zotz et al., 2003). In P. endosulphureum, CO2 fixation at maximum rates must 

persist, for at least 40% of the light period to balance a 12-h nocturnal respiration (Zotz & 

Winter 1994; Zotz et al., 2003). Consequently, photosynthesis needs to persist at maximum 

rates for more than 90% of the day to achieve a positive carbon balance for a temperature 

increase of 3°C, this clearly not feasible naturally where photosynthesis persists for only 30–

80% of the light period, and at mostly suboptimal rates (Lange et al., 2004). Such negative 

effects of warming on lichen carbon balance may at least be partly offset by increases in 

atmospheric CO2 levels. However, the inability of lichens to regulate water loss limits their 

potential responses to atmospheric CO2 compared to vascular plants.  

In terrestrial bryophytes, it has been proposed that the stimulating effect of higher 

atmospheric CO2 levels may be limited, because their close proximity to the respiring soil 

already exposes them to increased CO2 levels (DeLucia et al., 2003). This may also apply to 

those epiphytic lichens that grow closely attached to canopy soil or directly on living 

branches. For such species, increased respiration of the substrate due to higher 

temperatures may provide more additional CO2 than increased atmospheric levels 

(Sveinbjörnsson & Oechel, 1992; Tuba et al., 1999). However, generally, such epiphytes are 

much better coupled to the atmosphere than terrestrial species, so that global atmospheric 

CO2 levels can certainly be of influence. An additional advantage of higher CO2 levels under 

a warming scenario is that the temperature optimum for net photosynthesis is shifted to 

higher temperatures (Sveinbjörnsson & Oechel, 1992). Light compensation points are also 

lowered, so that species can grow at darker microsites, where they dry out more slowly and 

stay active for longer. Activity time is also prolonged because net photosynthesis can take 

place down to lower and up to higher water contents (Tuba et al., 1999). This may be 

particularly beneficial for tropical lowland species, for which it has been proposed that carbon 

gain may become negative at higher temperatures due to lower net photosynthesis and 

through shorter activity times. As in vascular plants, acclimation to high CO2 levels can cause 

a return to the low-CO2 photosynthesis rates. However, species differ in their acclimatization 

potential, the lichen Cladonia convoluta for example maintaining its positive response to 

increased CO2 (Tuba et al., 1999).  
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It is concluded that diminished fog and dew frequencies and elevated lichen 

respiration rates associated with climate warming as well as a potential climatic shift from a 

winter to summer rainfall pattern could negatively affect lichen carbon balances leading to a 

greater incidence of mortality and localized extinction especially among the investigated 

lichens in arid areas. 
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Chapter 5 

Moisture interception and elemental accumulation by lichens in a 

South African coastal subtropical desert 

Abstract 

Two dominant fruiticose lichens Teloschistes capensis and Ramalina sp. at a coastal 

site were cultivated on their gypsum substrates in automated weighing micro-lysimeters 

which precisely measured at hourly intervals their changes in mass due to fog and dew 

interception and loss from which net daily, monthly and annual amounts were computed over 

the 12 month monitoring period. The influence of rainfall on net amounts of fog and dew 

intercepted by the lichens was excluded by omitting those lysimeter records which coincided 

with incidences of rainfall simultaneously monitored with a tipping bucket rain gauge 

interfaced with a miniature data logger. Also, canopy areas of the two lichens at the coastal 

site were determined from overhead digital images of the ground surface using image 

analysis software and samples on lichen tissue were collected monthly for analysis of 11 

different elemental concentrations. T. capensis displayed larger daily fluctuations in moisture 

gain and loss and intercepted greater net amounts of fog and dew annually (502.3 mm a-1) 

than Ramalina sp. (372.4 mm a-1) which may explain its dominance at the coastal site 

evident from its approximately three times larger canopy cover (961.9 cm2 m-2) than that of 

Ramalina sp. (286.9 cm2 m-2). However, net quantities of fog and dew intercepted annually by 

both lichens were about ten times greater than the rainfall amount of 42.6 mm a-1. Measured 

elemental concentrations in the two lichens were in the range of background concentrations 

reported in other lichen species except Fe, Mg and Na concentrations which more closely 

approximated concentration ranges reported for lichens in other seashore ecosystems. The 

higher concentrations of all elements, except B and Na, measured in T. capensis than 

Ramalina sp. were attributed to subtle morphological and structural differences between the 

two species particularly T. capensis thinner thallus evident from its lower dry mass to canopy 

surface area (146.1 g m-2) than that of Ramalina sp. (154.8 g m-2). Rainfall appeared a more 

important source of elements than fog and dewfall as it was positively correlated with Ca, N 

and B concentrations in these lichens compared with fog and dewfall correspondence with 

only K concentrations. The high Ca concentrations present in both lichens reflected the high 

calcium content in the gypsum rich soils on which they occur. However, the relative influence 

of wet and dry atmospheric deposition and substrate on lichen elemental concentrations at 

the coastal site requires further study. 

Key words: Fog and dew, rainfall, moisture uptake, elemental concentrations, lichens  
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5.1. Introduction 

Fog and dew have been reported to constitute a considerable portion of the 

hydrological input into ecosystems in tropical montane, desert and coastal regions (Burgess 

& Dawson, 2004; Fischer & Still, 2007). However, the interception and utilization of fog and 

dew water by plant canopies remains one of the least considered aspects of vegetation 

studies at any scale (Yates & Hutley, 1995; Andrade, 2003). Only a few studies have 

examined the role of fog and dew as an ecological factor in southern African natural 

ecosystems. These include an unpublished study of mist interception by natural vegetation 

on Table Mountain in Cape Town (Snow, 1985), and several other studies emanating from 

the Gobabeb Training and Research Centre in the Namib Desert which have investigated fog 

and dew exploitation by some plants and animals (Henschel & Seely, 2005).  

Lichens are known to utilize variety of water sources, such as rain, fog, dew and even 

elevated water vapour to activate gas exchange. There is an abundance of lichens in coastal 

deserts where rainfall is minimal and sporadic, but where fog, dew, and elevated night time 

humidity occur frequently (Kappen, 1988). The utilization of water vapour alone by lichens as 

a moisture source is remarkable (Butin, 1954; Lange & Bertsch, 1965). This feature and the 

capacity of lichens to become metabolically active after moistening by fog and dew explains 

why lichens are successful colonizers of world deserts as they do not rely entirely on 

infrequent rainfall events (Matthes-Sears & Nash, 1986). This evident from reports that in 

southern African coastal deserts the lichen Teloschistes capensis is able to collect sufficient 

fog and early morning dewfall to sustain positive net photosynthesis for considerable portion 

of the day (Lange et al., 1990). Dew and fog also favour lichen productivity in other climates 

such as alpine, Mediterranean and temperate climate regions (Nash, 2008), the captured 

dew and fog frequently richer in nutrients than rain (Nash, 2008). In interior arid and semi-

arid regions, lichens occur commonly as part of the biological crusts that are particularly 

extensive on undisturbed soils. These crusts not only intercept precipitation, but also 

facilitate infiltration of water into the soil which, in the absence of these cryptogams, 

frequently develops an impervious calcium carbonate layer at or near the soil surface 

(Harper & Marble, 1988).  

A variety of techniques have been applied to quantify the amount and frequency of 

moisture deposited by fog and dew. These include both direct systems such as leaf wetness 

resistance sensors, weighing lysimeters and indirect systems using stem flow sensors, stem 

microvariation sensors (dendrometers) and water isotopes (Noffsinger, 1965; Agam & 

Berliner, 2006). Leaf wetness resistance sensors comprising rectangular epoxy-fiberglass 

printed circuit boards etched with a grid network of gold-copper lines (Scherm & Van 

Bruggen, 1993; Kidron, 2000) are widely used. These are relatively simple to install but only 
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provide a means of detecting the frequency and duration of fog and dew and not the total 

amounts deposited (Agam & Berliner, 2006). More recently, portable weighing micro-

lysimeters, originally used for quantification of evapo-transpiration (Allen et al., 1991; 

Johnson & Odin, 1978; Evett, 1995; Marek et al., 2004; Starr et al., 2004; Yunusa et al., 

2004), have been developed that allow for automated recording of fog and dew accumulation 

and evaporation from soil surfaces (Kidron, 1998, 2000; Heusinkveld et al., 2006). These 

have been successfully applied in measuring dew deposition in Negev Desert from which 

simple physical models simulating the dew deposition and evaporation have been developed 

(Jacobs et al., 1999).  

The accumulation of elements by lichens through wet and dry atmospheric deposition 

and from their substrates (Nash, 1996) mostly exceeds their physiological requirements 

(Nash, 2008), which makes them useful biomonitors of the environment (Puckett, 1988; 

Garty, 2001). Wet deposition of elements by fog and dew is often more important than that of 

intermittent rainfall events as it contains higher undiluted elemental concentrations (Nash, 

2008). Dry deposition of elements is by sedimentation, impaction, and gaseous absorption 

(Knops et al., 1991). Elemental accumulation from substrates has been studied extensively 

in lichens (Nieboer et al., 1978; Prussia & Killingbeck, 1991). Soil particles are readily 

incorporated into intracellular spaces within lichen thalli as their surface characteristics, i.e. 

incidence of cilia, pits and isidia which determine the efficiency of particle entrapment 

(Puckett & Finegan, 1980), assist in the absorption of high concentrations of Al, Fe, Sc, Ti, 

and other elements of lithic origin (Nash, 2008). Also, lichen morphological and structural 

features determine the efficiency of elemental accumulation (Chiarenzelli et al., 1977; Clair et 

al., 2002) with several reports of foliose lichens with thin flat thalli, which provide a high ratio 

of surface area to dry weight (Nieboer et al., 1972), being more effective at accumulating 

elements in airborne particles than fruticose lichens (Lawrey & Hale, 1981; Gough et al., 

1998; Glenn et al., 1995; Garty, 2001). These elemental accumulations play a crucial role in 

ecosystems by incorporating atmospheric nitrogen fixed by photobionts and other elements 

into nutrient poor soils (Kallio, 1975; Crittenden, 1983; Nash 1996; Longton, 1997), and by 

contributing to nutrient cycling (Crittenden, 1983; Crittenden, 1989; Nash, 1996; Kielland, 

1997; Longton, 1997), improving seedling establishment (Brown & Mikola, 1974; Kershaw, 

1985) and acting as carbon sinks (Nash, 1996; Lange et al., 1998). 

An astonishing phenomenon of coastal subtropical deserts, especially the hyper arid 

Atacama and Namib, is their exceptionally high lichen biodiversity. In the Namib Desert, 

lichens occur so frequently that they dominate the floral landscape. Mattick (1970) defined 

such areas as “lichen fields”, eight of which occur between the Kuiseb and Ugab rivers 

(Schieferstein & Loris, 1992). These lichen fields are dominated by the fruticose lichen 
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Teloschistes capensis which forms orange coloured mats of high biomass (Lalley & Vlies, 

2006). The largest of these lichen fields which occurs at Alexander Bay comprises thirty-one 

lichens species (Jürgens & Niebel-Lohmann, 1995). Two dominant lichen species are clearly 

visible as a well-developed, striking upslope zonation. The upper parts of the slopes, 

characterized by gypsum-rich topsoil, are dominated by the above mentioned orange 

coloured, fruticose lichen T. capensis which forms cushion-like tufts, 3-12 cm in height that 

are loosely attached to the ground (Lange et al., 2006). Intermingled with the T. capensis 

cushions is the irregularly branched, pale green Ramalina sp. whose classification is still 

uncertain (Zedda, pers. com.) that forms small solitary tufts that are more common at the 

bottom of the slopes in deeper gypsum soils (Jürgens & Niebel-Lohmann, 1995; Lange et al., 

2006). However, there are no data on moisture interception and elemental accumulation by 

these two dominant lichens in this coastal subtropical desert and consequently formed the 

basis of this study. 

5.2. Materials and methods 

5.2.1. Study site and species 

The study site comprised a large lichen field (28o 37’S, 16 o 32’E) situated a few 

kilometers South East of the mining city of Alexander Bay 3.2 km distant from the Atlantic 

coast. The site has a mean annual temperature of 17.2oC and an erratic low rainfall of 39 mm 

per annum (1951 – 1984 average) occurring predominately in winter, this supplemented by 

high frequencies of fog averaging 61 days per year and most common in May late autumn 

(Climate of South Africa, 1986). Of the 31 lichens species recorded at this site, two dominant 

lichen species were selected for study, namely Teloschistes capensis common on slope 

apices, characterized by gypsum-rich topsoil, and Ramalina sp. more common at the bases 

of slope, with deeper gypsum rich soils. 

 

5.2.2. Rainfall, fog and dewfall measurements 

Rainfall amounts at the study site were monitored hourly with a tipping bucket rain 

gauge interfaced with a miniature data logger installed in a radiation shield (Watch Dog 450, 

Spectrum Technologies Inc., Plainfield, Illinois, USA). These were cross checked with those 

logged at the South African Weather Services meteorological station at Alexander Bay. 

Fog and dew amounts intercepted by soils and T. capensis and Ramalina sp. thalli 

were monitored hourly with automated weighing micro-lysimeters (Figure 5.1A & B) modified 

from a published design (Heusinkveld et al., 2006). The lysimeters comprised 240 mm 

diameter x 35 mm deep weighing pans which straddled load cells (Model 535QD-D20-6Kg, 

RS485, DSEnet protocol, 0DS-Europe, Milano, Italy), manufactured without a silicon gel filler 
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to reduce hysteresis, one of the most important characteristics of force transducers (Aydemir 

et al., 2006). The load cells were connected to programmable micro-controllers both of which 

were sealed inside the lysimeter housings and energised by external batteries connected to 

solar panels. Cylindrical soil cores of similar dimension to that of the weighing pan were 

carefully excavated at the study site and placed into the pans of three lysimeters. Thalli of T. 

capensis and Ramalina sp. of similar volume and fresh mass were placed separately into the 

soil bearing pans of two lysimeters, the third lysimeter pan comprising only soil. Separate 

samples of soil and thalli of the two species taken simultaneously were dried in a forced draft 

oven at 60oC to a constant mass and weighed to determine the dry masses of the excavated 

soil cores and added lichen thalli in each lysimeter pan. Changes in soil and lichen moisture 

mass (measured mass minus dry mass) in the lysimeter pans due moisture gain 

(precipitation) or loss (evaporation and transpiration) were logged hourly by the micro-

controller unit. Load cell temperatures obtained from an attached thermocouple were also 

simultaneously logged by the micro-controller unit. These were used to standardize 

measured moisture masses at 20oC by applying predetermined calibration functions to 

correct for temperature deviations in load cell output (Figure 5.1C). The differences between 

the highest and lowest recorded temperature standardised moisture masses over each 24-h 

period provided the net masses of moisture intercepted daily exclusively by the soil controls 

and by the soils with the added lichen populations in the lysimeter pans (Figure 5.1D). The 

influence of rainfall on measured net moisture masses was excluded by omitting those 

lysimeter records which coincided with incidences of rainfall. Computed masses of fog and 

dew moisture intercepted daily by the soil cores without lichens and those gained daily by the 

soil cores including each of the two lichen species were converted to mm of fog and dew 

precipitation by dividing them by the lysimeter pan surface area. 

5.2.3. Lichen cover  

Three transects each comprising 6 x 1m2 plots spaced 1.5m apart was arranged along 

topographical elevation gradients at the study site (Figure 5.2A). The lichen populations 

present in the plots (Figure 5.2B) were photographed with a high resolution 3.4 effective 

mega pixel (Sigma SD10) digital camera with a three-band Foveon X3 sensor (3 sensor 

photo detectors per pixel location). 
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Figure 5.1. Lysimeters containing A. T. capensis and B. Ramalina sp., C. calibration curves for correction of measured soil moisture 

masses for temperature and D. calculation of net daily water interception from difference between maximum and minimum 

temperature corrected soil moisture mass over each 24-h period. 
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Figure 5.2. A. Transect with plots along topographical elevation gradient in the Alexander Bay 

lichen field, B. single 1m2 plot containing orange coloured  populations of T. capensis 

and yellowish-green  coloured populations of Ramalina sp. 
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The camera was fitted with semi-wide angle lenses (24-70mm zoom, 20 mm fixed) and 

suspended 1.5m above ground surface on a tripod. A graduated ruler placed on the ground 

provided an indicator of scale. In each digital image of each plot, the canopy areas of individual 

thalli of both lichen species were measured with the aid of image analysis software (Image-J 

ver.1.34I, National Institute of Health, USA - http://rsb.info.nih.gov/ij/) and these summed for 

each species in each plot. In three randomly selected plots, all T. capensis and Ramalina sp. 

were harvested, dried in a forced draft oven at 60oC, weighed, and their total dry masses per m2 

of plot calculated.  

5.2.4. Chemical analyses 

Three separate batches of lichen thallus tissue were collected at random from Ramalina sp. and 

T. capensis populations at monthly intervals at the study site. The tissue samples were dried in a 

forced draft oven at 65oC to a constant mass and milled to pass a 40µm-mesh screen. One 

gram sub samples of dry lichen thallus tissue were ashed in a muffle furnace at temperatures 

not exceeding 480oC to avoid potential volatilization of Al, B, Cu, K and Mn. The ashed sub-

samples were extracted in 5ml of HCl and diluted with deionized-distilled water in 50ml 

volumetric flasks (Campbell & Plank, 1998; Miller, 1998). Elemental concentrations in the 

extracted sub samples were determined with an Inductive Coupled Plasma Optical 24 Emission 

Spectrometer (700-ES, Varian Inc. Melbourne, Australia) according the method of Isaac & 

Johnson (1998). Nitrogen concentrations in 0.15 g sub samples of dry lichen thallus tissue were 

determined with an elemental analyser (FP-528, LECO Corporation, USA) at a combustion 

temperature of 900°C (Horneck & Miller, 1998). 

5.3. Data synthesis and statistical analysis 

Measured canopy areas, net daily fog and dew interception and elemental concentrations in the 

two lichen species were normally distributed. However, the experimental designs were not fully 

balanced due to missing or omitted measurements. Consequently a REML (residual maximum 

likelihood) variance components analysis was used to test for differences in canopy area 

between lichen species (linear mixed model) and for differences in fog and dew interception and 

tissue elemental concentrations between lichen species and months (repeated measures mixed 

model) using the Wald χ2 statistic generated by the REML (GENSTAT Discovery Edition 3, VSL 

Lty, UK). In the linear mixed model lichen species were fitted in the fixed model and replicated 

plots in the random model. In repeated measures mixed model, lichen species were fitted in the 

fixed model and replicated months in the random model. Differences exceeding twice the 
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average standard error of differences were used to separate significantly different treatment 

means at P ≤ 0.05. This based on the fact that for a normal distribution from REML estimates, 

the 5% two-sided critical value is two. 

Pearson correlations and a student’s t-test tested for significant correspondence between 

Ramalina sp. and T. capensis tissue elemental accumulations, fog and dew precipitation 

amounts and rainfall amounts. 

5.4. Results 

5.4.1. Lichen cover and rainfall, fog and dew interception 

Lichen canopy cover differed significantly (P ≤ 0.01) between species (Table 5.3) with that 

(286.9 cm2 m-2) of Ramalina sp. about three times smaller than that (961.9 cm2 m-2) of T. 

capensis (Figure 5.3). Dry mass per unit area of Ramalina sp. (154.8 g m-2) was slightly greater 

than that of T. capensis (146.1g m-2) 

Over an entire year, the net quantity of fog and dew intercepted by the soil (507.7 mm a-1) and 

that intercepted by the soil including the lichen T. capensis (502.3 mm a-1) and the lichen 

Ramalina sp. (372.4 mm a-1) were about ten times greater than the rainfall amount of 42.6 mm a-

1. The highest fog and dew precipitation amounts were observed during winter between June 

and July and coincided with a rainfall peak during the same period (Figure 5.3).  

On both daily (Figure 5.3) and monthly and annual bases (Figure 5.4), the net quantities of fog 

and dew precipitation intercepted by the soil including either Ramalina sp. or T. capensis were 

generally smaller than that intercepted by the soil only, except during sporadic rainfall events 

when the net quantities of total precipitation (fog, dew and rainfall) intercepted by the soil 

including the two lichen species exceeded that intercepted by the soil only by several orders of 

magnitude (Figure 5.3).  

Significant (P ≤ 0.001) monthly and lichen species differences were observed in the net 

quantities of fog and dew intercepted (Table 5.1). Also, there was a significant (P ≥ 0.01) lichen 

species versus month interaction on net quantities of fog and dew intercepted (Table 5.1), the 

amounts of fog and dew intercepted differing in magnitude between the two lichen species 

monthly (Figure 5.3).  
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5.4.2. Lichen elemental concentrations 

All 11 elemental concentrations in lichen tissues differed significantly (P ≤ 0.01) between species 

and months with exception of N, P and Cu (Table 5.2). Elemental concentrations were 

significantly (P ≤ 0.05) higher in T. capensis than Ramalina sp. tissues, with exception of B and 

Na where the converse was apparent. Also, there were significant (P ≤ 0.05) species versus 

month interactions on lichen tissue elemental concentrations, with the exception of Mg, P and 

Mn, with differences in tissue elemental concentrations between the two lichen species varying 

in magnitude monthly (Figures 5.5 to 5.7).   

Fog and dew precipitation amounts were positively (P ≤ 0.05) correlated with K 

concentrations in Ramalina sp. and T. capensis and negatively (P ≤ 0.05) correlated with Fe 

concentrations in T. capensis (Table 5.3). Rainfall amounts were positively (P ≤ 0.05) correlated 

with Ca concentrations in both Ramalina sp. and T. capensis, and N and B concentrations in 

Ramalina sp. but negatively (P ≤ 0.05) correlated with Na and Cu tissue concentrations in T. 

capensis and P concentrations in Ramalina sp. (Table 5.3). 
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Table 5.1. Wald statistics derived from REML which tested for differences in canopy cover 

(linear mixed model) between lichen species and net fog and dew water interception 

(repeated measures mixed model) between lichen species in different months and their 

interaction. Values presented in bold significant at *P <0.05, **P <0.01, ***P <0.001.  

 

 

 

 

Table 5.2.  Wald statistics derived from REML (repeated measures mixed model) which tested 

for differences in elemental concentrations between lichen species and months and their 

interactions. Values presented in bold significant at *P <0.05, **P <0.01, ***P <0.001. 

 
 

 Wald χ2 statistic 

Macro-elements df Ca K Mg Na N P 
Main  effects        
Month 11 113.2*** 651.3*** 142.3*** 306.1*** 129.1*** 71.1*** 
Species 1 104.7*** 68.0*** 24.4*** 54.5*** 0.7 0.2 
2-way interactions        
Month x Species 11 57.7*** 54.5*** 18.2 27.4** 20.6* 15.0
        
  Wald χ2 statistic 
Micro-elements df Fe B Cu Mn Zn -
Main  effects     
Month 11 189.6*** 93.1*** 149.9*** 67.3*** 96.8***  
Species 1 79.9*** 13.0*** 0.0 25.5*** 167.4*** 
2-way interactions        
Month x Species 11 68.2*** 24.5* 28.8** 16.4 70.8***  
    
  

  Wald χ2 statistic 
Factor df Canopy cover Net daily fog and dew 

interception 
Main  effects    
Month 11 - 44.5*** 
Species 1 8.20** 61.9*** 
2-way interactions    
Month x Species 11 - 29.3** 

 

 

 

 



91 

 

 

 Figure 5.3. Net daily interception of fog and dew precipitation and sporadic rainfall by the soil and by the soil with the lichens 

Ramalina sp. and T. capensis at Alexander Bay in A. Summer, B. Autumn, C. Winter and D. Spring. 
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Figure 5.4. Measured canopy areas of the lichens Ramalina sp. and T. capensis, annual rainfall 

amounts and annual fog and dew precipitation amounts intercepted by soils and by soils 

with added lichen species. 
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Figure 5.5. Monthly A. potassium, B. calcium, C. magnesium and D. sodium concentrations in Ramalina sp. and T. capensis thalli and fog/dew and rainfall 

precipitation amounts. Average standard errors of differences shown by bars. 
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Figure 5.6. Monthly A. nitrogen, B. phosphorus and C. iron concentrations in Ramalina sp. and T. capensis thalli and fog/dew and rainfall precipitation 

amounts. Average standard errors of differences shown by bars. 
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Figure 5.7. Monthly A. boron, B. copper, C. manganese and D. zinc concentrations in Ramalina sp. and T. capensis thalli and 

fog/dew and rainfall precipitation amounts. Average standard errors of differences shown by bars. 
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5.5. Discussion 

The lower dry mass to canopy surface area of T. capensis (146.1 g m-2) than that of 

Ramalina sp. (154.8 g m-2) implied a thinner thallus. This reflected in the larger daily 

fluctuations in moisture gain and loss displayed by T. capensis than by Ramalina sp. and 

also by the substantially greater net amounts of fog and dew intercepted annually by T. 

capensis (502.3 mm a-1) than Ramalina sp. (372.4 mm a-1). These findings concur with 

reports that highly, branched, fruticose lichens which have a high a surface area to volume 

ratio display more rapid diurnal drying and wetting patterns than lichens with lower surface 

area to volume ratios (Nash, 2008). 

T. capensis greater capacity to retain intercepted fog and dew may also explain its 

dominance at the study site, this evident from its approximately three times larger canopy 

cover (961.9 cm2 m-2) than that of Ramalina sp. (286.9 cm2 m-2). In fact, T. capensis structural 

and morphological characteristics are particularly suitable for survival in fog deserts (Rundel, 

1978; Kappen, 1988). Its fruticose growth form exposes large areas of terete, thin branches 

arranged perpendicular to moisture laden winds with cilia and microscopic hair-like fibrils 

covering the branches further increasing the thallus surface area to promote water 

absorption (Kärnefelt, 1989).  

Most elemental concentrations measured in T. capensis and Ramalina sp. were in 

the range of background concentrations reported in other lichen species (Table 5.4). 

However, Fe, Mg and Na concentrations in T. capensis and Ramalina sp. were exceptions 

as these more closely approximated concentration ranges reported for lichens in other 

seashore ecosystems (Table 5.4.). The higher concentrations of all elements, except B and 

Na, measured in T. capensis than Ramalina sp. concurred with results of other studies which 

have demonstrated that different lichen species from the same location often contain 

contrasting elemental concentrations (Garty, 2001). 

Trace elemental concentrations in particular have been reported to exhibit high 

variability between different lichen species growing on similar substrates (Ahmadjian & Hale, 

1973). However, this was not clearly apparent in this study, with the possible exception of Mn 

and Fe whose concentration ranges in Ramalina sp. were substantially larger than those in 

T. capensis (Table 5.4). The generally higher elemental concentrations measured in T. 

capensis than Ramalina sp. were attributed to subtle morphological and structural 

differences between these two species (Chiarenzelli et al., 1977; Clair et al., 2002), 

particularly T. capensis thinner thallus evident from its smaller dry mass to canopy area 

surface area.  
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Table 5.3. Pearson correlation coefficients (r) and t-statistics (33 degrees of freedom) which 

tested for correspondence between Ramalina sp. and T. capensis tissue elemental 

concentrations, rainfall and fog and dew water amounts. Significant at *P ≤ 0.05, **P 

≤ 0.01, ***P ≤ 0.001. 

 

Species Ca K Mg Na N P
       
   Fog and dewfall   
Ramalina sp.       
r 0.2022 0.4777 0.0071 -0.2501 -0.0806 -0.0812 
t-statistic t = 1.1863 t = 3.1232** t = 0.0406 t = -1.4840 t = -0.4646 t = -0.4683 
       
T. capensis       
r 0.1789 0.3729 -0.0822 -0.0325 -0.0971 -0.1415 
t-statistic t = 1.0448 t = 2.3089* t = -0.4740 t = -0.1868 t = -0.5602 t = -0.8210
       
   Rainfall   
Ramalina sp.   
r 0.2901 -0.1683 0.0822 -0.2404 0.4812 -0.4049
t-statistic t = 1.7413* t = -0.9809 t = 0.4737 t = -1.4227 t = 3.1530** t = 2.5437**
   
T. capensis       
r 0.6128 -0.1422 -0.0653 -0.3261 0.0066 -0.2133 
t-statistic t = 4.4544*** t = -0.8254 t = -0.3757 t = -1.9815* t = 0.0379 t = -1.2539
       
 Fe B Cu Mn Zn  
       
   Fog and dewfall   
Ramalina sp.       
r -0.2746 -0.0053 -0.0293 -0.0732 0.1817  
t-statistics t = -1.6407 t = -0.0304 t = -0.1683 t = -0.4215 t = 1.0616  
       
T. capensis       
r -0.3130 0.1029 0.0115 -0.2133 -0.1353  
t-statistics t = -1.8928* t = 0.5942 t = 0.0662 t = -1.2539 t = -0.7847  
       
   Rainfall   
Ramalina sp.       
r -0.0814 0.3923 -0.1407 0.2535 0.2178  
t-statistics t = -0.4694 t = 2.4496** t = -0.8163 t = 1.5052 t = 1.2817  
       
T. capensis       
r -0.2168 0.1184 -0.3665 0.1494 0.0211  
t-statistics t = -1.2758 t = 0.6852 t = -2.2627* t = 0.8682 t = 0.1215  
       
 

 

 

 

 

 



98 

 

Table 5.4.  A comparison of published background and seashore elemental concentrations in 

lichens with those measured in Ramalina sp. and T. capensis at Alexander Bay.  

 

Element Background 
µg g-1 

Reference T. capensis 
µg g-1 

Ramalina sp. 
µg g-1 

     
Ca  
 
 
Ca seashore 

20 - 40 000 
 
 

40 000 – 55 000 

Scotter (1972); Kuziel 
(1973); Kovás-Láng & 

Verseghy (1974) 
Fletcher (1976) 

14 400 – 32 830 20 800 – 31 800 

     
K  
 
 
 
K seashore 

500 – 5 000 
 
 
 

5 000 – 9 500 

Scotter & Miltmore 
(1973); Kuziel (1973); 

Kovás-Láng & Verseghy 
(1974) 

Fletcher (1976) 

133 – 2 267 533 – 2 733 

     
Mg 
 
 
Mg seashore 

100 – 1 000 
 
 

1000 – 12 000 

Tuominen & Jaakkola 
(1973); Scotter & 
Miltmore (1973) 
Fletcher (1976) 

1 000 - 2067 1 167 – 2 600 

     
Na 
 
Na seashore 

50 – 1 000 
 

1 000 – 6 000 

Tuominen & Jaakkola 
(1973) 

Fletcher (1976) 

953 – 3 522 526 – 3 668 

     
N 6 000 – 50 000 Syers & Iskandar (1973); 

Millbank & Kershaw 
(1973); Hitch & Millbank 

(1975) 

7 050 – 10 367 7 500 – 12 000 

P 200 – 2 000 Scotter (1972); Syers & 
Iskandar (1973); Lawrey 

& Rudolf (1975) 

433 - 700 450 - 900 

Fe 
 
 
Fe seashore 

50 – 1 600 
 
 

2 000 – 30 000 

Lounamaa (1965); 
Tomassini et al. (1976); 

Nieboer et al. (1977) 
Fletcher (1976) 

1 529 - 5220 2 450 – 9 649 

     
Cu ≤ 1 - 50 Scotter & Miltmore 

(1973); Tomassini et al. 
(1976); Fletcher (1976) 

5 -12 5 - 17 

Mn 
 
Mn seashore 

10 – 130 
 

300 - 350 

Lounamaa (1965); 
Lawrey & Rudolph (1975) 

Fletcher (1976) 

31 - 80 48 - 101 

     
Zn 30 - 500 Leroy & Koksoy (1962); 

Lounamaa (1965); Nash 
(1975) 

13 - 25 18 - 31 

B 17 Nash & Somerfield (1981) 10 – 30 7 - 20
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This premise concurring with reported differences in Pb and Fe concentrations in the 

Antarctic lichens Umblilicaria decussate and U. aprina, the higher concentrations measured 

in U. decussate also attributed to its smaller dry weight to canopy area and thinner thallus 

than that of U. aprina (Upreti & Pandey, 1994). 

Rainfall appeared a slightly more important source of elements for T. capensis and 

Ramalina sp. than fog and dewfall as it was positively correlated with Ca, N and B 

concentrations in these lichens compared with fog and dewfall’s correspondence with only K 

concentration in these lichens. In fact, rainfall, fog and dewfall are all considered important 

sources of elements for lichens, since leaching of inorganic solutes such as K, Ca, Mg and 

Mn from soils occurs by the action of rain, dew and fog (Tukey, 1970; Bosserman & Hagner, 

1981). The relatively high Ca concentrations measured in T. capensis and Ramalina sp. 

seemingly reflected the high calcium content of the gypsum rich soils on which they 

occurred. This feature was also reported in the lichen Acarospora clauzadeana on gypsum 

substrates (Nash, 2008). The relatively high N concentrations measured in T. capensis and 

Ramalina sp. concurred with reports that in desert ecosystems lichens accumulate high 

levels of nitrogenous compounds (Shields et al., 1957). However, it was unclear whether this 

accumulation of N by T. capensis and Ramalina sp. was a consequence of atmospheric 

uptake ammonium ions dissolved in rainfall, fog or dewfall or a consequence of N fixation by 

algal photobionts (Pike, 1978), a significant component of the nitrogen economy of 

ecosystems (Kallio, 1973; Alexander & Schell, 1973; Nieboer et al., 1978). Indeed 

atmospheric uptake is considered the dominant source of elements for many lichens (Brodo, 

1973; Touminen & Jaakkola, 1973), especially epiphytic lichens whose mycobionts possess 

higher cation exchange capacities than epilithic lichens allowing them to obtain nourishment 

from nutrient-poor environments with sporadic precipitation (Clymo, 1963; Touminen & 

Jaakkola, 1973). In fact, epiphytic lichens, such as Usnea which are capable of rapid water 

uptake receive significant quantities of elements from pulses of rainfall and dewfall (Brodo, 

1973; Kappen, 1973; Bosserman & Hagner, 1981), this due to the ion exchange 

characteristics of fungal and algal cell walls which allow effective and rapid uptake of 

elements from rainfall and dewfall (Brown, 1976; Puckett, 1976). In this study, Na 

concentrations measured in T. capensis and Ramalina sp. were in the mid range of those 

reported for lichens in other seashore ecosystems (Fletcher, 1976). This feature, and the 

high Na concentrations reported in southern African west coast fog (Oliver, 2002) pointed to 

oceanic origins of precipitation of which Na is the dominant cation (Rykiel, 1977). Other 

major wet fall elements are K and Ca, but their measured concentrations in both T. capensis 

and Ramalina sp. were below the concentration ranges reported for lichens in other 

seashore ecosystems and seemingly did not reflect oceanic origins of precipitation. The 
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positive correspondence found between K concentrations in T. capensis and Ramalina sp. 

and fog and dew precipitation amounts, and the elevated K concentrations reported in 

lichens from high elevation sites that receive large amounts fog (Bennett & Benson, 2005), 

implied that fog and dew was the predominant source of this element for lichens at the study 

site.  

Other potential sources of elements for lichens at the study site were dry atmospheric 

deposition of dust and other materials suspended in intermittent strong offshore berg winds 

and substrate mineralization by the lichens (Bosserman & Hagner, 1981) through secretion 

of extracellular enzymes (Nieboer et al., 1978). A close correspondence has been reported 

between elemental amounts in the lichens Lecanora gangaloides and Parmelia omphalodes 

and materials deposited from the atmosphere (Jenkins & Davies, 1966). Also, the higher P, 

Si, K, Fe, Al, Zn concentrations measured in Parmelia and Usnea than their substrates 

(Bosserman & Hagner, 1981) and the reported absence of any linear correlation between Al, 

Fe and Ti concentrations in Parmelia sulcata and those in their substrates (Conti & 

Cecchetti, 2001) do point to dry atmospheric deposition as a supplemental source of these 

elements. In fact, soil and dust particles are readily incorporated into intracellular spaces of 

lichen thalii that result in the accumulation of Al, Fe, Sc, Ti, and other elements of lithic origin 

(Nash, 2008).  However further studies are required to determine the relative influence of 

wet and dry atmospheric deposition and substrate on lichen elemental concentrations at the 

study site. 
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Chapter 6 
Conclusions and recommendations 

Temperatures limiting for lichen photosynthesis in this study were lower than those 

limiting for lichen respiration which is in agreement with several other published reports of a 

greater sensitivity of lichen photosynthesis than respiration to heat stress (Macfarlane & 

Kershaw, 1978). Consequently future studies should concentrate on determing 

photosynthetic sensitivities of lichens from a wide range of different environments so species 

highly sensitive to elevated temperatures can be identified as early warning indicators of 

climate warming.  

Laboratory derived temperatures limiting for lichen photosynthesis in this study were 

much higher than those determined under natural conditions. Consequently future studies 

should concentrate on determing photosynthetic sensitivities of lichens in their natural 

environments.  

Photosynthetic quantum yields of lichens from hot arid sites sites were more 

sensitive to temperature increases than those from cool motane. Consequently, future 

studies should concentrate on monitoring changes in distribution, photosynthesis and growth 

of lichens from high elevation sites as early warning indicators of climate warming.  In this 

regard, more extensive lichen distribution records are required so changes in lichen diversity 

and distribution can be linked to changes in climate as reported in several European lichen 

species (Aptroot & van Herk, 2007). Also, future studies should concentrate in measuring 

changes in carbon balance of lichens from high elevation sites. The reason being that higher 

night temperatures associated with climate warming enhance carbon loss due to elevated 

respiration rates and high day temperatures promote more rapid dehydration of lichen thalli 

restricting the time available for carbon gain by photosynthesis (Zotz, 1999) leading to 

increased incidences of mortality  in lichens already living close to the edge of their 

physiological abilities. Futhermore, changes in lichen growth as an indicator of climate 

warming should also be consistently monitored in lichens from high elevation sites, at least 

over the long term, since over the short term changes in lichen growth in response to 

elevated temperatures are difficult to detect as observed in this study. The reason being that 

lichens grow very slowly, with reported radial growth increments for lichen thalli in general of 

between 1 mm to 10 mm per year (Kershaw & Alvin, 1963) with even smaller reported radial 

growth increments of 0.5mm to 5.0 mm per year reported for British crustose and foliose 

lichens (Hawksworth & Rose, 1976). However, over the long term, statistically significant 

reductions in lichen cover and diversity have been reported in the Alaskan arctic tundra 

lichens exposed to experimentally elevated temperatures for 8 years (Wahren et al., 2005).  
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Depite larger quantities of moisture contributed by fog and dew than rainfall and 

reports that wet deposition by fog and dew is a more important source of elements than that 

of rainfall in coastal fog deserts, rainfall appeared a slightly more important source of 

elements for T. capensis and Ramalina sp in this study than other sources of precipitation.  

However, it is unclear whether the elements present in these two lichens were absorbed 

directly from rainfall or indirectly from rain wetted substrates. Consequently, the relative 

influence of wet and dry atmospheric deposition and substrate on lichen elemental 

concentrations in coastal fog dererts requires further study. 
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 Appendices to Chapter 3   

 

 

Appendix 3.1. Least square regressions of laboratory exposure temperature against 

respiration (A to C) and maximum quantum yield of PSII (D to F) for 4 lichen species 

from the hot arid site 
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Appendix 3.2. Least square regressions of laboratory exposure temperature against 

respiration (A & B) and maximum quantum yield of PSII (C & D) for 2 lichen species 

from the warm coastal site 
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Appendix 3.3. Least square regressions of laboratory exposure temperature against 

respiration (A to C) and maximum quantum yield of PSII (D to F) for 3 lichen species 

from the cool montane site 
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Appendix 3.4. Least square regressions of field exposure temperature against effective 

quantum yield of PSII at a steady state for 6 lichen species from the hot arid site (A to 

C) and the warm coastal site (D & E) 
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