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Abstract

Radio-optical analysis of extended radio sources in the First Look Survey field

C. M. Paulo

MSc thesis, Department of Physics, University of the Western Cape

I combine 610 MHz Giant Metrewave Radio Telescope (GMRT) data, 1.4 GHz Very

Large Array (VLA) data and 1.4 GHz Westerbork Synthesis Radio Telescope (WSRT)

observations, encompassing a ∼ 4 square degree field (sq. deg. field) centred on the

verification strip of the Spitzer First Look Survey (FLS) field (RA = 17h18m00s, Dec =

59◦30
′

30
′′

), to study radio sources down to fluxes of about 0.1 mJy. The results of an

analysis of a sample of 107 multi-component radio sources obtained by cross-correlating

the VLA and GMRT catalogues are shown. The spectral index analysis shows that

the majority of multi-component sources are steep-spectrum sources. Nevertheless

the spread in the spectral distribution is wide, with a significant number of ultra-

steep, flat or inverted sources. By cross-correlating 107 multi-component radio sources

with the optical catalogues of Marleau et al. (2007) and Papovich et al. (2006), 23

objects were identified and spectroscopically classified as galaxies. Some of them are

classified as star-forming or star-burst galaxies, perhaps indicating that AGN and star-

formation activity are ongoing in the same galaxy. The measured redshifts span the

range 0 < z < 1.8 and peak at z ∼ 0.2. According to their radio power (P ), 6 of

the identified objects are in the range of FR II sources (P1.4GHz > 1024.5W/Hz) while

17 are in the range of FR I sources (P1.4GHz < 1024.5W/Hz). Most of the sources

having P1.4GHz < 1024.5W/Hz are compact and few are extended and peculiar, while

all sources in the range of P1.4GHz > 1024.5W/Hz are extended. Further optical follow-

up is recommended to allow a more complete census of the sub-mJy population and

more information on AGN feedback from such sources.
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CHAPTER 1

Introduction

Deep radio observations offer one of the most important windows on the evolution

of star formation and black-hole-related activity as a function of cosmological epoch

(Owen et al., 2005). Combining Radio, Optical/Near Infrared (NIR), Far Infrared

(FIR) and X-ray data have the potential to give us a well-constrained picture of our

Universe (Owen et al., 2005).

A small region of the First Look Survey (FLS) field (the verification strip) has been

imaged very deeply (Morganti et al., 2004), and is well studied in different wavebands,

therefore providing enough information to derive the radio spectral index but also to

construct the spectral energy distribution for all the sources where Optical, IR etc.

data are available.

Note that the identification of radio sources has turned out to be one of the most

productive techniques for discovering new and important classes of astrophysical ob-

jects (Lilly and Longair, 1984) over the last 3 decades. This is important for two

reasons. Firstly, it is not possible from the radio measurements alone to determine the

distance to a radio source. Only if there is an optical identification can the redshift

and the distance be determined. Using Hubble’s Law it is then possible to calculate

the absolute radio luminosity, linear size, and energy content from measurements of

radio flux density and angular structure. Secondly, optical as well as x-ray and infrared

studies of the radio source counterparts may give some insight into the nature of the

intense radio emission (Kellermann and Owen, 1988).
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In this thesis, I make use of the existing radio survey data obtained from the Very

Large Array (VLA), Giant Metrewave Radio Telescope (GMRT) and Westerbork Syn-

thesis Radio Telescope (WSRT) in combination with data at other wavelengths of this

region, encompassing a ∼ 4 square degree field (sq. deg. field), centred on the verifi-

cation strip, to understand the sub-mJy radio population (a mixture of star-forming

galaxies and Active Galactic Nucleus (AGNs)). Of particular interest is the possibil-

ity of assessing whether its AGN component is more related to efficiently accreting

systems (for example radio-intermediate/quiet quasars) or to systems with very low

accretion rates (for example FRI radio galaxies (Fanaroff and Riley, 1974)). Such a

study may also give important clues on the relative contribution of radiative versus

jet-driven (kinetic) feedback to the global AGN feedback in models of galaxy formation.

Very useful is the availability of data at two radio frequencies, 0.61 and 1.4 GHz,

which allowed me to derive the source spectral index (α). This is important since dif-

ferent accreting regimes may display different spectral signatures in the radio domain

(Prandoni et al., 2009).

The thesis is organised as follows. In chapter 2, I give a brief literature review. In

chapter 3, I present the data and describe how the results were produced. In chapter

4, I present and discuss my results. Conclusion and recommendations are given in

chapter 5.

1.1 Relevance of the project to the Square Kilome-

tre Array

With this project, I gained experience in analysing and interpreting interferometric

radio data, which is perhaps the best preparation for the upcoming telescope projects

such as meerKat, Square Kilometre Array (SKA) and/or other radio astronomy in-

struments and initiatives. The science itself will also be relevant to SKA, and possibly

meerKAT, depending on the final specifications of those instruments. When I return

to Maputo, I will be in a good position to provide support to any radio astronomy

CM Paulo 3
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effort which includes Mozambique.

Next year, I plan to teach an introductory Astronomy course to Physics undergradu-

ates in Maputo so we can start building a larger Astronomy community in my country.

To publicise opportunities and raise awareness of Astronomy, I organised many events

this year around the International Year of Astronomy celebrations in collaboration

with Brazilian and Portuguese Astronomers.
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CHAPTER 2

Literature review

In this chapter, I briefly review some of the main concepts of the study. I start by

giving a general information about the astronomical facilities used to get the data

for this study. After that, a discussion about the nature of radio sources is given.

Finally, I give some background about radio surveys, spectral index studies, the FLS

and optical identification of radio sources.

2.1 Astronomical Facilities

In this section, I briefly introduce the telescopes used to get the data for this study.

2.1.1 Spitzer Space Telescope

The Spitzer Space Telescope (Figure 2.1) is part of NASAs Great Observatories Pro-

gram, which is made up of four space-based telescopes which together cover the full-

spectrum of light from FIR to gamma-ray radiation. The other three are the Hubble

Space Telescope (covering the visible and near-ultraviolet), Chandra X-ray Observa-

tory (soft X-rays), and Compton Gamma Ray Observatory (hard X-rays and gamma

rays). The left side of Figure 2.1 shows some key parts of Spitzer Space Telescope and

on the right side there is an artists representation of the telescope. (Tony and Martin,

2009).

The telescope covers the infrared part of the spectrum. Astronomical objects that

emits primarily in the infrared are mostly cold, dark objects. To observe these stellar

bodies, a telescopes detector must be as cold as possible, as the thermal noise within

5
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Figure 2.1: The Space Infrared Telescope Facility. Credit: http://www.spitzer.caltech.edu

the detector itself can otherwise overwhelm the very photons that come from the ob-

jects of interest. Spitzer has been peering at those cold cosmic targets by chilling its

light detectors to just 5.5 K using liquid helium, the coldest cryogen available. (Tony

and Martin, 2009).

The telescope was launched on August 25th 2003, carrying 360 liters of the cryo-

gen, which was originally meant to last for at least 2.5 years with a hope of stretching

it to 5 years. The first major scientific observation carried out with Spitzer was the

non proprietary extra-galactic First Look Survey (xFLS) (Frayer et al., 2006). Facts

about Spitzer are listed in Table 2.1, including: launch mass, mirror size, Spitzer range

of wavelength and instruments (Tony and Martin, 2009). After almost 6 years of the

Table 2.1: Quick facts about Spitzer telescope.

Launch mass 950 kg
Mirror size 85 cm

Pass-band (λ) 3.6, 4.5, 5.8, 8.0, 24, 70 160 µm
Instruments IRAC, Infrared Spectrograph, MIPS

cold-phase mission, the cryogen ran out. Even without the cryogen, Spitzers capabili-

ties in the mid-infrared are not expected to degrade at all, as that detector is designed

to maintain temperatures below 30 K even without the liquid helium. These capabil-

ities will not be surpassed by NASA until the James Webb Space Telescope becomes

operational after 2013. What the telescope will lose is its ability to see objects in the
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far-infrared. Unlike the Hubble, which is in low-Earth orbit, Spitzer orbits around the

sun just behind Earth, and cannot be reached by the Shuttle to replenish the supplies

and upgrade the instruments. (Tony and Martin, 2009).

To take advantage of the telescopes FIR capabilities, which were enabled by liquid

helium, the mission initially focused on the darkest and coldest cosmic targets. Among

many other things, it measured the surface temperature distribution on a planet out-

side of the solar system for the first time, saw hints of newborn planets around other

stars, and observed some of the highest-redshift objects ever seen in our universe.

(Tony and Martin, 2009).

In the new warm-phase mission, the telescope will still focus on scientific objectives

that remain out of reach of any other telescope. It will conduct surveys of the sky

to map the universe at extreme distances. Much of the light emitted by such distant

galaxies is redshifted to the infrared region. One of the expected results of the new

Spitzer survey is the identification of more than a thousand quasars that are at least

12 billion light-years away. (Tony and Martin, 2009).

The warm mission depends on no consumables, and is expected to last for at least

5 more years running until the performance of its on board instruments starts degrad-

ing. NASA has already scheduled over 10,000 hours of scientific observations for the

first two years of the warm phase mission, and these plans will be executed as soon

as it is clear that the telescope behaves as expected without the cryogen. (Tony and

Martin, 2009).

Note that one of the main advantages of the Spitzer Space Telescope Facility (SIRTF)

is the possibility of making extra-galactic surveys of large regions of the sky in a

relatively short time covering wavelengths from the near-IR to the far-IR with the in-

struments Infrared Array Camera (IRAC) and Multiband Image Photometer (MIPS)

(Fadda et al., 2004).
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2.1.2 Very Large Array Telescope

The Very Large Array Telescope (VLA) is one of the world’s premier astronomical

radio observatories. It consists of 27 radio antennae in a Y-shape configuration near

Socorro, New Mexico. Each antenna is 25 m in diameter. Data from the antennae are

combined electronically to give the resolution of an antennae 36 km across, with the

sensitivity of a dish of 130 m in diameter. (Robyn, 2009).

The VLA (Figure 2.2) is used primarily by astronomers from around the world. In

addition, It is also occasionally used for atmospheric/weather studies, satellite track-

ing, and other miscellaneous science. (Robyn, 2009).

Table 2.2 shows that there are four configurations of the telescopes. The telescopes

Figure 2.2: Very Large Array Telescope. Credit: http://www.vla.nrao.edu/

are switched between these configurations approximately every four months. The res-

olution of the VLA is set by the size of the array. (Robyn, 2009).

The resolution of the VLA is set by the size of the array – up to 36 km across.

At their highest frequency (43 GHz) this gives a resolution of 0.04 arcseconds: suffi-

cient to see a golf ball held by a friend 150 km away. (Robyn, 2009).

Its important to know that the Slew rates of the VLA are: 40◦ per minute in az-

CM Paulo 8
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Table 2.2: Array configuration of VLA.

Array configuration Maximum antenna separation
(km)

A 36
B 10
C 3.6
D 1

imuth and 20◦ per minute in elevation. The minimum elevation angle is 8◦ above the

horizon and the frequency coverage lies between 74 and 50,000 MHz. (Robyn, 2009).

2.1.3 Westerbork Synthesis Radio Telescope

The Westerbork Synthesis Radio Telescope (WSRT) is one of the most powerful radio

observatories in the world located in the Netherlands (Astron, 2009).

The WSRT, enables astronomers to study a wide range of astrophysical problems:

from pulsars and the kinematics of nearby galaxies to the physics of black-holes (As-

tron, 2009).

Note that the WSRT (Figure 2.3) consists of 14 dish-shaped antennas which oper-

ates in frequencies between 115 MHz to 8650 MHz (Astron, 2009).

According to Astron (2009), the antennas can be individually directed at any point on

the sky. Ten of the dishes have a fixed location, while two at the eastern end of the

array can be moved on rails. Each antenna has a diameter of 25 m (Astron, 2009).

The WSRT is an open user facility available for scientists from any country. It is

also part of the European VLBI1 network (EVN) of radio telescopes (Astron, 2009).

1Very Long Baseline Interferometry (VLBI) is a type of astronomical interferometry used in radio

astronomy. It allows observations of an object that are made simultaneously by many telescopes

to be combined, emulating a telescope with a size equal to the maximum separation between the

telescopes.
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Figure 2.3: Westerbork Synthesis Radio Telescope.

2.1.4 Giant Metrewave Radio Telescope

The Giant Metrewave Radio Telescope (GMRT), is located at a site about 80 km north

of Pune, India. GMRT (Figure 2.4) consists of 30 fully steerable gigantic parabolic

dishes of 45 m diameter each spread over distances of up to 25 km. It is one of the

most challenging experimental programmes in basic sciences undertaken by Indian sci-

entists and engineers. (Manisha, 2009).

The number and configuration of the dishes was optimized to meet the principal as-

trophysical objectives which require sensitivity at high angular resolution as well as

ability to image radio emission from diffuse extended regions. Fourteen of the thirty

dishes are located more or less randomly in a compact central array in a region of

about 1 square kilometer (sq. km). The remaining sixteen dishes are spread out along

the 3 arms of an approximately ‘Y’ - shaped configuration over a much larger region,

with the longest interferometric baseline of about 25 km. (Manisha, 2009). It is im-

portant to know that, the multiplication or correlation of radio signals from all the 435

possible pairs of antennas or interferometers over several hour, enable radio images of

celestial objects to be synthesized with a resolution equivalent to that obtainable with

a single gigantic dish 25 kilometer in diameter. The array operates in six frequency

bands centred around 50, 153, 233, 325, 610 and 1420 MHz. All these feeds provide

dual polarization outputs. In some configurations, dual-frequency observations are
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Figure 2.4: Illuminated GMRT antennas at twilight.

also possible (Manisha, 2009).

The highest angular resolution achieves a range from about 60 arcsec at the lowest

frequencies to about 2 arcsec at 1.4 GHz Manisha (2009).

2.1.5 The WIYN Observatory

The WIYN Telescope (Figure 2.5), a 3.5 m instrument employing many technological

breakthroughs, is the newest and second largest telescope on Kitt Peak (Wiyn, 2009).

The WIYN Observatory (pronounced “win ”) is owned and operated by the WIYN

Consortium, which consists of the University of Wisconsin, Indiana University, Yale

University, and the National Optical Astronomy Observatories (NOAO) (Wiyn, 2009).

WIYN instrumentation includes: Mini-Mosaic Imager, Hydra, SparsePak, the Or-

thogonal Parallel Transfer Imaging Camera (OPTIC) and WIYN High Resolution

InfraRed Camera (WHIRC). A multiple object spectrograph employing optical fibers

allows the simultaneous observation of the spectra of 100 objects. The imaging cam-

eras employ highly sensitive arrays of electronic detectors. (Wiyn, 2009).

The WIYN telescope was used to detect 24 µm and 1.4 GHz sources in the FLS
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Figure 2.5: WIYN 3.5 m Telescope - Kitt Peak.

field using the multifiber spectrograph, Hydra (Wiyn, 2009).

2.1.6 The MMT Observatory

The 6.5 m Multiple Mirror Telescope (MMT) (Figure 2.6) is operated by the MMT

Observatory (MMTO), a joint venture of the Smithsonian Institution and the Univer-

sity of Arizona. The MMT is located on Mt. Hopkins, near Tucson, Arizona. The

MMT is on the grounds of the Smithsonian Institution’s Fred Lawrence Whipple Ob-

servatory. (Pickering, 2009).

The MMT Spectrograph is actually composed of two spectrographs sharing a com-

mon focal plane assembly and two filter wheels. The spectrographs are denoted the

Blue Channel and Red Channel, after their approximate wavelength bands. (Picker-

ing, 2009).
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Figure 2.6: The 6.5 m MMT telescope.

2.2 Radio sources

The most general definition of an astronomical radio source is simply any astronomical

object that radiates electromagnetic energy at radio frequencies (Young, 2002).

We can think of extra-terrestrial radio emissions as originating either within our Galaxy

or as extra-galactic. Inside our Galaxy, remnants of supernova explosions and pulsars

are strong sources of radio emission (Young, 2002). Outside our Galaxy, we find great

variation in the radio emission from different galaxies. We have arbitrarily divided

these other galaxies into “normal ”and “active ”galaxies, depending on whether they

emit radio emission (Young, 2002).

Normal galaxies are not very strong radio sources. For example, the Great Andromeda

Spiral (Figure 2.7, left panel), the largest galaxy in our so-called local group of galax-

ies, emits 1023 watts of power. In contrast, Cygnus A (Figure 2.7, right panel), over

half a billion light years from Earth, is one of the most conspicuous radio sources in

the sky, with a power output of 1038 watts (Young, 2002).

According to Rohlfs and Wilson (2003), active galaxies include radio galaxies, quasars,

Seyfert Galaxies and BL Lacertae objects. Note that astronomers are now investigat-
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Figure 2.7: Andromeda galaxy on the left: Credit: spot.pcc.edu/ gvershum/. On the right,
you see Cygnus A. Credit: www.laeff.inta.es/.../radio/cursorad.php?r=6

ing the plausibility of a “unified theory of active galaxies ”. It is believed that these

galaxies have a super-massive black hole at their centers, and their appearance to us

depends on the angle at which we are observing them (Young, 2002).

Radio galaxies reveal some of the most dramatic physical events ever seen, and they

provide essential clues to the basic evolutionary tracks followed by all galaxies. Extra-

galactic radio sources encompass the largest and the most energetic single entities in

the universe (Young, 2002).

Most radio sources show evidence for jets, that is, elongated features which emanate

from the nucleus ending in one of the regions of extended emission (Rohlfs and Wil-

son, 2003). The predominant radiation-producing mechanism is synchrotron radiation

(Young, 2002). Many astronomers are now investigating the connection between active

Galaxies and star-forming Galaxies.
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2.3 Types of radio sources

2.3.1 Supernovae remnants

A Supernova remnant (SNR) is the remains of a supernova explosion (SNe2). Its ap-

pearance (Figure 2.8) depends on: (i) its age; (ii) the type of supernova; (iii) whether

it contains a pulsar that can provide a continuing source of energy to all or a part

of the remnant; and (iv) the density of the local interstellar medium (Lyne et al.,

1998). SNRs are extremely important for understanding our Galaxy. They heat up

Figure 2.8: The Crab Nebula: a supernova remnant in the constellation of Taurus. Credit:
www.networlddirectory.com/blogs/permalinks/12

the interstellar medium, distribute heavy elements through the Galaxy, and accelerate

cosmic rays (Pickering, 2009).

There are various types of SNR: simple Shell-type remnants with nothing in their

centers; Crab-like remnants or plerions with pulsars in their centers; and Composite

remnants which is a combination of the first two (NASA, 2009).

Most of the SNRs known in the Galaxy have only been detected at radio frequen-

cies. The reason for this is absorption in the Galactic plane at both optical and X-ray

2A SNe is the instantaneous release of 1051 ergs of energy, the result of either the catastrophic

collapse of a massive star or runaway nuclear burning on the surface of a white dwarf.
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wavelengths. All available evidence suggests that the shock fronts which accompany

SNRs accelerate enough cosmic rays to GeV energies to produce readily detectable

radio emission. This is fortunate, as it enables us to study remnants throughout the

Galactic disk. Cosmic rays and the magnetic fields in which they gyrate are the es-

sential ingredients for producing the synchrotron radiation which is observed at radio

frequencies. (McCray and Wang, 1996).

2.3.2 Pulsars

Radio pulsars (Figure 2.9) are rotating neutron stars that emit beams of radio-waves

from regions above their magnetic poles (Young et al., 1999). The first pulsar was

discovered by chance by Jocelyn Bell and Anthony Hewish in 1967 who were studying

distant galaxies at the time and is now called PSR B1919+213. Even though pulsars

were first discovered as radio sources they have now been observed using optical, X-ray

and gamma-ray telescopes (Maryam, 2009).

Essentially, pulsars are the collapsed cores of massive stars. They are composed of

an iron crust which covers incredibly dense neutron star. Pulsars also have a very

strong magnetic field, probably with a dipole form, like a bar magnet. Beams of radi-

ation are formed at the magnetic poles, probably directed radially away from the star.

As the pulsar rotates, these beams sweep around 360 degrees like a lighthouse. Radio

telescopes receive a regular train of pulses as the beam repeatedly crosses the Earth,

making the pulsar appear to be a pulsating radio signal (Maryam, 2009). The time

interval between consecutive pulses is called the pulsar’s period. Periods of one second

are typical although pulsars have been discovered with periods from a few milliseconds

up to eight seconds. The time between pulses is incredibly regular and can be mea-

sured very precisely. Despite their precision, pulsar periods are not constant. At least

in their own frame of reference, all pulsars are very gradually losing rotational energy

and slowing down. This is attributed to the energy required for the acceleration of

relativistic particles and the electromagnetic radiation frequency caused by the strong

3PSR stands for Pulsating Source of Radio and B1919+21 indicates the position of the pulsar in

the sky.
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Figure 2.9: Left: Schematic view of a pulsar. Credit: http://www.atnf.csiro.au. Right:
Composite Optical/X-ray image of the Crab Nebula, showing synchrotron
emission in the surrounding pulsar wind nebula, powered by injection of mag-
netic fields and particles from the central pulsar. Credit: same as Figure 2.8.

magnetic field. (Maryam, 2009).

According to Smits et al. (2008), pulsars are useful for studying the Milky Way, globu-

lar clusters, the evolution and collapse of massive stars, the formation and evolution of

binary systems, the properties of super-dense matter, extreme plasma physics, testes

of theories of gravity, the detection of gravitational waves, and astrometry, to name

only a few areas. Indeed, many of these areas of fundamental physics can be best – or

even only – studied, using radio observations of pulsars (Smits et al., 2008).

To harvest the information and science accessible through pulsar observation, two

different types of observations are required. Firstly, suitable pulsars need to be discov-

ered via radio surveys that sample the sky with high time and frequency resolution.

Secondly, after the discovery, a much larger amount of observing is required to extract

most of the science using pulsar timing observations. (Smits et al., 2008).

2.3.3 Active Galactic Nuclei

Active galactic nuclei, are galaxies with a compact central region (nucleus), from which

we observe substantial radiation that is not the light of stars or emission from the gas

heated by them (Sparke and Gallagher, 2007). Active nuclei emit strongly over the
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whole electromagnetic spectrum, including the radio, X-ray, and γ-ray regions where

most galaxies hardly radiate at all. AGNs are divided into two classes: radio-quiet

and radio-loud. Low-ionization nuclear emission-line regions, Seyfert galaxies and

radio-quiet quasars are examples of radio-quite AGNs and radio-loud quasars, blazars

and radio galaxies are examples of radio-loud AGNs. The most powerful of them, the

quasars, easily outshine their host galaxies. With luminosities exceeding 1012L⊙, many

are bright enough to be seen most of the way across the observable Universe. But the

emitting region may be no bigger than the solar system; its power source is probably

the energy released by gas falling into a central black hole. (Sparke and Gallagher,

2007).

Many galactic nuclei are very luminous at optical, ultraviolet, and X-ray wavelengths.

Others are far dimmer than their host galaxies in these spectral regions, but are

strong radio sources. What they have in common is a large energy output from a very

small volume, and internal motions that are relativistic, with speeds greater than 0.1c.

(Sparke and Gallagher, 2007).

While very luminous AGN can be unambiguously identified in almost any energy

band, AGN become progressively more challenging to identify at lower luminosities

when their emission may be equal or even substantially less than that of their host

galaxy. These lower-luminosity AGN are important to identify, and thus maximize

samples of AGN for demographic studies. (Arnold and Martini, 2009).

According to Koulouridis et al. (2009), the lack of detailed knowledge of key aspects

of the AGN mechanism leaves us with many scattered pieces of information. Theory

is unable to explain observations in most cases, and observations cannot resolve the

galactic nuclei to confirm theories (Koulouridis et al., 2009).

Radio Galaxies

Galaxies which are identified with strong radio sources in the range of 1041 to 1046

ergs s−1 are generally referred to as “radio galaxies”.
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For the most part, radio galaxies are giant ellipticals with absolute visual magnitude

about −21. They often exhibit jet structure from a compact nucleus. They typically

exhibit two lobes of radio frequency emission that are often approximately aligned

with the jets observed in the visible spectrum and which can be as large as 1Mpc in

size.

Among the most energetic phenomena in the universe, radio galaxies are excellent

laboratories in which we can investigate some of the major challenges of today’s as-

trophysics, such as accretion onto super-massive black holes (SMBH), the associated

formation of relativistic jets, the feedback processes of an “active”SMBH in the star

formation history of a galaxy and the role of the AGN in injecting energy in the intr-

acluster medium (Fanaroff and Riley, 1974).

Radio galaxies have been historically classified according to their radio morphology,

following the Fanaroff and Riley (1974) criteria: a FR I source has bright jets rising

from the nucleus, while a FR II has two bright hot spots far from it. They also noted

that FR II are mostly found at high radio luminosities, while FR I are associated with

weaker radio sources. An example of Fanaroff and Riley classes is shown in Figure

2.10. The left panel of Figure 2.10 shows an image of the large-scale radio structure of

the FR I radio galaxy 3C31. The Jets and plumes are labelled. The right panel shows

an image of the large-scale radio structure of the FR II radio galaxy 3C98. The lobes,

jet and hot-spot are labelled. The two FR classes also differ, at least statistically, in

several other properties, such as the environment and host luminosities (Buttiglione

et al., 2009). However, it soon became apparent that the transition between the two

classes is continuous and objects of intermediate radio structure do exist. The FR

I/FR II break (at low redshifts) also depends on the luminosity of the host galaxy.

From the optical point of view, FR I galaxies are invariably associated with the most

massive galaxies in the local universe, thus they are also most likely to be linked with

the most massive black holes in the local universe. Furthermore, FR I galaxies are

usually located at the center of rich clusters. On the other hand, at low redshifts, FR

II galaxies are generally found in regions of lower density, while a few FR II galaxies

are found in richer groups or clusters at redshifts higher than z ∼ 0.5 (Buttiglione
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Figure 2.10: Example of FR Classes of galaxy. Credit: www.absoluteastronomy.com

et al., 2009).

According to their morphology, radio galaxies can also be classified as compact, ex-

tended, peculiar, wide-angle tail (WAT), etc. For example, Kantharia et al. (2009)

WAT galaxies are a subset of radio galaxies near the Fanaroff and Riley luminosity

transition, which have been extensively discussed because of their exclusive association

with cluster dominant galaxies and also because of the abrupt flaring of their jets after

maintaining a well collimated flow to distances ≥ 20 kpc from the core.

Quasar

A quasi-stellar radio source (quasar - Figure 2.11 ) is a very energetic and distant

galaxy with an AGN. They were first discovered with radio telescopes in the late

1950s and many were recorded as radio sources with no corresponding visible object.

Quasars reside in a variety of galaxies, from normal to highly disturbed. Optically they

appear point-like because the the central region completely outshines the host galaxy.

Some quasars display changes in luminosity which are rapid in the optical range and

even more rapid in the X-rays. This implies that they are small (Solar System sized or

less) because an object cannot change faster than the time it takes light to travel from

one end to the other; but relativistic beaming of jets pointed nearly directly toward

us explains the most extreme cases. (Willott et al., 2007).
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Figure 2.11: Artist’s illustration of Quasar. Credit: ksjtracker.mit.edu/.../

One interesting characteristic of very high-redshift quasars is that they show evidence

of elements heavier than helium, indicating that galaxies underwent a massive phase

of star formation, creating population III stars between the time of the Big Bang and

the first observed quasars.

Seyfert galaxies

According to Sparke and Gallagher (2007), Seyfert galaxies4 (Figure 2.12) are a class

of galaxies with nuclei that produce spectral line emission from highly ionized gas.

These galaxies are characterized by extremely bright nuclei, and spectra which have

very bright emission lines of hydrogen, helium, nitrogen, and oxygen (Seyfert, 2007).

Seyfert galaxies, show strong emission in the radio, infrared, ultraviolet, and X-ray

parts of the spectrum. The radio emission is believed to be synchrotron emission from

the jet. The infrared emission is due to radiation in other bands being reprocessed by

dust near the nucleus. The highest energy photons are believed to be created by in-

verse Compton scattering by a high temperature corona near the black hole. (Haardt

and Maraschi, 1991).

Note that Seyferts were first classified as Type 1 or 2, depending upon whether the

4Named after Carl Seyfert, the astronomer who first identified the class in 1943 (Seyfert, 2007).
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Figure 2.12: Seyfert Galaxy NGC 7742. Credit: Hubble Heritage Team.

spectra show both narrow and broad emission lines (Type 1), or only narrow lines

(Type 2) (Haardt and Maraschi, 1991). The narrow and broad components are be-

lieved to both originate from the accretion disk, but in Type 2 Seyferts it is believed

that the broad component is obscured by dust and/or by our viewing angle on the

galaxy. In some Type 2 Seyfert galaxies, the broad component can be observed in

polarized light; it is believed that light from the broad-line region is scattered by a

hot, gaseous halo surrounding the nucleus, allowing us to view it indirectly (Haardt

and Maraschi, 1991).

BL Lacertae objects

BL Lacertae objects, or BL Lacs, are classes of AGN that are defined on the basis

of their optical spectra (Whiting, 2005) and are viewed along the jets. In contrast

to other types of AGN, BL Lacs are characterized by rapid and large amplitude flux

variability and significant optical polarization. When compared to the more luminous

active nuclei (quasars) with strong emission lines, BL Lac objects have spectra domi-

nated by a featureless non-thermal continuum (Alan et al., 2008).

BL Lacs are believed to be intrinsically identical to low power radio galaxies but

with the jet closely aligned to the line of sight of the observer. These active nuclei are

hosted by massive spheroidal galaxies. From the point of AGN classification, BL Lacs

are a blazar sub-type (Alan et al., 2008).
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2.3.4 Star-forming galaxies

In star-forming regions of galaxies, there are many supernovae. Charged particles

from the supernova remnants interact with the magnetic fields in the ISM to produce

synchrotron emission. Dust is also formed in star-forming regions and can produce

thermal radio emission. ’Normal’ galaxies like the Milky Way are thus low-power

radio sources. Star-bursting galaxies are somewhat brighter radio sources and become

a significant component of the radio population as one goes fainter than ∼ 10 mJy.

2.4 Synchrotron Radiation

Synchrotron radiation (Figure 2.13), the emission by relativistic and ultra-relativistic

electrons gyrating in magnetic fields, is the process which dominates high energy astro-

physics. It was originally observed in early beta-tron experiments in which electrons

were first accelerated to ultra-relativistic energies. This process is responsible for the

radio emission from the Galaxy, SNRs and extra-galactic radio sources. It is also re-

sponsible for the non-thermal optical and X-ray emission observed in the Crab Nebula

and possibly for the optical and X-ray continuum emission of quasars. According

Figure 2.13: Synchrotron Radiation. Credit: http://openlearn.open.ac.uk

to Rohlfs and Wilson (2003), the motion of a particle with charge e and mass m that

moves with a velocity v in a (homogeneous) magnetic field with the flux density B

and Lorentz factor γ is governed by the relativistic Einstein-Planck equations
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d

dt
(γmv) = e(v ×B). (2.1)

If there is no electric field E, then energy conservation results in the additional equation

d

dt
(γmc2) = 0. (2.2)

But this implies that γ = (1 − v · v/c2)−1/2 is constant and therefore that | v | is

constant. Projecting v into two components, v‖ to B and v⊥ perpendicular to B

(Figure 2.14), one finds that

dv‖

dt
= 0 (2.3)

and

dv⊥

dt
=

e

γm
(v⊥ ×B). (2.4)

Figure 2.14: Representation of parallel and perpendicular components of v.

Equation 2.3 has the solution v‖ = constant so that, since | v | is constant, | v⊥ | must

also be constant . The solution to 2.4 therefore must obviously be uniform circular

motion with a constant orbital velocity v⊥ =| v |. The frequency of the gyration is
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ωG =
eB

γm
. (2.5)

Since the constant velocity v‖ is superimposed on this circular motion, the path fol-

lowed by the electron is a helix winding around B with the constant pitch angle

tan θ =
v⊥

v ‖
(2.6)

Inserting numerical values for e and m, we find

ωG

MHz
= 17.6(

B

Gauss
) (2.7)

So that, for B ≃ 10−6 Gauss in interstellar space, ωG=18 Hz (Rohlfs and Wilson, 2003).

For a relativistic particle with γ > 1, ωB will be even smaller! From (2.4) one sees

that the electron is accelerated in its orbit, this acceleration is directed perpendicular

to B. Since the electron is accelerated, it will radiate and the total power radiated is

P =
2e4(v⊥)2B2

3m2c3
(

E

mc2
)2. (2.8)

2.5 Deep Radio Surveys

Surveys can be defined as extensive observations of regions of sky. They are gener-

ally performed for the production of an astronomical catalogue for specific types of

astronomical object and usually restricted to one band of the electromagnetic spec-

trum. Over the last ten years it has became commonplace to conduct surveys that

join together different observations of a given region of the sky, obtained with different

telescopes at different wavelengths. The first radio sky survey was conducted by Grote

Reber and was completed in 1941 (Kraus, 1988).

According to Owen et al. (2005), deep radio observations offer one of the most impor-

tant windows on the evolution of star-formation and black-hole-related activity as a
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function of cosmological epoch. Combining Radio, optical/NIR, FIR and X-ray data

have the potential to give us a well constrained picture of the Universe. Each win-

dow, by itself, has serious weaknesses. The optical/NIR window is the best studied

and provides the most direct view. However, it suffers from uncertainties due to dust

obscuration, which is a fundamental part of star-formation (Owen et al., 2005).

FIR observations give us an indirect signal from the dust, but leave uncertainties

in the origin of the heating of the dust and we fail to see into the heart of the AGN or

star-forming regions. In X-ray and radio observation we can see behind the dust, but

we are measuring secondary emission which is not easy to physically relate to the black

hole or star-formation rate (SFR). Thus we need a combination of all this information

to form a full picture (Owen et al., 2005).

Radio surveys have the advantage that they are feasible from the ground (like op-

tical) and the observations can be done 24 hours per day. Interferometry allows high-

resolution images to be made at radio wavelengths. Mosaicing5 techniques enable deep

observation of a wide field. Figures 3.1, 3.2 and 3.3 in chapter 3 show fields in deep

radio surveys.

Surveys enable statistical studies of various source populations and studies related

to cosmological evolution. In addition, they make serendipitous discoveries possible.

2.6 Spectral index

A spectral index, is a measure of the way in which the intensity of the continuum

emission from radio source varies with frequency (Dictionary, 2009). It is calculated

from an assumed power law dependence for flux given by:

S ∝ να (2.9)

5Combination of regularly spaced multiple pointings linearly combined to produce an image larger

than the telescope’s primary beam.
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where S is the flux and ν is frequency. The index is calculated using

α =
log(S1/S2)

log(ν1/ν2)
(2.10)

According to the values of α (Table 4.3), various radio sources can be separated: ul-

tra steep-spectrum sources; steep-spectrum sources; flat spectra-spectrum sources and

inverted-spectrum sources. Note that it is possible to combine the spectral index

Table 2.3: Spectral index (α). Credit: Prandoni et al. (2006).

Spectral index Designation
α < -1.3 Ultra Steep-Spectrum Sources

-1.3 < α < -0.5 Steep-Spectrum Sources
-0.5 < α < 0 Flat-Spectrum Sources

α > 0 Inverted-Spectrum Sources

information with other observational properties and infer the nature of the faint radio

population (Mignano et al., 2008).

Very steep radio spectral indices tend to identify the population of Ultra Steep Spec-

trum sources (USS), which are mostly radio-loud galaxies set at substantial redshifts

(Magliocchetti et al., 2007; Miley and De Breuck, 2008). Indeed, objects with high

values of α are typically investigated to look for very high redshift radio galaxies

(Magliocchetti et al., 2007; Miley and De Breuck, 2008).

A number of previous studies can be found in the literature which try to explain the

presence of systems with very steep spectral slopes at high redshifts. For instance, by

comparing the extremely steep spectral index sources associated with galaxies residing

closest to the cluster centers, Klamer et al. (2006) found that steeper spectra can be

explained by pressure-confined radio lobes which have slow adiabatic expansion losses

in high-density environments. Alternatively, one can attribute the steepening of the

radio spectrum at low frequencies as due to the scattering between cosmic microwave

background (CMB) photons and relativistic electrons at z ∼ 2 where the CMB energy

density is significantly higher than it is at later epochs (Magliocchetti et al., 2007).
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2.7 The Spitzer First Look Survey

The Spitzer First Look Survey was a service to the Spitzer user community, initiated

as a Director’s Discretionary Time program. It was designed to provide a character-

istic deeper first-look at the mid-infrared sky to sensitivities that are two orders of

magnitude deeper than previous large-area surveys (Fang et al., 2004), in order to

accurately characterize the dominant IR source population.

The public FLS includes three components, described on Spitzer’s website6. Here,

we focus on the extra-galactic component, whose field was chosen to have low Galac-

tic background and to be in the Spitzer continuous viewing zone (CVZ) such that it

would be observed shortly after the Spitzer in-orbit checkout regardless of launch date.

The extra-galactic component consisted of shallow observations of 4.4 sq. deg. field,

centred at α(2000) = 17h18mm00s, δ(2000) = 59◦30
′

00
′′

(Marleau et al., 2007) and a

smaller ∼ 0.75◦ × 0.3◦ strip, referred to as the “verification”survey region (or FLSv)

(Morganti et al., 2004). The FLSv observations lie within the shallow survey region,

and are centred at α(2000) = 17h117mm00s, δ(2000) = 59◦45
′

00
′′

.

Complementary observations have been taken at a range of wavelengths to fully ex-

ploit the new deep infrared data as shown in Figure 2.15 (Garn et al., 2007), therefore

providing enough information to derive the radio spectral index (α) but also to con-

struct the spectral energy distribution for all the sources where optical, IR, etc. data

are available. From the outside going toward the center in Figure 2.15 one sees: (1)

KPNO R images (Fadda et al., 2004), (2) 24 µm main field (Fadda et al., 2006), (3)

VLA 20 cm (Condon et al., 2003), (4) IRAC channels 1 and 3 (Lacy et al., 2005), (5)

IRAC channels 2 and 4 (Lacy et al., 2005), (6) WSRT 20 cm (Morganti et al., 2004), (7)

24 µm verification field (Fadda et al., 2006), (8) HSTACS data (L. J. Storrie-Lombardi

et al. in preparation). Regions similar to the 24 µm one have also been covered at 70

and 160 µm (Frayer et al., 2006). In addition to the radio surveys of the FLS field

shown in Figure 2.15 made by Condon et al. (2003) using the VLA at 1.4 GHz and by

Morganti et al. (2004) using WSRT, there is also the 610 MHz radio survey of this field

6http://ssc.sptizer.caltech.edu/fls
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Figure 2.15: Coverage of public survey in the FLS field. Credit: Fadda et al. (2006).

made with the GMRT by Garn et al. (2007). The extra-galactic region was covered

also by the early data release of the Sloan Digital Sky Survey (SDSS) Stoughton et al.

(2002). Further redshift surveys targeting selected 24 − µm and/or 1.4 GHz sources

were made with the MMT/Hectospec fiber spectrograph and WIYN/Hydra (Papovich

et al., 2006; Marleau et al., 2007). These provide the data for this project and are

discussed further in chapter 3.

2.8 Optical Identifications of radio sources

Here, I give some information’s about the history and techniques used for the optical

identification of radio sources. Note that the most important of the early identifications

were those of the two brightest radio sources in the northern sky, Cassiopeia A and

Cygnus A. Interferometry by Smith (1951, 1952) at Cambridge resulted in accurate

radio positions for these sources and subsequent optical observations by Baade and

Minkowski (1954) led to their identification with very faint optical objects (Lilly and

Longair, 1984).
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2.8.1 Matching techniques

There are several techniques which could be used to cross-correlate radio and optical

catalogues. One statistically robust method is the likelihood ratio (LR) technique of

Sutherland and Sanders (1992). This method is defined as the ratio between the prob-

ability that the source is the correct identification and the corresponding probability

that the source is a background, unrelated object (Mignano et al., 2008). A threshold

value Lth of the likelihood ratio is assumed, above which a counterpart is considered

as a good identification and below which is dismissed as spurious (Mignano et al.,

2008). The sample of accepted identifications thus consists of all the radio-optical

associations that have LR > Lth (Mignano et al., 2008). Lth was chosen to be the

value of LR that maximizes the function (C + R)/2 where C is the completeness and

R the overall reliability of the sample (Mignano et al., 2008).

Another technique used to cross-correlate radio and optical catalogues is the criteria

based on the separation between the sources, which consider as good any identification

within a certain fixed radio-optical distance (Mignano et al., 2008). Sutherland and

Sanders (1992) demonstrated that the two methods produced very similar catalogues

of matched objects in their study. The LR has been used often in order to identify

radio sources. However if the positional accuracies for both radio and optical cat-

alogues are very high, positional coincidence alone can be adequate (Bouchefry and

Cress, 2006).

The identification of radio sources continued throughout the 1950s as more accurate

positions became available for the fainter sources known at that time. On the Galactic

front, many supernova remnants and HII regions were discovered which were highly

obscured or unobservable in the optical waveband. On the extra-galactic front, it was

found that many of the early identifications were giant elliptical galaxies, many of

them being the brightest galaxies in clusters. The most remarkable result of this pe-

riod of activity was the discovery in 1960 of quasi-stellar objects (quasars) by Ryle and

Sandage (1964) from these optical identification surveys. Since 1960, many quasars

have been discovered and it is now appreciated that there is a continuity in nuclear
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activity in galaxies all the way from galaxies such as our own, through the Seyfert

galaxies to the N-galaxies and quasars. This same optical identification procedure

continued to make fundamental contributions to these studies, in particular, with the

recognition in 1968 of the class of what are now regarded as probably the most ex-

treme class of quasar-like objects, the BL Lac objects. In the case of BL Lac and

other members of this class, the optical spectra are almost featureless and it may be

that in these sources the nucleus itself is being observed more or less unobscured by

surrounding gas. Another remarkable discovery which has come from the ability of the

radio identification technique to find quasars in large numbers has been the discovery

of gravitational lenses. (Lilly and Longair, 1984).

Prandoni et al. (2001) optically identified sources in the ATESP7-EIS Sample. A

search circle of 3′′ radius, centred at each radio position, was chosen; this turned out

to be a good compromise when inspecting Figure 1 of Prandoni et al. (2001), where

the distance distribution of the radio-optical associations with I < 22.5 is present. For

double and triple radio sources the distance to the nearest optical counterpart was

computed from the radio centroid, while for complex radio sources the distance was

computed from the radio peak position. Since this position does not generally coin-

cide with the position of the source nucleus they allowed for distances larger than 3′′

and checked for the actual existence of optical counterpart by visual inspection of the

radio-optical finding charts. As to the radio morphology, among 386 sources three are

triples (none identified), three are complex (one identified), twenty-one are doubles

(six identified) and 359 are point-like (212 identified).

In 2002, Ivezic et al. (2002) discussed the optical and radio properties of ∼ 30,000

FIRST (radio, 20 cm, sensitive to 1 mJy) sources positionally associated within 1.5′′

with a Sloan Digital Sky Survey (SDSS) (optical, sensitive to r∗ ∼ 22.2) source in 1230

deg2 of sky. The matched sample represented ∼ 30% of the 108,000 FIRST sources and

0.1% of the 2.5 × 107 SDSS sources in the studied region. SDSS spectra are available

for 4300 galaxies and 1154 quasars from the matched sample and for a control sample

of 140,000 galaxies and 20,000 quasars in 1030 deg2 of sky (Ivezic et al., 2002).

7ATESP radio survey. It was made at 1.4 GHz with the Australia Telescope Compact Array.
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They first positionally matched all sources from both catalogs whose positions agree to

better than 3′′, and found 37,210 such pairs. The distribution of the distance between

the SDSS and FIRST positions, d, for the 10,084 pairs from the EDR8 subsample is

shown in the top panel in Figure 5 of Ivezic et al. (2002). In order to test whether

the distance distribution depends on optical morphology, they split the SDSS EDR9

sample into 1999 optically unresolved and 8085 resolved sources. The increase in the

number of matches with d ≤ 2.5′′ was consistent with expected random associations,

given the number density of FIRST and SDSS sources. Based on this histogram, they

choose 1.5′′ as the limiting distance for a match to be considered as an optical iden-

tification, and they found 29,528 matches satisfying this criterion. This cutoff was a

trade-off between the completeness and contamination of the sample. For a cutoff at

3′′ practically all true matches (estimated to be 33,800 after subtracting the estimated

number of random matches) were included in the sample, but the contamination from

random matches was roughly 9%. On the other hand, a cutoff at 1′′ with a contami-

nation of 1.5% was only 72% complete. The chosen cutoff resulted in a 85% complete

sample with a contamination of 3%. The high completeness and low contamination

were due to the excellent astrometric accuracy of both SDSS and FIRST. As a com-

parison, Magliocchetti et al. (2002) used a 2′′ cutoff for the APM-FIRST matches,

and Sadler et al. (2002) used a 10-15” cutoff for the NVSS10-2dFGRS11 matches (but

noted contamination). Based on statistical considerations, the 29,528 optical identifi-

cations include ∼ 28,684 true associations and ∼ 844 random matches. The estimated

completeness implies that, for the 107,654 FIRST sources, there are 33,746 SDSS

counterparts, or 31% of all FIRST sources (of course, because of the completeness vs.

contamination trade-off, robust identifications can be made only for 27% of FIRST

sources). These identifications represent ∼ 0.14% of all SDSS sources in the analyzed

region.

Sullivan et al. (2004) identified candidate optical counterparts to the radio catalogs of

8Early Data Release.
9SDSS Early Data Release.

10NRAO VLA sky survey.
112dF galaxy redshift survey.
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the Phoenix Deep Survey12. They found that 673/839 (79%) of the radio detections

had candidate optical counterparts in the images; of these 639 (76%) were detected at

≥ 5σ in one or more filters. Taking other band-passes individually: 569/1063 (54%)

in the CTIO U-band and 53/256 (21%) in the (shallower) ESO U-band had candidate

counterparts detected at ≥ 5σ significance; 91/111 (82%) of the radio detections were

detected in Ks-band at ≥ 5σ. In total, across all the data sets 1331 radio objects were

observed, with candidate optical counterparts identified for 778 (58%).

Gonzalez-Solares et al. (2005), presented the multiwavelength properties and cata-

logue of the 15 µm and 1.4 GHz radio sources detected in the European Large Area

ISO Survey (ELAIS13. Thus, using the optical data from the Wide Field Survey and

likelihood ratio method to search for the counterparts of the 1056 and 691 sources

detected at 15 µm and 1.4 GHz, respectively, down to flux limits of S15 = 0.5 mJy and

S1.4GHz = 0.135 mJy, they found that ∼ 92% of the sources had an optical counterpart

down to r’= 24. They found also that, all mid-infrared (IR) sources with fluxes S15 ≥

3 mJy had an optical counterpart. The magnitude distribution of the sources showed

a well-defined peak at relatively bright magnitudes r’∼ 18. About 15% of the sources

were bright galactic stars; of the extra-galactic objects ∼ 65% were compatible with

being normal or star-burst galaxies and ∼ 25% AGNs. Objects with mid-IR-to-optical

fluxes larger than 100 were found, comprising ∼ 20% of the sample. They suggest that

these sources are highly obscured luminous and ultra-luminous star-burst galaxies and

AGNs.

In 2006, optical counterparts of radio sources in the GOODS14 ACS field15 were iden-

tified using the likelihood ratio method of Sutherland and Sanders (1992) by Afonso

et al. (2006). For each radio source, the optical identification with the highest relia-

12Phoenix Deep Survey is a multiwavelength galaxy survey based on deep 1.4 GHz radio imaging
13European Large Area ISO Survey.). It was a collaborative effort between 19 European institutions

that has carried out a deep wide angle survey with ISO at four wavebands (6.7 and 15µm using CAM

camera and 90 and 175µm with PHOT camera) over a area of about 12 square degrees of high latitude

sky.
14The Great Observatories Origins Deep Survey .
15South Advanced Camera for Surveys.
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bility (R), if above 20% was taken as the real optical counterpart; if several optical

identifications had similar values for (R), the various possibilities were considered.

Identifications were inspected visually to check for special situations in which the like-

lihood ratio method would not apply, as in the case of nonindependent sources (either

in the radio or in the optical). The identification of the X-ray counterparts was per-

formed by searching the 3 σ radio position error region. Visual inspection was used to

associate the optical and X-ray identification (Afonso et al., 2006).

Bouchefry and Cress (2006) made the optical and near infrared identifications of 514

radio sources in FIRST survey16 obtained by matching objects in the NDWFS17 survey,

over the region 216.1◦ ≤ RA ≤ 220◦, 34◦ ≤ DEC ≤ 36◦. They positionally matched the

FIRST radio sources with the two last strips of the NDWFS catalogue which covered

5 deg2 using a searching radius of 2 arcsec. Sources observed in the K-band in the 5

deg2 of interest had a surface density, ρ, of 1.4 × 10−3 sources/arcsec2. The number of

FIRST sources in the region was 514. They identified 177 sources (35%) in all 4 bands

of NDWFS. In the I-band, 74% of sources were identified. They found a surprisingly

large difference between the number of sources in the upper declination strip and that

in the lower strip, possibly explained by the presence of large-scale structure in the

34◦ ≤ DEC ≤ 35◦ strip.

The CENSORS18 survey Brookes et al. (2008) matches sources in the ESO Imag-

ing Survey to 150 sources in the NRAO VLA Sky Survey and is complete to 7.8 mJy.

They found that their data were not consistent with existing models for radio source

evolution and further work on modelling was required.

In order to study the radio properties of optically obscured Spitzer sources, Maglioc-

chetti et al. (2007) cross-correlated a sub-sample of optically faint (R ≥ 25.5) 24 µm

- selected galaxies observed in the Spitzer FLS with the radio catalogues in the field.

16Faint Images of the Radio Sky at Twenty-centimeters.
17The NOAO Deep Wide-Field Survey. It was a deep optical and near-infrared imaging survey

that covered two 9.3 square degree fields. It was designed primarily for the study of the existence and

evolution of large scale structures at redshifts z > 1 as sampled by diverse populations of objects.
18The Combined EIS-NVSS Survey of Radio Sources.

CM Paulo 34

 

 

 

 



Radio-optical analysis of extended radio sources in the First Look Survey field

Using a search radius less than 10′′, 70 optically faint Spitzer sources were identified

in the Condon et al. catalogue, 33 in the Morganti et al. (2004) dataset, while 52

were found in the survey performed by Garn et al. (2007). After performing a num-

ber of corrections to account for multiple identifications, sources erroneously split in

the original Spitzer catalogue into different components and mid-IR objects with real

radio counterparts at one of the allowed (10′′) matching radius, they ended up with

a sample of 96 radio-identified, optically faint, mid-IR emitting sources, 45 of which

had an identification at both 1.4 GHz and 610 MHz (Magliocchetti et al., 2007).
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CHAPTER 3

Methodology

In this chapter, I briefly describe the data and the methods used to analyse it.

3.1 Data

Observations of the Spitzer xFLS field by the VLA were made during two successive

B configurations1 session during February through to May 2001 and June through to

August 2002, to produce the mosaic image (Figure 3.1) and accompanying catalog

(Condon et al., 2003). The left panel of Figure 3.1 shows the image of the full VLA

mosaic of the FLSv. The right panel shows sources in sub-images of the FLSv field.

The VLA survey covered ∼ 4 deg2 with a resolution of 5
′′

, to a 1 σ depth of ∼ 23

µJy (Condon et al., 2003). The frequency used for these observations was 1.4 GHz

and contains 3565 sources (Condon et al., 2003).

The WSRT survey (Morganti et al., 2004) was centred on ∼ 1 sq. deg. field of

the xFLS field to a depth of ∼ 8.5 µJy beam−1 with a resolution of 14
′′

× 11′′, and it

contains 1048 sources. A mosaic (Figure 3.2) of 7 pointings was chosen and the central

field is centred on RA(J2000)=17:17:00.00 and DEC(J2000)=59:45:00.000 . The left

panel of Figure 3.2 shows the image of the full WSRT mosaic of the FLSv. The right

panel shows sources in sub-images of FLSv field. The main observations were made

during the period May-June 2002, and about 16 hours was spent on each pointing

(Morganti et al., 2004). Two additional 12-hours observations of the central region,

were carried out in Feb 2003 (Morganti et al., 2004).

1The B configuration having a maximum antenna separation of 10 km.
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Radio-optical analysis of extended radio sources in the First Look Survey field

Figure 3.1: VLA mosaic image of FLSv.

Figure 3.2: WSRT mosaic image of FLSv.

Observations of the Spitzer xFLS field were made at 610 GHz with the GMRT over

four days in March 2004 (Garn et al., 2007). Seven pointings were observed, in a hexag-

onal grid centred on RA(J2000)=17:18:00.00, DEC(J2000)=59:30:00.000 as shown in

Figure 3.3 (Garn et al., 2007). The left panel of Figure 3.3 shows the image of the

full GMRT mosaic of the FLSv. The right panel shows sources in sub-images of FLSv

field. The observation covered a total area of ∼ 4deg2 with a resolution of 5.8
′′

×4.7
′′
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Figure 3.3: GMRT mosaic image of FLSv.

at positional angle (PA) 60◦ (Garn et al., 2007). The r.m.s noise at the center of the

pointings was between 27 and 30 µJy before correction for GMRT primary beam and

a total of 3944 sources were detected above ∼ 5σ (Garn et al., 2007).

In Table 3.1, I summarize information about the area observed with respect to the

sq. deg. (column 1), resolution (θ) in column 2, sensitivity (σ) in column 3. In Col-

umn 4, I list the number of sources detected by VLA, WSRT and GMRT in the FLS

field.

The redshift data used in this project, were taken from Marleau et al. (2007) and

Table 3.1: Area observed, resolution, sensitivity and sources detected by VLA, WSRT and
GMRT in the FLS field.

Area θ 1σ Sources
(deg. sq.) (arcsec) µJy/beam

VLA 4 5 23 3565
WSRT ∼1 14 × 11 8.5 1048
GMRT ∼4 5.8×4.7 30 3944

Papovich et al. (2006) surveys of the xFLS field. Marleau et al. (2007) present an op-

tical spectroscopic survey of 24 µm and 1.4 GHz sources of xFLS using the multifiber
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spectrograph, Hydra, on the WIYN telescope. Their WIYN/Hydra target sample was

selected from two data sets of sources detected in the FLS. The first set was comprised

of sources detected at 1.4 GHz and with an R-band magnitude < 23. This set was

used during their 2002 and 2003 observing runs, prior to the Spitzer launch (Marleau

et al., 2007). The second set was constructed from the 24 µm sources, using the same

R-band magnitude cut (Marleau et al., 2007). These were targeted during their 2005

observing run after the Spitzer observations of the FLS were completed (Marleau et al.,

2007). A few companions of 1.4 GHz and 24 µm sources were also part of the sample

(Marleau et al., 2007). The same author, mentioned that the redshifts measured in

the survey are mostly in the range 0 < z < 0.4, with a distribution peaking at z ∼ 0.2.

Papovich et al. (2006), present a spectroscopy survey using the MMT/Hectospec fiber

spectrograph of 24 µm sources selected with the Spitzer Space Telescope in the Spitzer

FLS. They reported 1296 new redshifts for 24 µm sources, including 599 with fν(24

µm)≥ 1 mJy. Combined with 291 additional redshift for sources from SDSS, their

observing program was highly efficient and is 90% complete for i ≤ 21 mag and fν(24

µ)≥ 1 mJy, and is 35% complete for i ≤ 20.5 mag and 0.3 mJy≤ fν(24 µm)≤ 1.0 mJy.

Their Hectospec survey includes 1078 and 168 objects spectroscopically classified as

galaxies and QSOs, respectively. Combining the Hectospec and SDSS samples, they

found 24 µm selected galaxies to zgal ≤ 0.98 and QSOs to zQSO ≤ 3.6, with mean

redshifts of zgal = 0.27 and zQSO = 1.1 (Papovich et al., 2006).

3.2 Methods

3.2.1 Cross-correlation of radio catalogues and spectral index

derivation

Adopting the criteria based on the separation between the sources, a cross-correlation

between radio sources from VLA and GMRT catalogues with positional offsets d < 3
′′

was done with the aim of studying the radio spectral properties of the sample. After

that, I extracted sub-images of multi-component sources from the VLA, GMRT and

WSRT mosaic images and I visually inspected the source morphology to decide which

GMRT components to sum in order to get the same source structure as for the VLA.
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Using the source morphology, I also performed a preliminary classification in Fanaroff-

Riley Class (FR I or FR II), Peculiar, Compact and Extended.

Using VLA and GMRT fluxes at different frequency and same spatial resolution, I

measured the spectral index (α, see Formula 2.9 in Chapter 2).

3.2.2 Optical identification

To do the optical identification, I adopt the criteria based on the separation between

the sources to cross-correlate the two-frequency FLS radio catalogue with the optical

catalogue of Marleau et al. (2007) and Papovich et al. (2006), assuming 6 arcsec as

minimum distance.

For all multi-component sources, I had to estimate the central position using the

source centroid, i.e. the flux-weighted average position of all components (Prandoni

et al., 2006). For example, the centroid of two components sources was computed

using the following formula:

rab = (ra1 ∗ w1) + (ra2 ∗ w2) (3.1)

decb = (dec1 ∗ w1) + (dec2 ∗ w2) (3.2)

Where: ra stands for right ascension and rab stands for the ra barycenter position.

dec stands for declination and decb stands for dec barycenter position. w1 = st1/sttot,

w2 = st2/sttot and sttot = st1 + st2, here sttot, w1, w2 are integrated global sources flux

densities and weight’s respectively.

An overlay between radio sources optically identified and deep NOAO optical im-

ages of the FLS field was done using Karma software2. As an example, I show the

overlay between a radio and a shallow optical image of a small section of FLSv field

obtained from Nasa Extra-galactic Database3 in Figure 3.4. Figure 3.4 also shows the

2http://www.atnf.csiro.au/computing/software/karma/
3NED - http://nedwww.ipac.caltech.edu
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VLA mosaic image as background and a shallow optical image as a green box in the

top panel. By zooming, you can see the contours indicating the presence of a galaxy

at the center of the radio source (see bottom panel of the Figure 3.4).
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3.2.3 Derivation of radio and optical luminosity

Radio and optical luminosities of all identified sources with determined redshifts were

measured using Formulas 3.3 and 3.4, respectively. In these formulas, L stands for

the radio luminosity, dl for luminosity distance, S for integrated flux, M and m for

absolute and apparent magnitude.

L = 4π(dl)
2 ∗ S (3.3)

M = m − 25 − (5 ∗ log10(dl)) (3.4)

All values of luminosity distance used here, were calculated using a cosmology cal-

culator. According to Edward (2006), the calculator computes times and distances

as a function of redshift for user-defined cosmological parameters, and is available at

http://www.astro.ucla.edu/wright/CosmoCalc.html. A cosmology of H◦ = 71, ΩM =

0.27 and Ωvac = 0.73 was assumed during this calculation.
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CHAPTER 4

Results and Discussion

In this chapter, I present the results and the discussion of our study. I start by

showing the results of the cross-correlation between radio catalogues and morphological

classification of sources in the FLSv field. I then calculate and discuss the radio spectral

indices. Results of the optical identification of the FLSv radio sources are shown and

discussed. Finally, I show the results for the luminosity and classification of the sources

optically identified in the FLSv field.

4.1 Cross-correlation of radio catalogues and mor-

phological classification of sources in the FLSv

After cross-correlating the VLA and GMRT data, I obtained a catalogue of 1573 radio

component sources from which a sub-sample of 201 source candidates appeared to be

part of multi-component systems. Among these 201 sources, a sample of 165 multi-

component sources were extracted and sub-images of them were produced.

By visual inspection of the 165 sub-images, all the components of the same source

were combined in order to decide how to sum the fluxes for the GMRT components

to ultimately get the same source structure as VLA. Thus, I got a sample of 107 radio

sources for my study (see Section 3.2 to know how I got It), where: 58 consist of one

component, 42 two components, 6 three components and one consists of four compo-

nents (see Table 4.1).

I list all identified radio sources in right ascension order in Table 4.1. Column 1 and 2
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gives the right ascension and declination of the sources in decimal degree, identified af-

ter cross-correlation of the VLA and GMRT catalogues. Normally, the position of the

sources are either the centroids of simple double sources or the fitted positions of central

components in triple and quadruple sources. Column 3 gives the International Astro-

nomical Union (IAU) designation for the source, in the form Jhhmmss.s+ddmmss,

where J represents J2000.0 coordinates, hhmmss.s represents right ascension in hours,

minutes and truncated tenths of seconds, and ddmmss represents the declination in

degrees, arcminutes and arcseconds. Column 4 gives the information about the num-

ber of components from the sources after cross-correlation of the GMRT and VLA

data. Column 5 is the Source Extractor deblended object flag which is 0 for most ob-

jects, but 1 when a source has been split up into two or more components (Garn and

Alexander, 2008). Column 6 gives the VLA group label for multi-component sources.

Column 7 gives the VLA number of components in the group. Column 8 gives the

VLA integrated 1.4 GHz flux density (in mJy). Column 9 gives the GMRT Peak 0.61

GHz flux density. Column 10 gives the GMRT integrated 1.4 GHz flux density (in

mJy). Column 11 gives spectral index.
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Table 4.1: Radio multi-component sources cross - identified between VLA and GMRT catalogues.

RA Dec Name NC Flags CG NC I. S P. S I. S α
(deg.) (deg) cross-id VLA VLA (mJy) (mJy) (mJy)

VLA GMRT GMRT
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

257.338464 60.024983 J170921.2+600130 1 0 G007 4 3.89 2.46 8.14 -0.89
257.351471 59.656837 J170926.4+593935 3 0 G008 4 38.77 46.98 99.64 -1.14
257.427171 60.200678 J170942.5+601202 1 0 G009 2 28.07 33.26 80.72 -1.27
257.473541 59.811325 J170952.5+594847 2 0 G010 4 1.79 0.80 3.07 -0.65
257.484923 59.958900 J170956.4+595732 1 0 G011 2 3.90 2.98 10.75 -1.22
257.566677 59.338456 J171016.0+592018 1 0 G012 2 14.89 9.14 27.49 -0.74
257.638050 59.601789 J171033.1+593606 1 0 G013 2 1.61 0.91 1.19 0.36
257.684881 59.915678 J171044.4+595456 1 0 G014 2 1.60 1.06 1.53 0.05
257.734758 59.711456 J171056.4+594241 1 1 1 0.48 0.31 0.73 -0.50
257.771637 59.963856 J171105.2+595751 4 0 G015 6 3.16 0.79 4.55 -0.44
257.816923 59.941983 J171116.1+595631 1 0 G016 2 28.77 47.91 57.63 -0.84
257.824524 60.324146 J171116.3+601958 2 0 G017 2 41.95 22.32 108.48 -1.14
257.826385 59.203747 J171118.8+591222 2 0 G018 3 2.23 2.62 7.41 -1.45
257.882507 59.654751 J171131.8+593924 2 1 G019 2 26.33 39.31 90.19 -1.48
257.890342 59.521511 J171133.7+593117 1 1 1 0.15 0.28 0.34 -0.95
257.946564 60.141495 J171145.4+600808 2 0 G020 7 23.64 5.80 26.04 -0.12
258.027222 58.870817 J171206.5+585215 1 0 G022 2 1.92 1.21 3.36 -0.67
258.052856 59.288933 J171213.8+591723 3 0 G023 5 6.56 2.61 16.49 -1.11
258.072968 59.014122 J171215.4+590053 2 0 G024 2 9.21 6.26 22.87 -1.09
258.127014 59.944828 J171229.1+595639 3 0 G026 13 31.57 7.43 35.35 -0.14
258.140386 59.305733 J171233.7+591820 1 1 1 0.18 0.44 0.59 -1.40
258.157762 59.084956 J171237.9+590506 1 0 G027 2 3.32 2.07 6.94 -0.89
258.164306 58.696233 J171239.4+584146 1 0 G028 2 1.49 1.39 3.79 -1.12
258.187775 58.996674 J171245.3+585942 2 1 G029 2 4.80 2.10 8.47 -0.68
258.197928 59.241122 J171247.5+591428 1 0 G030 3 12.86 7.44 27.91 -0.93
258.325500 59.332455 J171319.4+592000 2 0 G031 5 5.38 2.75 6.99 -0.32
258.348258 59.607650 J171323.6+593627 1 1 1 0.63 0.94 1.10 -0.67
258.420299 59.822206 J171340.9+594920 1 0 G032 2 0.86 0.69 2.40 -1.24
258.429382 58.760315 J171344.4+584533 2 1 G033 3 6.91 2.47 13.74 -0.83
258.448796 60.106428 J171347.7+600623 1 1 1 0.15 0.28 0.45 -1.34
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Table 4.2: Continuation of Table 4.1.

RA Dec Name NC Flags CG NC I. S P. S I. S α
(deg.) (deg) cross-id VLA VLA (mJy) (mJy) (mJy)

VLA GMRT GMRT
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

258.457047 59.979317 J171349.7+595845 1 1 1 0.13 0.29 0.33 -1.16
258.511383 58.772739 J171403.1+584609 2 1 G035 2 19.82 13.58 44.40 -0.97
258.539221 59.069539 J171409.4+590410 1 1 1 0.71 0.60 1.16 -0.59
258.558960 59.798855 J171414.6+594750 2 1 G036 2 15.90 11.65 41.23 -1.15
258.638298 59.878150 J171433.2+595241 1 1 1 0.16 0.34 0.39 -1.09
258.649292 59.789276 J171437.0+594711 2 1 G038 2 11.74 5.56 25.28 -0.92
258.667630 60.067011 J171440.2+600401 1 0 G039 3 30.31 7.60 57.54 -0.77
258.680389 59.886490 J171442.9+595309 2 1 1 8.29 11.12 17.78 -0.92
258.691224 58.588983 J171445.9+583520 1 0 G040 2 1.22 1.10 3.44 -1.25
258.699055 58.897372 J171447.8+585350 1 0 G041 2 8.26 8.01 19.48 -1.03
258.717102 59.209885 J171452.2+591231 2 1 G042 2 3.73 2.85 8.22 -0.95
258.741211 59.264473 J171457.9+591539 3 0 G043 5 25.02 26.38 63.18 -1.12
258.776056 58.713567 J171506.3+584249 1 1 1 0.25 0.51 0.60 -1.08
258.787514 58.757261 J171509.0+584526 1 0 G044 2 10.11 8.42 24.44 -1.06
258.945557 59.285107 J171546.8+591702 2 1 G045 2 17.53 14.22 41.90 -1.05
259.094635 59.258568 J171622.4+591536 2 1 G046 2 14.75 8.65 33.54 -0.99
259.114670 60.343067 J171627.5+602035 1 1 1 0.12 0.32 0.31 -1.12
259.178040 59.251705 J171639.4+591513 3 1 G047 9 19.65 2.98 12.99 0.50
259.178753 60.390122 J171642.9+602324 1 0 G048 2 2.79 3.68 7.17 -1.14
259.263214 60.577461 J171702.0+603434 2 0 G050 3 3.61 1.29 6.22 -0.65
259.331299 60.304821 J171719.6+601817 2 0 G051 2 18.28 15.21 16.86 0.10
259.353630 60.117428 J171724.9+600703 1 1 1 0.18 0.31 0.36 -0.85
259.355584 60.592067 J171725.4+603531 1 1 1 1.43 0.32 0.38 1.60
259.388855 60.130226 J171735.9+600752 2 1 G052 4 20.99 7.33 44.99 -0.92
259.417206 59.809586 J171741.2+594836 2 1 1 1.08 0.80 3.28 -1.34
259.440582 59.301025 J171744.1+591817 2 0 G053 2 2.42 0.44 1.58 0.51
259.474674 59.716733 J171753.9+594300 1 1 1 0.38 0.52 2.01 -2.00
259.482380 60.088622 J171755.8+600519 1 1 1 0.14 0.19 0.26 -0.79
259.591090 59.783011 J171821.9+594659 1 0 G054 3 0.64 0.27 1.36 -0.91
259.669800 60.608719 J171841.3+603630 2 0 G058 8 43.80 5.30 69.93 -0.56
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Table 4.3: Continuation of Table 4.1.

RA Dec Name NC Flags CG NC I. S P. S I. S α
(deg.) (deg) cross-id VLA VLA (mJy) (mJy) (mJy)

VLA GMRT GMRT
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

259.628212 60.313372 J171830.8+601848 1 0 G057 5 2.31 0.34 0.72 1.40
259.745683 58.459206 J171859.0+582733 1 0 G059 2 3.77 0.19 7.46 -0.82
259.757538 59.144878 J171902.6+590844 2 1 1 0.16 0.35 1.05 -2.24
259.825462 60.229289 J171918.1+601345 1 1 1 0.20 0.47 0.70 -1.53
259.838470 59.160835 J171922.0+590936 2 1 G060 2 4.59 1.56 6.52 -0.42
259.839050 59.453503 J171921.1+592714 2 1 1 3.03 1.33 6.65 -0.95
259.864532 59.986221 J171928.1+595906 2 0 G061 3 1.16 0.42 1.83 -0.55
259.881892 58.374789 J171931.7+582229 1 1 1 1.17 1.39 1.60 -0.37
259.968087 60.243011 J171952.4+601435 1 0 G063 3 103.53 91.50 234.36 -0.98
259.973419 58.874149 J171953.2+585222 2 1 G064 3 6.44 2.88 10.53 -0.59
259.984100 59.643391 J171956.7+593834 2 1 G065 2 42.81 41.89 106.88 -1.10
259.988181 58.761983 J171957.2+584543 1 1 1 0.33 0.41 1.11 -1.45
260.045990 59.404598 J172014.0+592407 2 0 G067 5 35.24 39.78 94.28 -1.18
260.041421 60.134011 J172009.9+600802 1 0 G068 3 8.51 3.89 16.34 -0.79
260.074843 59.444650 J172018.0+592640 1 1 1 0.30 0.35 0.46 -0.52
260.116386 59.228594 J172027.9+591343 1 0 G070 3 85.56 39.02 232.76 -1.20
260.224918 60.499594 J172054.0+602958 1 0 G072 2 1.04 0.86 1.75 -0.63
260.319489 60.218384 J172103.9+601247 2 0 G073 10 57.35 25.32 111.83 -0.80
260.301636 59.371227 J172112.1+592212 2 1 G074 2 23.74 18.00 57.67 -1.07
260.317383 60.071106 J172116.7+600406 2 0 G075 3 4.22 1.19 4.44 -0.06
260.329987 59.625679 J172119.9+593737 2 1 G076 2 38.18 27.52 97.92 -1.13
260.364380 60.099842 J172126.5+600557 2 1 G077 3 1.94 1.26 4.11 -0.90
260.446294 60.426233 J172147.1+602534 1 1 G080 3 65.87 47.88 91.65 -0.40
260.448670 60.263511 J172147.7+601548 1 0 G079 2 0.64 0.57 1.47 -1.00
260.451345 59.154094 J172148.3+590915 1 1 1 0.18 0.22 0.27 -0.48
260.490303 59.256067 J172157.7+591522 1 0 G081 2 8.88 12.05 20.75 -1.02
260.500961 60.400483 J172200.2+602401 1 0 G082 3 6.73 0.80 7.73 -0.17
260.518311 59.061188 J172204.7+590342 2 1 1 0.17 0.37 0.37 -0.92
260.558594 60.381401 J172212.5+602257 2 1 G084 4 48.53 5.96 84.66 -0.67
260.567993 58.949677 J172216.3+585701 2 1 G085 2 0.79 1.01 3.94 -1.93
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Table 4.4: Continuation of Table 4.1.

RA Dec Name NC Flags CG NC I. S P. S I. S α
(deg.) (deg) cross-id VLA VLA (mJy) (mJy) (mJy)

VLA GMRT GMRT
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

260.581762 59.076483 J172219.6+590435 1 0 G086 2 5.55 6.79 10.61 -0.78
260.655556 58.806650 J172237.3+584824 1 1 1 0.33 0.63 0.70 -0.89
260.690381 60.001428 J172245.7+600005 1 0 G087 2 93.14 71.39 199.36 -0.92
260.702632 59.747928 J172248.6+594452 1 1 1 0.16 0.19 0.19 -0.25
260.787964 59.797283 J172309.0+594741 2 1 1 0.76 0.76 3.39 -1.79
260.848928 59.212067 J172323.8+591243 1 1 1 0.15 0.30 0.41 -1.24
260.888885 60.257778 J172332.0+601527 2 0 G091 3 3.11 1.47 3.61 -0.18
260.898102 60.331005 J172337.1+602000 2 0 G093 4 4.37 0.59 3.56 0.25
260.904785 59.621223 J172336.4+593715 2 1 G094 4 23.68 19.85 42.31 -0.70
261.019640 58.724567 J172404.7+584328 1 1 1 0.29 0.66 0.74 -1.13
261.032715 59.317177 J172407.8+591905 2 0 G095 5 9.36 1.99 7.38 0.29
261.153809 59.343521 J172437.3+592017 3 0 G097 7 6.84 0.73 8.35 -0.24
261.227803 59.223678 J172454.7+591325 1 0 G099 2 2.44 1.67 4.39 -0.71
261.455924 59.795428 J172549.4+594743 1 1 1 0.18 0.47 0.73 -1.72
261.471845 59.093150 J172553.2+590535 1 0 G101 2 1.16 0.54 1.51 -0.32
261.503471 58.944928 J172600.8+585641 1 1 1 0.44 0.86 1.12 -1.13
261.637136 59.223844 J172632.9+591326 1 1 1 0.40 0.72 1.16 -1.28
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Radio-optical analysis of extended radio sources in the First Look Survey field

I performed a preliminary classification of the radio source morphology into Fa-

naroff and Riley Class I/II (Fanaroff and Riley, 1974), Peculiar, Compact, Extended,

etc. I show some examples of different morphologies in Figures 4.1 and 4.2.

The source located in the left panel of Figure 4.1 has a morphology of Fanaroff and

Riley Class I (FR I). They are lower power objects showing a variety of forms in which

the highest brightness occurs near their centers, excluding their cores, thus they are

edge-darkened (Snellen and Best, 2001). The grey scale is from the VLA data. The

red contour is the GMRT data and the levels are: 3, 4.5, 6, 10, 20, 50 µJy/beam. The

Cyan contour is WSRT and the levels are: 6, 10, 20, 50 µJy/beam. The right panel

of the Figure, shows a source having the morphology of Fanaroff and Riley Class II.

They are more powerful sources having their regions of highest surface brightness at

the ends of a double-lobed structure, thus they are edge-brightened (Snellen and Best,

2001). The grey scale and contours are the same as in the FRI image. The source

Figure 4.1: Example of preliminary classification of the radio source morphology: Fanaroff
and Riley Class I/II.

in the Figure 4.2 shows a low surface brightness wide angle tail (WAT) source, i.e., a

radio source located in cluster of galaxies (Owen and Rudnick, 1976). The grey scale

and contours are the same as in the FR I image. The WSRT contours are unreliable

because this source is located on the edge of the WSRT mosaic image.
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Radio-optical analysis of extended radio sources in the First Look Survey field

Figure 4.2: Example of preliminary classification of the radio source morphology: WAT.

4.2 The radio spectral index

Values of the radio spectral index for the sources in our sample are given in column

11 of Table 4.1. Figure 4.3 shows the radio spectral index as a function of flux density

for the VLA in the left panel. The right panel shows the spectral index distribution

for the same sources as shown on the left and the vertical dashed line indicates the

average spectral index value of our sample (α = - 0.80). As expected, the majority

Figure 4.3: Spectral index.

of multi-component sources are steep-spectrum sources (see Figure 4.3 and Table 4.5

for statistical information). Nevertheless, the spread in the spectral distribution is
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Radio-optical analysis of extended radio sources in the First Look Survey field

wide, with a significant number of ultra, flat or inverted sources in agreement with

Prandoni et al. (2006). This indicates the presence of an heterogeneous population,

consisting of a mixture of flat/steep-spectrum AGNs and steep star-forming galaxies

(Prandoni et al., 2006). On the other hand, the ultra-steep spectrum sources (α <

-1.3) present in the sample, if real, could potentially be associated with high redshift

galaxies (Prandoni et al., 2006).

In Table 4.5, I list the statistical information on spectral index properties for multi-

component sources. In Column 1, I list intervals for spectral index and Column 2 the

name attributed per interval. In Column 2, I list the information about the percentage

of sources per interval. Note that multi-frequency radio observations are important

Table 4.5: Statistical information on spectral index (α) properties for multi-component
sources in the FLSv field.

Spectral index %
α < -1.3 11

-1.3 < α < -0.5 66
-0.5 < α < 0 14

α > 0 9

because radio spectral indices may help to constrain the origin of the radio emission in

the faint radio sources and may actually be fundamental for understanding eventual

links to the optical light (Mignano et al., 2008).

4.3 Optical identification of the FLSv radio sources

The cross-correlation between 107 multi-component radio sources (see Table 4.1) with

the Marleau et al. (2007) and Papovich et al. (2006) catalogues gave us 26 identifica-

tions. Among them, 15 sources have been identified by Marleau et al. (2007) and 11

sources by Papovich et al. (2006) (see Table 4.6). I list all optically identified sources

ordered by right ascension, in Table 4.6. I list the right ascension and declination of the

sources in decimal degree in Column 1 and 2. In Column 3, I list the IAU designation of

the source, in the form Jhhmmss.s+ddmmss, where J represents J2000.0 coordinates,

hhmmss.s represents right ascension in hours, minutes and truncated tenths of seconds,
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Radio-optical analysis of extended radio sources in the First Look Survey field

and ddmmss represents the declination in degrees, arcminutes and arcseconds. The *,

** and *** symbols, represents sources having the same position and identified both

in Marleau et al. (2007) and Papovich et al. (2006) catalogues. In Column 4, I list the

VLA integrated 1.4 GHz flux density (in mJy). Column 5 lists the GMRT integrated

1.4 GHz flux density (in mJy). Column 6 lists the spectral index. Column 7 lists the

redshift. Columns 8 and 9 lists the information about optical counterpart apparent

magnitude and band respectively. Column 10 lists the information about identification

source. Column 11 lists the information about sources with redshift from NED.
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Table 4.6: Optical identified multi-component sources of FLSv.

RA Dec Name I. S I. S α z mag band Identification Sources having z from NED
VLA GMRT Source

(deg) (deg) (mJy) (mJy)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

257.637737 59.601894 J171033.1+593606 1.61 1.19 0.36 0.77890 20.5 R Marleau et al. (2007) NED
257.684783 59.915758 J171044.4+595456 1.60 1.53 0.05 0.22346 18.7 R Marleau et al. (2007) NED
258.348292 59.607806 J171323.6+593627* 0.63 1.10 -0.67 0.17550 18.3 R Marleau et al. (2007)
258.418671 59.821358 J171340.9+594920 0.86 2.40 -1.24 1.78200 22.8 R Marleau et al. (2007) NED
258.539042 59.070028 J171409.4+590410 0.71 1.16 -0.59 0.15492 19.0 R Marleau et al. (2007) NED
259.474700 59.716650 J171753.9+594300 0.38 2.01 -2.00 0.20650 19.3 g Marleau et al. (2007)
259.591300 59.782989 J171821.9+594659 0.64 1.36 -0.91 0.30500 19.2 R Marleau et al. (2007)
259.864217 59.985828 J171928.1+595906 1.16 1.83 -0.55 0.09582 17.2 g Marleau et al. (2007) NED
260.041021 60.133950 J172009.9+600802 8.51 16.34 -0.79 0.70640 20.9 R Marleau et al. (2007) NED
260.073500 59.444669 J172018.0+592640 0.30 0.46 -0.52 0.30541 19.9 R Marleau et al. (2007)
260.118000 59.228269 J172027.9+591343 85.56 232.76 -1.20 0.22090 19.1 g Marleau et al. (2007)
260.581571 59.076467 J172219.6+590435** 5.55 10.61 -0.78 0.03020 15.7 g Marleau et al. (2007)
260.702392 59.747903 J172248.6+594452 0.16 0.19 -0.25 0.17696 18.6 R Marleau et al. (2007) NED
261.227450 59.223633 J172454.7+591325 2.44 4.39 -0.71 0.06638 18.6 R Marleau et al. (2007) NED
261.637725 59.223764 J172632.9+591326*** 0.40 1.16 -1.28 0.14150 17.5 R Marleau et al. (2007)
258.165200 58.696740 J171239.4+584146 1.49 3.79 -1.12 0.16535 18.2 g Papovich et al. (2006)
258.668700 60.066760 J171440.2+600401 30.31 57.54 -0.77 0.21493 18.7 g Papovich et al. (2006)
260.581700 59.076490 J172219.6+590435** 5.55 10.61 -0.78 0.03005 15.7 g Papovich et al. (2006)
257.890660 59.521990 J171133.7+593117 0.15 0.34 -0.95 0.50175 20.9 R Papovich et al. (2006)
258.348300 59.607790 J171323.6+593627* 0.63 1.10 -0.67 0.17508 18.3 R Papovich et al. (2006)
260.446960 60.263670 J172147.7+601548 0.64 1.47 -1.00 0.36084 20.3 R Papovich et al. (2006)
260.489260 59.256100 J172157.7+591522 8.88 20.75 -1.02 0.53926 20.0 R Papovich et al. (2006)
260.570220 58.948480 J172216.3+585701 0.79 3.94 -1.93 0.38601 19.6 R Papovich et al. (2006)
260.655610 58.806660 J172237.3+584824 0.33 0.70 -0.89 0.31417 19.4 R Papovich et al. (2006)
261.019960 58.724590 J172404.7+584328 0.29 0.74 -1.13 0.23902 19.2 R Papovich et al. (2006)
261.637790 59.223770 J172632.9+591326*** 0.40 1.16 -1.28 0.14132 17.5 R Papovich et al. (2006)
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Radio-optical analysis of extended radio sources in the First Look Survey field

From Figure 4.4, which shows the position (RA and DEC in degrees) in the sky

of optically identified multi-component radio sources, you can see that 3 sources were

identified in both the Marleau et al. (2007) and Papovich et al. (2006) catalogues (see

column 3 of Table 4.6). Thus, I have a sample of 23 optical identified sources having

Figure 4.4: Positions of optical identified sources in the FLSv.

redshifts measured. Among them, redshifts of 18 sources come from the Marleau et al.

(2007) and Papovich et al. (2006) catalogues. To recover the missing redshifts I used

NED (see column 11 of Table 4.6). In Figure 4.5, you can see the redshift distribution

of all sources, which span the range 0 < z < 1.8 and peaks at z ∼ 0.2.

Figure 4.5: Redshift distribution of sources optical identified in the FLSv field.
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Radio-optical analysis of extended radio sources in the First Look Survey field

4.4 Luminosity and classification of sources optical

identified in the FLSv

For sources with redshifts, I computed the radio and optical luminosities (see Figure

4.7). I also performed the morphological and spectroscopic classification of all optically

identified sources in the FLSv (see Table 4.7). In column 1 of Table 4.7, I list the source

name, and column 2 lists the luminosity distance in Mpc. In column 3 and 4, I list the

radio luminosity and radio power for VLA at 1.4 GHz respectively. Radio luminosity

and radio power for the GMRT at 0.61 GHz are listed in column 5 and 6, respectively.

In column 7, I list the optical luminosity, and in column 8, I list the morphological

classification made by visually inspecting all sources optically identified in the FLSv.

In Column 9, I list the available spectroscopic sub-classification according to Marleau

et al. (2007), Papovich et al. (2006) and NED. Note that a, b, e, Sbrst and Sfom means

absorption, break, emission, star-burst and star-forming, respectively.
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Table 4.7: Information about: radio luminosity, optical luminosity and classification of sources optical identified in the FLSv.

Name Dl L Radio Power L Radio Power Optical Morphological Spectroscopic
(Mpc) VLA VLA GMRT GMRT Luminosity Classification Subclass

(1) (2) (3) (4) (5) (6) (7) (8) (9)
J171033.1+593606 4730 4.31E+024 24.63 3.19E+024 24.50 -22.87 Extended (VLA) and Compact (GMRT) Sbrst
J171044.4+595456 1070 2.19E+023 23.34 2.10E+023 23.32 -21.45 FRI
J171340.9+594920 13275 1.81E+025 25.26 5.06E+025 25.70 -22.82 FRII
J171409.4+590410 711 4.29E+022 22.63 7.02E+022 22.85 -20.26 FRI
J171753.9+594300 978 4.35E+022 22.64 2.30E+023 23.36 -20.65 Extended 3a
J171821.9+594659 1528 1.79E+023 23.25 3.80E+023 23.58 -21.72 FRI 1e4a
J171928.1+595906 422 2.47E+022 22.39 3.90E+022 22.59 -20.93 FRI
J172009.9+600802 4191 1.79E+025 25.25 3.43E+025 25.54 -22.21 FRII b
J172018.0+592640 1530 8.40E+022 22.92 1.29E+023 23.11 -21.02 Compact 6a
J172027.9+591343 1057 1.14E+025 25.06 3.11E+025 25.49 -21.02 FRII
J172219.6+590435 126 1.05E+022 22.02 2.02E+022 22.30 -19.80 FRI 7e/Sfom
J172248.6+594452 823 1.30E+022 22.11 1.54E+022 22.19 -20.98 Compact
J172454.7+591325 286 2.39E+022 22.38 4.30E+022 22.63 -18.68 FRI
J171239.4+584146 764 1.04E+023 23.02 2.65E+023 23.42 -21.22 Peculiar Sbrst
J171440.2+600401 1024 3.80E+024 24.58 7.22E+024 24.86 -21.35 FRI
J171133.7+593117 5533 5.49E+023 23.74 1.25E+024 24.10 -22.81 Compact
J171323.6+593627 814 4.99E+022 22.70 8.72E+022 22.94 -21.25 Compact 6e2a
J172147.7+601548 1860 2.65E+023 23.42 6.08E+023 23.78 -21.05 Compact
J172157.7+591522 3010 9.63E+024 24.98 2.25E+025 25.35 -22.39 FRI
J172216.3+585701 2014 3.83E+023 23.58 1.91E+024 24.28 -21.92 Compact
J172237.3+584824 1582 9.88E+022 22.99 2.10E+023 23.32 -21.60 Compact
J172404.7+584328 1154 4.62E+022 22.66 1.18E+023 23.07 -21.11 Compact Sfom
J172632.9+591326 642 1.97E+022 22.30 5.72E+022 22.76 -21.54 Compact 4e/Sfom
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Radio-optical analysis of extended radio sources in the First Look Survey field

Identifying the optical counterparts of the sources is crucial in getting information

on both the galaxy redshift and classification (broad/narrow-line AGN, star-forming or

early type galaxy) (Prandoni et al., 2009). My results show that all identified objects

are spectroscopically classified as galaxies. Some of them are classified as star-forming

or star-burst galaxies, perhaps indicating that AGN and star-formation activity are

ongoing in the same galaxy.

According to their radio power (P ) (see Figure 4.6), 6 of the identified objects are

in the range of FR II sources (P1.4GHz > 1024.5W/Hz) while 17 are in the range of

FR I sources (P1.4GHz < 1024.5W/Hz). Note that the horizontal line in the Figure is

the division (P1.4GHz = 1024.5W/Hz) between the two classes. Putting together

Figure 4.6: Optical luminosity versus radio power of sources optical identified in the FLSv.

radio images of all identified sources in order of radio power, I found that most of

sources having P1.4GHz < 1024.5W/Hz are compact and few are extended and peculiar

(see Figures 4.7 to 4.9), while all sources in the range of P1.4GHz > 1024.5W/Hz are

extended (see Figure 4.10).

The morphology of all identified sources, are shown from Figure 4.7 to 4.10. The

gray scale is the VLA data and the red contour is the GMRT data where the levels

are: 3, 4.5, 6, 10, 20, 50 µJy/beam. The Cyan contour is WSRT and the levels are: 6,
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10, 20, 50 µJy/beam. Table 4.8 lists the source name of all images from Figure 4.7 to

4.10 in which the correspondig morphologically classification are shown in Table 4.7.
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Table 4.8: Source name of the images in Figures 4.7, 4.8, 4.9 and 4.10.

Figure 4.7 Figure 4.8
row 1 J172219.6+590435 & J172248.6+594452 J171753.9+594300 & J172404.7+584328
row 2 J172632.9+591326 & J172454.7+591325 J171323.6+593627 & J172018.0+592640
row 3 J171928.1+595906 & J171409.4+590410 J172237.3+584824 & J171239.4+584146

Figure 4.9 Figure 4.10
row1 J171821.9+594659, J171044.4+595456 & J172147.7+601548 J171440.2+600401 & J171033.1+593606
row2 J172216.3+585701 & J171133.7+593117 J172157.7+591522 & J172027.9+591343
row3 J172009.9+600802 & J171340.9+594920
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Radio-optical analysis of extended radio sources in the First Look Survey field

Figure 4.7: Radio images of sources having P1.4GHz < 1024.5W/Hz.
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Figure 4.8: Continuation of Figure 4.7.
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Radio-optical analysis of extended radio sources in the First Look Survey field

Figure 4.10: Radio images of sources having P1.4GHz > 1024.5W/Hz.

In order to enhance my morphological classification, I overlayed radio sources op-

tically identified and deep NOAO optical images of the FLS field (Figure 4.11). It

enabled me to check the position of the galaxy in the radio source. In Figure 4.11, the

first row shows J172009.9+600802, J172027.9+591343 and J171440.2+600401. The

last row shows J171409.4+590410 and J171821.9+594659. The grey scale is the opti-
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cal image. The black contour is the VLA data and the outer level is 80 µJy.
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Figure 4.11: Overlay between radio sources optical identified and some deep NOAO optical image of the FLS field.
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Radio-optical analysis of extended radio sources in the First Look Survey field

We note that two sources (J171440.2+600401 and J172157.7+591522 in Table 4.7)

with FRI morphology appear to have the power of FRII galaxies, providing evidence

that there is scatter in the correlation between power and morphology. Further optical

data in the FLS field will allow a more complete sample for further investigation of

this.
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CHAPTER 5

Conclusions and recommendations

I have presented the results of an analysis of a sample of 107 multi-component radio

sources from the FLS region obtained by cross-correlating the VLA and GMRT cata-

logues.

Visual inspection of the sample enabled me to make a preliminary classification of

the sources in Fanaroff and Riley Class I/II, Peculiar, Compact, Extended, etc., ac-

cording to their morphology.

In my analysis of spectral indices, I found that the majority of multi-component sources

are steep-spectrum sources, Nevertheless the spread in the spectral distribution is wide,

with a significant number of ultra, flat or inverted sources in agreement with Prandoni

et al. (2009). This indicates the presence of an heterogeneous population, consisting

of a mixture of flat/steep-spectrum AGNs and steep star-forming galaxies (Prandoni

et al., 2009). The wide range of spectral indices could also indicate a wider range

of accretion mechanisms in the sub-mJy sample. On the other hand, the ultra-steep

spectrum sources (α < -1.3) present in the sample, if real, could potentially be asso-

ciated with very high redshift galaxies (Prandoni et al., 2006).

Cross-correlating my sample of 107 multi-component radio sources with the Marleau

et al. (2007) and Papovich et al. (2006) catalogues I obtained 23 optically identified

sources with redshifts spanning the range 0 < z < 1.8 and peaking at z ∼ 0.2. All iden-

tified objects are spectroscopically classified as galaxies. Some of them are classified as

star-forming or star-burst galaxies, perhaps indicating that AGN and star-formation

activity are ongoing in the same galaxy.
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Radio-optical analysis of extended radio sources in the First Look Survey field

According to their radio power (P ), 6 of the identified objects are in the range of

FR II sources (P1.4GHz > 1024.5W/Hz) while 17 are in the range of FR I sources

(P1.4GHz < 1024.5W/Hz).

Combining radio images of all identified sources ordered by radio power, I found that

most of sources having P1.4GHz < 1024.5W/Hz are compact and few are extended and

peculiar, while all sources in the range of P1.4GHz > 1024.5W/Hz are extended.

The overlay between radio sources optically identified and deep NOAO optical im-

age of the FLS field, gave me the position of the galaxy in the radio source. It enabled

me to enhance the morphological classification of all sources optically identified. I

found evidence for radio galaxies with FRII powers having FRI morphology.

Further optical follow-up is recommended to allow a more complete census of the

sub-mJy population and more information on AGN feedback from such sources.
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