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ABSTRACT 

 

A yeast 2-hybrid screen to identify and characterize interaction partners 

of the cancer associated protein Retinoblastoma binding protein 6 

 
M. Chibi 

PhD thesis, Department of Biotechnology, Faculty of Natural Science, 

University of the Western Cape 

 

Retinoblastoma binding protein 6 (RBBP6) is a 250 kDa protein that is 

implicated in mRNA processing and ubiquitination functions and has been 

shown to be highly up-regulated in a number of cancers. In humans and mice, 

RBBP6 interacts with both tumour suppressors p53 and pRb, suggesting that 

it is involved in regulation of transcription, induction of apoptosis and cell cycle 

control. Knock-out of an RBBP6 homologue PACT resulted in p53 dependent 

cell cycle arrest and apoptosis. Although the biological functions of RBBP6 

remain largely unclear, it is possible that its functions are mediated through 

interaction with other cellular proteins. Since it is possible to unveil novel 

functions of a target protein through identifying its interacting protein partners, 

this study aims to further characterize the functions of RBBP6 through 

identifying novel protein interacting partners using a yeast 2-hybrid screen. 

 

In order to identify interaction partners of RBBP6, two well characterized 

domains of RBBP6, the N-terminal ubiquitin-like DWNN domain and RING 

finger domain, were used as baits in a yeast 2-hybrid screen of a human testis 

cDNA library. Putative interactors were verified using in vitro and in vivo 
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immunoprecipitation assays. The RING finger domain was shown to interact 

with transcriptional factors Y-Box binding protein 1 (YB-1) and zinc finger and 

BTB containing protein 38 (zBTB38), resulting in their ubiquitination. In the 

case of YB-1 ubiquitination was correlated with a decrease in the intra-cellular 

levels of YB-1, suggesting that ubiquitination leads to degradation in the 

proteosome. The DWNN domain was shown to interact with a splicing 

associated small nuclear ribonucleoprotein polypeptide G (snRPG) and heat 

shock protein 70 (Hsp70). 

 

The results of this work suggest that, at least in the case of YB-1 and zBTB38, 

RBBP6 plays a role in the regulation of gene expression by ubiquitination of 

transcription factors, causing them to be degraded in the proteosome. The 

study provides further evidence of RBBP6’s involvement in mRNA splicing 

through its interaction with snRPG. The interaction with Hsp70 suggests a 

possible role in protein quality control similar to that played by other E3 

ligases such as Parkin and CHIP.  

 

Keywords: Retinoblastoma binding protein 6, RING finger, DWNN, yeast 2-

hybrid, ubiquitination, mRNA splicing, protein-protein interaction, proteasome, 

apoptosis, co-immunoprecipitation 
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CHAPTER 1: LITERATURE REVIEW 

1. Introduction 

Retinoblastoma binding protein 6 (RBBP6) is a multi-functional protein whose 

function is still poorly understood. Complete characterization of its function 

may give important insights into the understanding of biological processes in 

both normal and disease states. Previous studies have suggested that 

RBBP6 may be involved in mRNA processing and ubiquitination related 

functions[1,2]. The interaction of RBBP6 with tumour suppressor proteins pRB 

and p53 suggest that RBBP6 plays a role in cell proliferation and 

tumourigenesis. This chapter begins with a description of previous 

experiments leading to the isolation and identification of RBBP6. 

  

A number of studies have demonstrated that RBBP6 forms part of an 

interaction network that is associated with intracellular signaling pathways as 

well cancer genesis. Because of RBBP6’s involvement in these crucial cellular 

processes it is possible that RBBP6, as reviewed in this chapter, may be 

useful as a potential target for immunotherapy. 

 

RBBP6 contains a number of discrete conserved domains. Protein domains 

are structural and/or functional units of proteins[3] and different proteins 

sharing related domain architecture may play similar roles in cellular 

processes[4]. In the same light, as described in this chapter, RBBP6 may 

share similar functions with other proteins containing similar domains. 
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Because of the presence of RING finger domain as well as the ubiquitin-like 

DWNN domain, it is likely that RBBP6 is an E3 ligase whose possible 

biochemical role involves ubiquitination related mechanisms. This chapter 

reviews in detail the ubiquitination process and mechanism of protein 

degradation through the ubiquitin-proteasome system.  

 

Since the function of RBBP6 appears to be mediated primarily through 

protein-protein interaction, this chapter also reviews a number of tools that 

have been developed to study protein-protein interactions. In particular this 

chapter reviews the yeast 2-hybrid (Y2H) system and co-immunoprecipitation 

methods as they were intensively applied to this study for identifying and 

characterizing the protein interactors of RBBP6. 

1.1 The RBBP6 family of proteins 

Retinoblastoma binding protein 6 is a 250-kDa multidomain protein that has 

been strongly implicated in various cellular activities although its mechanism 

remains largely unclear[5]. Analysis of the RBBP6 locus on human 16p12.2 

suggests that three major transcripts of 6.1, 6.0 and 1.1 kb occur by a 

combination of alternative splicing and alternative poly-adenylation. These 

transcripts encode proteins of 1792, 1758 and 118 amino acids, which have 

been designated RBBP6 isoforms 1, 2 and 3 respectively (Genbank: 

NP_008841, Genbank: NP_061173, Genbank: NP_116015). 

Previous three different studies have isolated and sequenced three partial 

cDNA's from the full length RBBP6 transcript. First, using purified pRB 

(retinoblastoma protein) as a probe, a 140 kDa truncated protein was isolated 
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from a small lung carcinoma H69c expression library that was named 

retinoblastoma binding Q protein 1 (RBQ-1)[6], corresponding to residues 

150–1146 of the full length RBBP6 human protein. Two other protein 

designated RBQ-2 and RBQ-3 were also identified in the study. It was 

observed that all three proteins bind to the hypophosphorylated form of 

retinoblastoma protein, pRb.  

 

Second, using purified wild type p53 protein as a probe to screen a mouse 

testis expression library, a cDNA encoding amino acid residues corresponding 

to 207–1792 of the RBBP6 protein was subsequently isolated and denoted 

PACT (p53 Associated Cellular protein-Testis-derived)[7]. The DNA sequence 

encoding the PACT was also found to contain a 437 bp 3’ non-coding region 

with a polyA signal and tail[7].  

 

The third study identified a proliferation potential protein-related (P2P-R)[8], 

which was shown to be another truncated version of the RBBP6 

corresponding to residues 199–1792 that was isolated based on its 

recognition by two antibodies specific for heterogeneous nuclear 

ribonucleoproteins (hnRNPs)[8]. Further analysis indicated that P2P-R is the 

alternatively spliced form of RBBP6, lacking the 34 amino acid exon and also 

that P2P-R appears to be the dominant product expressed in multiple cell 

lines[9]. Using cDNA microarray analysis, a human homologue of P2P-R, 

called proliferation potential-related protein (PP-RP) was identified strongly 

expressed in esophageal cancer cells, in normal testis and placenta and 

weakly expressed in some normal tissues[10]. 
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Studies that first characterized these 3 truncated versions of RBBP6 have 

demonstrated involvement of RBBP6 in functions mediated through 

interacting with other proteins. For instance, the RBQ-1 was observed to bind 

to hypophosphorylated but not to phosphorylated pRB, and the binding could 

be disrupted by an adenovirus protein E1a, suggesting physiological 

relevance of the interaction[11].  

 

P2P-R fusion protein derived from a region of the P2P-R cDNA coding for 

hnRNP association was able to bind single-stranded DNA with P2P-R 

expression markedly repressed during terminal differentiation[8]. In addition, 

P2P-R was also shown to interact with tumour suppressor, pRb by 

precipitating pRb from cellular extracts using GST-P2P-R fusion protein and 

the interaction could be reduced by competition with the adenovirus E1a 

protein in the same way as RBQ-1[8]. Furthermore, P2P-R was identified as 

one of the proteins that contribute to genome stability[9]. P2P-R strongly 

localizes to chromosomes during mitosis and to nuclear speckles, which are 

believed to be the main sites of activity for pre-mRNA splicing and processing, 

during interphase[12]. Over-expression P2P-R has been shown to lead to cell 

cycle arrest and apoptosis[9,13-16] 

Li and co-workers demonstrated that the PACT interacts with p53 via Hdm2 

and the interaction was shown to play a critical role in embryonic development 

and tumourogenesis and knockdown of PACT gene in mice leads to early 

embryonic lethality before embryonic day 7.5 (E7.5), accompanied by an 

accumulation of p53 and widespread apoptosis[2]. In another study, PACT 
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was observed co-precipitating with Sm splicing factor[1] and also that it had 

an N-terminal serine/arginine (SR) rich domain, shared by many pre-mRNA 

splicing factors. These observations were suggested having a possible role 

for PACT in pre-mRNA splicing[1].  

1.2. Association of RBBP6 in the regulation of intracellular pathways 

Recent study by Wang and colleagues implicated involvement of RBBP6 in 

the regulation of Ras-MAPK and PI3K-AKT signaling pathways[17]. Yeast 2-

hybrid screen was carried out to identify the protein interaction network 

associated with RBBP6 in Ras-MAPK and PI3K-AKT signaling pathways. 

Ras-MAPK and PI3K pathways regulate various cellular processes such as 

cell proliferation, survival, and differentiation [18,19] and these processes are 

facilitated through extensive cross-talk and co-operation that occurs between 

the MAPK and PI3K signal transduction pathways[19]. RBBP6 was 

speculated to be associated with Ras-MAPK and PI3K-AKT signaling 

pathways because of its direct interaction with a tumour suppressor, p53[1,2]. 

Activation of p53 is a downstream effect as a result of activated Ras-MAPK 

and PI3K-AKT signaling pathways that lead to cell proliferation and prevention 

of apoptosis as shown in Fig 1.1.  

 

 

 

 

 

 

 

 

 

 



 

  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Schematic representation of Ras-MAPK/PI3K signalling pathways. 

 

 

 

 

An extracellular signal such as a growth factor (GF) interacts with its receptor and induces receptor 

dimerization and activation. The growth-factor-receptor-bound protein 2 (Grb2) is then recruited to the 

receptor. The Ras-family GTPases change from an inactive state to an active state. Activated Ras binds to 

the Raf serine/threonine kinases and PI3K kinases. Activated Raf activates the MEK-MAPK signaling 

pathway, and PI3K activates the AKT-mTOR (mammalian target of rapamycin) downstream signaling 

cascade. Finally, transcription factors such as c-Jun and p53 are activated, which results in cell proliferation 

and prevention of apoptosis.  
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The Drosophila homologue of RBBP6, Mnm was also shown to play a role in 

hedgehog signaling in the developing eye[20]. Hedgehog signaling is involved 

in many human congenital diseases and many human cancers[21]. A 

catalogue of pathological conditions that involve the hedgehog pathway lists 

abnormalities in the central and peripheral nervous systems, the circulatory 

system, the gut, the kidney and many bone related abnormalities[22]. It is 

therefore possible that involvement of RBBP6 protein in the hedgehog 

pathway may be associated with a number of pathological conditions such as 

human tumors and developmental abnormalities[23]. Consistent with this 

speculation, RBBP6 has been identified associated with development of 

pancreatic ductal adenocarcinoma[24] an important condition in which 

hedgehog signaling is found deregulated[25]. 

1.3 Association of RBBP6 with cancer 

It is becoming more apparent that RBBP6 is a cancer associated protein that 

can serve as a target for immunotherapy. Its association with tumour 

suppressor proteins pRB and p53 is evident to the involvement of RBBP6 in 

cancer genesis[1,2,26]. It has been reported that RBBP6 is strongly up-

regulated in oesophageal cancer cells[10,27] and high levels of expression 

correlate with higher rates of proliferation in cultured oesophageal cancer cell 

and low survival rates in cancer patients. Cytotoxic T cells specific for RBBP6-

derived peptides were able to lyse oesophageal cancer cells in culture and to 

produce regression of oesophageal tumours in mice xenograft models[10]. 

The expression profile of RBBP6 in the A549 cell line (carcinomic human 

alveolar basal epithelial cells) was investigated and found up-regulated, hence 
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giving an indication that RBBP6 may play role in lung cancer[28].  RBBP6 is 

widely expressed in many tumor cell lines and its expression is found to be 

increased in tumors like breast cancer[2]. However, the correlation of PACT 

overexpression and tumourogenesis remains unclear. Moreover, RBBP6 was 

identified as one of the protein interactions mediated by multi-SH3 domain-

containing proteins associated with the formation of dynamic protein 

complexes that function in pancreatic cancer cell signaling[24].  

1.4. RBBP6 as a therapeutic target 

The critical roles of RBBP6 appear to be in cell cycle regulation, cell growth 

and in transcriptional and translational regulation. Moreover, the molecular 

mechanism of RBBP6 functions are coming to light, further illustrating its 

relevance as a potential target for immunotherapy. In addition, the regulatory 

effect that the RBBP6 family of proteins have on key tumor suppressors, p53 

and pRB, suggest that they represent a noteworthy class of potential targets 

for anticancer therapy[7]. Inhibitors of RBBP6 protein should prevent p53 

degradation and increase apoptosis in tumour cells. Small molecule inhibitors 

of the E3 ubiquitin ligase called nutlins have also been tried in retinoblastoma 

cells and found to induce p53-mediated cell death[29]. Antisense 

oligonucleotides have also been used to inhibit expression of the Mdm2 

gene[30] and in another study small-molecule benzodiazepinedione inhibitors 

of the Hdm2:p53 interaction were developed for the treatment of wild type 

p53-expressing tumors[31]. In the same context, similar approaches could be 

designed to target the p53-RBBP6 interface.  

 

 

 

 

 



 10 
 
 

Another interesting observation has been the establishment of cross-talk 

between RAS/MAPK and hedgehog signaling pathways in pancreatic ductal 

adenocarcinoma[25]. Because RBBP6 is speculated to be involved in both 

pathways[17,20], it is rational to suggest that targeting the RAS/MARK and 

hedgehog pathways through RBBP6 protein may represent a new therapeutic 

strategy for pancreatic ductal adenocarcinoma. 

1.5. RBBP6 functions through its domain motifs 

As a multidomain protein as shown schematically in Figure 1.1, RBBP6 is 

speculated to have its structural and functional properties influenced through 

conserved domains that form part of its structure[5]. Moreover, since domains 

are considered elementary units of molecular function, and proteins related by 

domain architecture may play similar roles in cellular processes[4], it is 

therefore possible to predict the functional role of RBBP6 through inferring to 

other proteins containing similar domains. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1.2. The domain structure of the RBBP6 family of proteins 

 

 

 

 

 

RBBP6 homologues containing a DWNN domain, a zinc knuckle and a RING finger are found in all complete 

eukaryotic genomes analyzed to date, including the single celled parasite E. cuniculi, in which it is very much 

reduced in size. In vertebrates and insects, the protein includes a long C-terminal extension containing p53 and 

Rb-interaction domains in human and mouse. A short form consisting of the DWNN domain and a poorly 

conserved C-terminal tail is also found in vertebrates. 
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1.5.1. The RING finger domain 

Many proteins containing RING finger domain characterized so far have been 

shown to be involved in a range of cellular processes, including development, 

oncogenesis, apoptosis, and viral replication[32]. By 1999, the function of the 

RING finger domain was clarified, with the observation that the RING finger 

domain of c-Cbl mediates a protein-protein interaction with proteins known to 

be involved in the protein ubiquitination and 26S proteasome degradation 

pathways[33]. Thereafter, a similar function was deduced for a number of 

RING finger containing proteins[34].  

The RING finger domain of RBBP6 was implicated in playing a role in 

ubiquitination pathways. A recent study by Li and colleagues showed that 

RBBP6/PACT interacts with p53 resulting in p53 ubiquitination via an E3 

ligase protein, Hdm2. After generating RING finger mutant of PACT that lacks 

the RING finger domain, it was observed the PACT mutant did not cause any 

effect on p53 ubiquitination and degradation, although in the presence of 

overexpressed Hdm2[2]. 

In unpublished data by Pugh and colleagues, it was observed that RING 

finger of RBBP6 adopts the same structural fold as U-box domain from CHIP 

(carboxyl terminus of Hsc70-interacting protein). CHIP is an E3 ligase protein 

that was implicated in many biological roles including cellular protein quality 

control through ubiquitination of misfolded protein. The CHIP protein was 

shown to complex with an ubiquitin-like protein, BAG-1 to facilitate chaperone 

dependent ubiquitination and degradation of misfolded protein[35,36]. 

Because of the presence of RING finger domain and an ubiquitin-like DWNN, 
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it is however, possible that RBBP6 may play a similar role in protein quality 

control, but in a context dependent manner.     

1.5.2. The DWNN domain 

Following the discovery of protein modification by the small, highly conserved 

ubiquitin polypeptide, a number of distinct ubiquitin-like proteins (Ubls) have 

been found to function as protein modifiers as well. As reviewed by Schwartz 

and Hochstrasser, these Ubls that include SUMO, Interferon-stimulated gene 

15, NEDD8, Atg8, AUT7 and APG12 function as critical regulators of many 

cellular processes, including transcription, DNA repair, signal transduction, 

autophagy, and cell-cycle control[37]. A growing body of data also implicates 

the dysregulation of Ubl-substrate modification and mutations in the Ubl-

conjugation machinery in the etiology and progression of a number of human 

diseases[38]. 

Pugh and colleagues (2006) described RBBP6 DWNN domain as an 

ubiquitin-like protein domain that can be found independently expressed in 

higher vertebrates[5]. The DWNN consists of 76 amino acid residues that 

constitute a phylogenetically conserved domain. Using the promoter-trap 

mutagenesis technique, DWNN was shown to play a role in CTL-killing and 

apoptosis [George, DPhil thesis, Oxford, 1995].  

 

Because of the presence of DWNN, RBBP6 may be involved in protein 

modification in a similar fashion like other ubiquitin-like proteins such as 

SUMO and NEDD8[39-41]. Moreover, DWNN domain protein was 

consistently found to resolve at a higher molecular weight on SDS-page 
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[Seameco T, MSc thesis, UWC, 2004] and further suggesting its covalent 

attachment to other proteins.   

1.5.3. The SR domain 

Simons et al, 1997[7] confirmed that RBBP6 contains the SR domain by using 

a well documented protocol developed by Zahler et al, 1992[42], for 

precipitating out SR domain-containing proteins in 20 mM MgCl2. Further 

evidence was gathered when RBBP6 was shown to be strongly localized to 

chromosomes during mitosis and to nuclear speckles, which are believed to 

be the main sites of activity for pre-mRNA splicing and processing, during 

interphase. Because of the presence of the SR domain on RBBP6, this may 

facilitate its splicing speculated role.  

 

Protein splicing factors with an SR rich domain can be classified into two 

groups. The first group is called the ‘classical’ SR protein family and the 

criteria used to define the family members are structural similarity, dual 

function in constitutive and alternative splicing, the presence of a 

phosphoepitope recognized by mAb104 antibodies and finally their purification 

using magnesium chloride[42]. The second group is called the SR related 

proteins[43] containing an RS domain but lacking a defined RNA recognition 

motif (RRM). It is speculated that the RBBP6 may be a member of the latter 

group, since its SR domain is present at the amino terminus, and it is not 

recognized by MAb104 antibodies[7]. A genome-wide survey in metazoans 

identified a large number of RS domain-containing proteins with a role not 

only in splicing but also in other cellular processes such as chromatin 

remodeling, transcription and cell cycle progression[44]. The SR related 
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proteins may bind to RNA through other domains such as the PWI motif found 

in the splicing activator SRm160[45,46].  

 

Previously characterized SR-containing proteins are implicated in splicing 

activity. It was observed that binding of SR proteins to their target pre-mRNAs 

and protein–protein interactions of SR proteins with both regulatory and 

general splicing factors are crucial interactions in determining splice sites. 

Therefore, it is rational to speculate that RBBP6 may be involved in pre-

mRNA splicing. This speculation is further supported by the presence of the 

Zinc knuckle domain on RBBP6 structure (Figure 1.2). The Zinc knuckle 

domain[47] occurs in a number of mRNA-associated proteins, including the 

splicing factors SLU7, h9G8 and hSF1[48] and has been shown to be 

involved in protein-protein and protein-DNA interactions[49]. It is therefore 

possible that the Zinc knuckle domain as part of RBBP6 structure serves as 

an RNA binding motif during splicing. 

1.5.4. The RB binding domain 

The retinoblastoma gene (RB-1) is one of the best studied tumor suppressor 

genes. Its characterization and cloning were made possible by the frequent 

mutation of RB-1 in the development of retinoblastoma and 

osteosarcoma[50]. All retinoblastomas studied to date contain mutations in 

both RB-1 alleles, and these mutations lead to the loss or functional 

inactivation of the gene product pRB protein[51]. Subsequent studies have 

identified RB-1 mutations in a wide variety of other tumors, including small-cell 

lung carcinomas, breast carcinomas, prostate carcinomas and bladder 

carcinomas[52]. 
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Based on retinoblastoma protein’s prominent and ubiquitous role in cancer, 

many investigators have focused their efforts on determining its biochemical 

function by identifying interacting protein partners. Using purified pRB as a 

probe, Sakai et al, (1995)[6] isolated clones for cellular proteins that bind to 

the pRB protein by direct screening of cDNA expression libraries. 

RBBP6/RBQ-1 was identified from the library screen. Further investigations 

confirmed that RBQ-1 binds to hypophosphorylated pRB and the binding 

could be disrupted by E1A protein, raising speculation that the binding could 

be physiologically relevant. Understanding the consequences of the loss of 

one type of pRB interaction in isolation holds enormous promise for 

characterizing how pRB works in controlling proliferation or other functions 

that makes it a tumor suppressor. 

  

Interestingly, other binding assays to study pRB interactions with E2Fs, 

chromatin regulators, and other binding partners have revealed an almost 

uniform preference for binding to the hypophosphorylated form of pRB[53]. 

This indicates that pRB binds to its interacting partners in G1 when it is 

unphosphorylated, implicating this as the active form. Phosphorylation at the 

beginning of S-phase then prevents pRB from interacting with other proteins 

until the end of mitosis when it is dephosphorylated[54].  

1.5.5. The p53 binding domain  

Cells have evolved various sophisticated pathways to sense and overcome 

DNA damage as a mechanism to preserve the integrity of the genome. 

Environmental attacks like radiation or toxins, as well as spontaneous DNA 
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lesions, trigger checkpoint activation and consequent cell cycle arrest and/or 

apoptosis. One key protein that coordinates DNA repair with cell cycle 

progression and apoptosis is the tumor suppressor protein p53, which in 

humans is encoded by the TP53 gene[55-57].  

Using p53 as a probe to screen an expression library, Simons et al (1997)[7] 

isolated a cDNA encoding a 250 kDa protein which was confirmed to be 

RBBP6/PACT protein. Recombinant forms of this protein, designated PACT, 

bind to wild type p53 while two mutant p53 proteins identified in human 

tumors abolish this interaction suggesting that binding is dependent on p53 

conformation. In another experimental setup, using gel retardation analysis of 

p53 and a specific DNA binding oligonucleotide together with increasing 

amounts of PACT-GST, it was observed that PACT protein interferes with p53 

specific DNA binding[7]. The characteristics of this interaction argue that 

RBBP6 may be involved in some aspect of p53-mediated tumor suppression. 

A plethora of other proteins have been found to bind various regions of p53 in 

order to regulate the specificity of its activity. Cellular negative regulation of 

p53 is principally mediated by certain ubiquitin ligases, such as MDM2. MDM2 

forms a tight negative feedback loop with p53: active p53 stimulates MDM2 

gene expression, and the resulting MDM2 protein binds to p53, exports it out 

of the nucleus and targets it for ubiquitin-mediated degradation[58].  Other 

RING finger proteins, COP1 and Pirh2, were found to be negative p53 

regulators by working in a similar manner as MDM2[59],[60]. In addition, c-

Jun-NH2-kinase (JNK), a p53 activator in stress conditions, targets p53 for 

ubiquitination and degradation in nonstressed cells[61]. 
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1.6. Ubiquitination 

Ubiquitination is a post-translational modification of a protein substrate 

through covalent attachment of an ubiquitin (Ub) moiety and this process is 

facilitated by a set of three enzymes, E1 (Ub-activating enzymes), E2 (Ub-

conjugating enzymes) and E3 (Ub ligases). Ubiquitin is an evolutionary highly-

conserved 8.5 kDa regulatory protein that is ubiquitously expressed in 

eukaryotes and found either free or covalently attached to other cellular 

proteins. The most prominent function of ubiquitin is tagging proteins for 

proteasomal degradation via the ubiquitin-proteasome system. Besides this 

function, ubiquitination also controls the stability, function, and intracellular 

localization of a wide variety of proteins[62]. 

Because ubiquitination has several possible consequences, the manner in 

which a covalent ubiquitin signal is interpreted must depend in some cases on 

additional factors, such as the subcellular localization of the substrate or the 

number the ubiquitins that are covalently added to the substrate[63]. Mono-

ubiquitination is the attachment of a single ubiquitin to a substrate lysine 

residue. Multiple lysine residues may be modified within a single substrate. 

Mono-ubiquitination is involved in at least three distinct cellular functions: 

histone regulation, endocytosis, and the budding of retroviruses from the 

plasma membrane[64-66]. Poly-ubiquitination is the synthesis of a multi-

ubiquitin chain on the substrate, where an ubiquitin attached during one round 

of the ubiquitination cascade becomes the substrate for the next ubiquitin 

transfer. There are seven surface exposed lysines in ubiquitin, each with the 

potential to be utilized for poly-ubiquitin chain linkage sites. The two most 

reported poly-ubiquitin chain linkages are formed via Lys48 or Lys63 of 
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ubiquitin. A chain of at least four ubiquitin subunits linked at Lys48 is the 

primary signal for proteasome mediated degradation[67-69]. Lys63-linked 

chains target a substrate for non-proteasomal processes such as involvement 

in post-replicative repair of DNA damage and in activation of NF-κB [70-73]. 

1.6.1. Ubiquitin-activating enzyme (E1) 

In most organisms, including humans and the yeast Saccharomyces 

cerevisiae, a single E1 enzyme activates ubiquitin for the entire array of 

downstream conjugating enzymes[74,75]. The chemistry of the E1 reaction is 

well understood[76]. The reaction begins with the ordered binding of MgATP 

and then of ubiquitin, leading to the formation of a ubiquitin adenylate 

intermediate that serves as the donor of ubiquitin to a cysteine in the E1 

active site. Each fully loaded E1 molecule carries two molecules of activated 

ubiquitin with one as a thiol ester, the other as an adenylate that serves as the 

donor of ubiquitin to the active cysteine in E1[76]. The thiol-linked ubiquitin is 

transferred to the next enzyme in the conjugating cascade, the E2.  

 

A recent study identified PYR-41 as a first cell permeable inhibitor of the 

ubiquitin E1, thereby representing an important step forward in developing 

leads for preclinical evaluation of inhibitors of E1 in cancer and potentially 

other diseases. PYR-41 was also shown to increase the level of a cell cycle 

inhibitor and tumour suppressor p53 and inhibits NF- B activation[74].  

1.6.2. Ubiquitin-conjugating enzymes (E2) 

The S. cerevisiae genome encodes a total of 13 E2-like proteins (Ubc1-

Ubc13). Two of these, Ubc9 and Ubc12, are E2s for SUMO and Nedd8, 
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respectively, rather than for ubiquitin[77]. On the other hand, mammalian 

genomes include over 30 E2 enzymes[78]. All E2s are recognizable by their 

conserved catalytic domains (referred to as Ubc) which contain the active 

cysteine residue that accepts ubiquitin from E1 and three-dimensional 

structures solved for dozens of E2 Ubcs reveal a conserved architecture, 

which is the hallmark of E2s[79]. Some E2s have substantial amino- or 

carboxyl-terminal extensions and some have insertions in the Ubc[68]. These 

sequences may either facilitate or preclude interactions with specific E3s. It 

was recently shown that certain E2s show preference either for attaching the 

first ubiquitin to a substrate lysine or for attaching ubiquitin to itself (chain 

elongation), suggesting that an E2 may play a role in dictating product 

formation[78].  

 

Additionally, E2s are categorized into four classes, depending on whether 

they consist of only a Ubc (Class I), or have additional sequences N-terminal, 

C-terminal, or both to the Ubc domain (Classes II, III, and IV, respectively). 

Although several co-crystal structures and NMR mapping studies of E2/E3 

complexes confirm that Ubcs interact directly with E3s, there are examples of 

non-Class I E2s that use elements outside the Ubc in their E3 interaction 

(UbcH10[80] and UbcM2[81]. Of the approximately thirty human E2s, eleven 

are Class I[79]. Thus, although the functions of non-Ubc regions remain to be 

determined for most E2s, strategies that utilize only the Ubc may miss 

important interactions or features.  
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1.6.3. Ub ligases (E3) 

Ubiquitin ligase (E3) functions are at the cross-road between ubiquitin-

activation and attachment of ubiquitin to protein substrates. During this 

process the E3 interacts with both a substrate and a ubiquitin-conjugating 

enzyme (E2). Specificity for ubiquitination is believed to be mediated primarily 

by an E3, which interacts directly with both an E2 and a substrate to meditate 

the transfer of ubiquitin from E2 to a lysine residue (via an isopeptide bond) 

on the E3-bound substrate. Most E3 enzymes belong to either the RING 

finder domain or HECT domain families of proteins and they are classified 

according to how they interact with the target protein.  

 

The RING domain-type E3s and structurally-related U-box enzymes constitute 

the first group[34,82,83]. The RING finger domain-type E3s bind to both the 

ubiquitin conjugated E2 and the protein substrate and this in turn facilitates 

transfer of the ubiquitin moiety from ubiquitin-conjugated E2 to the protein 

substrate through the nucleophilic lysine residue of the substrate[84,85]. The 

RING-domain E3s are by far the largest family of ubiquitin ligases, with more 

than 600 RING-containing proteins encoded in the human genome[86]. RING-

domain E3s come in four molecular architectures: single-chain, homodimeric, 

heterodimeric, and multi-component. In all known cases, a RING domain 

interacts directly with an E2. However, in an increasing number of RING and 

U-box E3s, additional structural elements contribute significantly to the 

interaction. Elements proximal to the RING are responsible for either homo-or 

heterodimerization of the RING domains[87-90], which modulate their activity 

and substrate specificity.  
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Members of the HECT domain protein family are characterized by sequence 

similarity of their C-terminal regions to the C-terminus of E6-AP, an E3 

ubiquitin-protein ligase[91]. E6-AP, as its name implies, is a human cellular 

protein that interacts with the human papillomavirus E6 protein. E6 binding 

enables E6AP to ubiquitinate the p53 tumor suppressor. Moreover, an 

abnormality of the E6AP E3 activity has been linked to a neurological 

disorder, Angelman's syndrome[92]. An essential intermediate step in E6-AP-

dependent ubiquitination is the formation of a thioester complex between E6-

AP and ubiquitin in the presence of distinct E2 ubiquitin-conjugating enzymes 

including human UbcH5, a member of the UBC4/UBC5 subfamily of E2s[93]. 

Similarly, several HECT domain proteins, including Saccharomyces 

cerevisiae RSP5, form ubiquitin thioester complexes, indicating that HECT 

domain proteins in general have E3 activity[93]. HECT domain E3s contain a 

cysteine residue that, similar to the E1 and E2 enzymes, forms a thiolester 

intermediate with the C-terminus of activated ubiquitin. In this case, ubiquitin 

is transferred from an E2 to an E3 and finally to a lysine side chain of a 

substrate protein[92]. 

1.6.4. The ubiquitn-proteasome system 

The 26S proteasome is a conserved chambered protease complex that is 

present in both the cytoplasm and the nucleus[94]. As reviewed by  Groll and 

colleagues[95] the 26S proteasome is formed by a cylinder-shaped multimeric 

complex referred to as the 20S proteasome (core particle, CP), capped at 

each end by another multimeric component called the 19S complex as 

regulatory particles/complexes that bind to ubiquitinated substrates, cleave off  
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ubiquitin, and then unfold and translocate the substrate into the 20S core[96] 

(see Figure 1.3). 

 

The ubiquitin-proteasome system is part of the cellular proteolytic machinery 

that has been identified as a key regulatory mechanism in many eukaryotic 

cells. Accumulating evidence revealed that the ubiquitin-proteasome system is 

involved in the regulation of fundamental processes in mammalian stem and 

progenitor cells of embryonic, neural, hematopoietic and mesenchymal 

origin[97]. Degradation of proteins via the ubiquitin-proteasome system 

involves two distinct steps that occur sequentially. The first step involves the 

covalent attachment of multiple ubiquitin molecules to the target proteins. In 

this process, the ubiquitin activating protein, E1, utilizes ATP to form a high 

energy ubiquitin-thiol ester and then transfers the activated ubiquitin to an E2 

(ubiquitin carrier protein), forming an E2-ubiquitin-thiol ester. The ubiquitin is 

then linked to the substrate in a reaction requiring E3, an ubiquitn-protein 

ligase.  

 

The second step involves the degradation of the tagged or poly-ubiquitinated 

proteins to small peptides by a 2500 KDa complex, the 26S proteasome. The 

20S proteasome contains the proteolytic enzymes, and the 19S complex 

contributes multiple functions to the 26S proteasome, including subunits able 

to bind poly-ubiquitin chains, isopeptidases that catalyze the release of free 

ubiquitin, and six essential ATPase subunits[98].  
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1.7. Yeast 2-hybrid (Y2H) system and protein-protein interaction 

Completion of the Human Genome project has been one of the most 

important endeavours for identifying genetic variants that are associated with 

complex human diseases[99-102]. However, elucidation of the genome 

sequence merely sets the stage for a still more challenging task, and that is 

the assignment of biological function to the tens of thousands of newly 

discovered proteins. The identification of protein-protein interactions can help 

to determine the biological function of novel proteins, by associating them 

relative to other proteins in known cellular pathways or functional 

classes[103]. 

 

The approximately 30,000 genes of the human genome are speculated to 

give rise to at least a million proteins through a series of post-translational 

modifications and gene splicing mechanisms[104]. Although a small 

population of these proteins can be expected to work in relative isolation, the 

majority are expected to operate in concert with other proteins in complexes 

and networks to orchestrate the myriad of processes that impact cellular 

structure and function. These processes include DNA replication, 

transcription, translation, splicing, cell cycle control, signal transduction and 

many more [105-110]. However, the detailed characterization of such protein 

interaction networks has established a comprehensive approach in identifying 

the defective pathways of tissues in pathological state and the mechanisms of 

pathogens. Moreover, this knowledge is applicable to designing more 

effective therapeutic approaches for both infectious and non-infectious 

diseases. 
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Numerous techniques have been developed to study protein-protein 

interactions, from biochemical approaches such as coimmunoprecipitation 

and affinity chromatography, to molecular genetic approaches such as the 

Y2H system. The Y2H system is proving itself to be a powerful tool for 

proteomic-based investigations. The technology has already been employed 

to investigate the protein-protein interactions between many of the full-length 

open reading frames predicted from the yeast (Saccharomyces cerevisiae) 

genome sequencing initiative[111-113]. A similar approach has also been 

taken for the large-scale mapping of protein-protein interactions in 

Caenorhabditis elegans[106,114] and Helicobacter pylori[115]. 

1.7.1. Yeast 2-hybrid system 

The Y2H system remains a preferred large scale method because it offers a 

number of advantages over many of the biochemical procedures often used 

for the analysis of protein-protein interactions. Relative low costs and high 

sensitivity are among the advantages conferred by Y2H technology as an 

ideal method for identification of protein-protein interactions. Moreover, the 

basic premise of Y2H has undergone modifications, variations and 

extensions. These adaptations enable the application of Y2H method to a 

variety of diverse scientific questions that include studying of DNA-protein 

interactions and RNA-protein interactions.  

1.7.2. The principle of Y2H system 

The Y2H system is a simple robust assay for protein-protein identifying 

interactions that was first developed by Fields and Song in 1989[116] and was 

later developed for high-throughput screening during the early 1990s[117]. 
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The basic principle behind the Y2H system relies on the yeast gene product 

GAL4, a transcriptional factor protein with two functional domains, DNA 

binding domain (BD) and activation domain (AD), that activates transcription 

of genes involved in galactose metabolism[118]. In a GAL4-based Y2H assay, 

a gene of interest, referred to as ‘bait’, is cloned fused in-frame with the BD 

into a yeast expression vector such as pGBKT7. On the other hand, cDNA 

library encoding unknown genes, also referred as ‘prey’ genes, are cloned 

fused to the AD into a different yeast expression plasmid e.g. pACT2. The bait 

and prey containing plasmid can be co-transformed into a yeast strain, for 

instance, AH109. When bait and library prey fusion proteins interact, the BD 

and AD are brought into proximity, thus activating transcription of reporter 

genes such as lacZ gene (an E. coli gene responsible for galactose 

metabolism), resulting in selection for blue yeast colonies indicating presence 

of interacting proteins (Fig 1.3). 

1.7.3. Application of Y2H 

The Y2H technology can be used to identify novel protein interactions, confirm 

suspected protein interactions, define domains or amino acids critical for an 

interaction and screen libraries for proteins that bind to a target protein[119]. 

The residues required for the physical interaction of a given pair of proteins 

can be mapped easily by generating deletion constructs of the genes of 

interest and assaying reporter-gene activation both qualitatively and 

quantitatively. The most powerful application of the system is the ability to 

isolate novel genes encoding proteins that associate with a known protein of 

interest rapidly[120].  

 

 

 

 

 



 

 

 

 

 

 

 
Figure 1.5. The principle of Y2H system 
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A schematic representation of the principle of Y2H system. The Y2H screening utilizes yeast mating, in 

which expression plasmids initially in two different haploid yeast strains are brought together. In the first 

strain, protein (B) is fused to a DNA-binding domain (BD) and will bind at an engineered site upstream of 

the reporter gene. In the second strain, protein (P) is fused to a transcription activation domain (AD). To 

conduct the assay, the two strains are mated and the reporter activity measured in the resulting diploids. If 

B and P interact, AD activates transcription of a reporter gene, leading to selection. 
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Several industrially significant applications of Y2H systems have emerged. 

One application is the identification of new protein targets for pharmaceutical 

research. Another industrial significance of the Y2H is to find compounds that 

modulate protein interactions. Interaction technology has already had a large 

impact on basic and applied biological research. In industry, it is being used to 

isolate and characterize new targets for drug development[121].    

The Y2H system has contributed tremendously to our understanding of basic 

cellular processes, and to the way these processes contribute to disease. A 

recent high throughput Y2H screen focused on proteins involved in inherited 

neurodegenerative disorders[122]. The screen resulted in a map with 770 

mostly novel interactions centered on 20 ataxia-related proteins. The map 

linked many of the poorly characterized disease proteins to each other and to 

proteins with known functions, providing new clues about the pathways 

involved in the ataxia diseases. This study also illustrates the continued value 

of Y2H screens that focus on specific diseases or pathways[122]. 

 

1.7.3.1. Y2H in directed molecular evolution of proteins 

Directed molecular evolution of functional proteins has emerged as an 

alternative to traditional forms of protein engineering, such as structure-based 

site-directed mutagenesis[123]. Directed evolution involves multiple cycles of 

random gene mutagenesis and/or DNA recombination followed by screening 

or selection. The advantage of this technique is that knowledge of structural 

data, relationship between sequence, structure and mechanism is not 

required for a fast generation of a huge number of mutants[124]. 
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Recently, Bichet and colleagues improved the protein-protein interactions by 

directed evolution by developing a new in vivo selection system based on the 

Y2H system. The system enabled screening for increased protein-protein 

interactions between stable and functional species including cofactor-

containing proteins (FAD, [2Fe–2S], heme). The method was successfully 

applied for the directed evolution of Adx and selected variants[124].  

1.7.4. Variants of the yeast 2-hybrid system 

Other important modifications of the two-hybrid system have been developed 

to address a growing list of molecular interactions and these include yeast 1-

hybrid (Y1H)[125] and yeast 3-hybrid (Y3H)[126,127] systems.  

1.7.4.1. The yeast 1-hybrid system 

The yeast 1-hybrid variation is designed to investigate protein-DNA 

interactions. Unlike in yeast 2-hybrid system, the binding domain plasmid is 

eliminated and a hybrid expression library is constructed by fusion of a 

transcriptional AD to a cDNA library such that expression of a reporter gene is 

induced when the hybrid protein recognizes the binding site. The library is 

screened against the desired target sequence which is inserted in the 

promoter region of the reporter gene construct[128]. Several novel protein-

promoter interactions were identified using the yeast 1-hybrid system[129]. 

For example, Y1H assay was applied to identify multifunctional zinc-finger 

transcription factor, YY1 as a binding factor for a proacrosin promoter element 

and drives transcription of proacrosin[130]. Proacrosin gene is a gene that is 

specifically expressed in the testis and encodes an acrosomal enzyme, an 

enzyme is associated with sterility[131].  
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1.7.4.2 The yeast 3-hybrid system 

Because of the limitation of the currently used form of Y2H as it is restricted to 

bipartite interactions, another Y2H variant was developed that enables 

identification of proteins that interacts as a complex or through shared binding 

to RNA[126,127]. For example, signaling pathways often require a third 

molecule to mediate association or interactions of proteins. The principle of 

Y3H strategy as shown in Fig 1.4 allows the study of such ternary complexes. 

The BD domain fused to the ‘bait’ protein and AD fused to the ‘prey’ protein 

cannot activate reporter gene expression and require a third molecule, either 

RNA or a protein, to bring them into close proximity. For the effective 

interaction to be observed, the molecule that links the ‘bait’ and ‘prey’ proteins 

should contain shared binding site to the proteins.  

 

The Y3H system can be applied to identifying cDNAs encoding receptors of a 

ligand of interest and to screen for new ligands that bind to a specific receptor. 

In one example, Zhang and Lautar used Y3H to verify that, after epidermal 

growth factor (EGF) stimulation, EGF receptor, and C-terminal region of Sos, 

a guanine-nucleotide exchange factor for Ras proteins need an adaptor 

protein, Grb2, for interaction[127]. The Y3H was also successfully used for 

screening and identification of glucocorticoid receptor interacting 

proteins[132]. 
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6. The principle of the yeast 3-hybrid system 

omain is fused to the bait protein and the AD fused to the prey protein. Both bait and prey protein 

hrough shared binding to the RNA as shown thereby bringing into proximity the BD and the AD 

anscription of the reporter gene. 
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1.7.4.3. Reverse yeast 2-hybrid 

Reverse Y2H is another modification of Y2H that uses counter selection by 

employing a reporter gene, whose product is either toxic or cytostatic to 

growing cells such that only the cells that do not express it can grow[133]. 

Reverse Y2H system enables genetic selection against a specific 

protein/protein interaction[134]. Once a positive interaction has been 

identified, mutation of these interacting proteins may result in decreased 

ability to interact. Therefore, these mutants that result in abolishment of 

interaction can be identified using the reverse Y2H as a way of following up of 

the biological significance of the interaction and in defining the residues 

involved in the interaction. Furthermore, the reverse Y2H, in conjunction with 

suitable yeast expression libraries, might facilitate the identification of genes 

which encode proteins that interfere with a particular protein/protein 

interaction[134]. Several studies have used reverse Y2H in identifying protein 

mutants resulted in loss of interaction with respective partner. In one study a 

reverse Y2H was used to identify loss-of-interaction mutations of the catalytic 

subunit of the Escherichia coli heat-labile toxin (LTA1) that showed decreased 

binding to the active (GTP-bound) form of human ARF3, its protein 

cofactor[135]. 

1.8. Co-immunoprecipitation  

Co-immunoprecipitation (Co-IP) is a one of the biochemical techniques used 

to verify protein-protein interactions identified from Y2H library screen. The 

technique was first developed in 1974 to resolve the immunoprecipitated 

proteins on slab gels[136] and has since then become one of the most 

important techniques to study protein-protein interactions.  
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In a typical Co-IP experiment, specific IP antibody is directed towards a target 

protein known as ‘bait’ from a sample containing other proteins, e.g., a cell 

lysate. The antibody is then immobilized using either protein A or protein G 

covalently attached to sepharose beads[137]. After washing of the beads, the 

antibody, the bait and proteins associated to the bait are eluted by boiling and 

analyzed using gel electrophoresis, mass spectrometry, western blotting, and 

other methods for identifying constituents in the complex[138]. 

1.8.1. Different ways of preparing for Co-IP experiment 

There are generally 3 different ways of performing Co-IPs that are classified 

as traditional (classical) method, oriented affinity method and direct affinity 

method. The traditional method entails incubating the IP antibody with the 

sample and sequentially binding it to Protein A or G agarose beads to 

facilitate target antigen recovery. However, this approach results in the target 

protein becoming non-covalently bound with the IP antibody, and this can 

interfere with downstream analyses. The orientated affinity method uses 

Protein A or G beads to serve as an anchor to which the IP antibody is 

crosslinked, thereby preventing the antibody from co-eluting with the target 

protein. Similarly, the direct affinity method also immobilizes the IP antibody, 

except that in this case, it is directly attached to a chemically activated 

support. Both methods prevent co-elution of the IP antibody, enabling reuse of 

the immunomatrix[139].  

1.8.2. Different ways of performing a Co-IP experiment  

Several approaches to co-immunoprecipitation experiments have been 

adopted and these include: first, co-immunoprecipitate from cell-lines or 
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tissues expressing endogenous proteins. This approach studies the 

interaction of endogenous protein complexes as specific antibody for the 

endogenous bait protein is used for the pull down[140]. The advantage of this 

approach is that endogenous protein complexes are studied. Therefore, any 

artificial effects of affinity tags or overexpression are avoided. The 

disadvantage is that highly specific antibodies are required. 

 

Second, co-immunoprecipitation from cells transfected with a plasmid 

encoding a tagged bait protein. An antibody directed against the tag (instead 

of against the bait protein) can then be used in the co-IP experiments. An 

advantage of this approach is that one can be relatively confident that the 

antibody directed against the tag is specific and does not cross react with 

other proteins. Furthermore, epitope-tagged proteins can often be eluted by 

incubation with competing peptides, or other small molecules, instead of 

boiling. Such specific elution often reduces the amount of contaminating 

proteins in the eluate. 

 

Third, performing Co-IP experiments using cells transfected with tagged 

versions of two putative interaction partners such as c-Myc tagged and HA 

tagged protein. The obvious advantage of this method is that the co-

immunoprecipitated protein can be easily detected since both proteins are 

over expressed through transfections[141]. 

1.8.3. Other applications of co-immunoprecipitation 

Besides being a golden standard for verifying putative protein-protein 

interactions, Co-IP can be applied for different purposes that include 
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determination of the molecular weight and isoelectric point of 

immunoprecipitated proteins by one-dimensional or two-dimensional SDS-

PAGE, and verification that an antigen of interest is synthesized by a specific 

tissue. This is achieved by directing specific antibody against the antigen then 

followed by immunoprecipitation[142]. Immunoprecipitation can also be 

applied in the determination of whether a protein contains carbohydrate 

residues by evaluating whether immunoprecipitated antigen from cells 

cultured with radioactive monosaccharides is radiolabelled. Suriano and 

colleagues applied immunoprecipitation techniques to characterize 

differences in glycosylation patterns of heat shock protein, gp96[143]. 

Moreover, the technique can also be applied to quantify the rate of synthesis 

of proteins in culture by determining the quantity of immunoprecipitated, 

radiolabelled protein. 

1.9. Rationale of the study 

A number of functions imputed on RBBP6 protein appeared to be primarily 

mediated through interaction with other proteins via its domains. Observation 

of RBBP6 interaction with tumor suppressor proteins p53 and pRB[6,7] 

suggested that the protein plays a significant role in a number of cellular 

mechanisms that are linked to cell cycle regulation. Because of the presence 

of several domains as part of the RBBP6 structure, it is possible that the 

biochemical functions of RBBP6 are not only limited to its interaction with 

these tumour suppressor proteins but through other cellular proteins that are 

not yet unveiled. Therefore, identification of proteins that interact with RBBP6 

may provide information about other novel functions of RBBP6.  
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1.10. The aims and objectives 

The study aims to identify protein interaction partners of RBBP6. Two well 

characterized domains of RBBP6, the N-terminal ubiquitin-like DWNN domain 

and RING finger domain, shall be used as baits in a Y2H screen of a human 

testis cDNA library. Putative interactors would be further verified using in vitro 

and in vivo immunoprecipitation assays as well as co-localisation 

experiments. Moreover, depending on the feasibility of the experiments, 

assays to test the functional relevance of the interactions would be carried 

out. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Materials and Suppliers 

40 % 37.5:1 acrylamide:bis-acrylamide    Promega 

Agarose       Promega 

Ampicillin       Roche 

APS (Ammonium persulphate)    Merck 

Bacteriological Agar      Merck 

Bacto tryptone      Fluka analytical 

Boric Acid       Merck 

BSA (Bovine serum albumin)    Roche 

Bromophenol blue      Roche 

Calcium chloride      BDH AnalaR 

Cell culture media and reagents    Gibco Life 

Technologies 

Coomasie Brilliant Blue R 250        Sigma 

DEPC (Diethyl Pyrocarbonate)    Sigma 

DMSO (Dimethyl sulphoxide)    Sigma 

DTT (Dithiothreitol)       Roche 

EDTA (Ethylene diamine tetra-acetic acid)  Merck 

Ethanol       BDH  

Ethidium bromide      Sigma 

Glucose       Saarchem UniVAR 

Glycerol       Merck 

Glycine       Saarchem UniVAR 
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Herring sperm DNA      Promega 

Hoechst H-33342        Sigma 

Hydrochloric acid      Merck 

Kanamycin monophosphate    Roche  

Lithium Acetate      Sigma 

Lipofectamine 2000 transfection reagent   Invitrogen 

Magnesium Chloride     Merck 

MetafecteneTM transfection reagent   Biontex 

MG132 (proteasome inhibitor)    Sigma 

PBS (Phosphate-buffered saline)    Life Technologies 

PEG 8000        Sigma 

PMSF (Phenylmethylsulphonyl fluoride)     Sigma 

PVDF (Polyvinylidene difluoride) membrane  Roche diagnostics 

Restriction enzymes     Fermentas 

RNase A       Roche 

SDS (Sodium dodecyl sulphate)    Roche 

SD (Synthetic Dropout) suppliments   Clontech 

Sodium Chloride      Merck 

TEMED (N, N, N’, N’-tetra methlethylene-diamine) Promega 

T4 ligase        Inqaba Biotechnologies 

Tris (hydroxymethyl) aminomethane   BDH 

Triton X-100        Merck 

Tryptone       Merck 

Tween 20       Merck 

Yeast extract       Merck 
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Yeast nitrogen base      Clontech 

2.2 Commercial kits used 

GeneElute™ PCR Clean-up kit    Fermentas 

GeneJETTM Plasmid Miniprep Kit    Fermentas 

TNT® Quick Coupled system kit    Promega 

ECL plusTM Western Blotting Detection System  Amersham Pharmacia 

S-100 HeLa Conjugation Kit     Boston Biochem 

Dual-Luciferase Reporter Assay System   Promega 

 

List of commercial antibodies used 

Rabbit Anti-HA MAb antibody (sc-805)   Santa Cruz 

Mouse Anti-cMyc MAb antibody (sc-40)   Santa Cruz 

Mouse Anti-β-actin MAb (4967)    Cell signaling 

Goat Anti-YB-1 PAb antibody (sc-18057)  Santa Cruz 

Mouse Anti-GFP MAb antibody (sc-9996)   Santa Cruz 

Mouse Anti-RFP (DsRed) MAb antibody (632392) Clontech 

Rat Anti-Hsp70 MAb antibody (SPA-815F)  Stressgen 

Donkey anti-goat IgG MAb antibody (sc-2020)  Santa Cruz 

Goat anti-mouse IgG MAb antibody (sc-2005)   Santa Cruz 

Goat anti-rat IgG MAb antibody (sc-2006)  Santa Cruz 

2.3 General stock solutions, buffers and media 

All the general solutions listed below were prepared in double distilled water 

and stored at room temperature unless otherwise stated. 
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2.3.1. Electrophoresis solutions 

10 % Ammonium persulphate 

Ammonium persulphate      10 % (w/v) 

Make up in double distilled water     100 ml  

Mix well and store at 4 °C  

 

10x TBE stock solution 

Tris base        108 g 

Boric Acid        58 g 

EDTA         9.3 g 

Make up in double distilled water     1000 ml  

 

Ethidium bromide 

Ethidium bromide        1 % (w/v) 

Make up in double distilled water      50 ml  

Stir well on magnetic stirrer, and store in a dark container at room 

temperature 

 

Bromophenol blue loading dye 

Gycerol        30 % (v/v) 

EDTA (pH 8.0)       15 mM 

Bromophenol blue       0.5 % (w/v) 
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10x SDS-PAGE running buffer 

Tris base        25 mM  

Glycine        192 mM  

SDS         0.1 % (w/v) 

Make up in double distilled water     1000 ml   

 

SDS-PAGE separating buffer  

Tris-HCl, pH 8.8       1.5 M 

SDS          0.1 % 

Make up in double distilled water     500 ml   

 

SDS PAGE stacking buffer 

Tris-HCl, pH 6.8       0.5 M 

SDS          0.1 % (w/v) 

Make up in double distilled water     500 ml  

 

Transfer Buffer 

Tris-HCl, pH 8.8       25 mM  

Glycine        192 mM  

Methanol        20 % (v/v) 

Make up in double distilled water     1000 ml  
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TBST 

NaCl          150 mM 

Tris-HCl, pH 8.0       20 mM 

Tween-20        0.1 % 

Make up in double distilled water     1000 ml  

 

Western blotting blocking solution 

BSA (Bovine serum albumin Fraction V)    5 % (w/v) 

Make up in TBST       100 ml  

 

2x Sample buffer  

Glycerol        25 % (v/v) 

Bromophenol blue       0.01 % 

DTT          50 mM 

Make up in 100mM Tris buffer, pH 6.8    50 ml    

Storage -20 °C 

 

1x PBS, pH7.4  

NaCl         8.0 g 

KCl         0.2 g 

Na2HPO4.2H2O       1.42 g 

KH2PO4        0.2 g 

Make up in double distilled water     1000 ml  
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2.3.2. Buffer and media for bacterial cultures 

CAP buffer (pH 7.0) 

CaCl2         2.21 g 

Glycerol        37.5 ml  

PIPES         0.76 g 

Make up in double distilled water     250 ml  

Storage 4 °C  

LB liquid media 

Bacto tryptone       1 % (w/v) 

Yeast extract        0.5 % (w/v) 

NaCl         1 % (w/v) 

Make up in double distilled water     500 ml  

Autoclave at 121 °C for 15 minutes 

LB agar  

Bacto tryptone       1 % (w/v) 

Yeast extract        0.5 (w/v) 

NaCl         1 % (w/v) 

Bacteriological agar       1.5 % (w/v) 

Make up in double distilled water     500 ml  

Autoclave at 121 °C for 15 minutes and add appropriate antibiotic to media 

when the temperature is approximately 55 °C and pour out onto Petri dishes 
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2.3.4. Yeast Media and Buffers 

YPDA media 

Difco peptone       2 % (w/v) 

Yeast extract        2 % (w/v) 

Glucose        2 % (w/v) 

L-adenine hemisulphate (0.2 % w/v stock solution)  7.5 ml  

Make up in double distilled water     500 ml  

Autoclave at 121 °C for 15 minutes  

 

YPDA agar 

Difco peptone       2 % (w/v) 

Yeast extract        2 % (w/v) 

Glucose        2 % (w/v) 

Bacteriological agar       2 % (w/v) 

L-adenine hemisulphate (0.2 % w/v stock solution)  7.5 ml  

Make up in double distilled water     500 ml  

Autoclave at 121 °C for 15 minutes, allow to cool down to approximately 55 °C 

and pour out onto Petri dishes 
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SD/-W media 

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-W amino acid supplement     0.067 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes 

 

SD/-W agar media 

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-W amino acid supplement     0.067 (w/v) 

Bacteriological agar       2 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes, allow to cool down to approximately 55 °C 

and pour out onto Petri dishes 

 

SD/-L liquid media 

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-L amino acid supplement     0.067 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes 
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SD/-L agar media 

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-L amino acid supplement     0.067 % (w/v) 

Bacteriological agar       2 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes, allow to cool down to approximately 55 °C 

and pour out onto Petri dishes 

 

SD/-H agar media 

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-H amino acid supplement     0.067 % (w/v) 

Bacteriological agar       2 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes, allow to cool down to approximately 55 °C 

and pour out onto Petri dishes 
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SD/-Ade agar media 

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-Ade amino acid supplement     0.067 % (w/v) 

Bacteriological agar       2 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes, allow to cool down to approximately 55 °C 

and pour out onto Petri dishes 

 

SD/-L-W (DDO) liquid media  

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 (w/v) 

SD/-L-W amino acid supplement     0.067 (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes 
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SD/-L-W (DDO) agar media  

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-L-W amino acid supplement     0.067 % (w/v) 

Bacteriological agar       2 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes, allow to cool down to approximately 55 °C 

and pour out onto Petri dishes 

 

SD/-L-W-H (TDO) liquid media 

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-L-W-H amino acid supplement    0.067 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes 
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SD/-L-W-H (TDO) agar media 

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-L-W-H amino acid supplement    0.067 % (w/v) 

Bacteriological agar       2 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes, allow to cool down to approximately 55 °C 

and pour out onto Petri dishes 

 

SD/-L-W-H-Ade (QDO) liquid media 

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-L-W-H-Ade amino acid supplement    0.067 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes 
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SD/-L-W-H-Ade (QDO) agar media 

Glucose        2 % (w/v) 

Yeast nitrogen base       0.67 % (w/v) 

SD/-L-W-H-Ade amino acid supplement    0.067 % (w/v) 

Bacteriological agar       2 % (w/v) 

NaOH (4M stock solution)      160 µl 

Make up in double distilled water     600 ml  

Autoclave at 121 °C for 15 minutes, allow to cool down to approximately 55 °C 

and pour out onto Petri dishes 

 

Yeast lysis buffer 

SDS         1 % 

Triton X-100        2 % 

NaCl         100 mM 

Tris-HCl (pH 8)       10 mM 

EDTA          I mM 
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2.3.5. Co-IP buffer 

Aprotinin (2mg/ml stock solution)     12.5 µl  

DTT (100mM stock solution)     50 µl 

PMSF (50mM stock solution)     50 µl 

Tween-20        5 µl 

Make up in 1x PBS       5 ml  

2.3.6. Mammalian cell lysis RIPA buffer 

 NP-40        1 % (w/v)   

 Na-deoxycholate       0.25 % (w/v)   

 NaCl         150 mM  

 EDTA         1 mM  

 PMSF        1 mM  

 Aprotinin, leupeptin, pepstatin     1 µg/ ml  each 

 Na3VO4        1 mM  

 NaF         1 mM 

Make up in 50mM Tris-HCl, pH 7.4    100 ml  
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2.4. Plasmids  

A variety of plasmids for use in bacterial, yeast and mammalian cells were 

used in the study.  

2.4.1. pGBKT7 (Clontech, USA) 

pGBKT7 is a yeast expression vector that expresses proteins fused to the 

GAL4 DNA binding domain (BD). Fusion proteins are expressed at high levels 

from the constitutive ADH1 promoter (PADH1) and transcription is terminated by 

the T7 and ADH1 transcription termination signals (TT7 & ADH1). pGBKT7 also 

contains a T7 promoter for transcription of proteins in vitro and a c-Myc 

epitope tag upstream of the MCS. pGBKT7 is a shuttle vector that replicates 

autonomously in both E. coli and S. cerevisiae and carries the Kanr gene, 

which confers kanamycin resistance in E. coli, and the TRP1 nutritional gene 

marker that allows yeast auxotrophs to grow on synthetic drop-out media 

lacking tryptophan (Figure 2.1).  

2.4.2. pACT2 (Clontech, USA) 

pACT2 a yeast expression vector that expresses proteins fused to the GAL4 

activation domain (AD), an HA epitope tag upstream of the MCS. The hybrid 

protein is expressed at high levels in yeast host cells from the constitutive 

ADH1 promoter (PADH1); transcription is terminated at the ADH1 transcription 

termination signal (T ADH1). pACT2 is a shuttle vector that replicates 

autonomously in both E. coli and S. cerevisiae and carries the Ampr gene, 

which confers ampicillin resistance in E. coli. pACT2 also contains the LEU2 

nutritional gene that allows yeast auxotrophs to grow on synthetic  drop-out 

media lacking leucine (Figure 2.2). 
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ure 2.1. Restriction map and multiple cloning site (MCS) of pGBKT7 

 

tein encoding sequences cloned in frame into the MCS of pGBKT7 are expressed as fusions to the 

L4 DNA-BD and a cMyc eppitope tag. The vector contains a kanamycin resistance gene and origins 

 replication in both yeast and bacteria. The T7 promoter is used for in vitro transcription and translation 

the epitope tagged fusion protein (not including the GAL4 DNA-BD). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Restriction map and multiple cloning site (MCS) of pACT2  

 

 

 

Protein encoding sequences cloned in frame into the MCS of pACT2 are expressed as fusions to the 

GAL4 AD and an HA eppitope tag. The vector contains an ampicilin resistance gene and origins of 

replication in both yeast and bacteria.  
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2.4.3. pCMV-HA (Clontech, USA) 

pCMV-HA is a mammalian expression vector that expresses proteins 

containing N-terminal hemagglutinin (HA) epitope tag. The HA epitope tag is 

well-characterized and highly immunoreactive which facilitates detection of 

fusion proteins using commercial anti-HA antibodies. High level expression in 

mammalian cells is driven from the human cytomegalovirus immediate early 

promoter/enhancer (PCMV IE). The vector contains both an intron (splice 

donor/splice acceptor) and polyadenylation signal from SV40 to enhance 

expression of the fusion proteins[144]. Presence of the Ampr gene confers 

ampicillin resistance in E. coli. The desired constructs are cloned in the 

multiple cloning site (MCS) in frame with the HA epitope tag. The pCMV-HA 

plasmid can be used in partner with pCMV-Myc plasmid in in vivo co-

immunoprecipitation assays of differently tagged exogenous proteins (Figure 

2.3).    

2.4.4. pCMV-Myc (Clontech, USA) 

pCMV-Myc is a mammalian expression vector that expresses proteins 

containing an N-terminal c-Myc epitope tag. The c-Myc epitope tag is well-

characterized and highly immunoreactive and this facilitates detection of 

fusion proteins using commercial anti-Myc antibodies. High level expression in 

mammalian cells is driven from the human cytomegalovirus immediate early 

promoter/enhancer (PCMV IE). The vector contains both an intron (splice 

donor/splice acceptor) and polyadenylation signal from SV40 to enhance 

expression of the fusion proteins[144]. This vector also carries the Ampr gene, 

which confers ampicillin resistance in E. coli. The desired constructs for  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2.3. Restriction map and multiple cloning site (MCS) of pCMV-HA  

 

 

 

 

 

 

 

 

 

Protein encoding sequences cloned in frame into the MCS of pCMV-HA are expressed in 

mammalian cells fused to the HA epitope tag. The expression of protein is driven by the CMV 

promoter and can be detected using commercial antibodies raised against the HA epitope tag. The 

vector also carries the amplicilin resistance gene, which confers ampicillin resistance in E. coli.  
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 Figure 2.4. Restriction map and multiple cloning site (MCS) of pCMV-Myc 

 

 

 

 

 

 

 

 

 

 

Protein encoding sequences cloned in frame into the MCS of pCMV-Myc are expressed in 

mammalian cells fused to the c-Myc epitope tag. The expression of protein is driven by the CMV 

promoter and can be detected using commercial antibodies raised against the c-Myc epitope tag. 

The vector also carries the amplicilin resistance gene, which confers ampicillin resistance in E. 

coli. 
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expression as fusion proteins are cloned in the downstream MCS in frame 

with the cMyc epitope tag.     

2.4.5. pEGFP-C1 (Clontech, USA) 

The pEGFP-C1 encodes a red-shifted variant of wild-type GFP which has 

been pEGFP-C1 encodes the GFP mut1 variant which contains the double-

amino-acid substitution of Phe64 to Leu and Ser65 to Thr. It also incorporates 

more than 190 silent nucleotide changes corresponding to human codon-

usage preferences. Sequences flanking EGFP have been converted to a 

Kozak consensus translation initiation site to further increase the translation 

efficiency in eukaryotic cells. Genes cloned into the MCS are expressed as 

fusions in frame to the C-terminus of EGFP. An SV40 polyadenylation signal 

downstream of the MCS directs proper processing of the 3' end of the 

transcribed mRNA.  

 

The vector backbone contains an SV40 origin for replication in mammalian 

cells expressing the SV40 T-antigen. A neomycin resistance cassette, 

consisting of the SV40 early promoter, the Neor/Kanr resistance gene of Tn5, 

and polyadenylation signals from the Herpes simplex virus thymidine kinase 

(HSV TK) gene, allows stably transfected eukaryotic cells to be selected using 

an aminoglycoside antibiotic, G418. A bacterial promoter upstream of this 

cassette expresses kanamycin resistance in E. coli. The pEGFP-C1 backbone 

also provides a pUC origin of replication for propagation in E. coli and an f1 

origin for single stranded DNA production (Figure 2.5). 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Restriction map and multiple cloning site (MCS) of pEGFP-C1 

 

 

 

 

 

 

 

 

Protein encoding sequences are cloned in frame into MCS of pEGFP-C1 fused to the C-terminus of EGFP. 

The expression of the fused protein is driven under the control of CMV promoter. The fluorescent properties 

of the EGFP facilitate observation of localized fusion protein in vivo. The vector contains both Kanr and 

Neor resistance genes, which to confer kanamycin and neomycin resistance in E. coli and mammalian cells 

respectively.  
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2.4.6. pDsRed1-C1 (Clontech, USA) 

The pDsRed1-C1 encodes a novel red fluorescent protein (DsRed1) that has 

been optimized for high expression in mammalian cells. Red fluorescent 

protein was originally isolated from a relative of the IndoPacific sea anemone, 

Discosoma sp. DsRed1’s coding sequence incorporates 144 silent nucleotide 

changes corresponding to human codon usage preferences, facilitating high 

expression in mammalian cells. A nucleotide sequence upstream of DsRed1 

has been converted to a Kozak consensus translation initiation site to further 

increase the translation efficiency in eukaryotic cells. Genes cloned into the 

MCS will be expressed as fusions in frame to the C-terminus of DsRed1. 

SV40 polyadenylation signal downstream of the MCS direct proper processing 

of the 3' end of mRNA transcripts (Figure 2.6).  

 

The vector backbone also contains an SV40 origin for replication in 

mammalian cells expressing the SV40 T-antigen. A Neomycin resistance 

cassette, consisting of the SV40 early promoter, the Neor/Kanr resistance 

gene of Tn5, and polyadenylation signals from the Herpes simplex virus 

thymidine kinase (HSV TK) gene, allows stably transfected eukaryotic cells to 

be selected using G418. A bacterial promoter upstream of this cassette 

expresses Kanamycin resistance in E. coli. The pDsRed1-C1 backbone also 

provides a pUC origin of replication for propagation in E. coli and an f1 origin 

for single-stranded DNA production. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Restriction map and multiple cloning site (MCS) of pDsRed1-C1 

 

 

 

 

 

 

 

 

 

 

Protein encoding sequences are cloned in frame into MCS of pDsRed1-C1 fused to the C-terminus of 

DsRed1. The expression of the fused protein is driven under the control of CMV promoter. The fluorescent 

properties of the DsRed1 facilitate observation of localized fusion protein in vivo. The vector contains both 

Kanr and Neor resistance genes, which to confer kanamycin and neomycin resistance in E. coli and 

mammalian cells respectively.  
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2.4.7. pALUC 

pALUC, which was a kind donation from Dr B Henglein (Institut Curie, Paris, 

France) is a mammalian expression vector containing the gene coding for 

luciferase from the North American firefly Photinus pyralis[145,146] under the 

control of a 7 kb cyclin A promoter region[147]. Y-box binding protein 1 (YB-1) 

is an example of a transcriptional factor that induces the cyclin A promoter 

activity[148], therefore making it useful as a reporter construct for 

investigating YB-1 induced expression.  

2.4.8. pRL-SV40 (Promega) 

pRL-SV40 is a mammalian expression vector containing the gene coding for 

Renilla luciferase gene (Rluc), which was originally cloned from the marine 

organism Renilla reniformis[149]. The presence of SV40 early 

enhancer/promoter region provides strong, constitutive expression of Rluc in a 

variety of mammalian cell types. Immediately downstream of the promoter is a 

chimeric intron that provides enhanced expression of Renilla luciferase. The 

intron is a composite of the 5´-donor splice site of human β-globin intron 1 and 

the branch and 3´-acceptor splice site from an intron derived from the heavy 

chain variable region of an immunoglobulin gene. For optimal splicing, the 

sequences of the donor and acceptor splice sites, along with the branch point 

site, have been altered to match the consensus sequences.  pRL-SV-40 is 

intended for use as an internal control reporter and may be used in 

combination with any experimental reporter vector e.g. pALUC in co-

transfected mammalian cells (Figure 2.7). 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. The vector map of pRL-SV40 (Promega) 

 

 

 

 

pRL-SV40 contains Rluc, the gene encoding the Renilla luciferase enzyme, under the control of the 

SV40 early enhancer/promoter region, an optimized chimeric intron and the SV40 late polyadenylation 

signal. These three elements combine to yield strong, constitutive expression of the cloned Renilla 

luciferase gene in mammalian cells. The vector plasmid also contains SV40 origin of replication and 

Ampr gene, which confers ampicillin resistance in E. coli.  
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2.5. Bacterial culture 

2.5.1. Strain phenotype 

E. coli strain DH5α  

Φ80d lacZ∆M15 recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 deoR 

∆(lacZYA-argF)U169[150] 

2.5.2. Preparation of bacterial competent cells (E. coli strain DH5α) 

Bacterial cultures (200µl) were overgrown in 10 ml LB media overnight in a 

Gallenkamp Orbital incubator (Rhys International Ltd, UK) at 37 °C with 

shaking at 300 xg. Fifty microliters of the overnight culture was inoculated in 

200 ml LB contained in a sterile 2 liter Erlenmeyer flask and incubated at 

room temperature with shaking at 150 xg on a Labcon shaker (Advanced 

African Technology, South Africa) until the optical density at 600 nm (OD600) 

was between 0.4 to 0.6. The bacterial culture was partitioned into 4x 50 ml 

polypropylene tubes and then centrifuged for 10 minutes at 3000 xg in a 

Beckman model TJ-6 centrifuge (Beckman Coulter, Scotland, UK). The 

supernatant was discarded and the pellet gently resuspended in 16 ml of ice 

cold CAP buffer and again centrifuged for 10 minutes at 3000 xg in a 

Beckman model TJ-6 centrifuge (Beckman Coulter, Scotland, UK). Following 

centrifugation, the pellet from each 50 ml tube was gently resuspended in 4 ml 

ice cold CAP buffer and dispensed into 200 µl aliquots in 2 ml Epperndorf 

tubes and stored -80 °C.  
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2.5.3. Bacterial transformation with plasmid DNA 

Bacterial transformation refers to genetic alteration of a bacterial cell as a 

result of taking up foreign DNA. Vials containing competent cells were thawed 

on ice for 15 minutes after which 1.0-10 ng of plasmid DNA was added. The 

transformation mixture was gently mixed and left on ice for 20 minutes after 

which it was heat shocked by immersing vials in a waterbath (Lasec model 

102 circulating waterbath, Lasec Laboratory and Scientific Company (Pty) Ltd, 

South Africa) at 42 °C for 45 seconds. The transformed bacteria were left at 

room temperature for 2 minutes, after which 1 ml of LB media was added and 

the mixture incubated at 37 °C with shaking at 300 xg in a Gallenkamp Orbital 

Incubator (Rhys International Ltd, UK) for another hour to allow the 

expression of the antibiotic resistance gene. Thereafter, 100-200 µl of the 

transformed cells were plated onto pre-warmed LB agar plates containing the 

appropriate antibiotic and incubated in a Scientific Series 9000 incubator 

(Scientific Engineering Co, Cape Town, South Africa) at 37 °C for 16 hours.  

2.5.4. Extraction of plasmid DNA 

Extraction of plasmid DNA from transformed E. coli cells was carried out using 

GeneJETTM Plasmid Miniprep Kit (Fermentas Inc, Canada). A single bacterial 

colony grown on LB agar was picked and inoculated into a 50 ml 

polypropylene tube containing 10 ml LB medium supplemented with the 

appropriate antibiotic selection. The inoculum was incubated for 16 hrs at 37 

°C while shaking at 300 xg in a Gallenkamp Orbital Incubator (Rhys 

International Ltd, UK). The bacterial culture was harvested by centrifugation at 

3000 xg for 10 minutes in a Beckman model TJ-6 centrifuge (Beckman 

Coulter, Scotland, UK) after which the supernatant was discarded. The 
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pelleted cells were resuspended completely in 250 µl of the Resuspension 

Solution and transferred to a 1.5 ml Eppendorf tube. 250 µl Lysis Solution was 

added and mixed thoroughly by inverting the tube 4-6 times. 350 µl of the 

Neutralisation Solution was then added and the solution immediately mixed by 

inverting the tube 4-6 times, after which it was centrifuged for 5 minutes at 

10000 xg using a Beckman Microfuge Lite (Beckman Instruments Inc, USA) to 

pellet the cell debris and chromosomal DNA. The resultant supernatant was 

loaded onto the GeneJETTM spin column mounted in a 1.5 ml Epperndorf tube 

and centrifuged for 1 minute at 10000 xg in a Beckman Microfuge Lite. The 

column was washed by adding 500 µl Wash Solution and centrifuged for 

another minute at 10000 xg. The wash was repeated after which 50 µl of 

double distilled water was added and the column centrifuged for another 

minute at 10000 xg. The eluted plasmid DNA was stored at -20 °C for 

downstream applications. 

2.6. High fidelity PCR 

The polymerase chain reaction (PCR) was used extensively in this study. The 

typical PCR reaction mixture was prepared as follows: 150 ng of each primer, 

4 µl of an equimolar 2.5 mM dNTP stock solution (Takara Shuzo Co.Ltd, 

Japan), 5µl of 10x Ex Taq™ MgCl2 containing buffer (Takara Shuzo Co.Ltd, 

Japan), 1 unit of Ex Taq™ (Takara Shuzo Co.Ltd, Japan), 20ng DNA template 

and double distilled water to a final volume of 50 µl.  

 

Thermal cycling was performed in a GeneAmp PCR system 9700 (PE 

Biosystems, USA) for 25 cycles. The cycling profile was 30 seconds at 94 °C 

(for DNA denaturation), 30 seconds at Tm-5 °C (for primer annealing), and 2 

 

 

 

 



 71 
 
 

minutes at 72 °C (for primer extension). Following the amplification, 5µl aliquot 

of each PCR product was subjected to electrophoresis on 1.0 -1.5 % agarose 

gels to verify the success of the amplification.  

2.7. Agarose gel electrophoresis of DNA 

Agarose gel electrophoresis was used to analyse the results of (i) PCR 

products and (ii) plasmid DNA extractions from both bacteria and yeasts. In 

both cases, 5 µl of DNA sample was mixed with 5 µl of Bromophenol blue 

loading dye and loaded onto a 1-1.5 % horizontal agarose gel containing 1 

µg/ml ethidium bromide. The gel was placed in a tank containing in 1xTBE 

buffer and an electric field of 3.5 V/cm applied. After the dye front reached the 

end of the gel, the gel was removed from the tank and DNA bands visualized 

using a long wave 3UV transilluminator (UVP, Inc, CA, USA. Photographic 

records were obtained using an ITC Polaroid camera and Sony video-graphic 

printer. 

2.8. Purification of PCR products 

Prior to cloning, the PCR products were cleaned up using the GeneElute™ 

PCR Clean-up kit (Sigma, USA). PCR products were mixed with 5x volume of 

the Binding solution provided and the mixture transferred to a Gene Elute 

Binding Miniprep Column and centrifuged for 1 minute at 10000 xg in a 

Beckman Microfuge lite (Beckman Instruments Inc, USA). The eluate was 

discarded and the column washed by addition of 0.5 ml  of Wash Solution and 

centrifugation for 1 minute at 10000 xg in a Beckman Microfuge lite (Beckman 

Instruments Inc, USA). The column was further centrifuged for another minute 

at 10000 xg in a Beckman Microfuge lite (Beckman Instruments Inc, USA) 
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without additional wash solution to remove excess ethanol. Finally, the 

column was transferred to a fresh 1.5 ml Eppendorf tube after which 50 µl of 

double distilled water was added to elute the PCR product by centrifuging for 

1 minute at 10000 xg in a Beckman Microfuge lite (Beckman Instruments Inc, 

USA).  

2.9. Restriction enzyme digestion for cloning purposes 

Appropriate restriction enzymes were used according to the manufacturer’s 

instructions (Fermentas International Inc, Canada) to sequentially double 

digest both PCR amplified product and plasmid DNA. Generally, 30 µl of 

either the PCR amplified product or the plasmid DNA were added to 5 µl 10x 

digestion buffer and 2 µl appropriate restriction enzyme. The reaction volume 

was made up to 50 µl per reaction using double distilled water after which the 

reaction tubes were incubated at 37 °C  for 2 hours in a Scientific Series 9000 

incubator (Scientific Engineering Co, Cape Town, South Africa). Following 

digestion with the first enzyme, the DNA were cleaned using the GeneElute™ 

PCR clean up kit as described above and again digested with the second 

restriction enzyme in the appropriate buffer. The double digested DNA was 

again purified using the GeneElute™ PCR clean up kit prior to use in the 

ligation reactions.   

2.10. Ligation reactions 

For cloning of PCR products into plasmid DNA, plasmid DNA and a 3-fold 

excess of PCR product was added to 1 µl of T4 DNA ligase and 1 µl of 10x 

ligation buffer (Promega) and the volume made up to 10 µl with double 

distilled water. The ligation mixture was incubated at 4 °C for 16 hours, 
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following which 5 µl of the ligation mixture was used to transform E. coli DH5α 

cell as described in Section 2.5.3. 

2.11. Colony PCR 

Colony PCR was used to distinguish recombinant from non recombinant 

bacteria. 150 ng of each primer, 4 µl of an equimolar 2.5 mM dNTP stock 

solution (Takara Shuzo Co.Ltd, Japan), 5 µl of 10x Ex Taq™ MgCl2 containing 

buffer (Takara Shuzo Co.Ltd, Japan), 1 unit of Ex Taq™ (Takara Shuzo 

Co.Ltd, Japan) were added to a sterile 500 µl Eppendorf tube and the volume 

made up to 50 µl with double distilled water. Using a sterile pipette tip, a tiny 

portion of the bacterial colony was picked and directly re-suspended in the 

PCR mix to serve as a DNA template. Thermal cycling was performed in a 

GeneAmp PCR system 9700 (PE Biosystems, USA) for 25 cycles as 

described in section 2.7, after which 5 ul of the PCR reaction mixture was 

subjected to agarose gel electrophoresis and visualized using a long wave 

3UV transilluminator.  
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2.12. Yeast 2-hybrid methods 

2.12.1. Yeast strains used 

Yeast strain AH109 phenotype 

MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4D, gal80D, LYS2 : : 

GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3 : : MEL1UAS-

MEL1 TATA-lacZ[151]  

 
Yeast strain Y187 phenotype 

MATa, ura3-52, his3-200, ADE2-101, trp1-901, leu2-3, 112, gal4D, met–, 

gal80D, URA3::GAL1UAS-GAL1TATA-lacZ[152] 

2.12.2. Yeast transformation with plasmid DNA 

Yeast strains AH109 and Y187 were used in the study. The yeasts were first 

plated out onto YPDA agar plates and incubated for three to five days at 30 

°C in a ventilated incubator (Sanyo MIR262, Sanyo Electronic Co, Japan). 

Following incubation, yeast cells representing an approximate volume of 20 to 

50 µl was picked and resuspended in 1 ml of double distilled water in a 2 ml 

Eppendorf tubes. The cells were pelleted down by centrifuging at 10000 xg for 

30 seconds using a Beckman Microfuge lite (Beckman Instruments Inc, USA). 

After removal of the supernatant, the cell pellet was resuspended in 1 ml 

100mM lithium acetate (LiAc), and incubated for 5 minutes at 30 °C in Sanyo 

MIR262 ventilated incubator. Following the incubation, the cells were again 

centrifuged and the retained pellet had the following reagents added on 

sequentially; 240 µl 50 % polyethylene glycol (PEG), 36 µl 1M LiAc, 25µl of 2 

mg/ml stock of sonicated and heat denatured Herring sperm DNA (Promega, 

Madison, USA) and 50 ng plasmid DNA. The final volume was adjusted to 
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350 µl with double distilled water. The transformation mixture was vortexed at 

high speed for 1 minute and subsequently incubated at 42 °C for 25 minutes 

in a lasec model 102 circulating waterbath (Lasec Laboratory and scientific 

Company (Pty) Ltd., Cape Town, RSA). Following the incubation, the 

transformation mixture was centrifuged down again at 10000 xg for 30 

seconds as above. The supernatant was again discarded and the pellet was 

resuspended in 200 ul sterile double distilled water, after which 150 µl of the 

resuspension was plated out onto appropriate nutritionally selective agar 

plates and incubated at 30 °C for three to five days in a Sanyo MIR262 

ventilated incubator. 

2.12.3. Construction of Yeast cDNA library  

The Yeast library used in the study was a Human Testis MATCHMAKER 

cDNA obtained from Clontech (Clontech Laboratories, Inc, CA, USA). The 

library was constructed by generating cDNA from total mRNA pooled from 

eleven Caucasians testis with age group of 10 to 61 years. The library was 

cloned into the Xho1 and EcoR1 sites of yeast plasmid pACT2 and amplified 

in E. coli strain BNN132 before transforming into yeast strain Y187. Quality 

control procedures carried out showed that the library resulted in 290 x 106 

independent yeast colonies and that the cDNA constructed had size ranging 

between 0.4-4.0 kb with an averaged size of 2.0 kb (Clontech product 

package). 
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2.12.4. Yeast library mating procedure  

The Yeast library encoding the prey proteins was obtained already pre-

transformed in yeast strain Y187. The library transformed Y187 was mated 

with yeast strain AH109 transformed with bait plasmid encoding the bait 

protein. The mating procedure was done following a series of procedures 

summarized as follows:     

2.12.4.1. Preparation of bait transformed yeast AH109 for library mating 

Four yeast colonies transformed with the bait of interest, were inoculated into 

four separate 500 ml Erlenmeyer flasks, each containing 50 ml  SD/-W media 

and incubated for 24 hours at 30 °C  with shaking at 200g in a YIH DER 

model LM-510R shaking incubator (SCILAB Instrument Co Ltd., Taipei 

Taiwan). Following incubation, the cultures were transferred to 50 ml  

polypropylene tubes (Greiner Labortechnik GmbH, Frickenhausen, German) 

for centrifugation at 3000g for 10 minutes at room temperature using a 

Beckman model TJ-6 centrifuge (Beckman Scotland, UK). The pellets were 

pooled together and resuspended to a final volume of 5 ml SD/-W medium to 

represent the bait culture, from which the titer of bait culture was determined 

by means of a haemocytometer cell count. In order to proceed with library 

mating, the titer was expected to represent > 1x1010 cells.   

2.12.4.2. Yeast matings 

Pre-transformed Human Testis MATCHMAKER cDNA library was received 

from Clontech as 5x1.0 ml library culture.  One vial containing the library 

culture was thawed at room temperature water bath and added to 5 ml bait 

culture after which the volume of the mixture was adjusted to 50 ml by adding 
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44 ml of 2x YPDA media containing 10ug/ml Kanamycin, in a 2 liter 

Erlenmeyer flask. The mating culture was then incubated at 30 °C for 24 

hours with shaking at 30 g in a YIH DER model LM-510R shaking incubator 

(SCILAB instrument Co Ltd., Taipei, Taiwan).  

 

After incubation, the mating culture was transferred to 50 ml polypropylene 

tube and centrifuged for 10 minutes at 3000g in a Beckman model TJ-6 

centrifuge (Beckman Coulter, Scotland, UK). The 2 liter Erlenmeyer flask used 

for mating was rinsed twice using with 40 ml  2x YPDA and the rinsing mixture 

was centrifuged as  above to recover the left over mating culture. The 

centrifuged mating culture was resuspended in 10 ml liquid 0.5x YPDA media 

containing 10 µg/ml Kanamycin after which a 100 µl of the culture was set 

aside for control matings to determine the mating efficiency as described in 

Section 2.13.4.3. The rest of the mating culture suspension was plated onto 

150 mm TDO plates using 200 µl of the suspension per plate. The TDO plates 

were incubated at 30 °C for up to two weeks in a Sanyo MIR262 stationary 

ventilated incubator (Sanyo, Electronic Company Ltd, Ora-Gun, Japan. 

2.12.4.3. Determination of mating efficiency 

Small-scale yeast matings were performed to determine the effect the baits 

had on the mating efficiency of AH109. In these mating experiments, the 

AH109 singly transformed with pGBKT7 containing a bait insert was mated 

with the prey host strain Y187, transformed with the non-recombinant prey 

vector pACT2. Concurrently, control mating was also performed where yeast 

strain AH109 transformed with non-recombinant pGBKT7 was mated with the 

prey host strain Y187, transformed with non-recombinant prey vectors pACT2. 
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Yeast mating mixtures were incubated in YPDA liquid media overnight at 30 

°C in a Sanyo MIR262 stationary ventilated incubator (Sanyo, Electronic 

Company Ltd, Ora-Gun, Japan). The overnight culture was spun down at 

10000 xg for 30 seconds in a Beckman Microfuge lite (Beckman Instruments 

Inc., CA, USA). The resultant pellet was resuspended in 100 µl double 

distilled water from which three sets of serial dilutions of 1/10, 1/100, 1/1000 

and 1/10000 prepared and from each serial dilution set 100 µl was plated onto 

three separate agar plates containing SD/-L, SD/-W and SD/-L-W for each 

mating. The plates were incubated for four days at 30 °C in a Sanyo MIR262 

stationary ventilated incubator (Sanyo, Electronic Company Ltd, Ora-Gun, 

Japan). The colonies that appeared on the plates were counted and used to 

calculate the mating efficiency. The mating efficiency was calculated 

according to the recommendations by the manufacturer of Y2H systems (BD 

Matchmaker™ Pretransformed Library User Manual, Clontech) (see Appendix 

I). 

 

Similarly for control matings (Section 2.13.4.2), a 100 ul set aside after the 

library mating was serially diluted to 1/10, 1/100, 1/1000 and 1/10000 after 

which 100 ul of each serial dilution was plated onto three different agar plates 

containing SD/-L, SD/-W and SD/-L-W and incubated for four days in a Sanyo 

MIR262 stationary ventilated incubator (Sanyo, Electronic Company Ltd, Ora-

Gun, Japan). Following incubation, yeast colonies were also counted and 

used to calculate the library mating efficiency (see Appendix I).  
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2.12.4.4. Screening for protein interaction 

Plating the library mating mixture onto TDO plates was the first step for 

screening for diploid yeast containing interacting proteins. Growth of yeast 

clones on TDO plate was counted to give an initial number of clones screened 

for interaction. These clones were transferred to QDO plates (a more stringent 

nutritionally selective medium) using a sterile loop and incubated at 30 °C  for 

4 to 6 days in a Sanyo MIR262 stationary ventilated incubator (Sanyo, 

Electronic Company Ltd, Ora-Gun, Japan). The appearance of the same 

yeast clone on both TDO and QDO were assessed and scored in terms of the 

size and coloration of the colony.  

2.12.4.5. X-α-Galactosidase (X-α-Gal) assays 

X-α-Gal is a chromogenic substrate for α-galactosidase (also known as 

melibiase or alpha-D-galactoside galactohydrolase, EC 3.2.1.22), an enzyme 

which enables yeast to use the disaccharide melibiose as a carbon source 

during growth or fermentation. In the yeast Saccharomyces cerevisiae this 

enzyme is encoded by the MEL1 gene which is regulated by several GAL 

genes. Secretion of this enzyme in response to GAL4 activation leads to 

hydrolysis of X-α-Gal in the medium causing yeast colonies to develop a blue 

color[153]. 

  

The yeast colonies that survived on QDO plates were again transferred using 

a sterile loop onto QDO plates previously spread with a 200 µl of 20mg/ml X-

α-Gal solution (Clontech Laboratories, Inc, CA, USA). These plates were 

incubated for 16 to 48 hrs at 30 °C in a Sanyo MIR262 stationary ventilated 

incubator (Sanyo, Electronic Company Ltd, Ora-Gun, Japan).  Following the 

 

 

 

 



 80 
 
 

incubation, the appearance of the yeast colonies were assessed and recorded 

for blue color development and scored according to the intensity of the color. 

2.12.4.6. Extraction of library plasmids from yeast 

The library plasmids were extracted from yeast colonies that were positive for 

interaction assays. The positive yeast colonies were picked from QDO plates 

and suspended in 15 ml  polypropylene tubes (Greiner Labortechnik GmbH, 

Frickenhausen, German) containing 5 ml  of  SD/-L liquid medium for 

overnight at 30 °C with shaking at 200 g in a YIH DER model LM-510R 

shaking incubator (SCILAB Instrument Co Ltd., Taipei Taiwan). Following 

incubation, the overnight culture was centrifuged down by centrifugation for 10 

minutes at 3000 g in a Beckman model TJ-6 centrifuge (Beckman Coulter, 

Scotland, UK). The pellet was resupended in sterile double distilled water and 

transferred to a 1.5 ml Eppendorf tube after which, its was centrifuged at 

10000 xg for 30 seconds using a Beckman Microfuge lite (Beckman 

Instruments Inc, USA). The supernatant was discarded and the pellet was 

briefly vortexed after which the following reagents were added; 200 ul smash 

and grab buffer (2 % Triton X-100, 1 % SDS, 100 mM NaCl, 100 mM Tris-Cl, 

pH 8.0 and 1 mM EDTA), 200µl Phenol/Chloroform/ Isoamyl Alcohol (25:25:1) 

solution and 0.3 g of acid washed Sigma glass beads (425-600 µm) (Sigma-

Aldrich, Inc, St Louis, USA). The mixture was vortexed at high speed for 2 

minutes before centrifuging at 10000 xg for 5 minutes using a Beckman 

Microfuge lite (Beckman Instruments Inc, USA). The supernatant (200 µl) was 

transferred to another 1.5 ml  Eppendorf tube for further clean up using Sigma 

GenElute PCR clean-up kit according to the manufacturer’s protocol (Sigma-

Aldrich, Inc, St Louis, USA). 
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2.12.4.7. Transformation of E. coli and isolation of library prey plasmids 

The bait constructs were cloned in pGBKT7, a plasmid that contains a 

Kanamycin resistance gene but the library prey cDNA was cloned in pACT2 

which contains a different antibiotic resistance gene, ampicillin. The prey 

plasmids isolated from the bait plasmids by transforming E. coli strain DH5α 

with the mixture of bait and prey plasmids and 100 µg/ml ampicillin was used 

for selecting pACT2 or prey plasmids transformed bacteria. The bacteria 

transformation and plasmid preparation procedures were carried as indicated 

in sections 2.5.3 and 2.5.4. 

2.12.5. PCR of bait and prey inserts for in vitro transcription/translation 

The bait and prey inserts contained in bait vector pGBKT7 and prey vector 

pACT2 respectively were PCR amplified in an RNase free environment. Preys 

were PCR amplified using the pACT2 primers as shown in Table 2.1 to 

generate PCR products that incorporated bacteriophage T7 promoter 

sequences and HA-epitope tag encoding sequence. On the other hand, the 

bait encoding sequences were PCR amplified using the pGBKT7 primers as 

shown in Table 2.1 to generate PCR products incorporating bacteriophage T7 

promoter sequences and Myc-epitope tag encoding sequence.  Incorporating 

bacteriophage T7 promoter sequences as part of the PCR products provides 

the promoter site to facilitate the in vitro transcription/translation of the 

respective proteins. Myc and HA epitope tags in bait and prey proteins makes 

immunoprecipitation of prey and bait protein possible using anti-Myc and anti-

HA antibodies respectively. Primer sequences were obtained from Clontech 

MATCHMAKER Vectors Handbook.  
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Table 2.1. Primers to amplify bait and prey inserts respectively cloned into pGBKT7 and pACT2  

 

Primer 

name 
Primer sequence                                                                                                              Ta (°C )  

pGBKT7 

Forward 
5’-AATAAAATTGTAATACGACTCACTATAGGGCGAGCCGCCACCATGGAGGAGCAGAAGCTGATGTCA-3’   65 

pGBKT7 

Reverse 
5’-TCACTTTAAAATTTGTATACAC-3’                                               44 

pACT2 

Forward 
5’-AATAAAATTGTAATACGACTCACTATAGGGCGAGCCGCCACCATGTACCCATACGACGTTCCAGAT-3’   61  

pACT2 

Reverse 
5’-GGGGTTTTTCAGTATCTACGAT-3’                                               52 

 

2.12.6. In vitro synthesis of bait and prey proteins 

The baits and the respective prey proteins were in-vitro synthesized using the 

TNT Quick Coupled transcription/translation system kit according to the 

manufacturer’s instructions (Promega). Generally, 40 µl of the TNT T7 Quick 

Master Mix was mixed with 7µl of the PCR-generated DNA template, 1 µl TNT 

T7 PCR enhancer and 2 µl 35S-methionine (Amersham) and the mixture was 

incubated at 30 °C for 90 minutes using a dry block heater HB2 (Hagar 

designs, South Africa). Following the incubation, the translated products were 

run on an SDS-polyacrylamide gel and visualized using autoradiography to 

check for successful translation. 

 

 

 

 

 

Ta is the primer annealing temperature in degrees Celsius 
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2.12.7. Co-immunoprecipitation of translated bait and prey proteins 

Five microlitres of each bait and prey translated products were mixed together 

in a sterile 500µl Eppendorf tube and incubated for 1 hour at room 

temperature. Following incubation, 10µl agarose conjugated Myc antibody 

(Santa Cruz) was added to the mixture and the volume adjusted to 250 µl 

using Co-IP buffer. The sample was incubated for 1 hour at 4 °C on a rotating 

Labnet rotor (Labnet Inc, USA) at 10 g. The sample was subsequently 

centrifuged for 30 seconds at 10000 xg in a Beckman Microfuge lite 

(Beckman Instruments Inc, USA). After discarding the supernatant, the pellet 

was washed 5 times using TBST after which it was mixed with 10 µl sample 

buffer and boiled for 5 minutes before loading and running on a 12.5 % SDS 

polyacrylamide gel and subsequently visualized using autoradiography. 

2.13. Mammalian cell culture 

HEK293 cells were used is this study. HEK293 is a human embryonic kidney 

cell line that was first developed by Graham et al in 1977[154] after 

transforming cells by exposing them to sheared fragments of adenovirus type 

5 DNA. The HEK293 cells were cultured in 6-well cell culture plates and 

maintained in Dulbecco’s modified Eagle medium (Invitrogen) supplemented 

with 10 % fetal calf serum, 100 µg/ml penicillin and 100 µg/ml streptomycin at 

37 °C in a 5 % CO2 humidified cell culture incubator (Farma International, 

Miami, Florida, USA).  
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2.13.1. Transfection of HEK293 cells  

Transfection is a method by which experimental cDNA construct is 

exogenously introduced into a cultured mammalian cell, after which the gene 

product is monitored by different biochemical methods. Extensive 

transfections were carried out for pull down assays, co-localisation studies 

and gene functional experiments. Genejuice (Merck) and MetafecteneTM 

(Biontex) were the transfection reagents mostly used in this study and they 

were used according to the manufacturers’ instructions. Generally, 6 µl of both 

the transfection reagents and 2 µg plasmid DNA were prediluted in 50 µl PBS 

after which they are gently mixed and incubated at room temperature for 25 

minutes to allow lipid/DNA complexes to form. Following the incubation, the 

transfection mixture was added evenly directly to the respective cells cultured 

in 6 well culture plates. The transfected cells were incubated for 48 hours at 

37 °C in a 5 % CO2 humidified cell culture incubator (Farma International, 

Miami, Florida, USA). 

2.13.2. Cell lysis and preparation  

Generally, the cultured cells were harvested after 48 hours of transfection 

reactions. The cells were resuspended in the culture media by pipetting up 

and down until all the adhering cells were in suspension. The cell suspension 

was transferred to a 15 ml tube and centrifuged at 5000g for 5 minutes in a 

Beckman model TJ-6 centrifuge (Beckman Coulter, UK). The supernatant was 

discarded and the pellet resuspended in 10 ml pre-warmed PBS and 

centrifuged again at 5000g for another 5 minutes. The pellet was 

resuspended in 500 µl of RIPA buffer and transferred to a sterile 1.5 ml 

Eppendorf tube and incubated for 20 minutes on ice. Following incubation, the 
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cell suspension was vortexed at high speed for 1 minute and further sonicated 

for 10 seconds before centrifuging the lysates at 10000 xg for 15minutes in a 

pre-cooled Beckman Microfuge Lite. The supernatant was stored at -80 °C as 

cell lysates for downstream analysis. For RNAse treatment of lysates where 

indicated, a final concentration of 50 ng/ul RNAse A[155] (Roche) was 

dissolved in autoclaved 2x RNase Buffer (20 mM Tris (pH 7.5), 10 mM EDTA, 

0.6 M NaCl, in DEPC (Diethylpyrocarbonate) treated water) was added to 

lysates and incubated on ice for 10 minutes prior immunoprecipitation 

procedure.  

2.14. In vivo co-immunoprecipitation  

After cell lysis,  appropriate sample volume of cell lysates were incubated with 

5 µg of the appropriate antibodies, either directed against the exogenous 

protein through respective epitope tags or endogenous proteins, for 2 hours at 

4 °C on a rotating Labnet rotor (Labnet Inc, USA) at 10 g. The samples were 

subsequently centrifuged for 30 seconds at 10000 xg in a Beckman Microfuge 

lite (Beckman Instruments Inc, USA). After discarding the supernatant, the 

resultant pellets were washed 5 times using PBS before re-suspended in SDS 

loading buffer and boiled prior to SDS-PAGE and Western blotting.  

2.15. SDS PAGE  

SDS polyacrylamide gel electrophoresis was carried out using Laemmli’s 

protocol[156] which uses two phase gel: a staking gel above the resolving gel. 

Depending on the sizes of the proteins to be resolved, different gels were 

prepared containing different acrylamide percentage. For example, a 12 % 

resolving gel and a 4 % staking gel were prepared as indicated in Table 2.2. 
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Table 2.2. Preparation of a 12 % resolving gel and a 4 % staking gel 
 
 12 % Resolving gel  4 % Stacking gel  

Double distilled water 4.5 ml 6.5 ml  

1.5M Tris-HCl, pH8.8 2.5 ml - 

0.5M Tris-HCL, pH6.8 - 2.5 ml  

40 % Acrylamide 3.0 ml 1.0 ml  

10 % SDS 100µl 100µl 

10 % APS 80 µl 80µl 

TEMED 6.0µl 6.0µl 

 
 
  
Proteins were separated on SDS-PAGE gels that were prepared from a 40  % 

of pre-mix acrylamide: bisacrylamide (37.5:1) (Bio-Rad). The samples were 

mixed with an equal volume of 2× Sample Buffer, boiled for 5 min, centrifuged 

for 30 seconds at 10000 xg in a Beckman model TJ-6 centrifuge (Beckman 

Coulter, UK), and electrophoresed using 1x Running buffer at 100 V/cm 

(constant voltage) using a Hoefer Mighty Small II Gel electrophoresis system 

(Amersham Pharmacia). Electrophoresis was stopped when the bromophenol 

blue dye front had reached the bottom of the gel.  

2.16. Western blotting 

Following SDS gel electrophoresis, the proteins were transferred from the gel 

onto a PVDF-P membrane (Amersham Pharmacia) using a Mini Protean IITM   

system (Bio-Rad). Before transfer, the membrane was pre- wetted in 

methanol for 10 seconds and equilibrated in Transfer Buffer for 10 minutes. 

Likewise, the SDS PAGE gels were also equilibrated in Transfer Buffer for 10 
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min. To avoid air being trapped between different layers of the blotting 

sandwich, assembling of the sandwich was done in a container filled with 

transfer buffer and pre-wet each part. The blotting sandwich was mounted 

using the following components in their order; a porus pad, 2 sheets of 

Whatman 3MM paper, the equilibrated polyacrylamide gel, the PVDF 

membrane, 2 sheets of Whatman paper and a porous pad. The mounting was 

done making sure no air was trapped. The blotting sandwich was mounted 

into the gel holder unit and inserted into the transfer cell (Bio-rad, Richmond, 

CA, USA), filled with transfer buffer. The blotting sandwich cassette was 

inserted into the transfer cell making sure that the polyacrylamide gel is on the 

anode side and blotting membrane on the cathode side. Electrotransfer was 

performed at 4 °C, 100 V (constant voltage) for 1 hr in pre-cooled Transfer 

Buffer. After transfer the membranes were stained with Ponceau S (Sigma) to 

check for protein transfer.  

 

The membranes were blocked by incubating in TBST containing 5 % fetal 

bovine serum (FBS) for 1 hour at 4 °C with shaking on a flat Labcon shaker 

(Advanced African Technology, South Africa). The blocked membrane was 

further incubated in the appropriate primary antibody diluted in TBST for 

another hour at 4 °C with shaking on a Labcon shaker (Advanced African 

Technology, South Africa). If the primary antibody was not HRP conjugated 

then the membrane was washed three times for 10 min in TBST and further 

incubated at room temperature for I hour on a Labcon shaker (Advanced 

African Technology, South Africa) in appropriate secondary antibody, 

conjugated to horseradish peroxidase, diluted in TBST. The antibody dilution 
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factor depended on the particular primary or secondary antibody used. The 

membrane was washed three times for 10 min in TBST. Detection was 

performed using the ECL plusTM Western Blotting Detection System 

(Amersham Pharmacia), which was added to the membrane according to 

manufacturers’ instructions. The membrane was exposed to the film at 1 

minute and 5 minutes intervals and then developed.  

2.17. In vitro ubiquitination assay  

The in vitro ubiquitination experiments were set up using an S-100 HeLa 

Conjugation Kit (Boston Biochem Inc, USA) according to the manufacturer's 

instructions. Briefly, an ubiquitination reaction mixture containing 26µl of S-

100 HeLa, 2µl ubiquitin aldehyde and 1.25µl protease inhibitor MG-132 were 

initially mixed and incubated for 15 minutes at room temperature. Following 

incubation, 10 µl of appropriate 35S-labelled full length prey protein and 10 µl 

of unlabelled bait protein were added to the mixture together with 5µl ubiquitin 

solution as well as 5µl of ERS (Energy Regeneration Solution). This final 

mixture was vortexed and incubated at 37 °C for 4 hours using a rotating 

Labnet rotor (Labnet Inc, USA) at 10 xg, after which the resulting products 

were resolved by SDS-PAGE and detected by autoradiography.  

2.18. Luciferase Assays 

Luciferase activity was measured using a Dual-Luciferase Reporter Assay 

System (Promega, Madison, WI, USA). The Dual-Luciferase® Reporter 

(DLR.) Assay System provided an efficient means of performing dual-reporter 

assays. In the DLR Assay, the activities of firefly (Photinus pyralis) and Renilla 

(Renilla reniformis, also known as sea pansy) luciferases were measured 
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sequentially from a single sample. The pALUC was used as an experimental 

plasmid that expresses the firefly luciferase while pRL-SV40 was used as a 

control plasmid that expressed the Renilla luciferase. Both pALUC and pRL-

SV40 were co-transfected in HEK293 cells to produce their respective 

luciferases. The cells were lysed using Passive Lysis Buffer as part of the kit. 

The firefly luciferase reporter was measured first by adding 100 µl Luciferase 

Assay Reagent II (LAR II) to 20 µl lysate to generate a stabilized luminescent 

signal. After quantifying the firefly luminescence using a Synergy™ HT Multi-

Mode Microplate Reader (BioTek Instruments, Inc, Winooski, USA), the 

reaction was quenched, and the Renilla luciferase reaction was 

simultaneously initiated by adding 100 µl Stop & Glo® Reagent.  

 

2.19. Fluorescence microscopy 

HEK293 cells were co-transfected with appropriate plasmids encoding the 

appropriate tagged proteins with either GFP or RFP. The transfected cells 

were cultured on Lab-Tek™ Chambered Coverglass (Thermo Fisher 

Scientific, Denmark) for 48 hours in a 5 % CO2 humidified cell culture 

incubator (Farma International, Miami, Florida, USA). Just before image 

acquisition, the culture media was removed and replaced with culture media 

containing a 1:200 dilution of the nucleic acid stain, Hoechst H-33342 

(Sigma). Live cell images were acquired on a Zeiss LSM510 Confocal 

Microscope (Carl Zeiss MicroImaging Inc.) 
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CHAPTER 3: PREPARATION OF YEAST BAIT CONSTRUCTS 

3.1. Introduction 

The preliminary steps involved in accomplishing a Y2H screen using a gene 

of interest as a bait are as follows: first, cloning of the bait cDNA construct into 

a plasmid such as pGBKT7 in order to express the bait protein as an in-frame 

fusion to the GAL4 binding domain.  Second, transformation of the cloned bait 

plasmid into appropriate yeast Saccharomyces cerevisiae strain such as 

AH109. Third, checking that the expressed bait protein is not able to activate 

yeast reporter genes in the absence of prey, which is known as auto-

activation. Since initiation of transcription due to auto-activation is present in 

approximately 5 % of all cases[157], elimination of this effect is crucial. 

Finally, the toxicity of some bait constructs to yeast cells may compromise the 

screen. The level of toxicity is estimated by comparing the growth of yeast 

transformed with pGBKT7 with and without the insert bait sequence.  

 

This chapter describes cloning of RING finger and DWNN domains for use as 

baits in separate Y2H screens. Because the structures of DWNN[5] and RING 

finger (Pugh and colleagues, unpublished) had been previously determined 

and the full NMR chemical shifts were available for both domains in our 

laboratory, was the basis for using the same fragments in a Y2H to facilitate 

structural interpretation of potential interactions, including NMR-based in vitro 

binding interactions.  

 

 

 

 

 

 



3.2. Cloning of DWNN and RING finger encoding cDNA into pGBKT7  

Sequences encoding the DWNN domain (residues 1-81) and the RING finger 

(residues 235-335), as shown in Figure 3.1, were PCR amplified from a full 

length cDNA of RBBP6 assembled by Dr Amanda Skepu (PhD thesis, 

University of the Western Cape, 2005) and cloned into the NdeI and BamHI 

sites of pGBKT7 to produce pGBKT7-D and pGBKT7-R, respectively.  

 

NdeI and BamHI restriction sites were incorporated into the forward and 

reverse primers respectively, as shown in Table 3.1, and TAA stop codons 

were incorporated into both reverse primers. 

 
Table 3.1. Primers used for cloning DWNN and RING finger domain constructs 

 
Primer name       Primer sequences                                                                          Ta ( °C ) 

DWNN 

 Forward 
5’-GAGGCGCATATGTCCTGTGTGCATTATAAATTT-3’       55 

DWNN 

 Reverse  
5’-GAGGCGGGATCCTTATTTAACACCTCCAATAGGAATTC-3’  55 

RING Finger  

Forward  
5’-GAGGCGCATATGCCTCCCTTCTTACCAGAGGA-3’        55 

RING Finger 

Reverse 
5’-GAGGCGGGATCCTTACTGTTTTCGTAGTCTTTTTGTATA-3’ 55  

 

 

 

 

  

 

The nucleotide sequence in black font represents the sequence of the primer that first anneals to the 
DNA in the PCR reaction. An ‘overhang’ tag to facilitate restriction enzyme digestion is represented in 
green font, while the red and blue fonts represent the restriction enzyme site and incorporated stop 
codon respectively. Ta is the primer annealing temperature in degrees Celsius 
 92 
 
 

 

Following verification of the expected sequences using fluorescent dye-

terminator cycle sequencing method (3130xl Genetic Analyzers, Applied 

Biosystems Inc CA, USA), pGBKT7-R and pGBKT7-D were transformed into 

yeast Saccharomyces cerevisiae strain AH109 as described in Section 2.13.2.  

 

 



 

 

 

 

 

 

 

Figure 3.1. RBBP6 domains cloned into pGBKT7 

C 

   DWNN               RING finger  

 

 

 

 

 

A schematic representation of RBBP6 showing the DWNN and RING finger cloned into yeast 

bait plasmid pGBKT7. 
 93 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

  N 
1    81                      235                335      1792 aa 
 



 94 
 
 

3.3. Toxicity tests 

To assess any toxic effects of DWNN and RING finger baits, pGBKT7-D, 

pGBKT7-R and the parental plasmid pGBKT7, were separately transformed 

into yeast strain AH109 and inoculated into SD/-W liquid medium and grown 

to stationary phase at 30 °C with shaking at 200 g (24-36 hours) in a TIH DER 

model LM-510R shaking incubator (SCILAB instrument Co Ltd., Taipei, 

Taiwan). The overgrown culture was diluted 10x with SD/-W medium and 

grown for an additional 24 hours under the same conditions, during which 1 

ml  aliquots of the medium were taken every 2 hours for the first 8 hours and 

then at 24 hours. The optical density at 600 nm (OD600) was measured and  

plotted as a function of time as shown in Figure 3.2. A statistical analysis was 

carried out using GraphPad Prism version 4 for Windows (GraphPad 

Software, San Diego CA, USA).  

 

Figure 3.2 shows that the pGBKT7-R and pGBKT7-D did not significantly 

reduce the growth rate in comparison to pGBKT7. It was therefore concluded 

that neither the RING finger nor the DWNN construct were toxic to the yeast 

strain AH109.   

3.4. Determination of mating efficiency 

To assess the mating efficiency of yeast cells transformed with DWNN and 

RING finger domains, a small scale yeast mating was carried out between 

yeast AH109 transformed with either pGBKT7-D, pGBKT7-R or the parental 

vector pGBKT7 and prey host strain Y187, transformed with non-recombinant 

parental vector pACT2.  
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Figure 3.2. B
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Matings were carried out as described Section 2.13.4.3 and the results 

presented in Table 3.2. The calculated mating efficiency (Appendix 1) of the 

pGBKT7-D and pGBKT7-R yeast transformants were comparable to the 

control and, most importantly, were above the minimum of 2 % recommended 

by the manufacturer of the MATCHMAKER Y2H system (Clontech, USA) and 

would therefore result in screening of the recommended 106 individual clones 

when mated with a commercial pretransformed MATCHMAKER library.  

 

Table 3.2. Testing the effect of baits on yeast mating efficiency  

 

 

 

 

 

 

 

 

Yeast mating       Mating efficiency (%) 

AH109 (pGBKT7) and Y187 (PACT2)   10.5 

AH109 (pGBKT7-R) and Y187 (PACT2)   9.5 

AH109 (pGBKT7-D) and Y187 (PACT2)   8.7 
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3.5 Test for bait auto-activation of the reporter genes 

To establish whether the DWNN and RING finger baits were able to 

autonomously activate transcription of reporter genes HIS3 and ADE2, AH109 

transformed with pGBKT7-D and pGBKT7-R respectively were plated onto 

SD/-L, SD/-W, SD/-H, SD/-A and SD/-U agar media lacking leucine, 

trptophan, histidine, adenine and uracil respectively. The plates were 

incubated at 30 °C for 3-5 days in a Sanyo MIR262 ventilated incubator 

(Sanyo MIR262, Sanyo Electronic Co, Japan) after which the growth was 

observed and scored.  

 



As shown in Table 3.3, neither DWNN nor RING finger resulted in auto-

activation of HIS3 or ADE2 as evidenced by lack of growth on SD/-H and SD/-

A plates respectively. These two reporter genes are only activated in the 

presence of interacting proteins.   

 
Table 3.3. Testing baits for auto-activation of reporter genes in yeast 

 

 

 

 

 

 

 

 

 

Yeast strain                     SD/-A      SD/-H        SD/-L         SD/-W        SD/-U 

AH109                                       -            -         -      -           +     

AH109 (pGBKT7-R)        -            -         -      +           + 

AH109 (pGBKT7-D)                                        -             -            -             +            + 
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4.13. RING finger co-immunoprecipitates zBTB38-C in vitro  

4.14. zBTB38 interacts with RING finger and RBBP6 in vivo  
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CHAPTER 4: Y2H screen using RING finger domain as yeast bait 

4.1. Introduction 

Along with other members of the RING finger family, the RING finger domain 

from RBBP6 was suspected of having E3 ligase activity prior to this study. 

RING finger domains typically interact directly with both the E2 enzyme and 

the substrate, and the respective E2’s and substrates of a number of RING 

finger domains had previously been identified using Y2H screening.  

 

This chapter describes a Y2H screen of a human testis cDNA library 

(Clontech, USA) using the RING finger from RBBP6 as bait. A number of 

putative interactors were identified and 2 of these were confirmed using co-

immunoprecipitation assays, both in vitro and in vivo. It was furthermore 

shown that interaction with the RING finger leads to ubiquitination of both 

interactors.  

4.2. Yeast library matings 

The pGBKT7-R bait plasmid transformed into Saccharomyces cerevisae 

strain AH109 was used to screen a commercial human testis cDNA library 

cloned into the pACT2 vector and transformed into Saccharomyces cerevisae 

strain Y187 (Clontech, USA). The choice of library was based on the fact that 

RBBP6 had been found to be highly expressed in testis[1]. The screening of 

an estimated 6.5x106 library clones yielded 2220 clones in which transcription 

of the HIS3 reporter gene was activated as evidenced by their ability to grow 

on TDO selection medium (lacking leucine, tryptophan and histidine). The 

clones from TDO medium plates were transferred to QDO selection medium 
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(lacking leucine, tryptophan, histidine and adenine) on which 550 clones 

survived, indicating additional activation of transcription of the ADE2 reporter 

gene. These clones were then transferred to QDO selection medium 

supplemented with X-α-gal (a chromogen substrate for α-galactosidase 

enzyme) to select yeast clones that activate transcription of MEL1 as 

evidenced by blue colouration of the colonies. 101 yeast clones concurrently 

exhibited activation of all three interaction-associated reporter genes (HIS3, 

ADE2 and MEL1), and these clones were further subjected to interaction 

specificity mating tests.  

4.3. Interaction specificity tests 

The yeast clones expressing all three reporter genes (HIS3, ADE2 and MEL1) 

were analyzed further. Prey plasmids were separated from bait plasmids by 

extracting the plasmids from yeast colonies as described section 2.13.4.6 and 

transforming them into E. coli DH5α, using ampicilin to select for prey 

plasmid-transformed bacteria. The bait plasmid-transformed bacteria, 

because of lack of ampicilin resistance marker, would not grow on amplicilin 

supplemented media. The prey plasmids were then extracted from the 

bacteria as described in Section 2.5.4 and re-transformed into yeast strain 

Y187. These transformed Y187 strains were then used in interaction 

specificity tests. 

 

The aim of interaction specificity test is to identify preys that activate reporter 

genes in the presence of the RING finger bait, but not in the absence of RING 

finger bait nor in the presence of any of the following heterologous baits: 

pGBKT7-C5, encoding the C5 immunoglobulin-like domain of cardiac myosin 
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binding protein-C, pGBKT7-53, encoding murine p53 and the parental plasmid 

pGBKT7.  

 

The interaction specificity test was set up as follows: yeast strain Y187, 

transformed with the prey plasmid was separately mated with yeast AH109, 

transformed with either pGBKT7-R or heterologous bait plasmids, after which 

the resulting diploid clones were cultured on SD/-L-W plates for 3-4 days at 30 

°C in a Sanyo MIR262 stationary ventilated incubator (Sanyo, Electronic 

Company Ltd, Ora-Gun, Japan).  The resulting yeast colonies were 

transferred onto QDO selection plates and incubated for another 3-4 days at 

30 °C, after which the growth was observed and scored. 

 

Figure 4.1 shows a typical result of yeast clones scored as ‘positive’ 

depending on the robustness of growth otherwise they were scored as 

‘negative’ for no growth. Following the scoring trend, Table 4.1 shows that of 

the 101 putative preys, 16 showed noticeable specific interactions with RING 

finger bait and not in the presence of heterologous baits.  

4.4. Identification of putative prey interactors 

The Y2H screen identified 16 putative interactors that consistently activated 

the yeast reporter genes (HIS3, ADE2 and MEL1) in a RING finger-specific 

manner. The prey plasmids were sequenced using the fluorescent dye-

terminator cycle sequencing method (3130xl Genetic Analyzers, Applied 

Biosystems Inc CA, USA) and the portions of the sequences in the Human 

Genome database and the encoded proteins were determined using BLAST 

searches (www.ncbi.nlm.nih.gov/blast) as shown in Table 4.1. 
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Figure 4.1. An example of a library prey (pACT2-P) which interacts only with RING finger  
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Diploid colonies containing the prey plasmid (pACT2-P) grew on QDO medium only in the presence 

of RING finger-containing bait plasmid pGBKT7-R (lane 3), but not in the presence of p53 (lane 2), 

C5 (lane 4) or parental plasmids (lanes 1 and 5). The complete set of results is shown in Table 4.1. 
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Table 4.1.  Scoring for yeast growth after heterologous bait matings   
 

 

 

 

 

 

 
92 - - - - - 

95 - - - - - 

101 - + - + - 

111 + + + + + 

135 + - - - + 

144 - - - - - 

158 - - - - - 

232 - - +++++ - - 

237 - - - - - 

246 ++ - - - ++ 

249 - - - - - 

253 - - - - - 

260 - - - - - 

268 +++++ +++++ +++++ +++++ +++++ 

268 - - - - - 

291 - - - - - 

294 ++ ++ ++ ++ ++ 

296 - - - - - 

304 - - - - - 

343 - - - - - 

344 ++ ++ ++ ++ ++ 

344 - - - - - 

350 - - - - - 

358 - - - - - 

359 - - - - - 

394 - + +++++ + - 

480 - - - - - 

487 - - - - - 

489 - - - - - 

490 - - - - - 

501 ++ - ++ ++ ++ 
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512 ++ + ++ + ++ 

699 - - - - - 

797 ++ ++ ++ + ++ 

798 ++ +++ ++ +++ ++ 

807 - - - - - 

843 ++ ++ ++ ++ ++ 

844 ++ ++ ++ +++ ++ 

907 - - - - - 

908 ++ ++ ++ + ++ 

914 ++ ++ ++ +++ ++ 

1019 ++ +++ ++ +++ ++ 

1020 +++ +++ +++ +++ +++ 

1021 - - - - - 

1022 ++ +++ ++ +++ ++ 

1039 - - +++++ - - 

1043 - - - - - 

1044 - - - - - 

1054 ++ ++ ++ ++ ++ 

1058 - - - - - 

1068 - - - - - 

1080 ++++ ++++ ++++ ++++ ++++ 

1081 - - - - - 

1091 ++ +++ ++ +++ ++ 

1093 - - +++++ - - 

1119 ++ +++ ++ +++ ++ 

1189 - - - - - 

1191 - +++ + +++ - 

1192 - - - - - 

1193 ++ +++ ++ +++ ++ 

1194 - - - - - 

1195 - - +++++ - - 

1200 - - - - - 

1201 ++ ++ ++ ++ ++ 

1202 - - +++++ - - 

1208 - - - - - 
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1209 - - - - - 

1210 - ++ +++++ - - 

1211 + - - - + 

1212 - - +++++ - - 

1213 ++ + ++ + ++ 

1216 ++ ++ ++ +++ ++ 

1217 - - +++++ - - 

1218 - - - - - 

1223 ++ ++ ++ ++ ++ 

1224 ++ +++ +++ +++ ++ 

1227 - - +++++ - - 

1228 ++ ++ ++ +++ ++ 

1229 - - +++++ - - 

1231 - - - - - 

1234 ++++ ++++ ++++ ++++ ++++ 

1242 - - - - - 

1262 ++ ++ ++ +++ ++ 

1400 - + +++++ + - 

1411 - - +++++ - - 

1447 ++ +++ +++ +++ ++ 

1448 - - - - - 

1804 - + +++++ - - 

1805 ++ +++ +++ +++ ++ 

1824 - - - - - 

2001 ++ + ++ + ++ 

2003 - - - - - 

2004 - - +++++ - - 

2005 - - +++++ + - 

2006 - - - - - 

2007 ++ +++ +++ +++ ++ 

2034 - - - - - 

2204 - - - - - 

2223 + + + + + 

2226 - - - - - 

2227 ++ +++ +++ +++ ++ 
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On analyzing the DNA sequences encoding these putative interactors, only 3 

sequences gave rise to meaningful biological products, of which 2 sequences 

encoded the same fragment of Y-Box binding protein 1 (YB-1) and the other 

sequence encoded part of a protein called zinc finger and BTB domain 

containing 38 (zBTB38). These plausible preys were subjected to additional 

verification assays. The other 13 prey constructs were discarded since their 

sequences did not correspond to known proteins in either NCBI Entrez 

(www.ncbi.nlm.nih.gov) or Ensemble (www.ensembl.org) protein databases. 

This, however, is expected as only one sixth of the clones represented in 

Matchmaker™ pre-transformed oligo-dT primed cDNA libraries represent 

known protein products (Clontech MATCHMAKER Two-Hybrid Assay Kit User 

Manual).   

4.5. YB-1 binds to RING finger through its C-terminal region 

Mammalian YB-1 consists of 3 highly conserved domains: an Ala/Pro-rich N-

terminal domain, a cold-shock domain (CSD) that mediates RNA and DNA 

interactions, and an Arg/Lys-rich C-terminal domain[158]. In the latter domain, 

clusters of about 30 basic or acidic residues alternate, creating a B/A repeat; 

this region is thought to be involved in protein-protein and RNA-protein 

interactions[158,159]. From the Y2H screen, the 2 prey plasmids that were 

identified to be interacting with RING finger encoded the last 62 amino acid 

residues of YB-1; which correspond approximately to the last B/A repeat as 

shown in Fig 3.4. This region will be referred to in the rest of this thesis as YB-

1-C. 
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Table 4.2.  Identities of putative RING finger interactors  
 
 

Clone 
Number Nucleotide Blast identity 

Nucleotide 
Accession 
Number 
(E-value) 

In-frame Protein Hit 

Protein 
Accession 
Number 
(E-value) 

232, 1039 Homo sapiens Y box binding 
protein 1 (YBX1) 

NM_004559.3 
(0.0) 

Homo sapiens Y box 
binding protein 1 
(YBX1) 

AAH18393.1 
(8e-40) 

1195 
Homo sapiens zinc finger and 
BTB domain containing 38 
(ZBTB38) 

XM_001133510.1 
(0.0) 

Homo sapiens zinc 
finger and BTB domain 
containing 38 (ZBTB38) 

NP_001073881 
(1e-163) 

394 Homo sapiens CD81 molecule 
(CD81) 

NM_ 004356.3 

(0.0) 

unnamed protein 
product [Tetraodon 
nigroviridis] 

CAG04182.1 
(7e-06) 

1217 Homo sapiens mitochondrion, 
complete genome 

NC_001807.4 
(0.0) 

NADH dehydrogenase 
subunit 4 

ABC60558.1 
(6e-55) 

1093 

Homo sapiens chromosome 7 
genomic contig, alternate 
assembly (based on 
CRA_TCAGchr7v2) 

NT_ 079592.2 

(0.0) 
No significant similarity 
found - 

1202 
Homo sapiens ribosomal 
protein S14 (RPS14), transcript 
variant 3 

NM_005617.3 
(0.0) 

No significant similarity 
found - 

1210 

Homo sapiens leucine-rich 
repeats and calponin 
homology (CH) domain 
containing 4 (LRCH4). 

NM_002319.3 

(1e-136) 
No significant similarity 
found  - 

1212 Homo sapiens mitochondrion, 
complete genome 

NC_001807.4 
(0.0) 

No significant similarity 
found - 

1227 

Homo sapiens v-ets 
erythroblastosis virus E26 
oncogene homolog 1 (avian) 
(ETS1) 

NM_005238.2 

(0.0) 
No significant similarity 
found - 

1229 
Homo sapiens chromosome 21 
open reading frame 63 
(C21orf63) 

NM_058187.3 
(0.0) 

No significant similarity 
found - 

1400 
Homo sapiens UPF3 regulator 
of nonsense transcripts 
homolog B (yeast) 

NM_023010.2 
(5e-46) 

No significant similarity 
found - 

1411 
Homo sapiens chromosome 18 
open reading frame 20 
(C18orf20) 

NM_152728.1 
(0.0) 

No significant similarity 
found - 

1804 
Homo sapiens chromosome 7 
genomic contig, reference 
assembly 

NT_007933.14 
(0.0) 

No significant similarity 
found - 

2004 Homo sapiens mitochondrion, 
complete genome 

NC_001807.4 
(0.0) 

No significant similarity 
found - 

2005 
Homo sapiens chromosome 10 
open reading frame 104 
(C10orf104), 

NM_173473.2 
(0.0) 

No significant similarity 
found - 
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Figure 4.2. Mapping of the YB-1/RING interaction region  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic diagram of YB-1 showing the variable N-terminal region (V), the cold shock domain 

(CSD) and the alternating base (B) and acidic (A) blocks forming the C-terminal domain. Both YB-

1 clones identified as interacting with RING finger domain encoded the last acid/base repeat 

(encircled). 
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4.6. RING finger co-immunoprecipitates YB-1-C in vitro. 

To confirm the above interaction in the absence of GAL4 domains, the RING 

finger and the C-terminal fragment of YB-1 (YB-1-C) were PCR amplified from 

their respective bait and prey plasmids using the primers set out in Table 2.1. 

These PCR-generated fragments were used to express 35S-labelled proteins 

in an in vitro transcription/ translation system as described in Section 2.13.5 

and 2.13.6., incorporating Myc and HA tags, respectively. When subjected to 

SDS-PAGE, RING finger and YB-1-C migrated with the expected sizes of 17 

and 14 kDa, respectively (Figure 4.3, lanes 1 and 3). Immunoprecipitation with 

anti-Myc antibody in the presence of Myc-RING and HA-YB-1-C resulted in 

the detection of HA-YB-1-C (lane 2), whereas no HA-YB-1-C was precipitated 

in the absence of Myc-RING (lane 4), indicative of an interaction between 

them. 

4.7. RING finger co-immunoprecipitates full length YB-1 in vivo 

Following confirmation of the interaction using in vitro co-immunoprecipitation 

assays, the interaction was followed up in vivo to confirm whether the RING 

finger can interact with full length YB-1 in the context of the cell. A construct 

encoding full length YB-1 (pEGFP-YB-1) which was a kind gift from Prof. Lev 

P. Ovchinnikov (Institute of Protein Research of the RAS, Russia), was 

amplified and cloned into the EcoRI and XhoI sites of the pCMV-HA and 

pCMV-Myc mammalian expression plasmids using the primers in Table 4.3, 

yielding pHA-YB-1 and pMyc-YB-1 respectively. Similar constructs were made 

for the RING finger domain, yielding pHA-RING finger and pMyc-RING finger 

respectively.  
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Figure 4.3. RING finger co-immunoprecipitates YB-1 protein in vitro 
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Autoradiograph of immunoprecipitation of 35S-labelled in vitro generated proteins; antibodies used in the 

immunoprecipitation reactions are as indicated. Immunoprecipitation with anti-Myc antibody resulted in co-

immunoprecipitation of the 14-kDa HA-YB-1-C fragment in the presence (lane 2), but not in the absence 

(lane 4), of the 17 kDa Myc-RING. Lanes 1 and 3 correspond to individual immunoprecipitates of HA-YB-

1-C and Myc-RING finger, respectively.  
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Appropriate combinations of HA- and Myc-tagged constructs were transfected 

into HEK293 cells and immunoprecipitations were performed using anti-HA 

and anti-cMyc agarose conjugated antibodies as shown in Figure 4.4. 

Exogenously expressed full-length YB-1 and RING finger were able to 

precipitate each other (Fig. 4.4 lanes 2 and 4 respectively), while the 

exogenously expressed RING finger was also able to precipitate endogenous 

full-length YB-1 (Fig. 4.5). Since RBBP6 and YB-1 are both known to interact 

with mRNA, a possibility that needed to be investigated was that the 

interaction was not direct but was mediated by mRNA. The co-

immunoprecipitation of RING finger and YB-1 was not decreased as a result 

of pre-treatment with RNAse A (Fig 4.4, lanes 3 and 7), indicating that the 

interaction is direct and is not meditated by mRNA. Endogenous YB-1 was 

also co-immunoprecipitated by RING finger even after RNAse A treatment 

(Figure 4.5 lane 3), further indicating direct interaction of RING finger and YB-

1. The high molecular weight smears were evident in Figure 4.5 are discussed 

in detail in Section 4.9. Also, constructs for mammalian expression of the C-

terminal fragment of YB-1 (YB-1-C) were made and transfected into HEK293 

cells, but the protein could not be visualized on Western blot and so was 

abandoned in favour of the full length YB-1. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.4. RING finger co-immunoprecipitates full length YB-1 in vivo and vice versa. 
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HEK293 cells were transfected with combinations of HA- and Myc-tagged constructs as indicated and 

immunoprecipitated as indicated. RNase A was added to the lysates as described in section 2.14.2.3. Anti-

HA antibodies were able to precipitate Myc-YB-1 in the presence (lane 2) but not in the absence (lane 4) of 

HA-RING. The same result was obtained in the presence of RNase (lane 3), indicating that the interaction 

between Myc-YB-1 and HA-RING is direct and not mediated by RNA. Conversely, anti-HA antibodies 

were able to precipitate Myc-RING in the presence (lane 6) but not in the absence (lane 8) of HA-YB-1. 
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Figure 4.5. RING finger co-immunoprecipitates endogenous YB-1 in vivo.  
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HEK293 cells were transfected with HA-RING or HA alone as indicated and RNase A was added to the 

lysates as described in Section 2.14.2.3. Exogenous HA-RING was able to precipitate endogenous YB-1 (lane 

2), whereas HA alone was not (lane 5). Addition of RNase had no effect on the amount of YB-1 precipitated 

(lane 3), indicating that the interaction does not involve RNA. Endogenous YB-1 (immunoprecipitated with 

anti-YB-1 to increase the signal) shows evidence of ubiquitin-like modification in the presence of transfected 

HA-RING (lane 1), but much less in the absence of HA-RING (lane 4). These modifications are also visible 

when YB-1 is co-immunoprecipitated with HA-RING using anti-HA antibodies (lanes 2 and 3). 

 

 

 

 



Table 4.3. Primers for cloning YB-1/ RING finger into pCMV-HA and pCMV-Myc 

 
Primer name Primer sequences                                                                                       Ta (°C) 

Full length YB-1 

 Forward 
5’-GAGGGCCGAATTCAAAGCAGCGAGGCCGAGACC-3’            55 

Full length YB-1 

 Reverse  
5’-GAGGGCACCTCGAGATTATACACAAAGACAATTATTTAAGACCT-3’ 55 

RING Finger  

Forward  
5’-GAGGCGCGAATTCCTCCCTTCTTACCAGAGGA-3’             55 

RING Finger 

Reverse 

 
5’-GAGGCGCGCTCGAGATTACTGTTTTCGTAGTCTTTTTGTATA-3’   55 
 

 

 

 

 

 

 

The nucleotide sequence in black font represents the sequence of the primer that first anneals to the DNA in 
the PCR reaction. An ‘overhang’ tag to facilitate restriction enzyme digestion is represented in green font, 
while the red and blue fonts represent the restriction enzyme site and incorporated stop codon respectively. 
Ta is the primer annealing temperature in degrees Celsius 
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4.8. YB-1 interacts with full length RBBP6 in vivo 

Following confirmation that YB-1 interacts in vivo with the RING finger from 

RBBP6, the next task was to investigate whether YB-1 was able to interact 

with full length RBBP6. A mammalian construct expressing GFP-tagged full 

length RBBP6 (described in Section 3.2) together with constructs encoding 

the C-terminus (residues 337 to1792) and N-terminus (residues 1 to 118) of 

RBBP6 as shown in Fig 4.6, were used to investigate the interaction further. 

The N and C-terminal fragments were cloned into the SalI/XhoI and XhoI/NotI 

sites respectively of pCMV-HA mammalian expression vector, using primers 

given in Table 4.4.   

 

Fig 4.6 shows that full length YB-1 was able to precipitate full length RBBP6 

(panel A, lane 2), but not the C-terminus fragment (panel B, lane 2). YB-1 was 

also able to precipitate the N-terminal DWNN domain (panel C, lane 2), 

although from the weak intensity of the band it may be inferred that the 

 



interaction is weaker than with the RING finger. Nevertheless, Fig 4.6 

suggests that both the DWNN and the RING finger interact with YB-1. 

However the region of YB-1 interacting with the DWNN domain may not be 

the same as that interacting with the RING finger.   

 
 
Table 4.4. Primers for cloning N- and C-terminal of RBBP6 into pCMV-HA  
 

Primer name Primer sequence                                                                               Ta (°C) 

N-terminal RBBP6 

 Forward 
5’-GAGGCGCGGTCGACCTCCTGTGTGCATTATAAATTTTC-3’  55 

N-terminal RBBP6 

 Reverse  
5’-GAGGCGCTCGAGTTAGGCAGTCTTTGTAAGCTGGG-3’     55 

C-terminal RBBP6 

Forward  
5’-GAGGCGCTCGAGGTCCTCCTCCACCACCCCCA-3’        55 

C-terminal RBBP6 

Reverse 
5’-GAGGCGGCGGCCGCTTACACAGTGACAGATTTCACTT-3’   55 
 

 

 

 

 

 

 

The nucleotide sequence in black font represents the sequence of the primer that first anneals to the 
DNA in the PCR reaction. An ‘overhang’ tag to facilitate restriction enzyme digestion is represented in 
green font, while the red and blue fonts represent the restriction enzyme site and incorporated stop 
codon respectively. Ta is the primer annealing temperature in degrees Celsius 
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4.9. RING finger ubiquitinates YB-1 in vitro and in vivo  

Although it had been previously suggested that RBBP6 was an E3 ubiquitin 

ligase due to the presence of the RING finger domain[5], no substrate had 

previously been identified. In order to investigate whether YB-1 is 

ubiquitinated by the RING finger domain, 35S-labelled full-length YB-1 and 

unlabelled RING finger protein were expressed in an in vitro 

transcription/translation system (Section 2.13.5 and 2.13.6) and used in an in 

vitro ubiquitination assay as described in Section 2.18.  

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK7-4TK92N5-3&_user=613892&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000032099&_version=1&_urlVersion=0&_userid=613892&md5=1e99949b1bd0889b67731e7d9d13b2c5#bbib9
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=3&_targetURL=http%3A%2F%2Fdx.doi.org%2F10.1073%2Fpnas.0701916104&_acct=C000032099&_version=1&_userid=613892&md5=2ca75e4cd3eba3887a5d01e59a35fcaa
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Frecord.url%3Feid%3D2-s2.0-34249933682%26partnerID%3D10%26rel%3DR3.0.0%26md5%3D66c050265cd51ec0658edc16b36ce331&_acct=C000032099&_version=1&_userid=613892&md5=90fc0d954a0b3d09e06a3a9111d129d5
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=656&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fcitedby.url%3Feid%3D2-s2.0-34249933682%26partnerID%3D10%26rel%3DR3.0.0%26md5%3D66c050265cd51ec0658edc16b36ce331&_acct=C000032099&_version=1&_userid=613892&md5=45c7908b971cb4a5ce7e359e1a69e445


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6. Full-length YB-1 interacts with full-length RBBP6 in vivo 

1            2           3  

HA      Myc MycIP:

WB: anti-HA

RBBP6 residues 337-1792

 

1            2           3  

HA      Myc MycIP:

WB: anti-HA

RBBP6 residues 1-118

HA-

HA-

B

C

IP:

1            2           3  

GFP      Myc Myc

WB: anti-GFP

RBBP6 full-length
RING Finger

GFP-GFP-

A + + -Myc-YB-1
- - +Myc

+ + -Myc-YB-1
- - +Myc

+ + -Myc-YB-1
- - +Myc

 

 

 

 

 

 

 

HEK293 cells were co-transfected with Myc-YB-1 and either GFP-RBBP6 or HA-tagged fragments of 

RBBP6, as shown schematically on the right of the figure. (A) Myc-YB-1 was able to precipitate full-length 

GFP-RBBP6 (lane 2), but Myc alone was not (lane 3). However, Myc-YB-1 was not able to precipitate the C-

terminal part of RBBP6 (B), which lacks the RING finger domain, although the N-terminal part, which 

contains the ubiquitin-like DWNN domain, interacted weakly with YB-1 (C, lane 2). 
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Higher molecular weight bands consistent with polyubiquitinated YB-1 were 

visible when YB-1 was incubated with RING finger and ubiquitin (see Fig 4.7) 

but not when either the RING finger or ubiquitin was omitted, indicating not 

only that the RING finger is capable of catalyzing the ubiquitination of YB-1 in 

vitro but also that it is ubiquitin that is being attached to YB-1 and not some 

other ubiquitin like-modifiers such as SUMO or NEDD8[39,160].  

  

Full-length YB-1 for use in in vitro was first amplified from pEGFP-YB-1 

(described in Section 4.7) using the primers given in Table 4.5 and then 

cloned into the EcoRI and XhoI sites of pACT2 vector. It was re-amplified 

using the pACT2 primers given in Table 2.1, to produce a fragment 

incorporating the T7 promoter which was then used to produce 35S-labelled 

protein using the TNT in vitro transcription/translation system, as described in 

Section 2.13.5 and 2.13.6. Unlabelled RING finger was produced in the same 

manner described in Section 4.6, with substitution of 35S-methionine for 

unlabelled methionine.  

 

Table 4.5. Primers for cloning YB-1 full length into pACT2 

 
Primer name Primer sequence                                                                                           Ta (°C)  

YB-1 full length 

 Forward 
5’-GAGGGCCGAATTCAAAGCAGCGAGGCCGAGACC-3’             55  

YB-1 full length 

 Reverse  
5’-GAGGGCACCTCGAGATTATACACAAAGACAATTATTTAAGACCT-3’  55  

 

 

 

 

 

 

The nucleotide sequence in black font represents the sequence of the primer that first anneals to the DNA in 
the PCR reaction. An ‘overhang’ tag to facilitate restriction enzyme digestion is represented in green font, 
while the red and blue fonts represent the restriction enzyme site and incorporated stop codon respectively. 
Ta is the primer annealing temperature in degrees Celsius 
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Figure 4.7. RING finger ubiquitinates YB-1 in vitro 
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Autoradiograph showing in vitro ubiquitination of YB-1 by RING finger protein.  35S-labelled YB-1 

and unlabelled RING finger were produced in an in vitro transcription/ translation system (Promega), 

and used in an in vitro S-100 HeLa ubiquitination assay system (Boston-Biochem). YB-1, RING finger 

and ubiquitin substrates were added as indicated. All reactions were precipitated with anti-YB-1 

antibodies prior to SDS-PAGE analysis to amplify the signal. YB-1 was ubiquitinated in the presence 

of RING finger and ubiquitin (lane 1) but not when either or both of them were omitted (lanes 2–4). 
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4.10. YB-1 ubiquitination leads to proteasomal degradation 

Modification of proteins by ubiquitin can have many consequences, including 

proteasomal degradation. In order to investigate whether YB-1 is degraded in 

the proteasome as a consequence of ubiquitination by RBBP6 or RING finger, 

HEK293 cells were co-transfected with Myc-YB-1 and increasing amounts of 

HA-RING or GFP-RBBP6; the amount of YB-1 present in the cells was 

visualised on Western blot using anti-Myc antibodies as shown in Figure 4.8. 

YB-1 levels decreased in a dose-dependent manner with increasing amounts 

of RING finger or full-length RBBP6. However, the effect was abolished when 

MG132 was added to block the proteasome, indicating that degradation by 

the proteasome is responsible for the decrease in YB-1 levels.  

4.11. RING finger represses YB-1 transactivation 

Since expression of RBBP6 leads to a decrease in intracellular levels of YB-1, 

a similar decrease in the transactivational activity of YB-1 is to be expected. 

To confirm this, HEK293 cells were transfected with pALUC, a plasmid 

encoding a firefly luciferase reporter gene under the control of the YB-1 

inducible promoter. Transfection of HA-RING resulted in a dose-dependent 

decrease in the ability of endogenous YB-1 to activate a luciferase reporter as 

indicated by decrease in luciferase activity as shown in Figure 4.9.   No such 

effect was observed when the RING finger was replaced with two control 

constructs (donated by Professor JC Moolman-Smook, Stellenbosch 

University, South Africa), encoding the C1 domain from human cardiac 

myosin binding protein C and cardiac troponin I, respectively. 

  

 

 

 

 



 

 

 
Figure 4.8. RBBP6 suppresses YB-1 levels in vivo. 
 

 

 

HEK293 cells were co-transfected with Myc-YB-1 and with increasing amounts of HA-RING or GFP-

RBBP6 as indicated. Six micrograms each of HA and GFP respectively served as controls. (A) Exogenously 

expressed HA-RING suppressed levels of exogenously expressed Myc-YB-1 in HEK293 cells in a dose-

dependent manner. (B) A similar effect was observed using full-length GFP-RBBP6. (C) However, the 

effect was abolished following treatment of the cells with the proteasomal blocker MG132, indicating that 

the suppression of YB-1 is due to its degradation in the proteasome. 
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The Dual-luciferase Assay system (Promega) utilizes a second form of 

luciferase (Renilla) under the control of a constitutive SV-40 promoter to serve 

as an internal control. Typically this would be expected to show only small 

variations as was observed for the two control constructs (Figure 4.8 (B)). In 

the case of RING finger, however Renilla luciferase activity also decreased in 

a dose dependent manner, although much less than for the Firefly luciferase. 

Since a decrease of this magnitude is not likely to be due to variations in 

loading levels, it was concluded that Renilla was not suitable as a control. The 

Firefly luciferase activity values were therefore quoted in absolute terms, 

rather than normalized by the Renilla levels. A similar decrease was observed 

when the SV-40 driven Renilla reporter was replaced by a CMV-driven Renilla 

reporter (data not shown). The reason for the repression from these 

constitutive promoters is being investigated, but is outside the scope of this 

thesis.   

 

 

 

 

 

 

 

 

 

 

 



 122 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4.9. RI
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creasing amounts of HA-RING as indicated. Luciferase activity was measured using a Dual-

orter Assay system (Promega). (A) Exogenously expressed RING finger repressed expression of 

rter driven from the YB-1-inducible promoter, consistent with the observed decrease in YB-1 

re 4.8). No such effect was observed using two external control constructs, viz. the C1 domain 

yosin binding protein C and cardiac troponin I. As the Renilla reporter was also suppressed by the 

e-dependent fashion (panel B), luciferase values were not normalised with respect to Renilla 

 quoted in absolute terms. Bars indicate standard deviations calculated on the basis of three 

asurements. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK7-4TK92N5-3&_user=613892&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000032099&_version=1&_urlVersion=0&_userid=613892&md5=1e99949b1bd0889b67731e7d9d13b2c5#fig6#fig6
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4.12. zBTB38 binds to RING finger through its C-terminal region 

zBTB38 is a second protein identified as interacting with the RING finger 

domain from RBBP6. zBTB38 contains an N-terminal BTB domain and a C-

terminal region containing 10 clusters of zinc finger residues[161]. The region 

encoded by the Y2H prey clone corresponded to the last 631 amino acid 

residues on the C-terminal region of zBTB38 protein thereafter denoted as 

zBTB38-C as shown schematically in Figure 4.10. 

4.13. RING finger co-immunoprecipitates zBTB38-C in vitro  

To confirm the interaction in the absence of GAL4 domains, the RING finger 

and the C-terminal fragment of zBTB38 (zBTB38-C) were PCR amplified from 

their respective bait and prey plasmids to produce fragments that were used 

to express 35S-labelled proteins in an in vitro transcription/translation system 

as described in section 2.13.5 and 2.13.6., incorporating Myc and HA tags, 

respectively. When subjected to SDS-PAGE the RING finger and zBTB38-C 

migrated with the expected sizes of 17 and 72 kDa, respectively (Figure 4.11, 

lanes 1 and 2). Immunoprecipitation with anti-Myc antibody in the presence of 

Myc-RING and HA-zBTB38-C resulted in the detection of HA-zBTB38-C (lane 

3), whereas no HA-zBTB38-C was precipitated in the absence of Myc-RING 

(lane 4), indicating the presence of an interaction between them. 

 

  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
Figure 4.10. Mapping of zBTB38/RING interaction region  

 

 

 

 

 

 

The prey plasmid containing the zBTB38 construct that was identified in Y2H screen encoded the 

last 631 amino acid residues of zBTB38 as indicated. The structural organization of zBTB38 

comprises a BTB domain, repression domain 2 (RD2) and a C-terminal region consisting of 10 

clusters of Zinc fingers containing a spacer domain (SP) spacing the Zinc fingers apart.  
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Figure 4.11. RING finger co-immunoprecipitates zBTB38-C in vitro  
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Autoradiograph of the immunoprecipitation assays of Met-35S-labelled in vitro-transcribed/translated 

proteins; antibodies used in the immunoprecipitation reactions are as indicated. Immunoprecipitation with 

anti-Myc antibody resulted in co-immunoprecipitation of the 72-kDa HA-zBTB38-C fragment in the 

presence (lane 3), but not in the absence (lane 4), of the 17 kDa Myc-RING. Lanes 1 and 2 are individual 

immunoprecipitates of Myc-RING finger and HA-zBTB38-C respectively to serve as markers for the 

expected sizes of the proteins.  
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4.14. zBTB38 interacts with RING finger and RBBP6 in vivo  

Following confirmation of the interactions using in vitro co-

immunoprecipitation assays, the interaction was further verified in transfected 

mammalian cells. A mammalian construct encoding full length RFP-zBTB38 

was a kind donation from Dr Pierre-Antoine Defossez, Paris University, 

France[162]. RFP-zBTB38, Myc-RING finger and GFP-RBBP6 were co-

transfected into HEK293 cells as shown in Figure 4.12 and co-

immunoprecipitation assays performed after 48 hours. Western blotting was 

carried out using anti-RFP antibodies. Figure 4.12 shows that both full-length 

RBBP6 and the RING finger were able to precipitate full-length zBTB38 in 

vivo.  

4.15. RBBP6 co-localizes with zBTB38 

A preliminary fluorescence microscopy study was conducted to determine 

whether RBBP6 and zBTB38 can be observed occupying the same 

intracellular compartment. HEK293 cells were transfected with GFP-RBBP6 

and RFP-zBTB38 after which live cell images were acquired on a Zeiss 

LSM510 Confocal Microscope (Carl Zeiss MicroImaging Inc.). GFP-RBBP6 

appears as green, RFP-zBTB38 as red and areas of co-localization appear as 

yellow. The cell nucleic region is shown in blue due to Hoechst stain. Both 

proteins are localized within the nucleus. Areas of yellow can be seen within 

the nucleus, indicating co-localization of the proteins within those regions.  

Intriguingly, the overlapping of the proteins is observed in defined subnuclear 

structures that may correspond to nuclear speckles. This observation is 

consistent with the expected localization of zBTB38, which is known to be a 

nuclear associated protein that is recruited to the chromocenters[163] 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

                                      

 
 

Figure 4.12. Exogenous RING finger and full length RBBP6 co-immunoprecipitate exogenous 

zBTB38 in vivo 
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Exogenous full length RFP-zBTB38 was imminoprecipitated by anti-Myc antibodies in the presence of 

(lane 2), but not in the absence (lane 3) of exogenous RING finger. Similarly, RFP-zBTB38 was co-

immunoprecipitated in the presence (lane 5) but not in the absence (lane 6), of full length RBBP6. RFP-

zBTB38 was detected using anti-RFP antibodies.  
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Transfections: 
 



 

 

 

 

 

 

 

 

 

 

Figure 4.13. RBBP6 co-localizes with zBTB38 in transfected cells  

  

 

 

 

 

 

 

The co-localization image that was taken on live cells, showing an overlap of exogenous RBBP6 and 

exogenous zBTB38 localisation in live cells. The co-localisation was observed in defined structures 

within the nuclear region, which may correspond to nuclear speckles.  
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4.16. RING finger polyubiquitinates zBTB38 in vitro  

In section 4.9 it was shown that the interaction of RING finger with YB-1 leads 

to ubiquitination of YB-1.  To investigate whether zBTB38 is ubiquitinated by 

the RING finger domain, 35S-labelled HA-zBTB38-C and unlabelled Myc-RING 

finger protein were expressed in an in vitro transcription/translation system the 

same way as in Section 4.9 and used in an in vitro ubiquitination assay again 

as described in Section 4.9. All reactions were precipitated with anti-HA 

antibodies, subjected to SDS-PAGE and visualized by autoradiograph as 

shown in Figure 4.14.  

 

Higher-molecular-weight bands consistent with polyubiquitinated zBTB38-C 

were visibly enhanced when zBTB38 was incubated with RING finger (lanes 

3-5) compared to the ubiquitination that occurred in the absence of RING 

finger (lane 2), thereby confirming that the RING finger enhances the 

ubiquitination of zBTB38-C. Full length zBTB38 could not be used as an 

ubiquitination substrate because the efficiency of in vitro translation was too 

low.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

                                                 

 

 
Figure 4.14. RING finger enhances ubiquitination of zBTB38 in vitro.  
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35S-labelled zBTB38-C and unlabelled RING finger were produced in an in vitro 

transcription/translation system and added to an in vitro S-100 HeLa ubiquitination kit as indicated. 

All reactions were precipitated with anti-HA antibodies prior to SDS-PAGE analysis to amplify the 

signal. RING finger enhances in vitro ubiquitination of zBTB38-C as shown in lanes 3-5, compared 

to levels of ubiquitination in the absence of RING finger (lane 2).  
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CHAPTER 5: Y2H screen using DWNN domain as yeast bait  

5.1. Introduction 

The N-terminus of all members of the RBBP6 family comprises of an 

ubiquitin-like domain known as the DWNN domain that is also expressed as 

an independent domain in higher eukaryotes[5]. Due to the function of RBBP6 

as an E3 ubiquitin ligase, the DWNN domain is likely to play some role in 

ubiquitination, although the exact nature of the role is not yet known. Pugh 

and colleagues speculated that the independently expressed domain may act 

as a novel ubiquitin-like modifier similar to SUMO or NEDD8[5]. Another 

possibility is that the domain acts as a protein-protein interaction motif, 

recruiting E2 enzymes or substrates to the RING finger domain. 

 

This chapter describes a Y2H screen of a human testis cDNA library using the 

DWNN domain from RBBP6 as bait. A number of putative interactors were 

identified and 2 of these were confirmed using co-immunoprecipitation 

assays, both in vitro and in vivo.  

5.2. Yeast library matings 

pGBKT7-D was transformed into Saccharomyces cerevisae strain AH109 and 

used to screen a commercial human testis cDNA library cloned into the 

pACT2 vector that was received pre-transformed into Saccharomyces 

cerevisae strain Y187 (Clontech, USA). The screening of an estimated 5.4 

x106 library clones yielded 520 clones in which transcription of the interaction-

reporter gene HIS3 was activated as evidenced by their ability to grow on 

TDO selection medium (medium lacking leucine, tryptophan and histidine). 
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The yeast clones from TDO medium plates were transferred to QDO selection 

medium (medium lacking leucine, tryptophan, histidine and adenine) on which 

102 clones survived, indicating additional activation of transcription of the 

interaction-reporter gene ADE2. These clones were then transferred to QDO 

selection medium supplemented with X-α-gal (a chromogen substrate for α-

galactosidase enzyme) to select yeast clones that activate transcription of 

another interaction-reporter gene MEL1 by show of blue colony coloration. 

There were 55 yeast clones that exhibited consistency in activating three 

interaction-reporter genes (HIS3, ADE2 and MEL1), and these clones were 

further subjected to interaction specificity bait mating tests.  

5.3. Interaction specificity tests 

Prey plasmids from the 55 clones expressing all 3 reporter genes were 

extracted and re-transfromed into yeast strain Y187 in a similar fashion as 

described in Section 4.3 and subsequently used to test the specificity of the 

interaction as again described in Section 4.3. An example of a prey that 

interacted specifically with the DWNN domain is shown in Fig 5.1. Table 5.1 

shows that of the 55 putative preys, 21 showed strong interaction with DWNN 

and little or no interaction with other heterologous baits (indicated in red). 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

    

 

 

                           

                                  

 
 
 

Figure 5.1. An example of library prey (pACT2-P) that interacts DWNN only 
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Diploid colonies containing the prey plasmid (pACT2-P) grew on QDO medium only in the presence of 

DWNN-containing bait plasmid pGBKT7-D (lane 3), but not in the presence of p53 (lane 2), C5 (lane 

4) or parental plasmids (lanes 1 and 5). The complete set of results is shown in Table 5.1. 
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Table 5.1. Scoring for yeast growth after heterologous bait matings   
 
 

 

 

 

 

 

 

11 - - - - - 

19 +++++ ++++ +++++ ++++ +++++ 

20 - - +++++ - - 

24 - + +++++ - - 

26 - - +++++ + - 

29 - + +++++ + - 

31 +++++ ++++ +++++ ++++ +++++ 

38 +++++ +++++ ++++ ++++ +++++ 

44 +++++ +++++ +++++ +++++ +++++ 

47 - + +++++ + - 

56 +++++ +++++ +++++ +++++ +++++ 

62 - - +++++ - - 

63 +++++ +++++ +++++ +++++ +++++ 

64 +++ +++ +++ +++ +++ 

66 +++++ +++++ ++++ ++++ +++++ 

67 +++ +++ +++ +++ +++ 

68 +++++ ++++ +++++ ++++ +++++ 

74 +++++ +++++ +++++ +++++ +++++ 

76 +++++ +++++ +++++ +++++ +++++ 

81 +++ +++ +++ +++ +++ 

82 +++++ ++++ +++++ +++++ +++++ 

83 +++++ +++++ +++++ ++++ +++++ 

85 +++ +++ +++ +++ +++ 

88 +++++ +++++ +++++ +++++ +++++ 

93 - - +++++ - - 

95 +++++ +++++ +++++ +++++ +++++ 

97 +++++ +++++ +++++ +++++ +++++ 

99 - + +++++ - - 

104 - - +++++ + - 
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108 +++ +++ +++ +++ +++ 

127 +++++ ++++ ++++ ++++ +++++ 

131 - - +++++ - - 

139 +++++ +++++ +++++ +++++ +++++ 

140 +++++ +++++ +++++ +++++ +++++ 

150 - - +++++ + - 

151 +++++ +++++ ++++ +++++ +++++ 

160 - + +++++ - - 

167 +++++ +++++ +++++ +++++ +++++ 

176 +++ +++ +++ +++ +++ 

176 - - +++++ - - 

177 +++++ +++++ +++++ +++++ +++++ 

178 +++++ +++++ +++++ +++++ +++++ 

179 - - +++++ - - 

181 +++ +++ +++ +++ +++ 

190 +++++ +++++ +++++ +++++ +++++ 

210 - + +++++ - - 

211 - - +++++ - - 

212 - - +++++ - - 

225 +++++ +++++ +++++ +++++ +++++ 

231 - + +++++ - - 

232 +++++ +++++ +++++ +++++ +++++ 

232 +++ +++ +++ +++ +++ 

234 +++++ +++++ +++++ ++++ +++++ 

235 - - +++++ - - 

242 - - +++++ - - 
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5.4. The identification of putative prey interactors 

The Y2H screen identified 21 putative interactors that consistently activated 

the yeast interaction-specific reporter genes HIS3, ADE2 and MEL1 as well as 

showing interaction-specificity with the DWNN bait only. The identified 

putative preys were sequenced using the fluorescent dye-terminator cycle 

sequencing method (3130xl Genetic Analyzers, Applied Biosystems Inc CA, 

USA) and their identity determined by BLAST searches of Human Genome 

database sequences as well as encoded proteins as shown in Table 5.1 

 

On analyzing the DNA sequences encoding these putative interactors, 8 prey 

sequences gave rise to 6 preys with known identity from which 2 DNA 

sequences repeatedly identified the same prey. The other 13 prey constructs 

were discarded since their sequences did not correspond to known proteins in 

either NCBI Entrez (www.ncbi.nlm.nih.gov) or Ensemble (www.ensembl.org) 

protein databases. This, however, is expected as only one sixth of the clones 

represented in Matchmaker™ pre-transformed oligo-dT primed cDNA libraries 

represent known protein products (Clontech MATCHMAKER Two-Hybrid 

Assay Kit User Manual). 

 

Among the 6 identified preys, 2 preys encoded small nuclear 

ribonucleoprotein polypeptide G and heat shock 70kDa protein 14 (see Table 

5.2) and were prioritized for further verification assays. The reasons they were 

initially chosen were as follows: (i) both preys were identified more than once 

thereby increasing the likelihood of a genuine interaction, (ii) previous studies 

about the prey proteins gave an indication that their interactions with RBBP6 
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may provide physiological relevant information. For instance, RBBP6 has 

been previously linked to splicing role[1] so, its interaction with snRPG, a 

splicing factor, may be physiologically relevant. Also proteins containing both 

ubiquitin like domain and RING finger domain such as BAG-1/CHIP protein 

complex have been found to associate with heat shock protein 70[35,36] to 

facilitate chaperone dependent ubiquitination and similarly, association of 

RBBP6 with Hsp70 may unveil another novel role of RBBP6.    

 
 
 Table 5.2.  Putative DWNN ligands identified from Y2H library screen 
 

Clone 
Number Nucleotide Blast identity 

Accession 
Number 
(E-values) 

In-frame Protein Hit 
Accession 
Number 
(E-values) 

93 
Homo sapiens heat shock 70kDa 
protein 14 (HSPA14), transcript 
variant 1 

NM_016299.2 
(0.0) 

Heat shock 70kDa 
protein 14 [Homo 
sapiens] 

NP_057383 
(2e-41) 

 

131 
Homo sapiens heat shock 70kDa 
protein 14 (HSPA14), transcript 
variant 1 

NM_016299.2 
(8e-86) 

Heat shock 70kDa 
protein 14 [Homo 
sapiens] 
 

NP_057383 
(2e-23) 

211 
Homo sapiens small nuclear 
ribonucleoprotein polypeptide G 
(SNRPG) 

NM_003096 
(0.0) 

Small nuclear 
ribonucleoprotein 
polypeptide G [Homo 
sapiens]. 

NP_003087 
(2e-35) 

62 

Homo sapiens small nuclear 
ribonucleoprotein polypeptide G 
(SNRPG) 
 

NM_003096.2 
(0.0) 

 

Small nuclear 
ribonucleoprotein 
polypeptide G [Homo 
sapiens] 

NP_003087 
(4e-36) 

20 
Homo sapiens DnaJ (Hsp40) 
homolog, subfamily B, member 
1 (DNAJB1) 

NM_006145 

(0.0) 

DnaJ (Hsp40) homolog, 
subfamily B, member 1 
[Homo sapiens] 

NP_006136 
(3e-35) 

 

104 Homo sapiens RAN binding 
protein 9 (RANBP9) 

NM_005493.2 
(0.0) 

RANBP9 protein [Homo 
sapiens]. 
 

AAH52781 
(6e-101) 

150 Homo sapiens gametogenetin 
(GGN) 

NM_152657.3 
(0.0) 

Gametogenetin protein 
1a [Homo sapiens]. 

AAP31500 
(1e-52) 

 

176 Homo sapiens Niemann-Pick 
disease, type C2 (NPC2) 

NM_006432 
(0.0) 

Niemann-Pick disease, 
type C2 [Homo sapiens] 
 

EAW81178 
(5e-39) 

47 
Homo sapiens chromosome 20 
genomic contig, reference 
assembly 

NT_028392.5 
(0.0) 

No significant similarity 
found - 
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24 Homo sapiens misc_RNA 
(MGC88374), miscRNA 

XR_041747 
(5e-97) 

No significant similarity 
found - 

179 
Homo sapiens misc_RNA 
(MGC88374), miscRNA 
 

XR_041747.1 
(4e-85) 

No significant similarity 
found. - 

212 Homo sapiens nuclear receptor 
interacting protein 1 (NRIP1) 

NM_003489.2 
(0.0) 

No significant similarity 
found - 

231 Homo sapiens misc_RNA 
(LOC653602), miscRNA 

XR_041664.1 
(0.0) 

No significant similarity 
found 
 

- 

26 
Homo sapiens CDC28 protein 
kinase regulatory subunit 2 
(CKS2) 

NM_001827.1 
(8e-112) 

No significant similarity 
found 
 

- 

242 
Homo sapiens chromosome 9 
genomic contig, reference 
assembly 

NT_008413.17 
(0.0) 

No significant similarity 
found - 

210 
Homo sapiens chromosome 15 
genomic contig, reference 
assembly 

NT_010194.16 
(0.0) 

No significant similarity 
found 
 

- 

160 
Homo sapiens chromosome 8 
genomic contig, reference 
assembly 

NT_008183.18 
(2e-168) 

No significant similarity 
found 
 

- 

99 
Homo sapiens chromosome 1 
genomic contig, reference 
assembly 

NT_021877.18 
(1e-177) 

No significant similarity 
found 
 

- 

29 Homo sapiens prion protein 2 
(dublet) (PRND) 

NM_012409.2 
(0.0) 

No significant similarity 
found 
 

- 

235 
Unnamed protein product 
[Homo sapiens] 
 

BAC03955 
(2e-10) 

No significant similarity 
found - 

95 
Homo sapiens chromosome 12 
genomic contig, reference 
assembly 

NT_009714.16 
(0.0) 

 

No significant similarity 
found - 

 

  

5.5. DWNN co-immunoprecipitates snRPG in vitro 

To confirm the above interaction in the absence of GAL4 domains, the DWNN 

and the Y2H screen-identified small nuclear ribonucleoprotein polypeptide G 

(snRPG) were PCR amplified from their respective bait and prey plasmids to 

produce PCR fragments that were used to express as 35S-labelled proteins in 

an in vitro transcription/translation system, incorporating Myc and HA tags, 

 

 

 

 



respectively. When subjected to an SDS-PAGE the DWNN and snRPG 

proteins migrated with the expected sizes of 15 and 12 kDa, respectively 

(Figured 5.2, lanes 1 and 2). Immunoprecipitation with anti-Myc antibody in 

the presence of Myc-DWNN and HA-snRPG resulted in the detection of HA-

snRPG (lane 3), whereas no HA-snRPG was immunoprecipitated in the 

absence of Myc-DWNN (lane 4), indicative of an interaction between them. 

5.6. DWNN co-immunoprecipitates snRPG in vivo 

Following confirmation of the interactions using in vitro co-

immunoprecipitation assays, the interaction was further followed up in vivo to 

confirm whether the interaction between DWNN and snRPG takes place 

within the cell. Constructs encoding DWNN and snRPG were subcloned into 

the SalI/XhoI and EcoRI/XhoI sites, respectively, of both pCMV-HA and 

pCMV-Myc plasmids using the primers as shown in Table 5.3, to generate 

pHA-DWNN, pMyc-DWNN, pHA-snRPG and pMyc-snRPG constructs.  

 

Table 5.3. Primers for cloning DWNN/ snRPG into pCMV-HA and pCMV-Myc 
 

Primer name Primer sequences                                                                               Ta ( °C ) 

DWNN 

 Forward 
5’-GAGGCGCGGTCGACCTCCTGTGTGCATTATAAATTTTC-3’    55  

DWNN 

 Reverse  
5’-GAGGCGCTCGAGTTAGGCAGTCTTTGTAAGCTGGG-3’       55 

snRPG 

Forward  
5’-GAGGCGCGAATTCGGAGCAAAGCTCACCCTCCCG-3’        55 

snRPG 

 Reverse 
5’-GAGGCGCTCGAGTTATACTCGTTCCAAGGCTTC-3’         55 

 

 

 

 

 

 

The nucleotide sequence in black font represents the sequence of the primer that first anneals to the 
DNA in the PCR reaction. An ‘overhang’ tag to facilitate restriction enzyme digestion is represented in 
green font, while the red and blue fonts represent the restriction enzyme site and incorporated stop 
codon respectively. Ta is the primer annealing temperature in degrees Celsius 
 140 
 
 

  



 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. DWNN co-immunoprecipitates snRPG proteins in vitro 

 

 

 

 

 

Autoradiograph of immunoprecipitation of 35S-labelled in vitro transcribed /translated proteins; antibodies 

used in the immunoprecipitation reactions are as indicated. Immunoprecipitation with anti-Myc antibody 

resulted in co-immunoprecipitation of the 12-kDa HA-snRPG fragment in the presence (lane 3), but not in 

the absence (lane 4), of the 15 kDa Myc-DWNN. Lanes 1 and 2 are individual immunoprecipitates of 

Myc-DWNN and HA-snRPG respectively. 
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Co-transfection of appropriate combinations of HA- and Myc-tagged 

constructs was carried out using HEK293 cells and immunoprecipitations 

were performed using anti-HA and anti-cMyc agarose conjugated antibodies. 

Exogenous DWNN and snRPG were able to precipitate each other as shown 

in Figure 5.3. 

5.7. snRPG interacts with full length RBBP6 in vivo 

It was investigated whether the interaction of snRPG with DWNN was true in 

the context of the full length RBBP6. Using a GFP-tagged full-length cDNA 

construct of RBBP6, it was shown that exogenous snRPG was able to 

precipitate full-length RBBP6 but not with truncated versions C-terminal 

RBBP6 fragment and RING finger domain lacking the DWNN domain 

indicating the interaction of snRPG with RBBP6 is via the DWNN domain as 

shown in Figure 5.4.  The primers for generating HA-RING finger and C-

terminal RBBP6 are the same as used in Figures 4.3 and 4.4 respectively.   
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ure 5.3. DWNN immunoprecipitates snRPG in vivo and vice versa 

 

K293 cells were transfected with combinations of HA- and Myc-tagged constructs as indicated and 

munoprecipitated using the indicated agarose conjugated antibodies. Anti-HA antibodies were able to 

cipitate Myc-DWNN in the presence (lane 3), but not in the absence (lane 4), of HA-snRPG. 

nversely, anti-HA antibodies were able to precipitate Myc-snRPG in the presence (lane 7) but not in 

 absence (lane 8) of HA-DWNN, thereby confirming interaction of the two proteins. 



                                                   

 

 

Figure 5.4. snRPG interacts with full- length RBBP6 in vivo 

 

 

 

 

 

 

 

HEK293 cells were co-transfected with Myc-snRPG as indicated, and GFP-RBBP6 or HA-tagged regions of 

RING finger and RBBP6-C as shown. Myc-snRPG was able to precipitate full-length GFP-RBBP6 (A lane 

2), but Myc alone was not (lane 3). However, Myc-snRPG was not able to precipitate either the C-terminal 

part of RBBP6 (panel B lane 2) or the RING finger (panel C lane 2) lacking the DWNN domain indicating 

snRPG interacts with RBBP6 only through the N-terminal region (residues 1-234), which contains the 

DWNN domain and the zinc finger domain. 
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5.8. RBBP6 interacts with heat shock protein 70kDa in vivo 

Heat shock 70kDa protein 14 (HSPA14), was identified more than once in the 

Y2H screen as shown in Table 5.1. Both prey constructs encoded the C-

terminal 86 amino acids of the protein. The gene that encodes HSPA14 is one 

of 21 human genes encoding proteins belonging to heat shock protein 70 

(Hsp70) subfamily. HSPA14 is both structurally and functionally similar to 

other members of Hsp70 protein including the heat shock 70kDa protein 1 

(HSPA1) that has been previously shown to interact with proteins containing 

ubiquitin-like domain[164,165]. HSPA14 shares common receptors on human 

dendritic cells (DCs) with Hsp70 and can interact with DCs, promoting DC 

maturation and stimulating secretion of the proinflammatory cytokines 

interleukin 12p70 (IL-12p70), IL-1 , tumor necrosis factor-  (TNF- ), and the 

chemokines IP-10, macrophage inflammatory protein-1  (MIP-1 ), MIP-1 , 

and normal T cell expressed and secreted (RANTES)[166]. 

 

Because of the similarities that exist between HSPA14 and HSPA1 and the 

availability of commercial anti-HSPA1 antibodies, it was decided to confirm 

whether the interaction existed between the DWNN domain and HSPA1, 

which will be referred to in what follows simply as Hsp70.   

 

To investigate if endogenous Hsp70 interacts with RBBP6 in vivo as well as 

mapping the region of RBBP6 interaction, single transfections in HEK293 cells 

were carried out with previously discussed full length GFP-RBBP6, Myc-

DWNN domain (residues 1-118 aa), Myc-RING finger domain (residues 235-

335 aa) and HA-RBBP6-C (residues 337-1792 aa) as shown in Figure 5.5. 
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Immunoprecipitation of the respective exogenous proteins via their respective 

tags and detection with anti-Hsp70 antibody (anti-HSPA1) (Stressgen) led to 

the result shown if Fig 5.5. Endogenous Hsp70 could be precipitated by full 

length RBBP6 (lane 2), by the DWNN domain (lane 4), by the RING finger 

(lane 3), but not by the C-terminus of RBBP6 (lane 6).   
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ure 5.5. RBBP6 co-immunoprecipitates endogenous Hsp70 

 

K293 cells were transfected various tagged fragments of RBBP6 as shown. Immunoprecipitation of these 

ged proteins using their respective antibodies, Hsp70 was precipitated by RBBP6, DWNN and RING finger 

t the C-terminal RBBP6 (337-1792) did not result in Hsp70 precipitation (Lane 2, 3, 4 and 6). As negative 

ntrols, transfection of HEK293 cells with non recombinant parental vectors containing GFP, Myc or HA did 

t result in Hsp70 pull-down thereby indicating that Hsp70 precipitation was due to its interaction with 

pective proteins as indicated (Lane 5, 7 and 8). Also as positive control for the expected size of Hsp70, the 

p70 was precipitated by the anti-Hsp70 antibodies and detected by the same antibody. Lane 1 is loaded with 

transfected cell lysate as a control marker for the presence of Hsp70 endogenous protein. 
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CHAPTER 6: GENERAL DISCUSSION 

6.1. Introduction 

The study focused on characterizing RBBP6 through identification of its 

protein interactors using Y2H system. Among other approaches that include 

analysis of gene expression patterns and phylogenetic profiles, protein-protein 

interaction data has been used to predict the functions of unknown 

proteins[167,168]. Using the protein-protein interaction approach, a Y2H 

screen was conducted using RING finger and DWNN domains of RBBP6 as 

baits respectively. The identified interactors, through their known functions, 

would provide an insight into the possible functional roles of RBBP6. 

  

To facilitate the screening, cDNA encoding the regions of DWNN and RING 

finger from RBBP6 was cloned into bait plasmid pGBKT7. The cloned prey 

constructs were tested in yeast for background effects that included toxicity 

and autoactivation of interaction-specific reporter genes. According to the 

recommendations specified by the manufacturer of the MATCHMAKER cDNA 

library (Clontech), both the DWNN and RING finger baits qualified to be used 

in the Y2H screening exercise.   

 

Yeast 2-hybrid system was used in 2 different screens: first, using RING 

finger as a bait and second, using DWNN as a bait in another screen. From 

the respective Y2H screens, the RING finger identified YB-1 and zBTB38 

proteins as plausible interactors that were further investigated while DWNN 
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domain identified 6 plausible interactors from which snRPG and Hsp70 were 

prioritized for further investigations.  

6.2. RBBP6 and YB-1 interaction 

A novel interaction between YB-1 and RBBP6 was identified from the study. 

YB-1, also known as DNA binding protein B (dbpB) and nuclease sensitive 

protein 1 (NSEP1), is a transcription factor that binds to the inverted CCAAT 

box and is a member of the cold shock family of proteins[169]. YB-1 performs 

a wide variety of cellular functions, including transcriptional and translational 

regulation[170,171], DNA repair [172], drug resistance[173] and stress 

responses to extracellular signals[174]. Mammalian YB-1 consists of three 

domains: an N-terminal domain which is involved in transactivation, a central 

cold-shock domain (CSD) and a C-terminal domain that is thought to be 

involved in nucleic acid as well as protein-protein interactions[158]. The B/A 

repeats of the C-terminal region may adopt a charged zipper structure; our 

study maps the region of interaction to the last B/A repeat of YB-1 (Figure 

4.2). 

 

In humans, YB-1 interacts directly with eIF4E, which initiates transcription by 

binding to the 5’-cap of mRNA transcripts[175]. The yeast homologue of 

eIF4E, Cdc33p[176], associates closely with the CPF complex, which includes 

Mpe1p, the yeast homologue of RBBP6. YB-1 is also one of two main protein 

components of the cytoplasmic messenger ribonucleoproteins particles 

(mRNP’s), in which mature mRNA transcripts are exported from the nucleus 

prior to translation[177]. The other major protein found in mRNP’s is 

PABP[178], the yeast homologue of which, Pab1p, also associates closely 
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with the CPF complex[175]. As well as strengthening the link between YB-1 

and RBBP6, these findings suggest that RBBP6 may interact directly with 

eIF4E as well as with PABP in humans. 

 

In response to various stresses, YB-1 is cleaved by the 20S proteasome in 

the vicinity of residue 220, with the N-terminal part translocating to the 

nucleus in a process which requires the presence of transcriptionally active 

p53[179,180]. Once in the nucleus, YB-1 transduces the expression of a 

number of growth-promoting or anti-apoptotic genes[181,182] and blocks 

expression of pro-apoptotic genes such as p53. YB-1 binds directly to the C-

terminus of p53, impairing its ability to transactivate pro-apoptotic genes such 

as BAX, NOXA and APAF-1[179,180]. In separate studies, YB-1 was shown 

to associate with transcriptional activation of the cyclin A and cyclin B1 genes, 

thereby setting itself as a cell cycle stage-specific transcription factor 

important for cell proliferation that can be used as a marker for tumor biology, 

as increased levels of cyclin A in breast cancer are associated with poor 

clinical outcome[183].  Furthermore, YB-1 is responsible for up-regulation of 

the mdr1 gene, resulting in a multidrug resistant phenotype[184] and was also 

identified as a regulator for the expression of matrix metalloproteinase 

gelatinase A, which is involved in angiogenesis, tumor invasion/metastasis, 

and chronic inflammation[185]. These findings further implicate YB-1 as a cell 

cycle-regulating transcription factor that affects a multitude of biological 

features of cancerous cells, which might cause a highly aggressive tumor 

phenotype. 
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Within the nucleus YB-1, like RBBP6, localises to nuclear speckles, which are 

sites enriched in splicing factors. Unlike RBBP6, YB-1 is not itself an SR 

protein, yet has been shown to play a similar role to SR proteins in regulating 

the alternative splicing of CD44 in breast and ovarian cancer[186-188]. This 

suggests that YB-1 may play a role in coupling splicing to tumourigenesis.  

 

The preceding discussion reveals significant functional overlap of RBBP6 and 

YB-1, with both playing essential roles in the otherwise poorly related areas of 

tumourigenesis and mRNA processing/splicing. Consistent with these 

findings, the study has established that RBBP6 regulates YB-1 through 

ubiquitination. Furthermore, it was shown that the YB-1 ubiquitination has a 

downstream effect on its transactivational activity. Although YB-1 is already 

known to be ubiquitinated by the SCF (Skp-1/Cul 1/Fbox) ubiquitin-ligase 

complex[148], that probably suggests that YB-1 ubiquitination is context 

dependent since YB-1 is a multifunctional protein. The other possibility could 

be that the RBBP6 may act as a scaffold to YB-1 ubiquitination in a similar 

way to the role of PACT in p53 ubiquitination via Hdm2 protein[2], hence 

suggesting RBBP6 to be acting as an E4 ligase. 

 

In conclusion, the common involvement of YB-1 and RBBP6 in the up to now 

largely separate areas of mRNA processing and tumourigenesis suggests not 

only that they are functionally related, but also that the interaction between 

them may hold the key to understanding the relationship between these two 

major areas of modern biology. 
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6.3. RBBP6 and zBTB38 interaction 

A zinc finger protein zBTB38 was also identified and confirmed to interact with 

RBBP6 protein. Although much is still to be unveiled about the cellular 

functions of zBTB38 protein, it has been implicated in transcriptional 

regulation of a number of genes through binding to methylated DNA[189] via 

methyl-CpG recognition through its zinc fingers[190]. Kaiso and ZBTB4 are 2 

other proteins known to recognize methyl-CpG via zinc fingers.  

 

Kaiso was originally identified by Y2H screening in a search for proteins that 

interact with the p120 catenin[191] and later independently identified as a 

component of a protein complex that binds to a region of the mouse S100A4 

gene in a methylation-dependent manner[192]. Kaiso contains three tandem 

zinc fingers at the C terminus and a BTB domain at the N terminus[193]. 

Kaiso was also biochemically identified from HeLa cell nuclear extracts as a 

component of the NCoR corepressor complex including HDAC3, GPS2 and 

TBL1/TBLR1[194]. Kaiso directly binds to NCoR via its BTB domain; this type 

of interaction with corepressors involving the BTB is a common feature of 

BTB-zinc finger transcription factors[195]. Kaiso recruits the NCoR complex to 

the MTA2 promoter in a DNA methylation-dependent manner, resulting in 

hypoacetylation and methylation at K9 of H3 at the promoter region[194]. 

Therefore, this establishes that Kaiso is a DNA methylation-dependent 

transcriptional repressor of the MTA2 gene. However, as the cultured cells do 

not reflect the normal patterns of DNA methylation[196], it remains unknown 

whether MTA2 is an actual target of Kaiso in normal cells and at present there 

is no information about methylated target genes of Kaiso in normal cells. 
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ZBTB38 is a Kaiso-like Zinc finger that contain a BTB domain that bind 

methylated DNA through recognition of single methylated CpG sequence. It 

was also shown that ZBTB38 represses transcription of methylated promoters 

in a reporter assay[197]. Moreover, zBTB38 localizes to densely methylated 

pericentromeric heterochromatin regions in mouse cells in a DNA methylation-

dependent manner[198] and recruits several co-repressors that act on 

histones, thus contributing to the establishment of pericentric 

heterochromatin[199,200]. A mouse zBTB38 homologue, CIBZ, recruits a C-

terminal binding protein (CtBP) to pericentromeric foci from a diffuse nuclear 

localization in interphase cells. CIBZ was found physically associating with 

CtBP via a conserved CtBP binding motif, PLDLR[201]. CtBP1 was originally 

identified as a cellular protein that binds to the C-terminal region of adenovirus 

E1A oncoprotein and negatively regulates oncogenic transformation[202].   

 

Based on what is known about zBTB38 protein, it is rational to suggest that 

RBBP6 may be recruited to pericentromeric heterochromatin through zBTB38 

binding and regulates zBTB38 functions through mechanisms that involves 

ubiquitination. Consistent with this speculation, preliminary co-localisation 

results showed co-localisation of zBTB38 and RBBP6 in the nuclear region of 

HEK293 cells. Furthermore, it was found that RING finger ubiquitinates 

zBTB38 in vitro. To further elucidate the physiological relevance of the 

RBBP6/zBTB38 interaction, further functional studies need to be explored, 

together with identification of zBTB38 target genes.  
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6.4. RBBP6 and snRPG interaction 

A novel interaction between snRPG and the DWNN domain of RBBP6 was 

among the interactions identified from the Y2H screen. The protein snRPG, 

also known as sm-G, is a small ribonuclear protein found in small RNA/protein 

complexes called small ribonuclear protein particles (snRNPs) [203], involved 

in splicing regulation. Pre-mRNA splicing is a highly dynamic process 

involving transient RNA-RNA, RNA-protein and protein-protein interactions 

[203] and an essential cellular mechanism that generates processed mRNAs 

that can be translated into different protein isoforms from a single gene 

because of alternative splicing, thus increasing the coding repertoire of the 

genome [203,204].  

 

Splicing involves removal of non-coding intervening sequences called introns 

and the process takes place in a ribonucleoprotein complex known as the 

spliceosome [203]. Extensive studies, both genetic and biochemical, in a 

variety of systems have revealed that essential components of the 

spliceosome include five small RNAs U1, U2, U4, U5 and U6, each of which 

functions as a RNA, protein complex called an snRNP[205]. In addition to 

snRNPs, the spliceosome contains non-snRNP protein factors that are 

required for the splicing mechanism[206].  

 

A recent study revealed the presence of RBBP6 as part of the molecular 

architecture of the purified human pre-mRNA 3’ processing complex[207], 

thereby suggesting RBBP6 as an essential non-snRNP protein factor required 

during splicing. Furthermore, the RBBP6 yeast homologue, Mpe1p, was 
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shown be part of the Yeast Cleavage and Polyadenylation Factor that is 

essential for the specific cleavage and polyadenylation of pre-mRNA[208].  

 

Interaction of RBBP6 with snRNPs was first speculated to play a role in 

splicing when RBBP6 co-immunoprecipitated snRNPs from HeLa cell nuclear 

extract[1] and RBBP6’s translocation to nuclear speckles (splicing sites) 

during mitosis[1]. Our study confirms this interaction, particularly showing 

specific interaction of snRPG with the ubiquitin-like DWNN domain of RPPB6. 

Intriguingly, ubiquitin and ubiquitin-like proteins have also been implicated in 

splicing regulation [209-211] with recent evidence that ubiquitin plays a role in 

the maintenance of U4/U6-U5 triple snRNP levels through regulation of U4/U6 

duplex unwinding [212]. Similarly, DWNN, as an ubiquitin-like domain, may 

play a key role in the assembly of the Sm proteins onto snRNA, which is an 

important and critical step of the biogenesis of the snRNPs[213]  

 

Very little is known about the manner in which the Sm proteins recognize and 

interact with the Sm site RNA element. A direct contact between the snRPG 

protein and the 5' part of the Sm site element within HeLa U1 snRNP particles 

was demonstrated by cross-linking approaches[214]. Notably, neither the 

snRPG protein nor any of the other Sm proteins contain established RNA 

binding motifs[215], and no single Sm protein or heteromeric complex can 

directly interact with the U snRNA in a stable manner in vitro [216]. This 

suggests that both the RNA interaction surface and binding specificity of the 

Sm proteins are determined by interactions among the Sm protein complexes 

or modified by non-snRNP proteins such as splicing factors Prp8 and ubiquitin 

 

 

 

 



 157 
 
 

like protein Hub1[217-220]. Investigation of whether RBBP6 is responsible for 

the pre-assembly of the snRNPs or the actual role in pre-mRNA splicing or 

both warrants further investigation. 

6.5. RBBP6 and Hsp70 interaction 

Heat shock proteins (HSP) are a family of proteins which cooperate with the 

Ub-proteasome system in the quality control of cellular proteomes, ensuring 

proper folding, intracellular transport and repair or degradation of mis-

translated, mis-folded or aged proteins. These proteins are typically induced 

after cellular heat shock and are modulated by nutrient deprivation and 

oxidative stress. Since HSPs act on caspase-dependent and independent 

apoptosis of tumour cells they are ideal targets of therapies aimed at 

modulating programmed cell death[221,222].  

The DWNN domain from RBBP6 identified HSPA14 as an interactor from the 

Y2H screen. Further confirmation of the interaction of RBBP6 with Hsp 70 

protein in vivo provided a valuable insight on yet another possible role that 

RBBP6 plays. More specifically, the interaction of Hsp70 with RBBP6 was 

shown to be via the DWNN and the RING finger domains. 

 

The interaction found in this study is consistent with what was previously 

found for parkin, a Parkinson's disease (PD) related E3 ligase that contains 

both a RING finger domain and an ubiquitin-like domain[223,224]. 

Overexpression of parkin reduces aggregation and cytotoxicity of an 

expanded polyglutamine ataxin-3 fragment[225]. Parkin forms a complex with 

the expanded polyglutamine proteins, Hsp70 and the proteasome, which may 
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be important for the elimination of the expanded polyglutamine protein. Hsp70 

enhances parkin binding and ubiquitination of the expanded polyglutamine 

protein in vitro, suggesting that Hsp70 may help to recruit misfolded proteins 

as substrates for the ubiquitin E3 ligase activity of parkin. Loss of parkin 

function and the resulting proteasomal impairment may contribute to the 

accumulation of toxic aberrant proteins in neurodegenerative diseases 

including PD[226] 

 

In another study, it was shown that a 35-kDa protein called CHIP (carboxyl 

terminus of Hsp70-interacting protein) was also a candidate for a ubiquitin 

ligase that plays a role in protein quality control[227]. On the other hand, 

another ubiquitin-like domain protein, BAG-1 (Bcl2-associated athanogene-1), 

has been shown to modulate the chaperone activity of Hsc70 and Hsp70 in 

the mammalian cytosol and nucleus. Remarkably, BAG-1 possesses a 

ubiquitin-like domain at its amino terminus, suggesting a link to the 

ubiquitin/proteasome system[228]. However, previous studies have shown 

that the proteasome binding activity of BAG-1 (through its ubiquitin-like 

domain) and its stimulation of substrate release from Hsc/Hsp70 can act in 

concert with CHIP's ubiquitin ligase activity to deliver substrates to the 

proteasome such that they will be recognized as marked for 

degradation[35,36]. 

 

Consistent with the parkin and CHIP/BAG-1 roles in Hsp70 chaperone 

activity, the RBBP6 through its ubiquitin-like DWNN and the RING finger 

domain takes part in Hsp70 chaperone dependent ubiquitination. In addition 
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the RBBP6 RING finger and CHIP U-box domain adopts the same molecular 

structure and they both belong to the same family of E3 ligases (Pugh et al 

unpublished data). This makes it possible for the RBBP6 to play a similar 

function as the CHIP/BAG-1 complex in facilitating ubiquitination of protein in 

an Hsp70 dependent fashion, whereby DWNN assumes the role of BAG-1. 

 

Through its RING finger domain, RBBP6 has shown to ubiquitinate both YB-1 

and zBTB38. Therefore, another functional possibility of the interaction of 

RBBP6 with respect to Hsp70 may lead to Hsp70 ubiquitination to regulate its 

cellular levels.  

 

HSPA14 shares a number of definitive characteristics with Hsp70 subfamily 

members such as heat inducible, as demonstrated in heat-stressed HeLa cells 

and human dendritic cells (DCs). It also binds the same receptors (TLR2, 

TLR4, CD91) and stimulates DCs to secrete cytokines and chemokines and 

become mature[166]. However, it lacks strong primary sequence homology to 

other Hsp70 subfamily proteins and this suggests that HSPA14 could possess 

other novel functions. For example, it was observed that HSPA14 could 

induce DCs to secrete chemokine IP-10, but Hsp70 could not. These findings 

on the functional novelty of HSP14 are very interesting, and mechanisms of 

action of HSP14 with respect to interaction with RBBP6 deserve to be further 

explored. 
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6.6. Conclusion 

This study was designed to provide further insight about the functional 

characteristics of RBBP6 protein through identification of its protein 

interactors. Identifying protein interactors with known functions facilitates the 

characterisation of RBBP6 through the ‘guilty by association’ concept. If two 

proteins interact with one another, they usually participate in the same, or 

related, cellular functions[229].  

 

The following conclusions were drawn from the study: 

a) RBBP6 interacts with YB-1 through the RING finger domain to regulate 

YB-1 dependent functions via ubiquitination and subsequent 

proteasomal degradation of YB-1[230]. 

b) RBBP6 interacts with a methyl dependent transcriptional repressor 

protein zBTB38 in the nucleus of mammalian cells HEK293. The 

RBBP6 RING finger domain ubiquitinates zBTB38 in vitro, suggesting a 

possible regulatory mechanism by RBBP6.  

c) RBBP6 interacts with snRPG, a protein component of the snRNPs, via 

the ubiquitin-like DWNN, thereby further implicating the role of RBBP6 

in mRNA processing.   

d) RBBP6 has shown to interact with heat shock 70 protein thereby 

suggesting its involvement into Hsp70 chaperone dependent protein 

quality control mechanisms. Since RBBP6 has shown to be actively 

involved in the ubiquitination of both YB-1 and zBTB38, it is also 

possible that Hsp70 could be an ubiquitination substrate for RBBP6. 
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6.7. Future perspective 

The study has created basis for interesting further studies. Firstly, interaction 

profiles of the protein that have been identified should be tested in RBBP6 

dependent disease states or in cancer cell-lines. 

 

Protein-protein interaction studies to further delineate the interaction 

interfaces should be explored further to understand the precise nature of the 

interactions and that information would be applied to long-term drug 

development attempts. Confirming such interaction using structural based 

methods would enable identification of the actual amino acid residues 

involved in the interaction and such detail is crucial on designing antagonists 

that could be useful in therapy.  

 

Because RBBP6 has several functional domains on its structure, it is 

therefore, possible to identify other interacting proteins through other 

domains. Performing Y2H screen using different domain such as SR and zinc 

knuckle as baits would widen the interaction network of proteins associated 

with RBBP6 and such an exercise would result in a comprehensive 

understanding on the biochemical functions of RBBP6. 
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APPENDIX I 

7.1. Schematic representation of Y2H screening using BD MATCHMAKER™ 

Pretransformed cDNA library from Clontech 
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7.2. Calculating Yeast mating efficiency  

Count the number of colonies (cfu) growing on the SD/–L, SD/–W and SD/–L–W 

dilution plates that have 30–300 colonies after 4 days. 

 

Number of (cfu)/ml =                         cfu x 1000µl/ml 

     Volume plated (µl) x dilution factor 

1. Number of cfu/ml on SD/–L plates = viability prey partner 

2. Number of cfu/ml on SD/–W plates= viability bait partner 

3. Number of cfu/ml on SD/–L–W plates = viability of diploids 

4. Lowest number of cfu/ml on SD/-L or SD/-W plates indicate the ‘limiting partner’ 

 

Therefore, Mating efficiency =  number of cfu/ml of diploids x 100  

     number of cfu/ml of limiting partner 

 

7.3. Calculating total number of library prey yeast clones screened 

 

Count the number of cfu on SD/-L plates streaked with library mating culture  

 

Number of cfu/ml =     number of colonies 

     Volume plated (ml) x dilution factor 

 

Total number of clones screened = number of cfu/ml x final re-suspension volume 
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ABSTRACT 

Retinoblastoma binding protein 6 (RBBP6) is a 250kDa multi-functional protein 

which interacts with both p53 and pRb and has been implicated in mRNA processing. 

It has also been suggested to be an E3 ubiquitin ligase due to the presence of a RING 

finger domain, although no substrates have been identified up to now. Using the 

RING finger domain as bait in a yeast two-hybrid screen, we have identified Y-box 

binding protein 1 (YB-1) as a binding partner of  BBP6, localizing the interaction to 

the last 62 residues of YB-1. We showed, furthermore, that both full length RBBP6 

and the isolated RING finger were able to ubiquitinate YB-1, resulting in its 

degradation in the proteosome. As a result, RBBP6 was able to suppress the levels of 

YB-1 in vivo and to reduce its transactivational ability. In the light of the important 

role that YB-1 appears to play in tumourogenesis, our result suggests that RBBP6 

may be a relevant target for therapeutic drugs aimed at modifying the activity of YB-

1. 

 

Keywords: RBBP6, YB-1, RING finger, ubiquitination, proteosome, p53 
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8.2. Abstract for the paper presented at an International Conference 

Abstract of a paper presented at the International Conference “The Ubiquitin Family” 

held at the Cold Spring Harbor Laboratory Institute, New York, USA, on 21-25 April 

2009.  
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ABSTRACT 

RBBP6 (retinoblastoma binding protein 6) is a 250-kDa multifunctional protein that 

interacts with both p53 and pRb and has been implicated in ubiquitination pathways. 

Specifically, RBBP6 has been identified as a putative E3 ubiquitin ligase due to the 

presence of a RING finger domain. However, we have previously published 

involvement of RBBP6 in regulation of Y-box binding protein 1 (YB-1) through 

ubiquitination and subsequent proteasomal degradation of YB-1 (Chibi et al, 2008). 

In the same light, we have demonstrated that the RING finger domain as bait in a 

yeast two-hybrid screen interacts with the zinc finger and BTB domain containing 38 

(ZBTB38) protein, leading to its poly-ubiquitination. In addition, we also observed 

heavy colocalization of ZBTB38 and RBBP6 in the nuclear speckles suggesting 

involvement in regulation of transcriptional related functions. In the light of the 

important role that ZBTB38 appears to play in regulating transcription of genes 

through binding to methylated DNA (Filion et al, 2006), our results suggest that 

RBBP6 may be a relevant target aimed at modulating ZBTB38 related transcriptional 

regulatory role. 

 

DNA methylation is essential in mammals and its loss has been shown to result in 

apoptosis in normal cells as well as in cancer lines. The presence of DNA methylation 

is also required for embryonic development in mice. The key role of DNA 

methylation is to control gene expression, and methylated sequences undergo 

transcriptional repression. ZBTB38 has been observed to bind sequences containing a 

single methylated CpG and is a methyl-dependent transcriptional repressor, and 

through interaction with RBBP6 its transcription repression activity may be turned off 

via ubiquitination. Although the function of zBTB38 is still poorly understood, results 

from similar proteins suggest it plays an important role in a number of diseases 

ranging from developmental abnormalities to cancer.  Future work will involve 

analysis of the effects of RBBP6-mediated ubiquitination on some of these diseases. 

 

Keywords: RING finger domain, RBBP6, zBTB38, ubiquitination, transcriptional 

regulation, DNA methylation 
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ABSTRACT 

The N-terminus of all members of the RBBP6 family comprise of an ubiquitin-like 

domain known as the DWNN domain that is also expressed as an independent domain 

in higher eukaryotes. Due to the function of RBBP6 as an E3 ubiquitin ligase, the 

DWNN domain is likely to play some role in this process, although the exact nature of 

the role is not yet known. It is speculated that the independently expressed DWNN 

domain may act as a novel ubiquitin-like modifier similar to SUMO or NEDD8. 

Another possibility is that the domain acts as a protein-protein interaction motif, 

recruiting E2 enzymes or substrates. In an attempt to unveil novel protein interaction 

partners of RBBP6, we carried out a Y2H screen of a human testis cDNA library 

using the DWNN from RBBP6 as bait. A number of putative interactors were 

identified and among them, a splicing factor, nuclear ribonucleoprotein polypeptide G 

(snRPG) was identified more than once. Because of the previous implication on 

RBBP6 in splicing activity, we decided to use co-immunoprecipitation assays, both in 

vitro and in vivo, to verify this important interaction. The outcome of the verifications 

assays confirmed and mapped the interaction of snRPG specifically via DWNN 

domain from RBBP6, hence further implicating the role of RBBP6 in splicing through 

DWNN domain motif.   

 

Keywords; DWNN domain, snRPG, RBBP6, splicing, protein-protein interaction, 

ubiquitin-like domain     
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ABSTRACT 

RBBP6 is a 250 kDa protein playing a role in a range of cellular processes including 

development, tumourogenesis and mRNA splicing. Through its RING finger domain 

it exhibits both E3 ubiquitin ligase activity, against the tumour-associated protein YB-

1, and E4 activity against p53. On the basis of its primary sequence, the RING finger 

domain of RBBP6 has been classified both as a RING finger, due to the presence of 

conserved Cysteine residues, and as a U-box, due to the presence of a conserved 

pattern of hydrophobic residues. 

 

We show here that, despite binding two zinc ions in common with other RING 

fingers, the solution structure of the RING finger domain from RBBP6 more closely 

resembles that of the U-boxes, in particular the U-box from CHIP (C-terminal of 

Hsp70-Interacting Protein). The domain homodimerises across the same interface as 

in U-boxes, and features the same hydrophobic groove that forms the binding site for 

E2 enzymes. Moreover, we show that, in common with U-box containing proteins, 

RBBP6 interacts with chaperone Hsp70. However, unlike in the case of CHIP, the 

interaction involves the RING/U-box domain as well as the N-terminal ubiquitin-like 

DWNN domain.  

 

On the basis of our results we conclude that, like CHIP, RBBP6 is involved in protein 

“quality control”, participating in the decision to refold unfolded proteins or to target 

them to the proteosome for degradation. However, given its role in mRNA 

polyadenylation, it is also possible that, like CHIP, it plays a role in transcriptional 

regulation by modulating the stability of mRNA transcripts in an Hsp70-dependent 

manner. The similarities between the structure of the RBBP6 RING finger domain 

and those of other U-boxes provides a structural framework for identifying residues 

involved in dimerisation, in the interaction with E2 enzymes and in the interaction 

with substrate proteins. Indeed, the fact that RBBP6 contains a U-box may provide 

the key to understanding the E4-like function of RBBP6 with respect to the 

ubiquitination of p53 by MDM2. 

 

 

 

 

 

 
Keywords: RING finger, U-box, RBBP6, PACT, ubiquitination, mRNA splicing, zinc 

binding, CHIP, Hsp70, chaperone 
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