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Abstract

This research proposes an approach to recognizing facial expressions in the presence of

rotations and partial occlusions of the face. The research is in the context of automatic

machine translation of South African Sign Language (SASL) to English. The proposed

method is able to accurately recognize frontal facial images at an average accuracy of

75%. It also achieves a high recognition accuracy of 70% for faces rotated to 60◦. It was

also shown that the method is able to continue to recognize facial expressions even in

the presence of full occlusions of the eyes, mouth and left/right sides of the face. The

accuracy was as high as 70% for occlusion of some areas. An additional finding was that

both the left and the right sides of the face are required for recognition. As an addition,

the foundation was laid for a fully automatic facial expression recognition system that

can accurately segment frontal or rotated faces in a video sequence.
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Chapter 1

Introduction

1.1 Background and Motivation

Verbal communication is an important tool that allows individuals to connect with each

other by sharing and exchanging information and ideas. This important life skill is used

on a daily basis in places such as schools, businesses and malls. It is the very fabric that

unites societies, allowing them to function.

Deaf1 people are severely marginalized in society as they are not able to fully participate

in the exchange of verbal information. South Africa has a population of about 52.98

million people [54], of which a small minority of only 300 000 people are Deaf [40].

Communication and interaction between the Deaf and hearing is a daunting task. There

are two main reasons for this: the Deaf community is the minority; and there are common

misconceptions that the hearing have about the Deaf [52, 74].

Common misconceptions are: only a single sign language exists; sign languages are

merely visual-gestural representations of spoken languages; linguistic studies can be

applied to sign languages; and sign language sentences can be written using spoken

words [52, 103]. Research [74] has shown that sign languages are fully fledged languages

with entirely unique grammatical and syntactic structures, distinct from their spoken

language counterparts. There are various different sign languages throughout the world

with most countries having their own unique sign language [64]: British Sign Language

(BSL), American Sign Language (ASL), Japanese Sign Language (JSL), South African

Sign Language (SASL), among others.

South African Sign Language is the official language of the Deaf in South Africa and

is recognized by the South African constitution as one of the 11 official languages [74].

1The social group that are completely unable to communicate in spoken languages.
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Chapter 1. Introduction 2

Although this is the case, the Deaf community still faces problems such as poor socio-

economic opportunities and poor access to public and information services. Lotriet

notes that there are “gross injustices” at South African courts and police stations which

provide little to no access to expert interpretation services to the Deaf [69]. This impedes

the development of Deaf communities. A temporary solution is to employ sign language

interpreters. However, SASL interpreters are scarce and very costly [3, 13].

The SASL project [39] at the University of the Western Cape is in the process of devel-

oping a real-time machine translation system that can automatically translate between

SASL and English. The translation between SASL and English involves two distinct

processes: translation of SASL to English; and the translation of English to SASL. The

procedures and technologies in each of these processes are varied. This research involves

the first process – SASL to English translation. As part of this process, semantic in-

formation is extracted from a video consisting of a Deaf individual communicating in

SASL using computer vision.

Research has shown that any sign language gesture can be characterized by five funda-

mental parameters [47, 65]: hand shape, hand orientation, hand motion, hand location

and facial expressions. Research has been conducted by the SASL project towards the

recognition of each of the five parameters. Li [65] developed a hand shape estimation

system. Naidoo [81] and Rajah [93] developed gesture recognition systems based on

hand motion recognition. Achmed [3] developed a hand location recognition system.

Brown [13] developed an improved hand location system which focused on optimizing

the accuracy and speed of Achmed’s system.

Facial expressions are a crucial component of sign language phrases as they provide

conscious and subconscious feedback from the listener to the speaker through lexical,

adverbial and syntactic information [114]. The mood and tonality of the phrase is

expressed by means of facial expressions. Research has consistently shown that the focus

of the eye-gaze of Deaf signers within a conversation is the facial region, specifically the

region around the mouth [16, 78, 79].

Research has been conducted into Facial Expression Recognition (FER) by the SASL

group. All such research has focused on the recognition of sub units of facial expressions

as defined by the Facial Action Coding System (FACS). These sub units are called

Action Units (AUs). The FACS defines key muscles in the face which can be moved

to produce specific facial expressions. FER using FACS would require the tracking of

these muscles and subsequently combining configurations of these muscles to describe

larger-scale facial expressions. Whitehill [114] compared the effect of local versus global

segmentation of the face using Haar features and the AdaBoost algorithm towards the

recognition of AUs. Sheikh [99] analyzed the effect of AU recognition on noise degraded

 

 

 

 



Chapter 1. Introduction 3

images. Vadapalli [107] also developed an AU recognition system using Gabor filters for

feature extraction and recurrent neural networks and Support Vector Machines (SVMs)

for classification. All of these research projects proved highly successful in recognizing

AUs.

This research diversifies research at the group in two ways: it focuses on the recognition

of facial expressions as a whole, and identifies a suitable technique for this purpose; and

it focuses on achieving accurate facial expression recognition in the presence of rotations

and partial occlusions of the face, which has not been carried out in the group. Examples

of whole expressions are “Happy”, “Sad”, “Disgust” etc.

A powerful feature extraction technique for facial expression recognition is the relatively

new Local Binary Pattern (LBP) operator [97]. The next chapter details the most

prominent techniques used to recognize facial expressions, with a focus on recognizing

facial expressions as a whole, and justifies the selection of this operator in this research.

Several variants of this operator have been used for facial feature extraction. These

operators are introduced in the next chapter and explained in detail in Chapter 3.

Additionally, research has been conducted into the recognition of facial expressions with

the head in rotated positions using this operator. The rotations referred to are yaw

rotations of the face along the vertical axis of the signer’s spine. However, no research has

been conducted into the recognition of facial expressions in the presence of occlusions of

the face using this operator. It is, therefore, also unclear how a combination of a rotated

and partially occluded face can affect the recognition accuracy using the operator. This

research focuses on investigating this question.

Unlike some other sign languages like American Sign Language (ASL), there is an acute

shortage of SASL information and data sets. Recently, the Fulton School for the Deaf

released a SASL dictionary that contains 732 of the most common SASL phrases, which,

to our knowledge, is the only formally available data set at the present time. There is

still no SASL phrase image or video data set in existence. There are, however, a number

of extensive facial expression databases in existence such as the Binghamton University

3D Facial Expression (BU-3DFE) data set [118]. The majority of these data sets provide

videos of subjects performing six expressions called the “prototypic expressions”. These

are: “Happy”, “Sad”, “Disgust”, “Fear”, “Surprise” and “Anger”. Analyzing the Fulton

School for the Deaf dictionary revealed that all of these expressions are used to express

emotions in a variety of SASL phrases. Therefore, there is overlap. Therefore, this

research focuses on recognizing these prototypic expressions and makes use of the data

set mentioned to train and test the system.

 

 

 

 



Chapter 1. Introduction 4

While the focus of this research is the recognition of facial expressions, it additionally

attempts to lay the foundation towards another area of interest to the group: a fully

automatic facial expression recognition system. A major component of fully automatic

FER strategies is the ability to accurately isolate the face in query images [5]. Once

the face has been isolated, relevant features can be extracted for the recognition of

facial expressions. The majority of research in the field requires some form of manual

intervention during the facial segmentation procedure. This includes placing landmarks

on key facial locations, manually segmenting the face etc. The problem of accurate

segmentation is further complicated in cases when the face is rotated, partially occluded

or both. Two other factors that can contribute to complexity of the problem include a

complex background and varied skin tones, as is the case in the South African context.

Producing a fully automatic face segmentation system that is robust to both rotations

and partial occlusions of the face is beyond the scope of this research. However, towards

this goal, this research proposes a fully automatic face segmentation strategy in the

presence of rotations of the face, and that is robust to complex backgrounds and varied

user skin tones.

The Viola-Jones algorithm [111] is a robust method used to isolate faces in images.

However, rotations are known to severely affect the accuracy of the algorithm [62, 66, 91].

Rotations of the face may be common while performing sign language gestures [47].

Therefore, a method that can accurately segment the face regardless of the angle and

skin tone of the user, and on a complex background, is proposed in this research.

1.2 Research Question

The following research questions are specified based on the previous section:

1. “Can the proposed face segmentation strategy accurately segment the face in fa-

cial images with varied skin tone, in the presence of rotations and on a complex

background?”

2. “Can whole facial expressions be recognized at a high accuracy using the LBP

operator in the presence of rotations and partial occlusions of the face?”

1.3 Summary of Research Objectives

1. Lay the foundation of a fully automatic face segmentation strategy for the SASL

group which does not require any manual intervention and can accurately segment

 

 

 

 



Chapter 1. Introduction 5

the face in frontal and rotated positions. The strategy should also be robust to

variations in skin colour and a complex background.

2. Implement a FER strategy that is robust to rotations and partial occlusions of the

face, variations in skin colour and a complex background.

3. Use the fully automatic face segmentation strategy to seamlessly investigate the

accuracy of the proposed FER strategy for occluded frontal and rotated faces.

4. Simulate occlusions of the face and investigate the effects of various types and

levels of facial occlusion on the recognition accuracy of the FER strategy for both

frontal and rotated faces.

1.4 Premises

• It is assumed that the first frame of sign language video to be used in training

and testing will consist of the signer facing the web camera. This assumption

is justified since a conversation generally starts with two conversational partners

facing each other.

• It is assumed that the signer will stand in front of an arbitrary background and in

natural lighting conditions. This is justified since the SASL project requires the

most natural setting.
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1.5 Thesis Outline

The remainder of the thesis is arranged as follows:

Chapter 2: Related Work : This chapter reviews existing literature in the field of facial

expression recognition. An overview of each study is produced with much focus on the

feature extraction techniques as it is a crucial step for facial expression recognition.

Chapter 3: Image Processing in Appearance-Based Facial Expression Recognition: This

chapter provides details into the methods and algorithms used in the proposed system

for the recognition of facial expressions.

Chapter 4: Design and Implementation of the Robust Facial Expression Recognition in

the Presence of Rotation and Occlusion System: This chapter discusses the implemen-

tation of the proposed framework of the facial expression recognition system.

Chapter 5: Experimental Results and Analysis : This chapter discusses the testing

carried out to answer the research questions posed in this chapter.

Chapter 6: Conclusion: This chapter concludes the thesis, highlighting the contribu-

tions made towards the research and providing directions for future work.

 

 

 

 



Chapter 2

Related Work

A generic framework for automatic facial expression recognition (FER) generally consists

of three major components, namely: face detection, facial feature extraction and FER.

Face detection is the process of locating and segmenting the face in each frame of the

video sequence. Feature extraction is the process of analyzing the motion or texture

properties within the facial region and extracting semantic information pertaining to

the facial expression. FER is the process of determining the facial expression class

corresponding to the extracted feature set.

This chapter presents a detailed survey on FER. Various researchers have mixed and

matched different combinations of face detection, facial feature extraction and FER

techniques. Therefore, it is not possible to categorize the studies according to all three

components. This chapter categorizes the studies according to the facial feature extrac-

tion method used in each study as this has been argued to be the most important factor

affecting the recognition accuracy [14, 77]. This is evidenced by the fact that the feature

extraction methods in all such studies is explained, but the face segmentation and FER

methods are not mentioned in a number of cases. Where possible, an explanation of the

face segmentation and FER strategy of each study will be detailed.

Facial feature extraction methods can generally be sub-divided into three categories:

motion-based methods; model-based methods; and appearance-based methods. Sections

2.1 , 2.2 and 2.3 provide details of each of these methods as well as the studies that have

implemented them.

7

 

 

 

 



Chapter 2. Related Work 8

2.1 Motion-Based Methods

Motion-based methods associate a displacement measure with each pixel in the frame.

The displacement measure provides information about the motion of various facial re-

gions. This information can be used to characterize and determine the facial expression

class associated with the facial motion. The large majority of motion-based FER sys-

tems use the Lucas-Kanade (L-K) optical flow algorithm [12]. The algorithm has been

shown to be accurate in controlled conditions. However, the performance of this algo-

rithm is sensitive to colour and intensity variations of the face. The more uniform and

distinct the colour of the face, the higher the accuracy of the algorithm.

Figure 2.1: Assumptions behind the Lucas-Kanade algorithm [12].

The most popular feature point tracking technique is the Lucas-Kanade (L-K) sparse

optical flow algorithm [12]. This algorithm rests on three key assumptions:

1. Brightness constancy – a pixel from the image of an object in the scene does not

change in appearance as it moves from one frame to the next.

2. Temporal persistence – the image motion of a surface patch changes gradually in

time.

3. Spatial coherence – neighbouring points in a scene belong to the same surface,

have similar motion and project to nearby points on the image plane.

These assumptions are illustrated in Figure 2.1. This is mathematically expressed as:

I(x+ u, y + v, t+ 1) = I(x, y, t) (2.1)

 

 

 

 



Chapter 2. Related Work 9

where x and y are the coordinates of the tracked pixel in the image, u and v are the

changes in the x− and y−coordinates, t is the time, and I is the intensity of the tracked

pixel. Figure 2.2 illustrates this tracking technique, which searches for the location of

the required intensity value in order to track it in consecutive frames. The target pixel(s)

are required to be manually specified in the initial frame in order to initialize tracking.

Figure 2.2: An example of the implemented Lucas-Kanade technique [12].

Since noise easily affects the performance of this method, the L-K optical flow technique

assumes small changes in location and constant flow of a tracked pixel in a local neigh-

bourhood. Only local information that is derived from a search window of known size

surrounding each optical flow point is required, because the algorithm is applied in a

sparse context. The use of smaller window sizes can easily cause the method to lose

track of the tracked pixel if it falls outside the window when the motion is too fast.

Conversely, the use of larger window sizes introduces sensitivity to noise, which is a

similar disadvantage as using no window size at all.

In order to determine the optimal window size, an enhanced L-K optical flow technique

known as the pyramidal L-K optical flow algorithm was developed [70]. In this technique,

an initial 3 × 3 pixel window size is used to track the motion of a pixel by one pixel

around its current location. A pyramid of increasingly smaller resolution copies of the

image is created to manage the problem of large motions in the tracked object.

Referring to Figure 2.3 which is an example of a possible pyramid generated by the

technique, the original image is at the base of the pyramid, with progressively smaller

resolution copies of the image placed higher up in the pyramid structure. The L-K

optical flow technique is applied to the highest level of the pyramid first to obtain an

approximation of the location of the key feature point. This location is used to initialize

a search window in and apply the L-K optical flow to the next level down in the pyramid.

This procedure is repeated until the exact location of the pixel is located in the original

image at the base of the pyramid.

Wachtman et al. [113] determined the accuracy of the optical flow technique by compar-

ing the tracking accuracy of the technique with a physical marking method known as the

Maximal Static Response Assay (MSRA). Videos of nine subjects, two men and seven

 

 

 

 



Chapter 2. Related Work 10

Figure 2.3: Pyramid Lucas-Kanade optical flow [12].

women from the Facial Nerve Centre at the University of Pittsburgh with an average

age of 39 years, performing three expressions, “brow raise”, “eye closure” and “smile”,

were recorded. In each case, subjects were asked to perform the expressions starting

with the face in a relaxed state – the repose image – and ending with the peak of the

expression – the peak image.

In the MSRA approach physical markers were manually placed on key locations on the

face of each subject. The horizontal and vertical displacement of each point between

the repose image and the peak image was manually computed. In the computer vision

approach, L-K optical flow was used to automatically track the same points and compute

the horizontal and vertical displacement of each point between the repose image and the

peak image. Figure 2.4 illustrates the key points that were tracked using both techniques.

Figure 2.4: Physical markers manually placed on the face[113].
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Pearson’s product-moment correlation was used to evaluate the consistency between

the two techniques. Figure 2.5 summarizes the horizontal and vertical displacement

correlation of the two techniques for each expression. The results indicate that the two

systems are highly consistent with an average correlation ranging between 0.95 and 0.99.

This indicates that the L-K optical flow algorithm is a very accurate tracking technique.

Figure 2.5: Mean Pearson correlation coefficients for a comparison between the MSRA
method and the L-K optical flow algorithm [113].

Motion-based methods can be sub-divided into two types: methods that use feature

point tracking and those that use dense flow tracking. Feature point tracking techniques

use the displacement of a manual distribution of key facial landmarks in contrast to

dense flow tracking techniques which use the displacement of a grid of points overlayed

onto the facial region to characterize facial expressions. Sections 2.1.1 and 2.1.2 describe

the studies that have applied feature point tracking and dense flow tracking, respectively,

to FER.

2.1.1 Feature Point Tracking

Cohn et al. [19] used feature point tracking to recognize a set of specific action units

(AUs) using the Facial Action Coding System (FACS) as a guideline. FACS is a system

designed by Ekman [30] that primarily distinguishes very subtle facial features from each

other. The system encodes the contraction or relaxation of specific muscles on the face

into AUs. An action unit in this system is either a contraction or relaxation of a specific

muscle in the face. Action units can be used individually or as a combination to describe

facial expressions. The system describes 44 unique AUs that are able to represent all

visible expressions. Examples of AU descriptions are illustrated in Table 2.1.

Three manually selected fiducial points are used to normalize the face in the image to

overcome in-plane rotations, illustrated in Figure 2.6. No face segmentation strategy

is required since the normalization points are manually specified. Additional feature

points are manually selected on the face.
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Table 2.1: Action units and corresponding facial expressions in the brow, eye and
mouth regions [30].

Action Unit Facial Expression

Brows
AU 1+2 Inner and outer portions of the brows are raised.
AU 1+4 Medial portion of the eyebrow is raised and pulled together.
AU 4 Brows are lowered and drawn together.

Eyes
AU 5 Upper eyelids are raised which produces a widening of the

eyes.
AU 6 The lower eye and infra-orbital furrows are raised and deep-

ened and the eye opening is narrowed.
AU 7 Lower eyelids are tightened, which narrows the eye opening.

Mouth
AU 27 Mouth is stretched open and mandible extended.
AU 26 Lips are relaxed and parted; mandible lowered.
AU 25 Lips are relaxed and parted; mandible not lowered.
AU 12 Lip corners are pulled up and backward.
AU 12+25 AU 12 with mouth opening.
AU 20+25 Lips are parted, pulled back laterally, and may be slightly

raised or pulled down.
AU 15+17 Lip corners are pulled down and stretched laterally (AU 15),

and chin boss is raised, which pushes up the lower lip (AU
17).

AU 17+23+24 AU 17 and the lips are tightened, narrowed, and pressed
together (AU 23+24).

AU 9+17±25 The infra-orbital triangle and centre of the upper lip are
pulled upwards (AU 9) with AU 17. In 25% of cases, AU
9+17 occurred with AU 25.

Figure 2.6: The standard facial model [19].

The Lucas-Kanade [70] algorithm is used to track the facial feature points. The dis-

placement of each point is computed by subtracting its normalized position in the initial
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frame from its normalized position in the current frame. Figure 2.7 illustrates the tem-

poral displacement of these points for a facial expression. A 12-dimensional displacement

Figure 2.7: Displacement of feature points [19].

vector in the brow region, a 16-dimensional displacement vector in the eye region, a 12-

dimensional displacement vector in the nose region and a 20-dimensional displacement

vector in the mouth region is produced from the following horizontal and vertical flow

vectors: six in the brow region; eight in the eye region; six in the nose region; and 10 in

the mouth region. Feature point displacements between the initial and peak frames are

used as predictors. For classification, separate group variance-covariance matrices are

used.

A database consisting of 504 frontal image sequences containing 872 AUs from 100 sub-

jects on a simple background were used. The dataset was randomly divided into training

and cross-validation or test sets. The system achieved the following AU recognition ac-

curacies: 92% for AUs in the brow region, 88% for AUs in the eye region and 83% for

AUs in the nose and mouth regions.

Bourel et al. [11] investigated FER of four expressions, “Anger”, “Joy”, “Sadness”

and “Surprise”, in the presence of partial occlusions of the face. The approach used a

combination of L-K optical flow algorithm, a feature extractor, a group of k-nearest-

neighbour (kNN) classifiers and a fusion module which combines the local classifiers.

A total of 12 facial feature points are manually specified around the following local

regions of the face: three points on each eyebrow, one point on each nostril and four

points around the mouth. No segmentation of the face is required since the points

are manually specified on the face. The two points in the nostril region are used as a

reference for automatic recovery. The system takes as input a video sequence starting at

the neutral expression and ending at the peak of the expression. In each video sequence

the displacement of each point is computed. Figure 2.8 illustrates the tracking procedure.

Six local feature vectors, as depicted in Figure 2.9, are created from the feature points on

the face: a1, a2, c1, c2, c3, c4, d1 and d2. Four parabolic coefficients are extracted from
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Figure 2.8: The 12 facial feature points [11].

the mouth region which model the shape of the mouth in each frame. Similarly, the brow

region is also modelled using two coefficients which represent the angle of deformation

of the eyebrows. The remaining two coefficients represent the distance between the

eyebrows and nostrils. Six local feature vectors are constructed by taking the difference

between the values of these coefficients in the current frame and those in the initial

neutral frame.

Figure 2.9: The six local feature vectors [11].

Each feature vector is fed into a local classifier. Each local classifier is a rank-weighted

kNN classifier which produces a weighted score for each known expression class. This

score is directly proportional to the rank of each nearest neighbour belonging to the

class. The class of the first nearest neighbour will have the highest score followed by

the class of the second and so on. The scores of all classes produced by all classifiers

are summed. This yields a class-specific score for each expression class. The unknown

pattern corresponds to the class with the highest score.

The accuracy of the FER strategy was tested under multiple occlusion settings: no

occlusion, occlusion of the upper face, occlusion of the mouth and occlusion of sides of

the face. Image sequences from the Cohn-Kanade database were used to train and test
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the system. The Cohn-Kanade database [57] contains frontal images of subjects with

varied skin tones on a simple background performing a variety of facial expressions. A

total of 100 image sequences, 25 image sequences per facial expression class, from 30

subjects were used in experimentation. A leave-one-out cross-validation technique was

used to test the system on the dataset.

Figure 2.10: Occlusion results [11].

The results are displayed visually in Figure 2.10. The results indicate accuracies of 80%

and above for all types of occlusion, with the exception of the “Sadness” expression

with the mouth occluded, which registered the lowest accuracy. As per expectation, no

occlusion of the face yielded the highest recognition accuracy. In the case of “Anger”

and “Joy”, the recognition was mostly affected by occlusion of the upper face. This was

not the case with “Sadness” and “Surprise” which were mostly affected by occlusion of

the mouth. Occlusion of the left/right side of the face affected the recognition accuracy

less than occlusion of the mouth and upper face in all expressions except for “Sadness”.

2.1.2 Dense Flow Tracking

Schweiger et al. [95] developed a framework for recognizing facial expressions. A manual

face segmentation technique is used whereby the face in the first frame of a video sequence

that is being analyzed is selected by drawing a bounding box around it. The box is

carefully drawn such that it contains only the region from the top of the eyebrows to

the bottom of the chin.

A grid of 64 equally spaced points is superimposed onto the facial image. The facial

region is also divided into six sub-regions by means of one vertical line passing through

the centre of the nose and two horizontal lines passing through the centres of the eyes

and the mouth. Figure 2.11 illustrates the segmented face, the grid of points and the

six sub-regions of the face.

The Lucas-Kanade algorithm [70] is used to track the flow of each point in the grid. A

feature vector for each sub-region is computed which contains the average displacement

for each sub-region in the grid. This results in a total of six feature vectors, the essence
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Figure 2.11: The bounding box and individual point displacements [95].

of which is illustrated in Figure 2.12.

Figure 2.12: The six feature vectors representing the average displacement in each of
the sub-regions [95].

The Fuzzy ARTMAP neural network architecture [15] is used to classify the facial ex-

pressions using the feature vectors as input. When the neural network receives a feature

vector, the best-matching category is deduced by evaluating a distance measure against

all category nodes. One neural network is trained for each of the six facial expressions.

The Cohn-Kanade facial expression database was used in the experimentation. The

leave-one-out cross validation technique was used to obtain a recognition accuracy. The

researchers state that the test set was inhomogeneous. Only a few test videos were

available for “Fear” and “Disgust”. The results are summarized as a confusion matrix

in Table 2.2. The last column of the table summarizes the total number of sequences

used for each expression.

The results indicate a relatively high recognition accuracy for “Happiness”, “Sadness”,

“Surprise” and “Anger”. The results for “Fear” and “Disgust” are insufficient to draw

any conclusion about the recognition accuracies of these expressions.

Funk et al.’s system [37] associates facial movements with Musical Instrument Digital

Interface (MIDI) notes that are sent to a sound synthesis module. The overview of the
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Table 2.2: Schweiger et al.’s results [95].

Happiness Sadness Surprise Anger Fear Disgust Total

Happiness 57 0 2 6 4 3 72
Sadness 3 26 4 8 2 0 43
Surprise 2 0 53 0 0 4 59
Anger 4 3 0 31 1 2 41
Fear 5 1 0 2 0 0 8
Disgust 5 0 0 2 0 3 10

system is depicted in Figure 2.13. For the purpose of this research, only the vision module

Figure 2.13: The architecture of the system [37].

will be taken into account. The system uses the Viola-Jones face detection algorithm

[111] to automatically detect the face. A dense optical flow method known as “block

matching” [43] is used to track facial movement. In this algorithm, a region of one frame

of the video sequence is matched to a region of the same size in the subsequent frame

of the video sequence. Matching is determined by calculating the sum of the absolute

values of differences between pixels in the matching regions. The displacement of the

block between the two frames results in velocity vectors, as illustrated in Figure 2.14.

Figure 2.14: Velocity vectors in each frame [37].

Seven facial zones are approximated on the face which are used to label the motion

vectors. The facial zones are illustrated in Figure 2.15. The regions are labelled as
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Figure 2.15: Facial zones [37].

follows: LB, RB – upper left and right eyebrow regions; LE, RE – left and right eyes;

LC, RC – left and right cheeks; and M – the mouth. The vertical coordinate of each

point on the grid determines the pitch of the generated MIDI notes and the magnitude

of the flow vector determines the velocity. Figure 2.16 illustrates a screen shot of the

synthesis control interface.

Figure 2.16: Synthesis module controls [37].

In order to control MIDI events, notes from each facial zone are sent on a separate MIDI

channel, resulting in a total of 7 channels. The channels in the figure are colour-coded

as red, yellow, blue and green, respectively. These are associated with the four facial

zones: brows; eyes; cheeks; and mouth, in Figure 2.15. Each sample channel has the
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stereo pan value set to its relative topography position corresponding to the topography

of the face.

Otsuka and Ohya [89] developed a method of spotting segments in a video sequence that

display facial expressions. Their approach uses a gradient-based optical flow algorithm

[46] to estimate the motion around the right eye and mouth regions. The regions and

their corresponding motion vector flow fields are depicted in Figure 2.17. The face detec-

tion procedure is not mentioned in the literature. A two-dimensional Fourier transform is

Figure 2.17: Flow fields indicating motion [89].

applied to the average velocity field and the lower-frequency coefficients are extracted as

a 15-dimensional feature vector. The temporal sequence of the feature vector is mapped

to its corresponding models which represent facial expressions.

Figure 2.18: An example of a video sequence [89].

A Hidden Markov Model (HMM) [88] is used to recognize the six prototypic facial expres-

sions. An HMM is a type of Finite State Machine (FSM) in which the state to be reached

by a transition, as well as the vector produced by the transition, is non-deterministic.

Each state corresponds to the conditions of facial muscles, namely: relaxed; contracting;

and apex.
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Two male subjects were instructed to perform the expressions starting with the neutral

expression, progressing towards the peak of the expression in question, and ending at

the neutral expression. Videos were recorded at a frame rate of 10 frames per second

and each video consists of all the expressions displayed after each other, with two neutral

frames inserted between different expressions, as depicted in Figure 2.18. Six prototypic

facial expressions were displayed in an interval of 15 seconds. A neutral face was inserted

between every two expressions. The HMM was trained and tested on the two male

subjects.

The videos were recorded in a constrained environment. The experiment aimed at

assessing the recognition rate of multiple expressions, as illustrated in Figure 2.19.

Figure 2.19: FER accuracy of the six HMMs across the video sequence [89].

The graph in the figure depicts the average recognition accuracy of the six HMMs each

trained to recognize one of the prototypic expressions against time expressed as frame

number in the video sequence. It is observed that in each interval in which one of the six

expressions was performed, the recognition accuracy of the corresponding HMM peaked.

It is observed that the system achieves a very high recognition accuracy.

2.2 Model-Based Methods

Model-based methods use statistical models to interpret facial images and provide a

basis for the explanation of the appearance of the face using a set of model parameters.

Model-based methods are divided into two categories, those that use active appearance

models and those that use active shape models. Section 2.2.1 discusses active appearance

models and Section 2.2.2 discusses active shape models. The details of these techniques

are explained in the following subsections.

2.2.1 Active Appearance Models (AAMs)

An active appearance model is a powerful tool used for the extraction of a set of ap-

pearance parameters, from any unknown target face, coding a synthetic face similar to
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the target with minimum error in texture [2]. Principle Component Analysis (PCA) is

used to model both the shape and texture variations in the training set according to:

si = s̄+Qsci and gi = ḡ+Qtci (2.2)

where Qs and Qt are truncated matrices describing the principle modes of combined

appearance variations in the training set, and ci is a vector of appearance parameters

simultaneously controlling the synthesized shape si and texture gi. The mean shape s̄

and mean texture ḡ are computed on the aligned and normalized training faces.

For the purpose of model pose displacement, it is necessary to add to the appearance

vector ci a pose vector pi which controls the scale, orientation and position of the

synthesized face. Parameters c and p can automatically be adjusted by the active

appearance model by minimizing a residual image r(c,p) which is the texture difference

between the synthesized face and the corresponding mask of the image that it covers.

Figure 2.20 illustrates an example of applying the AAM to facial images.

Figure 2.20: An active appearance facial model [110].

The following studies have successfully implemented AAMs.

Datcu and Rothkrantz [25] compared the accuracy of FER between static images and

video sequences using AAMs. The architecture of the system, from bottom-up, is de-

picted in Figure 2.21. The Viola-Jones face detection algorithm is used to detect segment

the face in a frame. AAMs are used to model the face to obtain shape and texture data

from it. The mean face shape illustrated in Figure2.22(a) and mean texture depicted

in Figure 2.22(b) modelled by the AAM account for the varied shapes and textures of

the face from the training data. The final feature vector for static images consisted

of 17 features pertaining to distances between key locations in the facial model. For

video sequences, the variance occurring in each of the 17 features between the initial

frame of the expression and the peak of the expression is computed and used as the

17-dimensional feature vector.
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Figure 2.21: A high-level breakdown of the system [25].

(a) The mean face
shape.

(b) The mean tex-
ture.

Figure 2.22: [25]

Finally, a Support Vector Machine (SVM) is used to classify the six prototypic facial

expressions. The Cohn-Kanade database was used in the experimentation. The number

of samples used for experimentation was different for each expression, and summarized

in Table 2.3. Each of the samples in the table represent an entire sequence of images

from a neutral expression to the peak of the expression and back to neutral. For static

images, only the image representing the peak of the expression was selected, whereas for

videos, the entire image sequence from neutral to the peak of the expression were used.

Table 2.3: Number of samples in Datcu and Rothkrantz’s dataset.

Emotion Sadness Surprise Anger Fear Disgust Happy

Samples 92 105 30 84 56 107

Two-fold cross validation was used to train and test the system. The system achieved

an average recognition accuracy of 80.02%, ranging from 72.64% to 84.70% for static
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images, and an average recognition accuracy of 85.06%, ranging from 79.62% to 88.09%

for video sequences. Table 2.4 and 2.5 illustrate the confusion matrices for static images

and video sequences, respectively. The results indicate that the system registers a higher

recognition accuracy with the use of video sequences as opposed to the use of static

images.

Table 2.4: Confusion matrix using static images [25].

(%) Fear Surprise Sadness Anger Disgust Happy

Fear 84.70 3.52 3.52 4.70 1.17 2.35
Surprise 12.38 83.80 0.95 0 0 2.85
Sadness 6.45 3.22 82.79 1.07 3.22 3.22
Anger 3.44 6.89 6.89 75.86 6.89 0
Disgust 0 0 7.14 10.71 80.35 1.78
Happy 7.54 8.49 2.83 3.77 4.71 72.64

Referring to Table 2.4, “Fear” registered the highest recognition accuracy of 84.7% and

“Happy” registered the lowest recognition accuracy of 72.64%. It is interesting to note

that “Surprise” was incorrectly registered as “Fear” in most incorrectly classified cases

since these expressions are quite different.

Table 2.5: Confusion matrix using static images [25].

(%) Fear Surprise Sadness Anger Disgust Happy

Fear 88.09 2.38 4.76 3.57 1.19 0
Surprise 0 88.67 2.83 8.49 0 0
Sadness 5.43 2.17 85.86 2.17 1.08 3.26
Anger 10.71 0 3.57 85.71 0 0
Disgust 5.35 5.35 3.57 1.78 82.14 1.78
Happy 4.62 0 7.40 2.77 5.55 79.62

Referring to Table 2.5, “Surprise” registered the highest recognition accuracy of 88.67%

and, once again, “Happy” registered the lowest recognition accuracy of 79.62%. It

should be noted that the recognition accuracy was higher in video sequences for every

expression. It is also interesting to note that, in this case, Surprise” was no longer

misclassified as “Fear” at all.

Kuilenburg et al. [108] used a holistic implementation of an AAM to accurately rec-

ognize the six prototypic expressions and the neutral expression on static images. The

constructed facial model is represented by an appearance vector which contains all the

relevant information required to distinguish between expressions. No facial segmentation

strategy is used as the system takes facial images on a simple background as input. A
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three-layer feed-forward Neural Network (NN) is used for the classification of the expres-

sions. A total of 116 neurons, 94 input neurons for the length of the appearance vector,

15 hidden neurons and 7 output neurons for each expression, were used in training the

NN.

The Karolinska Directed Emotional Faces [72] database, which contains 980 facial images

on a simple background, was used in the experimentation. The first experiment aimed

at testing the accuracy at which the system can recognize facial expressions. The second

experiment aimed at testing how accurately the system recognizes action units, using

FACS as a guideline.

A total of 17 images were used for training and 963 images were used for testing. The

training data consisted of 1512 appearance vectors. The testing data was not divided

equally among the seven expressions. The results in Table 2.6 depict a confusion matrix

of the first experiment and Table 2.7 summarizes the test results for recognizing action

units.

Table 2.6: Confusion matrix for the FER experiment [108].

Happy Angry Sad Surprise Scared Disgust Neutral

Happy 138 1 3 0 0 1 0
Angry 0 116 4 1 8 5 11
Sad 1 2 109 6 5 3 2
Surprise 0 1 19 128 2 0 1
Scared 0 3 2 0 115 3 1
Disgust 0 11 1 0 5 125 0
Neutral 1 0 1 0 3 0 125

For the first experiment the system achieved an average recognition accuracy of 89%.

“Happy”” registered the highest accuracy of 97% and “Sad”” registered the lowest ac-

curacy of 85%.

Table 2.7: Action unit recognition results [108].

Action Unit 01 02 04 05 06 07 09 12 15 17 20 23 24 25 27 Average

Accuracy (%) 86 88 81 86 81 89 93 83 89 86 84 83 83 90 89 86

Table 2.7 illustrates the results for the second experiment. For action unit recognition

the system registered an average accuracy of 86%.

Wilhelm et al. [116] compared two models that classify facial expressions, age, gender

and identity. The first model, Independent Component Analysis (ICA), is a description

of facial images by their projection on independent base images. For this model, the
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centres of the eyes are manually located and used as facial landmarks in facial images

that contain a simple background. As such, the system requires no automatic face

segmentation strategy. An observation matrix is computed using vectorized images as

rows. Figure 2.23 illustrates the independent base images obtained as a result of applying

ICA to the matrix.

Figure 2.23: Independent base images [116].

The second model uses AAMs to model the shape and grey value variations of facial

images. For this model, 116 facial landmark points were used along dominant outlines

of the face. Facial landmarks are manually labelled on the face for normalization as

illustrated in Figure 2.24.

Figure 2.24: AAM with manually labelled facial landmarks [116].

The feature vectors were classified using various machine learning techniques such as

Nearest Neighbours (NNs), Multi Layer Perceptron (MLP), Radial Basis Function (RBF)

and Generalized Learning Vector Quantization (GLVQ). The database used to train and

test the systems consisted of 30 subjects on a simple background performing the six

prototypic expressions, as well as the neutral expression. Only static images, one per

expression per subject, are contained in the database. Since the classification of age,

gender and identity are beyond the scope of this research, only the test results for FER

are presented. The results are illustrated in Figure 2.25.
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Figure 2.25: Wilhelm et al.’s FER results [116].

For the ICA method, the recognition accuracies were varied, with the NN achieving

the best results and the MLP achieving the lowest accuracy. For the AAM method,

the recognition accuracies are fairly consistent, with the MLP achieving the highest

accuracy, except for the GLWQ classification technique which registered a much lower

accuracy than the other three techniques.

2.2.2 Active Shape Models (ASMs)

Active Shape Models are statistical models of the shape of objects which iteratively

deform to fit on an example of the object in a new image [20]. A statistical facial

model is created from a training set of images consisting of manually annotated facial

landmarks. An example of a landmarking scheme is illustrated in Figure 2.26.

Figure 2.26: Manually annotated facial landmarks for ASMs [18].

For each facial image, the coordinates of all landmarks are stored as a vector, called a

shape x, in the form x = ((x1, y1), ..., (xN , yN ))T , where xi and yi are the coordinates

of the i-th landmark and N is the number of landmarks used [96]. All shapes in the

training set are aligned with each other using Generalized Procrustes Analysis (GPA)

and the mean shape x̄ is the mean vector shape of these aligned shapes. Statistical
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models of the grey level intensities of the region around each landmark are generated to

build a subspace that spans the variations of the exemplar training images.

One-dimensional profiles are created by sampling the grey level intensities that lie around

the lines of the face. These intensities are stored as a vector and normalized by replacing

each element of the vector by its gradient and dividing the mean of the absolute values

of its elements. The mean profile vector ḡ and the covariance matrix of all such vectors

is denoted by Sg.

For each landmark point, the mean profile vector and covariance matrix are generated.

For generating two-dimensional profiles, the resulting matrix is vectorized, row-wise, and

normalized by applying a sigmoid transform, with a shape constant q, to each element

of the profile, gi, to transform them into g′i, as shown in Equation (2.3)

gi
′ =

gi

|gi|+ q
(2.3)

An example of a facial model is illustrated in Figure 2.27.

Figure 2.27: Example of a shape model [18].

The following studies have successfully implemented ASMs.

Luettin et al. [71] applied ASMs to visual speech recognition. The inner and outer

contours of the lips were used to create the model. In each frame the parameters that

describe the shape lips are extracted and used as visual speech feature vectors. The

temporal changes of these vectors were modelled by HMMs. The experiments aimed at

testing word accuracy. The Tulips1 database contains grey level image sequences of the

first four digits and each digit was spoken twice by 12 subjects on a simple background.

Figure 2.28 depicts the visual results of locating and tracking the lips using ASMs.

The results indicate an accurate method for locating and tracking the lips using ASMs,

even in cases when they extend beyond the boundaries of the image (2nd column and

2nd row of Figure 2.28 and 3rd column and 2nd row of the same figure). In terms of
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Figure 2.28: Lip tracking results using ASMs [71].

recognition accuracy, the system achieved an average recognition accuracy of 88.42%

across all subjects and words.

Chang et al. [18] proposed a novel approach to recognizing facial expressions on a

low-dimensional expression manifold. Facial deformations in a low-dimensional space

are embedded using non-linear dimensionality reduction. Images lie in a very high-

dimensional space. However, a class of images generated by latent variables lies on a

manifold in this space. In human facial images, the latent variables may be the illu-

mination, identity, pose and facial deformations. The facial model is manually selected

in order to track facial deformation. A Gaussian Mixture Model (GMM) is applied to

cluster data in the low-dimensional expression space in an off-line training phase. A spe-

cific ASM, defined by manually locating 58 facial landmarks, is trained for each cluster.

The shape model is illustrated in Figure 2.29. The ICondensation algorithm, which is a

probabilistic prediction model, is used for facial deformation tracking and recognition.

Figure 2.29: The shape model with 58 landmark points [18].

Two subjects were instructed to perform the six basic expressions in sequence seven

times. Half of the data was used for training and the other for testing. The results in

Figure 2.30 clearly indicate that Chang et al.’s method obtained a considerable improve-

ment – less error – when compared to the traditional ASM method.
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Figure 2.30: Error comparison of Chang et al.’s method and the ASM tracker [18].

Seshadri and Savvides [96] proposed an enhanced facial landmark optimization technique

to improve the accuracy of ASMs. An optimal number of 79 landmark points were

found to be sufficient to accurately model the face in order to carry out reasonable facial

analysis, especially when dealing with facial expressions. The facial model is illustrated

in Figure 2.31.

Figure 2.31: The ASM facial model [96].

A new metric which is the Mahalanobis distance between the original candidate profile

patch and the reconstructed candidate profile patch was proposed. Therefore, the candi-

date patch with the lowest reconstruction error is deemed as the best fit. Figure 2.32(a)

depicts one-dimensional profiles, used in traditional ASMs, which are constructed by

sampling the grey level intensities along the lines known as whiskers [76]. Figure 2.32(b)

illustrates how Seshadri and Savvides construct two-dimensional profiles by sampling a

13× 13 square region around each landmark.

The experiment aimed at testing the modelling accuracy of the modified ASM method

against the conventional ASM implementations on two datasets. The training set con-

sisted of 500 images of 115 subjects from the NIST Multiple Biometric Grand Challenge

(MBGC) database which contains a total of 10687 images of 570 subjects performing
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(a) One-dimensional profiles. (b) Two-dimensional profiles.

Figure 2.32: [96]

the six prototypic expressions. The testing sets consisted of 1500 images from the NIST

Multiple Biometric Grand Challenge (MBGC) dataset and 500 images from the CMU

Multi-Pie dataset.

Table 2.8 illustrates the test results for the MBGC dataset and Table 2.9 illustrates test

results for the CMU Multi-Pie dataset. In both cases, the results indicate the error with

which the modified ASM method models the face, as compared to classical ASMs.

Table 2.8: Results for the MBGC database [96].

Method Used Average Fitting Error Average Normalized Fitting Error

Classical ASM 12.101 3.501
Seshadri and Savvides’ Implementation 6.582 1.908

Referring to Table 2.8 and Table 2.9, the results indicate that the proposed approach

outperforms classical ASMs. The researchers state that, for the MBGC database, the

proposed approach outperforms the classical ASM algorithm by slightly more than 45.5%

on both the fitting error and average normalized fitting error. Similar results were

obtained on the Multi-PIE database, for which the proposed approach is stated to be

30% more accurate than the conventional ASM on both the fitting error and average

normalized fitting error.

Table 2.9: Results for the Multi-PIE database [96].

Method Used Average Fitting Error Average Normalized Fitting Error

Classical ASM 7.655 3.571
Seshadri and Savvides’ Implementation 5.332 2.488
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2.3 Appearance-Based Methods

Appearance-based methods rely on the dynamic shape and texture changes in the face in

order to extract facial features. Appearance-based methods are divided into two types:

Local Binary Patterns (LBPs) and Gabor wavelets. Section 2.3.1 discusses Local Binary

Patterns and Section 2.3.2 discusses Gabor wavelets. The details of these techniques are

explained in the following subsections.

2.3.1 Local Binary Patterns (LBPs)

Ojala et al. developed the original LBP operator [86]. The LBP operator is a good

texture descriptor. Applied to an image, the operation results in a texture image that

can be used in facial expression analysis. The operator is applied to a grey scale image

and results in a grey scale texture image.

The operator is applied to each 3× 3 pixel neighbourhood in the input image. For each

pixel location, the following procedure is carried out:

1. The neighbouring pixels {fP |P = 0, ..., 7} are assigned binary values by means

of a threshold function which is relative to the value of the centre pixel fc. The

threshold function T is given by:

T (fP , fc) =







1 if fP ≥ fc

0 otherwise
(2.4)

2. The values of the neighbouring pixels are taken to be an 8-bit binary number,

with the binary value of the top left pixel as the left-most bit, and moving clock-

wise, until the neighbouring pixel on the left is encountered and taken to be the

right-most bit of the binary number. This binary code is known as a local binary

pattern. Note that the binary pattern can be generated by moving in the opposite

direction as well and can start at any neighbour as long as the procedure remains

consistent.

3. The binary pattern is converted to its decimal equivalent and assigned as the value

of the pixel in a new LBP image in the location corresponding to the centre pixel

in the original image.

This procedure is illustrated in Figure 2.33.
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Figure 2.33: The original LBP operator.

The following studies have successfully implemented LBPs.

Feng et al. [34] used LBPs to recognize the six prototypic expressions as well as the

neutral expression. Each image was preprocessed using the CSU Face Identification

Evaluation System [10] resulting in segmented normalized facial images of size 150×128

pixels. Figure 2.34 depicts examples of images used from the JAFFE database before

and after preprocessing.

Figure 2.34: Original (top row) and preprocessed (bottom row) images [34].

The original LBP operator was applied to the image. The resulting image was divided

into local regions of size 10 × 8 pixels. Local histograms of each region were computed

and concatenated into one feature vector.

Classification was carried out by means of a linear programming technique. This tech-

nique generates a plane which minimizes an average sum of misclassified points belonging

to two disjoint point sets. The seven-expression classification problem is divided into

21 two-class problems: Anger-Disgust, Anger-Fear, Disgust-Fear etc. For the training

phase, 21 classifiers each corresponding to the 21 expression pairs are trained. For test-

ing, the feature vector of each testing sample is fed into all the classifiers for recognition

and a binary tree tournament scheme is used to resolve the multi-class classification

problem.
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The data used for experimentation was obtained from the JAFFE database [73]. A total

of 213 images of 10 subjects on a simple background performing each of the expressions

“three or four times” [34] were used. Ten-fold cross validation was used to train and

test the system. An average recognition accuracy of 93.8% was obtained. It was noted

that the “Fear” expression was problematic and difficult to recognize. When the “Fear”

expression was disregarded, an average recognition accuracy of 94.6% was obtained. No

further results are provided.

Moore and Bowden [77] investigated multi-view FER using LBPs. Several variants of

the original LBP operator were used on facial images from the Binghamton University

3D Facial Expression (BU-3DFE) database [118] and the Multi-Pie database [42]. The

aim of the study was to test the influence of pose on FER. Both databases contain

facial images on a simple background. Various optimized LBP operators were used and

compared. The following variants were considered: rotation invariant LBPs – LBP ri;

standard uniform LBPs with a neighbourhood of eight pixels and a radius of one pixel

– LBP u2; uniform rotation invariant LBPs – LBP riu2; uniform LBPs obtained from

gradient magnitude images – LBP gm; multi-scale LBPs where the radius varies from

one to eight pixels – LBPms; and LBPs extracted from Gabor images using 40 different

gabor kernels at different scales and orientations to compose gabor images – LGBP .

LBP ri offers rotation invariance but has poor descriptive abilities. LBP u2 offers il-

lumination invariance and is computationally efficient. LBP riu2 also offers rotation

invariance and also has poor descriptive abilities. LBP gm features encode the magni-

tude of local variation. LBPms allows for multi-scale analysis by encoding the micro

features of the face as well as large-scale features at the structural level. LGBP has a

high feature vector dimensionality, but Gabor filters offer strong illumination invariance

as well as powerful descriptive features.

In the approach, each of these operators is used to generate an LBP image. The resulting

image is divided into 64 sub-regions using a grid of 8 columns and 8 rows. Histograms of

each region are computed and concatenated to form a “spatially enhanced histogram”

[77] which is used as a feature vector. A multi-class SVM is used to classify the resulting

feature vector into classes representing each of the seven expressions.

The BU-3DFE database contains facial images at 4 intensities, ranging from neutral to

the peak of the expression, for all 6 prototypic expressions as performed by 100 subjects.

The subjects are of varied skin tone. The facial images are provided as 3D models that

can be rotated to any angle. Figure 2.35 illustrates the frontal images from the BU-3DFE

database and Figure 2.36 depicts images of a different subject at 5 different angles: 0◦,

30◦, 45◦, 60◦ and 90◦.
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Figure 2.35: Frontal facial images [77].

Figure 2.36: Rotated facial images [77].
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No pre-processing was carried out on the facial images. An experiment was carried out

to determine the FER accuracy of each LBP operator at the selected angles. Addition-

ally, the effect of the resolution size of the original facial image on recognition accuracy

was also investigated. Four randomly selected resolution sizes were used. The ten-fold

cross-validation accuracy on 8000 images per class was computed and used as a compar-

ative measure between each of the cases. Table 2.10 illustrates the average recognition

accuracy over all subjects, expressions and angles at each resolution size.

Table 2.10: BU-3DFE results for the frontal view [77].

32× 44 44× 62 64× 88 80× 110

LBP riu2 47.28 46.12 46.31 46.32
LBP ri 47.53 46.28 45.93 46.56
LBP gm 52.91 51.49 53.2 53.29
LBP u2 58.44 57.33 57.12 56.24
LBPms 62.41 62.9 64.98 65.02
LGBP 66.76 67.84 67.96 66.79

The results indicate that varied resolution sizes are suitable for different LBP operator

variants and it thus necessary to determine the optimum resolution on a per-application

basis. The three most accurate LBP operators were the LGBP , LBP u2 and LBPms.

Figure 2.37 summarizes the graphical results obtained per expression and viewing angle

for these three operators. It can be observed that the recognition accuracy between

the different expressions varied quite significantly for all three methods. However, the

accuracy between different viewing angles appeared to be relatively consistent. Only

the average accuracy of the two operators LGBP and LBPms are provided, and these

were 67.96% and 65.02%, respectively.

The multi-pie database contains images of 337 subjects of varied skin tone on a simple

background performing five expressions, three of which are prototypic expressions –

“smile”, “disgust” and “surprise” – with two other expressions “squint” and “scream”.

The neutral expression is also included. Thirteen cameras are used to record each subject

performing each expression at varied rotations in 15◦ intervals ranging from 0◦ – 180◦.

The orientation of the head of each subject is carefully controlled by a pre-configured

head brace. Figure 2.38 illustrates the six expressions in the database and Figure 2.39

illustrates one expression captured at different viewing angles.

An experiment was carried out to determine the recognition accuracy of the two best

performing operators from the previous experiment: LGBP and LBPms. A total of 4200

images from 100 subjects performing each of the 6 expressions at 7 angles – from 0◦ to

90◦ in 15◦ intervals – were used. For this database, face segmentation was first carried

 

 

 

 



Chapter 2. Related Work 36

Figure 2.37: BU-3DFE results for the rotated view [77].

Figure 2.38: Six expressions in the multi-pie database [77].

out to segment the face in each image. The Viola-Jones [111] frontal face detection

algorithm was used to detect frontal faces at 0◦, 15◦ and 30◦. The profile cascade was

used to detect rotated faces at 45◦, 60◦, 75◦ and 90◦.

Table 2.11 illustrates the average recognition accuracy results for each LBP operator at

different rotation angles.

It is noted that the 15◦ viewing angle achieves the highest recognition results for both

operators. Furthermore, as in with the previous data set, there does not appear to be

any trend in the recognition accuracy with respect to the viewing angle. The recognition
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Figure 2.39: An expression captured at different viewing angles [77].

Table 2.11: Multi-Pie results for various angles [77].

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

LBPms 76.7 80.5 70.3 69 78.6 63 73.8
LGBP 82.1 87.3 75.6 77.8 85 71 75.9

accuracy appears to be angle-specific. Tables 2.12 and 2.14 are confusion matrices for

each of the two LBP operators.

Table 2.12: Confusion matrix for facial expressions over all angles for LBPms features
[77].

(%) Neutral Smile Surprise Squint Disgust Scream

Neutral 73.92 11.57 2.98 8.91 3.41 0.66
Smile 9.21 78.04 4.04 4.79 3.62 1.74
Surprise 3.41 3.40 81.01 2.54 1.89 9.21
Squint 9.28 8.84 2.90 60.11 18.71 1.60
Disgust 5.51 4.85 1.74 14.87 69.21 5.27
Scream 0.15 1.15 12.95 0.94 3.48 81.57

Shan et al. [97] evaluated frontal FER using LBPs. The Viola-Jones [111] face detection

algorithm is used to detect and segment faces. A variant of the original LBP operator
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Table 2.13: Confusion matrix for facial expressions over all angles for LGBP features
[77].

(%) Neutral Smile Surprise Squint Disgust Scream

Neutral 80.55 8.02 2.75 6.87 2.67 0.58
Smile 7.54 82.74 2.61 5.07 2.62 0.87
Surprise 1.03 3.55 88.67 0.87 1.81 5.52
Squint 8.61 7.45 1.37 66.26 16.89 0.87
Disgust 4.12 3.55 1.02 14.70 74.81 3.25
Scream 0.14 0.94 8.52 0.36 2.18 88

that uses a neighbourhood radius of 2 pixels using uniform binary patterns was used.

The 110×150 pixel input images are divided into local regions using a 6×7 grid. Similar

to previous researchers, a spatially enhanced LBP histogram is created by concatenating

the histograms of all local regions resulting in a feature vector length of 2478.

SVMs were used for classification. Images from the Cohn-Kanade database were used

in experimentation. For each subject, the neutral expression and three peak frames for

each of the prototypic expressions were used in the experimentation. A total of 1280

images (108 for anger, 120 for disgust, 99 for fear, 282 for joy, 126 for sadness, 225 for

surprise and 320 for neutral) from 96 subjects were used.

The dataset was partitioned into 10 equal groups, with nine groups used for training and

one group used for testing. Three prominent SVM kernels were compared. Addition-

ally, the recognition accuracy using the six prototypic expressions including the neutral

expression was compared with using the six expressions without the neutral expression.

The results of this comparison are summarized in Table 2.14.

Table 2.14: FER accuracy results of Shan et al. [97].

6-Class LBP (%) 7-Class LBP (%)

SVM (linear) 91.5 ± 3.1 88.1 ± 3.8
SVM (polynomial) 91.5 ± 3.1 88.1 ± 3.8
SVM (RBF) 92.6 ± 2.9 88.9 ± 3.5

The results indicate that all three kernels can perform at a high accuracy, but the RBF

kernel appears to perform marginally better in this instance. It is also noted that using

both the 6-class and 7-class datasets result in very high recognition accuracies. Using

a 6-class dataset appears to perform marginally better than using the 7-class dataset.

However, this difference may not be statistically significant.
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2.3.2 Gabor Wavelets

Gabor wavelets exhibit desirable characteristics of spatial frequency, spatial localization

and orientation selectivity for image analysis [67]. Gabor wavelets can be defined as

follows:

ψµ,ν(z) =
‖kµ,ν‖2
σ2

e
−

‖kµ,ν‖2‖z‖2

2σ2 [e − e−
σ2

2 ] (2.5)

where µ and ν define the scale and orientation of the Gabor kernels, z = (x, y), kµ,ν is

the wave vector and ‖kµ,ν‖ denotes the norm operator applied to kµ,ν . kµ,ν is defined as

follows:

kµ,ν = kνe
iφµ (2.6)

where kv = kmax

fν and σµ = πµ
8 . The maximum frequency is kmax and f is the spacing

factor between kernels in the frequency domain [63].

Since the Gabor kernels in Equation (2.5) can be generated from one filter – the mother

wavelet – by scaling and rotation via the wave vector kµ,ν , they are known as self-similar.

Every kernel is a product of a Gaussian envelope as well as a complex plane wave, while

the term e in square brackets determines the oscillatory part of the kernel. When the

parameter σ, which determines the ratio of the Gaussian window width to wavelength,

has sufficiently large values, the effect of e−
σ2

2 in square brackets becomes negligible.

In most cases five different scales ν ∈ {0, ..., 4} and eight orientations µ ∈ {0, ..., 7} of

Gabor wavelets are used. The real component and magnitude of the five scales and

orientations of the Gabor filters with parameters σ = 2π, kmax = π
2 and f =

√
2 are

illustrated in Figure 2.40.

Figure 2.40: Gabor kernels [27].

Figure 2.41 and Figure 2.42 illustrate the resulting real component and magnitude of the

Gabor representation when the kernels in Figure 2.40 are convolved with facial images.

It can be seen that these representations are powerful descriptors of facial features.

The following studies have successfully implemented Gabor wavelets.

Kotsia et al. [61] analyzed the effects of partial occlusions of the face on frontal FER

using Gabor wavelets. To recognize facial expressions, two approaches were followed:
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Figure 2.41: Real component of the Gabor representation of a facial image [27].

Figure 2.42: Magnitude of the Gabor representation of a facial image [27].

the first approach uses holistic texture information obtained by applying Gabor filters

and the Discriminant Non-negative Matrix Factorization (DNMF) to the entire facial

image and the second approach uses the displacement of certain points on the face using

a multi-class SVM method. The Viola-Jones face detector is used to segment faces in

images.

The flow diagram of the overall approach is illustrated in Figure 2.43.

Figure 2.43: System overview [61].

To avoid manually selecting specific regions, Gabor filters were applied to the entire

face for facial feature extraction. Four orientations were used, namely, 0, π
4 ,

π
2 and 3π

4 ,

as well as two different frequency ranges, namely, high frequencies 0, 1 and 2, and low

frequencies 2, 3 and 4. A feature vector is constructed by the convolution of a 80 × 60

facial image with 12 Gabor filters corresponding to the orientations and frequencies

mentioned. The image is down sampled to 20 × 15 pixels which results in a feature

vector dimension of 300 × 1 for each of the 12 Gabor filters. In this representation,

only the magnitude of the Gabor filter output was used. A combined feature vector is

constructed by concatenating the 12 Gabor filter output vectors which results in a feature

vector dimension of 3600 × 1. The DNMF algorithm approximates a facial expression

image by a linear combination of a set of basis images. Figure 2.44 depicts examples

of basis images extracted for the DNMF algorithm. Since DNMF is outside the scope
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Figure 2.44: Basis images [61].

of this research, the reader is referred to [119] for a more detailed description of the

algorithm. For the shape-based approach, a grid is placed on the face and the geometric

displacement of each grid node is contained in a grid deformation feature vector. Multi-

class SVMs were used for classification. Examples of the facial grid are illustrated in

Figure 2.45. Two databases were used for experimentation, the image sequences from

Figure 2.45: Grids for each expression [61].

the Cohn-Kanade database [57] and the static images from the Japanese Female Facial

Expression (JAFFE) database [73]. All of the data of both data sets was used. As

explained earlier, both databases contain images on simple backgrounds.

Two experiments were carried out. The first aimed to determine the frontal FER accu-

racy of each method. The second experiment aimed to determine the effect of various

types of occlusion on the recognition accuracy of each method. The three types of

occlusions that were considered are illustrated in Figure 2.46.

(a) Eyes occluded. (b) Mouth occluded. (c) Right side of the
face occluded.

Figure 2.46: Partial occlusions of the face [61].

Black patches were manually superimposed over the eyes, mouth and right side of the

face. 80% of the data from both databases was used as training data and the rest was

used as testing data. The results are summarized in Table 2.15.
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Table 2.15: Occlusion results [61].

No occlusion Eyes occlusion Mouth occlusion

JAFFE database
Gabor filters (%) 88.1 83.1 81.5

Cohn-Kanade database
Gabor filters (%) 91.6 86.8 84.4

The following points are to be noted from the results. As expected, the facial images

that are not occluded registered the highest accuracy. The frontal results obtained from

the Cohn-Kanade database registered the highest accuracy of 91.6% using Gabor filters.

No results for occlusion of the right side of the face are provided. The results indicate

that occlusion of the mouth appears to consistently affect the recognition accuracy of

the system more than occlusion of the eyes using both databases and all methods. It is

also noted that the Gabor filter method outperforms the DNMF method.

Liu and Wang [68] implemented a Gabor feature-based FER strategy to accomplish

subject-independent FER of the six prototypic expressions as well as the neutral expres-

sion. Multiple orientation factors 0, 1, 2, ..., 7 and multiple scale factors 0, 1, 2, ..., 4 were

chosen, which resulted in a total of 40 different Gabor filters, each with a dimension of

5 × 8. The Gabor filters along with their respective response images are illustrated in

Figure 2.47.

(a) Gabor filters. (b) Gabor response images.

Figure 2.47: Gabor filters used by Liu and Wang [68].

Gabor filters which have the same scales and orientations are grouped into 13 channels

corresponding to the five scales and eight orientations. Each individual channel has a

unique contribution to the recognition of facial expressions. For a given test image,

Principle Component Analysis (PCA) and a Neural Network are used to recognize the

facial expression of each of the 13 Gabor channel-feature vectors. Two images of each

expression for 10 subjects were used as training examples from the JAFFE database, the

rest of the images were used for testing. Key facial landmarks were manually marked
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prior to training and testing. A NN input layer consisting of 13 nodes corresponding to

the 13 Gabor channel-features followed by a hidden layer of 10 TAN-SIG neurons are

used. The output layer, used for classification, consists of 7 nodes. The experimental

results are summarized in Table 2.16.

Table 2.16: Gabor filter results [68].

Anger Disgust Fear Happiness Neutral Sadness Surprise

Gabor PCA (%) 60 67 80 56 67 56 89

The results indicate an average accuracy of 79% across all expressions. The range in

accuracy across the different expressions is (56, 89)% which indicates a large variance in

accuracy.

2.4 Summary

This chapter investigated the three most prominent methods used in whole FER. These

are motion-based, model-based and appearance-based methods.

Motion-based methods use motion to characterize facial expressions. Motion-based

methods were divided into feature point and dense flow tracking techniques. In gen-

eral, both techniques were shown to perform well with feature point tracking techniques

performing better than dense flow tracking techniques. This could be due to the fact

that the face is more accurately segmented in the image in feature point tracking tech-

niques by manually placing tracking points on key facial landmarks. This is in contrast

to dense flow tracking techniques which track points on an automatically generated grid

overlayed on the face.

However, the reliability of motion-based methods depends mainly on the brightness

constancy of pixels. Therefore, stable lighting conditions are required to achieve good

results. Stable lighting conditions can not be guaranteed in real-world situations. Fur-

thermore, these methods necessarily require image sequences of the neutral expression

to a non-neutral expression to perform classification. They are not able to recognize on

static images.

Model-based methods use modelling techniques to model and recognize facial expres-

sions. Model-based methods were divided into active appearance and active shape mod-

els. In general, both methods have comparable performance in terms of accuracy. Both

methods require key points on the face to be manually specified prior to modelling.
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This is significant drawback of the methods since labelling can be laborious and time-

consuming. They are more complex than both motion-based and appearance-based

methods, require more training data, and higher computational cost is involved. In

terms of accuracy, both motion-based and appearance-based methods perform better

than model-based methods.

Appearance-based methods use the texture of facial images to recognize facial expres-

sions. These methods were divided into Local Binary Patterns and Gabor filters. Both

techniques are similar since they both analyze the texture at a micro-level by computing

the texture descriptor in a small neighbourhood or by performing pixel-wise filtering.

In terms of accuracy, the two techniques are comparable. They are also both robust

to illumination changes and variations. A great disadvantage of Gabor wavelets is the

increased complexity and computational requirements as the number of kernels used

increases. A large number of kernels are required to achieve good results. LBPs are not

complex and are generally efficient.

Generally, appearance-based methods out-perform model-based methods but are on-

par with motion-based methods. However, motion-based methods require illumination-

normalized images and can only work on image sequences, whereas appearance-based

methods are robust to illumination changes and can work on static images.

Therefore appearance-based methods and specifically Local Binary Patterns are selected

as the feature extraction method for this research.

2.5 Conclusion

It is concluded that the LBP appearance-based method is the most suitable facial feature

extraction method, and is selected for use in this research.

Of special note were the studies by Moore and Bowden [77] and Kotsia et al. [61].

Moore and Bowden optimized the resolution of facial images before applying the LBP

operator towards FER. They also investigated the effect of various yaw rotations of

the face on the FER accuracy. Both of these experiments are adapted for use in this

research. Furthermore, it was noted that there is no trend in the recognition accuracy

with respect to the viewing angle. The recognition accuracy appears to be angle-specific.

Thus, the system needs to be trained and tested on a per-angle basis. For the scope of

this research, the frontal view and one rotated angle of 60◦ are therefore selected.
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Furthermore, it was found that of the purely LBP methods, the multi-scale LBPms and

uniform LBP u2 LBP operators perform the best. A hybrid between these two operators

is used in the proposed FER strategy.

It was also noted that the accuracy of their strategy varied between the BU-3DFE

database and the Multi-pie database. This shows that the accuracy is affected by the

nature of the data. This research uses the BU-3DFE database in training and testing.

Kotsia et al. compared the effects of different types of occlusion on FER accuracy

using Gabor filters. This research uses an extended version of this experimentation to

investigate the effects of various types and levels of occlusion on FER accuracy using

LBPs.

Finally, it was noted that the majority of research across all three methods makes use

of manually segmented images. Few automatic segmentation strategies are proposed,

hence the need to lay the foundation towards a fully automatic segmentation approach.

 

 

 

 



Chapter 3

Image Processing in

Appearance-Based Facial

Expression Recognition

This chapter discusses the components that form part of the appearance-based approach

used in the facial expression recognition (FER) methodology of this research. Section

3.1 discusses the components of the facial segmentation process. Once the face has been

segmented, Local Binary Patterns (LBPs) are used to extract features from the face.

Feature extraction using LBPs is described in Section 3.2. Using the facial features

extracted, an SVM is used to carry out facial expression classification. In Section 3.3, a

detailed discussion on SVMs is provided. The chapter is then concluded.

3.1 Face Segmentation Techniques

3.1.1 Face Detection

Face detection is a popular initial step in FER systems. It is used to localize and extract

the face region in an image from the background [45]. The Viola-Jones [111] object

detection framework is a popular and robust implementation of face detection. This

tree-based approach uses Haar feature classifiers to build a boosted rejection cascade.

At every node in the cascade, AdaBoost is used to achieve a high detection rate. This

method consists of four novel features [12]:

1. The use of Haar-like wavelet features to characterize the face.
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2. An intermediate image representation, referred to as an integral image, for the

rapid computation of Haar-like wavelet features.

3. A learning algorithm, based on AdaBoost, which yields extremely efficient classi-

fiers.

4. A rejection cascade consisting of a combination of weak classifiers, which focus on

object-like regions and discard background regions of the image.

These four features are discussed in the following subsections.

3.1.1.1 Haar-like Wavelets

Haar-like wavelets or Haar-like features are single wavelength square waves – one high

and one low interval. Figure 3.1 illustrates three different types of Haar-like features.

Figure 3.1: Haar-like features.

Two-rectangle features, depicted in block A and block B, consist of rectangles which have

identical size and shape, and are horizontally or vertically adjacent. These features are

scanned over an image at different scales and regions. For the two-rectangle feature, the

difference between the sum of the pixels in the image within the two rectangular regions

is computed. For three-rectangle features, depicted in block C, the sum of the image

pixels within the two outside rectangles is subtracted from the sum of the image pixels

in the centre rectangle. For four-rectangle features, depicted in block D, the difference

between the sum of the pixels in the diagonal pairs of rectangles is computed [112].
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3.1.1.2 Integral Image

Scanning the Haar-like features over an image and computing the relevant pixel sums

at different scales can be very computationally expensive. The use of larger Haar-like

features results in higher computational overhead than the use of smaller scales.

An integral image is a data structure used to efficiently determine the presence or absence

of numerous Haar-like features at every image location and at several scales in constant

time. An integral image is computed by taking the sum of all the pixels above and

to the left of a corresponding pixel. Consider an input image I of dimension W × H.

The resulting integral image I ′ then has a dimension of (W + 1) × (H + 1). A buffer

of zero values along the x-axis and y-axis are inserted, which is required for efficient

computation[12].

Starting at the top-left pixel in Figure 3.2(a), the integral pixel values in Figure 3.2(b)

are calculated using the following formula [12]:

I ′(x, y) = I(x, y) + I ′(x− 1, y) + I ′(x, y − 1)− I ′(x− 1, y − 1) (3.1)

An example configuration of pixel values in the original image is illustrated in Figure

3.2(a) and the corresponding integral image is illustrated in Figure 3.2(b).

(a) Pixels values in the original image. (b) Computed values in the integral image.

Figure 3.2

Using the integral image, the computation of any Haar-like feature at any location and

scale can be achieved in constant time. For example, in Figure 3.3, the sum of pixels in

any arbitrary rectangular region D can be computed by subtracting the integral image

values at points 2 and 3 from the value at point 4, and adding the value at point 1.

This can be extended to compute Haar-like features. Any two-rectangle feature can

be computed using 8 references to the integral image, and 9 references are required to

compute four-rectangle features.
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Figure 3.3: Optimization of the Haar-like feature using the integral image.

Figure 3.4: AdaBoost feature selection.

3.1.1.3 AdaBoost Learning Algorithm

Viola and Jones [111, 112] used a modified AdaBoost algorithm to select a small set of

features as well as train a classifier. The AdaBoost algorithm, in its original form, is

used to boost the classification performance of a simple or weak learning algorithm. A

strong classifier is created by combining many weak classifiers. This process is known as

boosting and involves assigns weights to each weak classifier, with the best weak classifier

selected at each boosting interval. This results in a strong classifier which consists of a

combination of weighted classifiers. Figure 3.4 illustrates an example of features selected

by the AdaBoost algorithm.

The two features in the top row are the first and second features selected by AdaBoost.

The first feature measures the difference in intensity between the region of the eyes and

upper cheeks. The second feature measures the difference in intensity between the eyes

and the bridge of the nose.

3.1.1.4 Constructing a Cascade of Weak Classifiers

The Viola-Jones face detection algorithm [111] constructs smaller and more efficient

boosted classifiers to reject many negative sub-windows while detecting many positive
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Figure 3.5: Rejecting regions in an image.

instances. Initially, weak classifiers are used to reject most of the sub-windows prior to

using more complex classifiers to achieve low false positive rates. Figure 3.5 illustrates

the detection process taking the form of a degenerate tree, which is also known as a

cascade. Starting at the first classifier, a positive result triggers the classification of a

second classifier. A positive result from the second classifier triggers the classification

of a third classifier, and so on. At any stage, a negative result triggers the immediate

rejection of a sub-window.

Classifiers are trained for each stage using AdaBoost. The default AdaBoost threshold

is designed to yield a low error rate. However, in order to minimize false negatives even

further, the boosted classifiers are adjusted. Higher detection and false positive rates

are thus obtained using a lower threshold.

3.1.1.5 Testing the Viola-Jones Face Detection Algorithm

Viola and Jones tested the algorithm using 507 labelled frontal images from the MIT-

CMU frontal face test set [111]. The images contain subjects with varied skin tones on

various complex backgrounds. Figure 3.6 depicts the results of applying the Viola-Jones

face detection algorithm on the images. The algorithm obtained an accuracy of 93.9%

at a real-time speed of 15 FPS on a Pentium III 700 MHz PC. This result is highly

encouraging since the face detection procedure forms the basis of the face segmentation

procedure in this research. Therefore, this face detection technique will be employed in

this research for the detection of frontal faces.

3.1.2 Morphological Operations

A morphological operator usually takes a binary image and a structuring element as

input. The input is combined and used as a set operator, i.e. intersection, union,

compliment etc. [35].
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Figure 3.6: Positive faces detected by the Viola-Jones algorithm [111].

The structuring element encodes characteristics of the shape of an object within an

image. It consists of a pattern which specifies the coordinates of a number of distinct

points relative to a particular origin. Since cartesian coordinates are usually used, the

element can conveniently be represented by a small image on a rectangular grid. An

example of a number of different structuring elements of different sizes are depicted in

Figure 3.7.

Figure 3.7: Examples of various structuring elements [35].
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In each case, a ring around a point emphasizes the origin. As illustrated by the figure,

structuring elements that fit into a 3× 3 grid are the most commonly seen types. Note

that, although a rectangular grid is used to represent a structuring element, not every

point in the grid is necessarily part of the structuring element. Thus, some elements

contain blanks.

In the application of a morphological operation, the origin of the structuring element is

translated to each pixel location in the image. The points contained in the translated

structuring element are then compared with the pixel values in the underlying image.

The following subsections discuss the dilation and erosion operations.

3.1.2.1 Dilation

Applying this operator to a binary image results in the enlargement of the boundaries

of foreground pixels, typically white pixels. Therefore, regions of foreground pixels grow

in size while the holes within them become relatively smaller.

The symbol ⊕ represents the dilation operator, which is applied to a binary image I by

a structuring element B, which can be mathematically formulated as:

I ⊕B =
⋃

b∈B

Ib = {x | (Bs)x ∩ I 6= 0} (3.2)

where Bs denotes the reflection of the set B and (Bs)x is Bs translated by the vector x.

3.1.2.2 Erosion

Applying this operator to a binary image results in the shrinking of boundary regions

of foreground pixels. Therefore, regions of the foreground pixels shrink in size while the

holes within them become relatively larger.

The symbol ⊖ represents the erosion operator, which is applied to a binary image I by

a structuring element B, which can be mathematically formulated as:

I ⊖B = {x | (B)x ⊆ I} (3.3)

where Bx is the set B translated by the vector x.
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3.1.3 Eye Detection

Eye detection is an essential step in many applications such as face recognition, facial

expression analysis, eye-gaze estimation, criminal investigation, human interactions and

surveillance systems [21, 28, 41]. Eye detection methods can generally be classified into

three categories: template-based methods [32, 51], appearance-based methods [50, 90]

and feature-based methods [1, 59]. The question as to which eye detection method is the

best is unclear from the literature. However, most researchers [26, 38, 49, 83, 84, 121]

use the template-based approach to determine the exact location of the eyes accurately.

This method is explained in this section.

The template-based approach constructs eye maps from a facial image. The original

image is transformed from RGB to the Y CbCr colour space [83]. The details of these

colour spaces are explained in the a subsequent section. Initially, two separate eye maps

are constructed from the facial image, EyeMapC from the two chrominance components

and EyeMapL from the luminance component. These eye maps are combined into a

single eye map called EyeMap.

3.1.3.1 EyeMapC

Figure 3.8: The construction of EyeMapC.

The chrominance channels Cb and Cr of the Y CbCr colour space contain high Cb and low

Cr values in the eye regions [49]. This eye map is constructed by applying the following

formula to each pixel (x, y) in the facial image:
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EyeMapC =
1

3
{(Cb)

2 + (Cr)
2 + (

Cb

Cr
)} (3.4)

where (Cb)
2, (Cr)

2 and (Cb

Cr
) are normalized to the range [0, 1] and Cr is the additive

inverse of Cr. This operation highlights pixels with high Cb and low Cr values. Pixels

with higher Cb values are emphasized by the term (Cb)
2 which also causes pixels with

lower Cb values to become less pronounced.

Furthermore, (Cb

Cr
) causes low Cr values to become brighter. The scaling factor 1

3 is

applied to ensure that the resulting eye map EyeMapC remains in the range [0, 1].

Finally, histogram equalization is carried out on EyeMapC, illustrated in Figure 3.8.

3.1.3.2 EyeMapL

The two morphological operators, dilation and erosion, are applied to emphasize brighter

and darker pixels in the luminance component Y of the Y CrCb colour space [53].

EyeMapL is constructed by applying the following formula:

EyeMapL =
Y ⊕B

Y ⊖B
(3.5)

where ⊕ and ⊗ are the dilation and erosion operations explained in the previous section,

and B is the structuring element.

3.1.3.3 Eye Map

Figure 3.9: The construction of the final eye map.

The final eye map, EyeMap, illustrated in Figure 3.9 is constructed by applying the

following formula:
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EyeMap = (EyeMapC) ∩ (EyeMapL) (3.6)

The resulting image consists of only a pair of illuminated eyes.

3.1.4 Skin Detection

Skin colour has proven to be a useful and robust cue for face detection, localization

and human tracking [3, 13, 65]. Since most skin tones are distinct from the colours

of most objects, specific body parts can be tracked using this information [82]. Skin

colour information can be considered a very effective tool for the identification of facial

areas provided that the underlying skin-colour pixels can be represented, modelled and

classified accurately.

Skin detection classifies each individual pixel in the image as being either a skin pixel

or a non-skin pixel [13]. Several factors such as illumination, camera properties and the

viewing angle make skin detection a non-trivial process. The three primary steps for

skin detection using colour information are [56]:

1. Selecting a suitable colour space for the representation of image pixels.

2. Selecting a suitable distribution for modelling skin and non-skin pixels.

3. Classifying pixels in the image as either skin or non-skin pixels.

Computer graphics and video signal transmission standards have given birth to a wide

variety of colour spaces with different properties [109]. The following subsections discuss

the most popular colour spaces in order to determine and justify the use of a colour space

conducive to the task of skin detection.

3.1.4.1 RGB Colour Space

RGB is the acronym for Red-Green-Blue and it is a colour space which originated from

cathode ray tubes (CRT) and display graphics when colour was described as combina-

tions of these three coloured rays [109]. The colour of a single pixel can be represented

by this combination and the channels are highly correlated. The luminance and chromi-

nance data is therefore not separated. Other colour spaces are obtained by performing

a linear or non-linear transformation on the RGB colour space. Applying a colour space

transformation can help reduce the overlap between the luminance and chrominance

information. This can contribute towards robustness to varying illumination conditions.
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3.1.4.2 Normalized RGB Colour Space

The normalized RGB colour space can be obtained by applying the following transfor-

mation to the default RGB colour space:

r =
R

R + G + B
, g =

G

R + G + B
, b =

B

R + G + B
(3.7)

where r, g and b are the normalized red, green and blue pixels and R,G and B are the

red, green and blue pixel values from the RGB colour space. Note that the sum of the

normalized pixel values is 1:

r + g + b = 1 (3.8)

The sum is constant, hence the third component – b – can be omitted as it does not

hold any significant information. The space dimensionality is effectively reduced by this

omission.

3.1.4.3 HSV Colour Space

HSV is the acronym for Hue-Saturation-Value and is also known as HSI (Hue-Saturation-

Intensity) and HSL (Hue-Saturation-Lightness). This colour space describes colour

based on the artist’s idea of tint, saturation and tone [109]. Hue defines the dominant

colour of a region and saturation measures the colourfulness of a region in proportion to

to its brightness. The intensity, lightness or value is related to luminance. The explicit

discrimination between luminance and chrominance makes this colour space a popular

choice for skin colour segmentation [8, 55, 75, 101, 120]. The mapping of the RGB

colour space to the HSV colour space is achieved by a non-linear transformation which

is formulated as follows [115]:

V = max(r, g, b) (3.9a)

S =
max(r, g, b) − min(r, g, b)

V
(3.9b)

H =



















g − b
6(max(r,g,b) − min(r,g,b)), if V = r

2 − r + b
6(max(r,g,b) − min(r,g,b)) , if V = g

4 − g + r
6(max(r,g,b) − min(r,g,b)) , if V = b

(3.9c)
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where H,S and V are the Hue, Saturation and Value components, r, g and b are the

normalized red, green and blue pixel values, and max(r, g, b) and min(r, g, b) are the

maximum and minimum between the normalized red, green and blue pixel values. The

Hue component is illumination invariant which makes it less sensitive to lighting changes

than the other components [6].

3.1.4.4 Y CbCr Colour Space

The Y CbCr colour space is an encoded non-linear RGB signal and is often used in Eu-

ropean television networks [3]. Its colour is represented by luminance, constructed as a

weighted sum of the RGB values and two colour difference values Cr and Cb that are

formed by subtracting the luminance component from the RGB red and blue compo-

nents. This can be formulated as:

Y = 0.299R+ 0.587G+ 0.114B (3.10a)

Cr = R− Y (3.10b)

Cb = B − Y (3.10c)

where Y represents the luminance component and Cr and Cb represent the chrominance

components, respectively. This colour space is also suitable for skin detection since skin

colours of different races are found to occur in the chrominance channels [31]. It is

possible to discard the Y component for skin detection, since the luminance component

is easily separable from the chrominance components.

3.1.4.5 TSL Colour Space

TSL is the acronym for Tint-Saturation-Lightness which is a chrominance-luminance

colour space and a transformation of the normalized RGB colour space. The TSL colour

space can be formulated as follows:

T =























arctan( r
′

g′
)

2π + 1
4 , if g′ > 0

arctan( r
′

g′
)

2π + 3
4 , if g′ < 0

0, if g′ = 0

(3.11a)

S =

√

9(r′2 + g′2

5
) (3.11b)

L = 0.299R+ 0.587G+ 0.114B (3.11c)
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where T , S and L represent the Tint, Saturation and Lightness of a pixel, r′ and g′

represent variants of the normalized red and green pixel values, given by:

r′ = r − 1

3
(3.12a)

g′ = g − 1

3
(3.12b)

3.1.4.6 A Colour Space Conducive to Skin Detection?

Many researchers take two factors into consideration when deciding on a colour space

transformation conducive to skin detection.

1. The colour space transformation should aid the separation of skin and non-skin

pixels.

2. It should be illumination invariant – address the problem of varying lighting con-

ditions.

Four studies have specifically been carried out to investigate the effectiveness of colour

space transformation for the purpose of skin detection and to ascertain whether the

aforementioned assumptions hold [56, 100, 109, 120].

Kakumanu et al. [56] reviewed critical skin detection issues in their research. They

concluded that non-parametric methods, such as histogram-based methods, are generally

not affected by the colour space representation. Yet, parametric modelling approaches,

such as Gaussian modelling, are affected by the colour space representation. These

methods are better suited for constructing classifiers in the case where training data is

limited. Furthermore, they concluded that there was no significant improvement to the

skin detection process when using the RGB colour space as opposed to using a non-RGB

colour space. Shin et al. concluded that the separability between the two classes of skin

and non-skin pixels was highest in the RGB colour space. Their findings suggest that

the separation of the luminance and chrominance components decreases the separability

of skin and non-skin pixels significantly.

However, research carried out by Vezhnevets et al. [109] suggests that the exclusion

of the luminance component only aids the generalization of sparse training data. Zarit

et al. [120] suggested that a colour space transformation conducive to skin detection

should be based on whether any form of post-processing requires a particular colour

space. Although the general question as to which colour space is the most appropriate

 

 

 

 



Chapter 3. Image Processing in Appearance-Based Facial Expression Recognition 59

for skin detection remains unanswered, their research concludes that the HSV colour

space aids the skin detection process.

Based on the research mentioned above, it is unclear whether a non-RGB colour space is

conducive to skin detection. Many researchers [23, 24, 31, 102] agree with Forsyth and

Fleck [36]. Their research indicates that the colour range in the Hue component of the

HSV colour space is representative of human skin colour. The colour of human skin is

formed by a combination of carotene, haemoglobin and melanin. Carotene contains a pe-

culiar yellow-orange colour which is mostly found in the palms and soles. Haemoglobin,

the substance carrying oxygen in red blood cells, is responsible for the pink-red colour

in the skin. Melanin is the primary determinant of skin colour. The Hue component in

the HSV colour space can easily differentiate between the combination of colours found

in two types of melanin: pheomelanin which is of a red colour and eumelanin which is

of a very dark brown colour.

While it is beyond the scope of this research to establish which colour space is optimal

for skin detection, based on the above research it is concluded that the Hue component

can effectively be used to characterize skin colour amongst all races and skin tones

[23, 24, 31, 102].

3.1.4.7 Skin Model

Figure 3.10: Original colour image.

Studies have shown that South Africa, as well as the sub-Saharan African populations,

have the highest skin colour diversity in the world [94]. Achmed [3] proposed a dynamic
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Figure 3.11: Skin image.

skin detection method. This method identifies skin pixels amongst all races and varied

skin tones dynamically. This approach locates a 10×10 pixel region at the centre of the

nose and uses this pixel distribution to represent the overall skin tone of an individual.

This region is used because it is not affected by facial hair, eyes, lips or spectacles. The

Hue values in this region are used to create a histogram which serves as a look-up table

for the distribution of skin pixels.

The histogram groups the pixel values into a set of predefined bins [12]. The bin width

corresponds to the number of data points that are assigned to each bin. Brown [13]

optimized Achmed’s skin detection method [3] by optimizing the bin width. Bin widths

ranging from 4 to 32 in increments of 4 were compared. The skin pixel true positive

detection rate deteriorated as the bin width increased. This was attributed to the fact

that a larger bin width causes significant loss of detail due to grouping a larger range of

pixels into a small number of bins. The research concluded that a bin width of 8 regis-

tered the highest combination of true positive and true negative skin detection accuracy.

Therefore, a bin width of 8 will be adopted in the skin detection implementation of this

research.

The resulting Hue histogram is back-projected onto the original image. This results in

the production of a new greyscale image consisting of intensity values ranging from 0 to

255. The value 0 and 255 at each pixel location indicate, respectively, the lowest and

highest likelihood that that pixel location is of skin colour within the original image.

Thresholding is used to binarize this image into skin and non-skin classes. A threshold

of 60 was found to yield accurate skin detection results by Achmed [3] and Li [65].
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Figure 3.10 illustrates an input image. Figure 3.11 illustrates the result of applying the

skin detection method to the image depicted in Figure 3.10.

3.2 Feature Extraction Using Local Binary Patterns

Local Binary Pattern (LBP) features were originally proposed for texture analysis [86,

87], but have recently been introduced to represent faces in facial image analysis [4,

33, 44]. The two most important properties of LBP features are their tolerance to

illumination changes and their computational simplicity [97].

3.2.1 The Original LBP Operator

Figure 3.12: The original LBP operator.

The original LBP operator was described in the previous chapter but a brief description

is provided here for completeness and convenience. The operator is applied to each 3×3

neighbourhood of pixels in an image. Referring to Figure 3.12, the operator, starting

at the top left corner and progressing clockwise, applies a threshold to each pixel in the

3×3 neighbourhood of the centre pixel by thresholding the neighbouring pixel using the

value of the centre pixel as the threshold.

The threshold function, S, is formulated mathematically as follows:

S(fp, fc) =







1 if fp ≥ fc

0 otherwise
(3.13)

where {fp|p = 0, ..., 7} are the neighbouring pixels and fc is the centre pixel. Then, by

assigning a binomial factor 2p for each S(fp, fc), the LBP value of the centring pixel is

calculated with the following formula:

LBP (fc) =
7

∑

p=0

2p(S(fp, fc)) (3.14)
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These derived binary numbers codify local primitives – curved edges, spots and flat areas

– so that each LBP code can be regarded as a micro-texton [97]. Examples of texture

primitives are illustrated in Figure 3.13.

Figure 3.13: Examples of texture primitives [97].

3.2.2 LBP Histograms

Figure 3.14: Concatenating region histograms into one single, spatially enhanced
histogram [97].

After an image is labelled with a specific LBP operator, a histogram H of the labelled

image fl(x, y) is computed using the following formulation:

H(i) =
∑

x,y

I{fl(x, y) = i} (3.15)

where i ∈ {0, ..., n− 1} is a bin number, n is the number of bins in the histogram and I

is formulated as:

I{A} =







1, if A is true

0, if A is false.
(3.16)

The resulting histogram contains information about the distribution of micro-patterns

over the entire image. However, the retention of spatial information is required for

effective facial representation. This is achieved by dividing the labelled image into m

regions R0, ..., Rm−1. This spatially enhanced histogram is formulated as:
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H(i, j) =
∑

x,y

I{fl(x, y) = i}I{(x, y) ∈ Rj} (3.17)

where i ∈ {0, ..., n− 1} is a bin number and n is the number of bins. In this histogram,

the face is effectively described in terms of three levels of locality [4]. The histogram

labels contain information about the patterns on a pixel level, the labels are summed

over regions to produce information on a regional level and the regional histograms are

concatenated to build a global description of the face. Figure 3.14 illustrates an image

divided into regions from which the LBP histograms are constructed and concatenated

into a spatially enhanced histogram.

3.2.3 The Extended LBP Operator

The original LBP operator is limited by its 3×3 neighbourhood and therefore, it cannot

capture dominant features with large scale structures. Hence, the operator was later

extended. The extended LBP operator, also known as the multi-scale LBP operator, was

proposed by Ojala et al. [87] to use neighbourhoods of different sizes. The use of circular

neighbourhoods and the bilinear interpolation of pixel values allows for the use of any

radius and any number of pixels within the neighbourhood. Figure 3.15 illustrates the

extended LBP operator LBP(P,R) where the notation (P,R) denotes a neighbourhood

of P equally spaced sampling points on a radius R which forms a circularly symmetric

neighbour set.

Figure 3.15: Examples of texture primitives [97].

Research [4, 5, 7, 44, 97, 98] has consistently shown that the (P = 8, R = 2) neigh-

bourhood results in a very accurate description of facial features for FER, therefore, the

LBP8,2 operator will be implemented in this research.

3.2.4 Uniform and Non-Uniform Patterns

A total of 2P different binary patterns can be obtained using P pixels in the neigh-

bourhood set. Therefore, the LBP(P,R) operator produces 2P different output values.
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This results in 2P bins in the histogram of the LBP image computed. Research has

shown that specific bins in the histogram contain significantly more information than

others [87]. Thus, it is possible to use only a specific subset of the 2P binary patterns to

accurately describe the texture of images at an increased efficiency. These fundamental

patterns are known as uniform patterns [77]. A pattern is uniform if it contains at most

two bitwise transitions from 0 to 1 or vice versa. Figure 3.16 illustrates a graphical

example of a uniform and a non-uniform pattern.

(a) A uniform pattern. (b) A non-uniform pattern.

Figure 3.16

Figure 3.16(a) contains exactly two transitions, so it is deemed a uniform pattern. Figure

3.16(b) contains more than two transitions, so it is deemed a non-uniform pattern.

Research has shown that uniform patterns account for nearly 85.2% of all patterns in

the (P = 8, R = 2) neighbourhood and about 70% in the (P = 16, R = 2) neighbourhood

in texture images [87].

The use of uniform patterns makes it possible to accumulate all non-uniform patterns

in the LBP histogram into a single combined bin, while retaining separate bins for

uniform patterns. This yields a uniform LBP operator denoted LBP u2
P,R which contains

less than 2P bins in the resulting histogram [97]. For example, the number of bins for

a neighbourhood of 8 pixels is 256 for the standard LBP operator, but only 59 – 58

uniform bins and 1 combined non-uniform bin – for LBP u2
P,R, which is considerably less.

This procedure results in significantly lower computational cost and higher efficiency at

a high accuracy.

3.3 Support Vector Machines

Support Vector Machines (SVMs) are known to be popular machine learning tools used

especially for solving pattern recognition problems [3, 13, 65, 85, 114]. The derivation of

SVMs stem from statistical learning theory. SVMs were initially intended towards binary

classification problems in which data was only classified into two classes. However, they

have been extended to solve multi-class problems.

SVMs offer several significant advantages when compared to other classifiers [114]. One

advantage is the training time that is not affected by the use of large images which
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Figure 3.17: Decision boundary for the linear classification case.

produce feature vectors of high dimensionality. Another advantage is attributed to the

use of its kernel functions which provide power and flexibility. The popular open-source

SVM tool – LibSVM [17] – uses the Radial Basis Function (RBF) as its default kernel.

However, other kernels such as the linear kernel, polynomial kernel, sigmoid kernel and

the precomputed kernel, offer alternatives to the default kernel. The application of

the aforementioned alternative kernels may result in a more even spread of the data,

thus, allowing non-linear classification problems to be solved using linear classification

techniques.

The sections below describe the underlying theory of SVM classification.

3.3.1 The Optimal Hyperplane

SVMs intend to maximize a mathematical function given a collection of data points [85].

It is possible to separate data points that consist of two classes by finding a boundary

between these classes. Consider S as a set of M training points which is expressed as

S = {(x1, y1), (x2, y2), . . . , (xM , yM )}. Let i ∈ {1, 2, . . . ,M}, therefore, each xi is a data

point in Rn and each yi ∈ {−1, 1} is the label corresponding to the data points, which

is divided into separate positive and a negative classes.

Consider the positive and negative classes S+ = {xi | yi = 1} and S− = {xi | yi = −1},
respectively, that are linearly separable in Rn. The training of the SVM results in at

least one boundary – the decision boundary – that can be formed between the two

classes [85]. The decision boundary is illustrated in Figure 3.17. The decision boundary,

in higher-dimensional space, takes the form of a plane which is illustrated in Figure 3.18.

This plane is referred to as the decision hyperplane and can be formulated as follows:

f(x) = w · x+ b = 0;w ∈ R
n, b ∈ R (3.18)

 

 

 

 



Chapter 3. Image Processing in Appearance-Based Facial Expression Recognition 66

Figure 3.18: The decision boundary in higher-dimensional space.

Figure 3.19: The decision hyperplane.

where w is the normal vector and b is the interim term. Vector w of the decision

hyperplane is defined as a linear combination of xi with weights αi as follows:

w =
M
∑

i=1

ααixiyi (3.19)

Numerous decision boundaries are able to separate the two classes, as illustrated in

Figure 3.19. It is important to note that the green line in Figure 3.19 is the only decision

boundary that achieves maximum separation between the classes S+ and S−. SVMs

strive to obtain this solution, which is known as the optimal hyperplane. The utilization

of the optimal hyperplane enables new data points to be classified more accurately. The

optimal hyperplane passes through the mid-point of classes S+ and S− and it ensures

that the maximum distance between these classes – the maximum margin – is achieved,

as illustrated in Figure 3.20.

The data points contained in S+ and S− which are closest to the optimal hyperplane are

called support vectors. A simple rescale of w for all xi that are support vectors holds

that:

w · xi + b = 1 (3.20a)

w · xi + b = −1 (3.20b)
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Figure 3.20: The optimal hyperplane separating two classes with a maximum margin
[85].

The distance d between the decision boundary and the margin can be formulated as:

d =
2

|| w || (3.21)

The optimal hyperplane has the following properties: it clearly separates the data in

classes S+ and S−; and it achieves the maximum distance to data points in closest

proximity belonging to each corresponding class. The first property states that all

training data points should be classified accurately [106]. Therefore, the parameters w

and b of the optimal hyperplane are to be estimated, such that:

yi(w · xi + b) ≥ 1 for yi = 1 (3.22)

and

yi(w · xi + b) ≤ 1 for yi = −1 (3.23)

The combination of the two equations yields the following:

yi(w · xi + b)− 1 ≥ 0, ∀ i = 0, 1, 2, · · · , N (3.24)

The second property states that the margin should be as large as possible. Maximizing

the distance equation correspondingly minimizes ||w||
2 . Thus, f(w) = 1

2 || w ||2 should

be minimized. Following this, the optimal hyperplane can be obtained by solving the

optimization problem defined as:

Minimize
1

2
|| w ||2 (3.25)
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subject to

yi(w · xi + b)− 1 ≥ 0, ∀ i = 0, 1, 2, · · · , N (3.26)

This optimization problem can be solved, given the Lagrange multipliers α1, α2, · · · , αN ≥
0 and the saddle point of the Lagrange function:

L(w, b, α) =
1

2
|| w ||2 −

N
∑

i=1

αi(yi(w · xi + b)− 1) (3.27)

Therefore, using the Lagrange function, the optimization problem can be formulated as:

Maximize
N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyj(xi, xj) (3.28)

subject to
N
∑

i=1

αiyi = 0 and α ≥ 0, i = 0, 1, 2, · · · , N (3.29)

The optimal hyperplane discriminant function under this formulation is:

f(x) =
∑

i∈S

αiyi(xix) + b (3.30)

where S is the subset of support vectors corresponding to positive Lagrange multipliers.

3.3.2 Classifying Non-linear Problems

In the classification of linear problems, the classification approach simply involves the

process of finding an optimal hyperplane consisting of a maximum margin which sepa-

rates the data points. However, the classification of non-linear problems requires a more

complex structure in order to find a hyperplane.

Non-linear problems map data points onto a higher dimensional space – the feature space

– which enables the optimal hyperplane to linearly separate the data points. Figure 3.21

illustrates cases in which data points are unevenly distributed and linearly inseparable

as opposed to the case in Figure 3.17.

As such, the constraint of Equation 3.24 cannot be satisfied in cases where classes are

not linearly separable. To cater for such cases, a cost function is formulated which

combines the margin maximization and the minimization error criteria. This solution
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Figure 3.21: Data points which are not linearly separable.

involves using a set of variables, ξi which are known as slack variables. These variables

measure the degree of misclassification. The cost function can be formulated as:

Minimize w,b,ξ
1

2
|| w ||2 +C ·

M
∑

i=1

ξi (3.31)

subject to

yi(w · xi + b) ≥ 1− ξi (3.32)

where ξi ≥ 0 and C are constants. The constant C opts for the best trade-off between the

amount of error and the margin maximization. As per Mercer’s theorem [104], the dot

product of the vectors in the mapping space can be equally formed as a function of the

dot products corresponding to the vectors in the current space [106]. This equivalence

can be expressed mathematically as:

K(xi, xj) = φ(xi) · φ(xj)

= (xi, x
2
i ) · (xj , x2j )

= xixj + x2ix
2
j

= xi · xj + (xi, xj)
2

(3.33)

where the kernel function is represented by K(xi, xj). This expression holds if and only

if the following condition is true for any function g:

∫

g(x)2 dx is finite =⇒
∫

K(x, y)g(x)g(y) dxdy ≥ 0 (3.34)

Without prior knowledge about the explicit form of φ, the selection of an appropriate

kernel function results in the linear separation of any data in the higher dimensional

space. Therefore, the dual optimization problem can be expressed as:
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Maximize
M
∑

i=1

αi −
1

2

M
∑

i,j=1

αiαjyiyj(xi, xj) (3.35)

subject to
M
∑

i=1

αiyi = 0 and α ≥ 0 (3.36)

It is important to note that determining a complex curve is not suitable to separating

data. Alternatively, it is possible to find an optimal hyperplane in the feature space

which enables the data to be clearly separated and allow the SVM to accurately classify

the unseen test data. Thus, the decision function becomes:

f(x) =
∑

i∈S

αiyi(xix) + b (3.37)

where S is the set of support vectors.

3.3.3 Kernel Functions

The non-linear separability of data requires a satisfactory hyperplane for separating

classes. A kernel function is employed to map the data onto higher-dimensional feature

spaces. The following kernels are based on Mercer’s theorem [104] and can be used by

the SVM in training and classification [48]:

• Linear: K(xi, xj) = (xi)
T · (xj)

• Polynomial: K(xi, xj) = (γ(xi)
T (xj) + r)d, where γ > 0

• Radial Basis Function: K(xi, xj) = exp(−γ · || xi − xj ||2), where γ > 0

• Sigmoid: K(xi, xj) = tanh(γ · (xi)T · (xj) + r), where γ > 0

where r, d and γ are kernel parameters.

The prediction accuracy of the SVM corresponds to the choice of kernel, therefore, the

kernel choice is crucial [22]. It should be noted that no standard method exists as a base

for the selection of the most appropriate kernel [117]. However, the RBF kernel is used

by many researchers and was shown to be the most accurate SVM kernel[58, 114, 117].

Therefore, the use of the RBF kernel is adopted in this research.
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3.3.4 Multi-Class SVM Approaches

As explained previously, SVMs are binary classifiers that are intended towards problems

involving two classes. There are currently two types of approaches used to enable SVMs

to solve multi-class problems. One approach is to construct and combine several binary

classifiers. The other approach is to directly consider all the data in one optimization

formulation [48]. Solving multi-class SVM problems in a one step process results in

variables that are proportional to the number of classes. Therefore, it is generally

more computationally expensive to solve multi-class problems than to solve binary class

problems.

The following subsections discuss three of the most common approaches [48].

3.3.4.1 One-against-All

This approach is known as the earliest implementation of SVMs. In this approach,

M classifiers corresponding to M number of classes are constructed . Each class i ∈
{1, 2, . . .M} is separated from the data points of the remaining classes. A single class

is formed by combining the data points from all classes except class i. The result is a

binary classifier with a label representing class i and an additional label representing

the remaining classes. This procedure is repeated M times in a rotating fashion.

In the testing phase, each of the M classifiers are presented with the input test pattern.

The predicted result is determined by the ith class which obtains the maximum output

value. As such, the training and testing processes are tedious due to the potentially

large number of data points in each combination pair of classes.

3.3.4.2 One-against-One

This approach constructs M(M−1)
2 classifiers, each containing training data from two

classes. The classifiers are combined using the Max-Wins algorithm. Each classifier

is trained to distinguish between two classes using the data points in those classes as

positive and negative examples.

In the testing phase, the final prediction lies in the class with the majority of votes. This

voting approach is known as the Max-Wins algorithm. This results in a shorter training

time than the One-against-All approach since the number of data points in the combi-

nation of classes are significantly smaller. However, its testing time, when compared to

the One-against-Rest approach, is longer due to the large number of classifiers involved.
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3.3.4.3 Directed Acyclic Graph

Figure 3.22: Directed Acyclic Graph of a 4-class problem. At each node a class is
rejected until a single class remains.

The Directed Acyclic Graph (DAG) SVM algorithm was proposed by Platt et al. [92].

Similar to the One-against-One approach, M(M−1)
2 binary classifiers are trained using

every binary pair-wise combination of theM classes. The decision strategy in the testing

phase is based on a rooted binary DAG which consists of M(M−1)
2 internal nodes and M

leaves, as is illustrated in Figure 3.22.

Consider a 4-class problem with i ∈ {1, 2, 3, 4}. Starting at the root node, classes 1 and

4 are compared. If the input pattern is classified as class 1, it simply means that class

4 was rejected. Therefore, from this node onwards, it will not be necessary to classify

against class 4 again. Hence, after M − 1 = 3 steps, only a single predicted class will

remain.

According to Platt et al., an advantage of the DAG is that some analysis of generalization

can be made. Furthermore, its testing time is less than the One-against-One approach.

3.4 Summary

In this chapter, the components that form part of the appearance-based FER approach

proposed in this research were discussed.
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The various components of the proposed face segmentation strategy were discussed. An

explanation of the Viola-Jones face detection algorithm was provided and the use of the

Viola-Jones algorithm for face detection in this research was justified. The skin detection

technique was discussed, with much emphasis placed on the selection of an appropriate

colour space as well as results for optimizing the bin width.

Two morphological operations dilation and erosion used to reduce noise and enhance

features in images were discussed. A description of the eye detection strategy used was

provided and justified. Subsequently, a detailed description of the LBP operator and its

variants towards facial feature extraction was provided.

Finally, a detailed description behind the theory of the classification technique used by

SVMs was provided.

The implementation of the techniques discussed in this chapter towards achieving FER

is described in the next chapter.

 

 

 

 



Chapter 4

System Design and

Implementation

This chapter focuses on the design of a facial expression recognition (FER) system using

the techniques discussed in the previous chapter. Figure 4.1 illustrates the three major

components of the automatic FER framework at the highest level of abstraction.

Figure 4.1: FER framework.

The first component involves accurately locating and isolating the face in the image.

The second component involves the extraction of facial features. The final component

involves the classification of facial expressions. The first three Sections 4.1, 4.2 and 4.3

of the chapter explain these three components.

Figure 4.2 illustrates a detailed high-level design of the FER algorithm. This system can

automatically segment the face for both frontal images and images with any yaw rotation

of the face. However, as explained in Chapter 2, the recognition of facial expressions

using LBP features is angle-specific. Therefore, for the scope of this research, the feature

extraction and classification components of this system are limited to frontal images and

images at a yaw rotation of 60◦. Since the face segmentation strategy can operate at

any yaw rotation, the framework can readily be extended to FER at other rotations in

future.

Section 4.4 then describes the modified, limited and constrained version of this sys-

tem used to investigate the effects of various types and levels of occlusion on the FER

accuracy. The chapter is then concluded.
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Figure 4.2: High-level design of the algorithm.

4.1 Face Segmentation

The face segmentation component isolates the face in an image. As explained in Chapter

1, the system works on the justified assumption that when the system is initially run,

the first frame of the video sequence consists of the signer facing the camera. Using the

first frame, a skin model is generated for use in isolating rotated faces.

This is done using the following procedure. The face is located using the Viola-Jones

face detector. The nose region which is in the centre of the facial frame is located.

Thereafter, a 10 × 10 pixel region around the nose is extracted, which is depicted in

Figure 4.3.

A histogram of this region is computed and used as a look-up table to determine pixels

that resemble the skin tone of a subject. As per Brown’s bin width optimization of the

skin model [13], a bin width of 8 is selected as the optimal width for skin detection.

For all other frames in the sequence, the following procedure ensues. The approach

used to segment a frontal face differs from that of a rotated face. The decision as to
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Figure 4.3: Locating the nose.

whether the face is frontal or rotated depends on the result of applying the Viola-Jones

face detector to the frame. If a face is detected, the frame is treated as containing a

frontal face. If no face is detecting, the frame is assumed to contain a rotated face. The

following sections describe the face segmentation procedure in either case.

4.1.1 Frontal Face Segmentation

Figure 4.4: Detecting the face.

The result of the Viola-Jones face detector is depicted in Figure 4.4. Slight tilting of the

head can occur while performing facial expressions in SASL. A normalization procedure,

illustrated in Figure 4.5, is applied to correct for such slight tilting. In order to clearly

illustrate the normalization procedure, Figure 4.5(a) depicts an exaggerated case. In

practice, the face is only expected to tilt slightly.
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To overcome this, the exact positions of the eyes are obtained using the eye detection

algorithm explained in the previous chapter. The result of applying this algorithm to

the face in Figure 4.5(a) is illustrated in Figure 4.5(b).

Connected Component Analysis (CCA) is used to locate the coordinates (xL, yL) and

(xR, yR) of the centres of the two eye blobs. These coordinates are used to calculate the

angle of rotation of the head θ as follows:

θ = arctan(
yR − yL

xR − xL
) (4.1)

This angle is used to normalize the face by aligning it with the horizontal axis by means

of an affine transformation in the image. The normalized result is depicted in Figure

4.5(c).

(a) Tilted face. (b) Exact eye loca-
tions.

(c) Normalized image.

Figure 4.5: An example of the normalization procedure.

Note that background noise such as hair and ears may still be visible in this image.

In order to more accurately isolate the face, the Viola-Jones algorithm is used with an

eye detection cascade to detect the eye region. The result of applying this algorithm is

illustrated in Figure 4.6.

Figure 4.6: Detecting the eye region.

The width of the detected eye region in Figure 4.6 is used together with the height of the

facial region in Figure 4.4 to isolate the face and completely remove background noise,

as illustrated in Figure 4.7.
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Figure 4.7: Isolated frontal face.

4.1.2 Rotated Face Segmentation

For rotated faces, the skin model histogram computed earlier on is backprojected onto

the image producing a greyscale image in which the skin regions are emphasized. A

threshold value of 60, as per Achmed [3], Li [65] and Brown’s [13] work, is used to create

a binary image in which the skin is represented by white pixels and non-skin pixels

are represented by black pixels. A highly rotated face and the result of applying skin

detection to the face are illustrated in Figure 4.8.

The two morphological operations erosion and dilation, in that order, are applied to

the resulting image to remove excess noise and restore discontinuities in the skin region.

The result of applying these operations is illustrated in Figure 4.9. The most important

point to note from the figure is that the largest skin blob contains no discontinuities or

holes.

CCA is applied to the resulting skin image in order to locate all of the skin blobs in

the image. The largest skin blob is considered to be the face. All other contours are

eliminated from the image. The resulting contour is illustrated in Figure 4.10. It is clear

that this contour accurately isolates the face region.

The coordinates of the top-most, bottom-most, left-most and right-most extents of this

contour map out a rectangle which contains the isolated rotated face in the original

image, as illustrated in Figure 4.11.

4.2 Feature Extraction

The Local Binary Pattern (LBP) operator is applied to the isolated frontal or rotated

facial images, as illustrated in Figure 4.12. It was shown in Chapter 2 that the reso-

lution of the facial image before applying the LBP operator directly affects the FER

accuracy. The optimal resolution was also shown to be angle-specific. Facial images at

different rotations achieved optimal performance at varied resolutions. Therefore, an
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(a) Original rotated facial image.

(b) Skin detection result for the rotated facial image.

Figure 4.8: Skin detection result for rotated images.

Figure 4.9: Skin image with morphological operations.

experiment was carried out to determine the optimal resolution for the frontal and 60◦

case. Additionally, the number of regions into which the LBP image is divided and used
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Figure 4.10: Detecting the contours of the face.

Figure 4.11: Isolated rotated face.

to compute histograms – the region size – is expected to affect the FER accuracy. There-

fore, in addition to optimizing the resolution size, the region size was also optimized,

which has not been carried out in the literature to our knowledge.

As illustrated in the related work chapter, the process of determining an optimum reso-

lution size is one of trial and error. Combinations of varied image height and width are

considered and the cross-validation accuracy of the SVM trained on (n-1) subsets of a

training set and tested on 1 subset is used as a measure of optimality of the resolution.

As explained in the previous chapter, the values of C and γ of the SVM can affect

the resulting accuracy. Therefore, the experiment used to optimize the resolution and

region size went hand-in-hand with the optimization of the C and γ parameters. This

experiment is described in the next chapter.

At this stage, it suffices to say that, for frontal images, the optimal resolution size was

40× 60 with a region size of 8× 10. For rotated images, the optimal resolution size was

40× 50 with a region size of 8× 5.

The facial image resulting from the procedure in the previous sections in each case is

scaled to the optimal resolution.
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(a) Frontal face LBP
image.

(b) Rotated face
LBP image.

Figure 4.12: Applying the LBP operator.

The LBP operator LBP u2
8,2 used is a combination of the uniform LBP operator LBP u2

and the extended LBP operator with a pixel neighbourhood of 8 pixels and a radius of

2 pixels LBP8,2. These two operators were shown, amongst the purely LBP operators,

to be the most accurate in a previous Chapter 2. A combination of these operators is

expected to provide highly accurate results with the advantage of the efficiency provided

by the uniform operator.

The LBP u2
8,2 operator is applied to the scaled isolated facial image. The resulting image

is divided into the optimal number of regions, as illustrated in Figure 4.13.

Figure 4.13: Facial image divided into regions.

A histogram of each region is computed which encodes a frequency count of each binary

pattern. As explained in the previous chapter, the histogram contains 59 bins. Finally,

the region histograms are concatenated into a single spatially enhanced histogram. The

spatially enhanced histogram is used as a feature vector in the training and testing

phases which are explained in the following section.

Assuming the optimal number of region histograms per image to be h, optimized in the

next chapter, and 59 bins per histogram yields a feature vector length of h× 59. A pre-

defined label L ∈ {1, 2, ..., 6} corresponding to each facial expression class is assigned

to each feature vector. With this specification, the feature vector can be expressed

mathematically as:

V = {(L,Hr)} (4.2)
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where Hr is the histogram at region r ∈ {0, 1, ..., (h − 1)}. An example of a possible

training data file is illustrated in Figure 4.14. The index in the top-left corner of the file

is the class label. Subsequent items are features in the format i : v where i is the feature

index and v is the value in floating-point notation. For example, in the file illustrated,

the 1 in the top-left corner represents a facial expression class of 1 and the item right of

the class label (1 : 3.000000) represents feature index 1 with a value of 3.000000. The

data is scaled to avoid features with high numeric values from dominating features with

low numeric values [48].

Figure 4.14: Example SVM training file.

4.3 Training and Testing Phases

This section discusses the procedure involved in training on, and classification of, the

prototypic facial expressions using an SVM. The SVM is trained on a set of data de-

scribed in Section 4.3.1 in the training phase which is dicussed in Section 4.3.2. The

training procedure involves determining the optimum C and γ parameters of the SVM

for the data set. However, the optimization of these parameters for the proposed fea-

ture extraction process goes hand-in-hand with determining an optimum resolution and

region size for the feature vector. Therefore, the experiment used to determine the

optimum C and γ parameters along with the feature vector optimization procedure is

described in detail in the next chapter.

Once the SVM is trained, any unseen image can be used as input to the system for

classification in the testing phase. The process involved in classifying an unseen image

in the testing phase is discussed in Section 4.3.3.

4.3.1 Training Set

The Binghamton University 3D Facial Expression (BU-3DFE) database was used for

training and testing. The database contains 100 subjects (56 female, 44 male), ranging
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from 18 years to 70 years old, with various ethnicities and skin tones.

In the collection of the data set, each subject performed seven expressions – “Anger”,

“Disgust”, “Fear”, “Happiness”, “Sadness”, “Surprise” and “Neutral” – in front of a

3D scanner. For each of the six prototypic expressions (which excludes the “Neutral”

expression), four levels of intensity for each expression were captured ranging from 1 – 4

where 4 was the peak of the expression and 1 was close to but not “Neutral”. 3D models

of each subject performing each expression and intensity level were captured. The raw

data takes the form of a face texture and a 3D model. In order to obtain images of each

(subject, expression, intensity) combination, a 3D graphics tool can be used to perform

UV mapping of the texture to the model to obtain an accurate depiction of the original

subject’s head. This can be rotated to any desired angle. The resulting image can be

rendered as a 2D image. In this research, the open source graphics tool Blender [9] was

used for this purpose. This was used to obtain frontal images and images rotated to 60◦.

(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

Figure 4.15: The six prototypic facial expressions used from the BU-3DFE database
[118].

This research only focuses on the recognition of the six prototypic expressions and on

the images of the highest intensity level – the peak of the expression. Figure 4.15 depicts

an example of the six prototypic expressions for the frontal and rotated case from the

BU-3DFE database. The images of a total of 10 subjects from the data set were used

for training. This resulted in 10 frontal and 10 images rotated to 60◦ per expression,

an overall total of 60 frontal and 60 rotated images for training. This set is henceforth

referred to as the “training set”.
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4.3.2 Training Phase

As explained in Chapter 2, the recognition accuracy of LBPs is angle-specific. Therefore,

Moore and Bowden [77] developed a pose classifier which identifies at which angle the

face is rotated prior to selecting the appropriate classifier for training. Therefore, a

similar approach is adopted in this research. Two separate classifiers, one for the frontal

and one for the rotated case, are used.

The training procedure is illustrated in Figure 4.16. This procedure is carried out

separately for each classifier. For the frontal classifier, the feature vector corresponding

to each frontal image in the training data set is computed. The feature vector is labelled

with the corresponding prototypic expression label. The entire training set is scaled in

order to avoid features with large values from dominating features with smaller values

in the feature set.

The LibSVM grid search function uses cross-validation to obtain optimum C and γ

values which can be used as parameters to train an SVM. Cross-validation partitions

the data set into v equal subsets, where v − 1 subsets are used for training and the

remaining subset is used for testing. This procedure is repeated v times in a rotating

fashion, such that different training and testing sets are selected in each case. For each

training and testing set combination, the procedure selects a different combination of

C and γ values and computes a cross-validation accuracy. The C and γ values which

correspond to the highest cross-validation accuracy are deemed optimal and are used

to train the SVM. When using optimum C and γ values to train an SVM, the trained

SVM is thus optimized. This procedure is repeated for the rotated classifier.

Figure 4.16: SVM training procedure.

The next chapter details the experimentation carried out to optimize the SVMs. At

this stage, it suffices to state that, for frontal images, the optimum resolution size was
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40× 60 at an optimum region size of 8× 10. With these sizes, an optimum accuracy of

72.67% was obtained with C = 0.5 and γ = 0.0078125. For images rotated to 60◦, the

optimum resolution size was 40×50 at an optimum region size of 8×5. With these sizes,

an optimum accuracy of 69.67% was obtained with C = 8.0 and γ = 3.0517578125e−05.

With these parameter values, two new separate SVMs were trained, one for the frontal

and one for the rotated images on the corresponding images of the training set.

4.3.3 Testing Phase

The testing phase involves carrying out classification with the trained model on a pre-

viously unseen image. This procedure is illustrated in Figure 4.17.

Figure 4.17: SVM prediction procedure.

The feature extraction procedure is repeated for the unseen image and the feature vector

data file is created in the same manner. However, a default label of 0 is assigned since the

correct label is not known. This feature vector is used as input to the SVM which predicts

the class to which the given feature vector belongs. As before, this class corresponds to

a particular facial expression in the set L ∈ {1, 2, ..., 6}.

4.4 Simulating Occlusion

As set out in Chapter 1, the proposed fully automatic FER system illustrated in Figure

4.2 is not expected to discern between whether or not the face is occluded. The fully au-

tomatic FER system uses the Viola-Jones face detector to distinguish between a frontal

and rotated face. However, if the Viola-Jones face detector fails to detect a frontal face,

as is the case with an occluded image, the image is then treated as containing a rotated

face. As such, it is not then possible to obtain results for frontal occluded images.
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Therefore, in order to investigate the effects of occlusions on frontal and rotated images,

two limited versions of the fully automatic system were created. One system deals with

the case of frontal occluded images only and expects such images as input. The other

deals with the case of rotated occluded images and only expects such images as input.

The system dealing with frontal facial occlusion uses the SVM model for frontal images.

The system dealing with rotated facial occlusion uses the SVM model for rotated images.

Figures 4.18 and 4.19 depict the systems which take in occluded frontal and rotated

images as input, respectively.

Figure 4.18: System for frontal occluded images.

Figure 4.19: System for rotated occluded images.

4.4.1 Summary

In this chapter, the implementation of the fully automatic FER system was discussed.

The system contains three major components and the implementation of each individual
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component was explained. The face segmentation procedure was illustrated and shown

to be a highly successful procedure for both frontal images and rotated images. The

LBP operator was implemented and the resulting feature vectors were discussed. The

optimization of the resolution size of the image prior to LBP computation and the

region size for histogram computation was carried out. It was shown that a resolution

of 40× 60 and region size of 8× 10 was optimum for frontal images. For rotated images,

the optimum resolution and region size differed. In this case, a resolution of 40× 50 at

an optimum region size of 8 × 5 was optimum. Two SVMs were trained, one for the

frontal and one for the rotated case. Finally, two limited versions of the fully automatic

FER system were created for frontal and rotated occluded images in order to investigate

the effects of partial occlusions on FER using LBPs.

The next chapter discusses the experiments carried out using this system to assess the

FER and face segmentation accuracy.

 

 

 

 



Chapter 5

Experimental Results and

Analysis

This chapter presents the assessment of the robust FER (FER) system. The two

databases used in experimentation are described. The Binghamton University 3D Facial

Expression (BU-3DFE) database is used for testing the face segmentation accuracy as

well as the recognition accuracy of facial expressions.

In addition to the BU-3DFE Database, a database containing five subjects in a com-

plex background is generated to test the face segmentation procedure in a complex

background since the BU-3DFE database only contains facial images in a simple back-

ground.

For FER experiments, the criterion is explained and the outputs of the system are

evaluated. Experimental analysis is performed on the effectiveness of the recognition

procedure.

The aim of the face segmentation experiment is to illustrate that the system is able to

accurately segment a face in a complex background. The FER experiments are aimed

at determining the success rate of the system by evaluating how rotation and partial

occlusions of the face affect the system.

All experiments were carried out on a PC containing an Intel i7 3770k 3.5 GHz quad

core CPU, an NVIDIA 580GTX GPU and 16 GB RAM, running the Kubuntu 11.04

x64 operating system.

The rest of the chapter is organized as follows: Section 5.1 discusses accuracy testing

for face segmentation; Section 5.2 discusses the feature vector and optimization of the

Support Vector Machine; and Section 5.3 discusses accuracy testing for FER.
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For the face segmentation experiment, a different dataset containing five subjects of

various ethnicities and skin tones were used. A Logitech C910 web camera was used at

a resolution of 640× 480 pixels at a frame rate of 15 frames per second (FPS).

5.1 Face Segmentation Experiment

This section describes the experiment carried out in order to assess the accuracy of

the face segmentation procedure under varied conditions including varied subject skin

tones and on a complex background. This experiment aims to answer the first research

question posed in Chapter 1: “Can the proposed face segmentation strategy accurately

segment the face in facial images with varied skin tone, in the presence of rotations and

on a complex background?”. Therefore, the analysis focuses on the effects of three factors

on the segmentation accuracy: subject skin tone, rotation and complex background.

The subsections that follow describe the data set used in this experiment, the criterion

used to judge the accuracy of a segmented face, the exact experimental procedure, the

results that were obtained and an analysis of the results to answer the research question.

5.1.1 Data Set

For this experiment, 5 South Africans with diverse skin tones were used. Each subject

was required to sit on a chair facing the web camera and instructed to continuously

rotate their heads from side to side, up to and including an angle of 90◦ on either side,

for a total of five seconds. This was illustrated to each subject prior to video capturing.

Using a web camera at a frame rate of 25 FPS, this resulted in a database containing a

total of 625 images at a variety of rotations of the head across all subjects. This data

set is henceforth referred to as the “tracking data set”. Figure 5.1 illustrates the five

subjects. It is clear that the subjects contain different skin tone and that each subject

is on a slightly different background.

In addition, two images of 50 subjects, one frontal and one rotated to 60◦, from the BU-

3DFE data set explained in the previous chapter, were also used for this experiment.

The data set consists of a total of 300 frontal images and 300 images rotated to 60◦

across 50 subjects of varied skin tone on a simple background.
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(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

(e) Subject 5

Figure 5.1: An example of the five subjects each on a slightly different complex
backgrounds.

5.1.2 Experimental Procedure

All the images from the tracking data set and images of 50 subjects from the BU-3DFE

data set were used as input to the face segmentation procedure of the proposed system

discussed in Chapter 4. In each case the system produced a segmented output corre-

sponding to the input frame. The criterion for an accurately segmented face, explained

in the next subsection, was used to determine the outcome. The results were recorded

and analyzed.

5.1.3 Criterion for an Accurately Segmented Face

Each input frame and the resulting segmented output frame, which is expected to con-

sist of the segmented face only, are compared. Similar to the procedures used by Kolsch

and Turk [60] and Li [65], a visual comparison between the input frame and the result-

ing frame is carried out. An accurately segmented face is considered as a face which

does not contain any extra information surrounding the face such as hair on the facial

sides etc. but does not crop any features of the face such as the facial sides, mouth or

forehead out either. With regards to the forehead, research shows that only the region
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immediately above the eyes is necessary for FER [29, 105]. Therefore, having a portion

of the forehead above the eyes is sufficient, but having the entire forehead is also consid-

ered as an accurately segmented face. An incorrectly segmented face has the following

characteristics:

• Hair on the facial sides beyond either ear present.

• Part or all of the neck present.

• Hair on top of the forehead present.

• Part or all of either eye, the mouth or the facial sides cut off.

• The entire forehead cut off.

Therefore, the criterion for an accurately segmented face is one that is not an incorrectly

segmented face as per the above definition. Figure 5.2 illustrates examples of accurately

segmented frontal and rotated faces for one subject. Similar to Kolsch and Turk [60]

and Li [65], the researcher carried out these comparisons.

(a) Face rotated to
the right.

(b) Frontal face.

(c) Face rotated to
the left.

Figure 5.2: Accurately segmented frontal and rotated faces for one subject.

5.1.4 Results and Analysis

Table 5.1 indicates the number of frames in which the face was correctly segmented

compared to the total number of frames for the tracking data set.

The face segmentation procedure achieved an average recognition accuracy of 97.1%.

The results indicate a near-perfect segmentation accuracy. It is clear that the procedure
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Table 5.1: Face segmentation accuracy for the tracking data set.

Subject Correct Total Accuracy (%)

1 125 125 100.0
2 125 125 100.0
3 107 125 85.6
4 125 125 100.0
5 125 125 100.0

is highly consistent achieving an accuracy of 100% for all subjects, with the exception

of Subject 3 who registered an accuracy of 85.6%. Noting that the subjects were of

completely varied skin tones, on complex backgrounds and rotating their heads, these

results are indicative of a robust face segmentation procedure.

The results in Table 5.1 indicate that for 18 of the 125 cases for Subject 3, the face

segmentation procedure detected an object situated to the right of the subject’s face, as

illustrated in Figure 5.1(c).

Since this procedure depends primarily on skin colour distribution to accurately carry out

face segmentation, a colour distribution analysis was carried out. Figure 5.3 illustrates

the same histogram computed for both the skin distribution of the subject and the

colour distribution of the detected object incorrectly perceived as the face. A similarity

between the histogram of the skin model – the face – and the histogram of the detected

object, makes it difficult for the procedure to accurately distinguish between the face

and an object in close proximity to the face.

Figure 5.3: The same histogram computed for the face and the detected object in-
correctly perceived as the face.

Based on the observation of the results obtained for Subject 3, an improvement was

made to the face segmentation procedure to cater for this possible source of error. The

subject is assumed to be stationary, with only natural movements of the body and the

head rotating from side to side. As explained in Chapter 1, the first frame of the video

sequence is assumed to contain a frontal face. Based on these two assumptions, after

detecting the face in the first frame, in all subsequent frames, a boundary region with

a size of 20% larger than the face is used as a location threshold for detecting the face.
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The procedure does not attempt to detect a face outside this boundary. This can limit

potential sources of noise.

The above experiment was repeated with the improved face segmentation strategy and

achieved a perfect 100% face segmentation accuracy for all subjects. Thus, a face seg-

mentation strategy that is invariant to the skin tone of subjects and a complex back-

ground was developed.

For the BU-3DFE data set, the system consistently registered a perfect face segmentation

accuracy of 100% for all 50 subjects for, both, the frontal and the rotated positions. It is

important to note that the 50 subjects in this data set are of varied skin tone. This clearly

demonstrates, once again, that the strategy is invariant to the skin tone of subjects.

Therefore, the response to the research question posed is: The proposed face segmen-

tation strategy can accurately segment the face in facial images with varied skin tone,

in the presence of rotations and on a complex background. The strategy is invariant to

the skin tone and a complex background.

5.2 Feature Vector and SVM Optimization

This section discusses the procedure that was followed in order to optimize the resolution

and region size of frontal and rotated images. This process went hand-in-hand with the

optimization of the SVM using LibSVM’s grid search function. The optimum values

obtained from the grid search function are given as well as the optimum resolution and

region size for frontal and rotated images.

The subsections that follow describe the exact experimental procedure, the results that

were obtained and an analysis of the results.

5.2.1 Experimental Procedure

To optimize the resolution R and region size G, combinations of varied resolution and

region size (R,G) were used to generate a feature vector, as previously explained. The

grid search function in LibSVM [17] was used to determine the C and γ values that yield

the highest cross-validation accuracy for the (R,G) combination. The search investigates

the accuracy of a number of possible C and γ values exhaustively and selects the pair that

achieves the highest cross-validation accuracy. Cross-validation divides the training set

into v equally-sized subsets, where the classifier is trained on v−1 subsets and tested on

the remaining subset [48]. The cross-validation accuracy is the average accuracy across

all v combinations.
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As explained in the related work chapter, the process of determining an optimal resolu-

tion is a process of trial and error. Numerous possibilities exist. Attempting to optimize

the region size in addition to this further adds to the number of possibilities. For the

scope of this research, width and height combinations of 40, 50 and 60 pixels for the

resolution size and 5, 8 and 10 pixels for the region size were considered. In cases where

the resolution dimension was not a multiple of the region dimension, such as a resolution

width of 50 and a region width of 8, the combination was ignored. This procedure was

carried out separately for the frontal images and images rotated to 60◦.

5.2.2 Results and Analysis

Table 5.2 summarize the results obtained for the frontal images and 5.3 summarize the

results for the images rotated to 60◦.

Table 5.2: Optimized resolution and region size for frontal images.

R=(40× 40) R=(40× 50) R=(40× 60)
G 5 8 10 G 5 8 10 G 5 8 10
5 69.33 68.33 67.33 5 71 - 69 5 69 - 70
8 69.67 71.33 68.33 8 72.33 71.33 - 8 71.67 - 72.67
10 71.67 71 71 10 71 - 72 10 72.33 - 71.67

R=(50× 40) R=(50× 50) R=(50× 60)
G 5 8 10 G 5 8 10 G 5 8 10
5 56.67 64.67 62.67 5 53 - 50.67 5 52 - 45.67
8 - - - 8 - - - 8 - - -
10 64.33 65 63 10 50.67 - 61 10 47.67 - 60

R=(60× 40) R=(60× 50) R=(60× 60)
G 5 8 10 G 5 8 10 G 5 8 10
5 58 54.67 53.67 5 50.67 - 50 5 47 - 42.33
8 - - - 8 - - - 8 - - -
10 50.67 64.67 62.33 10 44 - 37 10 41 - 37

For frontal images, the optimum resolution size was 40× 60 at an optimum region size

of 8× 10. With these sizes, an optimum accuracy of 72.67% was obtained with C = 0.5

and γ = 0.0078125. For images rotated to 60◦, the optimum resolution size was 40× 50

at an optimum region size of 8 × 5. With these sizes, an optimum accuracy of 69.67%

was obtained with C = 8.0 and γ = 3.0517578125× 10−05.

With these parameter values, two new separate SVMs were trained, one for the frontal

and one for the rotated images. The frontal SVM was trained with its corresponding
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Table 5.3: Optimized resolution and region size for rotated images.

R=(40× 40) R=(40× 50) R=(40× 60)
G 5 8 10 G 5 8 10 G 5 8 10
5 64.33 65.33 64 5 66.67 - 66 5 68 - 63.33
8 66.67 66 65.33 8 69.67 - 67.67 8 67.67 - 65
10 65.33 65 65.33 10 68.67 - 64.33 10 67 - 64.67

R=(50× 40) R=(50× 50) R=(50× 60)
G 5 8 10 G 5 8 10 G 5 8 10
5 59.33 53.67 58 5 58.67 - 52.67 5 61.33 - 54
8 - - - 8 - - - 8 - - -
10 56.67 54.33 58 10 59 - 51.67 10 58.67 - 51

R=(60× 40) R=(60× 50) R=(60× 60)
G 5 8 10 G 5 8 10 G 5 8 10
5 55 52.3 51.67 5 57.33 - 48.67 5 58.33 - 48
8 - - - 8 - - - 8 - - -
10 54.67 49 50.33 10 54.67 - 46.67 10 53.33 - 47.33

parameters using images of 10 of the subjects in the frontal pose from the BU-3DFE data

set – a total of 10 images, as explained in the previous section. The rotated SVM was

similarly trained with its corresponding parameters using images of 10 of the subjects

in the rotated pose from the BU-3DFE data set – a total of 10 images.

5.3 Facial Expression Recognition Accuracy Testing

This section describes the experiment carried out in order to answer the second research

question posed in Chapter 1: “Can whole facial expressions be recognized at a high

accuracy using the LBP operator in the presence of rotations and partial occlusions of

the face?”. The analysis of this question can be broken down into an investigation of

the FER accuracy of the following four categories of faces:

1. Frontal faces – frontal faces without any occlusions.

2. Rotated faces – faces rotated to 60◦ without any occlusions.

3. Frontal occluded faces – Frontal faces with occlusions.

4. Rotated occluded faces – Rotated faces with occlusions.

 

 

 

 



Chapter 5. Experimental Results and Analysis 96

The experiments for all these categories made use of a single criterion to determine

a correctly recognized facial expression. This criterion is described in Section 5.3.1.

Thereafter, the experiments carried out to assess the FER accuracy for each of the four

categories of faces, with a subsequent analysis, are described in the sections that follow.

5.3.1 Criterion for a Correctly Recognized Facial Expression

The system aims to accurately recognize each of the six prototypic facial expressions.

Each image in the database was labelled as one of the six prototypic facial expressions. In

each case, the system response for each input frame was compared to the ground truth.

The system classifies each input frame as one of the six prototypic facial expressions. If

the output of the system for a particular input frame matches its corresponding label in

the database, it is deemed a correct classification. Otherwise, it is deemed an incorrect

classification.

5.3.2 Frontal Facial Images

This section discusses the experimental procedure carried out for frontal facial images

and provides an analysis of the results obtained for each experiment.

5.3.2.1 Experimental Procedure

Frontal facial images of 40 subjects from the BU-3DFE data set, not in the training

set, were used as input to the system. These images contain subjects facing the camera.

In each case, the output of the system was analyzed using the criterion for accurately

recognizing a facial expression.

5.3.2.2 Results and Analysis

For reference, the full set of results obtained for the 40 subjects is provided in Table A.1

in Appendix A. The table provides the system response for each image of each subject

used as input. Table 5.4 is a confusion matrix summarizing the results after applying the

FER strategy to frontal facial images. Table 5.5 summarizes the results as a percentage

per expression.

The system registered an average accuracy of 75% for frontal facial images ranging from

62% to 90%. It is noted that “Surprise” registered the highest accuracy of 90%, and

the lowest, but by no means low, accuracy of 62% was registered by “Disgust” and
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Table 5.4: Confusion matrix for frontal FER accuracy.

Anger Disgust Fear Happiness Sadness Surprise

Anger 33 4 1 0 2 0
Disgust 8 25 5 1 0 1
Fear 1 3 25 7 1 3
Happiness 1 0 4 35 0 0
Sadness 6 0 5 0 28 1
Surprise 1 1 2 0 0 36

Table 5.5: Average Frontal FER accuracy.

Expression Correct (40) Average (%)

Anger 33 82
Disgust 25 62
Fear 25 62
Happiness 35 87
Sadness 28 70
Surprise 36 90

“Fear”. It should be noted that the system achieved a high accuracy of above 80% for

three of the expressions, above 70% for four of the expressions and above 60% over all

expressions. These results are very encouraging and are indicative of a highly successful

feature extraction process. In terms of responding to the research question, it is clear

that the proposed system can recognize whole expressions at a high accuracy in frontal

non-occluded images.

Comparing these results with Moore and Bowden’s [77] results indicates that the sys-

tem achieves a higher average recognition accuracy of 75% using the combined LBP u2
8,2

operator than Moore and Bowden’s accuracies of 72% and 62% for LBPms and LBP u2,

respectively. However, this result is only indicative since Moore and Bowden trained and

tested on the entire data set – 100 subjects. In future, the testing can be extended to the

entire data set to perform a direct comparison. At this stage, it is only possible to say

that the result indicates that the combined operator may be a better facial expression

descriptor than the individual operators.

Analyzing the results to identify possible sources of error in the two lowest performing

expressions in Table 5.4 indicates that “Disgust” was misclassified as “Anger” in the

majority of incorrect classifications – 8 cases – and “Fear” was misclassified as “Happi-

ness” in the majority of incorrect classifications – 7 cases. The expression “Disgust” is

performed by frowning, tightly pursing the lips and flaring the nostrils and “Anger” is

performed by frowning and tightly pursing the lips only, it was initially expected that in
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some cases these two expressions may be confused with each other due to resemblance.

Analyzing the table, it is in fact seen that in the majority of errors for the expression

“Anger”, “Anger” was similarly confused with “Disgust”. Figure 5.4 depicts an example

of an expression “Disgust” that looks similar to “Anger”.

(a) Anger (b) Disgust

Figure 5.4: An example of a case in which “Anger” was expressed similarly to “Dis-
gust” [118].

Similarly, “Fear” and “Happiness” are both primarily performed with the cheek regions

by stretching out the mouth. Therefore, it was initially expected that in some cases these

two expressions may be confused with each other, depending on how they are performed

by individual subjects. In fact, the results indicate that in most cases “Happiness” was

similarly confused with “Fear”. Figure 5.5 depicts an example of an expression “Fear”

that looks similar to “Happiness”.

(a) Fear (b) Happiness

Figure 5.5: An example of a case in which “Fear” was expressed similarly to “Hap-
piness” [118].

Figure 5.6 graphically summarizes the FER accuracy per subject. For convenience, the

results in the figure are sorted in descending order. For reference, the full set of results

is provided in Table A.2 in Appendix A. The results indicate that for 33 out of the 40

subjects – 82% of the subjects – the FER system correctly recognized at least 4 out of

the 6 expressions. Furthermore, for 38 out of the 40 subjects, the FER system correctly

recognized at least 3 out of the 6 expressions. These results are very encouraging and

indicative of a robust FER strategy which is subject invariant and which generalizes very

well to a large group of subjects with different skin tones, gender and face dimensions.

For only two subjects, the system recognized less than 3 expressions but it is important

to note that, for these subjects, the recognition rate was at least 1 out of 6.
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Figure 5.6: FER accuracy per subject for frontal images.

Table 5.6 summarizes the results of the 7 subjects for which the system correctly recog-

nized 3 out of the 6 expressions and below. The table details the system’s response for

each subject corresponding to each actual prototypic expression image. For convenience,

cases that were correctly classified have been indicated with a “-”. As an arbitrary ex-

ample, the fourth column of the table indicates that for images of the subjects for the

expression “Anger”, the system incorrectly perceived “Disgust” for Subjects 1, 3 and

20, and “Sadness” for Subject 39, but correctly recognized “Anger” for Subjects 11,

30 and 33. The expressions (columns) in the table have been ordered according to the

number of incorrect classifications, in descending order. Thus, the expression “Sadness”

appears first because it was the most problematic among these cases. The Subjects

(rows) have been similarly ordered. Thus, Subject 39 has been included first since this

subject achieved the lowest classification rate.

Table 5.6: System response for subjects with 3 out of 6 expression recognition and
below.

Subject Sadness Fear Anger Disgust Surprise Happiness

39 Anger Disgust Sadness Anger Disgust -
33 Surprise Anger - Surprise - Anger
1 Anger - Disgust - Fear -
3 Anger Disgust Disgust - - -
11 Anger Surprise - - - Fear
20 Anger Surprise Disgust - - -
30 Fear - - Anger Anger -

Analyzing the table, it is noted that for these subjects, the misclassification were mostly

concentrated in “Sadness“ and “Fear”, closely followed by “Anger”. It is noted that

“Anger” is mostly confused with “Disgust”. It was initially expected that this was due
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to similarity between the expressions, as explained previously. Focusing on expression

“Sadness”, it is noted that this expression is confused with “Anger” in most cases.

Analyzing the images for these subjects revealed that “Sadness” was expressed similarly

to “Anger” in two such cases and expressed as a neutral expression in two cases. Figure

5.7 illustrates examples of such cases. A similar analysis of the expression “Fear” revealed

that in most cases it was expressed as the neutral expression. Figure 5.8 illustrates

examples of such cases.

This analysis revealed that, in addition to a similarity of expressions in some cases, inac-

curacies in the data in the form of expressions closely resembling the neutral expression

was also a source of error. The SVM was not trained on the neutral expression. There-

fore, given an image of the neutral expression, an incorrect best-effort classification into

one of the six classes would be carried out by the SVM. As such, the misclassification

in many of these cases is attributed to the inaccurate manner in which the subjects

performed these expressions, rather than inaccuracy of the system.

(a) Sadness-Anger (b) Sadness-Neutral

(c) Sadness-Neutral (d) Sadness-Anger

Figure 5.7: Examples of cases in which “Sadness” was expressed similarly to “Anger”
or a neutral expression.

(a) Fear-Neutral (b) Fear-Neutral

Figure 5.8: Examples of cases in which “Fear” was expressed similarly to the neutral
expression.
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Based on this finding, a deeper analysis of the data set was carried out by two inde-

pendent assessors – Assessor 1 and Assessor 2 – to determine the number of images in

the data set that resemble the neutral expression. Assessor 1 was shown frontal images

of the first 20 test subjects – 150 images – and Assessor 2 was shown the remaining 20

test subjects – 150 images – from the BU-3DFE database. It should be noted that, as

previously mentioned, the frontal facial model was used to produce the rotated image.

The facial images in both cases are exactly the same. Therefore, this analysis was only

carried out for frontal images. Table 5.7 summarizes the number of images per expres-

sion that were deemed to resemble the neutral expression. For reference, the full results

of the neutral count for the 40 subjects for each expression are provided in Table A.3 in

Appendix A.

Table 5.7: The total number of misclassified cases for each expression and the number
of images of each expression that resemble the neutral expression.

Expression Misclassified (40) Neutral (40)

Anger 7 7
Disgust 15 13
Fear 15 9
Happiness 5 0
Sadness 12 10
Surprise 4 0

This result was surprising. The results indicate that in many cases – 39 cases – the facial

expressions were performed similar to the neutral expression. The neutral expression

accounts for 67% of the total number of misclassified expressions. It is noted that “Hap-

piness” and “Surprise” were not affected at all by the neutral expression. However, all

other expressions were heavily affected. In the case of “Anger”, all the misclassification

are accounted for by the neutral expression. “Disgust”, “Sadness” and “Fear” have the

highest number of samples that resembled the neutral expression, with the majority of

misclassification for these expressions accounted for by the neutral expression. It is for

this reason that these three expressions were the three lowest performing expressions.

It is important to note that, in spite of this fact, the proposed FER strategy was able to

achieve high accuracies. This indicates that the strategy is highly robust. The results

have been stated as is. However, for investigative purposes, those samples that resembled

the neutral expression were removed to obtain an indication of the true recognition

accuracy of the FER approach. Figure 5.9 visually depicts the results obtained by

removing the affected samples.

The results indicate that all expressions have an accuracy of 85% and above. The

two lowest performing expressions, “Disgust” and “Fear” increased to 95% and 85%,
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Figure 5.9: FER accuracy per expression for original frontal results and for the neutral
cases removed.

respectively. “Anger” increased to 100% accuracy. These results further indicate that

the FER strategy is highly robust and accurate. The results also indicate that the

feature vector and SVM optimization procedures were highly successful.

The accuracy of this FER approach using a different locally collected data set was also

determined. These results were published as part of this research. The paper is provided

in [80] for reference. The data set consisted of 20 subjects – students of the University of

the Western Cape – of varied skin tone performing each of the six prototypic expressions

once. An image was captured from the frontal view and the rotated view. Each SVM

was trained on images of 10 subjects and tested on images of the remaining 10 subjects.

The frontal results on this data set were 85% across all expressions. Since this data

set was manually collected, it was ensured that no instances of samples resembling the

neutral expression were present. Hence, the results are higher. Once again, these results

indicate that the FER system is robust and accurate.

5.3.3 Rotated Facial Images

This section discusses the experimental procedure carried out for rotated facial images

and provides an analysis of the results obtained for each experiment.

5.3.3.1 Experimental Procedure

The rotated facial images from the BU-3DFE data set produced from the frontal images

used in the previous section were used as input to the system. These images contain
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faces rotated to 60◦. In each case, the output of the system was analyzed using the

criterion for accurately recognizing a facial expression.

5.3.3.2 Results and Analysis

For reference the full set of results obtained for the 40 subjects is provided in Table A.4

in Appendix A. The table provides the system response for each rotated image of each

subject used as input. Table 5.8 is a confusion matrix summarizing the results after

applying the FER strategy to rotated facial images. Table 5.9 summarizes the results

as a percentage per expression and includes the frontal results for comparison.

Table 5.8: Results for rotated facial images.

Anger Disgust Fear Happiness Sadness Surprise

Anger 25 4 5 2 4 0
Disgust 2 21 8 7 1 1
Fear 2 0 20 14 4 0
Happiness 0 1 1 38 0 0
Sadness 3 0 3 0 34 0
Surprise 1 0 5 1 1 32

Table 5.9: Comparison of average FER accuracy using frontal and rotated faces.

Expression Frontal (%) Rotated (%)

Anger 82 62
Disgust 62 52
Fear 62 50
Happiness 87 95
Sadness 70 85
Surprise 90 80

Average (%) 75 70

The system achieved an average recognition accuracy of 70% for rotated facial images

ranging from 50% to 95%. This is lower than the average accuracy obtained for frontal

images. It is noted that the system registered the highest accuracy of 95% for “Hap-

piness”. It should also be noted that the system achieved a high average recognition

accuracy of 80% and above for three of the expressions. Furthermore, the system reg-

istered an average accuracy of no less than 50% for all expressions. These results are

highly encouraging considering that the images are rotated to an extreme angle of 60◦.

In terms of responding to the research question, it is clear that the proposed system can

recognize whole expressions at a high accuracy in the presence of rotations of the face

for non-occluded images.
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It should be noted that, when the face is rotated to 60◦, the most dominant feature area

becomes the cheek region and sides of the face. Any features expressed in the nose, mouth

or eye region become less pronounced. Therefore, any expressions that are primarily

expressed using these regions are expected to register a reduction in FER accuracy, such

as “Anger”, “Disgust”, “Fear” and “Surprise”. Conversely, any expressions primarily

expressed in the cheek region or sides of the face are expected to register an increase in

FER accuracy such as “Happiness” and “Sadness”.

The lowest accuracies, but by no means low, were again registered for the two expressions

as in the frontal case: 50% for “Fear” and 52% for “Disgust”. Both of these accuracies

were lower than the results for the corresponding frontal images. As in the frontal case,

“Fear” was once again confused with “Happiness” in the majority of cases. 9 out of the

20 cases that were misclassified are attributed to the presence of “Fear” samples that

resembled the neutral expression. The misclassification of the remaining 11 samples is

attributed to: classification errors by the SVM; the fact that the expression is primarily

expressed in the mouth region which is less visible and pronounced at 60◦; and the fact

that the expression may appear similar to “Happiness”, as was the case for the frontal

images.

It is also noted that the system incorrectly classified “Disgust” as “Fear” in the majority

of cases. This is similarly attributed to the large number of cases – 13 cases – in which

images labelled as “Disgust” resembled the neutral expression. In such cases, the system

attempted an incorrect best-effort classification into one of the six classes, in this case

mostly “Fear” and “Happiness”. The remaining 6 errors are attributed to classification

errors by the SVM and the fact that the expression is primarily expressed in the nose

and mouth regions, both of which are less visible and pronounced at 60◦.

It was initially surprising to note that the recognition accuracy of the system increased

for “Happiness” and “Sadness”. However, considering these expressions are primarily

expressed in the cheek regions which are more pronounced and exposed in rotated images,

it is expected that the FER accuracy would increase. One surprising aspect of this

result is that, in spite of 10 samples of “Sadness” resembling the neutral expression,

the expression obtained 34 out of 40 correct FER accuracy. This is surprising but may

be attributed to the fact that, with a greater part of the cheek exposed, subtle features

associated with “Sadness” may have become more pronounced in images that, on whole,

may appear to resemble the neutral expression. This requires further investigation in

future.

Moore and Bowden provide only visual results for the accuracy of the LBPms and

LBP u2 operators at 60◦. The visual results indicate an accuracy of between 60% and

70% for both operators. The results of the proposed system indicate a higher accuracy
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of 70%. Once again, this result is only indicative since Moore and Bowden trained and

tested on the entire data set. In future, the testing can be extended to the entire data set

to perform a direct comparison. At this stage, it is only possible to state that this may

indicate a greater effectiveness of the combined LBP u2
8,2 operator over the two individual

operators LBPms and LBP u2 for FER.

Figure 5.10: FER accuracy per subject for rotated images.

Figure 5.10 graphically summarizes the FER accuracy per subject for rotated images.

For convenience, the results in the figure are once again sorted in descending order. For

reference, the full set of results is provided in Table A.5 in Appendix A. An analysis

of these results indicate that for 26 out of the 40 subjects – 65% of the subjects –

the system correctly recognized at least 4 out of the 6 expressions. Furthermore, for

39 subjects – 97% of the subjects – the system correctly recognized at least 3 out of

the 6 expressions. For only one subject, the system recognized less than 3 out of the

6 expressions. However, it should be noted that for this subject, the recognition rate

of the system was 1 out of 6. For no subject did the system register 0 recognition.

This results indicates that the system is highly robust to variations in test subjects at a

rotated angle as well.

Figure 5.11 is a combination of the per-subject accuracy graphs of the frontal and rotated

cases for comparison.

The graph illustrates that the accuracies for frontal and rotated cases are distributed

randomly across test subjects. In order to investigate this further, the Pearson’s product-

moment coefficient was computed between the two data sets to determine the correlation

between the sets. The result was a value of ρ = −0.098 which indicates that the sets are

poorly correlated. This indicates that the FER accuracy is independent of and invariant

to test subjects.
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Figure 5.11: FER accuracy per subject for rotated images.

Table 5.10 summarizes the system response for Subject 24 for which the system correctly

recognized 1 out of the 6 expressions.

Table 5.10: System response for Subject 24.

Expression System Response

Anger Sadness
Disgust Sadness
Fear Sadness

Happiness Fear
Sadness -
Surprise Sadness

It is surprising to note that this subject achieved 100% correct recognition for the frontal

case. The only correct classification was for “Sadness” which is represented as a “-”.

Analyzing the table, it is noted that all but one of the system responses were “Sadness”.

Figure 5.12 depicts the frontal and rotated images for this subject.

Analyzing the images, it is only possible to conclude that, in the frontal case, more

features were exposed causing the SVM to achieve a better classification result than in

the rotated case.

Once again, the results have been stated as is. However, for investigative purposes, those

samples that resembled the neutral expression were removed to obtain an indication of

the true recognition accuracy of the FER approach for rotated images. Figure 5.13

visually depicts the results obtained by removing the affected samples.

The results indicate that all expressions have an accuracy of 72% and above. The

two lowest performing expressions, “Disgust” and “Fear” increased to 85% and 72%,

respectively. “Anger” increased to 80% accuracy. These results further indicate that
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(a) Anger (b) Disgust

(c) Fear (d) Happiness

(e) Sadness (f) Surprise

(g) Anger (h) Disgust

(i) Fear (j) Happiness

(k) Sadness (l) Surprise

Figure 5.12: Frontal and rotated images for Subject 24.

the FER strategy is highly robust and accurate in the presence of rotations. The results

also indicate that the feature vector and SVM optimization procedures were highly

successful.

Once again, the accuracy of the FER approach on rotated images using a different

locally collected data set was also determined and provided in the paper in [80] for

reference. The rotated results on this data set were 80% across all expressions. Once

again, since this data set was manually collected, it was ensured that no instances of

samples resembling the neutral expression were present. Hence, the results are higher.

These results indicate that the FER system is robust and accurate.
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Figure 5.13: FER accuracy per expression for rotated images.

5.3.4 Frontal Occluded Facial Images

This section discusses the experimental procedure carried out for frontal occluded facial

images and provides an analysis of the results obtained for each experiment.

5.3.4.1 Experimental Procedure

Figure 5.14 illustrates the simulation of the different levels of occlusion in the different

regions.

(a) Eyes (b) Mouth

(c) Left Out-In (d) Left In-Out

(e) Right Out-In (f) Right In-Out

Figure 5.14: Simulated partial occlusion for frontal images for each region at (1/3),
(2/3) and full occlusion.
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For frontal occluded images, partial occlusions of the eyes, mouth and left and right

sides of the face were simulated by overlaying black pixels onto these regions similar

to Kotsia et al. As an addition to Kotsia et al.’s work, three levels of occlusion were

simulated at each region ranging from (1/3), (2/3) and full occlusion, which has not

been done previously.

Additionally, for occlusions of the left and right sides of the face, occlusions were sim-

ulated from the outside to the inside as well as the inside to the outside of the face to

compare the effects of occlusion in these two cases. According to literature, this has

not been done previously either. For ease of reference, occlusion from the outside to the

inside is henceforth referred to as “Out-In” and occlusion from inside to the outside is

referred to as “In-Out”. For example, occlusion of the left side Out-In means occlusion

of the left side of the face from the outside to the inside of the face.

This was carried out in order to compare the effect of occlusion of features in the centre

of the face (by occluding Out-In) and occlusion of features on the outside of the face

(by occluding In-Out). It was expected that occlusion of features closer to the centre of

the face should have a higher effect on FER accuracy.

This resulted in a total of 18 experiments, across 6 types of occlusion (mouth, eyes,

left/right sides of the face inwards, left/right sides of the face outwards) and 3 levels of

occlusion in each case. In each case, the output of the system was analyzed using the

criterion for accurately recognizing a facial expression.

5.3.4.2 Results and Analysis

Table 5.11 summarizes all the different types and levels of frontal occlusion and provides

the average accuracies across all expressions for the 18 experiments.

Analyzing the table, it can be seen that, even in the presence of full occlusion of various

regions of the face, the proposed FER strategy is still able to recognize facial expressions

at a high accuracy. This accuracy ranges from 70% for full occlusion of the left side of

the face to a minimum of 58% for full occlusion of the mouth. In terms of responding

to the research question, this clearly demonstrates that, even in the presence of severe

partial occlusions of frontal facial images, the proposed FER approach can yield a high

FER accuracy.

The average accuracy at full and no occlusion of each region is highlighted in bold text.

Analyzing the table reveals that in the majority of cases – 88 out of 108 cases – occlusion

resulted in a reduction in FER accuracy along with expectation. In a small number (20

of 108) of cases – about 18% of cases – the FER accuracy appears to slightly increase
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Table 5.11: Results for each region and level of occlusion for frontal images.

Anger(40) Disgust(40) Fear(40) Happiness(40) Sadness(40) Surprise(40) Average(%)

No occlusion 33 25 25 35 28 36 75

Eyes
(1/3) 30 26 23 36 28 35 74
(2/3) 35 27 24 34 27 32 74
full 28 26 17 33 26 32 67

No occlusion 33 25 25 35 28 36 75

Mouth
(1/3) 29 24 25 36 30 35 74
(2/3) 20 26 22 38 24 32 67
full 26 21 21 31 13 29 58

No occlusion 33 25 25 35 28 36 75

Left Out-In
(1/3) 30 26 24 33 27 36 73
(2/3) 35 25 23 32 23 36 72
full 24 30 18 31 31 35 70

No occlusion 33 25 25 35 28 36 75

Left In-Out
(1/3) 33 24 25 35 26 34 73
(2/3) 29 24 21 34 27 33 70
full 24 30 18 31 31 35 70

No occlusion 33 25 25 35 28 36 75

Right Out-In
(1/3) 30 28 23 35 26 34 73
(2/3) 23 24 26 35 28 30 69
full 28 23 18 31 23 31 64

No occlusion 33 25 25 35 28 36 75

Right In-Out
(1/3) 30 27 24 34 25 37 73
(2/3) 29 19 23 37 28 36 71
full 28 23 18 31 23 31 64

at varied levels of occlusion. Examples are: “Disgust” at all three levels of occlusion of

the eye region and at full occlusion of the left side Out-In; “Sadness” at full occlusion of

the left side Out-In and (1/3) occlusion of the mouth; and “Anger” at (2/3) occlusion of

the eyes and (2/3) occlusion of the left side Out-In. The effect appears to be scattered

at random across various expressions, facial regions and levels of occlusion. It may only

be observed that “Disgust” benefited the most from this effect.

The result in these select cases is contrary to expectation since it is expected that any

level of occlusion of any region should result in a reduction in salient features, therefore

resulting in a reduction in FER accuracy or, at the very best, a sustained FER accuracy.

However, if it is taken into consideration that occlusion of parts of the face may result,

in some cases, in a greater emphasis of regions rich in salient features and elimination

of regions that are not rich in or are completely void of salient features, the observation

of slight increases in FER accuracy in some cases may be expected. This indicates that

a larger quantity of information is not necessarily always more conducive to achieving a

higher FER accuracy.
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This is analogous to the result of the region and resolution size optimization experiments

in which a larger amount of information – a larger resolution size – did not necessarily

yield a higher FER accuracy. In fact, the largest resolution size R = (60×60) yielded the

lowest cross-validation accuracy for both frontal and rotated images despite providing the

largest amount of information. A similar observation was made by Moore and Bowden.

Moore and Bowden observed that the use of a large resolution size R = (80 × 110) did

not result in the highest cross-validation accuracy in most cases, as explained in Chapter

2.

In addition, if the occlusion is viewed as a source of noise, Sheikh registered a similarly

strange finding [99]. Sheikh investigated the effects of various types of noise on the FER

accuracy using Gabor filters and SVMs for frontal images. Contrary to expectation,

he found that the presence of a large amount of Gaussian and Poisson noise resulted

in a higher FER accuracy than in facial images without any noise. He concluded that

further investigation is required. As such, the occlusion that may be viewed as a source

of noise may potentially contribute towards a higher FER accuracy. However, this result

requires further investigation.

Focusing on the average accuracy over all six expressions, however, reveals that the

result of occluding each region progressively from no occlusion to full occlusion results

in an approximately continuous reduction in FER accuracy for each region, along with

expectation. This illustrates that a global view of the results is along with expectation.

This is depicted graphically in Figure 5.15. The first bar in each region is the average

recognition accuracy for no occlusion of frontal facial images, a value of 75% obtained

in a prior experiment.

Analysis of Figure 5.15 clearly demonstrates that occlusion of the mouth has the greatest

effect on the FER accuracy than any other fully occluded region of the face. This finding

coincides with Kotsia et al.’s [61] research. Furthermore, progressively occluding this

region results in the most rapid deterioration in FER accuracy. This suggests that the

mouth region plays the most pivotal role in the recognition of facial expressions. This

also coincides with the large body of research that has consistently shown that the focus

of the eye-gaze of Deaf signers within a conversation is concentrated on the mouth region

[16, 78, 79].

The next region of importance, after the mouth, appears to be the right side of the face,

both Out-In and In-Out. Occlusion of this area results in a much greater impact, and

at a much more rapid rate on the FER accuracy, than the left side of the face, both

Out-In and In-Out, as well as the eyes.
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Figure 5.15: Average accuracy across each progressive level of occlusion across all
expressions.

Finally, occlusion of the eye region appears to have a greater impact on the FER accuracy

than occlusion of the left side of the face, both Out-In and In-Out, but only at full

occlusion. At (1/3) and (2/3) occlusion of the eyes, there appears to be only a slight,

if any, effect on the FER accuracy. This is not the case for occlusion of the left side of

the face in which the FER accuracy appears to deteriorate more or less continuously as

occlusion increases.

Comparing the effect of occlusion for Out-In and In-Out for both sides – comparing Left

Out-In with Left In-Out and comparing Right Out-In and Right In-Out – of the face

reveals that the effect of both types of occlusion – Out-In and In-Out – appear to be

very similar. This indicates that, on average across all six expressions, the features on

the outer parts of the face are as important as those in the centre of the face.

With regards to the effect of occlusion on the left and right sides of the face, the fact that

occlusion of the right side and left side of the face appear to be different is an interesting

finding. Since it is known that the six prototypic facial expressions are ideally symmetric,

this finding may be attributed to the manner in which the subjects performed the six

facial expressions. The expressions may be slightly more pronounced by the subjects in

the right side of the face than in the left side of the face.

A similar but opposite result was obtained in the separate study carried out by the

researcher provided in [80] on a different data set. In this case, it was found that

occlusion of the left – not right – side of the face appeared to have a greater effect on

the FER accuracy than the right side of the face and was attributed to the manner in

which the subjects in that data set performed the expression i.e. with greater emphasis
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on the left side of the face. This result indicates that, in order to be able to sustain a

high accuracy over a large number of varied subjects, features from both sides of the face

may be necessary to register a high FER accuracy to cater for cases of greater emphasis

on either side of the face.

Figure 5.16 summarizes the average FER accuracy per expression at full occlusion of the

left and right sides of the face. Analyzing this figure reveals that the greater emphasis

on the right rather than the left side of the face by test subjects is mostly concentrated

in three of the six expressions: “Disgust”, “Sadness” and “Surprise”. The indication

that these expressions were more expressed on the right side than the left side of the face

is obtained from the fact that occluding the right side resulting in a greater decrease in

FER accuracy than occluding the left side. In the expressions “Fear” and “Happiness”, it

appears that the expressions were performed symmetrically on average. Thus, occluding

either side of the face resulted in an equal reduction in FER accuracy. For only “Anger”,

it appears that test subjects performed the expression with a greater emphasis on the

left side of the face, as evidenced by the fact that occluding the left side of the face

resulted in a greater deterioration in FER accuracy than occluding the right side of the

face.

Figure 5.16: FER accuracy per expression for frontal images fully occluded on the
left and right sides.

Figure 5.17 summarizes the average FER accuracy for each test subject at full occlusion

across all regions. For reference, the full set of results is provided in Table A.6 in

Appendix A.

An analysis of the graph shows that the system achieves higher than 80% accuracy for 7

of the 40 subjects, higher than 60% accuracy for 25 of the subjects – 62% of the subjects

– and higher than 50% accuracy for 34 of the subjects – 85% of the subjects. For only

6 of the subjects does the system achieve lower than 50% accuracy. It is important to
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Figure 5.17: FER accuracy per subject for unoccluded and fully occluded frontal
images.

note, however, that for no subject does the system achieve 0 recognition. The lowest

accuracy is 29%.

The accuracy of the FER approach on frontal occluded images using a different locally

collected data set was also determined and provided in the paper in [80] for reference.

The average FER accuracy across all subjects at full occlusion for this data set ranged

from 73% for full occlusion of the right side of the face to 45% for full occlusion of the

mouth region. Once again, it was confirmed that occluding the mouth results in the

greatest reduction in FER accuracy and this accuracy deteriorates at the most rapid

rate as the level of occlusion progresses.

This data set appears, in general, to be more affected by occlusions than the BU-3DFE

data set. Further investigation in this regard is required.

5.3.5 Rotated Occluded Facial Images

This section discusses the experimental procedure carried out for rotated occluded facial

images and provides an analysis of the results obtained for each experiment.

5.3.5.1 Experimental Procedure

For rotated occluded images, partial occlusion of the eyes, mouth and the region between

the eyes and the mouth were simulated by overlaying black pixels onto these regions of

the rotated images, as illustrated in Figure 5.18. It was not possible to occlude the

side of the face in the same manner as in the frontal images as this would result in a
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complete occlusion of the entire face. As such, the region between the eyes and mouth

was occluded instead. For ease of reference, the region between the eyes and mouth

is henceforth referred to as the “middle region”. For example, (1/3) occlusion of the

middle region means occluding the region between the eyes and mouth by (1/3).

(a) Eyes (b) Mouth

(c) Between eyes and mouth

Figure 5.18: Simulated partially occluded rotated facial images at (1/3), (2/3) and
full occlusion.

Once again, three levels of occlusion were simulated ranging from (1/3), (2/3) and full

occlusion. This resulted in a total of 9 experiments, across 3 types of occlusion (mouth,

eyes, middle region) and 3 levels of occlusion in each case. In each case, the output of the

system was analyzed using the criterion for accurately recognizing a facial expression.

5.3.5.2 Results and Analysis

Table 5.12 summarizes the results of the experiments for all the different types and levels

of rotated occlusion and provides the average accuracies across all expressions for the 9

experiments in the extreme right column. The average accuracy at full and no occlusion

of each region is highlighted in bold text.

Table 5.12: Results for each region and level of occlusion for rotated images.

Anger(40) Disgust(40) Fear(40) Happiness(40) Sadness(40) Surprise(40) Average(%)

No occlusion 25 21 20 38 34 32 70

Eyes
(1/3) 31 14 17 27 15 32 56
(2/3) 32 15 15 29 16 32 57
full 30 18 14 27 17 28 55

No occlusion 25 21 20 38 34 32 70

Mouth
(1/3) 28 11 16 25 16 33 53
(2/3) 30 12 18 26 15 34 56
full 28 10 17 17 14 34 50

No occlusion 25 21 20 38 34 32 70

Middle region
(1/3) 31 9 18 23 15 31 52
(2/3) 32 9 20 25 15 32 55
full 30 11 18 25 17 31 55
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Analyzing the table, it can be seen that, even in the presence of full occlusion of various

regions of the face and rotation to an extreme angle of 60◦, the proposed FER strategy

is still able to recognize facial expressions at a high accuracy. This accuracy ranges

from 55% for full occlusion of the eyes and middle region to a minimum of 50% for full

occlusion of the mouth. In terms of responding to the research question, this clearly

demonstrates that, even in the presence of severe partial occlusions of images of the face

rotated to an extreme angle of 60◦, the proposed FER approach can yield a high FER

accuracy.

Analyzing the table reveals that in the majority of cases – 42 out of 54 cases – occlusion

resulted in a reduction in FER accuracy along with expectation. As in the frontal

occluded case, in a small number (12 of 54) of cases – about 22% of cases – the FER

accuracy appears to slightly increase at varied levels of occlusion. In this case, only

the following cases were registered: “Anger” at all three levels of occlusion for all facial

regions; and “Surprise” at all levels of occlusion of the mouth region. This is different

to the frontal occluded case in which the effect appeared to be scattered over a variety

of expressions, regions and levels of occlusion.

As in the case of frontal occluded images, it may once again be taken into account

that certain parts of the face contain noise – they are not rich in or completely void

of salient features – and occluding these regions, in some cases, may result in a greater

emphasis of regions that are rich in salient features. The fact that the effect manifests

differently in the frontal occluded and rotated occluded images can be attributed to the

intrinsic difference in features in the two cases. It has previously been explained that

the recognition of facial expressions using LBP features is angle-specific. The resolution

and region sizes of the frontal and rotated images are different. This implies that the

classification model is different. A further detailed investigation is required in this regard.

The average accuracy at each level of occlusion for each region over all six expressions is

depicted graphically in Figure 5.19. Analyzing the figure, it is observed that the result

of occluding each region progressively from no occlusion to full occlusion is also different

to the frontal occluded case. In this case, the application of (1/3) occlusion has a much

more sudden and pronounced effect on the FER accuracy in all regions, but the FER

accuracy appears to remain approximately constant with the subsequent application of

(2/3) and full occlusion. In this case, it appears that, on average, (1/3), (2/3) and full

occlusion appear to have an approximately equal effect on the FER accuracy and a more

pronounced effect than in the frontal occluded case.

Further analyzing Figure 5.19, it is clear that for all regions and levels of occlusion,

the system consistently recognizes facial expressions with accuracies ranging between

50% and 60%. Furthermore, it is very important to note that even at full occlusion
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Figure 5.19: Average accuracy across all expressions progressively occluding each
region of rotated images.

of all rotated facial regions, the system is still able to recognize facial expressions with

accuracies of 50% and above. This is a very encouraging result since the images are

rotated and the facial regions are fully occluded. This again illustrates that the proposed

FER strategy is highly successful.

Similar to frontal, rotated and frontal occluded images, it is clear once again that for

rotated occluded images the FER accuracy is mostly affected by occlusion of the mouth

region. In this case, the middle region appears to be marginally more affected by occlu-

sions than the eye region.

Figure 5.20 summarizes the average FER accuracy for each test subject rotated to 60◦

at full occlusion across all regions. For comparison, the same results for the frontal

occluded case are also provided. For reference, the full set of results is provided in Table

A.7 in Appendix A.

An analysis of the graph shows that the system achieves higher than 80% accuracy for 3

of the 40 subjects, higher than 60% accuracy for 17 of the subjects – 42% of the subjects

– and an accuracy of 50% and higher for 26 of the subjects – 65% of the subjects. For 14

of the subjects, the system achieves lower than 50% accuracy. It is clear that the FER

accuracy under these conditions is lower than under frontal, rotated and frontal occluded

conditions. This result is as per expectation since the images are, both, rotated to an

extreme angle of 60◦ and under full occlusion of a region. It is very encouraging to note,

however, that under the most extreme conditions, for no subject does the system achieve

0 recognition. The lowest accuracy in this case is 22%. This clearly demonstrates that,
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Figure 5.20: FER accuracy per subject for frontal and rotated images fully occluded
for each region.

under the most extreme conditions, the proposed system is still robust to variations in

test subjects.

A comparison of the frontal occluded per-subject results and the rotated occluded results

illustrates, once again, that the accuracies for frontal and rotated cases are distributed

randomly across test subjects. The Pearson’s product-moment coefficient was computed

between the two data sets to determine the correlation between the sets. The result was

a value of ρ = −0.2140 which indicates that the sets are poorly correlated. This indicates

that the FER accuracy is independent of and invariant to test subjects under occlusions.

5.4 Summary and Conclusions

This chapter discussed the assessment of the proposed FER system. Various experiments

were carried out in order to answer the two research questions: “Can the proposed face

segmentation strategy accurately segment the face in facial images with varied skin tone,

in the presence of rotations and on a complex background?”; and “Can whole facial

expressions be recognized at a high accuracy using the LBP operator in the presence of

rotations and partial occlusions of the face?”

In order to answer the first research question, an assessment of the face segmentation

procedure was carried out. Two data sets were used as input to the proposed face

segmentation procedure: a locally collected data set of 5 subjects with random skin

tones on complex backgrounds and 50 subjects from the BU-3DFE database. For the

locally collected data set, the face segmentation approach registered an accuracy of 100%
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for all subjects except Subject 3, who registered an accuracy of 85%. It was found that

an object to the right of this particular subject was incorrectly perceived as the face due

to the similarity of the histograms of the subject’s face and the detected object. The

face segmentation procedure was then modified to only search for the face in a location

not greater than 20% around the detected face in the initial frame. This resulted in a

perfect face segmentation accuracy of 100% for all subjects. For the BU-3DFE data set,

the system consistently achieved a perfect 100% accuracy across all subjects.

Therefore, in response to the first question, the face segmentation strategy can achieve

a perfect face segmentation accuracy of 100% in facial images with varied skin tone, in

the presence of rotations and on a complex background.

The second experiment carried out aimed at optimizing the resolution and region size for

frontal and rotated images. This experiment went hand-in-hand with the optimization

of the SVM. Using the cross-validation accuracy as a metric, different C and γ values as

well as resolution and region values were evaluated. The combination of resolution and

region size and the resulting C and γ values that achieved the highest cross-validation

accuracy were deemed the optimum. This procedure was carried out for frontal and

rotated images.

For frontal images, the optimum resolution size was 40× 60 at an optimum region size

of 8× 10. With these sizes, an optimum accuracy of 72.67% was obtained with C = 0.5

and γ = 0.0078125. For images rotated to 60◦, the optimum resolution size was 40× 50

at an optimum region size of 8 × 5. With these sizes, an optimum accuracy of 69.67%

was obtained with C = 8.0 and γ = 3.0517578125× 10−05.

The resulting C and γ values were used to train two SVMs, one for frontal and one for

rotated images. This experiment demonstrated that FER using the LBP operator is

angle-specific as explained in Chapter 2.

In order to answer the second research question, experiments were carried out to assess

the accuracy of the FER procedure. Separate experiments were carried out for the

frontal, rotated, frontal occluded and rotated occluded images.

For frontal images, the FER system achieved a high average of 75% across all expressions

and subjects. It was noted that the system is highly robust to variations in test sub-

jects. An analysis of the causes of errors revealed the presence of a number of samples

that resembled the neutral facial expression, but labelled as one of the six prototypic

expressions. It was encouraging to observe that, in spite of the presence of such samples,

the system was still able to recognize facial expressions at a high accuracy. It was shown

that, with these samples removed, the average accuracy of the system could increase to

92%.
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For rotated images, the average FER accuracy was 70% which was lower than the

frontal case. It was, however, shown that the decrease was attributed to four of the six

expressions, with two expressions – “Happiness” and “Sadness” – registering an increase

in accuracy. It was stated that the frontal and rotated SVMs make use of different

feature vectors but a further investigation in this regard was warranted.

Once again, a per-subject analysis demonstrated that the system is robust to variations

in test subjects. For investigative purposes, an indication was provided as to the accuracy

of the approach in the absence of the samples that resembled the neutral expression. It

was shown that, in the absence of these samples, the FER accuracy could increase to

85%.

For frontal occluded images, the FER accuracy was shown to range between 70% for full

occlusion of the left side of the face and 58% for full occlusion of the mouth. This result

clearly demonstrates that the FER approach is robust to extreme occlusions of the face

for frontal facial images. A surprising finding was made. It was found that, while in the

majority of cases, occlusion led to a reduction in FER accuracy, in a small number of

cases, occlusion caused a slight increase in FER accuracy. The effect was shown to be

random across various regions of the face at varied levels of occlusion. “Disgust” was

found to benefit from this effect the most. While further investigation was warranted, it

was demonstrated that this may be caused by an occlusion of regions that are not rich

in salient features, thereby providing a focus on salient-feature rich regions.

In general, the finding that the mouth is the most important region of the face in the

literature was confirmed. The FER accuracy was shown to be most affected by occlusion

of the mouth region, and affected at the most rapid rate. A per-subject analysis showed

that the FER strategy is robust to variations in test subjects.

Finally, for rotated occluded images, the FER accuracy was shown to range from 55% for

full occlusion of the eyes and middle region and 50% for full occlusion of the mouth. Once

again, occlusion of the mouth region affected the FER accuracy the most. The FER

accuracy for rotated occluded images was noted as being lower than frontal occluded

images. However, even under these extreme conditions, the FER strategy achieved a

highly encouraging result. A per-subject analysis once again confirmed that the system

is robust to variations in test subjects.

As such, in response to the second research question, it is stated that the proposed FER

system can recognize whole facial expressions at a high accuracy using the LBP operator

in the presence of rotations and partial occlusions of the face.

A summary of the results obtained from the BU-3DFE database and the locally collected

database are presented as accuracy ranges in Table 5.13
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Table 5.13: Summary of the results obtained for the BU-3DFE database and the
locally collected database.

Range in Accuracy (%)

Category BU-3DFE database Local database

Frontal [62, 90] [60, 90]
Rotated [50, 95] [70, 90]
Frontal Occluded [58, 70] [45, 75]
Rotated Occluded [50, 55] [ –, – ]

 

 

 

 



Chapter 6

Conclusion

In this research, several significant contributions towards the facial expression recogni-

tion (FER) component of the SASL system was made.

The experiments that were carried out in this research were ultimately aimed at answer-

ing the two research questions posed in Chapter 1:

1. “Can the proposed face segmentation strategy accurately segment the face in fa-

cial images with varied skin tone, in the presence of rotations and on a complex

background?”

2. “Can whole facial expressions be recognized at a high accuracy using the LBP

operator in the presence of rotations and partial occlusions of the face?”

The first contribution was the development of a highly accurate face segmentation pro-

cedure that is able to accurately segment frontal and rotated faces of various subjects

containing varied skin tones in slightly different complex backgrounds. The videos con-

tained subjects rotating their faces from left to right. The Viola-Jones face detector was

not able to accurately detect the face in these conditions. This prompted the develop-

ment of a face segmentation procedure using skin cues. The results for this procedure

– a perfect face detection accuracy – revealed that the face segmentation procedure

based on skin cues is promising in this respect. Prior to this research, the development

of an automatic face segmentation procedure that accurately segments rotated faces in

complex backgrounds has not been carried out by the SASL group. This is an impor-

tant milestone for the SASL group since an automatic face segmentation procedure is a

pre-requisite to any automatic facial expression recognition system.

The second contribution was the ability of the system to accurately recognize facial

expressions in the presence of rotations and partial occlusions of the face. The use of the
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accurate face segmentation procedure combined with the proposed Local Binary Pattern

(LBP‘) operator used for feature extraction, is able to recognize frontal, rotated, frontal

occluded and rotated occluded facial images with high average recognition accuracies.

It should be noted that in addition to faces rotated to an extreme angle, the images also

contained cases in which the eyes and mouth was fully occluded. Despite these images

containing very limited facial information, the system is still able to recognize the six

prototypic facial expressions with high average recognition accuracies. The results are

extremely encouraging. Prior to this research, the investigation of rotated and partially

occluded facial images on the FER accuracy has also not been carried out by the SASL

group. Therefore, this is another important milestone for the group.

Furthermore, this research is novel since the effects of partially occluded facial images

on the FER accuracy using LBPs were not investigated and the effects of rotated faces

that are partially occluded were also not investigated in the literature, according to our

knowledge.

6.1 Directions for Future Work

The directions for future work are provided in the following subsections.

6.1.1 Selecting a Suitable Database

It was found that the database used in this research contained a number of facial im-

ages that were labelled as a particular expression, but actually contained the neutral

expression. Such a database will have a negative effect on the recognition accuracy of

a system and the true accuracy of the system is thus hindered. Therefore, only experts

should label images containing facial expressions.

Furthermore, no database containing facial expressions in SASL exists. Such databases

are necessary to properly test for natural occlusion of the face by the hands.

6.1.2 Fully Automatic Systems

Fully automatic FER systems aid the development towards real-time FER systems. A

fully automatic system is more practical in terms of its integration with other SASL

systems towards the development of one fully-fledged SASL recognition system.
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6.1.3 Comparing the Effects of Partial Occlusions and Rotations of the

Face Using LBPs and Gabor Filters

According to the literature, researchers have not investigated the effects of rotations of

the face on Gabor filters. Furthermore, researchers have also not investigated the effects

of partial occlusions of the face on LBPs. A comparison of these two texture-based

methods would reveal which method is more robust to the loss of facial information.

6.2 Concluding Remarks

Through the duration of this research, the researcher has gained a huge amount of

experience. It is hoped that this research will serve as a base for other researchers

persuing the field of FER and add significant value towards the advancements of the

SASL project.
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Table A.1: System response for frontal images for the 40 subjects.

Subject Anger(1) Disgust(2) Fear(3) Happiness(4) Sadness(5) Surprise(6)

1 2 2 3 4 1 3
2 1 2 4 4 5 6
3 2 2 2 4 1 6
4 1 2 2 4 5 6
5 1 1 3 4 5 6
6 1 1 3 4 5 6
7 2 3 3 4 5 6
8 1 2 3 4 5 6
9 1 2 4 4 5 6
10 1 1 3 4 5 6
11 1 2 6 3 1 6
12 1 1 3 4 5 6
13 1 2 3 4 5 6
14 1 3 3 3 5 6
15 1 2 3 4 5 6
16 1 1 5 4 5 6
17 1 2 4 4 5 6
18 1 2 3 4 1 6
19 1 2 4 4 5 6
20 2 2 6 4 1 6
21 1 2 4 4 5 6
22 1 2 3 4 5 6
23 1 3 3 4 3 6
24 1 2 3 4 5 6
25 1 4 3 4 5 3
26 1 2 3 4 5 6
27 5 2 3 4 5 6
28 1 2 4 4 3 6
29 1 2 4 4 3 6
30 1 1 3 4 3 1
31 3 2 3 3 5 6
32 1 2 3 3 3 6
33 1 6 1 1 6 6
34 1 3 6 4 5 6
35 1 1 3 4 5 6
36 1 2 3 4 5 6
37 1 2 3 4 5 6
38 1 2 3 4 5 6
39 5 1 2 4 1 2
40 1 3 3 4 5 6
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Table A.2: FER accuracy per subject for frontal images.

Subject Correct (6) Average (%)

1 3 50.00
2 5 83.33
3 3 50.00
4 5 83.33
5 5 83.33
6 5 83.33
7 4 66.67
8 6 100.00
9 5 83.33
10 5 83.33
11 3 50.00
12 5 83.33
13 6 100.00
14 4 66.67
15 6 100.00
16 4 66.67
17 5 83.33
18 5 83.33
19 5 83.33
20 3 50.00
21 5 83.33
22 6 100.00
23 4 66.67
24 6 100.00
25 4 66.67
26 6 100.00
27 5 83.33
28 4 66.67
29 4 66.67
30 3 50.00
31 4 66.67
32 4 66.67
33 2 33.33
34 4 66.67
35 5 83.33
36 6 100.00
37 6 100.00
38 6 100.00
39 1 16.67
40 5 83.33
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Table A.3: Assessment of the frontal data set to determine the expressions that
resemble the neutral expression (“1”) and those that do not (“0”).

Subject Anger Disgust Fear Happiness Sadness Surprise

1 0 0 1 0 1 0
2 1 0 0 0 1 0
3 0 1 0 0 1 0
4 0 0 0 0 0 0
5 1 1 1 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 1 0 0 1 0
9 1 1 0 0 0 0
10 1 0 1 0 0 0
11 0 0 1 0 1 0
12 0 1 0 0 0 0
13 0 1 0 0 0 0
14 0 0 0 0 1 0
15 0 0 0 0 1 0
16 0 0 0 0 0 0
17 0 0 0 0 0 0
18 0 1 1 0 1 0
19 0 1 0 0 0 0
20 0 0 0 0 0 0
21 0 1 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 1 0 0 0 0 0
27 0 1 0 0 0 0
28 0 0 0 0 0 0
29 0 0 0 0 0 0
30 0 0 0 0 1 0
31 0 1 1 0 0 0
32 0 0 0 0 0 0
33 1 1 1 0 1 0
34 0 1 0 0 0 0
35 0 0 0 0 0 0
36 1 0 0 0 0 0
37 0 0 0 0 0 0
38 0 0 0 0 0 0
39 0 0 1 0 0 0
40 0 0 1 0 0 0
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Table A.4: System response for rotated images for the 40 subjects.

Subject Anger(1) Disgust(2) Fear(3) Happiness(4) Sadness(5) Surprise(6)

1 3 4 4 4 5 6
2 1 2 5 4 5 3
3 1 3 5 4 5 3
4 1 2 4 4 5 6
5 1 2 3 4 5 6
6 4 2 4 4 5 6
7 1 3 5 4 5 3
8 1 2 4 4 5 6
9 1 3 3 4 3 6
10 2 6 4 4 5 6
11 1 1 1 4 5 1
12 1 4 4 4 1 6
13 3 3 4 4 5 6
14 3 3 3 4 5 3
15 5 4 4 4 5 6
16 1 2 3 2 5 6
17 2 4 4 4 5 6
18 2 2 4 4 5 6
19 4 4 4 4 5 6
20 1 2 3 4 5 6
21 1 3 3 4 5 6
22 1 1 3 4 5 6
23 3 2 3 4 3 6
24 5 5 5 3 5 5
25 5 3 3 4 1 6
26 1 4 1 4 5 3
27 5 4 4 4 5 6
28 1 2 3 4 5 6
29 1 2 3 4 5 6
30 1 2 3 4 5 6
31 1 2 3 4 5 6
32 1 2 3 4 5 6
33 1 2 3 4 5 6
34 1 2 3 4 5 6
35 1 2 3 4 5 6
36 1 2 3 4 5 6
37 1 2 3 4 5 6
38 1 2 3 4 1 6
39 3 3 4 4 5 4
40 2 2 4 4 3 6
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Table A.5: FER accuracy per subject for rotated images.

Subject Correct (6) Average (%)

1 3 50.00
2 4 66.67
3 3 50.00
4 5 83.33
5 6 100.00
6 4 66.67
7 3 50.00
8 5 83.33
9 4 66.67
10 3 50.00
11 3 50.00
12 3 50.00
13 3 50.00
14 3 50.00
15 3 50.00
16 5 83.33
17 3 50.00
18 4 66.67
19 3 50.00
20 6 100.00
21 5 83.33
22 5 83.33
23 4 66.67
24 1 16.67
25 3 50.00
26 4 66.67
27 3 50.00
28 6 100.00
29 6 100.00
30 6 100.00
31 6 100.00
32 6 100.00
33 6 100.00
34 6 100.00
35 6 100.00
36 6 100.00
37 6 100.00
38 6 100.00
39 4 66.67
40 4 66.67
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Table A.6: Results for each region and level of occlusion for frontal images.

Subject Eyes(6) Mouth(6) Left side(6) Right side(6)

1 4 1 4 3
2 4 4 5 6
3 2 4 3 2
4 3 3 3 2
5 5 3 3 6
6 4 2 3 4
7 4 3 3 4
8 6 3 6 6
9 4 1 5 4
10 5 2 5 4
11 3 4 4 3
12 5 4 6 3
13 5 6 6 4
14 5 3 4 3
15 6 4 6 4
16 4 4 4 4
17 4 5 5 4
18 3 3 5 4
19 5 4 5 5
20 3 3 4 2
21 5 3 4 4
22 6 6 5 6
23 4 4 4 4
24 6 6 6 4
25 3 2 3 3
26 2 2 4 1
27 3 4 3 5
28 4 4 4 3
29 4 3 4 4
30 3 3 4 3
31 4 5 6 4
32 4 4 4 5
33 1 2 2 3
34 3 4 3 3
35 4 4 5 6
36 5 5 6 5
37 5 5 6 6
38 6 4 3 6
39 3 2 1 1
40 4 3 3 2
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Table A.7: Results for each region and level of occlusion for rotated images.

Subject Eyes(6) Mouth(6) Between eyes and mouth(6)

1 1 2 2
2 3 3 3
3 2 1 2
4 2 3 2
5 6 4 6
6 6 3 6
7 4 4 4
8 3 3 4
9 3 2 4
10 4 4 5
11 4 2 4
12 3 2 3
13 4 4 3
14 3 1 3
15 5 3 3
16 3 5 4
17 5 3 5
18 4 4 5
19 2 4 4
20 2 3 2
21 4 4 4
22 6 5 4
23 3 2 3
24 4 5 3
25 4 3 3
26 1 2 1
27 4 3 5
28 3 3 2
29 4 3 4
30 5 3 5
31 3 4 3
32 1 2 2
33 2 2 1
34 3 3 3
35 1 2 2
36 5 4 4
37 1 2 1
38 4 3 3
39 2 2 1
40 5 3 4
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