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ABSTRACT
Fitted numerical methods to solve di�erential models describing unsteady

magneto-hydrodynamic �ow

by

George Buzuzi

PhD thesis, Department of Mathematics and Applied Mathematics, Faculty of

Natural Sciences, University of the Western Cape

In this thesis, we consider some nonlinear di�erential models that govern unsteady

magneto-hydrodynamic convective �ow and mass transfer of viscous, incompressible,

electrically conducting �uid past a porous plate with/without heat sources. The study

focusses on the e�ect of a combination of a number of physical parameters (e.g., chem-

ical reaction, suction, radiation, soret e�ect, thermophoresis and radiation absorption)

which play vital role in these models. Non-dimensionalization of these models gives

us sets of di�erential equations. Reliable solutions of such di�erential equations can-

not be obtained by standard numerical techniques. We therefore resorted to the use

of the singular perturbation approaches. To proceed, each of these model problems

is discretized in time by using a suitable time-stepping method and then by using a

�tted operator �nite di�erence method in spatial direction. The combined methods

are then analyzed for stability and convergence. Aiming to study the robustness of the

proposed numerical schemes with respect to change in the values of the key parame-

ters, we present extensive numerical simulations for each of these models. Finally, we

con�rm theoretical results through a set of speci�c numerical experiments.
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Chapter 1

General introduction

In recent years, magnetohydrodynamic (MHD) problems have become increasingly

important in industrial application. Metallurgical processes such as tinning of copper

wires and drawing involve cooling of continuous strips by drawing them through a

quiescent �uid [84]. Drawing such strips/�laments in an electrically conducting �uid

subjected to a magnetic �eld a�ect the rate of cooling which of course controls the

quality of the �nal product. In addition, hydromagnetics assists in the puri�cation of

molten metals from non-metallic inclusions by introducing a magnetic �eld [134].

1.1 Motivation for this research

The study of the rotation of electrically conducting �uids is important in several as-

trophysical and geophysical situations such as in the study the dynamics of rotating

stars [15, 125]. Also the study of mixed convective MHD �ow with mass transfer has

been given much attention because of its application to nuclear research and the study

of planets [125]. Permeability of the surface over which �uid �ows has applications

in biology and engineering such as transpiration cooling [117], urinary circulatory sys-

tem and separation of Uranium-235 from Uranium-238 by gaseous exchange [125, 117].

Chemical reaction in a �ow which a�ects concentration levels is useful in chemical

processing industries such as �bre drawing, crystal pulling from melt and polymer pro-

1

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 2

duction. The problem of mixed convective MHD with mass transfer has been of much

importance because of its application to nuclear research and the study of planets. In

view of these, importance of studies of �ow past a vertical wall has increased.

Mass transfer is encountered in chemical industry as well as in biological sciences

[115]. Although many authors have studied mass transfer with or without radiation

e�ects on the �ow past oscillating vertical plate in the presence of magnetic �eld and

free convection heat and variable mass di�usion, the case of a porous plate has not

been considered so far. Moreover the use of perturbation techniques to solve such a

problem has not been utilized to date.

The e�ect of chemical reaction on unsteady MHD �ow past a moving semi-in�nite

vertical porous plate can also be investigated further. Chemical reactions can be consid-

ered either heterogenous or homogenous processes depending on whether the reaction

occurs at an interface or as a single phase reaction. Many transport processes exist in

nature and in industrial applications in which the simultaneous heat and mass transfer

results from e�ects of both buoyancy and thermal di�usion and di�usion of chemical

species [123, 124, 135, 155]. Free convection currents are caused by temperature dif-

ferences. In addition, �ow is a�ected by di�erences in concentration. Such study on

concentration is useful in chemical processing industries such as crystal pulling and

polymer production [84].

Magneto-convection is important in industrial applications including magnetic con-

trol of molten iron �ow in the steel industry and liquid metal cooling in nuclear reactors

[29, 124]. To the best of our knowledge, the singular perturbation techniques, are not

fully explored to solve such problems to date.

In view of the above, one can see how complex the associated di�erential equation

models can be. As is seen in the literature, they can not be solved analytically and

hence we intend to design some e�cient numerical methods to solve them.

Di�erential models describing the magnetohydrodynamic �ows have been solved

earlier using di�erent methods such as the standard �nite di�erence methods and �-

nite element methods. In the models under study the coe�cient of the �rst derivative

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 3

in the energy equation may be very large for certain combination of the given pa-

rameters rendering the equation singularly pertubed. In such instances, the standard

methods fails to provide fairly accurate approximations of the true solution and to

resolve the issue we design the robust, computationally more e�cient �tted operator

�nite di�erence method (FOFDM). These FOFDMs were developed recently to solve

singular perturbation problems (SPPs) (see e.g., Bashier and Patidar [14], Lubuma and

Patidar [86], Munyakazi and Patidar [102, 103] and Patidar [121]). Singular pertur-

bation problems are known to have solutions with large gradients when the coe�cient

of the highest derivative is very small. Boundary/interior layers develop which a�ect

the convergence of the solution obtained using the usual standard numerical approach.

The typical ranges of Prandtl numbers encountered in the current study include those

for gases (0.7-1.0), water (1.7-13.7), light organic �uids (5-50) and oils (above 50).

1.2 Literature review

An early study on MHD problems was presented by Carrier and Greenspan [23]. Subse-

quently more works including [52, 61, 114] presented various aspects of such problems,

for e�ect of mass transfer, wall temperature and magnetic �eld. Sakiadis [134] was the

�rst to analyze the boundary layer on continuous surface of MHD problems.

Crane [40] presented a similarity solution for steady two dimensional boundary layer

�ow over a surface which is stretched in its own plane with a velocity varying linearly

with the distance from a �xed point. Banks [13] considered a surface stretched with

a velocity proportional to xm, where x is the distance from a �xed point and m is a

constant.

Magyari and Keller [88, 89] and Magyari et al. [90] considered the case when the

mass transfer(suction/injection) is proportional to a power of the distance x. Car-

ragher and Crane [22] considered the case where the temperature di�erence between

the stretched surface and the ambient �uid is proportional to xn, n being a constant.

Kuiken [82] analyzed the boundary layer �ow due to a moving sheet which obeys a

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 4

more general stretching law. Kuiken [82] showed that if the Reynolds number is large,

a backward boundary layer exists along the moving sheet. Ishak et al. [74] reported

the case of an electrically charged �uid experiencing transverse magnetic �eld. Ishak

also discussed heat transfer assuming that the surface is maintained at a variable wall

temperature Tw(x) which is proportional to (x0/|x|)m where m is a positive constant.

Elshabeshy and Bazid [53] analyzed the stretching problem including a uniform porous

medium. More recently, they analyzed the unsteady stretching problem. They ana-

lyzed both the steady and unsteady stretching surface with internal heat generation.

They considered in�uence of variable viscosity of MHD �ow and heat transfer over a

porous stretching surface with internal heat generation. Ishak et al. [73] analyzed heat

transfer over an unsteady stretching permeable surface with prescribed temperature.

Subsequently, Hayat et al. [66] studied MHD �ow and heat transfer over permeable

stretching sheet with slip condition.

Alam and Sattar [9] investigated MHD heat and mass tranfer �ow in a rotating

system in presence of thermal di�usion. Brinkman [20] found the estimated viscous

force imparted by a �owing �uid in a dense swarm of particles. Chandran et al. [33]

studied the unsteady hydrodynamic free convection �ow with heat �ux and accelerated

boundary motion. Choudhhury and Das [34] investigated the magnetohydrodynamic

boundary layer �ow of a non-Newtonian �uid past a �at plate.

Hasimoto [64] analyzed the boundary layer growth on a �at plate with suction and

injection. Das et al. [48] numerically solved the mass transfer e�ects on unsteady �ow

past an accelerated vertical porous plate with suction. Mansutti et al. [93] studied the

steady �ows on non-newtonian �uids past a porous plate with suction and injection.

In [120], Pathal et al. discussed the unsteady mass, momentum and heat transfer in

MHD free convection �ow past a vertical plate suddenly set in motion.

Raptis et al. [128] studied unsteady free convective �ow through a porous medium

adjacent to a semi-in�nite vertical plate using �nite di�erence scheme. Sharma and

Pareek [141] have discussed the steady free convection MHD �ow past a vertical porous

moving surface. Das and Mitra [46] studied the unsteady mixed convective mass trans-

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 5

fer �ow of viscous incompressible electrically conducting �uid past an accelerated in-

�nite vertical porous plate with suction in the presence of transverse magnetic �eld.

They solved this problem analytically and numerically using error function and the �-

nite di�erence scheme, respectively. In the current study we applied both the analytical

and perturbation technique.

The e�ect of chemical reaction on unsteady MHD �ows past a moving semi-in�nite

plate has received considerable attention. Chambre and Young [25] analyzed a �rst

order chemical reaction in the neighborhood of a horizontal plate. Das et al. [43]

studied the e�ect of �rst order chemical reaction on the �ow past an impulsively started

in�nite vertical plate with uniform heat �ux and mass transfer. In addition, Das et al.

[43] studied mass transfer e�ects on moving isothermal vertical plate in the presence

of chemical reaction. Chandrakala [32] investigated the MHD �ow past an impulsively

started semi-in�nite vertical plate with homogenous �rst order chemical reaction by

implicit �nite di�erence scheme of Crank-Nicolson type.

According to Deka and Neog [49], radiation in free convection has been studied by

many authors because of its direct application in engineering and industry such as in

nuclear power plants, space science and fossil fuel consumption. The industrial and

engineering importance of radiation such as in liquid metal cooling, nuclear reactors,

magnetic control of molten iron �ow in steel industry are noted. Hydrodynamic �ow

is encountered in applications such as heat exchangers, nuclear engineering and MHD

accelerators.

Exact solutions of free convection �ow past a vertical oscillating plate in free convec-

tive �ow was studied by Soundalgekar and Akolkar [153]. Before that, Soundalgekar

[151] pioneered the study of �ow past a vertical oscillating plate in free convective

�ow. The same problem with mass transfer e�ects was analyzed by soundalgekar and

Alkolkar [153]. Das et al. [42] studied the e�ects of mass transfer on free convec-

tion �ow past an impulsively started in�nite vertical plate with constant heat �ux and

chemical reaction. Soundalgekar et al. [157] studied the e�ects of mass transfer on the

�ow past an in�nite vertical oscillating plate with constant heat �ux.

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 6

England and Emery [56] studied the thermal radiation e�ects on the laminar free

and forced convection boundary layer of an absorbing gas bounded by a vertical sta-

tionary plate. Gupta and Gupta [62] studied the e�ects of radiation and combined free

and forced convection of an electrically conducting �uid in the presence of transverse

magnetic �eld. Das et al. [43] considered the case of radiation e�ects on �ow past

an impulsively started vertical plate. Mazumdar and Deka [94] studied the MHD �ow

past an impulsively started in�nite vertical plate in the presence of thermal radiation.

Literature on the numerical techniques used for many of the models indicated above

can also be found in some standard texts on Computational Fluid Dynamics.

Before we proceed further, we would like to mention here that the literature on

individual problems treated subsequently in di�erent chapters is provided in respective

chapters.

1.3 Outline of the thesis

This thesis is concerned with the design, analysis and implimentation of a class of

�tted operator �nite di�erence methods to solve di�erential models describing unsteady

magneto-hydrodynamic �ow.

In Chapter 2, we study unsteady mixed MHD convective �ow and mass transfer

in a �ow past an accelerated in�nite porous plate with thermal radiation, chemical

reaction and suction.

Chapter 3 is devoted to the analysis of the solution of a transient MHD �ow of

viscous incompressible electrically conducting �uid past a vertical in�nite porous plate

in the presence of a transverse magnetic �eld.

We investigate the e�ects of a chemical reaction on unsteady two-dimensional MHD

free convection �ow of viscous incompressible electrically conducting �uid past a ver-

tical in�nite porous plate with heat sources in the presence of a transverse magnetic

�eld, chemical reaction and suction or injection in Chapter 4.

The solution of a double-di�usive convection-radiation interaction on a two dimen-
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sional unsteady MHD laminar �ow of viscous, incompressible, electrically conducting

�uid past a semi-in�nite vertical moving porous plate embedded in a porous, heat

generation/absorption and thermal di�usion is dealt with in Chapter 5.

Chapter 6 tackles unsteady transient MHD free convective and mass transfer �ow

with thermophoresis past an inclined permeable plate in the presence of chemical re-

action, thermal radiation and temperature dependent viscosity. medium subjected to

a transverse magnetic �eld in the presence of a chemical reaction.

In Chapter 7, we study a two-dimensional unsteady MHD free convection �ow of a

viscous, incompressible, electrically conducting, heat generation/absorbing �uid past a

vertical in�nite porous �at plate in the presence of a transverse magnetic �eld, radiation

absorption, chemical reaction and suction or injection.

Finally, in Chapter 8 concluding remarks and plans for further research are given.

 

 

 

 



Chapter 2

A �tted numerical method to study

the e�ects of chemical reaction and

thermal radiation on unsteady mixed

MHD convective �ow and mass

transfer of a �uid past an in�nite

porous plate in a porous medium

In this chapter, we study unsteady mixed MHD convective �ow and mass transfer in a

�ow past an accelerated in�nite porous plate with thermal radiation, chemical reaction

and suction using a �tted operator �nite di�erence method. We extend the work of

Das and Mitra [46] by introducing the e�ects of radiation, chemical reaction and the

presence of a porous media. Most of the works on this type of problems have considered

standard numerical methods which are inappropriate as we have investigated with

several cases. In this work, the governing partial di�erential equations describing the

problem stated above are transformed by a suitable similarity transformation resulting

8
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into a system of ordinary di�erential equations which are then solved using a �tted

numerical method. We observe that for small values of the coe�cient of the �rst

derivative in the energy equation (2.2.3) the standard numerical method may still

work but for relatively large values of these coe�cients this approach fails to provide

reasonably accurate numerical solution.

2.1 Introduction

Porous media arise in numerous geophysical and metallurgical �ows. Chamka [28] ana-

lyzed the transient-free convection MHD boundary layer �ow in a �uid-saturated porous

medium channel. Later Chamka [29] extended this study to consider the in�uence of

temperature-dependent properties on the hydrodynamic �ow in a porous channel and

inertial e�ects on the convection regime in the presence of heat source. Beg et al. [17]

considered perturbation analysis of unsteady oscillatory magneto-convection in porous

media with heat source e�ects. Later, Beg et al. [18] considered the transient radiation

convection MHD �ow past a vertical plate adjacent to a porous regime.

The �uid �ow in the porous media may have chemical species di�using into it which

a�ects the mass transfer in the �ow and therefore the study of chemical reaction can-

not be ignored. Chemical reactions are classi�ed as either homogenous or heterogenous

depending on whether it is a single phase volume reaction or the reaction occur at an

interface. Simultaneous heat and mass transfer in nature and in an industrial setting

are triggered by the combined buoyancy e�ects of thermal di�usion and di�usion of

chemical species. Free convection currents may be caused by temperature di�erence,

concentration di�erence or both. Free convection �ows due to di�erence in concen-

tration is important in chemical processing industry in cases like �bre pulling, crystal

pulling from the melt and in the production of polymers. Das et al. [47] analyzed

the mass transfer e�ects on �ow past an impulsively started in�nite isothermal vertical

plate with uniform mass �ux. Later Das et al. [41] gave an analytical solution to the

�ow of a viscous incompressible �uid past an impulsively started vertical isothermal
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plate in the presence of mass di�usion and �rst order chemical reaction. In both cases

they solved the problems using the Laplace transform technique. Muthucumaraswamy

and Ganesan [109] studied the e�ects of the �rst order homogenous chemical reaction

on the �ow characteristics of an unsteady �ow past an impulsively started semi-in�nite

vertical plate with uniform mass �ux. The governing equations were solved using

implicit-�nite di�erence scheme of the Crank Nicolson type. Chandrakala [31] used

implicit �nite-di�erence scheme to derive a solution to the transient natural convec-

tion �ow of an incompressible viscous �uid past an impulsively started semi in�nite

isothermal vertical plate with uniform mass �ux in the presence of a magnetic �eld and

homogenous chemical reaction of the �rst order.

In recent years, the e�ect of heat transfer by radiation and free or mixed convection

has become increasingly important industrially. Many processes in industry take place

at high temperatures and the knowledge of radiation heat transfer enables the design

of the relevant high temperature equipment such as nuclear power plants, solar fans,

photo chemical reactors, missiles, satellites, glass production devices, furnace design

equipments and propulsion devises for aircraft.

Takhar et al. [70, 159] analyzed the e�ect of radiation on mixed convection along

a vertical plate with uniform surface temperature. Bakier and Gorla [12] studied the

e�ect of radiation on mixed convection �ow over horizontal surfaces embedded in a

porous medium. Kim and Fedorov [80] analyzed the transient mixed radiative convec-

tive �ow of a micro polar �uid past a moving semi-in�nite vertical porous plate. Cookey

et al. [75] investigated two dimensional �ow with time dependent suction. Prasad et

al. [124] analyzed a laminar mixed convective boundary layer �ow of a radiating �uid

along a semi-in�nite vertical permeable moving plate with heat and mass transfer. Re-

cently, Shateyi et al. [142] studied the e�ect of thermal radiation, Hall currents, Soret

and Dufour on MHD �ow by mixed convection over a vertical surface in porous media.

Many researchers have studied free or forced convective �ows over a vertical plate

due to their varied application in �elds such as geophysics and astrophysics. Pathal

et al. [120] discussed the unsteady mass, momentum and heat transfer in MHD free
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convection �ow past a vertical plate suddenly set in motion. Soundalgekar [152] an-

alyzed the free convection e�ects on steady MHD �ow past a vertical porous plate.

Raptis et al. [128] have studied the unsteady free convective �ow through a porous

medium adjacent to semi in�nite vertical plate using �nite di�erence scheme. Satter

[135] reported the free convection and mass transfer �ow through a porous medium

past an in�nite vertical porous plate with time dependent temperature and concentra-

tion. Singh and Soundalgekar [149] investigated the transient free convection e�ect in

cold water past an in�nite vertical porous plate. Mansutti et al. [93] have analyzed

the steady �ows of non-Newtonian �uids past a porous plate with suction or injection.

Sharma and Pareek [141] have discussed the steady free convection MHD �ow past a

vertical porous moving surface. Das et al. [48] solved numerically the equations that

describe the mass transfer e�ects on unsteady �ow past an accelerated vertical porous

plate with suction. Das and Mitra [46] analyzed the unsteady mixed convective MHD

�ow and mass transfer past an accelerated in�nite vertical porous plate with suction.

In this chapter, we study unsteady mixed MHD convective �ow and mass transfer

in a �ow past an accelerated in�nite porous plate with thermal radiation, chemical

reaction and suction using a �tted operator �nite di�erence method (FOFDM). We

extend the work of Das and Mitra [46] by taking into account the e�ects of radiation,

chemical reaction and the presence of a porous media. In the model under study

the coe�cient of the �rst derivative in the energy equation may become very large for

certain combination of values of the Prandtl number, suction and radiation parameters.

This renders the equation singularly perturbed. A vast amount of literature exists on

singularly perturbed partial di�erential equations (see, [96, 131] and references therein).

Cess [24] studied the interaction of radiation with laminar free convection heat transfer

from a vertical plate using singular perturbation technique. Before we proceed further

we would like to mention that such models have been simulated numerically as indicated

in the literature above but to the best of our knowledge no work has been done to

numerically study unsteady MHD �ows using FOFDMs.

The rest of the chapter is organized as follows. In Section 2.2, the description of
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the model problem under study is presented. Governing equations are developed and

transformed into similarity form together with their boundary conditions. Section 2.3

deals with the construction of numerical method and its analysis. Section 2.4 contains

the numerical results. Finally some concluding remarks are given in Section 2.5.

2.2 Description of the model

We consider the unsteady mixed convective mass transfer �ow of a viscous incom-

pressible electrically conducting �uid past an accelerating vertical in�nite porous �at

plate adjacent to a porous medium in the presence of a transverse magnetic �eld Bo

and a chemical reaction with signi�cant radiation e�ect. Let the x−axis be directed

upward along the plate and the y−axis be normal to the plate. Let u and v be the

velocity components along x− and y− axes, respectively. We assume that the plate

is accelerating with a velocity u = Ut in its own plane at time t ≥ 0. Then the mag-

netohydrodynamic unsteady mixed convective boundary layer equations under usual

Boussinesq's approximation (a modi�cation of the model in [46]) read

∂v

∂y
= 0, (2.2.1)

∂u

∂t
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(T − T∞) + gβ∗(C̃ − C̃∞)− σB0

2

ρ
u− ν

K∗
u, (2.2.2)

∂T

∂t
+ v

∂T

∂y
= α

∂2T

∂y2
− 1

ρcp

∂qr
∂y

, (2.2.3)

∂C̃

∂t
+ v

∂C̃

∂y
= D

∂2C̃

∂y2
−Kl(C̃ − C̃∞), (2.2.4)

where ν is the kinematic viscosity, β is the volumetric coe�cient of thermal expansion,

β∗ is the volumetric coe�cient of expansion with concentration, ρ is the density of the

�uid, σ is the electrical conductivity of the �uid, g is the acceleration due to gravity, T

is the temperature of the �uid in the boundary layer, T∞ is the temperature of the �uid

far away from the plate, C̃ is the concentration of �uid in the boundary layer, C̃∞ is the

concentration of the �uid far away from the plate and D is the molecular di�usivity,
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K∗ is the permeability of the porous regime, Kl is the rate of chemical reaction, cp is

the speci�c heat capacity, α is the thermal di�usivity, qr is the radiation heat �ux and

B0 is the magnetic induction. The associated boundary conditions [46] are

u = Ut, T = Tw, C̃ = C̃w at y = 0,

u→ 0, T → T∞, C̃ → C̃∞ as y→∞ for t→∞.
(2.2.5)

where U ia a scale of the free stream velocity. The radiative heat �ux qr is described

by the Rosseland approximation (Prasad et al. [123]):

qr = (4σ∗/3K1)∂T 4/∂y, (2.2.6)

where σ∗ andK1 are the Stefan-Boltzman constant and the mean absorption coe�cient,

respectively. Following Soundalgekar [149] and Das [46] we nondimensionalize (2.2.2) -

(2.2.4) by introducing the following similarity variables

η = y/(2
√
νt), θ = (T − T∞)/(Tw − T∞), C = (C̃ − C̃∞)/(C̃w − C̃∞),

M = (vσB2
o/ρ)/ν2, Pr = ν/κ, Sc = ν/D, Gr = 4gβ(Tw − T∞)/U,

Gc = 4gβ∗(C̃w − C̃∞)/U, α = κ/ρcp, R = 4σT 3
∞/K1κ,

d = Klν/v
2,

(2.2.7)

where Pr is the Prandtl number, d is the chemical reaction parameter,Gr is the Grashof

number of heat transfer, Gc is the Grashof number for mass transfer, R is the thermal

radiation parameter, M is the magnetic parameter, κ is the thermal conductivity, Kl

is the rate of chemical reaction and Sc is the Schmidt number.

In line with Hasimoto [64], Singh and Soundalgekar [149] and Das et al. [46], we

consider

v = −a (ν/t)1/2 , (2.2.8)
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where a > 0 is the suction parameter. Using (2.2.7) and (2.2.8), equations (2.2.2)-

(2.2.4) reduce to

f ′′ + 2(η + a)f ′ − 4(1 + a2(1/K∗ +M))f = −Grθ −GcC, (2.2.9)

θ′′ +
6(η + a)

3 + 4R
Prθ

′ = 0, (2.2.10)

C ′′ + 2(η + a)ScC
′ − 4da2ScC = 0, (2.2.11)

where ′ denotes the di�erentiation with respect to η. The corresponding boundary

conditions take the form

f(η) = 1, C(η) = 1, θ(η) = 1 at η = 0, (2.2.12)

f(η) = 0, θ(η) = 0, C(η) = 0 as η →∞.

The non-dimensional local heat �ux (in terms of Nusselt number, Nu) at the plate is

given by

Nu = 2qw
√
νt/(κ(Tw − T∞)) = −θ′(0), (2.2.13)

where qw is the heat �ux per unit area. We solve the above problem (2.2.9) - (2.2.12)

using a �tted operator �nite di�erence method described in next section.

2.3 Construction and analysis of the numerical method

In this section, we introduce a FOFDM to solve the energy equation (2.2.10). To begin

with, let n be a positive integer. Consider the following partition of the interval [0,2]:

η0 = 0, ηj = η0 + jh, j = 1(1)n, h = ηj − ηj−1, ηn = 2. We take ηn = 2 since

it lies well outside the boundary layer. Note that j = 1(1)n means j = 1, 2, 3, ....n.

On this partition, the standard �nite di�erence method (SFDM) used to discretely

approximate (2.2.10) reads

ν̃j+1 − 2ν̃j + ν̃j−i
h2

+ Aj
ν̃j+1 − ν̃j−1

2h
= 0, (2.3.1)
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where ν̃ is an approximation for θ and Aj = 6(ηj + a)Pr/(3 + 4R). The choice for

the central di�erence approximation for θ′ using SFDM was arrived at after applying

the double mesh principle which showed that the central di�erence approximation

produced the least maximum absolute error. The central di�erence approximation was

also used in the momentum and concentration equations (2.2.9) and (2.2.11), for the

same reason. However, for relatively large values of Aj
′s, the standard �nite di�erence

method (SFDM) fails to provide fairly accurate approximation of the true solution. To

resolve this issue we design a �tted numerical technique whereby the denominator of

the approximation to the second derivative h2 is replaced by a function ψ2
j , which is a

function of h. The proposed FOFDM reads

Lhuj ≡
uj+1 − 2uj + uj−1

ψ2
j

+ Aj
uj+1 − uj

h
= 0, (2.3.2)

where u is an approximation for θ obtained by using this FOFDM and

ψ2
j = h

(
eAjh − 1

)
/Aj. (2.3.3)

The function ψ2
j can be obtained by using the theory of �nite di�erences as indicated in

[86]. It captures signi�cant behavior of the solution, particularly when the solution in

the layer region has steep gradient. The layer region is located in the neighborhood of

the vertical plate near the left end of the interval. Before we proceed with the numerical

simulations, �rst we analyse the FOFDM (2.3.2) for stability and convergence.

Lemma 2.3.1. (Discrete minimum principle) Assume that the mesh function φi sat-

is�es φ0 ≥ 0 and φn ≥ 0. Then, Lhφi ≤ 0 for i = 1(1)n−1 implies that φi ≥ 0 for all

i = 0(1)n.

Proof . The proof follows the same lines as the proof of the discrete minimum principle

in [77] as shown below. Choose k such that φk = miniφi and assume that φk ≤ 0. It
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follows that k 6∈ {0, n}, φk+1 − φk ≥ 0 and φk − φk−1 ≤ 0. Then

Lhφk =
1

ψ2
k

[φk+1 − 2φk + φk−1] +
Aj
h

[φk+1 − φk] , (2.3.4)

=
1

ψ2
k

[φk+1 − φk + φk−1 − φk] +
Aj
h

[φk+1 − φk] (2.3.5)

≥ 0,

which is a contradiction. It follows that φk ≥ 0. Therefore, φi ≥ 0 for all i, i(1)n.

In what follows, M̃ andM denote positive constants independent of h and ε.

Lemma 2.3.2. Let θ be the solution of (2.2.10) with θ(0) = 1 and θ(2) = 0. Then for

0 ≤ k ≤ 3,

|θ(k)(η)| ≤ M̃
(
1 +Bke−λη

)
for all η ∈ Ω where B = max

Ω
A, where A ≡ A(η) = 6(η + a)Pr/(3 + 4R) > λ > 0 and

Ω = [0, 2].

Proof . The proof follows the same lines as the proof of the bounds on the solution θ

and its derivatives in [96]. Rewrite equation (2.2.10) in the form

Lφ ≡ φ′′ + A(η)φ′. (2.3.6)

We use the minimum principle to obtain a bound on the solution θ(η) of (2.2.10) as

follows. We consider

φ±(η) = M̃(2− η)± θ(η).

It is clear that

φ±(0) ≥ 0, φ±(2) ≥ 0,
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and

Lφ±(η) = ±θ′′(η) + A(η)(±θ)′(η)− A(η)M̃, (2.3.7)

= ±Lθ(η)− A(η)M̃ ≤ 0. (2.3.8)

Then by the minimum principle φ±(η) ≥ 0, and therefore

|θ(η)| ≤ M̃(2− η) ≤ 2M̃ for all η ∈ Ω.

To obtain bounds on the derivatives of θ we di�erentiate k times the equation Lθ = 0

and obtain Lθ(k) = fk where 1 ≤ k ≤ 3,

fk = −Σk−1
r=0 (nr )A(k−r)θ(r+1)

and f0 = 0. The quantity fk depends on the derivatives of θ and the coe�cient A. We

therefore proceed with a proof by induction. We assume that the following estimates

hold for all 0 ≤ i ≤ k, for all η ∈ Ω, and Lθ(k) = fk:

|θ(k)(η)| ≤ M̃
(
1 +Bke−λη

)
, (2.3.9)

and

|fk(η)| ≤ M̃
(
1 +Bke−λη

)
. (2.3.10)

At the boundary points

|θ(k)(0)| ≤ M̃
(
1 +Bk

)
≤ M̃Bk, (2.3.11)

and

|θ(k)(2)| ≤ M̃
(
1 +Bke−2λ

)
≤ M̃Bk. (2.3.12)

 

 

 

 



CHAPTER 2. A FITTED NUMERICAL METHOD TO STUDY THE EFFECTS
OF CHEMICAL REACTION AND THERMAL RADIATION ON UNSTEADY
MIXED MHD CONVECTIVE FLOW AND MASS TRANSFER OF A FLUID
PAST AN INFINITE POROUS PLATE IN A POROUS MEDIUM 18

Let

wk(η) = B

∫ η

0

fk(t)e
−B(H(η)−H(t))dt, (2.3.13)

where

H(η) =

∫ η

0

A(s)ds.

The particular solution of the equation Lθ(k) = fk is given by

θ(k)
p (η) = −

∫ η

0

wk(t)dt. (2.3.14)

The general solution θ(k) is written in the form θ(k) = θ
(k)
p + θ

(k)
h where θ

(k)
p is the

particular solution and θ
(k)
h is the homogenous solution. θ(k) satis�es

Lθ
(k)
h = 0, θ

(k)
h (0) = θ(k)(0), θ

(k)
h (2) = θ(k)(2)− θ(k)

p (2). (2.3.15)

Let the function

ϕ(η) =

∫ η
0
e−H(t)dt∫ 2

0
e−H(t)dt

,

then

Lϕ = 0, ϕ(0) = 1, ϕ(2) = 0, 0 ≤ ϕ(η) ≤ 1.

Now θ
(k)
h is given by a linear combination of θ

(k)
h (0) and θ

(k)
h (2), that is

θ
(k)
h (η) =

(
θ(k)(0)

)
ϕ(η) +

(
θ(k)(2)− θ(k)

p (2)
)

(1− ϕ(η)) . (2.3.16)
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Di�erentiating (2.3.16) with respect to η gives

θ(k+1)(η) =
(
θ(k)(0)

)
ϕ′ −

(
θ(k)(2)− θ(k)

p (2)
)
ϕ′. (2.3.17)

From (2.3.14) θ
(k+1)
p (η) = wk. It follows that

θ(k+1)(η) = θk+1
p (η) + θ

(k+1)
h (η),

= wk + θk(0)ϕ′ −
(
θ(k)(2)− θ(k)

p (2)
)
ϕ′,

= wk +
(
θ(k)(0)− θ(k)(2) + θ(k)

p (2)
)
ϕ′. (2.3.18)

Now

ϕ′ =
e−H(η)∫ 2

0
e−H(t)dt

.

Therefore,

|ϕ′(η)| ≤ |Ae−λη| ≤ Be−λη. (2.3.19)

Since A ≤ B, we have

|wk(η)| ≤ BM̃

∫ η

0

(
1 +Bke−λt

)
e−B(λη−λt)dt. (2.3.20)

Further simpli�cation leads to

|wk(η)| ≤ M̃Be−Bλη
(
eBλη

B
+Bke(Bλ−λ)η

)
. (2.3.21)

Finally, we get

|wk(η)| ≤ M̃
(
1 +Bk+1e−λη

)
. (2.3.22)
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Since

θ
(k)
k (2) = −

∫ 2

0

wk(t)dt, (2.3.23)

we get

|θ(k)
p (2)| ≤ M̃Bk. (2.3.24)

We know that

|θ(k+1)| ≤
(
|wk|+ |θ(k)(0)|+ |θ(k)(2)|+ |θ(k)

p (2)|
)
ϕ′, (2.3.25)

so

|θ(k+1)| ≤ M̃
(
1 +Bk+1e−λη

)
+
(
M̃Bk + M̃Bk + M̃Bk

)
Be−λη. (2.3.26)

This reduces to

|θ(k+1)| ≤ M̃
(
1 +Bk+1e−λη

)
, (2.3.27)

which completes the proof.

The following lemma is a consequence of the discrete minimum principle (Lemma

2.3.1).

Lemma 2.3.3. (Uniform stability estimate) If ξj is any mesh function such that

ξ0 = ξn = 0 then the operator Lh in (2.3.4) is uniformly stable if

|ξj| ≤ 2M max
1≤i≤n−1

|Lξi| for 0 ≤ j ≤ n,

whereM is a constant independent of the step size.

Proof . The proof follows the same lines as the proof of the uniform stability estimate
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in [96]. Let

M̃ =M max
1≤i≤n−1

|Lξi| .

and introduce the mesh functions ϑ+
j , ϑ

−
j de�ned by ϑ±j = M̃(2−ηj)±ξj. From equation

(2.3.2)

Lhϑ±j =

(
ϑ±j+1 − 2ϑ±j + ϑ±j−1

)
ψ2
j

+ Aj

(
ϑ±j+1 − ϑ±j

)
h

,

=

(
M̃(2− ηj+1)± ξj+1 − 2M̃(2− ηj)± ξj + M̃(2− ηj−1)± ξj−1

)
ψ2
j

+Aj

(
M̃(2− ηj+1)± ξj+1 − M̃(2− ηj)± ξj

)
h

,

=
(±ξj+1 ± 2ξj+1 ± ξj−1)

ψ2
j

+ Aj
(±ξj+1 ± ξj)

h
− AjM̃,

= ±Lhξj − AjM max|Lhξi| ≤ 0, 0 ≤ i ≤ n. (2.3.28)

From the discrete minimum principle, we have ϑ±j ≥ 0, for 0 ≤ j ≤ n.

It follows M̃(2− ηj)± ξj ≥ 0 for 0 ≤ j ≤ n, implies |ξj| ≤ (2− ηj)M̃

= (2− ηj)M max|Lhϑ±j | ≤ 2M max|Lhϑ±j |, which completes the proof. Now the local

truncation error of the FOFDM (2.3.2) is given by

[
Lh(θ − u)j

]
=

(
θ′′j + Ajθ

′
j

)
−
(
θj+1 − 2θj + θj−1

ψ2
j

+ Aj
θj+1 − θj

h

)
, (2.3.29)

= θ′′j + Ajθ
′
j −

1

ψ2
j

[
h2θ′′j + h4θ(iv)(ζ1)

]
−Aj
h

(
hθ′j +

h2

2
θ′′j +

h3

6
θ′′′(ζ2)

)
,

where ζ1 ∈ (ηj−1, ηj+1) and ζ2 ∈ (ηj, ηj+1). Using the Taylor series expansion, we have

1

ψ2
j

=
Aj
h

(
1

Ajh
− 1

2
+

1

12
Ajh+O(h2)

)
. (2.3.30)
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This implies that

[
Lh(θ − u)j

]
= θ′′j + Ajθ

′
j (2.3.31)

−
[
Aj
h

(
1

Ajh
− 1

2
+

1

12
Ajh+O(h2)

)] [
h2θ′′j +O(h4)

]
−Aj
h

(
hθ′j +

h2

2
θ′′j +

h3

6
θ′′′(ζ2)

)
.

Further simpli�cations lead to

[
Lh(θ − u)j

]
= −

(
A2
j

12
θ′′j +

Aj
6
θ′′′j

)
h2 +O(h3).

Using Lemma 2.3.2 we obtain

∣∣Lh(θ − u)j
∣∣ ≤ ∣∣∣∣A2

j

12
M̃

(
1 +

B2

eαη

)∣∣∣∣h2 +

∣∣∣∣∣AjM̃6
(

1 +
B3

eαη

)∣∣∣∣∣h2. (2.3.32)

Applying Lemma 7 in [103]

∣∣Lh(θ − u)j
∣∣ ≤ (

A2
jM̃

12
+
AjM̃

6

)
h2,

≤

(
A

2

jM̃

12
+
AjM̃

6

)
h2,

≤ Mh2, (2.3.33)

where A = max
j
Aj. The solutions to equations (2.2.9) and (2.2.11) are found simulta-

neously with equation (2.2.10). The system of equations are solved in such way that

the improved solution of the energy equation obtained using the FOFDM is then used

to obtain the solution of the velocity equation. This means that the �nal expression

for the velocity equation gives a better solution compared to the case where the tem-

perature values used are obtained using standard methods. Then by Lemma 2.3.3 and
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(2.3.33), we have

max
0≤i≤n

|(θ − u)i| ≤ max
1≤i≤n−1

∣∣Lh(θ − u)i
∣∣ ≤Mh2.

2.4 Results and discussions

In this section, we present some numerical results followed by a thorough discussion of

them.

The maximum absolute error at all mesh points are evaluated using the double

mesh principle

En = max
0≤i≤n

|uni − u2n
2i |,

for di�erent n and Aj where ui is the numerical solution. Since Aj is directly pro-

portional to Pr we calculate the maximum absolute error in the FOFDM solution by

varying Pr and n while keeping other parameters constant. The numerical rates of

convergence are computed using the formula ([51])

rk := log2 (Enk/E2nk) , k = 1, 2, . . . .

The values for the maximum absolute errors and rates of convergence are depicted in

Tables 2.4.1 and 2.4.2 respectively.

Table 2.4.1: Maximum absolute errors using FOFDM.
Pr n= 10 n=20 n=40 n= 80
5 2.76E-3 6.83E-4 1.70E-4 4.27E-5
10 5.26E-3 1.40E-3 3.49E-4 8.71E-5
20 1.19E-2 2.89E-3 7.17E-4 1.79E-4
40 1.86E-2 5.92E-3 1.45E-3 3.71E-4

We compare the performance of the FOFDM with the SFDM. In Table 2.4.3, the

results obtained by these two methods are compared for a = 0.1, Pr = 7, and R = 1.

Similarly in Table 2.4.4, the two methods are compared for a = 1, Pr = 10, and

R = 2. In these tables, SFDM-I and SFDM-II stands for standard �nite di�erence

 

 

 

 



CHAPTER 2. A FITTED NUMERICAL METHOD TO STUDY THE EFFECTS
OF CHEMICAL REACTION AND THERMAL RADIATION ON UNSTEADY
MIXED MHD CONVECTIVE FLOW AND MASS TRANSFER OF A FLUID
PAST AN INFINITE POROUS PLATE IN A POROUS MEDIUM 24

Table 2.4.2: Rates of convergence of FOFDM, nk = 10, 20, 40, 80.
Pr r1 r2 r3

5 2.01 2.01 1.99
10 1.91 2.00 2.00
20 2.04 2.01 2.00
40 1.65 2.03 1.97

methods where forward di�erence approximation and central di�erence approximation

are respectively used to approximate θ′.

Table 2.4.3: Maximum absolute errors for a = 0.1, K = 1, M = 1, Pr = 7, Sc = 1,
d = 1, R = 1.

Method n = 10 n = 20 n = 40 n = 80
SFDM-I 3.13E-2 1.86E-2 1.02E-2 5.33E-3
SFDM-II 1.33E-2 3.22E-3 8.00E-4 2.00E-4
FOFDM 3.87E-3 9.56E-4 2.42E-4 6.04E-5

Table 2.4.4: Maximum absolute errors for a = 1, K = 1, M = 3, Pr = 10, Sc = 3,
d = 2, R = 2.

Method n = 10 n = 20 n = 40 n = 80
SFDM-I 6.28E-2 3.99E-2 2.29E-2 1.26E-2
SFDM-II 5.27E-2 1.09E-2 2.64E-3 6.56E-4
FOFDM 4.25E-3 1.08E-3 2.83E-4 1.08E-5

We observe that if the coe�cient of θ′ is small (i.e. Pr < 10) both methods are

reliable. However, if the coe�cient of θ′ is relatively large (i.e. Pr > 20) then the

FOFDM is distinctly the better method as evidenced by the relatively small maximum

absolute error. We observe that the larger the Prandtl number the smaller the max-

imum absolute error. The existence of an analytical solution in the energy equation

allows us to compare the SFDM and the FOFDM as we observe the closeness of each

of the solution to the exact solution. Figure 2.4.1 further con�rm that the FOFDM is

the better method for relatively large values of the coe�cient of θ′.

Figure 2.4.1(a) shows that for Pr = 0.71, a = 1 and R = 0.01 both methods are

reliable as both solutions coincides with the exact solution. However, Figure 2.4.1(b)

shows that when using the SFDM with the parameters, Pr = 50, a = 1 and R = 0.01,
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the solution oscillates and is therefore unreliable whereas the FOFDM gives accurate

solution.

From the results obtained from the tables and graphs we conclude that the FOFDM

is very reliable method for solving the energy equation. The momentum and concen-

tration equations are therefore solved simultaneously as a combined system.

Using the FOFDM on the temperature equation, we study the e�ects of the �ow

parameters such as radiation parameter (R), permeability parameter (K), suction pa-

rameter (a), magnetic parameter (M), chemical reaction parameter (d) and Prandtl

number (Pr), on velocity, temperature and concentration pro�les. The e�ects of these

parameters on the �ow �eld are shown graphically for velocity pro�les in Figure 2.4.2,

temperature pro�le in Figure 2.4.3 and concentration pro�les in Figure 2.4.4.
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(a) Comparison of temperature values for Pr

= 0.71, a = 1, R = 0.01, n = 80 which
give small values for the coe�cient of θ′.
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(b) Comparison of temperature values for Pr

= 50, a = 3, R = 0.01, n = 80 which give
moderate values of the coe�cient of θ′.

Figure 2.4.1: Comparison of temperature pro�les for di�erent combinations of param-
eters.

The e�ects of suction on velocity, temperature and concentration are depicted in

Fig 2.4.2(a), Fig 2.4.3(a) and Fig 2.4.4(a), respectively. We note from these �gures

that the velocity, temperature, and concentration decrease with the increase of suc-

tion parameter con�rming the fact that suction stabilizes the velocity, thermal and

concentration layer growth.

The e�ect of the variation of chemical reaction parameter on velocity is shown in

Fig 2.4.2(b). We observe that the velocity increases with decreasing chemical reaction
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(a) E�ect of suction on velocity with Pr =
50, M = 1, K = 1, Sc = 0.22, Gr = 1, Gc =
1,R =0.01, d = 1, n = 80.
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(b) E�ect of chemical reaction parameter on
velocity with Pr = 50, M = 2, K = 1, Sc =
0.22, a = 2, n = 80.
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(c) E�ect of permeability on velocity with Pr

= 50, M = 1, a = 2, Sc = 0.22, Gr = 2, Gc

= 5, R =0.01, d = 1, n = 80
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(d) E�ect of thermal radiation parameter on
Velocity with Pr = 50, M = 2, K = 1, a =
0.1, Sc = 0.22, Gr = 3, Gc = 5,d = 1, n =
80
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(e) E�ect of magnetic parameter on velocity
with Pr =50, K = 1, a = 2, Sc = 0.22, R
=0.01, d = 1, n = 80.

Figure 2.4.2: E�ects of di�erent parameters on velocity.
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(a) E�ect of suction on temperature with Pr =
50, R = 1, n = 80.
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(b) E�ect of Pr on temperature with a = 0.1, R
= 1, n = 80.
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(c) E�ect of thermal radiation parameter on tem-
perature with Pr = 50, a = 2, n = 80.

Figure 2.4.3: E�ects of di�erent parameters on temperature.
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parameter. The e�ect of the chemical reaction on concentration is depicted in Fig

2.4.4(b). We observe that the e�ect of chemical reaction on concentration is similar to

its e�ect on velocity. However the e�ect of chemical reaction on concentration is more

pronounced than its e�ect on velocity.

The e�ects of the permeability parameter (K) on velocity are displayed in Fig

2.4.2(c). From this �gure we observe that velocity increases with increasing permeabil-

ity.

From Fig 2.4.2(d) and Fig 2.4.3(c) we note that both velocity and temperature

decrease with increase of thermal radiation parameter (R). Thus the thickness of the

velocity and temperature boundary layer decrease with increasing radiation parameter

(R).

Fig 2.4.2(e) shows the e�ect of magnetic parameter M on velocity. The presence of

transverse magnetic �eld retards the velocity of �ow �eld. The greater the magnetic

�eld parameter the greater the reduction in the velocity of the �ow �eld.

Fig 2.4.3(b) shows the e�ect of Pr on temperature. We observe that the temperature

of the �ow �eld decreases with increasing Pr. The greater the value of Pr the faster is

the reduction of the plate temperature.
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(a) E�ect of suction on concentration Sc = 0.22,
M = 2, d = 0.1, n = 80.
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(b) E�ect of chemical reaction parameter d on
concentration with a= 0.1, M = 2, Pr = 50, R
=0.01, n = 80.

Figure 2.4.4: E�ects of di�erent parameters on concentration.
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In order to further assess the accuracy of this method we have compared our results,

for the Nusselt number (Nu), with those of Das et al. [46] as shown in Table 2.4.5.

Table 2.4.5: Variation of heat �ux (Nu) with suction for Pr = 0.71, R = 0.
Das [46] Our method

a Nu=θ
′(0) Nu=θ

′(0)
0.1 1.04299514 1.04299515
0.2 1.13865913 1.13865914
1 2.00275564 2.00275566
2 3.23732738 3.23732739

By letting R = 0, K = 0, d = 0, our problem reduces to that of Das et al [46]. Our

result are in very good agreement with theirs. In addition, the velocity, temperature,

and concentration pro�les are also in agreement with those of Das [46]. In particular,

our method and that of Das [46] are compared by considering the temperature pro�le

depicted in Figure 2.4.5. The �rst few output values of the temperature for both

methods are displayed in Table 2.4.6.
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Figure 2.4.5: The temperature pro�le for a = 1, M = 1, Pr = 0.71, R = 0, n = 40
using our FOFDM and the method of Das [46].
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Table 2.4.6: Temperature values for a = 1, Pr = 0.71, R = 0, n = 40
Das[46] Our method
1.000 1.000

9.0339E-1 9.0322E-1
8.1372E-1 8.1340E-1
7.3078E-1 7.3032E-1
6.5435E-1 6.5376E-1

2.5 Summary

In this chapter we considered a mathematical model for unsteady MHD mixed con-

vective mass transfer �ow of a viscous incompressible electrically conducting �uid past

an accelerated vertical in�nite porous �at plate adjacent to a porous medium in the

presence of a magnetic �eld and a chemical reaction with signi�cant radiation e�ect

with suction. The governing equations were transformed into a similarity form. The

self-similar equations were solved numerically using a �tted operator �nite di�erence

method. We also noticed that the standard �nite di�erence method fails to give reliable

results for certain combinations of the key parameters.

E�ects of the di�erent parameters on velocity, temperature and concentration pro-

�les are studied and the following conclusions are drawn

� Presence of radiation e�ects caused reduction in the velocity and temperature of

the �uid.

� We noted that the increase in thermal radiation results in the reduction of the

�uid velocity and �uid temperature.

� The presence of �uid wall suction led to the reduction in the velocity, temper-

ature and concentration of the �ow �uid. Suction thus stabilizes the velocity,

temperature and concentration layer growth.

� Increase in permeability results in increased velocity of the �uid �ow.

� Both �uid velocity and �uid concentration increases with decreasing chemical
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reaction parameter.

� The presence of the magnetic �eld retards the velocity of the �ow �eld.

� The greater the Prandtl number the faster the cooling of the plate.

Currently, we are extending our study to design FOFDM to simulate transient MHD

�ows as well as �ows with soret e�ects and heat generation.

The next chapter treats a transient MHD free convective �ow past an in�nite ver-

tical porous plate.

 

 

 

 



Chapter 3

A �tted numerical method to simulate

a transient MHD free convective �ow

past an in�nite vertical porous plate

In this chapter we analyze the solution of a transient MHD �ow of viscous incompress-

ible electrically conducting �uid past a vertical in�nite porous plate in the presence of

a transverse magnetic �eld using a �tted method. The governing partial di�erential

equations that describe the problem stated above are transformed by a suitable simi-

larity transformation resulting in a system of ordinary di�erential equations which are

then solved using a �tted operator �nite di�erence method (FOFDM) and results are

compared with those obtained by using classical approaches. Using tools for numerical

singular perturbation analysis, the method is analyzed for stability and convergence.

We observe that for small values of the Prandtl number both the standard �nite di�er-

ence method (SFDM) and the FOFDM provide similar results but for relatively large

values of the Prandtl number the SFDM fails to provide reliable numerical results. To

con�rm the theoretical estimates, we determine the velocity and temperature pro�les

via the proposed FOFDM. We noted that the transient temperature and transient ve-

locity increases with time. The steady state temperature is reached faster with the

32
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FOFDM than with the SFDM.

3.1 Introduction

Illingworth [72] was the �rst person to study the transient free convection �ow of a

viscous incompressible �uid past an in�nite vertical plate. A few years later many

papers were published on transient �ow past an in�nite plate (see Soundalgekar [158]

and reference therein). Later Siegel [144] studied the transient free convection �ow

past a semi-in�nite vertical plate using the momentum integral method. Thereafter

Das [44]-[45] and Soundalgekar [152]-[158] studied the transient �ow past an in�nite

plate whereas Hellums and Churchill [67] studied the same topic for �ow past a semi-

in�nite plate.

Chamkha [28] analyzed the transient-free convection MHD boundary layer �ow in

a �uid-saturated porous medium channel. Beg et al. [18] considered the transient

radiation-convection MHD �ow past a vertical plate adjacent to a porous regime.

Singh [148] studied the e�ect of suction on the transient free convection �ow past

a vertical porous plate. Singh and Soundalgekar [149] investigated the transient free

convection e�ect in cold water past an in�nite vertical porous plate.

Chandrakala [31] used implicit �nite-di�erence scheme to derive a solution to the

transient natural convection �ow of an incompressible viscous �uid past an impulsively

started semi-in�nite isothermal vertical plate with uniform mass �ux in the presence

of a magnetic �eld and homogenous chemical reaction of the �rst order.

We modify the work of Soundalgeker et al. [158] by introducing a transverse mag-

netic �eld and ignoring the e�ect of dissipative heat on the �ow. For large values of

the Prandtl number the energy equation reduces to a singular perturbation problem.

The solution of singular perturbation problems is known to have large gradients when

the coe�cient of the highest derivative is very small. Boundary/interior layers de-

velop which a�ect the convergence of the solution obtained using the usual standard

numerical approach. It will be shown theoretically and numerically that the standard
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�nite di�erence method (SFDM) produces poor approximations when the perturba-

tion parameter, ε becomes very small. For this reason we adopt the �tted operator

�nite di�erence method (FOFDM) which captures/mimics the behavior of the solution

within the layer region. A vast amount of literature exists on singularly perturbed par-

tial di�erential equations (see Beckett and Mackenzie [16], Kumar et al. [85], Patidar

[121], Roos et al. [131], Miller et al. [96] and references therein.) To the best of our

knowledge no work has been done to study transient free MHD viscous incompressible

�ows using the �tted operator �nite di�erence method. Hence our current study is

motivated.

The rest of the chapter is organized as follows. In Section 3.2 we describe the model

of the problem. Section 3.3 focusses on numerical method and its analysis. Section 3.4

on the other hand deals with the presentation and discussion of the numerical results.

Finally Section 3.5 gives concluding remarks.

3.2 Description of the model

We consider the unsteady free convective mass transfer �ow of a viscous incompressible

electrically conducting �uid past a vertical in�nite porous �at plate in the presence of

a transverse magnetic �eld. Let the x∗−axis be directed upward along the plate and

the y∗−axis normal to the plate. Let u∗ and v∗ be the velocity components along x∗

and y∗ axes respectively. Then the magnetohydrodynamic unsteady free convective

boundary layer equations under usual Boussinesq's approximation [158] read

∂v∗

∂y∗
= 0, (3.2.1)

∂u∗

∂t∗
+ v∗

∂u∗

∂y∗
= ν

∂2u∗

∂y∗2
+ gβ(T ∗ − T ∗∞)− σBO

2

ρ
u∗, (3.2.2)

ρcp

[
∂T ∗

∂t∗
+ v∗

∂T ∗

∂y∗

]
= κ

∂2T ∗

∂y∗2
, (3.2.3)
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where, ν is the kinematic viscosity, β is the volumetric coe�cient of thermal expansion,

ρ is the density, σ is the electrical conductivity of the �uid, g is the acceleration due

to gravity, T ∗ is the temperature, T ∗∞ is the temperature of the �uid far away from

the plate, cp is the speci�c heat capacity, B0 is the magnetic induction. From the

continuity equation we deduce that the suction velocity v(y) = −Vo. The negative con-

stant indicates that the suction is directed towards the plate. The necessary boundary

conditions [158] are

t∗ ≤ 0, u∗ = 0, T ∗ = T ∗∞, for all y
∗,

u∗ = 0, T ∗ = T ∗w, at y
∗ = 0, (3.2.4)

u∗ = 0, T ∗ = T ∗∞, as y
∗ →∞.

We nondimensionalize (3.2.2) to (3.2.3) by introducing the following similarity variables

u = u∗/u0, θ = (T ∗ − T ∗∞)/(T ∗w − T ∗∞), t = t∗/t0,

M = σ0B
2
o t0/ρ, Pr = µcp/k,

∆T = T ∗w − T ∗∞, Vo = v∗/uo,

(3.2.5)

with u0 = [νgβ∆T ]1/3, L = [gβ∆T/ν2]
−1/3

, t0 = [gβ∆T ]−2/3 /ν−1/3, where M is the

magnetic parameter, κ is the thermal conductivity, u0 is the reference velocity, L is the

reference length, t0 is the reference time, Vo is the suction parameter. Using (3.2.4)

and (3.2.5), equations (3.2.2)-(3.2.3) reduce to

∂u

∂t
− Vo

∂u

∂y
=
∂2u

∂y2
−Mu+ θ, (3.2.6)

∂θ

∂t
− Vo

∂θ

∂y
− 1

Pr

∂2θ

∂y2
= 0. (3.2.7)
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The corresponding initial and boundary conditions [158] are

t ≤ 0, u = 0, θ = 0, for all y,

u = 0, θ = 1, at y = 0, (3.2.8)

u = 0, θ = 0, as y →∞.

3.3 Construction and analysis of the numerical method

We introduce the FOFDM to solve the energy equation (3.2.7). The FOFDM is com-

pared with the standard �nite di�erence method(SFDM). The energy equation is stated

in the form

Lθ :=
∂θ

∂t
− Vo

∂θ

∂y
− 1

Pr

∂2θ

∂y2
= 0. (3.3.1)

We will approximate the solution of the energy equation on a uniform mesh which we

describe below.

Let N be a positive integer. Consider the following partition of the interval [0,4]:

y0 = 0, yi = y0 + ih, i = 1(1)N, h = yi − yi−1, yN = 4.

Let τ be the uniform step size on

Ωτ,m =

{
(y, tj) : y ∈ Ω, tj = jτ =

j

m
, ∀ 0 < j ≤ m

}
. (3.3.2)

Denote the approximation of θ by the unknown$. Performing the time semi-discretization

by Euler method at time level n gives

$n −$n−1

τ
− Vo$n

y − ε$n
yy = 0, (3.3.3)
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subject to

$n(0) = 1, 0 < n < m, (3.3.4)

$n(4) = 0, 0 ≤ n < m, (3.3.5)

where ε = 1/Pr. We rewrite (3.3) as

−ε$n
yy − Vo$n

y +
1

τ
$n =

1

τ
$n−1. (3.3.6)

For the sake of simplicity we omit the time level label “n” in (3.3.6). We are

therefore concerned with the problem of �nding $(y) such that

−ε$′′(y)− Vo$′ −
1

τ
$(y) =

1

τ
$∗, (3.3.7)

subject to

$(0) = 1, $(4) = 0, (3.3.8)

where $∗ is the value of $ at the previous time level n− 1.

The following lemma provides bounds on the solution of the problem (3.3.7)-(3.3.8).

Lemma 3.3.1. Let $ be the solution of (3.3.7)- (3.3.8). Then for 0 ≤ k ≤ 4,

|$(k)(y)| ≤ C̃
(
1 + ε−ke−λy/ε

)
for all y ∈ Ω = [0, 4], where 0 < ε ≤ 1, C̃ is independent of ε, and 0 < λ < Vo.

Proof . The inductive proof follows the idea of Miller et al. [96]. By using the maximum

principle we are able to determine a bound on the solution $(y) of (3.3.7).

With reference to equation (3.3.7) we use the maximum principle to show that the

solution $(y) of (3.3.7) is bounded. In a more general form we de�ne the di�erential

 

 

 

 



CHAPTER 3. A FITTED NUMERICAL METHOD TO SIMULATE A
TRANSIENT MHD FREE CONVECTIVE FLOW PAST AN INFINITE
VERTICAL POROUS PLATE 38

operator L in (3.3.7) for all φ ∈ C4Ω by

Lφ(y) = −εφ′′(y)− a(y)φ(y) + b(y)φ(y) = f(y) (3.3.9)

Our particular case has a = Vo, b = 1/τ and f = 1/τφ∗ where φ∗ is the privious time

level value of φ. Now we consider the function

φ±(y) = C̃(4− y)±$(y).

It follows that

φ±(0) ≥ 0, φ±(4) ≥ 0,

and

Lφ±(y) = ±ε$′′(y)− a(y)(±$)′(y) + (y)$(y) + a(y)C̃, (3.3.10)

= ±L$(y) + a(y)C̃ ≥ 0. (3.3.11)

Then by the maximum principle

|$(y)| ≤ C̃(4− y) ≤ 4C̃ for all y ∈ Ω.

To obtain the estimate of the derivative of $ we di�erentiate k times the equation

L$ = f and obtain L$(k) = fk where 1 ≤ k ≤ 4, where

fk = f (k) − Σk−1
r=0 (nr ) a(k−r)$(r+1)

and f0 = f. It is clear that fk depends on the derivatives of $ and the coe�cient a.

We assume that the following estimates hold

|$(i)(y)| ≤ C̃
(
1 + ε−ie−λy/ε

)
, (3.3.12)
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∀ 0 ≤ i ≤ k, ∀ y ∈ Ω, and L$(k) = fk where

|$(k)(y)| ≤ C̃
(
1 + ε−ke−λy/ε

)
, (3.3.13)

and

|fk(y)| ≤ C̃
(
1 + ε−ke−λy/ε

)
. (3.3.14)

At the end points

|$(k)(0)| ≤ C̃
(
1 + ε−k

)
≤ C̃ε−(k−1), (3.3.15)

and

|$k(4)| ≤ C̃
(
1 + ε−ke−4λ/ε

)
≤ C̃ε−k. (3.3.16)

Let

ςk(y) = ε−1

∫ y

0

fk(t)e
−(H(y)−H(t))/εdt, (3.3.17)

where

H(y) =

∫ y

0

a(s)ds.

The particular solution of the equation L$(k) = fk is given by

$(k)
p (y) = −

∫ y

0

ςk(t)dt. (3.3.18)

The general solution , $(k) is written in the form $(k) = $
(k)
p +$

(k)
h where $

(k)
h is the

homogenous solution. The derivative $(k) satis�es

L$
(k)
h = 0, $

(k)
h (0) = $(k)(0), $

(k)
h (4) = $(k)(4)−$(k)

p (4). (3.3.19)

Let the function

ψ(y) =

∫ y
0
e−H(t)/εdt∫ 4

0
e−H(t)/εdt

,
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then

Lh,τψ = 0, ψ(0) = 1, ψ(4) = 0, 0 ≤ ψ(y) ≤ 1.

Now $
(k)
h is given by

$
(k)
h (y) =

(
$(k)(0)

)
ψ(y) +

(
$(k)(4)−$(k)

p (4)
)

(1− ψ(y)) . (3.3.20)

Di�erentiating (3.3.20) with respect to y gives

$(k+1)(y) =
(
$(k)(0)

)
ψ′ −

(
$(k)(4)−$(k)

p (4)
)
ψ′. (3.3.21)

From (3.3.18) $
(k+1)
p (y) = ςk. It follows that

$(k+1)(y) = $(k+1)
p (y) +$

(k+1)
h (y),

= ςk +$k(0)ψ′ −
(
$(k)(4)−$(k)

p (4)
)
ψ′,

= ςk +
(
$(k)(0)−$(k)(4) +$(k)

p (4)
)
ψ′. (3.3.22)

Now

ψ′ =
−eH(y)/ε∫ 4

0
e−H(t)/εdt

.

Therefore, we get

|ψ′(y)| ≤ |ae−λy| ≤ ε−1C̃e−λy/ε. (3.3.23)

Since λ ≤ a, we have

|ςk(y)| ≤ ε−1C̃

∫ y

0

(
1 + ε−ke−λt/ε

)
e−λ(y−t)/εdt,

≤ C̃
(
1 + ε−(k+1)e−λy/ε

)
. (3.3.24)

Since

$
(k)
k (4) = −

∫ 4

0

ςk(t)dt, (3.3.25)
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|$(k)
p (4)| ≤ C̃

(
1 + ε−(k+1)

)
,

≤ C̃
(
1 + ε−k

)
,

≤ C̃ε−k. (3.3.26)

We know that

|$(k+1)| ≤
(
|ςk|+ |$(k)(0)|+ |$(k)(4)|+ |$(k)

p (4)|
)
ψ′, (3.3.27)

therefore,

|$(k+1)| ≤ C̃
(
1 + ε−(k+1)e−λy/ε

)
+
(
C̃ε−(k−1) + C̃ε−k + C̃ε−k

)
ε−1e−λy/ε. (3.3.28)

This reduces to

|$(k+1)| ≤ C̃
(
1 + ε−(k+1)e−λy/ε

)
, (3.3.29)

which completes the proof.

Next we discretize (3.3.7) in space using the standard �nite di�erence method:

Lh,τ ν̃j ≡ −ε
ν̃j+1 − 2ν̃j + ν̃j−1

h2
− Vo

ν̃j+1 − ν̃j
h

+
1

τ
ν̃j =

1

τ
ν̃∗j , (3.3.30)

where ν̃ is the approximation of $ and ν̃∗ is the previous time level value of ν̃. We

will show later that for relatively small values of ε, the SFDM fails to provide fairly

accurate approximation of the true solution by comparing the maximum absolute errors

calculated. To obtain reliable results we discretize (3.3.7) as follows,

Lh,τuj ≡ −ε
uj+1 − 2uj + uj−1

ψ2
j

− Vo
uj+1 − uj

h
+

1

τ
uj =

1

τ
u∗j , (3.3.31)

and
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ψ2
j =

εh
(
exp

(
Voh
ε

)
− 1
)

Vo
, (3.3.32)

where u is the numerical approximation of $ and u∗ is value of $ at the previous time

level.

The function ψ2
j captures the behavior of the solution in the boundary layer region.

The layer region is located in the neighborhood of the vertical plate near the left end

of the interval. Prior to the numerical simulation of the transient MHD free convective

�ow we analyse the FOFDM for stability and convergence.

Analysis of the numerical method

The local truncation error of the time semi-discritization by the forward implicit Euler

scheme is denoted by ẽn = θ(y, tn)−$(y), where $(y) is the solution of (3.3.7). The

amount of error ẽn is the contribution of each time step to the global error of the time

semi-discretizaton. The following lemmas depict the order of the local and global error

related to the problem (3.3.7).

Lemma 3.3.2. (Local error estimate) If |$(k)(y)| ≤ C̃, y ∈ [0, 4], 0 ≤ k ≤ 2, then the

local error estimate is given by ||ẽn|| ≤ C̃τ 2.

The following lemma relates to the global error, En.

Lemma 3.3.3. (Global error estimate) The global error En = Σm
n=0ẽn satis�es

||En|| ≤ C̃τ, ∀ 1 ≤ n ≤ m.

Proof . Taking into account Lemma 3.3.2, we get the global error estimate at the
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(n+ 1)th time step,

||En||∞ ≤ ||Σn
i=1ẽi|| (3.3.33)

≤ C̃nτ 2,

≤ C̃mτ 2 (since n ≤ m),

= C̃τ.

since m = 1/τ. Thus the global error of the time semi-discretization is of the �rst order,

that is, ||θ −$|| ≤ C̃τ.

We discretize with respect to space and �nd the local truncation error |($ − u)| where

$ is the exact solution with respect to space and u is the approximation of θ for the

FOFDM. The following lemmas are pivotal in the analysis of the error of the solution

obtained using the FOFDM.

From equation (3.3.31) the di�erential operator Lh,τ in (3.3.31) satis�es the follow-

ing discrete maximum principle on Ω,

Lemma 3.3.4. (Discrete maximum principle) Assume that the mesh function φi sat-

is�es φ0 ≥ 0 and φn ≥ 0. Then, Lφi ≥ for i = 1(1)n− 1, which implies that φi ≥ 0 ∀i

= 0(1)n.

Proof . The proof follows the same lines as the proof of the discrete maximum principle

in [96] as shown below. Choose k such that φk = miniφi and suppose that φk < 0.

Then k 6∈ {0, n}, φk+1 − φk ≥ 0 and φk − φk−1 ≤ 0. Thus

Lh,τφk = − ε

ψ2
k

[φk+1 − 2φk + φk+1]− Vo
h

[φk+1 − φk] +
1

τ
φk, (3.3.34)

= − ε

ψ2
k

[φk+1 − φk + φk−1 − φk]−
Vo
h

[φk+1 − φk] +
1

τ
φk (3.3.35)

< 0,
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which is a contradiction. It follows that

φk ≥ 0 and so φi ≥ 0 ∀i, i = 1(1)n.

The following Lemma is a consequence of the discrete maximum principle (Lemma

3.3.4).

Lemma 3.3.5. (Uniform stability estimate) If ξi is any mesh function such that

ξ0 = ξn = 0 then |ξi| ≤ 4
λ

max1≤j≤n−1

∣∣Lh,τξj∣∣ for 0 ≤ i ≤ n, 0 < λ ≤ ai.

Proof . Let

C̃ =
1

λ
max

1≤j≤n−1

∣∣Lh,τξj∣∣ ,
and introduce the mesh functions ϑ+

i , ϑ
−
i such that ϑ±i = C̃(4− yi)± ξi.

From equation (3.3.31)

Lh,τϑ±i = −ε
ϑ±i+1 − 2ϑ±i + ϑ±i−1

ψ2
i

− ai
ϑ±i+1 − ϑ±i

h
+ biϑ

±
i ,

= −ε±ξi+1 ∓ 2ξi ± ξi−1

ψ2
i

− ai
(±ξi+1 ∓ ξi)

h
+ bi(±ξi) + C̃ai,

= ±Lh,τξi + C̃ai + biC̃(4− yi),

= ±Lh,τξi +
ai + bi(4− yi)

λ
max

Ω

∣∣Lh,τξi∣∣ (3.3.36)

≥ 0,

since ai/λ ≥ 1 and yi ≤ 4.

From the discrete maximum principle we have

ϑ±i ≥ 0 for 0 ≤ i ≤ n,

and therefore

ϑ±i = C̃(4− yi)± ξi ≥ 0 for 0 ≤ yi ≤ 4,
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implies

|ξi| ≤ C̃(4− yi).

Since 4− yi ≤ 4,

|ξi| ≤
4

λ
max

1≤j≤n−1

∣∣Lh,τξj∣∣ ,
which completes the proof.

Next we establish the local truncation errors of the SFDM and the FOFDM. In the

analysis of these errors, M̃ and B̃ denote positive constants, independent of h and ε

which may assume di�erent values in di�erent inequalities and equations.

The local truncation error of the SFDM (3.3.30) is given by

∣∣Lh,τ (θ − ν̃)j
∣∣ =

∣∣Lh,τ (θ −$ +$ − ν̃)j
∣∣ ,

=
∣∣Lh,τ (θ −$)j

∣∣+
∣∣Lh,τ ($ − ν̃)j

∣∣ . (3.3.37)

From Lemma 3.3.3

∣∣Lh,τ (θ − ν̃)j
∣∣ = M̃τ. (3.3.38)

Now the truncation error for the spatial descretization of the SFDM is given by

[
Lh,τ ($ − ν̃)j

]
= −ε$′′j − Vo$′j +

1

τ
$j

−
(
−ε$j+1 − 2$j +$j−1

h2
− Vo

$j+1 −$j

h
+

1

τ
$j

)
,

= −ε$′′j − Vo$′j +
ε

h2

[
h2$′′j +

h4

12
$(iv)(ζ1)

]
+
Voh

2

(
$′′j
h

+
h

3
$′′′j +

h2

12
$(iv)(ζ2)

)
,

=
Vo
2
$′′jh+

(
ε

12
$(iv)(ζ1) +

Vo
6
$′′′
)
h2 +O(h5). (3.3.39)
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where ζ1 ∈ (yj−1, yj+1) and ζ2 ∈ (yj, yj+1). Now

∣∣Lh,τ ($ − ν̃)j
∣∣ =

∣∣∣∣Vo2 $′′jh+

(
ε

12
$(iv)(ζ1) +

Vo
6
$′′′j

)
h2

∣∣∣∣ ,
≤

∣∣∣∣Vo2 $′′j
∣∣∣∣h+

∣∣∣∣( ε

12
$(iv)(ζ1) +

Vo
6
$′′′
)∣∣∣∣h2.

Using Lemma 3.3.1 we obtain

∣∣Lh,τ ($ − ν̃)j
∣∣ ≤ C̃Vo

2

(
1 + ε−2e−λy/ε

)
h+

C̃ε

12

(
1 + ε−4e−λy/ε

)
h2

+
VoC̃

6

(
1 + ε−3e−λy/ε

)
h2.

Using Lemma 7 in [103] yields

∣∣Lh,τ ($ − ν̃)j
∣∣ ≤ C̃Vo

2
h+

(
C̃

12
+
VoC̃

6

)
h2,

≤ M̃h.

Then by Lemma 3.3.1 and Lemma 3.3.5 we have

max
0≤i≤n

|($ − ν̃)i| ≤ max
1≤j≤n−1

∣∣Lh,τ ($ − ν̃)j
∣∣ ,

≤ M̃h. (3.3.40)

From equations (3.3.38) and (3.3.40) the local truncation error of SFDM is given by

∣∣Lh,τ (θ − ν̃)j
∣∣ =

∣∣Lh,τ (θ −$ +$ − ν̃j
∣∣ ,

≤
∣∣Lh,τ (θ −$)j

∣∣+
∣∣Lh,τ ($ − ν̃)j

)
|,

≤ M̃ (τ + h) . (3.3.41)
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Then using Lemma 3.3.5 to estimate the bounds on |(θ − ν̃)| , we get

max
0≤i≤n

|(θ − ν̃)i| ≤ max
1≤j≤n−1

∣∣Lh,τ (θ − ν̃)j
∣∣ ≤ M̃ (τ + h) . (3.3.42)

Similarly the local truncation error of the FOFDM (3.3.31) is given by

∣∣Lh,τ (θ − u)j
∣∣ =

∣∣Lh,τ (θ −$ +$ − u)j
∣∣ =

∣∣Lh,τ (θ −$)j
∣∣+
∣∣Lh,τ ($ − u)j

∣∣ .(3.3.43)
From Lemma 3.3.3

∣∣Lh,τ (θ −$)j
∣∣ = B̃τ. (3.3.44)

Now the truncation error for the spatial descretization is given by

[
Lh,τ ($ − u)j

]
= −ε$′′j − Vo$′j +

1

τ
$j

−
(
−ε$j+1 − 2$j +$j−1

ψ2
j

− Vo
$j+1 −$j

h
+

1

τ
$j

)
,

= −ε$′′j − Vo$′j +
ε

ψ2
j

[
h2$′′j ,+

h4

12
$(iv)(ζ1)

]
+
Voh

2

(
2$′j
h

+$′′j +
h

3
$′′′j +

h2

12
$(iv)(ζ2)

)
, (3.3.45)

where ζ1 ∈ (yj−1, yj+1) and ζ2 ∈ (yj, yj+1). Using the Taylor series expansion, we have

ε

ψ2
j

=
ε

h2
− Vo

2h
+ . . . . (3.3.46)

This implies that

Lh,τ ($ − u)j = −ε$′′j

+

[
ε

h2
− Vo

2h
+ . . .

] [
h2$′′j +

$(iv)(ζ1)

12
h4

]
+
Vo
2

(
h$′′j + a

h2

3
$′′′j +

$(iv)(ζ2)

12
h3

)
. (3.3.47)

 

 

 

 



CHAPTER 3. A FITTED NUMERICAL METHOD TO SIMULATE A
TRANSIENT MHD FREE CONVECTIVE FLOW PAST AN INFINITE
VERTICAL POROUS PLATE 48

Further simpli�cations lead to

Lh,τ ($ − u)j =

(
ε$(iv)(ζ1)

12
+
Vo
6
$′′′j

)
h2−
(
Vo$

(iv)(ζ1)

24

)
h3 +O(h5). (3.3.48)

Using Lemma 3.3.1 we obtain

∣∣Lh,τ ($ − u)j
∣∣ ≤ ∣∣∣∣∣C̃ε12

(
1 + ε−4e−λy/ε

)
+
C̃Vo

6

(
1 + ε−3e−λy/ε

)∣∣∣∣∣h2 +O(h5).

Now applying Lemma 7 in [103] yields

∣∣Lh,τ ($ − u)j
∣∣ ≤ C̃

(
εh2

12
+
Voh

2

6

)
+O(h5),

≤ B̃h2, (3.3.49)

since εh2 < h2. Then by Lemma 3.3.1 and 3.3.5 we have

max
0≤i≤n

|($ − u)i| , ≤ max
1≤j≤n−1

∣∣Lh,τ ($ − u)j
∣∣ ,

≤ B̃h2. (3.3.50)

From equations (3.3.44) and (3.3.50) the local truncation error of FOFDM is given by

∣∣Lh,τ (θ − u)j
∣∣ =

∣∣Lh,τ (θ −$ +$ − u)j
∣∣ ,

≤
∣∣Lh,τ (θ −$)j

∣∣+
∣∣Lh,τ ($ − uj)∣∣ ,

≤ B̃
(
τ + h2

)
. (3.3.51)

Then using Lemma 3.3.5 to estimate the bounds on |(θ − u)| , we get

max
0≤i≤n

|(θ − u)i| ≤ max
1≤j≤n−1

∣∣Lh,τ (θ − u)j
∣∣ ≤ B̃

(
τ + h2

)
.
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We therefore establish that

max
0≤i≤n

|(θ − u)i| ≤ B̃
(
τ + h2

)
. (3.3.52)

3.4 Results and discussions

In this section we present and discuss numerical results. Since the exact solution is not

available the pointwise errors are estimated using the double mesh principle, that is

e∆t,N(y, t) = |uN(y, t)− u2N(y, t)|, (3.4.1)

where N is the spatial discretization parameter and ∆t is the time discretization pa-

rameter. The maximum absolute errors are given by

EN,∆t = max
N

e∆t,N(y, t), (3.4.2)

and the rates of convergence are computed using the formula [85]

rN =
log(EN,∆t/E2N,∆t/4)

log 2
. (3.4.3)

Equation (3.2.7) is solved using the SFDM and the FOFDM. It is observed that

the maximum absolute errors of the �tted method is smaller than that of the standard

method. This is depicted in Table 3.4.1. For a �xed value of ε the maximum absolute

error decreases as the number of grid points, N increases. Results in Table 3.4.1 con�rm

our theoetical estimates stated in (3.3.42) and (3.3.52). From the results obtained from

the tables it is evident that the maximum absolute errors and order of convergence of

the �tted method are smaller and larger than that of the standard method. Since the

value of Pr can assume large values in this paper we use the FOFDM to analyze the

temperature and velocity pro�les of the transient MHD free convective �ow past an

in�nite vertical porous plate.

 

 

 

 



CHAPTER 3. A FITTED NUMERICAL METHOD TO SIMULATE A
TRANSIENT MHD FREE CONVECTIVE FLOW PAST AN INFINITE
VERTICAL POROUS PLATE 50

If the values of temperature and velocity at a time t = tn is known then the

values of temperature and velocity at subsequent time levels is calculated as follows.

We substitute j = 1, 2, 3, 4, . . . n− 1 in equation (3.3.31) which results in a tri-diagonal

system of equations in unknown θ and is solved using the direct approach or the Thomas

algorithm. Once θ is known at all values of y at the current time level (t = tn), we

then calculate the velocity, u from equation (3.2.6) using the same procedure as for

temperature. The procedure is followed to obtain solution till desired time t.

The steady state value of time, t is the time such that values of temperature or

velocity no longer changes. The limiting value of temperature or velocity is termed

the steady state temperature or the steady state velocity respectively. The steady

state temperatures for di�erent values of the Prandtl number are shown in Figure

3.4.1(a). We observe that the time taken to reach the steady state temperature is less

for FOFDM than for SFDM. We also notice from calculations and Figure 3.4.1(a) that

the steady state temperatures obtained using FOFDM are less than for SFDM.

Figure 3.4.1(b) depicts the transient temperature variation with time. It also dis-

plays the e�ect of Pr on the transient temperature. We notice that if Pr and Vo are

kept constant the transient temperature increases with time. We also show that if Vo

and t are kept constant the transient temperature decreases with increasing Pr. From

Figure 3.4.1(c) we observe that the transient temperature decreases with increasing

value of the suction parameter Vo. Figure 3.4.2(a) depicts the e�ect of time, suction

parameter and Prandtl number on transient velocity. We observe that the transient

velocity increases with time. We also notice that transient velocity decreases with in-

creasing value of either the Prandtl number or the suction parameter. Figure 3.4.2(b)

on the other hand shows that the presence of a transverse magnetic �eld retards the

velocity of the �ow �eld.

3.5 Summary

We considered the unsteady free convective mass transfer �ow of viscous incompressible elec-

trically conducting �uid past a vertical in�nite porous plate in the presence of a transverse
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Figure 3.4.1: Temperature pro�les for N = 16.
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Figure 3.4.2: Velocity pro�les for N = 16.
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Table 3.4.1: Maximum absolute errors and orders of convergence associated with SFDM
and FOFDM for Vo = 0.2 and τ = 0.1.

Pr N 10 20 40 80
∆t 0.1 0.1/4 0.1/42 0.1/43

SFDM 3.17E-2 3.13E-2 3.11E-2 3.10E-2
rN 0.02 0.01 0.01

5 FOFDM 1.00E-2 2.70E-3 6.85E-4 1.71E-4
rN 1.88 1.98 2.00

SFDM 3.78E-2 3.71E-2 3.66E-2 3.64E-2
rN 0.03 0.02 0.01

10 FOFDM 5.30E-3 3.30E-3 8.02E-4 2.07E-4
rN 0.68 2.04 1.95

SFDM 4.72E-2 4.14E-2 4.01E-2 3.97E-2
rN 0.19 0.05 0.01

20 FOFDM 5.20E-3 4.10E-3 1.10E-3 2.85E-4
rN 0.34 1.90 1.95

SFDM 4.93E-2 5.49E-2 4.31E-2 4.18E-2
rN - 0.35 0.04

40 FOFDM 3.10E-3 2.00E-3 1.80E-3 4.43E-4
rN 0.63 0.20 2.02

magnetic �eld. The governing equations were non-dimensionalized by introducing similarity

variables and then solved numerically using the standard �nite di�erence method and the �t-

ted operator �nite di�erence method. For small values of the Prandtl number both methods

were applicable. However as the value of Pr became increasingly bigger the �tted operator

method became clearly the better choice by taking into account the maximum absolute er-

rors. We used the �tted operator �nite di�erence to analyze the temperature and velocity

pro�les as parameters such as γ, Pr and M vary. The e�ect of the di�erent parameters on

the transient velocity and transient temperature are summarized as follows.

� The steady state temperature obtained using the �tted operator �nite di�erence method

is lower than that obtained when the standard �nite di�erence method is used.

� The time taken for the temperature to reach steady state is less when the �tted operator

�nite di�erence method is used than when the standard �nite di�erence method is used.

� The transient temperature and transient velocity increases with time.
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� The transient temperature decreases with increasing value of the suction parameter.

� The transient temperature decreases with increasing value of the Prandtl number.

� The presence of the magnetic �eld retards the velocity of the �ow �eld.

In the next chapter, we study unsteady MHD free convection �ow past a vertical plate with

heat sources in the presence of a chemical reaction and suction.

 

 

 

 



Chapter 4

A novel �nite di�erence method for an

unsteady MHD free convection �ow

past a vertical plate with heat sources

in the presence of a chemical reaction

and suction

This chapter investigates the e�ects of a chemical reaction on unsteady two-dimensional MHD

free convection �ow of viscous incompressible electrically conducting �uid past a vertical

in�nite porous plate with heat sources in the presence of a transverse magnetic �eld, chemical

reaction and suction or injection. The governing equations of �ow �eld in the current model

are transformed by a suitable similarity transformation to a system of ordinary di�erential

equations and simulated using a suitably designed �tted operator �nite di�erence method

(FOFDM). We show that the standard �nite di�erence method (SFDM) and the FOFDM are

�rst order and second order convergent respectively. The e�ect of Richardson extrapolation on

the order of convergence is considered. We noted that this convergence acceleration technique

improves the accuracy of the FOFDM although the order of convergence remains the same.

We study the e�ects of various parameters on the velocity, temperature and concentration
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pro�les to con�rm the theoretical estimates. We observe that the temperature �ow �eld

increases with an increase in the heat source parameter and decreases with an increase in the

suction parameter.

4.1 Introduction

The study of heat and mass transfer problems with chemical reactions have received consid-

erable amount of attention in recent years. It has practical applications in engineering and

science. MHD �ows �nd applications in planetary magneto-spheres, aeronautics, materiology,

cosmic �uid dynamics, MHD generator, MHD accelerators and construction of centrifugal

machines. Free convection currents is mostly caused by temperature di�erence though in

some instances it may be caused by concentration di�erences where foreign gases are injected

or where a substrate is coated with a material and thereby evaporated through the process of

heating.

Singh [147] studied unsteady free convection �ow of an incompressible micro-polar �uid

past an in�nite vertical plate with temperature gradient dependent heat source. Singh [146]

also studied the e�ects of thermal di�usion on MHD free convection �ow through a vertical

channel. Acharya et al. [3] studied heat and mass transfer over an accelerated surface with

heat source in the presence of suction and injection. Singh [145] investigated the e�ects of

mass transfer on free convection in MHD �ow of a viscous �uid. Cortell [39] considered �ow

and heat transfer of an electrically conducting �uid of second grade over a stretching sheet

subject to suction and a transverse magnetic �eld. On the other hand Gebhart and Pera

[58] did a study on combined heat and mass transfer �ow and Helmy [68] examined an MHD

unsteady free convection �ow past a vertical porous plate. Kandasamy [79] analyzed heat and

mass transfer along a wedge with heat source and convection in the presence of suction and

injection.

The study of the development of two dimensional boundary layer with an applied magnetic

�eld due to an impulsive motion was studied by Kumari and Nath [83]. Muthukumaraswamy

and Ganesan [112] studied unsteady �ow past an impulsively started vertical plate with heat

and mass transfer and Kim [81] investigated the unsteady �ow past an impulsively started

vertical plate with heat and mass transfer. Raptis [126] examined the thermal radiation and
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free convection �ow through a porous medium bounded by a vertical in�nite porous plate by

using a regular perturbation method. Pantokratoras [118] considered a non-Darcian forced

convection heat transfer over a �at plate in a porous medium with variable viscosity and

variable Prandtl number. Sacheti [133] presented an analysis on exact solutions for unsteady

magneto-hydrodynamics free convection �ow with constant �ux.

The study of the e�ects of chemical reaction and radiation absorption on transient hydro-

magnetic natural convection �ow with wall transpiration and heat source was carried out

by Ibrahim [71]. Devi [50] investigated the e�ects of a chemical reaction on the MHD �ow

in the presence of heat transfer. Mansour [92] examined the e�ects of chemical reaction on

MHD natural convection �ows saturated in porous media with suction and injection. Recently

Shivaiah [143] studied the e�ects of chemical reaction on unsteady MHD free convection �ow

past a vertical porous plate in the presence of suction or injection using the �nite element

method.

Our current study entails the use of the �tted operator �nite di�erence method (FOFDM)

to examine the same model studied by Shivaiah [143]. We examine the singularly perturbed

part of the governing equations of �ow �eld using the FOFDM. The solution of the singular

perturbation problems (SPPs) is known to have large gradients when the coe�cient of the

highest derivative is very small. We will show theoretically and numerically that the standard

�nite di�erence method (SFDM) produces very poor approximations in the layer region when

ε become very small. This is why we adopt the FOFDM which is chosen so as to capture the

behavior of the solution within the boundary layer developed. Sources of literature consulted

on singularly perturbed partial di�erential equations include, Doolan et al. [51], Roos et

al. [131], Miller et al. [96] and references therein. Beckett and Mackenzie [16] studied the

convergence of �nite di�erence approximations on equally distributed grids to a singularly

perturbed boundary value problem using an upwind scheme.

Besides using a di�erent approach to solve the the SPPs our problem di�ers from that

of Beckett and Mackenzie [16] in that our �ow is unsteady whereas Beckett and Macken-

zie investigated steady �ows. Research on singularly perturbed steady convection di�usion

problems have been carried out using di�erent methods as stated in Beckett and Mackenzie

[16] but none of the methods used our proposed approach. In an attempt to achieve better

accuracy with fewer mesh points we use Richardson extrapolation method. Munyakazi and
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Patidar [102] investigated the performance of Richardson extrapolation when applied to some

FOFDMs for some singular perturbation problems. They found out that the performance of

Richardson extrapolation is dependent on the FOFDM scheme employed.

The rest of the chapter is organized as follows. In Section 4.2, the description of our model

is presented. Section 4.3 deals with the construction of the numerical method, its analysis

and the implementation of the Richardson extrapolation technique. Section 4.4 on the other

hand is concerned with the numerical results which supports the theory as well as the study of

the e�ects of the �ow parameters using FOFDM. Finally Section 4.5 presents the concluding

remarks of the chapter.

4.2 Description of the model

We consider the unsteady two-dimensional free convective mass transfer �ow of a viscous

incompressible electrically conducting �uid past a vertical in�nite porous �at plate in the

presence of a transverse magnetic �eld in the presence of suction or injection. Let the x∗−axis

be directed upward along the plate and the y∗−axis normal to the plate. Let u∗ and v∗ be

the velocity components along x∗ and y∗ axes respectively. At t∗ = 0, the plate and �uid are

at the same temperature T ∗∞ and same concentration C∗∞. Then the magnetohydrodynamic

unsteady free convective boundary layer equations under usual Boussinesq's approximation

[143] read

∂v∗

∂y∗
= 0, (4.2.1)

∂u∗

∂t∗
+ v∗

∂u∗

∂y∗
= ν

∂2u∗

∂y∗2
+ gβ(T ∗ − T ∗∞) + gβ∗(C∗ − C∗∞)− (

σBO
2

ρ
+

ν

κp
)u∗, (4.2.2)

∂T ∗

∂t∗
+ v∗

∂T ∗

∂y∗
= α

∂2T ∗

∂y∗2
+
Q0

ρcp
(T ∗ − T ∗∞), (4.2.3)

∂C∗

∂t∗
+ v∗

∂C∗

∂y∗
= D

∂2C∗

∂y∗2
−K∗l (C∗ − C∗∞), (4.2.4)

where, ν is the kinematic viscosity, α is the thermal di�usivity, β is the volumetric coe�cient

of thermal expansion, β∗ is the volumetric coe�cient of expansion with concentration, ρ is

the density, σ is the electrical conductivity of the �uid, g is the acceleration due to gravity,

T ∗ is the temperature of �uid inside thermal boundary, T ∗∞ is the temperature of the �uid
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in the free stream, C∗ is the species concentration in the boundary layer, C∗∞ is the species

concentration in the free stream, cp is the speci�c heat capacity, B0 is the magnetic induction,

Qo is the heat generation constant, K∗ is the permeability of the porous medium, D is the

molecular di�usivity, K∗l is the rate of chemical reaction. The boundary conditions [143] are

t∗ ≤ 0 : u∗ = 0, v∗ = 0, T ∗ = T ∗∞, C = C∗∞ for all y∗,

t∗ > 0 : u∗ = 0, v∗ = v(t), T ∗ = T ∗w, C
∗ = Cw at y∗ = 0, (4.2.5)

u∗ = 0, T ∗ = T ∗∞, C
∗ = C∗ = C∗∞ as y∗ →∞,

where, v(t) is the suction velocity at the plate. From the continuity equation we deduce that

the suction velocity v(t) = −Vo. The negative constant indicates that the suction is directed

towards the plate. We nondimensionalize (4.2.2) to (4.2.4) by introducing the following non-

dimensional quantities

u = u∗/Ṽ0, Vo = v∗/Ṽo, y = Ṽoy
∗/Vo, θ = (T ∗ − T ∗∞)/(T ∗w − T ∗∞), t = Ṽo

2
t∗/Vo,

φ̃ = (C∗ − C∗∞)/(C∗w − C∗∞), M = σB2
o Vo/ρṼo

2
, Pr = VoρCp/k,

K = kpṼo
2
/V 2

o , Gr = gβVo(T
∗
w − T ∗∞)/Ṽo

3
, Gm = gβ∗Vo(C

∗
w − C∗∞)/Ṽo

3
,

Q = QoVo/ρCpṼo
2
, Kl = K∗l V

2
o /Ṽo

2
, Sc = Vo/D,

(4.2.6)

where,M is the magnetic parameter, κ is the thermal conductivity, Ṽ0 is the reference velocity,

Kl is the chemical reaction parameter, Gr is the Grashof number of heat transfer, Gm is the

Grashof number of mass transfer, Sc is the Schmidt number, Q is the heat source parameter.

Using (4.2.5) and (4.2.6), equations (4.2.2)-(4.2.4) reduces to

∂u

∂t
− Vo

∂u

∂y
=
∂2u

∂y2
+Grθ +GmC −

(
M +

1

K

)
u, (4.2.7)

∂θ

∂t
− Vo

∂θ

∂y
=

1

Pr

∂2θ

∂y2
+Qθ, (4.2.8)

∂C

∂t
− Vo

∂C

∂y
=

1

Sc

∂2C

∂y2
−KlC. (4.2.9)
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The corresponding initial and boundary conditions are

t ≤ 0 : u = 0, θ = 0, C = 0 for all y,

t ≥ 0 : u = 0, θ = 1, C = 1 at y = 0, (4.2.10)

u→ 0, θ → 0, C → 0, as y →∞.

The set of equations (4.2.7) to (4.2.9) together with the corresponding boundary conditions

(4.2.10) are non-linear and coupled and so analytical solutions are di�cult to �nd. The

�nite di�erence method is used to �nd an approximate solution to the problem. To solve

the perturbed part of the di�erential model we employ the FOFDM which arises when Pr is

relatively large.

4.3 Construction and analysis of the numerical method

We introduce the FOFDM to solve the energy equation. The FOFDM is compared with the

standard �nite di�erence method (SFDM). The energy equation (4.2.8) is stated in the form:

Lθ :=
∂θ

∂t
− Vo

∂θ

∂y
− 1

Pr

∂2θ

∂y2
−Qθ = 0. (4.3.1)

We denote by N a positive integer and approximate the solution to (4.3.1) on a uniform mesh

and let the interval [0,4] be divided into N equal sub-intervals

y0 = 0, yi = y0 + ih, i = 1(1)N, h = yi − yi−1, yN = 4.

Let τ be the uniform step size on

Ωτ,m =

{
(y, tj) : y ∈ Ω, tj = jτ = j

1

m
, ∀ 0 < j ≤ m

}
. (4.3.2)

Denote the approximation of θ by the unknown$. By performing the time semi-discretization

by Euler method at time level n gives

$n −$n−1

τ
− Vo$n

y − ε$n
yy −Q$n = 0, (4.3.3)
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subject to

$n(0) = 1 0 < n < m, (4.3.4)

$n(4) = 0 0 ≤ n < m,

where ε = 1/Pr. This implies

−ε$n
yy − Vo$n

y +

(
1

τ
−Q

)
$n = f̃ , (4.3.5)

subject to

$n(0) = 1, $n(4) = 0, (4.3.6)

where f̃ = (1/τ)ṽn−1.

For the sake of simplicity we rewrite equation (4.3.5) without the time level notation “n”

in the following form

−ε$′′(y)− γ$′ − 1

τ
$(y) =

1

τ
$∗, (4.3.7)

subject to

$(0) = 1, $(4) = 0, (4.3.8)

Note that $∗ is de�ned as the previous time level value of $.

The following lemma provides bounds on the solution of the problem (4.3.7).

Lemma 4.3.1. Let $ be the solution of (4.3.7). Then for 0 ≤ k ≤ 4,

|$(k)(y)| ≤ C̃
(

1 + ε−ke−λy/ε
)

for all y ∈ Ω = [0, 4], where 0 < ε ≤ 1, C̃ is independent of ε, and 0 < λ < Vo.

Proof . See [96].

Next we discretize (4.3.7) in space using the standard �nite di�erence method and denote

the approximation of $ by ν̃ to give

Lh,τ ν̃j ≡ −ε
ν̃j+1 − 2ν̃j + ν̃j−1

h2
j

− V0
ν̃j+1 − ν̃j

h
+

(
1

τ
−Q

)
ν̃j = f̃j . (4.3.9)
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In this chapter SFDM stand for the standard �nite di�erence method, FOFDM stand for

�tted operator �nite di�erence method. For very small values of ε, the SFDM gives inaccurate

approximation of the true solution as the maximum absolute errors suggest. We design a

�tted numerical technique so as to achieve reliable results by replacing the denominator of

the approximation to the second derivative h2 by a function ψ2
j , which is a function of Pr, Vo

and h. Let u be the approximation of $ for the FOFDM and the resulting FOFDM is given

by

Lh,τuj ≡ −ε
uj+1 − 2uj + uj−1

ψ2
j

− V0
uj+1 − uj

h
+

(
1

τ
−Q

)
uj = f̃j , (4.3.10)

where,

ψ2
j =

εh

V0

(
exp

(
V0h

ε

)
− 1

)
. (4.3.11)

The function ψ2
j mimics the behavior of the solution in the boundary layer region. The layer

region is located in the neighborhood of the vertical plate near the left end of the interval.

Before the numerical simulation of the MHD �ow using the FOFDM we begin by analyzing

the FOFDM for stability and convergence.

The local truncation error of the time semi-discritization by the forward implicit Euler

scheme is denoted by ẽn = θ(y, tn)−$(y), where$(y) is the solution of (4.3.7). The amount of

error ẽn is the contribution of each time step to the global error of the time semi-discretizaton.

The following lemmas depict the order of the local and global error related to the problem

(4.3.7).

Lemma 4.3.2. (Local error estimate) If |$(k)(y)| ≤ C̃, y ∈ [0, 4], 0 ≤ k ≤ 2, then the local

error estimate is given by ||ẽn|| ≤ C̃τ2.

The following lemma relates to the global error, En.

Lemma 4.3.3. Global error estimate. The global error En = Σm
n=0ẽn satis�es

||En|| ≤ C̃τ, ∀ 1 ≤ n ≤ m.

The global error of the time semi-discretization is of the �rst order, that is, ||θ−$|| ≤ C̃τ.
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We discretize spatially to �nd the local truncation error |($ − u)| where$ is the exact solution

with respect to space and u is the approximation of θ for the FOFDM. We are going to consider

a few lemmas which are pivotal in the analysis of the error of the solution obtained using the

�tted operator �nite di�erence method.

We analyse (4.3.10) for stability and convergence. The di�erential operator Lh,τ in (4.3.10)

satis�es the following discrete maximum principle on Ω,

Lemma 4.3.4. (Discrete maximum principle). Assume that the mesh function ϕ(y) satis�es

φ(0) ≥ 0 and φ(4) ≥ 0. Then, Lh,τφ(y) ≥ 0 for all y ∈ Ω = (0, 4) implies that φ(y) ≥ 0 for

all y ∈ Ω.

Proof . The proof follows the same lines as the proof of the discrete maximum principle in

[96] as shown below. Choose k such that φk = miniφi and suppose that φk ≤ 0. Then

k 6∈ {0, n}, φk+1 − φk ≥ 0 and φk − φk−1 ≤ 0. Thus

Lh,τφk = − ε

ψ2
k

(φk+1 − 2φk + φk−1)− Vo
h

(φk+1 − φk) + (
1

τ
−Q)φk, (4.3.12)

= − ε

ψ2
k

(φk+1 − φk + ϕk−1 − φk)−
Vo
h

(φk+1 − φk) + (
1

τ
−Q)φk

≤ 0,

which is a contradiction. It follows φk ≥ 0 and so φi ≥ 0 ∀i, i = 1(1)n, which completes the

proof. The following lemma is a consequence of the discrete maximum principle in Lemma

4.3.4.

Lemma 4.3.5. (Uniform stability estimate) If ξi is any mesh function such that ξ0 = ξn = 0

then |ξi| ≤ 4
λ max1≤j≤n−1

∣∣Lhξj∣∣ for 0 ≤ i ≤ n.

Proof . We consider a general case of the form:

Lh,τϑ(y) = −εϑ′′(y)− a(y)ϑ(y) + b(y)ϑ(y), (4.3.13)

where a(y) > λ > 0. Let

C̃ =
1

λ
max

1≤j≤n−1
|Lnξj | ,
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and introduce the mesh functions ϑ+
i , ϑ

−
i where ϑ±i = C̃(4− yi)± ξi. Then

Lh,τϑ±i = −ε
ϑ±i+1 − 2ϑ±i + ϑ±i−1

ψ2
i

− ai
ϑ±i+1 − ϑ

±
i

h
+ biϑ

±
i ,

= −ε±ξi+1 ∓ 2ξi ± ξi−1

ψ2
i

− ai
(±ξi+1 ∓ ξi)

h
+ bi(±ξi) + C̃ai,

= ±Lh,τξi + C̃ai + biC̃(4− yi),

= ±Lh,τξi +
ai + bi(4− yi)

λ
max

Ω

∣∣∣Lh,τξi∣∣∣ (4.3.14)

≥ 0,

since ai/λ ≥ 1. By the maximum principle it implies

ϑ±i ≥ 0 for 0 ≤ i ≤ n,

and therefore

ϑ±i = C̃(4− yi)± ξi ≥ 0 for 0 ≤ yi ≤ 4.

This reduces to

|ξi| ≤ C̃(4− yi),

since 4− yi ≤ 4 and so

|ξi| ≤
4

λ
|Lh,τξi|, (4.3.15)

which completes the proof.

Now we attempt to establish the local truncation error of the FOFDM. In the analysis of

these errors, M̃ denote a positive constant, independent of h and ε and may assume di�erent

values in di�erent inequalities and equations. The local truncation error of the FOFDM

(4.3.10) is given by

∣∣∣Lh,τ (θ − u)j

∣∣∣ =
∣∣∣Lh,τ (θ −$ +$ − u)j

∣∣∣ =
∣∣∣Lh,τ (θ −$)j

∣∣∣+
∣∣∣Lh,τ ($ − u)j

∣∣∣ . (4.3.16)
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From lemma 4.3.3

∣∣∣Lh,τ (θ − uj
∣∣∣ = M̃τ. (4.3.17)

Now the truncation error for the spatial descretization is given by

Lh,τ ($ − u)j = −ε$′′j − Vo$′j +

(
1

τ
−Q

)
$j −

(
−ε$j+1 − 2$j +$j−1

ψ2
j

− Vo
$j+1 −$j

h

)

−
(

1

τ
−Q

)
$j ,

= −ε$′′j + Vo$
′
j −

ε

ψ2
j

[
h2$′′j +

$(iv)(ζ1)

12
h4

]
+
Voh

2

(
$′′j +

h

3
$′′′j

)
+
h2

12
$(iv)(ζ2), (4.3.18)

where ζ1 ∈ (yj−1, yj+1) and ζ2 ∈ (yj , yj+1). Using the Taylor series expansion, we have

ε

ψ2
j

=
ε

h2
− Vo

2h
+ . . . .

This implies that

Lh,τ ($ − u)j = −ε$′′j

+

[
ε

h2
− Vo

2h
+ . . .

] [
h2$′′j +

$(iv)(ζ1)

12
h4

]

+
Vo
2

(
h$′′j +

h2

3
$′′′j +

$(iv)(ζ2)

12
h3

)
.

Further simpli�cations lead to

Lh,τ ($ − u)j =

(
ε$(iv)(ζ1)

12
+
Vo
6
$′′′j

)
h2 −

(
Vo$

(iv)(ζ1)

24

)
h3 +O(h5).

Using Lemma 4.3.1 to estimate the bounds on the derivatives, we obtain

∣∣∣Lh,τ ($ − u)j

∣∣∣ ≤ ∣∣∣∣∣ C̃ε12

(
1 + ε−4e−λy/ε

)
+
C̃Vo

6

(
1 + ε−3e−λy/ε

)∣∣∣∣∣h2 +O(h5).
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Now applying Lemma 7 in [103] yields

∣∣∣Lh,τ ($ − u)j

∣∣∣ ≤ C̃

(
εh2

12
+
Voh

2

6

)
+O(h5)

≤ M̃h2, (4.3.19)

since εh2 < h2. Then by Lemma 4.3.5 and (4.3.19) we have

max
0≤i≤n

|($ − u)i| , ≤ max
1≤j≤n−1

∣∣∣Lh,τ ($ − u)j

∣∣∣ ,
≤ M̃h2. (4.3.20)

From equation (4.3.17) and (4.3.19) the local truncation error is given by

∣∣∣Lh,τ (θ − u)j

∣∣∣ =
∣∣∣Lh,τ (θ −$ +$ − u)j

∣∣∣ ,
≤

∣∣∣Lh,τ (θ −$)j

∣∣∣+
∣∣∣Lh,τ ($ − u)j

∣∣∣ ,
≤ M̃

(
τ + h2

)
. (4.3.21)

Richardson extrapolation

We implement the Richardson extrapolation, a convergence acceleration technique. The tech-

nique improves the accuracy of the numerical approximation. It involves two linear solutions

on a nested mesh whose linear combination results in a third solution which produces better

or improved approximations.

Let N be a positive integer. We implement the FOFDM over N mesh intervals

y0 = 0, yi = y0 + ih, i = 1(1)N, h = yi − yi−1, yN = 4.

The above mesh is denoted by πN . We introduce another mesh π2N by bisecting each mesh

interval in πN

ỹ0 = 0, ỹi = ỹ0 + ih̃, i = 1(1)2N, h̃ = ỹi − ỹi−1 =
h

2
, ỹN = 4.

The two meshes, πN and π2N are used to derive the Richardson extrapolation formula.
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Extrapolation formula

The FOFDM on the mesh πN satis�es (4.3.19). Denoting by w̃ the numerical solution com-

puted on the mesh π2N ,

[
L
h
2
,τ ($ − ũ)j

]
= −ε$′′j − Vo$′j +

(
1

τ
−Q

)
$j

−

[
−ε$j+1 − 2$j +$j−1

ψ2
j

− Vo
h/2

($j+1 −$j)

]

−
(

1

τ
−Q

)
$j ,

= −ε$′′j +
ε

ψ2
j

(
h2

4
$′′j +

h4

192
$

(iv)
j +O(h6)

)
+
hVo
4
$′′j

+
h2Vo
24

$′′′j +
h3Vo
192

$
(iv)
j +O(h4). (4.3.22)

Using Taylor series expansion

ε

ψ2
j

=
2Vo
h

[
e

−Voh
2ε

1− e
Voh
2ε

]
=

(
4ε

h2
− Vo

h
+ . . .

)
. (4.3.23)

Therefore

L
h
2
,τ ($ − ũ)j = −ε$′′j +

(
4ε

h2
− Vo

h
+ . . .

)(
h2

4
$′′j +

h4$
(iv)
j

192

)

+
hVo
4
$′′j +

h2Vo
24

$′′′j +
h3Vo
192

$
(iv)
j ,

=

(
ε$

(iv)
j

48
+
Vo$

′′′
j

24

)
h2 +O(h5). (4.3.24)

The FOFDM on the mesh πN satis�es (4.3.19) and reads

max
0≤j≤n

|($ − u)j | ≤ M̃h2.

It follows that

$(yj)− uj = M̃h2 +RN (yj), 1 ≤ j ≤ N − 1,
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and

$(ỹj)− ũj = M̃

(
h

2

)2

+R2N (yj), 1 ≤ j ≤ 2N − 1,

where both the remainders RN (yj) and R2N (yj) are O(h2).

Therefore,

$(yj)− uj − 16($(yj)− ũj) = RN (yj)− 16R2N (yj) = O(h2),∀yj ∈ πN , (4.3.25)

and consequently

$(yj)−
16(̃u)− u

15
= O(h2) ∀yj ∈ πN . (4.3.26)

This suggests an extrapolation formula:

uextrj :=
16ũ− u

15
, j = 1(1)N − 1 (4.3.27)

where uextrj is the solution of (4.3.10) obtained after extrapolation. The local truncation error

after extrapolation is thus given by

∣∣∣Lh($ − uextr)j
∣∣∣ =

16

15

[
L
h
2
,τ ($ − ũ)j

]
− 1

15
Lh,τ ($ − u)j

=

(
ε$(iv)

60
+
Vo$

′′′

30

)
h2 +O(h5). (4.3.28)

Hence

∣∣∣Lh($ − uextr)j
∣∣∣ =

∣∣∣∣∣ε$(iv)

60
+
Vo$

′′′

30

∣∣∣∣∣h2 +O(h5),
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Applying Lemma 4.3.1 and Lemma 7 in [103] yields

∣∣∣Lh($ − uextr)j
∣∣∣ =

∣∣∣∣∣ε$(iv)

60
+
Vo$

′′′

30

∣∣∣∣∣h2 +O(h5),

≤

(
εC̃

60

(
1 + ε−4e−λy/ε

)
+
VoC̃

30

(
1 + ε−3e−λy/ε

))
h2,

≤ C̃

(
1 + 2Vo

60

)
h2,

≤ M̃h2.

From equation (4.3.17) and (4.3.29) the local truncation error is given by

∣∣∣Lh,τ (θ − uextr)j
∣∣∣ =

∣∣∣Lh,τ (θ −$ +$ − uextr)j
∣∣∣ ,

≤
∣∣∣Lh,τ (θ −$)j

∣∣∣ |+ ∣∣∣Lh,τ ($ − uextr)j
∣∣∣ ,

≤ M̃
(
τ + h2

)
. (4.3.29)

4.4 Results and discussions

Since the exact solution is not available the maximum errors at all the mesh points are

estimated using the double mesh principle as:

e∆t,N (y, t) = |uN (y, t)− u2N (y, t)|, before extrapolation, (4.4.1)

and

e∆t,N,extr(y, t) = |uN,extr(y, t)− u2N,extr(y, t)|, after extrapolation, (4.4.2)

where N is the spatial discretization parameter, ∆t is the time discretization parameter, u2N

is the solution of (4.3.1) before extrapolation and w2N,extr is the solution after extrapolation.

The maximum absolute errors are given by

EN,∆t = max
N

e∆t,N (y, t), before extrapolation, (4.4.3)
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and

EN,∆t,extr = max
N

e∆t,N,extr(y, t), after extrapolation, (4.4.4)

and the rates of convergence are given by

rN =
log(EN,∆t/E2N,∆t/4)

log 2
, before extrapolation, (4.4.5)

and

rN =
log(EN,∆t,extr/E2N,∆t/4,extr)

log 2
, after extrapolation. (4.4.6)

Table 4.4.1: Maximum absolute errors and orders of convergence associated with SFDM
and FOFDM for Vo = 0.2, τ = 0.1 and Q = 1.5.

Pr N 10 20 40 80
∆t 0.1 0.1/4 0.1/42 0.1/43

SFDM 2.87E-2 1.50E-2 8.20E-3 4.40E-3
rN 0.94 0.87 0.90

5 FOFDM 1.96E-2 5.30E-3 1.30E-3 3.27E-4
rN 1.89 2.03 1.99

SFDM 4.10E-2 2.51E-2 1.52E-2 8.50E-3
rN 0.71 0.60 0.84

10 FOFDM 1.56E-2 8.00E-3 2.10E-3 5.28E-4
rN 0.96 1.93 1.99

SFDM 6.32E-2 4.10E-2 2.80E-2 1.64E-2
rN 0.62 0.55 0.77

20 FOFDM 4.30E-3 1.41E-2 3.50E-3 8.69E-4
rN - 2.01 2.01

SFDM 7.49E-2 6.65E-2 4.78E-2 3.05E-2
rN 0.17 0.48 0.65

40 FOFDM 3.30E-3 1.26E-2 5.30E-3 1.40E-3
rN - 1.25 1.92

Equation (4.3.1) was solved using the standard �nite di�erence method and the �tted

operator �nite di�erence method. Since the exact solution is not available the double mesh

principle is applied and we observe that the maximum absolute errors of the �tted method

are less than that of the standard method. These are depicted in Tables 4.4.1. For a �xed
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Table 4.4.2: Maximum absolute errors and orders of convergence associated with
FOFDM before and after extrapolation.

Pr N 10 20 40 80
∆t 0.1 0.1/4 0.1/42 0.1/43

Before extrapolation 1.96E-2 5.30E-3 1.30E-3 3.27E-4
rN 1.89 2.03 1.99

5 After extrapolation 2.90E-3 6.95E-4 1.79E-4 4.48E-5
rN 2.06 1.96 2.00

Before extrapolation 1.56E-2 8.00E-3 2.10E-3 5.28E-4
rN 0.96 1.93 1.99

10 After extrapolation 5.10E-3 1.30E-3 3.38E-4 8.45E-5
rN 1.97 1.94 2.00

Before extrapolation 4.30E-3 1.41E-2 3.50E-3 8.69E-4
rN - 2.01 2.01

20 After extrapolation 3.00E-3 2.50E-3 6.03E-4 1.50E-4
rN 0.26 2.04 2.00

Before extrapolation 3.30E-3 1.26E-2 5.30E-3 1.40E-3
rN - 1.25 1.92

40 After extrapolation 7.37E-4 3.60E-3 8.81E-4 2.48E-4
rN - 2.03 1.83

value of ε the maximum absolute error decreases as the number of grid points, N increases.

In Table 4.4.1 the spatial descretization takes the values N = 10, 20, 40, 80 and the time

descretization parameter take the values ∆t = 0.1 , 0.1/4, 0.1/42, 0.1/43. We have divided

the step sizes into a di�erent ratio so that we accommodate at the same time the �rst order

convergence in time and the second order convergence in space. From the table of results the

maximum absolute errors suggest the second order convergence in space. The result agrees

with theoretical results which showed that the local truncation error is of order O
(
τ + h2

)
.

From the tabulated results it is clear that the maximum absolute errors of the FOFDM are

comparatively smaller than the usual standard methods. On the other hand the order of

convergence of the FOFDM are slightly larger than the order of convergence of the SFDM.

In Table 4.4.2 the spatial descretization takes the values N = 10, 20, 40, 80 and the time

descretization parameter take the values ∆t = 0.1 , 0.1/4, 0.1/42, 0.1/43. As displayed in

Table 4.4.2 implementation of Richardson extrapolation results in the generation of smaller

error values but does not improve the order of convergence. Since we regard large values of

 

 

 

 



CHAPTER 4. A NOVEL FINITE DIFFERENCE METHOD FOR AN UNSTEADY
MHD FREE CONVECTION FLOW PAST A VERTICAL PLATE WITH HEAT
SOURCES IN THE PRESENCE OF A CHEMICAL REACTION AND SUCTION71

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e
m

p
e
ra

tu
re

y

 

 

I:P
r
 =28. V

o
 = 0.2, Q = 1.5

II: P
r
 = 28, V

o
 = 0.2, Q = 1

III: P
r
 = 28, V

o
 = 0.4, Q = 1

IV:P
r
 = 56, V

o
 = 0.4, Q = 1

I

IV

III

II

Figure 4.4.1: The e�ect of Pr, vo and Q on the temperature pro�le for N = 64.
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Figure 4.4.2: The e�ect of Sc, Vo and Kl on the concentration pro�le for N = 64.
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Figure 4.4.3: The e�ect of M, Vo, Q and K on the velocity pro�le for N = 64.

Pr in this paper we use the FOFDM to analyze the temperature, velocity and concentration

pro�les of the MHD free convective �ow past an in�nite vertical porous plate with heat sources

in the presence of a chemical reaction and suction or injection. Figure 4.4.1 depicts the e�ects

of the Prandtl number, suction parameter and heat source parameter on the temperature

pro�le. We notice from Figure 4.4.1 that the temperature �ow �eld increases as the heat source

parameter Q increases. On the other hand the temperature �ow �eld decreases with increasing

Prandtl number Pr and suction parameter Vo. Figure 4.4.2 shows the e�ect of parameters

such as the Schmidt number Sc, chemical reaction parameter Kl and suction parameter Vo

on the concentration pro�le. We observe that the concentration distribution decreases with

increasing Schmidt number, chemical reaction parameter and suction parameter. The e�ects

of magnetic parameter M , suction parameter Vo, permeability parameter K and heat source

parameterQ are depicted in Figure 4.4.3. As expected we observe that the magnetic parameter

and suction parameter retards the velocity �ow �eld. We also observe that the velocity �ow

�eld increases with increasing permeability parameter and increasing heat source parameter.
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4.5 Summary

The study of unsteady free convective mass transfer �ow of viscous incompressible electri-

cally conducting �uid past a vertical in�nite porous plate with heat sources in the presence

of a chemical reaction, transverse magnetic �eld and suction/injection using the FOFDM

was carried out. The governing equations are non-dimensionalized by introducing similarity

variables and then solved numerically using the �tted operator �nite di�erence method. The

Richardson extrapolation technique is implemented and it is deduced that the extrapolation

improves the accuracy of the results whereas the order of convergence is not improved. Since

large values of Pr are assumed in this paper the �tted operator �nite di�erence method is

used to analyze the temperature, concentration and velocity pro�les as parameters such as

the suction parameter, Prandtl number, Schmidt number, magnetic parameter, permeability

parameter, chemical reaction parameter and heat source parameter vary. The e�ect of the

di�erent parameters on the velocity, concentration and temperature pro�les are summarized

as follows.

� The temperature �ow �eld increases with the increase in the heat source parameter

whereas it decreases with the increase in Prandtl number and suction parameter.

� The concentration �ow �eld decreases with the increase in the Schmidt number, chem-

ical reaction parameter and suction.

� The velocity �ow �eld decreases with increasing magnetic parameter and suction pa-

rameter whereas it increases with increasing permeability parameter and heat source

parameter.

In Chapter 5 we investigate the double-di�usive MHD �ow over a moving plate with heat

generation and soret e�ects.

 

 

 

 



Chapter 5

A �tted method on the

double-di�usive MHD �ow over a

moving vertical plate with heat

generation and soret e�ects

In this chapter we investigate the solution of a double-di�usive convection-radiation interac-

tion on a two dimensional unsteady MHD laminar �ow of viscous, incompressible, electrically

conducting �uid past a semi-in�nite vertical moving porous plate embedded in a porous

medium subjected to a transverse magnetic �eld in the presence of a chemical reaction, heat

generation/absorption and thermal di�usion. The plate moves with constant velocity in the

direction of �uid �ow and the free stream velocity follows the exponentially increasing small

perturbation law. The porous surface absorbs �uid with a suction velocity that is time-

dependent. The Rosseland approximation is used to describe the radiative heat �ux in the

energy equation. In this work, the governing partial di�erential equations describing the

problem are transformed by a similarity transformation resulting in a system of ordinary

di�erential equations. The singularly perturbed part of the di�erential model is simulated

using the �tted operator �nite di�erence method (FOFDM) and results are compared with

those obtained using classical approaches. We analyze the proposed approach for stability
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and convergence. Numerical results are presented to con�rm our theoretical �ndings. We

observe that both temperature and concentration pro�les increases with an increase in the

value of the Soret number. We also note that the temperature increases with an increase in

the heat generation parameter.

5.1 Introduction

Heat and mass transfer problems with chemical reaction have received much attention in

recent years because of of their application in engineering and science. Muthucumaraswamy

and Ganesan [109] studied the e�ect of the chemical reaction and injection on �ow in unsteady

vertical isothermal plate. Das et al. [42] analyzed the e�ect of the �rst order homogenous

chemical reaction in unsteady �ow past an in�nite vertical plate with constant heat and mass

transfer. Muthucumaraswamy and Ganesan [111] studied the e�ects of a chemical reaction

in the unsteady �ow past an impulsively started semi-in�nite vertical plate subjected to

uniform heat �ux. Muthucumaraswamy and Ganesan [106] investigated the e�ects of suction

on heat and mass transfer along a moving vertical surface in the presence of a chemical

reaction. Raptis and Perdikis [127] studied the e�ects of a chemical reaction of an electrically

conducting viscous �uid over a quadratic semi-in�nite stretching sheet in the presence of a

constant magnetic �eld. Ibrahim et al. [71] investigated the e�ects of the chemical reaction

and radiation absorption on the unsteady MHD free convection �ow past a semi-in�nite porous

moving plate with suction and heat source. Seddeck et al. [140] studied the e�ects of chemical

reaction, radiation and variable viscosity on hydromagnetic mixed convection heat and mass

transfer for Hiemenz �ow through porous media.

The existence of various physical problems that undergo exothermic and endothermic

chemical reaction have led to the study of heat generation e�ects in moving �uids. Hossain

et al. [69] investigated the problem of a natural convection �ow along a vertical wavy surface

with uniform surface temperature in the presence of heat generation. Chamkha [30] studied

unsteady convective heat and mass transfer past a semi-in�nite porous moving plate with

heat generation/absorption. Alam et al. [6] analyzed the problem of free convection heat

and mass transfer �ow past an inclined semi-in�nite heated surface of an MHD �ow in the

presence of heat generation.
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The study of radiation interaction with convection for heat and mass transfer in �uids is

important in view of its signi�cance in free convection problems involving absorbing-emitting

�uids. El-Naby [55] investigated the e�ect of radiation on MHD unsteady free convection �ow

past a semi-in�nite vertical porous plate using the implicit �nite di�erence methods. The

study of unsteady �uid �ow past a non porous moving plate in the presence of free convection

and radiation were done by Cogley et al. [36], Das et al. [43], Ganesan and Loganathan [57]

and Mbeledogu et al. [95] only to mention a few.

Several studies have been carried out involving a porous medium. El-Hakiem [54] in-

vestigated the unsteady MHD oscillatory �ow in free convection-radiation through a porous

medium with a vertical in�nite surface that absorbs the �uid with constant velocity. Cookey

et al. [37] studied the e�ect of viscous dissipation and radiation on unsteady MHD free con-

vection �ow past an in�nite heated vertical plate in a porous medium with time-dependent

suction. Kim [81] analyzed the unsteady MHD convective heat transfer past a semi-in�nite

vertical porous moving plate with suction.

Mohamed [99] investigated the double-di�usive convection -radiation interaction on un-

steady MHD �ow over a vertical moving porous plate with heat generation and soret e�ects

and solved the set of di�erential equations analytically using the harmonic and non-harmonic

functions. Roja et al. [130] investigated a model similar to that of Mohamed [99] except that

the MHD �ow was of micropolar �uid. Our current study focusses on the di�erential model by

Mohamed [99] and we assume that the perturbation parameter, the coe�cient of the highest

derivative ε in the heat equation may become small enough to render it singularly perturbed.

The solution of the singular perturbation problems is known to have large gradients within the

boundary layer which a�ect the convergence of the solution obtained using the usual standard

numerical approach. It is shown theoretically and numerically that the SFDM produces poor

approximations when ε is very small. Hence the reason why we adopt the �tted operator

�nite di�erence method (FOFDM) which captures the behavior of the solution within the

layer region.

A vast amount of literature exists on singularly perturbed partial di�erential equations

(see Beckett and Mackenzie [16], Gracia and Lisbona [60], Patidar [121], Roos et al. [131],

Miller et al. [96], Doolan et al. [51] and references therein.)

To the best of our knowledge no work has been done to study double-di�usive convection-
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radiation interaction on unsteady MHD �ow over a vertical moving porous plate with heat

generation and thermal di�usion using the �tted operator �nite di�erence method.

The rest of the chapter is organized as follows. In Section 5.2 we describe the model of

our problem. Section 5.3 focusses on the numerical method and its analysis. Section 5.4 on

the other hand deals with the presentation and discussion of the numerical results. Finally

Section 5.5 is devoted to the conclusion of the chapter.

5.2 Description of the model

We consider a two dimensional unsteady �ow of a laminar, viscous, incompressible, electri-

cally conducting and heat generating �uid past a moving vertical semi-in�nite porous plate

immersed in a uniform porous medium in the presence of a transverse magnetic �eld with

double-di�usive free convection, thermal di�usion, chemical reaction, and thermal radiation

e�ects. Let the x∗−axis be directed upward along the plate and the y∗−axis normal to the

plate. Let u∗ and v∗ be the velocity components along x∗ and y∗ axes respectively. Then

the magnetohydrodynamic unsteady free convective boundary layer equations based on the

balances of mass, momentum, heat, and concentration species [99] read

∂v∗

∂y∗
= 0, (5.2.1)

ρ

(
∂u∗

∂t∗
+ v∗

∂u∗

∂y∗

)
= −∂p

∗

∂x∗
+ µ

∂2u∗

∂y∗2
− ρg − µ

K∗
u∗ − σBO

2

ρ
u∗, (5.2.2)

∂T ∗

∂t∗
+ v∗

∂T ∗

∂y∗
=

κ

ρcp

∂2T ∗

∂y∗2
+
Qo
ρcp

(T ∗ − T ∗∞)− 1

ρcp

∂qr
∂y∗

, (5.2.3)

∂C∗

∂t∗
+ v∗

∂C∗

∂y∗
= D

∂2C∗

∂y∗2
+DT

∂2T ∗

∂y∗2
−K∗l (C∗ − C∗∞) , (5.2.4)

where, ν is the kinematic viscosity, K∗ is the permeability of the porous medium, D is the

coe�cient of chemical molecular di�usivity, DT is the coe�cient of thermal di�usivity, ρ is the

density, σ is the electrical conductivity of the �uid, g is the acceleration due to gravity, T ∗ is the

temperature, T ∗∞ is the temperature of the �uid far away from the plate, C∗ is the dimensional

concentration, qr is the local radiative heat �ux, Kl is the reaction rate constant, Qo is the

heat generation constant, cp is the speci�c heat capacity, B0 is the magnetic induction. The
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necessary boundary conditions [99] are

u∗ = u∗p, T
∗ = T ∗w + ι (T ∗w − T ∗∞) eN

∗t∗ , C∗ = C∗w + ι (C∗w − C∗∞) eN
∗t∗ at y = 0,

u∗ = U∗p = Uo

(
1 + ιeN

∗t∗
)
, T ∗ → T ∗∞, C

∗ → C∗∞ as y →∞, (5.2.5)

where, T ∗w and C∗w are the wall dimensional temperature and concentration respectively, C∗∞

is the stream dimensional concentration, Uo and N
∗ are constants.

From the continuity equation it is deduced that the suction velocity is a function of time

only and it is assumed to take the form

v∗ = −Vo
(

1 + ιAeN
∗t∗
)
, (5.2.6)

where, A is a real positive constant, ι and ιA are less than unity and the non zero positive

constant, Vo is a scale of suction velocity. Far from the plate we get

ρ
dU∗∞
dt∗

= −∂p
∗

∂x∗
− ρ∞g −

µ

K∗
U∗∞ − ρB∗oU∗. (5.2.7)

By eliminating ∂p∗/∂x∗ between equation (5.2.3) and (5.2.7) and using the equation of state

[65]

ρ∞ − ρ = ρβ (T ∗ − T ∗∞) + ρβ∗ (C∗ − C∗∞) , (5.2.8)

we obtain

∂u∗

∂t∗
+ v∗

∂u∗

∂y∗
=

dU∗∞
dt∗

+ ν
∂2u∗

∂y∗2
+ gβ (T ∗ − T ∗∞) + gβ∗ (C∗ − C∗∞) (5.2.9)

+
ν

K∗
(U∗∞ − u∗) +

σB2
o

ρ
(U∗∞ − u∗) ,

where, β is the volumetric coe�cient of thermal expansion, β∗ the volumetric coe�cient of

expansion with concentration, ρ∞ the density of the �uid far away from the surface and ν is

the coe�cient of kinematic viscosity.
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Assuming the Rosseland approximations the radiative heat �ux term is given by

qr = −(4ρ∗/3k∗1)∂T ∗4/∂y∗, (5.2.10)

where, ρ∗ and k∗1 are the Stefan-Boltzman constant and the mean absorption coe�cient re-

spectively. Assuming that the temperature di�erence within the �ow are so small that T ∗4

may be expressed as a linear function of the temperature. By using Taylor series expansion

and neglecting higher order terms we get

T ∗4 ≡ 4T ∗3∞T
∗ − 3T ∗4∞. (5.2.11)

By using equations (5.2.10) and (5.2.11) the heat equation is reduced to

∂T ∗

∂t∗
+ v∗

∂T ∗

∂y∗
=

κ

ρcp

∂2T ∗

∂y∗2
+
Qo
ρcp

(T ∗ − T ∗∞) +
16σ∗T ∗3∞
3ρcpk∗1

∂2T ∗

∂y∗2
. (5.2.12)

We non-dimensionalize (5.2.4), (5.2.9) and (5.2.12) by introducing the following similarity

variables

v∗ = uVo, u
∗ = uUo, y

∗ = yµ/Vo, U
∗ = U∞Uo, u

∗
p = UpUo, t

∗ = tν/V 2
o , N

∗ = (V 2
o N1)/µ,

K∗ = Kµ/V 2
o , T

∗ = T ∗∞ + θ (T ∗w − T ∗∞) , C∗ = C∗∞ + C (C∗w − C∗∞) ,

(5.2.13)

and obtain the following dimensionless di�erential equations,

∂u

∂t
−
(
1 + ιAeN1t

) ∂u
∂y

=
dU

dt
+
∂2u

∂y2
+Grθ +GmC +W (U∞ − u) , (5.2.14)

∂θ

∂t
−
(
1 + ιAeN1t

) ∂θ
∂y

=
1

Pr

(
1 +

4R

3

)
∂2θ

∂y2
+Qθ, (5.2.15)

∂C

∂t
−
(
1 + ιAeN1t

) ∂C
∂y

=
1

Sc

∂2C

∂y2
+ So

∂2θ

∂y2
− δC, (5.2.16)

subject to the following boundary conditions

u = Up, θ = 1 + ιeN1t, C = 1 + ιeN1t as y = 0, (5.2.17)

u = U∞ → 1 + ιeN1t, θ → 0, C → 0 as y →∞, (5.2.18)
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where,

Gr = νβg (T ∗w − T ∗∞)/V 2
o Uo is the thermal Grashof number, Gm = νβ∗g (C∗w − C∗∞)/V 2

o Uo is

the solutal Grashof number, M = σB2
oν/ρV

2
o is the magnetic �eld parameter, Pr = νρcp/κ

is the Prandtl number, R = 4σT ∗∞/κκ
∗
1 is the thermal radiation parameter, Sc = ν/D is

the Schmidt number, Q = νQo/ρV
2
o cp is the dimensionless heat generation coe�cient, So =

D (T ∗w − T ∗∞)/ν (C∗w − C∗∞) is the soret number, δ = Klν/D is the chemical reaction parameter

and W = M + 1/K.

5.3 Construction and analysis of the numerical method

In this section we construct the numerical method followed by its analysis. We introduce the

FOFDM to solve the energy equation. The FOFDM is compared with the standard �nite

di�erence method (SFDM) and the analytical approximate solution. The energy equation

(5.2.15) is stated in the form

Lθ :=
∂θ

∂t
−
(
1 + ιAeN1t

) ∂θ
∂y
− 1

Pr

(
1 +

4R

3

)
∂2θ

∂y2
−Qθ = 0. (5.3.1)

We will approximate the solution above on a uniform mesh which we describe below.

Let N be a positive integer. Consider the following partition of the interval [0,4]:

y0 = 0, yi = y0 + ih, i = 1(1)N, h = yi − yi−1, yN = 4.

Let τ be the uniform step size on

Ωτ,m =

{
(y, tj) : y ∈ Ω, tj = jτ =

j

m
, ∀ 0 < j ≤ m

}
. (5.3.2)

Denote the approximation of θ by the unknown $. Performing the time semi-discretization

by Euler method at time level n gives

$n −$n−1

τ
−
(
1 + ιAeN1t

)
$n
y −

1

Pr

(
1 +

4R

3

)
$n

yy −Q$n = 0, (5.3.3)
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subject to

$n(0) = 1 + ιeN1t for 0 < n < m, (5.3.4)

$n(4) = 0 for 0 ≤ n < m. (5.3.5)

We rewrite (5.3.3) as

−ε $n
yy −

(
1 + ιAeN1t

)
$n
y +

(
1

τ
−Q

)
$n =

1

τ
$n−1. (5.3.6)

subject to

$n(0) =
(
1 + ιeN1t

)
and $n(4) = 0, (5.3.7)

where ε = (1/Pr) (1 + 4R/3) . For the sake of simplicity we omit the time level label “n” in

(5.3.6). We are therefore concerned with the problem of �nding $ such that

−ε$′′(y)−
(
1 + ιeN1t

)
$′ +

(
1

τ
−Q

)
$(y) =

1

τ
$∗, (5.3.8)

subject to

$(0) = 1 + ιeN1t and $(4) = 0, (5.3.9)

where $∗ is the value of $ at the previous time level n− 1.

The following lemma provides bounds on the solution of the problem (5.3.8)-(5.3.9).

Lemma 5.3.1. Let $ be the solution of (5.3.8)-(5.3.9). Then for 0 ≤ k ≤ 4,

|$(k)(y)| ≤ C̃
(

1 + ε−ke−λy/ε
)

for all y ∈ Ω = [0, 4], where 0 < ε ≤ 1, C̃ is independent of ε, and 0 < λ <
(
1 + ιAeN1t

)
.

Proof. See [96].

Discretizing (5.3.8) in space using the standard �nite di�erence method and denoting the

approximation of $ by ν̃ to give

Lh,τνj ≡ −ε
ν̃j+1 − 2ν̃j + ν̃j−1

h2
−
(
1 + ιAeN1t

) ν̃j+1 − ν̃j
h

+

(
1

τ
−Q

)
ν̃j=

1

τ
ν̃∗j . (5.3.10)

 

 

 

 



CHAPTER 5. A FITTED METHOD ON THE DOUBLE-DIFFUSIVE MHD
FLOW OVER A MOVING VERTICAL PLATE WITH HEAT GENERATION AND
SORET EFFECTS 82

We will show later that for relatively small values of ε, the SFDM fails to provide fairly accurate

approximation of the true solution by comparing the maximum absolute errors calculated. To

obtain reliable results we discretize (5.3.8) as follows,

Lh,τuj ≡ −ε
uj+1 − 2uj + uj−1

ψ2
j

−
(
1 + ιAeN1t

) uj+1 − uj
h

+

(
1

τ
−Q

)
uj=

1

τ
u∗j . (5.3.11)

and

ψ2
j =

ε
(
1 + 4R

3

)
h

(1 + ιAeN1t)

(
exp

((
1 + ιAeN1t

)
h

ε
(
1 + 4R

3

) )
− 1

)
. (5.3.12)

The proposed scheme (5.3.11) and (5.3.12) is refered to as FOFDM. The function ψ2
j captures

the behavior of the solution in the boundary layer region which is located in the near the left

end of the interval.

Next we analyze the FOFDM. The local truncation error of the time semi-discritization

by the forward implicit Euler scheme is denoted by ẽn = θ(y, tn) −$(y), where $(y) is the

solution of (5.3.6). The amount of error ẽn is the contribution of each time step to the global

error of the time semi-discretizaton. The following lemmas depict the order of the local and

global error related to the problem (5.3.6).

Lemma 5.3.2. (Local error estimate) If |$(k)(y)| ≤ C̃, y ∈ [0, 4], 0 ≤ k ≤ 2, then the local

error estimate is given by ||ẽn|| ≤ C̃τ2.

The following lemma relates to the global error, En.

Lemma 5.3.3. (Global error estimate) The global error En = Σm
n=0ẽn satis�es

||En|| ≤ C̃τ, ∀ 1 ≤ n ≤ m.

We discretize in space and �nd the local truncation error |($ − u)| where $ is the exact

solution with respect to space and u is the approximation of θ for the FOFDM. The following

lemmas are pivotal in the analysis of the error of the solution obtained using the FOFDM. We

will show later that for relatively small values of ε, the SFDM fails to provide fairly accurate

approximation of the true solution by comparing the maximum absolute errors calculated.

To obtain reliable results we discretize (5.3.8) as follows, We analyse the FOFDM (5.3.11)
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for stability and convergence. The di�erential operator Lh,τ in (5.3.11) satis�es the following

discrete maximum principle on Ω,

Lemma 5.3.4. (Discrete maximum principle) Assume that the mesh function φi satis�es

φ0 ≥ 0 and φn ≥ 0. Then, Lh,τφi ≥ 0 for i = 1(1)n− 1 which implies that φi ≥ 0 ∀i=0(1)n.

Proof . The proof follows the same lines as the proof of the discrete maximum principle in [96]

as shown below. Choose k such that φk = mini φi and suppose that φi ≤ 0. Then k 6∈ {0, n},

φk+1 − φk ≥ 0 and φk − φk−1 ≤ 0. Thus

Lh,φk = −ε φk+1 − 2φk + φk−1

ψ2
k

− aφk+1 − φk
h

+ bφk,

= −ε φk+1 − φk + φk−1 − φk
ψ2
k

− aφk+1 − φk
h

+ bφk

< 0,

a clear contradiction. Then

φk ≥ 0, which implies φi ≥ 0, ∀i = 1(1)n, which completes the proof.

The following lemma is a consequence of the discrete maximum principle.

Lemma 5.3.5. (Uniform stability estimate) If ξi is any mesh function such that

ξ0 = ξn = 0 then

|ξi| ≤
4

λ
max

1≤j≤n−1

∣∣∣Lhξj∣∣∣ for 0 ≤ i ≤ n.

Proof . Let

C̃ =
1

λ
max

1≤j≤n−1
|Lnξj | ,

and introduce the mesh functions ϑ+
i , ϑ

−
i de�ned by ϑ±i = C̃(4 − yi) ± ξi. From (5.3.11), we
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have

Lh,τϑ±i = −ε
ϑ±i+1 − 2ϑ±i + ϑ±i−1

ψ2
i

− ai
ϑ±i+1 − ϑ

±
i

h
+ biϑ

±
i ,

= −ε±ξi+1 ∓ 2ξi ± ξi−1

ψ2
i

− ai
(±ξi+1 ∓ ξi)

h
+ bi(±ξi) + C̃ai,

= ±Lh,τξi + C̃ai + biC̃(4− yi),

= ±Lh,τξi +
ai + bi(4− yi)

λ
max

Ω

∣∣∣Lh,τξi∣∣∣
≥ 0, (5.3.13)

since ai/λ ≥ 1.

By the maximum principle, it implies that

ϑ±i ≥ 0 for 0 ≤ i ≤ n,

and

ϑ±i = C̃(4− yi)± ξi ≥ 0 for 0 ≤ yi ≤ 4.

Since 4− yi ≤ 4,

|ξi| ≤ C̃(4− yi) ≤ 4C̃,

and therefore

|ξi| ≤
4

λ
max

1≤j≤n−1
|Lnξj | ,

which completes the proof.

Our next attempt is to establish the local truncation error of the SFDM and the FOFDM.

In the analysis M̃ and S̃ denote positive constants independent of h and ε and may assume

di�erent values in di�erent equations and inequalities.The local truncation error of the SFDM

(5.3.10) is given by

∣∣∣Lh,τ (θ − ũ)j

∣∣∣ =
∣∣∣Lh,τ (θ −$ +$ − ũ)j

∣∣∣=∣∣∣Lh,τ (θ −$)j

∣∣∣+
∣∣∣Lh,τ ($ − ũ)j

∣∣∣ . (5.3.14)

 

 

 

 



CHAPTER 5. A FITTED METHOD ON THE DOUBLE-DIFFUSIVE MHD
FLOW OVER A MOVING VERTICAL PLATE WITH HEAT GENERATION AND
SORET EFFECTS 85

From lemma 5.3.3

∣∣∣Lh,τ (θ −$)j

∣∣∣ = M̃τ. (5.3.15)

The truncation error for the spatial descretization of the SFDM is given by

[
Lh,τ ($ − ũ)j

]
= −ε $′′j −B$′j +

(
1

τ
−Q

)
$j −

(
−ε $j+1 − 2$j +$j−1

h2

)
+B

$j+1 −$j

h
− (

1

τ
−Q)$j ,

= −ε$′′j +
ε

h2

[
h2$′′j +

h4

12
$(iv)(ζ1)

]
+
Bh

2

(
$′′j +

h

3
$′′′j +

h2

12
$(iv)(ζ2)

)
,

=
B

2
$′′j h+

(
ε

12
$(iv)(ζ1) +

B

6
$′′′j

)
h2 +

B

24
$(iv)(ζ2)h3, (5.3.16)

where B =
(
1 + ιAeN1t

)
, ζ1 ∈ (yj−1, yj+1) and ζ2 ∈ (yj , yj+1). Now

∣∣∣Lh,τ ($ − ũ)j

∣∣∣ =

∣∣∣∣B2 $′′j h+

(
ε

12
$(iv)(ζ1) +

B

6
$′′′j

)
h2 +

B

24
$(iv)(ζ2)h3

∣∣∣∣ ,
≤

∣∣∣∣B2 $′′j
∣∣∣∣h+

∣∣∣∣( ε

12
$(iv)(ζ1) +

B

6
$′′′j

)∣∣∣∣h2 (5.3.17)

+

∣∣∣∣B24
$(iv)(ζ2)

∣∣∣∣h3.

Using Lemma 5.3.1 we obtain

∣∣∣Lh,τ ($ − ν̃)j

∣∣∣ ≤ C̃B

2

(
1 + ε−2e−λy/ε

)
h+

C̃ε

12

(
1 + ε−4e−λy/ε

)
h2

+
BC̃

6

(
1 + ε−3e−λy/ε

)
h2 +O(h3).

Using Lemma 7 in [103]

∣∣∣Lh,τ ($ − ν̃)j

∣∣∣ ≤ C̃B

2
h+

(
C̃

12
+
BC̃

6

)
h2 +O(h3),

≤ M̃h. (5.3.18)
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Then by Lemma 5.3.5 and (5.3.18) we have

max
0≤i≤n

|($ − ν̃)i| ≤ max
1≤j≤n−1

∣∣∣Lh,τ ($ − ν̃)j

∣∣∣ ,
≤ M̃h. (5.3.19)

From equations (5.3.15) and (5.3.18) the local truncation error of SFDM is given by

∣∣∣Lh,τ (θ − ν̃)j

∣∣∣ =
∣∣∣Lh,τ (θ −$ +$ − ν̃j

∣∣∣ ,
≤

∣∣∣Lh,τ (θ −$)j

∣∣∣+
∣∣∣Lh,τ ($ − ν̃)j

)
|,

≤ M̃ (τ + h) . (5.3.20)

Then using Lemma 5.3.5 to estimate the bounds on |(θ − ν̃)| , we get

max
0≤i≤n

|(θ − ν̃)i| ≤ max
1≤j≤n−1

∣∣∣Lh,τ (θ − ν̃)j

∣∣∣ ≤ M̃ (τ + h) . (5.3.21)

Similarly, the local truncation error of the FOFDM (5.3.11) is given by

∣∣∣Lh,τ (θ − u)j

∣∣∣ =
∣∣∣Lh,τ (θ −$ +$ − u)j

∣∣∣ =
∣∣∣Lh,τ (θ −$)j

∣∣∣+
∣∣∣Lh,τ ($ − u)j

∣∣∣ . (5.3.22)

From lemma 5.3.3

∣∣∣Lh,τ (θ −$)j

∣∣∣ = S̃τ. (5.3.23)

The truncation error for the spatial descretization is given by

[
Lh,τ ($ − u)j

]
= −ε$′′j −B$′j +

(
1

τ
−Q

)
$j

−

(
−ε$j+1 − 2$j +$j−1

ψ2
j

−B$j+1 −$j

h

)

+

(
1

τ
− η
)
$j ,

= −ε$′′j −B$′j +
ε

ψ2
j

[
h2$′′j +

h4

12
$(iv)(ζ1)

]
+
Bh

2

(
$′′j +

h

3
$′′′j +

h2

12
$(iv)(ζ2)

)
,
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where ζ1 ∈ (yj−1, yj+1) and ζ2 ∈ (yj , yj+1). Using the Taylor series expansion, we have

ε

ψ2
j

=
ε

h2
− B

2h
+ . . . . (5.3.24)

This implies that

[
Lh,τ ($ − u)j

]
= −ε$′′j

+

[
ε

h2
− B

2h
+ . . .

] [
h2$′′j +

h4

12
$(iv)(ζ1)

]
+
Bh

2

(
$′′j +

h

3
$′′′j +

h2

12
$(iv)(ζ2)

)
. (5.3.25)

Further simpli�cations lead to

[
Lh,τ ($ − u)j

]
=

[
ε$

(iv)
j

12
+
B$′′′j

6

]
h2 +O(h5).

Using Lemma 5.3.1 we obtain

∣∣∣Lh,τ ($ − u)j

∣∣∣ ≤ ∣∣∣∣∣ C̃ε12

(
1 + ε−4e−λy/ε

)
+
C̃B

6

(
1 + ε−3e−λy/ε

)∣∣∣∣∣h2 +O(h5).

Now applying Lemma 7 in [103]

∣∣∣Lh,τ ($ − u)j

∣∣∣ ≤ C̃

(
εh2

12
+
Bh2

6

)
+O(h5),

≤ S̃h2, (5.3.26)

since εh2 < h2. Then by Lemma 5.3.1 and (5.3.26) we have

max
0≤i≤n

|($ − u)i| , ≤ max
1≤j≤n−1

∣∣∣Lh,τ ($ − u)j

∣∣∣ ,
≤ S̃h2. (5.3.27)
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From equations (5.3.23) and (5.3.27) the local truncation error of FOFDM is given by

∣∣∣Lh,τ (θ − u)j

∣∣∣ =
∣∣∣Lh,τ (θ −$ +$ − u)j

∣∣∣ ,
≤

∣∣∣Lh,τ (θ −$)j

∣∣∣+
∣∣∣Lh,τ ($ − uj)

∣∣∣ ,
≤ S̃

(
τ + h2

)
. (5.3.28)

Then using Lemma 5.3.5 to estimate the bounds on |(θ − u)| , we get

max
0≤i≤n

|(θ − u)i| , ≤ max
1≤j≤n−1

∣∣∣Lh,τ (θ − u)j

∣∣∣ ≤ S̃ (τ + h2
)
.

We therefore establish that

max
0≤i≤n

|(θ − u)i| ≤ S̃
(
τ + h2

)
. (5.3.29)

5.4 Results and discussions

In this section we begin by presenting some numerical results followed by a discussion on the

results.

The pointwise errors are estimated as:

e∆t,N (y, t) = |uN (y, t)− u2N (y, t)|,

where N is the spatial discretization parameter, ∆t is the time descritization parameter and

w is the numerical solution. The maximum absolute error at all mesh points are evaluated

using the double mesh principle

EN,∆t = max
N

e∆t,N (y, t),

and the rates of convergence are computed using the formula([60])

rN =
log(EN,∆t/E2N,∆t/4)

log 2
.
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Equation (5.3.1) is solved using the standard �nite di�erence method and the �tted operator

�nite di�erence method. The accuracy of a numerical method is achieved by computing the

maximum absolute errors as depicted in Tables 5.4.1.

Table 5.4.1: Maximum absolute errors and orders of convergence associated with SFDM
and FOFDM for Vo = 0.2, ι = 0.2, t = 1, τ = 0.02, Q = 0.1, A = 0.5, R = 0.5.

Pr N 10 20 40 80
∆t 0.02 0.02/4 0.02/42 0.02/43

SFDM 8.17E-2 5.30E-2 3.15E-2 1.74E-2
rN 0.62 0.75 0.86

5 FOFDM 1.88E-3 4.49E-4 1.11E-4 2.76E-5
rN 0.74 2.06 2.00

SFDM 1.08E-1 8.704E-2 5.58E-2 3.27E-2
rN 0.31 0.64 0.77

10 FOFDM 1.11E-3 3.08E-4 7.27E-5 1.83E-5
rN 1.85 2.08 1.99

SFDM 1.02E-1 1.14E-1 8.88E-2 5.66E-2
rN - 0.36 0.65

20 FOFDM 1.23E-4 8.44E-5 1.54E-5 3.70E-6
rN 0.54 2.45 2.06

SFDM 7.52E-2 1.07E-1 1.14E-1 8.88E-2
rN - - 0.36

40 FOFDM 6.13E-7 4.54E-6 2.82E-7 4.30E-7
rN - 4 -

The maximum absolute error values inform us on the closeness of the solution of a nu-

merical method to the exact solution. For a �xed value of ε the maximum absolute error

decreases as the number of grid points, N increases. The table of results suggests that the

SFDM and FOFDM are �rst order and second order convergent respectively. The result agrees

with theoretical results which showed that for SFDM and the FOFDM the local truncation

error is �rst order and second order respectively (see equation (5.3.20) and (5.3.28)). The

table also show that the maximum absolute errors of the FOFDM are smaller than that of

the SFDM whereas the order of convergence is larger for the FOFDM than for the SFDM.

Since the value of ε can assume small values in this paper we use the FOFDM to analyze the

temperature, velocity, and concentration pro�les of the double di�usive MHD convective �ow.

It is observed from Figure 5.4.1(a) that for small Prandtl number Pr the solution of both the
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SFDM and the FOFDM are close to the exact solution. As potrayed by Figure 5.4.1(a) the

solution of the FOFDM almost coinicides with the exact solution and so the solution of the

FOFDM is better than the solution of the SFDM. As depicted in Figure 5.4.1(b) when the

value of Pr is increased the solution of the FOFDM remains close to the exact solution where

as the solution of the SFDM di�ers signi�cantly from the analytical solution. Figure 5.4.1(c)

depicts the e�ect of the radiation parameter R, Prandtl number Pr and heat generation Q

on the temperature pro�le. We observed that as the value of the radiation parameter R in-

creases the temperature pro�le increases. It is also shown in Figure 5.4.1(c) that an increase

in the Prandtl number Pr decreases the thermal boundary layer thickness. In other words an

increase in Pr results in faster cooling of the plate. It is further illustrated in Figure 5.4.1(c)

that an increase of the heat generation parameter Q increases the temperature pro�le.
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Figure 5.4.1: Temperature pro�les for ι = 0.2, A = 0.5, t = 1, N = 64.
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Figure 5.4.2: Concentration pro�les for ι = 0.2, A = 0.5, Q = 1, N = 64.
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Figure 5.4.3: Velocity Pro�les for A = 0.5, τ = 0.2, N = 64.

Figures 5.4.2(a) - 5.4.2(d) presents the e�ects of the parameters δ, Pr, So and Sc on

the concentration pro�le. Figure 5.4.2(a) shows that an increase in the chemical reaction

parameter δ decreases the concentration distribution across the boundary layer.

The concentration pro�le increases as the Prandtl number Pr increases as depicted in

Figure 5.4.2(b). Figure 5.4.2(c) shows that the concentration pro�le increases with increas-

ing Soret number So. The concentration pro�le increases near the vertical porous plate and

decreases far away from the porous plate as the Schmidt number increases as illustrated in

Figure 5.4.2(d).

Figure 5.4.3(a) displays the velocity pro�le for various values of the Prandtl number Pr,

Soret number So, permeability parameter K and Schmidt number Sc. It is observed that

increasing the values of the Schmidt number Sc results in the decrease of the velocity distri-

bution across the boundary layer. It is depicted in the same Figure that as the Soret number

So increases the velocity pro�le increases. In other words the velocity increases due to greater

thermal di�usion. It is also shown that as the Prandtl number Pr increases, the velocity

pro�le decreases. Figure 5.4.3(a) also shows that as the permeability parameter K increases,

the velocity pro�le decreases near the vertical plate and increases far away from the plate.

Figure 5.4.3(b) depicts the e�ect of heat generation Q and the chemical reaction parameter

δ on the velocity pro�le. It is shown that for small Prandtl number Pr, the velocity pro�le

increases with increasing heat generation parameter Q. However, for large Prandtl number
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Pr = 50 say, there is no noticeable change in the velocity pro�le as the values of Q are varied.

Figure 5.4.3(b) also shows that the increase in the chemical reaction parameter δ results in

the increase of the velocity pro�le. The accuracy of our method is ascertained by calculating

the numerical values of the skin friction coe�cient Cf and NuRe−1 where Nu is the Nusselt

number and Rex is the Reynolds number. These values are compared with those obtained by

Mohamed [99] as depicted in Table 5.4.2 and Table 5.4.3.

Table 5.4.2: Numerical values of Cf for Pr = 0.71, Gr = 2,M = 0.0, Up = 0.5, ι =
0.2, t = 1, N1 = 0.1, A = 0.5, R = 0.5, Q = 0.1, δ = 1.

So Gr Sc Mohamed [99] Cf Our Method Cf
0.0 1.0 0.6 3.9338820 3.9338810
1.0 0.0 0.6 3.3651510 3.3651510
1.0 1.0 0.22 3.9740650 3.9676878

Table 5.4.3: Numerical values of NuRe−1
x for Pr = 0.71, Gr = 2,M = 0.0, Up = 0.5, ι =

0.2, t = 1, N1 = 0.1, A = 0.5, R = 0.5, Q = 0.1, δ = 1.

So Gr Sc Mohamed [99] NuRe−1
x Our Method NuRe−1

x

0.0 1.0 0.6 0.6781036 0.6781936
1.0 0.0 0.6 0.6781036 0.6781036
1.0 1.0 0.22 0.6781036 0.6781036

5.5 Summary

In this chapter, we analyzed the e�ect of a �rst order homogenous chemical reaction and

thermal radiation on MHD free convection heat and mass transfer of viscous �uid past a

semi-in�nite vertical moving plate with heat generation and soret e�ects. The governing

equations are solved numerically. The �tted numerical method is applied on the singularly

perturbed part of the di�erential model. The perturbation parameter ε is a function of Pr and

R where R is small and Pr can assume very large values. As ε become smaller and smaller the

SFDM fails to give reliable results except for the FOFDM. We observed that the truncation
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error for the FOFDM is second order convergent. Since we assumed small values of ε we

used the FOFDM to analyze the temperature, concentration and velocity pro�les as di�erent

parameters vary. We deduced the following.

� Temperature increases with increase in the value of the radiation parameter R and heat

generation parameter Q and it decreases with the increase in the value of the Prandtl

number Pr.

� Concentration increases with increase in the value of the Prandtl number, Soret number

So, and Schmidt number Sc near the plate and it decreases with increasing chemical

reaction parameter δ, Schmidt number Sc far away from the plate.

� Velocity increases with increase in the value of the Soret number So, chemical reacton

parameter δ, and permeability parameter K far from the plate. On the other hand the

velocity decreases with an increase in the value of Prandtl number Pr, permeability

parameter K near the plate and Schmidt number Sc.

In the next chapter, we study the e�ects of thermophoresis, viscosity, chemical reaction

and radiation on MHD �ow over an inclined plate.

 

 

 

 



Chapter 6

A �tted numerical method to

investigate the e�ect of

thermophoresis, viscosity, chemical

reaction and radiation on an MHD

�ow over an inclined plate

The �tted numerical method on unsteady transient MHD free convective and mass trans-

fer �ow with thermophoresis past an inclined permeable plate in the presence of chemical

reaction, thermal radiation and temperature dependent viscosity is investigated. We design

a suitable �tted operator �nite di�erence method (FOFDM) to solve a model constructed

by Alam et al. [8]. The governing non-linear partial di�erential equations in the current

model are transformed by a suitable similarity transformation to a system of ordinary di�er-

ential equations which are then solved numerically using the �tted operator �nite di�erence

method (FOFDM). The superiority of the proposed FOFDM over the standard �nite di�er-

ence method (SFDM) is proved theoretically and numerically. Furthermore, we illustrate the

e�ect of various parameters on the temperature, concentration and velocity pro�les using the

FOFDM. It is observed that an increase in the viscosity parameter leads to a decrease in
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the temperature and an increase in the velocity. Results also show that an increase in the

thermophoretic parameter leads to a decrease in the concentration.

6.1 Introduction

The simulation of the solution of a transient MHD free convective heat and mass transfer �ow

with thermophoresis past an inclined permeable plate in the presence of chemical reaction

and temperature dependent viscosity using the the FOFDM is carried out. Existence of a

temperature gradient in a gas medium causes small particles in the gas to move in the direction

of decreasing temperature. A consequence of the temperature gradient is that the average

velocities of gas molecules colliding on one side of a molecule is di�erent from the average

velocities of gases colliding on the other side, a phenomenon termed 'thermophoresis'. When

a cold plate is placed in the hot particle laden gas �ow, particles are deposited on it due to

the thermophoretic force. The magnitude of the thermophoretic force is a function of the

gas properties, particle properties and the temperature gradient. Thermophoretic deposition

�nds application in the production of optical �bre, production of ceramic powders in high

temperatures aerosol �ow reactors and in polymer separation.

According to Alam et al. [8] thermophoresis is worth considering if the particle involved

are around 10mm in radius and the temperature gradient is of order 5K/mm. Mills et al. [97]

studied the e�ect of wall suction and thermophoresis on aerosol-particle deposition from a lam-

inar boundary layers on a �at plate. Thakurta et al. [161] did numerical computations on the

deposition rate of small particles on the wall of a turbulent channel �ow by employing the di-

rect numerical simulation (DNS). Ye et al. [163] on the other hand studied the thermophoretic

e�ect of particle deposition on a free standing semi conductor wafer in a clean environment.

Han and Yoshida [63] analyzed numerically the cluster thermal plasma deposition process

under the e�ects of thermophoresis. In their study Han and Yoshida [63] found out that the

thickness of the concentration boundary layer was suppressed by the thermophoretic force

and therefore concluded that the e�ect of thermophoresis play a more dominant role than

that of di�usion. Alam et al. [7] studied numerically the e�ect of thermophoresis on surface

deposition �ux on hydromagnetic free convective heat and mass transfer �ow along a semi

in�nite permeable inclined �at plate taking into account heat generation. It was deduced
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that thermophoresis enhances surface mass �ux. Walker et al. [162] studied the deposition

e�ciency of a small particle caused by thermophoresis in a laminar �ow in a tube.

The study on thermophoresis presented so far ignored the e�ect of thermal radiation yet

there are numerous high temperature systems such as heat exchangers and internal combus-

tion in which the e�ect of radiation may not be ignored in comparison with heat transfer

by conduction and convection. Yoa et al. [164] studied numerically the thermophoresis in

a laminar tube �ow taking into account the particle radiation. Akbar and Ghiaasiaan [4]

analyzed numerically the combined e�ects of radiation heat transfer and thermophoresis on

the transport of mono-disperse and poly-disperse soot particle. Sohn et al. [150] studied the

radiation e�ect on the thermophoresis for a gas-particle two phase laminar �ow. Recently

Alam et al. [5] studied numerically the thermal radiation interaction of thermophoresis on

free-forced convection heat and mass transfer �ow along a semi-in�nite permeable inclined

�at plate.

The existence of chemical reaction in convective heat and mass transfer process a�ect the

di�usion rate. The e�ect of a chemical reaction depends on whether the reaction is heteroge-

nous or homogenous. A heterogenous reaction occur at an interface whereas a homogenous

reaction occur as a single phase volume reaction. A reaction is said to be of order m, if the

reaction rate is proportional to the m-th power of the concentration. It follows then that a

reaction is �rst order if the rate of the reaction is directly proportional to the concentration.

Most �uids have foreign bodies present in them which causes some kind of chemical reac-

tion. The study or analysis of such reactions is helpful in enhancing or improving processes

such as polymer production and food processing. The problem of �rst order chemical reaction

in the neighborhood of a �at plate for both destructive and generative reaction was studied

by Chambre and Young [25]. Das et al. [42] analyzed the e�ect of �rst order homogenous

reaction on the �ow past an impulsively started in�nite vertical plate in the presence of uni-

form heat �ux and mass transfer. Muthucumaraswamy and Ganesan [110] analyzed the e�ect

of a chemical reaction on an unsteady �ow past an impulsively started vertical plate with

uniform mass �ux in the presence of heat transfer. Recently Alam et al. [5] analyzed the

e�ects of thermophoresis and �rst order chemical reaction on unsteady hydromagnetic free

convection and mass transfer �ow past an impulsively started in�nite inclined porous plate

in the presence of heat generation/absorption.
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Most studies mentioned so far assume constant �uid physical properties. It is known

however that some physical properties such as viscosity, change with temperature. To predict

accurately the �ow behavior and heat transfer rate the variation of viscosity deserve consider-

ation. In line with this argument Kafoussias and William [78] analyzed the thermal di�usion

and di�usion thermo e�ects on mixed free-forced convective mass transfer boundary layer �ow

with temperature dependent viscosity. The e�ect of variable viscosity on hydrodynamic �ow

and heat transfer past a continuously moving porous boundary with radiation was studied by

Seddeck [139]. Recently, Molla and Hossain [100] analyzed the e�ects of chemical reaction,

heat and mass di�usion in natural convection �ow from an isothermal sphere with temper-

ature dependent viscosity. The e�ects of higher order chemical reaction and thermophoresis

on an unsteady MHD free convective heat and mass transfer �ow past an impulsively started

in�nite inclined porous plate in the presence of thermal radiation with temperature dependent

viscosity was studied by Alam et al. [8]. These authors solved the problem using a sixth-order

Runge-Kutta integration scheme with Nachtsheim-Swigert shooting method.

In this chapter, we numerically solve the model proposed in [8] by using a �tted operator

�nite di�erence method (FOFDM). In this chapter it is assumed that the coe�cient of the

energy equation is very small rendering the equation singularly perturbed and so the usual

standard �nite di�erence method will produce very poor results as is going to be demonstrated

theoretically and numerically in this paper. We therefore construct or design the FOFDM in

such a way that the denominator function of the classical second order derivative is replaced

with a positive function that captures signi�cant properties of the energy equation and thus

provide reliable numerical results. A considerable amount of literature exists regarding the

singularly perturbed di�erential equations (see Burie et al. [21], Murray [105], Roos et al.

[132], Ansari et al. [11], Bashier and Patidar [14], Lubuma and Patidar [86], Kumar and

Kadalbajoo [85], Beckett and Mackenzie [16]).

The rest of the chapter is organized as follows. In section 6.2 we describe the model.

Section 6.3 is concerned with the numerical method and its analysis. Section 6.4 deals with

the numerical results and their discussion and we conclude the chapter in Section 6.5.
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6.2 Description of model

We consider the unsteady convective heat and mass transfer �ow of a viscous incompressible

electrically conducting �uid past an accelerating vertical in�nite inclined porous plate with

an angle α to the vertical in the presence of a transverse magnetic �eld Bo and a chemical

reaction with signi�cant radiation e�ect. Let the x−axis be directed along the inclined plate

and the y−axis be normal to the plate. Let u and v be the velocity components along x−

and y− axes, respectively. We assume that the plate starts moving impulsively in its own

plane with a velocity Uo at time t ≥ 0. Then the magnetohydrodynamic unsteady convective

boundary layer equations under usual Boussinesq and boundary-layer approximation [8] read

∂v

∂y
= 0, (6.2.1)

∂u

∂t
+ v

∂u

∂y
=

1

ρ∞

∂

∂y

(
ν
∂u

∂y

)
+ gβ(T − T∞) cosα− σB0

2

ρ
u, (6.2.2)

∂T

∂t
+ v

∂T

∂y
=

λg
ρ∞cp

∂2T

∂y2
− 1

ρcp

∂qr
∂y

, (6.2.3)

∂C∗

∂t
+ v

∂C∗

∂y
= D

∂2C∗

∂y2
− ∂

∂y
(VTC

∗)−KlC
∗m∗

, (6.2.4)

where ν is the kinematic viscosity, β is the volumetric coe�cient of thermal expansion, β∗

is the volumetric coe�cient of expansion with concentration, ρ∞ is the ambient density of

the �uid, σ is the electrical conductivity of the �uid, g is the acceleration due to gravity,

T is the temperature of the �uid in the boundary layer, T∞ is the temperature of the �uid

far away from the plate, C∗ is the concentration of �uid in the boundary layer, C∗∞ is the

concentration of the �uid far away from the plate and D is the molecular di�usivity, Kl is the

chemical reaction parameter, cp is the speci�c heat capacity, λg is the thermal conductivity of

the �uid, qr is the radiation heat �ux, B0 is the magnetic induction, VT is the thermophoresis

velocity and m∗ is the order of the chemical reaction. The associated boundary conditions [8]

are

t ≤ 0, u = v = 0, T = T∞, C
∗ = C∗∞for all y,

t > 0 u = Uo, v = ±v(t) T = Tw, C = Cw = 0 at y = 0, (6.2.5)

u = 0, T = T∞, C
∗ = C∗∞ = 0 as y →∞,
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where v(t) is the time dependent viscosity at the porous plate. The radiative heat �ux qr is

described by the Rosseland approximation (see Brewster [19], Alam et al. [8]) such that

qr = (4σ1/3k1)∂T 4/∂y, (6.2.6)

where σ1 and k1 are the Stefan-Boltzman constant and the mean absorption coe�cient, re-

spectively. We introduce the following dimensionless variables

η =
y

lo
, θ(n) =

T − T∞
Tw − T∞

, C(η) =
C∗

C∗∞
, (6.2.7)

where

lo is the time dependent length scale and the dimensionless temperature θ can also be written

as

θ =
T − Tr
Tw − T∞

+ θr (6.2.8)

where

θr =
Tr − T∞
Tw − T∞

= constant, (6.2.9)

and its value is determined by by the viscosity temperature characteristics of the �uid under

consideration and the operating temperature di�erence ∆t = Tw − T∞.

By introducing appropriate relations into the equations (6.2.1)- (6.2.4) (see Alam et al.

[8]) we then obtain the following set of ordinary di�erential equations

f ′′ + η

(
lo
ν

dlo
dt

)(
θr − θ
θr

)
f ′ + Vo

(
θr − θ
θr

)
f ′ +

(
θ′

θr − θ

)
f ′

+Gr

(
θr − θ
θr

)
θ cosα−M

(
θr − θ
θr

)
f = 0, (6.2.10)

−η
(
lo
ν

dlo
dt

)
θ′ − Voθ′ =

(
3R+ 4

3RPr

)
θ′′, (6.2.11)

−η
(
lo
ν

dlo
dt

)
φ′ − Voφ′ =

1

Sc
φ′′ − τ

(
φθ′′ + φ′

)
−Kφ′′, (6.2.12)
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with corresponding boundary conditions

f = 1, θ = 1, C = 0 as η = 0, (6.2.13)

f = 0, θ = 0, C = 0 as η →∞,

where Pr = ρ∞cpν/λg is the Prandtl number, Sc = ν/D is the Schmidt number,

M = σB2
o l

2
o/νρ∞ is the local magnetic parameter, Gr = gβ(Tw − T∞)l2o/νUo is the local

Grashof number, R = λgk1/4σ1T
3
∞ is the radiation parameter, and K = Kll

2
o/ν is the local

chemical chemical reaction parameter and primes denote di�erentiation with respect to η.

The equations (6.2.10)-(6.2.12) are locally similar except the term (lo/ν)dlo/dt where t

appears explicitly yet local similarity conditions requires that the term (lo/ν)dlo/dt be a con-

stant. In line with the work of Satter and Hassain [136] and Alam et al. [8] we assume

(lo/ν)dlo/dt = λg (a constant). We choose λg = 2 which corresponds to the usual scaling fac-

tor for various unsteady boundary layer �ows (see Schlichting [137]). We therefore obtain the

following non-dimensional non-linear ordinary di�erential equations which are locally similar

in time:

f ′′+ (2η + Vo)

(
θr − θ
θr

)
f ′ +

(
θ′

θr − θ

)
f ′

+Gr

(
θr − θ
θr

)
θ cosα−M

(
θr − θ
θr

)
f = 0 (6.2.14)

θ′′ + (2η + Vo)

(
3RPr

3R+ 4

)
θ′ = 0, (6.2.15)

C ′′ + Sc(2η + Vo)C
′ − τSc(Cθ′′ + C ′)− ScKC ′′ = 0, (6.2.16)

with the corresponding boundary conditions as depicted in equation (6.2.13).

6.3 Construction and analysis of the numerical method

In this section we are going introduce the FOFDM which is the appropriate method used to

solve the singularly perturbed temperature equation. We state the temperature equation in
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the form

Lθ := εθ′′ + (2η + Vo)θ
′ = 0, (6.3.1)

where ε = (3R+ 4)/(3RPr) and the primes denote the derivative with respect to η.

The following lemma provides bounds on the solution of the problem (6.2.15).

Lemma 6.3.1. Let θ be the solution of (6.2.15) with u(0) = 1 and u(4) = 0.

Then for 0 ≤ k ≤ 4,

|θ(k)(η)| ≤ C̃
(

1 + ε−ke−λη/ε
)

for all η ∈ Ω where 0 < ε < 1, C̃ is independent of ε, and 0 < λ < (2η + Vo).

Proof . See [96].

We will approximate the solution of the temperature equation on a uniform mesh which we

describe below.

Let n be a positive integer. Consider the following partition of the interval [0,4]:

η0 = 0, ηi = η0 + ih, i = 1(1)n, h = ηi − ηi−1, ηn = 4.

On this partition, the standard �nite di�erence method (SFDM) used to discretly approx-

imate (6.2.15) reads

ε
νj+1 − 2νj + νj−i

h2
+ (2η + Vo)

νj+1 − νj
h

= 0, (6.3.2)

where ν is an approximation for θ and h is the step-size in the discretization of the region of

interest. As ε become smaller and smaller the standard �nite di�erence method (SFDM) fails

to provide fairly accurate approximation of the true solution. To obtain more reliable results

we design a �tted numerical technique whereby the denominator of the approximation to the

second derivative h2 is replaced by a function ψ2
j , which is a function of ε, η, Vo, and h. The

resulting FOFDM reads
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Lhuj ≡ ε
uj+1 − 2uj + uj−i

ψ2
+ (2η + Vo)

uj+1 − uj
h

= 0, (6.3.3)

where u is an approximation for θ obtained by using this FOFDM and

ψ2
j =

hε

(2η + Vo)

[
exp

(
(2η + Vo)h

ε

)
− 1

]
. (6.3.4)

The function ψ2
j is obtained by using the theory of �nite di�erences as indicated in [86]. The

function ψ2
j captures signi�cant behavior of the solution particularly when the solution in the

layer region has steep gradient. The layer region is located in the neighborhood of the inclined

plate near the left end of the interval. We begin by analyzing the FOFDM (6.3.3) for stability

and convergence before the numerical simulations.

Lemma 6.3.2. (Discrete minimum principle) Assume that the mesh function φi satis�es

φ0 ≥ 0 and φn ≥ 0. Then, Lhφi ≤ 0 for all i = 1(1)n − 1, implies that φi ≥ 0 for all

i = 0(1)n.

Proof . The proof follows the same lines as the proof of the discrete minimum principle in

[96] as shown below. Choose k such that φk = mini φi and assume that φk ≤ 0. It follows

that k 6∈ {0, n}, φk+1 − φk ≥ 0 and φk − φk−1 ≤ 0. Then

Lhφk =
ε

ψ2
k

(φk+1 − 2φk + πk−1) +
2ηk + Vo

h
(φk+1 − φk) ,

=
ε

ψ2
k

(φk+1 − φk + φk−1 − φk) +
(2ηk + Vo)

h
(φk+1 − φk)

≥ 0, (6.3.5)

a clear contradiction. Therefore

φk ≥ 0 so φi ≥ 0 ∀i, i = 1(1)n, which completes the proof.

The following lemma is a consequence of the above discrete minimum principle.

Lemma 6.3.3. (Uniform stability estimate) If ξi is any mesh function such that ξ0 = ξn = 0

then

|ξi| ≤
4

λ
max

1≤j≤n−1

∣∣∣Lhξj∣∣∣ for 0 ≤ i ≤ n.
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Proof . Let

C̃ =
1

λ
max

1≤j≤n−1
|Lnξj | ,

and a ≥ λ ≥ 0 where a = 2η + Vo. Introduce the mesh functions ϑ+
j , ϑ

−
j de�ned by ϑ±j =

C̃(4− ηj)± ξj . From equation (6.3.3)

Lhϑ±j =

(
ϑ±j+1 − 2ϑ±j + ϑ±j−1

)
ψ2
j

+
ai
h

(
ϑ±j+1 − ϑ

±
j

)
, (6.3.6)

=

(
C̃(4− ηj+1)± ξj+1 − 2(C̃(4− ηj)± ξj) + C̃(4− ηj−1)± ξj−1

)
ψ2
j

+aj
C̃(4− ηj+1)± ξj+1 − C̃(4− ηj)∓ ξj

h
,

=
±ξj+1 ∓ 2ξj ± ξj−1

ψ2
j

+ ai
±ξj+1 ∓ ξj

h
− Cai,

= ±Lhξj − Cai,

= ±Lhξj −
ai
λ

max
0≤i≤n−1

|Lhξi|

≤ 0,

since ai/λ ≥ 0. By the minimum principle, we have

ζ±j ≥ 0 for 0 ≤ j ≤ n

and therefore

ζ±j = C̃(4− ηj)± ξj ≥ 0 for 0 ≤ j ≤ n.

This implies that |ξj | ≤ (4− ηj)C̃ = (4− ηj)
1

λ
|Lhξi| ≤

4

λ
max

0≤i≤n−1
|Lhξi|, which completes the

proof.
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Now the truncation error for the spatial descretization is given by

[
Lh,τ (θ − u)j

]
= −εθ′′j − (2η + Vo)θ

′
j +

1

τ
θj

−

(
−εθj+1 − 2θj + θj−1

ψ2
j

− (2η + Vo)
θj+1 − θj

h
+

1

τ
θj

)
,

= −εθ′′j − (2η + Vo)θ
′
j +

ε

ψ2
j

[
h2θ′′j ,+

h4

12
θ(iv)(ζ1)

]
+

(2η + Vo)h

2

(
2θ′j
h

+ θ′′j +
h

3
θ′′′j +

h2

12
θ(iv)(ζ2)

)
, (6.3.7)

where ζ1 ∈ (yj−1, yj+1) and ζ2 ∈ (yj , yj+1). Using the Taylor series expansion, we have

ε

ψ2
j

=
ε

h2
− (2η + Vo)

2h
+ . . . . (6.3.8)

This implies that

Lh,τ (θ − u)j = −ε′′j

+

[
ε

h2
− (2η + Vo)

2h
+ . . .

] [
h2θ′′j +

θ(iv)(ζ1)

12
h4

]

+
(2η + Vo)

2

(
hθ′′j +

h2

3
θ′′′j +

θ(iv)(ζ2)

12
h3

)
.

Further simpli�cations lead to

Lh,τ (θ − u)j =

(
ε$(iv)(ζ1)

12
+

(2η + Vo)

6
$′′′j

)
h2 −

(
(2η + Vo)$

(iv)(ζ1)

24

)
h3 +O(h5).

Using Lemma 6.3.1, we obtain

∣∣∣Lh,τ (θ − u)j

∣∣∣ ≤ ∣∣∣∣∣ C̃ε12

(
1 + ε−4e−λy/ε

)
+
C̃(2η + Vo)

6

(
1 + ε−3e−λy/ε

)∣∣∣∣∣h2 +O(h5).
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Now applying Lemma 7 in [103]

∣∣∣Lh,τ (θ − u)j

∣∣∣ ≤ C̃

(
εh2

12
+

(2η + Vo)h
2

6

)
+O(h5),

≤ B̃h2, (6.3.9)

since εh2 < h2. Then by Lemma 6.3.3 and (6.3.9) we have

max
0≤i≤n

|(θ − u)i| , ≤ max
1≤j≤n−1

∣∣∣Lh,τ (θ − u)j

∣∣∣ ,
≤ B̃h2. (6.3.10)

6.4 Results and discussions

Numerical results are presented in this section followed by a discussion on the results. Using

the double mesh principle the pointwise errors are estimated as:

eN (η) = |uN (η)− u2N (η)|, (6.4.1)

where N is the spatial discretization parameter. The maximum absolute errors are given by

EN = max
N

eN (η), (6.4.2)

Since ε is inversely proportional to Pr we calculate the maximum absolute error in the FOFDM

solution by varying Pr and n while keeping other parameters constant. The numerical rates

of convergence are computed using the formula ([51])

rN =
log(EN/E2N )

log 2
. (6.4.3)

Numerical experiments that con�rm the �rst order convergence of the SFDM solution and

the second order convergence of the FOFDM solution is depicted in Table 6.4.1.

The energy equation (6.2.11) is solved using the SFDM and the FOFDM and the solutions

are compared. Alam et al. [8] solved a similar problem numerically with Pr = 0.71 and Pr =

7 using a sixth-order Runge-Kutta integration scheme with Nachtcheim-Swiggert shooting
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method. In this chapter we consider a case where Pr is large enough to ensure that the

perturbation parameter ε which multiplies the highest derivative is small enough to render

the energy equation singularly perturbed. In order for us to check on the accuracy and

convergence rate of our numerical method we use the double mesh principle since there is no

exact solution available. As depicted in Table 6.4.1, the SFDM is �rst order convergent and

the FOFDM is second order convergent.

Table 6.4.1: Maximum absolute errors and orders of convergence associated with SFDM
and FOFDM for Vo = 0.5 and R = 0.5.

Pr n 5 10 20 40 80
SFDM 5.26E-2 3.56E-2 2.12E-2 1.17E-2 6.15E-3
rn 0.56 0.75 0.86 0.93

5 FOFDM 1.88E-2 4.54E-3 1.21E-3 3.03E-4 7.56E-5
rn 2.05 1.91 2.00 2.00

SFDM 6.34E-2 4.38E-2 2.89E-2 1.70E-2 9.13E-3
rn 0.53 0.60 0.77 0.90

10 FOFDM 1.89E-2 1.03E-2 2.51E-3 6.24E-4 1.56E-4
rn 0.88 2.04 2.01 2.00

SFDM 6.07E-2 6.15E-2 4.04E-2 2.48E-2 1.38E-2
rn - 0.61 0.70 0.85

20 FOFDM 3.86E-2 1.70E-2 5.10E-3 1.27E-3 3.23E-4
rn 1.18 1.74 2.01 1.98

SFDM 4.66E-2 6.89E-2 5.65E-2 3.65E-2 2.12E-2
rn - 0.30 0.63 0.78

40 FOFDM 4.04E-5 1.12E-2 1.05E-2 2.59E-3 6.76E-4
rn - 0.10 2.02 1.94

The order of convergence of the FOFDM is higher than the order of the SFDM. The

FOFDM has smaller maximum absolute errors as compared to the SFDM and therefore we

conclude that the FOFDM exhibit better accuracy. We analyze the temperature, velocity, and

concentration pro�les of our problem using the FOFDM since we are dealing with a singular

perturbation parameter multiplying the highest derivative in the energy equation. Figure

6.4.1 shows that as the radiation parameter R increases the temperature pro�le decreases.

We depict in Figure 6.4.2(a) that as the Schmidt number Sc increases the concentration

boundary layer thickness decreases. In Figure 6.4.2(b) we notice that the concentration pro�le
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Figure 6.4.1: Temperature pro�le for di�erent values of R with Vo = 0.5, Pr = 50,
n = 64.

decreases with increasing thermophoretic parameter τ . The concentration pro�le increases as

you move from the plate to about η = 1 and thereafter it decreases to a terminal value. The

e�ect of the chemical reaction parameter K on the concentration is depicted in Figure 6.4.2(c)

and it is clear that the concentration decreases for K > 0 and increases for K < 0.

The e�ect of the angle of inclination α to the vertical direction on the velocity pro�le is

displayed in Figure 6.4.3(a). For small Prandtl number Pr the e�ect of varying α is signi�cant

and it is shown that the velocity pro�le decreases with increasing α. However when the Prandtl

number is large, Pr = 50 say the graph for α = 0 and α = 30o coincides.
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(b) Concentration pro�les for di�erent values of
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Figure 6.4.2: Concentration pro�les for Vo = 0.5, R = 0.5, Pr = 50, n = 64.
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Figure 6.4.2(d) shows the e�ect of the order of chemical reaction m∗ on the concentration

distribution. We note that as the order of concentration m∗ increases concentration pro�le

also increases.

The e�ect of the magnetic parameter M on the velocity pro�le is depicted in Figure

6.4.3(b). We show that increasing the magnetic parameterM results in a decrease of the �uid

velocity.

The results just discussed above agreed with those of Alam et al. [8] except for the shift

in the pro�le due to varied size of the parameters. Figure 6.4.3(a) stands out in this respect

as we have observed that for Pr = 7, the velocity pro�le increase with decreasing α whereas

no change is noticed in the pro�le for α = 0o and α = 30o when Pr = 50 (see Figure 6.4.3(a)).

Table 6.4.2 depicts the e�ect of Pr and R on the Nusselt number (Nu). From the table

we observe that as the radiation parameter R increases the Nusselt number increases for air

(Pr = 0.70) and for water (Pr = 7.0). Table 6.4.2 also compares the values of the Nusselt

number obtained by Alam et al. [8] and those obtained by our method. The two methods

agree to four decimal places which con�rms the accuracy of our method.
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(a) Velocity pro�les for di�erent values of α and
Pr with α = 30o, M = 0.4.
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Figure 6.4.3: Velocity pro�les for Vo = 0.5, Sc = 0.6, R = 0.3, Qr = 2.0, Gr = 6,
n = 64.
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Table 6.4.2: E�ect of Pr and R on the Nusselt number Nu.

Vo Pr R Alam [8] Our method
0.5 0.70 0.1 0.2651156 0.2651126
0.5 0.70 0.3 0.4464034 0.4463955
0.5 0.70 0.6 0.5969869 0.5969729
0.5 7.00 0.1 0.9503326 0.9502978
0.5 7.00 0.3 1.7149534 1.7148449
0.5 7.00 0.6 2.4109572 2.4107490

6.5 Summary

The FOFDM gave reliable results, especially when Pr was large. The concentration, velocity

and temperature pro�les were studied using the FOFDM and the results which mostly agreed

with previous �ndings are

� Radiation reduces the �uid velocity and �uid temperature.

� The �uid concentration decreases with increasing chemical reaction parameter.

� Concentration increases with increasing order of a chemical reaction.

� The concentration increases steadily for 0 ≤ η ≤ 1 and decreases for η > 1. The e�ect of

the thermophoretic parameter to the concentration is clearly noticed close to the plate.

The concentration decreases with increasing thermophoretic parameter.

� The e�ect of the angle of inclination to the velocity pro�le is well pronounced for small

Pr.

� The e�ect of the viscosity parameter θr is to decrease the temperature and to increase

the velocity.

� The e�ect of the presence of a magnetic �eld is to reduce the velocity �ow �eld.

In the next chapter, the e�ects of unsteady MHD free convection past a vertical permeable

plate with heat source and suction or injection are studied.

 

 

 

 



Chapter 7

Analysis of radiation absorption and

chemical e�ects on unsteady MHD

free convection past a vertical plate

with heat source and suction or

injection using a �tted method

A �tted numerical study for the problem of a two-dimensional unsteady MHD free convection

�ow of a viscous, incompressible, electrically conducting, heat generation/absorbing �uid past

a vertical in�nite porous �at plate in the presence of a transverse magnetic �eld, radiation

absorption, chemical reaction and suction or injection is reported. We extend the work of

Shivaiah and Rao [143]. In this work, the governing partial di�erential equations describing

the problem stated above are transformed by a suitable similarity transformation resulting in

a system of ordinary di�erential equations. The singularly perturbed part of the governing

equations of �ow �eld is simulated using the �tted operator �nite di�erence method (FOFDM).

We observe that the FOFDM is second order convergent unlike the classical approaches which

are �rst order convergent. In addition to high order of convergence the FOFDM proves to

be more accurate than the classical �nite di�erence methods that have been used to solve

113
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problems such as the one of interest in this work. We observe that an increase in either the

the heat source parameter or the radiation absorption parameter leads to an increase in the

temperature and velocity.

7.1 Introduction

The study of combined heat and mass transfer problems with chemical reactions have received

considerable amount of attention lately. The study has enormous practical applications in

engineering and science. MHD �ows �nd applications in the �eld of stellar, planetary magneto-

spheres, materiology, MHD accelerators, polymer production and manufacture of ceramics

only to mention a few. Free convection currents are caused by either temperature di�erence

or concentration di�erences.

Das et al. [42] studied the e�ect of homogenous �rst order chemical reaction on a �ow past

an impulsively started in�nite vertical plate with uniform heat �ux. Muthucumaraswamy

and Ganesan [109] reported on the e�ect of the chemical reaction and injection on a �ow

in an unsteady upward motion of an isothermal plate. Muthucumaraswamy and Ganesan

[108] studied the di�usion and �rst order chemical reaction on an impulsively started in�nite

vertical plate with varying temperature. Chamkha [27] analysed an MHD �ow past a vertical

permeable surface in the presence of heat generation/absorption and a chemical reaction.

Prasad [122] reported on the e�ect of a reaction rate on the transfer of a chemically reactive

species in a non-Newtonian �uid immersed in a porous medium. Recently Ghaly and Seddeek

[59] investigated the e�ect of chemical reaction on laminar �ow past a semi-in�nite horizontal

plate with temperature dependent viscosity. Ibrahim et al. [71] studied the e�ect of the

chemical reaction and radiation absorption on unsteady MHD free convective �ow past a

semi-in�nite vertical permeable moving plate with heat source and suction.

The e�ect of radiation on MHD �ow has recieved considerable attention lately. Many

processes in engineering and science occur at high temperatures and acquisation of such

knowledge is important as we look at areas such as nuclear power plants, gas turbines, missiles,

satellites and propulsion devices for aircrafts. AboEldahab [2] studied the radiation e�ect

in heat transfer in an electrically conducting �uid at a stretching surface. Seddeek [138]

analysed the e�ect of radiation and variable viscosity on unsteady forced convection �ows
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in the presence of a magnetic �eld. Cortell [38] considered the e�ect viscous dissipation

and radiation on the thermal boundary layer over a non-linearly stretching sheet. Abel and

Mahesha [1] investigated heat transfer in MHD viscoelastic �uid �ow over a stretching sheet

with variable thermal conductivity, non-uniform heat source and radiation. Pal and Talukdar

[116] examined an unsteady MHD convective heat and mass transfer in a boundary layer

slip �ow past a vertical permeable plate with thermal radiation. The study of the e�ects of

chemical reaction and radiation absorption on transient hydro-magnetic natural convection

�ow with wall transpiration and heat source was carried out by Ibrahim [71]. Devi [50]

investigated the e�ects of a chemical reaction on the MHD �ow in the presence of heat

transfer. The di�erential model in our current study resembles that of Ibrahim [71] except

that the boundary conditions are di�erent. We modify the work of Shivaiah and Rao [143]

by adding the e�ect of radiation absorption.

The objective of this study is to examine the singularly perturbed part of the governing

equations of �ow �eld using the FOFDM. The solution of the singular perturbation problems

(SPPs) is known to have large gradients when the coe�cient of the highest derivative is very

small. Solving SPPs using standard �nite di�erence methods producess very poor results

as we will show theoretically and numerically. To avoid use of these unreriable methods

we adopt the FOFDM designed so as to capture the behavior of the solution within the

boundary layer region. Beckett and Mackenzie [16] studied the convergence of �nite di�erence

approximations on equally distributed grids to a singularly perturbed boundary value problem

using an upwind scheme. Whereas Beckett and Mackenzie considered steady �ows the current

study examines unsteady �ows. Other sources of literature consulted on singularly perturbed

partial di�erential equations include, Doolan et al. [51], Miller et al. [96], Munyakazi and

Patidar [102], and references therein. Research on singularly perturbed steady convection

di�usion problems have been carried out using di�erent methods as stated in Beckett and

Mackenzie [16] but none has been carried out so far using the FOFDM.

The rest of the chapter is organized as follows. In Section 7.2, the description of the

model is presented. Section 7.3 deals with the construction of the numerical method and its

analysis. Section 7.4 on the other hand is concerned with the numerical results which supports

the theory as well as the study of the e�ects of the �ow parameters using FOFDM. Finally

we conclude the chapter in Section 7.5.
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7.2 Description of the model

We consider the unsteady two-dimensional free convective mass transfer �ow of a viscous

incompressible electrically conducting �uid past a vertical in�nite porous �at plate in the

presence of a transverse magnetic �eld in the presence of suction or injection. Let the x∗−axis

be directed upward along the plate and the y∗−axis normal to the plate. Let u∗ and v∗ be

the velocity components along x∗ and y∗ axes respectively. At t∗ = 0, the plate and �uid are

at the same temperature T ∗∞ and same concentration C∗∞. Then the magnetohydrodynamic

unsteady free convective boundary layer equations under usual Boussinesq's approximation

(a modi�cation of the model in [143]) reads

∂v∗

∂y∗
= 0, (7.2.1)

∂u∗

∂t∗
+ v∗

∂u∗

∂y∗
= ν

∂2u∗

∂y∗2
+ gβ(T ∗ − T ∗∞)+gβ∗(C∗ − C∗∞)−(

σBO
2

ρ
+
ν

κp
)u∗, (7.2.2)

∂T ∗

∂t∗
+ v∗

∂T ∗

∂y∗
= α

∂2T ∗

∂y∗2
+
Q0

ρcp
(T ∗ − T ∗∞) +Q∗l (C

∗ − C∞), (7.2.3)

∂C∗

∂t∗
+ ν∗

∂C∗

∂y∗
= D

∂2C∗

∂y∗2
−K∗l (C∗ − C∗∞), (7.2.4)

where, ν is the kinematic viscosity, α is the thermal di�usivity, β is the volumetric coe�cient

of thermal expansion, β∗ is the volumetric coe�cient of expansion with concentration, ρ is

the density, σ is the electrical conductivity of the �uid, g is the acceleration due to gravity,

T ∗ is the temperature of �uid inside thermal boundary, T ∗∞ is the temperature of the �uid

in the free stream, C∗ is the species concentration in the boundary layer, C∗∞ is the species

concentration in the free stream, cp is the speci�c heat capacity, B0 is the magnetic induction,

Qo is the heat generation constant, Q∗l is the coe�cient of proportionality for the absorption

of radiation, K∗ is the permeability of the porous medium, D is the coe�cient of chemical

molecular di�usivity, K∗l is the rate of chemical reaction. The boundary conditions [143] are

t∗ ≤ 0 : u∗ = 0, v∗ = 0, T ∗ = T ∗∞, C = C∗∞ for all y∗,

t∗ > 0 : u∗ = 0, v∗ = v(t), T ∗ = T ∗w, C
∗ = Cw at y∗ = 0, (7.2.5)

u∗ = 0, T ∗ = T ∗∞, C
∗ = C∗ = C∗∞ as y∗ →∞,
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where, v(t) is the suction velocity at the plate. From the continuity equation it is deduced that

the suction velocity v(y) = −Vo. The negative constant indicates that the suction is directed

towards the plate. We nondimensionalize (7.2.2) to (7.2.4) by introducing the following non-

dimensional quantities

u = u∗/Ṽ0, Vo = v∗/Vo, y = Ṽoy
∗/Vo, θ = (T ∗ − T ∗∞)/(T ∗w − T ∗∞), t = Ṽo

2
t∗/Vo,

C = (C∗ − C∗∞)/(C∗w − C∗∞), M = (σB2
o Vo)/(ρṼo

2
), Pr = VoρCp/k, K = kpṼo

2
/V 2

o ,

Gr = (gβVo(T
∗
w − T ∗∞))/(Ṽo

3
), Gm = (gβ∗Vo(C

∗
w − C∗∞))/(Ṽo

3
), Q = QoVo/ρCpṼo

2
,

Ql = (VoQ
∗
l (Cw − C∞))/((Tw − T∞)Ṽo

2
), δ = K∗l V

2
o /Ṽo

2
, Sc = Vo/D,

(7.2.6)

where,M is the magnetic parameter, κ is the thermal conductivity, V0 is the reference velocity,

Kl is the chemical reaction parameter, Gr is the Grashof number of heat transfer, Gm is the

Grashof number of mass transfer, Sc is the Schmidt number, Q is the heat source parameter

and Ql is the absorption of radiation parameter. Using (7.2.5) and (7.2.6), equations (7.2.2)-

(7.2.4) reduces to

∂u

∂t
− Vo

∂u

∂y
=
∂2u

∂y2
+Grθ +GmC −

(
M +

1

K

)
u, (7.2.7)

∂θ

∂t
− Vo

∂θ

∂y
=

1

Pr

∂2θ

∂y2
+Qθ +QlC, (7.2.8)

∂C

∂t
− Vo

∂C

∂y
=

1

Sc

∂2C

∂y2
− δC. (7.2.9)

The corresponding initial and boundary conditions are

t ≤ 0 : u = 0, θ = 0, C = 0 for all y,

t ≥ 0 : u = 0, θ = 1, C = 1 at y = 0, (7.2.10)

u→ 0, θ → 0, C → 0, as y →∞.

The set of equations (7.2.7) to (7.2.9) together with the corresponding boundary conditions

(7.2.10) are non-linear and coupled and so analytical solutions are di�cult to �nd. The

�nite di�erence method is used to �nd an approximate solution to the problem. To solve the
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perturbed part of the di�erential model we employ the FOFDM which is described in the

next section.

7.3 Construction and analysis of the numerical method

We introduce the FOFDM to solve the energy equation. The FOFDM is compared with the

standard �nite di�erence method (SFDM). The energy equation (7.2.8) is stated in the form:

Lθ :=
∂θ

∂t
− Vo

∂θ

∂y
− 1

Pr

∂2θ

∂y2
−Qθ = QlC. (7.3.1)

We denote by N a positive integer and approximate the solution to (7.3.1) on a uniform mesh

and let the interval [0,4] be divided into N equal sub-intervals:

y0 = 0, yi = y0 + ih, i = 1(1)N, h = yi − yi−1, yN = 4.

Let τ be the uniform step size on

Ωτ,m =

{
(y, tj) : y ∈ Ω, tj = jτ =

j

m
, ∀ 0 < j ≤ m

}
. (7.3.2)

Denote the approximation of θ by the unknown $ and the approximation of C by unknown

%. By performing the time semi-discretization by Euler method at time level n gives

$n −$n−1

τ
− Vo$n

y − ε$n
yy −Q$n = Ql%

n, (7.3.3)

subject to

ṽn(0) = 1, %n(0) = 1, 0 < n < m, (7.3.4)

ṽn(4) = 0, %n(4) = 0, 0 ≤ n < m,

where ε = 1/Pr. This implies

−ε$n
yy − Vo$n

y +

(
1

τ
−Q

)
$n = f̃ , (7.3.5)
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subject to

$n(0) = 1, %n(0) = 1, $n(4) = 0, %n(4) = 0, (7.3.6)

where f̃ = (1/τ)$n−1 +Ql%
n.

For the sake of simplicity we rewrite equation (7.3.5) without the time level notation “n”

in the following form

−ε$′′(y)− Vo$′ +
(

1

τ
−Q

)
$(y) = f̃ , (7.3.7)

subject to

$(0) = 1, $(4) = 0, (7.3.8)

where f̃ = (1/τ)$∗ +Ql%.

Note that $∗ is de�ned as the previous time level value of $.

The following lemma provides bounds on the solution of the problem (7.3.1).

Lemma 7.3.1. Let $ε be the solution of (7.3.1). Then for 0 ≤ k ≤ 4,

|$(k)(y)| ≤ C̃
(

1 + ε−ke−λy/ε
)

for all y ∈ Ω = [0, 4], where 0 < ε ≤ 1, C̃ is independent of ε, and 0 < λ < Vo.

Proof . See [96].

Next we discretize (7.3.5) in space using the standard �nite di�erence method and denote the

approximation of $ by ν̃ to give

Lh,τ ν̃j ≡ −ε
ν̃j+1 − 2ν̃j + ν̃j−1

h2
j

− Vo
ν̃j+1 − ν̃j

h
+

(
1

τ
−Q

)
ν̃j = f̃j . (7.3.9)

In this chapter we let SFDM stand for the standard �nite di�erence method, FOFDM stand for

�tted operator �nite di�erence method. For very small values of ε, the SFDM gives inaccurate

approximation of the true solution as the maximum absolute errors suggest. We design a
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�tted numerical technique so as to achieve reliable results by replacing the denominator of

the approximation to the second derivative h2 by a function ψ2
j , which is a function of Pr, Vo

and h. The proposed FOFDM reads

Lh,τuj ≡ −ε
uj+1 − 2uj + uj−1

ψ2
j

− Vo
uj+1 − uj

h
+

(
1

τ
−Q

)
uj = f̃j , (7.3.10)

where u is an approximation for $ obtained using this FOFDM and

ψ2
j =

εh

(
exp

(
Voh

ε

)
− 1

)
Vo

. (7.3.11)

The function ψ2
j is obtained by the theory of �nite di�erences as indicated in [86]. The

function ψ2
J mimics the behavior of the solution in the boundary layer region. The layer

region is located in the neighborhood of the vertical plate near the left end of the interval.

Before the numerical simulation of the MHD �ow using the FOFDM we begin by analyzing

the FOFDM for stability and convergence.

Analysis of the numerical method

The local truncation error of the time semi-discritization by the forward implicit Euler scheme

is denoted by ẽn = θ(y, tn)−$(y), where $(y) is the solution of (7.3.5). The amount of error

ẽn is the contribution of each time step to the global error of the time semi-discretizaton. The

following lemmas depict the order of the local and global error related to the problem (7.3.5).

Lemma 7.3.2. (Local error estimate) If |$(k)(y)| ≤ C̃, y ∈ [0, 4], 0 ≤ k ≤ 2, then the local

error estimate is given by ||ẽn|| ≤ C̃τ2.

The following lemma relates to the global error, En.

Lemma 7.3.3. (Global error estimate) The global error En = Σm
n=0ẽn satis�es

||En|| ≤ C̃τ, ∀ 1 ≤ n ≤ m.

The global error of the time semi-discretization is of the �rst order, that is, ||θ−$|| ≤ C̃τ.

We discretize spatially to �nd the local truncation error |($ − u)| where$ is the exact solution
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with respect to space and u is the approximation of θ for the FOFDM. We are going to consider

a few lemmas which are pivotal in the analysis of the error of the solution obtained using the

�tted operator �nite di�erence method.

The di�erential operator Lh,τ de�ned in (7.3.10) satis�es the following discrete maximum

principle for all φ ∈ C2(Ω),

Lemma 7.3.4. (Discrete maximum principle) Assume that the mesh function φ(y) satis�es

φ(0) ≥ 0 and φ(4) ≥ 0. Then, Lh,τφ(y) ≥ 0 for all y ∈ Ω = (0, 4) implies that φ(y) ≥ 0 for

all y ∈ Ω.

Proof . The proof follows the same lines as the proof of the discrete maximum principle in

[96] as shown below. Choose k such that φk = miniφi and suppose that φk ≤ 0. Then

k 6∈ {0, n}, φk+1 − φk ≥ 0 and φk − φk−1 ≤ 0. Thus

Lh,τφk = − ε

ψ2
k

(φk+1 − 2φk + φk−1)− Vo
h

(φk+1 − φk) + (
1

τ
−Q)φk, (7.3.12)

= − ε

ψ2
k

(φk+1 − φk + φk−1 − φk)−
Vo
h

(φk+1 − φk) + (
1

τ
−Q)φk

≤ 0,

which is a contradiction. It follows φk ≥ 0 and so φi ≥ 0 ∀i, i = 1(1)n, which completes the

proof. The following lemma is a consequence of the discrete maximum principle.

Lemma 7.3.5. (Uniform stability estimate) If ξi is any mesh function such that ξ0 = ξn = 0

then

|ξi| ≤
4

λ
max

1≤j≤n−1

∣∣∣Lhξj∣∣∣ for 0 ≤ i ≤ n.

Proof . Let

C̃ =
1

λ
max

1≤j≤n−1
|Lnξj | ,
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and introduce the mesh functions ϑ+
i , ϑ

−
i where ϑ±i = C̃(4− yi)± ξi. Then

Lh,τϑ±i = − ε

ψ2
i

(
ϑ±i+1 − 2ϑ±i + ϑ±i−1

)
− a(y)

h

(
ϑ±i+1 − ϑ

±
i

)
+ biϑ

±
i ,

= −ε±ξi+1 ∓ 2ξi ± ξi−1

ψ2
i

− ai
±ξi+1 ∓ ξi

h
+ bi(±ξi) + C̃ai + biC̃(4− yi),

= ±Lh,τξi + C̃ai + biC̃(4− yi),

= ±Lh,τξi +
ai
λ

max
Ω

Lh,τξi + biC̃(4− yi)

≥ 0, (7.3.13)

since ai/λ ≥ 1. By the maximum principle it implies

ϑ±i ≥ 0 for 0 ≤ i ≤ n,

and therefore

ϑ±i = C̃(4− yi)± ξi ≥ 0 for 0 ≤ yi ≤ 4.

This reduces to

|ξi| ≤ C̃(4− yi).

Since 4− yi ≤ 4,

|ξi| ≤
4

λ
|Lh,τξi|, (7.3.14)

which completes the proof.

Now we attempt to establish the local truncation error of the FOFDM. In the analysis of these

errors, M̃ denote a positive constant, independent of h and ε and may assume di�erent values

in di�erent inequalities and equations. The local truncation error of the FOFDM (7.3.10) is

given by

∣∣∣Lh,τ (θ − u)j

∣∣∣ =
∣∣∣Lh,τ (θ −$+$ − u)j

∣∣∣ =
∣∣∣Lh,τ (θ −$)j

∣∣∣+
∣∣∣Lh,τ ($ − u)j

∣∣∣ . (7.3.15)

From lemma 7.3.3

∣∣∣Lh,τ (θ − uj
∣∣∣ = M̃τ. (7.3.16)
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Now the truncation error for the spatial descretization is given by

Lh,τ ($ − u)j = −ε$′′j − Vo$′j +

(
1

τ
−Q

)
$j

−

(
−ε$j+1 − 2$j +$j−1

ψ2
j

− Vo
$j+1 −$j

h

)
−
(

1

τ
−Q

)
$j ,

= −ε$′′j + Vo$
′
j −

ε

ψ2
j

[
h2$′′j +

$(iv)(ζ1)

12
h4

]

+
Voh

2

(
$′′j +

h

3
$′′′j

)
+
h2

12
$(iv)(ζ2), (7.3.17)

where ζ1 ∈ (yj−1, yj+1) and ζ2 ∈ (yj , yj+1). Using the Taylor series expansion, we have

ε

ψ2
j

=
ε

h2
− Vo

2h
+ . . . . (7.3.18)

This implies that

Lh,τ ($ − u)j = −ε$′′j

+

[
ε

h2
− Vo

2h
+ . . .

] [
h2$′′j +

$(iv)(ζ1)

12
h4

]

+
Vo
2

(
h$′′j +

h2

3
$′′′j +

$(iv)(ζ2)

12
h3

)
. (7.3.19)

Further simpli�cations lead to

Lh,τ ($ − u)j =

(
ε$(iv)(ζ1)

12
+
Vo
6
$′′′j

)
h2 −

(
Vo$

(iv)(ζ1)

24

)
h3 +O(h5).

Using Lemma 7.3.1 we obtain

∣∣∣Lh,τ ($ − u)j

∣∣∣ ≤ ∣∣∣∣∣ C̃ε12

(
1 + ε−4e−λy/ε

)
+
C̃Vo

6

(
1 + ε−3e−λy/ε

)∣∣∣∣∣h2 +O(h5).

 

 

 

 



CHAPTER 7. ANALYSIS OF RADIATION ABSORPTION AND CHEMICAL
EFFECTS ON UNSTEADY MHD FREE CONVECTION PAST A VERTICAL
PLATE WITH HEAT SOURCE AND SUCTION OR INJECTION USING A
FITTED METHOD 124

Now applying Lemma 7 in [103] yields

∣∣∣Lh,τ ($ − u)j

∣∣∣ ≤ C̃

(
εh2

12
+
Voh

2

6

)
+O(h5)

≤ M̃h2, (7.3.20)

since εh2 < h2. Then by Lemma 7.3.5 and (7.3.20) we have

max
0≤i≤n

|($ − u)i| , ≤ max
1≤j≤n−1

∣∣∣Lh,τ ($ − u)j

∣∣∣ ,
≤ M̃h2. (7.3.21)

From equation (7.3.16) and (7.3.20) the local truncation error is given by

∣∣∣Lh,τ (θ − u)j

∣∣∣ =
∣∣∣Lh,τ (θ −$ +$ − u)j

∣∣∣ ,
≤

∣∣∣Lh,τ (θ −$)j

∣∣∣ |+ ∣∣∣Lh,τ ($ − u)j

∣∣∣ ,
≤ M̃

(
τ + h2

)
. (7.3.22)

The next section presents some numerical results followed by a discussion on them.

7.4 Results and discussions

Since the exact solution is not available the maximum errors at all the mesh points are

estimated using the double mesh principle as:

e∆t,N (y, t) = |uN (y, t)− u2N (y, t)|, (7.4.1)

where N is the spatial discretization parameter, ∆t is the time discretization parameter, u is

the solution of (7.3.1). The maximum absolute errors are given by

EN,∆t = max
N

e∆t,N (y, t), (7.4.2)
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and the rates of convergence are given by

rN =
log(EN,∆t/E2N,∆t/4)

log 2
, (7.4.3)

Table 7.4.1: Maximum absolute errors and orders of convergence associated with SFDM
and FOFDM for Vo = 0.1, τ = 0.1, Ql = 1.0, Q = 0.1.

Pr N 10 20 40 80
∆t 0.1 0.1/4 0.1/42 0.1/43

SFDM 5.32E-2 1.90E-2 8.20E-3 3.80E-3
rN 1.49 1.21 1.11

5 FOFDM 3.91E-2 1.04E-2 3.00E-3 9.56E-4
rN 1.91 1.79 1.65

SFDM 6.19E-2 2.50E-2 1.16E-2 5.80E-3
rN 1.31 1.11 0.92

10 FOFDM 4.37E-2 1.20E-2 3.50E-3 1.10E-3
rN 1.86 1.78 1.54

SFDM 6.90E-2 3.09E-2 1.60E-2 8.60E-3
rN 1.16 0.95 0.90

20 FOFDM 5.00E-2 1.33E-2 3.90E-3 1.20E-3
rN 1.91 1.75 1.70

SFDM 7.24E-2 3.71E-2 2.10E-2 1.21E-2
rN 0.96 0.82 0.80

40 FOFDM 6.44E-2 1.55E-2 4.50E-3 1.40E-3
rN 2.05 1.78 1.68

Equation (7.3.1) is solved using the standard �nite di�erence method and the �tted opera-

tor �nite di�erence method. Since the exact solution is not available the double mesh principle

is applied. In Table 7.4.1 the spatial descretization takes the values N = 10, 20, 40, 80 and

the time descretization parameter take the values ∆t = 0.1 , 0.1/4, 0.1/42, 0.1/43. We divide

the step sizes into a di�erent ratio so that we accommodate at the same time the �rst order

convergence in time and the second order convergence in space. For a �xed value of ε the

maximum absolute error decreases as the number of grid points, N increases. From the tab-

ulated results we show that the maximum absolute errors of the FOFDM are comparatively

smaller than the usual standard methods.
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As portrayed in Table 7.4.1, the FOFDM and the SFDM are second order and �rst order

convergent, respectively. The result agrees with theoretical results which showed that the

local truncation errors of the FOFDM are of order O
(
τ + h2

)
.

Since we regard large values of Pr in this chapter we use the FOFDM to analyze the

temperature, velocity and concentration pro�les of the MHD free convective �ow past an

in�nite vertical porous plate with heat sources in the presence of a chemical reaction and

suction or injection. Figure 7.4.1(a) is obtained by plotting the temperature pro�le with Gr

= 2.0, Gm = 2.0, M = 1, K = 0.5, δ = 0.5, Pr = 0.71, Sc = 0.6 and Ql = 0. The resulting

temperature pro�les in Figure 7.4.1(a) coincides with those obtained by Shivaiah [143], which

guarantees the correctness of our method.

The temperature pro�les in Figure7.4.1(a) displays the e�ect of the Prandtl number,

the suction parameter and heat source parameters on the temperature. We notice from

Figure 7.4.1(a) that the temperature �ow �eld increases as the heat source parameter Q

increases. On the other hand the temperature �ow �eld decreases with increasing Prandtl

number Pr and suction parameter Vo. Figure 7.4.1(b) shows the e�ect of parameters such

as the Schmidt number Sc, chemical reaction parameter δ and suction parameter Vo on the

concentration pro�le. We observe that the concentration distribution decreases with increasing

Schmidt number, chemical reaction parameter and suction parameter. The e�ects of magnetic

parameter M , suction parameter Vo, permeability parameter K and heat source parameter

Q are depicted in Figure 7.4.1(c). As expected, we observe that the magnetic parameter and

suction parameter retards the velocity �ow �eld. We also observe that the velocity �ow �eld

increases with increasing permeability parameter and increasing heat source parameter.

We modify the work by Shivaiah and Rao [143] by including the e�ect of the radiation

absorption parameter Ql. Figure 7.4.2(a) depicts the temperature pro�le for the case Ql = 0,

which looks exactly the same as the one by Shivaiah and Rao [143]. Figures 7.4.2(b) depict

the graph of temperature pro�le against y for di�erent values of heat absorption parameter

Ql in the boundary layer region. We notice that the absorption radiation parameter increases

temperature in the boundary layer. The radiated heat is absorbed by the �uid which increases

the �uid temperature within the boundary layer. The e�ect of Ql is less pronounced as you

move further away from the porous boundary. Figure 7.4.2(c) depicts the graph of velocity

pro�le against y for various values of the radiation absorption parameter Ql. The e�ect of
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Figure 7.4.1: Temperature, concentration and velocity pro�les with Ql = 0.
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Figure 7.4.2: E�ect of Ql on temperature and velocity.

 

 

 

 



CHAPTER 7. ANALYSIS OF RADIATION ABSORPTION AND CHEMICAL
EFFECTS ON UNSTEADY MHD FREE CONVECTION PAST A VERTICAL
PLATE WITH HEAT SOURCE AND SUCTION OR INJECTION USING A
FITTED METHOD 129

increasing the values of the absorption parameter Ql is to increase the boundary layer due to

the increase in the buoyancy force wich speeds up the �ow rate.

7.5 Summary

The study of unsteady free convective mass transfer �ow of viscous incompressible electrically

conducting �uid past a vertical in�nite porous plate with heat sources in the presence of a

chemical reaction, radiation absorption, transverse magnetic �eld and suction/injection using

the FOFDM was carried out. The governing equations were non-dimensionalized by introduc-

ing similarity variables and then solved numerically using the �tted operator �nite di�erence

method. Since large values of Pr were assumed in this chapter the �tted operator �nite

di�erence method was used to analyze the temperature, concentration and velocity pro�les

as parameters such as the suction parameter, Prandtl number, Schmidt number, magnetic

parameter, permeability parameter, chemical reaction parameter, absorption of radiation pa-

rameter and heat source parameter vary. We observed that using the FOFDM gives more

accurate results with an improved order of convergence. The e�ect of the di�erent parameters

on the velocity, concentration and temperature pro�les are summarized as follows.

� The temperature �ow �eld increases with the increase in the heat source parameter

and radiation absorption parameter whereas it decreases with the increase in Prandtl

number and suction parameter.

� The concentration �ow �eld decreases with the increase in the Schmidt number, chem-

ical reaction parameter and suction.

� The velocity �ow �eld decreases with increasing magnetic parameter and suction pa-

rameter whereas it increases with increasing permeability parameter and heat source

parameter and radiation absorption parameter.

 

 

 

 



Chapter 8

Concluding remarks and scope for

further research

In this thesis, we have designed, analyzed and implemented a class of �tted numerical methods

to solve di�erential models describing unsteady magneto-hydrodynamic �ow. The governing

partial di�erential equations were transformed by a suitable similarity transformation to a

system of ordinary di�erential equations. In each case, a �tted operator �nite di�erence

method (FOFDM) was developed to solve the ordinary di�erential equations. These methods

were analyzed for stability and convergence. Both theoretical and numerical investigations

done in this thesis show that proposed FOFDM are superior to the standard �nite di�erence

method.

As far as the scope for further research is concerned, we sought to

� design modi�ed �tted operator �nite di�erence methods to further improve the accuracy

of the solutions for solving problems involving unsteady MHD �ows;

� extend the study of unsteady MHD �ows to higher dimensions;

� solve unsteady MHD �ows that include dissipative heat and radiation, and

� extend the proposed approaches to solve other classes of unsteady MHD �ows.
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