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ABSTRACT 

The water quality in many Cape Town Rivers and streams is a major challenge. Kuils River is 

subject to multiple land use impacts from upstream to downstream because of rapid 

urbanization in its catchment area. The main pollution sources are urban and industrial, 

organic matter from litter under the road-bridge, and golf course.  

However no systematic efforts have been made to evaluate and improve the health of the river 

in term of management. To assess impacts on water quality, this study was conducted from 4th 

September to 27th November 2012 in 5 selected sites in the upper reach of the Kuils river. The 

main aim was to compare the health of the river in 2012 with that found in 2005 using 

physical and chemical characteristics and the South Africa Scoring System (SASS). The 

statistical analysis showed a significant difference between and within sites. 

The water temperature, pH, dissolved oxygen concentration, total dissolved solids (TDS), and 

salinity were collected in situ by YSI 30 meter. To evaluate nutrient (nitrate and phosphorus) 

concentrations water samples were analyzed at UWC laboratory using spectrophotometer.  

In addition human activities, basic conditions (7.13 to 8.76), high total dissolved solids (416 

to to 916.5 mg L¯¹) and salinity (0.31 to 0.71 mg L¯¹) concentrations were influenced by 

Malmesbury shales. Nitrate (0.1 to 3.1 mg L¯¹) and phosphorus (0.11 to 5.27 mg L¯¹) 

concentrations and the decrease in dissolved oxygen in November 2012 showed eutrophic 

conditions of the river. In the tributary site phosphorus (1.32 to 3.62 mg L¯¹) concentrations 

revealed hypertrophic condition compared to South Africa guideline. 

Macroinvertebrates sampled showed a total of 28 taxa grouped in 11 orders were sampled. 

Poor habitat diversity and water quality degradation were principal causes of low species 

diversity. The South Africa Score System version 5 (SASS5) and Average Score per Taxon 

(ASPT) indicated that the river is seriously impacted in 2012 compared to 2005 where water 

quality was in poor condition. The SASS and the ASPT scores were less than 50 and 4.2 at all 

sampling sites in most part of sampling period.  
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CHAPTER ONE: HISTORICAL PERSPECTIVES ON THE WATER QUALITY 

DEGRADATION 

1.1 INTRODUCTION 

Freshwater watercourses are characterized by patterns of physical and chemical parameters. 

They differ from one continent to another and even from region to region because these 

characteristics are determined largely by climatic, geomorphological, geology and soils 

conditions, as well as by the aquatic biotas (Davies and Day, 1998). The physical and 

chemical quality of pristine water would normally be as occurred in pre-human times, i.e. 

with no signs of anthropogenic impacts. 

However, it is very difficult to find physical and chemical qualities of pristine water because 

of direct human impact on water sources and atmospheric transport of contaminants to remote 

areas (Chapman, 1996). Human activities affect a high proportion of watercourses in virtually 

all countries. They are responsible for much of the alteration in landuse or landcover 

worldwide, and rivers and streams are the most affected ecosystems by these changes 

(Helmens, 2008).   

 

Rivers usually shaped by natural events, are additionally stressed by human activities which 

generate disturbances that lead to the modification of rivers and their biota (Downes, et al. 

2002). In many countries including South Africa, agriculture and urbanization are common 

types of landuse, and disturbances from each type may apply its own unique suite of pressures 

on receiving streams (Helmens, 2008). Disturbances due to the discharge of substances by 

humans may affect rivers over a range of temporal and spatial scales. Uncontrolled land use 

has undesirable and devastating effects on the aquatic environment. According to Luger and 

Brown (undated) the effects of pollutant into freshwater ecosystems depend on the quality and 

quantity of the effluent, and on the condition, type and resilience of the receiving ecosystems. 

Perturbations consist usually of two events, namely, the application of disturbing force (or 

pollutant agents) to the biota of the system, and the response of the affected biota to such 

changes (Downes, et al. 2002; Chapman, 1996). Some of these impacts may be hazardous to 

human health and to the biota reducing diversity and abundance of aquatic species.  
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To limit effluent discharges from municipal and industrial sources into water bodies in order 

to prevent damage to human health and aquatic life, water quality criteria and standards are 

currently used across the world (Novotny, 2003; Perry and Vanderklein, 1996; Bilotta and 

Brazier, 2008). Quality standards are, in effect, a regulatory tool that list specific quality aims 

associated with specific uses and are based on scientific experiments and observations (Perry 

and Vanderklein, 1996). 

However, environmental and pollution control policies are also guided, to a higher degree, by 

moral issues and ethical standards (Novotny, 2003). Each society has cultural values that 

determine its attitudes and the ways it values natural resources. These attitudes are sometimes 

expressed as explicit goals for water quality management (Perry and Vanderklein, 1996). 

Despite the promulgation of water quality criteria and standards, and mitigation in place, the 

pollution of watercourses remains a major concern throughout the world. Because of 

population pressures and migration, land-use conversion and its pollution consequences on 

freshwater resources appear to be the major diffused pollution problem today (Novotny, 

2003). In the U.S for example, it has been demonstrated by recent studies of stream and river 

health that water quality continues to be degraded by nonpoint pollutant sources (Kenney et 

al. 2009) despite national water quality standards and a very effective control agency put in 

plave by the US Environmental Protection Agency. 

In South Africa, freshwater resources are under increasing stress. The main factors 

contributing to the deterioration of water quality in South Africa Rivers are salinization, 

eutrophication, acidification, and microbial pathogens (CSIR, 2010). South A rica’s climatic 

conditions, coupled with these discharges of treated and untreated sewage effluent from 

settlements and industrial effluents, excessive nutrient loads in return flows from agriculture, 

as well as modification of river flow regimes and changing land use or land cover patterns, 

have resulted in large-scale changes to aquatic ecosystems (Oberholster and Ashton, 2008). 

This situation is aggravated in urban areas where river health has suffered because buildings 

have been erected close to their banks Riparian vegetation has been cleared and rivershore has 

been canalized in places. They receive in-flows from storm water drains; they are constricted 

by bridges and exotic vegetation is planted. 

In the Cape Metropolitan area, treated and untreated sewage effluent from urban areas is one 

of the most common types of pollution found in the rivers (CSIR, 2010; Pool, 2008; Luger 
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and Brown, undated).  Furthermore, the rivers have channel modifications, infilled floodplains 

and beams (berms) /levees. This has resulted in the loss of indigenous instream, riparian and 

floodplain vegetation, loss of indigenous fauna, and invasion by exotic flora and fauna. Hence 

the current degraded state of many rivers and wetlands in Cape Metropolitan Area (Luger and 

Brown, undated). Recent research confirms that in Cape Town’s rivers, there is contamination 

by runoff from urban and informal settlement areas (CSIR, 2010). Taking into account the 

importance of water in the scope of the human economy, the deleterious consequences 

attributed to waterborne diseases and numerous changes observed in the South African rivers, 

it is necessary to identify the origin and type of pollutants, and to know the manner in which 

they affect water quality. 

 

1.2 HISTORICAL PERSPECTIVE 

All species can survive only in certain limited ranges of environmental conditions. The 

survival of any species to the present day implies that it has been, and still is, able to adapt to 

particular living conditions. As for aquatic organism, each species is adapted to living in 

water containing a particular suite of chemicals within certain concentration limits (Davies 

and Day, 1998). 

Water quality reflects the composition of water as affected by nature and human activities. In 

its pristine state, water draining in the forest is clean but it contains chemicals, 

microorganisms, and sediments from the contact of rainwater with vegetation, soils, decaying 

vegetation, and animal and insect droppings, among others (Novothny, 2003). 

However, all human process produce waste products that can negatively affect water quality. 

In history, human beings do not have a good record regarding pollution (Novotny, 2003). 

When humans decide to develop land areas that are pristine or near pristine, a cascading series 

of events occur that impact the quality of water bodies (Ahuja, 2009). Nevertheless, most 

rivers and lakes were still relatively clean during the Middle Ages, though urban settlement 

were highly polluted, causing frequent epidemics (Novotny, 2003). Two hundred years ago, 

deterioration of watercourses due to organic pollution was not a serious problem for, a 

relatively small human population lived in scattered communities (Mason, 2002). When 

human population was small, and technologies were simple, pollutants were confined to 

human and animals wastes (Davies and Day, 1998).  
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Water pollution became a severe problem with industrialization coupled with rapid 

acceleration in population growth (Mason, 2002). Population increase and improvement of 

living standards caused accelerated water quality changes, and led to water stresses and severe 

diffuse pollution problems (Downes et al. 2002). Each additional person represents an 

additional demand on productive resources, and additional wastes (Novotny, 2003).  

When urbanization increased, governments were unable to manage natural resources in a 

suitable manner. The provision of clean water and safe disposal of wastewater and storm 

water for the towns of developing countries became increasingly more complex and serious 

(Biswas, 2004 and 2006). Domestic wastes from the rapidly expanding towns and wastes 

from industrial processes were all poured untreated into the rivers causing gross pollution. 

This was hazardous for human health (cholera) and noxious odors rise from the rivers 

(Mason, 2002). 

With respect to urban runoff, problems and concerns regarding polluted date to ancient Rome, 

where sewers were built primarily for storm water disposal. As a result of building sewers 

without treatment, many rivers became heavily overloaded with nutrients and gave off a 

putrid smell which was caused by decomposition of sewage and garbage in the river 

(Novotny, 2003).  

In the mid-nineteenth century it was observed that the filth of the cities and urban 

contamination of the water supplies were the major reasons for water borne epidemics of 

cholera and typhoid fever in many parts of the world (Perry and Vanderklein, 1996; Novotny, 

2003). To protect human health, cleanup efforts focused primarily on point sources and 

removed pollutants dangerous to human health (Novotny, 2003). In many developing 

countries (Africa, Asia, and Latin America) where human and animal waste are not yet 

adequately collected and treated fecal contamination, it is still the primary water issue in 

rivers (Ahuja, 2009). 

In South Africa, water quality degradation in rivers deals a major challenge. From the earliest 

days of water crisis in South Africa, it was plain that the potential danger of water quality was 

overexploitation of rivers due to climatic conditions associated with population increases. The 

impoundment, extraction and transfer of waters from rivers, domestic and industrial waste 

disposal, agricultural runoff, catchment degradation, and introduction of exotic species were 

major causes o  South A rica’s rivers degradation  O’Kee  e, 1986 .  
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In regard o  the overexploitation and deteriorating o  South A rica’s rivers, a number o  

structures and programmes of research in certain rivers have been initiated since the 1950s. 

 The first official expressions of concern for the water degradation of rivers and human health, 

specifically bilharzia took place in the 1950’s  O’Kee  e, 1986 . Numerous studies have 

shown that wastewater contains a wide range of pathogens and sometimes heavy metals and 

organic compounds that are hazardous to human health and the aquatic environment.  Many 

of the rivers have been impacted by effluent discharged from wastewater treatment works 

(WWTW) and agriculture runoff causing nutrient enrichment (CoCT, 2011).  

 

In Cape Town’s rivers, Heydorn and Grindley (1982) observed that pollution in Kuils River 

was a real and rapidly growing threat. The first sign of Kuils River degradation was predicted 

in 1946 when the Department of Water Affairs suggested a possible canalization to facilitate 

irrigation and afford a measure of flood protection. Also, the sewage disposal sites as well as 

waste disposal facilities that exist in Bellville since the 1930s and 1960s were respectively to 

be discharged into the Kuils River. These constitute fundamental factors that decrease water 

quality. It was shown that the effluents from the Bellville WWTW exceeded general effluent 

standards (Parson, 2002).  

 Decades ago, studies in Kuils River catchment area reported that the entire course of the river 

was subjected to the multiple impacts associated with the rapid urbanization of its catchment 

area. The water quality deteriorated significantly due to organic pollution from multiple 

pathways namely farms, urban settlement, wasterwater treatment works (WWTW), storm 

water and industrial waste.  Also a large number of road-bridge and variable channel 

conditions in the courses impede the free flow of water and increase upstream water levels 

(CoCT, 2011; Heydorn and Grindley, 1982; Ninham, 1979).  

Note that before the advent of anthropogenic influences, the Kuils River was a seasonal river, 

drying summer into a series of small pools, or kuils, and then flowing torrential during the 

winter rains. Because of treated effluent from wastewater treatment works (WWTW) that it 

receives from Scottsdene, Bellville, Zandvleit and Macassar, Kuils River has a perennial flow 

(Li Rui, 2005). The sewage effluent discharged is probably the main source of pollution of the 

Kuils River.  The change in flow from a seasonal to a perennial system is due to the addition 

of sewage effluent that has severely impacted the system (Ewart-Smith and Ractliffe, 2002). 
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1.3 PROBLEM STATEMENT                                                                                       

“Rivers are complex self-regulating system” (Davies and Day, 1998 . I  “le t alone’’ they 

support a range of processes and organisms that maintain the rivers in a healthy state. 

However, human intervention in any part of the catchment area does have a negative impact 

on river health. The Kuils River is impacted by activities emanating from human settlements, 

road and bridge, and agriculture and this has resulted in the health the river diagnosed as poor 

in some places and unacceptable in other places (River Health Programme, 2005).  

Large-scale manipulation of sections of the river course through canalization, the loss of 

indigenous riparian vegetation and a reduction in water quality through agricultural and 

industrial runoff and particularly waste water effluent discharges have resulted in a dramatic 

loss of natural ecological functioning along its entire length (Brown and Magoba, 2009). 

The vision for the health of the Kuils River has been expressed to be fair. From observation, it 

seems to suggest that no concerted efforts have beeb made by water management 

organizations to improve the health of the Kuils River. 

 

 1.4 AIM OF THE STUDY 

The overall aim of this study is to compare the state of the Kuils River in 2012 to that of 2005 

using two river health indices—the index of Water Quality and the South Africa Scoring 

System. 

The specific objectives are: 

1. To identify and describe the main sources of pollution in the Kuils River Catchment 

area. 

2. To determine the water quality (pH, water temperature, total dissolved salts, dissolved 

oxygen, phosphates, and nitrate) and invertebrate diversity at selected sites from 

headstream to the confluence with the Bottelary River.  

3. To compare the water quality and invertebrate diversity: 

3.1 From the upstream in Durbanville to the confluence with the Bottelary River 

3.2 Over time for each sampling site. 

3.3 With the 2005 outcome. 

3.4 With historic data from DWAF  
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1.5 RESEARCH QUESTIONS 

    Currently, what is the ecological state the upper the Kuils River?  

1. What are the main sources of pollution of the river course? 

2. What is the influence of each landuse pollution type on water quality upstream?  

3. Which pollutant contributes more to the pollution of the river? 

4. What is the actual state of habitat integrity, water quality and invertebrate diversity as 

compared to 2005 with regards to spatial and temporal scale for each sampling site? 

1.6 SIGNIFICANCE OF THIS STUDY 

Poor water quality has been principally associated with human health concerns through the 

transmission of water-borne diseases. These diseases are still major problem in many regions 

of developing countries. The deterioration of rivers not only results in loss of aquatic habitat 

and aquatic life but also degrades the ability of the systems to provide the goods and services 

that people depend on. This study will determine the current state of the upper Kuils River 

and provide updated information to enhance the effective management of the river. It will also 

assist the authorities to put in place effective mitigation mechanisms for the effluents disposal 

to the receiving water bodies. 

1.7 CHAPTER OUTLINE 

Chapter One – Introduction: Historical Perspective of Water Quality 

Chapter Two – Literature review: presents certain notion of river continuum, describes the 

physic-chemical and biological characteristics of the rivers, and pollution sources and their 

consequences in South Africa aquatic ecosystems.   

Chapter Three – Research design and methodology: presents the study areas, describes 

sampling points and method to evaluate water quality.  

Chapter Four – Results: carry on physical, chemical and biological parameters upper of the 

Kuils River.  

Chapter Five ˗ Discussion  

Chapter Five – Conclusion and recommendation 
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CHAPTER TWO: LITERATURE REVIEW 

 2.1 INTRODUCTION  

This chapter describes the physical and chemical parameters, its natural state, perturbation 

from human activities and the impacts on water quality and aquatic life. The different sources 

of pollution and their consequences on aquatic systems are also reviewed.  

Although freshwater has been recognized as an increasingly important resource, it is under 

threat from human activities. Increased population has led to landscape transformations that 

have a number of documented effects on stream ecosystems (Allan, 2004). Land use 

described by many authors as hazardous to aquatic ecosystems, are urbanization and 

agriculture activities. In comparison with urban land use, agriculture occupies the largest 

portion of land and constitutes the major cause of stream impairment in many developed 

countries catchments (Allan, 2004; Paul and Meyer, 2001). Numerous studies have 

documented declines in water quality, habitat, and biological assemblages as the extent of 

agricultural land increases within catchments (Allan, 2004). Despite the fact that urban land 

use may occupy a low percentage of the total catchment, numerous studies have shown that 

ever-increasing urbanization represents a threat to stream ecosystems because of population 

concentration. Urbanization impacts alter water quality and constitute a threat to aquatic life 

(Paul and Meyer, 2001). 

Undoubtedly, by changing the landscapes of stream catchments, human activities alter stream 

ecosystems in various ways (Allan, 2004). Human actions at the landscape scale are a 

principal threat to the ecological integrity of river ecosystems, impacting habitat, water 

quality, and the biota. Water quality studies are used to describe the physical and chemical 

characteristics of water affected by human activities. Chemical assessment does not provide 

direct information on the effects of pollution on the biological quality or ecosystem health of 

the river. For that fact, to obtain more complete information on the water quality, the 

assessment has been extended to biological assessment (Knoben et al., 1995). The impacts of 
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population growth and rapid urbanization constitute a major issue in Africa, including South 

Africa. 

Rapid urbanization and human activities in urban and rural areas pose a serious threat to water 

quality in rivers due to an increased risk of pollution in South Africa. Some studies (Ninham, 

1979; Heydorn and Grindley, 1982; River Health Programme, 2005; Nel et al. 2013) and 

student these (Fisher, 2003) have been carried out in Kuils River catchment areas. The River 

Health Programme (2005) reported that many Greater Cape Town Rivers including Kuils 

River are exposed to several kinds of pollution such as waste effluent from urban and 

industrial areas, stormwater, agriculture run-off, and spilled oil. Major pollution sources and 

their impact on Kuils River have been studied by Ninham, (1979) and channelization impacts 

on geomorphology and ecology have been studied by Fisher (2003). In the ensuing section, 

the concept of river continuum is introduced and discussed. 

2.2 RIVER CONTINUUM 

The first attempt to categorize the Stream Zonation Concept started in 1963 by Illies 

Botosaneanu defining a series of distinct communities along river systems (Maiolini and 

Bruno, 2007). About three decades ago, Vannote and colleagues introduced the River 

Continuun Concept (RCC) according to which the biotic stream community adapts its 

structural and functional characteristics to the abiotic environment from headwater to 

downstream (Maiolini and Bruno, 2007; Vannote et al., 1980). Changes in physical habitat 

and food base from source to mouth profoundly influence biological communities.  

Based on considerations of stream size and progressive changes in biological communities 

along a river system, Vannote et al. (1980) divided river orders into three major categories 

namely, headwater (low order stream), medium-sized stream, and large rivers. 

The headstream is characterized strongly by forest canopies which decreases autotrophic 

production by shading and contributing significant amounts of detritus (Vannote et al. 1980). 

In this part of the stream, macroinvertebrate are usually dominated by shredders (Vannote et 

al. 1980) and collectors (Maiolini and Bruno, 2007; McCabe, 2010). Common shredders 

include the stonefly (Plecoptera), cranefly (Tipulidae: Diptera) larvae, and caddisflies 

(Limnephilidae: Trichoptera) that feed directly on coarse particulates organic matter (CPOM), 

ingesting falling leaves and converting them to fine particulate organic matter (FPOM) which 

become the food for collectors (Fang, 2010). However in the Southern hemisphere, streams 
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including South Africa, although many headstreams are without forest canopy but dominated 

by in-stream plant communities (some fynbos streams in Western Cape for instance), there 

are still shredders and collectors (Davies and Day, 1998). Owing to groundwater supply or 

infiltration sources areas and riparian cover, headwater streams present little variation of 

temperature and have a restricted nutritional base, and therefore biological communities show 

very low diversity of species (Vannote et al. 1980).   

 

Moving downstream, the stream size increases and the influence of forest canopy decreases 

allow sunlight penetration, which favors significant production of periphyton and macrophyte 

(Fang, 2010; Lévêque, 1996). Due to forest canopy reduction, they note that the coarse 

particulate organic matter (CPOM) contribution decreases, fine particulate organic matter 

(FPOM) occurs and systems become more autotrophic, and the temperature may attain its 

maximal variance because of increased solar input (Fang, 2010; Lévêque, 1996).  

 

The macroinvertebrate diversity becomes important in medium size stream for temperature 

variations tend to be maximized (Vannote et al. 1980). Grazers including caddisflies (for 

instance: Glossossoma and Dicosmoecus) and mayflies (example: Stenonema) having a mouth 

adapted to feeding on periphyton from rock surface dominate midsized rivers with P/R>1 

(Photosyntesis/respiration= P/R ratio) (Fang, 2010; Vannote et al. 1980; Maiolini and Bruno, 

2007). 

 

When stream size increases, the influence of forest canopy becomes insignificant and several 

major hydrological phenomena may occur (Fang, 2007). The primary production is often 

limited by depth and turbidity, flows drop, and bottom substrate become not only smaller but 

also more and more homogenous (Vannote et al. 1980). High turbidity which reduces sunlight 

penetration and unstable sandy riverbeds limit photosynthesis (root plants or algal 

development) and the system reverts to heterotrophy (P/R<1) due to abundant fine particulate 

organic matter (FPOM) from upstream (Maiolini and Bruno, 2007; Lévêque, 1996). In high 

order streams temperature observed is often greatly diminished due to the buffering effect of 

the large volume of water in the channel (Vannote et al. 1980). Macroinvertebrate 

communities are dominated by collectors (e.g Tricorythides, Baetis and Epmerella) (Fang, 

2010; Vannote et al. 1980) and shredders (Maiolini and Bruno, 2007). 
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Although the physical zonation of rivers are explained as longitudinally linked systems in 

which ecological processes in upstream are correlated to those in downstream, there are some 

exceptions because human influences increase unpredictability. Human influences such as 

riparian removal, logging, damming, and dumping interrupt the pristine conditions in a river 

continuum leading to sediment and nutrient increased and loss of aquatic habitat which can 

affect biodiversity and ecological functions (Fang, 2010). In South Africa, the uses and abuses 

of rivers and their waters by humans have become such that the natural communities of 

organisms often cannot survive. Many rivers become no more than a dirty, sluggish drain, 

flowing over a concrete bed through a landscape covered by brick, concrete, roof tile, or 

tarmac from upstream to downstream (Davies and Day, 1998). 

 

2.3 PHYSICO-CHEMICAL PARAMETERS 

Water quality assessment is the overall process of evaluating the physical, chemical and 

biological nature of the water (Chapman, 1996). Physicochemical variables have been well 

investigated in monitoring and assessment of rivers and streams (Downes et al., 2002). The 

need of water quality assessment is to verify whether the observed water quality is suitable for 

intended uses, to determine trends in the quality of the aquatic environment and how that 

quality is affected by the release of contaminants due to anthropogenic activities, and/or by 

waste treatment operations (Chapman, 1996). 

 

2.3.1 Temperature 

Water bodies are characterized by temperature variations along with normal climatic 

fluctuations. Natural variations of the water temperature often are influenced by factors such 

as hydrological, climatilogical, spatial and temporal scale, geomorphic variations, and 

structural features of the region and catchment areas (Dallas and Rivers-Moore, 2011; Dallas, 

2008; Chapman, 1996). At the river scale geomorphological variation, riparian vegetation 

cover and different type of habitat determine the temperature fluctuation longitudinally in the 

river. Headwaters covered by riparian vegetation usually present lower temperature than 

downstream where temperature is often high (Dallas, 2008). Temperature is important 

because it influences physical, chemical and biological processes in water bodies. Its degree 

of predictability in a stream provides an indication of the degree of structure and functional 

predictability of invertebrate communities (Vannote and Sweeney, 1980). The development of 
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temperature criteria is important for the effective protection and management of aquatic 

ecosystems (Dallas and Rivers-Moore, 2011). For that reason, South African guidelines 

suggest that the water temperature for aquatic ecosystems should not be allowed to vary from 

the background average daily water temperature considered to be normal for that specific site 

and time of day, by > 2°C, or by > 10 %, whichever estimate is the more conservative.  

 

However, in South African inland water temperatures vary between 5⁰C and 30⁰C (DWAF, 

1996a). Spatial and temporal variations in water temperature have been recorded in many 

South African rivers. Altitude has usually been indicated as a fundamental parameter which 

determines significantly water temperatures in many rivers (River-Moore et al., 2008; 

Jacobsen, 2000). Dallas (2008) for example, reported that the water temperature in the Kuils 

river was lower (from 7.5 to 15°C with a mean of 10.9°C) at high altitude (671 m) than at low 

altitude (335 m) where a higher water temperature (from 7.0 to 20.0°C, with a mean of 

13.1°C) has been observed. Temperature fluctuations may also be caused by seasonal and 

daily variation of climates in the catchment. The minimum temperature (e.g 6.5°C in 

Mpumalanga Rivers) is often recorded in winter whereas the higher temperature (e.g 29.9°C 

in Mpumalanga Rivers) is observed in summer. Although the water temperature may shift 

with season and size of the river, this may also vary daily. During the night and early 

morning, the water temperature is often lowest and increased from mid to late afternoon 

(Dallas, 2008).  

 

Inter-basin transfer schemes also impact on water temperatures in so far as many effluents 

increase flow volumes and may lead to ecosystem variability (Rivers- Moore et al., 2008). 

Water temperature is recognized as an important abiotic driver of aquatic ecosystems (Dallas 

and Rivers-Moore, 2011). However, human activities constitute a main cause for temperature 

modification. Many human activities such as water abstraction, hot effluents from industrial 

processes, land-use change, returning irrigation waters, removal of riparian vegetation, 

increased storm water runoff, power generation, and climate change and global warming can 

cause temperature increases in the receiving water of 10°C or more (Dallas and Rivers-

Moore, 2011; Dallas, 2008; Abel, 2002). 

Effect of temperature on water quality: Elevated water temperature is more common and 

widely documented in the literature, although its studies in South African rivers are relatively 

less known (Dallas, 2008; DWAF, 1996a). Numerous authors explain that, the rise of water 
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temperature alter many physical and chemical characteristics of water including the solubility 

of oxygen and other gases, chemical reaction rates and toxicity, and microbial activity. In 

freshwater the physical environment in terms of a reduction in density of water, a decrease in 

pH, a reduction in solubility of dissolved oxygen followed by an increase in BOD by 

stimulating organic decomposition by microorganisms are observed as temperature increases 

(CWT, 2010; Dallas and Day, 2004; Abel, 2002; Rivers-Moore et al., 2008; Mason, 2002; 

Chapman, 1996). Duffus, (1980) cited by Dallas, (2008) shows that the increasing water 

temperature decreases the dissolved oxygen concentration in water and therefore its 

availability to aquatic organisms.    

Effects on aesthetics: Higher temperature favors the growth of sewage fungus and also the 

growth of macrophyte and algal blooms when nutrient conditions are suitable (Dallas and 

Day, 2004). It leads also to rapid bacteria and phytoplankton growth (Chapman, 1996).  These 

factors reduce the environmental quality of the water; affect the suitability of drinking water 

and aesthetic values for recreation (Dallas and Day, 2004).  

Effects on biological process: Temperature is one of the most important environmental 

variables affecting aquatic biota activities (Helmens, 2008). Its modification influences many 

aspects o  an individual specimen’s existence, including its metabolic, growth and  eeding 

rates; fecundity; emergence; behavior and survival. Aquatic organisms are susceptible to 

changes in water temperature since a 10°C increase results in doubling o  the organism’s 

metabolic rate (Hellawell, 1986 in Dallas, 2008). The growth of aquatic insects has been 

shown to be strongly correlated with temperature in several taxa such as mayflies, stoneflies, 

and isopods (Dallas, 2008). 

Effects on aquatic biota: Changing the thermal regime of a river significantly alters a 

component of the environment for which river organisms are adapted (Rivers-Moore et al. 

2008) and can lead to changes in the abundance of specimens, species richness, diversity and 

composition of aquatic community (Dallas, 2008; Dallas and Day, 2004). Many species 

intolerant of warm conditions may disappear from heated waters and replaced by heat-tolerant 

species which increase in number and supplant the original species in the ecosystem (Abel, 

2002). Because temperature decreases linearly with increasing altitude thus, the changes in 

stream invertebrate community composition and species richness may also be attributed to 

decreasing water temperature at higher altitudes (Jacobsen, 2000). However, many stream 

macroinvertebrates are adapted so that seasonal changes in temperature act as cues for the 
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timing of migration, spawning or emergence, cyst formation or to change diet, to produce 

flowers or to set seed (Hauer and Lamberti, 2006; Davies and Day, 1998). 

  

2.3.2 Electrical conductivity, Total dissolved salts/solids (TDS) and Salinity  

The total amount of material dissolved in water sample is commonly measured as 

conductivity, as total dissolved solids, or as salinity (Davies and Day, 1998). Numerous 

authors define conductivity as the capacity of water to conduct an electrical charge. The total 

dissolved salts concentration is considered as a measure of the quantity of all dissolved 

compounds in water able to carry an electrical current (DWAF, 1996a). It has been found that 

conductivity is often correlated with the concentration of the total dissolved salts (TDS) in 

solution  O’Harye and Amendola, 2010; Dougall, 2007; Davies and Day, 1998 . The total 

dissolved salts (TDS) concentration is directly proportional to electrical conductivity (DWAF, 

1996a). Le Roux, et al., (2007), for instance, converted electrical conductivity to total 

dissolved salts (TDS) according to Richards, (1969) method. This method has become more 

practical to use because EC is easy to measure. Naturally, in streams and rivers, conductivity 

is dependent primarily on the geology of the area through the water flows. The degree of the 

dissociated ions, particularly with mineral salts, the amount of electrical charge on each ion 

and its mobility, the distance from upstream, organic matter from decomposing plants, and the 

temperature of the water all play a role (Dougall, 2007; Chapman, 1996; DWAF, 1996a).  

 

Streams that flow through a surface characterized by clay soils present higher conductivity 

because of the presence of materials that ionize when dissolved into the water. On the other 

hand, rivers that run through areas with granite bedrock show lower conductivity because 

granite is composed of more inert materials that do not dissolve (Dougall, 2007). In South 

Africa, the waters draining on the Table Mountain Series may be low in TDS for these rocks 

contain very little leachable material. All natural freshwaters flowing on rocks adjacent of 

Malmesbury Shales are characterized by a high TDS concentrations because these rocks have 

considerable quantities of leachable ions (Brown and Magoba, 2009). Mineral salts elements 

which provide ability to water to conduct electrical current include dissolved inorganic ions 

such as Mg⁺², Ca⁺², K⁺, Na⁺, Cl־, SO₄²־, HCO₃־ and CO₃²־ in the aquatic environment (Leske 

and Buckley, 2003). The salinity may also be influenced by natural phenomena, namely 

evapotranspiration and rainfall (DWAF, 1996a). 
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As regards the distance from upstream to downstream, studies carried out by Dougall (2007) 

in many glacial and non-glacial in many rivers revealed that conductivity was lower in 

headwaters and was elevated downstream, perhaps, due to greater abundance of proglacial 

sediment. On the other hand, higher conductivity observed in the headwaters of Sandy River 

was probably due to the chemical weathering of rock from Sand Glacier volcano and sulfate 

concentration. Electrical conductivity decreased with distance because of a sulfate 

concentration in the headwaters diluting with distance.   

 

The majority of freshwaters usually have TDS levels between 0 and 1 000 mg L¯¹, but it is 

undoubtedly true that it can exceed 1,000 mg L¯¹ in polluted waters or those receiving large 

quantities of land run-off (Davies and Day, 1998; DWAF, 1996a). The rivers which flow on 

Paleozoic and Mesozoic sedimentary rock formations TDS concentrations vary between 200-

1 100 mg L¯¹ and may exceed 1 100 mgL¯¹ at high evapoconcentration (DWAF, 1996a). 

According to Thomas and Tris (1996), the TDS levels in the lower reaches of the Sundays 

ranged from 1 000 to 15 000 mgL¯¹. These values are not suitable for benthic 

macroinvertebrate fauna (Dougall, 2007; Thomas and Tris, 1996). In the Namibian Desert for 

example, it has been recorded in a Gypsous spring a value reaching 150 000 mg L¯¹ (24 800 

mSm¯¹) which maintains a limited but flourishing fauna and flora (Dallas and Day, 2004). 

Studies conducted by Statistic South Africa (2005), showed that many South Africa rivers 

which drain the dry interior regions may have a high TDS varying from 53 to 9059 mg L¯¹.  

Anthropogenic impacts may cause increased conductivity values of aquatic ecosystems 

worldwide, particularly in semi to arid regions. High conductivity in many natural freshwater 

systems arises in discharging saline domestic and industrial effluents into the rivers. Surface 

runoff from urban, industrial and cultivated areas, irrigation, clear-felling, and return of large 

quantities of sewage effluent also contribute to increased salts in the rivers (Brown and 

Magoba, 2009; DWAF, 1996a).  

Effects of conductivity on aquatic organisms: several authors support the hypothesis that 

there is relationship between conductivity and various parameters of macroinvertebrate 

populations in streams, particularly with adverse impacts to mayflies (Howard et al. 2000; 

Chambers and Messenger 2001; Hartman et al. 2005; Merricks et al. 2007). Pond et al. 

(2008b) cited by GEI, (2009) explain that the population reductions in mayflies observed may 

likely be due to the effects of sediment ponds or changes in vegetation rather than high 
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conductivity. According to O’Hayre and Amendola,  2010  there is no scienti ic evidence  or 

conductivity as a toxicity factor to benthic organisms at the low levels. Toxicity to aquatic 

organisms can occur at very high conductivity levels and varies depending on the specific 

aquatic organism and relative mix of ions such as sulfate and chloride in the water. According 

to DWAF, (1996a) the changes in TDS concentrations affect adaptations of individual 

species, community structure, metabolism rates and nutrient cycling. According to the 

literature review of Dallas and Day (2004) there is little information available on salinity 

tolerances of aquatic organisms. EC in natural freshwater varies so widely that no absolute 

values can be recommended and therefore, no national standards for preservation of aquatic 

life have been proposed in the literature. 

 

2.3.3 pH 

The concentration of proton (H⁺), hydroxyl (OH־), bicarbonate (HCO₃־) and carbonate 

(CO₃²־) ions are some of the most important attributes determining the composition and 

quality of water. The concentration of hydrogen ions is an important factor. Its value varies 

from 0 to 14 with pH = 7 representing a neutral condition, pH < 7 indicating acid condition 

and pH > 7 as a basic condition. Acid waters (pH < 7) can have measurable alkalinity, and 

alkaline waters (pH>7) can have measurable acidity (Chapman, 1996). 

Natural state: The pH is principally controlled by the balance between carbon dioxide, 

carbonate and bicarbonate ions as well as other natural compounds such as humic and fulvic 

acids. In natural freshwaters pH varies from 3.0 to 11.0 and sometimes more. The values 

between 5.0 and 9.0 generally support a diverse assemblage of aquatic species (Abel, 2002).  

Important factors that influence pH include geology, biotic activities, type of vegetation, 

atmospheric influences, acid-neutralizing or buffering capacity, and cation exchange capacity 

(Belcher, 2009; Abel, 2002). In the catchment, the geology is the major influence on the pH. 

Rivers and streams which flow on the Malmesbury system rock present alkaline conditions in 

the South Western Cape (Ndiitwani, 2004). Diurnally change in pH can be influenced by the 

photosynthesis and respiration cycles of photoautotrophs in eutrophic waters and other 

effluents. The photosynthic process may alter the balance between carbonate and bicarbonate 

by taking away CO₂ from surface water. Klerk et al. (2012) reported that an increase in pH in 

spring for example may be attributed to increased photosynthesis activities of aquatic plants, 

namely macrophytes and algae. DWAF (1996a) associates seasonal fluctuation to the 

hydrological cycle, especially for rivers which flow in catchments dominated by fynbos.  
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According to Struyf et al. (2012) riparian vegetation characterized by fynbos plants leads to 

low pH.  Dead plant litter from fynbos plants produce organic compounds leading to acidic 

(Brown and Magoba, 2009). Nevertheless, all natural waters have some buffering capacity, 

which is the ability to absorb acid or alkaline inputs without undergoing a change in pH.  

Where the buffering capacity of water is exceeded by the input of an effluent, the pH of the 

water will change.  

Anthropogenic effects: The source of the changes in pH of the natural water has been well 

documented and constitutes a serious water pollution problem through the world. Human 

activities influence acidification of aquatic ecosystems by diverse point-source effluents. 

Alkaline pollution in rivers is less common than acid pollution. Many untreated effluents 

impact water quality in term of pH which may be strongly acidic or alkaline. High biological 

activities due to alkaline effluents from certain industries increase pH values in the rivers 

under eutrophic conditions (Dallas and Day, 2004; DWAF, 1996a). A very common form of 

acid pollution involving extreme pH in many developing countries, including South Africa is 

acid mine drainage (Abel, 2002) which causes very considerable stream and river pollution 

problems (Moon and Lucostic, 1979; Ross, et al. 2007). According to Ochieng et al. (2010) 

numerous studies have shown that excess in H⁺ in many South African watercourses result 

from mine drainage which alters significantly the ecology of the river and impacts numerous 

economic activities. The effects of acidity vary between streams because of variability in 

buffering capacity and land use. Some streams have relatively high concentrations (>10 mg/l) 

of CaCO₃, which buffers acids; these streams have an average pH of ~6.0. The streams that 

have lower concentrations of CaCO3 show a low mean value of pH leading to high 

concentrations of soluble aluminium which is toxic under acid conditions. 

Effect on pH: There are several factors which affect pH: biological activities, temperature, 

total dissolved salts, concentrations of organic and inorganic ions (Gueade et al., 2009; 

DWAF, 1996a). According to Gueade et al., (2009) lower pH values often are related to 

higher conductivity. In natural fresh water, the pH value declines by 0.1 of a unit when 

temperature increases by 20°C (DWAF, 1996a). 

Water quality: In many aquatic ecosystems, the changes observed in the concentration of 

metallic complexes leading to increase in toxicity of most metal are attributed to small 

variations in pH (DWAF, 1996a).  At low pH, streams and acid precipitation may liberate 

toxic heavy metals. The most probably heavy metal increases which result from a low pH 

include Ag, Al, Cd, Co, Cu, Hg, Mg, Ni, Pb and Zn (Kimmel et al., 1985). 
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A non-metallic ion that can be similarly affected by changes in pH is the ammonium ion 

(NH₄⁺). Lowering pH can also decrease the solubility of certain elements such as selenium. 

Leske and Buckley, (2003) reported that a very high or a low pH does not affect TDS 

concentration in water. 

Effect on biota: The combination of elevated hydrogen ion concentrations and heavy metals 

in solution can eliminate many types of aquatic life (Kimmel et al., 1985). Higher pH values 

as well as lower pH affect aquatic biota. The high concentrations of Al at low pH are one of 

the primary causes of aquatic organisms’ mortality (Schofield and Trojnar, 1980). Several 

studies revealed that low pH may influence the structure of macroinvertebrate community and 

species diversity (Abel, 2002; Soulsby et al. 1997; Wade et al. 1989; Kimmel et al. 1985; 

Haines, 1981; Moon and Lucostc, 1979). Numerous searches have shown that mayflies are 

more sensitive taxa in acidified waters (Weatherley et al., 1987; Kimmel et al., 1985; Friberg 

et al. 1980).  

 

2.3.4 Dissolved oxygen (DO) 

To assess dissolved oxygen is fundamental for it influences almost all chemical and biological 

processes within water bodies (Chapman, 1996). Oxygen availability is recognized as a key 

factor in aquatic ecology influencing the composition of freshwater communities because its 

depletion in water bodies affects the distribution of many species, community structure and 

local richness (Jacobsen, 2008; Connolly et al., 2004). Dissolved oxygen can be used to 

indicate the degree of pollution due to organic matter, the destruction of organic substances 

and the level of self-purification of the water. In natural freshwaters, dissolved oxygen at sea 

level ranges from 15 mg L¯¹ at 0° C to 8 mg L¯¹ at 25° C (Chapman, 1996), and from 12.77 

mg L¯¹ at 5°C to 9.09 mg L¯¹ at 20°C according to DWAF, (1996a). In unpolluted water, 

dissolved oxygen concentrations range usually close to, but less than, 10 mg L¯¹. Dissolved 

oxygen below 5 mg L¯¹ may negatively affect the functioning and survival of biological 

communities and below 2 mg L¯¹ may have harmful effects on aquatic organisms (Chapman, 

1996). Oxygen enters the water by absorption directly from the atmosphere, by aquatic plant 

and algae photosynthesis and is removed from the water by respiration and decomposition of 

organic matter (Novotny, 2003; Jacobsen, 2008). However, the level of dissolved oxygen 

concentrations may vary in water bodies. The factors that influence the DO variation in water 

bodies have been thoroughly documented (e.g Novotny and Bendoricchio, 1989; Kolar and 

Rahel, 1993; Jacobsen, 2000; Connolly et al., 2004; Kaller and Kelso, 2007, Van der Geest, 
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2007; Jacobsen and Marin, 2008; Jacobsen, 2008). Theoretical, the solubility of oxygen in 

stream water may be influenced by three main parameters, namely altitude, temperature and 

photosynthic activity by aquatic plants and algae. Numerous literatures showed that solubility 

of oxygen increases as temperature decreases and decreases with decreasing atmospheric 

pressure (Jacobsen, 2008; Hauer and Lamberti, 2006; Jacobsen, 2000). Tropical high 

mountain streams are more oxygen rich than warmer lowland streams (Jacobsen, 2008; 

Jacobsen and Marin, 2008). Dissolved oxygen concentrations fluctuate daily in stream water 

because photosynthesis takes place during the daylight in shallow reaches and euphotic zones, 

while respiration occurs during the night and in deep zones (Novotny and Bendoricchio, 

1989). 

 

Dallas (2008) shows that the solubility of oxygen in water is inversely related to both 

temperature and salinity. Higher temperatures and salinities reduce the solubility of dissolved 

oxygen in water, decreasing its concentration and thus its availability to aquatic organisms 

while low temperature and salinities increase the solubility of oxygen in water (Mason, 2002).   

The structure of a stream or river may also affect dissolved oxygen contents. Turbulence of 

water, depth and degree of exposure of the substratum on surface water influence the re-

aeration of water. In fast-moving streams, rushing water is aerated by bubbles as it churns 

over rocks and falls down hundreds of tiny waterfalls. These streams, if unpolluted, are 

usually saturated with oxygen. In slow, stagnant waters, oxygen only enters the top layer of 

water, and deeper water is often low in DO concentration due to decomposition of organic 

matter by bacteria that live on or near the bottom (Dallas, 2008). Seasonally, dissolved 

oxygen concentrations are usually higher in the winter than in the summer. During rainy 

seasons, oxygen concentrations tend to be higher because the rain interacts with oxygen in the 

air as it falls. Whereas during dry seasons, water levels decrease and the flow rate of a river 

slows down. As the water moves slower, it mixes less with the air, and the DO concentration 

decreases (Mason, 2002). 

Anthropogenic impacts have increased the frequency, duration, and intensity of hypoxia in 

many aquatic systems, resulting in changes in community composition and often a loss of 

aquatic diversity (Connolly et al., 2004). Oxygen depletion depends on total and nature of 

organic material load in the rivers, and the numbers and types of bacteria which degrade 

waste discharges into the river (Mason, 2002). 
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The organic pollution such as municipal sewage treatment discharge, industry wastes, storm 

waters from urban areas, and farm effluents can lead to decreases in DO concentrations as a 

result of the increased microbial activity occurring during the degradation of the organic 

matter (Dallas and Day, 2004; Mason, 2002). The potential for organic wastes to deplete 

oxygen is commonly measured as the biological oxygen demand (BOD) and chemical oxygen 

demand (COD) (Dallas and Day, 2004). Both, BOD and COD directly affect the amount of 

dissolved oxygen in rivers and streams. The greater the BOD, the more rapidly oxygen is 

depleted in the stream, because microorganisms are using up the DO. The consequences of 

high BOD are the same as those for low dissolved oxygen: aquatic organisms become 

stressed, suffocate, and die (Canadian Council of Ministers of the Environment 1999). Waste 

streams also contain inorganic plant nutrients, namely nitrogen and phosphorus that stimulate 

primary productivity, indirectly affecting oxygen concentrations. Increased primary 

productivity results in increased dissolved oxygen during the day. In contrast, too many plants 

may reduce the DO levels, because of either night-time respiration by plants, algae, and 

decaying process by heterotrophic micro-organisms causing oxygen declines (Perry and 

Vanderklein, 1996).  

Effect on biota: When a river system has relatively stable levels of DO, it is usually 

considered as a healthy ecosystem able to support lots of different kinds of aquatic organisms. 

However, the absence of oxygen (hypoxic) in water may be a sign of severe pollution having 

severe consequences for the stream biota. Generally, the decrease in dissolved oxygen in 

aquatic ecosystems may have adverse effects on many aquatic organisms (e.g micro-

organisms, invertebrates and fish), which depend upon oxygen for their efficient functioning. 

The significant effect of depletion in DO on aquatic organisms depends on the frequency, 

timing and duration of such depletion (DWAF, 1996a). The oxygen requirements of benthic 

macroinvertebrates vary with type of species (warm or cold species), with life stages (eggs, 

larvae, nymphs, adults) and with different life processes (feeding, growth, reproduction) 

(Alabaster and Lloyd, 1982 cited by NWQMS, 2000), and size. The impact may lead to acute, 

physiological, and behavioral effects or the possibility to avoid anoxic or oxygen depletion 

zones (van der Geest, 2007; Canadian Council of Ministers of the Environment, 1999). Very 

low concentrations of dissolved oxygen are lethal to aerobic organisms, while relatively low 

concentrations may cause changes in behavior, blood chemistry, structure deformity, growth 

rate and food intake (Davies and Day, 1998; Canadian Council of Ministers of the 

Environment, 1999).  
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Kolar and Rahel (1993) examined the response of benthic invertebrates to low oxygen and 

found that oxygen depletion affects the distribution and activity of benthic organ isms and 

species-specific mortality resulting from hypoxia. The sensitive benthic macroinvertebrates 

such as Ephemeroptera (mayflies), Trichoptera (caddisflies), and Plecoptera (stoneflies) 

which respire with gills or by direct cuticular exchange decline and may be entirely 

eliminated with oxygen depletion (Abel, 2002; Dallas and Day, 2004). While Tubificidae 

(worms), Hirudina (leeches), and Chironomidae (Diptera) are typically tolerant of low 

dissolved oxygen levels and muddy substrata, other benthic macroinvertebrates are more 

seriously affected by low dissolved oxygen levels and muddy substrata (Couceiro et al., 2007; 

Abel, 2002). Shift mechanism is a key behavioral response used by lotic macroinvertebrates 

to avoid poor environmental conditions due to oxygen depletion (Connolly et al., 2004). 

Kolar and Rahel (1993) indicate that high mobile taxa unable to tolerate hypoxia (mayflies 

and amphipods) respond behaviorally to declining oxygen concentrations by migrating 

upward in the water column. This situation may also decrease taxa abundance and diversity of 

sensitive benthic macroinvertebrates. 

Water quality: In general, a low dissolved oxygen concentration lead to an increased in the 

toxicity of poisons. It has been observed that low dissolved oxygen may increase slightly the 

toxicity of zinc (Abel, 2002). 

 

2.3.5 Nutrients 

Nutrients are the necessary elements for the growth and reproduction of plants. The most 

common are nitrogen and phosphorus which lead to nutrient enrichment (eutrophication) of 

the aquatic ecosystem. They cause excessive plant and algal growth. Most nutrients are not 

toxic; however elevated concentrations affect the structure and functioning of biotic 

communities (Neda et al. 2011). 

 

2.3.5.1 Nitrogen 

Nitrogen is essential for living organisms as an important constituent of proteins and genetic 

material (Neda et al. 2011). Nitrogen undergoes biological and non-biological transformations 

in the environment as part of the nitrogen cycle. Plants and bacteria convert inorganic 

nitrogen to organic forms. In the environment, inorganic nitrogen occurs as nitrate (NO₃־) and 

nitrite (NO₂־), the ammonium ion (NH₄⁺) and molecular nitrogen (N₂). Of these forms, nitrate 
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is usually the most stable and commonest form often found in aquatic environments (CWT, 

2010).  

 

2.3.5.1.1 Nitrate 

Nitrate is the end product of the oxidation of ammonia or nitrite. It is the most stable of the 

three forms, and usually, by far, the most abundant in the soil and water environment (DWAF, 

1996a). The nitrate ion (NO₃־) is the most oxidized form of nitrogen (N) present in the 

environment, with an oxidation state of +5. By nitrification microbial process, ammonium 

undergoes an oxidation to nitrite and then nitrate including two stages under aerobic 

condition:  

 ammonium is oxidized to nitrite: NH₄⁺ + 3/2O₂ → NO₂־ + H₂O + 2H⁺ 

 oxidation of nitrite to nitrate: NO₂־ + ½O₂ → NO₃ 

To reduce nitrate levels in aquatic systems, denitrification process provides an important 

pathway for nitrogen removal. Denitrification involves several kind of bacteria 

(Pseudomonas, Micrococcus, Bacillus) which transform nitrate to nitrite and then to 

molecular (N₂) under extremely low oxygen conditions (0.2 mgL¯¹) before it is released into 

the atmosphere as N₂ gas (DWAF, 1996a). Biotic assimilation by algae and macrophytes may 

also remove large quantities of nitrate from surface waters (Mason, 2002). 

In surface water, sources of nitrate are wet and dry deposition of HNO₃ or NO₃־, which are 

formed through nitrogen cycling in the atmosphere. Furthermore, igneous rocks, volcanic 

activity, mineralization of native soils, organic nitrogen, and the complete oxidation of 

organic nitrogen from vegetable and animal debris in native soil contribute to supply natural 

waters with nitrate (Environment Canada, 2003; DWAF, 1996a). Nitrate concentrations rarely 

exceed 4 mgL¯¹ in non impacted Canadian and European Rivers (Crouzet et al. 1999 cited by 

Environmental Canada, 2003). In streams where primary productivity is low, nitrate  

concentrations are generally < 0.4 mgL¯¹ (NRC, 1978; Nordin and Pommen, 1986 in 

Environmental Canada, 2003). Studies conducted by De Villiers and Thiart (2007) indicated 

<0.040 mgN L¯¹ as a value indicative of near pristine or low natural background levels. 

DWAF (1996a) reported that in South Africa, inorganic nitrogen concentrations in 

unimpacted, natural surface waters are usually below 0.5 mgN L¯¹ but may increase to above 

5 - 10 mgN L¯¹ in highly enriched waters.  
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Anthropogenic: High nitrate levels recorded in surface waters originate from human 

activities and differ with land use. Several studies (e.g De Villiers and Thiart, 2007; 

Environment Canada, 2003; Mason, 2002; Novotny, 2003; Fatoki et al. 2001; Fleming and 

Fraser, 1999) reported that high nitrate concentrations observed in many river systems may be 

due to diffused source from urban and agricultural runoff and to point discharge from sewage 

treatment plants. Atmospheric deposition including gases released from agriculture and 

burning of fossil fuels can add significant amounts of N to surface waters (Carpenter et al. 

1998). Elevated levels of nitrate may also result from the reduction of vegetative cover 

through forest fires, and logging, or insect defoliation. To protect and maintain aquatic 

ecosystems against pollution of nitrate several countries evoked a guideline of nitrate 

associated with its use. For aquatic animals, water quality criteria suggested ranged between 2 

and 3.6 mgNO₃¯ L¯¹ (De Villiers and Thiart, 2007). South Africa water quality guidelines 

suggest nitrate concentrations less than 0.5 mgNO₃¯ L¯¹ as oligotrophic conditions and from 

0.5 to 2.5 mgNO₃¯ L¯¹ as mesotrophic conditions (DWAF, 1996a).  

Variation of nitrate level: Temporal and spatial trends have been observed in term of nitrate 

concentrations. Numerous investigations in Europe and United States rivers show increasing 

temporal trends in term of nitrate concentrations associated with agricultural activities. In 

many surface waters, seasonal variations occur with high nitrate concentrations in winter and 

spring and declined in summer and autumn due to greater biological productivity and nitrate 

uptake (Environment Canada, 2003). According to Mason (2002), nitrate levels are low 

during the summer, even when fertilizer is being added, because growing plants utilize 

nitrogen and the high rates of evaporation and transpiration are often observed. Whereas, in 

winter decrease in transpiration and evaporation are noted as nitrate is leached from the soil 

and levels in rivers rise. Also, a decline in late winter is because soluble nitrate reserves are 

depleted and low temperatures reduce the rate of nitrification. 

 

In South Africa, studies carried out by De Villiers and Thiart (2007) showed that in several 

catchments, diffused nutrient sources produce seasonal concentration profiles coincident with 

river runoff, that is, concentrations that peak during high runoff conditions associated with 

fertilizer application. Dominant point sources for elevated NO₃¯ (>0.400 mgN L¯) result in 

seasonal concentration profiles that have no relation to runoff, they provide a relatively 

constant input throughout the year, or have an inverse relation to river runoff. 
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Effect of nitrate on water quality: Temperature, dissolved oxygen, and pH affect rates of 

nitrification. It has been reported that most strains of nitrifying bacteria grow optimally at pH 

of 7.5 – 8.0, in water temperature varying between 25 and 30°C, and in darkness (Dong et al. 

2011). Numerous researchers have found that denitrification rates increase with increasing 

temperature (Cavari and Phelps, 1977; Holmes, et al., 1996). Other factors that affect rates of 

denitrification in aquatic systems include oxygen concentration and the supply of nitrate and 

organic matter. High nitrate concentrations (i.e exceeding 4 mg NO₃־ L¯¹) tend to be 

associated with eutrophic conditions and algal growth blooms (DWAF, 1996a; NRC, 1978) 

which cause oxygen depletion. 

Effect of nitrate on aquatic organisms: nitrate is considerably less toxic to aquatic 

organisms than ammonia or nitrite due to its limited uptake and absence of major 

physiological effects (Camargo et al. 2005). In general, based on acute concentrations, 

amphibians (from 73 to 7752 mg NO₃־ L¯¹) and invertebrates (from 24 to 3070 mg NO₃־ L¯¹) 

are typically more sensitive than fish (from 847 to 9344 mgNO₃־ L¯¹). Harmful effects 

observed in aquatic organisms include: mortality, growth reduction, reduced feeding rates, 

reduced fecundity, reduced hatching success, lethargy, behavioral signs of stress, bent spines 

and other physical deformities (Environment Canada, 2003).  

Effect on human health: Water supply with a high nitrate level (~100 mg L¯¹) presents a 

potential threat to human health. Nitrate in water is toxic at h igh concentrations and has been 

linked to methemoglobinemia in infants for which digestive bacteria are able to reduce nitrate 

to nitrite causing conversion of hemoglobin into methemoglobin (Mason, 2002; Carpenter et 

al. 1998). 

 

2.3.5.2 Phosphorus 

Phosphorus is an essential nutrient, it forms part of the primary energy (adenosine tri-

phosphate) carrier for living organisms, and constitutes an integral part of DNA (Davies and 

Day, 1998; Chapman, 1996). In aquatic ecosystems and in wastewaters phosphorus exists as 

both dissolved and particulate species which account for 70% of total phosphorus found in 

fresh waters (Chapman, 1996). It occurs mostly as dissolved orthophosphates and 

polyphosphates, and organically as the phosphate ion (PO₄³־). According to Ahuja, (2009) 

phosphorus can enter streams either via surface runoff, groundwater contamination and 

subsequent lateral movement. 
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 Because phosphorus is an essential component of the biological cycle in water bodies, it is 

often included in basic water quality surveys or background monitoring programmes 

(Chapman, 1996; Carpenter et al. 1998). 

The major natural source of phosphorus includes weathering of rocks, decomposition of 

organic matter, and atmospheric deposition. In mountainous regions characterized by 

crystalline rocks, phosphorus level is lowest while it increases in lowland waters dominated 

by sedimentary deposits (DWAF, 1996a). Phosphorus associated with organic and mineral 

constituents of sediments in water bodies can be mobilized by bacteria and released to the 

water column (Dallas and Day, 2004). The high concentrations of phosphorus in freshwaters 

are rarely found in non-polluted water as phosphorus is actively consumed by aquatic plants 

or is adsorbed onto suspensoids or bonded to ions such as Fe⁺², Al⁺³, Ca⁺² and a variety of 

organic compounds (Dallas and Davies, 2004). In natural freshwater, phosphorus 

concentrations vary from 0.005 to 0.020 mg L¯¹, and sometimes it decreases to 0.001 mg L¯¹ 

in certain pristine waters (Mason, 2002; Chapman, 1996). 

Anthropogenic effects: High phosphate concentrations due to human activities are carried by 

domestic waste-waters, as detergents, industrial effluents and fertilizers run-off in surface 

waters (Ahuja, 2009; Jones and Lee, 1984). Intensive animal production may also contribute 

to increase phosphorus concentrations in water bodies (Mason 2002). Domestic sewage 

typically contains high levels of phosphate largely because detergent washing powder 

formulations normally contain high levels of phosphate (Abel, 2002). In South Africa, Jones 

and Lee, (1984) estimated that approximately 35% to 55% of phosphorus in domestic 

wastewater treatment plant effluents is from household detergent. 

Effect of phosphorus on aquatic ecosystems: Primary production in fresh waters is 

generally limited by low phosphorus levels. High concentrations of phosphates and nitrates 

result in an increase in productivity (Mason, 2002) and are largely responsible for eutrophic 

conditions (Chapman, 1996).  Total phosphorus (TP) concentrations exceeding 0.100 mg-P 

L¯¹ (3.2µM) are sometimes considered problematic in fresh and estuarine waters.  

According to Carpenter et al. (1998) phosphorus in water is not considered to be directly toxic 

to humans and animals. However, toxicity caused by phosphorus in freshwaters may have an 

indirect effect. Eventually, overproduction can lead to toxic algal blooms and hypoxic waters 

with reduced biotic diversity. 
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2.4 BIOLOGICAL PARAMETERS 

2.4.1 Macroinvertebrates 

Streams and rivers fauna may include several hundred benthic macroinvertebrates (BMI) 

species from numerous groups such as arthropods including insects (larvae or adult forms), 

mites (hydracarina), scuds and crayfish, mollusks including snails, limpets, mussels, and 

clams, annelids (segmented worms, leeches), nematodes (roundworms) and turbellarians 

(flatworms) (Hauer and Lamberti, 2006; Tachet et al. 2003; Thirion, 2007; Davies and Day, 

1998). 

Macroinvertebrate communities may vary both spatially and temporally into the rivers 

following environmental factors (Reece and Richardson, 2000) which include flow regime, 

physical habitat structure (channel and substrate distribution), water quality, and energy inputs 

from watershed (Thirion, 2007). According to Dallas, (2007a) the diversity, abundance and 

nature of biotope (stone, gravel, sand, vegetation) at a site or in the river may influence 

macroinvertebrate assemblages due to biotope preferences of macroinvertebrates. It has been 

established that small streams have greater relative abundance and species richness due to 

more complex habitats than large rivers (Reece and Richardson, 2000). 

Anthropogenic effects: Anthropogenic activities in many aquatic systems may alter 

streamflow patterns, channel morphology, water quality, and lead to changes in benthic 

macroinvertebrate community structures through loss of certain species and increases of 

others (Thirion, 2007; Kasangaki et al. 2006; Couceiro et al. 2007). For instance, studies 

carried out by Wang and Kanehl (2003) indicated that urban land use closer to stream was 

negatively correlated with macroinvertebrate sensitive taxa. Studies carried out by Fisher, 

(2003) showed that channelization, a reduced diversity of aquatic habitats in the Kuils River 

resulting to a low diversity of benthic macroinvertebrates. 

Many studies (e.g Makoba et al. 2008; Silveira et al. 2006; Paul and Meyer, 2001) show that 

urban effects on macroinvertebrates reduces invertebrate diversity dramatically, resulting in a 

community dominated by Chironomidae (Diptera), Oligochaeta and tolerant gastropods. 

Declines in macroinvertebrate abundance and diversity often occur in sensitive families 

belonging to Ephemeroptera, Plecoptera and Trichoptera orders. The links between 

macroinvertebrate community structures and environmental variables have been the subject of 

numerous investigations throughout the world to determine water quality (Arimoro et al. 

2007; Dallas, 2007a; Duran, 2006; Duran and Suicmez, 2007; Ogbeibu and Oribhabor, 2001; 

Reece and Richardson, 2000; Silveira et al. 2006). 
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The effects of human activities resulting in degradation of environmental characteristics of 

streams are the main cause of alteration structures and functions of aquatic biota leading to the 

need for water quality assessment. Certain benthic macroinvertebrates recognized as sensitive 

to perturbation in their environment and habitat characteristics, have been widely considered 

as best biological indicators (Stoyanova et al. 2010; Ngera et al. 2009; Makoba et al., 2008; 

Sundermann et al. 2008; Arimoro et al. 2007; Dallas, 2007; Duran, 2006; Hauer and 

Lamberti, 2006; Chapman and Chapman, 2002; Abel, 2002; Mason, 2002; Davies and Day, 

1998; Olomukoro and Ezemonye, 2007). These organisms reflect the intensity of 

anthropogenic stress and respond to the totality of environmental conditions which they have 

experienced throughout their lives. Their responses to environmental conditions usually 

depend on the nature and severity of the pollution (Abel, 2002). The presence of certain 

species such as mayflies (Ephemeroptera), caddisflies (Trichoptera), and stoneflies 

(Plecoptera) often indicates that the water is well oxygenated although their absence does not 

necessarily indicate the converse (Stoyanova et al. 2010; Lorion and Kennedy, 2009; 

Robertson, 2006) whereas the dominance of aquatic worms, chironomids, leeches and pouch 

snails usually signifies poor water quality (Robertson, 2006; Fisher, 2003; Abel, 2002). 

Following their response to organic or inorganic pollutants (Duran, 2006), diverse biotic 

indices were developed to evaluate the water quality in rivers (Chutter, 1972; Chapman, 1996; 

Abel, 2002; Duran, 2006). In this regard, Kolkwitz and Marsson (1902 and 1909) cited by 

Abel, (2002) and Chapman (1996), set the pace in Europe to explore the response of 

macroinvertebrates using the Saprobic System. Currently, over 100 different biotic indices 

have been developed throughout the world (Ziglio et al., 2006). The South African Scoring 

System (SASS) based on the British Biological Monitoring Working Party (BBMWP) method 

has been initiated and adapted for South African conditions originally by Dr F. M. Chutter in 

1994 (Davies and Day, 1998; Dallas, 2000 ; Dickens and Graham, 2002). 

 

2.4.2 RIPARIAN VEGETATION 

The riparian zone is the area adjacent to a river or water body that forms part of the river 

ecosystem (River Health Programme, 2005). It includes vegetation which improves water 

quality and provides ideal habitats for many fauna species. The riparian zone is characterized 

by higher biodiversity, both in terms of flora and fauna, and plays an important role in the 

ecological functioning (Table 2.1) of the river (CES, 2004). According to Dallas and Day, 

(2004) riparian vegetation modifies energy input into streams and rivers in two ways, 
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supplying organic matter and reducing light availability and thermal energy to primary 

producers. 

Table 2.1 Summary of riparian zone functions that potentially buffer conditions and inputs streams from various 

landuse effects (Collier et al., 1995)  

Riparian zone function Potential in-stream effects 

-Buffers banks from erosion 

-Buffers channels from localized changes in morphology 

-Buffers input of nutrients, soil, microbes and pesticides in 

overland flow 

-Denitrifies groundwater 

-Buffers energy inputs  

-Provides in-stream food supplies and habitat 

-Buffers flood-flows 

-Maintains microclimate 

-Maintains dispersal corridors 

-Reduces fine sediment levels 

-Maintains water quality 

-Reduce contaminant loads 

-Encourages growth of bryophyte and thin periphyton films 

-Maintains lower summer maximum temperature 

-Increases in-stream habitat features and terrestrial carbon 

inputs 

-Maintains food webs 

-Reduces flood-flow effects 

-Increases biodiversity 

 

According to Vannote et al. (1980), many headwater streams are often influenced by riparian 

vegetation which reduces autotrophic production by shading and contributes to inputs of large 

amounts of allochthonous detritus. The authors observed that as stream size increases, there is 

a decline of terrestrial organic inputs with increased significance of autochthonous primary 

production and organic transport from upstream. In semi-arid to arid regions, for example 

much of South Africa, riparian zones are important for biodiversity because they provide 

habitats and refuges for a diversity of aquatic organisms (Cleaver et al., 2003). Numerous 

studies indicate that streams draining primary humid forest are characterized by higher 

species richness and diversity of benthic macroinvertebrates fauna dominated by clean water 

taxa namely, Ephemeroptera, Plecoptera, and Trichoptera (EPT) (Couceiro et al., 2007; 

Lorion and Kennedy 2009; Kasangaki et al. 2008; Chapman and Chapman, 2003), and 

Odonata  (Kasangaki et al. 2008).  

 

The forest canopy improves water quality leading to low conductivity, low acidity, low 

turbidity, low temperature due to shading, and low TDS, high water transparency and high 

dissolved oxygen (Collier et al. 1995; Chapman and Chapman, 2003; Kasangaki et al. 2006 

and 2008; Water and River Commission, 2000). Unfortunately, according to different sources 

(e.g Chapman and Chapman, 2003; Couceiro et al. 2007; Benstead and Pringle, 2004), it is 

undoubtedly true that the area of forest remaining is drastically reduced. Internationally, the 

influence of landuse impacts on stream and river health is a subject to several studies (Arthur, 
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2010). A decade ago, Chapman and Chapman, (2003) reported that the impacts of 

deforestation and land conversion on aquatic systems are largely unstudied in Africa. The 

tropical region has received little attention from conservation organizations, managers, and 

local governments. For instance, Couceiro et al. (2007) showed that 22,360 km² of stream 

banks in tropical forest were affected annually by deforestation and very little is known about 

the ecological effects of this impact on the aquatic community. In Africa and the world at 

large, deforestation along the edges of the streams and rivers in many countries is associated 

with agricultural practices, such as logging (Couceiro et al. 2007; Lorion and Kennedy, 2009; 

Benstead and Pringle, 2004; Benstead et al. 2003; Kasangaki et al. 2008; Chapman and 

Chapman, 2003), and human settlement (Chapman and Chapman, 2003; Arthur, 2010). 

Deforestation changes the hydrological, geomorphological, and biochemical states of streams 

(Coe et al. 2011).  

Effects on water quality: Several authors (for example: Couceiro et al. 2007; Lorion and 

Kennedy, 2009; Kasangaki et al. 2006 and 2008; Paul and Meyer, 2001) argue that riparian 

clearing and canopy opening may have many effects on water quality of streams and rivers 

ecosystems including increased electrical conductivity, turbidity, pH, temperature, and 

reduced transparency and dissolved oxygen. Similar studies conducted by Paul and Meyer, 

(2001) and Couceiro et al. (2007) reported that riparian deforestation associated with 

urbanization reduces food availability, affects stream temperature, and disrupts sediment, 

nutrient, and toxin uptake from surface runoff. Where riparian vegetation has been removed in 

the catchment, many streams and rivers present high nutrient inputs which favor largely 

growths of phytoplankton at levels to be considered indicative of eutrophication (KIMO, 

2011; Nijboer and Verdonschot, 2004). Recently, Virbickas et al. (2011); Lorion and 

Kennedy, (2009); Kasangaki et al., (2008) and (2006); Lorion, (2007); Couceiro et al., 

(2007); Allan, (2004); Benstead and Pringle, (2004); Benstead et al., (2003); Derleth, (2003); 

Storey and Cowley, (1997) have demonstrated that conversion of forest to agricultural lands 

can have significant impacts on stream biodiversity. Many results indicate that high levels of 

deforestation can alter the taxonomic composition of benthic macroinvertebrates 

communities, reduce macroinvertebrate diversity and eliminate the most sensitive taxa 

belonging to EPT groups. 

 

In South Africa including Cape Town, land use consists largely of agricultural (livestock 

farming, dryland farming), and urbanization (settlement, canalization, industry, road, bridge). 
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Clearing of indigenous riparian vegetation have resulted in the invasion of alien plants, 

increased sedimentation which leads to modification of the river bed, and reduced water 

quality (River Health Programme, 2005). Alien vegetation may lead to instability of the river 

banks, elevated nutrient loads, clogging the water channel, flow modification, and low 

dissolved oxygen content (River Health Programme, 2006, 2005 and 2003). Water hyacinth in 

the Black River, for example, led to oxygen depletion, smothering of aquatic life, mosquitoes 

and restricted water flow (River Health Programme, 2005).  

 

2.5 POLLUTION SOURCES AND THEIR CONSEQUENCES IN SOUTH AFRICAN 

AQUATIC ECOSYSTEMS 

This section presents different sources of pollution, their consequences on aquatic systems 

and how they impact on aquatic life and socio-economic activities. The problem of pollution 

and its consequences on South African river and stream systems is well documented. 

Numerous research studies have shown that as a semi-arid country, South Africa is facing a 

water supply crisis due to low rainfall, high evaporation rates, and increased economic 

development and population growth. The combined effects of the natural environment 

(geology, climate) and a large variety of land use and land management practices have 

accelerated water quality degradation leading to numerous consequences such as salinization, 

eutrophication, acidification and pathogenic organisms. 

      

2.5.1 Sources of pollution  

The major sources of pollution in South African freshwaters include industry, urbanization, 

mining, agriculture, and power generation which may be categorized as both non-point and 

point sources. 

Pollutants entering water bodies from non point sources such runoff from urban areas, 

seepage from mines, agricultural runoff and atmospheric pollutions are diffused and therefore, 

difficult both to quantify and to control. Human activities are responsible for pollutants 

generated by those non-point sources which enter the rivers and streams from terrestrial 

sources, through runoff (agricultural runoff or urban runoff), leaching, direct dumping, and 

livestock manure, drainage and interflow, or via groundwater and atmosphere deposition 

(Itoba, 2010; Davies and Day, 1998).  
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Modern agricultural practices including various processes such as land preparation, irrigation, 

fertilizer application, livestock handling and pesticide application may influence water quality 

(CISR, 2010; Dallas and Day, 2004). Through these processes, agricultural runoff and soil 

erosion transfer soil particles, nutrients including nitrogen and phosphorus, pesticides and 

herbicides, and pathogenic organisms to adjacent water bodies. Subsurface irrigation water 

may also alter surface and groundwater quality through salinization or potentially toxic trace 

elements (Dallas and Day, 2004). Urban South African rivers have been disturbed because of 

buildings erected too close to the river banks, riparian vegetation being cleared, canalization, 

inflows from stormwater drains, spills, and unauthorized dumping or washing, and exotic 

vegetation planted on the banks (Dallas and Day, 2004; Davies and Day, 1998). Runoff from 

urban areas include numerous pollutants and have adverse effects on aquatic ecosystems, 

namely flooding, erosion, sedimentation; physico-chemical effects such as elevated 

temperatures, dissolved oxygen depletion, nutrient enrichment, toxicity and biological effects. 

Most of greater Cape Town’s rivers including Kuils River suffer from habitat loss due to 

canalization, informal settlement, and agriculture along the rivers (River Health Programme, 

2005; Fisher, 2003). Urban run-off from streets and surrounding areas for instance, may be a 

major source of derivatives of fossil fuel combustion, bacteria, metals (e.g lead) and industrial 

organic pollutants. Pesticides from urban gardening, landscaping, horticulture and their 

regular use on railways, airfields and roadsides also contribute to the water pollution of many 

rivers.  

In contrast, pollutants entering into river systems from point sources may be discharged 

legally under controlled or semi-controlled conditions, while others are discharged 

deliberately and illegally, or accidentally. The major point sources include discharges from 

untreated or inadequately sewage disposal, mines, industrial effluents, and fish farms 

(Downes et al. 2002; Davies and Day, 1998; Chapman, 1996).  

A large proportion of sewage emanating from South African urban areas is not treated 

properly prior to discharge, because the sewer systems are incomplete or broken, or sewage 

treatment plants are overloaded and mismanaged. Many industrial processes produce waste 

products that contain hazardous chemicals, and these are sometimes discharged directly into 

sewers, rivers or wetlands (CSIR, 2010). Many sources of pollution in Kuils River were 

reported by Ninahm Shand (1979). 
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2.5.2 Major consequences of pollution in South Africa 

This subsection reviews the major causes and consequences of pollution on water quality in 

South Africa in relation to aquatic biota, human health and socio-economic impacts. The main 

consequences include salinization, eutrophication, pathogen organisms and acidification. 

2.5.2.1 Salinization 

Salinization refers to increase concentration of dissolved inorganic salts or compound in 

natural water or in soil caused by the dissolution of minerals in rocks, soils and decomposing 

plant material. The influence of salinity in a river, depends on the geology and climate, pavent 

rock, evaporation and rainfall (Du Preez et al. 2000; DWAF, 1996a and b).  

The natural lowest TDS values in South Africa rivers (0.9-3.6 mSm¯¹) (10-27 mg L¯¹), and 

1.8-3.1 mSm¯¹ (17-37 mg L¯¹) were observed in Waterkloof (Transvaal) and Swartboskloof 

(near Stellenbosch) streams, respectively. The natural highest salinities have regularly been 

recorded in the Sak River near Williston in the Karoo (maximal values 84 020 mg L¯¹) (Dallas 

and Day, 2004). A study carried out in Berg River reported 60 mg L¯¹ as TDS concentrations 

at its source on Table Moutain Sandstone, while tributaries rising on Malmesbury shale, 

present a higher TDS concentrations above 3500 mg L¯¹ (De Villier et al., 2003).  

Anthropogenic effects: According to Dallas and Day, (2004) human activities have severely 

increased the TDS concentration of inland waters worldwide, particularly in arid regions. In 

South Africa, salinization of rivers is recognized as one of the major threats to water 

resources. In addition to natural condition such as geology and climate, human induced causes 

of salinization include discharge of municipal and industrial effluent, irrigation return flows, 

urban storm-water runoff, surface mobilization of pollutants from mining and industrial 

operations, and seepage from waste disposal sites, mining and industrial operations (CSIR, 

2010; Le Roux, et al. 2007). 

On a global scale, it has been estimated that over a million hectares of land have been lost to 

agriculture as a result of salinization of soils (Dallas and Day, 2004). Poor irrigation 

management systems are the primary cause of high levels of soil and water salinity. Surveys 

conducted by Nell and Van den Berg (2001) in Le Roux et al., (2007) showed land potentially 

available for irrigation in South Africa represents a total of 1.6 x 10⁶ ha with 1.1 x 10⁶ ha for 

temporary irrigation and 0.5 x 106 ha for permanent irrigation (sugar-cane included). 
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In most of South African rivers, such as the Berg and Breede rivers in the south-western 

Cape, and Sundays (TDS levels exceed 1000 mg L¯¹) and Fish rivers in the Eastern Cape, 

although naturally occurring geological characteristics contribute to salinity to some extent, 

elevated concentrations of dissolved salts are aggravated by intensive agricultural land-use 

(CSIR, 2010; Davies and Day, 1998). The change in water quality of the Lower Vaal River 

and its tributaries may be due to high soil salinity because the river served as water source for 

a significant portion of the countris irrigated lands (LeRoux et al. 2007). 

 

Fifteen years ago, Davies and Day, (1998) reported that during the previous 25 years salinity 

had increased in most South Africa Rivers that receive saline mine effluents. In the Vaal Dam, 

for instance, the concentration of TDS is rising at a rate of 2.5 mgL¯¹ every year and an 

increase in Vaal Barrage has been noted from less than 200 mg L¯¹ in the 1930s to more than 

550 mg L¯¹ in the early 1980s (Davies and Day, 1998). According to water quality guidelines 

for aquatic ecosystems, salinity is recognized as non-toxic inorganic constituent that may 

cause toxic effects only at high concentrations (DWAF, 1996). However, the heavy metals are 

considered as toxic because they may cause toxic effects at low concentrations. The common 

ions such as Na⁺, Ca⁺⁺, Mg⁺², Cl־, SO₄²־ and HCO₃־ present toxic and other effects only at 

high concentrations compared to normal background levels. In general, these common ions 

make up the major fraction on the total ionic concentration in many South Africa waters. Note 

that under salinity waters and groundwaters in South Africa are a significant problem, of 

national concern (Leske and Buckley, 2003) 

Effect on water quality: High salt levels in surface water may modify oxygen, temperatures, 

sediment inputs and organic material sources (Leske and Buckley, 2003). 

Effect on community: Plants and animals possess a wide range of physiological mechanisms 

and adaptations to maintain the necessary balance of water and dissolved ions in cells and 

tissues (DWAF, 1996). However, changes in the dissolved salt concentration can have effects 

on individual species, community structures and on microbial and ecological processes such 

as rates of metabolism and nutrient cycling (Leske and Buckley, 2003; DWAF, 1996a). 

 Invertebrates are more sensitive to increasing salinities. The most sensitive insects include 

stoneflies, some mayflies, caddisflies, dragonflies and waterbugs. The most sensitive molluscs 

are pulmonate gastropods. Larval fish are more sensitive than eggs and adults. Fish are 

generally tolerant to salinities in excess of 10 000 mg L¯¹ TDS. Salinity tolerance studies of 
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selected macro-invertebrates of the Sabie River have linked mortality to increasing salinity 

and the nature of the salt that elevated the salinity (Leske and Buckley, 2003). 

High salt levels in surface water may also cause a decrease in the abundance and diversity of 

riparian vegetation. Salinity in the root zone can adversely affect plant growth due to a 

decrease of the osmotic potential caused by the high concentration of soluble ions (Leske and 

Buckley, 2003).  

Economic impacts: High levels of salinity can lead to diminished crop yields, increased scale 

formation and corrosion in domestic and industrial water pipes and increased requirement for 

pre-treatment of selected industrial water uses. As regards agriculture, high salinity leads to a 

reduction of yield, and of the quality of crops (CSIR, 2010; DWAF, 1996b and d). 

 

 

2.5.2.2 Eutrophication 

Eutrophication is a process whereby water bodies receive excess inorganic nutrients, 

especially N and P, which stimulate excessive growth of macrophyte and algae or 

cyanobacteria. In most fresh waters, the major nutrients that contribute to eutrophication are 

nitrogen which occurs as nitrate (NO₃), nitrite (NO₂) and ammonia (NH₃),  and phosphorus as 

ortho-phosphate (PO₄) (CSIR, 2010; De Villiers, 2007; Nijboer and Verdonschot, 2004). Both 

N and P (in organic and inorganic forms) could be important determinants of autotrophic and 

heterotrophic activities in rivers and streams (Dodds, 2006). Nitrates and phosphates are 

discharged into the aquatic environment from natural and human sources and these nutrients 

alter ecosystems’ function and structure (KIMO, 2011). Natural eutrophication due to natural 

influxes of nutrients is considered as not reversible or controllable, and will therefore continue 

slowly and inevitably (Van Ginkel, 2011).  

 

In South African natural water bodies’ nitrogen (N) and phosphorus (P) concentrations vary 

with local geology, climate, and natural characteristics of the catchment (Frost and Sullivan, 

2010; Davies and Day, 1998). In mostly unimpacted surface waters, inorganic nitrogen 

concentrations are usually below 0.5 mg N L¯¹ but may increase to above 5-10 mg N L¯¹ in 

highly enriched waters (DWAF, 1996a). Phosphorus is rarely found in high concentrations in 

unimpacted surface waters because it is actively taken up by plants (Davies and Day, 1998; 

DWAF, 1996a). For instance, in certain non-polluted waters, soluble inorganic phosphorus 

 

 

 

 



35 

 

concentration may be as low as 1 mg L¯¹ or even <0.01 mg L¯¹ (Dallas and Day, 2004; 

DWAF, 1996). Oberhoster and Ashton (2008) reported that the average phosphorus 

concentration in natural water resources of South Africa (as orthophosphate) may be 

evaluated at 0.73 mg L¯¹. Nevertheless concentrations between 10 and 50 mg L¯¹ are 

commonly recorded, and values as high as 200 mg L¯¹ of total phosphorus are often found in 

some enclosed saline waters (DWAF, 1996a).   

Anthropogenic effects: Increased discharges of nitrogen (N) and phosphorus (P) recorded  in 

most aquatic ecosystems since the 20th century are attributed to human activities (KIMO, 

2011; Gooday et al. 2009) such as agricultural intensification and increased discharge of 

domestic waste from urban areas (Van Ginkel, 2011; De Villiers, 2007). 

It has been shown that South A rica’s climatic conditions, combined with various  actors, 

namely storm water runoff, discharge of treated and untreated sewage effluent from urban 

areas and industrial development, excessive nutrient loads in return flows from modern 

agriculture practices, modification of river flow regimes, and changing land use or land cover 

patterns have resulted in large-scale changes to aquatic ecosystems and subsequent 

eutrophication of rivers and water storage reservoirs (CSIR, 2010; Oberholster and Ashton, 

2008). South Africa has some of the most enriched surface water in the world where 

eutrophication presents a major problem (Frost and Sullivan, 2010). During the past 40 years, 

eutrophication has become an increasing threat to the usability of South African freshwater 

resources. Van Ginkel (2011) indicated that numerous studies recognized the problem of 

eutrophication in the late 1970s. Although many eutrophication management options such as 

effluent discharge standards in 1980, National Eutrophication Monitoring Programme 

(NEMP) in 1985 and Reservoir Eutrophication Model (REM) since 1985 to 1988 were 

suggested, South Africa eutrophication remains a real challenge. 

 

Until the mid-1980s South Africa was recognized as a world-leader in eutrophication research 

(Oberhoster and Ashton, 2008). To prevent eutrophication, an effluent standard measure of 1 

mg/l orthophosphate for wastewater discharge from point sources, an eutrophication control 

guideline, and several structures of surveillance were initiated by DWAF. Inorganic 

phosphorus and inorganic nitrogen concentrations of less than 0.005 mgP L¯¹ and 0.5 mgN 

L¯¹ are considered to be sufficiently low to reduce the likelihood of algal and other plant 

growth. However, in the absence of sufficient available phosphorus, nitrogen-fixing 

organisms will be able to fix atmospheric nitrogen, thereby compensating for any deficit 
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caused by low inorganic nitrogen concentrations (Dallas and Day, 2004; DWAF, 1996). The 

classification of trophic status o  South A rica’s aquatic ecosystems associated with aquatic 

ecosystems is presented in Table 2.2 based on the work of Van Ginkel (2011) and DWAF 

(1996a) 

Table 2.2 Classification system used by the DWAF to classify the National Eutrophication Monitoring 

Programme sites regarding their trophic status (DWAF, 1996a; Van Ginkel, 2011)  

 

Parameter Oligotrophic Mesotrophic Eutrophic Hypertrophic 

Inorganic Nitrogen  <500 µg N L¯¹ or 

<0.5 mgL¯¹ 

500 - 2500 µg N L¯¹ 

Or 0.5 – 2.5 mgL¯¹ 

2500-10000 µgN L¯¹ 

Or 2.5 – 10 mgL¯¹ 

>10 000 µg NL¯¹ 

or  >10 mgL¯¹ 

Inorganic Phosphorus  <5 µg L¯¹ or  

<0.005 mgL¯¹ 

5 - 25 µg L¯¹or 

0.005-0.025 mgL¯¹ 

25 - 250 µg L¯¹ 

0.025-0.250 mgL¯¹ 

>250 µg L¯¹ 

>0.250 mgL¯¹ 

Mean annual total  

Phosphorus mgP/l  

<0. 015 mgL¯¹ 0.015–0.047 mgL¯¹ 0.047 – 0.130 mgL¯¹ >0.130 mgL¯¹ 

 

Despite numerous research programs carried out by NEMP, WCR, and RHP, South Africa 

eutrophication management presents a relatively low priority and an inability to transform 

policy into practice (CSIR, 2010). Two important consequences result from this situation, 

namely stimulation of the growth of blooms of cyanobacteria carrying the threat of 

cyanotoxin contamination, and excessive growth of macrophytes, which clog water-supply 

structures and reduce the recreational value of aquatic resources (Van Ginkel, 2011). 

Impacts: In South African rivers and reservoirs, the dominant phytoplankton are usually the 

cyanobacteria: Microcystis and Anabaena (Oberholster and Ashton, 2008). The excessive 

algal blooms (cyanobacteria) can cause various effects, namely economic impacts, 

environmental impact (deteriorating water quality and loss of biodiversity), social impacts 

(aesthetic and recreational), and human health impacts (Frost and Sullivan, 2010). 

 -Economic impacts: The economic impacts of eutrophication may be categorized across 

treatment measures, alternative water sources and agriculture. In South Africa, most of the 

drinking water that is supplied to communities is obtained from surface water sources and 

needs to be treated before human consumption. The excessive growth of toxic cyanobacteria 

increases the costs of water treatment. Excessive algal blooms can also clog filters and 

increase maintenance costs. South African surface waters used by rural population are often 

subject to cyanobacterial contamination and alternative sources are needed which usually 
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require costly investment. The phenomenon of eutrophication also has significant negative 

impacts on both farming and fishing (CSIR, 2010; Frost and Sullivan, 2010).  

- Environmental impacts: Excessive algal blooms decrease the amount of dissolved oxygen 

in the water which leads to the death of fish, shrimps, and immobile bottom dwellers. A 

decline in macroinvertebrate abundance and variation in composition and species richness 

also occur. Increased abundance of pollution-tolerant invertebrates such as Tubifex, 

Chironomus and Hirudinea, and alteration of assemblage structure may occur because of their 

ability to tolerate the lower oxygen concentrations (Frost and Sullivan, 2010; Nyenje et al. 

2010; Dodds, 2006; Rast and Thornton, 1996). The variety and nature of species within a 

certain catchment provide an important indicator for environmental change due to 

eutrophication (Frost and Sullivan, 2010). 

 

Another adverse effect of eutrophication is an increase in macrophytes such as water 

hyacinth, phytoplankton abundance, bacteria biomass, and suspended inorganic particles 

which lead to a reduction of water clarity (Nyenje et al., 2010). Macrophyte or algal and 

cyanobacteria invasion impede the growth of other aquatic plants. Nutrient enrichment causes 

an intensification of all biological activity and typically leads to dramatic changes in the 

composition and structure of aquatic food webs. With regards to water quality, the major 

consequences of eutrophication include the availability of oxygen and changes in pH. The 

lack of dissolved oxygen is linked to the accumulation and decomposition of dead organic 

matter which consumes oxygen and generates harmful gases such as methane and hydrogen 

sulphide that impact biologically on communities (Frost and Sullivan, 2010; Nyenje et al. 

2010). Certain algal blooms release toxins which cause death in animals and humans alike. It 

has also been observed that other cyanobacterial products, such as mucopolysaccharides lead 

to high concentrations of metal ions such aluminium in the potable water supply (CSIR, 

2010).  

Social impacts: In most South African rivers, social impacts from eutrophication include 

aesthetic and recreational impacts. Frost and Sullivan (2010) report excess algal bloom and 

surface scum that are ugly to see and give off noxious odors, which affect the aesthetics of 

water bodies. The presence of macrophytes such as water hyacinth and Typha capensis 

decrease the fitness for use of the water for water sports such as swimming, skiing, yachting 

and fishing (Frost and Sullivan, 2010; Van Ginkel, 2011).     
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 -Health impact: Water hyacinth and algal provide ideal breeding habitat for mosquito larvae 

(Anopheles) vector of Plasmodium (malaria) and snail such as Biomphalaria and Bulinus 

vectors of Schistosomiasis. Davies and Day (1998) estimate that about 2 million people in 

South Africa have Schistosomiasis, out of which 10 % show severe symptoms of the disease.  

Malaria has, on the other hand, been considered endemic in the northern parts of South Africa 

including northern KwaZulu-Natal. Mostiquo larvae and pupa usually collect in sheltered, 

slow-moving or still water from irrigation canal, reservoirs, pond and vleis. Cyanobacterial 

toxins can cause a great hazard to human health. According to Codd et al. (2005) 

cyanobacterial toxins are grouped according to the physiological systems, organs, tissues, or 

cells which are primarily affected. These toxins lead to serious threats to human health such 

as the death from liver haemorrhage, gastrointestinal and other hepatic illnesses. 

 

2.5.2.3 Pathogen organisms 

In many parts of the world today, waterborne diseases remain a major hazard. They are 

endemic in those countries which have not yet established systems for sanitary disposal of 

waste (Abel, 2002). In 1978, over 7.5 million people, principally children, in Africa died of 

diarrhoeal infections due to poor sanitation and inadequate water supplies (Davies and Day, 

1998). Fecal contamination is still the primary water quality issue in rivers, especially in 

many developing countries where human and animal wastes are not yet adequately collected 

and treated (Ahuja, 2009).  

 

Water constitutes both a source and vehicle agent for many of these pathogenic organisms, 

which emerge when environments are favorable to their development (CSIR, 2010). Bacterial 

densities are usually higher in urban streams, especially after storms. Much of this is 

attributable to increase coliform bacteria, especially in catchments with wastewater treatment 

plant (WWTP) and combined sewer overflow (CSO) effluent (Paul and Meyer, 2001). 

Pathogenic organisms which are spread in polluted water include bacteria, viruses, protozoan 

parasites, parasitic worms, and fungi (CSIR, 2010; Abel, 2002; DWAF, 1996). Diseases 

caused by the use of water contaminated with those pathogenic organisms include cholera, 

typhoid, dysentery, gastroenteritis, schistosomiasis, salmonellosis, eye, skin and nose 

infections, and other diarrheal diseases (Ahuja, 2009; DWAF, 1996b). The lack of treated 

potable water remains an important issue in many rural communities in the developing world, 

including South Africa (Bessong et al. 2009). Infections are often contracted by drinking 
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contaminated water, recreational exposure to contaminated water, inhaling contaminated 

aerosols or the consumption of raw food (irrigated vegetables and shellfish) exposed to 

polluted water. 

 

 Faecal coliforms and total coliform bacteria are primarily used to indicate the presence of 

bacterial pathogens (e.g Shigella, Salmonella, Vibrio cholerae, Campylobacter, pathogenic E. 

coli). Those pathogens are transmitted via the faecal/oral route by contaminated or poorly-

treated drinking water (Abel, 2002; DWAF, 1996b). According to South African water quality 

Guidelines for drinking water the number of total coliforms in drinking water should be less 

than 10 colonies per 100 ml, while the number of faecal coliforms should be zero per 100 ml. 

Higher concentrations of faecal coliforms in water will indicate a higher risk of contracting 

waterborne disease, even if small amounts of water are consumed (DWAF, 1996b). In South 

Africa, the major sources of microbiological contamination of water in rivers include human 

settlement, inadequate sanitation and waste removal practices, storm water wash-off and 

sewage spills (CSIR, 2010). Because the availability of clean water for drinking and washing 

is still inadequate in most South A rica’s rural areas, townships and in ormal settlements 

(Davies and Day, 1998) the spread of disease such as cholera, cryptosporidiosis, dysentery 

and typhoid remain a major concern (CSIR, 2010).  Studies carried out by Bessong et al. 

(2009) indicated that Tshikuwi community in Venda use untreated water from Khandanama 

River, and wells for drinking, cooking, and laundry. The presence of Vibrion, Salmonella, and 

Shigella species and the detection of total coliforms, faecal coliform, and enterococci 

recorded in water sampling were associated with diarrhea (41% of 145 individuals) observed 

in Tshikuwi community. Similar studies were carried out by several authors in South Africa, 

for instance Theron and Cloete, (2002); Germs et al. (2004); and Zamxaka et al. (2004) 

showed that both the total and faecal coliform counts in all the sites under consideration were 

above the South African recommended limits for drinking water.  

 

As noted earlier by Davies and Day (1998) Bilharzia (schistosomiasis) is not only a major 

health in South Africa, the Africa continent at large. In Africa, three species of the disease 

infect humans, namely Schistosoma mansoni and S. intercalatum which parasitise the blood 

vessels and cause intestinal bilharzias, while S. haematobium lives in blood vessels of the 

bladders and causes urinary bilharzias. The snail vector of S. mansoni is Biomphalaria 

pfeifferi, while S. haematobium has for intermediary host Bulinus (Physopsis) globosus. 
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2.5.2.4 Acidification 

Acidification of freshwater is a critical problem in many regions of the world. Acid deposition 

affecting fresh water originates from sulfur dioxide and nitrogen which are released into the 

atmosphere through burning of fossil fuels (Perry and Vanderklein, 1996). Acidification of 

natural water is also determined by bedrock (CSIR, 2010), biotic activities (Davies and Day, 

1998), and dominant wind and climate patterns that are responsible for the deposition patterns 

of acidifying elements (Perry and Vanderklein, 1996). Acidification effects are influenced by 

the timing of acid deposition, the source and rate of acid deposition and buffering capacity of 

soils and bedrock (Perry and Vanderklein, 1996). Many South Africa fresh water resources 

are relatively well buffered (CSIR, 2010) and more or less neutral, with pH value around 6 to 

8 (Dallas and Day, 2004). However, human activities such as industrial effluents from mine 

drainage, and acid-rain may decrease the pH value in many South African aquatic ecosystems 

(CSIR, 2010). Although the South African coal mining industry contributes large revenues for 

the country (e.g 16% of export revenue in 2003), it presents a great environmental risk from 

the coal fields. Acid mine drainage (AMD) has major consequences such as ground water, 

soil quality, and surface water degradations (CSIR, 2010). Acid mine drainage from active 

and abandoned mines contribute to lowered pH levels , elevated concentration of metal ions 

and dissolved salt dominated by sulphate (CSIR, 2010; Coetzee, undated). 

 

Dallas and Day (2004) note that water from acidic coal mine drainage is normally colored to 

deep orange, contain sulphates of ferrous and ferric iron, aluminium, calcium, magnesium and 

usually sodium, and has a very low pH (down to 2) and a high TDS. The low pH itself has 

adverse effects on the receiving water flora and fauna. It also promotes the solubilisation of 

heavy metals, which exert their own toxic effects. Aluminium for example, a metal which 

does not commonly cause serious problems of toxicity to aquatic life, has received particular 

attention. In general, the result is a marked reduction in species diversity and biomass in the 

affected areas (Abel, 2002). Acid rain has been recognized as a substantial problem in other 

parts of the world including South Africa. It occurs when sulphur dioxide, carbon dioxide and 

oxides of nitrogen are emitted into the atmosphere by fossil fuel burning, iron smelting, 

chemical extraction processes and motor vehicle exhaust emission (Coetzee, undated; DWAF, 

1996a). Acid precipitation has been noted in many South African regions where the lowest pH 

value for rain recorded was 2.9 (Davies and Day, 1998).  A study carried out in the catchment 
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area of the Pienaars River north of Pretoria found a mean rain pH of 4.5. The rain pH ranged 

from 3.9 to 4.6 in Eastern Transvaal Highveld in 1984 (Davies and Day, 1998). Ochieng et al. 

(2010) revealed that water affected by acid mine drainage systems temperatures reached of 

47°C with a pH as low as 3.6. Consequently it affected aquatic biota in term of diversity and 

community structure (Perry and Vanderklein, 1996). Simmons, et al., (undated) reported that 

streams receiving treated AMD showed in terms of macroinvertebrate diversity significantly 

few taxa, low Shannon-Weiner diversity indices, and low percentages of EPT organisms. 
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CHAPTER THREE: METHODOLOGY 

3.1 STUDY AREAS 

3.1.1 The location of the City of Cape Town 

The City of Cape Town is located at the Northern end of the Cape Peninsula, Western Cape 

Province, South Africa. The peninsula consists of a dramatic mountainous spine jutting 

southwards into the Atlantic Ocean, ending at Cape Point. Most of the suburbs of the city are 

on the large plain of the Cape Flats, which join the peninsula to the mainland. The City of 

Cape Town is sheltered in a valley, overhang by a series of mountains, with the touristic 

Table Mountain whose elevation is 1086m. In addition to these mountains, a Group of 

Aquifers on the South serve as important points in term water resources. The Devil’s Peak 

(elevation: 1000 m) is situated to the Southeast and the Lion’s Head  elevation: 669 m) to the 

Southwest. It presents a Mediterranean climate type characterized by hot and dry summer 

(November to March), and cold wet winters (end May to August). The spring (September and 

October) and autumn (April and May) seasons characterize the City of Cape Town with 

daytime temperatures rising to 20°C. Runoff is mostly generated in the mountain ranges of 

the Hottentots Holland Mountains in the Southeast and Table Mountain and Cape Peninsula 

mountains in the Southwest. Its principal catchments include in the East (588 km²): Steenbras, 

Sir Lowry’s Pass, Lourens and Eerste/Kuils; in the South  471 km²) Sand, Zeekoe, 

Sylvermine; centrally (327 km²) Hout Bay and Salt; and in the North (1087 km²) Diep and 

Sout catchments. In these catchment areas, most rivers arise in the Sandstone Mountains 

ranges of the Hottentots Holland Mountains in the East, and Table Mountain and Cape 

Peninsula Mountains in the Southwest (Adelana et al. 2010; Brown and Magoba, 2009).  

 

3.1.2 Kuils River catchment description (Figure 3.2) 

3.1.2.1 Location 

Kuils River catchment, located in the City of Cape Town, measures 261km² from the source 

to the confluence with the Eerste River (Ninham, 1999 in Fisher, 2003). It extends into 

Durbanville area north-westwards and Bellville to the West. In the south-west, the catchment 

area is limited by Cape Town International airport and Mitchells Plain, while to the northeast 

it is bordered by Kraainfontein urban area which is dominated by agricultural activities in the 
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whole eastern area (Ninham, 1979). The Southern part extends to the False Bay coast where 

the Southern side of the dunes drains to the sea rather than into the Kuils River (Ninham, 

1979). Kuils River is a short river, 30 km in length that flows southwards. It originates from 

Durbanville Hills (elevation between 300 m and 500 m) between the Tygerberg (300 m and 

500 m) and the Bottelary Hills (350 m) east of Kanonkop (450 m) (Fisher, 2003; Heydorn and 

Grindley, 1982). Kuils River crosses the Eastern Cape Flats before joining Eerste River near 

the False Bay estuary in the south and receives Bottelary River as its main tributary in upper 

reaches. A large number of road-bridges and variable channel conditions in the course affect 

the free flow of waters and increase upstream water levels (CoCT, 2011; Heydorn and 

Grindley, 1982).  Furthermore, minor tributaries of the Kuils River are dammed by Sonstraal 

Dam and Edward Dam both on the boundary of the Durbanville Municipality (Heydorn and 

Grindley, 1982).  

3.1.2.2 Vegetation 

In the major extent of Kuils River catchment area, the original vegetation has been replaced 

by agricultural activities, urban development and alien vegetation. The alien vegetation was 

dominated by Port Jackson willow (Acacia saligna), white poplar (Populus canescensus), 

Rooikrans (Acacia cyclops) and black wattle (Acacia mearnsii) (Heydorn and Grindley, 

1982). Where the N1 crosses the river the riparian zone is edged by sedges (e.g. Cyperus 

brevis, Juncus punctorius), grasses (e.g. kikuyu grass, Pennisetum clandestinum), bulrushes 

(Typha capensis), sparse shrubs (e.g. Cliffortia strobilifera) and alien vegetation such as, 

Sesbania punicea. Vleibos (Cliffortia strobilifera) are common riverbank plants found near 

the N1/R300 interchange. Wetland systems are dominated by low grasses and sedges with 

occasional emergent plants such as bulrush (Typha) (Ewart-Smith and Ractliffe, 2002).  

3.1.2.3 Geology 

The geology of Kuils River catchment area includes the Malmesbury group of rocks formed 

from Pre-Cambrian age (Ninham, 1979). The Malmesbury group of rocks consist of a variety 

of shales, greywackes, phyllite, siltstones, quartzites and grits (CoCT, 2011; Conradie et al., 

2002; Heydorn and Grindley, 1982; Ninham, 1979). Those rocks are covered with recent thin 

layer of turf and loamy sands with some alluvial deposition (Ninham, 1979). In the area, there 

are occasional bands of gravel, conglomerate, limestone, dolomite, chert, basic lavas and tuff 

rocks (CoCT, 2011; Conradie et al., 2002; Ninham, 1979). Below the confluence of the Kuils 
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and Bottelary rivers, the geology is characterized by the considerable depths of tertiary and 

recent deposits of loose sand and dune formations underlained by extensive clay lenses. 

3.1.2.4 Climate and Hydrology 

The Kuils River catchment is located in a Mediterranean climate region with hot dry summers 

and cold wet winters. Generally, the Kuils River has high peak winter flows and low summer 

flows (Li Rui, 2005). Winter temperatures vary from 7 to 18°C and from 15 to 27° in summer 

which may sometimes attain a maximum of 40°C in February and March. The Kuils River 

receives a mean annual runoff which is estimated to be 22,000,000 m³ excluding sewage 

effluent discharged into the river. The urban area and sewage effluent discharged into the 

river constitute favorable factors to increase inundation in the catchment area (Ninham, 1979). 

The Kuils River catchment area is quite dry. The average yearly precipitation recorded 

reaches around 800 mm in the Tygerberg Hills to about 500 mm vicinity of the coast 

(Heydorn and Grindley, 1982; Ninham, 1979). 

                

Figure 3.1 : Air temperature variations in the study area from September to November 2012 

The geological features of catchment area influence the surface runoff characteristics. Runoff 

is relatively high in the upper reaches with little subsurface flow (Heydom and Grindley, 

1982). The main flow of the river crosses a part of the Vergenoegd farm both North and South 

of the N2 freeway. The natural flow of the river is characterized by high flood peaks and low 

base flows. The base flow is highly saline in the headwaters. The sand areas of the lower 
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reaches result in little surface runoff (Heydorn and Grindley, 1982). The main tributary of 

Kuils River is the Bottelary River in the upper reach. It receives other minor tributaries such 

as the Langverwacht and Swart Rivers farther south which drains the slopes of the Bottelary 

Hills (Heydorn and Grindley, 1982).  

3.1.2.5 Soils 

The soil is characterized by shale and granite clays, and rocky soils. It arises from the 

weathering of Malmesbury Group shale, a result of deposition and compression of silt and 

clay. These soils are not often vulnerable to erosion. They provide a good basis for agriculture 

due to high nutrients and their fertility (CoCT, 2011; Conradie et al., 2002). 

 Figure 3.2: Kuils River and sampling site locations 

 

 

3.2 SAMPLE POINTS SELECTION AND DESCRIPTION 
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3.2.1 Sample sites description (figure 3.3) 

To evaluate land use effects on Kuils River a total of 5 sampling sites (two downstream sites: 

K1 and K2, and three upstream sites K3, K4 and K5 have been selected in the upper reach of 

the river. The K4 is situated in the small branch of the Kuils River between K3 and K5. Sites 

were selected according to the access points and identified sources of pollution, namely storm 

water, residential and industrial areas, recreation sites, and road-bridge.  For those pollution 

sources, the major consequences include salinization and eutrophication which affect water 

quality, aquatic biota and socio-economic activities.  

0     

µ

 

Figure 3.3: Sites selected upper of the Kuils River (K1, K2, K3, K4 and K5) 

 

At each site, the location (latitude, longitude) and elevation (altitude) were measured using a 

Global Positioning System (GPS) eTrex SUMMIT (Garmin, USA). The bottom substrate, 

canopy cover, aquatic and marginal vegetations, and sources and nature of pollutants were 

visually estimated. The air temperature was recorded using maxima and minima thermometer. 
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The width was measured using a tape, and stream depth was obtained weekly using a 

graduated ruler. All these characteristics are summarized in table 3.1. The principal pollution 

sources affecting selected sites include both point and nonpoint sources in table 3.2.  

Table 3.1 Location and description of sites selected upper of the Kuils River 

                          Downstream sites                                          Upstream sites   

Characteristics K1 K2 K3 K4 K5 

Location S33.91884,  S33.91051,  S33.84272,  S33.84141,  S33.84142,  

  E18.67586 E18.67239 E18.66771 E18.66704 E18.66760 

Altitude 45 ± 4 m 48 ± 4 m 96 ± 3 m 98 ± 3 m 95 ± 4 m 

Air temperature 

(°C) 22.8 23.4 24.6 25.0 25.4 

Width (m) 

average  2.9 4.8 2.01 1.5 2.96 

Depth (cm) 

average 26.0 21.3 14.9 9.5 18.7 

Flow 0.74 0.86 0.20 very slow 0.40 

Substratum (%) Sand (100 %) Sand (80 %), gravel  Sand (70 %) Sand mixed with  

Stones and solid 

blocks 

    

covered by algae 

(20%) gravel (30 %) debris (100 %) 

(60 %), sand (30 

%) 

          Gravel (10 %) 

Decaying plant 

and   Organic detritus from 

Decaying plant (20 

%) Decaying plant in  Organic detritus  

organic detritus   road-bridge   

September and 

mid- from urban area 

        October   

Aquatic 

vegetation 

Marginal 

vegetation  

Marginal (10 %), 

Aquatic Aquatic vegetation  Aquatic vegetation 

Marginal plant 

(10 %) 

  

covered by algal 

(10 %) vegetation covered by 

(10 %), 

filamentous (100 %) from mid- Filamentous algal 

    algal (5 %) algal 

October to 

November   

Riparian 

vegetation 

Open canopy (100 

%) Open canopy (100 %) 

Open canopy (100 

%) 

Open canopy (100 

%) 

Open canopy (100 

%) 

  

Edge dominated by 

grass 

Edge dominated by 

grass 

Edge dominated by 

grass 

Edge dominated by 

grass 

Edge dominated 

by grass 

Sources of 

pollution 

Residential, 

industrial 

Residential & 

industrial area Residence area, 

Redisential area, 

storm Residential area 

  and Hospital areas road-bridge,  

storm water from 

urban 

water from urban 

area 

stormwater from 

urban 

      

area, effluent 

(tributary) 

road-bridge, dead 

plants area 

        

poison to kill root, 

Golf course   

 

 

 

 

Table 3.2 Type of pollution sources at sampling sites 
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Sites Point sources Non point sources 

K1   Surface runoff from residence and hospital areas 

K2 Wastewater effluent from residence    

Surface runoff from residence area 

  and industrial areas 

  Stormwater runoff from urban and industrial areas Surface runoff from residence and industrial areas 

  Organic detritus from bridge runoff    

K3 Stormwater runoff from residence area Surface runoff from residence areas 

  Small temporary effluent (tributary) from   

  residence area   

K4 Stormwater from residence area 

Surface runoff from residence area, Surface runoff from 

golf course 

K5   Surface runoff from residence area 
 

 

3.2.2 Data sampling 

To evaluate and quantify changes in water quality a total of 65 samples of physical and 

chemical parameters were collected weekly from 4th September 2012 to 27th November 2012 

at sampling stations upper reach of the river. As regards biological parameters, 55 samples 

were collected from 18th September to 27th November 2012. 

 

3.2.2.1 The physical and chemical parameters 

From the five stations, physical and chemical parameters namely, pH, water temperature (°C), 

Total Dissolved Solids (mg L¯¹), Dissolved Oxygen (mg L¯¹), Oxygen saturation (%), and 

Salinity were recorded immediately (in-situ) with an YSI 30 meter.  

At each site, a water sample was collected at the middle of the river using a sterile white 

plastic bottle of 250 ml. Before sampling, the container was rinsed three times with the water 

to be sampled. And then, the container was plunged into the stream and filled up with water. 

Once filled, the container was tightened to prevent air from entering. The samples were 

transported to University of Western Cape (UWC) laboratory and kept in the refrigerator at 

4°C before analysis. 

 

3.2.2.2 Macroinvertebrate sampling  

With respect to current ecological state, benthic macroinvertebrates as bioindicators of water 

quality were used referring to the South African Scoring System version5 (SASS5). This 

technique is based on the British system, adapted by Chutter in 1994 to assess water quality in 
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rivers in South Africa (Dicken and Graham, 2002). It is based on the presence or absence of 

benthic macroinvertebrates of which a score is attributed to each taxa. The sensitive taxa have 

a high score while a low score is attributed to tolerant and less sensitive taxa.  

Data collecting and identification 

The sampling of benthic macroinvertebrates was carried out from 18th September 2012 to 27th 

November 2012 using the rapid bioassessment protocol South Africa Scoring System version 

(SASS5) (Dallas, 2005; Dickens and Graham, 2002). It consists of using a D-frame net (500-

µm mesh net) which is placed downstream of the area sampled oriented perpendicularly to the 

stream current. All available SASS5 biotopes, namely, aquatic and marginal vegetations, 

stones and solid objects, gravel, sand and mud (GSM) were sampled separately. Stones and 

solid objects (blocks) found in the stream were sampled vigorously by kicking, turning and 

scraping them using the feet and hands so that the disturbed particles and macroinvertebrates 

dislodged are carried into the net by stream current. In marginal, aquatic vegetation and debris 

biotopes the net was pushed strongly under the water into the emergent plants, and many time 

through the submerged vegetation and into the roots of aquatic plants.  The sand and mud also 

were shifted with the feet to disturb all area so that all organisms dislodged are carried into the 

net. After using the net, picking-hand has been used for supposed missed specimens.  

The content of each sample was then washed in the bottom of the net and carefully emptied 

into a separate white tray with water by inverting the net. To reduce sample volume, the 

content was washed with water to separate the specimens from debris. After cleaning, all 

organisms were transferred into a plastic bottle and carried at University laboratory. 

The organisms collected were sorted, counted and identified at family level using 

dichotomous key of Gerber & Gabriel, (2002) and Tachet et al. (2003) to family level except 

for Oligochaeta, and Hirudina for which a higher taxonomic level of order was used.  

 

3.3 DATA ANALYSIS AND INTERPRETATION 

3.3.1 Water quality analysis 

To estimate nutrient concentrations, a 10 ml water sample was analyzed in the laboratory at 

UWC using a DR 2700 spectrophotometer of HACH. The nitrate concentration was measured 
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following the Cadmium Reduction Method using NitraVer 5 Nitrate reagent powder pillow 

for a 10 ml sample. The result was expressed in mg L¯¹NO₃־-N was recorded. 

The phosphate concentration was estimated according to PhosVer 3 (Ascorbic Acid) Method 

using PhosVer 3 Phosphate Reagent Powder Pillow in 10 mL water sample. The result was 

expressed in mg L¯¹PO₄³.־ 

 

3.3.2 Macroinvertebrate 

 

3.3.2.1 South African Scoring System version 5 (SASS5)   

According to Dicken and Graham, (2002) and Dallas, (2007) there are three principal indices 

calculated namely, SASS5 Score, Number of Taxa (No. Taxa), and Average Score per Taxa 

(ASPT). A quality score based on its susceptibility to pollution was allocated for each taxon 

per sample. The score attributed to benthic macroinvertebrates varies between 1 and 15. High 

score is attributed to greater sensitive organisms and the low score correspond to tolerant 

organisms (Dallas, 2000). These values were then added up to calculate the SASS5 score. The 

total number of taxa found in a sample corresponds to the sum of number of taxa (No Taxa) 

per sample. While the Average Score per Taxon (ASPT) was calculated by dividing the 

SASS5 scores by number of taxa for each sample at each site.  

The SASS5 and ASPT results were used to evaluate the biotic integrity and ecological state of 

the sites using the SASS Data Interpretation Guidelines (Dallas, 2007) (Table 3.3). Good 

water quality usually is associated to high SASS and ASPT scores due to the presence of 

Ephemeroptera, Plecoptera and Trichoptera which indicate that water is very well oxygenated. 

These taxonomic groups are sensitive to water pollution, therefore they have high score 

(Stoyanova et al. 2010; Lorion and Kennedy, 2009; Robeston, 2006; Bredenhand, 2005; Hart 

and Campbell, 1994). 

 

 

 

 

 

 

 

 

 



51 

 

Table 3.3 Ecological categories for the interpretation of SASS data (modeled reference conditions for the 

Highveld Ecoregion). 

SASS Score ASPT Class Description 

>124 >5.6 A (Natural) Unimpaired. High diversity of taxa with numerous sensitive taxa. 

83 – 124 4.8 – 5.6 B (Good) Slightly impaired. High diversity of taxa, but with fewer sensitive 

taxa. 

60 – 82 4.6 – 4.8 C (Fair) Moderately impaired. Moderate diversity of taxa. 

52 – 60 4.2 – 4.6 D (Poor) Considerably impaired. Mostly tolerant taxa present. 

30 – 51 Variable <4.2 E 

(Seriously 

modified) 

Severely impaired. Only tolerant taxa present. 

<30 Variable F 

(Critically 

modified) 

Critically impaired. A few tolerant taxa present. 

Sources: Golder Associates (2009). Aquatic specialist study for the proposed 

construction of the Kusile Rail project. 

3.3.2.2 Species richness and species diversity 

Although used by numerous authors, both species richness and species diversity seem to be 

confused.  

a. Species richness: According to Klemm, et al. (1990) species richness reflects the health of 

the community through measurement of the variety of taxa present. It has been estimated as 

the total number of taxa (families and higher taxonomic levels) in a given sample.  

b. Species diversity: Numerous indices and scores have been used to evaluate variation of 

species diversity in studies carried out on biological diversity and ecological monitoring 

(Spellerberg and Fedor, 2003). The most widely used diversity index is that referred to 

Shannon diversity (H’) because of its stability in any spatial distribution and its insensitivity 

to rare species.  

A Shannon diversity (H’) index per week was calculated at each site to assess the equilibrium 

of the community (Spellerberg and Fedor 2003). In natural areas it varies between 0.05 for a 

low diversity site and 4.5 for a high diversity site. The Formula of Shannon diversity (H’) 

index is:                                 
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                                                N 

                                     H = - ∑ pilnpi (Spellerberg and Fedor, 2003) (1) 

                                              i=1 

Where: H= Shannon and Weaver index 

             Pi =  

            n = Total individuals of specimens and n¡ Total individuals of 1 species 

The mean diversity (d  ) was calculated using Klemm et al., (1990) method known as the 

Shannon-Weaver mean diversity.        

                                     (d  ) =  (Nlog10 N - ∑ni log10 ni)      (2) 

Where C= 3.321928  

            N= total number of individuals 

            ni= total number of individuals in the species i  

 

3.3.2.3 Similarity Indices (Abel, 2002; Klemm et al., 1990). 

There are numerous kinds of similarity indices available to calculate the degree of similarity 

between samples. In the present study, the similarity between sites was calculated using the 

 ormula  or Sorensens’s coe  icient.  

                                              S=      (3) 

Where a = the number of taxa in community a; b = the number of taxa in community b; and 

           c = the number of taxa common to both.  

 

3.3.2.4 Accumulation curve 

The species accumulation curve is a plot of cumulative numbers of recorded species as a 

function of effort. The accumulation curve of species at each site was established using 

Gaston, (1996) method. 

 

3.3.2.5 Statistical Analysis  

To analyze data from different sources of pollution, one-way analysis of variance (ANOVA) 

was used to evaluate whether or not there is a difference between groups in physical and 

chemical parameters, and number of taxa, and SASS and ASPT scores. To find out if there are 

significant differences between groups, the post-hoc tests, namely Fisher’s PLSD, Bonferroni, 
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and Tukey alpha were used to compare the sites. The leve of statistical significance used for 

all tests was 0.05. There is a significant difference when the value is less than 0.05. 

 

3.4 HISTORICAL WATER QUALITY DATA AQUISITION 

Historic data were obtained from DWAF and City of Cape Town in excel files. Two 

monitoring stations located in the upper river were selected, data were used for September, 

October and November of each year from 1989 to 2012.  
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CHAPTER FOUR: RESULTS 

 

The section presents the results of the study. It discusses in detail the physical and chemical 

parameters of the upper Kuils River in the ensuing sections. 

 

4.1 PHYSICAL AND CHEMICAL PARAMETERS OF THE UPPER THE KUILS RIVER 

The Physical and chemical data are given in appendix 1 and statistical analysis in appendix 3. 

It includes water temperature, pH, dissolved oxygen (DO), oxygen saturation, total dissolved 

solids (TDS), salinity, phosphate (PO₄³־) and nitrate (NO₃¯).  

4.1.1 Temporal variations of physical and chemical parameters of the upper Kuils River 

4.1.1.1 pH variations 

The mean weekly values of pH ranged from 7.61 to 8.22 on the 13th November 2012 and 9th 

October 2012 respectively (Figure 4.1). The slight decrease in pH observed in November 

2012 may be attributed to seasonal variation. 

                       

Figure 4.1: Temporal variation in pH from September to November 2012. Means with the 

same letter are not significantly different (p ≤ 0.05 . 
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4.1.1.2 Temperature variations  

The water temperature averages varied from one week to another (Figure 4.2). The highest 

mean (23.96°C) water temperature was measured on the 6th November 2012 while the lowest 

mean (14.84°C) was obtained on the 14th September 2012. November, early summer, is a dry 

and hot period in the study area. September (late winter/early spring) 2012 characterized by low 

water temperature may be due to wet period. 

 

Figure 4.2: Temporal variation in water temperature from September to November 2012. Means with 

the same letter are not significantly different  p ≤ 0.05 . 

 

4.1.1.3 Total Dissolved Solids variations   

Total dissolved solids (TDS) mean recorded during the whole study period fluctuated between 

620 mg L¯¹ on the 18th September 2012 and 834 mg L¯¹ on 4th September 2012 (Figure 4.3). 

The major reason for the high TDS in the Kuils River is attributable to the geological 

characteristics of soil over which the river flows. Perhaps, runoff and storm water from urban 

areas may also contribute to increased salts in the water body. 
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Figure 4.3: Temporal variation in TDS from September to November 2012. Means with the 

same letter are not signi icantly di  erent  p ≤ 0.05 . 

 

4.1.1.4 Salinity variations  

The mean salinity shows similar patterns of distribution in TDS concentrations. The highest 

mean of salinity was recorded on the 4th September 2012 while the lowest mean of 0.474 mg 

L¯¹ was obtained on the 18th September 2012 (Figure 4.4).  

            

Figure 4.4: The temporal variation in salinity from September to November 2012. Means 

with the same letter are not significantly different  p ≤ 0.05 . 

 

 

 

 



57 

 

4.1.1.5 Dissolved oxygen variations  

Dissolved oxygen in aquatic ecosystems constitutes an important factor that determines the 

quality of water and support an important number of aquatic organisms. The mean weekly 

concentration of dissolved oxygen of the upper Kuils River decreased from September to 

November 2012 (Figure 4.5). The highest mean (12.472 mg L¯¹) dissolved oxygen was 

recorded on the 4th September. This figure may be attributed to the rain season in the 

catchment area. The lowest mean (5.404 mg L¯¹) concentration was evaluated on the 27th 

November 2012 probably due to dry and hot period.  

              

Figure 4.5: Temporal variation in dissolved oxygen from September to November 2012. 

Means with the same letter are not significantly di  erent  p ≤ 0.05 . 

 

4.1.1.6 Oxygen saturation  

The mean weekly variations of oxygen saturation present a similar pattern of distr ibution as 

dissolved oxygen. The highest mean (124.92 %) was recorded on September 4th while the 

lowest mean (65.41 %) was recorded on the 13th November 2012 (Figure 4.6).  
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Figure 4.6: The temporal variation in oxygen saturation from September to November 2012. 

Means with the same letter are not signi icantly di  erent  p ≤ 0.05 . 

 

4.1.1.7 Phosphate concentration variations  

The means of phosphate concentrations assessed on the upper Kuils River are shown in figure 

4.7. The temporal variations increased between September and November 2012. The mean 

weekly distribution of phosphate concentrations varied from (0.514mg L¯¹) on the 18th 

September to (2.145 mg L¯¹) on the 20th November 2012. These values exceed the recommended 

limits by ecosystem health criteria in South Africa. A slight increase in phosphate concentrations 

observed in November 2012 coincides with algae proliferation. 
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Figure 4.7: The temporal variation in phosphate concentrations from September to November 
2012. Means with the same letter are not signi icantly di  erent  p ≤ 0.05 .  

 

4.1.1.8 Nitrate concentration  

The mean fluctuations in concentrations ranged between (0.680 mg L¯¹) on the 27th 

November 2012 and (1.340 mg L¯¹) on the 2nd October 2012 (Figure 4.8). A general 

observation shows that the mean values of nitrate concentrations were above 0.5 mgL¯¹ during 

the all sampling periods. These concentraions were higher than the recommended criteria set 

by the South African water quality guidelines for aquatic ecosystem.   

             

Figure 4.8: The temporal variation in nitrate concentrations from September to November 

2012. Means with the same letter are not signi icantly di  erent  p ≤ 0.05 .  

 

4. 1.2 Spatial variations of physical and chemical parameters of the upper Kuils River 

4.1.2.1 pH  

The average of pH calculated at all sampling sites decreases from upstream sites to 

downstream sites (Figure 4.9). The highest mean pH value was observed at K5 (8.30) while 

the lowest mean value was recorded at K1 (7.68). Low pH values evaluated at downstream 

sites may be due to abundance of algal, surface runoff and storm water from industrial area, 

and organic matter from road-bridges. In the tributary site the mean pH value (7.60) was 
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lower compared to most of the main stream sites. At site K4, storm water from residence area, 

macrophytes (photosynthesis and respiration), and organic matter from road-bridge and dead 

plant litters may also hav had an influence on pH levels. 

             

Figure 4.9: pH variations at different sampling sites. Means with the same letter are not 

signi icantly di  erent  p ≤ 0.05 . 

 

4.1.2.2 Average of water temperature between sampling sites 

The mean of water temperature measured at each sampling site during the whole period 

decreased from upstream sites to downstream sites (Figure 4.10). The mean water temperature 

was highest at K5 (21.81°C) while the lowest was recorded at K1 (17.33°C). This difference 

may be due to daily temperature variations. At downstream sites (K1 and K2) water  

temperature was measured in the morning while at upstream sites (K3, K4 and K5) the 

temperature was collected during mid-day. Overall, shallow water, riparian clearing, and loss 

of vegetation cover that characterize the Kuils River may have influenced the variations in 

water temperature. 
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Figure 4.10:  Water temperature variations at different sampling sites of the upper Kuils 
River. Means with the same letter are not signi icantly di  erent  p ≤ 0.05 .  

 

4.1.3.3 Average of TDS between sampling sites 

Mean values of TDS calculated for the upper Kuils River decreased from upstream sites to 

downstream sites (Figure 4.11). The highest mean TDS concentration was obtained at site K5 

(747.6 mg L¯¹) while the lowest mean was recorded at site K1 (611.4 mg L¯¹). The mean 

value of TDS concentration measured at site K4 was (727.34 mg L¯¹). The lowest TDS 

concentrations recorded at downstream sites may be due to water dilution effect.    

 

Figure 4.11: TDS variations at different sampling sites of the upper Kuils River. Means with 

the same letter are not significantly different  p ≤ 0.05 . 
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 4.1.3.4 Average of Salinity between sampling sites 

Salinity is defined as total dissolved solids or as conductivity. In water samples, salinity is 

related to TDS concentration or electrical conductivity. Therefore, it shows the similar pattern 

of distribution as TDS concentrations. The salinity averages evaluated at each sampling 

station in the main stem during the whole sampling period decreased from upstream sites to 

downstream sites (Figure 4.12). The highest mean salinity was recorded at K5 (0.573 mg L¯¹) 

while the lowest concentration was evaluated at K1 (0.472 mg L¯¹).  

 

Figure 4.13: Salinity variations at different sampling sites of the upper Kuils River. Means 

with the same letter are not signi icantly di  erent  p ≤ 0.05 . 

 

4.1.3.5 Dissolved oxygen variation between sampling sites 

In the main stem, dissolved oxygen concentrations ranged from 8.85 mgL¯¹ at K1 to 9.48 

mgL¯¹ at K5. The mean weakest value (4.52 mgL¯¹) was observed at site K4 a tributary of the 

Kuils River (Figure 4.14). Apart from pollutants from residential area, the site K4 is very 

shallow, slow and stagnant in early summer, and overrun by aquatic and decaying plants. All 

these factors may lead to low DO concentration in this site.  

 

 

 

 



63 

 

 

Figure 4.14: Dissolved oxygen variations at different sampling sites of the upper Kuils River. 

Means with the same letter are not signi icantly di  erent  p ≤ 0.05 . 

 

4.1.3.6 Oxygen saturation between sampling sites 

Mean percentages of oxygen saturation show a slight decrease from upstream sites to 

downstream sites (Figure 4.15). The mean variations of oxygen saturation at different sites 

show a similar pattern of distribution as dissolved oxygen. 

 

Figure 4.15: Oxygen saturation variations at different sampling sites of the upper Kuils River. 

Means with the same letter are not signi icantly di  erent  p ≤ 0.05 . 
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4.1.3.7 Nitrate variation at different sampling sites 

In the main stem, the trend of the curve shows that mean values of nitrate concentrations 

increased from upstream to downstream (Figure 4.16). The highest mean value was obtained 

at K1 (1.71 mgL¯¹) while the lowest mean concentration was recorded at K5 (0.74 mgL¯¹). 

The sites K1 and K2 both receive pollutants from hospital, residential and industrial areas, 

and organic matter from the road-bridge. Upstream sites receive pollutants from residential 

area, storm water, and soil bank erosion. In comparison with other sites, K4 had the lowest 

nitrate concentration (0.09 mgL¯¹) which may be due to rapid growth of aquatic plants, and 

shallow and slow water which often dries in summer.  

 

Figure 4.16: Nitrate variations at different sampling sites of the upper Kuils River. Means 

with the same letter are not signi icantly di  erent  p ≤ 0.05 . 

 

4.1.3.8 The average of phosphate at different sampling points 

In the main river, the highest mean value (1.750 mg L¯¹) of phosphate concentrations was 

evaluated at site K1 while the lowest mean (0.350 mg L¯¹) concentration was obtained at K5. 

In addition to residential and industrial areas, the site K1 receives pollutants from hospital 

area, susceptible to increased phosphate concentrations. At the tributary site (K4) the mean 

value (2.166 mg L¯¹) of phosphate concentration was high compared to main stream sites. 

Because there is a significant difference between K3 and K4, one might reasonably suggest 

 

 

 

 



65 

 

that high concentration observed at site K4 did not affect the river in terms of phosphate. The 

K4 site characterized by shallow and slow flow of water includes organic matter from death 

plants, and storm water from residential area which may probably be sources of phosphate. 

 

Figure 4.17: Phosphate variations at sampling sites of the upper Kuils River. Means with the 

same letter are not signi icantly di  erent  p ≤ 0.05 . 

 

4.2 BIOLOGICAL PARAMETERS 

4.2.1 DISTRIBUTION OF BENTHIC MACROINVERTEBRATES  

Benthic macroinvertebrates abundance, specific richness and diversity collected per week at 

different sites are presented in appendix 2. The statistical analysis is showed in appendix 3. 

4.2.1.1 List of macroinvertebrates between sites  

Benthic macroinvertebrates (BMI) collected from the upper Kuils River are listed in table 4.1. 

A total of 8409 specimens belonging to 28 taxa (families), and 11 orders were sampled from 

18th September (late winter/early spring) to 27th November (early summer) 2012. The weekly 

numbers varied from one taxon to another and from one site to another. Some taxa were 

present at all sampling points during the whole sampling period, while others were absent or 

partially recorded in some sites during the whole sampling period. The Physidae showed the 

highest records of (00%) at all sampling sites. The Oligochaeta had (00%) of weekly 

frequency at all sampling sites except K4 that had (72.7%). Other taxa such as 
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Chlorocyphidae, Aeschnidae, Syrphidae, occurred in some sampling sites (1 to 4 sites) with a 

frequency ranging between (90.09 %) and (9.09 %). The most abundant taxa are Physidae 

with (32.33 %), followed by Simuliidae (21.807 %), and Chironomidae (18.59 %) whereas 

Chlorocyphidae, Belastomatidae, Gerridae, Naucoridae, Veliidae, Psychodidae, and 

Planorbidae each had the lowest proportion of specimens of (0.01%). 
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Table 4.1 List of benthic macroinvertebrates collected at different sites upper stream of the river  

Systematic Group   Score 
          Downstream sites              Upstream sites 

Tot 

  
 Total        

(%) K1   K2   K3   K4   K5   

ORDER Taxa  Eff  Fr Eff Fr Eff Fr Eff Fr Eff Fr 

ACARINA Hydrachnellae 8 0 0 0 0 1 9.09 0 0 1 9.09 2 0.02 

OLIGOCHAETA Oligochaeta 1 170 100 210 100 240 100 32 72.7 135 100 787 9.36 

HIRUDINA  Hirudina 3 190 100 34 63 68 90.9 3 18.18 73 81.8 368 4.38 

CRUSTACEA                            

   Potamonautidae 3 7 55.54 24 81,8 43 100 2 18.18 33 90.9 109 1.31 

ODONATA                            

  Coenagrionidae 4 3 18 0 0 24 90.9 0 0 13 63.6 39 0.47 

  Aeschnidae 8 0 0 0 0 4 18.18 0 0 1 9.09 5 0.06 

  Chlorocyphidae 10 0 0 0 0 1 9.09 0 0 0 0 1 0.01 

   Libellulidae 4 1 9,1 2 18.18 15 54.5 1 9.09 6 36.3 25 0.30 

HEMIPTERA                            

  Belostomatidae 3 0 0 0 0 0 0 0 0 1 9.09 1 0.01 

  Corixidae 3 1 9,1 0 0 11 54.5 141 81.8 5 27.2 158 1.88 

  Gerridae 5 0 0 0 0 1 9.09 0 0 0 0 1 0.01 

  Naucoridae 7 0 0 0 0 1 9.09 0 0 0 0 1 0.01 

  Notonectidae 3 0 0 1 9.09 2 18.18 0 0 2 18.18 5 0.06 

  Veliidae 5 0 0 0 0 1 9.09 0 0 0 0 1 0.01 

EPHEMEROPTERA                            

  Baetidae 4 1 9.09 7 27.2 221 72.7 3 27.27 336 63.6 568 6.75 

COLEOPTERA                            

  Dytiscidae 5 1 9.09 2 18,1 22 72.7 21 81.81 51 72.7 97 1.15 

  Hydrophillidae 5 0 0 0 0 9 45.4 1 9.09 3 27.2 13 0.15 

DIPTERA                            

  Ceratopogonidae 5 0 0 7 18.18 14 54.5 0 0 33 54.5 54 0.64 

   Chironomidae 2 53 54.5 82 72,72 456 100 594 100 379 100 1564 18.60 

  Ephydridae 3 0 0 1 9.09 7 18.18 1 9.09 6 36.6 15 0.18 

  Simuliidae 5 0 0 4 27.2 626 100 481 72.7 723 100 1834 21.81 

  Psychodidae 1 0 0 0 0 0 0 1 9.09 0 0 1 0.01 

   Syrphidae 1 0 0 1 0 1 9.09 0 0 2 18.18 4 0.05 

  Tipulidae 5 0 0 0 0 0 0 6 54.5 4 27.2 10 0.12 

GASTROPODA                            

  Physidae  3 1028 100 1278 100 80 100 91 100 242 100 2719 32.33 

  Limnaeidae 3 1 9.09 0 0 4 18.18 1 9.09 18 63.6 24 0.29 

  Planorbidae 3 0 0 0 0 0 0 1 9.09 0 0 1 0.01 

TURBELLARIA                            

  Turbellaria 3 0 0 2 18.18 0 0 0 0 0 0 2 0.02 

     1455   1655   1852   1380   2067   8409 100.00  
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4.2.1.2 Number of taxa per systematic group 

A total of 28 taxa were collected during the study period (Figure 4.18). The number varies 

from one group to another. The highest number of taxa was in the order Diptera (7 families), 

followed by Hemiptera (6 families), and Odonata (4 families). Orders Gasteropoda and 

Coleoptera were represented by 3 and 2 families respectively. The other groups 

(Ephemeroptera and Decapoda) had only 1 taxon each. For Oligochaeta, Hirudina, 

Turbellaria, and Hydracarina only their presence was noted. 

 

Figure 4.18: Number of taxa per systematic group 

 

4.2.1.3 Distribution of families and orders at different sites 

The number of taxa varies between sites (Figure 4.19). The highest numbers were collected at 

upstream sites (K5, K3). The highest number was collected at K3 (10 orders and 23 families) 

while the lowest number was collected at downstream sites. Upstream sites consisted of 

vegetable debris, marginal plants, gravel, stones and solid materials. These substrates are 

favorable settlement to benthic macroinvertebrates. At site K4 the number of taxa recorded 

was 9 Orders and 16 families. The decrease in macroinvertebrate at sites K2 and K1 may be 

due to sand and filamentous algae which dominate those sites.  
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Figure 4.19 : The number of families and order per site over the sampling period 

 

4.2.1.4 Abundance of macroinvertebrate specimens per order on the whole sampling 

sites 

Macroinvertebrate abundance varies between groups (Figure 4.20).The most abundant 

macroinvertebrates identified were the order Diptera (41.4 %), followed by Gastropoda (32.62 

%), Oligochaeta (9.35 %), Ephemeroptera (6.75 %), and Hirudina (4.37 %). Hydracaena 

(Acarina) and Turbellaria were less than 0.1 %. For each order, the abundance is linked to 

abundance of 1 or 2 families. Diptera are dominated by Simuliidae (1834 specimens) and 

Chironomidae (1564 specimens). Gasteropoda were dominated by Physidae (2719 

specimens), and Ephemeroptera were dominated by Baetidae (568 specimens) 
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Figure 4.20 : Abundance of Macroinertebrate specimen per order of the Upper Kuils River 

 

4.2.1.5 Spatial distribution of macroinvertebrate abundance between sites 

The abundance of macroinvertebrates in the main stream ranged between 2067 specimens at 

site K5 and 1455 specimens at site K1. The site K4, a tributary of Kuils River showed the 

lowest (1380 specimens) abundance (Figure 4.21).  

 

            Figure 4.21: Spatial distribution of macroinvertebrate abundance between sites 

 

4.2.1.6 Spatial distribution of macroinvertebrate abundance within systematic groups 

The benthic macroinvertebrates varied between sites (Figure 4.22). Upstream sites (K3, K4, 

K5) were dominated by Diptera (1147 specimens at site K5; 1104 specimens at K3; 1083 

specimens at site K4) and Ephemeroptera (336 specimens at site K5; 221 specimens at site 

K3), while downstream the study area was dominated by Gastropoda (1278 at site K2; 1029 at 

site K1), and Hirudina (190 specimens at site K1). Oligochaeta distributions were similar at 

different sites. Although less abundant, the order Odonata (70 specimens) and Coleoptera 

(110 specimens) were found at all sampling sites. Crustacae showed higher abundance at site 

K3 (43 individuals), followed by K5 (33 individuals), and K2 (24 specimens), whereas lower 

abundance was found at site K1 (7 specimens) and K4 (2 specimens). Overall, these taxa were 

recorded at all sampling sites; they are tolerant to water pollution. The order and abundance of 

macroinvertebrate at different sites were influenced by the nature and diversity of substrates. 

 

 

 

 



71 

 

 

Figure 4.22: Spatial distribution of macroinvertebrate within systematic groups over the 

sampling period 

 

4.2.1.7 Temporal distribution of systematic group abundances in the whole sampling 

sites 

The weekly variations of abundances per systematic group in the whole sampling sites are in 

figures 4.23 and 4.24. The abundances of Diptera and Gatropoda were very high during the 

sampling period.  
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Figure 4.23: Temporal variation of systematic group abundances of the upper Kuils River 

The least recorded orders were Hemiptera (167 individuals), Coleoptera (110 individuals), 

Crustacea (108 individuals) and Odonata (71 individuals).  

 

Figure 4.24: Temporal variation of systematic group abundances of the upper Kuils River 

4.2.2 Taxa accumulation curves per site 

4.2.2.1 Taxa accumulation curve at site K1  

Taxa accumulation curve from 18th September to 27th November 2012 at site K1 is shown in 

figure 4.25. The accumulated number of taxa was constant with 5 taxa from 18th September 

to 2nd October 2012 before increasing with 2 taxa on the 9th October 2012. Another increase 

was observed on October 23th after which no new taxon was added. It is not likely that 

additional sampling could have added new taxa.  
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Figure 4.25: Taxa accumulation curve at site K1 from September to November 2012 

4.2.2.2 Taxa accumulation curve at site K2  

The cumulative number of macroinvertebrate taxa (families) sampled at site K2 illustrated in 

figure 4.26 shows an increases since the beginning, and does not stabilize even at the end 

meaning that additional sampling could have added new taxa.  

 

  Figure 4.26:Taxa accumulation curve at site K2 from September to November 2012 

4.2.2.3 Taxa accumulation curve at site K3 

The ascending trend of the curve indicates that new taxa were added at all times. The 

accumulation curve stabilizes from 9th October to 23rd October 2012 before rising with 1 taxa 

on the 30th October 2012. The plateau seems not to be reached; meaning that additional 

samples might add new taxa (Figure 4.27).  
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      Figure 4.27: Taxa accumulation curve at site K3 from September to November 2012 

4.2.2.4 Taxa accumulation curve at site K4  

In site K4, the accumulation increases from the beginning and stabilizes at the end, reaching 

the plateau. It is possible that new samples might not add any additional taxon (Figure 4.28).  

 

Figure 4.28: Taxa accumulation curve at site K4 from 18th September to 27th November 2012 

4.2.2.5 Species accumulation curve at site K5  

The accumulation curve in K5 shows an increase from the beginning and does not reach the 

plateau. New samples might add new taxa to the list (Figure 4.29).   
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Figure 4.29: Taxa accumulation curve at site K5 from 18th September to 27th November 2012 

4.2.4.6 Accumulation curve of the whole of site upstream of the river 

The weekly accumulation curve of the sites shows an overall increase. The trend for all the 

sites combined is increasing but the plateau is not reached. This kind of curve suggests that 

additional sampling could have added new taxa to the list (Figure 4.30).   

          

  Figure 4.30: Taxa accumulation curve of the whole sampling site upstream of the river 

4.2.3 Similarity between sites 

Table 4.2 shows a strong similarity in macroinvertebrate community between sites. The 

highest similarity index was recorded between upstream sites (K5 and K3: 86.3%) while the 

lowest index was recorded between downstream sites (K2 and K1= 64.0 %). 

   Table 4.2 Macroinvertebrate similarity between sites upstream of the river 

      Sites K5 K4 K3 K2 K1 

K5  75.6 86.3 74.2 66.6 

K4   66.6 66.6 74.0 

K3    70.2 64.7 

K2     64.0 
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4.2.4 Shannon diversity index upstream of the Kuils River 

4.2.4.1 Weekly variations of Shannon diversity during the whole sampling period 

In general Shannon-diversity index for the upper Kuils River was found to be weak. This 

weak index may probably be due to poor substrate habitat and water quality. The index 

diversity varied from 0.916 to 1.402 on the 30th October to 24th September 2012 respectively 

(Figure 4.31).  

                 

             Figure 4.31: Temporal variation of Shannon diversity index of the upper Kuils River 

 

4.2.4.3 Shannon-Weaver mean of diversity (d  ) 

The Shannon-Weaver mean of diversity index recorded at each sampling site during the 

whole sampling period varied between the sites (Figure 4.32). There is a decrease from 

upstream sites to downstream sites. The highest mean (2.759) of diversity was recorded at site 

K5 while lowest mean (1.226) value was recorded at K2 (1.226). The high Shannon’s index at 

upstream sites may be attributed to the diversity of substratum. The site K3 and K5 consist of 

plant debris, marginal plants and gravel while downstream sites were dominated by sand and 

many filamentous algae. 
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                 Figure 4.32: Shannon-Weaver mean of diversity index ((d  ) at different sites  

4.2.5 South African Scoring System (SASS5), number of taxa (NoT) and Average score 

per taxa (ASPT) 

4.2.5.1 Temporal variation of South African Scoring System 5 (SASS5) 

The mean weekly SASS varied from 20.80 on 2nd October to 34.4 on 6th November 2012 

(Figure 4.33). The SASS5 values were less than the limit recommended by the South African 

Guidelines. The weak values obtained upstream of the river may be due to low scores 

attributed to tolerant taxa and poor diversity of benthic macroinvertebrate (BMI) fauna. 

                    

Figure 4.33: The Temporal variations of SASS5 of the upper Kuils River. Means with the 

same letter are not signi icantly di  erent  p ≤ .05 .  
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4.2.5.1.2 Number of Taxa 

The number of taxa shows a similar pattern of distribution as SASS. The mean weekly 

number of taxa ranged from (7) collected on the 18th and 24th September 2012 to (10) taxa 

recorded on 6th November 2012 (Figure 4.34). The low number of taxa recorded upstream of 

the Kuils River may be attributed to both poor substrate and poor water quality. 

                   

Figure 4.34 : The temporal variation of number of taxa of the upper Kuils River. Means with 

the same letter are not signi icantly di  erent  p ≤ .05 . 

 

4.2.5.1.3 Average score per taxa (ASPT)   

The mean weekly ASPT scores ranged between 2.850 and 3.21 on the 27th November 2012 

and 23th October 2012 respectively (Figure 4.35). ASPT over all sampling period were less 

than standard limit recommended by South African Guideline. These low ASPT scores may 

result from tolerant species. 
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Figure 4.35 : Temporal variations of number of taxa of the upper Kuils River. Means with the 

same letter are not signicantly different. 

4.2.5.2 SASS, Number of taxa ASPT average at different sampling sites 

4.2.5.2.1 SASS average at different sites 

Mean values of SASS5 for each sampling site as presented in figure 4.36 are less than 50. In 

the main stream, the average values decreased from upstream to downstream sites. The 

highest mean score (42.54) was obtained at site K3 while the lowest (12.09) mean score was 

recorded at site K1. A decrease in water quality due probably to storm water from industrial 

and residences, organic matter from road-bridge and poor substrate diversity observed at 

downstream sites may have reduced the diversity in macroinvertebrate and therefore, the 

SASS score. 
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Figure 4.36: South Africa Scoring System (SASS5) at different sites of the upper Kuils River. 

Means with the same letter are not signi icant di  erent  p≤.05   

4.2.5.2.2 Number of Taxa at different sites 

The number of taxa at the different sampling sites indicate similar patterns of distribution as 

SASS. In the main stream the number of taxa decreased from upstream to downstream (Figure 

4.37). The highest mean (12 taxa) number of taxa were observed at K3 while the lowest 

number (4 taxa) were recorded at K1. In addition to poor water quality, downstream sites are 

dominated by sand. At the tributary site (K4), the mean number of taxa was 6.81.  

                      

Figure 4.37: Number of Taxa at different sites of the upper Kuils River. Means with the same 

letter are not signi icant di  erent  p≤.05  

4.2.5.2.3 Mean ASPT scores at different sites 

The mean scores show a similar trend as the SASS with the highest mean score 3.61 at site K3 

while the lowest mean score evaluated at site K1 was 2.55 (figure 4.38). At the tributary of 

site K4, the mean weekly ASPT score was 22.27. Low ASPT scores at downstream sites may 

be due to low scores attributed to non-sensitive species dominated by Gasteropoda (Physidae).  
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Figure 4.38 Average Score Per Taxa at different sites of the upper Kuils River. Means with 
the same letter are not significant di  erent  p≤.05  

 

4.2.6 Ecological quality of the river 

Table 4.4 shows that the water quality in the upper sites of the Kuils River falls within 

unacceptable limits. The study results show that the sites K1 and K2 have been critically 

modified due to the following impacts; human settlement, road-bridge, golf course, and 

industrial activities. The site K4 has also been critically modified. This site is the stem of the 

Kuils River, and it is impacted by storm water from settlement areas, poison to kill plant 

roots, and dead plants. The upstream sites (K3, K4, K5) were also found to have been 

seriously modified because they have been impacted by surface runoff and stormwater from 

urban areas and soil erosion.  
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Table 4.4 Ecological state at each sampling point upper stream of the Kuils river per week 

Site Date SASS No of Taxa ASPT Ecological state 

K1 18th September 2012 14 6 2,3 Critically modified 

K1 24th September 2012 9 4 2,5 Critically modified 

K1 2nd October 2012 9 4 2,5 Critically modified 

K1 9th October 16 6 2,66 Critically modified 

K1 16th October 12 5 2,4 Critically modified 

K1 23th October 7 3 2,33 Critically modified 

K1 30th October 15 5 3 Critically modified 

K1 6th November 15 5 2,5 Critically modified 

K1 13th November 19 6 3,1 Critically modified 

K1 20th November 7 3 2,3 Critically modified 

K1 27th November 10 4 2,5 Critically modified 

K2 18th September 17 6 2,8 Critically modified 

K2 24th September 17 6 2,8 Critically modified 

K2 2nd October 12 5 2,4 Critically modified 

K2 9th October 9 4 2,25 Critically modified 

K2 16th October 15 6 2,5 Critically modified 

K2 23th October 24 7 3,42 Critically modified 

K2 30th October 14 5 2,8 Critically modified 

K2 6th November 9 4 2,25 Critically modified 

K2 13th November 14 6 2,33 Critically modified 

K2 20th November 20 7 2,8 Critically modified 

K2 27th November 21 7 3 Critically modified 

K3 18th September 47 12 3,9 Seriously modified 

K3 24th September 30 9 3,3 Seriously modified 

K3 2nd October 32 9 3,5 Seriously modified 

K3 9th October 45 12 3,75 Seriously modified 

K3 16th October 48 12 4 Seriously modified 

K3 23th October 39 11 3,54 Seriously modified 

K3 30th October 40 11 3,63 Seriously modified 

K3 6th November 49 13 3,76 Seriously modified 

K3 13th November 49 14 3,5 Seriously modified 

K3 20th November 47 14 3,35 Seriously modified 

K3 27th November 42 12 3,5 Seriously modified 

K4 18th September 13 4 3,25 Critically modified 

K4 24th September 24 7 3,4 Critically modified 

K4 2nd October 27 8 3,3 Critically modified 

K4 9th October 24 7 3,42 Critically modified 

K4 16th October 33 10 3,3 Seriously modified 

K4 23th October 26 8 3,25 Critically modified 

K4 30th October 22 7 3,14 Critically modified 

K4 6th November 38 11 3,4 Seriously modified 
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K4 13th November 21 6 3,5 Critically modified 

K4 20th November 11 4 2,75 Critically modified 

K4 27th November 6 3 2 Critically modified 

K5 18th September 21 7 3 Critically modified 

K5 24th September 30 9 3,3 Seriously modified 

K5 2nd October 24 8 3 Critically modified 

K5 9th October 30 9 3,33 Seriously modified 

K5 16th October 34 10 3,4 Seriously modified 

K5 23th October 46 13 3,53 Seriously modified 

K5 30th October 28 8 3,5 Critically modified 

K5 6th November 61 15 4,06 Poor 

K5 13th November 46 14 3,2 Seriously modified 

K5 20th November 43 13 3,3 Seriously modified 

K5 27th November 52 16 3,25 Poor 

 

4.2.7 Comparison of ecological state between 2005 and 2012 

Our results show that the current water quality of the upper Kuils River in 2012 is seriously 

impaired compared to 2005. The study revealed that the water quality at all the sampling 

locations is worst compared to 2005, as it varied from fair to poor health. Dissolved oxygen 

values diagnosed varied from good (wet period) to fair (early summer) water quality. The 

River’s constituent nutrients exceed the limit recommended by ecosystem health criteria in 

South Africa to unacceptable levels. To date, benthic macroinvertebrates collected are non-

sensitive to poor water quality and the SASS5 indicated that the water quality was seriously 

modified compared to 2005 when aquatic invertebrates were reported to be in fair condition 

(RHP, 2005). 

4.3 Physical and chemical variations upper of the river from 1989 to 2012 

The trends in the physical and chemical parameters evaluated in the upper Kuils River from 

1989 to 2012 include the temperature, pH, dissolved oxygen, nitrate and phosphate. The 

statistical analyses are showed in appendix 3. No data were available from 2003- 2011. 

4.3.1 Mean yearly water temperature 

The mean yearly water temperature varied from one sampling point to another (Figure 4.39). 

The mean water temperature ranged between (20.2°C) recorded in 1992 and (15.21°C) 

recorded in 2002. The statistical analysis indicates no significant difference between the years 

(F = 1.103 and p = .4073).  
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Figure 4.39 : Temporal water temperature variations of the Upper Kuils River from 1989 to 

2012 

 

4.3.2 Yearly change of pH variations 

All pH means recorded were above 7, suggesting alkaline conditions (Figure 4.40). The 

highest mean recorded (7.903) was obtained in 2012, but overall, the trends of the curves 

overlap. The lowest mean pH (7.600) was registered in 1995 and 2002. Statisticaly, there is a 

significant difference between the years (F = 4.252 and p = .0079). At fine scale, a significant 

difference was found between 2002 and all the years (p-value: less than .05). 

                       

Figure 4.40 : Temporal pH variations of the Upper Kuils River from 1989 to 2012 
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4.3.3 Dissolved oxygen variations 

 Mean dissolved oxygen varied from one year to another (Figure 4.41). The highest dissolved 

oxygen means (8.233 mgL¯¹) and (8.873 mgL¯¹) were recorded in 1998 and 2012 

respectively. The lowest mean (5.433 mgL¯¹) was recorded in 2002. Generally, the ANOVA 

shows no significant difference between the years (F = 1.815 and p = .1531). Nevertheless, 

significant differences were observed between 2002 and certain years (2002 -1989: p = 

0.0162; 2002 – 2001: p = 0.0075; 2002 – 2012: p = 0.0439). 

                   

Figure 4.41 : Temporal dissolved oxygen variations of the Upper Kuils River from 1989 to 

2012 

 

4.3.4 Phosphate variations 

The mean values of phosphate concentrations varied over the years (Figure 4.42). The highest 

mean yearly phosphate concentration (1.00 mgL¯¹) was recorded in 2012 while the lowest 

means (0.064 mgL¯¹ and 0.092 mgL¯¹) concentrations were recorded in 2000 and 2002 

respectively. We found a significant difference between years (F = 3.115 and p = 0.0283). A 

decrease in concentrations was observed from 1989 to 2002 before a sudden increase in 2012. 

The difference is significant between 2012 and all years (p <.05) except 1989 (p = 0.1171).  
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        Figure 4.42 Temporal Phosphate variations of the upper Kuils River from 1989 to 2012 

4.3.5 Nitrate variations 

The mean yearly nitrate concentrations in the upper Kuils River varied from one year to 

another (Figure 4.43). The highest yearly mean nitrate concentration (1.2 mgL¯¹) was 

recorded in 1995 while the lowest mean (0.21 mg L¯¹) concentrations were recorded in 2002 

before rising to mesotrophic condition (1.007 mg L¯¹) in 2012. There is no significant 

difference between years (ANOVA - F = 2.611 and p = .0526). Nevertheless, significant 

differences were observed between 2000 and all other years (p-value: less than .05), and 

between 2002 and all years except in 1999. 

                       

        Figure 4.43 Temporal Nitrate variations of the upper Kuils River from 1989 to 2012 
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CHAPTER FIVE: DISCUSSION 

The chapters discusses the results of the preceding chapter. Abiotic parameters and 

macroinvertebrate fauna were sampled to evaluate land use practices and their impacts on 

water quality in the upper Kuils River.  

5.1 pH  

The water pH is one of the important factors that determines water quality. In many natural 

freshwater, pH values that support a diverse aquatic fauna ranged from 5.0 to 9.0 (DWAF, 

1996a). The pH values recorded here varied between 7.13 and 8.76. These values are 

indicative of alkaline conditions, and may be attributable to geological characteristics of the 

soil over which the river flows (Dallas and Day, 2004). With reference to South Africa’s 

Water Quality Guidelines, these values are within the natural limits suggested to protect fish 

life (6.5-9.0), and in accordance with domestic use (6.0-9.0). To protect aquatic ecosystems, it 

has been suggested in the South Africa Water Quality Guidelines that pH values must not be 

greater than 5 % of the allowable limit to a specific station (DWAF, 1996a and c). Other studies 

in the upper Kuils River catchment found similar result (Itoba, 2010; Feng, 2005; Ninham, 

1979). The alkalinity in the Kuils, Diep and Berg rivers is attributed to Malmesbury groups of 

rock which characterise the catchments (Adelana et al. 2010; Belcher, 2009; Nditwani, 2004). 

In the Luvuvhu river catchment, Makhera et al. (2011) attributed basic conditions to the 

geological formation of Sibasa basalt. In the Democratic Republic of Congo, natural alkalinity 

is observed in rivers that flow from Kahuzi Biega National Park. This natural alkalinity may 

be due to soils containing limestone mineral and igneous geology that originated from 

volcanic activity (Bagalwa et al. 2012; Ngera et al. 2009).  

Abowei (2010) attribute pH variation to 3 factors namely: influx, debris decomposition and 

imbalance of hydrogen ion from surface runoff during the rain period. According to Dallas 

and Day (2004), biotic activities and human impacts may also have an influence on pH levels.  

Downstream sites (K1, K2) had lower pH (Figure 4.8). This low pH may be due to high 

nutrients concentrations (nitrate and phosphate) from industrial and residential areas and road-

bridge. Several authors support the view that low pH values may be attributed to nutrient 

enrichment favorable to growth of plants. Aquatic plants including algae, and organic matter 

decomposition by bacterial produce high level of carbon dioxide that reduces pH in water 

body (Klerk et al. 2012; Golder Associated, 2011; Abowei, 2010; Igbinosa and Okoh, 2009; 
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Ramollo, 2008). The tributary site K4 upstream was characterized by high phosphate 

concentrations and many macrophytes. This site had low when pH compared to other sites.  

Other studies reported that a high TDS concentration is one of the major factors that influence 

pH fluctuations in aquatic ecosystems (Gueade et al. 2009; Ramollo, 2008; Hart and 

Campbell, 1994). These authors found that a decrease in pH values was proportional to low 

TDS concentrations in the Kuils River while higher pH related to an increased in TDS. 

Drawing on the ideas of these authors, there is a strong probability that higher pH values (K3 

= 8.185, K5 = 8.300) recorded at upstream sites (K3, K5) may be justified by an increased in 

TDS (K3 = 733.423 mg L¯¹, K5 = 747.692 mg L¯¹) concentration whereas lower pH (K1 = 

7.685, K2 = 7.84) at downstream sites may be attributed to lower TDS (K1 = 611.46 mg L¯¹, 

K2 = 640 mg L¯¹) at these sites.  

In many natural freshwaters, low pH levels increase the toxicity of some substances. The 

combination of elevated hydrogen ion concentrations and heavy metals in solution can 

eliminate many types of aquatic life (Kimmel et al., 1985). Both High pH values and low pH 

levels affect aquatic biota (Schofield and Trojnar, 1980). 

5.2 WATER TEMPERATURE 

In many freshwaters, temperature changes as a result of hydrological and climatological 

parameters of catchments and the region at spatial and temporal scales. Our results reveal that 

the water temperatures range between 12.3 °C and 27.1 °C. These values are within the 

margin for inland South Africa freshwater (5°- 30°C) DWAF, 1996a). Contrary to Vannote et 

al. (1980), the highest water temperatures (Figure 4.9) were obtained at upstream sites (K3, 

K4, K5). This result may be due to sampling time; we recorded the temperature in 

downstream sites (K1, K2) in the morning from 9:00 to 10:30 am while in upstream sites (K3, 

K4 and K5) temperature was recorded from 12:00 to 1:30 pm (Figure 4.10). Indeed, the 

changes in water temperature in many South African rivers were due to daily variation—with 

a decrease in water temperature during the night and early morning while an increase was 

observed from mid day to afternoon (Dallas and Rivers-Moore, 2011; Golder Associates, 

2011; Dallas, 2008). Poole et al. (2001) observed that the stream was heated during the day 

due to sun radiation and cools down during the night. In addition, the changes in water 

temperature may also be attributed to daily fluctuation of cloud cover and relative air 

humidity. The clearing of riparian vegetation and the removal of canopy cover also expose 
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small streams to significant temperature changes (Osibanjo et al. 2011; Dallas, 2008). In our 

study area, a near complete removal of riparian vegetation cover had disrupted the natural 

conditions of the river system. This has affected the ecological functions by increasing water 

temperature due to solar radiation which reaches the river (Fang, 2010; Dallas, 2008; Dallas 

and Day, 2004; Poole et al. 2001; Davies and Day, 1998; DWAF, 1996a). 

Located in a region with Mediterranean climate, the water temperature of the Kuils River is 

subject to seasonal variations. The highest monthly mean values of water temperature were 

observed in November 2012 at all sampling sites and the lowest values, which occurred in 

September 2012, may be due to temporal variations (Figure 4.2 and Figure 3.1). The seasonal 

temperature variations were similar to those reported by other authors (Ezekile et al. 2011; 

Abowei, 2010; Igbinosa and Okoh, 2009; Dallas, 2008; Ndiitwani, 2004).The algal 

proliferation coincided with the rise of water temperature at all sites in November 2012. High 

water temperature favors a rapid development of bacteria, phytoplankton and macrophytes 

and can cause algal bloom at high concentration of nutrients (Davies and Day, 1998; 

Chapman, 1996).  

Many studiess maintain that an increase in water temperature degrades the physical 

environment due to a reduction in dissolved oxygen, decrease pH, and increase BOD due to 

high microorganism activities (CWT, 2010; Abel, 2002; Rivers-Moore et al., 2008; Mason, 

2002; Chapman, 1996). High water temperature also accelerates the rates of chemical 

reactions and increases toxicity, as well as aquatic organism vulnerabilities. It affects 

abundance, species richness, diversity and composition of macroinvertebrate community. 

Many sensitive species (Ephemeroptera, Trichoptera, Plecoptera) may disappear because of 

oxygen depletion and be replaced by more tolerant species (Simuliidae and Chironomidae) 

which increase in number and supplant the original species in the ecosystem (Rivers-Moore et 

al. 2008; Dallas, 2008).  

5.3 TOTAL DISSOLVED SOLIDS 

Total dissolved solids (TDS) concentrations recorded in the present study ranged between 

416.0 mg L¯¹ and 916.5 mg L¯¹. These concentrations fall within the limit suggested by South 

African guidelines. For instance, for domestic water use, the guidelines suggest a range of 450 

to 1000 mgL¯¹ TDS (DWAF, 1996b) and from 200 to 1100 mgL¯¹ to protect aquatic 

ecosystems (Golder Associated, 2011; DWAF, 1996a). Naturally, total dissolved solids are 
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influenced by soil and geological characteristics of the catchment (Adelana et al. 2010; 

Dougall, 2007; Chapman, 1996). In the present study, high TDS concentration values 

recorded at all sampling sites are attributed to Malmesbury shales that characterize the upper 

catchment. These rocks include high quantity of leachable ions able to conduct electricity 

(Brown and Magoba, 2009; Leske and Buckley, 2003). Studies conducted above the 

confluence with Bottelary River (Ninham, 1979) and in Berg river catchment (Belcher, 2009) 

revealed similar results. The Berg river tributaries revealed that shale Rivers had higher 

salinity in comparison with the TMS Rivers which present lower salinity (Clark and Ractliffe, 

2007; Flugel, 1991). Dougall (2007) found that streams that flow over clay show higher 

conductivity because of the presence of materials that ionize when washed into the water. In 

the Democratic Republic of Congo, the high TDS concentrations recorded in Kahuzi-Biega 

National Park Rivers were attributed to the soil and igneous geology originating from 

volcanic action (Bagalwa et al., 2012). In North America, high salinity concentrations are 

attributed to weathering and leaching from shale and glacial deposit (Flugel, 1991).  

In addition to natural salinity attributable to geology, anthropogenic input in aquatic 

ecosystems and high water evaporation also lead to high total dissolved salts concentrations 

(Van der Laan, et al., 2012; Rabies et al. 2011; Augustijn et al., 2011; Hogan et al. 2007; 

Vhevha et al. 2000;). The clearing of Riparian vegetation and the removal of canopy cover 

observed from upstream to downstream is caused by urbanization, and agricultural activities. 

These may also have an influence on TDS concentrations change as reported by researchers 

such as (Kasangaki et al., 2008; Ndiitwani, 2004). In semi-arid regions, an increase in salinity 

concentration is often attributed to evapotranspiration associated with irrigation and open 

water evaporation (Hogan et al. 2007; DWAF, 1996a).  

In our study the spatial variation indicated lower TDS concentration at downstream sites (K1, 

K2) (Figure 4.11), which may be due to water dilution. The findings from this study are at 

variance with Dougall’s (2007) study in United State of America. The increased flow rates 

(volume of water) may contribute to a decrease of TDS downstream (Marcellus, 2009; 

Deksissa, et al., 2003). It has been shown that electrical conductivity decreases with distance 

because of H₂SO₄ concentration in the headwaters diluting with distance (Dougall, 2007; 

Chapman, 1996). Both sites K1 and K2 were not significantly affected by industrial zones and 

waste from bridges. At the upstream sites (K3, K4, K5) the rise in TDS concentration may be 

due low-flow (Marcellus, 2009; Deksissa, et al, 2003; U.S Department of the interior, 2005). 
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At site K4 high TDS levels may also be accelerated by decomposition of plant material 

(DWAF, 1996a). Several authors suggest that an increase in flow leads to a decline of TDS 

because of dilution rates while higher salts concentration may be attributed to low-flow and 

high water evaporation (Van der Laan, et al., 2012; Klerk et al. 2012; Abowei, 2010; Clark 

and Ractliffe, 2007; Marofi and Maryanaji, 2007; Salinas et al., 2000; Flugel, 1991). 

The changes in TDS concentrations may affect individual species, community structure and 

nutrient cycling (DWAF, 1996a). The toxicity of salinity to macroinvertebrates often occurs 

at very high concentrations and varies from one species to another (O’Hayre and Amendola, 

2010). High TDS may cause osmotic stress and affect osmoregulatory ability of aquatic fauna 

(Igbinosa and Okoh, 2009).  

5.4 DISSOLVED OXYGEN 

Dissolved oxygen is a fundamental factor used to determine aquatic ecosystem health (Nel et 

al. 2013). To protect fish and macroinvertebrates, the South African Guidelines suggest a 

Target Water Quality Range (TWQR) from 80 % to 120 % of oxygen saturation; saturation 

below 40 % may be lethal for aquatic life (DWAF, 1996a). In the present study, dissolved 

oxygen concentrations from 65 water samples collected in 5 sites ranged between 4.26 mgL¯¹ 

(46.3 % ) and 14.68 mgL¯¹ (154 %) in the main stream, and between 0.07 mgL¯¹ (0.8 %) and 

9.9 mgL¯¹ (100.5 %) in the tributary. Compared to TWQR, 86.15 % of our samples fall 

within limits suggested by South Africa guideline, whereas 13. 85 % of the samples are 

unacceptable to support many life stages. Nel et al. (2013) found similar results which suggest 

that the Kuils river water quality fell from natural in 2005 to unacceptable categories in 2008 

for DO.  

As regards spatial scale, the mean dissolved oxygen varied between 8.85 mg L¯¹ at K1 and 

9.48 mg L¯¹  at K5 (Figure 4.13). This variation indicates that the Kuils River water quality 

fell within the natural category (Nel et al. 2013). However, poor dissolved oxygen levels 

recorded at site K4 during the majority of sampling periods may be attributed to slow or 

stagnant water, high phosphate concentrations, high phosphate concentrations, decaying 

vegetable matter, storm water and surface runoff from residential area and golf course. 

Dowling and Wiley (1986) reported that a decline in oxygen in slow flowing streams is 

attributed to the action of spring floods in removing vegetation or to high decay of organic 

matter followed by an increasing water temperature. The discharge of effluents from 
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residential zone and decaying plant in receiving water bodies also reduce dissolved oxygen 

concentrations as a result of the increased microbial activities occurring during the 

degradation of organic matter (Nel et al. 2013; CSIR, 2010; Osibanjo et al. 2010; Oberholster 

and Ashton, 2008; Dallas and Day, 2004; Mason, 2002; DWAF, 1996a). Oxygen depletion 

depends on the total amount and nature of the organic material load in the rivers, and the 

numbers and types of bacteria which degrade waste discharged into the river (Mason, 2002). 

High biological oxygen demand (BOD) depletes oxygen in natural aquatic ecosystems 

because microorganisms are using up the dissolved oxygen (Canadian council of Ministers of 

the Environment, 1999). 

 High oxygen concentrations occurred during the major part of our sampling period may be 

attributed to the wet period. During the rainy season dissolved oxygen concentration is often 

higher because the rain interacts with oxygen in the air as it falls (Mason, 2002). The temporal 

fluctuations showed higher mean dissolved oxygen in September and October 2012 due to 

lower temperatures while a decrease in dissolved oxygen was observed in November 2012 

when temperature increased (Figure 4.5). In addition, during dry and hot periods, water 

movement is slow because it mixes less with the air which leads to a decline in dissolved 

oxygen concentration. Water quality degradation in DO (5.404 mgL¯¹) in November 2012 

coincided with algae proliferation which may be due to high phosphate concentrations. Many 

studies revealed that high nitrate and phosphate concentrations results in eutrophic conditions 

and algal blooms (primary productivity) that cause oxygen depletion (e.g Nyenje et al. 2010; 

Chapman, 1996; Perry and Vanderklein, 1996; NRC, 1978). Similar results were obtained on 

studies carried out in Bottelary River, the main tributary of the Kuils River (Itoba, 2010; Ma, 

2005) and in Nigeria (Ezekiel et al. 2011). Several studies confirm that seasonal fluctuations 

of dissolved oxygen are higher in wet winter and lower during the dry season (Annalakshmi, 

and Amsath, 2012; Rahman et al. 2012; Panigrahi and Patra, 2011; Manikannan et al. 2011; 

Nkwoji et al. 2010; Pejman et al. 2009; DWAF, 1996a). 

The depletion of dissolved oxygen is usually linked to accumulation and decomposition of 

dead organic matter which consumes oxygen and generates harmful gases such as methane 

and hydrogen sulfide (Frost and Sullivan, 2010; Nyenje et al. 2010). In aquatic ecosystem, 

oxygen is a fundamental factor that influences fauna composition. The oxygen requirements 

of benthic macroinvertebrates vary with species, life stages and different life processes 

(Alabaster and Lloyd 1982 cited by NWQMS, 2000), and size. The more sensitive benthic 
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macroinvertebrates including Ephemeroptera (mayflies), Trichoptera (caddisflies), and 

Plecoptera (stoneflies) which respire with gills or by direct cuticular exchange decline and 

may be entirely eliminated with oxygen depletion (Abel, 2002; Dallas and Day, 2004). The 

tolerant taxa are Oligochaeta (worms), Hirudina (leeches), and Chironomidae (chironomids) 

which usually dominate over other benthic macroinvertebrates in the more altered water 

(Couceiro et al., 2007; Abel, 2002). 

 

5.5 PHOSPHATE CONCENTRATIONS 

 

In many natural freshwaters, phosphate appears as dissolved orthophosphate where their 

concentrations vary between 0.005 mg L¯¹ and 0.020 mg L¯¹ (Mason, 2002; Chapman, 1996). 

To protect aquatic ecosystems, South African Guidelines record that phosphorus 

concentrations < 0.005 mg L¯¹ are associated with oligotrophic conditions, whereas 0.005 – 

0.025 mg L¯¹ indicates mesotrophic conditions, concentrations from 0.025 to 0.250 mg L¯¹ 

indicate eutrophic conditions and concentrations greater than >0.250 mg L¯¹ lead to 

hypertrophic conditions (Nel et al. 2013; Van Ginkel, 2011; DWAF, 1996a). In many South 

Africa natural water resources, the mean value of phosphorus concentrations is 0.73 mg L¯¹. 

This value shows that many South Africa Rivers are excessively enriched and indicate 

hypertrophic conditions (Oberhoster and Ashton, 2008). In the present study, phosphate 

concentrations (0.28 mgL¯¹ to 5.27 mg L¯¹) exceed the recommended limits by ecosystem 

health criteria in South Africa showing hypertrophic condition.  

Higher mean value of phosphate concentration at downstream site (K1) (Figure 4.15) is 

attributed to overloading of discharge from hospital, industrial and residential areas, and 

discharge from road-bridge. Recently, Nel et al. (2013) found that Kuils River presents 

unacceptable water quality in terms of phosphate concentrations. The previous studies carried 

out in Kuils and Bottelary rivers catchment present similar results (Feng, 2005; Ma, 2005). 

Several studies carried out in many South Africa rivers including Cape Town rivers and 

streams revealed that higher phosphate concentrations were due to waste water treatment 

works, detergent, industrial and informal settlement effluents, pump stations, recreational 

grass, golf courses and agricultural irrigation (Nel et al. 2013; Van Ginkel, 2011; CSIR, 2010; 

Belcher 2009; Oberholster and Ashton, 2008; Clark and Ractliffe, 2007; De Villiers, 2007). In 

Nigeria, several studies revealed that the discharge of effluents from industrial areas are 

responsible for high phosphate concentrations which favor eutrophic conditions (Osibanjo et 
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al. 2010; Igbinosa and Okoh, 2009). Other authors found similar results (Annalakshmi and 

Amsath 2012; Bisimwa, 2009). 

Compared to K3 and K5, the high level of phosphate observed at site K4 (Figure 4.15) may 

be attributed to dead vegetation litter, storm water from residential and golf courses areas, and 

to slow and shallow water which characterize the stream. Because there is a significant 

difference between K3 (downstream) and K4, one might reasonably suppose that high 

concentration observed at site K4 did not affect significantly the river in terms of phosphate. 

The tributary site K4 is a temporary small stream susceptible to increase in phosphate 

concentrations in the main river during the rainy period.  Davis and Koop (2006) reported that 

in shallow aquatic ecosystem, the subsurface sediments constitute a primary source of 

phosphate concentrations. To avoid flooding during winter, all aquatic vegetation in site K4 

was cleared and left in the stream with the aim of increasing nutrients. In Forest Rivers and 

streams, decomposition of organic matter from the riverbank vegetation is the main source of 

nutrients (Bagalwa et al. 2012).  

The temporal variation shows higher monthly means of phosphate concentrations in 

November 2012 (Figure 4.6) which may be due to rain reduction. Recently, Klerk et al. 

(2012) and Clark and Ractliffe (2007) associated high flow and discharge with low phosphate 

concentrations due to dilution, while dry period with low flow showed highest phosphate 

concentrations. In many Nigeria water bodies, higher concentrations of pollutants are 

observed in dry season due to low dilution of effluent (Kanu et al. 2011; Igbinosa and Okoh, 

2009). The increase in phosphate concentrations in November 2012 coincides with algae 

proliferation at all sampling sites. There is evidence that in many freshwaters, high levels of 

phosphate concentrations lead to eutrophication that stimulates the growth of blooms of 

cyanobacteria, and excessive growth of macrophytes (Van Ginkel, 2011; Karels and Petnkeu, 

2010; Belcher, 2009; Allan, 2004; Fried et al, 2003; Mason, 2002; Chapman, 1996; Jones and 

Lee, 1984). The excessive alga blooms alter water quality in term of oxygen depletion which 

leads to a loss of sensitive biodiversity in term of abundance, composition and species 

richness. In the Upper Kuils River, aquatic biota were dominated by tolerant species such as 

Chironomid, Gastropod, Hirudina and Simulid which may be linked to their ability to tolerate 

the lower oxygen concentrations (Frost and Sullivan, 2010; Nyenje et al. 2010; Dodds, 2006; 

Rast and Thornton, 1996). 
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5.6 Nitrate concentrations 

Nitrate is usually more abundant than phosphorus in aquatic ecosystems (Scindler, 1974 and 

1977). In natural South Africa freshwater, inorganic nitrogen concentrations are less than 0.5 

mg L¯¹ and may range between 5 and 10 mgL¯¹ when water is highly impacted (DWAF, 

1996a). To protect human health, South Africa Guidelines suggest a range of 0 – 6 mg L¯¹ as 

nitrate concentrations without adverse health effects, and from 0 – 100 mg L¯¹ with no 

adverse effects for livestock watering (DWAF, 1996b and 1996c). To protect aquatic 

ecosystems the South Africa guidelines propose the following ranges of nitrate 

concentrations: <0.5 mg L¯¹ as oligotrophic conditions and from 0.5 – 2.5 mg L¯¹ as 

mesotrophic conditions (DWAF, 1996a). In the present study weekly means of nitrate 

concentrations at all sampling sites show mesotrophic conditions ranging between 0.680 and 

1.340 mg L¯¹. 

Spatial distributions of nitrate concentrations reflect the nature and type of pollutant sources 

from upstream to downstream sites. At downstream sites (K1 and K2), higher nitrate 

concentrations (Figure 4.14) are attributed to wastewater discharge and runoff from industrial 

areas, decomposition of organic matter under the bridge, and storm water and runoff from 

residence and hospital areas. Nel et al. (2013) found that unacceptable water quality category 

in Kuils River was due to waste water treatment work, leaking sewers and storm water ingress 

or infiltration. Several other studies support that high nitrate concentrations are due to 

discharges from industrial effluents and urban runoff into the rivers (Kanu et al. 2011; 

Osibanjo et al. 2010; Oberholster and Ashton, 2008; De Villiers and Thiart, 2007; 

Environment Canada, 2003; Mason, 2002; Novotny, 2002; Fatoki et al. 2001; Fleming and 

Fraser, 1999). Annalakshmi and Amsath, (2012) cited manures, inorganic fertilizer, sewage 

disposal and ground water as principal sources of nitrate concentrations in surface water. In 

comparison with other sites, K4 had low nitrate concentration (0.09 mgL¯¹) may be due to 

rapid growth of aquatic plants, and shallow and slow water which often dries in summer. 

Several studies support that growth of macrophytes and algae consume nitrate and lead to an 

elevated evapotranspiration rates (Mason, 2002; Johnes and Burt, 1993).  

Although temporal variation (Figure 4.7) was not observed in the present study, other studies 

revealed the highest nitrate concentration in winter and spring while a decrease was observed 

in summer due to greater biological productivity and high rates of evapotranspiration 

(Environmental Canada, 2003). Many researchers found that denitrification rates increase 

 

 

 

 



96 

 

with increasing temperature (Cavari and Phelps, 1977; Holmes et al. 1996). Generally, nitrate 

is non toxic to aquatic organisms, however, higher concentrations can be harmful to juvenile 

organisms (Annalakshmi and Amsath, 2012). 

5.7 HISTORICAL DATA  

This section discusses historical water quality data of the upper Kuils River over twenty years 

(1992-2012). The yearly variation in water temperature shows no major difference. Poole et 

al. (2001) reported that it is difficult to predict inter-annual variation in water temperature. 

However, many researches link the inter-annual thermal change in water temperature with 

human influences associated with increasing population growth and climate change (Dallas, 

2008). The mean water temperature which ranged from 15.21°C in 2002 to 20.3°C in 1992 

fell within the acceptable limit to protect aquatic ecosystem. Many South African inland 

waters indicate water temperature range from 5°C to 30°C (DWAF, 1996a). 

The pH values indicate alkaline conditions due to the influence of soil geology. The 

differences observed after each ten years may be attributed to human activities. In 1992 the 

pH was 7.783 then decrease deeply in 2002 to 7.217 before increasing to 7.903 in 2012.  

Dissolved oxygen shows the same trend between 2002 and 2012 (p = .0439). The mean 

dissolved oxygen recorded in 1992 was (6.917 mgL¯¹) then decrease slightly in 2002 to (5.433 

mgL¯¹) before improving to (8.233 mgL¯¹) in 2012. According to South Africa guidelines, 

those values varied from good to fair category in terms of water quality (Nel et al. 2013).   

In 1992 nitrate concentrations were high (1.00 mgL¯¹) then decline to (0.218 mgL¯¹) in 2002 

before increasing to (1.007 mgL¯¹) in 2012. A significant difference was observed after each 

ten year period (1992-2002: p = .0307 and 2002-2012: p = .0295). With regards to phosphate, 

in 1992 the concentration value was 0.289 mgL¯¹ followed by a drop of 0.092 (mgL¯¹). It then 

rose agian in 2012 to (1.000 mgL¯¹). A significant difference was observed between each ten 

year period (1992 – 2012: p = .0127 and 2002-2012: p = .0027) may be due to population 

growth and extension of the urban area. According to South Africa guidelines the trophic 

conditions ranged from mesotrophic to hypertrophic conditions (Nel et al. 2013; Van Ginkel, 

2011). The main causes of water quality degradation include population growth, industrial 

activities, urban development, and an increasing demand for agricultural irrigation and stock-

water, and combustion of fossil fuels (Voelz et. al, 2005; Davies et al., 2010; Boesch, 2002).  

Galloway and Cowling (2002) revealed that during the last century, anthropogenic Nitrogen 

exceeded natural sources owing to rising demand for food due to growing human population.  An 
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increasing trend in nitrogen or phosphorus was noticed in many seas after 1950s and primary 

production by phytoplankton doubled from 1960s to the 1990s (Boesch, 2002). In Cape Town, 

the population growth (2,563,095 in 1996 to 3,740,026 in 2011), rapid industrial and residential 

development, and increased road infrastructure observed from 2001 to 2011 seem to go together 

with the rise of nutrient in the river (City of Cape Town, 2011b; City of Cape Town, 2012; River 

Health Programme, 2005). In many Cape Town rivers the phosphorus concentration increased 

from 0.125 mg L¯¹ in 2000 to >0.25 mg L¯¹ in 2011 (City of Cape Town, 2011c). Studies 

conducted by De Villier and Thiart (2007) and De Villier (2007) revealed that phosphate and 

nitrate concentrations had doubled after ten years (1995 – 2004) due to anthropogenic input such 

as fertilizer and sewage effluent. The most pronounced concentration levels of 10.05 μgP L¯¹ per 

year were observed in Swartkops River (Eastern Cape) from 1970 to 2005. 

In Southern Ontario, Fleming and Fraser (1999) showed trends in nitrate concentrations over 

time from 1960s to 1990s. In urban sites, nitrate concentrations was 1.03 mgL¯¹ between 1964 

and 1969, then 1.77 mgL¯¹ from 1980-1989 and 3.35 mgL¯¹ from 1990 -1994. In contrast a 

decrease in phosphate concentrations was observed from 2.17 mgL¯¹ in 1960s to 0.09 mgL¯¹ 

in 1990s. The clearing of riparian vegetation due to extending of urban area also reduced the 

capacity of river catchment to retain nutrient resulting in the elevated nutrient loads, flow 

modification, and low dissolved oxygen concentrations (River Health Programme, 2006, 2005 

and 2003; Boesch, 2002). 

 

5.8 MACROINVERTEBRATES AND WATER QUALITY 

 

At all sampling sites, a total of 8409 specimens representing 28 families and 11 orders were 

sampled. The most abundant orders included the Gastropoda, Diptera, Ephemeroptera, 

Oligochaeta, and Hirudina. The macroinvertebrate composition indicates weak diversity in 

macroinvertebrates fauna probably due to physical and chemical degradation coupled with 

low substrate diversity. There is much evidence which indicates that the nature and diversity 

of substrates influence the abundance, composition and distribution of macroinvertebrate at 

different sites. For each specific group there is a habitat preference which influences the 

benthic macroinvertebrate distribution in the river system (Klemm et al. 1990; Silveira et al. 

2006). Dallas, (2007) asserted that stone and vegetation lodge the higher number species of 

benthic macroinvertebrate, whereas sandy biotopes are characterized by a lower number of 

species. 
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At downstream sites (K1 and K2) low diversity (Figure 4.30) may be attributed to a sand 

biotope and a growth of algae bound on marginal and aquatic vegetation. In addition, these 

sites receive wastewater from urban and industrial areas and debris from road-bridges 

resulting in many hazardous chemical substances which affect aquatic biota. These sites were 

dominated by Physidae (Gastropoda). According to Davies et al. (2010) the predominance of 

Gastropoda in urban stream, a decrease in biodiversity, and lower EPT score are due to habitat 

degradation. Fisher (2003) reported that the poor diversity in Kuils River is caused by the 

predominance of sand which is not the ideal habitat for benthic macro invertebrates.  

 

At the upstream sites (K3 to K5) the increase in diversity (Figure 4.30) may be due to litter 

and marginal vegetation, stones, solid blocks, and gravel. These substrates are favorable for 

settlement of benthic macroinvertebrates. Those sites were populated by Simuliidae (Diptera), 

Chironomidae (Diptera), and Baetidae (Ephemeroptera). Some families belonging to Odonata 

(Coenagrionidae, Libellulidae and Aeschnidae) having vegetation as a preferential biotope 

(Dallas, 2007) were also recorded in small numbers. The small tributary site (K4), 

characterized by decaying and aquatic vegetation showed the predominance of Corixidae 

(Hemiptera), Chironomidae, and Simuliidae. The Oligochaeta and Hirudina showed a regular 

pattern at all sampling sites.  

 

In the present study, all benthic macroinvertebrates found at all sampling sites are widespread 

in many Cape Town Rivers (Smith-Adao, 2004; Fisher, 2003). Many studies have shown that 

urban impacts reduce macroinvertebrates diversity resulting in a community dominated by 

tolerant taxa such as Oligochaeta (worms), Simulidae (black flies), Chironomidae 

(bloodworms), Hirudina (leeches) and Gastropoda (snails) while the sensitive taxa belonging 

to Ephemeroptera, Plecoptera, and Trichoptera decline in abundance and diversity (Souto et 

al. 2011; Al-Shami et al. 2010; Davies et al. 2010; Makoba et al. 2008; Miserendino, et al., 

2008; Roberston, 2006; Silveria et al., 2006; Abel, 2002; Paul and Meyer, 2001; Davies and 

Day, 1998; Winter and Duthie, 1998). Overall, these taxa were recorded at all sampling sites; 

they are tolerant to water pollution. It has been found that changes in environmental 

conditions in aquatic ecosystems affect abundance and composition of benthic 

macroinvertebrates (Klemm, et al., 1990). According to Knoben et al. (1995) human actions 

at the landscape scale are a principal threat to the ecological integrity of river ecosystems, 

impacting habitat water quality and biota. The high nitrate and phosphate concentrations led 
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to hypertrophic conditions that stimulate the growth of algae. The excessiveness of algae 

decreased the amount of oxygen in the water causing a change in macroinvertebrates 

composition, abundance and diversity (Kolar and Rahel, 1993).  

 

5.9 SOUTH AFRICAN SCORING SYSTEM (SASS) 

 

Untreated stormwater runoff from urban areas includes a variety of pollutants which are 

harmful to benthic macroinvertebrates and alter water quality (Voelz et al., 2005). In South 

Africa, to assess land use impacts on water quality the South African Scoring System index 

was initiated using benthic macroinvertebrates (Dicken and Graham, 2002; Dallas, 2007). 

With respect to water quality, there are sensitive species with higher scores and tolerant 

species with lower scores (Dallas, 1997).  

 

According to the RHP the mean SASS and ASPT scores evaluated in the 5 sites were below 

50 and 4 respectively. These values were less than the limit recommended by the South 

African Guidelines (Golder Associates, 2009; Dallas, 2007b; Dicken and Graham, 2002). The 

low values obtained up river may be due to the low score attributed to tolerant taxa and poor 

diversity of benthic macroinvertebrate fauna found. The majority of taxa found during our 

sampling period are tolerant to water pollution and have a score that ranged between 1 and 5. 

From our findings, lower SASS scores at downstream sites (K1, K2) (Figure 4.34) may result 

partly from poor habitat suitability for benthic macroinvertebrates due to homogeneity of sand 

biotope. In addition hypertrophic conditions due to pollutants from industries, road-bridges, 

storm water and surface runoff from industrial and residential areas may also affect the 

macroinvertebrate fauna composition. The predominant taxa and their respective score are 

Physidae (Pouch snail: 3), Oligochaeta (worms: 1), Hirudina (leeches: 3), Chironomidae 

(Midges: 2). The low score attributed to each taxon justifies the lower SASS and ASPT scores 

and therefore shows water quality degradation. These taxa are tolerant of low dissolved 

oxygen and high nutrients loads (Armah et al. 2012; Al-Shami et al. 2011). 

About one decade ago, Fisher (2003) examined the impact of channelization on the 

geomorphology and ecology of the Kuils River and found that lower SASS (less than 20) and 

ASPT (below 5) scores were due to both bad water quality and sand biotope. Several authors 

have showed that the lack of diversity and abundance of biotopes on the one hand, and poor 

physical and chemical characteristics on the other hand had an influence on macroinvertebrate 
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diversity; and therefore on SASS5, NoT and ASPT score (Couceiro et al. 2007; Dallas, 2007, 

Thirion, 2007; Dallas, 2005; CES, 2004; Dicken and Graham, 2002; Dallas, 1997; Klemm et 

al. 1990).  

At the upstream sites (K3, K5) a slightly higher SASS and ASPT scores (Figures 4.34 and 

4.36) could be explained by aquatic vegetation, gravel and solid blocks or stones observed in 

the river. Studies conducted by Dallas (1997) and Coastal and Environmental Service (2004) 

revealed that stones habitats have high SASS and ASPT scores due to elevated number of 

sensitive species, followed by vegetation biotopes while lowest SASS and ASPT scores occur 

in sand biotopes. Similar results were also obtained in the Western Cape and Mpumalanga 

(Dallas, 2007) and also in Lourens River respectively (Smith-Adao, 2004). 

Several studies support the view that the temporal change in environmental characteristics 

may affect benthic macroinvertebrates favoring an increase in non-sensitive species (Dallas, 

2004; Reece and Richardson, 2000). In the present study, the monthly variation in SASS and 

ASPT score was not observed during all sampling periods. However, a progressive change in 

abundance of tolerant taxa was noticed from October to November. In October the 

predominant macroinvertebrates included Diptera (Simuliidae and Chironomidae: 1489 

specimens), Gastropoda (Physidae: 901 specimens), Oligochaeta (348 specimens), Hirudina 

(56 specimens), and Baetidae (62 specimens).  In November an increase in abundance for the 

same taxa was observed: Diptera (Simuliidae and Chironomidae: 1506 individuals), 

Gastropoda (Physidae: 1570 individuals), Hirudina (289 specimens), and Ephemeroptera 

(Baetidae: 504 specimens) except Oligochaeta which decrease with 237 specimens. These 

taxa dominate other benthic macroinvertebrates, and therefore they lead to lower SASS and 

ASPT scores (Zweig and Rabeni, 2001; Davies and Day, 1998; Dallas, 1997; Lenat et al. 

1979). 

 

5.10 THE CURRENT ECOLOGICAL STATE COMPARED TO THE RIVER’s 

HEALTH IN 2005 

 

In reference to the South African RHP, the upper reach of the Kuils River presents 

unacceptable water quality due to low scores attributed to non-sensitive taxa (Nel et al. 2013; 

Golder Associates, 2009). Most of the macroinvertebrates collected at the different sites have 

low score except some taxa such as Chlorocyphidae (score = 10), Aeschnidae (score = 8), and 

Naucoridae (score = 7).  
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At downstream sites (K1, K2), with SASS (7 to 24) and ASPT (2.3 to 3.42), the water quality 

is classified in category F i.e critically impaired (Table 4.3). In critically impaired water, 

there are only very few tolerant pollution taxa that subsist (Golder Associates, 2009). The 

ecological category of water at upstream sites (K3, K4 and K5) is E i.e seriously modified and 

only tolerant taxa exist in the water body except some taxa cited above (Golder Associates, 

2009). Currently, high values of nitrate and phosphate concentrations were recorded with 

higher values at downstream sites (K1 and K2) than upstream sites (K3, K5). According to the 

South African guidelines, the water quality in terms of nutrient varies from eutrophic to 

hypertrophic conditions. It is clear that industrial areas are the principal cause of water 

degradation in the river in terms of nutrient enrichment. Many studies indicated that high 

nutrient concentrations recorded in rivers and streams originating from human activities 

differring with land use (De Villeirs and Thiart, 2007; Environment Canada, 2003; Mason, 

2002; Fatoki et al. 2001).  

In 2005, the aquatic ecosystem health of the upper reach of the Kuils River was in category D 

i.e fair condition (RHP, 2005). The river was characterized by a loss of pollution-sensitive 

benthic macroinvertebrate taxa. The sensitive macroinvertebrates are replaced by non-

sensitive species (City of Cape Town, 2011c; Belcher, 2009; River Health Programme, 2005). 

According to RHP (2005) stormwater runoff waste and detritus from urban areas were major 

causes of water quality degradation which may also pose a problem to human health. In terms 

of nutrient enrichment, the Kuils River water quality ranged from fair to unacceptable while  

dissolved oxygen varied from natural to good (Nel et al. 2013).  Comparing the historic data 

to the present study, we notice that nutrient concentrations (nitrate and phosphate) in Kuils 

River have increased from 2002 to 2012, probably due to growth of population and rapid 

urban development. Brown and Magoba (2009) and City of Cape Town (2011c) have 

maintained that water quality degradation in terms of nutrient enrichment (nitrate and 

phosphate) may be due to human activities. Information from monitoring points in Cape 

Town rivers have shown that possible sources of pollution include informal settlements, 

industries, wastewater treatment works, pump stations, golf course runoff, urban runoff and 

leaking sewers (Nel et al. 2013; Ninham, 1979). 

In addition to nutrient enrichment, the River Health Programme (2005) maintains that the 

poor habitats noticed in many Cape Town Rivers are due to channelization which resulted in 

loss of benthic macroinvertebrate. Despite efforts made since 2002 by the City of Cape Town 

to protect water quality and ecological resources, and to ensure the environmental health 
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(Brown and Magoba, 2009) many Cape Town Rivers including Kuils River water quality 

remained impaired due to human impacts (River Health Programme, 2005). Studies 

conducted by Fisher (2003) indicated that the SASS and ASPT scores averages were less than 

20 and 4 respectively which indicate that the ecological health of the river is crit ically 

modified. In Fisher’s perspective, the large number of Chironomidae and Simulidae was 

associated with water quality degradation.  
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CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS 

This chaper presents the conclusions and some reommendations in light of the preceding 

discussions. Given the location of the Kuils River coupled with the mediterranean climate it 

experiences, the Kuils River is under pressure from urban extension from the City of Cape 

Town due to rapid population growth. Characterized by various wetland ecosystems that play 

important ecological and economic roles, the Kuils River requires a good management 

scheme to ensure its conservation and protection.  These wetlands are important for the 

maintenance of the Cape Flats aquifer, for aquatic life, to attenuate floods and improve water 

quality by the uptake of nutrients, as well as filtering pollutants and sediments (Heydorn and 

Grindley, 1982).  

The study was conducted in the upper reach of the Kuils River and compared the state of the 

river in 2012 to that of 2005 using Water Quality parameters and the South African Scoring 

System. Our results show that the nature and quantity of pollutants vary according to land use 

practice which impacts the river. The major sources of pollution include storm water and 

surface runoff from urban and industrial area and golf courses and organic matter from litter 

under the road-bridges. However, the industrial processes can have far-reaching implications 

for water quality in the study area. 

Nutrient enrichment (phosphate and nitrate mainly) was higher at all sampling sites than the 

limit set in the South African guidelines to protect aquatic ecosystems. Phosphate and nitrate 

concentrations classified the river into hypertrophic and mesotrophic conditions respectively. 

The phosphate and nitrate concentrations during the study period combined with a low level 

of dissolved oxygen in November 2012, and abundant growth of algae at downstream sites are 

issue of major concern. The high nutrient load associated with rapid growth of algae 

constitutes a precursor to general eutrophic conditions in the river, a situation that could 

potentially lead to anoxic conditions with severe consequences for the fauna of the river.  

Because of the nutrient overload observed, it is undoubtedly true that the high dissolved 

oxygen levels recorded in this study were due to the rain. Thus, there is strong evidence that 

the decrease in dissolved oxygen recorded in November 2012 parallels the high nutrient 

(nitrate, phosphate) in the study area. In addition to the Malmesbury shale conditions of the 

catchment area, high total dissolved salts (TDS) and basic conditions (high pH) observed at 

all sampling sites were influenced by human impacts.      
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Biological monitoring through benthic macroinvertebrates confirmed the bad ecological state 

of the river. From the SASS5 scores recorded at all sampling sites, it may be concluded that 

the upper reach of the river has unacceptable water quality. Although the SASS5 and ASPT 

score at upstream sites appeared to be high than at downstream sites, these values were below 

50 and less 3.5 respectively. This indicated that water quality in this study area is critically 

modified.  

The upper reach of the river is critically modified and almost all of the original biotope and 

macroinvertebrate species have been lost. Poor water quality and biotope availability were the 

main cause for poor biodiversity in the river. As a matter of fact, the predominance of non-

sensitive taxa on the one hand, and the absence of pollution sensitive taxa on the other hand at 

upstream sites and downstream sites were the major causes for low SASS5 and ASPT scores 

and therefore indicate poor water quality. Certain BMI belong to Plecoptera, Trichoptera, and 

Ephemeroptera are known as sensitive to water pollution and respond rapidly to change in 

water quality. These indicators of good water quality were totally absent during our study 

period. 

 The taxa accumulation curve (ascending curve) showed that if the sampling would continue, 

additional taxa might be recorded. However, the high similarity observed between sites 

showed that the absence of the non-tolerant species for one, and low macroinvertebrates 

diversity for another resulted from poor water quality and low habitat diversity in the river.    

From evidences above, there is a strong possibility that the upper reach of the Kuils River is 

more altered than in 2005. In 2005 the upstream Kuils River water quality was found to be in 

fair conditions. However, the duration of our study (three months) was too short and limited 

to certain parameters and they cannot confirm that the river is polluted from upstream to 

downstream. 

To other researchers and Department of Water Affairs, we recommend: 

To extend this study at all seasons from upstream to downstream to include other parameters 

namely heavy metals, index of habitat integrity, and microbial studies to have a 

comprehensive view of the river functioning. Due to inadequate functioning, the Kuils River 

requires restoration to avoid the risk of losing its economic and ecological values.  
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Regular bioassessment and monitoring is necessary to evaluate human influences on water 

quality to ensure good water management and to propose measures of mitigation by DWAF to 

minimize pollution effects. Macroinvertebrates, microbiology and physical and chemical 

parameters should be used to understand the functioning of river.   
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Appendices 1. Physical and chemical parameters recorded weekly at different sites 

1st Week: 4th September 2012  

     Sites T(°C) pH DO(mgL¯) Oxysat (%) TDS (mgL¯) Salinity  (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 17.5 8.15 14.68 154.3 864 0.67 ND ND 

K4 15.5 7.68 9.9 100.5 825.5 0.64 ND ND 

K3 16.5 8.41 14.66 151 916.5 0.71 ND ND 

K2 13.5 7.81 11.66 112.1 780 0.61 ND ND 

K1 12.3 7.56 11.46 106.7 786.5 0.61 ND ND 

2nd Week: 11th September 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 16.2 8.17 10.22 103.3 767 0.59 ND ND 

K4 15.4 7.66 8.63 86.8 680.5 0.48 ND ND 

K3 14.7 7.94 9.74 96.5 747 0.58 ND ND 

K2 14 7.75 9.82 95.6 604.5 0.46 ND ND 

K1 13.9 7.63 9.55 92.9 500.98 0.46 ND ND 

3rd Week: 18th September 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 20.4 8.14 8.25 91.5 617 0.47 0.5 0.24 

K4 19.2 7.42 3.46 37.5 715 0.55 0.6 1.33 

K3 18.8 7.94 8.33 89.5 520 0.40 0.6 0.24 

K2 17.1 7.52 7.67 79.7 520 0.39 2.1 0.48 

K1 16.1 7.58 8.74 88.4 728 0.56 1.5 0.28 

4th Week: 24th September 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 19.4 8.1 8.98 98.3 734 0.56 1 0.31 
K4 16.7 7.76 8.09 83.7 676 0.52 0.6 1.55 

K3 16.9 7.95 8.81 91.3 702 0.54 0.8 1.01 

K2 15 7.76 9.3 91.6 500.5 0.38 1.1 0.33 

K1 14.9 7.60 9.1 90.6 494 0.38 1.4 0.39 

5th Week: 2nd October 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 21.1 8.14 9.4 106 780 0.61 1.4 0.2 

K4 18.6 7.92 9.6 106.2 591.5 0.45 0.6 1.48 

K3 19.4 8.02 8.6 94.2 754 0.58 1 0.51 

K2 16.6 7.81 8.7 92.2 689 0.53 1.9 0.49 

K1 15.9 7.66 8.8 89.4 682.5 0.52 1.8 0.40 

6th Week: 9th October 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 18.38 8.48 9.63 103 825 0.64 1.3 0.11 

K4 15.6 8.08 8.55 86.1 572 0.44 0.9 1.32 

K3 18.1 8.36 9.27 99.6 806 0.62 1.3 1.34 

K2 17 8.18 9.96 103.6 663 0.51 1.4 0.39 

K1 16.8 8.01 9.69 99.6 656.5 0.50 1.6 0.33 

7th Week: 16th October 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 25.1 8.76 10.69 128.5 799 0.61 0.1 0.24 

K4 24.6 7.77 4.31 51.1 754 0.57 0.6 1.4 

K3 22.1 8.54 11.12 127.7 812.5 0.62 0.8 0.37 

K2 18.6 8.13 9.73 104.2 695.5 0.53 2.2 0.9 

K1 19.1 7.95 9.2 98.5 578 0.44 1.2 1.23 
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8th Week: 23rd October 2012 

Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 24.4 8.76 10.2 122.6 786 0.6 0.7 0.25 

K4 24.3 7.61 1.94 23.4 660 0.49 0.5 2.36 

K3 22.2 8.48 9.34 107.7 760 0.58 0.5 0.3 

K2 17.8 7.95 8.73 92.4 513 0.39 2.1 0.67 

K1 17.1 7.85 8.66 89.9 416 0.31 1.4 0.61 

9th Week: 30th October 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 26.9 8.55 8.65 110.2 747 0.57 0.4 0.28 

K4 22.7 7.49 2.02 23.2 903 0.70 0.00 2.4 

K3 25.7 8.46 10.89 125 767 0.59 0.9 0.28 

K2 20 7.95 11.72 129.3 676 0.52 1.9 0.14 

K1 19.8 7.62 12.84 140 552.5 0.42 3.1 2.28 

10th Week: 6th November 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 27.1 8.66 10.66 133.6 780 0.59 0.7 0.99 

K4 25.7 7.54 1.63 20.4 676 0.51 0.1 2.6 

K3 26 8.61 9.8 123.4 773.5 0.59 0.7 0.62 

K2 20.5 8.02 9.73 108.9 703.5 0.54 1.8 0.78 

K1 20.5 7.82 8.77 96.5 559 0.42 1.9 3.52 

11th Week: 13th November 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 22.2 7.73 7.01 81.2 669 0.51 0.8 0.35 

K4 20.2 7.3 0.28 3.2 764 0.58 0.8 3.63 

K3 21.6 7.73 7.33 84.15 663 0.51 1 0.51 

K2 19.4 7.74 7.81 84.7 669.5 0.51 1.5 0.9 

K1 19.4 7.56 6.77 73.8 604.5 0.46 2.3 2.49 

12th Week: 20th November 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 21.9 8.1 7.66 88.7 702 0.53 0.8 0.45 

K4 20.7 7.55 0.07 0.8 910 0.7 0.0 3.5 

K3 21.6 8.04 7.76 88.8 708.5 0.54 0.8 0.62 

K2 20.2 7.7 7.16 79.7 676 0.51 1.5 0.88 

K1 20.5 7.55 7.19 80.4 747.5 0.57 1.5 5.27 

13th Week: 27th November 2012 

     Sites T(°C) pH DO(mgL¯) Oxysat(%) TDS(mgL¯) Salinity (mgL¯¹) NO₃¯ (mgL¯¹) PO₄³¯ (mgL¯¹) 

K5 23 8.16 7.3 86 650 0.5 0.5 0.43 

K4 18.3 7.13 0.31 34 832 0.64 0.0 2.26 

K3 20.9 7.92 7.47 84.6 604.5 0.46 0.7 0.44 

K2 18.6 7.7 7.68 82.6 633.5 0.48 1.3 0.60 

K1 19.1 7.52 4.26 46.3 643.5 0.49 0.9 0.98 
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Appendices 2 List of macroinvertebrate collected per week at different sites  

18th September 2012 

     
24th September 2012 

    
Taxa K1 K2 K3 K4 K5 

 
  K1 K2 K3 K4 K5 

Oligochaeta 29 18 22 
 

3 

 
Oligochaeta 25 58 31 3 14 

Hirudina 10 
 

4 
 

  

 
Hirudina 2 1 3 

 
3 

CRUSTACEA 

    
  

 
CRUSTACEA 

    
  

Potamonautidae 
 

2 5 
 

4 

 
Potamonautidae 

 
3 11 

 
4 

EPHEMEROPTERA 
    

  

 
ODONATA 

    
  

Baetidae 

 
1 1 

 
  

 
Coenagrionidae 

  
1 

 
2 

ODONATA 

    
  

 
Libellulidae 

  
2 

 
2 

Coenagrionidae 

  
5 

 
3 

 
HEMIPTERA 

    
  

Aeshnidae 

  
3 

 
  

 
Corixidae 

   
4   

Libellulidae 1 1 2 
 

  

 
COLEOPTERA 

    
  

HEMIPTERA 

    
  

 
Dytiscidae 

  
2 2 4 

Corixidae 1 
 

5 9 1 

 
DIPTERA 

    
  

DIPTERA 

    
  

 
Ceratopogonidae 

 
3 

  
  

Ceratopogonidae 

  
2 

 
  

 
Chironomidae 5 27 34 23 14 

Chironomidae 100 31 29 28 32 

 
Simuliidae 

  
42 53 10 

Simuliidae 

  
11 41 1 

 
Tipulidae 

   
1   

GASTROPODA 

    
  

 
GASTROPODA 

    
  

Physidae 82 80 5 4 15 

 
Physidae 10 61 9 2 5 

Abundance 223 133 94 82 59 

 
Abundance 42 153 135 88 58 

Specific richness 6 6 12 4 7 

 
Specific richness 4 6 9 7 9 

Diversity  1,18 1,05 2,032 1,1 1,3 

 
Diversity 1.04 1.22 1.67 1.13 1.95 

             2nd October 2012 

      
9th October 2012 

      Taxa K1 K2 K3 K4 K5 

 
  K1 K2 K3 K4 K5 

Turbellaria 
 

1 
  

  

 
Oligochaeta 12 9 17 2 10 

Oligochaeta 27 36 17 3 7 

 
Hirudina 8 

 
6 

 
1 

Hirudina 1 
   

2 

 
CRUSTACEA 

    
  

CRUSTACEA 

    
  

 
Potamonautidae 1 1 4 

 
  

Potamonautidae 

 
1 5 1 3 

 
ODONATA 

    
  

ODONATA 

    
  

 
Coenagrionidae 1 

 
3 

 
1 

Coenagrionidae 
  

2 
 

1 

 
Chlorocophydae 

  
1 

 
  

Libellulidae 

  
2 

 
  

 
Libellulidae 

  
2 

 
1 

HEMIPTERA 

    
  

 
HEMIPTERA 

    
  

Naucoridae 

  
1 

 
  

 
Corixidae 

  
1 15   

Corixidae 

  
2 2 2 

 
EPHEMEROPTERA 

   
  

COLEOPTERA 
    

  

 
Baetidae 

  
1 

 
  

Dytiscidae 

   
1   

 
COLEOPTERA 

    
  

DIPTERA 

    
  

 
Dytiscidae 

   
1   

Chironomidae 20 2 17 21 8 

 
DIPTERA 

    
  

Simuliidae 
  

36 87 23 

 
Ceratopogonidae 

  
3 

 
3 

Stratiomidae 

   
1   

 
Chironomidae 3 7 52 83 49 

GASTROPODA 

    
  

 
Simuliidae 

  
117 177 20 

Physidae 33 38 7 11 9 

 
Tipulidae 

   
1   

Abundance 81 78 89 127 55 

 
GASTROPODA 

    
  

Specific richness 4 5 9 8 8 

 
Physidae 91 5 2 21 7 

Diversity 1.13 0.90 1.65 1.02 1.66 

 
Limnaeidae 

    
1 

       
Abundance 116 22 209 300 93 

       
Specific richness 6 4 12 7 9 

       
Diversity 0.77 1.20 1.31 1.07 1.39 
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16th October 2012 

      
23rd October 2012 

      K1 K2 K3 K4 K5 

 
  K1 K2 K3 K4 K5 

Oligochaeta 18 12 84 6 31 

 
Oligochaeta 5 12 6 3 12 

Hirudina 2 1 10 2 5 

 
Hirudina 3 2 4 

 
4 

CRUSTACEA 

    
  

 
CRUSTACEA 

    
  

Potamonautidae 2 1 5 1 3 

 
Potamonautidae 

 
10 4 

 
7 

ODONATA 
    

  

 
ODONATA 

    
  

Coenagrionidae 

  
3 

 
  

 
Coenagrionidae 

  
1 

 
1 

Aeschnidae 
  

1 
 

  

 
Libellulidae 

  
6 

 
  

Libellulidae 

   
1   

 
HEMIPTERA 

    
  

HEMIPTERA 

    
  

 
Corixidae 

   
11   

Corixidae 
  

1 64   

 
Notonectidae 

    
1 

EPHEMEROPTERA 

   
  

 
EPHEMEROPTERA 

   
  

Baetidae 
 

5 4 1 5 

 
Baetidae 

 
1  3 1 18 

COLEOPTERA 

    
  

 
COLEOPTERA 

    
  

Dytiscidae 

  
1 8 1 

 
Dytiscidae 

 
1 6 1 3 

DIPTERA 

    
  

 
DIPTERA 

    
  

Ceratopogonidae 

  
1 

 
6 

 
Ceratopogonidae 

 
4 3 

 
2 

Chironomidae 3 
 

27 101 46 

 
Chironomidae 

  
21 64 15 

Simuliidae 
 

1 28 24 11 

 
Simuliidae 

  
24 54 23 

GASTROPODA 

    
  

 
Tipuliidae 

   
1 1 

Physidae 132 115 5 11 12 

 
GASTROPODA 

    
  

Limnaeidae 
    

5 

 
Physidae 102 104 4 4 12 

Abundance 157 135 170 219 125 

 
Limnaeidae 

    
1 

Specific richness 5 6 12 10 10 

 
Abundance 110 134 79 139 100 

Diversity 0.54 0.57 1.56 1.43 1.80 

 
Specific richness 3 7 11 8 13 

       
Diversity 0.30 0.83 1.91 1.2 2.11 

             30th October 2013 

      
6th November 2012 

      K1 K2 K3 K4 K5 

 
  K1 K2 K3 K4 K5 

Oligochaeta 5 1 3 1 9 

 
Hydrachnella 

  
1 

 
1 

Hirudina 2 
 

3 
 

  

 
Oligochaeta 10 21 12 2 19 

CRUSTACEA 

    
  

 
Hirudina 19 3 7 1 18 

Potamonautidae 

 
2 1 

 
3 

 
CRUSTACEA 

    
  

ODONATA 

    
  

 
Potamonautidae 2 

 
1 

 
1 

Coenagrionidae 1 
 

1 
 

  

 
ODONATA 

    
  

Libellulidae 

    
  

 
Aeshnidae 

    
1 

HEMIPTERA 

    
  

 
Coenagrionidae 

  
2 

 
3 

Corixidae 

   
1   

 
Libellulidae 

    
1 

EPHEMEROPTERA 

   
  

 
HEMIPTERA 

    
  

Baetidae 1 
 

9 1 15 

 
Corixidae 

   
12   

COLEOPTERA 

    
  

 
Notonectidae 

  
1 

 
  

Dytiscidae 

  
3 2 2 

 
EPHEMEROPTERA 

   
  

Hydrophilidae 
  

1 
 

  

 
Baetidae 

  
41 

 
37 

DIPTERA 

    
  

 
COLEOPTERA 

    
  

Ceratopogonidae 

  
3 

 
14 

 
Dytiscidae 

  
4 2 9 

Chironomidae 

 
4 32 100 16 

 
Hydrophilidae 

  
2 1   

Simuliidae 

 
2 62 4 62 

 
DIPTERA 

    
  

GASTROPODA 

    
  

 
Ceratopogonidae 

    
5 

Physidae 100 48 2 4 15 

 
Chironomidae 2 4 71 46 109 

Abundance 109 57 120 113 136 

 
Ephydridae 

   
1 2 

Specific richness 5 5 11 7 8 

 
Simuliidae 

  
43 41 155 

Diversity 0.37 0.63 1.44 0.49 1.65 

 
Tipuliidae 

   
1   

       
GASTROPODA 

    
  

       
Physidae 103 200 7 12 78 

       
Limnaeidae 1 

 
2 

 
4 

       
Planorbidae 

   
1   

       
Abundance 137 228 194 120 443 

       
Specific richness 6 4 13 11 15 

       
Diversity 0.83 0.45 1.73 1.52 1.75 
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13th November 2012 

     
20th November 2012 

      K1 K2 K3 K4 K5 

 
  K1 K2 K3 K4 K5 

Oligochaeta 3 27 12 
 

2 

 
Oligochaeta 23 7 27 

 
12 

Hirudina 9 2 13 
 

17 

 
Hirudina 44 21 11 

 
11 

CRUSTACEA 

    
  

 
CRUSTACEA 

    
  

Potamonautidae 1 2 2 
 

4 

 
Potamonautidae 

 
2 3 

 
2 

ODONATA 
    

  

 
ODONATA 

    
  

Coenagrionidae 1 
   

  

 
Coenagrionidae 

  
1 

 
  

HEMIPTERA 

    
  

 
HEMIPTERA 

    
  

Corixidae 

  
1 23   

 
Corixidae 

  
1 

 
2 

Notonectidae 

    
1 

 
Gerridae 

  
1 

 
  

Veliidae 

  
1 

 
  

 
Notonectidae 

 
1 1 

 
  

EPHEMEROPTERA 
   

  

 
EPHEMEROPTERA 

   
  

Baetidae 

  
63 

 
40 

 
Baetidae 

  
20 

 
135 

COLEOPTERA 

    
  

 
COLEOPTERA 

    
  

Dytiscidae 1 
 

3 3 25 

 
Dytiscidae 

  
1 1 5 

Hydrophilidae 

  
4 

 
1 

 
Hydrophilidae 

  
1 

 
1 

DIPTERA 
    

  

 
DIPTERA 

    
  

Ceratopogonidae 

  
2 

 
  

 
Ceratopogonidae 

    
3 

Chironomidae 

  
92 13 34 

 
Chironomidae 

 
2 56 25 30 

Ephydridae 

 
1 6 

 
2 

 
Ephydridae 

    
1 

Simuliidae 

  
128 

 
205 

 
Simuliidae 

 
1 59 

 
102 

Syrphidae 
 

1 
  

1 

 
Syrphidae 

  
1 

 
  

Tipuliidae 
   

1 1 

 
Tipuliidae 

   
1   

GASTROPODA 

    
  

 
GASTROPODA 

    
  

Physidae 116 117 18 12 39 

 
Physidae 103 240 3 4 22 

Limnaeidae 

  
2 1 3 

 
Limnaeidae 

    
3 

Abundance 131 150 347 53 375 

 
Abundance 170 274 186 31 329 

Specific richness 6 6 14 6 14 

 
Specific richness 3 7 14 4 13 

Diversity 0.48 0.67 1.67 1.35 1.52 

 
Diversity 0.92 0.50 1.72 0.66 1.60 

             27th November 2012 

             K1 K2 K3 K4 K5 

       Oligochaeta 13 9 10 12 16 

       Hirudina 90 4 7 
 

12 

       CRUSTACEA 

    
  

       Potamonautidae 1 
 

2 
 

2 

       ODONATA 
    

  

       Coenagrionidae 

  
4 

 
2 

       Libellulidae 

 
1 1 

 
2 

       HEMIPTERA 
    

  

       Belostomatidae 

    
1 

       EPHEMEROPTERA 

   
  

       Baetidae 

  
82 

 
86 

       COLEOPTERA 
    

  

       Dytiscidae 

 
1 2 

 
2 

       Hydrophilidae 

  
1 

 
1 

       DIPTERA 
    

  

       Chironomidae 

 
5 25 10 26 

       Ephydridae 

  
1 

 
1 

       Simuliidae 

  
76 

 
111 

       Syrphidae 
    

1 

       Tipuliidae 
    

2 

       GASTROPODA 

    
  

       Physidae 156 270 18 6 28 

       Limnaeidae 

    
1 

       TURBELLARIA 

    
  

       Dugesiidae 

 
1 

  
  

       Abundance 260 291 229 28 294 

       Specific richness 4 7 12 3 16 

       Diversity 0.84 0.35 1.62 1.06 1.68 
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 Appendix 3: Statistic test  
      

ANOVA Table for Temperature 
         DF Sum of square Mean of square F-value P-value Lambda Power 

  Sites 4 188.688 47.172 4.837 .0019 19.347 .950 

T°C Residual 60 585.157 9.753         

  Sites 4 4.831 1.208 19.482 <.0001 77.926 1.000 

pH Residual 60 3.720 .062         

  Sites 4 236.252 59.063 10.138 <.0001 40.553 1.000 

DO Residual 60 349.546 5.826         

  Sites 4 205941 51485.316 5.652 .0006 22.609 .977 

TDS Residual 60 546531 9108.855         
  Sites 4 .114 .029 5.004 .0015 20.015 .957 

Salinity Residual 60 .342 .006         

  Sites 4 20.703 5.176 14.396 <.0001 57.586 1.000 

NO₃ Residual 49 17.616 .360         

  Sites 4 28.796 7.199 10.503 <.0001 42.011 1.000 

PO₄ Residual 49 33.586 .685         

  Sites 4 7986.291 1996.573 30.028 <.0001 120.111 1.000 

SASS Residual 50 3324.545 66.491         

  Sites 4 454.545 113.636 26.371 <.0001 105.485 1.000 

NoT Residual 50 215.455 4.309         

  Sites 4 9.315 2.329 21.500 <.0001 85.998 1.000 

ASPT Residual 50 5.416 .108         

  Sites 4 9.186 2.296 31.207 <.0001 124.829 1.000 

H' Residual 50 3.679 .074         

 
 
Difference between weeks 

          DF Sum of square Mean of square F-value P-value Lambda Power 
  Date 12 511.377 42.615 8.443 <.0001 101.314 1.000 

T°C Residual 52 262.468 5.047         

  Date 12 2.533 .211 1.824 .0683 21.890 .823 

pH Residual 52 6.017 .116         

  Date 12 218.646 18.220 2.581 .0091 30.967 .951 

DO Residual 52 367.152 7.061         

  Date 12 212665.207 17722.101 1.707 .0921 20.486 .789 

TDS Residual 52 539807.360 10380.911         

  Date 12 .136 .011 1.833 .0668 21.990 .825 

Salinity Residual 52 .321 .006         

  Date 10 13.570 1.357 1.208 .3124 12.079 .536 

PO₄ Residual 44 49.430 1.123         

  Date 10 1.988 .199 .415 .9318 4.153 .185 

NO₃ Residual 44 21.060 .479         
  Date 10 794.836 79.484 .333 .9675 3.326 .153 

SASS Residual 44 10516.000 239.000         

  Date 10 48.182 4.818 .344 .9635 3.437 .157 

NoT Residual 44 616.800 14.018         

  Date 10 .786 .079 .260 .9868 2.595 .127 

ASPT Residual 44 13.333 .303         

  Date 10 .905 .090 .333 .9674 3.328 .153 

H' Residual 44 11.963 .272         

Difference between sites 
           T°C pH DO TDS salinity NO PO SASS NoT ASPT H' 

  P-value P-value P-value P-value P-value P-val P-value P-value P-val P-value P-value 

K1-K2 .8561 .1017 .7093 .4440 .5700 .9972 S .0025 S .3128 .2235 .2874 .9875 

K1-K3 .0170 S <.0001 S .5150 .0018 S .0033 S .0015 S .0020 S <.0001S <.0001S <.0001S <.0001S 

K1-K4 .0483 S .4340 <.0001 S .0016 S .0047 S <.0001 S .2553 .0051 S .0172 S <.0001S .0062 S 

K1-K5 .0005 S <.0001 S .5042 .0006 S .0012 S .0006 S .0003 S <.0001S <.0001S <.0001S <.0001S 

K2-K3 .0266 S .0010 S .7802 .0157 S .0155 S .0012 S .9347 <.0001S <.0001S <.0001S <.0001S 

K2-K4 .0717 .0172 S <.0001 S .0137 S .0214 S <.0001 S <.0001S .0621 .2235 .0011 S .0059 S 

K2-K5 .0010 S <.0001S .7672 .0057 S .0063 S .0004 S .4886 <.0001S <.0001S <.0001S <.0001S 

K3-K4 .6618 <.0001S <.0001 S .9592 .8972 .0059 S <.0001S <.0001S <.0001S .0021 S <.0001S 

K3-K5 .2355 .2421 .9864 .7044 .7369 .7503 .5411 .1720 .4755 .0628 .9377 

K4-K5 .1067 <.0001 S <.0001 S .7421 .6420 .0136 S <.0001S <.0001S <.0001S .1679 <.0001S 
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Difference between months 
          DF Sum of square Mean of square F-value P-value Lambda Power 

  Months 2 303.312 151.656 19.983 <.0001 39.966 1.000 

T°C Residual 62 470.533 7.589         

  Months 2 1.263 .632 5.373 .0071 10.745 .834 

pH Residual 62 7.288 .118         

  Months 2 117.519 58.759 7.780 .0010 15.559 .954 

DO Residual 62 468.279 7.553         

  Months 2 2726.102 1363.051 .113 .8936 .225 .066 

TDS Residual 62 749746.466 12092.685         

  Months 2 3.594 1.797 .024 .9759 .049 .053 

Salinity Residual 62 .456 .007         
  Months 2 9.158 4.579 4.422 .0168 8.845 .740 

PO₄ Residual 52 53.842 1.035         
  Months 2 .506 .253 .584 .5612 1.168 .138 

NO₃ Residual 52 22.542 .433         

  Months 2 338.676 169.338 .803 .4537 1.605 .174 

SASS Residual 52 10972.160 211.003         

  Months 2 28.142 14.071 1.149 .3249 2.298 .233 

NoT Residual 52 636.840 12.247         
  Months 2 .106 .053 .196 .8227 .392 .078 

ASPT Residual 52 14.014 .270         

  Months 2 .381 .190 .792 .4582 1.585 .172 

H' Residual 52 12.488 .240         
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  Months 2 338.676 169.338 .803 .4537 1.605 .174 

SASS Residual 52 10972.160 211.003         
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Difference between years (1989 to 2012) 
         DF Sum of square Mean of square F-value P-value Lambda Power 

  Years 7 73.466 10.495 1.103 .4073 7.719 .327 

T°C Residual 16 152.286 9.518         

  Years 7 1.009 .144 4.252 .0079 29.766 .926 

pH Residual 16 .542 .034         

  Years 7 31.226 4.461 1.815 .1531 12.704 .531 

DO Residual 16 39.327 2.458         

  Years 7 2.988 .427 2.611 .0531 18.275 .715 

PO₄ Residual 16 2.616 .164         
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Difference between months from 1989 to 2012 
         DF Sum of square Mean of square F-value P-value Lambda Power 

  Months 2 91.543 45.772 7.162 .0043 14.324 .903 

T°C Residual 21 134.208 6.391         

  Months 2 .002 .001 .014 .9859 .028 .052 

pH Residual 21 1.550 .074         

  Months 2 16.561 8.280 3.221 .0603 6.441 .544 

DO Residual 21 53.992 2.571         
  Months 2 .191 .095 .571 .5737 1.141 .129 

PO Residual 21 3.513 .167         
  Months 2 .417 .208 .843 .4445 1.686 .170 

NO Residual 21 5.188 .247         

 

Difference between one year and another 

Difference 
between 
Years 

Temperature         pH         DO   Nitrate       Phosphate 

Mean 
diff.  

Crit. 
Diff. 

P-
value 

Mean 
diff.  

Crit. 
Diff. 

P-value Mean 
diff.  

Crit. 
Diff. 

P-value Mean 
diff.  

Crit. 
Diff. 

P-value Mean 
diff.  

Crit. 
Diff. 

P-value 

1989-1992 -2.683 5.340 .3026 -.117 .319 .4491 1.951 2.714 .1459 .123 .700 .7138 .293 .542 .2679 

1989-1995 1.850 5.340 .4733 .067 .319 .6634 1.673 2.714 .2096 -.077 .700 .8194 .327 .542 .2194 

1989-1999 1.583 5.340 .5385 -.033 .319 .8273 1.390 2.714 .2936 .338 .700 .3210 .386 .542 .1504 

1989-2000 .983 5.340 .7014 -.233 .319 .1402 1.207 2.714 .3599 .880 .700 .0170  S .513 .542 .0619 

1989-2001 2.150 5.340 .4060 .067 .319 .6634 -.477 2.714 .7145 .287 .700 .3983 .465 .542 .0876 

1989-2002 2.400 5.340 .3549 .450 .319 .0086 S 3.440 2.714 .0162 S .907 .700 .0143  S .484 .542 .0763 

1989-2012 -1.643 5.340 .5234 -.237 .319 .1350 .640 2.714 .6239 .117 .700 .7286 -.423 .542 .1171 

1992-1995 4.533 5.340 .0908 .183 .319 .2403 -.283 2.714 .8276 -.200 .700 .5534 .033 .542 .8979 

1992-1999 4.267 5.340 .1097 .083 .319 .5870 -.567 2.714 .6639 .215 .700 .5244 .093 .542 .7217 

1992-2000 3.667 5.340 .1648 -.117 .319 .4491 -.750 2.714 .5661 .757 .700 .0359  S .220 .542 .4027 

1992-2001 4.833 5.340 .0730 .183 .319 .2403 -2.433 2.714 .0755 .163 .700 .6277 .172 .542 .5113 

1992-2002 5.083 5.340 .0607 .567 .319 .0017 S 1.483 2.714 .2636 .784 .700 .0305  S .191 .542 .4657 

1992-2012 1.040 5.340 .6852 -.120 .319 .4365 -1.317 2.714 .3190 -.007 .700 .9841 -.717 .542 .0127 S 

1995-1999 -.267 5.340 .9170 -.100 .319 .5154 -.283 2.714 .8276 .415 .700 .2270 .059 .542 .8194 

1995-2000 -867 5.340 .7353 -.300 .319 .0633 -.467 2.714 .7202 .957 .700 .0105  S .186 .542 .4765 

1995-2001 .300 5.340 .9067 0.000 .319 . -2.150 2.714 .1125 .363 .700 .2876 .138 .542 .5958 

1995-2002 .550 5.340 .8299 .383 .319 .0214 S 1.767 2.714 .1865 .984 .700 .0089  S .158 .542 .5460 

1995-2012 -3.493 5.340 .1845 -.303 .319 .0607 -1.033 2.714 .4314 .193 .700 .5665 -.750 .542 .0097 S 

1999-2000 -.600 5.340 .8148 -.200 .319 .2021 -.183 2.714 .8879 .542 .700 .1206 .127 .542 .6260 

1999-2001 .567 5.340 .8249 .100 .319 .5154 -1.867 2.714 .1641 -.052 .700 .8777 .079 .542 .7612 

1999-2002 .817 5.340 .7500 .483 .319 .0054 S 2.050 2.714 .1288 .569 .700 .1042 .098 .542 .7055 

1999-2012 -3.227 5.340 .2185 -.203 .319 .1950 -.750 2.714 .5661 -.222 .700 .5118 -.809 .542 .0060 S 

2000-2001 1.167 5.340 .6495 .300 .319 .0633 -1.683 2.714 .2070 -.593 .700 .0914 -.048 .542 .8534 

2000-2002 1.417 5.340 .5816 .683 .319 .0003 S 2.233 2.714 .1002 .027 .700 .9351 0.029 .542 .9121 

2000-2012 -2.627 5.340 .3126 -.003 .319 .9826 -.567 2.714 .6639 -.763 .700 .0345  S -.936 .542 .0021 S 

2001-2002 .250 5.340 .9222 .383 .319 .0214 S 3.917 2.714 .0075  S .621 .700 .0786 .019 .542 .9406 

2001-2012 -3.793 5.340 .1516 -.303 .319 .0607 1.117 2.714 .3959 -.170 .700 .6138 -.888 .542 .0031 S 

2002-2012 -4.043 5.340 .1280 -.687 .319 .0003 S -2.800 2.714 .0439  S -.791 .700 .0293  S -.908 .542 .0027 S 
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