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ABSTRACT 

A novel monomer (Phenazine-2,3-diimino(pyrrole-2-yl)–PDP) derived from the 

condensation reaction between 2,3-diaminophenazine and a pyrrole derivative has 

been synthesized as a hinge molecule in the design of a zig-zag polymer with actuation 

possibility. The monomer was polymerized chemically and electrochemically to produce 

the new polymer material – polymerized Phenazine-2,3-diimino(pyrrole-2-yl) PPDP.  

Two very crucial properties of a good actuator material, relate specifically to its 

solubility testing and electrical conductivity.  The hinged polymer material was studied 

intensively in terms of its spectroscopy; Fourier Transform Infrared - FTIR, 1H’NMR, 

thermal properties (Differential Scanning Calorimetry-DSC and Thermogravimetric 

Analysis-TGA) as well as voltammetry and conductivity.  Conductivity was evaluated 

using three different approaches including; 4 probe measurements, plotting of I/V 

curves based on potentiostatic measurements and an electrochemical impedance 

experiment using a dielectric Solartron interface.  Electrochemical kinetics of the 

polymer prepared as a thin film at glassy carbon electrode (GCE) was also done and it 

was clear that the thin film conductivity was vastly different from the compressed pellet 

conductivity (thick film).  The zig-zag polymer was then further modified by 

homogeneous inclusion of gold nanoparticles to improve conductivity and solubility, in 

the thick film arrangement. Conductivity of the thin film was studied by electrochemical 

impedance spectroscopy with the relative charge transfer values being determined for 

unmodified and modified polymer systems.  The solubility testing of the material plays 

an important role as it is required for a wide range of experimental applications.  The 

zig-zag polymer showed great promise for applications; in dye sensitized solar cells and 

free standing interpenetrating polymer network (IPN), solubility testing and electrical 

conductivity would need to be improved in order to be used in these applications. 
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CHAPTER 1 

Introduction 

The mechanism and principles for actuation of actuators in electronic, mechanical and 

electromechanical fields will be discussed.  Simple examples of actuation from our 

everyday lives in living and mechanical systems include the way in which the human 

body converts energy obtained from metabolism of food, into motion.  Mechanically this 

process is observed in automobiles where combustion of fuel results in the propulsion of 

the vehicle. 

 

Actuators are types of physical objects which have the ability to control or move a 

mechanism or system; it also has the ability to convert electrical energy produced into 

mechanical motion.  Exposed to external stimulus these actuators produce linear or 

rotary motion, with simple actuators having the ability to open and close valves.  

Development of new actuators suitable for robotic actuation has recently been studied, 

for applications such as pneumatic muscle actuators, piezoelectric actuators and 

electroactive polymers. 

 

1.1 Pneumatic muscle actuators (PMA) 

Pneumatic actuators have the ability to convert pneumatic power into motion, the 

system consists of a chamber in which compressed air, gas or a mixture is contained.  

According to T. Vo-Minh et al, 2010, an actuator consisting of a fibre-reinforced bladder 

(inner rubber tube), was able to function in an air enclosure by means of connecting 

flanges at both ends.  A single outlet/inlet port existed through which compressed air 

passed in or out of the actuator.  Geometrical arrangement of the fibre in the helical 

winding caused longitudinal contraction with an increase in pulling force.  Lateral 

expansion occurred when air pressure in the chamber increased; this mechanical 
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property was useful for actuation purposes.  In another example of these types of 

materials, pneumatic muscle actuators were observed to generate pulling forces during 

contractions.  These muscle like actuators displayed unique lightweight, simple 

maintenance and yielding force to weight ratio characteristics (K. Wickramatunge et al, 

2010).  The main challenges associated with these actuators were the nonlinearity of 

the system and the nonlinearity of the actuator dynamics (T. Vo-Minh et al, 2010 and A. 

Hilderbrandt et al, 2005).  The two main components of the system were the pneumatic 

muscle actuator and the control valve.  Control valves were used to control the flow rate 

of compressed air which is required for perfect performance (B. Tondu et al, 2000). 

 

1.2 Piezoelectric actuators 

The piezoelectric effect was first discovered in the 1880’s by P. Curie and J. Curie.  

Certain crystals which were subjected to mechanical strain became electrically 

polarized, with polarization being proportional to the strain.  Deformation occurred in 

these materials when exposed to an electric field.  Piezoelectric actuators convert 

electrical signals into controlled physical displacement. Movement of these actuators is 

used to adjust machine tools, lenses, mirrors and other equipment.  These actuators 

display properties of high speed operation and compact size which are essential in many 

precision actuators and sensors.  The main advantages of these actuators are; large 

forces, high displacement accuracy, high positioning resolution, fast response, cost 

effectiveness and they have the ability to generate frequencies greater than 20 kHz (J. 

Guo et al, 2013). The one major disadvantage of the piezoelectric actuator is the 

requirement of high voltages for deformation (M. Karpelson et al, 2012).  According to J. 

Guo et al, 2013, the piezoelectric actuators can be used for a variety of application 

including; nanoscale positioning resolution, ultra-precision machine tools, 

nanofabrication’s and various nanotech microscopes.  Piezoelectric diaphragm actuators 
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used as globe control valves displayed a working temperature range between -13 to 90 

⁰C, maximum operating pressure of 4.5 bar, linearity < 3% and hysteresis < 3%.  Multi-

layer piezoelectric actuators used for vibrational control in nanotechnology produced 

modified specifications of high operating temperatures up to 200 ⁰C and operating 

voltage of -20 to 120 V (developed by the company PICMA). 

 

1.3 Electroactive polymer actuators (EAPs) 

Polymers which change shape and size when exposed to electrical stimulus are called 

electroactive polymers.  According to L. Ceseracciu et al, 2011, the electroactive 

expansion and contraction of the actuator material occurred due to the change in 

carbon-carbon bond length which was induced by charge injections.  These materials 

include piezoelectric, electrostrictive, ionic, conducting polymers etc.  They displayed 

large displacements and quick responses when exposed to external stimuli such as an 

electrical field.  Electroactive polymer materials converted the electrical or chemical 

energy produced into mechanical energy through electrical responses of the materials.  

There are a variety of electroactive polymers with different controllable properties 

which produce permanent or reversible responses.  The basis on which these actuators 

exist is highly dependent on the initial stretching ability of the material (K. Kim et al. 

2007).  Application of electrical stimulus to the EAPs will allow for elongation or 

contraction, with the conversion of electrical energy into mechanical energy (R. 

Palakodeh et al, 2006).  The main properties of EAP actuators include strain, stress, 

amount of work density, electromechanical coupling and relative speed cycles (Table 1).    
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Table 1. Properties of EAP actuators 

Type  Maximum  
strain  
%  

Maximum 
stress  
MPa  

Work 
Density  
kJ∙m-3  

Electro-
mechanical 
coupling  

Comment  Relative 
speed  
(cycle)  

Natural 
Muscle  

>40  0.35  40  0.40  High cycle 
life  

Slow-Fast  

Dielectric 
elastomer  

20-380  7.2  10-3400  0.15-0.90  Low 
current  

Fast  

Relaxor Ferro-
electric 
Polymer  

<7  45  1000  0.40  Low 
current  

Fast  

Electrostrictive 
Graft Polymer  

2  43  0.25  low  Low 
current  

Fast  

Liquid Crystal 
Elastomers  

10  -  20  0.75  Photo-
activation  

Slow  

Conducting 
polymer  

2  34  100  <0.05  Stiff 
(1GPa)  

Fast  

Carbon 
Nanotubes  

0.2  1  -  low  Big temp 
range  

Fast  

Ionic Polymer 
Metal 
Composites  

2  30  -  low  Kits 
available  

Fast  

 

Conducting polymers play an important role in EAP actuators, the main operation of 

these actuators is based on volume expansion/contraction generated by ion movement.  

Large displacements resulting from the ion movement have led to the development of 

these EAPs.  EAPs can be classed into two categories i.e. ionic and electronic driven 

polymers.  These EAPs experience actuation strains of more than 10 % and may be 

formed into many different shapes for the use in actuators or sensors.  The design of 

these EAPs allow for operations with similarities to biological muscle movement.  

According to Y. Bar-Cohen, 2004, the new emerging actuation material such as EAPs 

displayed deformations which electroactive ceramics and shape memory allows could 

not match.  Shape memory alloys are novel materials with shape retention capabilities 

when heated.  This material has low yield strength and can easily undergo shape 
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changes, but heat above the transformation temperature will yield the original shape of 

the material.  Any resistance to this shape change could generate extremely large forces 

which could be used in the mechanism for remote actuation.  The most common shape 

memory alloy is nickel titanium called Nitinol.  Nitinol displayed actuation properties 

including energy conversion efficiency (5 %), work output (  1 J/g) and transformation 

temperatures between ± 100 ⁰C.  Flexinol NiTi alloy SMA wires, manufactured by 

DYNALLOY, Inc, with a diameter of    0. 8 mm displayed a pull force of    2000 g     19.5 N) 

with obtained stress values of 170 N/mm2 (force per cross-sectional area).  Electroactive 

ceramics (piezoelectric and electrostrictive) are widely used in various applications due 

to properties such as small size, precision positioning, high energy density and quick 

frequency response.  Applications of these materials include motors, translators and 

manipulators in devices such as ultrasonic motors and inchworms.  

 

Table 2. Comparative properties of EAPs, SMA and EAC 

Property Electroactive 

polymers (EAP) 

Shape Memory Alloys 

(SMA) 

Electroactive 

Ceramics (EAC) 

Actuation displacement >10 % <8 % short fatigue life 0.1 – 0.3 % 

Force(MPa) 0.1 – 3 About 700 30 – 40 

Reaction Speed μsec to sec sec to min μsec to sec 

Density 1 – 2.5 g/cc 5 – 6 g/cc 6 – 8 g/cc 

Drive Voltage 4 – 7 V NA 50 -800 V 

Power consumption m-watts Watts Watts 

Fracture toughness Resilient, elastic Elastic Fragile 

 

From the comparative data it was evident that EAPs have superior ability for actuation 

displacement, low drive voltage and good mechanical strength.  
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Table 3. Ionic and electronic electroactive polymer materials 

Ionic EAP Electronic EAP 

Carbon Nanotubes (CNT) Dielectric elastomer EAP 

Conductive Polymers (CP) Electrostrictive Graft Elastomers 

ElectroRheological Fluids (ERF) Electrostrictive Paper 

Ionic Polymer Gels (IPG) Electro-Viscoelastic Elastomers 

Ionic Polymer Metallic Composite (IPMC) Ferroelectric Polymers 

- Liquid Crystal Elastomers (LCE) 

 

From the examples extracted from literature, the most promising material to pursue in 

the design of a fast response, large displacement the actuator material was selected 

from the electronic EAP classification.   In our work we pursued the design of a 

conductive polymer with a very specific design that would facilitate the displacement 

requirement for actuation, based on the geometry induced during crosslinking in the 

polymerization step. 

1.4 Properties of EAP actuators 

N. Terasawa et al, 2013 showed that the ionic liquids used in EAP actuator designs have 

low volatility, high conductivity and wide potential windows, which are essential for 

quick response actuators and high electrochemical stability components.  The 

advantages and disadvantages of the two EAP categories presented in table 4, these are 

important to consider in the selection of actuators. 
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Table 4. Advantages and disadvantages of the two basic EAP groups (Y. Bar-Cohen). 

EAP type Advantages Disadvantages 

Electronic  Exhibit rapid response (milliseconds)  
 Can hold strain under dc activation  
 Induces relatively large actuation 

forces  
 Exhibits high mechanical energy 

density  
 Can operate for a long time in room 

conditions  

 

 Requires high voltages (~100 MV/meter).  
Recent development allowed for (~20 
MV/meter) in the Ferroelectric EAP  

 Independent of the voltage polarity, it 
produces mostly monopolar actuation due 
to associated electrostriction effect.  

 

Ionic  Natural bi-directional actuation that 
depends on the voltage polarity.  

 Requires low voltage  
 Some ionic EAP like conductive 

polymers have a unique capability of 
bi-stability  

 

 Requires using an electrolyte  
 Require encapsulation or protective layer in 

order to operate in open air conditions  
 Low electromechanical coupling efficiency  
 Except for CPs and NTs, ionic EAPs do not 

hold strain under dc voltage  
 Slow response (fraction of a second)  
 Bending EAPs induce a relatively low 

actuation force  
 Electrolysis occurs in aqueous systems at 

>1.23 V  

 

1.5 Conducting Polymers (CPs) 

CPs are continuously being used in the development of intelligent material systems and 

structures, with applications of these materials including; robotics (A. Khaldi et al, 2011), 

prosthetics (E. Biddiss et al, 2008) and drug delivery systems (H. Xu et al, 2006, Y. Bar-

Cohen, 2004)).  Prosthetic materials have the ability to operate biological muscles with 

high fracture toughness, large actuation strain and inherent vibration damping.  

Microvalves could be used in drug delivery systems in the pharmaceutical industry.  

There is a wide variety of CPs but the most commonly used include polypyrrole, 

polyaniline and polythiophene, (G. Wallace et.al, 2009).   
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Scheme 1. Repetitive units of CPs which include polypyrrole (1) and polythiophene (2), 
with the incorporation of the (A-) counterion onto the polymer backbone. 

 

These polymers consist of repeating structural units which are created through a 

process called polymerization.  These commonly used conducting polymers undergo 

dimensional changes upon doping and dedoping.  This mechanical property allows for it 

to be used as an electrochemically driven mechanical actuator. 

1.6 Polypyrrole 

Polypyrrole is a well-known conducting polymer material with properties such as 

relatively high conductivity, easy synthesis and high stability (Y. Tang et al, 2013, R. 

Ansari, 2006 and K. Maksymiuk, 2006).  Polypyrrole is a good electrical conductor (both 

in oxidative and reductive states) due to its π-conjugated electrons along the backbone 

in a polymer network system.  This conjugated polymer also displays high thermal 

stability, large electrochemical activity at a higher pH, aqueous stability and stability 

under environmental conditions.  Polypyrrole systems have additional advantages of 

large dimensional changes, high stress generation and high work capacity per cycle.  

Upon chemical and electrochemical polymerization, polypyrrole comprises of polymer 

chains stabilized by their respective counterions for maintaining charge neutrality.  

Material composition and electrochemical properties change under electrochemical 
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reactions. P-doping during the polymer oxidation process involved the extraction of a 

number of consecutive electrons from the polymer chains creating positive charges 

along the chains.  According to T. Vernitskaya et al, 1997, the oxidation process of 

pyrrole to polypyrrole is irreversible, even with extensive research into the mechanism 

of the reaction; the problem has not yet been solved.  They also looked at the 

electrochemical synthesis mechanism to determine if this process could be reversible, 

two synthesis schemes were reviewed.   
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Scheme 2.Oxidative coupling of pyrrole molecules. 
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Scheme 3. Alternative polymerization mechanism of pyrrole (T. Vernitskaya et al, 1997). 

 

These mechanisms explained by T. Vernitskaya et al, 1997, confirmed the inability of the 

mechanism to proceed in the reverse direction (polypyrrole to pyrrole).  Polypyrrole 

actuators in the form of PPy/Adhesive tape according to Y. Nishioka, 2011, were placed 

in electrolyte solutions with a counter electrode.  When negative charges were applied 

to the actuator, ions in the actuator were repelled and the actuator shrunk.  Positive 

charges applied, caused an expansion of the actuator as positive ions were absorbed 

into the actuator.  Table 5 below is a representation of the comparison of polypyrrole 

actuators with that of biological muscles (J. Madden et al, 2004). 
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Table 5. Comparison between PPy actuators and Skeletal Muscles. 

 PPy Actuators Skeletal Muscles 

Operating Stress (MPa) Under 10 0.1 

Strain (%) Up to 40 20 

Durability Up to 106 109 

Work Density (kJ/m3) Up to 140 8 

1.7 Bilayer Actuators 

Bilayer actuators were the first type of conducting polymer actuators to be discovered 

in 1992.  The initial use of bilayers was for the determination of volume changes and 

identification of the volume change mechanism.  Bilayers provided a way to study 

conjugated polymers such as polypyrrole, polyaniline and polythiophene etc.  The 

actuator comprised of a tape adhered to a film of conducting polymer electrogenerated 

onto a metallic electrode.  The bending of the bilayer actuator is as a result of 

electrochemical reactions caused by the swelling or shrinking of the bilayer.  The 

metallic counter electrode is used, by allowing current to flow through the bilayer 

system.  A big part of the consumed electrical energy is lost in order to produce 

electrochemical reactions at the counter electrode (e.g. solvent dissociation, requires a 

high overpotential). 
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Figure 1. Bilayer actuator design 

 

 

Applying potentials to the bilayer actuator will result in deformation, dependent upon 

the applied potential.  The bilayer actuator will deform until the potential is changed 

resulting in the actuator moving in the opposite direction (figure 1).  E. Jager et al, 2001, 

studied the electrochemistry of the polymer which was deposited onto a substrate.  

Electrochemical oxidation and reduction caused volume changes resulting in the 

deformation of the active layer. Ionic movement to and from the polymer was the 

process which was responsible for the deformation.  Responses of these actuators when 

dc and ac voltages were applied have been studied by D. Sutar et al, 2007.  The bilayer 

created was PPy-DBS/Au film which was made possible by electrochemically 

polymerizing the polymer onto gold coated polystyrene.  Actuator abilities were 

demonstrated using this bilayer formation in aqueous media. The bilayers produced by 

U. Zainudeen et al, 2008, contained PEDOT(DBS)/PPy(DBS), this was produced by 

electropolymerization of the PEDOT onto the PPy film (previously prepared).  They 

discovered that the inclusion of PEDOT (DBS) produced significant improvements in 

strain and force differences between redox states at faster scan rates.   I. Lin et al, 2011, 

studied the characterization of alumina-coated/uncoated Au/SiNx bilayer cantilevers, by 
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thermal cycling and isothermal holding tests.  These bilayer cantilevers were used for 

the determination of the performance and reliability requirements of micro-

electromechanical systems. 

 

1.8 Trilayer Actuators 

Trilayer actuators consist of three layers, with the middle layer being a porous material 

used for electrolyte storage.  On either side of the porous layer are the conducting 

polymer layers. In aqueous media, the flow of current is applied across both conducting 

polymer films.  This flow of current induces movement of the trilayer film, which results 

due to the volume change in the two conducting polymer films.  The potential applied to 

the trilayer film, causes oxidation of the CP film at the anode (ions inserted into the CP 

film from electrolyte solution, ions maintain electroneutrality and cause swelling) and 

reduction of the CP film at the cathode (ions are expelled and the film shrinks).  

 

 

Figure 2.Trilayer actuator consisting of two conducting polymer layers on either side of a 
non-conductive tape. 

 

Conducting polymers prefer being in the neutral form, as mass diffusion occurs when 

the polymer is in the oxidized state.  Larger ions force the smaller more mobile ions to 

migrate into the polymer to maintain a neutral charge, resulting in an increase in the 

volume of the polymer. E. Jager et al, 2013, have developed new methods for micro-

fabrication and patterning using photolithography to produce thin film trilayer 

CP layer (Cathode) CP layer (Anode) 
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actuators.  The degree of deformation of the trilayer actuators was dependent upon the 

thickness of the actuators. 

 

 

 

Figure 3. Deformation of trilayer actuator. 

The trilayer actuator in figure 3 comprised of two conducting polymer (CP) layers, either 

side of a non-conductive adhesive tape.  Potentials applied to the anode CP layer caused 

oxidation to occur which allowed ions to move from the solution into the CP film.  

Reduction occurred at the cathode film, causing reduction and shrinking in the film as 

ions are expelled.  The trilayer PPy/PVDF/PPy was used to combine important EAP 

properties including diffuse impedance, double layer capacitance, conducting polymer 

resistance and charge transfer resistance (C. Nguyen et al, 2012).  They discovered that 

the strain-to-charge density ratio was dependent upon applied voltage.  Experimental 

data obtained was effective to accurately predict current responses and tip curvature.  

According to G. Han et al, 2004, the trilayer sandwich of PPy/Au/PPy was 

electrochemically synthesized by the oxidation of pyrrole in aqueous solutions and then 

sputtering the solution onto a thin gold film.  The polypyrrole layers were doped using 

different dopants e.g. dodecylbenzene sulfonate (DBS) for one layer and the other layer 

with benzenesulfonate (BS).  According to the experimental data obtained, the bending 

responses of the trilayer exceeded that of the bilayer actuator.   This improvement was 

associated with the gold nano layer (highly conductive layer).  

Conducting polymer 

(anode) 
Conducting polymer 

(cathode) 

Conducting polymer 

(anode) 
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The one major disadvantage of these trilayer and bilayer actuators is the delamination 

process.  Delamination results in the separation of layers due to continuous stress upon 

applied potential, this only allows for low amounts of deformation cycles.   A new 

approach to actuator design based on interpenetrating polymer network (IPN) matrix 

actuator designs were created in order to overcome the delamination process that 

occurred.  Incorporation of a graded interlayer reduced the stress intensity of the 

system which increased the resistivity of the layers to experience functional failure 

(cracking and debonding).  The interface associated with the gradient of IPNs was 

beneficial in preventing crack formation and delamination (Y. Xuan et al, 2012).    

 

1.9 Interpenetrating Polymer Networks (IPNs) 

IPNs comprise of a combination of at least two polymers which display different 

characteristics.  An absence of covalent bonds during this preparation is made possible 

when one polymer network is synthesized or crosslinked independently in the presence 

of the other (V. Bhardwaj et al, 2012).  The IPN consists of two conducting polymer 

layers embedded towards the outside of a solid polymer electrolyte (SPE) matrix, which 

host the ions for deformation.  The rate of deformation directly influenced the size of 

the IPN matrix; smaller IPN matrices yielded much higher frequencies.  The 

development of the IPN by using two cross-linked polymers;  Polyethylene Oxide (PEO) 

which ensured ionic conductivity and Polybutadiene (PB), allowed for adjustments to 

the required mechanical properties.  According to C. Plesse et al, 2012, chemical 

polymerization of 3,4-ethylenedioxythiophene (EDOT) lead to the formation of a PEDOT 

gradient, whose concentration decreased from the outside towards the centre of the 

IPN matrix.  Incorporation of the EDOT into the SPE allowed for deformation upon 

stimulus with various potentials.  These IPN matrices were designed to operate in air, 
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with the SPE providing the ions for deformation.  The major factor influencing the rate 

at which the IPN bends is the relative size of the IPN matrix, thus different IPN systems 

were explored.  Initial IPN matrices developed were of a thickness of 250μm which 

produced 3.5x106 cycles at a maximum frequency of 10 Hz.  The IPN thickness was not 

suitable for the photolithography technique.   The technique therefore required new 

host matrices with better mechanical properties and lower thickness.  The 

photolithography technique is used for patterning parts of a thin film or substrate.  The 

use of a different elastomeric partner with the IPN matrix was explored, using 

polytetrahydrofurane (PTHF).  IPN matrices with very small thickness (ranging from 12 

μm - 17μm) were used for micro-sized actuators which could reach a frequency range of 

30 to 200 Hz.  These micro-actuators were developed by using photolithography and 

plasma dry etching process (A. Khaldi et al, 2011).  

 

Figure 4. Diagram of IPN setup 

 

The representation in figure 4 displayed the conducting IPN where electronic conducting 

polymers were selectively embedded towards the outside faces of the SPE IPN matrix.  

Deformation of the IPN matrix was dependent upon the frequency and voltage applied 

to the system.  Moving rate of deformation increased as the film thickness decreased (D. 

Brandell et al, 2008). 

 

Actuators have been used in a wide variety of applications with electroactive polymer 

actuators displaying the best desired properties for actuation such as actuation 

displacement, fracture toughness, density and reaction speed.  Electroactive polymer 
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materials displayed favourable properties with respect to displacement capacity which 

were comparative to human muscle movements.  Electronic and ionic EAPs were found 

to have the desired displacement ability with ionic EAP having the added advantage of 

low operating voltages.  The actuator material proposed in this research follows the 

design of ionic EAPs produced by polymerization of a pyrrole derivative as the monomer 

with a very rigid geometry.   It is envisaged the controlled geometry, together with the 

achievable displacement along the polypyrrole backbone, will greatly enhance the 

displacement potential of an actuator based on the novel polymer compound. 
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MAIN AIMS AND OBJECTIVES 

AIMS: 

 Synthesis of a hinged molecule by Schiff-base formation; 

 Polymerization of the pyrrole unit in the hinged molecule, to produce a repeating zig-zag 

polymer; 

 Solubility testing of the chemically produced polymer; 

 Actuation efficiency of the novel polymer synthesized by chemical and electrochemical 

methods. 

 

OBJECTIVES: 

 Material preparation 

o Phenazine-2,3-diimino(pyrrole-2-yl) – monomer 

o poly(Phenazine-2,3-diimino(pyrrole-2-yl)) – polymer 

o Polymer system modified with Gold Nanoparticles 

 Determination of the chemistry for crosslinking to produce monomer material: 

o Spectroscopic and electrochemical evaluation of  monomer synthesis 

o Solubility testing of the monomer in common organic solvents 

o Synthesis and characterization of gold nanoparticles incorporation 

 Characterization of the monomer: 

o Spectroscopy to study the structural behaviour of the crosslinked product 

 Electrochemical synthesis and characterization of the polymer and Au modified polymer 

system 

 Chemical synthesis and characterization of the polymer and Au modified polymer 

system  

 Comparison of conductivity of the polymer and Au modified polymer systems 

 Evaluation of the solubility testing characteristics of the polymer products. 
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CHAPTER 2 

Design and synthesis of zig-zag polymers 

 

Molecular design for improved actuation performance and starting materials (2,3-

diaminophenazine and pyrrole-2-carboxaldehyde used for the novel zig-zag polymer 

preparation will be discussed. 

 

2.1 Hinged molecular design 

A hinged molecule such as calix[4]arene interconnected by rigid rods of  

quarterthiophene was among the first polymers designed to have the zig-zag shape in 

their geometry.  Attraction between the quarterthiophene rods occurred when the 

material was in the oxidized state which in turn contracted the overall material.  

Oxidation of these rods caused π-π stacking to produce reversible molecular 

displacement during actuation.  These hinged rigid structures which have great amount 

of internal volume were found to be capable of experiencing large volume changes upon 

application of potentials. 

 

 

Figure 5. Zig-zag molecule containing calix[4]arene and quarterthiophene 
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Calix[4]arene hinge molecule was interconnected to quarterthiophene rigid rods which 

formed the polymer backbone (chain) represented in figure 5. When the zig-zag 

molecule was exposed to a potential the rods attracted one another (P. Anquetil et.al, 

2002).  Films using this setup displayed conductivities of 10-1 S/m, densities between 

550 and 750 kg/m3 and tensile strengths of 20 MPa in the dried form and 1.3 MPa when 

soaked in acetonitrile.  The system also displayed a reversible strain in the order of 20%. 

 

Y. Lui et al, 2012, studied the behaviour of tetrahedral Zn center, with two coordination 

spots already taken up by SPh- (phenyl sulfide) groups.  The two remaining coordination 

sites were ready to be occupied by bifunctional ligands which resulted in the formation 

of helical or zig-zag chain-like structures.  The zig-zag structure formed was 

[Zn(SPh)2(BPyVB)]n.     

 

Figure 6. Zig-zag molecule of [Zn(SPh)2(BPyVB)]n. 

 

The zig-zag polymer material represented in figure 6 was used as building blocks for the 

generation of helical and zig-zag polymer materials.  The optical and thermal properties 

of the polymer were studied.  The thermal analysis revealed a polymer material which 
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was thermally stable up to temperatures of 210 ⁰C, with optical properties in terms of 

UV/Vis revealed onset absorption at 400 and 420 nm. 

The design of coordination polymers (metal organic frameworks) often use metallic 

centres due to their magnetic, electrical and non-linear optical properties.  P. 

Phuengphai et al, 2013, designed metal organic frameworks by using hydrogen bonds, 

π-π contacts and other weak and non-covalent interactions (also studied by D. Braga et 

al, 1995).  The zig-zag polymer chain generated from the combination Zn(II)/dpe/acetate 

with secondary building units produced a tetrahedral geometry. 

 

 

Figure 7. Representation of the zig-zag organometallic framework. 

 

The formation of the metal organic framework resulted from the connection of 

mononuclear units through two dpe (1,2-bis(4-pyridyl)ethene) ligands to the other Zn(II) 

ions, resulting in the generation of infinite zig-zag chains.  π-π Interactions occurred 

along the dpe units which are closely connected 2D layers.  The organometallic 

framework in figure 7 displayed good heterogeneous properties, high size-selectivity 

towards compounds with benzaldehyde and high conversion of acetaldehyde to 

dichloromethane.  Conversion values observed for this molecule were in the range of 

57% to 74% when using tetrahydrafuran and dichloromethane respectively, whereas the 

conversion of the benzaldehyde was 14% when using dichloromethane.     
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Another design was explored by G. Chen et al, 2010, such as TTFV-hinged molecular 

tweezers.  The exploration of the molecular tweezers displayed two functional π-

conjugated groups which were connected to a central TTFV (tetrathiafulvalene) core 

made possible by covalent linkage.  The formation of the tweezers produced a closely 

spaced hinged molecule, which could grip a guest molecule through non-covalent forces 

such as π-stacking or charge-transfer interactions.  Oxidation of the tweezers caused the 

molecular hinge to rotate into a linear orientation and thus releasing the guest 

compound. 

 

 

Figure 8. Structure of TTFV-hinged molecular tweezers. 

 

Electrochemistry of the molecular hinge tweezers displayed a reversible redox couple in 

cyclic voltammetry which related to a two electron transfer process.  The chemical 

reversibility of the material in figure 8 occurred due to the electron transfer process 

which was useful in the preparation of molecular switching devices.  

 

In the current research we propose to exploit the zig-zag polymer conformation for 

actuation.  The novel polymer formation will follow on the synthesis of a monomer 

based on 2,3-diaminophenazine and pyrrole-2-carboxaldehyde crosslinked  in a classical 

Schiff base formation.  Polymerization of the pyrrole moiety will produce the desired 

zig-zag polymer. 
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2.2 2,3-diaminophenazine (DAP) 

 

N

N

NH2

NH2  

Figure 9. DAP is a solid chemical with a molecular formula of C12H10N4 and a molecular 
mass of 210 g/mol. 

 

The solid orange DAP (figure 9) obtained from Sigma-Aldrich was labeled as light 

sensitive and therefore stored in an amber glass bottle.  An alternative means for 

obtaining this material would be to chemically reduce o-phenylenediamine by using  

horseradish peroxidase (PJ. Tarcha et al, 1987).  DAP displays strong luminance in both 

polar organic solvents and aqueous buffer solutions.  DAP can be used as a marker for 

the determination of fluorometric lacasse activity and in immunoassay determination of 

enzyme-catalyzed reactions (S. Sylvester et al, 2012).  

 

2.3 Pyrrole-2-carboxaldehyde  

N
H

O

H

 

Figure 10. Pyrrole-2-carboxaldehyde has a molecular formula of C5H5NO with a 
molecular mass of 95.10 g/mol. 
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This slightly yellow crystalline material (figure 10) was obtained from Sigma Aldrich with 

relevant material safety data sheets (MSDS) and NMR documents.  The chemical can be 

stored at room temperature for short periods of time, but to obtain maximum product 

performance the chemical should be stored -20⁰C for long term use.  The chemical is 

soluble in both DMSO and methanol.  This chemical is a derivative of pyrrole and was 

used in the synthesis of Schiff base compounds including; Co(III) complexes with 

unsymmetrical Schiff base ligands (S. Meghdadi et al, 2011) and 2-aminophenol-pyrrole-

2-carboxaldehyde with metal complexes (B. Singh et al, 2010).  A similar scheme was 

followed for the synthesis of the monomer in the present research (Scheme 4) 
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Scheme 4. Proposed mechanism for monomer formation. 
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Figure 11. Proposed polymer formation 

 

The zig-zag arrangement may be obtained by polymerization of the pyrrole moiety to 

produce the desired polymer.  The crosslinking of the synthesized monomer will be 

pursued, through the pyrrole functionality by chemical and electrochemical synthesis 

produce a zig-zag polymer structure (figure 11). 
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CHAPTER 3 

Materials and Methodology 

 

In this chapter all methodology required for material preparation and characterization 

will be discussed.  Monomer synthesis, characterization and polymerization, chemically 

and electrochemically to obtain the polymer material, will be performed.  Modification 

of the polymer system by gold (Au) nanoparticles and the respective characterization is 

presented.  

 

3.1 Monomer synthesis - (Phenazine-2,3-diimino(pyrrole-2-yl)) – PDP 

Monomer synthesis was prepared by dissolving 1 mmol of 2,3-diaminophenzaine, 2.1 

mmol of Pyrrole-2-carboxaldehyde (98 %) in 40 mL of Acetic Acid (99.7 %).  A reflux 

reaction (48 hours) was set-up and heated at 130 ⁰C, Acetic Acid  boiling point = 120 ⁰C) 

was used as the solvent for refluxing.  At completion of the synthesis, a precipitate 

resulted and was filtered and washed with methanol.  The new monomer material 

(Phenazine-2,3-diimino(pyrrole-2-yl)) – PDP was then dried under vacuum at 70 ⁰C, 

overnight.  The sample was weighed and a yield of 60 % was obtained.  The reflux setup 

consisted of a 100 mL round bottomed flask to which a reflux condenser was attached.  

The round bottom flask was placed in an oil bath (oil level should not be higher than the 

level of solution in the round bottom flask) and heated (hot plate with a temperature 

controller).  The scheme below (Scheme 5) is carried out under carefully controlled pH 

(pH values below 6.0) conditions, with linkage of the two starting materials occurring at 

the position where the aldehyde group is lost.   
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Scheme 5. Schiff base formation of PDP. 

 

The condensation reaction was used to produce the novel monomer material by the 

crosslinking of starting materials. 

  

3.2 Materials 

All reagents used for synthesis and characterization were analytical grade and were 

obtained from Sigma-Aldrich.  Deionized water was obtained from the Millipore Synergy 

water system which is nuclease free (resistivity of 18 MΩ); this water was used in the 

preparation for all aqueous solutions. A list of chemicals used throughout the 

experimental procedures is provided (table 6). 

 

3.3 Solution Preparations 

Solutions were prepared using general analytical methods and formulas which were 

required for respective preparations. 

 

For solutions which were prepared from solid materials, the following equation was 

used, 

 

     
                                                       

    
             eqn. 1 
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For solutions whose concentration could be calculated the following was used; 

 

                                                         CiVi = CfVf       eqn. 2 

Where; 

Ci = initial concentration 

Vi = initial volume 

Cf = final concentration 

Vf = final volume 

 

Solution 1:  0.1 M Hydrochloric acid solution was prepared by diluting 1.68 mL of 37 % 

HCl to 500 mL with water.  The HCl was slowly added to the water already present in the 

beaker, solution was allowed to be stirred for a few minutes to thorough mixing. 

 

Solution 2:  0.1 M Lithium Perchlorate solution was prepared by dissolving 5.3195 g of 

LiClO4 in 500 mL of water. 

 

Table 6. Chemicals used for synthesis. 

Chemical Name Purity Chemical Company 

Pyrrole-2-carboxaldehyde 98 % Sigma-Aldrich 

2,3-diaminophenazine 90 % Sigma-Aldrich 

Acetic Acid 99.7 % Sigma-Aldrich 

Hydrochloric Acid (HCl) 37 % Sigma-Aldrich 

Dimethylformamide 99.8 % Sigma-Aldrich 

Anhydrous Iron(III) chloride 99.9 % Sigma-Aldrich 

Tetrahydrafuran (THF) 99.9 % Sigma-Aldrich 

Methanol (MeOH) 99.9 % Sigma-Aldrich 

Hydrazine 35 wt. % in H2O Sigma-Aldrich 

 

 

 

 



 44 

Dimethylsulfoxide (DMSO) 99.9 % Sigma-Aldrich 

Polyvinylsulfonic Acid (PVSA) 25 wt. % in H2O Sigma-Aldrich 

Pyrrole 98 % Sigma-Aldrich 

Lithium Perchlorate (LiClO4) 98 % Sigma-Aldrich 

 

3.4 Solubility   

Solubility is the property of a material to dissolve in gaseous, solid and liquid solvent to 

create a solution of solute in solvent.  When a solute is left in contact with a solvent, it 

dissolves until the solution is saturated.  Various factors influence the solubility of 

materials which may include the chemical and physical properties of the material as well 

reaction conditions including; temperature, pH and pressure.  The solubility testing of 

the monomer and polymer material was performed by dissolving 10 mg in 1 mL of 

various solvents including, Tetrahydrafuran (THF), Methanol (MeOH), Dichlorobenzene 

(DCB), Dimethylformamide (DMF), Dimethylsulfoxide (DMSO), Chloroform (CH3Cl) and 

various other organic and inorganic solvents.  The solubility testing of the monomer was 

performed as this is a requirement for a wide range of applications. 

 

3.5 Monomer Characterization 

3.5.1 Fourier Transform Infrared (FTIR) Spectroscopy 

This technique was used for the identification and determination of the structure of 

materials, by obtaining an infrared spectrum of emission and absorption of solids, 

liquids and gases.  This mathematical process (fourier transform) converts raw data 

obtained into actually spectra.  Analysis of starting materials (2,3-diaminophenzaine and 

Pyrrole-2-carboxaldehyde) and monomer material were performed on solid samples 

and were run on a Perkin Elmer Spectrum 100 instrument.  FTIR was done for the 
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confirmation of the functional groups present in the sample and to determine if the 

crosslinking of the starting materials had occurred. 

   

3.5.2 Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR studies the properties of molecules containing magnetic nuclei by applying a 

magnetic field and observing the frequency of the resonant electromagnetic field.  The 

NMR technique is simple in concept but spectra can sometimes be highly complex, 

however data resulting from the spectra provides much information about the 

structural formation of materials.  1H NMR was performed on starting materials by 

dissolving them in DMSO.  The samples were performed on a Bruker 300 MHz 

instrument.  The sample for NMR was prepared by dissolving 20 mg of the starting 

materials and dissolving them in 1 mL of DMSO-d6.  NMR was used to confirm the 

chemical structure of the starting materials.    

 

3.5.3 Differential Scanning Calorimetry (DSC) 

DSC is a thermal analysis technique which looks at how heat capacity (Cp) is changed by 

temperature under controlled atmosphere.  Materials are exposed to temperature 

ramps, which allow for heat capacities of materials to be tracked as heat flows.  The 

sample under investigation and a reference sample were exposed to the same 

temperature ramp.  DSC analysis was performed on the new monomer material by 

weighing out 4mg and exposing it to a controlled environment (air or inert gas including; 

nitrogen or helium) on a Thermal Analysis (TA) Q20 series system.  The monomer 

material was exposed to a temperature ramp between -100 ⁰C and 250 ⁰C.   DSC 

analysis of materials was done in order to confirm the thermal behaviour of the 

materials. 
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3.6 Polymerization 

3.6.1 Chemical Polymerization 

The dopant counter ions (A-) were incorporated into the chain during polymerization.  

This influences the polymerization process as well as the properties of the polymer 

material.  The most common and widely used oxidants are ammonium persulfate and 

Iron(III)Chloride, whilst hydrogen peroxide and various other trace metals (Ce4+, Cu2+, 

Cr6+) have also been used.   
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Scheme 6. Pyrrole polymerization 

 

Polymerization of pyrrole to form the complex, dynamic structure called polypyrrole 

which is used as the chain molecule, is represented in scheme 6.  Usually upon 

polypyrrole formation the number of repetitive monomer units was between 3 and 4, 

the A- is the counter ion incorporated during synthesis.  Chemical polymerization of the 

monomer material to produce the polymer poly(Phenazine-2,3-diimino(pyrrole-2-yl))-

PPDP was achieved through reaction of 0.5 mmol PDP and 5 mmol Anhydrous 

Iron(III)Chloride (FeCl3).  The FeCl3 solution was added dropwise to the already stirred 

PDP solution (reaction between FeCl3 and water was exothermic).  The solution was 

allowed to stir for 24 hours before filtration and washing with methanol.  

Iron(III)chloride was used as an oxidant in the production of the conducting polymer by 

incorporating a positive charge onto the backbone of the polymer.   
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3.6.2 Electrochemical Polymerization 

This polymerization occurred at the electrode surface in an electrochemical cell using a 

solvent with relevance for polymerization.  The solvent should be as pure as possible as 

it plays an important role in the reaction mechanism.  When the initial layer of the 

polymer was deposited onto the electrode surface it became a reactant which 

determined the rest of the polymerization process.  The counter ion which was 

introduced into the system balanced the charge on the polymer backbone.   

Incorporation between the polypyrrole planes which favour α-α bonding was achieved.  

Potentials chosen for polymerization influenced the rate of oxidation and therefore 

polymerization.  If the rate of polymerization is too slow, oxidation of the monomer will 

occur without deposition, which results in polymer chain (backbone) not reaching its 

preferred chain length.  All polymerization and characterization of polymeric systems 

were performed on screen printed carbon electrodes (SPCE).  The formation of the 

polymer material at the electrode surface was done using a technique called cyclic 

voltammetry.  The monomer material was polymerized in an electrochemical window 

between -400 mV and +700 mV at a scan rate of 50 mV/s using a BAS 100W 

Electrochemical Analyzer .  PDP was dissolved in 2 mL of dimethylformamide (DMF) and 

then diluted to 4 mL with 0.1 M hydrochloric acid (HCl).  This polymerization cycle was 

repeated 25 times to allow for growth at the the electrode surface, with 

polyvinylsulfonic acid (PVSA) used as a surfactant.  The modified polymer system was 

produced by using the same parameters used for electrochemical polymerization of the 

monomer, but an extra addition of 600 μL of the Au nanoparticles was added to the 

polymerization solution.  Polymerization of PDAP occurred in 0.1M HCl solution 

between a potential window of -800 mV and 400 mV at a scan rate of 10 mV/s.  The 

polymerization solution was purged with Argon gas and light was prevented from 

entering the electrochemical cell.  Distillation of pyrrole was performed before 

polymerization occurred.  Polymerization occurred in 0.1 M LiClO4 at a scan rate of 50 
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mV/s between a potential window of -400 mV and 700 mV.  The polymerization solution 

was purged with argon gas and a blanket of argon was kept above the solution.  The 

polymer was prepared as a thin film by polymerization on screen print carbon 

electrodes which was used for diffusion and morphology analysis.  Chemical and 

electrochemical polymerization of the novel monomer materials was performed to 

produce the zig-zag polymer material. 

 

3.7 Gold (Au) Nanoparticles Synthesis 

Gold nanoparticles (AuNPs) were synthesized through the reduction of 1.0 mM HAuCl4 

using sodium citrate as the reducing agent. 20 mL of 1.0 mM HAuCl4 solution was added 

to a 50 mL Erlenmeyer flask on a stirring hot plate, the solution was then stirred and 

allowed to reach boiling temperature.  To this boiling solution, 2 mL of 1 % solution of 

sodium citrate, (C6H5O7Na3) was added.  Gold nanoparticles gradually formed as the 

citrate reduced Au3+ to Au0, with solution changing to a deep red colour upon constant 

heating.  The deep red Au nanoparticles solution was characterized in terms of UV/Vis 

spectroscopy, with the solution requiring dilution as the original solution was too 

concentrated for the instrument.  A new solution was prepared by diluting 1 mL to 10 

mL with water.  The spectral property of the Au nanoparticles was read on a UV/Vis 

instrument using VisionPro software.  Incorporation of the gold nanoparticles into the 

PPDP system was performed during both chemical and electrochemical polymerization 

process.   

 

Gold nanoparticles display exceptional properties including; optical, electronic and 

molecular recognition properties which allow for these nanoparticles to be used in a 

wide variety of applications.  Incorporation of these gold nanoparticles into the polymer 

system was essential for the improvement in conductivity.  The gold nanoparticles (600 

µL) were introduced into the polymer system by the addition of the nanoparticles during 
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the electropolymerization process.  Synthesis of the Au nanoparticles was performed for 

the incorporation into the polymer material to improve the conductivity.  According to 

D. Li et al, 2009 sulfur-terminated polymers can directly bond to the surface of gold 

nanoparticles through sulfur gold interactions to form form perfect cores of the 

polymer/gold nanocomposites.  V. Chechik et al, 1999 studied the formation of stable 

monolayers on planar Au substrates when using thiolated dendrimers.  Therefore Au 

nanoparticle modification of the polymer was selected as the initial means of not only 

improving conductivity, but also to prepare the  polymer material for potential 

modification in biosensing applications. 

 

3.8 Polymer Characterization 

3.8.1 Electrical Conductivity 

Electrical conductivity may be defined as the materials ability to conduct electrical 

current, denoted by the symbol σ  sigma) with units of Siemens per meter.  Samples of 

PPDP, PPy and PPDP-Au were evaluated for conductivity.  Thick films were prepared by 

compressing the polymer material into a pellet.  Polymer was compressed at 2 tons of 

pressure resulting in the formation of a polymer pellet which was then used for 

conductivity measurements.  The properties of the pellet were determined beforehand 

namely pellet thickness, diameter and surface area.  These properties were essential in 

the calculation for the determination of conductivity. 

 

Four Point Probe 

The Universal Probe combined with the RM3000 Test Unit is a unique system which 

measures the diffuse layer resistivity (where the layer is of the opposite conductivity 

type to the substrate, or the substrate is an insulator).  Upon measurement all four 

probes are in contact with the polymer pellet. 
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Figure 12. The Universal Probe containing the four probe needles used for conductivity 
measurements. 

 

Conductivity by Cyclic Voltammetry 

Conductivity measurements were performed on a Biologic potentiostat by performing a 

cyclic voltammogram of current (I) versus potential (V).  This was made possible as the 

pellet was placed in a special cell designed for the purpose of conductivity 

measurements, at a scan rate of 20 mV/s between a potential window of ±1 V.  The 

resistance from the data obtained was used to determine the conductivity of the 

polymer material.  The following equation was used to calculate the conductivity (M. 

Hashim, et al., 2012); 

 

                                                    
 

 
 

 

 
                                              eqn. 3 

 

Where;  

σ = conductivity 

R = resistance 

ℓ = pellet thickness 

s = surface of the pellet 
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Conductivity by Electrochemical Impedance Spectroscopy 

The Solartron 1296A Dielectric Interface system was used for conductivity 

measurements, which provided fast, accurate repeatable impedance measurements.  

The measurement was performed over a range of frequencies 100 kHz to 0.01 Hz, the 

impedance is related to the conductivity and capacitance of the material.  The resistivity 

of the material was determined and two methods were used for the calculation of 

conductivity, with eqn. 3 being the first and the other; 

 

                                    σAC = 2π x ƒ x Cd/A x tan δ                                                eqn. 4 

 

with εr = Cd/εoA   and  εrεo = Cd/A 

Where; 

ƒ = frequency 

d = thickness 

C = capacitance 

A = area of the cell  

tan δ = εi/εr  with; εi = imaginary pemittivity; εr = real permittivity;  

εo = absolute dielectric constant 

 

Conductivity of the materials was a necessity as it is one the main requirements for 

actuation materials. 

 

3.8.2 Thermogravimetric Analysis (TGA) 

TGA is a technique which measures the mass change of materials as a function of 

temperature or time under a controlled atmosphere.  As the temperature of the system 

is increased, the materials under investigation will decompose.  Materials were weighed 
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(10 mg) for analysis on a TA Q50 system with a temperature ramp between 20 ⁰C and 

600 ⁰C, system was under controlled environment (same as DSC analysis).  TGA analysis 

of starting materials, PPDP and PPy were performed.  This technique was used to 

determine the thermal stability of the materials under the influence of a temperature 

ramp. 

 

3.8.3 Voltammetric Techniques 

This includes the study of chemical reactions which take place in solution at the 

interface of an electron conductor (the electrode) and an ionic conductor (electrolyte).  

Analysis of these electron movements can be obtained by means of Cyclic Voltammetry 

(CV), Square Wave Voltammetry (SWV) which are techniques used to determine the 

redox potentials of as well as formal potentials, conductivities and diffusion coefficients 

of polymeric systems.  These two techniques used are the most popular for 

electrochemical analysis.  Other quantities such as electron transfer rates and redox 

potentials can also be obtained using electroanalytical methods.  Voltammetric 

techniques are defined by the application of applied potentials to an electrode which is 

monitored by the current flowing through the electrochemical cell.   
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Figure 13. An electrochemical cell. 

 

 

An electrochemical cell usually consists of a three electrode setup including; a working 

electrode (WE - electron transfer facilitator), a reference electrode (standard indicator 

of the potential of WE).  In order to maintain constant potential while current is being 

applied (balance redox events) to the system, a counter/auxiliary electrode (AE) is 

employed to balance the current experienced by the WE.  The electrolyte solution was 

stirred to create uniformity; solution was purged with Argon gas – remove to main text. 

 

 

Cyclic Voltammetry (CV) 

CV is one most commonly used electrochemical technique which consists of plotting 

current which flows as a function of potential, for the study of both inorganic and 

organic compounds.  Instruments using this technique provided information vital for the 

understanding of chemical reactions coupled with the charge transfer steps.  The 

 

 

 

 



 54 

instrument used for this technique was the PalmSens electrochemical sensor interface 

system with PSTrace software.  Under controlled conditions the amount of current 

obtained can be related to the concentration of species (good for quantitative analysis).  

CV is a reversal scan technique which involves the application of a potential gradient in 

both forward and backward directions.  Current flow that occurs is due to the 

oxidation/reduction process which results in ion flow.  Peak positions allow for the 

determination of redox potentials and peak areas allow for the quantification of charge 

during the redox process. 

 

Figure 14.Cyclic voltammogram displaying a reversal technique of current versus 
potential. 

 

In potentio-dynamic electrochemical measurement the working electrode potential was 

ramped linearly with time.  Initial potential (V1) was the starting point at which the 

voltammogram began and was ramped until the vertex potential (set potential or V2) 

was reached.  Once the vertex potential had been reached the ramp was then reversed.  

Moving towards positive potentials the anodic peak current (ipc) values as well as the 

potential (Epc) value similarly when the ramp was reversed the cathodic peak current 
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(ipa) was obtained as well as the potential (Epa).  In CV the initial current obtained was 

the capacitive current which was due to the double charge layer being formed at the 

surface of the electrode.  The peak values (oxidation or reduction peaks) of the analyte 

which was due to the faradaic current.  CV systems may be reversible, irreversible or 

quasi-reversible. 

In reversible CV systems the mean surface concentrations (CO and CR) should show 

superimposed forward and reverse traces of current versus potential.  Kinetic 

reversibility is shown by a peak separation near  

 

                                                          
  

 
 mV                                                          eqn.5 

with  
   

   
    at 298 K. 

 

Considering the Nernstian system O + ne ↔ R, for irreversible systems where adsorbed 

O is reduced in a totally irreversible one-step, one electron reaction.  Irreversibility 

results due to the slow electron movement or chemical reactions occurring at the 

electrode surface.  Irreversible systems display no return peak or a           . 

Quasi-reversible systems display behaviour which lies in between reversible and 

irreversible systems.  Characterization of PPDP and the modified PPDP-Au system on 

screen printed carbon electrodes were performed in 0.1 M HCl (Solution 1).  These 

polymer systems were characterized between a potential of ±1 V over a range of scan 

rates from 100 – 250 mV/s.  Upon completion of the characterization techniques the 

polymeric systems were then quantitatively assessed in terms of diffusion coefficients 

and formal potentials. 
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Square Wave Voltammetry 

This technique displays great sensitivity as well as efficient rejection of background, scan 

rate being directly proportional to the frequency.  Larger amplitudes yield larger 

response signals but faradaic peaks broaden and the potential resolution becomes lost.  

The inventors of this sensitive technique was Ramaley and Krause but the technique had 

been extensively been developed by Osteryoungs and their coworkers.  Square wave 

voltammetry is usually carried out on a stationary electrode (WE), where waveform and 

measurements occurred. 

 

 

Figure 15. A potential is scanned as a function of time a potential sweep is displayed.   

 

Oxidation and reduction species are displayed as a peak when a square wave is 

superimposed onto the potential sweep.  Minimizing of the current signal from 

capacitive charge current can be achieved by measuring the current of each potential 

charge before the next step.  Each electrochemically synthesized polymer system was 

characterized in 0.1 M HCl solution, with oxidation and reduction scans performed 

individually.  Upon determination of the voltammagrams obtained from the respective 

CV’s, the square scanning potential window was adjusted.  Various frequencies were 

used as a function of the steps, the steps remained constant while frequency changed to 
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display scan rates of 100 mV/s, 200 mV/s and 300 mV/s.  Initially a reduction potential 

scan was performed and then the potential was reversed to determine the oxidation 

behaviour. 

 

The voltammetric techniques were used to determine the redox behaviours of the 

material as well as; diffusion coefficients, formal potentials, peak separations, electron 

transfer and surface concentrations of the materials. 

 

3.8.4 Spectroscopy 

The polymer material was dedoped before performing spectral analysis with hydrazine 

(35 % wt solution in H2O).  This was done by mixing 10 mL of Hydrazine with 30 mL of 

H2O and approximately 100 mg PPDP.  The solution was then filtered to obtain the 

dedoped polymer, which was then dried at 70 ⁰C under vacuum, overnight.  The 

dedoped product was used for UV/Vis and Fluorescence spectroscopy.  

 

Electrochemical Impedance Spectroscopy (EIS) 

In electrochemical impedance spectroscopy a cell or electrode impedance is plotted as a 

function of frequency.  The theory of this technique is based on the equivalent 

resistance and capacitance values for the systems resistance to the flow of electrical 

current.  EIS is capable of high precision and is commonly used for the evaluation of 

heterogeneous charge-transfer parameters as well as double-layer structures.  EIS is 

usually measured by applying a potential to an electrochemical cell and then measuring 

the current through the cell.  An impedance plot displays the dependence of impedance 

on the frequency in a complex plane.  This represents the dependence of imaginary on 

real impedance, which can be analyzed by equivalent electrical circuit fitting for the 

given electrode system and process.  The resistance (R) of the system can be displayed 
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in the following equation  Ohm’s Law), which display the ratio between voltage  V) and 

current (I); 

 

                                                                      
 

 
                                                      eqn. 6 

 

Resistance of the system is independent of the applied frequency, but the AC current 

and voltage through the resistor are in phase with one another. 

The Nyquist plot of impedance is usually in the form of a semi-circle part as well as a 

linear part.  The semi-circle at higher frequencies is associated with electron transfer 

processes; whereas the linear lower frequencies behavior is typical of diffusion 

processes. 

 

 

Figure 16.  Complex EIS plot 

 

In a typical impedance plot for an electrochemical system, regions of mass-transfer and 

kinetic control are displayed at low or high frequencies (figure 16).  The determining 

factor of the system is the charge transfer resistance, Rct.  An alternative method for 

displaying impedance data is the bode plot in which the logarithm of the magnitude │Z│ 
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and the phase angle  ф) are presented as a function of the frequency of rotation  ω) 

(figure 17).  

 

Figure 17. On the left is the bode plot of Log │Z│ vs. log ω and on the right bode plot of 
ф vs. log ω. 

 

This 3-electrode system was used to study the electrochemical impedance of the 

electrochemical systems, using the predetermined potential window from CV.  The 

starting potential applied was -500 mV with subsequent potential steps (10 steps at 

+100 mV increments) until the final potential was reached (+500 mV).  The frequency 

range used was from 10 Hz to 100 kHz.  The electrochemical impedance spectroscopy 

was used to determine the charge transfer resistance values which were associated with 

the conductivity of the different prepared materials. 

UV/Vis Spectroscopy 

Many molecules absorb ultraviolet or visible light.  Ultraviolet (UV), visible (Vis) and near 

infrared (NIR) are used for adsorption spectroscopy or reflectance spectroscopy in the 

UV region.  Transition metal ions, highly conjugated organic compounds and biological 

macromolecules can all be quantitatively determined when using UV/Vis.  This 

technique measures transitions from the ground state to the excited state. 

UV/Vis analysis was performed by preparing a 1mg/ml solution of the PPDP material 

dissolved in tetrahydrafuran (THF).  The analysis was performed on a UV/Vis system 

between 200 and 900 nm.  The solution needed to be diluted as the adsorption of the 

 

 

 

 



 60 

material was above 1.  UV/Vis analysis was also performed on 2.3-diaminophenazine as 

well as filtered monomer solution (solution used for electropolymerization) which was 

yellow in colour.  The UV/Vis instrument used for analysis was a Nicolet Evolution 100 

using VisionPro software.  This technique was used to determine the amount of light 

absorbed by the polymer material as well as to determine energy bands of the material. 

 

Fluorescence Spectroscopy 

This technique deals with electronic and vibrational states.  Initially a species is first 

excited by absorbing a photon (quantum of light) from the ground state to the excited 

electronic state.  The loss of vibrational energy which allows the photon to reach the 

lowest vibrational state occurs as a result of the collision with other molecules.  

Fluorescence spectroscopy measures the transitions from the excited state to the 

ground state.  Excitation and emission wavelengths of the material were determined by 

initially completing the UV/Vis analysis of the material.  The analysis was performed 

using a Nicolet Evolution 100 instrument with VisionPro software.  Fluorescence 

spectroscopy was used to determine the fluorescent ability of the material for the 

potential application in dye sensitized solar cells.  

 

Scanning Electron Microscopy (SEM) 

This technique uses electrons to form images; it also has large field depths which allows 

for more of the sample to be focused on at one time.  It has a very high resolution which 

allows for sample magnification at the nanometer scale.  Electrons which interact with 

sample atoms produce backscattered electrons which are captured as the analytical 

signal. 
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Figure 18. Incident beam used in SEM analysis 

 

The incident beam travels through the electromagnetic field and lenses from the 

instrument and the beam is focused onto the sample.  When the beam hits the sample, 

electrons and x-rays are ejected from the sample, collection of these scattered electrons 

is performed by a detector.  SEM analysis will be used to study the morphology of the 

novel zig-zag polymer and the Au nanoparticles modified polymer system. 

The monomer proposed in this work is completely novel and has not been used in 

actuation evaluation before.  The two important parameters for efficient actuation in 

EAP are conductivity and solubility.  Conducting polymers are notoriously insoluble in 

common organic solvents and the solubility testing of the new EAP, will be evaluated 

using a variety of organic solvents.  
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CHAPTER 4: 

Results and Discussion: 

 

The characterization of starting materials, monomer and polymer for conformation of 

the desired product and its properties by spectroscopy, morphology and 

electrochemistry, will be presented. 
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4.1 Monomer material formation 

The synthesized monomer material, phenazine-2,3-diimino(pyrrole-2-yl) will be 

abbreviated PDP, for convenience. The monomer was synthesized by condensation 

reaction of 2,3-diaminophenazine and pyrrole-2-carboxaldehyde in the presence of 

acetic acid (Scheme 5).  The formation of Schiff base was catalyzed by dilute acid. Ideally 

the Schiff base formation takes place smoothly between pH 3-5.   Since dehydration is 

acid-catalyzed, it seems clear that an increase in acidity should result in an increase in 

the rate of dehydration and thus in the rate of reaction. The amine is nucleophilic owing 

to the unshared pair of electrons on nitrogen.  As the acidity of reaction medium 

increased, the amine was protonated and became non nucleophilic. Addition to the 

carbonyl group no longer took place. The reaction was a balance between two steps 

which depended upon the pH in opposite ways. Therefore, the reaction required a 

careful control of pH. The solution had to be acidic enough to protonate some carbonyl 

groups, but not so acidic that all of the amino groups were protonated.  At higher acid 

concentration, all the amine molecules were in the non-reactive protonated form.  At 

the other extreme of low acid concentration, none of the carbonyl compound was in the 

reactive protonated form.  In between these two extremes was the optimum pH (pH 3-

5) at which the rate of reaction was the greatest. At this pH, some of amines were 

protonated, but some were free.  The disappearance of the C=O in the PDP monomer 

material, indicated that the linkage between the 2,3-diaminophenazine and pyrrole-2-

carboxaldehyde occurred at the position where C=O bond was cleved.  This was evident 

in the reaction mechanism (Scheme 4) of the monomer.  The resulting monomer 

material was obtained in 60 % yield. 
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4.2 Starting Materials 

4.2.1 2,3-diaminophenazine (DAP) 

The DAP starting material was characterized in terms of spectroscopy and 

electrochemical behaviour.  FTIR data of the solid chemical displayed transmittance 

bands in the IR spectra which related to the DAP material, the three bands present at 

3429 cm-1, 3301 cm-1 and 3167 cm-1 are characteristic of the IR bands associated with 

primary amines.  Two of these bands are assigned to the –NH2 vibrational frequencies.  

The stretching vibration of the C=N band was observed at a wavenumber of 1641 cm-1.  

The C=C vibrational band present at 1487 cm-1 which are associated with the resonance 

of big π bonds (K. Thomas et al, 2001 and J. Kui et al, 1998).  The stretching vibration at 

1222 cm-1 was associated with that of an aliphatic amine. 
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Figure 19. FTIR spectrum of 2,3-diaminophenazine. 

 

The DAP was dissolved in a 1:1 ratio of DMF: 0.1 M HCl solution, this was then 

characterized by UV/Vis analysis.  The spectrum obtained displayed two characteristics 

absorption bands, the band at 260 nm was assigned to the benzene π → π * electronic 
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transition and the other peak at 440 nm, assigned to the n → π * electronic transition 

(P. Zhou et al, 2011 and J. Kui et al, 1998). 
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Figure 20. UV/Vis analysis of 2,3-diaminophenazine. 

 

The 1H NMR displayed four peaks with chemical shifts positioned at 7.93 ppm (4), 7.56 

ppm (3), 6.97 ppm (2) and 6.31 ppm (1).  Multiplets chemical shift which were in the 

aromatic region (between 6-8.5 ppm) were due to position 3 and 4, with a singlet 

(proton) being observed at position 2.  The chemical shift position at number 1 was due 

to the protons attached to the amine (-NH2) group (S. Liu et al, 2012). 
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Figure 21. 300 MHZ 1H NMR spectrum of 2,3-diaminophenazine in DMSO-d6 

 

Furthermore the electrochemical behaviour of the material was studied by dissolving 

DAP in aqueous solvent and then performing cyclic voltammetry.  According to K. 

Thomas et al, 2001, DAP was sensitive to reaction conditions such as light and oxygen.  

The cyclic voltammagram below represents DAP dissolved in 0.1 M HCl in the abscence 

of both light and oxygen (figure 21).  A reversible redox couple was present with a 

reduction (Epc) peak positioned at -330 mV and a oxidation (Epa) peak present at -263 

mV.  
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Figure 22. Cyclic voltammogram of 2,3-diaminophenazine in 0.1 M HCl. 

 

Data obtained from UV/Vis, FTIR and 1H NMR was in good agreement with published 

characteristic data, verifying the integrity of the chemicals used to synthesis of the 

monomer. 

  

4.2.2 Pyrrole-2-carboxaldehyde 

FTIR analysis of the solid chemical pyrrole-2-carboxaldehyde displayed a vibrational 

band at 3145 cm-1 which was due to the N-H stretching which was evident of secondary 

amines (figure 23).  The IR bands present at 3078 cm-1 and 2978 cm-1 were due to the C-

H stretching band, the former representing the aromatic C-H band and the latter was 

assigned to the aldehyde C-H band.  The intense band present at 1627cm-1 was due to 

the C=O aldehyde stretching.  The band present at 1441 cm-1 was assigned to C=C 

stretching, with the aromatic amine present (C-N) at 1317 cm-1 (B. Stuart, 2004). 
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Figure 23. FTIR spectrum of pyrrole-2-carboxaldehyde. 

 

1H NMR displayed two doublets (protons positioned at 2 and 4) and one triplet (proton 

at position 3) in the aromatic region (figure 24).  The proton (position 5) which was 

coupled to the aldehyde was the most intense band and was observed further 

downfield due to lower shielding effect compared to other aromatic protons.  The 

remaining peak was assigned to the N-H proton.  The data obtained below was 

compared to material safety data sheets (MSDS) and NMR documents obtained from 

Sigma-Aldrich and was found to be in good agreement. 
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Figure 24. 300 MHZ 1H NMR spectrum of pyrrole-2-carboxaldehyde in DMSO-d6 

 

The electrochemical behaviour of pyrrole-2-carboxaldehyde displayed a reversible 

couple (figure 25).  The reduction peak (Epc) was present at -600 mV and the oxidation 

(Epa) was present at 3.4 mV vs Ag/AgCl.  
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Figure 25. Cyclic voltammetry of pyrrole-2-carboxaldehyde in 0.1 M HCl. 
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4.3 Gold (Au) Nanoparticles 

Au nanoparticles were synthesized by the reduction of the chloride salt with sodium 

citrate (K. Grabar et al, 1995).  Gold a very stable and non-toxic material which was 

commonly used in dentistry,  is inert in air and is not affected by common reagents, it is 

also a good conductor of both heat and electricity.   

 

Scheme.7.Chemical reaction for Au Nanoparticle synthesis. 

 

Upon completion of the synthesis a deep red colloidal suspension of gold was obtained.  

UV/Vis absorption of Au nanoparticles (figure 26), showed an absorbtion band at 526 

nm which was also confirmed by V. Amendola et al, 2010.  According to A. Gopalan et al, 

2009 the band present at 526 nm corresponds to that of surface plasma resonance. 
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Figure 26. UV/Vis of Au Nanoparticles 

 

 

 

 

 



 71 

4.4 Characterization of PDP material  

FTIR analysis was performed on the material to confirm that the required monomer 

material was obtained.  The vibrational band present at 3702 cm-1 was related to the N-

H stretching.  The two bands present at 1574 cm-1 and 1469 cm-1, with the latter 

assigned to the C=N stretching and the former assigned to the C=C stretching (figure 27). 
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Figure 27. FTIR data of synthesized monomer, Phenazine-2,3-diimino(pyrrole-2-yl) PDP. 
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Table 7. Peak assignment for starting materials and monomer material. 

 
Peak Assignment Wavenumber / cm-1 

2,3-diaminophenazine 

NH2 3429 and 3167 

C=N 1641 

C=C 1487 

C-N 1222 (aliphatic amine) 

Pyrrole-2-carboxaldehyde 

N-H 3145 

C-H 3078 (aromatic) and 2978 (aldehyde) 

C=O 1627 (aldehyde) 

C=C 1441 

C-N 1317 (aromatic amine) 

Phenazine-2,3-diimino(pyrrole-2-yl) PDP 

N-H 3702 

C=N 1574 

C=C 1469 

 

The data obtained from the FTIR spectra of both starting materials and the monomer 

material provided evidence that the linkage between the two starting materials occured 

at the clevage of the aldehyde group.  This is supported by the disappearance of the 

C=O stretching band in the FTIR spectra of the monomer material (Table 7).  

Characterization of the monomer material provided support for the reaction mechanism 

provided, indicating that the desired monomer material was obtained (scheme 4, page 

number 37)  
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CHAPTER 5 

PPDP POLYMERIZATION AND CHARACTERIZATION 

 

5.1 Chemical Polymerization 

Polymerization of the monomer was achieved by the using FeCl3 as oxidant with stirring 

for 24 hours which allowed for complete polymerization to occur.  If oxidizing strengths 

and temperatures are too high, the rate of polymerization becomes too fast resulting in 

aggregated, low conductivity materials.  There are a few possibilities for material 

formation as a result of polymerization, which should be considered; 
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Scheme.8. Mechanism 1 for possible polymerization method (D. He et al, 2007). 

 

Oxidative polymerization to form 2,3-diaminophenazine which is rich in π-bonding and 

proton donor and acceptor sites.  Upon investigation it was discovered that this possible 

method could not be plausible since the binding sites indicated would not be present 
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during polymerization (scheme 8).   The amine bonding sites were lost during coupling 

of phenazine and pyrrole starting materials to form the monomer.   
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Scehem.9. Mechanism 2 for possible polymerization method (K. Thomas et al, 2001). 

 

2,3-diaminophenazine being light sensitive needs to be appropriately stored; to avoid 

exposure to light and oxygen.  If exposed to these conditions; the colour as well as the 

structure will change.  Our synthesized monomer no longer displayed free amine groups 

which formed the basis of coupling during the second polymerization mechanism 

(scheme 9).  Hence the suggested product is also not feasible. 
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Scheme.10. Mechanism 3 for possible polymerization method (T. Vernitskaya et al, 

1997) 

 

The possibility of the monomer coupling via polymerization of the pyrrole functionality 

was deemed the most feasible mechanism for formation of the zig-zag polymer (scheme 

10).  FTIR and 1H NMR characterization confirmed the presence of the secondary amine 
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(NH) on the pyrrole ring, which could be activated to polymerize and couple to at least 

another monomer unit.   The rigid geometry of the synthesized monomer material 

precluded cyclisation.  Therefore the proposed link between two monomer units could 

involve at least a two unit (possibly more) polypyrrole chain linking the phenazine hinge 

molecule into a zig-zag polymer configuration (figure 28). 

  

The polymerization of pyrrole by chemical and electrochemical polymerization was 

produced under ambient conditions.  Yield and conductivity of PPDP was affected by the 

solvent used, oxidant used, mixing ratios, temperatures and polymerization time.  

Shorter times and lower temperatures led to materials with greater conductivities.  The 

yield obtained for the polymer after polymerization was found to be 45 %. 
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Figure 28. Zig-zag polymer material, poly(Phenazine-2,3-diimino(pyrrole-2-yl) PPDP. 
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5.2 Electrochemical Polymerization 

Electrochemical polymerization of the monomer material led to the same product 

formation as the chemically synthesized material; however there are a few advantages 

over the chemical process.  The product produced during polymerization is an 

electroactive thin film on the surface of the electrode and has higher conductivities.  

The purity of the material on the surface of the electrode is near 100 %, which provided 

the possibility of mass and film thickness control.  The properties of the material could 

be controlled during polymerization by controlling the electrochemistry condition.  The 

polymerization conditions used were at a scan rate of 50 mV/s and between a potential 

window of -400 mV to +700 mV. 

 

5.3 Polymer Characterization 

5.3.1 Electrochemical Behaviour of polymer material system 
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(a)                                                                                      (b) 

Figure 29. CV of 2,3-diaminophenazine (a) and pyrrole-2-carboxaldehyde (b). 

 

Cyclic voltammetry of individual starting materials, monomer and the polymer was 

performed in order to ascertain the redox chemistry for the progression of the 
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polymerization mechanism.  The monomer was chemically synthesized to produce 

electrochemically synthesized polymer.  The Au nanoparticle modified polymer was 

produced from a starting solution containing a mixture of monomer and Au 

nanoparticles.  

 

The electrochemistry of the starting materials could be clearly distinguished from 

monomer and polymers.   2,3-diaminophenazine displayed prominent redox peaks at -

263 mV and -330 mV, while the pyrrole-2-carboxaldehyde  displayed a reversible redox 

couple at -614 mV and 3.4 mV (figure 29). The modified and unmodified polymer 

displayed very similar redox electrochemistry. (figure 30). 
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Figure 30. Electropolymerization to form the polymer PPDP (a) and PPDP-Au (b). 

 

The upper potential limit during polymerization was controlled to avoid over oxidizing 

and degradation at high potentials, while greater negative potentials led to hydrogen 

evolution.  The electrochemical behaviour of the material (increase in peak current) 

indicated that a conducting polymer was formed.  The electrochemical signature clearly 

indicated that the new material produced at the electrode surface was not due to the 

polymerization of the starting materials.  The cyclic voltammagram in figure 31(a) 
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displayed 2 fully reversible redox couples A-A’ and B-B’.  The polymerization solution 

was not homogeneous since it contained insoluble monomer, which created the 

possibility for entrapment of insoluble monomer material during the polymerization.  

The A-A’ redox couple displayed an anodic peak at -50.7 mV and a cathodic peak at -

107.4 mV.  The B-B’ redox couple displayed behaviour of the unreacted material.  

Extraction of the pure polymer and its subsequent electrochemical investigation will be 

presented later (chapter 6).   

 

The electrochemical behavior of 2,3-diaminophenazine displayed a reversible couple 

which was associated with the redox couple A-A’.   The figure 31(b) displayed one 

reversible couple A-A’ and one irreversible peak B, peak B was assigned as before. 
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Figure 31. Characterization of PPDP (a) and PPDP-Au (b) in 0.1 M HCl solution at scan 
rates ranging between 100 – 250 mV/s. 

 

Table 8. Current values obtained from the above cyclic voltammogram for both PPDP 
and PPDP-Au (figure 33). 

PPDP 

Scan Rate (mV/s) ipa / μA (A) ipc / μA (A') ipa/ipc (A-A') 

100 1.6698 1.6411 1.02 

150 2.7321 2.7799 0.98 

200 3.4880 3.5359 0.99 

250 4.6267 4.9426 0.94 

PPDP-Au 

Scan Rate ipa / μA (A) ipc / μA (A') ipa/ipc (A-A') 

100 2.0789 0.9145 2.27 

150 2.6815 1.5170 1.77 

200 3.1286 1.9641 1.59 

250 3.9449 2.7222 1.50 
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The current ratios of Ipa/Ipc for the PPDP system ranged from 1.02 (100 mV/s) to 0.94 

(250 mV/s) for the A-A’ redox couple which indicated a one electron system.  The 

modified PPDP-Au system displayed one redox couple A-A’ with an Ipa/Ipc ratio which 

ranged from 2.27 (100 mV/s) to 1.50 (250 mV/s) which indicated a two electron process.  

The peak separation (table 9) of PPDP and PPDP-Au for redox couples A-A’ respectively 

displayed properties of a fully reversible system.  The change in peak separations with 

scan rates indicated that the system is diffusion controlled with electron movement 

taking place across the polymer backbone (chain). 

 

Table 9. Peak separations obtained from the PPDP and PPDP-Au system 

PPDP 

Scan Rate (mV/s) Epa (A) / mV Epa (A') / mV ΔEp(A-A') / mV 

100 -41.1 -92.9 51.8 

150 -41.1 -76.6 35.5 

200 -41.1 -57.4 16.3 

250 -52.1 -52.1 0 

PPDP-Au 

100 -67.5 -81.0 13.5 

150 -67.5 -67.5 0 

200 -66.2 -64.8 1.4 

250 -66.2 -51.3 14.9 
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Figure 32. Randles-Sevcik for PPDP, plot of current vs square root of scan rate. 

 

 

Figure 33. Randles-Sevcik for PPDP-Au, plot of current vs square root of scan rate. 
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The Randles-Sevcik plots for figures 31(a) and 31(b) were used in the calculation for the 

diffusion coefficient values of both systems.  Upon determination that the systems were 

diffusion controlled, the diffusion coefficient values were determined using equation 7 

(A. Bard et al, 2001); 

 

                                                    = (2.687x105) 3/2 1/2 0
1/2                                                eqn. 7  

 

Where; 

 0 = Diffusion Coefficient in cm2/s 

   = peak current 

n = no. of electrons involved 

C = concentration of solution in mol/cm3 

A = area of the electrode in cm2 

  = scan rate 

 

Table 10. Diffusion coefficient values of PPDP and PPDP-Au systems. 

 PPDP PPDP-AU 

 A-A’ A-A’ 

 Oxidation Reduction Oxidation Reduction 

Diffusion Coefficient (cm.s-1) 1.0287 x 10-2 8.4289 x 10-3 3.1179 x 10-3 3.2984 x 10-3 

 

The standard reduction potential for Au reduction, according to D. Ebbing et al, 2002 

was found to be +1.50 volts.  However the signature electrochemistry for Au was not 

evident in the modified polymer.   The surface concentration of the polymer was 

determined using the Brown Anson equation by plotting peak currents vs. scan rates 

(100 – 250 mV/s), as follows; 
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                                    Ip = n2 F2 Γ*
PPDP-PVSA (A v/4RT)                                           eqn. 8 

 

Where; 

F = Faradaic constant (96485 C/mol) 

A = Electrode surface area (0.071 cm2) 

R = Molar gas constant (8.314 J.K-1.mol-1) 

T = Temperature (298 K) 

n = no. of electrons 

Γ*= surface concentration 

Ip = peak current 

v = scan rate 

 

The surface concentration values determined were dependent on the scan rate (table 

11).  The values ranged between 2.5036 x 10-7 mol.cm-2 at 100 mV/s to 2.7749 x 10-7 

mol.cm-2 at 250 mV/s for PPDP and 3.1170 x 10-7 mol.cm-2 at 100 mV/s to 2.3659 x 10-7 

mol.cm-2 at 250 mV/s for PPDP-Au. 

 

Table 11. Surface concentration of PPDP and PPDP-Au systems of the redox couple A-A’ 
over various scan rates. 

Surface Concentration 

PPDP 
Scan Rate (mV/s) Oxidation / mol/cm2 Reduction / mol/cm2 

100 2.5036 x 10-7 2.4606 x 10-7 

150 2.7293 x 10-7
 2.7787 x 10-7

 

250 1.4938 x 10-7 2.6508 x 10-7 

250 2.7749 x 10-7 2.9643 x 10-7 

PPDP-Au 

100 3.1170 x 10-7 1.3712 x 10-7 

150 2.6804 x 10-7 1.5164 x 10-7 

200 2.3455 x 10-7 1.4725 x 10-7 

250 2.3659 x 10-7 1.6326 x 10-7 
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(a)                                                                                (b) 

Figure 34. OSWV of PPDP (a) and PPDP-Au (b) both in 0.1 M HCl solution. 

 

Formal potentials (Eo’) were calculated using the OSWV’s in figure  4(a) and 34(b) and 

were found to be 26.95 mV for PPDP and 13.4 mV for PPDP-AU vs. Ag/AgCl.   

Diffusion coefficient values obtained for the reversible redox couples of PPDP and PPDP-

Au indicated that the deviation from reversibility did not involve permanent electronic 

changes in the polypyrrole film (A. Bard et al, 2001). 

 

5.3.2 Electrochemical Impedance Spectroscopy 

Data collected was in the potential range between -500 mV to 500 mV for the 

PPDP/PVSA system and between -400 mV to 400 mV for the modified PPDP-Au/PVSA 

system, potential steps were performed in 100 mV increments.  The potential range was 

determined by using the redox window of the respective cyclic voltammagrams, this 

was used for the assessment of formal potential values determined from square wave.   

 

 

 

 

 



 85 

100 150 200 250 300 350 400 450
0

-100

-200

-300

-400

-500

-600

-700

-800

-900

-1000

400 mV

 

 
Z

''

Z'

-500 mV

190 195 200 205

0

-10

-20

-30

-40

-50

-60

-70

-80

400 mV

 

 

Z
"

Z'

-400 mV

 

(a)                                                                                  (b) 

Figure 35. EIS spectra of PPDP (a) with +100 mV potential steps starting from -500 mV to 
400 mV (vs Ag/AgCl) and PPDP-Au (b) with +100 mV potential steps starting from -400 
mV to 400 mV (vs Ag/AgCl). 

 

According to A. Eckermann et al, 2010, the Nyquist plot displayed linear spectra that 

never approached the ZRE (real impedance) axis, but instead both systems increasingly 

approached large ZIM (imaginery impedance) values, figure 35(a) and 35(b).  The Randles 

circuit is one of the simplest models for electron transfer for a redox species attached to 

a monolayer.  The circuit can determine individual elements by measuring impedance 

over a wide variety of frequencies.   

 

  

(a)                                                                 (b) 

Figure 36. Randles equivalent circuit of PPDP (a) and PPDP-Au (b). 

 

Rs Rct

CPE

Element Freedom Value Error Error %

Rs Free(+) 106.9 0.43384 0.40584

Rct Free(+) 3369 132.48 3.9323

CPE-T Free(+) 1.3752E-06 4.1249E-08 2.9995

CPE-P Free(+) 0.88584 0.0033258 0.37544

Chi-Squared: 0.00020243

Weighted Sum of Squares: 0.0052632

Data File: C:\Users\Meryck\Desktop\Master's\Data\EI

S 2013\09042013\PDPP000_00Z.CRV

Circuit Model File:

Mode: Run Fitting / Freq. Range (0.001 - 1000000)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

Rs Rp

C

Element Freedom Value Error Error %

Rs Free(+) 190.2 0.42011 0.22088

Rp Free(+) 1E20 1E20 100

C Fixed(X) 0 N/A N/A

Chi-Squared: 0.00097361

Weighted Sum of Squares: 0.025314

Data File: H:\PPDP-Au EIS\PPDP-Au 4009_00Z.CRV

Circuit Model File:

Mode: Run Fitting / Freq. Range (0.001 - 1000000)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus
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Quantification of the EIS results was achieved by electrical equivalent circuit modelling  

based on typical Randles circuits.  The circuit for PPDP (figure 36(a)) included a solution 

resistance between the working and reference electrode.  The constant phase element 

 CPE) exponent was found to be α = 0.85 which was the representation of capacitor 

behaviour (double layer capacitance).  The deviation from unity was due to 

inhomogeneity at the interface.   The charge transfer resistance (Rct) resulted from a 

single kinetically controlled electrochemical reaction.  The Au modified PPDP (figure 

36(b)) was modelled  as before but the interfacial capaictance was modelled as a pure 

capacitor in the equivalent circuit fitting. The capacitance for the impedance data was 

obtained using the following equation (J. Jorcin et al, 2006, J. Chang et al, 2007 and R. 

Ahmed et al, 2012); 

 

                                                   CPE = (1/ZCPE . j . ω)
-α                                              eqn. 9 

Where; 

α = fractional exponent  values between 0 to 1) 

j = imaginery number  = √1) 

ω = angular frequency  ω = 2πƒ) 

ZCPE = Real Impedance 

CPE = Capacitance 

 

Both systems displayed linear behaviour throughout the impedance spectra (table 12). 

Incorporation of the Au nanoparticles into the polymer matrix was seen to reduce the 

charge transfer resistance from 4589.45 to 314.76 Ω, which confirmed that the objective 

in terms of improving conductivity was successfully demonstrated for the 

electropolymerized PPDP polymer. 
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Table 12. Impedance data obtained from PPDP and PPDP-Au. 

IMPEDANCE DATA 

Circuit Elements PPDP PPDP-Au 

Solution Resistance (RS) / Ω 106.44 192.60 

Constant Phase Element (CPE) / F 0.85 n/a 

Capacitance / F 3.46 x 10-6 7.14 x 10-6 

Charge Transfer Resistance (Rct) / Ω 4589.45 314.76 
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5.4 Electrical conductivity of Polymer 

Various methods for conductivity  σ) measurements were performed on the PPDP 

polymer material, but could not be repeated for the Au-PPDP polymer.  The research 

was conducted as a partnership between University of the Western Cape (South Africa) 

and the University of Cergy Pontoise (Paris, France) funded by French Embassy (RSA) 

bursary and support from the European Scientific network artificial muscle (ESNAM,FP7 

framework).  The synthesis and characterization of the polymer materials are the initial 

investigations towards developing a suitable material for actuation applications. 

 

The conductivity measurements were conducted at University of Cergy Pontoise and 

included 4-probe measurement, cyclic voltammetry and electrochemical impedance.  

The polymer was compressed into a pellet (thick film) as instruments had special cells 

for conductivity measurements.  All four probes of the Universal Probe combined with 

the RM3000 Test Unit were in contact with the pellet surface, the measurement was 

performed and the data obtained exceeded the maximum limit of the instrument.  The 

measurement range of the instrument is from 10-3 to 108 Ω.  The conductivity value was 

too low for the instrument to measure.   sually conduc ng polymers have high 

conduc vi es of up to magnitudes of    500 S/cm in the doped state (C. Chen et al, 2011).  

The 4-probed instruments produces more accurate results compared to the 2-probed 

instrument due to the fact that the 4-probe has two reference probes on either side of 

the pellet (S. Ma et al, 2007). 

 

Table 13. Conductivity measurements using the 4-probed instrument 

PPDP (S/m) PPy (S/m) PPy/COOH (S/m)* 

Min. 10-3 102 10-2 

 J. Lee et al, 2006. 
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Conductivity of the polymer under investigation PPDP (max – limit of the instrument 

indicating low conductivity) was significantly lower than that of Polypyrrole (PPy – 102).  

The modified PPy pellet PPy/COOH has higher conductivity 10-2 (in the range of a semi-

conductor, 102 to 10-6 S/m) than that of PPDP even after some conductivity has been 

lost.  The loss of conductivity can be accounted for by the disruption of the π-electron 

configuration due to harsh oxidation conditions (J. Lee et al, 2006).  

 

Physical properties of the polymer pellet were found to be; thickness (l) = 0.15 mm = 

0.015 cm and Surface (s) = 1.25 cm2.  Conductivity by means of I/V curves performed by 

using a Biologic Potentiostat. The pellet was sandwiched between two electrodes and by 

means of Cyclic Voltammetry (CV), the plot of Current (I) vs. Potential (V) was recorded.   

The CV curve was performed at a low scan rate of 20 mV/s between a potential window 

of -1V and +1V, with the limit of the instrument almost reached.  Resulting from this CV, 

the slope of the I/V curve gave the resistance of the pellet, which was found to be 285 

MΩ.  The conductivity was found to be 4.21x10-11 S/cm, which was determined by using 

the following equation; 

 

                                                     σ = 1/R x Ӏ/s                                                 eqn. 10 

where; 

σ = conductivity 

R = resistance 

l = thickness 

s = surface   

 

An electrochemical impedance experiment (0.01Hz to 100 kHz) was setup in order to 

determine the conductivity of the thick film.  Upon determination of real and imaginary 

parts  Z’ and Z”) of impedance, the resistance was determined and was found to be 350 
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kΩ  determined at the highest frequency).  The equation above was used for the 

determination of the conductivity value of the polymer, the conductivity using this 

calculation was found to be 3.43x10-8 S/cm.   

 

An alternative calculation was used for the Dielectric Interface which was used to 

confirm the conductivity result obtained (A. Hasim et al, 2012), the conductivity using 

the equation below was found to be 4.43x10-10 S/cm; 

 

                                          σAC = 2π x ƒ x Cd/A x tan δ                                                 eqn.11 

 

with; 

ε r = Cd/εoA   and  ε rεo = Cd/A 

Where; 

ƒ = frequency 

d = thickness 

C = capacitance 

A = area of the cell  

tan δ = εi/εr  with; εi = imaginary pemittivity; εr = real permittivity;  

εo = absolute dielectric constant 

 

 

Determination of the thick film conductivities by analysis of all three techniques 

revealed that relative to polypyrrole and 2,3-diaminophenazine, the conductivity of 

PPDP is relatively low.  Nanobelts which are identified in the form of 2,3-

diaminophenazine assemblies display a direct current (DC) conductivity of 1.38x10-6 

S/cm (D. He et al, 2007).  Polypyrrole which is an insulator by nature, has the ability to 

display good electrical conductor ability (oxidized derivatives of polypyrrole), with 
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conductivity ranges between 10-3 to 10 S/cm.  Dopant solutions as well as temperature 

conditions both affect the rate of polymerization and the relative conductivity of the 

polymer material (U. Ramelow et al, 2001).  Due to these factors the conductivity of 

polypyrrole is temperature dependent which displayed transitions from a semi-

conducting material to that of a metallic material, this resulted from the increase in 

temperature (V. Shaktawat et al, 2008). Upon completion of all the conductivity tests, it 

was discovered that the PPDP material has a very low conductivity or loses its initial 

conductivity.  The conductivity of polymer materials can be slightly improved by two or 

three magnitudes by the addition of a second dopant usually in the form of an inert 

solution including; DMSO, DMF and THF (C. Chen et al, 2011).  Incorporation of Gold 

(Au) Nanoparticles leads to a significant increase in electrical conductivities of polymer 

materials (K. Choi et al, 2012). 
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5.5 FTIR of  Polymer 
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Figure 37. FTIR of chemically (a) and electrochemically (b) polymerized polymer 
material. 

 

Figure 37 displayed the FTIR of the polymer material with the electrochemically 

polymerized material (curve b) displaying more intense bands than the chemically 

synthesized material (curve a).  The electrochemically synthesized material was 

prepared by polymerizing onto the surface of a glassy carbon electrode (GCE).  The 

purity of the polymer at the electrode surface is in direct relation as to how intense the 

bands are.  Both polymerization methods yielded the same material when investigated 

by FTIR. Vibrational frequency bands are present at 2942 cm-1, 2769 cm-1, 2472 cm-1, 

1737 cm-1, 1532 cm-1 and 950 cm-1 respectively, data displayed in table 14.  
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Table 14. FTIR of PPDP 

Peak Assignment Wavenumber / cm-1 

poly(Phenazine-2,3-diimino(pyrrole-2-yl)) PPDP 

C-H 2942 (aromatic) 

C=N 1737 

C=C 1532 

=C-H 950 

 

5.6 Solubility 

Polymer solubility testing was performed using various organic solvents including; 

DMSO, THF, DCB, Chloroform, DMF, Methanol, Ethanol, Acetone and various strong 

acids.  Analysis performed revealed that the polymer material was either insoluble or 

partially soluble in these common organic solvents even by ultrasonic treatment (I. 

Kukoyama et al, 2002). The insolubility is in direct relation to the stiffness of the 

polymer backbone which creates problems for large scale applications (S. Taj et al, 1992, 

J. Yoo et al, 2009).  Solubility testing improvements have been achieved by S. Taj et al, 

1992 with the incorporation of polar functional groups or long flexible alkyl chains in the 

polymer backbone; to prepare water or organic soluble polymers.   

 

5.7 Spectral properties (absorption – emission) 

After the initial characterization (FTIR, electrical conductivity and solubility testing) the 

polymer material was dedoped using Hydrazine (35 % wt solution in water), as the 

polymer material was in the oxidized state.  This was done by mixing 10 mL of Hydrazine 

with 30 mL of H2O and approximately 100 mg PPDP.  The solution was then filtered to 

obtain the dedoped polymer, which was then dried at 70 ⁰C under vacuum.  Hydrazine is 
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a reducing agent which was used for the removal of the counter-ion and the charge on 

the backbone. 

 

 

Scheme 11. Dedoping of PPDP. 

 

UV/Vis analysis was performed by dissolving the polymer in THF (concentration of 1 

mg/ml).  The UV/Vis spectra displayed peaks in the visible region (421 nm) and in the IR 

region (272 nm), from this data the energy gap was determined from the onset of the π-

π* transition peak.  The UV/Vis spectra in figure 38(a) displayed the monomer material 

with a peak present in the visible region at 414 nm (curve a), 2,3-diaminophenazine 

(curve b) displayed bands at 260 nm and 440 nm respectively (P. Zhou et al, 2011 and J. 

Kui et al, 1998).  The polymer material in figure 38(b) displayed bands at 272 nm 

 related to π-π transitions) and 417 nm  related n-π transitions).  
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Figure 38. UV/Vis of 2,3-diaminophenazine (a), monomer material (a) and polymer (b) 
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UV/Vis spectrum of PPDP dissolved in THF represented in figure 38(b), figure 38(a) 

displayed the UV/Vis of PDP (curve a) dissolved in equimolar ratio of DMF:0.1 M HCl 

solution and 2,3-diaminophenazine (curve b) was dissolved in DMF:0.1 M HCl solution.  

According A. Nan et al, 2010, the conducting polymer polypyrrole displayed a UV/Vis 

band present at 480nm and even in a colloidal solution of Ag/PPy the band is present at 

417nm. 

 

                                                        Eg = 1240/λonset                                                       eqn.12 

 

The λ onset of the PPDP material was found to be 501 nm, with the resulting band gap 

(Eg) being 2.48 eV, this was compared to the band gap of polypyrrole studied by V. 

Shaktawat et al, 2008.  V. Shaktawat et al, 2008, studied the band gaps of polypyrrole 

which was doped with different acids, band gaps were found to be 2.38 (Cl-), 2.39 (SO4
2-) 

and 2.33 (DBS-) eV respectively.  Determination of the band gap led to the 

determination of the type of material present.  According to M. Hoffman et al band gaps 

< 3eV represented materials with semiconductor behavior where larger band gaps (> 

4eV) are evident of insulator materials.   

 

The onset wavelength of PPDP was used in the determination of the photoluminescence 

of the material.  Figure 39 displayed a photoluminescent band at 502 nm which 

according to K. Shinde et al, 2013, was evident of a green photoluminescence.  

Photoluminescent studies of polypyrrole have revealed that photoluminescence 

displayed a band at 395 nm according to S. Ashokan et al, 2005, and 540 nm for both 

chemically and electrochemically synthesized polypyrrole. 
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Figure 39. Photoluminescence of PPDP (polymer material) dissolved in THF. 

 

 

5.8 Thermal Analysis 

Thermogravimetric analysis of figure 40 (curve a - chemically synthesized polypyrrole) 

displayed initial segment weight loss below 100 ⁰C which can either be attributed to 

desorption of water or solvent.  The second segment weight loss was caused by the 

remaining oxidation agent as well as the carbonization and main-chain scission of 

polypyrrole (H. Chiu et al, 2011).  According to T. Sandu et al, 2012, functionalized 

polypyrrole was more stable than pure polypyrrole which was due to the high stability 

of methylene-ammonium salt.  Polypyrrole displayed the highest weight loss compared 

to curve a and curve b.  The initial weight loss of curve c was associated with 2,3-

diaminophenazine, resulted from 20 % weight loss of –NH2 groups (approximately 300 

⁰C).  Higher temperatures displayed a weight loss which may be due to the oxidative 

decomposition in air.  The material displayed high stability up to approximately  00 ⁰C 

 

 

 

 



 97 

(D. He et al, 2007).  PPDP (curve b) displayed an initial weight loss of 10 % which may be 

due to water or solvent loss below 100 ⁰C.  Higher temperature values revealed further 

weight loss which could be attributed to the main-chain scission of PPDP, the polymer 

material displayed high thermal stability as the material had not reached 100 % weight 

loss degradation.  The high thermal stability may be attributed to the linkage during 

polymerization resulting in the maximum thermal degradation not being reached.   
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Figure 40. TGA analysis of the 2,3-diaminophenazine, Polypyrrole and PPDP over a 
temperature ramp of 20 to 60 ⁰C. 

 

The reaction to form polyaniline (PANI)/DBS complex displayed high thermal stability 

which was attributed to the crosslinkage during this reaction, maximum degradation of 

the complex was not reached due to this thermal stability (V. Schmidt et al, 2004).  K. 

Castagno et al, 2011, studied the thermal behavior of the complex PPy/SDBS (sodium 

dodecylbenzene sulfonate) which revealed that the complex had not reached the 

maximum degradation as 35% residue remained after analysis. 
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DSC of conducting polymer complexes can display various thermal behaviour, with the 

complex of PPy/SDBS (sodium dodecylbenzene sulfonate) displayed no endothermic 

melting transitions (K. Castagno et al, 2011).  PANI/lignosulfonic acid complex however 

displayed DSC properties different to that of the PPy complex, with the transitions 

ranging from 1 0 to 180 ⁰C and enthalpy values between 10 to  0 J/g  E. Hrehorova et 

al, 2011). 
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Figure 41. DSC analysis of PPDP, which displayed two endothermic transitions. 

 

A. Cirpan et al, 2003, studied the thermal behaviour of poly(p-phenylene vinylene) and 

determined that there was 3 transitions present in the material.  The initial transition 

was due to the solvent removal from the polymer, the second transition was related to 

the elimination reaction.  The third transition was associated with the degradation of 

the polymer.  Figure 41 displayed two endothermic transitions in the polymer material, 

with the first transition present at 160 ⁰C which represents the solvent removal from 

the polymer.  The second transition at 201.9 ⁰C may be associated with the degradation 
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of the polymer material.  Thermal analysis of the material revealed that the polymer 

material was thermally stable at higher temperatures, proved by thermogravimetric 

analysis.  DSC measured the amount of heat absorbed or released by the polymer 

material during temperature transitions. 

 

 

5.9 Surface Morphology 

Surface morphology was performed in order to differentiate between materials 

 

 
(a)                                                             (b) 

 
  (c)                                                     (d) 

Figure 42. SEM of Polypyrrole (a), Au nanoparticles (b), PPDP (c) and PPDP-Au modified 
system (d). 
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Figure 42(a) displayed cauliflower shaped cluster of polypyrrole electropolymerized 

onto the surface of a carbon screen print electrode in the presence of LiClO4 dopant 

solution.  Gold nanoparticles displayed spherical shaped particles present which were 

prepared and then drop coated onto the surface of a screen print carbon electrode.  The 

Au nanoparticles displayed in figure 43 showed spherical shapes with sizes ranging from 

69.78 to 87.40 nm. 

 

 

Figure 43. Spherically shaped Au nanoparticles 

 

The representation in figure 42(c) displayed spherical shaped particles which are due to 

the electrochemically synthesized polymer material.  The polymer system was modified 

with Au nanoparticles (PPDP-Au) displayed similar shaped sphere particles to the 

unmodified polymer system (figure 42(d)). 

 

Based on the evidence provided, the novel monomer material was successfully 

synthesized and characterized in terms of spectroscopy, electrochemistry and 

morphology.  FTIR analysis of the monomer material was used to confirm that 
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crosslinking occurred between starting materials, with the functional groups present in 

the material being the main focus.  Crosslinking of starting materials led to the 

formation and design of the zig-zag molecule, formed by chemical and electrochemical 

polymerization.  Extensive evaluation of this zig-zag molecule was performed to 

determine if actuation possibilities could be met.  The zig-zag molecule was 

electrochemically synthesized as a thin film and studied by cyclic voltammetry which 

revealed the redox behaviours, diffusion rates, formal potentials and peak separations 

of the material.  Electrochemical impedance spectroscopy of the thin film displayed a 

high charge transfer resistance value, 4589.455 Ω which was evident of low conductivity 

values.  Improvement of the conductivity of the thin film, was made possible by the 

incorporation of gold nanoparticles, the resulting charge transfer value obtained was 

found to be 314.7556 Ω  evident of an increase in conductivity by reduction in 

resistance).  Chemical preparation of the polymer material was used to study the optical 

behaviour of the material, band gap values determined from UV/Vis were found to be 

2.48 eV (indicative of semi-conductive behaviour).  Various methods used for 

measurements of conductivity values for thick films, confirmed the values obtained 

from thin films.  The values obtained for these thick films ranged between     10-8 to     10-

11 S/m.  Thermal behaviour of the material displayed properties of high thermal stability 

(polymer did not degrade at high temperatures).  
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CHAPTER 6 

Verification of the Monomer Composition 

 

This chapter presents a comparison between unfiltered solution of monomer (yellow 

solution with black precipitate) and the filtered solution (yellow in colour with no 

precipitate) in terms of Polymerization, purity by Cyclic Voltammetry, Square Wave 

Voltammetry, UV/Vis Spectroscopy and FTIR will be discussed. 

 

Electropolymerization of the monomer was performed as in the previous chapter, 

further investigation into the solution revealed that some precipitate remained.  This led 

to further investigation into the polymerization solution, the solution was filtered and 

the polymerization of monomer was then performed again.  The polymerization solution 

used was from previous experiments which displayed different cyclic voltammagrams to 

that of a freshly prepared solution. 
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Figure 44. Polymerization of the monomer of unfiltered and filtered solutions displayed 

the same voltammagram 
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Determination of the polymerization cyclic voltammagrams was not conclusive enough 

for comparison.  Their respective electrochemical behaviour was studied in 0.1 M HCl 

for the determination of redox behaviour.  The cyclic voltammogram in figure 45 

displayed the comparison between the filtered and unfiltered solutions with a potential 

range between ±1.5 V at a scan rate of 150 mV/s. 
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Figure 45. Comparison of filtered and unfiltered solutions of PPDP. 

 

Square wave analysis was also performed on the solution and the resulting formal 

potentials were calculated in figure 46.  The formal potential was calculated and was 

found to be 10.27 mV (filtered), 1.15 mV (unfiltered).  The filtered solution displayed a 

fully reversible redox couple of high purity, the unfiltered sample displayed an oxidation 

peak which was split into three peaks.  This could be the result of the unreacted 

material absorbing to the surface of the electrode before the thin polymer film.  
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Figure 46. SWV of filtered and unfiltered PPDP at 200 mV/s. 

 

Data obtained from the electrochemical behaviour can be used for comparison but 

further experimental data will be needed.  The optical properties of the filtered solution 

and the polymer were studied in terms of UV/Vis analysis and later FTIR.  The UV 

analysis of the filtered yellow solution displayed an absorption band present at 415 nm 

and the polymer bands present at 272 nm and 417 nm (figure 47(b)).  The assignment of 

the bands present in figure 47(a) was already assigned and characterized (chapter 5.7, 

page 91). 
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(a)                                                                                   (b) 

Figure 47. UV/Vis analysis of PPDP dissolved in THF (a), filtered yellow monomer 
solution (b) dissolved in a ratio of 1:1 of DMF and HCl. 

The FTIR analysis of the filtered solution was performed and compared to the monomer 

material.  The filtered solution represented in figure 48 displayed bands present at 3383 

cm-1, 2952 cm-1, 1649 cm-1 and 1390 cm-1 respectively.  
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Figure 48. FTIR analysis of the filtered solution 
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Table 15. Filtered solution compared to the monomer material. 

Peak Assignment Wavenumber / cm-1 

Phenazine-2,3-diimino(pyrrole-2-yl) PDP (Monomer) 

N-H 3702 

C=N 1574 

C-C 1469 (aromatic) 

Filtered Solution (Monomer) 

N-H 3383 

C-H 2952 (aromatic) 

C=N 1649 

C-C 1390 (aromatic) 

 

The remaining unknown precipitate of the filtered solution was studied in terms on FTIR 

and the respective spectrum is displayed below in figure 49.  This was done in order to 

determine what the unknown precipitate was.  The precipitate was compared to the 

starting materials as well as the monomer.  The FTIR spectrum displayed stretching 

bands present at 3400 cm-1, 1615 cm-1, 1425 cm-1and 1192 cm-1. 
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Figure 49. FTIR of unknown precipitate remaining after filtration. 
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Upon determination of the FTIR data it was revealed that the precipitate displayed 

similar stretching bands to that of 2,3-diaminophenazine, displayed in table 16. 

 

Table 16. Comparison of Unknown Precipitate with starting materials. 

Peak Assignment Wavenumber / cm-1 

2,3-diaminophenazine 

N-H 3429, 3301 and 3167 

C=N 1641 

C=C 1487 

C-N 1222 (aliphatic amine) 

Pyrrole-2-carboxaldehyde 

N-H 3145 

C-H 3078 (aromatic) and 2978 (aldehyde) 

C=O 1627 (aldehyde) 

C=C 1441 

C-N 1317 (aromatic amine) 

Unknown Precipitate 

N-H 3400 

C=N  1615 

C=C 1425 

C-N 1192 (aliphatic amine) 

 

Comparison of the unknown precipitate with the starting materials revealed that the 

unknown precipitate had similarities to that of the both starting materials.  The 

stretching band that was used for the determination of the unknown precipitate was 

that of the aliphatic amine group present in 2,3-diaminophenazine.   

 

According to the experimental data obtained, it can be convincingly concluded that the 

yellow filtered solution is a pure form of the synthesized monomer material in solution.  

The solubility testing of the material in these common organic solvents could then be 

used as the synthesized product. 
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CHAPTER 7 

Conclusion and Future work 

7.1 Conclusion 

 
Actuation of polymer systems has been widely studied due to its ability to behave in the 

manner in which our muscles move.  In this work different actuation mechanisms were 

presented including pneumatic muscle actuators, piezoelectric actuators and 

electroactive polymer actuators.  Properties of these actuators revealed that the most 

favourable properties were that of electroactive polymers actuators.   

 

Further investigation into these actuators were necessary to fully understand the 

materials used in these actuators.  Two categories of electroactive polymers include; 

electronic and ionic electroactive polymers were explored with the main desired 

advantages for actuation favouring the ionic group.  Conducting polymers (ionic 

electroactive polymers) were used as the materials in the actuators due to the ability of 

these materials to expand and contract upon electrical stimulus.  In this work the zig-zag 

molecular design conducting polymer was extensively explored.  Modification by 

crosslinking of polypyrrole to affect a zig-zag polymer structure was performed.  

Crosslinking of a pyrrole derivative with diaminophenazine led to the formation of this 

desired zig-zag molecule.  The monomer proposed in this work is completely novel and 

has not been used in actuation evaluation before.  Important parameters for efficient 

actuation in electroactive polymers are conductivity and solubility testing.   

 

The evidence provided revealed that the novel monomer material was successfully 

synthesized and characterized in terms of spectroscopy, electrochemistry and 

morphology.  Determination of the functional groups present in the monomer material 
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revealed that the desired crosslinking had been successfully obtained.  According to the 

reaction mechanism in the formation of imines by the reduction of amine, the 

disappearance of the carbonyl group in the monomer material was observed.  The 

desired zig-zag molecule was obtained by chemical and electrochemical polymerization. 

Desired actuation capabilities of the polymer material led to extensive evaluation of this 

zig-zag molecule.  Electrochemical synthesis was used in the formation of a thin film 

which was studied by cyclic voltammetry; which revealed the redox behaviours, 

diffusion rates, peak separation and formal potentials of the material.   

 

Electrochemical impedance spectroscopy of the thin film displayed high charge transfer 

resistance value, 4589.455 Ω which was related to that of low conductivity values.  

Improvement of the conductivity value of the thin film was made possible by the 

incorporation of gold nanoparticles, the resulting charge transfer resistance value 

obtained was found to be  14.7556 Ω  evident of an increase in conductivity by 

reduction in resistance).  Chemical preparation of the polymer material was used to 

study the optical behaviour of the material, band gap values determined from UV/Vis 

were found to be 2.48 eV (indicative of semi-conductive behaviour).  Methods used for 

measurements of conductivity values for thick films, confirmed the values obtained 

from thin films.  The values obtained for the thick films ranged between     10-8 to     10-11 

S/m.  Thermogravimetric analysis behaviour of the material displayed properties of high 

thermal stability (polymer did not degrade at high temperatures), with DSC analysis 

revealing that there was no evidence of glassy transition peaks.  During the 

polymerization process the electrochemistry revealed an undesired reversible couple 

which led to the investigation of the unreacted material present in the solution.  

Investigation into the unreacted material displayed functional groups in the FTIR 

analysis which were similar to that of 2,3-diaminophenazine.  This led to the 

determination of the unreacted material absorbing to the surface of the electrode 

 

 

 

 



 110 

before the thin film was formed.  Filtration of the polymerization solution produced a 

yellow solution which was then used for polymerization and characterization to study 

the behaviour of this filtered solution.  Cyclic voltammetry of the filtered solution was 

compared to that of the unfiltered polymerization (original solution for polymerization) 

and it was discovered that the filtered solution was a purer form of the monomer in 

solution.  The purity is evident in chapter 6 with square wave voltammetry revealing a 

single reversible redox couple for the filtered solution whereas the unfiltered solution 

displayed three peaks in the oxidation process.  Successful synthesis and 

characterization of the desired novel monomer and polymer material provided in this 

work will lead to future work. 

 

7.2 Future Work 

As a direct result of the improvements in conductivity results will play an important role 

for the incorporation of the polymer material into interpenetrating polymer networks 

actuators.  The evaluation of this polymer material in dye sensitized solar cells as well as 

the use of doped polypyrrole nanocomposites in the design of highly sensitive gas phase 

sensors.   

 

The major limitations in fully concluding and testing the actuation potential of the 

polymer materials prepared include conductivity testing of Au-PPDP pellet and band gap 

determination of the polymer after incorporation of the Au nanoparticles.  These tests 

rely on the preparation of the Au-PPDP polymer by chemical synthesis to produce 

sufficient material for pellet preparation.  However it was clear from chemical synthesis 

of the PPDP that the synthesis method would have to be revised in order to improve 

yield and purity of the chemically synthesized product.  In future work we will evaluate 
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the use of milder oxidizing agents such as ammonium persulfate and tosylate salts to 

provide milder oxidation conditions.   

 

We have also demonstrated that a pure for of the chemically synthesized PPDP polymer 

may be extracted using primary alcohols such as ethanol and methanol.  The polymer 

present in the extracted solution was confirmed by redox electrochemistry (CV) and 

spectroscopy (FTIR).  However further work is required to produce the purified PPDP 

and Au-PPDP either by extraction and recrystallization or by improved chemical 

synthesis conditions. 

 

The characterization by TGA, DSC, 1H-NMR, fluorescence and four probe conductivity 

which was done at University Cery Pontoise (France) facilitated a clear understanding of 

actuator design requirements and  the acquisition of the necessary analytical skills.  The 

characterization for future work may now be attempted at University of the Western 

Cape, though continued collaboration and locally available instrumental resources and 

will be pursued during PhD registration. 

 

The requirement for solubility analysis of the polymer relates directly to the preparation 

of the polymer in bilayer actuator format and has successfully been resolved through 

extraction of the pure polymer into alcohol solution.  The polymer extract was 

confirmed to contain pure polymer PPDP and could in principal be drop coated onto a 

non-conducting flexible substrate for the production of a bilayer actuator system for 

testing the actuation potential of the PPDP and Au-PPDP materials synthesized.  The 

bilayer format and interpenetrating network design of actuators will be pursued in 

future research.  
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