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ABSTRACT

Subscription-based industries have seen a massive expansion in recent decades. In this

type of industry the customer has to subscribe to be able to enjoy the service; there-

fore, well-defined start and end points of the customer relationship with the service

provider are known. The length of this relationship, that is the time from subscription

to service cancellation, is defined as customer survival time. Unlike transaction-based

businesses, where the emphasis is on the quality of a product and customer acquisi-

tion, subscription-based businesses focus on the customer and customer retention. A

customer focus requires a new approach: managing according to customer equity (the

value of a firm’s customers) rather than brand equity (the value of a firm’s brands).

The concept of customer equity is attractive and straightforward, but the implemen-

tation and management of the customer equity approach do present some challenges.

Amongst these challenges is that customer asset metric - customer lifetime value (the

present value of all future profits generated from a customer) - depends upon assump-

tions about the expected survival time of the customer (Bell et al., 2002; Gupta and

Lehmann, 2003). In addition, managing and valuing customers as an asset require

extensive data and complex modelling. The aim of this study is to illustrate, adapt

and develop methods of survival analysis in analysing and estimating customer survival

time in subscription-based businesses. Two particular objectives are studied. The first

objective is to redefine the existing survival analysis techniques in business terms and

to discuss their uses in order to understand various issues related to the customer-firm

relationship. The lesson to be learnt here is the ability of survival analysis techniques

to extract important information on customers with regard to their loyalties, risk of
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iv

cancellation of the service, and lifetime value. The ultimate outcome of this process of

studying customer survival time will be to understand the dynamics and behaviour of

customers with respect to their risk of cancellation, survival probability and lifetime

value. The results of the estimates of customer mean survival time obtained from dif-

ferent nonparametric and parametric approaches; namely, the Kaplan-Meier method as

well as exponential, Weibull and gamma regression models were found to vary greatly

showing the importance of the assumption imposed on the distribution of the survival

time.

The second objective is to extrapolate the customer survival curve beyond the

empirical distribution. The practical motivation for extrapolating the survival curve

beyond the empirical distribution originates from two issues; that of calculating sur-

vival probabilities (retention rate) beyond the empirical data and of calculating the

conditional survival probability and conditional mean survival time at a specific point

in time and for a specific time window in the future. The survival probabilties are the

main components needed to calculate customer lifetime value and thereafter customer

equity. In this regard, we propose a survivor function that can be used to extrapo-

late the survival probabilities beyond the last observed failure time; the estimation of

parameters of the newly proposed extrapolation function is based completely on the

Kaplan-Meier estimate of the survival probabilities. The proposed function has shown

a good mathematical accuracy. Furthermore, the standard error of the estimate of the

extrapolation survival function has been derived. The function is ready to be used by

business managers where the objective is to enhance customer retention and to em-

phasise a customer-centric approach. The extrapolation function can be applied and

used beyond the customer survival time data to cover clinical trial applications.

In general the survival analysis techniques were found to be valuable in understand-

ing and managing a customer-firm relationship; yet, much still needs to be done in this

area of research to make these techniques that are traditionally used in medical studies

more useful and applicable in business settings.
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Chapter 1

Introduction

1.1 Background

Subscription-based industries have seen a massive expansion in recent decades. In this

type of industry the customer has to subscribe to be able to enjoy the service; therefore

well-defined start and end points of the customer relationship with the service provider

are known. The length of this relationship is defined to be customer survival time -

that is the time from subscription to service cancellation. In business literature, service

cancellation is widely known as churn. Unlike in transaction-based businesses, where

the emphasis is on the quality of product and customer acquisition, subscription-based

businesses focus on the customer and customer retention (Rust el al., 2000; Roberts,

2000). A customer focus requires a new approach: managing according to customer

equity (the value of a firm’s customers) rather than brand equity (the value of a firm’s

brands), and focusing on customer profitability rather than product profitability (Rust

et al., 2000). Robert Blattberg and John Deighton introduced the term customer equity

(Blattberg and Deighton, 1996) which means the total discounted future net revenue

that a firm expects from its relationship with its customers today. The metric used

to measure customer equity is customer lifetime value, which refers to the total net

revenue that a firm expects today from its future relationship with a customer (Gupta

and Lehmann, 2003). The concept of customer equity is attractive and straightfor-

1

 

 

 

 



CHAPTER 1. INTRODUCTION 2

ward, but the implementation and management of the customer equity approach do

present some barriers (Bell et al., 2002; Gupta and Lehmann, 2003; Shah et al., 2006,

Zeithaml et al., 2006). Amongst these barriers is that customer asset metric - cus-

tomer lifetime value - depends upon assumptions about the expected survival time of

the customer (Bell et al., 2002). In addition, managing and valuing the customer as

an intangible asset requires extensive data and complex modelling. Moreover a strong

link between investment in a customer-centric approach and the firm’s financial value

needs to be shown to the investors by using a simple numerical measure that is based

on the customer-centric approach and is presented in an easy way similar to tradi-

tional financial measures such as profit, cash flow and return on investment (Gupta

and Lehmann, 2003; Raab, 2007).

1.2 The purpose of the study

The aim of this study is to illustrate, adapt and develop methods of survival analysis

in analysing and estimating customer survival time in subscription-based businesses.

Two particular objectives are set:

The first objective is to redefine the existing survival analysis techniques in busi-

ness terms and to discuss their uses in order to understand various issues related to

the customer-firm relationship.

In relation to the redefinition of the current survival analysis techniques to meet

business needs, the objective is to study:

• The basic formulation of survival and hazard functions in business terms.

• The underlying assumptions about the distribution of customer survival time.

• The differences between survival analysis in the medical field and business field

due to the nature of business data and business needs.

 

 

 

 



CHAPTER 1. INTRODUCTION 3

• The approach of survival analysis in comparing different marketing campaigns

and different customer groups and identification of significant variables that affect

customer survival time.

With regard to the use of survival analysis in investigating customer-firm relation-

ship, our objective is to study:

• The use of the Cox model (Cox, 1972) to identify significant variables that affect

customer survival time.

• The analysis of the risk of service cancellation using the hazard calculated from

the Nelson-Aalen method (Nelson, 1972; Aalen, 1978) and the hazard ratio cal-

culated from the Cox model (Cox, 1972).

• The understanding of customer survival probabilities using the Kaplan-Meier

method (Kaplan and Meier, 1958).

• The estimation of the customer mean survival time using both nonparametric

and parametric methods. This requires extrapolation of the survival curve.

The second objective is to extrapolate the customer survival curve beyond the

empirical distribution. In this regard, the particular aim is to:

• Propose a survival function that can be used to extrapolate the survival probabili-

ties beyond the empirical data for projection purposes based on the Kaplan-Meier

estimate of the survival probabilities in the observation period.

• Derive the standard error of the estimate of the proposed extrapolation function.

• Introduce methods to derive the conditional survival probabilities using the ex-

trapolation function.

• Suggest an approach to estimate the standard error of the conditional survival

time.

 

 

 

 



CHAPTER 1. INTRODUCTION 4

The aim of this study is to make two main contributions.

The first one is to provide a comprehensive understanding of the use of survival

analysis in utilising customer-firm relationships. A considerable effort is made to inves-

tigate customer survival time in subscription-based businesses. The analysis is related

to the evaluation of a firm’s performance based on a customer-centric approach. Ma-

terials related to this approach of analysis is presented throughout the thesis, but is

mainly explored in chapter two, three and four.

The second contribution is the work on the extrapolation of the survival function

on the basis of Kaplan-Meier estimates and the estimation of the standard error of

the proposed extrapolation survival function. This extrapolation function is readily

available for practical use for a reasonable projection period (the latter to be decided

by expertise in the field where the model has to be applied) and a given standard error.

The codes are written in the open source Octave. The material following this approach

of the study is presented in chapter five.

1.3 Motivation

Customer survival time is the main component that has to be estimated in order to

calculate customer lifetime value. Customer lifetime value is considered to be the

most acceptable and widely used metric to evaluate a firm’s performance based on a

customer-centric approach (Mani et al., 1999; Lu, 2003; Gupta and Lehmann, 2003).

Although some researchers have pointed out the importance of survival analysis in

calculating customer lifetime value, little research has been done in this area. Most

models for customer lifetime value that have been developed so far are deterministic

models; these models have a constant survival probability (retention rate) and an infi-

nite time horizon. It is argued here that a constant customer retention rate (survival

probability) and infinite time horizon projections are counter-intuitive. The change in

 

 

 

 



CHAPTER 1. INTRODUCTION 5

customer characteristics and behaviour, marketing campaigns, and market dynamics

are potential factors that affect retention rate over time. Market dynamics and the

change in customer behaviour make it impossible for any model to make good predic-

tions of the distant future based on only current information. Gupta and Lehmann

stated that “practically, the retention rate is one of the most difficult metrics to em-

pirically estimate” (Gupta and Lehmann, 2003).

In some subscription-based industries where customers have an almost equal monthly

margin (total profit generated over a month), customer survival time becomes an im-

portant measure for identifying the most valuable customers; that is the future ex-

pected revenue from a customer evaluated at a specific point in time will be propor-

tional to his/her expected future survival time. A typical question here is for how long

a customer will be actively engaged in business with the firm. This question could

be answered based on individual customer characteristics or based on segment (group

of customers) characteristics using survival analysis techniques. It is our objective in

this study to analyse, understand and develop models that consider a nonconstant re-

tention rate estimated from the empirical data and make predictions for a reasonable

time horizon (the choice of time horizon should be based on the nature of the industry).

The management of the customer-firm relationship, management and implementa-

tion of a customer-centric approach and the need to justify investment in customer-

centric initiatives have arisen so that the need to investigate the adequacy and ap-

plicability of existing models becomes necessary (Zeithaml et al., 2006; Raab, 2007).

The usefulness of survival analysis is not limited to the calculation of customer lifetime

alone. The survival probabilities can also be used to plan retention and acquisition

programs.

Guided by the above-mentioned motivations the aim is to provide a better under-

standing of the role of survival analysis in emphasising a customer-centric approach and
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to suggest a solution to the problem of extrapolation. However, the proposed extrap-

olation model goes beyond the business setting to clinical trials and cost-effectiveness

studies as well. Furthermore, this study is meant to enhance and contribute to the

understanding, literature and application of survival analysis techniques.

1.4 Delimitations, limitations and challenges

This study considers customer survival time in subscription-based businesses where

the starting point and end point of the customer relationship with the service provider

is well-known. The study does not differentiate between a new subscriber or an old

customer who has cancelled the service for some time and rejoined the service provider

later. In a real business setting the survival time and lifetime value models of customers

who activated their service might be different than those of newly joining customers.

Customers who rejoin the service provider have a lower cost of retention and acquisi-

tion than those in the newly subscribing group. This is due to the difference in their

knowledge about and attitude towards the service provider.

It has to be noted that while the mathematical accuracy of the proposed model

gave a good indication of the adequacy of the model in general, the application of the

model has to be carefully handled (e.g. the number of data points to be taken inorder

to estimate the parameters of the extrapolation function). This is especially necessary

in the presence of extreme right censoring, which is the case in most customer survival

time data.

While the importance of customers has been acknowledged for several decades, the

use of a customer-centric approach in measuring a firm’s performance developed more

recently when Robert Blattberg and John Deighton introduced the approach of cus-

tomer equity (Blattberg and Deighton, 1996). Several attempts since then have been

made to model the customer equity metric - customer lifetime value (Berger and Nasr,
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1998; Reinartz and Kumar, 2000; Thomas, 2001, Jain and Singh, 2002; Hogan et al.,

2002; Berger et al., 2002; Libai et al., 2002; Hogan et al., 2003; Lu, 2003; Gupta and

Lehmann, 2003; Gupta et al., 2004; Bolton et al., 2004; Kumar et al., 2004; Campbell

and Frei, 2004; Kumar and Petersen, 2005; Gupta et al., 2006, Kumar et al., 2006).

However, most of these modelling attempts were based on deterministic approaches

in estimating the customer survival time component in the customer lifetime value

model and a very limited investigation has been made in the direction of probabilis-

tic approaches. The challenge is, then, one of having limited literature in the use of

statistical approaches to deal with customer survival time, particularly in literature

using survival analysis techniques to model customer lifetime value and implement a

customer-centric approach.

Although the problem of extrapolation is not new for statisticians and mathemati-

cians, it remains a challenging topic and it is very important. In the case of the

Kaplan-Meier survival curve extension, not much work has been done, except by Gross

and Clark, 1975, Lagakos, 1979, Moeschberger and Klein, 1985 and King et al., 2003.

1.5 The structure of the thesis

The thesis is composed of six chapters. In chapter one we have introduced the problem,

stated our objectives and highlighted the motivations behind the choice of this topic.

The limitation and the delimitation of the study have also been stated. In chapter

two, a review of the literature is presented. The practical value of this study has been

discussed here and the business motivations are presented. This is done in three main

sections. In the first section it is shown that the customer has emerged as an impor-

tant intangible asset to be measured in order to evaluate the firm’s performance. The

customer equity approach is introduced as well as its metric - customer lifetime value.

In the second section it is shown that customer survival time is well-positioned in the

process of measuring a firm’s performance and in implementing customer-centric ap-
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proaches. The models that are used to calculate customer lifetime value are reviewed.

All the issues related to the objectives of this study that emerged during the course of

reviewing the topics of this chapter are highlighted. In the last section the main points

of this chapter are summarised.

In chapter three a basic formulation of survival analysis techniques are provided.

Unlike the previous chapter where emphasis was on the business of understanding the

customer and customer survival, this chapter focuses on explaining the use of survival

analysis techniques in tackling various business issues around the customer-firm rela-

tionship. It consists of three main sections. In the first section the basic formulation

of survival analysis in the customer survival time context is provided and scholars’

work with respect to the issue of churn is reviewed. Similarities and differences be-

tween application of survival analysis in the medical context and business context are

discussed. The second section presents a number of important practical business prob-

lems in understanding customer-firm relationships that can be resolved using various

survival analysis techniques. The last section aims to summarise this chapter.

Chapter four contains five main sections. In this chapter various survival analysis

techniques are used in analysing a particular data set that has been extracted from the

database of a company that provides a subscription-based service. The aim is to give

a better understanding of customer survival time and to investigate the usefulness of

using survival analysis to understand various business questions related to customer

survival time in subscription-based businesses. Any methodological implications and

challenges facing the current survival techniques emerging in this setting are discussed.

To analyse and understand customer survival time, various approaches to survival

time data analysis were applied on a sampe of the data set. The analysis was conducted

at different levels. On the first level the significant variables that affect customer sur-

vival time are identified. For this purpose the results obtained from a stratified Cox
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regression are presented. The outcome of this level of analysis is presented in section

one. On the second level hazard ratios obtained from the stratified Cox model are

used to evaluate the effects of the different levels of each variable. The hazard ob-

tained from Nelson-Aalen is presented to get a better understanding of the change in

risk of cancellation over time. The second level of analysis is presented in section two.

On the third level of the analysis the change in the survival probability over time using

the Kaplan-Meier method is considered. The results of the Kaplan-Meier analysis is

presented in section three. On the final level of analysis the estimation of the mean

obtained from the Kaplan-Meier method and the parametric method using the expo-

nential distribution, Weibull distribution and gamma distribution are presented and

compared, and these results are presented in section four. Methodological and business

insights are discussed in each section to get a better understanding of the application

and the theory. In the last section of this chapter a brief summary is presented.

Chapter five is considered the most important chapter in this study. The issue

of extrapolating the survival curve is investigated beyond the empirical data and is

presented taking into account the nature and the context of the business problem and

customer survival time. During the research process, this issue has appeared to be

a crucial element in building a good model that is based on a customer-centric ap-

proach. This chapter has seven main sections. In the first section the motivation

behind extrapolating the survival curve are discussed while in the second section a

survivor function is proposed to be used beyond the empirical data. The third section

investigates the mathematical accuracy of the proposed model and the fourth section

is dedicated to the derivation of the standard error of the estimate obtained from the

proposed function. In the fifth section the conditional survival time and the conditional

mean survival time are presented. In the sixth section an application of the proposed

model on a particular data set is presented. In the last section follows a discussion and

the chapter is summarised.
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The last chapter, chapter six, concludes the study and points out recommendations.

Some materials of this thesis, particularly parts of chapter three and chapter four,

were published, as summarised below:

• Mohammed, Z. and Kotze, D. (2005). Survival data mining in the telecom-

munications industries: usefulness and complications, Data mining, text mining

and their business applications, Wessex Institute of Technology Transaction on

Information and Communication Technologies, Volume 35: 505-512.

• Mohammed, Z., Maritz, J. S. and Kotze, D. (2007a). Customer survival time

in subscription-based businesses (case of Internet service providers). Data min-

ing, text mining and their business applications, Wessex Institute of Technology

Transaction on Information and Communication Technologies, Volume 38:303-

310.

• Mohammed, Z., Maritz, J. S. and Kotze, D. (2007b). Estimation of the cus-

tomers’ mean survival time in subscription-based businesses. Data mining, text

mining and their business applications, Wessex Institute of Technology Transac-

tion on Information and Communication Technologies, Volume 38: 285-292.

The following three articles are in the process of being submitted to scholary jour-

nals:

• On the extrapolation of the Kaplan-Meier survival curve.

• Projecting customer lifetime value and customer equity: A survival analysis ap-

proach.

• Notes on the application of survival analysis in the business field.

 

 

 

 



Chapter 2

Measuring a firm’s performance: a

customer-centric approach

The objective of this chapter is to review the literature related to the practical value

of this study and to present business motivations behind the survival analysis. The

chapter has three main sections. In the first section, we show how the customer has

emerged as an important intangible asset to be measured in order to evaluate the firm’s

performance. We introduce the customer equity approach and its metric - customer

lifetime value. In the second section, we show how customer survival time is well

positioned in the process of measuring the firm’s performance and in implementing

customer-centric approaches. We also review the models that are used to calculate

customer lifetime value. All the issues related to the objective of this study that

emerged during the course of reviewing the topics of this chapter are highlighted. In

the last section, we summarise the main points of this chapter.
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2.1 Customer-centric approach in measuring a firm’s

performance

2.1.1 Emergence of a customer-centric approach in measuring

a firm’s performance

In the past three decades the service industry has expanded rapidly creating a new

business world economy. The new business world is increasingly focusing on customers

rather than products. The old economy was centered on goods, had a transaction-

based nature, focused on acquiring customers and product-based thinking while the

new economy is service-centered, subscription-based in its nature, focusing on cus-

tomer retention, and customer-based thinking (Rust et al., 2000; Roberts, 2000). This

transformation has made intangible assets - in particular customers - critical to a firm.

Managing and measuring performance taking this intangible asset into consideration

therefore becomes essential. The usefulness of reported earnings, cash flow and book

value in reflecting the value of a firm have been important in recent decades (Lev and

Zarowin, 1999). The market value of the top 500 companies in the United States is

almost six times the book value (the net value stated on the balance sheet); that is

for every six dollars in the market value of a firm only one dollar is represented in

the balance sheet (Lev, 2001). In the issue of 22 May 2001 of The New York Times

magazine, Floyd Norris wrote: “Intangible assets are, by definition, hard to see and

even harder to fix a precise value for. But a widening consensus is growing that the

importance of such assets - from brand names and customer lists to trademarks and

patents - means that investors need to know more about them” (Norris, 2001).

There is no doubt that customers are not only an essential part of the successful

business, but that business can not exist without them (Gouthier and Schmid, 2003).

Therefore, decisions made in the business environment have to be centreed on cus-

tomers. A customer focus requires a new approach: managing according to customer

equity - the value of a firm’s customers - rather than brand equity (the value of a firm’s
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brands), and focusing on customer profitability rather than product profitability (Rust

et al., 2000). Robert Blattberg and John Deighton introduced the term customer eq-

uity (Blattberg and Deighton, 1996) and defined it to mean the total discounted future

net revenue that a firm expects from its relationship with its customers today.

Although the concept of customer equity is very attractive and straightforward,

the implementation and the management of a customer equity approach seems to

present some barriers (Bell et al., 2002; Gupta and Lehmann, 2003; Shah et al., 2006).

Amongst these barriers is that customer asset metric - customer lifetime value (the total

net revenue that a firm expects today from its future relationship with a customer) -

depends upon assumptions about the future stream of income from a customer, the

appropriate allocation of costs to customers, the discount factor and the expected

lifetime of a customer (Bell et al., 2002). Gupta and Lehmann (2003) stated two

reasons for the complexity of managing and valuing customers as an intangible asset:

firstly, it requires extensive data and complex modelling and secondly a strong link

between investment in a customer-centric approach and the firm’s financial value needs

to be shown to the investors. Marketers have to justify investment for investors and

for managers who are outside the marketing department and this should be done in a

simple numerical measure that is based on the customer-centric approach and presented

in an easy way similar to traditional financial measures such as profit, cash flow and

return on investment (Raab, 2007). The new measure should capture the value of

customers as an intangible asset. That is why analysts have suggested customer lifetime

value to be used as a customer asset metric. In this study we are working on one of

the items that have been highlighted by Bell and others (Bell et al., 2002); that is

the expected lifetime of a customer. We are also aiming to tackle the issue related to

modelling complexity that has been pointed out by Gupta and Lehman (2003) and to

face the challenge of making the return on investment in a customer-centric approach

accurately measurable. The next section focuses on the customer asset metric, namely,

customer life time value.
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2.1.2 Customer asset metric - customer lifetime value

Customer lifetime value is defined as the present value of all future profits generated

from a customer during his/her relationship with the firm (Gupta and Lehmann, 2003).

However, Pfeifer and others have argued that the word value should mean cash flow

rather than profit in order to match the word value in finance (Pfeifer et al., 2005). This

would make sense if one would like to value the customer as an asset, which is the case

in a customer-centric approach. Gupta and others continue with the Pfeifer debate

(Gupta et al., 2006). Customer equity is defined in terms of the customer lifetime

value as the sum of all customers’ lifetime values. The understanding of customer

lifetime value has been of great importance to firms in order to go through the process

of implementing a customer-centric approach successfully; this has made it a topical

area of research (Reinartz and Kumar, 2000; Kumar et al., 2006).

Customer lifetime value has two important uses: firstly, it is used in planning differ-

ential marketing initiatives targeting each customer (or segment) and best marketing

practices (Kumar et al., 2004); secondly, it is to be used to understand and evaluate

the relationship between marketing actions and shareholders’ value (Hogan et al., 2002,

Rosset et al., 2002).

Several components need to be considered should one want to calculate customer

lifetime value; namely, the customer survival time (or customer lifetime), revenue

gained from a customer over a unit of time, e.g., per month, discount factor (a discount

rate to obtain the present value of cash that will be received in future) and the cost

related to maintaining the relationship with the customer. This study focuses on the

analysis and the estimation of the first component of the customer lifetime value model

i.e. customer survival time.

The next section is concerned with how customer survival is positioned in the

process of measuring a firm’s performance and calculating the customer lifetime value.

Another term that has been used to describe customer survival probability is retention

rate.
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2.2 Survival analysis and customer survival time in

measuring a firm’s performance

2.2.1 The position of customer survival time in the model of

measuring a firm’s performance

Customer survival time is a crucial element in the process of implementing a customer-

centric approach, because it is the most important element in calculating customer life-

time value. Lu (2003) emphasised that the customer survival curve and the customer

monthly margin are the most important components in modelling customer lifetime

value in the telecommunication industries. Estimation of customer survival time can

enable managers to test different marketing initiatives and strategies that have been

planned to retain customers, and it will allow them to set in place a solid plan for

acquiring new customers if it is necessary to do so. Gupta and Lehmann stated that

“practically, the retention rate is one of the most difficult metrics to empirically esti-

mate” (Gupta and Lehmann, 2003). It is in this regard that we expect our study to

make a contribution. This is achieved by giving a better understanding of the question

of customer survival time estimation (and analysis ) from the empirical data using ex-

isting survival analysis techniques and by proposing a model to extrapolate the survival

probabilities beyond the empirical data.

To accommodate the business settings characteristics, survival analysis techniques

are expected to accommodate various factors that affect customer survival time. Those

factors range from internal factors related to the customer (customer behaviour and

characteristics), the internal factors associated with the company (service quality and

marketing program) to the external factors (factors associated with competitors’ ac-

tivities and general economic conditions).

In some subscription-based industries, where customers have an almost equal monthly

margin, customer survival time becomes an important measure to identify the most

valuable customers; that is, the future expected revenue from a customer evaluated at
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a specific point in time will be proportional to his/her expected future survival time.

A typical question here is for how long a customer will be actively engaged in business

with the firm. This is customer survival time. This question could be answered based

on individual customer characteristics or based on segment (group of customers) char-

acteristics by calculating the expected survival time.

The position of customer survival time in the model of measuring a firm’s performance

is summarised in figure 2.2.1 below.

Models for customer survival time Discount factorCustomer profit

Customer lifetime value

Measuring the firm’s performance using a customer-centric approach

Internal factors: customer side (customer behavior and characteristics)

Internal factors: company side (service quality and marketing programs)

External factors: competitors’ activities, general economic status, etc

Figure 2.2.1: The position of customer survival time in the process of measuring
a firm’s performance based on customer-centric approach

In the next section, we review different models for customer lifetime value. Different

scenarios on how researchers have dealt with the issue of estimation of customer survival

probabilities (or retention rate) over time will be presented.
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2.2.2 Models for customer lifetime value

Different models for customer lifetime value have been built over the past 10 years

(Berger and Nasr, 1998; Jain and Singh, 2002; Hogan et al., 2002; Berger et al.,

2002; Libai et al., 2002; Hogan et al., 2003; Lu, 2003; Gupta and Lehmann, 2003;

Gupta et al. 2004; Bolton et al., 2004; Kumar et al., 2004; Campbell and Frei, 2004;

Venkatesan and Kumar, 2004; Kumar and Petersen, 2005; Gupta et al., 2006). They

share similar objectives as they all try to identify the most valuable customers, obtain

the firm’s customers’ value (customer equity), allocate resources and justify investment

in different marketing initiatives. However, to build these models researchers have

used different methodologies ranging from fully deterministic mathematical models to

statistics and data mining approaches.

Following Gupta and Lehmann (2003), the simplest customer lifetime value (CLV )

model assuming that we know exactly for how long the customer is going to stay, is

CLV =
n∑
t=0

mt

(1 + d)t
(2.2.1)

where mt is the margin or a contribution for each customer in a given time t , d is the

discount rate and n is the number of time units (time period) over which the customer

is assumed to be active. While it is not realistic to assume that we know for certain

for how long the customer will remain active, this assumption is relaxed by assuming

a particular retention rate (survival probability), that is, a probability of the customer

being active in subsequent periods. If we set the probability of a customer being active

throughout the period j equal to pj, then the probability of surviving at the end of

period t is

rt =
t∏

j=1

pj.

Equation 2.2.1 will become

CLV =
n∑
t=0

mtrt
(1 + d)t

(2.2.2)

Lu (2003) presented a customer lifetime model for the telecommunication industries
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that included the customer margin and customer survival probability (or retention

rate). The model is presented as follows:

CLV = m

T∑
t=1

St
(1 + d/12)t−1

(2.2.3)

where m is the customer monthly margin calculated from the last three months for ex-

isting customers and calculated from the last month if the customer is newly acquired,

St is the series of customer survival probabilities obtained from survival curve, d is the

discount rate and T is the number of months for which the customer lifetime value

should be calculated.

Mani, Drew, Betz and Datta pointed out that the main challenge in predicting

customer lifetime value is the estimation of the customer survival time component

(Mani et al., 1999). They argued that the classical survival analysis techniques (such

as proportional hazard models) may not work well because of the assumption they

make about the linear effect of the covariates, the proportionality assumption and

their inability to detect segments of customers whose survival time covariates vary

a lot. They proposed a new model that incorporates both the proportional hazard

approach and neural networks techniques. They argue that data mining techniques

may complement the classical survival techniques.

Figini, Giudici and Brooks used a Bayesian approach to estimate customer life-

time value; in particular, they were interested in customer features selection using a

Bayesian approach to model customer lifetime value (Figini et al., 2007). Figini and

Giudici made comparisons between classical models such as logistic regression and sur-

vival analysis techniques to model customer churn (Figini and Giudici, 2007a). They

advocated the use of the Bayesian survival approach rather than the classical survival

approach in modelling customer lifetime value, especially estimation that involves a

large number of variables to be used (Figini and Giudici, 2007b). Figini investigated

survival analysis estimation that is based on the classical partial likelihood. She pro-

posed a Bayesian extension for survival models based on penalised likelihood estimation
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(Figini, 2007).

2.2.3 Projection approaches in customer lifetime value mod-

els

In relation to the context of our study, two major differences in the approach of tack-

ling customer lifetime value projection models exist in the literature. The distinction

between the two approaches is based on the time horizon that they consider when the

customer survival time is estimated and on how to estimate customer survival prob-

abilities. The first difference is whether to use an infinite time horizon (Gupta and

Lehmann, 2003; Gupta et al., 2004; Gupta et al., 2006) or a finite time horizon (Kumar

and Reinartz, 2000, Thomas, 2001) and the second one is whether to take a constant

retention rate or a retention rate that varies over time (Gupta et al, 2006);

A number of researchers have assumed a constant customer survival probability over

time (Gupta and Lehmann, 2003; Gupta et al., 2004; Gupta et al., 2006). To illustrate

this we present an example where we have a constant retention rate of 80%. Take

a customer who subscribed to a subscription-based firm such as a telecommunication

company, the banking sector or an internet service provider. This constant retention

rate of 80% means that the probability of having a customer still active at the end

of 5th period (e.g. 5th year) will be equal to 0.33. It is easy to see that having a

constant retention rate is neither intuitive nor built on solid theoretical or practical

ground. In many industries if the customer could be retained in the initial period of

his subscription to the service, the likelihood of developing loyalty becomes high. It is

advisable that survival probability be estimated from the empirical data.

Researchers have not agreed on the length of a time horizon over which the projec-

tion of customer lifetime value should be made. Many researchers have used an infinite

time horizon (Gupta and Lehmann, 2003; Gupta et al., 2004; Fader et al., 2005; Gupta

et al., 2006). The infinite time horizon eases the calculation; this could be considered

as one of the advantages of this scenario. However, we are not in favour of an infinite

time horizon scenario. From a methodological point of view, an infinite time horizon
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means more approximations that may produce more errors and predictions that are

unreliable and unrealistic. From a business perspective, the fast change in customer

behaviour and the market dynamic could make it impossible for statistical models to

predict the distant future satisfactorily. It is for these reasons that we favour working

with a finite time horizon and a conditional survival time, where the prediction is made

on a specific number of time units (e.g., months or years depending on the nature of

the industry) and conditioned on information at the time when the prediction has to

be made.

2.3 Summary

This chapter has focused on business literature and research on the customer as an

intangible asset to be measured and valued. The importance of the customer arises

from the domination of the service industry, and the increase in types of businesses

that are subscription-based in nature where customer relations have to be managed

and maintained. Customer survival time appears to be one of most important compo-

nents that has to be obtained in order to calculate customer asset metrics - customer

lifetime value - and to implement a customer-centric approach in measuring a firm’s

performance. Researchers acknowledge the difficulty of calculating customer survival

probability empirically. Although a few researchers have pointed out the usefulness of

survival analysis in calculating customer lifetime value, little research has been done

in this area; most models of customer lifetime value that have been developed so far

are deterministic models. These models have been dominant with a constant survival

probability (retention rate) and an infinite time horizon. We argue that a constant

customer retention rate (survival probability) and infinite time horizon projections are

counter intuitive. The change in customer characteristics and behaviour, marketing

campaigns, and market dynamics are potential factors that affect retention rate over

time. Market dynamics and the change in customer behaviour make it impossible for

any model to make good predictions of the distant future based on the current infor-
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mation. It is our objective in this study to analyse, understand and develop models

that consider a nonconstant retention rate estimated from the empirical data and make

predictions for a reasonable time horizon (the choice of time horizon should be based on

the nature of the industry). Therefore, we motivate further investigation of survival

analysis and its use in understanding and modelling customer survival time; hence,

customer lifetime value. In particular, we are in favour of estimating the conditional

survival probabilities that consider the past customer survival time and the present

information on the customer for a reasonably useful projection period.

 

 

 

 



Chapter 3

The methods of survival analysis in

analysing and estimating customer

survival time

The objectives of this chapter are to provide a basic formulation of survival analysis

techniques when the analysis of customer survival time is considered and to present

different problems that survival analysis can solve. Unlike the previous chapter where

emphasis was on the business of understanding the customer and customer survival,

this chapter focuses on explaining the use of survival analysis techniques in tackling

various business issues around the customer-firm relationship. The chapter consists of

three main sections. In the first section, we provide the basic formulation of survival

analysis in the customer survival time context. We also review scholars’ work with

respect to the issue of churn. We discuss the similarities and differences between appli-

cation of survival analysis in the medical context and the business context. The second

section presents a number of important practical business problems in understanding

customer-firm relationships that can be resolved using various survival analysis tech-

niques. The last section aims to summarise this chapter.

We have published part of the work presented in this chapter in Mohammed and

Kotze (2005).
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3.1 Customer survival time: basic approach and

formulation

3.1.1 Basic approach

Survival analysis concerns time-to-event data analysis (Cox and Oakes, 1984; Oakes,

2001; Klein and Moeschberger, 1997; Hosmer and Lemeshow, 1999; Hougaard, 2001;

Lee and Wang, 2003; Lawless, 2003; Jenkins, 2005). In medicine time-to-event can be

the time to a certain symptom.

Typically time to event data are censored. Suppose that we followed a group of

individuals over a certain period to record the occurrence of the event under study,

for instance a heart attack of a patient. By the end of the follow-up period not all

individuals will have experienced the event. The time recorded for an individual who

has not experienced the event is called a censored time. The specific feature of survival

techniques is that they use the data of all available information from both uncensored

and censored cases. Another concept is truncation (Cox and Oakes, 1984; Klein and

Moeschberger, 1997; Hosmer and Lemeshow, 1999). In addition to censoring, time-

to-event data can be truncated. Truncation happens when the investigator makes the

starting point of an observation only when it experiences a certain event or satisfies a

specific condition. Survival analysis techniques deal with the analysis and modelling

of time-to-event data with censoring and truncation.

Subscription-based businesses such as cellular networks, internet service providers,

banking services and insurance firms are examples of cases where a well-defined start

and end point of the customer’s relation with the firm can be found. The time from

subscription to the cancellation of a service can be modelled using survival analysis

techniques. To study the survival time of a group of customers by recording the date

of subscription to the service and date of cancellation of the service, we are likely to

have censoring (and truncation) as not all customers will have cancelled the service by

the end of the follow-up period.
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3.1.2 Basic formulation of customer survival and hazard func-

tions

Let us denote customer survival time by the random variable T . Assuming that T is

a continuous random variable, let F (t) = Prob(T ≤ t) be the distribution function of

T , and f(t) = ∂F (t)
∂t

be the probability density function of T ; t is a specific value of T .

The survival function, S(t), indicates the probability that T exceeds t; that is:

S(t) = Prob(T > t) = 1− F (t) (3.1.1)

An important concept is the hazard function (or the hazard rate) h(t) . It expresses

the instantaneous risk of experiencing the event of cancelling the service at time t given

that the customer survived until t. It is defined as follows:

h(t) = lim
∆t→0

(
1

∆
Prob(t ≤ T < t+ ∆ | t ≥ T )

)
(3.1.2)

From equation 3.1.2, it follows that

h(t) =
f(t)

S(t)
= −∂S(t)

∂t
/S(t) = −∂lnS(t)

∂t
(3.1.3)

The survival function S(t) can be expressed in terms of h(t) or the cumulative

hazard H(t) as follows:

S(t) = exp

(
−
∫ t

0

h(u)du

)
= exp(−H(t)) (3.1.4)

where H(t) =
∫ t

0
h(u)du is the accumulation of the hazard over time. The hazard func-

tion can be decreasing (customers become more loyal over time), increasing (customers

tend to cancel the service over time) or constant (the risk of a customer leaving the

service provider does not change over time).
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3.1.3 Underlying distribution of survival time and customer

survival time

Survival analysis techniques comprise different statistical techniques ranging from non-

parametric and semi-parametric to fully parametric methods of analysis and modelling.

The choice of the method is largely dependent on the underlying assumption about

the distribution, the extent to which we know about the behaviour of the system un-

der study and the type of questions to be investigated. The Kaplan-Meier method

(Kaplan and Meier, 1958) gives a nonparametric estimate of the survival function. It

applies to homogeneous groups and we can use it to compare survival probabilities

across different groups. The Nelson-Aalen method (Nelson, 1972; Aalen, 1978) is a

nonparametric technique used to estimate the hazard rate. When parametric analysis

and modelling are considered several distributions are available; amongst them are the

exponential, Weibull and gamma (Gross and Clark, 1975; Klein and Moeschberger,

1997; Hosmer and Lemeshow, 1999; Lee and Wang, 2003; Lawless, 2003). Each dis-

tribution assumes a specific behaviour and shape for the risk of cancelling the service,

e.g., constant hazard, monotonically increasing hazard and monotonically decreasing

hazard. The advantage of the nonparametric models is that they avoid error arising

from misspecifying the underlying distribution. The drawback is that it is much more

difficult to report on nonparametric estimates whereas it is easy to do so in parametric

models by describing a few parameters. A very popular semi-parametric model in sur-

vival analysis is the Cox proportional hazard model or simply Cox model (Cox, 1972;

Cox, 1975). The Cox model is defined as follows:

h(t) = h0(t) exp(βTX) (3.1.5)

where h0(t) is a baseline hazard function common to all individuals and β is a vector of

regression parameters of dependence of the survival time distribution on the covariate

vector X. The most interesting feature of the model is its ability to test and estimate

the effect of a set of covariates on the hazard rate without making any assumption
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about the distribution of the survival data. However, this model is based on the

assumption that the hazards are proportional (Anderson, 1982). That is, for a given

two observations with different values for the independent variables, the ratio of the

hazard functions for those two observations is independent of time. Several methods,

such as Schoenfeld and scaled Schoenfeld residuals (Schoenfeld, 1982; Grambsch and

Therneau, 1994), have been developed to test this assumption. There are also several

tests that can be applied to check the overall specification correctness of the Cox model.

Among them, is the link test. The basis of this test is to verify if the coefficient of the

squared linear predictors is insignificant; this guarantees that the model is correctly

specified and only (and all) the relevant variables are included in the model (Stata,

2003). Several advances were added to the original formulation of the Cox proportional

hazard models to accommodate different baseline hazard functions (stratification) and

time varying covariates (Therneau and Grambsch, 2001, Lee and Wang, 2003).

The hazard function can be used to study churn. Most marketing initiatives are

planned to minimise churn (or maximise retention rate). Losing a customer is a com-

plicated issue that companies would like to avoid. This is not because of the high cost

of acquiring a new customer only, but due to the cost of negative word of mouth as

well (Hogan et al., 2003; Wangenheim, 2005). However, the customer-centric approach

does not only consider minimising churn, but it incorporates the idea of maximising

the profit that could be gained from the customer over his survival time period.

3.1.4 Survival analysis from medical application to business

application

While the main role of survival analysis in medical applications is to identify influential

factors that affect the life of patients, it has two important functions in the business

field. The first is to study factors that can prolong the customer’s relation with the

firm; this is a similar application to the main object of survival analysis in the medical

field. In business terminology these techniques can effectively be used to test the

impact of marketing campaigns (e.g. assessing the effectiveness of different retention

 

 

 

 



CHAPTER 3. THE METHODS OF SURVIVAL ANALYSIS IN ANALYSING AND
ESTIMATING CUSTOMER SURVIVAL TIME 27

programs, different levels of a campaign, different incentives being used to upgrade old

customers to be more profitable and to add on new products or services). Secondly,

is to estimate the expected survival time of a customer. This is the most important

difference in emphasis between the two fields of application, because the expected

survival time is intimately connected with the expected revenue. This is helpful to

identify and target the most profitable customers and to evaluate the firm’s value by

taking into consideration a customer approach. The nature of customer survival time

and objectives (roles) of survival analysis in business require a careful handling of the

problem. The nature of the problems that come from the business environment involves

several serious issues that can affect the applicability and the implementation of the

survival analysis techniques. Firstly, both the customer and company can initiate the

termination of a business relationship. The company can initiate the termination of

the relationship, for example, if the customer is not able to pay. A customer can also

leave the company due to unsatisfactory service received. Secondly, multi-cancellation

and multi-reactivation have a great impact both on the methodologies used to estimate

the survival probability and the conceptual business bases in understanding the cost

and profitability of the old customers who reactivated their service. Thirdly, the nature

of covariates that lead to a termination of business relations is important, e.g. type of

payment (credit card, cash, bank account), contract (existing or not, whether there is

any penalty on the departing customers), promotion, and emergence of a new service

provider. It is easy to see that each of these covariates can lead to a sudden loss of

a considerable number of customers on a specific date, which will result in a survival

curve that is non-smooth with a sharp drop at specific dates representing events like the

end of a contract, end of promotion and emergence of a new service provider (Linoff,

2004). Finally, because one of our business aims is to identify profitable customers,

segment-based survival curves have to be studied.
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3.2 Survival analysis in understanding and main-

taining customer-firm relationship

3.2.1 Survival analysis and comparison of different marketing

campaigns and different customer groups

The study of customers based on their segments has been highly motivated in business

literature, especially in industries where service providers have multimillion subscribers

(Alfansi and Sargeant, 2000; Driver and Johnston, 2001; Libai et al., 2002; Weinstein,

2002; Andronikidis and Dimitriadis, 2003; Badgett and Stone, 2005). In such firms it

will not be viable for the marketing department to follow the customer on an individual

basis. The marketers would rather look at categories of similar behaviours or similar

reactions. Motivated with these types of business views, the Kaplan-Meier (Kaplan

and Meier, 1958) and Nelson-Aalen (Nelson, 1972 and Aalen, 1978) methods are of

great benefit to understand customer survival time without making any assumption

about the distribution of customer survival time.

One of the important uses of the Kaplan-Meier non-parametric method is in assess-

ing the differences between survival chances of different groups. Two typical examples

are assessing the differences between different levels of marketing campaigns on pro-

longing customer survival time (enhancing retention rate) and studying the behaviour

of different customer groups based on variables such as demographic variables or service

usage related variables.

Several tests such as the log-rank test (Mantel, 1966; Peto and Peto, 1972), are

applied to test the equality of the survival curves of different groups. If the differ-

ences between the survival curves appeared to be statistically significant, then the

survival curves (together with a confidence band) produced by Kaplan-Meier method

are plotted to see when the differences occur and how big the differences are.

Should a firm want to investigate which of the groups of customers are likely to

cancel the service earlier, then the hazard of cancelling the service can be calculated
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from Nelson-Aalen. While the Kaplan-Meier method can be used to see which group is

more loyal, the Nelson-Aalen method can be used to check which group is more likely

to leave the service provider.

3.2.2 Survival analysis and identification of significant vari-

ables that affect customer survival time

The Cox proportional hazard model (Cox, 1972; Cox, 1975) is frequently used in medi-

cal studies to investigate the relationship between the survival of a patient and a set of

explanatory variables. The model provides an estimate of the effect of the intervention

(or a characteristic) on patient survival after adjusting for other explanatory variables,

and estimates the hazard (or risk) of having the occurrence of the event of interest for

individuals given the values of their explanatory variables (Walters, 2001).

This model can be applied to business problems. In many situations the marketing

department is interested in investigating the factors that affect customer survival and

cancellation probabilities. These factors can be customer characteristics such as the

demographic profile or marketing initiatives that have been made to retain customers.

The Cox model will help to identify factors that are significant in predicting customer

survival (or cancellation of service) and then to plan accordingly. It helps also in study-

ing the significance of any marketing campaign that has been focused on customers

so as to justify any investment towards establishing a customer-centric culture in the

firm.

3.2.3 Survival analysis and estimation of the customer mean

survival time

A typical question of great importance is for how long a specific customer is expected

to stay active with a company before switching to another service provider. The mean

survival time of a customer that belongs to a segment j, with a segment survival
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function Sj(t), is µj, where

µj =

∫ ∞
0

Sj(t)dt (3.2.1)

Although it is not certain that the customer who stays longer is the more profitable

customer, the marketing department - after knowing that this customer is likely to stay

longer - can design plans that focus on maximising the profit gained from this loyal

customer (for example by upgrading his/her level of usage of the service, up-selling

and cross-selling). In some subscription-based industries where customers pay equal

contributions to enjoy the service, the customer mean survival time is the only measure

of profit.

The calculation of customer mean survival time using an infinite time horizon has

both methodological and practical limitations; methodologically it means more approx-

imations may result in unreliable predictions and, from a business perspective, market

dynamics and fast changes of customer behaviour make the prediction of the distant

future hard to be reasonably accurate. It can be argued that a model that captures

the available information and makes a projection to a reasonable time horizon is more

desirable than infinite time horizon predictions. The most reasonable time horizon to

use should take into account the industry environment where the model is built. It is

in this regard that one can use survival analysis to build a conditional mean survival

time for a customer or for a group of customers (customers segment). This conditional

model should use the past customer survival time and the current characteristics of

the customer to make a prediction of the future survival probability for a reasonable

projection period. Suppose that we want to calculate the conditional density function

and survival functions for a customer who survived up to time t0. The conditional

probability density function of T given T > t0 is

f(t)

S(t0)

 

 

 

 



CHAPTER 3. THE METHODS OF SURVIVAL ANALYSIS IN ANALYSING AND
ESTIMATING CUSTOMER SURVIVAL TIME 31

for t ≥ t0. The conditional survival function is

S(t)

S(t0)

for t ≥ t0. This means that the conditional expectation of T given T > t0 is

µc = t0 +
1

S(t0)

∫ ∞
t0

S(t)dt (3.2.2)

Instead of calculating the conditinal expectation from t0 to infinity, one can choose a

reasonable forecasting period, say, from t0 to t0 + ∆. Then 3.2.2 will be

µc = t0 +
1

S(t0)

∫ t0+∆

t0

S(t)dt (3.2.3)

This can be illustrated using an exponential survival time function, S(t)=exp(−t
µ

), with

E(t) = µ. In this case the conditional mean survival time over the period t0 to t0 + ∆

will be

µc = t0 +

∫ t0+∆

t0

S(t)

S(t0)
dt = t0 +

∫ t0+∆

t0

e(
−t+t0
µ

)dt = t0 + µ

The choice of ∆ is dependent on the industry type and the problem at hand; it can be

months (6 months, 12 months ...) or years (1 year, 2 years, 5 years, ...).

3.3 Summary

This chapter has presented the basic formulation of survival analysis in the customer

context. We have shown the applicability of survival analysis techniques, including non-

parametric, semi-parametric and parametric models, in understanding and analysing

various issues related to the customer-firm relationship. These issues are mainly mod-

elling and understanding customer loyalty and churn, comparing different marketing

campaigns and different customer groups, identifying the significant variables that

affect customer relationship with the firm, and the individual’s and segment-based

estimation of customer survival time as well as customer conditional survival time.
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These issues are summarised in figure 3.3.1. Both the previous chapter and this chap-

ter have considered the projection issue as one of the most important issues in business

in general and, especially, in predicting customer survival time. This necessitates that

we dedicate considerable attention to the problem of extrapolating the survival curve

beyond the empirical distribution using the available data and this will be the business

of chapter five.

Analysis and estimation of customer survival time

Nelson- Aalen

Survival analysis

Kaplan-Meier

Cox model

Parametric models

Extrapolate the survival curve 
beyond the empirical distribution

Customer’s mean survival time and 
customer’s conditional mean survival time

Identification of factors that affect 
customer survival time and churn

Assessment of effectiveness of the marketing 
campaign

Customer segmentation, macro-level analysis, and 
development of segment-specific plans and products

Figure 3.3.1: Survival analysis techniques and the problem of analysing and esti-
mating customer survival time.

In the next chapter, we implement various survival analysis techniques using a par-

ticular data set that has been extracted from the database of a company that provides

a subscription-based service. We aim to gain a better understanding of the application

of these techniques on business data, investigate the usefulness of using survival anal-

ysis to understand various business questions related to customer survival time and

highlight possible methodological challenges facing the current survival techniques.

 

 

 

 



Chapter 4

Customer survival time data:

Application with discussion

In this chapter, we employ various survival analysis techniques on a particular data set

that has been extracted from the database of a company that provides a subscription-

based service. The aim of this chapter is to give a better understanding of customer

survival time and investigate the usefulness of using survival analysis to understand

various business questions related to customer survival time in subscription-based busi-

nesses; therefore, any methodological implications and challenges facing the current

survival techniques in this setting will be discussed.

To analyse and understand customer survival time, different approaches to survival

time data analysis were applied using a sample of customers that had been selected from

a database of a subscription-based company. The analysis was conducted on different

levels. On the first level, the significant variables that affect customer survival time

are identified. For this purpose the results obtained from a stratified Cox regression

are presented. The outcome of this level of analysis is presented in section one. On the

second level hazard ratios obtained from the stratified Cox model are used to evaluate

the effects of the different levels of each variable such as age group, language and

marketing city. We also present the hazard obtained from the Nelson-Aalen method to

get a better understanding of change in risk of cancellation over time. The second level

33
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of analysis is presented in section two. On the third level of the analysis the change in

the survival probability over time using the non-parametric method of Kaplan-Meier

is considered; the results are presented in section three. On the final level of analysis

the estimation of the mean obtained from the nonparametric method of Kaplan-Meier

and the parametric method using the exponential distribution, Weibull distribution

and gamma distribution is presented and compared. These results are presented in

section four. Methodological and business insights are discussed in each section to get

a better understanding of the application and the theory. In the last section of this

chapter, a brief summary is presented.

4.1 The data

4.1.1 Data extraction and preparation

The data have been taken from a database of a well-established subscription-based

service provider. In this company, a customer can be subscribed at any time point and

should notify the company to cancel the service. Hence, the date of subscription to

the service and cancellation of the service (if they did cancel) will be exactly known

and recorded in the company database.

The data were extracted from the database of the company at the end of the day

of 31st July 2005 and before the working hours of the day of 1st August 2005. Three

main files of customer information were extracted; a file containing customer survival

time data, a file containing demographic data and another file for usage-related data.

The three files were extracted in plain text format (.txt) and then imported in SPSS

13.0.

The variable “customer ID” has been used as the primary key (which is unique and

exists in all files) to merge all data files (customer survival time data, demographic data

and usage-related data) into a single data file with a single record for each customer.

The total number of records was 243333. A simple random sample of 30000 customers

was selected. Out of this sample 4850 (16.2%) cancelled the service and 25150 (83.8%)
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were still active by time we extracted the data.

4.1.2 Data description

The data set contains the following information:

Customer’s survival time data

Customer survival time data contains four variables. They are date of subscription,

date of cancellation, customer survival time and status. The variable “date of subscrip-

tion” records the date when a customer subscribed to the service; the earliest possible

date of subscription is 1 January 1997 and the last possible date of subscription is 31

July 2005. The variable “status” is recorded as zero, if the customer is still active (cen-

sored cases), and one, if the customer has cancelled the service (event). The date when

the customer cancelled the service is recorded in the variable “date of cancellation”.

Customer survival time is then calculated in the variable “customer survival time”,

which is equal to the date of cancellation minus the date of subscription for customers

who experienced the event of service cancellation or date of data extraction minus

the date of subscription for censored cases. The customer survival time is recorded in

months.

Customer’s demographic data

The demographic data included gender, date of birth, age, language and marketing

city. The variable “gender” is coded to be zero for male and one for female. The

variable “age” stores customer age on the day of subscription in years and is equal

to date of subscription minus date of birth. The variable “age group” is formed by

categorising the customer according to their age into three age groups; the young cus-

tomers (age less than 26 years: coded as one), the middle age customers (26-40 years:

coded as two), and the older customers (more than 40 years: coded as three). Two

indicator variables were created from the variable “age group”. The first one is “young

customer” (equal to one if the age of the customer is less than 26 and equal to zero if
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not) and the second indicator variable is “middle age customer”(equal to one if the age

of the customer lies in the closed interval 26 to 40 and equal to zero if not). Customers

choose their preferred service language. We have three categories for language: En-

glish (coded as one), Afrikaans (coded two), and others (coded three). Two indicator

variables were created from the variable “language”. The first one is “English” (equal

to one if customer’s preferred service language is English and zero if not) and the

second indicator variable is “Afrikaans” (equal to one if customer’s preferred service

language is Afrikaans and zero if not). The variable “direct marketing city” consists

of the number of cities where the customer has subscribed. This variable has six cat-

egories: Cape Town (coded one), Durban (coded two), Johannesburg (coded three),

Pretoria (coded four), Witwatersrand (coded five) and other (other small cities: coded

six). Five indicator variables were created from the variable “direct marketing city”:

marketing city Cape Town (equal to one if the customer’s marketing city is Cape Town

and zero if not), marketing city Durban (equal to one if the customer’s marketing city

is Durban and zero if not), marketing city Johannesburg (equal to one if the customer’s

marketing city is Johannesburg and zero if not), marketing city Pretoria (equal to one

if the customer’s marketing city is Pretoria and zero if not), and marketing city Wit-

watersrand (equal to one if the customer’s marketing city is Witwatersrand and zero

if not). The distribution of customers according to their demographic characteristics

is provided in table 4.1.1. The missing data are indicated where applicable.

 

 

 

 



CHAPTER 4. CUSTOMER SURVIVAL TIME DATA: APPLICATION WITH
DISCUSSION 37

Table 4.1.1: The distribution of customers according to their demographic charac-
teristics

Variable Frequency (%)
Gender Male 17669 (58.9%)

Female 8262 (27.5%)
missing 4069 (13.6%)

Age group Less than 26 years 1965 (6.5%)
26-40 years 8249 (27.5%)
More than 40 years 8159 (27.2%)
missing 11627(38.8%)

Language English 28244 (94.1%)
Afrikaans 1351 (4.5%)
other 25 (0.1%)
missing 380 (1.3%)

Direct marketing city Cape Town 5986 (19.9%)
Durban 2271 (7.6%)
Johannesburg 5883 (19.6%)
Pretoria 3080 (10.3%)
Witwatersrand 4249 (14.2%)
other cities 7083 (23.6%)
missing 1448 (4.8%)

Customer’s usage-related data

This includes three variables, namely, IT background, WiFi usage, and segment. The

variable “IT background” records whether the customer has an IT background or not;

this variable is coded one if the customer has an IT background and zero if not. The

variable “WiFi usage” shows whether the customer uses WiFi (coded one) or does not

use WiFi (coded zero). The variable “segment” shows whether the customer uses the

service for private purposes only (coded one) or private and business purposes (coded

zero). The distribution of customers according to their usage-related characteristics is

provided in table 4.1.2. The missing data are indicated where applicable.
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Table 4.1.2: The distribution of customers according to their usage-related char-
acteristics

Variable Frequency (%)
IT background Yes 28900 (96.3%)

No 1048 (3.5%)
missing 52 (0.2%)

WiFi usage Yes 29803 (99.3%)
No 197 (0.7%)

Usage purpose segment Private purposes 11304 (37.7%)
Private and business puposes 16685 (55.6%)
missing 2011 (6.7%)

4.1.3 Approach to data analysis

Various survival analysis techniques are applied to the data; they range from non-

parametric to semi-parametric and parametric. Two motivations were behind our use

of a wider range of survival analysis techniques. Our first motivation is to reach a better

understanding of customer survival time. We believe that different survival techniques

are suitable for different business questions; therefore, we explore the contribution of

these techniques in enhancing the understanding of customer survival time. The second

motivation is to find out if the nature of the customer survival data can challenge the

existing survival techniques in some aspects. To answer this question we will discuss

the extent to which the current models can explain and express the customer survival

time. In the rest of this chapter we present the results with discussion obtained from

applying various techniques.

Microsoft Excel, SPSS 13.0 (SPSS, 2003) and SPSS 14.0 (SPSS, 2005) were used

for data preparation. Data analysis was carried out using Stata 8.0; some graphs were

produced in Microsoft Excel from data generated in Stata 8.0 (Stata, 2003).
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4.2 Identifying the significant variables that affect

customer survival time using the Cox model

Stratified Cox regression was used to identify the significant variables. The stratifi-

cation is based on the variable ”usage purpose”. This variable does not satisfy the

proportionality assumption; therefore, the variable was used as stratification variable.

All the variables included in the model satisfy the proportionality assumption.

Table 4.2.1: Identifying the significant variables that affect customer survival using
the stratified Cox model

The variable Hazard ratio (95% CI) P-value
Gender (Female) 1.13 (1.05 , 1.23) 0.002
Age group: Less than 26 years 3.81 (3.43 , 4.23) 0.0001
Age group: 26 to 40 years 1.65 (1.52 , 1.80) 0.0001
Language: English 0.69 (0.17 , 2.77) 0.603
Language: Afrikaans 0.98 (0.24 , 3.95) 0.975
Marketing city: Cape Town 1.01 (0.90 , 1.13) 0.860
Marketing city: Durban 1.11 (0.96 , 1.29) 0.157
Marketing city: Johannesburg 0.89 (0.79 , 1.00) 0.050
Marketing city: Pretoria 1.07 (0.94 , 1.21) 0.316
Marketing city: Witwatersrand 1.14 (1.02 , 1.28) 0.023
IT background 0.17 (0.02 , 1.21) 0.076
WiFi usage 0.42 (0.23 , 0.76) 0.004

In table 4.2.1, the hazard ratio (with a 95% confidence interval) and the corre-

sponding p-value for each variable in the stratified Cox regression model are presented.

In this table, for each variable with more than two categories (such as age group,

language and direct marketing city) the hazard ratio is calculated for each indicater

variable that has been created from this variable. Then, the joint p-value for each cat-

egorical variable (with more than two categories) is presented in table ??. The results

showed that the hazard of a female cancelling the service is 1.13 times the hazard of a

male with 95% confidence limits of (1.05, 1.23) and the corresponding p-value is 0.002.

With regard to age group, we compared young customers (age less than 26 years)

and middle age customers (age from 26 to 40 years) with the old age group customers
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(that is the age group of more than 40 years is used as reference). The hazard of a

young age group customer cancelling the service is 3.81 times the hazard of an old

age group customer with 95% confidence limits of (3.43, 4.23) and a p-value equal to

0.0001. The hazard of a middle age group customer cancelling the service is 1.65 times

the hazard of the old age group customer with 95% confidence limits of (1.52, 1.80) and

a p-value equal to 0.0001. In table 4.2.2, the joint p-value for age group is presented

and is equal to 0.0001.

The hazard ratios were calculated for English and Afrikaans and compared to the

category of “other” (other languages). Customers who chose English as their service

language when they subscribed have 0.69 times the hazard of cancelling the service

compared to those who chose other languages (with 95% confidence interval (0.17,

2.77) and p-value equal to 0.975). Customers who chose Afrikaans as their service

language when they subscribed have 0.98 times the hazard of cancelling the service

compared to those who chose other languages (with 95% confidence interval (0.24,

3.95) and p-value equal to 0.603). In table 4.2.2, the joint p-value for the language

factor is presented and is equal to 0.0001.

The factor of marketing city was classified into six categories. These categories

were Cape Town, Durban, Johannesburg, Pretoria, Wits and others (other cities in

South Africa). The hazard ratio for each marketing city compared to the category of

“other” (other cities in South Africa) was calculated. Customers from the marketing

city of Witwatersrand have the highest risk of cancelling the service when compared

to the category of other cities (1.14 hazard ratio). This is followed by customers from

the city of Durban (1.11 hazard ratio). In table 4.2.2, the joint p-value for marketing

city factor is presented and is equal to 0.003.

A customer with an IT background has 0.17 times the risk of cancelling the service

compared to a customer with no IT background; with a 95% confidence interval (0.02,

1.21) and a p-value equal to 0.076. Customers using WiFi have 0.42 times the risk

of cancelling the service compared to customers who do not use WiFi (with a 95%

confidence interval (0.23, 0.76) and a p-value equal to 0.004).

 

 

 

 



CHAPTER 4. CUSTOMER SURVIVAL TIME DATA: APPLICATION WITH
DISCUSSION 41

An in-depth analysis of customer risk of service cancellation using the Cox regres-

sion model and the Nelson-Aalen method is presented in the following section.

4.3 Analysing the risk of service cancellation using

the hazard and the hazard ratio

4.3.1 The use of Cox hazard ratios

Further analysis of the effect of age group, language and marketing city using the

hazard ratios calculated from Cox regression is presented in this subsection. In table

4.3.1 below the hazard ratio calculated for the age group in the row compared to the

age group in the column is displayed (95% confidence interval for the hazard ratio is

attached as well).

The hazard of a young age group customer (age less than 26 years) cancelling the

service is 2.31 times the hazard of a middle age group customer (age from 26 to 40

years) with 95% confidence limits (2.09, 2.55) and 3.81 times the hazard of an old age

Table 4.2.2: The joint p-value calculated for the grouping variables

The variable The joint p-value
Age group 0.0001
Language 0.0001
Direct marketing city 0.003

Table 4.3.1: The hazard ratio calculated for the age group in the row compared to
the age group in the column (95% confidence interval for the hazard
ratio is attached as well).

Age group
Less than 26 years 26 to 40 years More than 40 years

Age Less than 26 years 1 2.31 (2.09,2.55) 3.81 (3.43 , 4.23)
Group 26 to 40 years 0.43 (0.39,0.48) 1 1.65 (1.52 , 1.80)

More than 40 years 0.26 (0.24,0.29) 0.61 (0.56,0.66) 1
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group customer with 95% confidence limits (3.43, 4.23). The hazard of a middle age

group customer (age from 26 to 40 years) cancelling the service is 0.43 times the hazard

of a young age group customer with 95% confidence limits (0.39, 0.48) and is 1.65 times

the hazard of an old age group customer with 95% confidence limits (1.52, 1.80). The

hazard of an old age group customer (age more than 40 years) cancelling the service

is 0.26 times the hazard of a young age group customer with 95% confidence limits

(0.24, 0.29) and is 0.61 times the hazard of a middle age group customer with 95%

confidence limits (0.56, 0.66). These results show that customers of age less than 26

years have the highest risk of cancelling the service when comparing them to customers

from other age groups. The reason could be due to the lack of having a sustainable

source of income or could be due to their enthusiasm to look for new possibilities.

Either way, a careful plan has to be set in place in order to retain the young age group

customers. The second highest risk of cancellation is found to be in the middle age

group customers and the least risk of cancelling the service is for the old age group

customers.

When looking at the confidence interval for the hazard ratio of the age group in the

row compared to the age group in the column no overlaps are observed. This suggests

that the age group (with its current intervals) is a strong differential factor that differ-

entiates between the loyal customers and the disloyal customers. Age group, therefore,

can be used effectively to segment the customers and design retention strategies.

Table 4.3.2: The hazard ratio calculated for language in the row compared to lan-
guage in the column (95% confidence interval for the hazard ratio is
attached as well).

Language
English Afrikaans Other

English 1 0.71 (0.60,0.83) 0.69 (0.17,2.77)
Language Afrikaans 1.41 (1.20,1.67) 1 0.98 (0.24,3.95)

Other 1.44 (0.36,5.78) 1.02 (0.25,4.13) 1

Table 4.3.2 presents the hazard ratio of language in the row compared to language

in the column with a 95% confidence interval. This enables the comparison of risk of
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cancelling the service across languages. The table shows that customers who stated

English as their preferred service language had 0.71 times the risk of those who stated

Afrikaans, with a 95% confidence interval (0.60, 0.83) and 0.69 times the risk of those

who stated other languages with a 95% confidence interval (0.17, 2.77). Customers

who stated Afrikaans as their language have 1.41 times the risk of those who stated

English with a 95% confidence interval (1.20, 1.67), and 0.98 times the risk of those

who stated other language, with a 95% a confidence interval (0.24, 3.95). A customer

with other languages has 1.44 times the risk of a customer with English language,

with a 95% confidence interval (0.36, 5.78) and 1.02 times the risk of a customer with

Afrikaans language, with a 95% confidence interval (0.25, 4.13). However, overlaps

in the confidence intervals are seen between English and other languages as well as

Afrikaans and other languages; the confidence intervals are wide in both cases and

include one. This could be explained by a small number of customers with other

languages. Customers with English have been significantly different from Afrikaans

customers in their risk of cancelling the service. In general, the language factor is

still a significant factor in differentiating between customers with a high likelihood of

leaving the service provider (with special emphasises on English and Afrikaans).

In table 4.3.3, the hazard ratio is presented for a customer subscribed to a service

in the city in the row compared to a customer subscribed to a service in the city in the

column (with a 95% confidence interval). This application tries to explain the spatial

effect of marketing, that is, the impact of the marketing city. Customers subscribed to

a service in the city of Witwatersrand and the city of Durban have shown the highest

risk of service cancellation compared to all other cities. This suggest that the marketing

city is an important factor to consider when we design marketing campaigns (retention

program), but not as important as the age factor. The hazard of cancelling the service

in Witwatersrand compared to Durban is 1.02 with a 95% confidence interval (0.88,

1.20). The city of Johannesburg has the smallest risk of service cancellation compared

to all other cities.
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Table 4.3.3: The hazard ratio calculated for marketing city in the row compared to
marketing city in the column (95% confidence interval for the hazard
ratio is attached as well).

Marketing city
Cape Town Durban Johannesburg Pretoria Witwatersrand Others

Cape Town 1 0.91 (0.78,1.06) 1.13 (1.00,1.29) 0.94 (0.82,1.09) 0.89 (0.78,1.00) 1.01 (0.90,1.13)
Durban 1.10 (0.94, 1.29) 1 1.25 (1.07,1.47) 1.04 (0.88,1.24) 0.98 (0.84,1.14) 1.11 (0.96,1.29)

Marketing Johannesburg 0.88 (0.78,1.00) 0.80 (0.68,0.94) 1 0.83 (0.72,0.96) 0.78 (0.69,0.88) 0.89 (0.79,1.00)
city Pretoria 1.06 (0.92, 1.21) 0.96 (0.81,1.13) 1.20 (1.04,138) 1 0.94 (0.82,1.07) 1.07 (0.94,1.21)

Witwatersrand 1.13 (1.00, 1.28) 1.02 (0.88,1.20) 1.28 (1.13,1.45) 1.07 (0.93,1.23) 1 1.14 (1.02,1.28)
Others 0.99 (0.88,1.11) 0.90 (0.77,1.04) 1.12 (1.00,1.26) 0.88 (0.82,1.06) 0.88 (0.78,0.98) 1

4.3.2 The use of the Nelson-Aalen integrated hazard to un-

derstand the risk of cancellation of service over time

In this sub-section, the cumulative hazard of service cancellation is calculated for demo-

graphic and usage-related variables using the nonparametric method of Nelson-Aalen.

The Nelson-Aalen function is calculated over the full data and evaluated at indicated

times (the function was evaluated at 1, 13, 25, 37, 49, 61, 73, 85 and 97 months). The

reason for evaluating the hazard at these time points is to keep the presentation of the

table simple and practical (by evaluating the hazard at the end of the first month and

then after each year).

Table 4.3.4: The cumulative hazard of service cancellation over time by gender
(95% confidence interval is attached).

Gender
Time (in months) Male Female

1 0.0047 (0.0038 , 0.0058) 0.0063 (0.0048 , 0.0083)
13 0.0416 (0.0385 , 0.0449) 0.0560 (0.0507 , 0.0618)
25 0.0775 (0.0731 , 0.0822) 0.1063 (0.0985 , 0.1147)
37 0.1377 (0.1314 , 0.1444) 0.1610 (0.1508 , 0.1720)
49 0.1967 (0.1883 , 0.2054) 0.2264 (0.2128 , 0.2408)
61 0.2563 (0.2453 , 0.2678) 0.2980 (0.2794 , 0.3179)
73 0.3273 (0.3124 , 0.3430) 0.3805 (0.3546 , 0.4082)
85 0.3927 (0.3709 , 0.4158) 0.4487 (0.4101 , 0.4910)
97 0.4209 (0.3905 , 0.4537) 0.5799 (0.3777 , 0.8903)
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When gender is considered, the hazard of a female cancelling the service is signifi-

cantly higher than the hazard of a male cancelling the service. This has been the case

with exception to the first, 85th and 97th month. This result, together with the result

from the Cox model, suggests that gender could be considered as a potential factor in

predicting customer risk of cancelling the service. Therefore, to fight the cancellation,

the marketing department should consider the gender of the customer as an important

factor when designing retention strategies.

Table 4.3.5: The cumulative hazard of service cancellation over time by age group
(95% confidence interval is attached).

Time Age group
(in months) Less than 26 years 26-40 years More than 40 years

1 0.0137 (0.0093 , 0.0201) 0.0063 (0.0047 , 0.0083) 0.0051 (0.0038 , 0.0070)
13 0.0928 (0.0791 , 0.1090) 0.0709 (0.0649 , 0.0776) 0.0434 (0.0388 , 0.0485)
25 0.2147 (0.1910 , 0.2413) 0.1339 (0.1248 , 0.1436) 0.0822 (0.0755 , 0.0895)
37 0.4545 (0.4142 , 0.4987) 0.2289 (0.2157 , 0.2428) 0.1352 (0.1260 , 0.1451)
49 0.7133 (0.6552 , 0.7767) 0.3157 (0.2989 , 0.3334) 0.1850 (0.1736 , 0.1972)
61 0.8096 (0.7421 , 0.8833) 0.3978 (0.3765 , 0.4203) 0.2405 (0.2258 , 0.2561)
73 0.9093 (0.8282 , 0.9983) 0.4846 (0.4569 , 0.5140) 0.3189 (0.2979 , 0.3414)
85 0.9474 (0.8567 , 1.0476) 0.5719 (0.5305 , 0.6164) 0.3855 (0.3533 , 0.4206)
97 1.0051 (0.8875 , 1.1382) 0.6313 (0.5614 , 0.7099) 0.4500 (0.3625 , 0.5586)

Table 4.3.5 shows the cumulative hazard of service cancellation over time for dif-

ferent age groups. The younger customers have shown a very high risk of cancellation.

As the customer’s age increases the chance of service cancellation decreases. The risk

of churn is more than two times higher for the age group of a subscriber with an age

less than 26 years than for the subscriber with age more than 40 years. No overlaps in

the estimate of the cumulative hazard of the customer with an age less that 26 years

and customers with age more than 40 years were observed. This suggests that the age

group factor is a variable that can be used to understand service cancellation.

The Nelson-Aalen cumulative hazard shows that the risk of cancellation over time

differs significantly between English and Afrikaans speaking customers. Customers

with Afrikaans showed a higher risk than customers with English. No overlaps in the
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confidence intervals of hazard of English and Afrikaans speakers are seen, except at

the 97th month. The overlap at the 97th month could be due to a small number of

customers in a later stage of the study, which resulted in a high standard error and,

hence wider confidence limits. Using Nelson-Aalen for the hazard by language suggests

that language can be used as a potential factor to predict service cancellation.

From table 4.3.7, it can be seen that when the WiFi usage factor is considered,

customers who use WiFi showed a lower point estimate of the cumulative hazard than

Table 4.3.6: The cumulative hazard of service cancellation over time by language
(95% confidence interval is attached).

Time Language
(in months) English Afrikaans Others

1 0.0044 (0.0037, 0.0052) 0.0115 (0.0070 , 0.0191) 0
13 0.0389 (0.0365, 0.0414) 0.1127 (0.0941 , 0.1351) 0.0588 (0.0083 , 0.4176)
25 0.0747 (0.0712, 0.0783) 0.1818 (0.1554 , 0.2126) 0.2469 (0.0766 , 0.7955)
37 0.1252 (0.1205, 0.1302) 0.2767 (0.2382 , 0.3214) 0.2469 (0.0766 , 0.7955)
49 0.1770 (0.1709, 0.1833) 0.3382 (0.2871 , 0.3983) 0.2469 (0.0766 , 0.7955)
61 0.2401 (0.2320, 0.2485) 0.3748 (0.3064 , 0.4585)
73 0.3128 (0.3021, 0.3239) 0.4452 (0.3479 , 0.5698)
85 0.3911 (0.3721, 0.4111) 0.6264 (0.4680 , 0.8384)
97 0.4373 (0.3980, 0.4804) 0.6264 (0.4680 , 0.8384)

Table 4.3.7: The cumulative hazard of service cancellation over time by WiFi usage
(95% confidence interval is attached).

Time WiFi usage
(in months) No Yes

1 0.0046 (0.0039 , 0.0055) 0.0052 (0.0007 , 0.0366)
13 0.0414 (0.0391 , 0.0440) 0.0325 (0.0146 , 0.0725)
25 0.0779 (0.0745 , 0.0815) 0.0456 (0.0227 , 0.0914)
37 0.1286 (0.1239 , 0.1335) 0.0690 (0.0379 , 0.1255)
49 0.1792 (0.1733 , 0.1854) 0.1050 (0.0625 , 0.1762)
61 0.2400 (0.2321 , 0.2481) 0.1261 (0.0773 , 0.2058)
73 0.3085 (0.2982 , 0.3192) 0.1953 (0.1251 , 0.3051)
85 0.3715 (0.3556 , 0.3881) 0.2317 (0.1501 , 0.3577)
97 0.4105 (0.3754 , 0.4488)
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customers who do not use WiFi. However, frequent overlaps are seen in the interval

estimates of hazard for those who use WiFi and those who do not use WiFi.

Table 4.3.8: The cumulative hazard of service cancellation over time by IT back-
ground (95% confidence interval is attached).

Time IT Background
(in months) No Yes

1 0.0048 (0.0041 , 0.0057) 0
13 0.0429 (0.0405 , 0.0455) 0.0019 (0.0005 , 0.0076)
25 0.0808 (0.0772 , 0.0845) 0.0019 (0.0005 , 0.0076)
37 0.1329 (0.1281 , 0.1379) 0.0019 (0.0005 , 0.0076)
49 0.1836 (0.1775 , 0.1899)
61 0.2441 (0.2362 , 0.2524)
73 0.3128 (0.3024 , 0.3234)
85 0.3759 (0.3600 , 0.3924)
97 0.4146 (0.3796 , 0.4529)

Table 4.3.8, shows that customers with an IT background have a lower risk of service

cancellation than customers with no IT background. An IT background appears to

be a significant variable in order to differentiate between customers who are likely to

cancel their service and those who are more likely to remain loyal.

Table 4.3.9: The cumulative hazard of service cancellation over time by service
usage purpose (95% confidence interval is attached).

Time Service usage purpose (segment)
(in months) Private Private & Business

1 0.0088 (0.0072 , 0.0107) 0.0007 (0.0004 , 0.0012)
13 0.0708 (0.0654 , 0.0767) 0.0135 (0.0119 , 0.0154)
25 0.1076 (0.1003 , 0.1154) 0.0405 (0.0374 , 0.0437)
37 0.1383 (0.1294 , 0.1478) 0.0860 (0.0814 , 0.0910)
49 0.1770 (0.1662 , 0.1886) 0.1286 (0.1224 , 0.1351)
61 0.2152 (0.2020 , 0.2293) 0.1598 (0.1522 , 0.1679)
73 0.2745 (0.2569 , 0.2933) 0.2170 (0.2066 , 0.2280)
85 0.3389 (0.3106 , 0.3698) 0.2762 (0.2588 , 0.2948)
97 0.4329 (0.3135 , 0.5977) 0.3003 (0.2759 , 0.3268)

Customers who use the service for both private and business purposes have less

 

 

 

 



CHAPTER 4. CUSTOMER SURVIVAL TIME DATA: APPLICATION WITH
DISCUSSION 48

hazard of service cancellation than those who use the service for only private purposes.

Very few overlaps in the confidence interval of the cumulative hazard are seen. This

suggests that the service usage purpose is important and a significant factor in order

to differentiate between loyal and risky customers. Therefore, it can be used as a

segmentation variable and a variable to consider when retention programs have to be

designed.

4.4 Understanding customer survival probabilities

using the Kaplan-Meier method

In the previous sections the risk of cancellation of the service was analysed using

both the Cox model and Nelson-Aalen methods. In this section, customer loyalty and

survival probabilities are analysed using the Kaplan-Meier method. The Kaplan-Meier

analysis will answer the questions of who are likely to stay, and quantify the probability

of survival for each subgroup of customers empirically. In addition to helping managers

design strategies to retain customers, this analysis will help managers in planning

customers’ acquisition as well. The results of this section are presented graphically;

p-values calculated from the log-rank test will be attached as well.

Figure 4.4.1 presents customers’ survival curves by gender. Male customers have

shown better survival chances than female customers. No overlaps are seen except at

a very late stage of the analysis time. The p-value calculated from the log-rank test to

test the equality of the survival curves is 0.0001. The gender variable is considered to

be a significant factor in order to differentiate the loyal from the disloyal customers.

Figure 4.4.2 presents the customers’ survival curve by age group. The young cus-

tomers have less survival chance while the older customers seem to be more loyal.

The age factor has shown a high potential in differentiating between the loyal and

risky subscribers. No overlaps in the survival confidence limits were seen except after

93 months. The p-value calculated from the log-rank test to test the equality of the

survival curves is 0.0001.
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Figure 4.4.1: Customer survival probabilities by gender (95% confidence interval
is attached)
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Figure 4.4.2: Customer survival probabilities by age group (95% confidence inter-
val is attached)
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Figure 4.4.3: Customer survival probabilities by language (95% confidence interval
is attached)

Figure 4.4.3 presents the customers’ survival curve by language. Customers with

Afrikaans language have less survival chance than those with English language. The

language factor has shown potential in differentiating between risky and loyal sub-

scribers; however, the survival curve for the category of “other language” has shown

overlaps with the other two languages (English and Afrikaans). This could be due to

the small number of customers in this category. The log-rank test for equality of the

three survival curves gave a p-value equal to 0.0001.

In figure 4.4.4, the estimated survival curves for customers according to usage

purposes are presented with 95% confidence limits. Customers who use the service for

both private and business purposes have a better survival chance than those who use

it only for private purposes. The survival curve confidence limits have shown a clear

difference as there were no overlaps except at very few points towards the end of the

study. The log-rank test for equality of the two survival curves gave a p-value equal

to 0.0001.
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Figure 4.4.4: Customer survival probabilities according to usage purposes (95%
confidence interval is attached)

When studying the interaction between variables included in the Cox model, only

the interaction between gender and age group was found to be significant. Figure 4.4.5,

4.4.6 and 4.4.7 present the survival curve by gender for age group less than 26 years,

26 to 40 years and more than 40. The difference in survival curve of males and females

in the age group of more than 40 years was statistically significant (unlike the other

age groups where overlaps between males and females are observed).
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Figure 4.4.5: Customer survival probabilities by gender and in group less than 26
years (95% confidence interval is attached)

Figure 4.4.6: Customer survival probabilities by gender and in group 26 to 40 years
(95% confidence interval is attached)
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Figure 4.4.7: Customer survival probabilities by gender and in age group more
than 40 years (95% confidence interval is attached)

4.5 Estimating the customer’s mean survival time

using both the non-parametric and parametric

model

In this section, estimates of customer mean survival time are presented using both para-

metric and non-parametric methods. We estimate the customer mean survival time

from parametric regression after fitting the parametric regression (without covariates)

using the exponential, Weibull and gamma distributions. We estimate the mean from

the Kaplan-Meier method as well. The estimate of the mean has been calculated for

each level of the following covariates: “gender”, “age group” and “usage purpose”. In

the parametric regression scenario, different models have been fitted for each level of

the three mentioned covariates. The purpose of this exercise is, firstly, to find estimates

of the mean survival time using various techniques. This will provide valuable infor-

mation to managers to help understand their customer’s lifetime and for comparing

the mean survival time of their customers across the levels of each covariate. Secondly,
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the results of this section will enable us to observe the variation in the estimates of the

mean survival time using different methods of model fitting and approximation. This

will help in understanding the adequacy and suitability of the current techniques in

answering the question related to the estimation of the customer’s mean survival time.

Table 4.5.1: Estimation of customer mean survival time (in months) by gender and
type of the model

Model used to calculate the customer mean survival time
Gender Kaplan-Meier Exponential Weibull Gamma
Male 83.1 (82.4,83.8) 245.4 (236.4,254.8) 175.1 (166.4,184.2) 191.1 (182.2, 200.4)

Female 80.1 (78.7,81.6) 209.6 (198.7, 221.1) 171.2 (158.6, 184.8) 180.9 (168.3, 194.2)

Table 4.5.2: The range of the point estimate of customer mean survival time for
different modelling approaches and by gender

Gender Parametric models Nonparametric and parametric models
Male 70.3 162.3
Female 38.4 129.5

Table 4.5.1 presents customer mean survival time by gender and types of the models

used to estimate the mean. The non-parametric estimate of the mean survival time

using the empirical data, is equal to 83.1 months with a 95% confidence interval (82.4,

83.8) for male customers, and 80.1 months, with a 95% confidence interval (78.7, 81.6)

for females. The estimate of the male mean survival time was 245.4, 175.1 and 191.1

months assuming exponential, Weibull and gamma distributions respectively (a 95%

confidence interval is attached). The estimate of the female mean survival time was

209.6, 171.2 and 180.9 months assuming exponential, Weibull and gamma distributions

respectively (a 95% confidence interval is attached). The range of the estimates of

customer mean survival time assuming exponential, Weibull and gamma distributions

was 70.3 months for males and 38.4 months for females. The range of the estimates

of the customer mean survival from nonparametric and parametric methods was 162.3

months for males and 129.5 for females. Apart from the difference between male and

female mean survival time, this table showed a large variation in the estimate of the
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mean survival time when different parametric methods are assumed. It also shows a

large difference between the Kaplan-Meier estimate and the estimates obtained from

the parametric distributions.

Table 4.5.3: Estimation of customer mean survival time by age group and type of
the model

Model used to calculate the customer mean survival time
Age group Kaplan-Meier Exponential Weibull Gamma
< 26 years 58.3 (56.1,60.4) 83.4 (77.3,89.7) 67.2 (63.0,71.7) 70.1 (65.6,75.0)
26-40 years 74.2 (73.0,75.3) 156.4 (149.2, 164.1) 127.8 (120.7,135.3) 134.2 (127.1, 141.8)
> 40 years 83.5 (82.5,84.6) 252.0 (238.5,266.3) 190.0 (175.8, 205.4) 205.0 (190.7,220.3)

Table 4.5.4: The range of the point estimate of customer mean survival time for
different modelling approaches and by age group

The range of estimate of customer
mean survival time

Age group Parametric models Nonparametric and parametric models
Less than 26 years 16.2 25.1
26-40 years 28.6 82.2
More than 40 years 62 168.5

Table 4.5.3 presents customer mean survival time by age group and types of the

model used to estimate the mean survival time. The Kaplan-Meier estimate of the

mean survival time, using empirical data, is equal to 58.3 months with a 95% confidence

interval (56.1, 60.4) for customers of age less than 26 years, 74.2 months with a 95%

confidence interval (73.0, 75.3) for customers with ages from 26 to 40 years and 83.5

months with a 95% confidence interval (82.5, 84.6) for customers with more than 40

years of age. The estimates of the mean survival time for a customer with age less than

26 years were 83.4, 67.2 and 70.1 months assuming exponential, Weibull and gamma

distributions respectively (a 95% confidence interval is attached). The estimates of

mean survival time for a customer in the age range from 26 to 40 years were 156.4, 127.8

and 134.2 months assuming exponential, Weibull and gamma distributions respectively
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(a 95% confidence interval is attached). The estimates of mean survival time for a

customer more than 40 years of age were 252.0, 190.0 and 205.0 months assuming

exponential, Weibull and gamma distributions respectively (a 95% confidence interval

is reported). The ranges of the estimates of mean survival time assuming exponential,

Weibull and gamma distributions were 16.2, 28.6, and 62 months for age group less

than 26 years, 26 to 40 years and more than 40 years respectively. The ranges of the

estimates of mean survival time from nonparametric and parametric methods were

25.1, 82.2, and 168.5 months for age group less than 26 years, 26 to 40 years and more

than 40 years respectively. Apart from the differences in mean survival time across age

groups, this result showed a large variation in the estimate of the mean survival time

when different parametric methods were used. It also shows a large difference between

the Kaplan-Meier estimate and the estimates from the parametric distributions.

Table 4.5.5: Estimation of customer mean survival time by usage purpose and type
of the model

Model used to calculate the customer mean survival time
Usage purpose Kaplan-Meier Exponential Weibull Gamma
Private 84.1 (83.0,85.2) 246.4 (233.5,260.0) 337.2 (301.8,376.8) 309.1 (281.2, 339.7)
Private/Business 89.0 (88.4,89.6) 372.9 (357.5, 388.9) 171.0 (163.0, 179.5) 196.5 (187.4, 206.0)

Table 4.5.6: The range of the point estimate of customer mean survival time for
different modelling approaches and by usage purpose

The range of estimate of customer
mean survival time

Usage purpose Parametric models Nonparmetric and parametric models
Private 90.8 253.1
Private/Business 201.9 283.9

Table 4.5.5 presents customer mean survival time by usage purpose and the types

of model used to estimate the mean. The non-parametric estimate of the mean survival

time, using the empirical data, is equal to 84.1 months with a 95% confidence interval
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(83.0, 85.2) for a customer who uses the service for private purposes and 89.0 months

with a 95% confidence interval (88.4, 89.6) for one who uses the service for both private

and business purposes. The estimates of the private purposes customer’s mean survival

time were 246.4, 337.2 and 309.1 months assuming exponential, Weibull and gamma

distributions respectively (a 95% confidence interval is attached). For the customer

who uses the service for both business and private purposes, the estimates of the mean

survival time were 372.9, 171.0 and 196.5 months assuming exponential, Weibull and

gamma distributions respectively (a 95% confidence interval is attached). The range

of the estimates of the mean survival time assuming exponential, Weibull and gamma

distributions was 90.8 months for customers who use the service for private purposes

and 201.9 months for customers who use the service for both business and private

purposes. The ranges of the estimates of mean survival time from nonparametric and

parametric methods were 253.1 months for customers who use the service for private

purposes and 283.9 months for customers who use the service for both business and

private purposes. Apart from the difference between customers’ mean survival time

due to their usage purposes, this result showed a large variation in the estimate of the

mean survival time when different parametric methods are assumed. It also shows a

large difference between the Kaplan-Meier estimate and the estimates obtained from

the parametric distributions.

4.6 Summary and discussion

This chapter aimed at understanding the business and the methodological insights

in the process of applying survival analysis techniques to analyse customer survival

time in subscription-based businesses using a data set that contains demographic and

usage related variables. The results showed the importance of demographic and usage-

related factors in understanding customer survival time and customer loyalty. The

stratified Cox model (stratification variable was a customer usage purpose segment)

is used to identify the significant variables that affect the customer survival time.
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The results showed that gender, language, age, marketing city and WiFi usage are

statistically significant variables in predicting customer risk of cancellation at a 0.05

significance level (the p-value associated with the IT background variable was equal

to 0.076). The hazard ratios obtained from a stratified Cox model, together with the

cumulative hazard obtained from the Nelson-Aalen method, were used to study and

understand the customer’s risk of cancellation of the service. With respect to gender,

the risk of a female cancelling the service was found to be higher than the risk of a

male cancelling the service. It is important for the marketing department to conduct

further studies to check on gender-based preferences and expectations. The service

provided to the customer can be personalised based on gender and a segment-based

approach is necessary here.

Age appeared to be the most important factor that differentiates between the risky

customers and the loyal customers. Big differences between the age groups in the

hazard ratio, the cumulative hazard, and the survival probability were observed. Cus-

tomers in the young age group have shown the highest risk of service cancellation; they

have the highest hazard ratio in the stratified Cox analysis and the highest cumulative

hazard in the Nelson-Aalen analysis. The Kaplan-Meier analysis of age group showed

that the customers in the young age group have the lowest survival probabilities, fol-

lowed by the middle age group, while the old age group customers have the highest

survival chances. Whatever the explanation, a careful plan has to be set in place in

order to retain the young age group customers. Customers with English appear to have

better survival chances than those with Afrikaans or other languages. The significance

of the marketing city in explaining the risk of cancellation of the service, can be due

to the ability of this variable in explaining the relative importance of service to the

customer and the level of socio-economic status of customers. The WiFi usage, IT

background, and the usage purpose segment appeared to be significant, because they

are highly connected to relative importance of the service to the customer, the ability

of the customer to use the service and his/her level of service usage. The customer

mean survival time estimated for each sub-population (the population has been sub-
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divided into categories by demographic and usage-related variables) can be used to

estimate the customer lifetime value for a customer that falls into that sub-population.

The ultimate outcome of this process of studying customer survival time will be the

understanding of the dynamic and the behaviour of customers with respect to their

risk of cancellation survival probability and lifetime value. The analysis has motivated

the use of the concept of market segmentation. Market segmentation will be based on

a demographic and usage-related customer profile. Although the concept of market

segmentation is well understood and studied in various fields of business, not many

studies have been done in the particular area of research investigated here. However,

the motivation behind market segmentation in this setting will stay the same as in

other settings in the current literature and that is to have a better understanding

of customers in order to personalise products and have customer specific marketing

strategies (Wind, 1978; Badgett and Stone, 2004; Weinstein, 2004; Gopalan, 2007).

The relevance and importance of the demographic and usage-related variables in un-

derstanding customers (segmenting customers according to their characteristics) that

come out of these studies are in agreement with other research done in similar studies

(Weinstein, 2002; Bruwer and Elton, 2007; Rugimbana, 2007; Encinas et al., 2007),

but it is the first of its kind in the literature on survival analysis in subscription-based

businesses.

The results on the estimates for customer mean survival time were obtained via dif-

ferent non-parametric and parametric approaches; namely, the Kaplan-Meier method

and the exponential, Weibull and gamma regression models. The estimates of the

means from exponential regression, Weibull regression, and gamma regression vary

greatly. The assumption imposed on the distribution of the survival time is very im-

portant. This suggests that a careful investigation of the method of extrapolating the

survival curve beyond the empirical data and of the choice of the parametric models is

extremely important especially in this type of business problems where a high degree

of censoring is expected. In addition to the differences in customer mean survival time

that are due to the use of different methodologies, results showed the difference in
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the estimates that were due to different demographic and usage-related profiles of the

customers.

In conclusion, we suggest that in estimating the customer mean survival time one

would prefer nonparametric methods with a careful plan for dealing with extrapolation

issues. However, from our understanding of the fast dynamics of the market and the

fast change in customer behaviour, a conditional mean survival time based on the

empirical distribution of the data - for each sub-population and for a reasonable time

horizon - will be the way forward. This will enable us to get accurate and practically

useful inferences. Therefore, we dedicate a crucial part of research to the issue of

extrapolating the survival curve (see chapter five for this contribution).

 

 

 

 



Chapter 5

Extrapolation of the survival curve

This chapter is focused on the extrapolation of the survival curve beyond the last

observed failure time. The chapter is composed of seven main sections. The motivation

behind this exercise is presented in section one. In section two, the proposed function

is stated and its mathematical accuracy is checked in section three. In section four, we

derive the standard error of the estimate of the proposed function. Expression for the

conditional survival function and conditional mean survival time are given in section

five. An application on a real data set is presented in section six and we summarise

the chapter in section seven.

5.1 Motivation

The practical motivation for extrapolating the survival curve beyond the empirical dis-

tribution originates from two issues, that of calculating survival probabilities beyond

the empirical data and of calculating the conditional mean survival time at a specific

point in time and for a specific time window in the future. These two issues are of im-

portance in the business environment, because the survival probability and the mean

survival time are the main components used in calculating customer lifetime value and,

hence, customer equity.

61
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From a methodological perspective, different methods of extrapolation might give

very different forecasting figures and this has been found clearly in chapter four. In

most situations, we might not have a clear understanding of the dynamic of the prob-

lem at hand, especially in a business setting where the customers’ behaviour and the

market characteristics change fairly fast. Therefore, we favour the survival probabil-

ity estimates obtained from the Kaplan-Meier method and use them as the basis for

extrapolation.

5.2 The proposed extrapolation function

Denote the customer survival time by t where t ≥ 0; t is measured in months. Denote

the last observed failure time by τ . The Kaplan-Meier estimate of the survival curve

over the interval 0 ≤ t ≤ τ is

Ŝ(t) =
∏
t(i)≤t

ni − di
ni

; 0 ≤ t ≤ τ (5.2.1)

(Kaplan and Meier, 1958). The motivation behind the use of the Kaplan-Meier

method is to avoid incorrect assumptions about the underlying distribution of the cus-

tomer survival time. But this method does not estimate the survival curve beyond

the last failure time. Therefore, it underestimates the mean survival time if the last

observed time point is censored time. The problem becomes worse when an extreme

right censoring exists which is the case in most business data (it was 85% for the data

used in chapter four). Our aim is to find a suitable extrapolation function to estimate

the survival probability beyond the last failure time τ .

The choice of the proposed extrapolation function was made in a way that covers

most of the common scenarios of risk of service cancellation; that is increasing risk

of cancellation over time, decreasing risk of cancellation over time and constant risk

of cancellation over time. To maximise the precision we made the estimate of the

proposed extrapolation function and the Kaplan-Meier to be equal at t = τ . The
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proposed function is, therefore:

S(t) = S(τ)eβ(τ−τ0)α− β(t−τ0)α ; t > τ (5.2.2)

Estimates of the parameters of the extrapolation function α and β are α̂ and β̂.

They are obtained by minimising the following objective function:

n∑
i=1

{
ln
[
Ŝ(ti)/Ŝ(τ)

]
− β [(τ − τ0)α − (ti − τ0)α]

}2

(5.2.3)

where τ0 < τ and ti ∈ [τ0, τ ]. The data points ti, i = 1, 2, ..., n are equally spaced.

Sequential quadratic programming techniques can be used to solve the above minimi-

sation problem for α and β (Han, 1976; Boggs et al., 1982; Bonnons et al., 1992).

Then, for a certain client in a certain sub-group, the estimate of the survivor func-

tion is

Ŝ(t) =


∏

t(i)≤t
ni−di
ni

; 0 ≤ t ≤ τ

Ŝ(τ)eβ̂(τ−τ0)α̂−β̂(t−τ0)α̂ ; t > τ
(5.2.4)

5.3 The mathematical check of the proposed sur-

vivor function

In this section, the accuracy of the proposed extrapolated survivor function will be

checked mathematically on several kinds of lifetime data distributions. The distribu-

tions included in our investigations were the exponential, Weibull, gamma, mixture

of two exponentials, mixture of two Weibulls, mixture of two gammas, mixture of

the exponential and Weibull, mixture of exponential and gamma, and the mixture of

Weibull and gamma distributions. These distributions represent a considerable variety

of models that may reasonably be expected to fit the lifetime data.
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The choice of the parameters of these distributions in each scenario is determined

by how reasonable the mean customer survival time is that they give and how practical

that would be in a business setting. The time points used to estimate the parameters

of the extrapolation functions are t = 90, 95, 100, 105, 110, 115, and 120; with τ0 = 90

and τ = 120. The choice of these data points were based on our observation of the

real data set that we have studied in chapter four. These data points are reasonable

time points that a customer could survive (time is measured in months).

5.3.1 Checking accuracy of the extrapolation function

The investigation is made by comparing the theoretical true survival probabilities with

fitted survival probabilities. The fitted survival probabilities are the ones obtained

from the extrapolation of the survivor function. The mathematical accuracy of the

proposed function was tested over the time interval [τ0, τ + 60].

The method used to calculate the mathematical error is the maximum norm. The

maximum norm is calculated for the difference between the theoretical survivor func-

tion and the fitted one. That is to find the max {‖δSt‖}, where δSt = Stheo(t)−Sfit(t),

Stheo(t) is the survival probabilities calculated from the theoretical distributions and

Sfit(t) is the survival probabilities calculated from the extrapolation function after esti-

mating the parameters. The results of the mathematical accuracy check are presented

as graphs and tables.

During the process of investigating the suitability of the proposed extrapolation

function, SPSS 14.0 (SPSS, 2005), SPSS 15.0 (SPSS, 2006), Stata 8.0 (Sata, 2003) and

wxMaxima 0.7.2 (open source) were used. Some of the graphs were produced using

Microsoft Excel.

5.3.2 Results of the mathematical check

Results of the investigation of the mathematical accuracy of the proposed extrapolated

survivor function are presented in this section. It is obvious that the extrapolation func-
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Table 5.3.1: The theoretical and fitted survival probabilities for the gamma distri-
bution

Time The theoretical The fitted survival The absolute
(in months) survival probability curve probability difference

90 0.463 0.465 0.002
95 0.434 0.436 0.002
100 0.406 0.408 0.002
105 0.380 0.381 0.001
110 0.355 0.355 0.000
115 0.331 0.331 0.000
120 0.308 0.308 0.000
125 0.287 0.287 0.000
130 0.267 0.267 0.000
135 0.249 0.248 0.001
140 0.231 0.231 0.000
145 0.215 0.214 0.001
150 0.199 0.199 0.000
155 0.185 0.185 0.000
160 0.171 0.172 0.001
165 0.159 0.160 0.001
170 0.147 0.148 0.001
175 0.136 0.138 0.002
180 0.126 0.128 0.002

tion would fit perfectly the exponential survival function as the exponential survival

is a special case of our extrapolation function; the same holds for the Weibull sur-

vival function. Therefore, we consider other survival functions, including the mixture

distributions.

Gamma distribution

The true theoretical survival probability here follows a gamma survival function with a

scale parameter equal to 0.02 and a shape parameter equal to 2. The estimates of the

parameters of the extrapolation function are α̂ = 1.040 and β̂ = 0.012. The theoretical

and the fitted probabilities are given in table 5.3.1 and displayed in figure 5.3.1.
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Figure 5.3.1: The theoretical and fitted survival curve for the gamma distribution

Mixture of two exponential distributions (1)

The true theoretical survival probability here follows a mixture of two exponential

survival functions; that is 0.9 of an exponential survival with a scale parameter equal

to 0.01 and 0.1 of an exponential survival function with a scale parameter of 0.02. The

estimates of the parameters of the extrapolation function are α̂ = 0.999 and β̂ = 0.01.

The theoretical and the fitted probabilities are given in table 5.3.2 and displayed in

figure 5.3.2.
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Table 5.3.2: The theoretical and fitted survival probabilities for the mixture of two
exponential distributions (1)

Time The theoretical The fitted survival The absolute
(in months) survival probability curve probability difference

90 0.383 0.378 0.005
95 0.363 0.359 0.004
100 0.345 0.342 0.003
105 0.327 0.325 0.002
110 0.311 0.309 0.002
115 0.295 0.294 0.001
120 0.280 0.280 0.000
125 0.266 0.266 0.000
130 0.253 0.253 0.001
135 0.240 0.241 0.001
140 0.228 0.229 0.001
145 0.217 0.218 0.001
150 0.206 0.208 0.002
155 0.196 0.198 0.002
160 0.186 0.188 0.002
165 0.177 0.179 0.002
170 0.168 0.170 0.002
175 0.159 0.162 0.003
180 0.152 0.154 0.002
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Figure 5.3.2: The theoretical and fitted survival curve for the mixture of two ex-
ponential distributions (1)

Mixture of two exponential distributions (2)

The true theoretical survival probability here follows a mixture of two exponential

survival functions; that is 0.5 of an exponential survival with a scale parameter equal

to 0.01 and 0.5 of an exponential survival function with a scale parameter of 0.02. The

estimates of the parameters of the extrapolation function are α̂ = 0.983 and β̂ = 0.013.

The theoretical and the fitted probabilities are given in table 5.3.3 and displayed in

figure 5.3.3.
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Table 5.3.3: The theoretical and fitted survival probabilities for the mixture of two
exponential distributions (2)

Time The theoretical The fitted survival The absolute
(in months) survival probability curve probability difference

90 0.286 0.283 0.003
95 0.268 0.266 0.002
100 0.252 0.250 0.002
105 0.236 0.235 0.001
110 0.222 0.221 0.001
115 0.208 0.208 0.000
120 0.196 0.196 0.000
125 0.184 0.185 0.001
130 0.173 0.174 0.001
135 0.163 0.164 0.001
140 0.154 0.154 0.000
145 0.145 0.145 0.000
150 0.136 0.137 0.001
155 0.129 0.129 0.000
160 0.121 0.121 0.000
165 0.114 0.114 0.000
170 0.108 0.108 0.000
175 0.102 0.102 0.000
180 0.096 0.096 0.001
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Figure 5.3.3: The theoretical and fitted survival curve for the mixture of two ex-
ponential distributions

Mixture of two Weibull distributions (1)

The true theoretical survival probability here follows a mixture of two Weibull survival

functions; that is, 0.9 of a Weibull survival with a scale parameter equal to 0.005 and

a shape parameter equal to 1.2 and 0.1 of a Weibull survival function with a scale

parameter 0.005 and a shape parameter equal to 1.5. The estimates of the parameters

of the extrapolation function are α̂ = 1.009 and β̂ = 0.015. The theoretical and the

fitted survival probabilities are given in table 5.3.4 and displayed in figure 5.3.4.
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Table 5.3.4: The theoretical and fitted survival probabilities for the mixture of two
Weibull distributions (1)

Time The theoretical The fitted survival The absolute
(in months) survival probability curve probability difference

90 0.299 0.301 0.002
95 0.277 0.279 0.002
100 0.257 0.258 0.001
105 0.238 0.239 0.001
110 0.220 0.221 0.001
115 0.204 0.204 0.000
120 0.189 0.189 0.000
125 0.174 0.175 0.001
130 0.161 0.162 0.001
135 0.149 0.149 0.000
140 0.137 0.138 0.001
145 0.127 0.128 0.001
150 0.117 0.118 0.001
155 0.107 0.109 0.002
160 0.099 0.101 0.002
165 0.091 0.093 0.002
170 0.084 0.086 0.002
175 0.077 0.080 0.003
180 0.071 0.074 0.003
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Figure 5.3.4: The theoretical and fitted survival curve for the mixture of two
Weibull distributions (1)

Mixture of two Weibull distributions (2)

The true theoretical survival probability here follows a mixture of two Weibull survival

functions; that is, 0.5 of a Weibull survival with a scale parameter equal to 0.01 and

a shape parameter equal to 1.2 and 0.5 of a Weibull survival function with a scale

parameter 0.008 and a shape parameter equal to 1.5. The estimates of the parameters

of the extrapolation function are α̂ = 1.041 and β̂ = 0.010. The theoretical and fitted

survival probabilities are given in table 5.3.5 and displayed in figure 5.3.5.
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Table 5.3.5: The theoretical and fitted survival probabilities for the mixture of two
Weibull distributions (2)

Time The theoretical The fitted survival The absolute
(in months) survival probability curve probability difference

90 0.479 0.479 0.000
95 0.453 0.454 0.001
100 0.428 0.429 0.001
105 0.405 0.405 0.000
110 0.382 0.382 0.000
115 0.360 0.360 0.000
120 0.339 0.339 0.000
125 0.319 0.319 0.000
130 0.300 0.301 0.001
135 0.282 0.283 0.001
140 0.265 0.266 0.001
145 0.248 0.250 0.002
150 0.233 0.235 0.002
155 0.218 0.221 0.003
160 0.204 0.208 0.004
165 0.190 0.196 0.006
170 0.178 0.184 0.006
175 0.166 0.173 0.007
180 0.155 0.162 0.007
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Figure 5.3.5: The theoretical and fitted survival curve for the mixture of two
Weibull distributions (2)

Mixture of two gamma distributions

The true theoretical survival probability here follows a mixture of two gamma survival

functions; that is 0.5 of a gamma survival with a scale parameter equal 0.02 and a shape

parameter equal to 2 and 0.5 of a gamma survival function with a scale parameter 0.03

and a shape parameter equal to 3. The estimates of the parameters of the extrapolation

function are α̂ = 1.041 and β̂ = 0.013. The theoretical and fitted survival probabilities

are given in table 5.3.6 and displayed in figure 5.3.6.
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Table 5.3.6: The theoretical and fitted survival probabilities for the mixture of two
gamma distributions

Time The theoretical The fitted survival The absolute
(in months) survival probability curve probability difference

90 0.478 0.479 0.001
95 0.446 0.447 0.001
100 0.415 0.415 0.000
105 0.385 0.385 0.000
110 0.357 0.357 0.000
115 0.331 0.331 0.000
120 0.306 0.306 0.000
125 0.282 0.283 0.001
130 0.260 0.262 0.002
135 0.240 0.242 0.002
140 0.221 0.223 0.002
145 0.203 0.206 0.003
150 0.186 0.190 0.004
155 0.171 0.176 0.005
160 0.157 0.162 0.005
165 0.144 0.150 0.006
170 0.132 0.138 0.004
175 0.121 0.127 0.006
180 0.110 0.117 0.007
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Figure 5.3.6: The theoretical and fitted survival curve for the mixture of two
gamma distributions

Mixture of an exponential distribution and a Weibull distribution

The true theoretical survival probability here follows a mixture of an exponential sur-

vival function and a Weibull survival function; that is 0.5 of an exponential survival

with a scale parameter equal to 0.01 and 0.5 of a Weibull survival function with a

scale parameter 0.01 and a shape parameter of 1.5. The estimates of the parameters

of the extrapolation function are α̂ = 0.983 and β̂ = 0.011. The theoretical and fitted

survival probabilities are given in table 5.3.7 and displayed in figure 5.3.7.
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Table 5.3.7: The theoretical and fitted survival probabilities for the mixture of
exponential and Weibull distributions

Time The theoretical The fitted survival The absolute
(in months) survival probability curve probability difference

90 0.203 0.206 0.003
95 0.193 0.195 0.002
100 0.184 0.185 0.001
105 0.175 0.176 0.001
110 0.166 0.167 0.001
115 0.158 0.159 0.001
120 0.151 0.151 0.000
125 0.143 0.143 0.000
130 0.136 0.136 0.000
135 0.130 0.130 0.000
140 0.123 0.123 0.000
145 0.117 0.117 0.000
150 0.112 0.111 0.001
155 0.106 0.106 0.000
160 0.101 0.101 0.000
165 0.096 0.096 0.000
170 0.091 0.091 0.000
175 0.087 0.087 0.000
180 0.083 0.082 0.001
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Figure 5.3.7: The theoretical and fitted survival curve for the mixture of exponen-
tial and Weibull distributions

Mixture of an exponential distribution and a gamma distribution

The true theoretical survival probability here follows a mixture of an exponential sur-

vival function and a gamma survival function; that is 0.5 of an exponential survival

with a scale parameter equal to 0.01 and 0.5 of a gamma survival function with a

scale parameter 0.02 and a shape parameter of 2. The estimates of the parameters of

the extrapolation function are α̂ = 1.017 and β̂ = 0.011. The theoretical and fitted

survival probabilities are given in table 5.3.8 and displayed in figure 5.3.8.

 

 

 

 



CHAPTER 5. EXTRAPOLATION OF THE SURVIVAL CURVE 79

Table 5.3.8: The theoretical and fitted survival probabilities for the mixture of
exponential and gamma distributions

Time The theoretical The fitted survival The absolute
(in months) survival probability curve probability difference

90 0.435 0.432 0.003
95 0.410 0.409 0.001
100 0.387 0.386 0.001
105 0.365 0.364 0.001
110 0.344 0.343 0.001
115 0.324 0.323 0.001
120 0.305 0.305 0.000
125 0.287 0.287 0.000
130 0.270 0.271 0.001
135 0.254 0.255 0.001
140 0.239 0.240 0.001
145 0.225 0.226 0.001
150 0.211 0.213 0.002
155 0.198 0.201 0.003
160 0.187 0.189 0.002
165 0.175 0.178 0.003
170 0.165 0.168 0.003
175 0.155 0.158 0.003
180 0.146 0.149 0.003
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Figure 5.3.8: The theoretical and fitted survival curve for the mixture of exponen-
tial and gamma distributions

Mixture of a Weibull distribution and a gamma distribution

The true theoretical survival probability here follows a mixture of a Weibull survival

function and a gamma survival function; that is 0.5 of a Weibull survival with a scale

parameter equal 0.01 and a shape parameter 1.2 and 0.5 of a gamma survival function

with a scale parameter 0.02 and a shape parameter 2. The estimates of the parameters

of the extrapolation function are α̂ = 1.000 and β̂ = 0.013. The theoretical and fitted

survival probabilities are presented in table 5.3.9 and displayed in figure 5.3.9.
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Table 5.3.9: The theoretical and fitted survival probabilities for the case of the
mixture of Weibull and gamma distributions

Time The theoretical The fitted survival The absolute
(in months) survival probability curve probability difference

90 0.439 0.440 0.001
95 0.412 0.412 0.000
100 0.387 0.386 0.001
105 0.363 0.362 0.001
110 0.340 0.339 0.001
115 0.319 0.318 0.001
120 0.298 0.298 0.000
125 0.279 0.279 0.000
130 0.261 0.262 0.001
135 0.244 0.245 0.001
140 0.227 0.230 0.003
145 0.212 0.215 0.003
150 0.198 0.202 0.004
155 0.184 0.189 0.005
160 0.172 0.177 0.005
165 0.160 0.166 0.006
170 0.149 0.156 0.007
175 0.139 0.146 0.007
180 0.129 0.137 0.008
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Figure 5.3.9: The theoretical and fitted survival curve for the mixture of Weibull
and gamma distributions

5.3.3 Summary of the results of the mathematical check

The proposed extrapolated survival function appears to be suitable for approximating

the theoretical survival distributions investigated in the previous section. The theoret-

ical and the fitted survival probabilities are identical to two decimal places and almost

identical for three decimal places (table 5.3.1 to table 5.3.9). Looking at the figures

that present the theoretical and the fitted survival curves, we see that the proposed

extrapolation survival function has given excellent accuracy for the forecasting period

which was up to five years (60 months). From table 5.3.10 (on page 95), the maxi-

mum norm was less than (or equal to) 0.001 for the 12 months projection period, less

than (or equal to) 0.005 for the 36 months projection period and less than (or equal

to) 0.007 for the 60 months projection period. The results of the calculation of the

maximum norm gave a good indication of the adequacy of the proposed extrapolation

function for different scenarios of survival time data distributions. However, the pro-

posed extrapolation survival function becomes less accurate as the forecasting period

increases. It might not be wise to forecast for a very long term given the fast change

in market dynamics and customer behaviour. The user of the model should decide on

the suitable projection period from his/her understanding of the problem at hand.
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5.4 The derivation of the standard error of the ex-

trapolation function

Let us consider the estimate of the survival probability obtained from the extrapolation

function at t (t > τ) to be

yt = yt(ym, α̂, β̂) = ymg(t, α̂, β̂) (5.4.1)

where g(t; α̂, β̂) = exp
{
β̂(τ − τ0)α̂ − β̂(t− τ0)α̂

}
= g ; α̂ and β̂ are the estimates of α

and β that are obtained by solving the minimisation problem

Ω =
m∑
i=k

(yi − ymgi)2 (5.4.2)

where gi = gi(ti; α̂, β̂) = exp
{
β̂(τ − τ0)α̂ − β̂(ti − τ0)α̂

}
, yi = S(ti) are Kaplan-Meier

estimates (ti ≤ τ), α̂ and β̂ are functions of the random variables yi : i = k, . . . ,m.

That is, the estimate yt of the extrapolation function is a function of ym, α̂, β̂.

Our objective now is to find the standard error of yt using the variance-covariance

matrix of ym, α̂, β̂. Let us say yt = f(ym, α̂, β̂), then the variance of yt is equal to

var(f(ym, α̂, β̂)). We use the delta method to find a linear approximation for f(ym, α̂, β̂)

and thereafter the variance of this linear approximation (Oehlert, 1992). Using the

Taylor expansion of first order

f(ym, α̂, β̂) ≈ f(ηm, α, β) + (ym − ηm)
∂f(ym, α̂, β̂)

∂ym

+(α̂− α)
∂f(ym, α̂, β̂)

∂α̂
+ (β̂ − β)

∂f(ym, α̂, β̂)

∂β̂
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That is

f(ym, α̂, β̂) ≈ C +


ym − ηm
α̂− α

β̂ − β


T 

∂f
∂ym

∂f
∂α̂

∂f

∂β̂


≈ C +

(
θ̂ − θ

)T (∂f
∂θ

)
(5.4.3)

θ̂ =
[
ym, α̂, β̂

]T
, θ = [ηm, α, β]T , C constant.

var(yt) = var
[
f(ym, α̂, β̂)

]
= var

(
C +

[
θ̂ − θ

]T [∂f
∂θ

])
=

[
∂f

∂θ

]T
var
(
θ̂ − θ

)[∂f
∂θ

]
=

[
∂f

∂θ

]T
var(θ̂)

[
∂f

∂θ

]
(5.4.4)

var(θ̂) = var


ym

α̂

β̂

 =


var(ym) cov(ym, α̂) cov(ym, β̂)

cov(α̂, ym) var(α̂) cov(α̂, β̂)

cov(β̂, ym) cov(β̂, α̂) var(β̂)

 (5.4.5)

That is, to calculate the standard error of yt one has to substitute 5.4.5 in 5.4.4 and

take the square root of the right hand side of equation 5.4.4. The var(ym) in equation

5.4.5 can be obtained from the Greenwood formula, but to find cov(ym, α̂), cov(ym, β̂),

cov(α̂, β̂), var(α̂) and var(β̂), one has to write α̂ and β̂ as a linear function of yi,s. To

do so, we take the linear approximation of Ωα and Ωβ, where Ωα = ∂Ω
∂α

, Ωβ = ∂Ω
∂β

. That

is:

Ωα ≈ Ωα(α, β) + (α̂− α)Ωαα(α̂, β̂) + (β̂ − β)Ωαβ(α̂, β̂)

Ωβ ≈ Ωβ(α, β) + (α̂− α)Ωβα(α̂, β̂) + (β̂ − β)Ωββ(α̂, β̂)
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It follows that: Ωα(α̂, β̂)

Ωβ(α̂, β̂)

 ≈
Ωα(α, β)

Ωβ(α, β)

+D

α̂− α
β̂ − β

 (5.4.6)

where

D =

Ωαα(α, β) Ωαβ(α, β)

Ωβα(α, β) Ωββ(α, β)


Ωαα = ∂Ωα

∂α
, Ωαβ = ∂Ωα

∂β
, Ωβα =

∂Ωβ
∂α

, Ωββ =
∂Ωβ
∂β

The second derivatives of Ω given in D are evaluated at their observed expectations,

so they will be treated as constant. From equation 5.4.6

var

α̂− α
β̂ − β

 = var

D−1

Ωα(α̂, β̂)

Ωβ(α̂, β̂)

 .
Hence

var

α̂
β̂

 = D−1var

Ωα(α̂, β̂)

Ωβ(α̂, β̂)

[D−1
]T

= D−1

 var
[
Ωα(α̂, β̂)

]
cov

[
Ωα(α̂, β̂),Ωβ(α̂, β̂)

]
cov

[
Ωβ(α̂, α̂),Ωβ(α̂, β̂)

]
var
[
Ωβ(α̂, β̂)

]
[D−1

]T
(5.4.7)

From 5.4.7 we learned that the problem now is how to calculate the variances and

covariances of Ωα and Ωβ

Ωα =
∂Ω

∂α
=
∂
∑m

i=k(yi − ymgi)2

∂α
= −2

m∑
i=k

[yi − ymgi] [ymgiα] (5.4.8)

where giα = ∂gi
∂α

. To linearise Ωα we linearise each term in the summation, i.e., we

linearise

h(yi, ym) = [yi − ymgi]ymgiα.
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The linear approximation of h(yi, ym) is expressed as:

h(yi, ym) ≈ h(ηi, ηm) + (yi − ηi)
∂h

∂yi
+ (ym − ηm)

∂h

∂ym
= C1 + (yi − ηi)(ηmgiα) + (ym − ηm)[ηigiα − 2ηmgigiα]

= C2 + yiηmgiα + [ηigiα − ηmgigiα]ym (5.4.9)

where C1 and C2 are constants, and ηi = E(yi). Then

Ωα ≈ constant− 2

[
m−1∑
i=k

yiηmgiα +
m−1∑
i=k

(ηigiα − 2ηmgigiα) ym

]
(5.4.10)

Thereafter, Ωα can be written as

Ωα ≈ a1y1 + a2y2 + . . .+ amym (5.4.11)

where ai is the coefficient of yi in Ωα

In the same manner Ωβ can be written as follows:

Ωβ ≈ constant− 2

[
m−1∑
i=k

yiηmgiβ +
m−1∑
i=k

(ηigiβ − 2ηmgigiβ) ym

]
(5.4.12)

In the same way, we can linearise Ωβ and write it as follows:

Ωβ ≈ b1y1 + b2y2 + . . .+ bmym (5.4.13)

where bi is the coefficient of yi in the linearised version of Ωβ.

In matrix format Ωα

Ωβ

 = CY (5.4.14)
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where C =

a1 a2 . . . am

b1 b2 . . . bm

 and Y =


y1

y2

...

ym


Using 5.4.7 and 5.4.14

var

α̂
β̂

 = D−1Cvar(Y )CT
(
D−1

)T
(5.4.15)

If the elements of D−1 are dij i, j = 1, 2 then θ̂ can be written as follows

θ̂ =


ym

α̂

β̂

 =


1 0 0

0 d11 d12

0 d21 d22




0 0 . . . 0 1

a1 a2 . . . am−1 am

b1 b2 . . . bm−1 bm



Y1

Y2

...

Ym

 (5.4.16)

The covariance matrix in 5.4.5 can be directly calculated from 5.4.16 given that

cov(yi, yj) = yiyj
∑
i≤j

di
ni(ni − di)

(5.4.17)

where i ≤ j. The Greenwood’s formula is a special case of 5.4.17 (Jewell et al., 2005).

It is important to mention that this method of approximation works well if we have a

large sample size. With a small sample, the linearization might not be a good idea.

In the next section, we apply the proposed extrapolation function and the derived

standard error on the data set defined in chapter four to obtain a 95% confidence

interval for survival probabilities beyond the last observed failure time τ . Code for

the proposed extrapolation function (with its standard error) is written in Octave and

available to both the scientific community and business practitioners (see Appendix

A).
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5.5 The conditional survival function

Let us assume that at time t0 we have in the system N clients who have survived

for times t1, t2, . . . , tN . The task is to calculate the conditional survival time that a

customer will survive over the interval t0 → t0 + ∆; where ∆ is specified in months

(∆ > 0), for example ∆ = 12 months. The conditional survival probability for client j

is then defined as follows:

Ŝj(tj + t/tj) =


Ŝ(tj+t)

Ŝ(tj)
, 0 < t ≤ ∆

0, t > ∆
(5.5.1)

where

Ŝj(tj + t) =

 ŜKM , 0 < tj + t ≤ τ

ŜExt, tj + t > τ
(5.5.2)

ŜKM is the Kaplan-Meier estimate of survival probability of customer j at time tj+t.

ŜExt is the extrapolation function estimate of survival probability of customer j at

time tj + t.

5.6 Applications

5.6.1 Estimation of future survival probablities

This section shows how the proposed survival function works. For this purpose, the

variable age group was used as an example. In each age group, the survival probability

was obtained from Kaplan-Meier and, thereafter, the Kaplan-Meier survival probabil-

ities were used to estimate the parameters of the extrapolation function. Customer

survival time probabilities, for a 12-month forecasting period beyond the last observed

failure time, were calculated and the standard error of the estimate is attached.

Figure 5.6.1 shows a 95% confidence band of the survival probabilities for customers

of age less than 26 years. The estimates before the vertical dashed line is obtained
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Figure 5.6.1: Confidence band of the survival probabilities for customers of age
less than 26 years

from Kaplan-Meier and estimates beyond the vertical dashed line are obtained from

the proposed extrapolation survival function.
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Figure 5.6.2: Confidence band of the survival probabilities for customers of age
between 26 and 40 years

Figure 5.6.2 shows a 95% confidence band of the survival probabilities for customers

between 26 and 40 years of age. The estimates before the vertical dashed line are

obtained from Kaplan-Meier and estimates beyond the vertical dashed line are obtained

from the proposed extrapolation survival function.
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Figure 5.6.3: Confidence band of the survival probabilities for customers of age
more than 40 years

Figure 5.6.3 shows a 95% confidence band of the survival probabilities for customers

more than 40 years of age. The estimates before the vertical dashed line are obtained

from Kaplan-Meier and estimates beyond the vertical dashed line are obtained from

the proposed extrapolation survival function.

5.6.2 Establishing confidence limits for customer lifetime value

In this section we use survival probablities that were calculated from the extrapolation

function to obtain the customer lifetime value (CLV). Moreover, we derive the standard

error of the CLV using the delta method (Oehlert, 1992). To illustrate this application

we consider the lifetime value model that has been proposed by Lu (2003). This model

is presented in chapter two in equation 2.2.3. We redefine this model to enable us to

project the lifetime value for the period τ to τ + ∆. Once again, τ is the last observed

failure time and ∆ is given in months. This can be expressed as follows:

CLV = m
τ+∆∑
t=τ+1

yt
(1 + d/12)t

(5.6.1)
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where m is the customer monthly margin, yt is an estimate of customer survival prob-

abilities St and is obtained from the extrapolation function, and d is the discount rate.

We rewrite the above equation as follows:

CLV = m

τ+∆∑
t=τ+1

atyt = mATYt (5.6.2)

where at = (1 + d/12)t, A is a vector of at, Yt is a vector of yt: t = τ + 1 to τ + ∆.

It is obvious that for a given m and d, the calculation of the standard error of CLV

involve only the calculation of the variance-covariance matrix of Yt. That is:

var(CLV ) = var(mATYt) = m2ATvar(Yt)A (5.6.3)

Using the delta method (Oehlert, 1992) we can calculate the variance-covariance

matrix of Yt. This can be done by linearizing each element yt of the vector Yt. Each

of the elements of Yt is a function of ym, α̂, β̂. We denote yt by f(t, ym, α̂, β̂). Then

f(t, ym, α̂, β̂) ≈ f(t, ηm, α, β) + (ym − ηm)
∂f(t, ym, α̂, β̂)

∂ym

+(α̂− α)
∂f(t, ym, α̂, β̂)

∂α̂
+ (β̂ − β)

∂f(t, ym, α̂, β̂)

∂β̂

for t = τ + 1 to τ + ∆. In this way we obtain ∆ equations of which each is of

the above format. Following the same argument as in equation 5.4.3 and 5.4.4 the

variance-covariance matric of Yt can be expressed as follows:

var(Yt) = Fvar(θ̂)F T (5.6.4)

where F is a ∆ by 3 matrix of which each row represents the derivatives of yt with

respect to θ̂, θ̂ =
[
ym, α̂, β̂

]T
, θ = [ηm, α, β]T . The variance-covariance matrix of θ̂

can be calculated exactly in the same way as we did in section 5.4. Thereafter, we

 

 

 

 



CHAPTER 5. EXTRAPOLATION OF THE SURVIVAL CURVE 93

substitute 5.6.4 in 5.6.3 to get variance of CLV. For a large sample size, 95% confidence

limits for CLV will be:

mATYt ± 1.96 ∗m
√
ATFvar(θ̂)F TA (5.6.5)

An Octave code is provided in the appendix to perform the compuation of the above

equations.

Example:

Suppose that we have a customer of age more than 40 years who survived exactly τ

months at time τ . Let us also assume a discount factor of 10%, a constant monthly

margin of $100 and ∆ = 12 months. We would like to calculate the lifetime value of

this customer using the above equations. This will result is a customer lifetime value

equal to $707.02 with standard error $39.04. Using the normal approximation, we

obtain a 95% confidence interval of (630.51, 780.53).

Customer equity of a firm can be directly obtained from customer lifetime value

because it is the aggregate of the value of all customers. Note that if at the time of

estimation there was a customer who survived less than τ months then the survival

probabilities of this customer has to be obtained from the Kaplan-Meier estimate for

t ≤ τ and the corresponding variance-covariance matrix can be obtained using equation

5.4.17.

5.7 Summary and conclusion

This chapter dealt with one of the important issues in the customer survival time

estimation problem; that is, the estimation of the survival probabilities and the sur-

vival time beyond the empirical data. The practical motivation for extrapolating the

survival curve beyond the empirical distribution originates from two issues, that of

calculating survival probabilities (retention rate) beyond the empirical data and of

calculating expected survival time. In this regard we proposed a function that can be
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used to extrapolate the survival probabilities beyond the last observed failure time.

The estimation of parameters of the extrapolation function is based completely on the

Kaplan-Meier estimate of the survival probabilities. The mathematical accuracy of the

proposed function was checked against various theoretical lifetime data distributions

and a mixture of life time data distributions. The theoretical and the fitted survival

probabilities are identical to two decimal places and almost identical for three decimal

places. The proposed extrapolation survival function has given excellent accuracy for

the forecasting period which was up to five years (60 months). The maximum norm was

less than (or equal to) 0.001 for a 12-month projection period, less than (or equal to)

0.005 for a 36-month projection period and less than (or equal to) 0.007 for a 60-month

projection period. The results of the calculation of the maximum norm gave a good

indication of the adequacy of the proposed extrapolation function for different scenar-

ios of survival time data distributions. However, the proposed extrapolation survival

function becomes less accurate as the forecasting period increases. It might not be

wise to forecast for a very long term given the rapid changes in market dynamics and

customer behaviour. The user of the model should decide on the suitable projection

period from his/her understanding of the problem at hand.

After having the mathematical error checked, we derived the standard error of the

estimate of the extrapolation function. The derivation is based on the delta method.

Finally we implemented the proposed model on a real data set to estimate a 95%

confidence band for the extrapolated survival probabilities for a projection period of

12 months after the last observed failure time. Numerical and visual examinations

suggest that the proposed survival function works very well. The code is written in

Octave and is ready for use by business managers where the objective is to enhance

customer retention and to emphasise a customer-centric approach. Although we have

developed this model to serve the business community, it can be applied and used

beyond the customer survival time data to cover clinical trial applications.
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Chapter 6

Conclusion, recommendations and

directions for further studies

This study aimed to illustrate, adapt and develop methods of survival analysis in

analysing and estimating customer survival time in subscription-based businesses. This

area of research gains its importance from the fact that customer survival time is a

crucial element in the process of implementing a customer-centric approach, mainly

in estimating a firm’s value based on their customers value. This involves managing

acquisition and retention, justifying and testing the return on investment in a customer-

centric approach and, generally, maintaining and making customer-firm relationships

more valuable and profitable. Two main objectives were set: The first objective was

to redefine the existing survival analysis techniques - that were mainly used to solve

questions related to medical field - in business terms and to discuss their uses in

order to understand various issues related to the customer-firm relationships, while the

second objective was to extrapolate the customer survival curve beyond the empirical

distribution.

In relation to the redefinition of the current survival analysis techniques to meet

the business needs, we presented the basic formulation of survival and hazard functions

in business terms. The underlying assumption about the distribution of customer sur-

vival time and the differences between survival analysis in the medical field and business
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field due to the nature of business data and business needs are discussed. We have also

discussed and shown the applicability of survival analysis techniques - including non-

parametric, semi-parametric and parametric models - in understanding and analysing

various issues related to the customer-firm relationship. A particular data set from

a well-established subscription-based business company was used to investigate the

ability of current survival analysis techniques in understanding and managing various

issues related to the customer-firm relationship. The data set contains demographic

and usage-related variables. We highlighted the business and the methodological in-

sights in the process of applying survival analysis techniques. This includes identifica-

tion of the significant variables that affect customer relationships with a firm using a

stratified version of the Cox regression model, modelling and understanding customer

loyalty and churn using the hazard ratio obtained from the Cox regression model, the

cumulative hazard obtained from Nelson-Aalen, and survival probabilities calculated

from Kaplan-Meier; the use of the Kaplan-Meier method to compare different mar-

keting campaigns and different customer groups; and the segment-based estimation of

customer mean survival time using the non-parametric method of Kaplan-Meier and

the parametric method using exponential, Weibull and gamma distributions. Gener-

ally, a direct application of current survival analysis techniques to analyse customer

survival time and customer risk of cancellation has shown great potential.

In another direction, the application of current techniques in estimating customer

mean survival time was studied. The results on the estimate for customer mean survival

time are obtained via different nonparametric and parametric approaches; namely,

the Kaplan-Meier method as well as the exponential, Weibull and gamma regression

models. The estimate of the mean from Kaplan-Meier method, exponential regression,

Weibull regression, and gamma regression varies greatly. This suggests that a careful

investigation of the method used to extend the survival curve and the choice of the

parametric model are extremely important, especially in the type of business problems

where a high degree of censoring is expected. For example, customers with ages less

than 26 years have the lowest variability in the estimates of mean survival time when

 

 

 

 



CHAPTER 6. CONCLUSION, RECOMMENDATIONS AND DIRECTIONS FOR
FURTHER STUDIES 98

different methods of estimation were used; it has to be noted that this age group has

the lowest degree of censoring.

We suggest that in estimating the customer mean survival time, one would prefer

non-parametric methods with a careful plan to deal with extrapolation issues. How-

ever, from our understanding of the fast dynamics of the market and the fast change

in customer behaviour, a conditional mean survival time based on the empirical distri-

bution of the data - for each sub-population and for a reasonable time horizon - will be

the way forward. This will enable us to get accurate and useful inferences. Therefore,

we dedicate a crucial part of this research to the issue of extrapolating the survival

curve and we believe that this is where this study is making a major contribution to

the methodology and the literature of survival analysis.

In relation to the extrapolation of the survival curve we propose a survival func-

tion that can be used to extrapolate the survival probabilities beyond the empirical

data for projection purposes. The estimation of the parameters of the extrapolation

function is based completely on the Kaplan-Meier estimate of the survival probabilities

in the observation period. The mathematical accuracy of the proposed function was

checked against various theoretical lifetime data distribution and a mixture of lifetime

data distributions. The theoretical and the fitted survival probabilities are identical

to two decimal places and almost identical for three decimal places. The proposed

extrapolation survival function has given excellent accuracy for a forecasting period

of five years (60 months). The maximum norm was less than (or equal to) 0.001 for

a 12-month projection period, less than (or equal to) 0.005 for a 36-month projection

period and less than (or equal to) 0.007 for a 60-month projection period. However,

the proposed extrapolation survival function became less accurate as the forecasting

period increased; this suggests that it might not be wise to forecast for a very long term

given the fast change in market dynamics and customer behaviour. The user of the

model should decide on a suitable projection period from his/her understanding of the

problem faced. After having the mathematical error checked, we derived the standard

error of the estimates of the extrapolation function using the delta method. Finally,
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we implemented the proposed model on a real data set to estimate a 95% confidence

band for the extrapolated survival probabilities for a projection period of 12 months

after the last observed failure time. Numerical and visual examination suggest that

the proposed survival function works very well. The code is written in Octave and

is ready to be used of business managers where the objective is to enhance customer

retention and emphasise a customer-centric approach. Although we have developed

this model to serve the business community, it can be applied and used beyond the

customer survival time data to cover clinical trial applications.

In the last part of the study, we developed an expression for conditional survival

time probabilities using the Kaplan-Meier survival probability together with the sur-

vival probability obtained from the extrapolation survivor function.

It is important that the extrapolation survival function accounts for future changes

in customer behaviour. The estimation of distant probabilities, based on historical

data, might not be accurate enough to produce accurate forecasting. This is due to

the fast change in customer behaviour and market dynamics (Zeihaml et al., 2006).

For further studies, we suggest that researchers should investigate extrapolation models

that are based on both Kaplan-Meier estimates and a function to represent the change

in customer behaviour over time.
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Appendix A

Octave code

A.1 The main file

clear

Data = load(”DataFile.txt”) ;

%Data is an m by four matrix of the data set;

global m y s a b t COV;

m = length(Data) ;

t = Data(:, 1); n = Data(:, 2) ; d = Data(:, 3) ; y = Data(:, 4) ;

%t is an m by one vector of time points where cancellation of service occured;

%n is an m by one vector of number of customers at risk at each time point given in

the vector t;

%d is an m by one vector of number of customers who cancelled the service at each

time point given in the vector t;

%y is an m by one vector of probabilty of surviving beyond each time point given in

the vector t;

CovY = zeros(m, m) ;

for i = 1 : m

for j = 1 : m

for k = 1 : min(i, j)
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CovY(i, j) = CovY(i, j) + d(k)/((n(k)-d(k))*n(k)) ;

end

CovY(i, j) = y(i)*y(j) * CovY(i, j) ;

end

end

s = 50 ;

SubCovY = CovY(s:end, s:end) ;

s is τ0;

%CovY is the variance-covariance matrix of the elements in the vector y;

%SubCovY is the variance-covariance matrix of the elements of in the vector that been

used to estimate the parameters alpha and beta of the extrapolation function;

a = 0.829 ;

b = 0.011 ;

%a is the estimate of the parameter alpha in the extrapolation function;

%b is the estimate of the parameter beta in the extrapolation function;

G(s) = g(a, b, t(end), t(s), t(s)+0.1);

GA(s) = ga(a, b, t(end), t(s), t(s)+0.1);

GAA(s) = gaa(a, b, t(end), t(s), t(s)+0.1);

GAB(s) = gab(a, b, t(end), t(s), t(s)+0.1) ;

GB(s) = gb(a, b, t(end), t(s), t(s)+0.1);

GBB(s) = gbb(a, b, t(end), t(s), t(s)+0.1);

for i = s+1 : m-1

G(i) = g(a, b, t(end), t(s), t(i));

GA(i) = ga(a, b, t(end), t(s), t(i));

GAA(i) = gaa(a, b, t(end), t(s), t(i));

GAB(i) = gab(a, b, t(end), t(s), t(i));

GB(i) = gb(a, b, t(end), t(s), t(i));

GBB(i) = gbb(a, b, t(end), t(s), t(i));

end
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%G is the function defined in equation;

%GA is the derivative of G with respect to alpha;

%GAA is the second derivative of G with respect to alpha;

%GB is the derivative of G with respect to betea;

%GBB is the second derivative of G with respect to beta;

%GAB is the partial derivatives of G with respect to alpha and beta;

bm1 = 0;

bm2 = 0;

for i = s : m-1

B(1, i-s+1) = y(m)*GA(i);

B(2, i-s+1) = y(m)*GB(i);

B(3, i-s+1) = 0;

bm1 = bm1 + B(1, i-s+1)-2*y(m)*G(i)*GA(i);

bm2 = bm2 + B(2, i-s+1)-2*y(m)*G(i)*GB(i);

end

B(1, m-s+1) = bm1;

B(2, m-s+1) = bm2;

B(3, m-s+1) = 1;

Oaa = 0;

Oab = 0;

Obb = 0;

for i = s : m-1

Oaa = Oaa+ y(m) ∗ ((y(i)− y(m) ∗G(i)) ∗GAA(i)− y(m) ∗GA(i)2);

Oab = Oab+ y(m) ∗ ((y(i)− y(m) ∗G(i)) ∗GAB(i)− y(m) ∗GA(i) ∗GB(i));

Obb = Obb+ y(m) ∗ ((y(i)− y(m) ∗G(i)) ∗GBB(i)− y(m) ∗GB(i)2);

end

Oaa = -2*Oaa;

Oab = -2*Oab;

Obb = -2*Obb;
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%Oaa is the second derivative of the function omega defind in equation with respect

to alpha;

%Oab is the partial derivatives of the function omega defind in equation with respect

to alpha and beta;

%Obb is the second derivative of the function omega defind in equation with respect

to beta;

D = [Oaa Oab; Oab Obb];

INVD = inv(D);

DO = [INVD(1, 1) INVD(1, 2) 0; INVD(2, 1) INVD(2, 2) 0; 0 0 1];

COV = DO*B*SubCovY*B’*DO’;

Delta = 12;

tau = 102;

d = 0.10;

alpha = zeros(Delta, 1);

Z = zeros(Delta, 3);

for i = 1 : Delta

alpha(i) = 1/(1 + d/12)i;

t1 = tau+i;

Z(i, :) = Jac(t1);

end

S = Z*COV*Z’;

MM = 100;

V arCLV = MM2 ∗ alpha′ ∗ S ∗ alpha;

survival=zeros(Delta, 1);

for i=1:Delta

survival(i) = y(m) ∗ g(a, b, t(end), t(s), tau+ i);

end

CLV = MM ∗ alpha′ ∗ survival;

%Delta is the time horison in months at which projection has to be made;
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%MM is the expected monthly from a customer;

%survival(i) is the survival probabilities calculated from the extrapolation function at

time i

%VarCLV is the variance of customer lifetime value;

%CLV is the customer lifetime value

A.2 Auxiliary functions

g.m

%This function evaluates the expression g as defined in 5.4.1. function y = g(a, b, tau,

tau0, t)

y = exp(b ∗ (tau− tau0)a − b ∗ (t− tau0)a);

ga.m

%This function evaluates the first derivative of g with resect to alpha.

function y = ga(a, b, tau, tau0, t)

y = exp(b ∗ (tau− tau0)a − b ∗ (t− tau0)a) ∗ (b ∗ (tau− tau0)a ∗ log(tau− tau0)− b ∗

(t− tau0)a ∗ log(t− tau0));

gaa.m

%This function evaluates the second derivative of g with respect to alpha.

function y = gaa(a, b, tau, tau0, t)

os = b ∗ (tau− tau0)a ∗ log(tau− tau0)− b ∗ (t− tau0)a ∗ log(t− tau0);

y = g(a, b, tau, tau0, t)∗ ((b∗ (tau− tau0)a ∗ (log(tau− tau0))2−b∗ (t− tau0)a ∗ (log(t−

tau0))2) + os2);

gb.m

%This function evaluates the first derivative of g with respect to beta.
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function y = gb(a, b, tau, tau0, t)

y = exp(b ∗ (tau− tau0)a − b ∗ (t− tau0)a) ∗ ((tau− tau0)a − (t− tau0)a);

gbb.m

%This function evaluates the second derivative of g with respect to beta.

function y = gbb(a, b, tau, tau0, t)

y = g(a, b, tau, tau0, t) ∗ ((tau− tau0)a − (t− tau0)b);

gab.m

%This function evaluates the partial second derivative of g with respect to alpha and

beta.

function y = gab(a, b, tau, tau0, t)

y = g(a, b, tau, tau0, t)∗((tau−tau0)a∗log(tau−tau0)−(t−tau0)a∗log(t−tau0))∗(1+b);

Oaa.m

%This function evaluates the second derivative of omega with respect to alpha ( omega

is defind in 5.4.2).

function y = Oaa(a, b, tau, tau0, t)

V.m

%This function returns the variance of the extrapolated survival probability.

function v = V (t1)

global m y s a b;

y1 = y(m) ∗ g(a, b, t(end), t(s), t1) ∗ ga(a, b, t(end), t(s), t1);

y2 = y(m) ∗ g(a, b, t(end), t(s), t1) ∗ gb(a, b, t(end), t(s), t1);

y3 = g(a, b, t(end), t(s), t1);

Y = [y1; y2; y3];

v = Y ′ ∗ COV ∗ Y ;
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Var.m

%This function returns the standard error of the extrapolated survival probability.

function v = SE(t1)

global m y s a b t COV;

y1 = y(m) ∗ g(a, b, t(end), t(s), t1) ∗ ga(a, b, t(end), t(s), t1);

y2 = y(m) ∗ g(a, b, t(end), t(s), t1) ∗ gb(a, b, t(end), t(s), t1);

y3 = g(a, b, t(end), t(s), t1);

Y = [y1; y2; y3];

v = sqrt(Y ′ ∗ COV ∗ Y );

S.m

%This function calculates the confidence limits of the extrapolated survival probabil-

ity.

function [L, P, U, se] = S(t2)

global y m a b t s

P = y(m) ∗ g(a, b, t(end), t(s), t2);

se = SE(t2);

L = P − 1.96 ∗ se;

U = P + 1.96 ∗ se;

Endfunction

% The following function evaluates the derivative of the extrapolation function with

respect to alpha, beta and ym.

function M = Jac(t1)

global y m s a b t COV;

y1 = y(m) ∗ ga(a, b, t(end), t(s), t1);

y2 = y(m) ∗ gb(a, b, t(end), t(s), t1);

y3 = g(a, b, t(end), t(s), t1);

M = [y1y2y3];
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