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Abstract 
The occurrence of dryland salinity is widespread throughout semi-arid regions of the 

world. The sources of salts may be either rock weathering or rain deposition. Clearing of 

natural scrubland to make way for cultivated crops and pastures may also change the 

water balance, trigger salt mobilization and increase the salinity of water resources. These 

processes are suspected to be the main cause for salinization of the Berg river catchment 

(Western Cape). The objective of this study was to determine the hydrosalinity fluxes 

associated with overland and subsurface (vadose zone) flow for different soils and land 

uses. For this purpose, the following data were collected during 2005 and 2006 in a 

typical small scale catchment located near the town of Riebeeck-Wes: weather data, 

hydrological and water quality measurements, soil water contents and chemistry, and 

vegetation growth. The area is characterized by a Mediterranean climate receiving winter 

rainfall of approximately 300 mm a-1. The chemical speciation of water and soil in the 

catchment is conservative, with Na+ and Cl- being the dominant ions. The results of the 

monitoring indicated that uncultivated (bare) soil produced more runoff and higher 

salinity compared to vegetated land. Overland flow varied between 5 and 17% of rainfall, 

mobilizing up to 23.55 g m-2 of salts during 2006, depending on soil properties, slopes, 

rainfall intensity and duration, and antecedent moisture conditions. Due to the typical low 

intensity of rainfall, the fluxes of salts during individual runoff events were steady. Soil 

water and salt contents varied seasonally. Fluctuations in salinity due to local processes 

were evident on a smaller scale at a catchment scale. Subsurface fluxes of water and salts 

were estimated with the HYDRUS-2D model. The model showed that approximately 700 

g m-1 of salts were mobilized by subsurface flow along a 22 m long soil profile. 

Management practices at farm scale are required in order to reduce salt mobilization and 

salinization at catchment scale. 
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Chapter 1 

1. Introduction 
It is becoming more and more evident that non-point source pollution greatly affects the 

quality of water in water bodies, with special reference to inorganic salts, eutrophication, 

sediments, pathogens, pesticides and heavy metals. Agricultural activities have been 

identified as a major source of non-point source pollution, in terms of sediments, 

pesticides, inorganic salts and nutrients both locally and internationally. It is also believed 

that these agricultural activities have indirectly caused the salinization of dryland areas 

around the world. Such is the case in the Western Cape region of South Africa. The most 

common result of dryland salinity is, amongst others, an increase in the salt concentration 

of the soil solution and surface water bodies. The Berg River, which flows in the Western 

Cape, is an example of a water body, which has been exhibiting increases in salt levels.  

 

The occurrence of dryland salinity is widespread throughout the semi-arid regions of the 

world such as Australia, South Africa, Argentina and India. Its occurrence is 

characterized by the presence of dying vegetation, a decline in the vegetation cover 

density, and by the appearance of salt tolerant species, bare salty patches and the 

development of saline pools. The process generally encompasses the 

deposition/precipitation of salts at the soil surface and the increase of salinity in receiving 

waters through the mobilization of these salts. The salts may either be a product of the 

weathering of rock minerals or it may be brought into the landscape, from the ocean, by 

rain or wind. In Australia the problem of dryland salinity has assumed epic proportions 

throughout much of the country. The cause can be attributed to the clearing of natural 

scrubland to make way for cultivated crops and pastures, thereby changing the water 

balance (Greiner, 1998; Gilfedder et al, 1999; Acworth et al, 2001). According to Cullis 

et al, (2005), inorganic salts influence the salinity, acidity and alkalinity of water 

resources. The salinity of a water body may negatively affect the growth of aquatic plants 

or it may limit the possible utilization of the water. 

 

In South Africa, the process is especially common to some of the major catchments in the 

Western Cape. Wheatlands in the Swartland and Overberg regions are known to contain 
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saline patches which are recognized to be natural sources of salts. It is a possibility that 

changes in land use over the last century or more may have triggered the process of salt 

mobilization, similar to that which is so widespread in Australia. This seems especially 

likely in the semi-arid part of the Western Cape, which posses certain similarities to 

Western Australia in respect of climate, soils, natural salt levels in the regolith, 

topography and land use practices (Fey and De Clercq, 2004).  

 

The process of dryland salinization poses a major threat to Integrated Water Resources 

Management (IWRM), environmental preservation and socio-economic development in 

South Africa. According to Gilfedder et al (1999), the effects of dryland salinity include 

an increase in stream salinity, and losses of remnant vegetation, riparian zones and 

wetland areas. It may also result in a decline in soil productivity, farm incomes and land 

value. 

 

1.1 Aims and Objectives 
A project, titled Land use impacts on salinity of Western Cape waters, was commissioned 

by the Water Research Commission (WRC) with the aim of studying the effects that land 

use change in the Western Cape has and is having on the hydrosalinity dynamics of the 

Berg River catchment and eventually on the Berg River itself. The approach taken 

involves relating groundwater and regolith salinity and geochemistry to climate, parent 

material, land use, meteoric factors (rain and wind), etc. The relevant data were used to 

study the seasonal salt flux into, within and out of a selected small scale catchment (SSC) 

and for modeling of the hydrosalinity dynamics. 

 

The project on which this thesis was based forms part of the broader project which was 

commissioned by the WRC, and essentially focuses only on the selected SSC, i.e. 

Goedertrou, which is in close vicinity of the town, Riebeeck-Wes. The general objective 

of this project was to develop a thorough understanding of the water and salinity 

dynamics in runoff and in the soil and vadose zone of the small dryland catchment 

representative of semi-arid conditions. The quantity and chemistry of rainfall was also to 

be monitored to study its contribution, in terms of inorganic salts, to the SSC.  These 
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salinity dynamics were studied under different land use practices, ranging from dense 

vegetation to bare soil. These hydrosalinity fluxes were monitored at two scales, i.e. at a 

local processes scale, which involves the monitoring of runoff, soil salinity, soil moisture 

and climatic conditions, and at a field scale, which essentially involves monitoring of the 

water quality in the dam, which is situated in the SSC.  It was aimed that these 

hydrosalinity dynamics be used to estimate the quantity of salts and water flushing out of 

the SSC. The monitoring at the local scale would also allow for a reasonable estimate to 

be made of how different land uses and different planting densities would affect these 

water and salt dynamics. 

 

The specific objectives of the project were: 

• To determine the hydrosalinity fluxes associated with overland flow from 

different soil types and land uses in a representative SSC of the Berg River. 

• To monitor the subsurface (vadose zone) fluxes of water and salts for different 

soils and land management practices in a typical SSC of the Berg River. 

• To determine the salinity and chemical speciation of waters, i.e. rainfall, overland 

flow and soil waters, of the SSC. 

• To determine the dynamics of water movement and salt mobilization during 

individual rainfall events. 

 

1.2 Thesis Outline 
An introduction to the topic as well as the motivating factors is presented in Chapter 1. 

The aims and objectives are also outlined and highlighted. Chapter 2 presents information 

and data that were gleaned from relevant local and international literature.  The most 

relevant topics and issues addressed in this thesis are thoroughly investigated and 

discussed. The experimental set-up, including a description of the study area, is 

illustrated and discussed in Chapter 3. Chapter 4 presents the results and findings in the 

form of graphs and tables.  These are also discussed and extensively analyzed.  

Conclusions and deductions that were made from experimental results are presented in 

Chapter 5 and recommendations for further research are discussed in Chapter 6. 
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Chapter 2 

2. Literature Review 
2.1 Definition of Soil Salinity 
Salinity is defined as the presence of salts in soil and water. It is most commonly 

expressed as EC (electrical conductivity). Electrical conductivity is the property of a 

material to conduct electricity. The ease with which the current passes through water is 

proportional to the salt concentration in the water. Therefore, the greater the salt 

concentration, the higher the EC. It is commonly expressed as Siemens, i.e. deciSiemens 

(dS), milliSiemens (mS) and microSiemens (μS), per unit distance of measurement. It 

may also be expressed as Total Dissolved Salts (TDS), measured in terms of Parts per 

Million (ppm), or mg L-1. Salts are soluble mineral substances present in soil and water. 

The salts most commonly affecting soil and water are Sodium Chloride, Magnesium 

Chloride and Calcium Chloride (Department of Primary Industries, Water and 

Environment, 2006). 

 

Peck and Hatton (2003) investigated the salinity and discharge of salts from catchments 

in Australia. They stated that surface soils (0–0.2 m depth) are said to be saline if salinity 

exceeds 0.1 % in loams and coarser (larger particle size) soils, or 0.2 % in clay loams and 

clays, and sub-soils are said to be saline when salinity exceeds 0.3 % (cited from 

Northcote and Skene, 1972). These criteria approximate an electrical conductivity (EC) 

of the saturation extract of about 4 dS m-1, which is the criterion for saline soil used by 

the US Salinity Laboratory (Peck and Hatton, 2003) and which is used in many countries. 

In saline soils, crop growth is hampered by salt accumulation in the crop root zone. If the 

upward salt movement exceeds the downward movement, salt will accumulate in the root 

zone. Salt in the soil interferes with the crop growth when its concentration exceeds the 

tolerance limits of the crop (American Society of Civil Engineers, 1990; Karim et al., 

1990; Somani, 1991, as cited by Mondal et al, 2000). Most plants suffer salt injury at a 

concentration equivalent to electrical conductivity of the soil saturation extract (ECe) of 4 

dS m-1 or higher. At such a level of salinity, plant growth is restricted even though 
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enough water may be present in the root zone (American Society of Civil Engineers, 

1990; Karim et al., 1990, as cited by Mondal et al, 2000). 

 

Dryland salinity affects land and water resources on site, e.g. at the farm scale, but also 

elsewhere in the catchment (downstream). On farms, salinity damages infrastructure, 

salinizes water resources, causes loss of farm flora and fauna and loss of shelter and 

shade. Salt may be mobilized as wash off from the land surface by water running into 

streams, as lateral sub-surface seepage or as groundwater seeping directly into streams 

and rivers as base flow. Salinity is also having a major impact on public resources such as 

water supplies, thereby affecting our sources of drinking water and irrigation (National 

Land and Water Resources Audit, 2001).  

     

According to Chapman (1966), sodium chloride is the predominant salt determining 

salinity, followed by sodium carbonate or sodium sulphate and salts of magnesium. 

Where sodium chloride is concerned, a concentration of 0.5 % in the soil solution can be 

regarded as a critical concentration. He further states that at values exceeding 0.5 % 

sodium chloride, one may expect to increasingly encounter salinity problems, in respect 

of soil characteristics, plant metabolism and vegetation cover density.  

 

Accordingly, the salinity of inland areas is influenced by various factors: 

• Precipitation- its magnitude affects the degree of leaching and the depth of the salt 

layer. 

• Nature of the soil- a soil that is composed of a high proportion of clay or silt as 

compared with the sand fraction will be more severely impacted in the presence 

of excess sodium and magnesium.  

• The vegetation- if the vegetation is dense it will minimize the loss of water from 

the soil surface but the transpiration demand of the plants might result in the 

rising of soil water. This will in turn result in the mobilization of salts towards the 

surface. With a low vegetation cover density, evaporation will tend to increase, 

which may result in the surface layers of soils having very high concentrations of 

salts in the summer months. 
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• Slope of ground- influences the drainage pattern and the soil is usually more 

saline towards the foot of slopes, where water tends to accumulate. 

• Depth of soil water table- a shallow water table usually results in more constant 

soil salinity. 

• The depth of the salt deposit- the nearer this is to the surface, the more saline the 

surface layers will be unless there are periods of heavy precipitation. 

• Water inflow into a region- commonly, water inflow into arid regions comes from 

surrounding higher-lying areas. Such water is usually less-saline, which results in 

dilution of salts in the basin. In many areas, however, the inflow of fresh water 

still does not exceed the average losses by evaporation, which maintains the high 

salinity. 

 

2.2 Sources of Salts 
Meteoric Factors (Rainfall and Wind) 

A possible explanation for the occurrence of salts in a landscape is the combination of a 

semi-arid climate with close proximity to the ocean. Rainfall and wind can transport salts 

of marine origin and deposit them on land and in surface waters. A study undertaken by 

Flügel (1995), in the Western Cape, reported that the mean annual rainfall is 

approximately 400 mm, and has a salt concentration, from the ocean, of 37 mg L-1. 

Sodium and chloride, transported by wind and rain from the Atlantic Ocean, were the 

dominant ions. Hingston and Gailitis (1976) also reported that the annual accumulation 

rate of salt, i.e. mainly sodium and chloride, in the wheat belt of Western Australia was 

100-250 kg ha-1 in high rainfall coastal areas and approximately 10-20 kg ha-1 300 km 

inland. Chapman (1966) presented similar findings. He stated that in South West Africa, 

it occurs that salts are blown in from the sea over centuries and deposited inland (aeolian 

salts). According to Bresler et al. (1982) the atmospheric salt composition changes with 

increasing distance from the coast. Absolute Cl- and Na+ concentrations in the rainfall 

decrease as the air mass moves further inland. 
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Fossil Salts 

The presence of fossil salts may also produce dryland salinity. Fossil salts are salts 

deposited in marine sediments of ancient seas.  These sediments are buried, lithified, then 

uplifted and become parent material for the soil. Evaporation of groundwater can 

concentrate these salts at the surface thereby degrading the soil. The present hard pans 

and soils of the North- western coastal area of Western Cape developed as a result of 

inland sea water intrusion (Malherbe, 1953). 

 

Inland lake basins, in which the natural drainage outlet ceases to exist, resulting in the 

drying up of the former lake may also act as a source of salt (Chapman, 1966). This 

produces an intense concentration of salts that accumulates in the waters. 

 

Mineral Weathering 

Sedimentary rocks in South Africa (e.g. Dwyka Series, the Malmesbury shale and the 

Enon conglomerate) are rich in soluble salts that if weathered to soil material may cause 

an accumulation of salts under low rainfall conditions (Malherbe, 1953). These salts may 

remain in the original soils resulting in the area becoming saline. During the wet winter, 

flood and seepage water transport salts from the higher- to lower-lying areas where the 

water evaporates and the salts are left to concentrate at the soil surface. The salts in the 

districts of Malmesbury and Picketberg in the Western Cape are believed to have 

originated from the sea as well as from the weathering of the underlying bedrock 

(Malherbe, 1953).  

 

Anthropogenic Sources 

 The dominant human activities, which may produce saline areas are land use activities 

such as irrigated agriculture and mining. The improper use of fertilizers or irrigation with 

poor quality water adds to the salinity of a landscape (McBride, 1994). The clearing of 

natural veld has also, in many instances, resulted in the salinization of dryland areas 

(Greiner, 1998; Gilfedder et al, 1999; Acworth and Jankowski, 2001). 
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2.3 Types of Salinity 
Primary Salinity 

Primary soil salinity occurs naturally in the landscape and affects the development of that 

landscape over time. Examples of areas affected by primary salinity are marine plains, 

coastland regions, salt lakes and pans. Primary salinity develops as a result of the 

deposition of oceanic salts or as a result of the salt transporting action of rain and wind 

(Hingston and Gailitis, 1976).  In a primary soil salinization process, salt stored in the 

soils or groundwater is concentrated through evaporation and transpiration by plants.  

 

Secondary Salinity   

Secondary soil salinity is the salinization of land caused by human activities, which alter 

the hydrological cycle. This category of soil salinity emanates from irrigation and dryland 

management systems which result in rising water tables mobilizing salt in the soil 

(Cartwright et al., 2004). Secondary salinity is also termed dryland salinity. Dryland 

salinization is induced by extensive changes to the vegetation cover in a catchment, 

which is generally associated with the clearing of native vegetation (Greiner, 1998; 

Gilfedder et al, 1999; Acworth and Jankowski, 2001). The introduced farming systems 

generally use less water and resultantly larger volumes of runoff are produced and/or 

larger amounts of rainfall recharge the groundwater system. An increase in recharge 

produces a rise in the water table (Figure 1). The groundwater dissolves and mobilizes 

salts that were stored above the old water table in the previously unsaturated regolith and 

brings them to the surface. This produces an increase in soil, and eventually stream, 

salinity. Peck and Hurle (1973) as cited by Peck and Hatton (2003), used stream gauging 

and rainfall records, and measurements of the salinity of rainfall to estimate the chloride 

balance of catchment areas in southwest Australia that remained under natural forest 

vegetation or had been partly cleared and developed for dryland agriculture. They 

showed that whereas there was close to a balance between input and output of chloride in 

the uncleared catchments, the ratio of output to input in partly farmed areas ranged from 

3.1 to 21. Salinized land often develops in lower valley locations and at breaks of slope, 

however, topography alone is not sufficient to predict the location of salinized areas 

(Barrett-Lenard and Nulsen, 1989).  
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  Figure 1. Replacing native vegetation with shallow rooted annual 

crops and pastures have led to substantial increases in the amount of water ‘leaking’ into 

the soil. The consequences are rising groundwater levels and dryland salinity (Gilfedder 

et al, 1999). 

 
According to M.V Fey (personal communication), the dynamics of the process differs in 

the Western Cape. Evaporation from saline groundwater results in the precipitation of 

salts at the soil surface and consequently the formation of saline scalds. These salts are 

then distributed further by overland flow.  

 

2.4 Description of the Berg River Catchment 
The Berg River rises in the Franschhoek and Jonkershoek mountains and flows in a north 

westerly direction where it eventually discharges into the sea at Laaiplek. The river is 

approximately 270 km long and has a catchment size of approximately 900 km2 (DWAF, 
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1993). On the eastern side a range of mountains bound the catchment, whilst on the 

western side it flattens out into a hilly plain. Present land cover in the catchment can 

primarily be sub-divided into agricultural, forestry and urban. Agricultural land use is 

further divided into irrigated and dryland farming activities. The latter of these make up 

the largest portion of the catchment (DWAF, 1993). The Berg River catchment is 

characterized by a Mediterranean climate with warm dry summers and cool wet winters.  

Mountainous areas in the southern parts of the catchment experience a Mean Annual 

Precipitation (MAP) in excess of 2 600 mm a-1, whilst the MAP gradually decreases 

westwards to approximately 300 mm a-1 along the West Coast.  

 

The geology of the Berg River basin (Figure 2) is dominated by the Malmesbury Group 

and the Table Mountain Group. Downstream of Paarl/Wellington sandstone formations 

are replaced by the Malmesbury Shales as one goes down the stratigraphy. Thereafter, 

tributaries on the eastern bank of the river drain areas that are dominated by the Table 

Mountain Sandstone, whilst the saline Malmesbury Shale is the dominant geological 

formation for tributaries draining the western bank (DWAF, 1993). 
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Figure 2. The Geology in the Berg River Catchment (DWAF, 1993) 

 

2.5 Studies Conducted in the Berg River Catchment 
According to Fourie (1976), the West Coast of South Africa is a semi-arid region in 

which dryland salinity is expected.  The Department of Waters Affairs and Forestry 

(DWAF) has monitored Berg River water quality since the mid 1970s.  Natural soil 

Boland Group 

Table Mountain 
Group 
Swartland Group 

Malmesbury Group 

Unknown 

Berg River 

Not to scale 

 

 

 

 



 22

salinity has already been identified as the source of some of the salts affecting the water 

quality of the Berg River (Fourie and Steer, 1971; Fourie and Gorgens, 1977).   Fourie 

assessed the salinity of the Berg River in 1976 (Figure 3) by focusing on certain Berg 

River tributaries on the west bank as well as on the east bank below Voëlvlei and found 

them to be naturally quite saline. 

 

In 1977, Fourie and Görgens investigated the mineralization of the Berg River. It was 

found that the salinity increase of the river could be the result of increasing irrigation 

practices along the river. According to Nitsche et al. (2006), tributaries of the Berg River 

draining Malmesbury Shales possess a high salinity. High salinities were also observed in 

waters running off Malmesbury Shales. As a result, these waters are highly unsuitable for 

irrigation and thus losses in yield should be expected. Alternatively, the tributaries 

draining the Table Mountain Sandstones, as the dominant geological formation, show 

low salt levels.  
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Figure 3. ArcView image of a portion of the Berg River catchment showing DWAF 

monitoring points in the area studied by Fourie, 1976 (Fey and de Clercq, 2004). 

 

Nitsche et al. (2006) also studied the pH associated with the Berg River and its 

tributaries. The pH of natural waters influences the physical, chemical and biological 

processes in the system. It was observed that the tributaries draining the Table Mountain 

Sandstones tend to be more acidic, as this formation tends to erode to acidic soils. 

Downstream, however, the waters tend to be more alkaline.  

 

A recent publication by Fey and De Clercq (2004) is extremely pertinent to this study. 

Their pilot study was undertaken to determine whether a more extensive investigation is 
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required of dryland agricultural impacts on river salinity. Valuable results were produced. 

It was reported that dryland salinity is extensive and that it is likely to have a significant 

impact on the water quality of the Berg River. Extensive patchiness in croplands, 

especially in wheat fields, which dominate the land use in the Berg River catchment, has 

been identified. Ground truthing of these patches has consistently confirmed that they are 

associated with soil salinity. Modeling of runoff under different vegetation scenarios 

(winter wheat and renosterveld) suggested that land use changes have a potential impact 

on salt release from the regolith into surface water.  The soils were found to be 

sufficiently saline to affect wheat growth.  The findings of this study suggested the need 

for a more detailed survey of salt distribution in the soils, regolith, and ground- and 

surface waters coupled with a fundamental study of salt mobilization in response to 

climate, topography and land use practice in a small scale catchment. 

 

Flügel (1995), extensively studied river salination due to dryland agriculture between 

1985 and 1986 in the 150 km2 catchment of the Sandspruit River, a tributary of the Berg 

River. All major water bodies within the basin were investigated with the aim of 

identifying and quantifying their salinity dynamics. Flügel reported that dryland 

agriculture contributed to river salination based on the findings that the bulk annual 

atmospheric deposition accounted for only a third of the total salt output for 1986. He 

stated that the remainder was delivered by groundwater and interflow from the weathered 

shale and the soils within the catchment. 

 

2.6 Combating Dryland Salinity 
To limit the spread of dryland salinity, a substantial change to farming systems is 

required (Clarke et al., 2002; Gilfedder et al., 1999). Restoring the native vegetation by 

regeneration or replanting lowers water table heights locally, but field evidence suggests 

that this restoration needs to be extensive for it to have regional effects. The general 

consensus is that alley cropping will allow the agriculture to be continued in the bays 

between the rows, but this method would require as much perennial, preferably deep 

rooted, vegetation as possible in the bays to achieve the required recharge reductions. It is 

also generally believed that where the asset to be preserved is valuable and an efficient 
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method of disposal exists, then pumps and drains will form part of the salinity 

management system. According to Pannel and Ewing (2006), the main action to prevent 

groundwater tables from rising is the establishment of perennial plants, either herbaceous 

(pastures or crops) or woody (trees and shrubs). Where these saline water tables are 

already shallow, farmers still have the option of planting salt tolerant species, e.g. 

saltbush. Angus et al. (2001) suggest that lucerne pastures and improved crop 

management can result in greater use of rainfall than annual pastures, fallows, and poorly 

managed crops. The tactical use of lucerne-based pastures in sequence with well-

managed crops can help with the dewatering of the soil and reduce or eliminate the risk 

of groundwater recharge. 

 

2.7 Hydrosalinity Modeling 
2.7.1 Hydrological Processes 

Preliminary data collected on the characteristics of the study area, i.e. soil and pedology, 

geology, climate, topography, vegetation and land-use, were used to determine, which 

were the dominant water and salt balance processes in the study area, i.e. Goedertrou 

(Jovanovic, 2005). The processes that were identified are: 

- Runoff (including stormflow, sediment yield and solute washoff) 

- Vertical water and solute fluxes (including preferential flow and soil phase-water 

solution interactions) 

- Throughflow (including subsurface lateral water and solute fluxes) 

 

Surface Runoff 

Along with leaching, solute washoff is the most direct process involved in the salinization 

of water resources (Wasson, 1998). This washoff is dominantly observed as concentrated 

flow in rills or gullies (McLaughlin et al., 1998). According to Baldwin et al. (2002), 

inorganic salts may be transported, on the surface either as solutes or they may be 

attached to suspended particles.  The solute component is influenced by precipitation and 

surface runoff, whilst absorbed salts are linked to sediment transport (Johanson, 1983). 

 

 

 

 

 

 



 26

Vertical Water and Solute Fluxes 

According to Jovanovic (2005), a reliable estimate of water fluxes is essential for the 

accurate prediction of solute fluxes. These vertical water fluxes in the soil profile can be 

simulated using tipping bucket (cascading) models, which are based on soil-specific field 

capacity levels. These models, however, generally lack the capability to model the 

upward movement of water and salts.  

 

Solute redistribution in the soil profile can be simulated assuming complete mixing, 

piston flow, convection or convection-dispersion processes. Complete mixing of 

infiltrating water with the soil solution is a very rough approximation of salt 

redistribution, as preferential flow and diffusion (salt movement within the soil solution) 

are not considered. Jovanovic (2005) further states that current models simulate salt 

fluxes based on the convection-dispersion equation. This technique includes salt 

movement by convection, mechanical dispersion due to variations in velocity through 

pores of different size, and diffusion, which is controlled by concentration gradients. The 

movement of contaminants in the unsaturated zone is controlled by infiltration, which is 

governed by large suction gradients between the wetting front and dry media. 

 

Throughflow 

According to Jovanovic (2005), throughflow along impermeable or semi- permeable 

layers is widespread in the study area. Throughflow can be simulated based on empirical 

water redistribution fractions (Schulze, 1994). Alternatively, Richard’s equation with 

convective-dispersive solute flux can be applied, if gradients of water pressure heads and 

concentrations are known. 

 

2.7.2 Model Review 

Based on the above mentioned processes, several models have been identified, which are 

suitable for the purpose of this study, in terms of availability and ability to simulate 2D, 

layered systems as well as the relevant geohydrological and geochemical processes for 

inorganic salts. SWAT (Soil Water Assessment Tool), SWAP (Soil-Water-Atmosphere-
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Plant) and HYDRUS-2D have been identified as possibly being the most suitable. 

However, CHEMFLO, FEHM and STANMOD were also considered.  

 

SWAT 

SWAT (Soil and Water Assessment Tool) (Arnold et al., 1995) is a 2D model that 

predicts the effects of climate and vegetative changes, reservoir management, 

groundwater withdrawals and water transfer on hydrology, pesticide and nutrient cycling, 

erosion and sediment transport in large, complex, rural river basins. SWAT can analyze 

watersheds and river basins of 100 square miles by subdividing the area into homogenous 

parts. It uses daily time steps for continuous periods from 1 to 100 years. 

 

The hydrology is based on the water balance, i.e. it is represented by interception, 

evapotranspiration, soil percolation, lateral flow and groundwater flow and river routing 

processes. Soil profiles can be subdivided into 10 layers. Infiltration is defined in SWAT 

as precipitation minus runoff. Infiltration moves into the soil profile where it is routed 

through the soil layers. A storage routing flow coefficient is used to predict flow through 

each soil layer, with flow occurring when a layer exceeds field capacity. SWAT also 

provides for sediment yield and size, whilst the SWAT-GIS linkage incorporates 

advanced visualization tools capable of statistical analysis of output data. The model 

simulates both the land phase of the hydrological cycle, controlling the amount of water, 

sediment and nutrient loadings to the main channel in each sub-basin, and the water or 

routing phase of the cycle through the channel network of the watershed to the outlet 

(Chaplot, 2005).  

 

Inputs include information from databases and information from a GIS interface. A soil 

database includes information on soil type, texture, depth and hydrologic classification. 

Spatially distributed parameters of elevation, land use, soil types and groundwater table 

are used in the model. More specific information can be entered singly, for each area or 

for the watershed as a whole. 
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Main outputs are sub-basin attributes (coordinates and boundaries), topographic attributes 

(stream length, stream slope and geometrical dimensions, accumulation area, sediment 

loss), groundwater attributes (time lag of groundwater flow for each sub-basin), routing 

structure for sub-basins, based on the elevation map. Also, it defines the channel width 

and depth using a neural network that is embedded in the interface, based on the drainage 

area and average elevation of a sub-basin.  

 

SWAP 

SWAP (Soil-Water-Atmosphere-Plant) (Kroes and van Dam, 2003) is a 2D, transient 

model for water flow and solute transport in the unsaturated and saturated zones. 

Applications vary from irrigation and salinity studies at field scale to water flow analysis 

in pesticide and nutrient studies at a national scale. The various components of the model 

are illustrated in Figure 4. 

The model is based on Richards’ equation for water flow and the convection-dispersion 

equation for solute transport. It includes interactions between soil, plant and atmosphere, 

interactions between surface water, soil water and groundwater (runoff, run-on, 

inundation, drainage and infiltration, preferential flow, throughflow for up to five 

different levels, groundwater recharge and capillary rise). Concerning solutes, SWAP 

includes processes like non-linear adsorption, first-order decomposition, plant root 

uptake, leaching and drainage to drains and ditches. In this way, solute transport from the 

soil surface to the surface waters can be simulated. System boundaries at the top are 

defined by the soil surface with or without a crop and the atmospheric conditions. The 

lateral boundary simulates the interaction with surface water systems. The bottom 

boundary is located in the unsaturated zone or in the upper part of the groundwater and 

describes the interaction with regional groundwater (Kroes and van Dam, 2003). 
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Figure 4. Conception of model SWAP after Kroes et al. (1998). 

 

The SWAP model describes processes related to: soil water flow, soil heat flow, solute 

flow, crop growth, soil heterogeneity, interaction with surface water systems. 

• Soil water flow: The well-known Richards' equation is applied integrally for the 

unsaturated-saturated zone, with possible presence of transient and perched 

groundwater levels. 

 

Equation 1 (Richard’s Equation; Singh et al., 2005),  where Cw is the differential soil 

water capacity [L-1], h the soil water pressure head [L], K the hydraulic conductivity [L 

T-1], Sa the root water extraction rate [T-1], and z the vertical coordinate [L] (positive 

upward). 
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Root water extraction at various depths in the root zone is calculated from potential 

transpiration, root length density and possible reductions due to wet, dry or saline 

conditions. 

• Soil heat flow: Soil temperature may affect the surface energy balance, soil 

hydraulic properties, decomposition rate of solutes and growth rate of roots. 

• Solute flow: The model SWAP simulates convection, diffusion and dispersion, 

non-linear adsorption, first order decomposition and root uptake of solutes. This 

permits the simulation of ordinary pesticide and salt transport, including the effect 

of salinity on crop growth. 

 

Equation 2 (Convection-Dispersion equation, Van Genuchten and Cleary, 1979; 

Boesten and Van der Linden, 1991), where q is the water flux density [L T-1], C 

the salt concentration [M L-3], and Ldis the dispersion length [L]. 
 

• Surface water systems: Drainage to, or infiltration from surface water systems is 

calculated with Hooghoudt or Ernst drainage equations, which allow evaluation of 

the drainage design. The groundwater system can be modeled at the scale of a 

horizontal subregion with different surface water systems and options for surface 

water management. Drainage/subsurface water discharged towards surface water 

systems can be simulated with different residence times.  

Input data are grouped into a general data file (main), weather, crop and lateral drainage 

data. The weather variables necessary for running SWAP are rainfall, minimum and 

maximum temperature, global radiation, air humidity and wind speed (Anuraga et al., 

2006).  Main output data are water and solute balances, drainage fluxes, soil profiles of 

water and contaminants as well as final values of relevant variables. This model is 

especially useful in solving agricultural and hydrological problems. 
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HYDRUS-2D 

HYDRUS-2D (Simunek et al., 1994) is a 2D model for modeling the movement of water, 

heat and multiple solutes in variably saturated porous media. The program numerically 

solves the Richard’s equation for saturated-unsaturated water flow and the Fickian-based 

advection-dispersion equations for heat and solute transport. This model includes 

processes like sorption, degradation and several sink terms (solute uptake etc.). The 

program may be used to study the movement of water and solutes in unsaturated, 

partially saturated or fully saturated porous media. The solute transport equations 

consider convective-dispersive transport in the liquid phase, as well as diffusion in the 

gaseous phase. Transport equations include provisions for nonlinear non-equilibrium 

reactions between the solid and liquid phases and linear equilibrium reactions between 

the liquid and gaseous phases.   

HYDRUS-2D can handle flow regions delineated by irregular boundaries. The flow 

region itself may be composed of nonuniform soils having an arbitrary degree of local 

anisotropy. Flow and transport can occur in the vertical plane, the horizontal plane, or in 

a three-dimensional region exhibiting radial symmetry about the vertical axis. The water 

flow part of the model can deal with prescribed head and flux boundaries, boundaries 

controlled by atmospheric conditions and free drainage boundary conditions. A database 

of soil hydraulic properties is also included in the model. 

The Richard’s equation (variably saturated flow) and the Fickian-based convection-

dispersion equation (solute transport), can be utilized for: (a) Predicting water and solute 

flow in the vadose zone, (b) Analyzing specific laboratory or field experiments involving 

unsaturated flow and/or solute transport. Currently, HYDRUS-2D considers up to 5 

solutes, which either can be coupled in a unidirectional chain or may move independently 

of each other.   

HYDRUS-2D allows the user to design the geometry of the system to be simulated. The 

boundaries of the system can be described as constant or variable heads or fluxes, driven 

by atmospheric conditions, free drainage, deep drainage or seepage. The program 

 

 

 

 



 32

includes an automatic mesh generator, MESHGEN-2D, that generates a finite element 

unstructured mesh fitting the designed geometry through triangulation. 

The user interface is particularly suited to hydrological applications, including functions 

like zooming, enlargement for cross-sectional views, high-resolution colour, contouring 

of isolines, water content, velocity and concentrations, animations of graphic displays for 

sequential time steps etc.  

 

CHEMFLO 

CHEMFLO (www.epa.gov/ada/csmos/models/chemflo.html) is a one-dimensional soil 

water and chemical movement model. Water movement is calculated using Richards’ 

equation, whilst movement of chemicals is simulated with the convection-dispersion 

equation. The model can simulate flow in any direction, regardless of layering, by 

specifying the orientation of the flow system. 

 

CHEMFLO can be used to assist regulators, environmental managers, consultants, 

scientists and students in understanding unsaturated flow and transport processes. 

 

The main outputs include water content, matric potential, hydraulic conductivity and flux 

density of water versus distance or time; concentration and flux density of a chemical as a 

function of distance or time; cumulative fluxes of water and chemical and total mass of 

chemical in the soil as a function of time. However, this model is not able to provide an 

integrated simulation of the system. In addition, it cannot simulate runoff of water and 

salt wash off. 

 

FEHM 

FEHM (Finite Element Heat and Mass transfer code) (Zyvoloski et al., 1995) is a 3D 

numerical model for simulation of time-dependent, multi-phase, multi-component water 

flow and solute transport systems. 

This model accounts for both unsaturated and saturated fluxes in porous and fractured 

media. It can be applied to simulate flow of gas, water, oil and heat, multiple chemically 
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reactive and sorbing tracers as well as double porosity and double permeability 

capabilities. Its main application area is determining the fate of contaminants in the 

saturated and unsaturated zones. However, its ability to simulate overland flow, solute 

movements and throughflow in layered environments will have to be tested. 

 

STANMOD 

STANMOD (Studio of Analytical Models) (Simunek et al., 1999) is a suite of porous 

media solute transport models. It uses analytical solutions of the convection-dispersion 

equation. These models can be used for estimation of transport parameters from 

laboratory and field tracer experiments, calculation of solute transport with decay, 

estimation of equilibrium transport parameters from solute displacement experiments, 

non-equilibrium transport parameters from miscible displacement experiments as well as 

3D equilibrium and non-equilibrium solute transport in porous media. However, this 

model cannot provide an integrated simulation of the system. 
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Chapter 3 

3. Experimental Set-up 
3.1 The Study Area 
A suitable and representative experimental site was selected in the Goedertrou 60 ha 

small scale catchment (SSC). The study area is located 3 km NE of the  town Riebeeck 

West (33o 21' 07'' S & 18o 52' 03'' E), which is approximately 70 km north of Cape Town 

in the Western Cape Province, South Africa. It is a semi-arid region, characterized by a 

Meditteranean climate, experiencing warm dry summers and cool wet winters. The area 

receives approximately 300 mm of rainfall per annum. This SSC was identified as being 

suitable for intensive hydro-pedological and eco-meteorological studies. The catchment 

was also selected on the basis that a diversity of vegetation types, land use practices and 

bioclimatic conditions representative of the drier, lower reaches of the Berg river basin, 

occur, where storage and potential discharge of salt are likely to be the greatest. Other 

factors such as ease of access, infrastructure, landowner commitment and supplementary 

funding opportunities were also considered in selecting the catchment. Site establishment 

started in 2005 with the installation of monitoring equipment, which are listed below. 

Preliminary data were collected in 2005. Additional monitoring equipment was installed 

in 2006, which are also listed below. In 2006, data were collected for the full winter 

season. The 2005 year is thus referred to as the first season of hydrosalinity fluxes and 

2006 as the second. 

 

At the experimental site, i.e. Goedertrou, shallow (<3 m thick) residual soils with 

differing sand, clay and gravel contents overlie the silcrete. The silcrete itself is hard, and 

in bulk terms, relatively massive, but no more than a few meters thick. The conditions 

beneath the silcrete unit are unknown, although at other sites the weathered zone of the 

Malmesbury Group can typically be found at depths between 5-10 m below the site 

surface (Bean, 2004). The Malmesbury Group itself is a Proterozoic marine deposit 

comprising greywacke and phyllite beds with beds and lenses of quartz schist, limestone 

and grit; quartz-sericite schist with occasional limestone lenses {1: 250000 Geological 

Series Map, Geological Survey, 1990)  as cited by CSIR (2005).  
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Dryland wheat was planted in the first week of May 2005 at the Goedertrou SSC. The 

soil was shallow-cultivated to a depth of approximately 5 cm. The aim of the cultivation 

was to destroy weeds, provide a suitable seedbed and to break-up the surface to ensure 

maximum rainfall infiltration as well as to minimize wind and water erosion. In 2006, the 

land was left fallow, which is a common practice in the area aimed at regenerating soil 

fertility through the regrowth of wheat and medic grass for grazing. The experimental 

scheme is shown in Figure 5, on a map representing elevation levels and contours.  

 

 
Figure 5. Experimental scheme in the Goedertrou SSC. 

 

In 2005, two sites were established on opposing slopes (Figure 6), in the SSC. The sites 

represent typical but different hydrological units for modeling purposes. Runoff plots 

were established at sites 1 and 2 (Figure 6). Site 1 is North-oriented, whilst site 2 is 

South-East-oriented. The slope of site 1 is just above 9.1 %, whilst the slope at site 2 is 

close to 12.4 %. Both sites are representative for areas between two man-made contours. 

Chemical and physical analysis was performed on soil samples collected from different 

soil layers at site 1 and site 2, before the sites were established. The results are presented 

in Tables 1 and 2. These aim to give an indication of the initial conditions at the runoff 
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plots. Chemical analysis was performed using the methods of atomic absorption and ion 

chromatography. The samples were prepared using the 1:5 (soil: distilled water) ratio 

method. The samples were analyzed for the concentrations of soluble cations and EC. 

The EC of the samples was also determined from the saturated paste extract (SPE). 

 

 
Figure 6. Aerial photograph of the bare soil and Wischmeyer runoff plots at site 1 and 

site 2. (2005/06/06). 

Site 1 (north 
facing slope) 

Site 2 (south 
facing slope) 
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TABLE 1 

CHEMICAL SPECIATION OF SOIL SAMPLES COLLECTED BEFORE THE 

RUNOFF PLOTS WERE ESTABLISHED. 

  Runoff 

Site 

Depth 

(cm) 

EC(SPE) 

dS m-1 

EC(1:5) 

dS m-1

Soluble Cations 

Ca2+        

mmolc/l 

Mg2+  

mmolc/l 

Na+  

mmolc/l 

K+   

mmolc/l 

Sum 

mmolc/l 

Site 1 

0-20 3.18 0.47 0.26 0.32 3.99 0.06 4.62

20-70 2.62 0.38 0.13 0.20 3.37 0.02 3.72

70-130 1.70 0.20 0.49 0.27 0.97 0.11 1.84

Site 2 

0-20 1.02 0.12 0.07 0.18 1.11 0.17 1.53

20-100 1.08 0.15 0.16 0.21 0.92 0.10 1.39

100+ 0.87 0.16 0.05 0.19 1.34 0.14 1.72

 

The soil physical properties, i.e. bulk density and porosity, were determined using the soil 

water retention functions method (Anthony and Jovanovic, 2004). These results are 

presented in Table 2. The soil water retention was determined using the Eijkelkamp sand 

box and the Eijkelkamp sand/kaolin box. Undisturbed samples were taken at each site 

from each soil horizon displaying different characteristics. Water potential pressures were 

plotted against volumetric soil water content for each horizon. Bulk density was 

calculated as the ratio of air-dry soil sample and volume of the sampling cylinder ring. 

Porosity was assumed to be the volumetric soil water content at saturation. The results in 

Table 2 represent an average of 3 samples. 
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TABLE 2 

 PHYSICAL PROPERTIES OF SOIL SAMPLES COLLECTED 

BEFORE THE RUNOFF PLOTS WERE ESTABLISHED.  

  Runoff 

Site 

Depth (cm) Porosity 

(%) 

Bulk 

Density     

(g cm-3) 

Volumetric 

Soil Water 

Content at 

10 kPa 

Site 1 3 36.6 1.4535 0.32 

15 41.0 1.3865 0.30 

40 38.9 1.5018 0.26 

70 33.9 1.5872 0.23 

120 28.2 1.7171 0.23 

210 33.8       1.5330 0.34 

Site 2 13 40.8 1.5928 0.33 

91 20.0 1.4582 0.08 

 

3.2 Runoff Plots                                                                                                                     

Two standard Wischmeyer runoff plots were established, the one parallel to the other, at 

each runoff site (Figure 7). Each runoff plot covered an area of 44.6 m2 (22.3 m x 2 m). 

In 2005 at site 1, one runoff plot was planted to wheat, i.e. plot 2, whilst the other was 

kept uncultivated, i.e. plot 1 (Figure 7). At site 2, both runoff plots were planted to wheat, 

but during the course of the season it was observed that the vegetation density was 

different in the two plots. In 2006 site 1, plot 2 was left fallow whilst plot 1 was kept 

under bare soil through the regular application of the herbicide, glyphosate. The herbicide 

was applied twice during the season in the months of August and September. At site 2, 

both plots were left fallow. As the land was used for grazing, it was required to regularly 

trim the wheat/medic grass on the vegetated plots to maintain a similar vegetation height 

as the rest of the SSC. The following measurements were carried out at each runoff plot 

(sites 1 and 2): 
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• Runoff water volumes. According to Dingman (2002), the terms surface runoff and 

overland flow may be used interchangeably and is defined as the flow of water that 

occurs on a sloping surface that is either saturated from above (Hortonian overland 

flow) or saturated from below (saturation overland flow). All runoff collected at the 

runoff plots may be defined in this way. A flow splitter was installed in order to 

divide water and sediment flow into two portions (Figure 8). The first portion from 

the flow splitter lead into a tipping bucket fitted with a magnetic switch, in order to 

record surface runoff volumes electronically. The tipping bucket was calibrated so 

that every tip corresponds to 1 L of water. Surface runoff volume data were collected 

every 10 min and stored with an MCS data logger from 5 August 2005. The first flow 

portion was wasted thereafter. Interruptions in logged records did, however, occur as 

a result of trampling by cattle and severe storms.  

 

• Runoff Sampling. The second flow portion from the splitter lead into two surface 

runoff traps (Figure 8). These traps were used to collect overland flow samples for 

laboratory analysis, i.e. salinity and chemical speciation. Two tanks were used in 

order to trap coarser particles in the first tank and finer particles in the second. This 

was done to establish whether salinity was influenced by the coarseness of the 

sediment particles and thus by the adsorbed ions on the sediment particles. These 

samples were collected during field visits which were undertaken after major rainfall 

events (every week on average) during the 2005 and 2006 winter seasons. Sampling 

was done by scratching the bottom of the tanks with a clean spade, thereby mixing the 

water, and collecting water samples in plastic bottles. The flow splitter was calibrated 

on a regular basis to maintain an approximate 50 % split between the tipping buckets 

and runoff traps. Surface runoff volumes were also measured during field visits by 

measuring the height of the water column collected in the tanks (runoff traps), of 

known volume, from June 2005. When both tanks overflowed the maximum capacity 

of the tanks was recorded. The tanks were emptied and washed after sampling, during 

each field visit. 
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• Runoff water quality. The water samples collected during field visits were used to 

determine the quality of the surface runoff. Electrical conductivity was measured on 

all samples collected. Water samples collected on 13/04/05,10/06/05 23/06/05, 

11/08/05, 30/08/05, 8/09/05, 14/10/05 and 3/11/05 were analyzed for inorganic ions 

(Ca, Mg, K, Na, Cl, NO2, NO3, SO4) with ion chromatography and atomic absorption. 

On 8 June 2006, an Eijkelkamp CTD-Diver and BaroDiver were installed in the first 

tank of the bare soil runoff plot at site 1 with the aim of monitoring salinity, 

temperature and water level changes in the tank during single runoff events. Readings 

were recorded with the built-in logger at time intervals varying between 2 and 10 

min. The measurements were taken at different time intervals in order to establish at 

which interval more accurate (higher resolution) changes in water level and salinity 

may be recorded. The CTD-Diver was coupled to a BaroDiver in order to correct the 

measurements of water level in the tank for atmospheric pressure.  

 

• Rainfall. Since 5 August 2005, rainfall at sites 1 and 2 was recorded every 10 min 

with a tipping bucket rain gauge and data were stored with an MCS data logger. The 

data loggers were enclosed in a box and powered via battery and solar panel. The 

outlet of the rain gauges was fitted with a tube leading to a plastic bottle.  The bottles 

were housed in a box to minimize evaporation. Each tip corresponded to 0,2 mm of 

rainfall. Rain water was collected in the plastic bottles and analyzed in the laboratory. 

Electrical conductivity of rain water was measured on samples collected during field 

visits.  

 

• Soil water content. Soil water content was measured gravimetrically by sampling 

during field visits, which was generally after major rainfall events. The soil samples 

were taken at the top and bottom of each runoff plot. Sampling was done outside the 

runoff plots to avoid disturbance, at sites representative of the conditions inside the 

plots. Sampling depths were at 10 cm and 40 cm (at the top of the weathered layer) at 

runoff site 1. At runoff site 2, sampling was at 10 cm and 50 cm soil depth. The 

samples were weighed, placed in the oven at 105 0C, for at least 24 hours, and 

weighed again afterward to determine the gravimetric soil water content. The 
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volumetric soil water content was then calculated using bulk density. From 3 

November 2005, volumetric soil water content at site 2 was measured electronically 

with four Echo sensors connected to an Echo logger (Decagon Devices Inc.). The 

Echo sensors are 20 cm long capacitance probes. Two sensors were installed 

vertically close to the top of the runoff plots, and the other two sensors close to the 

bottom of the runoff plots. Measuring depths were 0-20 cm and 40-60 cm. On 9 

December 2005, four Echo sensors were also installed vertically at site 1 and 

connected to an Echo data-logger. Two sensors were installed close to the top and the 

other two sensors close to the bottom of the runoff plots. Measuring depths were 0-20 

cm and 20-40 cm. All electronic measurements of volumetric soil water content were 

done on an hourly basis and data were downloaded during field visits. The sensors’ 

readings were calibrated using the calibration for mineral soil supplied by the 

manufacturer. The purpose of the electronic measurement of soil water content was to 

quantify throughflow using water retention curves, hydraulic conductivities and the 

HYDRUS-2D model. 

 

• Soil chemical properties. The soil samples collected to measure water content were 

also used to measure soil salinity. A 1:5 soil to distilled water ratio method was used 

(Hesse, 1971). 15 g of fine soil and 75 ml distilled water were used. Once the two 

substances were mixed in a test tube, the sample was placed on a shaker at an 

intermediate speed for 30 minutes. Thereafter, it was left to stand for 15 minutes and 

then placed in a centrifuge at an intermediate speed for 10 minutes. The mixture was 

left to stand overnight and the EC of the 1:5 soil/water solution was measured the 

following day.  The 1:5 water extracts of soil samples collected on 13/04/05, 4/07/05, 

22/07/05, 23/08/05, 8/09/05 and 14/10/05 were analyzed for inorganic ions (Ca, Mg, 

K, Na, Cl, NO2, NO3, SO4, F, PO4) with ion chromatography and atomic absorption.  
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 Figure 7. Runoff site 1. 
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Figure 8. Flow splitter, tipping bucket for measurement of runoff and two plastic tanks 

for water and sediment sampling (Site 1). 
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3.3 Contour Weir 

Contour furrows were constructed in the SSC to minimise erosion. It was expected that 

runoff and, to a certain extent, throughflow would be diverted out of the catchment from 

the area between the two contours where runoff site 1 is located (Figure 5). The following 

measurements were carried out in the contour furrows just below each runoff site: 

 

• Water level. Pressure sensors were installed at the beginning of August 2005 to 

measure the water level in the contours every 10 min. Data were collected and stored 

with an MCS data logger. 

 

• Water quality. Surface runoff collects in the contour furrows during and after 

rainfall events. This water was sampled and its electrical conductivity measured. 

Water samples collected on 13/04/05, 10/06/05, 23/06/05, 11/08/05, 30/08/05, 

8/09/05, 14/10/05 and 3/11/05 were analyzed for inorganic ions (Ca, Mg, K, Na, Cl, 

NO2, NO3, SO4) with ion chromatography and atomic absorption.  

3.4 Dam 

The water collecting in the dam (Figures 5 and 6) originates both from overland flow and 

throughflow. The following measurements were carried out at the dam: 

 

• Water quality. Water samples were collected from the dam during field visits. 

Electrical conductivity was measured on all samples collected. Water samples 

collected on 13/04/05, 10/06/05, 23/06/05, 11/08/05, 30/08/05, 8/09/05, 14/10/05 and 

3/11/05 were analyzed for inorganic ions (Ca, Mg, K, Na, Cl, NO2, NO3, SO4) with 

ion chromatography and atomic absorption. 
 

3.5 Automatic weather station 
An automatic weather station (Figure 9) was installed in the catchment on 25 April 2005. 

The following weather variables were measured and stored on an hourly basis: 
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• Solar radiation. 

• Temperature. 

• Relative humidity. 

• Leaf wetness 

• Wind speed and direction. 

• Rainfall 

 
Figure 9. Automatic Weather Station and Rain gauge. 

 

3.6 Hydrosalinity Modeling 
Taking all the models reviewed in the literature review into consideration, it was decided 

that HYDRUS-2D, would be suitable in this study to simulate hillslope hydrology and 

solute fluxes along the runoff plots. The HYDRUS-2D model (Simunek et al., 1994) 

Rain gauge Automatic 
Weather 
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includes state-of-the-art algorithms for water and solute fluxes and it is able to simulate 

important processes like root water uptake, water movement and salt fluxes. In addition, 

it allows the user to construct irregular geometries of the system, which is to be 

simulated. It also automatically generates nodes for the calculation of these fluxes in an 

unstructured triangular mesh, and it allows the user to assign preferred boundary 

conditions, e.g. constant or variable heads and fluxes. These features were taken into 

consideration when examining HYDRUS-2D’s suitability to simulate the conditions at 

Goedertrou. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



 47

Chapter 4 

4. Results and Discussion 
In this Chapter, the results representing the first and second season of measurements 

regarding the hydrosalinity fluxes are presented. 

 

4.1 Meteorological Results 
Figure 10 shows the seasonal rainfall measured with the automatic weather station during 

2005 and 2006. The data indicate that rainfall events were generally prolonged with 

peaks of intensity up to almost 8 mm h-1 in 2005 and 7 mm h-1 in 2006. The maximum 

daily rainfall recorded in 2005 was 20 mm, whilst in 2006 it was 26 mm. In 2006 the area 

also received considerably more rainfall. An approximate total of 442 mm was recorded 

at the weather station in 2006, whilst it was 262 mm in 2005. It should be noted that data 

for the periods when the weather station was not operational, were obtained from the 

raingauge on the south facing slope. In 2005 the temperatures ranged from a minimum of 

1,84 oC to a maximum of 37,9 oC. The average temperature, measured from April to 

December was 14,9 oC. In 2006, a minimum temperature of 4,2 oC was measured and a 

maximum of 36,7 oC. The average temperature, measured between February and 

September was 14,1 oC. A similar pattern in temperature variations was observed 

between the two seasons. An average wind speed of 2,4 m s-1 was measured in 2005 and 

2,7 m s-1 in 2006. A similar seasonal pattern was also observed in wind speed variations. 

These variables, i.e. temperature, wind speed as well as relative humidity are illustrated 

on graphs in Appendix A and Appendix B. 
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Figure 10. Rainfall data for 2005 and 2006. 

 

4.2 Surface Runoff Measurements 
4.2.1 Manual Runoff Measurements 

Runoff data recorded manually by measuring the liters of water collected in the runoff 

traps are shown for site 1 (North-oriented) in Figure 11 and site 2 (South-oriented) in 

Figure 12. The data were converted into mm runoff for ease of comparison with Figure 

10. Surface runoff events matched major rainfall events. It should be noted that rainfall 

data were not available for the period from 12 August 2005 (DoY 225) until 18 August 

2005 (DoY 231), due to problems with the electronics. Rainfall data from the weather 

station for the period of 5 July 2006 (DoY 186) to  11 August 2006 (DoY 222) were also 

lost as a result of the weather station being trampled by cattle. Data for this period were 

obtained from the MCS logger at site 2. It should also be noted that field visits were 

planned 1 to 3 days after major rainfall events, so there was a lag in time between rainfall 

events and manual runoff measurements. As a result of the limited capacity of the runoff 

collection tanks, accurate measurements of runoff volumes, in this manner, could not be 

obtained during large rainfall events  because both collection tanks overflowed. Together, 

both tanks could only hold 1.5 mm of runoff ,corresponding to 65.3 L. It should be noted 

that all measurements of runoff volumes were doubled to account for the 50:50 split of 

runoff water. 
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Figure 11 represents runoff events from the two plots at site 1, the one uncultivated (plot 

1) and the other planted to wheat in 2005 and then left fallow during 2006 (plot 2). It is 

evident from the data that more runoff occurred from the uncultivated plot compared to 

the vegetated plot in 2005 and 2006.  During the period of the study an approximate total 

of 2 300 L plot-1 of runoff was recorded at site 1, plot 1 compared to 850 L plot-1 at site 1, 

plot 2. This indicates that wheat cropping and shallow cultivation practices like those 

applied at Goedertrou could be beneficial in terms of containing water in the catchment 

and reducing runoff. During 2006 it was observed that the regrowing wheat and medic 

grass were also effective in reducing runoff. A total of 1 400 L plot-1 was recorded at site 

1, plot 1 compared to 400 L plot-1 at site 1, plot 2 during 2006. This gives an indication of 

the importance of vegetation in terms of soil conservation practices. It was also observed 

that salt transport was reduced as a result of reduced surface runoff. Evidence for this will 

be provided in Chapter 4.3. 

 

Figure 12 represents runoff events from two plots at site 2, both planted to wheat (2005) 

and left fallow in 2006. It was observed that these plots exhibit different spatial 

vegetation densities. Plot 1 was less densely vegetated, toward the bottom of the plot, and 

presented evidence of higher runoff values compared to plot 2, which was densely 

vegetated toward the bottom of the plot. The lower runoff values recorded from plot 2 

were due to higher evapotranspiration, higher infiltration of rainfall and better 

containment of water by the denser vegetation at the downslope end of plot 2. This 

behaviour of the system was evident during the entire 2005 winter season, even after full 

canopy cover was reached. The system behaved similarly in 2006. It should also be noted 

that it was observed that the sheets demarcating the two plots at site 2 were 

unintentionally inserted to different depths. This may have resulted in water movement 

underneath these sheets. Differences in runoff values measured at site 1 (plot 2) (Figure 

11) and site 2 (Figure 12) were mainly due to differences in soil properties and slope. 

 

Table 3 shows the average plant densities measured at Goedetrou on 28 October 2005, 

while the SSC was under wheat cropping. Random areas of each plot were selected. 
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Plants were counted from three areas of 1 m2 in each plot and the results represent an 

average of the three readings. 

 
 TABLE 3 

 AVERAGE PLANT DENSITIES MEASURED ON 28 OCTOBER 2005 AT 
GOEDETROU SSC. 

Runoff Plots Average Plant Density (no. of plants m-2) 
Site 1, Runoff Plot 2 40 
Site 2, Runoff Plot 1 39 
Site 2, Runoff Plot 2 39 
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Site1, Runoff Plot 2
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Figure 11.  Runoff data at site 1. Where runoff reached the 3 mm level, both tanks 

overflowed and thus runoff was >3 mm. 
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Site2, Runoff Plot 1
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Site2, Runoff Plot 2
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Figure 12. Runoff data at site 2. Where runoff reached the 3 mm level, both tanks 

overflowed and thus runoff was >3 mm. 

 

4.2.2 Automatic Runoff Measurements 

From 5 August 2005, logging systems were installed at both runoff sites to record rainfall 

and runoff with tipping buckets as well as to automatically record the fluctuations in 

water level in the contours. However, during 2005 the logger at site 1 was not operational 

due to problems with the electronics. The logger at site 2 functioned well. In 2006, both 

systems were operational for most of the season. Output data from these logging systems 

are presented in the following sections and in Appendix C. 
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4.3 Soil Water Contents 
Volumetric soil water contents for the 2005 season are shown in Figure 13 for site 1 and 

site 2.  Variation in volumetric water content of between 0.1 m m-1 and 0.4 m m-1 was 

observed. In general, the values were higher in the top soil when compared to deeper 

layers, due to the relatively low infiltration capacity of the soil (de Clerq et al., 2005). 

The values showed a general tendency to increase during July 2005 due to rainfall. As the 

root depth of wheat increased thereafter, dynamic trends were observed depending on 

rainfall and root water uptake, both in the top soil and in the deeper layer. 

 

The logged records of volumetric soil water content, obtained with the use of Echo soil 

moisture sensors in 2006 are shown in Figure 14.  The soil moisture content tended to 

decrease in summer as a result of increased evapotranspiration demand and lack of 

rainfall, and increase in winter due to increased rainfall. The Echo sensors illustrated that 

under the re-growth of wheat/medic grass vegetation types, the deeper soil layers tended 

to consistently have higher moisture contents when compared to the shallow soil layers. 

This was evident at both site1 and site 2. This is most likely a result of differences in 

evaporation rates between shallow soil layers and deeper soil layers. Differences in the 

water contents recorded at the top and bottom of the plots were dynamic and thus no 

trends could be observed. It should be noted that the sensor installed at a depth of 10 cm 

at the bottom end of site 1 was damaged during June 2006 and thus logged no further 

readings. Other data were not available due to poor contact between the soil and the 

sensors during the season. After wetting events, contact was re-stored and the sensors 

kept logging data. 
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Figure 13. Volumetric soil water contents for soil samples collected at runoff sites 1 and 

2 during 2005. 
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Figure 14. Volumetric (Vol.) soil water contents (SWC) at runoff sites 1 and 2 measured 

with Echo soil moisture sensors. 
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4.4 Salinity 
Figures 15 and 16 show electrical conductivity (EC) values measured on water samples 

collected at runoff sites 1 and 2. The samples were collected from both sediment tanks, 

where tank 1 was the first in the sequence. In 2005, EC values generally ranged between 

0.5 and 1.5 dS m-1, with a minimum of 0.12 dS m-1 recorded at site 1, plot 2 (Figure 15), 

and a peak of 2.75 dS m-1 at site 2, plot 1 (Figure 16). In 2006, EC values generally 

ranged between 0.3 dS m-1 and 1.0 dS m-1. A maximum of 1.24 dS m-1 was recorded at 

site 1, plot 1 (Figure 15) and a minimum of 0.1 dS m-1 at site 2, plot 2 (Figure 16). At site 

1, the unvegetataed plot generated more saline runoff, in terms of the total salt load, when 

compared to the grassed plot.  An approximate total of 900 g plot-1 of salts were 

mobilized from site 1, plot 1 compared to 160 g plot-1 from site 1, plot 2 during the period 

of the study. A peak in salinity ( 2.5 dS m-1) was observed at site 2, at the start of winter 

(June), and a clear decrease therafter. This was evident from both 2005 and 2006 data. 

Salinity of runoff water was dynamic depending on local processes, but no clear trend in 

the values over time and between tanks could be observed. The differences in salinity 

between the two tanks at the same runoff plot were negligible. In general, the plots that 

yielded less runoff generated less saline runoff water. This may have implications with 

total salt load under different land uses because different land uses influence runoff 

amounts differently and consequently also salt loads. 

 

Figure 17 represents the salinity of water samples collected in the contours just below the 

runoff plots at sites 1 and 2, as well as the salinity of the water in the dam. The salinity of 

water collected both in the contours and in the dam was in the range of that measured in 

runoff water. A maximum of 2 dS m-1 was measured in contour waters. The salinity 

levels in the contours between measurements showed fluctuations to a certain extent but 

the extremes were less pronounced compared to those measured in runoff water (Figures 

15 and 16). The extremes were even less pronounced for salinity in the dam. This 

indicates that less fluctuations and a lessening of the effects of extreme events can be 

expected by increasing the scale of observation. During the summer months of November 

2005 to March 2006 the dam water showed a drastic increase in EC, with it almost rising 

to as high as 7 dS m-1 (Figure 17). This was a result of increased evaporation from the 
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dam during these months and thus a concentration of the salts in the dam. However, 

salinity of the dam water decreased rapidly with the onset of the 2006 winter season. 

 

Figure 18 represents the EC of rain water measured during the season. The data represent 

the average of measurements taken on rain water samples collected at sites 1 and 2, with 

standard deviations. The data show that the highest average EC recorded was 0.41 dS m-

1. However, most samples had an EC below 0.1 dS m-1. From this, one can deduce that 

rainfall alone cannot account for the quantities of salts being measured in overland flow 

and soil layers. This strongly suggests that geological controls are playing a major 

contributing role to salt input.  According to M.V. Fey (personal communication) salts of 

marine origin (transported by rain and wind) occur in abundance in the regolith in the 

study area.  The periods during the deposition of these salts are interpreted to be drier 

than present and hence the change in the water balance has resulted in the mobilization of 

these salts trapped in the regolith.  
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Figure 15. Electrical conductivity (EC) of runoff water at site 1 
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Site 2, runoff plot 1

0
0.5

1
1.5

2
2.5

3

8-Apr-05

28-M
ay-05

17-Jul-05

5-Sep-05

25-O
ct-05

14-D
ec-05

2-Feb-06

24-M
ar-06

13-M
ay-06

2-Jul-06

21-Aug-06

10-O
ct-06

Date

EC
 (d

S
/m

)

Tank 1 Tank 2
 

 

Site 2, runoff plot 2
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Figure 16. Electrical conductivity (EC) of runoff water at site 2 
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Contours and Dam
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Figure 17. Electrical conductivity (EC) of water collected in contours and dam 
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Figure 18. Average electrical conductivity (EC) of rain water at sites 1 and 2 with 

standard deviations. 
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 The Electrical Conductivity (EC) of 1:5 soil/water ratio extracts of soil samples collected 

at site 1 and site 2 are shown in Figure 19. The EC values generally ranged between 0-1.5 

dS m-1 at site 1 and 0-0.4 dS m-1 at site 2. The higher values at site 1 could be a result of 

the fact that site 1 is located on a saline patch with a bulk soil electrical conductivity of 

approximately 1.6 dS m-1. Plot 1 at site 1, however, showed higher EC values when 

compared to plot 2.  Plot 1 exhibited an average EC of 0.51 dS m-1 at the top of the plot 

and 0.46 dS m-1 at the bottom of the plot. Plot 2 exhibited an average EC of 0.33 dS m-1 

at the top and 0.21 dS m-1 at the bottom of the plot. This is most likely as a result of the 

vegetation on plot 2, which minimizes evaporation of soil water and consequently the 

precipitation of salts near the soil surface. Alternatively, the vegetation reduces the 

amount of water reaching deeper layers, through root water uptake. The water reaching 

deeper layers acts as a salt mobilizing agent. The vegetation at site 2 may have a similar 

effect on soil salinity. In general, higher EC values were observed in 2006. At site 2 an 

average EC of 0.21 dS m-1 was measured in 2005 and 0.35 dS m-1 in 2006. This 

difference in EC between 2005 and 2006 could be a result of the different land use or 

differences in rainfall patterns. The data illustrate that the type of vegetation cover could 

influence the amount of salts being precipitated at the soil surface and consequently being 

available for mobilization by runoff. However, no temporal or spatial trends could be 

observed.  
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Figure 19. Electrical Conductivity (EC) of soil samples collected at site 1 (plot 1 and 2) 

and site 2 (plot 2). 
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4.5 Soil and Water Chemical Speciation 
Water and soil samples collected during 2005 were analyzed for inorganic ions to 

establish the dominant ions in the SSC. The methods of atomic absorption and ion 

chromatography were used. The results of the laboratory analysis indicate that Na+ and 

Cl- are the most dominant inorganic ions, both in the soil solution and runoff. The results 

were also used to study the relationships between the various ions, and between the ions 

and variables such as EC, pH and TDS. The TDS was calculated as the sum of the anions 

and cations that were analyzed in mg L-1. The correlation between EC and TDS is shown 

for runoff (Figure 20) and for 1:5 soil/water ratio extracts (Figure 21). The high R2 values 

of the correlations indicate that we can infer TDS from EC using the derived equation for 

surface water, subsurface water and soil, and that the system is conservative in terms of 

ionic speciation. High R2 values were also obtained for the correlations of EC vs. Na and 

Cl (Figure 22). All other results are presented in the form of graphs in Appendix D. 
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Figure 20. Correlation between electrical conductivity (EC) and TDS (total dissolved 

solids) in runoff water. 
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Figure 21. Correlation between electrical conductivity (EC) and TDS (total dissolved 

solids) in 1:5 soil/water ratio extracts 
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 Figure 22. Correlation between electrical conductivity (EC) and Na and Cl in 
runoff water. 
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4.6 Dynamics of Salinity during Individual Runoff Events 
From June to September 2006, an Eijkelkamp CTD-Diver and Baro-Diver were installed 

at plot 1 of site 1 (bare plot). The Divers were suspended in the first sediment collection 

tank, i.e. tank 1. The aim of installing these Divers was to study the dynamics of the 

movement of salts during individual runoff events. The CTD-Diver measured EC         

(dS m-1), temperature and the height of water. The BaroDiver measured atmospheric 

pressure. The readings of water pressure taken with the CTD-Diver were normalized for 

atmospheric pressure using the Baro-Diver readings and the software provided by the 

manufacturer. The CTD-Diver sensor was always kept submerged in a few centimeters of 

tap water to keep it wet and to avoid damage. Figure 23, shows the results obtained for a 

runoff event that occurred on 21 July 2006 (DoY 202). A sudden increase in water level 

and salinity is observed due to saline runoff water discharging into the tank. As the event 

progressed, the water level of the tank reached a maximum level and overflow into the 

second tank occurred, whilst the salinity remained constant indicating an influx of runoff 

water with steady salinity. This contradicts an initial theory that suggested that there 

would be an initial peak in salinity, followed by a decrease in salinity as the runoff event 

progressed. Similar results were obtained for other runoff events in the period from July 

to September 2006. This indicated that, at least during the runoff events studied, salinity 

in runoff water stayed constant and a steady mobilization of salts occurred during the 

runoff process. This is due to the nature of rainfall in the area, where events are typically 

steady, of long duration and generally relatively low intensity. Results for all other runoff 

events recorded during the period of July to September 2006 are presented in Appendix 

E.  

 

Due to constraints associated with the CTD-Diver, the EC values shown in Figure 23 and 

Appendix E are not a true representation of EC. This is due to the fact that the CTD-

Diver’s resolution is not adequate to measure fluctuations in water level less than 30 mm, 

i.e. it will only detect changes in water level when they are greater than approximately 30 

mm. Different recording intervals, i.e. 2 minutes and 10 minutes, were also used in order 

to test the dynamics of the system for different time resolutions. It was observed that 

where water levels are concerned, the interval of 10 minutes showed less dramatic 
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fluctuations in water height. Accurate water level measurements were required to 

compensate for the initial quantity of tap water placed in the tank, to submerge the CTD-

Diver, resulting in a mixing between the fresh water and runoff and a subsequent dilution 

of salts. An attempt was, however, made to determine the actual EC of runoff water using 

the Diver EC measurement, the initial depth of tap water and the increase in water level 

in the tank due to the incoming runoff water. However, the compensation of EC during 

the initial period of the runoff event (when mixing of the initial tap water and the 

incoming runoff water occurred) was not possible due to the irregular water level 

readings.  It was also observed that fluctuations in temperature between night and day 

followed variations in water level measurements. The installation of these instruments 

has however provided a good understanding of the dynamics of the process. 
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Figure 23. Water level, temperature and electrical conductivity (EC) in the first tank of 
the bare soil runoff plot at site 1, during the runoff event that occurred on 21 July 2006 

(day of year 202) 
 
 

Table 4 compares EC values measured with different instruments in tank 1 of site 1, plot 

1. The EC values obtained from the calibrated portable EC-meter taken during field 

visits, which generally were after major rainfall events, were assumed to represent the 

average EC of individual runoff events. This assumption was based on the EC data 

collected with the Diver, which generally showed there is little variation in runoff water 

salinity during individual runoff events. The probe was lowered into the runoff collection 
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tank and the results represent an average EC of the runoff from a particular rainfall event. 

The average EC obtained from the CTD-diver is the average of the EC values measured 

during runoff events. The final EC measured with the CTD-Diver is the last reading that 

was taken before the diver was removed and the tank emptied. Data from the divers were 

downloaded during field visits. The table shows that the EC-meter consistently recorded 

higher readings than the average and final reading of the CTD-Diver. This reading should 

essentially be very similar to the average reading of the CTD-Diver as they are measuring 

the same variable. The general feeling was that the CTD-Diver readings are more 

accurate and that this instrument should be used as reference. However, a trend in the 

proportion with which the EC-meter readings were larger than the average or final CTD-

Diver readings could not be observed, and thus we did not compensate for this difference.  

 

TABLE 4  

A COMPARISON OF EC VALUES MEASURED WITH A PORTABLE EC-

METER AND AN EIJKELKAMP CTD-DIVER.  

Date Average EC         

(dS m-1) - measured 

with an EC-meter. 

Average EC        

(dS m-1) -measured 

with a CTD-Diver. 

Final EC (dS m-1) - 

measured with a 

CTD-Diver 

29 June 2006 0.91 0.47 0.74 

18 July 2006 0.97 0.49 0.77 

25 July 2006 0.55 0.14 0.38 

17 August 2006 0.4 0.25 0.29 

 

 

4.7 Salt Fluxes in Runoff 
Manual runoff measurements, runoff data recorded with the MCS loggers and the salinity 

of runoff water collected in the tanks were used to determine the total amounts of salts 

mobilized by overland flow in 2005 and 2006. The volumes of runoff water in L/plot and 

L m-2 are summarized in Tables 5 to 8 for events occurring during winter 2005 and 2006. 

For ease of comparison it should be noted that 1 L m-2 of runoff equates to 1 mm of 
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runoff.  EC readings for the individual runoff events are also reported in the Tables. The 

average EC from the tanks for each event was converted into TDS (total dissolved solids) 

using the equation in Figure 21. The values of TDS were then multiplied by the litres of 

runoff to obtain the salts mobilized in g plot-1 and g m-2. The total volumes and masses of 

salts represent the seasonal runoff and the amount of salts mobilized through overland 

flow (Tables 5 to 8). 

 

The asterisks marking some events indicate that manual readings of runoff were taken by 

measuring the liters of water collected in the tanks during field visits, as logged data were 

not available due to malfunction of loggers caused by severe storms, damage  by grazing 

cattle or the loggers were simply not installed yet. For the events when logger data were 

not available and both collection tanks overflowed, a value of 131 L plot-1 was reported, 

corresponding to the maximum capacity of the tanks. Both logger values of runoff and 

those obtained through manual readings were doubled to account for the 50:50 split 

between the tipping bucket and collection tanks. 

 

At site 1, it was observed that more runoff ( 935 L plot-1 in 2005 and 1 398 L plot-1 in 

2006) and consequently more salt ( 424 g plot-1 in 2005 and 486 g plot-1 in 2006) was 

mobilized from the bare soil plot (Table 5) compared to the plot where wheat was 

cropped in 2005 ( 464 L plot-1 and 92 g plot-1) and re-growth of wheat/medic grass 

occurred in 2006 (385 L plot-1 and 71 g plot-1, Table 6). At site 2, large differences in 

runoff and salt mobilization were recorded, possibly due to uneven growth of vegetation. 

At plot 1 a total of 891 L plot-1 and 508 g plot-1 was recorded in 2005 and 2740 L plot-1 

and 1050 g plot-1 in 2006. Plot 2 exhibited totals of 628 L plot-1 and 139 g plot-1 in 2005 

and 939 L plot-1 and 214 g plot-1 in 2006. The plots at site 2 produced more runoff and 

salts compared to the vegetated plot at site 1, possibly due to wetter conditions on the 

South facing slope, more clayey soil and a steeper slope. 

 

The data in the tables were also used to quantify the approximate percentage of rainfall 

that became overland flow in 2006. At site 1, plot 1, 20 % of recorded rainfall was 

partitioned into runoff, and at site 1, plot 2, this was calculated to be in the region of 8 %. 
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This discrepancy was expected as site 1, plot 1 was unvegetated. The total runoff was 

calculated to be approximately 19 % of the total recorded rainfall at site 2, plot 1, and 9 

% at site 2, plot 2.  This difference was interpreted to be a function of the difference in 

spatial vegetation cover density.   

 

TABLE 5 
ELECTRICAL CONDUCTIVITY (EC), RUNOFF VOLUMES AND SALTS 

MOBILIZED FROM RUNOFF PLOT 1 (BARE SOIL) AT SITE 1 
 

Date EC (dS m-1) 
Rainfall 

(mm) Runoff TDS 

 Tank1 Tank2 
Average 
of tanks  L/plot L/m2 g/plot g/m2 

10-Jun-05 1.24 - 1.24 - 131* 2.94* 91.54 2.08 
23-Jun-05 0.7 1.45 1.06 - 131* 2.94* 77.19 1.75 
4-Jul-05 0.54 0.79 0.67 - 131* 2.94* 46.10 1.05 
22-Jul-05 0.58 0.47 0.53 - 131* 2.94* 34.94 0.79 

11-Aug-05 1.05 0.53 0.79 - 131* 2.94* 55.66 1.27 
18-Aug-05 0.88 0.78 0.83 - 42* 0.95* 18.87 0.43 
23-Aug-05 0.85 0.78 0.82 - 107* 2.43* 47.42 1.08 
30-Aug-05 0.66 0.83 0.75 - 131* 2.94* 52.47 1.19 

Total 
(2005) - - - - 935 21.02 424.19 9.64 

         
25-Apr-06 0.48 - 0.48 22 22 0.49 5.20 0.12 
9-May-06 0.65 0.74 0.70 24.4 100 2.24 37.01 0.83 
23-May-06 0.27 0.23 0.25 46.4 131* 2.94* 12.62 0.28 
1-Jun-06 1.24 - 1.24 12.2 24 0.54 16.77 0.38 
29-Jun-06 0.91 - 0.91 - 456 10.22 227.06 5.09 
18-Jul-06 0.97 - 0.97 - 23* 0.52* 12.29 0.28 
25-Jul-06 0.55 0.81 0.68 29 250 5.61 89.49 2.01 
3-Aug-06 0.15 - 0.15 17 14 0.31 0.50 0.01 
10-Aug-06 0.49 0.43 0.46 13.8 378 8.48 84.71 1.90 

Total 
(2006) - - - - 1398 31.35 485.65 10.89

         
Combined 

Total - - - - 2333 52.37 909.84 20.53
* Manual measurement 
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TABLE 6 
ELECTRICAL CONDUCTIVITY (EC), RUNOFF VOLUMES AND SALTS 

MOBILIZED FROM RUNOFF PLOT 2 AT SITE 1 
 

Date EC (dS m-1)  
Rainfall 

(mm) Runoff TDS 

 Tank1 Tank2 
Average 
of tanks  L/plot L/m2 g/plot g/m2 

10-Jun-05 0.3 0.31 0.31 - 105* 2.38* 13.95 0.32 
23-Jun-05 0.19 0.2 0.2 - 59* 1.34* 3.89 0.09 
4-Jul-05 0.16 - 0.16 - 25* 0.58* 1.04 0.02 
22-Jul-05 0.18 - 0.18 - 40* 0.90* 2.15 0.05 

11-Aug-05 0.13 - 0.13 - 39* 0.89* 0.91 0.02 
18-Aug-05 0.12 - 0.12 - 39* 0.88* 0.67 0.02 
23-Aug-05 0.13 - 0.13 - 26* 0.59* 0.61 0.01 
30-Aug-05 1.06 0.86 0.96 - 131* 2.97* 69.22 1.57 

Total 
(2005) - - - - 464 10.53 92.42 2.10 

         
25-Apr-06 - - - - - - - - 
9-May-06 0.11 - 0.11 24.4 10 0.22 0.11 0.00 
23-May-06 0.42 - 0.42 46.4 38* 0.85* 7.51 0.17 
1-Jun-06 - - - - - - - - 
29-Jun-06 - - - - - - - - 
18-Jul-06 - - - - 1* 0.02* - - 
25-Jul-06 0.34 - 0.34 29 12 0.27 1.79 0.04 
3-Aug-06 - - - - - - - - 
10-Aug-06 0.42 0.40 0.41 13.8 324 7.26 62.08 1.39 

Total 
(2006) - - - - 385 8.63 71.49 1.60 

         
Combined 

Total - - - - 849 19.16 163.91 3.7 
* Manual measurement 
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TABLE 7 
ELECTRICAL CONDUCTIVITY (EC), RUNOFF VOLUME AND SALTS MOBILIZED 

FROM RUNOFF PLOT 1 AT SITE 2 
 

Date EC (dS m-1) 
Rainfall 

(mm) Runoff TDS 

 Tank1 Tank2 
Average of 

tanks  L/plot L/m2 g/plot g/m2 
10-Jun-05 0.241 - 0.24 - 13* 0.30* 1.17 0.03 
23-Jun-05 2.59 2.75 2.67 - 114* 2.60* 178.86 4.06 
4-Jul-05 1.15 1.08 1.12 - 76* 1.73* 47.56 1.08 
22-Jul-05 1.29 1.14 1.22 - 131* 2.97* 89.94 2.04 

11-Aug-05 1.02 0.96 0.99 - 131* 2.97* 71.61 1.63 
18-Aug-05 0.78 0.7 0.74 - 16* 0.37* 6.31 0.14 
23-Aug-05 0.85 0.82 0.84 22.6 82 1.86 37.34 0.85 
30-Aug-05 0.53 0.41 0.47 21 328 7.45 75.50 1.72 

Total 
(2005) - - - - 891 20 508.29 11.55 

         
25-Apr-06 0.15 - 0.15 15.2 8 0.18 0.28 0.01 
9-May-06 0.19 - 0.19 24.4 8 0.18 0.47 0.01 
23-May-06 0.57 0.48 0.53 46.4 131* 2.94* 34.59 0.78 
1-Jun-06 1.08 - 1.08 - - - - - 
29-Jun-06 1.15 1.12 1.14 122.6 752 16.86 475.41 10.66 
18-Jul-06 0.69 - 0.69 34 131* 2.94* 47.24 1.06 
25-Jul-06 0.65 0.61 0.63 25 432 9.69 140.14 3.14 
3-Aug-06 0.87 0.83 0.85 24.6 292 6.55 133.49 2.99 
10-Aug-06 0.51 0.41 0.46 31.6 986 22.11 218.69 4.90 

Total 
(2006) - - - - 2740 61.43 1050.31 23.55 

         
Combined 

Total - - - - 3631 81.43 1558.6 35.1 
* Manual Measurement 
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TABLE 8 
ELECTRICAL CONDUCTIVITY (EC), RUNOFF VOLUME AND SALTS 

MOBILIZED FROM RUNOFF PLOT 2 AT SITE 2 
 

Date EC (dS m-1) 
Rainfall 

(mm) Runoff TDS 

 
Tank

1 
Tank

2 
Average 
of tanks  L/plot L/m2 g/plot g/m2 

10-Jun-05 0.26 - 0.26 - 34* 0.76* 3.48 0.08 
23-Jun-05 0.72 0.61 0.67 - 58* 1.33* 20.41 0.46 
4-Jul-05 0.88 - 0.88 - 33* 0.74* 15.83 0.36 
22-Jul-05 0.76 0.79 0.78 - 50* 1.13* 20.94 0.48 

11-Aug-05 0.58 - 0.58 - 21* 0.48* 6.24 0.14 
18-Aug-05 0.45 - 0.45 - 22* 0.50* 4.80 0.11 
23-Aug-05 0.53 - 0.53 22.6 82 1.86 21.87 0.50 
30-Aug-05 0.33 0.31 0.32 21 328 7.45 45.56 1.04 

Total (2005) - - - - 628 14.25 139.13 3.16 
         

25-Apr-06 - - - - - - - - 
9-May-06 0.10  0.10 24.4 8 0.18 0.04 0.00 
23-May-06 0.33 0.34 0.34 46.4 131* 2.94* 19.57 0.44 
1-Jun-06 - - - - - - - - 
29-Jun-06 0.66 0.69 0.68 122.6 244 5.47 86.52 1.94 
18-Jul-06 0.57 - 0.57 34 112* 2.51* 32.28 0.72 
25-Jul-06 0.50 0.51 0.51 25 174 3.90 43.84 0.98 
3-Aug-06 - - - 24.6 - - - - 
10-Aug-06 0.29 0.28 0.29 31.6 270 6.05 32.18 0.72 

Total (2006) - - - - 939 21.05 214.42 4.81 
         

Combined 
Total - - - - 1567 35.3 353.55 7.97 

* Manual measurement 
 

 

 
 
 
 
 
 
 

 

 

 

 

 



 73

4.8 Detailed Event Analysis 
An example of logger output data from 5 to 31 August 2005 (DoY 218 to 244) is shown 

in Figure 24 for site 2. The data were logged at hourly intervals until 18 August 2005 

(DOY 231), and in 10 minute intervals thereafter. Six major rain events were recorded 

during this period (Figure 24, top graph). Water level in the contour is expressed in mV. 

Some of the water level data were lost during the night due to a shortage in power supply. 

However, it is evident that the sensor responded well during the last two rain events. 

Runoff data from plot 1 (Figure 24, middle graph) and plot 2 (bottom graph) were 

comparable with rain events in terms of the time of the event and its intensity. The 

logging system at site 1 was being installed and tested in  2005. 

 

Two snapshots in time were extracted in order to get better insight of the processes 

occurring for two rain events on DoY 230 and 239 in 2005 (Figure 25). Rainfall and 

runoff data for both plots at site 2 are represented in mm h-1 (DoY 230) and mm 10min-1 

(DoY 239) in Figure 25. The time lag of runoff depended on antecedent moisture 

conditions, rainfall intensity and duration. Higher runoff values were again recorded on 

plot 1, when compared to plot 2.   

 

In 2006 the electronics functioned for most of the winter season. The only disturbances in 

data records were caused by large rainstorms and trampling by cattle. MCS logger data 

for site 1 and 2, for 12 June 2006 (DoY 163) to 13 June 2006 (DoY 164), are presented in 

Figures 26 and 27. It was observed that runoff is largely influenced by the intensity of 

rainfall events and by antecedent moisture conditions. Site 1, plot 2 generally produced 

very little runoff during the 2006 season. Fluctuations in the water levels in the contours 

measured by the pressure sensors also generally followed the rainfall pattern. A time lag 

occurred between the start of a rainfall event and the increase in water level. This could 

be a result of the time required for the rainfall intensity to exceed the soil’s infiltration 

rate or for the soil to reach saturation. All other available logger data, for both site 1 and 

site 2, for the 2006 winter season is presented in Appendix C. 
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Figure 24. Logged records of rainfall and water level in the contours in mV (top graph), 

and runoff data from plot 1 (middle graph) and plot 2 (bottom graph) for site 2 in 2005. 

 

Site 2 (South-oriented)

0

2

4

6

8

10

215 220 225 230 235 240 245

Day of year

Ra
in

fa
ll 

(m
m

)

980

990

1000

1010

1020

1030

1040

W
at

er
 le

ve
l (

m
V)

Rainfall Water level in contour (mV)

Site 2 (South-oriented)

0

0.5

1

1.5

2

2.5

215 220 225 230 235 240 245

Day of year

Ru
no

ff 
pl

ot
 1

 (m
m

)

Site 2 (South-oriented)

0

0.5

1

1.5

2

2.5

215 220 225 230 235 240 245

Day of year

R
un

of
f p

lo
t 2

 (m
m

)

 

 

 

 



 75

Figure 28 shows logged records of total runoff as a function of total rainfall for rainfall 

events at site 1, plot 2 and at site 2, plot 1 and 2. The runoff data for site 1, in 2005, were 

obtained via manual measurements, i.e. by measuring the water heights in the collection 

tanks (excluding the events when both collection tanks overflowed). The rainfall data 

were obtained from the automatic weather station. The data for site 2 were obtained via 

manual measurements and from the data logger on the south-facing slope. In 2006, all 

data were obtained from the MCS loggers. It is clear from the graphs that there is no 

correlation between total runoff and total rainfall, as these are influenced by many other 

factors, like for example, type of vegetation and stage of crop growth, interception, water 

uptake by plant roots, and the antecedent moisture conditions. The intensity of the rainfall 

event also influenced runoff amounts. 

 

The relationship between the amount of runoff produced by a rainfall event and the 

antecedent moisture conditions, represented by the soil water content, is shown in Figure 

29. Typical events are shown for both site 1 and site 2. The average soil water content, 

obtained from two Echo sensors, is plotted against the total runoff produced by rainfall 

events. Data from the shallow, i.e. 10 cm, Echo sensors were used. The data indicates that 

during low intensity rainfall events, the antecedent moisture conditions mainly govern the 

amount of runoff being produced. However, the antecedent moisture condition’s 

influence is drastically minimised during high intensity rainfall events. There was thus 

two types of overland flow occurring in the SSC. During low intensity storms it was 

mainly saturation excess overland flow, i.e once saturation is reached, overland flow 

commences. On the other hand, during high intensity storms, infiltration excess overland 

flow occurs, i.e. once the rainfall intensity exceeds the infiltration rate, overland flow 

occurs. All other available data are shown in Appendix F.  
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Figure 25. Snapshot of logged records of rainfall and runoff for two rain events at site 2 

in 2005. 
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MCS Logger Data - Site 1
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Figure 26. MCS Logger data for 12 and 13 June 2006 (Site 1). 
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MCS Logger Data - Site 2
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Figure 27. MCS Logger data for 12 and 13 June 2006 (Site 2). 
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Figure 28. Total runoff as a function of total rainfall per event, for the three runoff plots 
planted to wheat in 2005 (top graph) and left fallow in 2006 (bottom graph). 
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Runoff vs SWC - Site 1 (12 Jun 2006)
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Runoff vs SWC - Site 2 (22 Jul 2006)
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Figure 29. The relationship between the Soil Water Content (SWC) and the amount of 

runoff produced by a rainfall event. 
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Figure 30 illustrates the relationship between the total runoff produced by a rainfall event 

and the product of the total amount of rainfall and the peak intensity of events. The 

events are plotted for the three vegetated runoff plots. The graph shows that a clear 

relationship between these variables was not discernable, i.e. low R2 values were 

obtained. However, the correlation was better, compared to the relationships in Figures 

28 and 29. It is therefore concluded that amount and peak intensity of rainfall may be the 

main factors affecting runoff in the particular environment.  
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Figure 30. The relationship between runoff and the product of the total rainfall and peak 

intensity of rainfall events (2006). 
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4.9 Comparison of Measured Runoff Data and SCS Curve Number Method 
Table 12 and 13 present the results of a comparison made between the runoff data 

obtained with the MCS Loggers and an estimation of runoff calculated using the Soil 

Conservation Service (SCS) Curve Number (CN) Method. According to Hudson (1993), 

the SCS Curve Number Method is a means of quantifying probable rates of runoff. It is 

based on the fact that runoff will vary according to the amount of rainfall during the 

storm, and according to the amount of moisture which can be absorbed by the soil. The 

equation is (USDA-SCS, 1985): 

Q = (P-0. 2S) 2/ (P+0.8S) 

 

Where:                                    

Q – runoff in mm or inches                                                                

P – total rainfall in mm or inches                        

S – amount of rainfall in mm or inches which can soak into the soil during the storm. 

According to Hudson (1993), the runoff potential can be calculated using two 

approaches. Method 1 calculates the runoff potential, taking into account the number of 

days since the last rainfall event, i.e. the antecedent moisture conditions. According to 

Hudson (1993), this method results in more accurate estimates of runoff when compared 

to method 2, which is described below. Method 1 is further described in Table 9.   

TABLE 9 

VALUES OF S (mm), TAKING INTO ACCOUNT THE NUMBER OF DAYS 

SINCE THE LAST RAINFALL EVENT AND THE DIFFERENT STORAGE 

CAPACITIES OF DIFFERENT SOILS (USDA-SCS 1964). 

Soil type Number of days since last storm which 

caused runoff 
   More than 5 2-5 Less than 2 
Good permeability, for example, deep sands 150 75 50 
Medium permeability, for example, sandy clay loams and clay loams 100 50 25 

Low permeability, for example, clays 50 25 25 
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Site 1 at Goedertrou is best described as a soil type with medium permeability and site 2 

as a soil type with low permeability. 

 An alternative approach, i.e. Method 2, assumes a constant value of S for a given 

catchment. It takes into account variables such as land use, soil conservation practices 

and the hydrologic condition of the catchment. According to Hudson (1993), the 

procedure  would be to first describe the area according to soil group, then according to 

land use, then obtain the curve number for each treatment and condition. Soils are 

assigned to one of four hydrologic soil groups (A-D) based on their infiltration capacity. 

“A” soils possess a high infiltration capacity and resultantly a low potential to produce 

runoff, while “D” soils have a low infiltration capacity and thus a high runoff potential 

(Viessman and Lewis, 2003). Table 10 outlines the various hydrologic soil groups. 

TABLE 10 
 HYDROLOGIC SOIL GROUPS (USDA-SCS 1964).

Hydrologic soil 

group 
Runoff 

potential 
Infiltration when 

wet 
Typical soils 

A Low High Excessively drained sands and gravels 
B Moderate Moderate Medium textures 
C Medium Slow Fine texture or soils with a layer impeding downward 

drainage 
D High Very slow Swelling clays, clay pan soils or shallow soils over 

impervious layers 

Site 1 is best described by hydrologic soil group C and site 2 by soil group D. The 

hydrologic condition essentially reflects on the quality and management of a particular 

land use. The potential for runoff is minimized by a good hydrologic condition. An area 

possessing a good condition is typically characterized by a dense land cover. 

Alternatively, a poor condition is characterized by sparse land cover and extensive use 

and thus possesses a high potential for runoff. According to Hudson (1993), for arable 

land, the hydrologic condition reflects whether the rotation will encourage infiltration and 

promote a good tilth. For grassland, it is assessed based on the density of the vegetative 

cover, and more than 75 % cover is 'good', while less than 50 % is 'poor'. For forest lands, 

the criteria are the depth of litter and humus, and the compactness of the humus.  Once all 
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these variables have been determined, a runoff curve number (CN) is assigned using 

Table 11.   

TABLE 11 
 ESTIMATION OF RUNOFF CURVE NUMBERS FOR AVERAGE 

ANTECEDENT MOISTURE CONDITIONS.  (USDA-SCS 1964).  
Land use or cover Treatment or practice Hydrologic condition Hydrologic soil group 

A B C D 

Fallow Straight row - 77 86 91 94 

Row crops Straight row  

Straight row 

Contoured 

Contoured 

Terraced 

Terraced 

Poor  

Good 

Poor 

Good 

Poor 

Good 

72  

67 

70 

65 

66 

62 

81  

78 

79 

75 

74 

71 

88  

85 

84 

82 

80 

78 

91  

89 

88 

86 

82 

81 

Small grain Straight row  

Straight row 

Contoured 

Contoured 

Terraced 

Terraced 

Poor  

Good 

Poor 

Good 

Poor 

Good 

65  

63 

63 

61 

61 

59 

76  

75 

74 

73 

72 

70 

84  

83 

82 

81 

79 

78 

88  

87 

85 

84 

82 

81 

Close seeded legumes or rotation 

meadow 
Straight row  

Straight row 

Contoured 

Contoured 

Terraced 

Terraced 

Poor  

Good 

Poor 

Good 

Poor 

Good 

66  

58 

64 

55 

63 

51 

77  

72 

75 

69 

73 

67 

85  

81 

83 

78 

80 

76 

89  

85 

85 

83 

83 

80 

Pasture or range Contoured  

Contoured 

Contoured 

Poor  

Fair 

Good 

Poor 

Fair 

68  

49 

39 

47 

25 

79  

69 

61 

67 

59 

86  

79 

74 

81 

75 

89  

84 

80 

88 

83 
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Good 6 35 70 79 

Meadow (permanent)    Good 30 58 71 78 

Woods (farm wood-lots)    Poor  

Fair 

Good 

45  

36 

25 

66  

60 

55 

77  

73 

70 

83  

79 

77 

Farmsteads    - 59 74 82 86 

Roads    - 74 84 90 92 

The CN is then used to calculate S, using the following equation (USDA-SCS, 1965): 

S = 1000/CN – 10 (units are expressed in inches)  

S = 25400/CN – 254 (units are expressed in mm) 

The results of the comparison is presented in Tables 12 and 13. The land use at 

Goedertrou in 2006 is best described as pasture (Table 11). The SCS Curve Number 

Method constantly underestimated the amount of runoff that would occur from plot 1 at 

site 1 (Table 12). This might be because the bare plot, strictly speaking, does not fall into 

the pasture category (Table 11). However, utilizing the land uses given in Table 11, it 

was decided that pasture was the most suitable for this plot.  For the other runoff plots 

(Tables 12 and 13) the results varied. This might result from over –or under-

compensation of some processes (for e.g. infiltration, interception, evaporation or 

antecedent moisture conditions) by the SCS Curve Number Method. The small scale of 

observation represented by the runoff plots might also not be suitable for application of 

the SCS Curve Number Method.  Based on the results obtained application of the SCS 

Curve Number Method would not be suitable for similar investigations.  
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TABLE 12 
 A COMPARISON OF RUNOFF VALUES OBTAINED FROM THE MCS 

LOGGER WITH VALUES CALCULATED USING THE SCS CURVE NUMBER 
METHOD AT SITE 1. 

Site 1 
Date Rainfall 

(mm) 
Runoff (L/m2) – MCS 
Logger Data 

Runoff (L/m2) – SCS 
Curve Number Method 

 
  Plot 1 Plot 2 Method 1 Method 2 
12 & 13 Jun 
2006 

20.2 6.36 0.27 1.73 5.72 

13 Jun 2006 7.6 3.23 0.14 0.24 0.24 
21 & 22 Jul 
2006 

15.2 
 

5.66 0 2.95 
 

2.94 
 

31 Jul 2006 13.4 
 

0.32 0.05 0.22 2.10 

3 & 4 Aug 
2006 

13.2 
 

8.27 5.91 2.03 2.01 

11 Aug 2006 15.2 
 

8 8.23 0.49 2.94 

14 Aug 2006 22.6 
 

9.36 6.82 7.27 7.24 
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TABLE 13 
 A COMPARISON OF RUNOFF VALUES OBTAINED FROM THE MCS 

LOGGER WITH VALUES CALCULATED USING THE SCS CURVE NUMBER 
METHOD AT SITE 2. 

Site 2 
Date Rainfall 

(mm) 
Runoff (L/m2) – MCS 

Logger Data 
Runoff (L/m2) – SCS 

Curve Number Method 
 

  Plot 1 Plot 2 Method 1 Method 2 
21 Apr 2006 14 0.14 0.27 0.3 4.29 
1 Jun 2006 5 1.5 0.09 0.56 0.17 
12 & 13 Jun 
2006 

20.2 11.68 4.5 5.75 8.67 

13 Jun 2006 7.6 3.63 0.59 0.24 0.92 
6 Jul 2006 19.6 2.14 0.09 1.55 8.22 
21 & 22 Jul 
2006 

11.8 4.05 1.91 1.45 2.96 

31 Jul 2006 15.2 6.41 0.05 2.96 5.08 
3 Aug 2006 17 12.45 4.14 3.89 6.32 
8 Aug 2006 13.6 9.91 2 2.20 4.04 
11 & 12 Aug 
2006 

24.2 9.86 8.45 8.34 11.82 

14 Aug 2006 22.6 6.82 4.18 7.27 10.54 
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4.10 Modeling of Subsurface Fluxes 
The movement of water and solutes in the vadose zone during 2006, at both runoff sites, 

was simulated using HYDRUS-2D. The simulated results were compared to field data, to 

assess the suitability of the model as well as to estimate the subsurface lateral fluxes of 

water and in particular salts. This model was selected because of its ability to simulate 

fluxes for irregular geometries, i.e. hill slopes, and because of its strong theoretical 

background. 

 

HYDRUS-2D has an interactive user interface, which includes (i) a project manager for 

managing and creating new data, (ii) a pre-processing tab for entering the required input 

data, and (iii) a post-processing tab for viewing the output data.  The software runs in 

Microsoft Windows 95, 98, and NT. The package requires a MS-DOS compatible 

system, 16 Mb of RAM memory, and at least 10 Mb of available disk space. Extensive 

on-line context-sensitive help is available through the interface. 

 

4.10.1 Input Data  

The input data required to successfully run the model are selected/entered in the pre-

processing tab. The input data are arranged as follows: 

- Main processes (processes to be simulated, e.g. water flow, solute transport, root 

water uptake, etc.) 

- Geometry information (details on the geometry of the system to be designed by 

the user) 

- Time information ( time units and discretization) 

- Print information (output print details) 

- Iteration criteria 

- Soil hydraulic model 

- Water flow parameters 

- Solute transport – General information 

- Solute transport – Transport parameters 

- Solute transport – Reaction parameters 

- Solute transport – Temperature dependence 
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- Heat transport parameters 

- Root water uptake model 

- Root water uptake model (parameters) – Pressure head reduction (water stress 

parameters) 

- Time-variable boundary conditions 

- Geometry and mesh editor 

- Boundary conditions editor 

 

4.10.2 Output Data 

After a simulation is completed, the results can be viewed in the post-processing tab in 

various formats. They may be displayed as two-dimensional X-Y graphs, contour and 

spectral maps, velocity vectors or as an animation of both contour and spectral maps. 

Output data are arranged as follows: 

- Graphical display of results in contour or spectral maps 

- Observation points 

- Pressure heads 

- Water boundary fluxes 

- Cumulative water boundary fluxes 

- Solute fluxes 

- Soil hydraulic properties 

- Run time information 

- Mass balance information 

- Conversion of output into ASCII files 

 

4.10.3 HYDRUS-2D Simulations 

HYDRUS-2D was used to run simulations of water and solute movement in the vadose 

zone, at the two intensive monitoring sites where the runoff plots were installed. These 

simulations were run for the 2006 season, when the Goedertrou SSC was left fallow. The 

results were compared to field measurements to assess the suitability of the model and to 

estimate subsurface lateral fluxes of water and salts due to the formation of temporary 

water tables, in particular at site 1 where the Malmesbury shale restricts free drainage. 
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The simulations were run from DoY 1 (1 January 2006) to DoY 241 (30 August 2006). 

When designing the geometry of the system, variables such as the length of the profile 

and its slope were taken into account to construct the system to scale. The runoff plots are 

22 m in length with a slope of 9.1 % at site 1 and 12.4 % at site 2. Two different soil 

types are also represented at each site, i.e. Glenrosa at site 1 and Swartland at site 2. The 

soil at site 1 is approximately 0.5 m deep, overlying Malmesbury shale, whilst the soil at 

site 2 is a deep clay loam. HYDRUS-2D provides a soil catalogue accompanied by the 

parameters that influence water flow in that particular soil type. From that catalogue, 

sandy clay loam was chosen for site 1 and clay loam for site 2. The average bulk density 

for both soil profiles was 1.53 g cm-3. In order to describe the geometric shape of the 

profile, rhomboids were drawn and MESHGEN-2D was used to generate the finite 

element mesh (Figure 31). HYDRUS-2D also provides a number of different boundary 

conditions to assign to the system being designed. The boundary conditions chosen are 

shown in Figure 31. 

 

The boundary conditions were (Figure 31): 

i) Atmospheric at the top side of the rhomboid (green boundary nodes) 

ii) No flux at the vertical upper side of the rhomboid (white boundary nodes) and 

Variable Pressure (blue boundary nodes). The variable pressure was 

calculated from measurements of volumetric soil water content obtained with 

the Echo sensors. The measurements were converted into pressure values 

using soil water retention curves determined before the experiment started. 

iii) Seepage face at the vertical lower side of the rhomboid (dark green boundary 

nodes). 

iv) The lower side of the rhomboid represented a constant flux boundary 

condition at site 1 (purple boundary nodes). A constant flux of 0.00048 m day-

1, calibrated against soil water content data, was assigned to this boundary due 

to the relatively low hydraulic conductivity of the Malmesbury shale. At site 

2, the lower side of the rhomboid represented a free drainage boundary 

condition (red boundary nodes). 
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The variable pressure boundary node essentially forces a point in the soil profile to 

exhibit a specified water content as moisture is either added to, or removed from this 

node. These water contents are however derived from field measurements obtained with 

the Echo sensors and thus the forced water content is interpreted to reflect field 

conditions. The contribution of water to the profile from this node proved to be essential 

in simulating realistic subsurface lateral water and solute fluxes along the profile.  

 

   
 

 

Figure 31. Printout of the geometries of the system with boundary conditions for site 1 

(top) and site 2 (bottom). The dimensions of the shapes are not proportional. 

 
At site 1, salts were added to the profile from 3 sources, i.e. rainfall, the underlying 

Malmesbury shale and throughflow. Throughflow was accounted for by the variable 

pressure boundary node (upper vertical boundary). This node also contributed water to 
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the profile. At site 2 salt and water were contributed to the profile by rainfall and via the 

variable pressure boundary node. An average EC of 0.12 dS m-1 (rounded off) was 

calculated for all rainfall in 2006. This was converted to TDS using the equation in 

Figure 20, yielding a result of 14.38 g m-3. Thus rainfall in 2006 contributed 14.38g m-3 

of salts per rainfall event, at site 1 and site 2. The amount of salts contributed by the 

underlying geology and from the variable pressure boundary node was calculated using 

the results obtained from 1:5 soil to water ratio analysis performed in 2006. An average 

EC of 0.18 dS m-1 was calculated from samples collected at site 1 and 0.29 dS m-1 at site 

2. These values, however, are not a true representation of field conditions due to the 

diluting effect of the added water in the preparation of the 1:5 soil:water extracts. As the 

amount of water is 5 times the amount of soil, the soil sample is said to have a water 

content of 500 % in gravimetric terms. The gravimetric water content is thus 5g water per 

1g soil. If this is converted into volumetric water content, using the measured bulk 

density of 1.53 g cm-3, a value of 7.65 or 765 % is obtained. Assuming the soil water 

content at the runoff plots was on average 0.2 or 20 % (in volumetric terms, obtained 

from field measurements), the concentrations of 1:5 soil:water ratio analysis were diluted 

by a factor of 38.25. When the diluting effect was taken into account, an average of 6.89 

dS m-1 was calculated from samples collected at site 1 and 11.1 dS m-1 from samples 

collected at site 2. These figures were then converted to TDS using the equation in Figure 

21. A value of 3673 g m-3 was obtained for site 1 and 5925 g m-3 at site 2. These 

concentrations represent the sources of salts, from the underlying geology (site 1) and 

from the variable pressure boundary node (site 1 and site 2). 

 

The parameters for the Feddes’ root water uptake model were selected for grass, from the 

database included in the Hydrus-2D model, in order to simulate re-growth of wheat and 

medic grass (crops grown in previous seasons) under fallow conditions. 

 

The time variable boundary conditions were entered on a daily time step: 

i) Rainfall obtained from the weather station, as well as the associated salt 

concentration (described above). 
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ii) Evaporation and transpiration. Weather data were used to calculate the FAO 

Penman-Monteith reference evapotranspiration ETo (Allen et al. 1998).  

iii) The amount of salts contributed from the Malmesbury shale and from the 

variable pressure boundary node (described above). 

 

A linear density distribution was set for the root system (1 at the soil surface and 0 at the 

bottom of the soil profile).  

 

4.10.4 Simulation results 
In testing the HYDRUS-2D model, the first step was to get an acceptable simulation of 

the soil water fluxes and contents. The model’s soil water content followed the measured 

trends of soil moisture during winter (from June to August 2006). The simulated soil 

water content values also proved to be sensitive to rainfall events and water uptake by the 

crop. Four snapshots in time are presented in Figures 32 (site 1) and 33 (site 2). The soils 

were subject to drying and wetting processes during winter 2006. Site 2 (more clayey 

soil) was generally wetter than site 1. 

 

DoY 125 

 
 

DoY 191 
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Figure 32. Simulation of volumetric soil water content on the hill slope profile at site 1. 
 

DoY 125 

 
 

DoY 191 
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Figure 33. Simulation of volumetric soil water content on the hill slope profile at site 2.  

 

The comparison between measured and simulated volumetric soil water contents is  

shown in Table 14. Water contents were measured with Echo sensors, whilst the 

simulated values represent the average of the cross section at the given depth. The 

simulated and measured values were very closely related during the winter months. It 

should be noted that HYDRUS-2D assumes that the distribution of the root system is  

constant over time. 
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Concentrations of salts in the soils were then simulated. The results are shown in Figures 

34, 35 and 36 (site 1) and Figures 37 and 38 (site 2).  The results are shown in the form of 

snapshots in time of salt concentrations along the hill slope soil profiles as well as in 

graphs illustrating the results for the entire simulation period. The salt concentrations are 

in g m-3. The simulations show that as winter progresses, more and more salts are flushed 

out of the profile. The salts which are contributed from the Malmesbury shale and via 

throughflow are replaced by the salts which are contributed from rainfall. The overall salt 

concentration of the profile thus decreases. It should be noted that only the profile at site 

1 receives salts from the underlying geology. This was not simulated at site 2, as the free 

drainage bottom boundary condition was set. Both profiles (site 1 and 2) receive water 

and salts from the variable pressure boundary node. The graphs (Figures 35 and 38) also 

show how the salt concentrations in the profile vary with depth over time, where the 

observation nodes were set on the seepage vertical boundary, and N1 represents a depth 

TABLE 14 
VOLUMETRIC SOIL WATER CONTENTS MEASURED WITH ECHO 

SENSORS AND SIMULATED WITH HYDRUS-2D (AVERAGE VALUES OF 
CROSS-SECTIONS) DURING WINTER 2006 

Soil depth 40 cm 

Site Date 
Day of 
Year 
(DoY) 

Measured Simulated 

1 

22/06/2006 172 0.38 0.37 
30/06/2006 180 0.37 0.39 
17/07/2006 197 0.38 0.39 
30/07/2006 210 0.37 0.39 
4/08/2006 215 0.38 0.39 
14/08/2006 225 0.37 0.39 

 
Soil depth 50 cm 

Site Date 
Day of 
Year 
(DoY) 

Measured Simulated 

2 

22/06/2006 172 0.38 0.36 
30/06/2006 180 0.38 0.35 
17/07/2006 197 0.37 0.35 
30/07/2006 210 0.36 0.36 
4/08/2006 215 0.38 0.36 
14/08/2006 225 0.39 0.37 
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of 1 m, N2 a depth of 75 cm, N3 a depth of 50 cm and N4 a depth of 25 cm. The deeper 

layers remain more saline for longer as infiltrating rainfall and throughflow will first 

mobilize salts stored in the shallow soil layers. Figure 36 shows the total amount of salts 

that were flushed out of the soil profile at site 1 from the seepage face boundary. For the 

simulation period a total of 695,56 g m-1 was calculated. The salts only started flushing 

out of the profile toward DoY 190, when the profile neared saturation. It should be noted 

that salts were also lost from this profile at the constant flux bottom boundary. The results 

of the simulation at site 2 show that no salts were flushed from the soil profile, at the 

seepage face boundary. Salts were lost from the profile at the free drainage bottom 

boundary. From this, one can deduce that the presence of restricting layers, as is the case 

at site 1, influences the movement of water and salts. 

DoY 125 

 
DoY 220 

 

   0 4000 500 1000 1500 2000 2500 3000 3500

 
Figure 34. Simulated concentrations of salts (g m-3) on the hillslope profile at site 1. 
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Figure 35. Simulated concentrations of salts in the soil profile at site 1 at varying depths.  
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Figure 36. Simulation results representing the amounts of salts flushed from the soil 

profile (through subsurface flow and the seepage face) at site 1.  
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Figure 37. Simulated concentrations of salts (g m-3) on the hill slope profile at site 2. 
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Figure 38. Simulated concentrations of salts in the soil profile at site 2 at varying depths.  

 
Table 15, shows the comparison between salt concentrations that were measured in 2006 

(1:5 soil to water ratio), and salts simulated with HYDRUS-2D. The diluting effect of the 

1:5 ratio method was taken into account. Measured and simulated values were in the 

same order of magnitude and they followed the same trends in some instances. The 

observed discrepancies may have been due to spatial variability of the measurements, and 

the assumptions made in the model on the constant sources of salts originating from 

rainfall, throughflow and underlying geology.  From the results of the simulations one 

can deduce that salts are mainly flushed into water bodies during winter, when the area 

receives most of its rainfall, i.e. from DOY 150 to DOY 250. In summer, the profile is 

then concentrated with salts as evaporation is the dominant salt mobilizing agent. It 

should be noted that observations and insight gained from the HYDRUS-2D simulations 

is restricted to the 22 m long soil profile. 
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  TABLE 15 
EC (dS m-1) MEASURED USING THE 1:5 SOIL TO WATER RATIO AND 

SIMULATED USING    HYDRUS-2D.

Site Date 
Day of 
Year 
(DoY) 

Measured Simulated 

1 

25/04/2006 114 8.18 6.57 
9/05/2006 128 3.36 6.04 
23/05/2006 142 0.77 4.77 
29/06/2006 179 1.24 2.98 
25/07/2006 205 3.34 2.85 

 

Site Date 
Day of 
Year 
(DoY) 

Measured Simulated 

2 

25/04/2006 114 11.48 11.09 
9/05/2006 128 13.12 11.09 
23/05/2006 142 2.69 10.64 
29/06/2006 179 5.89 7.09 
25/07/2006 205 9.1 5.09 
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Chapter 5  

5. CONCLUSIONS 
 
The first winter season of the experiment (2005) was used to install and test equipment. It 

was not therefore possible to fully quantify the seasonal water and salt fluxes using the 

data collected in this period. Additional equipment was installed and additional 

measurements were taken during 2006 for this purpose. The data collected in 2006 

therefore provided a good idea of the volumes of water and amounts of salts mobilized 

from the runoff plots established on different soil types, under different land uses and 

slopes. The data collected in 2005 and 2006 allowed us to draw some important 

conclusions: 

 

• Different land uses caused different volumes of runoff and different amounts of salt 

mobilization. Uncultivated (bare) soil and less densely planted soil produced more 

runoff when compared to densely planted plots, under the same conditions. 

Consequently larger volumes of salt were mobilized from the plots that produce more 

runoff.  

• Different soil properties, slopes, rainfall intensity and duration as well as antecedent 

moisture conditions caused different volumes of runoff. From the comparison of 

measured data and predictions with commonly used runoff models, it transpired that 

further investigation needs to be undertaken in order to develop a predictive runoff 

model for the specific site. This would aid in the efficient use of water resources as 

well as in the understanding of non-point source pollution problems, like for example 

transport of sediments, nutrients and pesticides. 

• A time lag occurred between a rain event and increase of water level in the contour, 

depending on antecedent moisture conditions and rainfall intensity, especially at the 

beginning of the rain event.  

• A time lag occurred between the start of a rain event and runoff from the plot, 

depending on antecedent moisture conditions, rainfall intensity and duration. 

• Fluctuations in salinity due to local processes are less pronounced at a catchment 

scale. The largest fluctuations in salinity were recorded in runoff water, followed by 
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water collected in contours. The lowest fluctuations in salinity were observed in dam 

water due to the mixing of water and the longest residence times at this scale. 

• Salinity and soil water content fluctuations are greatly influenced by seasonality. The 

salinity of water in the dam showed a dramatic increase during summer. This was a 

consequence of increased evaporation rates and thus a concentration of salts. 

Fluctuations in soil water content were more evident in the winter months, when the 

area receives the majority of its rainfall. 

• The fluxes of salts during individual runoff events are constant, i.e. runoff water has a 

steady salinity throughout an event, mainly due to the nature of rainfall and source of 

salts. This contradicts the initial theory that there would be an initial peak in salinity 

and that the salinity would decrease as runoff progressed. 

• The largest amounts of salts were mobilized overland from site 2; plot 1, where the 

largest amounts of overland flow were also recorded. An approximate total of 1559 g 

plot-1 were mobilized in 2005 and 2006. 

• The chemical speciation of water and soil in the catchment is conservative, with Na+ 

and Cl- being the dominant ions.  

• Overland flow depends on slope and slope orientation, type of soil, as well as land 

use. Between 9 and 61 mm of runoff were recorded during the period of measurement 

in 2006. At site 1 the total runoff amounted to 20 % (plot 1) and 8 % (plot 2) of the 

recorded rainfall. At site 2 this relationship ranged from 19 % (plot 1) to 9 % (plot 2). 

An accurate comparison of overland flow volumes could not be made between the 

two seasons as the logging system was not installed for the full 2005 season. 

However, it is evident that more overland flow occurred from site 2 when compared 

to the vegetated plot at site 1. This was a result of the larger slope at site 2 and also 

the soil at site 2 retaining moisture better than the soil at site 1. 

• HYDRUS-2D was able to simulate water and salt fluxes along the hillslope profiles at 

site 1 and site 2, with acceptable accuracy as the simulations compared well with field 

observations.  

• Salts are concentrated close to the soil surface during summer when evaporation is 

the dominant salt mobilizing agent. In winter, the salts associated with rainfall 

gradually replace the salts contributed to the profile via throughflow and from the 
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geology, thereby decreasing the overall salt concentration of the profile, as rainfall 

generally has a low salt concentration. 

•  HYDRUS-2D calculated that a total of approximately 700 g m-1 of salts were flushed 

out of the 22 m long and 0.5 m wide soil profile at site 1 through lateral subsurface 

flow. This was calculated at the seepage face boundary. At site 2, however, the 

simulation showed that no salts were flushed from this boundary, given the bottom 

boundary was set to be free-draining and limited lateral subsurface flux was 

predicted. The presence of restricting layers (site 1) thus influences the movement of 

water and solutes. 
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Chapter 6 

6. Recommendations 
 

The monitoring of hydrosalinity fluxes in the Goedertrou SSC has provided insight into 

the salinity patterns in the area. However, more seasons of monitoring are required to 

identify trends and typical characteristics of the study area. This will in turn allow for 

extrapolation of data to similar environments. 

 

One of the main aims of the project commissioned by the WRC (Land use impacts on 

salinity of Western Cape waters) was to use the intensive data gathered at runoff plot and 

SSC scale during this project to allow for extrapolation to a quaternary catchment scale. 

The inclusion of additional monitoring, especially at the dam would allow for the better 

extrapolation to the quaternary catchment scale. This monitoring should include 

monitoring the fluctuations of the dam levels and the discharge of overflows from the 

dam. This would allow for the better of the fluctuations in the effect of hydrological 

events at different scales of observation. 

 

The inclusion of different types of land cover in the experimental setup would also allow 

more informed decisions to be made in terms of management. A possible remediation 

measure would be to allow the re-establishment of Renosterveld, which is the indigenous 

vegetation of the area. Practices that combine Renoserveld with cultivated land, e.g. 

alternate strips, need to be investigated as management options to reduce the salinisation 

of cultivated land and water resources. 

 

HYDRUS-2D has provided insight into the subsurface processes in the SSC. However, 

the extent of observation made during this project may essentially be limited to the 22 m 

long soil profiles. It is recommended that additional soil moisture and soil salinity 

measurements be undertaken at strategic positions so as to allow for the accurate 

simulation of subsurface fluxes in the SSC. 
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Appendix A. The 2005 winter season weather data 
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Appendix B. The 2006 winter season weather data. 
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Appendix C. 2006 MCS Logger Data. 
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21 & 22 July 2006 

MCS Logger Data-Site 1
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31 July 2006 

MCS Logger Data - Site 1
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3 & 4 August 2006 

MCS Logger Data - Site 1
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11 August 2006 

MCS Logger Data - Site 1
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14 August 2006 

MCS Logger Data - Site 1
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Site 2 
 
21 April 2006 
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1 June 2006 
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13 June 2006 
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6 July 2006 
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21 & 22 July 2006 
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31 July 2006 
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3 August 2006 
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8 August 2006 
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11 & 12 August 2006 
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14 August 2006 
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Appendix D. Soil and water chemical speciation. 
 
Runoff water sample analysis 
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Ca(mg/l) vs Cl(mg/l), NO3(mg/l) and SO4(mg/l)
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1:5 Soil/water ratio extracts analyses 
 

EC(dS/m) vs Na(mg/l) and K(mg/l)
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Appendix E. 2006 CTD-Diver Data 
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Appendix F. The graphs illustrate the relationship between the Soil Water Content 
(SWC) and the amount of runoff produced per rainfall event. 
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Runoff vs SWC - Site 1 (21 & 22 Jul 2006)
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Runoff vs SWC - Site 1 (31 Jul 2006)
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Runoff vs SWC - Site 1 (3 & 4 Aug 2006)
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Runoff vs SWC - Site 1 (11 Aug 2006)
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Runoff vs SWC - Site 1 (14 Aug 2006)
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Runoff vs SWC - Site 2 (21 Apr 2006)
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Runoff vs SWC - Site 2 (1 Jun 2006)
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Runoff vs SWC - Site 2 (12 Jun 2006)
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Runoff vs SWC - Site 2 (13 Jun 2006)
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Runoff vs SWC - Site 2 (21 Jul 2006)
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Runoff vs SWC - Site 2 (31 Jul 2006)
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Runoff vs SWC - Site 2 (11 Aug 2006)
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Runoff vs SWC - Site 2 (14 Aug 2006)
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