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ABSTRACT

Automatic signature verification system

R. Malladi

PhD thesis, Department of Computer Science,

Faculty of Natural Sciences, University of the Western Cape.

In this thesis, we explore dynamic signature verification systems. Unlike other sig-

nature models, we use genuine signatures in this project as they are more appropriate

in real world applications. Signature verification systems are typical examples of bio-

metric devices that use physical and behavioral characteristics to verify that a person

really is who he or she claims to be. Other popular biometric examples include finger-

print scanners and hand geometry devices. Hand written signatures have been used

for some time to endorse financial transactions and legal contracts although little or

no verification of signatures is done. This sets it apart from the other biometrics as it

is well accepted method of authentication. Until more recently, only hidden Markov

models were used for model construction. Ongoing research on signature verification

has revealed that more accurate results can be achieved by combining results of mul-

tiple models. We also proposed to use combinations of multiple single variate models

instead of single multi variate models which are currently being adapted by many sys-

tems. Apart from these, the proposed system is an attractive way for making financial

transactions more secure and authenticate electronic documents as it can be easily

integrated into existing transaction procedures and electronic communications.
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Chapter 1

General introduction

Last century has seen a tremendous growth, both in the populations as well as in re-

sources. The identification of many human individuals therefore does not remain as

simple as it was in olden days. As the society is getting more and more modernized re-

quirement of unique identity is growing. In the olden days, people were recognized with

their surnames. But as the families grew, there are more members and therefore the

use of surnames as their identity was not enough. This was the time when researchers

realized that there is crucial need for a special identity. Hence, at this second stage, the

differentiation was done based on their physical appearance, for example, with their

skin colour, height and colour of eyes, etc. However, such physical aspects were just

not enough for making a clear distinction among different people. Some preliminary

algorithms were designed to study such problems scientifically. However, solving such

algorithms was another challenging task. With the advent of technology in past few

decades, whole scenario has completely changed. As the advanced computational tools

came into the picture, it became a bit easier for the identification of a specific person.

Having a perfect identity was always an issue. When some organizations, for exam-

ple, banks, insurance companies, etc., needed to identify some individuals, they used

to assign passwords. However, there were two major issues with this approach: either

these passwords were easily cracked or majority of these individuals just forgot them.

As an immediate remedy, some other identification systems, such as passports or social

1

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 2

security numbers (both of which are unique) were introduced. The problem was not

fully resolved at this stage because even these passports can be manipulated or stolen.

To overcome all these above mentioned problems, biometrics came into the picture.

Biometric process is used by the forensic people from many years now to find out the

criminals. Biometrics is a science that examines and quantifies unique biological traits

to verify the identity of an individual. There are many biological features of individuals

which are unique that is all the idea behind the modern biometrics. The small things

were then looked up in a new aspect. Signature of a person is as unique as the voice of

that person. Deriving the fact that the signature of a person will be saved as a image

in the brain through which from holding of pen till signing on the paper will be done

in a specific manner. These are all done by the signals from brain. Thus by measuring

the signals of the brain, one can make a unique identity of an individual.

In this thesis, we look into different aspects of modern biometrics that are used to

give a unique identity individuals. We investigate various aspects involved in the devel-

opment of an automated signature verification system. In order to better understand

the role of signature verification, we first take a look at the notion of biometrics. To

this end, one may note that the signature creation is a dynamic time varying process

which can be measured by modern hardware. This has resulted in possibly a number

of parallel sampled signals each describing some aspect of the signing process. Note

that no writer can succeed in exactly duplicating a signature despite several successive

attempts. This leads to a variance in the signal profiles of different signature exem-

plars of a single writer. Mathematical signature models are therefore used to better

understand these variances. In order for not to misinterpret future signing attempts as

forgeries, these models need to be solved efficiently. Moreover, acceptance of variances

in authentic signatures must not lead to acceptance of forgeries beyond a required

minimum performance level.

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 3

1.1 Objectives of this thesis

The main objective of this thesis is to apply theory of hidden Markov models to the ap-

plication of dynamic signature verification with the hope of creating a signature model

with similar or better performance. We apply the famous Neyman Pearson algorithm

to compute the optimal operating points on the receiver operating characteristic (ROC)

curves, i.e., for a given selection of features and a chosen acceptable false alarm rate

(i.e., the probability of rejecting a genuine signature), the algorithm computes the op-

timally achievable probability of detecting a fraudulent signature. This gives the user

control over the system performance in a rigorous fashion. It also allows us to rank

features according to their power of discrimination. Then, apply the support vector

machine whether to accept or reject the signature. We will present results of extensive

experiments which prove the feasibility of the proposed solution.

Hidden Markov models lie at the heart of our signature verification approach.

Indeed, these are standard models used in automatic speech recognition (see, e.g.,

[30, 65, 91, 156]). However, they can in principle model any non-chaotic time-varying

system. They provide us with a great deal of control over various aspects of a model

and have the ability to learn from examples. Given the variation in the consistency

of different individuals signature, model is imperative for creating an automated sig-

nature verification system with the ability to adapt to the signatures of different users

given samples of their signatures. We investigate a number of different semantic mod-

els in search of a suitable signature model which lends itself to efficient and effective

automated signature verification.

1.2 Signature verification as a biometric

Unlike the biometrics approach discussed above which identify an individual by physical

attributes, signature verification measures an action of an individual which can be

repeated. As Schmidt [119] stated, a signature contains special stroke sequences which

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 4

are not used in ordinary handwriting. These shapes evolve from routine and training

and from the conscious and unconscious influence of the rule to create a unique and

individual signature. Signature verification systems rely on the assumption that a

person can reproduce his/her signature fairly consistently: it is difficult for a forger to

simultaneously duplicate the overall signature appearance, writing speed, force on the

pen tip, and the angle with which the pen are held. Wu et al. [143] confirmed this by

arguing that imitating either overall shape or dynamics of a signature is achievable,

but to achieve both is difficult. The imitator is not likely to construct a similar overall

shape of a signature without showing his hesitation in the waveform of the writing

velocity.

Visual examination of a signature is unreliable for authentication. Untrained human

eyes can hardly analyze detailed writing features [143]. The advent of hardware able

to measure writing dynamics opened the way for more detailed measurement of the

signing process. In addition to the final signature image, several time varying aspects

of signatures can be recorded. The analysis of these signals is called dynamic signature

verification. Handwritten signatures have been used for some time to endorse financial

transactions even though little or no verification of the signatures is done. This sets

it apart from other biometrics as it is a well-accepted method of authentication. It

is therefore a particularly attractive solution for making financial transactions more

secure; it can more easily be integrated into existing transaction procedures. Although

current signature verification systems are not as reliable as some other biometrics such

as fingerprints and iris scans, even less than perfect authentication performance can

reduce the financial losses incurred by credit card companies due to fraud.

Development of commercial products targeted at signature verification such as the

technologically advanced SMARTPEN [125] underlines the importance of this biomet-

ric. This instrumented pen measures accelerations and pen angles during the signing

process. The perception is that there is definite commercial value in developing au-

tomated static signature verification is concerned only with the analysis of captured

signature images. Stress, illness and intake of neuromuscular stimulants can in the

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 5

signing process. A signature can also evolve and change over the lifetime of an indi-

vidual. This dynamic nature of a handwritten signature sets it apart from many other

biometrics and poses a somewhat different set of challenges to researchers. This brings

us to the problem statement addressed by the work presented in this thesis.

1.3 Literature review

Automatic signature verification has become very popular nowadays. It consists of

feature selection, feature extraction and modelling of features. The key contributor

is the biometric identification system. This system is very popular and has received

significant attention of many researchers. Below we present a critical review of some

of the most recent work in this field.

A signature verification algorithm proposed by Lee et al. [73] was based on a

segment-to-segment matching is studied to find the segment-to-segment correspon-

dence. Here, the geometric extrema were used as segmenting boundaries with two

reasons: extrema are reproduced with high stability and the properties of extrema are

useful in finding segment-to-segment correspondence. A set of rules for legitimate cor-

respondence between extrema is defined based on their properties, which is utilized for

the similarity evaluation between the segments. Dynamic programming is then applied

to find an optimal correspondence map. Their experiments revealed that the proposed

algorithm is assessed to be effective in improving discriminative ability and also shown

that the overall performance is further improved by combining the proposed method

with the traditional global parametric algorithm.

Teoh et al. [130] introduced cancelable biometrics to denote biometric templates

that can be canceled and replaced. They mentioned that the disadvantage of BioHash

(a form of cancelable biometrics) is its great decline in performance when the authentic

token was stolen and used by the fraud to claim as the legitimate user. In this work,

they employed a modified probabilistic neural network as the classifier to alleviate this

problem. They tested their experiments on the FERET face data set and obtained

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 6

promising results.

Signature and voice characteristics, facial features, and iris and fingerprint pat-

terns have all been used (see, e.g., Doroteo et al. [31]) to identify a person or just to

verify that the person is who (s)he claims to be. The work in [31] was intended to

promote user-centered design and evaluation of biometric technologies. To this end,

these authors have developed a platform to perform empirical evaluations of commer-

cial biometric identity verification systems, including fingerprint, voice and signature

verification.

Yao et al. [158] presented a novel approach based on feature level biometrics fusion.

They combined two kinds of biometrics: one is the face feature which is a representa-

tive of contactless biometrics, and another is the palmprint feature which is a typical

contact biometrics. They extracted the discriminant feature using Gabor-based im-

age preprocessing and principal component analysis techniques. Then they designed

a distance-based separability weighting strategy to conduct feature level fusion. The

experimental results, which they conducted by using a large face database and palm-

print database as the test data, showed that their approach significantly improves the

recognition effect of single sample biometrics problem, and there is strong supplement

between face and palmprint biometrics.

One of the major problem in off-line signature verification is to solve non-linear

rotation of signature patterns. Wen et al. [141] described about the two models

which used rotation invariant structure features to tackle the problem. In principle,

the elaborately extracted ring-peripheral features are able to describe internal and

external structure changes of signatures periodically. In order to evaluate match score

quantitatively, discrete fast fourier transform is employed to eliminate phase shift and

verification is conducted based on a distance model. These author’s evaluated the

similarities between test signature and training samples ring-hidden Markov model

was constructed. After all the analysis they proposed a selection strategy to improve

the performance of system. The results indicated that this method was effective to

make better the verification accuracy.
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In [21], Broek proposed a new class of biometrics that is founded on processing

biosignals, as opposed to images. He indicated that for the past 40 years the sig-

nificance of automated verification of users has remained the same. In this paper,

after a brief introduction on biometrics, he discussed biosignals, including their advan-

tages, disadvantages, and guidelines for obtaining them. Then he illustrated the use

of biosignals by considering two biosignal-based biometrics: voice identification and

handwriting recognition. Additionally, he introduced the concept of a digital human

model.

Zhang et al. [163] presented a new member of the biometrics family, namely,

tongueprint, which uses particularly interesting properties of the human tongue to

base a technology for noninvasive biometric assessment. As they mentioned, tongue is

a unique organ which can be stuck out of the mouth for inspection, whose appearance

is amenable to examination with the aid of a machine vision system. One may also

note that the involuntary squirm of the tongue is not only a convincing proof that the

subject is alive, but also a feature for recognition. This implies that the tongue can

present both static features and dynamic features for authentication.

In [160], Yasuda et al. proposed a visual-based online signature verification system.

The input module of the system consists of only low-cost cameras (webcams) and does

not need an electronic tablet. They obtained the online signature data from the images

captured by the webcams by tracking the pen tip. The pen tip tracking is implemented

by the sequential Monte Carlo method. Then, they calculated the distance between

the input signature data and reference signature data enrolled in advance is computed.

Finally, the input signature is classified as genuine or a forgery by comparing the

distance with a threshold. They consider seven camera positions. They performed

experiments using a private database consisting of 150 genuine signatures to decide

the best camera position. Their experimental results show that they should place the

webcam to the side of the hand. Finally, they evaluated the system with a camera

placed to the side of the hand against a different database consisting of 390 genuine

signatures and 1560 skilled forged signatures. They achieved an equal error rate of 4.1

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 8

percent against this database.

Nanni et al. [96] presented an on-line signature authentication system based on an

ensemble of local, regional and global matchers. The following matching approaches are

taken into account: the fusion of two local methods employing dynamic time warping,

a hidden Markov model based approach where each signature is described by means of

its regional properties and a Linear Programming Descriptor classifier trained by global

features. They discussed a template protection scheme employing the BioHashing and

the BioConvolving approaches for biometric recognition. Their experimental results

which was evaluated on the public MCYT signature database, shown that the best

ensemble obtains an impressive equal error rate of 3 percent, when only five genuine

signatures are acquired for each user during enrollment. They observed that the equal

error rate achieved in the worst case scenario is equal to 4.51 percent.

In [138], Vargas et al. explained a method for conducting off-line handwritten sig-

nature verification. It works at the global image level and measures the grey level

variations in the image using statistical texture features. Here co-occurrence matrix

and local binary pattern are analyzed and used as features. This method begins with

a proposed background removal. These author’s processed an histogram to reduce the

influence of different writing ink pens used by signers. Genuine samples and random

forgeries have been used to train an SVM model and random and skilled forgeries

have been used for testing it. Their validated results indicates reasonable according

to the state-of-the-art and approaches that use the same two databases: MCYT-75

and GPDS-100 Corpuses. The combination of the proposed features and those pro-

posed by other authors, based on geometric information, also promises improvements

in performance.

Bailador et al. [4] identified each user by drawing his/her handwritten signature in

the air (in-air signature) to assess the feasibility of an in-air signature as a biometric

feature. They have analyzed the performance of several well-known pattern recogni-

tion techniques, such as, hidden Markov models, Bayes classifiers and dynamic time

warpingto cope with this problem. Each technique has been tested in the identification

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 9

of the signatures of 96 individuals. Furthermore, the robustness of each robustness of

each method against spoofing attacks has also been analyzed using six impostors who

attempted to emulate every signature. They achieved the best results in both experi-

ments have been reached by using a technique based on dynamic time warping which

carries out the recognition by calculating distances to an average template extracted

from several training instances. Finally, they carried out a permanence analysis in

order to assess the stability of in-air signature over time.

A method for conducting off-line handwritten signature verification was described

by Vargas et al. [138]. The proposed method works on global image level and mea-

sures the grey level variations in the image using statistical texture features. The

co-occurrence matrix and local binary pattern are analyzed and used as features. Ini-

tially, their method begins with a proposed background removal. A histogram is also

processed to reduce the influence of different writing ink pens used by signers. Genuine

samples and random forgeries have been used to train an SVM model and random and

skilled forgeries have been used for testing it. Their validated results indicates that

they are reasonable according to the state-of-the-art and approaches that use the same

two databases: MCYT-75 and GPDS-100 Corpuses.

In [11], Batistav et al. proposed a Hybrid generativediscriminative method to design

an off-line signature verification system from few samples, where the classifier selection

process is performed dynamically. To design the generative stage, they trained multi-

ple discrete left-to-right hidden Markov models (HMMs) using a different number of

states and codebook sizes, allowing the system to learn signatures at different levels of

perception. To design the discriminative stage, HMM likelihoods are measured for each

training signature and assembled into feature vectors that are used to train a diversi-

fied pool of two-class classifiers through a specialized Random Subspace Method. This

signature verification system was suitable for incremental learning of new signature

samples. These authors performed an experimental analysis with real-world signature

data (composed of genuine samples and random, simple and skilled forgeries) and indi-

cated that the proposed dynamic selection strategy can significantly reduce the overall
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error rates with respect to other EoCs formed using well-known dynamic and static

selection strategies.

As is mentioned, Biometric systems including keystroke-dynamics based authenti-

cation have been studied in the literature. Stefan et al. ([128]) the effects of synthetic

forgery attacks in the context of biometric authentication systems. Their study is per-

formed on a concrete keystroke-dynamic authentication system. The main focus of

their work was to evaluate the security of keystroke-dynamics authentication against

synthetic forgery attacks. They performed their analysis in a remote authentication

framework called TUBA that they designed and implemented for monitoring a users

typing patterns. They modelled the keystroke sequences forged by the two bots using

first-order Markov chains. They used support vector machine for classification. Their

simulation results showed that keystroke dynamics is robust against the two specific

types of synthetic forgery attacks studied, where attacker draws statistical samples

from a pool of available keystroke dataset other than the target. They further de-

scribed TUBAs use for detecting anomalous activities on remote hosts and presented

its use in a specific cognition-based anomaly detection system. They concluded that

the use of TUBA provides high assurance on the information collected from the hosts

and enables remote security diagnosis and monitoring.

A simple and efficient approach to on-line signature verification proposed by Rashidi

et al. [112] which was based on a discrete cosine transform, which has been applied

to 44 time signals, such as position, velocity, pressure and angle of pen. They carried

out the experiments on two benchmark databases, SVC2004 and SUSIG. The forward

feature selection algorithm is used to search for the best performing feature subsets.

Their proposed system was tested with different classifiers, with skilled forgery, and

equal error rates. Their results are 3.61 percent, 2.04 percent and 1.49 percent for

SVC2004 Task1 and 2, Task2 and SUSIG databases, respectively.

According to Giot and Rosenberger [46], generally the biometric system provides

a good performance but for some individuals it is exceptional as its output is based

upon the quality of capture. To solve some of these problems, they explored the use
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of multi-biometrics. In this approach, they combined different biometric applications,

for example, multiple captures of the same biometric modality, multiple feature extrac-

tion algorithms, multiple biometric modalities, etc. These authors were interested in

score level fusion function’s application, i.e., they used a multi-biometric authentication

scheme which accept or deny the claimant for using an application. They validated the

proposed method on three significant biometric benchmark datasets.

Jin et al. [61], used a set of minutiae points via a polar grid based 3-tuple quanti-

zation technique. They outlined some merits of their method and used four publicly

available benchmark datasets: FVC2002 DB1, DB2 and FVC2004 DB1, DB2 are used

to judge the accomplishment of the this method. They also analyzed the diversity,

revocability and non-invertibility criteria.

In [148], Xianye et al. proposed biometrics technique based on metric learning ap-

proach. They used this approach to achieve higher correct classification rates under

the condition that the feature of the query is very different from that of the register for

a given individual. Stimulated by the definition of generalized distance, they defined

the criterion of this new metric learning by finding an embedding that preserves local

information and obtained a subspace that best detects the essential manifold struc-

ture. Using a generalized eigen-decomposition, they obtained the two transformation

matrices for the query and the register. They tested their experiments on biometric

applications of gait and face databases and realized that their method performs better

than classical metric learning methods as well as the radial basis function algorithms

for such applications.

Wang and Liew [139] mentioned that unlike some other traditional biometric fea-

tures such as face, fingerprint, or handwriting; lip biometric features contain both

physiological and behavioral information. On one hand, physiologically, different peo-

ple have different lips. On the other hand, people can usually be differentiated by their

talking style. As they have correctly mentioned, current research on lip biometrics

generally does not distinguish between the two kinds of information during feature

extraction and classification. Till this work, the issue of whether the physiological or
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the behavioral lip features are more discriminative, was not addressed. In this work,

these two authors studied different physiological and behavioral lip features with re-

spect to their discriminative power in speaker identification and verification. Their

experimental results showed that both the static lip texture feature and the dynamic

shape deformation feature can achieve high identification accuracy (above 90%) and

low verification error rate (below 5%).

In [147], Xianye et al. presented a kernel coupled distance metric learning (KCDML)

method to study the biometrics which may have adverse impact by different walking

states, walking directions, resolutions of gait sequence images, pose variation and low

resolution of face images. By using a kernel trick and a specialized locality preserving

criterion, they formulated the problem of KCDML as an optimization problem whose

aims are to search for the pair-wise samples staying as close as possible and to preserve

the local structure intrinsic data geometry. They mentioned that instead of an itera-

tive solution, one single generalized eigen-decomposition can be leveraged to compute

the two transformation matrices for two classifications of data sets. They empirically

demonstrated the effectiveness of the proposed method on gait and face recognition

tasks, results of which outperform four linear subspace solutions and four nonlinear

subspace solutions.

Islam et al. [59] presented automatic extraction of local 3D features (L3DF) from

ear and face biometrics and their combination at the feature and score levels for robust

identification. To the best of their knowledge, this work is the first to present feature

level fusion of 3D features extracted from ear and frontal face data. They used a weight

sum rule to get the scores from L3DF based matching. They also achieved identification

and verification (at 0.001 FAR) rates of 99.0 percent and 99.4 percent, respectively,

with neutral and non-neutral facial expressions on the largest public databases of 3D

ear and face.

Chakraborty et al. [23] mentioned that against the backdrop of growing concerns

about security, face-based biometrics has emerged as a methodology to reliably infer

human identity. They highlighted that active learning algorithms automatically select
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appropriate data samples to train a classifier and reduce human effort in annotating

data instances. They applied a novel optimization based batch mode active learning

strategy to a face recognition problem. They tested their results on the VidTIMIT and

the NIST MBGC datasets and certified that the potential of their method in being

used for real world biometric applications.

Lujan et al. [86] analyzed the performance of several well-known pattern recognition

and dimensionality reduction techniques when applied to mass-spectrometry data for

odor biometric identification. Motivated by their previous works on capturing the odor

from other parts of the body, in this work, they attempted to evaluate the feasibility

of identifying people by the odor emanated from the hands. By formulating this task

according to a machine learning scheme, they identified this problem with a small-

sample-size supervised classification problem in which the input data is formed by

mass spectrograms from the hand odor of 13 subjects captured in different sessions.

In [126], Smeets et al. described a meshSIFT algorithm and the benefits in 3D face

recognition. This algorithm consisted of four major components. Firstly, in the scale

space salient points on the 3D facial surface were detected by the means of curvature

extrema. Secondly, adjustment were done to each of these salient points. Thirdly, in a

feature vector consisting of concatenated histograms of shape indices and slant angles,

the neighbourhood of each salient point was described. Finally, feature aim of the two

3D facial surfaces were matched by comparing the angles in feature space.

Imamverdiyev et al. [58], considered the texture descriptors, namely, the Gabor

filter-based FingerCode, a local binary pattern, a local direction pattern and their

various combinations. They binarized these fingerprint texture descriptors using a bio-

metric discretization method and used it in a fuzzy commitment scheme. They built the

biometric cryptosystems by combining discretized fingerprint texture descriptors and

using effective error-correcting codes. They tested the proposed system on a FVC2000

DB2a fingerprint databases.

The characterization of the handwriting process involving a vectorial summation of

lognormal functions: the Sigmalognormal model proposed by Plamondon et al. [106].
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These authors described a new stroke extraction algorithm suitable for the reverse

engineering of handwriting signals. It is shown how the resulting representation can

be used to study the writer and signer variability. Human movement modeling can

be of great interest for the design of pattern recognition systems relying on the under-

standing of the fine motor control (such as on-line handwriting recognition or signature

verification) as well as for the development of intelligent systems involving in a way

or another the processing of human movements. They reported on two joint projects

dealing with the automatic generation of synthetic specimens for the creation of large

databases. Their first application was concerned with the automatic generation of

totally synthetic signature specimens for the training and evaluation of verification

performances of automatic signature recognition systems. The second application has

dealt with the synthesis of handwritten gestures for speeding up the learning process

in customizable on-line recognition systems to be integrated in electronic pen pads.

The detection of alcohol intoxication on the basis of handwritten signatures was

investigated by Shin and Okuyama [121]. They found that the signature attestation

rate varies at an individual level according to sex, age, acetaldehyde removal efficiency,

and individual constitution from the previous study. For this study, they employed

30 people to evaluate the change in a handwritten signature before and after alcoholic

intake. Firstly, they measured the signature verification rate using the online signa-

ture verification system. The signature verification rate measured using the WACOM

Tablet pen before alcohol consumption was 97.0 %. They detected the level of alcohol

intoxication on the basis of the total time taken for writing the signature, the average

pressure of the brush, the two-dimensional writing speed, and internal angle of stroke

turns. Their results indicated that the maximum alcohol detection rate of this method

was 95.1 % achieved when they examinees are tested 35 min after alcohol consump-

tion. Finally, they observed that the rate of alcohol detection increases with the alcohol

density of an examinees breath.

In order to provide some insight on their actual discriminative power for online

signature verification, recently, Parodi and Gomez [102] analyzed feature combinations
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associated with the most commonly used time functions related to the signing process.

They defined a consistency factor to quantify the discriminative power of these dif-

ferent feature combinations. Then they proposed a fixed-length representation of the

time functions associated with the signatures, based on Legendre polynomials series

expansions. The expansion coefficients in these series are used as features to model

the signatures. They considered two different signature styles, namely, Western and

Chinese, from a publicly available signature database to evaluate the performance of

the verification system. They used two state-of-the-art classifiers, namely, support vec-

tor machines and random forests in the verification experiments. They presented error

rates which were comparable to the ones reported over the same signature datasets in

a recent signature verification competition in the then literature. The experimental

results indicates that there is a good correlation between the consistency factor and

the verification errors.

Some other works revelent to this research are [2, 18, 27, 29, 36, 37, 38, 42, 44, 48,

52, 57, 60, 64, 70, 71, 81, 84, 86, 97, 99, 107, 108, 109, 115, 116, 117, 124, 129, 131, 139,

146, 152, 154, 157]. On the other hand, some more relevant research contributions are

reviewed in the individual chapters.

1.4 Outline of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we discuss about the

biometrics and their applications. Chapter 3 deals with the preprocessing of the signa-

ture features and information about the features extraction. In Chapter 4, we explore

some methods for signature modelling. Signature modelling using HMMs is discussed

in Chapter 5. In Chapter 6, we explain the main implementation and results of the sig-

nature verification system. Finally, in Chapter 7, we present some concluding remarks

and also indicate scope for future research.

 

 

 

 



Chapter 2

Biometrics-Signature system

Biometrics is primarily concerned with identifying the unique physical characteristics

or behavior of an individual in order to grant or deny them access to some type of

a system. In this chapter, we are going to discuss in detail about the biometrics and

their identification systems such have fingerprint, face recognition etc. We then defined

about the automatic signature verification and signature acquisition.

2.1 Introduction

Modern day security procedures have gained more important offlate. This can be

mainly attributed to their reliability and accuracy in obtaining desired results. Bio-

metrics is one of those modern day security procedures in which isolation and measure-

ment of biological or behavioral characteristics play a vital role as the claimed identity

of a person can be authenticated by measuring his/her unique biological feature and

matching it to a known authentic sample. The biological characteristics isolation and

measurement play an important role in modern day security procedures as the claimed

identity of a person can be authenticated by measuring a unique biological feature of

that individual and matching it to a known authentic sample. Moreover, identification

of a person can be performed by matching these measurements to an entire database

of a known population.

16
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Biometrics are preferred over more traditional PIN (personal identification number)

oriented means of authentication for a number of reasons. Biometrics requires a person

to be physically present at the point of verification whereas a PIN can be entrusted

to other persons; thus, a positive identification is not beyond doubt. Whereas in

the past, biometric authentication has been carried out by human forensic experts,

advances in computing technologies in the last two decades have made the automation

of the process possible; they allow deployment of biometric authentication systems in

commercial environments apart from their more traditional use in the criminal justice

system.

In general terms, all biometric identification systems work in the same way. A user

must be enrolled into the system by taking measurements of the specific biological

characteristics. The digital representation are created by these measurements which

is then stored in a database together with supplementary information about the indi-

vidual such as a PIN. Whenever a user needs to be identified, e.g., when entering a

sensitive area or conducting a financial transaction, the scan is repeated and the PIN

is entered into the system at a verification terminal. This code is then compared to the

code in the database by some algorithm to decide on the authenticity of the claimed

identity.

By the invention of the SMARTCARD it was made possible to store the code on

a card which is carried by the user and presented whenever personal identification is

required. The code generated by the second scan is compared to the encrypted code

on the card which obviates the need for a central user database.

The efficiency of biometric identification schemes are generally judged by three

criteria:

1. The false-acceptance rate (FAR) which is the percentage of authentication at-

tempts deemed to be true but are in fact false,

2. The false-rejection rate (FRR) which is the percentage of authentication attempts

deemed to be false but are in fact true, and
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3. The required processing time of authentication.

Biometric identification schemes have to deal with a trade-of between the FAR and

FRR as they often antagonise each other; in an attempt to lower a system’s FRR, the

allowed variance has to be increased which naturally leads to a higher FAR. The opti-

mal performance point in a system is achieved where the FAR and FRRs intersect; this

point is referred to as the equal error rate (EER). The aim of biometric authentication

schemes is to achieve the lowest possible EER which often necessitate developing com-

plex algorithms to process and compare the measured biological features. Developing

such algorithms is the topic of many research efforts in the field of biometrics. Person

identification can be measured by different biological features which are facilitated now.

Each of these have advantages and limitations in measuring the personal identification

and the choice of identifying features depends largely on the context they will be used

in. The general considerations when choosing a biometric plot for a certain application

include

1. The level of reliability needed,

2. The development and deployment costs,

3. The target population demographics,

4. The target operating environment,

5. The speed of operation, and

6. The susceptibility to forgery.

The rest of the chapter is organized as follows. We elaborate a bit more on biometric

identification system in Section 2.2. A detailed account of work on automatic signature

verification is discussed in Section 2.3. Then we study some signature databases in

Section 2.4. Finally, we give a brief summary in Section 2.5.
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2.2 Biometrics identification systems

Now, we will discuss some common biometrics for identification in use today.

Fingerprints

Fingerprint scanning is probably the most common biometric in use today. The low

cost and fairly high recognition performance make this an attractive solution for many

person identification applications. The scanning of a fingerprint is performed by de-

tecting heat variations on the finger surface; a sensor builds a map of an individual’s

finger. There are unique maps to each individual which makes it suitable to identifica-

tion. Other approaches are based on optical imaging or measurement of small electrical

variations across the finger surface. The optical imaging approach is most sensitive to

forgery as it is the easiest to duplicate from an authentic sample.

The large scale practical implementation of a fingerprint based system in the payout

of pension funds in South Africa has revealed some problems with fingerprint recogni-

tion. Some individuals poses fingerprint patterns which are inherently difficult to verify

by current available algorithms. For individuals depending largely on their hands to

perform their work, recognition performance can be impaired by scars. This suggests

that fingerprint recognition is better suited for environments where fingers are less

prone to damage. We are presenting the reviews of most recent works in the field of

fingerprint system.

Voice recognition

Voiceprint identification relies on the unique characteristics of the vocal tract of a

person which results in a distinct voice character for individuals. Humans can very often

recognize a person over telephone only by hearing the person speak which reinforces

this claim. Voice printing has become an attractive solution to the endorsement of

telephonic banking transactions. The recognition algorithms are challenged though by
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variance induced in the speaker’s voice due to illness, high noise ratios on telephone

lines and the acoustics at the point of recording.

Iris scanning

The iris is the coloured ring of tissue surrounding the pupil of the eye. It consists of a

unique pattern of features such as striations and freckles; they remain unchanged over

a lifetime of an individual and are thought to be impossible to forge. This makes iris

scanning a highly effective personal identifier. However, it is not well accepted by users

due to the sensitive nature of the eye. Iris scanning is at present used mainly to restrict

access to high-tech and high risk security environments. The second phase of the Noisy

Iris Challenge Evaluation attracted participation by 67 research groups from around

the world. In contrast to all current commercial Iris biometrics technology, the NICE

competitions focus on performing Iris biometrics on visible-light images. Whereas

NICE.I focused on segmentation, NICE.II focused on performance in feature extraction

and matching. The eight top-performing algorithms from NICE.II are considered and

suggestions are made for lessons that can be drawn from the results.

Retinal scanning

The retina is the light sensitive layer at the back of the eye which triggers nerve

impulses via the optic nerve to the brain. With retinal scanning, the unique patterns

on the retina are scanned by a low intensity light source via an optical coupler. It has

proven to be quite accurate but does require the user to look into a receptacle and

focus on a given point. This is inconvenient if the person wears glasses or has concerns

about intimate contact with the reading device. For these reasons, retinal scanning has

low user acceptance although the technology itself can work well. In practice, retinal

scanning is used marginally compared to iris scanning.
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DNA prints

DNA (deoxyribonucleic acid) is the hereditary material found in all body cells. It

contains subunits called bases which vary significantly across the population and apart

from identical twins, the overall pattern of these sequences is unique for each person.

A single cell from a biological sample, e.g., blood, saliva, semen or hair, is sufficient

for laboratory analysis to extract a DNA print. However, it is unlikely that it will be

used in the near future as a commercial identification scheme due to the complexity

of extracting the DNA print by current methods. Its use is restricted to forensics to

link suspects to biological trace evidence found at crime scenes. As a biometric, it is

so reliable that courts accept it as irrefutable proof of guilt or innocence of suspects.

Dental records

Dental records of a person can sometimes serve as a valuable identification characteris-

tic. Due to their nature, teeth are less subject to decay than other biological features.

In cases where re has destroyed other biological features beyond recognition, the unique

arrangement of an individual’s teeth can be used as a last resort to identify the un-

known person. Bite marks on victims of criminal abuse can also provide a useful clue

to the identity of an assailant.

Hand geometry

Hand recognition systems require users to place a hand palm down into a reader. An

infrared source within the reader projects an image of the hand as a silhouette; it is

captured by a high-resolution digital camera. The reader computes the widths and

lengths of fingers and makes up to 90 other measurements from the captured sillhou-

ettes. Hand geometry based systems offers a good balance of performance and ease of

use. This methodology may be suitable for large user databases or users who may ac-

cess the system infrequently and may therefore be less disciplined in their approach to

the system. Although it is one of the earliest developed biometric systems, it remains
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a popular identification solution.

Face recognition

Face recognition inspects a digital snapshot of a person’s face in an attempt to verify

the identity of the person. The position and size of the eyes, nose and mouth and the

overall shape of the face contribute to the decision process. The face of the average

person undergoes changes over time due to changing hairdos, weight facial hair growth

or removal, and glasses. This variability poses a challenge to face recognition systems.

Such systems are currently becoming ubiquitous at large public venues such as sport

stadiums to assist authorities to detect the presence of assailants in the crowds and as

such have raised some public concern about invasion of privacy.

2.3 Automatic signature verification

Automatic signature verification (ASV) has been a research topic for quite some time.

The first active research period appears to date back to the mid-seventies [26, 34, 51,

55, 127, 159] where the majority of the efforts went into developing special hardware to

capture the signing process. The aim of this survey is to provide an annotated summary

of the different modelling methods published mainly during the period 1989-2013. We

hope it will provide the interested reader with insight into the different aspects involved

in developing a signature verification system and serve as an overview of the avenues

already pursued within the field. Only dynamic signature verification (as opposed to

static signature verification) is considered. For other related works, see [49, 72]. From

a global point of view, the main issues involved in developing an ASV system are

1. The choice of device to acquire signatures,

2. The choice of computing hardware to perform the various tasks involved,

3. The algorithms used to achieve the desired effect,
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4. The enrollment and maintenance procedure for signatures,

5. The configuration of the test database for R&D purposes which apart from the

enrolled authentic signatures also contains forgeries,

6. The configuration of the database for a production version of the system, and

7. The possible need for networking if the system is to be deployed in a distributed

scenario.

Acqusition

Classfier

Model Database

Verificaton

Model Training

preprocessing

Figure 2.3.1: Automatic signature verification system

Most ASV systems adhere to the abstraction depicted in this figure. The functioning

of most ASV systems adheres to the abstraction depicted in Figure 2.3.1. Users enroll

in the system by providing a set of their signatures. Signatures are then preprocessed

to make them invariant to transformations and to convert them into a format suitable

for the modelling process. These signatures are then submitted to a modeller which

extracts a number of values from this training set which serve as the parameters defin-

ing the modelling approach’s view of the set. These values are stored in a database

along with the necessary details of the user. When the system is presented with a

suspect signature claiming to have originated from some user known to the system,
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the user’s model parameters are retrieved from the database and used to decide on

the authenticity of the signature according to the semantics of the model. A number

of modelling approaches have been applied with varying degrees of success which are

covered in chapter 4. Performance results reported by the earlier studies will not be

mentioned. the simple reason being that the results can be particularly misleading in

the field of ASV due to the lack of a standard test bench and the disparate conditions

under which the results are produced by Nalwa [95].

As Parizeau and Plamondon [100] stated, differences in the quality and types of

forgeries are enough to render any comparison meaningless, as are the differences in

the sizes of the training and test subsets, the number of trials permitted and the type

of classifier used. Any attempt to compare results of different schemes becomes mean-

ingless unless the results are based on the same data set and the same training/testing

partitioning [98]. The credibility of results depends largely on the test database from

which the results are deduced.

2.4 Signature database and acquisition

A benchmark signature database plays a very important part during development of

an ASV system. With a well planned database, an algorithm’s performance can be

gauged and the effect of changes to the algorithm monitored with confidence that one

is actually gaining ground. A good database represents a possible real-life deployment

scenario as closely as possible. This means that several factors need to be taken into

account when creating the database. Various discrepancies between test setups and

real world scenarios are revealed in [95] where the author argues that reported results

are often an over-optimistic re of the performance of the systems were they to be

implemented in practice. Ideally, a system is tested with a large nonhomogeneous

population over a long period of time [105].

On the other hand, very often databases are reported to have been collected on cam-

puses or in the offices of technical institutions. This contradicts the statistical principle
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of a population representative sample. Unfortunately, creating such a database is a re-

source intensive task and to our knowledge there does not exist any database suitable

for benchmark purposes which have been donated to the research community. Factors

that need to be taken into account when drawing up a list of users to be enrolled in

an experiment are gender, age and dexterity. Various factors regarding the signing

environment should also be considered [30, 140].

Users might need to be given time to familiarize themselves with the writing device

as it might not have the same feel as an ordinary pen. Crane and Ostrem [25] described

in a fair amount of detail a data collection procedure for creating a signature database.

The procedure requires half of the signature set donated by a user to be created in

the standing position to ascertain whether there is any significant difference in the

two groups of signatures for an individual. For this study, signatures were collected

over a four-month period with one or two data-collection sessions per week. Finding

volunteers willing to commit to such a lengthy experiment may be difficult. Crane

and Ostrem [25] noted that due to the lack of motivation to produce signatures as

consistent as possible during an experimental session, signatures might not be of the

quality which could be expected in a scenario where the user incurs some penalty for

failing to produce an acceptable signature such as being denied access to a secure area.

For this reason, Crane and Ostrem [25] and others offer cash incentives to users to

improve the quality of both authentic signatures and forgeries. Some studies collect

all signatures in a single session but it is arguably a more realistic approach to gather

the signatures of a user over a longer period of time. This is both to prevent boredom

and muscle fatigue and to capture natural variations due to physical and psychological

changes which is more likely to surface over a longer period of time. Nalwa [95],

collected the signatures in two sessions at least a week apart. In [100] Parizeau and

Plamondon collected ten signatures from the users in each of five sessions during one

week. In [103], Paulik et al. were collected signatures over ten sessions with ten

signatures per session.

Matsuura and Sakai [89] were collected signatures over a six-month period in which,
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if time permits, would be handy to determine a more reliable measurement of the true

performance of a system in a practical setting. This is because a practical scenario

typically requires users to provide a signature set in a single session to minimize in-

convenience. Even though there is to our knowledge no study which investigates the

variations of signatures over an extended period of time, one can expect a statistically

significant change in the signatures of at least a small percentage of users [140, 145].

This means that the actual performance of a system might deteriorate over time

because models are built from a set donated in a relatively short time; they do not

capturing the variances a user’s signature might undergo over time. For this reason

then, production quality systems also incorporate adaptive measures for model param-

eters from authenticated signatures. The assumption being here that users will access

a system often enough that authentic signatures will not change so drastically between

sessions that they will be rejected. The total number of signatures needed by a model

to deduce its parameters, varies among different modelling approaches.

Some studies, Bromley et al. [20] perform cleanup of the database to rid it from

noisy signatures. The criteria used to prune a database include legibility, signing

duration within a tolerable distance from the average duration and sabotage such as

volunteers signing as Mickey Mouse. Nalwa [95] mentioned the term goat in ASV

literature refers to a user whose signature has a large negative impact on the overall

performance figures of a system. Pruning often seeks to remove such signers. This

can result in a false interpretation of performance statistics. Instead, we believe that

it is useful when results highlight the number of goats as perceived by the particular

modelling approach and provide figures with and without the goats.

For research purposes, forgeries are very important to measure the performance of

a modelling approach. The mere fact that a system accepts authentic signatures is by

no means a guaranty that it will reject forgeries. Therefore, the quality of forgeries in

a database will to a large extent determine the credibility of results derived from the

database. The first kind of forgery often encountered in the literature is the zero-effort

forgery also known as a random forgery. This term refers to a signature taken from
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one enrolled user and presented as the signature of another user. At the very least, a

system must be able to reject such ‘forgeries’ with a great amount of confidence.

In Munich and Perona [93], the authors state that a system which performs well

on random forgeries are likely to perform well on actual forgeries which is a statement

open to debate [30]. It does serve a purpose though as Nalwa [95] pointed out that

credit cards can be stolen while in transit before it is signed by the owner. The

forger will in such a case have no idea what the signature looks like. Parizeau and

Plamondon [100] used only random forgeries for this study which does not attempt to

maximize performance but rather serve as a comparison between different modelling

approaches. Random forgeries are adequate in such cases as only relative performance

is of importance. In some studies, Nelson [98] showed a static image of a signature to

forgers and allow them to practice the signature before producing the actual forgery for

the database. Crane and Ostrem [25] were collected forgeries by selecting motivated

individuals with good manual dexterity and the capability of understanding the basic

principals of the system.

It was explained that the system inspects dynamic information as well as final

appearance. Cash prizes were awarded to the creators of the best forgeries in an

attempt to motivate forgers to help create a quality database. The first set of forgeries

was created after static images of the signatures to be forged were shown to the forgers.

After this, video recordings of the actual signing process were shown to the forgers.

They were given three weeks to practice as much as they wanted before submitting

the second set of forgeries. As there is no a priori knowledge of the forger population

expected to attack a dynamic signature verification, this approach seems to be a step

in the right direction.

In [105], Plamondon modulated sound recording of the signing process was provided

to forgers together with the trajectory information of the signature to be forged. Forgers

were given time to practice the signature while listening to the recording after which

a set of forgeries is recorded. Again, cash incentives were offered to the creators of the

best forgeries. Dolfing et al. [30] distinguished between three types of forgeries
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1. Home improved forgeries,

2. Professional forgeries, and

3. Over-the-shoulder forgeries.

The home improved variant is created after the forger had only access to a paper copy

of the signature. Over-the-shoulder forgeries are, as the name suggests, created after

the forger could see the entire signing process of the signature to be forged by standing

behind the forger. For the professional forgeries, forensic document examiners pro-

vided forgeries based on paper copies of the forged signatures. From the above, one

can understand why it is difficult to compare performance results obtained from dif-

ferent databases. There are simply too many factors which can in the results; publicly

available benchmark databases such as found in the field of speech recognition would

be a great advantage to the field of ASV. There is unfortunately some legal aspects

involved in releasing the signatures of volunteers for public scrutiny.

Data acquisition

With static signature verification, only static images of signatures are available. This

implies that no clue as to the order of signature rendering can be non-trivially deduced

from the data. With dynamic signature verification, one or more aspects of the signing

process are sampled from a time varying signal. This means that the captured signature

can be seen as a time series and well founded modelling techniques can be employed.

The acquisition process is very important because the quality of the signals is critical

to optimizing the comparison process. Following is a summary of signature acquisition

methods reported.

Digitizers

Digitizers (or tablets as they are also known) are at present the most commonly used

devices for dynamic signature acquisition [72]. They are often used in Computer Aided
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Design applications and boast a high spatial resolution for capturing pen movements.

In Dolfing et al. [30] a Phillips proprietary digitizer called Phillips Advanced Interactive

Display (PAID) is used. This device consists of an LCD and orthogonal sensors for

pen and finger input sampling. With a sampling rate of 200Hz, the device provides a

tuple of (x, y, pressure) and pen-tilt information with each sample. It should be noted

that only the most expensive tablets possess a LCD display on the tablet surface. It

is more common for the tablet to use the display of the workstation it is attached to.

Other studies employ tablets with differing functionality. In [53, 91] digitizers without

the ability to sense pen tilt information are used. There is much variability in the

resolution of tablets which may range from 100 to 1000 dpi. Some tablets allow users

to use their own pen.

As Herbst and Richards [54] explained, the problem with these are that fingers can

protrude into the pressure sensitive area and be registered as part of the signature.

Where a special pen has to be used, Herbst and Richards [54] mentioned that the pen

might not have the same natural feel as normal pens but the quality of the acquired

signatures is much better. For a tablet to report pen tilt, a special instrumented pen

has to be used. In the future, tablets could be used as the man-machine interface for

tele-banking systems enabling ASV as the preferred method of transaction authenti-

cation [156]. Bromley et al. [20] has developed the NCR such a signature capturing

device for the banking industry. According to Nalwa [95] some tablets have extended

functionality normally performed by software such as signal smoothing and compres-

sion. In [103], Paulik et al. described that the advent of Personal Digital Assistants

employing miniature digitizers as the man-machine interface, has spurred renewed in-

terest in the field of handwriting recognition and ASV. To read more about graphical

tablets, see, WACOM graphical tablets.
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Instrumented Pens

A problem with using tablets is their size and cost which seriously hampers their

chances of ever finding their way into mainstream ASV applications. Development of

specially instrumented pens is an attempt to overcome these problems. A microprocessor-

based interface control card is presented by Mital and Lau [92]. A piezoelectric trans-

ducer pen is used to convert the signature pressure to an electrical signal before being

amplified by a charge amplifier. The output of the charge amplifier is then fed to the

interface control card to be digitized.

Baron and Plamondon [5] presented a system which employees an instrumented pen

with the ability to sense gravitational acceleration. The pen also incorporates a pressure

transducer which delivers an electrical signal proportional to the force exerted between

the pen and paper. Various problems with accelerometer-based systems and possible

solutions are highlighted by Baron and Plamondon [5]. Special pens are less commonly

used than tablets for acquisition. However, the SMARTPEN biometric authentication

system might change it. This device has only recently been introduced to the market

but is the first serious device dedicated to ASV in a commercial environment. The

state of the art technology employees an off-the-shelve ballpoint tip. Sensors producing

uncorrelated measurements of forces in three directions exerted on the pen tip is located

just behind the tip. It also contains sensors to detect the angles the pen makes with

the horizontal plane. On pen circuitry takes care of data sampling and conditioning.

A radio frequency transmitter conveys the signals in secure encrypted form to a base

station. This solves the problem of its predecessors which had to be connected to the

station by cable. The pen is driven by standard off-the-shelve batteries.

Cameras

Munich and Perona [93] proposed a new approach to signature acquisition is through

the use of a camera. It is argued that cameras are becoming ubiquitous in computing

environments and are smaller and easier to handle than digitizers. The tracking of the
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pen tip during signing is, however, a difficult process and appears to be not as reliable

as one would have hoped for. The system sometimes looses track of the pen tip when

the signer signs fast. In such a case, the system requires the user to adapt his/her

signature to the system. This constraint could result in some difficult in a commercial

environment.

2.5 Summary

It is clear from the discussion in this chapter that the signature verification research has

found its way into a number of commercial applications. A simple web search reveals

various commercial ventures which utilize automatic signature verification. Applica-

tions range from financial transaction authentication to restricted area access control.

In next chapter, we discuss about the signature preprocessing, feature extraction and

their importance in the real world applications.

 

 

 

 



Chapter 3

Feature extraction for signature

verification system

Feature extraction is very important topic in the field of pattern recognition. In this

chapter, we will present an overview of different signature preprocessing techniques and

various types of features. We then discuss about the feature selection methods.

3.1 Introduction

Preprocessing is an attempt to convert a raw sampled signature to some canonical

form by carrying out various operations on the data. Munich and Perona [93] assumed

that users are consistent in their style of signing and therefore no normalization is

performed: They write their signatures with a similar slant, in a similar amount of

time, with similar dimensions and with similar motion. Experience has shown that

this is be an optimistic assumption. A considerable amount of effort was spent on

normalization of signature data in several studies. This section focuses on some aspects

tended to by the various studies examined.

To compensate for differences in the resolution of tablets, [143] linearly normalize x

and y coordinates to reside within a known interval. To compensate for the differences

in sampling rates of tablets, Wu et al. [143] used interpolation to resample signals

32
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into a fixed number of points. Various studies [53, 54, 66] reported on using cubic

smoothing B-splines for interpolation.

Different samples of a writer’s signature might be created on differing baselines if

the acquisition phase does not restrict the signing action to a uniform orientation. It

would be advantageous if such a restriction could be lifted as there is no guaranty that

signatures will not deviate from a given baseline for some writers even if provided. Lee

([74]) disagreed with this by stating that there is no need for rotational normalization

if a baseline is provided. Furthermore, one cannot assume that users will sign their

signature the same size every time. This imposes the need for an operation which makes

signatures scaling invariant. Paulik et al. [103] stated that rotational differences can

serve as a distinguishing feature. Various techniques are employed in the literature to

make signatures rotational and scaling invariant which are summarized here.

In [145], Wu et al. a signature is normalized by finding a smallest enclosing circle for

it. The center of this circle is selected as a reference point to convert the signature into

polar coordinate form, i.e., (rt, θt). Once in this form, the rt component is normalized

with respect to the radius. The θt component is normalized by subtracting the value

of the previously sampled point, i.e., θt − 1. Rotational and scaling invariance was

achieved by creating a sequence of components.

Yang et al. [156] rotational invariance is achieved by regarding a signature as a

sequence of vectors in the two dimensional Cartesian plane. Each vector is normalized

by subtracting the angle the very first vector makes with a principal axis. A potential

problem with this approach is the dependence on a single vector for normalization.

This might degrade performance if a signature is unstable in the starting sequence of

a signature.

In Kashi et al. [65, 66] transform a signature into canonical form in the frequency

domain. The first derivative of the sampled coordinates are obtained to reduce end-

point distortions. This derived signal is converted to the frequency domain by applying

the Fourier transform. Transformations are carried out in the frequency domain to

achieve rotational and scaling invariance. It is done this way as the intended operations
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are conceptually much simpler in this domain. Smoothing is achieved by zeroing small

amplitude frequencies. After the transformations, the signal is converted back into the

time domain for modelling.

The neural approaches used in [20, 74] call for a fixed sequence length. This is

achieved by linear-time normalization of a signature’s spatial time function (x(t), y(t)).

The data is resampled with respect to the time parameter. This might inherently

distort the input signature [143] especially if the resampled sequence length is shorter

than the original. They exclude important information carried in frequency bands

excluded by the resampling. Other modelling methods such as dynamic time warping

do not require sequences of a fixed length. For these methods however, computed

distance values between two sequences are often later subjected to length normalization.

Effective preprocessing is unavoidable if a verification system is to attain commer-

cially acceptable performance and work for a wide variety of hardware. For credit card

transactions, Nalwa [95] regards a 1% false acceptance rate and a 7% false rejection

rate as reasonable. Given that there is currently hardly any verification done and the

potential user resistance to having one out of every 14 signatures rejected, we would

rather see these numbers reversed. LeClerc and Plamondon [72] required a base-line

performance of 0.05% FRR and 20% FAR for inclusion of the results in their survey.

In practice though, the required error rates depend largely on the penalties incurred

5 pen tilt is a measurement of the angle the pen makes with the surface of the tablet

6 commonly known as the Nyquist frequency by making an error of each of the two

types in the specific scenario [105]. Reference Paulik et al. [103] underlines the need

for preprocessing. They perform very little preprocessing and conclude that in order

for their modelling approach to obtain acceptable error rates, more attention needs to

be paid to preprocessing. If used in a sensible fashion, the information removed during

a normalization phase can, when isolated, be used to improve a system’s performance

[74]. Furthermore, depending on the modelling approach, normalization might not be

necessary as far as rotation is concerned. In such cases, only rotational invariant fea-

tures are used to represent a signature (see [74]). The absolute velocity of the pen tip
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is one such feature.

It is true that large number of features does not always give the better performance

and may create some difficulties. For instance, if a method uses many features, the

storage needs to store the values of those features for the reference signature is going

to be relatively large and device like credit card may lack sufficient capacity to store all

the values. When a reference signature is compared to the, given that no two genuine

signatures are identical, mostly a genuine test signature may not match with test

signature which have all features values close to the values for the reference signature.

To make sure that genuine test signatures are authenticated, a technique using a large

number of features either must have a large threshold for the norm of the distance or

use some criterion similar to the majority classifier used by Lee [75]. The major part of

classifier is not particularly satisfactory since it cannot be easily analyzed theoretically.

Although a large number of features are considered important, however several of them

are ignored while comparing the test signature to the reference signature. Hence this

arises many arguments.

There are many investigations about the global features and which are considered.

Crane and Ostrem [25] studied large a number of features they used an instrumented

pen to sample three forces of the writing tip (viz. downward force and the x and y

forces) and then initially computed 44 global features. In this method they used to

remove one feature in turn from the current set of features (initially 44) and found the

feature whose removal gave the lowest EER. The method continues until removing a

feature does not reduce EER. In that experiment, the selected 25 features. To evaluate

the proposed technique, a database of 5220 genuine signatures from 58 subjects was

collected over a four-month period and 648 skilled forgeries from 12 forgers that were

allowed to practise the signatures to be forged. EER as low as 1.5% was obtained

although about half the genuine signatures were used for selecting the subset of features

while the other half for testing.

Lee et al. ([75, 76]) described a set of 42 features. One of the techniques that uses

only genuine signatures, for each feature, the mean for subject is compared with the
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means of the same feature for all other subjects and the maximum of such distance

is computed for each subject for each feature. The priority of each feature for an

individual is then given by this maximum distance. Than this algorithm is used to

find several subsets for each user; 34 features performed better than 42 features. After

the forgery data was available, distance was computed between the ith feature of the

subject and the matching feature of the forgeries for that individual and features with

the largest distances were selected. By this it was shown that 23 or 24 features gave

the best performance.

Ketabdar et al. [67] present a methodology for selecting the most particular global

features. More than 150 global features from 60 papers were considered and an initial

subset of 46, was investigated. In this approach they used, a near optimal feature space

search algorithm that avoids the exhaustive search was used. A cost function based on

within-class variability being small and between-class variability being large was used.

In order to take into account effects of correlation between feature vector components,

the cost is computed on the whole feature vectors instead of individual features. The

results of applying the method to a 25-users subset of the MYCT database resulted in

12 features.

Fierrez et al. [40] evaluated 100 global features to find their particular power. It

was carried by computing the Mahalanobis distance between the mean of the training

signatures of a person and the set of all training signatures from all users. Ranking

for the features were given according to inter-user class separability many others re-

searchers have studied global features. For example, [114] et al. studied 46 global

features and used MYCT database to select 12 best features including AV, AP, TT,

pen down samples, DPVX, average and maximum pressure.

There were many transformational techniques proposed, the simplest only suggest

smoothing the data. But their was no major contribution shown by such transforma-

tions. Phelps [104] used a space-domain approach in which a close-fitting polygon was

formed around the signature image. The signature area was normalized and centered

on a coordinate plane. Phelps [104] showed that the area of overlap for a pair of valid
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signatures was consistently higher than for forgeries. [65], et al. developed cleaning

process that included removal of irregular and excessive points, in that cusps were de-

tected and marked, cubic B-spline smoothing was applied and the signature was then

re-eximed at intervals of equal arc length. It was considered earlier that at least five

signatures are needed for acceptable performance of a parametric technique. Reference

signature is based on a set of sample signatures and for each element of the set of

selected features the mean and standard deviation (SD) of the feature values has to be

estimated. To get the approximate calculation of the mean and standard deviation’s

features, values for the genuine signatures population it needs several sample signa-

tures. Experimentation by Fierrez et al. [39], Gupta and Joyce [50] and Nalwa [95]

and showed that the performance improves with the number of sample signatures used

five or six sample signatures lead to acceptable performance.

In Parks et al., [101] suggest that at least six sample signatures should be used. They

mentioned that if the six sample signatures are gathered under identical conditions, the

standard deviation’s of the features might be too small to be an accurate estimate of the

standard deviation’s of the person’s signatures and a method for either increasing the

standard deviation’s or in some cases remove the previously obtained sample signatures

was suggested. In some instances the a new set of sample signatures were acquired.

Reference signature should be updated regularly, as the user’s signature progress

over time. Crane and Ostrem [25] modified the reference signature when a signature

was successfully verified by adding the new signature vector to the mean reference

vector with a weight of 1/8. This approach does not make much difference on users

whose signatures do not change over time and should have a positive effect on users

whose signatures changes. Parks et al. [101] also suggest that the reference signature

should be updated every time a signature is verified by applying a weighting of 10% to

the new verified signature. Many researchers, like Fairhurst and Brittan [35], supported

the fact of use of individual sets of features and individual thresholds.

There are difficulties in finding a set of individual features and individual thresholds

without having access to a large number of training signatures of each individual. They
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proposed that if five sample signatures can be used and based on the mean and SD of

each feature’s values make a decision about which features and what threshold could be

used for each individual. Crane and Ostrem [25] investigated that by using personalized

feature sets for each person can improve the performance of a signature verification

system. Parks et al. [101] purposed that if different thresholds for different individuals

is used and the possibility based on the threshold in credit card identification can be

done on the basis of the goods purchase and the credit rating of the person. [75]

identified that the accomplishment of the best 10 common features was considerably

poor in comparison of 10 individual features for each subject.

Signature acquisition

We used a WACOM Intuos graphical tablet to capture signatures. Figure 3.1.1 shows

an image of the tablet. Data is sampled at a rate of 200 Hz. Each sample consists of

the current x and y position of the pen tip on the surface of the tablet. The pressure

the pen tip exerts on the tablet surface quantized to 64 levels. The angle the pen

makes with the x and y axis respectively. These raw signals are plotted in Figure 3.1.2

together with the signature they were sampled from. The tablet has a resolution of

1000 lpi.

The rest of this chapter is organized as follows. In Section 3.2, we explain in details

what we mean by signature processing. Section 3.3 deals with the theoretical framework

used in this chapter. Some useful notions of statistical modelling are discussed in

Section 3.4 where optimal feature selection method is discussed in Section 3.5. Finally,

we provide a brief summary of this chapter in Section 3.6.

3.2 Signature preprocessing

The raw sequences of signature components are not in a form which is suitable for mod-

elling. The hidden Markov models (HMMs) will require signatures to be in a canonical

form prior to training and verification. Samples of a signature can be transformed dif-
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Figure 3.1.1: The device for signing process

Figure 3.1.2: Signature: positional, pressure and tilt information
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ferently by rotation, translation and scaling when initially sampled from a user. The

preprocessing actions seek to convert a raw signature into canonical form with respect

to orientation. Once in this form, we can include the signature in either the training

database or subject it to verification. The ideal scenario is for a system not to restrict

a writer to sign on a certain baseline. Inspection of a couple of signatures revealed

that even if a baseline is provided, signatures are not guaranteed to follow them. Some

writers start signing on the baseline but progress a direction pointed to the top right

of the signing space. It goes to argue whether this imaginary baseline can be assumed

to be constant. Furthermore, signatures seldom start exactly at the beginning of the

baseline.

Generally speaking, they might start anywhere in the first quarter of the line. The

size of signatures also vary from one exemplar to another. These factors opt for some

procedure to convert a signature into a uniform reference frame. This describes some

approaches to solve this problem as found in the literature.

Rotational Invariance

Rotational invariance is achieved by calculating an angle θ of corrective rotation about

the centroid of the (x; y) samples. Rotating the signature by θ normalizes it to a line

running through the centroid. We calculate θ by maximizing the deviation of the data

in one direction, e.g., the x direction 1 The normalized signature is obtained as follows:

The mean µx of the x sequence is calculated by

µx =

∑T
t xt
T

,

and the standard deviation of the x sequence from µx by

σx =

√∑T
t (xt − µx)

2

T
.
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In order to maximize the deviation, we need only to maximize

T∑
t

(x⋆t − µx)
2,

where x⋆t indicates a rotated x value. We need to choose a point which is rotational

invariant within the framework of the normalization scheme [143]. It is easy to show

that the centroid is such a point within this scheme. A rotation about the centroid

(µx;µy ) can be expressed as

x⋆t = (xt − µx) cos(θ) + (yt − µy) sin(θ) + µx,

By substituting x⋆t into the equation to be maximized, we obtain f(θ) as

f(θ) =
T∑
t

[(xt − µx) cos(θ) + (yt − µy) sin(θ) + µx − µx]
2 ,

=
T∑
t

a2t cos
2(θ) + 2atbt cos(θ) sin(θ) + b2t sin

2(θ),

= cos2(θ)
T∑
t

a2t + 2 cos(θ) sin(θ)
T∑
t

atbt + sin2(θ)
T∑
t

b2t ,

= cos2(θ)P + 2 cos(θ) sin(θ)Q+ sin2(θ)R,

where

at = xt − µx,

bt = yt − µy,

P =
T∑
t

a2t ,

Q =
T∑
t

atbt,

R =
T∑
t

b2t .
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Differentiating the above function f with respect to θ, and setting the right hand side

equal to zero, we obtain the roots as

± cos−1

(
± 1√

2

√
1 + (P −R)√

P 2 + 4Q2 − 2PR +R2

)

and

± cos−1

(
± 1√

2

√
1 + (R− P )√

P 2 + 4Q2 − 2PR +R2

)
.

We adopt the value for θ closest to zero which will result in a maximum of fθ. We also

need to make sure that the time series evolves in a consistent direction by imposing

a possible 180o rotation. This is done by fitting a least squares line to the rotated x

data. If the slope is less than 0, we infer that the signature strokes are increasing from

right to left and not left to right as is the case with normal signers. We then apply an

additional 180o rotation to conform to the norm. This means that the tablet can be

upside-down when signing without affecting the normal operation of the system.

Unfortunately, there does exist a scenario where this scheme fails. If a writer’s

signature is a borderline case where the maximum deviation varies from one axis to

the other with different samples, this scheme will result in an inconsistent perpendic-

ular normalization. Fortunately, these signatures are rare as signers usually sign in a

predominantly left-to-right fashion. One partial solution to this problem is achieved

by providing a baseline. Now, when a θ value larger than some acceptable deviation

from the baseline, e.g., 450, is attained, we conclude that the algorithm is confused by

a borderline case as explained earlier. In such a case we have to trust the writer blindly

and perform no rotation. Another solution is to calculate the ratio of variances in the

x and y directions. If this ratio is within a threshold distance from 1.0, we conclude

that the signature is not suitable for normalization by this technique.

The pressure signal is invariant to the rotation of a signature baseline. However,

it seems that a common oversight is the pen tilt signal which needs to be transformed
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Figure 3.2.1: Pen tilt rotation

along with the positional information. The tablet reports the tilt as the angle the pen

makes with the x and y-axes on the tablet surface. To understand why a rotation might

affect these tilt angles, imagine the pen coinciding with the surface of a cone where the

cone tip is situated at the pen tip. A rotation of the coordinate system (i.e., the tablet

surface) will result in a sweeped cone. To calculate the new tilt angles, we create a

top-view of the pen using the reported tilt angles. The pen is then rotated by the angle

θ calculated in the previous paragraph. Images of this rotated pen are then projected

back onto the the xz- and yz- planes, respectively, to calculate the new angles. Figure

3.2.1 graphically depicts this process. In the figure, α is the angle formed with the

x-axis and β the angle formed with y-axis. To transform α and β, we project the

image of the pen as seen from above, onto the xy- plane resulting in the pen angle θ

in the figure. This projected pen vector is then rotated by the normalization angle θ

mentioned previously, resulting in a pen vector with angle ψ . From this vector, we

project the image of the pen onto the xz- and yz- planes, respectively and calculate

the new values for α and β.
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Translation Invariance

To compensate for the fact that a signer need not always start on the exact same

place on a baseline, we apply a translation to the signature. After this operation, the

leftmost part of the signature will coinside with the vertical axis of the two-dimensional

Cartesian plane and the bottommost part with the horizontal axis. The translation

vector is simply taken to be the smallest coordinate value in the signature on both

axis. This vector is then subtracted from each (x; y) sample.

Scaling Invariance

To achieve scaling invariance, we need to find a scaling factor which will transform

the size of the signature to be contained in a 1-by-1 box yet maintain its aspect ratio.

The dimensions of the box are arbitrary as we merely need a unifying signature size.

The scaling factor is taken as the minimum of 1
Xdim

and 1
Ydim

and both the x and y

components are multiplied by this factor. This operation maintains the original aspect

ratio.

Acquisition device invariance

Even though there was no need for this step to be performed in our experimental

system, it will be important for a production system to be sure that differences in

hardware do not hamper the performance of the system. The software drivers on

different platforms may also translate the sampled values to different intervals than

what is reported by the hardware. As tablet brands may quantize the pressure signal

differently, we need to convert the pressure values to a uniform interval. The default

tablet we use in our system reports the pressure in a range of [0; 63] We scale these

values to reside within the interval [0; 1]. The angle of tilt is reported to be in the range

[1; 1] by the software drivers used in the graphical user interface. On the other hand,

the benchmark database also described records the tilt in degrees. As we interpret the

tilt value as an explicit angle during pre-processing, we opt to convert the sampled
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value to [90o; 90o]. Some systems might require for uniform sampling rate as signature

duration is seen as an important feature.

If a signature is obtained from a tablet at a different rate than what was used to

derive the model parameters, it might need to be resampled to conform to a unifying

standard. To understand why this is important, we visualize a scenario where the

system is used in an open commercial environment. Different transaction end-points

might deploy different tablet brands. For the system to function correctly across dif-

ferent platforms, it might be necessary to agree on a uniform sampling frequency.

Resampling to such a frequency can be performed by fitting an interpolating spline to

the data. We make use of relative durations wherever timing information is required.

Our final signature likelihood values are also normalized with respect to duration. We

therefore do not need to perform this action.

3.3 Arc-length parameterization

The arc-length parameterization is the preferred means of reference to signatures in

[93, 95]. As we sample signatures from a tablet at a fixed sampling rate, we have

a time parameterization of the signature signals. Apart from this parameterization,

we would also like to conduct experiments on the arc-length parametized versions of

the signatures. The arc-length parameterization of a curve can be constructed from

another differentiable parameterization by the following process:

1. The cumulative arc-length of a parameterized curve r(t) = (x(t), y(t)) measured

from t = a is given by

l(t) =

∫ t

a

∥ r̄(τ) ∥ dτ =

∫ t

a

√
x′2(τ) + y′2(τ)dτ.

2. The inverse of the arc-length function is used to create an arc-length parameter-
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ization of a curve by composition

s(u) = (x ◦ l−1(u), y ◦ l−1(u)).

A necessary and sufficient condition for a curve to be in arc-length parameterization

form is

l(t) = t ∀t.

By taking the derivative of l(t) and the previous condition we arrive at another

condition for the arc-length parameterization

x′2(t) + y′2(t) = 1,

from this we can see that

|r̄(t)| = 1

which means that the arc-length parameterization describes the traversal at unit-speed

of the curve.

Velocity

Velocity is regarded as the most important discriminating feature of signatures [105]

with the odd exception [95]. It is argued that a forger may succeed at duplicating

the shape of a signature but will have difficulty in doing so at the same tempo as the

original signer.

Velocity can be calculated from the positional signals as (see [74])

|V (n)| =
√

△x(n)2 +△y(n)2
△t(n)

,
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where △f(n) = f(n + 1) − f(n). Alternatively, the first derivatives, vx(t) = Dtx(t)

and vy(t) = Dty(t), of functions fitted to the x and y-signals can be taken and used to

compute velocity as

V (t) =
√
Vx(t)2 + Vy(t)2.

As mentioned earlier, we fit cubic smoothing B-splines to the measured signals which

give access to derivatives 3. We prefer to stick to the term ‘velocity’ as this is how

this feature is commonly coined in the literature. Physicists, however, might point out

that it should in fact be referred to as ‘speed’. Velocity is the rate of positional change

of an object in a certain direction whereas speed is the magnitude of such a velocity

vector. Speed by itself cannot represent a signature unambiguously. Even though it is

highly unlikely for a forger to recreate a velocity profile in a random way, predictable

behaviour of a system is an important consideration. Note that we can easily create an

actual velocity signal by creating two- dimensional observations of speed and direction.

Speed is in itself rotational invariant which is an important attribute if no normalization

of signatures is performed.

Path tangent

The path tangent is the missing directional component of velocity. In the previous

section, we have shown how Vx and Vy are calculated. The path tangent is related to

these values by

Tθ = tan−1 Vy
Vx
.

The literature agrees that cubic smoothing B-splines are an appropriate choice [53, 54,

66].
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Acceleration

Systems based on instrumented pens measure accelerations involved during the sign-

ing process directly. When acquiring signatures through tablets we generally need to

calculate the acceleration profiles from the positional signals as a post acquisition step.

We achieve this by taking the second derivative of the splines fitted to the sampled x

and y-signals. The total acceleration is related to the axial accelerations by

A(t) =
√
Ax(t)2 + Ay(t)2.

It should be noted that taking second derivatives is a process known to be numerically

instable [54, 95]. We will however still explore its discriminating ability as a feature

signal.

3.4 Statistical modelling for feature extraction

The well established field of modern statistics provides a solid basis from which to

build pattern recognition systems. Various statistical techniques have been applied

to ASV. In a sense, one can argue that most ASV systems will incorporate some

fundamental statistical concept somewhere. This section contains studies which makes

use of predominantly statistical concepts.

Feature-based statistical methods apply transformations to the data which result in

a set of features. They are chosen to expose differences between genuine signatures and

forgeries. The feature extraction process can be seen as signature compression. The

challenge is to extract features which do not discard relevant information. Dynamic

features describe aspects which are not apparent from an examination of a copy of a

signature. A forger needs to duplicate the shape and the way it was signed. Therefore

the verification procedure must include a mixture of both shape and dynamic-related

features. Nelson et al. [98] used a set of 25 features. Some examples are the total

signature time, the root mean square speed, the integrated absolute centripetal ac-
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celeration, a direction histogram (0-2 divided into eight sectors) and the X, Y speed

correlation. It is desirable for shape-related features not to be strongly correlated to

dynamic features. There may be the extra constraint that the parameters of features

must not exceed the storage limit for a particular application (e.g., 80 bytes for credit

cards).

According to Nelson et al. [98], a feature is a good discriminator between genuine

and forged signatures, if its values on genuine signatures constitute a cluster which can

be separated with high accuracy from that of forgeries. To verify a signature, they

computed its feature vector and compared it to a template vector by some distance

metric. The study reports on Euclidean, Mahalanobis and Quadratic distance models.

In this study, they assumed the feature vectors to come from mixtures of multi-variate

Gaussian probability density functions. They claimed that the statistical properties of

genuine signatures should be reasonably predictable as they are produced by a single

known signer (in contrast with forgeries for which no a priori knowledge is available).

Then they defined decision rules for both the cases where forgeries are and are not

available.

In Kashi et al. [66], 23 global features are used. These features are divided into

roughly two categories: shape-related and dynamical features. Care is taken to ensure

that the shape-related features are not strongly correlated to the dynamical features.

For each of the features, the mean and the standard deviation are calculated from

training samples for a specific signer. These are then used in a joint distance measure

to determine the degree of similarity of an unknown signature. This study shows that a

verification system need not comprise of only a single modelling approach. The feature-

based model is further augmented by Kashi et al. [66], call stroke direction coding. The

results show that the combination of SDC and this feature based approach outperforms

each approach on their own.

One of the most attractive qualities of feature based verification systems, is the

relatively small amount of memory needed to store a signature model. This is an

important consideration for many current commercial applications where storage ability
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is restricted e.g., credit/SMART cards.

A signature can also be seen as a stochastic process. In [89], it is shown how the

random impulse response for a system is calculated where the relationship with the

sampled (x; y) signal is

y(t) =

∫ T

0

h(t, τ)x(τ)dτ,

with h(t, τ) the random impulse response. For verification, a distance measure between

two sequences of random impulse response parameters is defined.

Matsuura and Togiishi [90] approximated a signature by a piecewise linear function,

i.e., the locus of pen movement is approximated by line segments. Each line segment

is depicted in magnitude/argument form as is commonly used to represent complex

vectors. For this sequence of magnitude/argument pairs, a two-dimensional AR model

is defined and its parameters are obtained by solving a set of simultaneous equations.

The cross spectral density is calculated for the AR parameters. Then the discrete

cosine transform is performed on the cross spectral density and the logarithm of the

transform coefficients is the features representing a signature. The distance between

the test signature’s feature vector and a reference feature vector is calculated and

if within an acceptable threshold difference, the signature is classified as authentic.

The reference feature vector is built from a randomly selected subset of the signature

samples of a subject.

In [103], Paulik et al. explored a vector autoregressive model. A sampled (x; y)

sequence is resampled to a fixed sequence of length 512. This sequence is divided

into a fixed number of sections. The sections are then each modeled by a VAR. It is

argued that the VAR coefficients matrix eigenvalues, the scalar VAR coefficients, the

mean vectors and the noise measures built into the model, own intraclass invariant

properties. This makes them excellent candidates as features for classification and

verification. The eigenvalues of the VAR model coefficients matrices are used instead

of the matrix elements themselves to reduce the feature vector size. The distance

measure used to compare a suspect feature set with a reference feature set involves a
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discretization of the features to obtain likelihood values from a frequency matrix. As

usual, a threshold distance decides on the authenticity of a signature. This study also

compares this approach to a subset one-dimensional approach to assess whether the

extra parameters obtained in this study yields a significant performance increase. The

study concludes that, even though the results have improved, the improvements are

not statistically significant to warrant the computational overhead.

3.5 Optimal feature selection

As we have seen in the previous section, feature-based systems compute features from

sampled signatures where each feature represents some characteristic of a signature.

This is called feature extraction. Features can be chosen with the hope that they

constitute a consise representation of a signature. Considerations taken into account

when selecting features in [98] are that they must be

• insensitive to variations in genuine signatures, and

• good discriminators between genuine signatures and forgeries.

Because no a-priori knowledge is available about which of the vast array of possible

features will give the best discriminating power, a feature set might contain a lot of

redundant information with no guided way of pruning them. The objective of feature

selection (as opposed to feature extraction) is to obtain a reduced set of features which

contains essentially all the discriminating power of the original set. Feature selection

addresses the following aspects of a feature based verification system

• efficiency through the removal of redundant information,

• speed by reducing the dimension of the feature vector,

• performance by working only with an optimal feature set.
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In general, most feature selection techniques follow the same basic procedure. The

starting point is a large set of features which the analyst believes to be useful for

discriminating between samples. The discriminating power of each of the features or

combinations of features is determined by performing statistical tests on a training set

of data which is believed to adequately represent the population. The combination

of features which yields the best performance (by some criteria) and which contains

the minimum number of features is deemed the best feature set. Furthermore, the

optimal feature set need not be the same among different signers. Different approaches

to finding an optimal set are reported.

Lee [76] defined a set of 49 normalized indicators extracted from a positional sig-

nature signal sampled from a tablet. For a subject, the k most important features are

selected amongst these by ordering the features according to their maximum distance

from the rest of the entire population. The distance measure involves the mean and

variance of a feature obtained from a training set. This results in an optimum individ-

ualized feature set. The study also presents a common feature set composed of those

features with the highest frequency of appearance in all the individualized feature sets.

In Crane and Ostrem [25] discussed the simplest methods select features through

trial and error or brute-force. Such an approach is time-consuming as there can po-

tentially be a vast number of combinations to search through. Sub-optimal searches

reduce the size of the search space by imposing certain structural or traversal restric-

tions on the search tree. Fairhurst and Brittan [35] considered the parallel strategies

for feature vector construction . It is shown that there exist inherent parallelism in the

feature selection process which can be used to perform the task on a parallel computer.

Various parallel algorithms are implemented and compared. The possibility of using a

transputer is attractive as it reduces the amount of time needed to select an optimal

feature set.

As the name would suggest, the genetic algorithm finds its origins in the field of

Biology. It is based on the way living organisms evolve on a genetic level to attain the

best genes suitable for their situation. The algorithm employs these principles to find
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an optimal solution to a problem at hand. The challenge here is to find an encoding for

the problem in terms of chromosomes. Xuhua et al. [150] showed how this algorithm

can be applied to the problem of feature selection. It is necessary to select features

of signatures which can overcome the dilemma of intra-and inter-personal variability.

Xuhua et al. [150] stated that not all sampled points of a signature are necessary for

verification. Experts concentrate on some particular parts which have distinguishing

features when they engage in signature verification. What is more, different features

in different parts of the signature must be used for the verification. A signature is a

sequence of time ordered data and the combinations of features are unlimited. It is

very difficult to predetermine an optimal set of features.

The result of the selection is not even unique. The genetic algorithm has a high

degree of ability to solve this problem. This study presents a novel method to select

partial curves and features of the curves of signatures for verification using the genetic

algorithmic. The study also proposes a new crossover method in order to determine

the number of partial curves. The described system consists of a feature selection part

and a signature verification part. The location of partial curves and the features of

the curves used for the verification are encoded into the chromosome. The length of

a chromosome, i.e., the number of loci, corresponds to the number of partial curves

of the signature. The genotypes are then modified by the genetic algorithm using the

local improvement mechanism. Each chromosome is evaluated by a fuzzy network and

the chromosome’s fitness value is calculated. The one with the highest fitness value is

selected. This elite chromosome includes the best set of partial curves and features of

each curve for a true signature.

It is perhaps suitable to end the modelling section with a paper which dares to

challenge accepted beliefs. In [95], Nalwa disagreed with the general notion that ve-

locities and forces plays a pivotal role in ASV. The reason for this is that no evidence

could be gathered to show a signer’s pen dynamics are consistent enough to be used

as distinguishing features in verification. Foremost, for two signatures to be declared

as produced by the same individual, it is necessary for the shape of both to match
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closely. The author perseveres that for ages we have relied on visual examination of

signatures to decide authenticity. He finds it difficult to justify the jump to time related

information.

The author claims that all the subjects in his study could produce their signatures

both as are and deliberately without visual deterioration. The study presents a number

of novel aspects to ASV. The concept of jitter is introduced as a quantity measuring

the act of a forger constantly correcting the pen trajectory to conform to an a priori

curve. To make a signature independent of orientation and aspect, it is normalized.

This is done by fitting a polygon to the ordered set of samples and use the global

axes of maximum and minimum inertia running through the global center of mass and

rotate the signature to normalize these axes.

The rotated signal is then scaled to normalize the aspect. This normalized signal

is then parameterized over its length (instead of time). By using a moving coordinate

frame, the center of mass, torque and moments of inertia at the center of the window

is calculated using a Gaussian weighting function. These derived signals are used to

characterize a signature. To compare a signature to a reference characteristic function

set, the two sets of functions are length warped (in contrast with the more familiar time

warping) as to maximize the sum of the weighted cross correlation of each function

with respect to its model. The error between each characteristic function and its

reference model is computed. The study then uses what it calls the harmonic mean

to quantize the global error based on the joint error for the jitter, aspect and warping

distance. The study describes in detail various databases used for tests and presents

a real implementation combining SMART card technology, a proprietary digitizer and

a notebook computer. This study highlights various topics which are central to the

problem of ASV.
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3.6 Summary

We have discussed in this chapter that preprocessing is very first step before we do the

feature selection. This chapter provided in detail information regarding the methods

used to preprocessing of features and their importance. We also discussed about the

various global features and local features. Then we explained the statistical modelling

of the features and optimal feature selection. This will be useful in understanding the

next chapter which explains the different signature modelling techniques.

 

 

 

 



Chapter 4

Methods for signature modelling

This chapter focus on the different types of the signature modelling techniques such

as dynamic time wrapping, hidden Markov models, fourier transform and Artificial

neural networks. Furthermore we also discuss about the Neyman Pearson criterion

and support vector machines.

4.1 Introduction

Automatic signature verification is a very attractive field of research from both scientific

and commercial points of view. In recent years, along with the continuous growth of

the internet and the increasing security requirements for the development, the field of

automatic signature verification is being considered with renewed interest since it uses

a customary personal authentication method that is accepted at both legal and social

levels. Moreover, recent results achieved in international competitions using standard

databases and test protocols have revealed that signature verification systems can have

an accuracy level similar to those achieved by other biometric systems. Finally, different

from physiological biometrics, handwritten signature is an active method that requires

the user to perform the explicit act of signing. Thus, automatic signature verification

is particularly useful in all applications in which the authentication of both transaction

and user is required.
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Accordingly, the number of possible applications for online signature verification is

continuously growing along with the development of more and more sophisticated and

easy-to-use input devices for online handwriting acquisition. For example, automatic

signature verification can be a valuable contribution for controlling access security in

computer networks, documents and databases. Applications of this can be seen in

health care applications for medical record access and in the areas of passport and

driving license applications. Automatic signature verification has important applica-

tions in online banking, monetary transactions, and retail point of sale. For instance, it

can be used to replace the current practice of signing paper credit card receipts. In this

case, the verification process can be performed by comparing the live online signature

of a user with the biometric information of his/her handwritten signature that can be

stored in a personal smart card to verify that the person using the card is the rightful

owner.

At the heart of an Automatic verification system, we find the modelling technique

employed. Even though the performance of a system depends largely on the degree to

which all the aspects of the system work together, the applicability of the modelling

technique and ability to recognize genuine signers and forgers are the most important

factor in the quality of a verification system. It is therefore no surprise that it is in

this part of the field where the most effort is exerted. This section summarizes various

modelling approaches applied to automatic signature verification. The list is by no

means complete but we hope it covers most of the major research current directions in

the field.

The rest of the chapter is organized as follows. We explain about modelling with

dynamic time wrapping in Section 4.2. A detailed work is discussed about hidden

Markov model and their applications in Section 4.3. Fourier transforms for signature

verification is discussed in Section 4.4. Then we study about artificial neutral networks

and support vector machines in Section 4.5 and 4.6. Finally, we give a brief summary

in Section 4.7.
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4.2 Dynamic time warping

Dynamic time warping (DTW) stems from the field of dynamic programming. The

general idea of dynamic programming is to find a least cost path through a cost matrix

in an attempt to optimize some process. The challenge is to define a suitable cost func-

tion for the problem at hand. Dynamic time warping finds a non-linear time alignment

between two sequences to compensate for non-regular stretching or compression in the

sequences. If two sequences show similar overall shape, DTW can find a unifying time

function which will align the two sequences in a way minimizing the distance between

them. If they are not of similar shape, DTW will find some alignment but the warped

sequences will remain far apart. It goes about finding an alignment by placing one of

the sequences on the vertical axis of a discrete matrix and the other on the horizontal

axis. Each matrix position is then set to the cost of aligning the partial sequences

up to that position on each sequence so the distance between the sequences are mini-

mized. Various cost functions can be used each having particular characteristics. For

an in-depth discussion of DTW, see, [111, 118].

One of the earliest studies on ASV [159] uses dynamic time warping to find a non-

linear alignment between signatures. Prior to alignment, the equivalent force function

varying over time is calculated from the dynamically sampled data. The function is

computed as follows

f(t) = d′′ +

[
1 +

(
µp(t)

ν

)]
d′ with µ =

√
x′2 + y′2, p =

p

M
,

where d is the displacement function, p is the writing pressure function, v is the writing

speed, 1, and M are the viscosity coefficient of the human hand, the friction coefficient

between pencil point and writing surface and equivalent mass hand-pen coupling, re-

spectively. This function is supposed to be a more direct representation of the control

timing information of the writing movement than for instance the pencil point dis-

placement. The force functions of two signatures are aligned by DTW. Extreme time

warping during alignment is prevented by placing constraints on the DTW routine.
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The output of the alignment is a normalized distance between the two signature repre-

sentations. This distance is compared to a personalized threshold which is determined

experimentally. Most verification systems compute some measure of similarity or dis-

tance between two signatures and compare this to a threshold value which in itself can

be obtained in various ways.

It might be attractive to reduce the task of signature verification to two steps.

That of low level feature detection followed by some standard method of feature-vector

comparison. The price one pays for this simplification is that the overall result is only

as good as the features selected. The method described by Hastie and Kishon [53] is

based on the approach of representing signature data by functions of time (instead of a

number of low-dimensional parameters or features). The study makes use of dynamic

time warping and geometric shape analysis to perform verification. The DTW is used

to match the speed signals of two signatures. It is believed that DTW should not be

used to compensate for other variations such as Euclidean shape transformations which

will be the case, should positional functions be aligned without being normalized first.

Time warping is necessary as writing speed will change from one signature to the next,

as will its consistency over different regions. The slant might increase as the writing

speed increases resulting in non-regular deformation of the speed signal. Non-linear

time alignment produced by DTW, for instance, can compensate for this.

Apart from alignment distances inspected for verification, further checking is done

by comparison of signature segments. A segmentation of a signature into pieces which

exhibit little oscillations in its various features can be achieved by using points of high

curvature as the segmentation boundaries. The curvature signal has to be computed

from second order derivatives though, which is numerically unstable. Therefore, the

simple observation that points of high curvature coincides with points of low speed, is

used instead to obtain a segmentation of a reference signature. The reference signature

is selected as the signature in the training set which deviates the least from the other

signatures during DTW. A segmentation is created by dropping pieces of the signal

where the speed component is less than a threshold percentage (e.g., 15%) of the mean
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speed. For each of these segments, a template average shape is estimated up to an

affine transform which allows for differences in location, scaling, orientation and shear.

This template is described as

Y (u) =

 x(u)

y(u)

 = A(u)F (u) + µ(u) + e(u), 0 ≤ u ≤ 1,

where

• F (.) is an idealized template or “mean” signature for the writer,

• A(.) is a 2 * 2 affine transformation matrix, and

• e(.) is a stochastic vector of departures from the model.

Hastie and Kishon [53], performed checks on both the speed and shape of a signature.

The estimation procedure discovers the parameters for these elements. These average

segments are then concatenated to form a template signature. Verification is carried out

at both the DTW stage and the affine transform stage. If the discrepancy at the DTW

stage is not big enough to conclude the authenticity, the signature is segmented and

the segments affinely transformed to match the template. The least squares distance

between the template and suspect signature segments are then used to decide on the

authenticity. This phase inspects a possible forgery for unacceptable shape variations.

It is extremely unlikely that a forger can mimic both the shape and relative speed with

which a person signs their name. This is even more so if the signature to be forged

contains exotic which are often illegible but consistent in the victim’s signature.

Munich and Perona [93] obtained signature dynamics from cameras. A normal pen

is tracked by applying optimal signal detection techniques to images sampled from a

digital camera. The tracking algorithm cannot distinguish between the up and down

state of the pen so the entire pen trajectory is recorded. Various different parameteriza-

tions of the signatures were tested in this study. The affine arc-length parameterization

has been found to be superior to arc-length and time parameterizations. The sequences
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are aligned by dynamic time warping even though the parameterization is not necessar-

ily by time. A reference signature is obtained by finding the training signature which

shows the least deformation during alignment with all the other samples. The average

of this alignment with all the other signature samples represents a prototype signa-

ture in the system. The distance between a reference signature and a test signature

is evaluated in various different ways in search for the optimal distance measure for

this system. A harmonic mean measure was found to outperform residual distance,

correlation and weighted correlation when establishing time correspondence between

two curves. The study claims, somewhat contradictory to the general opinion, that

dynamic information is of less importance than static information during verification.

The feature based approach is augmented by stroke-direction coding (SDC). With

SDC, Kashi et al. [66] attempted to model hand movements that produce a signature.

A signature is divided into a fixed number of time-ordered links called strokes, where

each link is approximately of the same length. A stroke is described by a number

indicating the general direction of pen movement within the stroke. A non-linear

alignment through dynamic time warping is used to establish the deviation of the SDC

vector of a test signature from a reference SDC vector. This deviation and the feature

based error measure are combined for verification.

Dynamic time warping is quite often used to find an alignment between sequences.

Other approaches do exist however. In Wu et al. [144], a signature was represented by

a static feature sequence which is the sampled (x; y) sequence and a dynamic feature

sequence which is the velocity computed from the static sequence. To match an input

signature with a reference signature, the two sequences have to be aligned. This study

proposes a technique called split-and-merge. In contrast with dynamic time warping

which is a piecewise advancing match algorithm, split-and-merge is a top-down ap-

proach. It proceeds in a recursive fashion by splitting the reference sequence in the

middle and the test sequence at such a place that after refining the two subsequences

and merging them, it best matches the reference sequence. A subsequence is refined

by removing the non-uniform compression or spreading among sub-patterns relative to
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the reference sequence.

The refined subsequences are merged and interpolation is used to make the reference

and test sequence the same length. After this, the distance between two sequences are

measured and compared to a threshold value derived from the training set. An input

signature is deemed genuine if both of its coordinate and velocity distance from the ref-

erence template are less than the respective coordinate and velocity thresholds. Results

show that there is a split-and-merge recursion depth beyond which no performance gain

is achieved.

We now brief summarize the results of a study which compares DTW with other

approaches. Parizeau and Plamondon [100] discussed Dynamic Time Warping, Re-

gional Correlation and Skeletal Tree Matching. The idea of regional correlation is to

cut signals into regions and to correlate corresponding regions over different time lags

to find the best possible match. The dynamic time warping variation used in this study

is based largely on work done in the field of speech recognition. For skeletal tree match-

ing, a tree representation is created for each of the two signals being compared. The

tree representation seeks to capture peaks and valleys in the waveform together with

their self-embedded structure. The methods are compared with respect to verification

error rates, execution time and number and sensitivity of parameters. The compar-

isons are extended beyond normal signatures to handwritten passwords and initials.

Furthermore, the tests are conducted using positional, velocity and acceleration signal

representations, respectively. A variance analysis on the individual results shows that

no algorithm consistently outperforms the other.

4.3 Hidden Markov models and their applications

Apart from automatic signature verification, hidden Markov models (HMMs) are also

used with a great deal of success in automatic speech recognition and molecular biol-

ogy. Essentially, they extend the well-known concept of Markov chains and are thus

founded on solid statistical principals. HMMs comprise of a state graph connected by

 

 

 

 



CHAPTER 4. METHODS FOR SIGNATURE MODELLING 63

probabilistic transitions. Each state can accept an observation with some probability.

The observation at each time instance need not be single-variate and can be either

discrete or continuous. HMMs allow for the modelling of non-linear time variance in

sequences of observations by dictating transition probabilities between states or im-

posing explicit state durations. This proves to be a handy feature when working with

signatures which exhibit time warping amongst different samples originating from a

single signer. Such a time-warping profile can serve as a distinguishing feature if cap-

tured by a model which is indeed the case for HMMs. Generally speaking, verification

systems based upon HMMs are concerned with finding appropriate sequences of obser-

vations to represent a signature and to attach sensible semantics to model states. For

a more in-depth discussion of HMMs, see Chapter 5 and references[110, 111].

The absolute angular direction of signature samples as a function of the distance

along the signature trajectory is used to represent a sampled signature in[156]. This

sequence of angles are divided into a fixed number of segments. A formula incorporat-

ing all the angles in a segment is used to calculate a discretization code representing

a segment. This sequence of codes is then presented to a HMM. The theory provides

for the calculation of a likelihood that a sequence was generated by the process being

modeled by the HMM. This value for a test signature is compared against a thresh-

old likelihood value to verify the authenticity of the signature. This approach in a

sense counteracts the time warping ability of HMMs by implicitly assuming that an

equal segmentation will group similar subparts of a writer’s signature. The equal seg-

mentation adopted from speech recognition cannot be applied with equal success to

ASV due to the huge difference in the amount of samples available. Nalwa [95] agrees

with our view as signature sequences are not long enough for a model to recover from

segmentation errors.

In Dolfing et al. [30], samples are blocked into segments bounded by points where

the velocity vy in the y direction crosses zero. It is argued that segmenting on these

points results in a size independent representation. A 32-component feature vector is

derived for each segment. Linear discriminant analysis is performed on this feature
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vector and the N most discriminative features are selected to represent segments. A

left-right hidden Markov model is used to model the sequence of feature vectors. An

adaptive threshold for a signer is computed from the average likelihoods for the training

set combined with a system dependent observation set.

Much the same as in Kashi et al. [65, 66] reported on a method combining global

and local features. For a description of the global features. For the local feature based

part, a hidden Markov model with explicit duration modelling is used. This results in

a variable duration hidden Markov model. This model is also referred to as a hidden

semi-Markov model (HSMM). In [65], Kashi et al. used a specific HMM configuration

to approximate a HSMM. Each HSMM state is decomposed into a number of unit-

duration substates, resulting in a HMM with a larger number of states than the HSMM.

Each sample in a signature is represented by an inclination angle and the difference

between adjacent inclination angles. These values are quantized for use with a discrete

HMM. In such a HMM, no assumption about the distribution of the data needs to be

made (as opposed to continuous HMMs).

The calculated likelihoods are divided by the number of sample points to reduce the

effect of signing time variations on the algorithm. The difference between the likelihood

for a test signature and the average likelihood for the training set is used as an error

measure to determine the authenticity of a signature. The global and local errors are

combined using a Euclidean distance measure to reach a conclusion. Results show that

the combined use of global and local features perform better than any of the two parts

on their own.

McCabe [91] extended the idea of signature verification to a system where a sig-

nature is substituted by a written password. This means that not only does a forger

have to imitate the writing dynamics, but also guess the statics, i.e., the password.

A written sequence is normalized to a horizontal baseline. It is then segmented into

strokes delimited by consecutive minima of the absolute pen-tip velocity. Each stroke’s

net direction is obtained by placing the starting point of the stroke at the origin of the

Cartesian plane and observing the quadrant of the end- point of the segment. This
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results in a discretization of size four. An element for recording pen-up events is added

giving a codebook size of five elements. The sequence of discretized observations is

then modified by repeating symbols proportional to the length of a segment. This

modification enables the algorithm to make better use of the time warping ability of

the HMM. To model the sequence of symbols, he used a very compact HMM with only

five states.

4.4 Fourier transforms for signature modelling

The Fourier transform is probably the most widely used mathematical tool in signal

processing applications today. It has found its way into signature verification as well.

This section explores studies using what we deem to be more traditional signal pro-

cessing techniques including the Fourier transform and spectral analysis made possible

by it.

Different signature samples of a writer almost always exhibit instabilities of some

kind. Wen et al. [140] introduces a distortion measure to to deal with this fact. This

distortion measure is based on DTW and serves as a first step in the verification process.

If this phase cannot decide conclusively on the authenticity of a suspect signature,

a next phase based on spectral correlation is employed. For this, preprocessing of

a signature consists of resampling a linear interpolation of the signal and including

velocity information in the new signal. This signal is transformed into the frequency

domain by a FFT. Linear correlation is used to find the similarity between the spectra

of an input and reference signature. As usual, the correlation coefficient is compared to

a threshold value. In calculating the correlation coefficient, the weight of each frequency

component depends on the stability of the component as deduced from the training

set.

In [145], Wu et al. sampled coordinates of a signature are converted to the fre-

quency domain by the fast Fourier transform. To smooth out sharp spikes in this

frequency spectrum, the log of the Fourier coefficients are taken to represent the sig-
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nature as a logarithmic spectrum. Through principal component analysis based on

scatter matrices, only a small amount of these coefficients are extracted to represent a

signature. The similarity of the changing rate of coordinates between two signatures

can be characterized by the similarity of the coefficients of logarithmic spectrum. A

reference template for a signer is obtained by taking the mean values of the transformed

training sequences.

Dimauro et al. [28] used a local verification strategy based on spectral analysis

performed on fundamental components. Components are defined to be pieces of writing

included between a pen-down movement and the successive pen-up movement (called

pen-down singularity as opposed to pen-up singularities). It is claimed that these

singularities can occur only in positions which are rather constant in the signatures

of an individual. Stability in the positions of singularities allows identification of the

finite set of fundamental components of each signer. The existence of a finite set of

fundamental components in the signature of an individual makes forgery detection by a

component-oriented verification system possible. During enrollment, a knowledge-base

for an individual is created containing a component reference table and a structural

description graph.

The component reference table presented by Dimauro et al. [28] contains the fea-

tures representative of the classes of fundamental components of a signer. In this work,

the structural description graph reported the acceptable sequences of fundamental com-

ponents in the genuine signatures. For each component, they created a 5-dimensional

topological feature vector to describe the component. Then they used a k-means clus-

tering technique in three phases to detect different component clusters. They described

these phases as Initial Clusters Recognition, Clusters Growing and Final Clustering.

In their study, they found that small variation from these clusters confirm the stabil-

ity of these topological features in the writing process and their effectiveness for the

clustering of the fundamental components. The classification of each component of the

reference signature permits the identification of the sequences of fundamental compo-

nents. Their algorithm creates a graph allowing for the different component sequences
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as they occur within the training set. According to them, many differences may exist

among the components within each cluster such as subtle shape variations or dynamics.

To detect such differences among components belonging to the same class, they used

a sub-clustering procedure through a particular Fourier descriptors. In this work, they

used only the first few Fourier descriptors due to the band-limited nature of the signals

produced buy the human writing system. A maximum distance algorithm was then

used to split clusters into sub-clusters based on the differences in Fourier descriptors.

Verification is done in a two-step fashion. The first step dictates that for a suspect sig-

nature to be classified as authentic, its sequence of components must match a possible

sequence in the structural description graph of the claimed signer.

If this step is successfully completed, the second step verification is performed where

each cluster is verified individually. The Fourier descriptors are used in a distance

measure against a threshold value. If any component fails the test, the signature is

classified a forgery. The threshold value for each cluster is automatically derived using

the worst verification result obtained from the genuine components.

Velocity signals can be derived from positional signals. For the velocity signals vx

and vy, the autocorrelation functions Rvx and Rvy are calculated. These signals are then

regarded as the input and output, respectively, of a finite impulse response (FIR) filter

in [88]. The impulse response is obtained by minimizing the least-square error between

the autocorrelation signals. A reference vector of impulse responses is calculated from

random samples from the training set. The distance between the impulse response of a

suspect signature and the reference impulse response is compared to a threshold value

to decide on the authenticity.

4.5 Artificial neural networks

Artificial neural networks (ANN) are used today in a wide variety of applications.

Some of these include stock market prediction, medical diagnosis, seismic event pre-

diction, speech recognition and artificial vision to name but a few. The ANNs are an
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active research field and automatic signature verification is no exception. For a gentle

introduction to various different neural network architectures, see, [80].

The linear predictor coefficients (LPC) cepstrum is defined as the Fourier represen-

tation of the logarithmic amplitude spectrum of a signal. In [143], cepstral coefficients

derived from LPCs of the writing trajectories are calculated as the features of signa-

tures. These coefficients are fed into a multi-layer percpeptron (MLP) with multiple

input nodes and a single output node. The MLP is selectively trained with back-

propagation training meaning the weights are not updated if the desired output is

closer than a certain predefined value from the network output. For authentic sig-

natures, the desired output is set to one and for forgeries, it is set to zero. During

verification, the LPC cepstrum features of a signature are presented to the trained

network and if the output is larger than a threshold value (e.g., 0.5) the signature is

accepted as authentic, otherwise it is rejected. A potential problem with this system

is the need for negative examples, i.e., forgeries. These would be difficult to obtain for

a large scale production system and the use of random forgeries might result in less

than optimal performance.

The ANNs can learn from training examples and have the ability to compress

information. Compression is an important consideration (see, Bromley et al. [20])

because an 80 byte restriction is imposed on the study by the fact that the model needs

to be stored on a credit card magnetic strip. A signature is resampled to a fixed number

of points by interpolation. Two such resampled signatures are then presented to two

subnetworks based on the time delay neural network paradigm. The two subnetworks

are joined at the output layer and the objective is to minimize the cosine distance of

two feature vectors extracted by the subnetworks. The cosine distance is calculated as

f1.f2
|f1||f2|

.

Pairs of input are presented to the network. For pairs of genuine signatures, the

desired cosine distance are desired to be 1.0 and for genuine-forge pairs -1.0. Once the
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network is trained it can be used for verification by presenting training signatures to

one of the subnetworks and assuming the output of the network to be a multivariate

normal distributed feature. The decision process then becomes a task of inspecting the

likelihood value from such a density function.

A time delay neural network (TDNN) is an extension to the basic MPL. Tap-

delay lines are added on the input layer to facilitate sequences of data rather than

static patterns as is the case for the MLP. A signature is modeled by a TDNN in

Schmidt [119]. Feature signals such as velocity, direction and curvature of the pen

trajectory are added to the sampled signals. For a specific signer, a TDNN is trained

by creating a network with default structure and input window size and applying the

error backpropagation learning algorithm. Exemplars are presented in an iterative

fashion. Regulated structural changes are imposed and network input window sizes

changed according to a specific strategy until the network error ceases to decrease.

A syntactic neural net is a connectionist architecture with the ability to infer gram-

mars from training patterns. A strictly hierarchical context-free grammar is defined in

Lucas and Damper [85] to be inferred by such a network. A signature’s positional (x; y)

information is sampled from a tablet over time. The samples are quantised into an al-

phabet of eight direction vectors and a null vector for no movement. A non-temporal

connectionist parser (NCP) is then used for learning and verification. In theory, the

NCP learning and parsing time scale linearly with the pattern length.

Different neural architectures are compared in Lee [74]. A signature is normalized

by resampling from a linear interpolation to obtain a sequence of a predefined fixed

length. The absolute velocity is used as it is shift, rotation and translation invariant.

It is related to (x(t); y(t)) as

|υ(t)| =
√

△x(t)2 +△y(t)2.

Three different neural architectures are tested: time-delay neural network (TDNN ),

input-output neural network (IONN) and Bayes multilayer perceptron (BMP). These
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methods appeal to ASV since they act as single systems which automatically extract

discriminant features and execute optimal classification in the sense of the Bayes de-

cision rule. Only skilled forgeries are employed in the experiment as it is argued that

the real nature of the forgery space is unknown and testing results for random forgeries

hardly provides a high degree of reliability and robustness of a ASV system. The per-

formance results reported in the study reveal that it is essential to have forgery training

data for NN training. Their results showed that the BMP outperforms the other archi-

tectures suggesting it explores global features whereas the other explore local features.

The sequence used in this study is fairly long making it difficult for TDNN and IONN

to effectively discover discriminating evidence in local features if the dimension of the

data is not high enough as is the case here.

Tseng and Huang [134] used ART1 neural network to do signature verification.

The pressure pattern sampled from a digitizing tablet is quantized into a binary string

of fixed length. A reference pattern is obtained by using the mean pattern for the

training set. A vigilance parameter for the ART1 network is derived by inspecting the

similarity of the reference pattern to the training patterns. The ART1 network is then

trained in the normal sense. Verification is done by presenting a quantized pressure

pattern under suspicion to the input nodes and comparing the output to the vigilance

parameter to reach a verdict on the authenticity of a signature. The study states that

the intended use is for a first stage screening only in a verification system.

This scheme is applied to Chinese signature verification where there is generally

more pen-up/down transitions than in other languages. which makes this approach

viable. As can be seen from the mentioned studies, a common problem is the need for

negative examples (meaning forgeries) when training neural networks. ANNs function

by positioning decision surfaces between classes of data rather than positioning model

parameters on the data as is the case with for instance HMMs. This problem can

be bridged by applying random affine transformations to authentic signatures within

an acceptable threshold to fabricate forgeries. It remains to be explored though how

effective this approach will be compared to using real forgeries.
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4.6 Support vector machines

Support vectors is a technique developed by Vapnik [137] which tries to solve some of

the problems that are inherent to all machine learning approaches, namely the problem

of sparse data and generalization to unseen data.

The first problem usually occurs in real world applications when the data is of high

dimension, many features. What happens is that there usually isn’t enough data to

represent the classification task at hand very well. This is because all machine learning

applications act on empirical data which with all certainty has been sampled badly,

i.e., not from an even distribution of the problem space. This makes the training set

skewed and the performance of the system is downgraded accordingly.

Another problem is that if the data is sparse then how can the system even be

expected to generalize well? In support vector machines (SVM) these problems are

solved, somewhat, at the same time. Instead of trying to use all the data for construc-

tion of a hard border for choosing which class a new data sample is to be classified for,

as is the case in artificial neural networks, the SVM pick the data which represents the

task at hand the best, these data samples are called the support vectors, and use these

to construct the decision border. The advantage of this approach is that the system

will not be as sensitive to outliers that will distort the position and orientation of the

border. The system constructed thus might not be the best, i.e., best at classifying

unseen new data, that might exist but it is the best that can be achieved given data at

hand and it constructs an optimal decision border where optimal is defined as there are

no misclassifications, or the least amount if no misclassification is impossible, and that

the support vectors closest to the hyper plane are maximal, i.e., the shortest distance

to it.

In support vector machine’s framework, one of the most widely used test is the

Neyman-Pearson test. In [136] many physical situations it is difficult to assign realistic

costs or a priori probabilities. A simple procedure to bypass this difficulty is to work

with the conditional probabilities PF and PD. In general, we should like to make
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PF , as small as possible and PD as large as possible. For most problems of practical

importance these are conflicting objectives. An obvious criterion is to constrain one of

the probabilities and maximize (or minimize) the other. A specific statement of this

criterion is the following Neyman-Pearson criterion:

Constrain

PF = α′ ≤ α

and design a test to maximize PD (or minimize PM) under this constraint. The solution

is obtained easily by using Lagrange multipliers. We construct the function F ,

F = PM + λ[PF − α′] (4.6.1)

or equivalently,

F =

∫
z0

Pr|H1(R|H1)dR + λ

[∫
z1

Pr|H0(R|H0)dR− α′
]

(4.6.2)

Clearly, if PF = α′, then minimizing F would minimize PM . or

F = λ(1− α′) +

∫
z0

Pr|H1(R|H1)− λPr|H0(R|H0)dR. (4.6.3)

Now observe that for any positive value of λ an LRT will minimize F . Note that a

negative value of λ gives an LRT with the inequalities reversed. This follows directly,

because to minimize F we assign a point R to Z0. only when the term in the bracket

is negative. This is equivalent to the test

Pr|H1(R|H1)

Pr|H0(R|H0)
≤ λ, assign point to z0 or, say H0. (4.6.4)

The quantity on the left is just the likelihood ratio. Thus F is minimized by the

likelihood ratio test. To satisfy the constraint we choose λ so that PF = α′. If we
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denote the density of ∧ when H0 is true as P∧|H0 (
∧
|H0), then we require

PF =

∫ ∞

λ

P∧|H0

(∧
|H0

)
d
∧

= α′. (4.6.5)

To obtain the threshold value, we solve equation (4.6.5). The value of λ that satisfies

equation (4.6.5) will be non-negative because P∧|H0 (
∧

|H0) is zero for negative values

of h. Observe that decreasing h is equivalent to increasing Z1, the region where we say

H1. Thus PD, increases as α decreases. Therefore we decrease α until we obtain the

largest possible α′ < α. In most cases of interest to us PF is a continuous function of

h and we have PF = α. We shall assume this continuity in all subsequent discussions.

Under this assumption the Neyman Pearson criterion leads to a likelihood ratio test.

Support vector machines are similar in architecture to multilayered artificial neural

networks, both consists of an input layer, a hidden layer and an output layer. They

both use the hidden layer to lift the input into a higher layer feature space so as to

facilitate finding a decision border, a hyper plane in higher order dimensions, higher

than 2. But the way that ANNs and SVMs find these are completely different as seen

in the figure 4.6.1 below.

The reason for the difference of placement of the decision borders between the ANN

and the SVM is in that the criterion for error minimization in the ANN is focused on

minimizing the misclassification of data in the training set, empirical risk minimization

(ERM) whereas the SVM will try to do this based on expected new data, structural

risk minimization (SRM). The ERM in theory is good as it is based on the training set

and will try to minimize the error of misclassification on this data set but in practice

it only leads to over fitting this data and loss in generalization. If the training set

was infinitely large, and rich enough, then the law of large numbers would lead to the

convergence of the ERM with the actual risk.

The SRM on the other hand tries to set an upper bound on the expected risk; it

analyses the data to try to find the structure of it, finding and choosing the support

vectors. This risk is maybe not better than ERM if there is enough data, but it will
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Figure 4.6.1: ANN decision borders vs SVM optimal decision borders

if the data is sparse. In general this approach will lead to better generalization. To

better understand how this risk minimization scheme works one can imagine finding

the data points that are closest to each other from the different classes, drawing two

parallel lines between them and then imagine to push these lines out against the data

points so that the distance between the line will be the greatest. The next step is to

find the decision border and which is easy once the two other lines orientation and

positions have been established. It is only a matter of finding a line parallel to the

other two lines that is exactly in the middle of them to find the decision border.

Support Vector Machine Kernels

Now suppose that it’s not possible to find a way of putting the first two lines in between

the two classes, this is normal in real world data. One thing that can be done, and

is done in SVMs, is to lift the data into a higher dimensional feature space, with the

help of a transfer function, than the input space. This will hopefully make it easier to

separate the two different classes. This is regularly done in artificial neural networks
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in the hidden layer, and also in SVMs, but due to the more complex risk minimization

scheme in an SVM this has to be done with help of kernels.

A kernel is a function that takes a pair of transfer functions as its arguments.

K = (x, x′) = [ϕ(x), ϕ(x′)].

The inner product in feature space is an equivalent kernel in input space. There are

however certain conditions that kernels function have to fulfil to be able to be used in

a support vector machine. The kernel has to be symmetric positive definite and it also

has to satisfy Mercer’s conditions ([137]):

∫ ∫
K(x, x′)g(x)g(x′)dxdx′ > 0, g ϵ L2,

where

K = (x, x′) =
∞∑
m

amϕm(x)ϕm(x
′), am ≥ 0.

In the above, ϕ is a mapping from the set of observations to the feature space.

Linear and Polynomial Kernel

The simplest kernel, the one described in figure 4.6.1, is the linear kernel.

K(x, y) = x • y, where x and y are input sequences.

This kernel assumes that the time series are similar if they have been generated by the

same autoregressive model where an autoregressive model is a model to predict the

future of a time series. How does this relate to the linear kernel? The decision function

of a linear kernel takes the form

f(x) = w • x+ b,
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and when the decision function is used to predict time series

xT = f(xT−1, . . . , xT−k) =
k∑

t−1

wT−t + b.

The result is an statistical autoregressive model of order k9. A simple extension to the

non-linearly separable case is to expand the linear kernel to a polynomial kernel.

4.7 Summary

In this chapter, we explained how Dynamic time wrapping, hidden Markov model,

fourier tranformation and artifical neural network are used for signature modelling.

We are also discussed the Neyman Pearson and support vector machines. In the next

chapter, we are going to discuss concepts of Markov chains and hidden Markov model

which were used in the implementation.

 

 

 

 



Chapter 5

Signature modelling using HMMs

A hidden Markov model is a statistical model in which the system being modeled is as-

sumed to be a Markov process with unknown parameters; the challenge is to determine

the hidden parameters from the observable data. In this chapter we will explain the

Markov chains and hiddin Markov models. Then it comes to the explanation of dura-

tion modelling and its possible extensions. Finally, concludes with the brief summary

of the chapter.

5.1 Introduction

The theory of hidden Markov models (HMMs) was first introduced in a series of papers

by Baum and colleagues in the late 1960’s [6, 7, 8, 9, 10] at Institute for Defense Analysis

(IDA). In the 1970’s, Baker at carnegie-mellon univeristy, jelinek at IBM, and other

applied HMMs to the problem of speech recognition. The success of these systems

dramatically increased interest in applying HMMs to continous speech recognition and

other difficult pattern recognition problems such as signature verification. As the work

described in this thesis uses hidden Markov models extensively, we have included a

chapter on the topic. It should be noted however that this chapter will not attempt to

replace the excellent introductory work on HMMs found in papers such as the seminar

tutorial by Rabiner [110].
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HMMs are powerful tool for modelling time series data. They are used in speech

recognition systems, biometrics, computational biology, and in the other areas of patter

recognition and artificial intelligence. In present, HMMs have also been used in com-

puter vision applications such as gesture recognition, image sequence modelling and

object tracking. Hidden Markov models extend statistical models known as Markov

chains. Markov chains arise naturally in biology, psychology, economics and many

other sciences. There are two types of HMMs classified by their observation densities:

discete-HMMs and continuous HMMs. We shall proceed with an overview of Markov

chains and then extend the concept to hidden Markov models.

The rest of the chapter is organized as follows. We detailed about Markov chains and

hidden Markov models in Section 5.2. Then explained about the duration modelling in

section 5.3. Then we discussed about some other possible extentions in hiddne Markov

models in section 5.4. Finally, we give a brief summary in Section 5.5.

5.2 Markov chains and HMMs

Markov chains

Real-world processes generally produce observable outputs which can be characterized

as signals of either discrete (e.g., weather classified into sunny, cloudy and rainy) or

continuous nature (e.g., features extracted from speech signals). The non-deterministic

of the weather state is an example of a system which may be expressed (i.e., modelled)

by a Markov chain. Such a model can then be used to predict the likelihood of a certain

state some time in the future.

More precisely, Markov chains are used to model phenomena exhibiting a sequence

(i.e., chain) of fixed length periods during which any one of a set of N distinct states,

S = (S1, S2, . . . , SN) can be assumed. Transitions between states occur over time and

are expressed by probabilistic means. A matrix of transition probabilities links states

by giving the probability of being in a state for the next time period, given the current
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state of the system

aij = P (qt = sj|qt−1 = si), 1 ≤ i, j ≤ N.

The entries aij need not necessarily be non-zero for all i and j; if they are, then the

model is said to be a fully connected model or ergodic model. The assumption that

the state at a certain time is dependent only on the previous state, is called the first

order Markov assumption. This need not necessarily be the case. If n is the length

of the state history in the choice of the next state, the model is said to be an n-

th order Markov model but, as is most often the case, n = 1 implying first order

Markov models. The Markov assumption simplifies matters significantly, however, for

many complex processes the first order assumption may lead to a less than accurate

expression by the model. Nevertheless, since such simplified systems may often be more

readily subjected to analysis, we bring ourselves to live with the shortages, baring in

mind the possible inaccuracy of the results. We may perhaps compensate for them in

other ways through domain specific knowledge in order to tap from the sound formalism

of Markov models and especially hidden Markov models. Recently, it has been shown

how efficient higher order hidden Markov models can be realized [32]. Figure 5.2.1

depicts all possible first order transitions between our chosen weather states. In a fully

connected (ergodic) model configuration with N distinct states, there are N2 transition

probabilities which, as previously stated, can be collected into a state transition matrix

A. For the weather example with

S = {S1 = sunny, S2 = cloudy, S3 = rainy},

the transition probability matrix becomes

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
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Figure 5.2.1: A case of first order HMM (Weather example)

Entry aij , with i indicating the row and j indicating the column, is the probability of

making the transition from state i to state j. Thus, a22 is the probability of the weather

remaining cloudy given that it was cloudy for the previous time period. Because a aij

is interpreted as a probability, the row entries must adhere to stochastic constraints

and

aij ≥ 0, 1 ≤ i, j ≤ N,

with

n∑
j=1

aij = 1, 1 ≤ i ≤ N.

The probabilities remain stationary over time which often proves to be an unrealistic

assumption.

There is still one missing part of information in defining the weather Markov model;

which is the vector

π = (π1, π2, π3),

that denotes what the probable state of the weather was at time t1.
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We have now fully defined a first order Markov model

M = (S, π,A),

with

• S : states,

• π : starting state probabilities, and

• A : transition probabilities.

Such a system is called a Markov process.

We could now ask questions regarding the model for instance: What is the proba-

bility that the observation sequence

O = {S3, S3, S3, S1, S1, S3, S2, S3},

was generated by the model M? That is, what would the model say is the chance

of having the weather start out as rainy and then be rainy-rainy-sunny-sunny-rainy-

cloudy-rainy. This can be expressed as

P (O|M) = P (S3, S3, S3, S1, S1, S3, S2, S3|M)

= P (S3).P (S3|S3).P (S3|S3).P (S1|S3).P (S1|S1).P (S3|S1).P (S2|S3).P (S3|S2)

= π3.a33.a33.a31.a11.a32.a23.

Another question which leads to the notion of a probability density function is: Given

the model is in a known state, what is the probability that it would stay in that state

for exactly d days? The observation sequence would be

O = {S1
i , S

2
i , S

3
i , ........., S

d
i , S

d+1
j ̸=i },

where the superscripts merely indicate the time instance. We express the probability
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as

P (O|M, q1 = Si) = 1.(aii)
d−1(1− aii) = pi(d),

with the 1 referring to the certainty of our knowledge about what the state at t1 is

and (1− aii) referring to the mandatory transition out of state i. We call this quantity

pi(d) the discrete probability density function of duration d in state i. Using pi(d) we

can now calculate the expected duration of remaining in state i, denoted by d̄i, given

the system started in state i by

d̄i =
∞∑
d=1

dpi(d)

=
∞∑
d=1

d(aii)
d−1(1− aii)

= (1− aii)
∞∑
d=1

[
(d− 1)(aii)

d − 1 + (aii)
d − 1

]
= (1− aii)

(
aii

(1− aii)
2 +

1

1− aii

)
=

aii
1− aii

+ 1

=
aii + 1− aii

1− aii

=
1

1− aii
,

using a well known infinite series identity

∞∑
n=1

nxn =
x

(1− x)2
.

The above model is called an observable Markov model since the output of the process

is a set of observations at each instance of time where each model state corresponds to

an observable event. There is however instances where this modeling technique is too

limited to model the process under inspection. This leads us to the notion of a hidden

Markov model.
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Hidden Markov models

When listening to a voice, the sound one hears is the product of state changes in the

vocal and nasal tracts, respectively. Variables include the size of the throat, position of

the tongue and radiation effects at the lips. We thus have an observable speech signal

and a hidden vocal system which are non-trivialy related.

A hidden Markov model (HMM) extends the concept of a Markov chain by at-

taching an observation probability distribution to each state in the model. Within the

framework of the theory, this effectively hides the states previously visible in Markov

chains as each state has an ‘opinion’ about any observation value. We now have the

ability to attach arbitrary semantics to model states which might not be readily ac-

cessible through observation in the process being modelled. This means that we can

better model processes where we cannot directly observe the process states but instead

have access to the outputs resulting from the internal state changes in the process.

Model states do not necessarily have to correspond to some physical quantization

of process states. Instead, they can be any abstraction with sensible semantics within

the context of the process being modelled and the observations sampled from such

a process. It is up to the modeller to decide on the semantics of a model. Sensible

semantics will assist in initializing the model to startup values which will converge

faster during discovery of the model parameters. The theory provides for a means to

infer model parameters from a training set of observation sequences in a way which

maximizes the likelihood of the sequences being generated by the model. Furthermore,

we can calculate the likelihood that a sequence was generated by a model and derive

the most probable state sequence corresponding to an observation sequence.

As stated, a hidden Markov model augments a Markov chain by coupling observa-

tion symbol distributions to the model states. As with Markov chains, we distinguish

between

• discrete models where the process observations assumes one of a finite set of

possible values (this calls for a probability distribution of the observations at
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each state),

• continuous models where the process observations are of continuous nature. This

calls for a probability density function for the observations at each state.

A HMM is thus defined as

• S : hidden states,

• π : starting state probabilities,

• A : transition probabilities i.e., aij = P (qt = Sj|qt−1 = Si),

• B : observation symbol of probability distributions, i.e., P (o|Si) or probability

density, and functions ps(o) where o is either a discrete or continuous variable.

The complete parameter set of the model is indicated by the compact notation λ =

(S, π,A,B).

To extend the weather example we might imagine a scenario where the weather

state is not observable any more. Instead we have access to readings from a barom-

eter which measures atmospheric pressure. We can quantify such a reading into low,

medium and high pressure to obtain discrete pressure values. We denote such a set

of discrete observed values as V = (υ1, υ2...., υM) with M = |V |, i.e., Vweather =

(low, medium, high).

Figure 5.2.2 shows a graphical representation of the Markov model extended to a

HMMwith the previously visible weather states now hidden and the barometer readings

observable. The figure illustrates how probability distributions and density functions

for discrete and continuous models, respectively, are coupled to states. The connection

from a hidden state to an observable value represents the likelihood of generating the

observable value, given that the model is in the hidden state. Thus, the likelihood of

rain at a given time depends both on the weather state at the previous time instance

and the barometer reading for the current time instance. The observation probability
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Figure 5.2.2: A case of higher order HMM (Weather example)

distribution in state j can be expressed as

bj(ot) = P (ot|qt = Sj); 1 ≤ j ≤ N, 1 ≤ k ≤M.

In the discrete case, probabilities can be arranged in matrix form called a confusion

matrix with a row assigned to each hidden state Si and a column to each observable

value ot. In general, we will refer to the probability of generating symbol ot when in

state Si as bi(ot).

The observable event for a particular hidden state is a stochastic variable and

therefore the entries in any row of matrix B satisfy the condition

M∑
j=1

bij = 1, 1 ≤ i ≤ N.

Many signals are continuous in nature and although a continuous signal can be quan-

tized by one of the many vector quantization techniques available, information is likely

to be lost in the process which could affect modelling performance to some extent. It is

therefore advantageous to have HMMs with continuous observation density functions
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such as Gaussian mixtures. In this case, we then have the condition

∫ ∞

−∞
bj(x)dx = 1, 1 ≤ j ≤ N.

When working with continuous HMMs, an assumption about the form of the density

function has to be made. In some studies, see, e.g., Kashi et al. ([65]), prefer to

discretize continuous values to avoid making this assumption. Another approach is to

employ neural networks to learn the form of the density functions [43].

This weather model can be used to answer questions regarding various weather

related issues. For instance, we want to use the model in such a way as to determine

what the most probable season is in which a certain string of barometer measurements

were made. This brings us to three problems associated with HMMs as generally

itemized in the literature:

Problem 1 (Observation sequence likelihood): Given an observation sequence O =

o1o2.....oT and a HMM λ, how do we efficiently compute P (O|λ), i.e., the probability

of the observation sequence being generated by the model?

Problem 2 (Most Probable State Sequence (Viterbi Algorithm)): Given an observa-

tion sequence O = o1....oT and a model λ, what state sequence Q = q1......qT best

explains the observations? Several optimality criteria exist and the appropriate one to

use depends on the problem at hand.

Problem 3 (Baum-Welch Parameter Re-estimation): Finding a suitable set of param-

eters to model a process. The question now arises what the word suitable suggests.

We would like to maximize the probability P (O|λ) where O is an observation sequence

sampled from the process being modelled and forms part of a set of training sequences

to deduce λ from.

Below we discuss each of the above mentioned problems in detail.

Problem 1: We want to compute the likelihood of the observation sequence O of

length T being generated by the model λ, i.e., P (O|λ).
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Figure 5.2.3: Forward procedure for the partial observation sequence

Figure 5.2.3 illustrates the observation sequence low low medium high and the

possible hidden states at each time instance as a trellis. The most straightforward way

of calculating P (O|λ) is through enumerating every possible state sequence of length

T and summing. Without documenting this process, we conclude by stating that such

an approach is computationally unfeasible due to the complexity being in the order

of O(TNT ). This led to the development of what is known as the forward procedure.

The procedure is made possible by the time invariance of the probabilities in HMMs.

We define a variable (called the forward variable) as

αt(i) = P (o1, o2, . . . , ot; qt = Si|λ),

which is the probability of the partial observation sequence o1, o2, . . . , ot and the model

λ being in state Si at time t. An inductive calculation of αt(i) is

1. Basis for induction:

α1(i) = πibi(o1), 1 ≤ i ≤ N.

The forward probabilities are initialized to be the joint probability of starting
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out in state Si and the first observation symbol being o1.

2. Induction step:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(ot + 1); 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N.

3. Termination step:

P (O|λ) =
N∑
i=1

αT (i).

The desired probability is given by the sum of the terminal forward variables

αT (i). The time complexity of this procedure is in the order of O(N2T ) which is

a huge improvement over O(TNT ).

Above mentioned second step expresses the fact that any hidden state in the vertical

columns of the trellis of Figure 5.2.3 can only be reached via the N hidden states in

the previous column, i.e., previous time instance. From this, we deduce that to any of

the N hidden states at time t, 1 ≤ t ≤ T , there exist N t−1 distinct state sequences or

paths leading to this state from the states at time t = 1. This is illustrated in Figure

5.2.4. Due to the time invariance of A and B, we can use induction to calculate a

forward variable for a specific state at a specific time rather than trace all the possible

sequences the entire way back to time t = 1. We therefore calculate αt+1(j) as the

sum of the forward variables for the partial observation sequences up to time t over all

the hidden states, each time multiplying by the transition probability for being in the

hidden state and making a transition to state Sj (which is the terminal state for the

value being calculated). This sum is then multiplied by the observation probability for

symbol ot+1 observed when in state Sj.

Problem 2: We want to find a hidden state sequence which best explains the obser-

vation sequence. There is no exact solution to this problem due to the uncertainty

of which optimality criterion to use. The most popular approach is called the Viterbi
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Figure 5.2.4: Most probable state sequence

algorithm which stems from dynamic programming methods. This algorithm seeks to

find a single best hidden state sequence through the graph of Figure 5.2.3 every time

inspecting bi(ot) to make its decisions. To classify a sequence as being best, it needs

to be enumerated and score a higher value than all other sequences in the graph. A

hidden state sequence Q is enumerated for observation sequence O through

πq1bq1(o1)
T∏
t=2

aqt−1qtbqt(ot).

This action is equivalent to maximizing P (Q|O, λ). For each intermediate and termi-

nating state in the trellis of Figure 5.2.3 there is a most probable path to that state.

So, for example, each of the three states at t = 4 will have a most probable path to it,

perhaps as in Figure 5.2.5. The Viterbi algorithm, rather than enumerating all possible

sequences in a brute force fashion and selecting the maximum scoring one, goes about

recursively to find the sequence as follows.
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Figure 5.2.5: Possible state sequences with the highest likelihood

We define the quantity

δt(i) = max
q1,...,qt−1

P [q1, . . . , qt = Si; o1, . . . , ot|λ],

which is the best scoring sequence of length t ending in state Si. By induction we have

δt+1(j) = [max
i
δt(i)aij]bj(ot + 1).

This quantity will facilitate in finding the highest score; however, the state chosen to

maximize the quantity at each time instance, needs to be remembered if the actual

sequence is to be reconstructed after the search terminates. For this purpose, an array

t(j) is used. The complete recursive algorithm is then

1. Basis for induction

δ1(i) = πibi(O1), 1 ≤ i ≤ N, (5.2.1)

ψ1(i) = 0. (5.2.2)
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2. Inductive step

δt(j) = max
1≤i≤N

[δt−1(i)aij]bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N, (5.2.3)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij], 2 ≤ t ≤ T, 1 ≤ j ≤ N. (5.2.4)

3. Termination

P ∗ = max
1≤i≤N

[δT (i)], (5.2.5)

qt∗ = arg max
1≤i≤N

[δT (i)]. (5.2.6)

4. Sequence reconstruction

q∗t = ψt + 1(q∗t+1), t = T1, T2, . . . , 1. (5.2.7)

The above algorithm, known as Viterbi algorithm, provides a computationally efficient

way of analyzing observations of HMMs to recapture the most likely underlying state

sequence. It exploits recursion to reduce computational load, and uses the context of

the entire sequence to make judgements, thereby allowing a good analysis.

Problem 3: We want to adjust the model parameters λ as to maximize the prob-

ability P (O|λ) for a given O. This is a learning problem and for any finite observation

sequence as training data, we can estimate λ so that, at best, P (O|λ) will be locally

maximized. This section will present a re-estimation procedure for iteratively updat-

ing and improving λ, called the Forward-Backward or Baum-Welch algorithm. This

re-estimation procedure is based on the principal of maximum likelihood estimation

(MLE). With MLE, the parameter(s) describing a likelihood function (i.e., the param-

eters of the HMM) are discovered by holding fixed the underlying random variable

and varying the function parameters in such a way as to maximize the function. The

Baum-Welch re-estimation formulae described here converges to a parameter set λ
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for an HMM which maximizes the function [10]. Any good mathematical statistics

textbook can be consulted for a description of MLE [33].

We define a variable (called the backward variable) as

βt(i) = P (ot+1, . . . , oT |qt = Si, λ),

which is the probability of the partial observation sequence from t+1 to the end, given

the model λ is in state Si at time t. As with the forward variable, we can solve for

βt(i) inductively as follow

1. Basis for induction

βT (i) = 1, 1 ≤ i ≤ N.

2. Inductive step

βt(i) =
N∑
j=1

aijbj(ot+1)βt+1(j), t = T1, . . . , 1, 1 ≤ i ≤ N.

Furthermore, we define

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ),

which is the probability of being in state Si at time t and state Sj at time t+ 1 given

the model λ and observation sequence O. We can write ξt(i, j) in terms of the forward

variable introduced during the solution to problem 1 and the backward variable as

follow

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(ot+1)βt+1(j)

.

The denominator serves to normalize the term as to make it a probability measure.
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Figure 5.2.6 graphically illustrates the calculation with aijbj(ot+1) providing the link

between the partial sequence probability up to time t ending in state Si and the partial

sequence probability from time t + 1 onwards starting in state Sj. Having obtained

ξt(i, j), we define

γt(i) =
N∑
j=1

ξt(i, j),

which is the probability of being in state Si at time t, given O and λ. Summing γt(i)

over time gives the expected number of times that state Si will be visited or when time

t = T is excluded, the expected number of transitions from state Si

Figure 5.2.6: Forward-Backward procedure to find the likelihood

Γ(i) =
T−1∑
t=1

γt(i).

Likewise, summing ξt(i, j) over time gives the expected number of transitions from

state Si to Sj:

Ξ(i, j) =
T−1∑
t=1

ξt(i, j).
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Using the defined quantities, the Baum-Welch algorithm re-estimates the HMM pa-

rameters as follows

π = γ(i),

aij =
Ξ(i, j)

Γ(i)
,

bi(k) =

∑T
t=1 ξt(i, j) and ot = υkγt(j)∑T

t=1 γt(j)
.

If λ did not already define a critical point of the likelihood function, in which case the re-

estimation will have no effect, the new parameter set λ obtained from the procedure,

describes a model more likely to have produced the observation sequence O. The

procedure preserves stochastic constraints for the HMM parameters, viz.,

N∑
i=1

πi = 1,

N∑
j=1

aij = 1, 1 ≤ i ≤ N,

M∑
k=1

bj(k) = 1, 1 ≤ j ≤ N.

Unfortunately, some difficulty arise when implementing HMMs in finite computing

systems. The calculations involved when working with HMMs, often multiplies prob-

abilities which are by definition less than 1. When the length of a sequence is large

enough, the computed values generally decrease beyond the precision range of most

computing machines. A procedure does exist which scales calculated values to fall

within a computable range and results in probabilities in the log domain. This proce-

dure can be found in [110] and will not be presented here. Instead, we adopt another

training procedure based on the Viterbi algorithm which provides an easier way to

overcome this problem. The algorithm has the added advantage that it enables faster

training than the Baum-Welch re-estimation procedure.
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Viterbi training procedure

The Viterbi algorithm described previously in the above, finds the most probable state

transition sequence a process undergoes whilst generating a particular observation se-

quence. The forward and Viterbi algorithms together with a hidden Markov model

configuration both define probability density functions over a space of observation se-

quences. The algorithm can thus calculate the likelihood that an observation sequence

was generated by a model. The likelihood calculated by the Viterbi algorithm dif-

fers from that calculated by the forward algorithm as explained in the above section.

This suggests that the overall shape of the probability density function defined by the

Viterbi procedure differs slightly from that defined by the forward procedure. Thus,

the Viterbi training algorithm maximizes the likelihood of the training set for a dif-

ferent density function than does the Baum-Welch procedure. Experience has shown,

however, that the results obtained by using this approach do not significantly differ

from those obtained by using the Baum-Welch algorithm; yet, they require far fewer

computations.

Before explaining the training algorithm, we show how the computations of the

Viterbi algorithm are modified to overcome the problem of values exceeding the pre-

cision range of computers [65, 110]. The idea is to perform calculations in the log

domain. The Viterbi algorithm is modified by changing Equation (5.2.1) to

δ1(i) = log(πi) + log(bi(O1)), 1 ≤ i ≤ N,

Equation (5.2.3) becomes

δt(j) = max
1≤i≤N

[δt−1(i) + log(aij)] + log(bj(O1)), 2 ≤ t ≤ T, 1 ≤ j ≤ N.

This results in the calculation of a log-likelihood with Equation (5.2.5) becoming

log(P ∗) = max
1≤i≤N

[δT (i)] .
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Once a model configuration has been decided on, the model parameters need to be dis-

covered from a training set of sequences. Prior knowledge about the problem domain

and the semantics of the model states assist in initialization of the model parameters

before training commences. This often proves to be crucial in achieving a good rep-

resentation of the modelled process. It is fairly common for transition variables to be

initialized to random values maintaining stochastic constraints. However, applying this

approach to set initial values of the probability distributions/density functions is most

likely to result in far less than optimal parameter discovery. In Chapter 6, various ini-

tialization schemes are employed prior to training models. Initialization can be seen as

biasing the training procedure and the challenge thus resides in finding a good model

bias for the problem at hand. A description of the Viterbi training algorithm is now

presented.

The Viterbi algorithm is conducted in a batch fashion meaning that all the training

sequences are used during a single re-estimation iteration. From the training sequences

OK , we re-estimate λ by

• the starting probability for state Si as

πi =

∑
qk1 = Si

K
, 1 ≤ i ≤ N,

i.e., the number of times a computed state sequence starts in state Si as a fraction of

the number of training patterns

• the transition probability for state Si to Sj as

aij =

∑T−1
t=1 q

k
t = Si and qkt+1 = Sj∑T−1

t=1 q
k
t = Si

, 1 ≤ i, j ≤ N,

i.e., the number of times a transition is made from state Si to Sj as a fraction of the

number of times state Si was visited the observation symbol probability (in the discrete
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case) for state Si and observation symbol υj as

bij =

∑
t q

k
t = siot = υj∑T−1
t=1 q

k
t = Si

, 1 ≤ i ≤ N, 1 ≤ j ≤M,

i.e., the total number of times the model was in state Si and generated observation

symbol υj as a ratio of the number of times Si was visited. In the continuous case

the observation value υj contributes to an average observation value for state Si and a

second traversal of the sequences is needed to determine the standard deviation from

this average. These values are then used to define a probability density function.

During training, we have the option of imposing a restriction on the allowed terminal

state used by the alignments. This means we can say that an alignment may not

terminate further to the left from the rightmost state (in the case of left-right models

that is) than a preset distance. Our experience have shown that this approach results

in models with a better ability to distinguish between true and false exemplars. The

Viterbi training algorithm is also described brie in [65].

As can be seen, the Viterbi training algorithm is straight forward and contains less

calculations than the Baum-Welch algorithm. It should be noted that this algorithm

is based on the assumption that a most probable state sequence can be matched to

an observation sequence. This means that prior to training the model needs to be

initialized in such a way that from the outset, training sequences are close enough to

model state observation distributions to prevent under due to uncomputable likelihood

values. This stresses the importance of a good biasing initialization prior to the re-

estimation training procedure.

State transition configurations

As explained in the above Section, a model is considered ergodic when any state in the

model can be reached from any other state in a single transition. This however need

not always be the case. In a left-right (Bakis) HMM [65, 110, 156] states are numbered

in ascending order; a system either remains in the same state, i.e., a self-transition,
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or it transitions to a state with a higher index. In such a model, the initial state

probabilities, Π , has the property that only the left-most state has a non-zero starting

probability, i.e., π0 = 1 and {π1, . . . , s} = 0. This type of model has been found to

account for the observed properties of certain types of signals better than does the

ergodic model. In a variant of this model, parallel paths through the model are also

allowed.

Figure 5.2.7 shows a graphical depiction of these types of models. Conceptually,

any configuration is possible and will have no in on the re-estimation procedure. State

transitions set to zero when re-estimation commences, will remain zero. The converse

is not true however, meaning non-zero transitions could very well become zero as the

re-estimation procedure iterates.

Figure 5.2.7: Types of hidden Markov models

Figure 5.2.7 helps us to understand the conceptual difference between left-right and

ergodic models. With Left-right models, the observation density functions for states

at certain o sets from the left of the state graph, correspond closely to actual sequence

values at similar o sets from the beginning of the sequence. A left-right model thus act

as a sequence memory allowing only for marginal deviations from a representative se-

quence both in sequence values (vertical deviations) and timing information (horizontal

deviations). We will thus use left-right models when we want to model a signal source
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which produces fairly similar sequences, i.e., stationary processes. Ergodic models, on

the other hand, allow for self-similarities within the signal as any state in the model

can be reached at any stage. This allows for better generalization; however, the set of

sequences which will match the model is not as intuitively predictable as is the case

with left-right models. Ergodic models can thus match unseen sequences disparate

from those in the training set.

5.3 Duration modelling

As described earlier in the section 5.2, the state duration probability density function

is

P (O|M, q1 = Si) = 1.(aii)
d−1(1− aii) = pi(d),

based on the value of the self-transition probability a ii of a state. This density function

decays exponentially and is not suitable for many physical signals. An explicit way of

modelling state duration is presented in [110]. This, however, results in a quadratic

increase in computational cost. An alternative heuristic which alters the computed

log-likelihood in a postprocessing phase according to duration probability histograms

derived from a segmental k-means procedure can be used instead.

Duration modelling is achieved, Kashi et al. [65] by introducing a number of unit-

duration sub-states replacing each original model state. The transitions from one state

to the sub-states of the next state approximates the wanted transition probability

density function. This approach has the disadvantage that it significantly increases the

number of model parameters. Figure 5.3.1 shows an example of such a substitution.

we explore a simple way of limiting the maximum number of self-transitions in

a state by restricting the Viterbi algorithm to allow only a specified number of self-

transitions in each separate state. This is realized by maintaining a duration count for

each state and updating this parameter along with the other model parameters during
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re-estimation. With each re-estimation iteration, the duration count for a given state

is decremented by one if none of the training sequences result in a Viterbi alignment

which remains in that state for exactly

Figure 5.3.1: Duration modelling sub-states

the allowed count. If, however, there is a state sequence which remains in the state for

the maximum allowed count, the allowed duration count is incremented by one. This

does not achieve the same effect as the duration modelling described in the previous

paragraphs. It does however enable a model to disallow sequences which scores high

due to the entire sequence consisting of values close to the mean of a single state’s

observation density function.

With regards to our application of HMMs that we will be presenting in chapter 6,

the possibility to restrict large deviations from the training sequences used to build

the models, is an important factor. The ability to limit the number of times a state

may be repeated in a highest probability state sequence, prevents an alignment with

sequences which match the observed values in certain states for excessive periods of

time. Together with the restriction on the allowed terminal state, this form of duration

restriction forces a sequence to more or less conform to the profile of the entire length

of training sequences. It will prohibit sequences which deviate from such a model to

score high likelihoods when the alignment is calculated.
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5.4 Possible extensions

A number of other extensions to HMMs have also been proposed particularly as far

as recognition of complex gestures are concerned [15, 142]. Many hybrid combinations

of HMMs and Artificial Neural Networks (ANNs) have also been proposed in the field

of automatic speech recognition [12, 13, 19, 63, 122, 135, 161]. It is shown how ANNs

can be used to learn the observation symbol distributions in states, relieving us from

having to make assumptions about the shape of the distributions. Furthermore, ANNs

are used to perform input transformations on the data before presenting it to a HMM.

Gradient descent learning rules adapted from have also been applied to HMMs in an

attempt to create a unifying learning method to better integrate HMMs and ANNs.

5.5 Summary

In this chapter, we have discussed important notions of signature modelling using

Hidden Markov models. These HMMs are statistical modelling tools for time series

modelling. They have been applied to various fields of research with a great deal of

success. In this chapter therefore, we provided the necessary background on hidden

Markov models to understand the next chapter which applies HMMs to automatic

signature verification. In the next chapter, we will discuss about the implementation

of hidden Markov model for online signature verification. We will also present different

experiments to evaluate the performance of our proposed modelling approach.

 

 

 

 



Chapter 6

Data training and experimental

results

In this chapter, different experiments on online signature verification with hidden

Markov model have been carried out. The objectives of experiments are to investi-

gate the reliability of online signature verification system with hidden Markov model

and find the out the relationship and dependence between different extracted features

and to find out the best combination of features to represent a signature are discussed.

6.1 Introduction

Automatic signature verification has been studied in the last tow decades. Nowadays,

the performance of this approach is being challenged, as skillful forgers can imitate

the shape of a signature easily. For possibilities of improvements, automatic signature

verification has being studied. Automatic signature verification includes both static

and dynamic features for verification. Static features refer to the information that

cab be extracted from the signature shape such as point coordinates, angles between

pint pairs, width and height. Dynamic features refer to the information that describes

the signing process such as pressure change, speed, pen-tilt stroke-order and stroke-

direction. Dynamic features are difficult to imitate, because they are hidden in the
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sense that they cannot be revealed by simply observing the shape of the signature. Also

different experiments are performed using dynamic features can improve the accuracy

of verification.

To measure the accuracy of a verification systems are usually used two types of

errors. False acceptance rate describes the error rate that forged patterns are accepted

incorrectly, while false rejection rate describes the error rate that genuine pattern are

rejected incorrectly. There is no fixed relationship of importance between FAR and

FRR. A highly secure system prefer a low FAR and a high FRR, while a user-friendly

system prefers a high FAR and a low FRR. In order to compare the accuracy between

different verification systems. The term equal error rate, for which FAR equal to FRR,

is usually used to measure the overall accuracy of a verification system.

A Wacom Intous graphical tablet is used to capture signature through out the

experiment. This digitized tablet is built with orthogonal sensors, which collect the

current x and y position of the pen tip on the surface of the tablet, pressure, x and

y-coordinate and time are captured through this digitized tablet. The objectives of the

experiments are to accept as many genuine signatures as possible and reject as many

as forged signatures as possible.

The rest of the chapter is organized as follows. We discuss about the signature

processing and representation in Section 6.2. Explanation about the signature model

training is given in section 6.3. Then we discussed about experimental results in section

6.4. Finally, we give a brief summary in Section 6.5.

6.2 Processing and representation

Handwritten signature can be considered as “fast handwriting”, and it can be rep-

resented by a sequence of point movements. As a result, the hidden Markov model

approach, which is powerful for recognizing time-varying patterns, can be applied to

the problem of online signature verification.

For online signature verification, different features like pen pressure, pen tilt, stroke
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direction, etc, are extracted along every point in a signature. The extracted features

form a feature sequence that can be modeled with a hidden Markov model and can

perform stochastic matching with any test signature.

In this chapter different experiments on online signature verification with the hidden

Markov model have been carried out. The objectives of experiments are to

1. investigate the reliability of online signature verification with hidden Markov

model,

2. to find out the relationship and dependence between different extracted features,

and

3. to find out the best combination of features to represent a signature.

The objectives of the experiment are to accept as many genuine signatures as possible

and reject as many forged signatures as possible.

Signature database

We obtained permission from J.G.A. Dolfing, the author of amongst others [30], to

use a database compiled at his institution for our research for which we are greatly

appreciative. This database contains 1530 authentic signatures for 51 individuals of

who 45 are males and 6 females. Each individual donated 30 signatures which are

divided into two sets of equal size for training and validation purposes. Each stored

signature comprises of a sequence of 5-tuples (1) pen x, (2) pen y, (3) pressure, (4) x

tilt and (5)y tilt sampled from the PAID tablet described in Section 2.3.1. Three types

of forgeries are included in the database (1) home-improved, (2) over-the-shoulder and

(3) professional. The home-improved and over-the-shoulder forgeries were created by

the 51 individuals which contributed the authentic signatures. Each data acquisition

session involved both a signer and a forger. While the signer contributed signatures, the

forger closely watched the dynamics of the signing process. The forger then attempted

to recreate the dynamics of the observed signature to create the over-the-shoulder
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forgery. The roles were then reversed to produce another set of signatures and forgeries.

Each individual was provided with a paper copy of another signature to take home

for practice. A set of home-improved forgeries were subsequently donated by those

individuals. These forgeries can be regarded as amateur and the final home-improved

set consists of 1530 forgeries whereas the over-the-shoulder set contains 1470 forgeries.

Additionally, four forensic document examiners provided a total of 270 forgeries of 20

individuals from the database. The signatures of these individuals were evenly divided

over complexity classes easy, moderately easy and difficult to forge.

Preprocessing

As described in chapter 3, signature captured through a digitized tablet are usually

interfered by signing environment such as the weight of pen provided for signing as

well as the orientation of the tablet. As a results, the captured signatures should be

preprocessed in order to minimize such interferes. In this experiment are mapped to

an area of 100*100 pixels square. Additionally, dynamic features such as the signing

pressure and pen-tilt are normalized to a range from 0 to 100. Details preprocessing

can be found in the Table 6.2.1.

Table 6.2.1: Details of Preprocessing
Dimension Feature Original range Range

1 x-coordinate 0 to 12700 0 to 100
1 y-coordinate 0 to 9700 0 to 100
1 Pressure 0 to 1024 0 to 100
1 x pen-tilt 0 to 1710 0 to 100
1 y pen-tilt 0 to 840 0 to 100

Feature extraction

Feature extraction methods for online signature are similar to the methods used for

handwriting recognition. Both static and dynamic features are extracted from a sig-
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nature. Static features include coordinate,delta angle, while dynamic features include

velocity acceleration, pressure, pen-tilt, time, stroke directions and air movement. Ex-

tracted features form a 16 dimensional feature vector, and the whole signature is rep-

resented by a sequence of these feature vectors.

Table 6.2.2: Details of Feature Vector
Dimension Feature Range

2 x y coordinate 0 to 100
2 sin θ, cos θ -1 to 1
2 ∆ sin θ,∆cos θ -1 to 1
1 Pressure 0 to 100
1 ∆ pressure No range
2 ∆ x,∆ y pen-tilt No range
1 x,y pen-tilt 0 to 100
1 θ 0 to 100
1 ∆θ No range
1 Velocity No range
1 x,y Acceleration No range
1 Time No range

First select the each feature from the dimensional feature vector and different com-

binations of features are also selected from the same dimensional feature vector for

modelling. Select the features with the highest representation power is evaluated in

this experiment. Additionally, as the signing process is easily interfered by the signing

environment, we are interested in investigating whether using standardized features

can improve the verification accuracy. Standardized features are the features values

standardized by their corresponding mean and variance, i.e.,

f∧
i =

fi − µi

σi
,

where fi is the i
th component in the feature vector, µi and σi are the mean and variance

of the ith feature component for the signature respectively.
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Model representation

As we discussed in chapter 5, the left-right hidden Markov model is used for signature

modelling throughout the experiment. shows an example of left-right hidden Markov

mode:

Figure 6.2.1: Example of left-right hidden Markov model

Similar to other types of model, a let-right hidden Markov model consists of a

set of N states, a set of M observable symbols, a state-transistion probability matrix

A = aij, a set of observation symbol probability distributions, and a set of initial state

probabilitiesΠ. But a left-right hidden Markov model only allows states sequence start

at state 1(and end at state N), i.e.,:

πi =

 0, i ̸= 1,

1, i = 1,

is the initial state probability for state i and a left-right hidden Markov model only

allows left-right state-transitions, i.e.,

aij = 0, for j < i,

often, additional constraints that prevent large changes in state indices usually places

on the state-transition coefficient, i.e;

aij = 0, for j > i+∆i.

Left-right hidden Markov model is usually applied to speech recognition. It is because
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this type of model contains desirable properties for modelling time-varying sequences.

In addition, discrete probability density function is used for states probabilities density

function. Discrete probability density function is more practical than continues proba-

bility density function like Gaussian mixtures for model training because less training

data is required for state probability density function training.

6.3 Model training

In the training process the codebook is used to map vectors from continues spaces

to discrete number of predefined symbols. For codebook training, an efficient Vector

Quantizer (VQ) can be constructed using a top-down approach K-means algorithm

(binary split approach). Hight dimensional feature vectors are subdivided in to different

streams to reduce dimension, and each stream is clustered in to M groups by the K-

means algorithm. One subdivided stream results in one single codebook, and multiple

codebook is a collection of different single codebooks. Table 6.3.1 show the codebook

side for different features:

Table 6.3.1: Codebook sizes of different features
Feature Codebook size

x y coordinate 32
sin θ, cos θ 32

∆ sin θ,∆cos θ 16
Pressure 4

∆ pressure 8
∆ x,∆ y pen-tilt 16

x,y pen-tilt 8
θ 32
∆θ 32

Velocity 32
x,y Acceleration 16

Time 32

In the second step, feature vectors are encoded with the codebook constructed in

the first phase. The encoded feature vectors are used for discrete hidden Markov model
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training. For model training, t-uniform state segmentation method is used to initialize

model stage setting. After, EM algorithm is applied in for model training. In the

final step, classifier for the constructed model is being constructed. Two approached

are concerned for classifier training; the first approach constructs a classifier based on

Gaussian distribution of average log-likelihood obtained from genuine signatures, while

the second approach constructs a classifier based on both genuine and forged signatures

with Neyman-Pearson classification.

In the first approach, average log-likelihood of a testing signature is obtained by

dividing the log-likelihood with the length of the testing signature sequence, i.e.,

p∗ = − log p

L
,

where log p refers to the log-likelihood computed by the reference model, and L is the

length of the signature.

The decision boundary of the classifier is defined as

p = α.σ,

where p is the expected value for p∗ and σ is its deviation scaled by a constant factor α.It

should be noted that p and σ are person-specific values obtained from each individual’s

HMM.

In the second approach as different forged samples are available for model train-

ing,we can define decision boundary by applying neyman pearson classification on both

genuine and forged samples.

6.4 Experimental results

We are conducted many experiments on online signature using hidden Markov model

with combination of Neyman Pearson and support vector machine.

In the first experiment investigates the various features using each feature with
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separately in a single stream hidden Markov model. The second experiment investi-

gates the representation power of different combinations of features and compares the

representation power between standardized features and un-standardized features vec-

tors. And in the final experiment studies the trained features with the combination of

neyman pearson and support vector machine.

For signature verification, several error rates are of importance. The False Accep-

tance Rate indicates the percentage of forged signatures that have been accepted. The

False Rejection Rate determines the percentage of valid signatures which have been

rejected. If one evaluates the number of correctly accepted original signatures and the

number of correctly rejected forgeries, this results are in the total agreement which is

given in all the following experiment. The information content of the various features

have been investigated using each feature separately in a single stream hidden Markov

model. This results are in the accuracy which is given in Table 6.4.1.

Table 6.4.1: Verification results for each feature used in single stream HMMs
Feature Accuracy

x y coordinate 65%
sin θ, cos θ 60%

∆sin θ,∆cos θ 55%
Pressure 80%

∆ pressure 70%
∆ x,∆ y pen-tilt 66%

x,y pen-tilt 69%
θ 55%
∆θ 45%

Velocity 81%
x,y Acceleration 58%

Modelling with different combinations of features

Various combinations of features are investigated in this experiment. Tables 6.4.2 shows

the selections of different features: The error rates of different feature combinations

with different decision boundary widths. Different decision boundaries are obtained by
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Table 6.4.2: Different combinations of features
Combinations Accuracy

All 61%
3 70%
5 75%
7 65%

changing the value of α in the

p∗ = p+ α.σ,

function where p∗ represents the decision boundary, p is expected values for P , and σ

is the deviations of P scaled by a constant factor α.

The feature combination using 5 is the best, for all decision boundary widths from

α = 1 (1 standard deviation) to α = 6 (6 standard deviations). The second best fea-

ture combination was 3 features. The third feature combination was 7. The experiment

results show that the decision boundary width that minimizes the error for using all

features s around 5 standard deviations, with equal-error rate 2%. The decision bound-

ary width for using coordinate, pressure, velocity, pen-tilt is 2.7 standard deviations,

with equal-error rate 3%. The decision boundary width for using coordinate, pressure,

velocity, path tangent and time is 4.8 standard deviations, with equal-error rate of

2% experiments results show that the combination of all features and the combination

of coordinate, pressure velocity and time features can obtains lower error rate. This

implies that the two feature combinations have the highest representation power over

the other combination features for online signatures.

Modelling with un-standardized and standardized features

The other experiment examines the representations ability of standardized features and

un-standardized features. Un-standardized features are the exact values of features,

while standardized features are those features values standardized by the feature’s mean
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and variance.

We noticed that using un-standardized features could achieve better results than

using standardized features. The observed standardized features could reduce the false

rejection rate. However, it also significantly increased the false acceptance rate of the

system. As a result, using standardized features reduced the overall performance of

the system.

Model training with forged samples

This section covers the design and implementation of the signature feature discrimi-

nation experiments that were conducted to determine the effect that varying amounts

of significant features has on the performance level of the network. The features used

in the various features sets are as follows: for 3 features; x, y co-ordinates and pentip

pressure, for 5 features; x, y co-ordinates, pen-tip pressure and the two pen-tip angles

θx and θy, for 7 features; x, y co-ordinates, pen-tip pressure, the two pen-tip angles θx

and θy, pen-tip velocity V (t) and path-tangent Tθ. Three different experiments were

conducted for the three signature feature sets, i.e., 3, 5 and 7 features. The data set

consisted of 15 users of varying signature complexities. Within the 3 feature sets the

x and y co-ordinates represented the static features while the remaining features were

dynamic in nature. Also of note is the fact that within the 7 feature set both velocity

and path-tangent are derived features where velocity is computed using the x and y

co-ordinates and path-tangent is then calculated based on the velocity.

Table 6.4.3: Performance summary of signature feature sets

Forgery Type FAR FRR
Casual 70% 35%
Skilled 65% 25%
Forensic 60% 26%
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Classification with SVM:

Using the second approach, we construct a classifier based on both genuine and forged

signatures using Neyman-Pearson and Support vector machines.

As we have discussed in chapter 4, Neyman-Pearson algorithm efficiently computes

the optimal operating points on the receiver operating characteristic (ROC) curves,

i.e., for a given selection of features and a chosen acceptable false alarm rate (i.e., the

probability of rejecting a genuine signature), the algorithm computes the optimally

achievable probability of detecting a fraudulent signature. This gives the user control

over the system performance in a rigorous fashion. This allows us to rank features

using support vector machines.

We use support vector machines to classify the final acceptance and rejection

states.Training were performed 10 fold cross validation on the complete dataset with

51 genuine and 27 forged signatures. The SVM algorithm was used to classify the

signatures. The kernel function of the SVM was the Linear and Polynomial Kernel.For

testing we used the test signature image dataset with 51 genuine and 25 forged signa-

tures.

Procedure followed in testing:

(a) Test dataset was fed into the SVM model. At the beginning, all of the features

were used. Recognition Rate, False Rejection Rate and False Acceptance Rate

were observed.

(b) Then number of features tested with the SVM model was decreased step by step

according to the weightage of features. Features with least weightage were grad-

ually removed every time and Recognition Rate, FRR and FAR were observed.

(c) Above step (b) was continued till we reached a single feature.

Observations: Maximum recognition rate of 70% with FRR = 5% and FAR = 1%

was achieved when we used 3 features (acceleration, velocity, pressure). When number

features used in testing was increased beyond four, recognition rate reduced.
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Figure 6.4.1: Number of features vs recognition rate

Figure 6.4.2: Number of features vs FRR and FAR

In our approach, we tried to find the effectiveness of some commonly used global

features in online signature verification. It is observed that out of those fifteen features,

four features were not selected for any of the datasets. Another five features were also

found to be less significant for classification as they were selected for maximum 3

datasets. Out of the remaining six features, three top ranked features could give a

maximum recognition rate of 70%. Signature verification is a very sensitive problem.

Cost of misclassification associated with signature verification is very high.
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6.5 Summary

In this chapter, we have examined the problem using hidden Markov model on Auto-

matic signature verification. Different experiments have been performed to evaluate

the performance of modelling approaches. By the experimental results it is concluded

that the best combination of 5 features set when compare with the other feature sets.

Results also show that using un-standardized features can achieve better results than

using standardized features. Finally, results show that using different forged samples

for model training can improve the accuracy of the constructed signature model.

 

 

 

 



Chapter 7

Concluding remarks and scope for

future research

In this thesis, we have studied different aspects of online signature verification. A

digitized tablet with orthogonal sensors used for collecting signature samples. It can

collect axial pen tilt and pen pressure in x and y-directions with 64 level with maximum

signal report rate 200Hz. We have collected about 1530 authentic signatures for 51

individuals were collected in which 45 were males and 6 were females used for this

experiment. From this experiment we noticed that we trained individually trained

each feature and as well trained in the group. We developed a authentication system

that

1. scales easily as new features are added,

2. allows to built separate, possibly different HMMs for the different features, and

3. optimally combines features to compute the likelihood that a given signatures is

genuine from the likelihoods for the individual features.

We used left-right HMMs for modeling the individual dynamic features act as they allow

only for marginal deviations from a representative sequence both in sequence values

(vertical deviations) and timing information (horizontal information). We then applied
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the Neyman-Pearson algorithm to efficiently compute the optimal operating points on

the receiver operating characteristic curves, i.e., for a given selection of features and a

chosen acceptable false alarm rate (i.e., the probability of rejecting a genuine signature),

the algorithm computes the optimally achievable probability of detecting a fraudulent

signature. This gives the user control over the system performance in a rigorous fashion.

It also allows us to rank features according to their power of discrimination.

As far as the scope for future research is concerned, we would like to mention

the following:

• Proposed method (which is based on the combination of simple HMMs and with

Neyman Pearson) can be extended for other applications.

• Extraction of known and perhaps novel measures of complexity from signatures.

• Training of hybrid RNN-HMM to predict the threshold value for HMM likelihood

measures to accept or reject.
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