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ABSTRACT 

 

Solar energy generation arises as a result of direct conversion of sunlight into electricity a by 

solar cell; which is mainly made up of a semiconducting material incorporated into a system. 

It is emerging as one of the most reliable and cost efficient renewable energy sources. Within 

the solar field, organic bulk heterojunction photovoltaic cells have proved of being able to 

have a great impact in the future years; mainly due to the easy processability of the active 

layer and substrate, their cost effectiveness and above all, a good power conversion efficiency 

associated to the close 3-dimensional interpenetrating network that is generated from 

blending donor and acceptor semiconducting materials together in a bulk heterojunction 

active layer. In this research work, we therefore report on the study of a newly developed 

organic bulk heterojunction active layer based on a blend of a star-copolymer generation 1 

poly(propylenethiophenoimine)-co-poly(ethylenedioxythiophene) (G1PPT-co-PEDOT) as 

donor material with N,N-diisopropylnaphthalene diimide (NDI) as acceptor material. Both 

materials were chemically synthesized. The synthesis of G1PPT-co-PEDOT started first by 

the functionalization of generation 1 poly(propyleneimine) tetramine, G1PPI into G1PPT by 

condensation reaction in the presence of 2-thiophene carboxaldehyde under Nitrogen gas 

followed by the copolymerization of G1PPT with ethylene dioxythiophene (EDOT) monomer 

in the presence of ammonium persulfate, (NH4)2S2O8 as oxidant. On the other hand, NDI was 

also synthesized via condensation reaction of 1,4,5,8-naphthalene tetracarboxylic dianhydride 

in the presence of two (2) equivalences of N,N-diisopropylamine at 110 
o
C overnight in 

DMF. Both materials were characterized using FT-IR, UV-Vis spectroscopy, Fluorescence 

spectroscopy, Voltammetry, HRSEM microscopy and XRD. Based on the cyclic 

voltammetry and UV-Vis results, we were able to calculate the HOMO, LUMO and band gap 

energy (Eg) values of both the donor and acceptor to be -4.03 eV, -6.287 eV and 2.25 eV for 
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the donor G1PPT-co-PEDOT respectively and -4.302 eV, -7.572 eV and 3.27 eV for the 

acceptor respectively. From these results, the energy diagram for both donor and acceptor 

was drawn and it comes out that the separation between the HOMO of the donor and the 

LUMO of the acceptor ΔEg = 1.985 eV, the ideal value for a good donor-acceptor 

combination. Also the offset energy that is, the energy difference between the LUMO of the 

donor and the LUMO of the acceptor is 0.302 eV. 
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CHAPTER ONE 

Introduction 

 

1.1 Fossil fuel depletion and environmental impact 

“Fossil fuels” is the generic term used to refer to the group of non-renewable energy sources 

that are constituted by oil, coal and natural gas. They have been so-called because they are 

formed from organic remains of prehistoric plants and animals. Over the past centuries, the 

world energy consumption has been majorly based on these three and has been increasing in 

an exponential way - considering the increase in the world population. Since fossil fuels are 

not re-usable, it is expected as a consequence that the world will reach a point at which fossil 

fuel reserves will have been completely extracted. Indeed, according to a research carried out 

in 2009 using a specific calculation method, it was shown that the fossil fuel depletion time 

was 35, 107 and 37 years for oil, coal and gas respectively; therefore showing that oil will be 

the first depleted and coal will still last about three (3) times more than oil and gas (Shafiee 

and Topal, 2009). Thus, there is an indisputable need to look for alternative clean, 

environmental friendly and renewable sources of energy. Over the past decennia, a lot of 

researches have been done to develop these new energy carriers and it came out that biomass, 

biofuel, wind energy, hydrothermal power and solar energy could be potential replacements 

for fossil fuels. 

Among all these renewable energy sources, solar energy has attracted much attention; not 

only due to the fact that it is renewable but mostly due to the continuous availability of 

sunlight throughout the year and on almost all the surface of earth. Over generations, solar 
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energy has therefore been able to contribute considerably to the decrease in fossil fuel 

dependency. 

1.2 Solar Cells: an evolution from one generation to another 

After the discovery of the Photovoltaic effect in 1839, it is only in 1954 many decades after 

that the possibility of practical photovoltaic power became a reality. Indeed, Chapman, 

Fuller, and Pearson reported the first silicon solar cell (Assender and Barkhouse, 2010). And 

this first generation of solar cells comprised p-n junctions in crystalline Silicon (c-Si) with a 

typical conversion efficiency of about 6%. It was reported that the maximum efficiency c-Si 

could reach at that time was 24%, which could then only be achieved in materials with very 

high purity (Spanggaard and Krebs, 2004). Silicon material was thus used as the solar cell 

material of choice due to his advantages such as non-toxicity, abundance and its availability - 

silicon being the second most abundant element on earth after oxygen. This early technology 

was prohibitively expensive, but developments during the 1950s and 1960s led to the use of 

silicon photovoltaic technology in applications ranging from satellites to rooftops. c-Si solar 

cells till to date are regarded as the most efficient type of solar cells due to its wide absorption 

spectrum and the high mobility of generating charge carriers (Assender and Barkhouse, 

2010). But c-Si solar cells still encounter challenging disadvantages such as the high 

fabrication cost of large-area c-Si wafers, higher recombination rates which indicate the ease 

with which photogenerated electrons and holes recombine, and the fact that a significant part 

of the energy of high-energy photons (with ultraviolet and blue wavelengths) is lost as heat. 

This therefore led to the need for developing new types of solar cells; and came out the 

second generation of solar cells which includes thin-film solar cells (based on Si, CdTe, 

CuInGaSe2 (CIGS), etc.); and the Grätzel cells also called Dye-sensitized solar cells (DSSC) 

based on the sensitized absorption of nanocrystalline TiO2 and other nanocrystalline 
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molecules (Hoppe and Sariftcci, 2004; Kerp et al., 1998; Savanjie et al., 1998;). In this 

second category of solar cells, although the production cost could be reduced and the thin-

films can be fabricated on all substrates, including flexible substrates and textiles, the main 

issue is that their conversion efficiency remains far lower than what could be achieved by 

silicon cells. This therefore led to the third generation of solar cells: the Organic photovoltaic 

cells denoted OPVs.  

Although conventional materials used for photovoltaics are inorganic, an important effort has 

been put to develop organic solar cells within the past three decades. The field started by the 

application of small organic molecules such as pigments (Chamberlain, 1983; Wöhrle, 1991) 

and since the development of semiconducting polymers, these materials have been 

incorporated in OPVs resulting in outstanding improvement. Organic semiconductor 

materials have a great potential of transporting electric current and absorbing light in the 

ultraviolet – visible (UV-Vis) region of the solar spectrum due to the sp
2
-hybridization of 

their carbon atoms. An important feature which differentiates organic semiconducting 

materials from their inorganic counterparts is generally the poor (order of magnitude lower) 

charge-carrier mobility in organic materials (Dimitrakopoulos and Mascaro, 2001) which 

therefore has a large effect on OPVs’ design and efficiency. Nevertheless, the relatively 

strong absorption coefficients (usually 10
5
 cm

-1
) partly balances the low mobility therefore 

giving rise to high absorption even with thin devices with dimensions less than 100 nm 

(Hoppe and Sariftcci, 2004). Another important difference to crystalline, inorganic 

semiconductors is the relatively small diffusion length of primary photoexcitations (called 

excitons) in these rather amorphous and disordered organic materials (Peumans et al., 2003; 

Haugeneder et al., 1999). These excitons are an important intermediate in the solar energy 

conversion process, and usually strong electric fields are required to dissociate them into free 

charge carriers, which are the desired final products for photovoltaic conversion. This is a 
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consequence of exciton binding energies usually exceeding those of inorganic 

semiconductors (Gregg and Hanna, 2003; Sariftci, 1997). These features of organic 

semiconducting materials generally lead to devices with very small layer thicknesses of the 

order 100 nm. Most of the organic semiconductors are hole-conductors and have an optical 

band gap around 2 eV, which is considerably higher than that of silicon and thus limits the 

harvesting of the solar spectrum to a great extent. Nevertheless, the chemical flexibility for 

modifications on organic semiconductors via chemical synthesis methods as well as the 

perspective of low cost, large-scale production drives the research in this field in academia 

and industry (Hoppe and Sariftci, 2004). . 

Altogether, organic photovoltaic cells have many attractive features, amongst which are: 

 The potential to be flexible and semi-transparent, 

 Potential to be manufactured in a continuous printing process, 

 Large area coating, 

 Easy integration in different devices, 

 Significant cost reduction compared to traditional solutions, 

 Substantial ecological and economic advantages (Brabec, 2004). 

1.3 Rationale and Motivation 

Organic Photovoltaics (OPVs) are emerging as a promising development of low cost solar 

energy conversion technologies (Ahmed et al., 2011). Among all the OPV device 

architectures explored to date, going from single layer to bilayer solar cells and including the 

Schotcky barrier solar cells, the Bulk Heterojunction (BHJ) cell, with an active layer 

consisting of a blend of donor polymer and an acceptor material, provides the most efficient 

example of excitonic solar cells. Indeed, once the photons contained in the solar light are 

absorbed in the BHJ active layer, strongly bound excitons (Gregg, 2003), instead of free 
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electron-hole pairs as produced in organic materials are generated; an efficient electron 

donor-acceptor interface with suitable HOMO/LUMO energy level offsets is therefore of first 

importance for efficient charge photogeneration (Chen et al., 2009). One of the peculiar 

properties of BHJ devices is their sensitivity to the morphology of the blend. The crystalline 

ordering for both donor and acceptor along their nanometer length scales was proven to be 

beneficial to carrier transport and device efficiency (Green et al., 2006; Hoppe and Sariftci, 

2006; Yang et al., 2005; Li et al., 2005; Shaheen et al., 2001). Thus the idea to use a star-

copolymer which consists of a dendrimer copolymerised to PEDOT. 

On the other side, among all the classes of acceptor materials which have been studied, 

fullerene-based acceptor materials have demonstrated excellent electron-accepting and 

electron-transporting properties and still dominate in OPV technologies. However, fullerene 

acceptor material exhibit considerable drawbacks in organic photovoltaic cells: (i) they have 

negligible light absorption in the visible-near infrared region (Wienk et al., 2003); (ii) they 

have relatively poor photochemical, photothermal and chemical stability, requiring extensive 

encapsulation for the use of OPVs in the air (Reese et al., 2010); (iii) Controlling their phase-

separation kinetics and their BHJ film morphology faces challenges due to their much higher 

rates of molecular diffusion and crystallization compared to those of the donor polymer 

material component (Chen et al., 2009; Thompson and Frechet, 2008); (iv) their accessible 

photovoltage is limited by the very narrow range in which their accessible LUMO energy 

levels lies; (v) the available chemistry of the synthesis of fullerenes derivatives is limited 

(Hummelen et al., 1995; Wudl, 1992); (vi) the synthesis and purification cost of fullerenes is 

very high (Sonar et al., 2011). Considering all the disadvantages encountered with fullerene-

based acceptor materials, it is of prior importance to consider other n-type organic 

semiconductors. Other acceptor materials which have been studied in OPV cells include 

inorganic nanocrystals (CdSe, PbS, TiO2, etc.), grapheme sheets, carbon nanotubes, n-type 
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conjugated small molecules and n-type polymer semiconductors. In the latter category of 

acceptor materials, fall cyano-poly (phenylenevinylene) (CN-PPV), Poly(benzo-bis-

imidazobenzophenanthroline) (BBL), Polyfluorene(benzothiadazole) (F8TBT), vinazene 

derivatives, cyanopentacenes, bifluoronylidenes, diketonepyrrolopyrrole derivatives, perylene 

diimides and naphthalene diimides among others, which have already been investigated.  

In this project, we will therefore focus on using N, N-dialkylnaphthalene diimides 

considering they constitute an electron-deficient class of six-membered aromatic compound 

and thus have a high tendency of forming n-type (electron-accepting) semiconductor 

materials. 

1.4 Aim of the study 

To fabricate an organic Bulk Heterojunction cell based on a blend of a star-copolymer donor 

material: generation 1 poly(propylenethiophenoimine)-co-poly(ethylenedioxythiophene) and 

N, N- diisopropylnaphthalene diimide as the acceptor material and study the photovoltaic 

properties of the fabricated cell. 

1.5 Objectives of the study 

The focus of this study lies in preparing an electron donating material based on generation 1 

Poly(propylenethiophenoimine)-co-poly(ethylenedioxythiophene), a star copolymer, blending 

it at different ratio with N, N-diisopropylnaphthalene diimide which constitutes the electron 

acceptor material and study its applicability towards the conversion of solar energy into 

electrical current. 

To achieve this, the following must be met: 
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(i) Functionalization of generation 1 Poly(propyleneimine) tetramine (G1PPI) by 

condensation reaction with 2-thiophene carbaldehyde in methanol under Nitrogen 

gas to produce generation 1 Poly(propylenethiophenoimine) (G1PPT). 

(ii) To characterize G1PPT using FTIR, UV-Vis, Fluorescence, Voltammetry, 

HRSEM and X-ray Diffraction. 

(iii) Chemical copolymerization of EDOT on G1PPT to form G1PPT-co-PEDOT. 

(iv) To characterize G1PPT-co-PEDOT using FTIR, UV-Vis spectroscopy, 

Fluorescence, Voltammetry, HRSEM and X-ray Diffraction. 

(v) Synthesis of N, N-diisopropylnaphthalene diimide by condensation reaction of 

1;4,5,8-naphthalene tetracarboxylic dianhydride with two (2) equivalences of 

isopropylamine in N, N-dimethylformaldehyde (DMF). 

(vi) To characterize N, N-diisopropylnaphthalene diimide using FTIR, UV-Vis, 

Fluorescence, Voltammetry, HRSEM and X-Ray Diffraction. 

(vii) Blending of G1PPT-co-PEDOT and N, N-diisopropylnaphthalene diimide and 

investigate the properties of the newly formed material using UV-Vis and 

Fluorescence. 

(viii) Fabrication of the Organic Bulk heterojunction cell and study the photovoltaic 

properties. 

1.6 Thesis Structure 

This thesis comprises six (6) chapters and is structured as follows: 

Chapter 1 – Introduction 

Chapter 1 gives an introduction on the origin of solar energy, starting with the depletion of 

non-renewable energies and their impact on the environment and thus the need for a new kind 

of energy sources; and also discusses the evolution in solar cell technologies. The rationale 
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and motivation of this project are also given; as well as the aim and objectives that need to be 

met. 

Chapter 2 - Literature review 

Chapter 2 presents a review of the literature, which covers a short review on the Photovoltaic 

effect, presents the general structure of photovoltaic devices as well as the different types of 

active layer architectures going from single layer cells to Bulk heterojunction cells and finally 

discusses the application of dendrimers and polymers as donor materials in OPVs and the 

application of naphthalene diimides as acceptor materials. 

Chapter 3 - Experimental 

Chapter 3 gives an account of the specific reagents and equipment used in the analysis, before 

explaining in details the protocols involved in the synthesis, characterization, electrode 

preparation and electrochemical analysis. 

Chapter 4 and 5 - Results and discussion 

Chapter 4 and 5 present the results and discussion with relevant references to literature. The 

main trends of the results are discussed, connecting the results with the literature and any 

correlation that has emerged in the data are highlighted. 

Chapter 6 - Conclusion and Recommendations 

Chapter 6 ends this thesis by summarizing the key points, highlights the novelty of the 

research and, provides conclusions and recommendations as well as future work. 

References 

This section lists the references that were consulted during this project. 
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CHAPTER TWO 

Literature Review 

 

2.1 The “Photovoltaic Effect” 

A French physicist, E. Becquerel in 1839 during an experiment realized that certain materials 

when immersed in an electrolyte between two metal electrodes were able to generate 

electrical current when exposed to light (Spanggaard and Krebs, 2004). This discovery will 

have an important impact in the world. Indeed in 1905, Einstein first used the term 

“photoelectric effect” which established the foundation for a theoretical understanding of the 

“photovoltaic effect” (Kim, 2009). When photons in the UV range are absorbed by a metal 

surface, due to the excitation energy from the incident light free electrons escape from the 

metal surface. These electrons are then ejected into the atmosphere. In most cases, when 

absorbed photons in a material pump ground state electrons to the excited state, the excited 

electrons promptly relax to the ground state. However, in photovoltaic devices, excited 

electrons and the produced holes in the ground state are collected separately at the negative 

and positive electrodes respectively to generate electric power (Kim, 2009), see scheme 2.1 

respectively (a) and (b) below. 
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Scheme 2.1: (a) The photoelectric effect and (b) The photovoltaic effect (Kim, 2009) 

The four main steps characterizing the photovoltaic process are summarized in scheme 2.2 

below: a) light absorption and excitation, b) exciton formation and diffusion c) exciton 

dissociation/ separation and d) charges transport and collection (Forrest, 2009).
 

 

Scheme 2.2: Steps in the Photovoltaic process (Kim, 2009). 
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Light absorption occurs when the material has a semiconducting property that responds to 

incident waves. When the incident photon hits electrons in the ground state, inorganic 

semiconductors generate free carriers. However, in organic semiconductors, excited electrons 

slightly relax and then form an exciton, a bounded electron and hole pair (Knupfer, 2003). 

The electron-hole pair then diffuses to the interface between the donor and acceptor materials 

and dissociates into a free electron and a free hole which are then transported and collected at 

the negative and positive electrodes respectively. 

2.2 Organic Photovoltaic Cells  

2.2.1 Structure of photovoltaic devices 

 

Scheme 2.3: Structure of an organic photovoltaic cell 

The architecture of organic solar cells is depicted in scheme 2.3 above. Indium-doped tin 

oxide (ITO) glasses which constitute the positive electrode are typically used as semi-

transparent substrates with a transimissivity of B90 % in the visible range and a conductivity 

of B20O/square. Poly(ethylenedioxythiophene) doped with polystyrene sulphonic acid 

(PEDOT:PSS) is spin-coated on top of the ITO from a water solution, giving a conductive 

(typically B103 S cm
-1

) layer which prevents shorts and allows to increase the shunt 

resistivity of the thin film devices. The photoactive layer consisting of the donor/acceptor 

Negative electrode: Ca, 

Ba, Mg, Al, LiF-Al 

p-type/ n-type 

semiconducting materials 

Positive electrode: 

ITO/ PEDOT:PSS 

 Substrate: glass, foil  
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composites again is coated on top of the PEDOT: PSS. The negative electrode, the cathode, 

typically Ca/Al, Ba/Al or LiF/Al is then thermally deposited through a shadow mask. The 

geometrical overlap between the positive electrode and the negative electrode defines the 

active area. 

2.2.2 Different types of photovoltaic active layer architectures 

2.2.2.1 Single-layer cells  

The first reported organic solar cells consisted of a single layer of photoactive material 

sandwiched between two metallic electrodes of different work functions (Wöhrle and 

Meissner, 1991; Chamberlain, 1983). These metals were primarily used due to their ability to 

generate an electric field as well as asymmetric carrier extraction required for a photovoltaic 

device. Unlike silicon, the higher optical density associated with conjugated polymers means 

that only approximately 100 nm are required to absorb more light at the polymer’s absorption 

maximum. For a typical work-function difference of 1 eV between the electrodes, a yield of 

the order of 10
5
 V cm

-1
 will be produced. Due to the low dielectric constant typical of most 

conjugated polymers, the primary photoexcitations are not free electrons and holes but rather 

bound electron-hole pairs known as excitons (Snaith and Gratzel, 2006). These excitons have 

a binding energy of a few tenths of electron-volts (eV) and a radius of about 1 nm, thus 

requiring a field of 10
6 

V cm
-1

 to dissociate (Gregg and Hanna, 2003). As a consequence, 

only very few excitons are separated by thermal fluctuations and most likely recombine 

before being dissociated.  On the other hand, those free electrons and holes move towards 

opposite electrodes under the influence of the built-in field provided by the contacts. 

However, the low hole and electron mobilities in conjugated polymers make the transit times 

to the electrodes long, so that charge transport and collection must compete with 

recombination. As a result, the separation of the photogenerated charge carriers was so 
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inefficient that single-layer polymer solar cell power conversion efficiency was far less than 

1% achievement (Mark et al., 1994). 

2.2.2.2 Bilayer cells 

In organic bilayer solar cells, a second semiconducting material is added in order to increase 

the photogenerated excitons separation. The relevance of the added semiconductor lies in the 

fact that its conduction band (or LUMO) or valence band (or HOMO) differs from that of the 

polymer by an amount higher than the exciton binding energy in the polymer. The energetic 

field at the interface between the two semiconductors favours exciton dissociation into an 

electron in the material with a lower LUMO level i.e. electron acceptor material and a hole in 

the other material i.e. electron donating material. Adding a second semiconducting material 

doesn’t only improve exciton separation but actually has two significant advantages over 

single-layer devices; indeed the fact that electrons and holes are localized in different 

materials after the exciton is separated implies that each material needs to transport only one 

type of charge, therefore reducing design constraint on the materials. Secondly, since the 

electrons and holes are already partially separated upon photogeneration, there is therefore a 

large amount of holes in the donor and electrons in the acceptor, giving rise to a chemical 

potential that promotes that photovoltaic effect (Assender and Barkhouse, 2010). 

The simplest structure of an organic bilayer solar cell appears to be the superposition of a 

donor and an acceptor material on top of each other as represented in scheme 2.4 below, 

providing the interface needed to achieve charge transfer. The schematic energy diagram of 

such an organic bilayer solar cell is also presented in scheme 2.4. The excitons 

photogenerated in the donor or in the acceptor can diffuse to the interface where they will 

separate. According to the Onsager theory (Onsager, 1938) that can be evoked as a first 

approximation in organic semiconductors, photoexcited electrons and holes are 
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coulombically bound by virtue of the low dielectric constant proper to conjugated polymers. 

Due to the related exciton binding energy, around 0.5 eV which is much higher than the 

thermal energy, the photoexcitons are not easily dissociated (Yumusak and Egbe, 2011). 

Once the excitons are generated by absorption of photons by the donor and/or acceptor, they 

can diffuse over an approximate length of 5-15 nm (Haugeneder et al., 1999). Since the 

exciton diffusion lengths in conjugated polymers are less than the photon absorption length, 

the efficiency of a bilayer cell is limited by the numbers of photons that can be absorbed 

within the effective exciton diffusion range at the polymer/electron interface. Also, there is a 

poor spectral match because the optical band gap of most conjugated polymers is too high to 

use the IR regions of the solar spectrum. This drastically limits the photocurrent and hence 

the overall efficiency of the organic bilayer solar cell (Yumusak and Egbe, 2011). 

 

Scheme 2 4: (a) Schematic device structure and (b) Energy diagram for an organic bilayer solar cell 

(Yumusak and Egbe, 2011) 

The first reported organic bilayer solar cell consisted of a light-absorbing copper-

phthalocyanine layer combined with an electronegative perylene carboxylic derivative. The 

exciton dissociation in this bilayer cell was mainly as a result of the difference between the 
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electron affinities of the two materials which generated an energy offset at their interface 

(Tang, 1986). 

2.2.2.3 Bulk Heterojunction layer 

The organic bulk heterojunction layer was created to overcome the high diffusion length 

problem encountered in organic bilayer solar cell. Indeed, here the surface area of the 

donor/acceptor interface is increased. This has been achieved by creating a mixture of donor 

and acceptor materials with a nanoscale phase separation resulting in a three-dimensional 

interpenetrating network: the “bulk heterojunction solar cells” (Assener and Barkhouse, 

2010) whose picture is depicted in scheme 2.5 below. 

 

Scheme 2.5: (a) Schematic device structure and (b) Energy diagram for an organic bulk hetero 

junction solar cell (Yumusak and Egbe, 2011) 

The first organic bulk heterojunction solar cell was fabricated in 1995 by blending of 1-(3-

methoxycarbonyl)propyl-1-phenyl [6] C61 (PCBM) a soluble and processable derivative of 

fullerene C60 with poly(2-methoxy-5-(2’-ethyl-hexoxy)-1,4-phenylene-vinylene) (MEH-PPV) 

(Yu et al., 1998). In 2001, power conversion efficiency for bulk heterojunction organic solar 

cells of 2.5% was achieved when blending the conjugated polymer poly(2-methoxy-5-(3’,7’-
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dimethyl-octyloxy)-p-phenylenevinylene) (MDMO-PPV) with methanofullerene [6,6]-phenyl 

C61-butyric acid methyl ester (PCBM) (Shabeen et al., 2001). In 2003, Padinger et al., 

presented a further increase in the power conversion efficiency by using a blend, poly(3-

hexylthiophene) donor (P3HT) in conjunction with PCBM. It was shown that annealing at a 

temperature above the glass transition of the polymer enabled an enhancement of the 

efficiency from 0.4% to 3.5% (Padinger et al., 2003). To allow an increased control of the 

phase segregation during film formation of a copolymer-fullerene blend, additives were used, 

enabling efficiency yields of about 6% (Park et al., 2009). Up to 8% power conversion 

efficiency has also been reported in organic bulk heterojunction solar cells (Green et al., 

2010). 

Solar cells based on solution-processable organic semiconductors have demonstrated an 

important performance increase in recent years; and a lot of improvement has been achieved 

as far as the understanding of the elementary processes for photogeneration is concerned 

(Gunes et al., 2007; Mozer and Sariftci, 2006; Hoppe and Sariftci, 2004). Indeed Organic 

BHJ solar cells with almost 100% internal quantum yield were proven, resulting in up to 

approximately 8 % power conversion efficiency (Green et al., 2010; Park et al., 2009). This 

device concept showed to be compatible with solution-processing at room temperature, at the 

instar of high-throughput printing techniques. Processing on flexible substrates is possible, 

therefore enabling roll-to-roll manufacturing as well as affecting the properties of the finished 

electronic devices. 
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2.3 Dendritic molecules and polymers: their applications as donor material in Organic 

Photovoltaic cells 

2.3.1 Properties of polymers and dendrimers 

Since the discovery of electrical conductivity in chemically doped polyacetylene, tremendous 

effort has been put in the modelling, fabrication and detailed studies of the properties and 

applications of π-conjugated polymers (Yu et al., 1998). Indeed, the award of the Novel price 

in chemistry in 2000 to Allan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa for the 

discovery of π-conjugated polymers and development of semiconducting polymers prove of 

the enormous work which has been going on in this field (Shirakwa, 2001). Polymers have 

attracted more attention nowadays compared to inorganic semiconductors due to their low 

production cost, ease of processability, flexibility as well as the tunability of their optical and 

electronic properties through chemical modifications. These superior properties therefore 

make them outstanding candidates as advanced materials in the field of photonics and 

electronics (Shinar and Shinar, 2009; Nalwa, 2008). Four main classes of conjugated 

polymers, classified according to the structure of their conjugated backbone, have been 

studied for optoelectronic device applications. These include: poly(para-phenylene)s (PPPs), 

poly(paraphenylenevinylene)s (PPVs), polythiophenes (PTs) and polyfluorenes (PFs). 

Insertion of side-chains in these polymers decreases backbone rigidity, increases their 

solubility and enables the preparation of films through inexpensive, solution-based methods 

such as spin-coating (Akcelrud, 2003). These ramifications also account for the tunability of 

the photophysical and electrochemical properties of these polymers using various routes. 

Table 2.1 below summarises some conducting polymers often use in OPVs. 
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Table 2.1: Summary of some conducting polymers and their chemical structures. 

Name Structure Conductivity 

(S cm
-2

) 

Type of 

doping 

Polyacetylene 

 

200 – 1000 n, p 

Polypyrole 

 

40 – 200 p 

Polythiophene 

 

10 – 100 p 

Poly(ethylenedioxythiophene) 

 

10 – 600 p 

Poly(para-phenylene) 

 

500 n, p 

Poly(para-phenylene 

sulphide) 

 

3 -500 p 

Polyaniline 

 

5 – 200 n, p 
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Considerable scientific interest has been put on polythiophenes and its derivatives for their 

attractive and superior chemical and physical properties (Roncali, 1992).
 

Among the 

polythiophene derivatives, poly(ethylenedioxythiophene) (PEDOT) is one of the most 

successful conducting polymers because of its low band gap, excellent environmental 

stability, high electrical conductivity and transparency in thin oxidized films which confer 

PEDOT good properties towards applications in organic photovoltaics. 

On the other hand, dendrimers constitute an interesting class of molecules which have found 

sound use in organic optoelectronic applications (Kopidakis et al., 2005). Just like polymers, 

they are built from smaller repeating subunits, but instead of generating linear chains, the 

subunit branches out in a well-defined pattern from a central point. Synthesis of dendrimers 

can be achieved with high regularity and controlled molecular weight via either divergent or 

convergent methods (Miller et al., 1997). As such, the non-linear and accurately controlled 

covalent structure of this class of polymers induced a wide range of studies (Miller et al., 

1997). π-conjugated dendrimers have shown to be efficient charge transporters in organic 

light-emitting diodes which was attributed to the high-quality films formed by the dendrimers 

(Anthopoulos et al., 2003). 

 

2.3.2 Dendrimers as good donor materials  

Due to their strong π-π cofacial interactions, these molecules exhibit an extremely high 

degree of molecular ordering. The film morphology of dendrimers is aided by their 

monodisperse nature which provides them a potential advantage over common polymers 

(Kopidakis et al., 2006). They can also be easily purified to a great extent using simple 

techniques such as column chromatography. Taking into account all the good properties of 
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dendrimers, they outstand as good candidates in light-absorbing, charge-transporting and 

electron donating agents in efficient organic photovoltaic devices. 

2.4 Naphthalene diimides as acceptor materials 

2.4.1 Properties of Naphthalene diimides 

1,4,5,8-naphthalene diimides (NDIs) also called naphthalene carbodiimides are among six-

membered aromatic compounds that have found applicability in many fields, particularly in 

the design of conducting materials (Bhosale et al., 2008). The chemistry of the NDIs was 

pioneered back in the early 1970s by Hung et al. (Hung et al., 1973) but more deeper 

researches started to be done on them in the 1990s as their potential as useful precursors and 

the geometries associated with some analogues in the field of supramolecular chemistry were 

revealed (Bhosale et al., 2008). Indeed, they attracted much attraction due to their tendency to 

form more n-type over p-type semiconductors (Katz et al., 2000). Also, they are known to be 

compact, electron-deficient and capable of self-organisation (Mukhopadhyay et al., 2006) 

and they can also be easily incorporated in larger multicomponent assemblies through 

intercalations (Stewart, 1981). 1,4,5,8-naphthalene diimides are neutral, planar, chemically 

robust, redox-active compounds with high melting points (Bhosale et al., 2008). When 

looking at their absorption and emission properties, the N, N- dialkyl-substituted NDIs 

exhibit strong, structured absorption peaks below 400 nm in many solvents. Naphthalene 

diimides are also able to undergo two (2) single reversible one-electron reductions at modest 

potentials, chemically or electrochemically, to form stable radical anions in high yield 

(Andric et al., 2004).  NDIs have a lipophilic naphthyl core and four polar carbonyl groups 

and as a result can easily dissolve in low polarity lipophilic solvents such as toluene, 

dichloromethane, chloroform; and in polar aprotic solvents such as acetonitrile, DMF, 

DMSO, depending on the imide substituents (Bhosale et al., 2008). As such they can be 
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better fabricated compare to perylene diimides dyes because of their enhanced solubility 

properties. In addition, NDIs are able to exhibit stacking in the solid state with distances 

commensurate with π-π stabilisation due to their planar aromatic structure. This property 

finds use when formation of continuous stacks is necessary (Erten et al., 2005). Because 

NDIs have desirable electronic and spectroscopic properties over pyromellitic diimides, they 

appear as ideal components for the creation of supramolecular functional materials (Fallon et 

al., 2004; Hansen et al., 2000). Other properties of NDIs include their tunable fluorescence 

properties. Indeed, when aromatic units are bonded to the diimide nitrogens, non-fluorecent 

or weakly fluorescent compounds are produced while alkyl group at this same positions 

produce the typical white-blue colour characteristic of this compounds. On the other hand, 

core-substituted NDIs (cNDIs) are fastly emerging as a class of highly colourful, conducting 

functional materials with much different photophysical properties than their core-

unsubstituted counterparts (Wurthmer et al., 2002).  

2.4.2 Naphthalene diimides in Photovoltaics 

Naphthalene carbodiimides great potential as n-type (electron-transporting) semiconductors 

in organic photovoltaics lies in their compact and electron deficient cores (Yuan et al., 2010). 

But the main reason for an up-growing interest in these six-membered ring diimides comes 

not only from their electron acceptor ability but also from their photochemical stability as 

well as their air and thermal stabilities. 

2.4.3 Design criteria of good acceptor material 

Towards the design of n-type semiconductors for use as efficient electron acceptors and 

electron-conducting materials in OPVs, the following major considerations and design 

criteria must be considered: 
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(1)  The HOMO/LUMO energy levels of the acceptor material relative to those of the 

donor polymer semiconductor should offer sufficient offsets to facilitate photoinduced 

electron charge transfer and efficient charge separation while maximizing the photovoltage. 

(2)  To facilitate good charge transport and efficient charge collection at the electrodes, 

the acceptor material should have high electron mobility (μe > 10
4
 - 10

3
 cm

2
 (V s)

-1
). 

(3)  The absorption band and optical band gap (Eg
A
) of the acceptor material should 

contribute to light harvesting and exciton generation, and ideally, they should be 

complementary to those of the donor polymer (Eg
D
) in the visible-near IR spectral range. 

(4)  To facilitate favourable acceptor material/donor polymer blend phase separation, 

thermodynamics and kinetics in forming the BHJ active layer film, the acceptor material 

should have a sufficiently large molar mass. 

(5)  The solubility of the acceptor material in common organic solvents is essential to 

realize solution-based processing and the fabrication of OPVs. 

(6)  The purity of the acceptor material should be sufficiently high (electronic grade) to 

enable high performance OPVs (Eilaf et al., 2011). 

2.5 Characterization techniques in Organic photovoltaic devices 

2.5.1 UV-Vis Spectroscopy 

UV-Vis spectroscopy is a technique used to study the electronic transitions of materials with 

transition energy in the approximate range 10
2
 – 10

3
 kJ mol

-1
, which is found within the IR 

through UV region of the electromagnetic spectrum. For most semiconductors, the required 

energy for an electron to jump from the valence band to the conduction band is in the same 

energy region, and thus UV-Vis spectroscopy is a powerful way to study the inter-band 
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electronic transition in semiconductors. Studying the optical absorption of semiconducting 

materials is therefore important to understand their behaviour in OPVs. Indeed a fundamental 

feature in semiconductors is the band gap – the energy separation between the filled valence 

band and the empty or partially filled conduction band. In semiconductors, optical excitation 

of electrons across the bang gap is strongly allowed, resulting in an abrupt increase in 

absorbance of light at the wavelength corresponding to the band gap energy. The absorption 

of light at a specific wavelength is determined by the ratio of transmitted light and incident 

light (It/Ii). Absorbance can therefore be expressed as: 

i

t

I

I
A log  

Each molecule in solution absorbs a certain amount of light. Using the Beer’s law, it is 

possible to express the correlation of the absorbance of each molecule at a specific 

wavelength to its concentration and the length of the light path. 

A= ɛλcl 

Where, 

A: light absorbance, ɛλ: the extinction coefficient, c: the concentration of the molecule and l: 

the length of the pathway of the sample holder. 

2.5.2 Fluorescence Spectroscopy 

Fluorescence is the emission of light by a molecule (fluorophore) after the absorption of light 

(excitation) of shorter wavelength; it usually occurs within microseconds (Litchman and 

Conchello, 2005). Semiconductors in general and polymers in particular contain a conduction 

band, a band gap, as well as a valence band. And the interaction of all these three components 
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imparts their optical properties. Under normal conditions of room temperature, the electronic 

state of any semiconductor will be in its lowest possible energy state, known as the ground 

state (S0). But once exposed to a visible or ultraviolet light, a semiconductor will absorb a 

photon and one or more of his electrons will jump from the valence band to the conduction 

band. This therefore leaves a hole in the valence band where the electron originally was 

found and an electron-hole pair known as an exciton is produced. An excited polymer 

acquires several energy levels known as singlet states, denoted as S1, S2, Sn. In the a singlet 

excited state, the electron in the higher energy orbital has the opposite spin orientation 

relative to electron in the lower orbital as depicted in the scheme below: 

 

Scheme 2.6: A singlet excited state 

From the excited state, the hole and the electron recombine bringing the polymer back to the 

ground state. This process may take place via non-radiative transition or a radiative decay 

from a singlet excited state to the ground state. When radiative electron-hole recombination 

occurs, it results in the direct transition from a singlet excited state to the ground state. This 

produces a photon emission spectrum and the process is called fluorescence. Typically, 

fluorescence results from a transition between the lowest energy level of the first excited 

singlet state and some vibrational level of the ground state. The delay between absorption and 

emission in fluorescence is of the order of 10
-8

 seconds or less (Taylor and Salmon, 1999).  
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2.5.3 Fourrier-Transform Infrared Spectroscopy (FT-IR) 

Fourier-Transform infrared spectroscopy (FT-IR) is more generally applicable towards many 

samples, since it does not require a UV chromophore, but rather requires infrared light which 

is absorbed by the molecular bonds to cause transitions between molecular vibrational states 

(Vakkasoglu, 2009). So, it is the absorption measurement of different infrared frequencies by 

a sample positioned in the path of an infrared beam. The main goal of FT-IR spectroscopic 

analysis is to determine the chemical functional groups in the sample. The IR spectrum refers 

to electromagnetic waves whose wavelengths range from 0.78 µm to 1000 µm. However the 

more manageable, the wavenumber unit (cm
-1

) is generally used instead of microns thus the 

total IR spectrum ranges from 14,286 cm
-1

 to 28.5 cm
-1

. The advantages of FT-IR are its 

superior speed, sensitivity and have been applied to many areas that are very difficult or 

nearly impossible to analyse by IR-dispersive instruments. Instead of viewing each 

component frequency sequentially as in a dispersive IR-spectrometer, all frequencies are 

examined simultaneously in Fourier transform infrared (FT-IR) spectroscopy (Hallam, Online 

2010).  

2.5.4 X-Ray Diffraction Spectroscopy (XRD) 

X-ray Diffraction (XRD) is a versatile, non-destructive technique which provides detailed 

information about the chemical composition and crystallographic structure of many kind of 

materials; natural and manufactured. It is therefore an indispensable technique in material 

characterization. X-ray diffraction working process is based on the assumption that x-ray 

radiations with wavelengths in the order of Angstroms elastically scatter off the electronic 

structure of a crystal (scheme 2.7). The periodicity of the crystal will cause this scattering of 

the x-ray plane-wave to constructively interfere at certain scattering directions while 

destructively interfering at other scattering directions (Weisstein, Online 2005). The 
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diffraction of X-rays by matter results from combinations of different phenomena namely, the 

scattering by each atom and interference between the waves scattered by these atoms. This 

interference occurs because the wave scattered by the individual atoms are coherent with the 

incident wave, and therefore between themselves (Guinier, 1994). 

There exist two types of X-ray diffraction methods: the spectroscopic and the photographic 

methods. The spectroscopic technique now known as the X-ray powder diffractometry or 

simply X-ray diffractometry is the most widely used. An example of x-ray diffraction system 

is illustrated below. 

 

Scheme 2.7: X-ray Diffraction System 
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2.5.5 High Resolution Scanning Electrode Microscopy (HRSEM) 

High Resolution Scanning electron microscopy (HRSEM) is a versatile imaging technique 

capable of producing three-dimensional images of material surfaces. And nowadays, it is one 

of the most frequently used instruments in material sciences research because of the 

combination of high magnification, large depth of focus, greater resolution and ease of 

sample observation. Indeed, over the past years the scanning electron microscope (SEM) has 

grown from a specialized research device to a universal industrial tool considering that SEM 

imaging was first characterized to be used as a benchmark. The scanning electron microscope 

has two main parts, see scheme 2.8. The electronics are used to control electron beam on the 

specimen, identify and analyse signals, form image and do other functions to control the 

microscope. Whereas the electron column creates electrons including the group of lenses that 

focus the electron beam exactly to the specimen (Lyman et al., 1990). The focused electron 

beam is scanned over a specimen such that the interaction between the beam and the 

specimen excites various forms of radiations including backscattered electrons, secondary 

electrons, and x-rays. These radiations are then detected and analysed to reveal information 

concerning the specimen’s composition and topography. SEM has the advantages in detecting 

impurities, ruptures, folds, voids and discontinuities of the analysed materials. A requirement 

for effective performance is that the surface of the samples should be electrically conductive. 

During operation, electrons are deposited onto the sample. These electrons must be conducted 

away to earth, thus conductive materials such as metals and carbon can be placed directly into 

the HRSEM whereas non-metallic samples have to be coated with a gold metal layer to be 

observed. Many scanning electron microscopes have an energy dispersive spectrometer 

(EDX) detection system, which detects and displays most of the spectra of the elements 

contributing to the sample composition.  
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Scheme 2.8: Scanning electron microscopy system 

2.5.6 Electrochemical techniques 

Generally, electrochemical techniques give information on the reduction and/or oxidation 

processes taking place when an electric potential is applied to the system under study. The 

basic components of a modern electrochemical system for voltammetric and impedimetric 

measurements comprise of a potentiostat, a computer and an electrochemical cell as shown in 

the scheme 2.9 below. 
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Scheme.2.9: Major components of the electroanalytical system used for electrochemical analysis 

 

A potentiostat is an electronic device that controls the difference of voltage between the 

working electrode (WE) and the reference electrode (RE). Both electrodes are immersed in an 

electrolyte contained in an electrochemical cell. The potentiostat implements this control by 

injecting current into the cell through an auxiliary electrode (AE). In almost all applications, 

the potentiostat measures the current flow between the working and auxiliary electrodes. The 

controlled variable in a potentiostat is the cell potential and the measured variable is the cell 

current. A potentiostat typically functions with an electrochemical cell containing three 

electrodes; the working, reference and the auxiliary or counter electrodes, which are 

described below. 

The working electrode: this is the electrode at which the redox reaction of the analyte or the 

electrochemical phenomena being investigated occurs. The most commonly used materials 

for working electrodes include solid disk glassy carbon, platinum, gold electrodes, etc. Screen 

printed electrodes of each of these materials are also used as working electrodes. Whereas 
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solid disk working electrodes can be used over and over again with standard cleaning before 

and after use, screen printed electrodes are mainly “single use” electrodes. 

The reference electrode: this is the electrode against which the potential of the working 

electrode is measured. A reference electrode has a known and constant electrochemical 

potential as long as no current flows through it. Commonly used reference electrodes for 

electrochemical measurements in aqueous solutions are the silver/silver chloride (Ag/AgCl) 

and the saturated calomel electrodes (SCE). 

The auxiliary or counter electrode: this is a conductor that completes the cell circuit, acting 

as a sink for electrons so that current can be passed from the external circuit through the cell. 

Reactions occurring at this electrode surface are unimportant as long as it continues to 

conduct current well. To maintain the observed current, this electrode will often oxidize or 

reduce the solvent or bulk electrolyte though the reactions occur over short periods of time 

and rarely produce any appreciable changes in bulk concentrations. Most often the auxiliary 

electrode consists of a metallic foil or thin platinum wire, although gold and sometimes 

graphite have also been used. 

The main target of an electrochemical experiment is to study in details the electron transfer 

process of a material and an understanding of the redox behaviour of the material requires the 

study of the kinetic aspects of the electron transfer processes exhibited by that material as 

well as the thermodynamic aspects of such electron transfer processes. 

2.5.6.1 Cyclic Voltammetry 

Cyclic voltammetry, also known as linear scan voltammetry, is an electrochemical technique 

that is classified under sweep techniques. Within the electrochemistry field, cyclic 

voltammetry is known to be a simple, easy and effective technique for elucidating the 
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electroactivity of polymers and to measure the oxidation and reduction potentials. These 

potential values allow the determination the Highest occupied Molecular orbital (HOMO) 

and the Lowest unoccupied Molecular Level (LUMO). Therefore when an organic material 

shows an electron reversible reduction and oxidation cycle, cyclic voltammetry appears to be 

an important tool for the calculations of ionisation potentials, Ip (HOMO), electron affinities, 

Ea (LUMO) and therefore energy band gaps (Eg). Here, the oxidation step constitutes the 

removal of an electron from HOMO energy level and the addition of an electron to LUMO 

level is associated to the reduction step (Bernède, 2010).  

Calculations of HOMO, LUMO and energy band gaps can therefore be achieved using the 

following equations: 

Ea (LUMO) = - e(E’red + 4.8) V 

Ip (HOMO) = - e(E’ox + 4.8) V 

Eg = LUMO - HOMO                (Dong et al., 2009) 

2.5.6.2 Square Wave Voltammetry 

Square wave voltammetry is a type of pulse voltammetry that offers the advantage of speed 

and high sensitivity. An entire voltammogram is obtained in a few seconds or less. In 

addition, square wave voltammetry (SWV) has proved to be a suitable method to investigate 

redox reactions with overlapping waves. The excitation signal in SWV consists of a 

symmetrical square wave pulse of amplitude superimposed on staircase wave form of step 

height ΔE. The forward pulse coincides with the staircase step. A typical square wave 

voltammogram is shown in the scheme 2.10 below. 
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Scheme 2.10: ( a) Excitation waveform of square wave voltammetry and (b) response obtained by 

square wave voltammetry 

In SWV, the peak height is directly proportional to the concentration of the electroactive 

species. Excellent sensitivity is achieved from the fact that the net current is larger than either 

the forward or the reverse components, since it is the difference between them and direct 

detection limits as low as 10
-8 

M are possible. It presents some advantages over cyclic 

voltammetry, including excellent sensitivity and rejection of background currents. The 

scanning speed in SWV is also high and, coupled with computer control and signal averaging 

experiments, can be performed repetitively with increases in the signal to noise ratio. It is 

also applied in study of electrode kinetics with regard to preceding, following or catalytic 

homogeneous chemical reactions and determination of some species at trace levels. 
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CHAPTER THREE 

Experimental 

 

3.1 Reagents used 

Table 3.1: Reagents Used 

Name and percentage Purchasing Company 

DAB-Am4, Poly(propyleneimine) tetramine 

dendrimer, Generation 1 

Sigma Aldrich – South Africa 

1, 4, 5, 8-Naphthalene tetracarboxylic dianhydride Sigma Aldrich – South Africa 

2-Thiophene carboxaldhyde, 98% Sigma Aldrich – South Africa 

Tetrabutylammonium hexafluorophosphate, ≥ 99.0 

% 

Fluka – South Africa 

3, 4-ethylenedioxythiophene, 97 % Sigma Aldrich – South Africa 

Ammonium persulfate Sigma Aldrich – South Africa 

Lithium perchlorate anhydrous Sigma Aldrich – South Africa 

Chloroform, 99.9 % HPLC Grade Sigma Aldrich – South Africa 

N,N-dimethylsulfoxide, Analytical Grade  Sigma Aldrich – South Africa 

N,N-dimethylformamide anhydrous, 99.8% Sigma Aldrich – South Africa 

Dichloromethane Chromasolv Plus HPLC, ≥ 99.9 % Sigma Aldrich – South Africa 

Mehanol, Analytical Grade Sigma Aldrich – South Africa 
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3.2 Synthetic Methods 

3.2.1 Generation 1 Poly(propyleneimine) tetramine (G1PPI) functionalization 

Prior to the functionalization of the dendrimer, a 250 mL 2-neck round bottom flask was 

washed, rinsed then dried for two (2) hours in order to remove all moisture. Then the 

glassware was cleaned with nitrogen (N2) gas.  

In order to functionalize the dendrimer, 0.3863 g (1.2205 mmol) of Generation 1 

Poly(propyleneimine) tetramine dendrimer, G1PPI was dissolved in 25 mL of Methanol 

(MeOH), then 472.55 µL (4.8821 mmol) of 2-thiophene carbaldehyde was added and the 

mixture was allowed to stir for 48 hours under N2 gas. G1PPT was thus functionalized into 

Generation 1 Poly(propylenethiophenoimine) G1PPT. 

 

Scheme 3.1: Functionalization of G1PPI 

Upon completion of functionalization, the methanol solvent was completely removed using a 

rotary evaporator for 10-15 min, then came the washing step whereby 25 mL of 

dichloromethane and 25 mL of water was added to the functionalized dendrimer and 

transferred into a separation funnel, shaken for 10-15 min and then the mixture was allowed 

to rest in order to separate the organic phase from the aqueous phase. This was repeated 5 
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times to ensure complete removal of any excess of 2-thiophene carbaldehyde. The final step 

was the evaporation of the dichloromethane. 

G1PPT was then characterized by FTIR, UV-Vis Spectroscopy, Cyclic Voltammetry (CV), 

SEM and XRD. 

3.2.2 Copolymerization of ethylenedioxythiophene (EDOT) monomer to G1PPT to form 

the star copolymer G1PPT-co-PEDOT. 

Again, prior to the synthesis of NDI, a 250 mL one-neck round bottom flask was washed, 

rinsed then dried for two (2) hours in order to remove all moisture. Then the glassware was 

cleaned with nitrogen (N2) gas. 

495 mg (0.71424 mmol) of G1PPT was dissolved in 10 mL of chloroform. Then 318 µL 

(2.8570 mmol) of the monomer EDOT was added with 29.75 mL of 0.1 M (NH4)2S2O8 and 

the mixture was allowed to stir for 2 hours at room temperature. Then the reaction was 

stopped and the solvents, chloroform and water were evaporated; the material was then left 

overnight for polymerization to continue. 
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Scheme 3.2: Chemical copolymerization of EDOT monomer on G1PPT 

In the morning, 20 mL of water was introduced in the glassware and sonicated for about 15 

minutes for the star-copolymer to be washed, then was centrifuged for about 30 min to 

separate the particles from water and the water was disposed. The same procedure was 

repeated twice with acetone except from the sonication step. Then the star-copolymer was 

allowed to dry at ambient air overnight. The following day the sample was collected and kept 

in a closed vial. 

3.2.3 Synthesis of N, N-diisopropylnaphthalene diimide (NDI) 

Just like for the functionalization of G1PPI, prior to the synthesis of NDI, a 250 mL 2-neck 

round bottom flask was washed, rinsed then dried for two (2) hours in order to remove all 

moisture. Then the glassware was cleaned with nitrogen (N2) gas. 

2.25 g (8.3900 mmol) of 1, 4, 5, 8- naphthalene tetracarboxylic dianhydride (NTCDA) was 

introduced in a 2-neck round bottom flask containing 25 mL of N, N-dimethylformamide. 
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Then two equivalences that is, 1.42 mL (0.9919 mol) of isopropylamine were added and the 

mixture was stirred at 110 
o
C overnight. 

 

Scheme 3.3: Synthesis of N, N-diisopropylnaphthalene diimide 

Due to its high boiling point, DMF couldn’t be evaporated so a pump was used to filter the 

synthesized NDI. NDI was subsequently put in ice-cold water for 5 min and filtered again. 

This was done not only to purify the material but mostly to ensure the high crystallinity of the 

yellow-canary prepared NDI. NDI was then characterized by FTIR, UV-Vis Spectroscopy, 

Fluorescence, Cyclic Voltammetry (CV), Square Wave Voltammetry (SWV), HRSEM and 

XRD 

3.2.4 Preparation of the Bulk Heterojunction active layer: G1PPT-co-PEDOT: NDI 

0.01 M of G1PPT-co-PEDOT was prepared by dissolving 0.06930 g of the star-copolymer in 

10 mL of DMSO and sonicated for 1 Hr. On the other hand, 0.01 M of N,N-

diisopropylnaphthalene diimide was also prepared by dissolving 0.0350 g of NDI in 10 mL of 

DMSO for about 3 Hrs; this longer dissolution time is due to the poor solubility of NDI in 

DMSO. 

Then the four different ratio of our bulk heterojunction active layer G1PPT-co-PEDOT were 

prepared. This was done by mixing: 
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  1 mL of G1PPT-co-PEDOT with 1 mL of NDI                                1:1 layer 

 1 mL of G1PPT-co-PEDOT with 2 mL of NDI                                1:2 layer 

 1 mL of G1PPT-co-PEDOT with 3 mL of NDI                                1:3 layer 

 1 mL of G1PPT-co-PEDOT with 4 mL of NDI                                1:4 layer 

3.3 Fabrication of the Photovoltaic BHJ solar cell: Spin-coating 

 

 

 

 

Scheme 3.4: Fabricated organic BHJ photovoltaic cell of G1PPT-co-PEDOT: NDI 

In order to fabricate the BHJ solar cell, a 1cm by 6 cm ITO coated glass substrate was cut 

into 1 cm by 1 cm square pieces. The pieces of ITO coated glass substrates were then cleaned 

in acetone, ethanol and isopropanol consecutively to ensure complete removal of all 

impurities from the ITO coated glass substrates and were allowed to dry for five (5) min. 

Then they were placed at the centre of the spin-coater (Chemet Technology equipment) and 1 

mL of PEDOT:PSS was spin-coated on the surface of the ITO coated glass surface then 

allowed to completely dry before 500 µL the active layer of G1PPT-co-PEDOT was also 

spin-coated on top of the PEDOT:PSS layer and allow to completely dry. The spin-coating 

Al cathode 

Organic Bulk heterojunction layer: 

G1PPT-co-PEDOT: NDI 

Anode: Glass substrate coated 

with ITO 

PEDOT:PSS 
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parameters being used in this procedure were 9 s at 500 rpm speed followed by 15 s at 1500 

rpm speed. Thereafter the 200 nm of aluminium will electrodeposited as the cathode material. 

3.4 Supporting Electrolytes 

0.1 M LiClO4
- 
in water was prepared as a supporting electrolyte for the voltammetric studies 

of G1PPT, by dissolving 0.53195 g of LiClO4
-
 powder in 50 mL of water. 

0.1 M of Bu4NPF6 was prepared as supporting electrolyte for the voltammetric studies of 

NDI by dissolving 1.93715 g of Bu4NPF6 in 50 mL of DCM and 50 mL of DMF. 

0.1 M LiClO4
-
and 0.1 M of Bu4NPF6 were prepared as supporting electrolytes for the 

voltammetric studies of G1PPT-co-PEDOT by dissolving 0.53195 g of LiClO4
-
 powder in 50 

mL of acetonitrile and by dissolving 3.8743 g of Bu4NPF6 in 100 mL of acetonitrile 

respectively. 

3.5 Instrumentation 

3.5.1 Optical studies 

Ultraviolet-visible (UV-Vis) absorption measurements were made using a quartz cuvette in a 

Nicolet Evolution 100 UV–visible spectrometer (Thermo Electron, UK). The measurements 

for most of the samples were carried between 200 – 1100 nm using both D2 (Deuterium) and 

W (tungsten) lamps. Also, to ensure good absorbance peaks while avoiding noise, the 

samples were sufficiently diluted. 

Fluorescence properties of G1PPT, G1PPT-co-PEDOT and NDI samples were studied using 

Horiba NanoLog™ - TRIAX (USA), with double grating excitation and emission 

monochromators at a slit width of 5 nm. 
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3.5.2 Fourrier-Transform Infrared spectroscopy (FT-IR) 

FTIR spectra were recorded in the range 4000 - 300 cm
-1

 using a PerkinElmer model 

Spectrum 100 series. 

3.5.3 XRD 

X-ray diffraction (XRD) for the phase identification of the crystalline structures of G1PPT, 

G1PPT-co-PEDOT and NDI was performed by using a Bruker AXS D8 Advance 

diffractometer (voltage 40 KV; current 40 mA). The XRD spectra were recorded in the range 

10-70 degrees. All three samples were analysed as prepared. 

3.5.4 HRSEM 

High Resolution Scanning electron microscopy was used to characterize the surface 

morphology of G1PPT, G1PPT-co-PEDOT and NDI, and to determine elemental 

composition and/or atomic percentage of the samples. The images were recorded using a 

Zeiss Auriga HRSEM analyser using the secondary electron (SE) mode with interchangeable 

accelerating voltages of 25 kV, and a maximum resolution of 20 μm. The chemical 

composition of the sample was obtained by energy dispersive x-ray spectroscopy (EDX) 

which was coupled to the HRSEM machine. The HRSEM/EDX samples were prepared by 

placing solid nanomaterial onto a carbon adhesive mounted on aluminium stubs. 

3.5.5 Cyclic Voltammetry and Square Wave Voltammetry 

The cyclic voltammetry measurements were performed using a BAS 100W electrochemical 

workstation and automated electrochemical potentiostat from Bio Analytical Systems, 

Lafayette, USA. The voltammograms were recorded with a computer interfaced to a BAS 

100W electrochemical workstation. A 10 mL electrochemical cell with a conventional three 

electrode set up was used. The three electrodes consisted of either gold or platinum disk 

working electrodes depending on the sample analysed, an Ag/AgCl (saturated 3 M NaCl) 
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reference electrode and a platinum wire as the auxiliary electrode. Therefore, all potentials in 

this study are quoted with respect to Ag/AgCl (3 M NaCl). The three electrodes and the 

corresponding three electrode cell configuration are shown in scheme 3.5 below. 

 

 

 

Scheme 3.5: Cyclic Voltammetry experimental set-up 

For G1PPT electrochemical analyses, 10 mg of G1PPT was dissolved in 1mL of chloroform, 

of which 5 µL was drop-coated on a gold electrode and allowed to dry. Then the electrode 

was immersed in the electrochemical cell following the configuration presented in scheme 

3.5 above. The sample was swept over a potential range between -900 - 1250 mV in 0.1 M 

LiClO4
-
. Same procedure was applied to G1PPT-co-PEDOT with the differences that here the 
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solvent in which G1PPT-co-PEDOT was dissolved is DMSO and the potential range was -

1000 – 1000 mV in acetonitrile (0.1 M LiClO
4-

). In the case of the acceptor material, 1 mL of 

0.1 mM NDI was run in solution using the same electrochemical cell configuration but this 

time with a Pt working electrode and potential was swept between (-1600) – (-500) mV. 

Prior to all experiments (CV and SWV), Au and Pt electrode surfaces were cleaned by 

polishing consecutively with aqueous slurries of 1.0, 0.3, and 0.05 μm alumina powders on a 

microcloth pad (Bühler), gently rinsed with deionized water then ultra-sonicated in ethanol 

and then in distilled water for 5 min respectively each in order to remove residuals. The Pt 

auxiliary electrode was cleaned by burning in a flame for several minutes and the Ag/AgCl 

electrode was cleaned by rinsing with distilled water. 0.1 M LiClO4
-
 in water, 0.1 M LiClO4

-
 

in acetonitrile and 0.1 M Bu4NPF6 in dichloromethane were used as the supporting 

electrolytes for all voltammetric measurements of G1PPT, G1PPT-co-PEDOT and NDI 

respectively. All experimental solutions were purged with high-purity argon gas for 15 –25 

min and blanketed with argon atmosphere during measurements. The experiments were 

carried out at room temperature. 
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CHAPTER FOUR 

Results and Discussion 

 

4.1 Characterization of G1PPT 

4.1.1 Fourrier Transform Infrared spectroscopy of G1PPT (FT-IR) 

0 500 1000 1500 2000 2500 3000 3500 4000 4500

30

40

50

60

70

80

90

100

110

 

 

  G1PPT

T
ra

n
s

m
it

ta
n

c
e

Wavenumber  / cm
-1

C=N

CC

-position bending

CH2 

 

Figure 4.1: FT-IR Spectrum of G1PPT 

G1PPT was characterized using FT-IR spectroscopy to confirm the functionalization of the 

dendrimer. Indeed, in the spectrum of the functionalized dendrimer, (see figure 4.1 above), 

several characteristic peaks at 475, 705, 833, 845, 1037, 1075, 1217, 1319, 1435, 1629, 1679, 

2830, 2938 cm
-1

 for G1PPT were observed. In the spectrum of the G1PPT, out-of-plane 

bending of C-H bond located at the α-position to the thiophene ring was observed at 705 cm
-
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1
. At 1435 cm

-1
, the medium-weak multiple bands account for the C=C stretching in the 5-

membered aromatic ring of thiophene. The sharp band at 1629 cm
-1

 is attributed to the C=N 

bond stretching vibration present in the dendrimer moiety. The bands at 2830 and 2938 cm
-1

 

in G1PPT indicate the presence of the CH2 stretchings in the dendrimer moiety. 

4.1.2 UV-Vis Spectroscopy of G1PPT 
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Figure 4.2: UV-Vis Spectrum of G1PPT 

When exposing a sample material to a beam of light in the UV-Vis region, one or more 

electrons are getting excited from the lower energy band or valence band to the higher energy 

band or conduction band. The interaction between those two bands as well as the band gap, 

which is the energy separation between valence and conduction band determine the optical 

properties of the material. The UV-Vis spectrum of G1PPT in figure 4.2 above shows two 

distinct absorption peaks at 257 nm and 327 nm. These two peaks are characteristics of the 

absorbance of the two chromophores C-S-C and C=N respectively, present in the 

 

 

 

 



   

45 
 

functionalized dendrimer whose transitions are respectively n-π* and π-π* with band gap 

energies of 4.83 eV and 3.79 eV. The band gap energies were calculated using the following 

equation: 

   
  

 
 

Where, E is the band gap energy, h = 4.135667516*10
-15

eV s is the Planck’s constant, c = 

3*10
8
 m s

-1 
is the speed of light, λ is the experimental absorption peak wavelength. 

4.1.3 Electrochemical behaviour of G1PPT 
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Figure 4.3: Cyclic voltammogram of Au|G1PPT and Au|G1PPI in 0.1 M LiClO4
-
 

G1PPT was further studied using cyclic voltammetry sweep technique. Figure 4.3 above 

represents the cyclic voltammogramms of G1PPT, the functionalized dendrimer and G1PPI 

the starting material and the potential was swept between - 900 mV and 1250 mV at a scan 

 

 

 

 



   

46 
 

rate of 50 mV s
-1

. As it can be seen on the graph the oxidation peaks of G1PPI and G1PPT 

are at 603 mV and 862 mV respectively whereas the reduction peaks are at 306 mV and 400 

mV respectively. It can also be observed from the graph that the onset potential of oxidation 

of G1PPI is before that of G1PPT which can allow us to say that there has been a change in 

the structure of the dendrimer and thus that the functionalization was successful. It also 

allows us to be able to state that G1PPT is more stable than G1PPI. On the other hand the 

onset potential of reduction of G1PPT is before that of G1PPI and we can thus conclude that 

G1PPT reduces easily compare to G1PPI. 
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Figure 4.4: Cyclic voltammogram of Au|G1PPT over five (5) cycles 

The oxidation and reduction peaks of G1PPT were confirmed by running the cyclic 

voltammetry of the material under the same parameters except that this time the sweeping 

was over five (5) cycles, see figure 4.4. The consistence in the appearance of the oxidation 
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and reduction peaks of G1PPT therefore proved its electrochemical behaviour. And the peaks 

are as a result of the oxidation and reduction of the sulphur atom in the thiophene ring. 
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Figure.4.5: Cyclic voltammetry of Au|G1PPT in 0.1 M LiClO4
-
 at different scan rates 

The figure 4.5 above represents the cyclic voltammogram of G1PPT at different scan rates 

varying from 10 mVs
-1

 to 100 mVs
-1

 and it shows that as the scan rate increases the current 

intensity also increases therefore proving that as the scan rate is increased, more electric field 

is generated. 

4.1.4 XRD of G1PPT 

Figure 4.6 below of G1PPT’s diffraction paXRD studiesttern from Powder shows that 

G1PPT is amorphous as it is expected for all polymers and dendrimers. 
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Figure.4.6: Powder XRD diffraction pattern of G1PPT 

4.1.5 HRSEM of G1PPT 

Figure 4.7 below represents the high resolution scanning electron micrograph of G1PPT. The 

images depicted shows that G1PPT at the nanometer scale has rough globular shape where 

atoms are aggregated; these images therefore also confirm their amorphous nature. 
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Figure 4.7: HRSEM images of G1PPT 
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4.2 Characterization of G1PPT-co-PEDOT 

4.2.1 Fourrier Transform Infrared Spectroscopy of G1PPT-co-PEDOT (FT-IR) 
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Figure 4.8: FT-IR spectrum of G1PPT-co-PEDOT 

FT-IR spectrum (figure 4.8) of chemically synthesized G1PPT-co-PEDOT shows a peak at 

1747 cm
-1

 corresponding to C=N stretchings in the dendrimer moiety. Strechings at 1504 and 

1310 cm
-1

 are assigned to C=c and C-C bonds respectively. At 1050 cm
-1

 is the band due to 

C-O-C stretching and finally the band at 833 cm
-1

 is due to C-S stretchings in the thiophene 

ring. 

4.2.2 UV-Vis spectroscopy of G1PPT-co-PEDOT  

Figure 4.9 below represents the UV-Vis spectrum of G1PPT-co-PEDOT with reference to 

PEDOT (A) and G1PPT-co-PEDOT with reference to PEDOT and G1PPT (B). As it can be 
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observed and as it is well known polymers in general have a broad absorption peak over a 

wide spectrum range. So it was highly expected to observe absorption over a wide range. 

PEDOT spectrum shows a sharp peak at 258 nm assigned to the absorption by C-S 

chromophore present in the polymer, followed by a broad peak between 400 nm and 600 nm. 

G1PPT-co-PEDOT on the other hand has a new peak at 357 nm which is accounted for the 

C-N chromophore present in the dendrimer part of the star copolymer. This peak was already 

identified when characterizing G1PPT using UV-Vis spectroscopy and this therefore also 

confirms G1PPT-co-PEDOT was synthesized. The wavelength at which G1PPT-co-PEDOT 

absorbance is maximal was estimated to be 550 nm which gives rise to an energy band gap of 

2.25 eV. This thus confirms that copolymerization of PEDOT to the dendrimer reduced the 

band gap from 3.79 eV for G1PPT to 2.25 eV for G1PPT-co-PEDOT. 
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Figure 4.9: UV-Vis spectra of (A) G1PPT-co-PEDOT and PEDOT and (B) G1PPT-co-PEDOT, 

G1PPT and PEDOT 

4.2.3 Fluorescence of G1PPT-co-PEDOT 

Figure 4.10 below represents the emission spectrum of G1PPT-co-PEDOT. The donor was 

excited at 480 nm which is the wavelength at which the polymer absorbs light and we 

observe an emission at 560 nm which corresponds therefore to the relapse of one electron 

from excited state back to its original ground state. 
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Figure 4.10: Fluorescence of G1PPT-co-PEDOT 

4.2.4 Electrochemical behaviour of G1PPT-co-PEDOT 

a- Cyclic voltammetry of G1PPT-co-PEDOT 

Figure 4.11 below shows the cyclic voltammogram of chemically prepared G1PPT-co-

PEDOT drop-coated on an Au electrode. On the graph (figure 4.12), two distinct oxidation 

peaks ipa1 and ipa2 at 595 mV and -148 mV and two distinct reduction peaks ipc1 and ipc2 at -51 

mV and -503 mV can be observed. The persistence of those peaks when sweeping over the 

potential range at 100 mV s
-1

 during five cycles therefore confirmed the obtained peaks. 
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Figure 4.11: Cyclic voltammetry of G1PPT-co-PEDOT at 100 mV s
-1 
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Figure 4.12: Cyclic voltammetry of G1PPT-co-PEDOT over 5 cycles at 100 mV s
-1 

The redox mechanism of the copolymer, depicted in scheme 4.1 below, is as a result of ion 

transport in and out of the film corresponding to the insertion and removal of an ion in the 

electrolyte. The anodic and cathodic waves could therefore be explained by incorporation of a 

counter ion. The ClO4
-
 anion incorporates into the copolymer matrix and interacts with the 

oxidation site of the polymer as counter ion. The electronic rearrangement of the redox 

reaction process (oxidation and reduction process) involving the removal and incorporation 

of the counter ion forms a conducting polycation in the presence of the charge-balancing 

anion as shown in scheme 4.1 .The first redox couple (ipa1 and ipc1) can be attributed to the 

introduction and release of the Li
+
 cation while the other redox couple (ipa2 and ipc2) is 

associated to the insertion and release of the ClO4
-
 anions respectively (Olowu et al., 2011). 
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Scheme 4.1: Redox mechanism of G1PPT-co-PEDOT 

 

In order to calculate the LUMO level of G1PPT-co-PEDOT, we used the same method used 

by Dong et al., (2009) whereby from the cyclic voltammogram we determined Ered onset 

potential and we use the equation expressed below. On the other hand, to calculate the 

HOMO level, we made use of the band gap value Eg obtained from the UV-Vis absorption 

properties of NDI, whereby we subtracted the calculated LUMO value from Eg. See table 4.3 

below. 
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Table 4.1: Summary of HOMO, LUMO and Eg values of G1PPT-co-PEDOT 

Scan Rate / mV s
-1

 100 

Epa / V 0.595  

Epc / V -0.051  

ΔEp / mV 646  

Ered, onset / V -0.769  

Eg / eV 2.256  

LUMO / eV -4.031  

HOMO / eV -6.287  

 

Where,  

LUMO = - (Ered, onset+ 4.8) eV, and 

HOMO = - (Eg - LUMO) eV 

4.2.5 HRSEM and EDX of G1PPT-co-PEDOT 

G1PPT images presented amorphous globular aggregates both at micrometer and nanometer 

level, but in the case of G1PPT-co-PEDOT; we observed some amorphous packed sheets 

with some growth observed at the micrometer level (Figure 4.13). This growth can be 

associated to polymer growing at the surface of the dendrimer. 
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Figure 4.13: HRSEM images of G1PPT-co-PEDOT 

Figure 4.14 below shows the elemental composition of G1PPT-co-PEDOT which proves that 

all the atoms expected to be found in the chemical formula of G1PPT-co-PEDOT are present. 

 

Figure 4.14: Elemental composition of G1PPT-co-PEDOT 
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4.2.6 XRD of G1PPT-co-PEDOT 

Figure 4.15 below represents the powder XRD diffraction pattern of G1PPT-co-PEDOT. The 

diffraction pattern of G1PPT showed that it was amorphous and the same result was obtained 

for the diffraction pattern of PEDOT. It was therefore expected that G1PPT-co-PEDOT 

would be highly amorphous as expected for polymers which is confirmed by these XRD 

results. 
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Figure.4.15: Diffraction pattern of G1PPT, PEDOT and G1PPT-co-PEDOT 

4.3 Characterization of N, N-diidopropylnaphthalnediimide (NDI) 

4.3.1 Fourrier Transform Infrared spectroscopy of NDI (FT-IR) 

Figure 4.16 below represents the FT-IR spectrum of NDI characterized by bands at 735, 767, 

887, 1072, 1142, 1247, 1325, 1653, 1698, 2932 and 2978 cm
-1

 among which the bands at 
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2932 and 2978 cm
-1

 correspond to the C-H stretchings, and the bands at 1698, 1653 and 1325 

cm
-1

 are due to C=O, C-N and C=C stretchings respectively. 
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Figure 4.16: FTIR spectrum of NDI 
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4.3.2 UV-Vis Spectroscopy of NDI 
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Figure.4.17: UV-Vis Spectra of NTCDA and NDI in N, N-dimethylformamide 

Once NDI was synthesized and analysed using FT-IR spectroscopy, the next step was the 

optical analysis of our acceptor material. Because the acceptor starting material NTCDA was 

only soluble in DMF, we had to study both NTCDA and NDI optical properties in DMF in 

order to check if there was a difference in their absorbance properties and therefore conclude 

that a new material was synthesized. So as can be seen on figure 4.17 above, for the same 

concentration of NTCDA and NDI, 0.02 M in DMF we observe a shift in absorption peaks. 

Indeed, with NTCDA there are two main peaks at 350 nm and 367 nm with a small shoulder 

at 335 nm and those peaks can be assigned to C-O, C=O and C=C bonds respectively; 

whereas with NDI, there is a wavelength shift for all absorption peaks. The shoulder observed 

at 335 nm for NTCDA is now found at 344 nm for NDI; and instead of the two peaks at 350 

nm and 367 nm, we now have two stronger peaks at 360 nm and 380 nm. 
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These optical properties of NDI were confirmed when analysed in DCM as shown in figure 

4.18 below. Indeed, we observed the same peaks already found when NDI was studied in 

DMF which are in agreement with the work reported by Bhosale et al., (Bhosale et al., 2008). 

And we were now able to assign the peaks to the different chromophores in NDI. The two 

peaks at 380 nm and 360 nm are characteristics of the absorbance of the chromophores C=O 

and C=C whose peaks are results of 𝜋−𝜋∗ transitions. Also the small peak at 344 nm could be 

as a result of n - σ* transition within the C-N chromophore with band gap energies of 3.27 

eV, 3.45 eV and 3.61 eV respectively calculated using the same equation as for the optical 

analysis of G1PPT. 
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Figure 4.18: UV-Vis spectrum of NDI in dichloromethane 

Then, NDI optical properties were studied in other solvents; the main reason being that there 

was no specific knowledge on which solvents will be suitable for both donor and acceptor 
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material for the fabrication of the bulk heterojunction layer. Among the various solvents, 

chloroform was used based on the fact the donor starting material G1PPT dissolves in 

chloroform. Light absorption properties of NDI were also studied in DMSO, based on the fact 

that the donor G1PPT-co-PEDOT could only be soluble in DMSO. The main observation 

which can be made is that, the absorption properties of NDI studied at same concentrations 

are very low in DMSO as can be seen from looking at figure 4.19 A, B and C below. For 

absorbance values of 2.11 and 2.20 for the peaks at 360 nm and 380 nm respectively of 0.1 M 

NDI in both DCM and chloroform, we observe absorbance values of 0.48 and 0.51 only for 

the same concentration in DMSO. 
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Figure.4.19: UV-Vis Spectra of NDI in (A) DCM, (B) CHCl3 and (C) DMSO at different 

concentrations 
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4.3.3 Fluorescence Spectroscopy of NDI 

Photoluminescence also referred to as fluorescence as it is well known, arises as a result of a 

relaxation of one or more excited electrons from higher energy conduction band to lower 

energy valence band. As such, it is expected from most of the materials which are able to 

absorb photons and jump from valence band to conduction band, to also be able to lose that 

energy and therefore decay back to the valence band and by doing such, those materials emit 

some light. To study the photoluminescence properties of NDI, we excited it a 360 nm and 

we observed three (3) distinct emission peaks at 390 nm, 408 nm and 433 nm as represented 

on figure 4.20 below. Also, Figure 4.21 below represents the normalized spectra of 

absorption (for an emitting wavelength of 408 nm) and emission spectra of NDI. 
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Figure 4.20: Fluorescence Spectrum of NDI in DMSO 
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Figure 4.21: Normalized Emission and Excitation spectra of NDI in DMSO 

4.3.4 Electrochemical behaviour of NDI 

a- Cyclic Voltammetry of NDI 

When studying the electrochemical properties of NDI, it is was with the aim of investigating 

if NDI was able to successfully undergo a redox reaction and how many electrons were 

gained and lost during the mechanism. It was also a way to be able to determine the HOMO 

and LUMO levels of the acceptor material. Indeed, figure 4.22 below presents the 

voltammogram of 1 mM NDI in DCM (0.1 M Bu4NPF6) within a potential range of (-1600) – 

(-500) mV with respect to the bare Pt electrode as a baseline, with a scan rate of 100 mVs
-1

. It 

was observed that NDI undergoes two distinct one-electron transfer processes corresponding 

to the reduction of NDI into NDI
-
 and of NDI

-
 to the dianion NDI

2-
 giving rise to the two 

redox couples NDI/NDI
-
 and NDI

-
/NDI

2- 
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Figure.4 22: Cyclic voltammetry of Pt bare electrode and 1mM NDI in CH2Cl2 (0.1 M Bu4NPF6) 

The following redox mechanism represents the electron transfer going on during cyclic 

voltammetry. 

 

Scheme 4.2: Reduction mechanism of NDI to NDI
-
 and from NDI

-
 to the dianion NDI

2- 
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Figure 4.23: Cyclic voltammetry of NDI at different scan rates 

Above, in figure 4.23 are the cyclic voltammograms of NDI at different scan rates and below is the 

table summarizing the oxidation and reduction peaks, as well as the change in potential, ΔEp and the 

formal potential E
o’

. From the table, we can see that the change in potential for first and 

second redox couples is ΔEp ~ 59 mV at low scan rates which therefore enables us to confirm 

the idea that NDI undergoes two distinct reversible one-electron processes. Whereas at scan 

rates higher or equal to 100 mV s
-1

, ΔEp > 60 mV and allows us to conclude that at those 

potentials the redox reactions are quasi-reversible. 
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Table 4.2: Summary of oxidation and reduction potentials, ∆Ep and E
o’

 of 1 mM NDI in CH2Cl2 (0.1 

M Bu4NPF6) at different scan rates. 

Scan rate / 

mV s
-1

 

 Ep

ox 

/ mV
 

Ep

red 

/ mV 
ΔEp / mV E

o’ 

/ mV 

20 1
st
 

2
nd

 

-693 

-1110 

-752 

-1170 

59 

60 

-722.5 

-1144.5 

30 1
st
 

2
nd

 

-690 

-1106 

-749 

-1166 

59 

60 

-716.5 

-1136 

50 1
st
 

2
nd

 

-694 

-1108 

-753 

-1168 

59 

60 

-718.5 

-1141 

100 1
st
 

2
nd

 

-699 

-1108 

-767 

-1180 

68 

72 

-731 

-1144 

200 1
st
 

2
nd

 

-680 

-1096 

-760 

-1180 

80 

84 

-720 

-1138 

300 1
st
 

2
nd

 

-694 

-1094 

-762 

-1180 

68 

86 

-728 

-1138 
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The reversible electron transfer properties of NDI at lower scan rates were also confirmed by 

plotting change in potential ΔEp versus log of scan rate, log υ whereby we were able to 

observe that for scan rates between 20-50 mV s
-1

 the graph is linear, see figure 4.24 below. 
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Figure 4.24: Plot of ΔEp versus log υ for first and second redox couples of NDI 

Also from Table 4.2 above, we were also able to draw the graph depicted in figure 4.25 

representing formal potentials versus scan rate and we found that, as the values were 

predicting the half-wave potential is independent on the scan as it is expected for reversible 

systems. 
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Figure 4.25: Formal potential values versus scan rates of NDI 
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Table 4.3: Summary of oxidation and reduction peak currents of NDI versus square root of scan rate  

Scan rate / mV 

s
-1

 

(Scan rate)
1/2

 / 

mV
1/2

 s
-1/2

 

 Ip
ox

 / ηA Ip
red

 / ηA 

20 4.47 1st 

2
nd

 

6.17 

-101.75 

-135 

-222.20 

30 5.47 1st 

2
nd

 

-52.87 

-61.28 

-196.17 

-296.83 

50 7.07 1st 

2
nd

 

146 

-1.10 

-256.36 

-343.52 

100 10 1st 

2
nd

 

146 

39.40 

-316.55 

-444.18 

200 14.14 1st 

2
nd

 

462 

234.50 

-606.06 

-766.90 

300 17.32 1st 

2
nd

 

617 

348.60 

-746.14 

-941.23 
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A plot of peak current versus root of scan rate (Figure 4.26) shows that the anodic or 

oxidation peak currents increase with scan rate whereas the cathodic or reduction peak 

currents decrease for both redox couples. 
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Figure 4.26: Peak current, Ip vs square root, (υ)
1/2

 of scan rates of NDI 

In order to calculate the LUMO level of NDI, we applied the same method used by Dong et 

al., 2009 whereby from the cyclic voltammogram we determined Ered onset potential.  On the 

other hand, to calculate the HOMO level, we made use of the band gap Eg obtained from the 

UV-Vis absorption properties of NDI, whereby we subtracted the calculated LUMO value 

from Eg. See Table 4.4 below. 
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Table 4.4: Summary of HOMO, LUMO and Eg values of NDI 

Scan Rate / mV s
-1

 100 

Epa / V -0.693  

Epc / V -0.752 

ΔEp / mV 59 

Ered onset / V -0.498 

Eg / eV 3.27 

LUMO / eV -4.302 

HOMO / eV -7.572 

 

Where,  

LUMO = - (Ered onset + 4.8) eV, 

HOMO = - (Eg - LUMO) eV 

b- O-Square Wave Voltammetry of NDI 

OSWV of NDI was swept from -500 mV to -1600 mV back and forth and figure 4.27 below 

therefore represents the forward (A) (oxidation) and reverse (B) (reduction) square wave 

voltammograms of NDI which enables us to confirm the two oxidation and two reduction 

peaks obtained from the NDI’s CV. 
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Figure. 4.27: (A) Forward and (B) reverse OSWV of 1 mM NDI in CH2Cl2 (0.1 M Bu4NPF6) 
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4.3.5 HRSEM and EDX of NDI 

The HRSEM images of NDI (Figure 4.28) show highly pure rectangular shapes in the 

micrometer range. These images prove of the highly crystalline nature of the prepared NDI; 

which will be further confirmed by Single crystal XRD diffraction pattern. 
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Figure 4.28: HRSEM images of NDI 

 

 

Figure 4.29: Chemical Composition spectrum of NDI 

Based on the molecular formula of NDI and from a theoretical assumption, the percentage of 

each atom with respect to other atoms in the molecule was supposed to be as follows: N: C = 

1: 10; N: O = 1: 2 and C: O = 1:5. From the EDX results (Figure 4.29) we obtained the 

Element Wt% 
Wt% 

Sigma 

C 72.59 1.55 

N 8.84 1.76 

O 18.57 0.79 

Total: 100 
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following ratios N: C = 1: 8, N: O = 1: 2 and C: O = 1:4. Our main focus in this EDX result is 

the ratio N: O = 1:2 which therefore confirms that NDI was really synthesized. 

4.3.6 XRD of NDI 

Figure 4.30 below presents the diffraction pattern of NDI which shows and therefore 

confirms that the synthesized acceptor has a highly crystalline pattern as it was expected 

based on the HRSEM images. 
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Figure 4.30:  Diffraction Pattern of NDI 
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CHAPTER FIVE 

Organic Bulk Heterojunction Cell Photovoltaic Properties 

 

5.1 UV-Vis Properties of the BHJ layer: G1PPT-co-PEDOT:NDI 

Figure below illustrates the UV-Vis absorption spectra of the blended organic bulk 

heterojunction active layer G1PPT-co-PEDOT:NDI at different ratios. As the ratio of the 

blend was going from 1:1 to 1:4, the absorption properties of NDI is increasing as a result of 

an increase of the NDI volume content in the blend. But it was observed that the absorbance 

of the donor G1PPT-co-PEDOT was instead decreasing from ratio 1:1 to ratio 1:3 and at ratio 

1:4 the absorbance is higher. 
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Figure 5.1: UV-Vis Spectra of (A) BHJ Donor-Acceptor layer at different ratios (B) donor component 

part of Donor-Acceptor layer at different ratios 

5.2 Fluorescence properties of the BHJ layer: G1PPT-co-PEDOT:NDI 

Fluorescence is the emission of light as a result of the relapse of one or more electrons from 

their excited state back to the ground state. When G1PPT-co-PEDOT was excited at 480 nm, 

an emission at 593 nm was observed with a very intense peak. But, when the same 

concentration of the blend acceptor- donor, G1PPT-co-PEDOT:NDI was excited at the same 

wavelength, approximately 35% quenching in emission peak height intensity of G1PPT-co-

PEDOT was observed (Figure 5.2). This could be explained by the fact that in the mixture 

acceptor – donor, there is an electron-transfer occurring from the donor to the acceptor; as a 

result, there are fewer electrons available in the donor to relapse from excited state to ground 

state. This therefore confirms that G1PPT-co-PEDOT acts as the electron donor and NDI as 

an electron acceptor. 
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Figure 5.2: Fluorescence spectra of G1PPT-co-PEDOT and Donor-Acceptor 

Similarly, the different ratios of blend were excited at the same wavelength and it was 

observed that there is about 82% quenching in emission peak intensity from ratio 1:1 to 

ratio1:4 (Figure 5.3). This was highly expected because from ratio 1:1 to ratio 1:4 the amount 

of acceptor NDI is increasing therefore implying that more electrons can be accepted from 

the donor. This thus shows that the ratio 1:4 will provide the best organic bulk heterojunction 

active layer. 

 

 

 

 



   

83 
 

560 640 720

0

100000

200000

300000

 1:1

 1:2

 1:3

 1:4

 

 

Wavelength / nm

In
te

n
s
it

y
 /

 C
P

S

 

Figure 5.3: Emission spectra of different ratio of blend donor-acceptor 

5.3 Energy diagram of G1PPT-co-PEDOT:NDI 

Based on the data obtained from the UV-Vis spectra and cyclic voltammetry analyses of 

G1PPT-co-PEDOT and NDI, the HOMO, LUMO and energy bang gap Eg of each donor and 

acceptor material were determined. From these values the energy diagram (Figure 5.4) was 

designed. From the diagram the energy separation, ΔEg between the HOMO of the donor and 

the LUMO of the acceptor was calculated to be 1.985 eV and the offset between the LUMO 

of the donor and the LUMO of the acceptor is 0.3 eV which is the ideal offset energy 

difference between an acceptor and a donor. 
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Figure 5.4: Energy diagram of donor G1PPT-co-PEDOT and acceptor NDI 
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 CHAPTER SIX 

Conclusion and Recommendations 

 

6.1 Conclusion 

In this study we explored the potential application of a newly developed organic bulk 

heterojunction active layer into solar energy conversion based on cyclic voltammetry and 

UV-Vis spectroscopy. Both donor, G1PPT-co-PEDOT and acceptor, NDI materials were 

successfully chemically synthesized via condensation reactions. Synthesis of G1PPT-co-

PEDOT started by the functionalization of the stating material generation 1 

poly(propyleneimine) tetramine dendrimer G1PPI into generation 1 

poly(propylenethiophenoimine), G1PPT by reacting 0.3863 g (1.2205 mmol) of G1PPI with 

472.55 µL (4.8821 mmol) of 2-thiophene carbaldehyde in methanol for 48 hours under N2 

gas; followed by the copolymerization of G1PPT with ethylenedioxythiophene (EDOT) 

monomer. This was done by mixing 495 mg (0.71424 mmol) of G1PPT with 318 µL (2.8570 

mmol) of the monomer EDOT in 10 mL of chloroform and in the presence of 29.75 mL of 

0.1 M (NH4)2S2O8 as oxidant and the mixture was allowed to stir for 2 hours at room 

temperature. The synthesis of these two materials was thus confirmed by means of FT-IR 

spectroscopy, UV-Vis spectroscopy and EDX techniques. HRSEM and XRD analyses enable 

us to study the morphology and the crystallinity of the prepared materials respectively and 

showed that G1PPT-co-PEDOT is characterized by globular shapes with PEDOT growing 

out of the dendrimer structure and is amorphous in nature whereas the acceptor material is 

characterized by highly pure yellow canary-like needles which are strongly crystalline. 
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On the other hand based on the cyclic voltammetry and UV-Vis spectroscopy results, 

HOMO, LUMO and energy band gaps Eg of both donor and acceptor materials were found to 

be -4.031, -6.287 and 2.256 eV for the donor and -4.302, -7.572 and 3.27 eV for the acceptor 

respectively. These values allow us to draw the BHJ layer energy diagram and the energy 

separation, ΔEg between the HOMO of the donor and the LUMO of the acceptor was 

calculated to be 1.985 eV and the offset between the LUMO of the donor and the LUMO of 

the acceptor is 0.3 eV which is the ideal offset energy difference between an acceptor and a 

donor. Finally, the studies of the fluorescence properties of the fabricated organic bulk 

heterojunction blend G1PPT-co-PEDOT:NDI revealed that there was a quenching in its 

emission peak intensity relative to the emission peak intensity of the donor G1PPT-co-

PEDOT alone. It therefore shows that there was an electron charge transfer from the donor 

G1PPT-co-PEDOT to the acceptor NDI. Also, blending of the organic BHJ at different ratio 

of donor to acceptor volume, revealed that the higher is the OBHJ content in acceptor 

material, the more will be the fluorescent quenching; thus the higher is the number of 

electrons transferred from the donor to the acceptor. This leads us to the conclusion that an 

organic bulk heterojunction layer based on a blend of G1PPT-co-PEDOT with NDI could be 

a suitable active layer for application in OPVs. 

6.2 Recommendations 

Future work with respect to this project will include: 

- Study conductivity properties of both donor and acceptor materials. 

- Investigation of the power conversion efficiency. 
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