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Abstract

In this thesis, we discuss methods for optimising the expected rate of return of a

portfolio with minimal risk. As part of the work we look at the Modern Portfolio

Theory which tries to maximise the portfolio’s expected rate of return for a cer-

tain amount of risk. We also use Quadratic Programming to optimise portfolios.

Generally it is recognised that portfolios with a high expected return, carry higher

risk. The Modern Portfolio Theory assists when choosing portfolios with the lowest

possible risk. There is a finite number of assets in a portfolio and we therefore want

to allocate them in such a way that we’re able to optimise the expected rate of

return with minimal risk. We also use the Markowian approach to allocate these

assets. The Capital Asset Pricing Model is also used, which will help us to reduce

our efficient portfolio to a single portfolio. Furthermore we use the Black-Litterman

model to try and optimise our portfolio with a view to understanding the current

market conditions, as well as considering how the market will perform in the future.

An additional tool we’ll use is Value at Risk. This enables us to manage the market

risk. To this end, we follow the three basic approaches from Jorion [Value at Risk.

USA: McGraw-Hills, 2001]. The Value at Risk tool has become essential in calcu-

lating a portfolio’s risk over the last decade. It works by monitoring algorithms in

order to find the worst possible scenarios within the portfolio. We perform several

numerical experiments in MATLAB and Microsoft Excel and these are presented in

the thesis with the relevant descriptions.

October 2013.
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Chapter 1

General Introduction

1.1 A quick review of portfolio theory

It has been said that the dinosaur known as the ‘Stock Broker’, is now being replaced

by the ‘Financial Consultant’. The primary advice that financial consultants should

give to their clients, is to have a portfolio. A portfolio is a collection of financial

assets, also known as securities. This collection may consist of stocks, bonds and

futures amongst others. It is essential for an investor to have a portfolio consisting

of stocks, bonds or futures as this allows the risk to be spread, as opposed to having

all of their eggs in one basket. Every finance book out there will give the same

advice. The big challenge comes when selecting these assets to suit the investor.

As a new investor, the logical thing to do in selecting assets for a portfolio is to

select a number of assets, review their historical returns, rank them in descending

order with regards to their returns and then choose the most profitable stocks to

construct the portfolio with. In fact, before the 1950’s, investors were only interested

in the rate of return, as they were not able to quantify risk. This goes against the

Modern Portfolio Theory (a fundamental theory in investment) founded by Nobel

Prize winner, economist, Harry Markowitz ([51]).

The fundamental principle in the Modern Portfolio Theory (MPT) is based on the

random walk hypothesis, which states that the future price of an asset is unable to

be calculated with any certainty ([13]). The asset’s future price is unknown, i.e. the

path of the asset’s price is usually unpredictable. It is important to note, that since

there is uncertainty regarding the future price of an asset or security the ‘expected

1

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

return’ is estimated. This is where another phenomenon known as ‘risk’ comes into

this study. Risk is not possible if there is certainty regarding a future outcome.

This also implies that two movements are possible; either upward or downward

movements. This indicates that the security prices are random, as stated above,

so it is assumed that the rate of return will follow a normal distribution. Other

distributions may be followed, but as the sample size increases, so the distribution

becomes virtually normal, due to the central limit theorem. The expected return is

the expected value (mean) of this probability distribution. There is also standard

deviation which provides a range of possible outcomes, as well as a description of

the width and shape of the probability distribution.

Due to the fact that expected returns can be different from actual returns, risk

can now be defined as the probability between the differences of the actual and

expected returns. Since standard deviation is the range of possible outcomes, it

can be concluded that having a small standard deviation will mean that the actual

return won’t be significantly different from the expected return. This means that

little risk has been taken. The larger the standard deviation ranges the higher

the risk. However, as there are two potential movements, big profits can also be

made. In simple terms, the more uncertainty (a wide range of standard deviation)

there is about what the actual return will be, the more risk the asset carries. So

risk is directly proportional to the expected return and therefore the return of an

asset is dependent on the risk. Harry Markowitz regarded the standard deviation

as the conventional way of measuring risk. So, if standard deviation is regarded as

risk, the main goal of investors is to try and minimise the standard deviation and

maximise the expected return of a portfolio. This will form the basis of Quadratic

Programming which we explore later. It should be noted that variance measures

uncertainty and this is not the same thing as risk.

1.2 Portfolio management or optimisation

Optimisation is a branch of applied mathematics ([18]). Simply put, it is about

minimising or maximising the given objective function, with several decision vari-

ables, which will satisfy functional constraints. The fundamental components of any

optimisation problems are as follows:

(i) a objective function;

2

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

(ii) a decision variable; and

(iii) a set of constrains.

In a general optimisation problem, we are given a function and a set, the problem

solves.

min
x
f(x)

subject to x ∈ S

There are generally two kinds of optimisation problems: constrained and uncon-

strained ([19]). For the purpose of this thesis we only be looking at the constrained

optimisation problems. We deal with this category of problems due to the classical

Markowitz ([50]) Mean-Variance Optimisation Model. In instances regarding con-

strained optimisation problems, a portfolio manager will give their clients advice on

how they should allocate their wealth. The foundation of this advice is built on

optimisation.

The Markowitz ([51]) model of portfolio selection only deals with convex and con-

cave problems. This will be dealt with in the ‘efficient frontier’ discussion.

Portfolios are constructed and held as a part of an investment strategy for the pur-

pose of diversification ([13]). Within the available portfolios, the primary interest

area is regarding optimal portfolios. Optimal portfolios are constructed by using op-

timisation and the Markowitz framework. This model deals with two main measures

including the variance and the return. So if this model is being used, a portfolio

with a low variance and some level of return is preferred. It is important to note

that variance is not a measure of risk, but rather a measure of uncertainty. A lower

variance means a higher diversification level ([59]). Variance measures the fluctua-

tions of the variable about ri its mean, so that the larger the values of σi the riskier

the investments.

To manage such risk the concept of diversification is introduced. This method was

regarded by Markowitz ([51]) as being a practical way of managing risk. The Modern

Portfolio Theory further suggests that the formulation of portfolio management risk

should be primarily based on the entire portfolio and not individual or specific risk.

In a portfolio, uncorrelated assets need to be put together. Consider this example:

suppose there is one asset in a portfolio, namely Nokia. If Nokia’s share price goes

3

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

down, the investor will lose. However, if a second asset, namely Sasol, is added to the

portfolio, the wealth is evenly distributed. Now, if the fuel price goes down, Sasol’s

share price will be harmed, however the Nokia share price will go up as a result

of the reduction in the fuel price. These two assets have offset each other and this

shows the usefulness of the diversification strategy. Adding more securities tends

to improve the effect of diversification. However, diversification merely reduces the

portfolio risk and does not eliminate it. Certain types of risk cannot be diversified

and this is called Market Risk ([13]). Market Risk, also known as non-diversifiable

risk (including war, inflation etc.), is part of the securities risk and investors are not

rewarded for incurring this risk. They are rewarded for the stand-alone (see Figure

1.1) or systematic risk that can be eliminated by diversification.

Figure 1.1: Portfolio’s stand alone risk vs market risk ([16]) P76

Diversification is known as ‘the rule of thumb’, however it wasn’t well understood.

Previous authors presumed that diversification could eliminate all risk through the

law of large numbers; to their thinking, as long as there were a large number of

stocks in a portfolio they presumed that there was no risk. The advice that followed

was to invest in those assets which had the highest expected return.

The Markowitz Model is based on the assumption that investors are risk averse and

they are only concerned with the portfolio’s mean risk (see Figure 1.2). This will

lead to optimal portfolios being chosen. The feasible set (the shaded grey part on

the diagram) of portfolios represents all portfolios that can be constructed from a

given set of stocks. An efficient portfolio is one that offers the most return for a

given amount of risk, or the least risk for a given amount of return. The collection

of efficient portfolios is called the efficient set or efficient frontier, which represents
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CHAPTER 1. GENERAL INTRODUCTION

the asset mix with the highest expected returns for each given level of risk. This

can be seen in the diagram. These are the sets of portfolios that were constructed

after the returns, standard deviation and correlation coefficients were determined.

Figure 1.2: Markowitz mean-variance efficient frontier illustration diagram ([65])
P437

Figure 1.3: Portfolio envelope diagram of the mean-variance optimisation

Figure 1.3 presents an envelope of portfolios. The stars are the non-efficient portfo-

lios, as they are outside the feasible region. The black curve is part of the envelope

but is not efficient, as the portfolio on the black line will have a smaller return than

the one exactly above it with the same standard deviation. The blue blocks are the

efficient portfolios. The turquoise curve is called the efficient frontier. Portfolios on

5

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

the efficient frontier are superior to those efficient portfolios inside the curve. This

is due to the fact that they have a high return. The red circle is called the Global

Minimum Variance Portfolio and this is the lowest efficient portfolio in terms of risk

and return. It is difficult to imagine how the stock returns depend on each other

by looking directly at the covariance matrix. Every investor knows that there is

a trade-off between risk and return. In order to increase the expected return on

investment, an investor must be willing to tolerate greater risks. Portfolio theory,

studies how to model this trade-off given a collection of possible investments with

returns ([57]).

The correlation measures the tendency of the return on investments to move in the

same direction. Two investments whose returns tend to rise and fall together, have

a positive correlation; the nearer the two investments are the more closely they track

each other. Investments whose returns tend to move in opposite directions have a

negative correlation.

We are interested in portfolios for which the expected return is large, while the

variance is small. In the model proposed by Markowitz, we combine these two aims

into a single objective function, with the aid of a risk tolerance parameter denoted

by A, and solve the following problem to find the optimal portfolio:

max xTµ− AxTV x

subject to
n∑
i

xi = 1, x ≥ 0.

In portfolio theory we weigh up the securities, in order to understand the proportion

of each asset. This is known as asset allocation. This is described below.

Asset allocation

Asset allocation forms part of portfolio management. When managing portfolios it

assists in making decisions regarding which assets to include in any given portfolio

and when to include them. This proportion is obtained by dividing the total number

of assets in the portfolio. The sum of those proportions must be equal to one. In

performing asset allocation we are trying to diversify the risk. As mentioned earlier,
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CHAPTER 1. GENERAL INTRODUCTION

the fundamental advice that any investor will receive is to own a portfolio ([52]).

With this in mind we now look at various strategies to help when constructing ef-

ficient portfolios. Each client has different expectations and these assets need to

be allocated in such a way that their expectations will be met. For example, if a

long term retirement plan is being considered, a younger investor should consider

investing in higher risk assets, such as stocks and perhaps later investing in bonds.

An older investor should consider investing in less risky assets such as bonds. The

goal is to combine these assets to get the optimal return with minimal risk. Risk

tolerance, age and goals all need to be considered in finding the right combination.

We now look into the general approach (see Figure 1.4) of asset allocation. The

overall approach to asset allocation is called Integrated Asset Allocation ([68]). We

also have other types of asset allocation approaches including strategic, tactical and

insured. The integrated strategy is the most widely used, as unlike other strategies,

it is able to account for investment risk tolerance. This is due to the fact that the net

worth of the investor at the end of the period is the current investment tolerance. In

this strategy there are two streams being followed; the first stream deals with capital

markets and the second stream is specific to the investor. When considering these

two streams, it is clear that this strategy comprises aspects of the other strategies.

Not only does it account for expectations, but it also tackles changes in the market.

Figure 1.4: Integrated asset allocation: A diagrammatic overview ([68]) P26

Strategic asset allocation

Strategic asset allocation is based on the proportions which are the expected rates

and rates of return. It is used for each asset and each asset class. These proportions
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CHAPTER 1. GENERAL INTRODUCTION

need to be calculated periodically, perhaps once every couple of years. This is

important as there are few assets in a portfolio. This method follows the base policy

mix. For example, if stocks have historically returned 20% per year and bonds have

returned 10% per year, a mix of 50% stocks and 50% bonds would be expected to

return 15% per year. For more information on this type of asset allocation strategy,

the reader is referred to ([48]).

Tactical asset allocation

The tactical asset allocation strategy differs from strategic asset allocation. In tacti-

cal asset allocation there is a short time frame within which to try and exploit mar-

ket changes. It should be assumed that asset class performance is mean-reverting

([48]). If stocks have performed above average in relation to bonds, it would be rec-

ommended that stocks should be under weighted and bonds should be over weighted

for the next period ([59]).

Insured asset allocation

Insured asset allocation also uses short time frames to exploit changes in an investor’s

objectives and constraints. This type of asset allocation is based on the assumption

that an investors wealth changes and that they become more risk tolerant as wealth

increases ([59]).

Passive management

The passive management technique, also known as the buy-and-hold strategy, is

a basic concept in portfolio management with regards to the period of buying and

selling assets. The more complex alternative technique, which is active management,

is based on the same principles as the passive technique. Passive management is

simpler and less expensive than active management. In passive management one

can construct a highly diversified portfolio and wait to see to if the investor reaches

an expected target ([13]).

Simple portfolio calculation

Calculating parameters is often needed in order to perform a portfolio calculation.

For each asset (stocks, bonds, etc.) statistical parameters are required, such as

8

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

the expected return, standard deviation, correlations and covariances. Firstly, the

returns are calculated in order to get the means which are either arithmetic or

geometric. We assume these are compound rates i.e. the investor’s returns are

reinvested. Let’s suppose there are n assets in a portfolio (n ≥ 2). The rate of

return ri, the expected return µi, the standard deviation σ and wi the weight or

probability of the asset is represented where
∑n

i=1wi = 1. We also have the ρi,j as

the correlation coefficient, where i 6= j.

For simplicity we start by looking at two assets. The return on the portfolio is

E(rp) = w1r1 + w2r2

with

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2σ1σ2ρ

and

cov(1, 2) =
1

M

T∑
t=1

[r1,t − E(r1)][r2,t − E(r2)]

where

ρ =
cov(1, 2)

σ1σ2
.

From the above equations, the return rp on the portfolio has been calculated by

adding the product of the returns of the respective assets and their weights. We

have also calculated the portfolio variance σ2 which gives us the standard deviation

σ. For a general case the following calculation is used:

E(rp) =
n∑
i=1

wiri,

V arp =
n∑
i=1

w2
i V ar(ri) + 2

n∑
i=1

n∑
j 6=i

wiwjCov(ri, rj).
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The risk-free asset

After calculating the risk with regards to the rate of return, it can now be combined

with the risk-free rate (rfr).

E(rp) = rfr +

[
rp − rfr
σR

]
σp

The following equation is then used to calculate risk aversion.

A =
E(rp)− rf

1
2
σ2
p

.

The alternative to risk aversion is risk tolerance. The Capital Allocation Line (CAL)

is the gradient of this allocation. The reward to variability ratio is given by.

s =
E(rp)− rfr

σp
.

The combination of a high risk and risk-free asset is one of the steps required in order

to diversify a portfolio ([20]). It is important to note that only government bonds

are risk-free. Finding the available combination of risk and return is the technical

part of asset allocation.

1.3 Literature review

Optimisation is an abstract tool, in the sense that it can be applied to various dis-

ciplines such as engineering, biology, finance, etc. There is uncertainty regarding

where optimisation originated and who created this concept, but it can be traced

back to the work of Newton and Leibnitz in calculus, who laid the foundations of op-

timisation ([58]). These foundations paved the way for Bernoulli, Euler, Lagrange

and Weirstrass to devise minimising functions. Lagrange then came up with the

Constrained Optimisation Problem ([58]). The development of the simplex method

used in Linear Programming was introduced by Dantzig ([19]). Numerical methods

for constrained optimisation became popular in the 1960’s.

Modern Portfolio Theory (MPT), which is based on Quadratic Programming, was

formulated by the Nobel Prize winner Markowitz ([50]). This was the result of an in-

vestor not being able to quantify the risks involved when holding stocks. Markowitz
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then came up with a method of selecting portfolios by minimising the portfolio risk

for a given level of return. The suitable portfolio would therefore be dependent

on the risk aversion of the investor. Markowitz presented this as a form of diver-

sification. The algorithm which is used to select assets within portfolios is well

documented in his monograph ([51]). Tobin ([69]) introduced the concept of domi-

nance. He envisioned an investor who was free to select his portfolio from a set of

high risk assets and one risk-free asset i.e. cash. He showed that one set of relative

proportions of the high risk assets would dominate all other possible combinations,

in the sense that, for any given level of risk, it gave the investor ‘the highest possible

expectation of return available to him at that level of risk’. Therefore, in an optimal

portfolio, ‘the proportionate composition of the non-cash assets is independent on

their aggregate share of the investment balance’. An investor’s attitude toward risk

would be reflected in the percentage of the value of cash assets in the portfolio,

rather than the proportionate composition of the non-cash assets.

Capital Asset Pricing Model (CAPM) is an extension of Markowitz’s model. It

was proposed by Nobel Prize winner Sharpe ([65]) in 1964, Treynor ([72]) (who is

recognised by French ([26])), Linter ([45]) and Mossin (cite Mossin-1966). They all

worked independently on the foundation of the Markowitz model. This is not the

process of direct portfolio selection, but is rather the pricing of securities in relation

to market conditions. Sharpe suggested that the market portfolio was in equilibrium

and that investors should buy into this portfolio. This is known as the tangency

portfolio in which a line can be drawn from the portfolio. This line is called the

Capital Market Line (CML). So, taking various investors’ risk tolerance into consid-

eration, the variation should fall along that particular line. Sharpe argues that when

in equilibrium, there is a simple linear relationship between the anticipated return

and standard deviation. The main function of this is to give an indication of whether

the assets are over-priced or underpriced. CAPM mainly assesses the asset’s risk

against the return. CAPM also claims that the company’s events have very little in-

fluence towards the asset’s anticipated return. This assumes that an investor will be

holding a diversified portfolio as a result of the Markowitz efficient frontier. CAPM

has two basic fundamentals which compare the market portfolio and the market risk.

The CAPM test was performed by Jensen ([38]) and Fama ([23]). CAPM therefore

states that in equilibrium, only the systematic (market) risk is priced, and not the

total risk; investors do not need to be compensated for unique risk. The equation
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of the CAPM reads as

Ri = rf + βi[(E(RM)− rf ],

where

Ri =anticipated return of the asset i

rf =risk-free rate

βi =asset beta

E(RM)=markets’ anticipated rate of return. Beta is the covariance of the asset’s i

returns and the market returns, divided by the markets standard deviation i.e.,

βi =
Cov(i,M)

σM
.

CAPM was criticised by Roll ([62]). He argued that the entire CAPM theory was

based on the market portfolio and that it is almost impossible to calculate this, as

it must contain every high risk asset in the universe

Black and Litterman ([11]) developed an extension, which was considered a break-

through with regards to the Markowitz model. This was their first paper and it was

documented under Goldman Sachs. It was first published in 1991 ([11]) and the ex-

tended version was then published in 1992 ([12]). The model is highly sophisticated

and enables a far more intelligent portfolio choice, as opposed to what the classic

Markowitz mean-variance optimisation model produces. The first step starts with

the reverse optimisation of Black’s zero-beta model ([9]). This assists in obtaining

the implied returns of an equilibrium portfolio. The combination of reverse opti-

misation, CAPM ([65]), mixed estimation ([70]), the universal hedge ratio, Black’s

global CAPM ([10]), ([7]), ([32]), and Markowitz’s ([51]) mean-variance optimisation

model enabled Black and Litterman to combine the current market conditions with

the anticipated rate of returns. The returns need to be amended by following a

thorough process. Best ([8]) proved that a small change in the anticipated return

can result in a huge shift from the original portfolio. Best and Grauer’s ([8]) paper

investigates the sensitivity of the mean-variance (MV) efficient portfolios which can

change the means of individual assets. For example, if only a budget constraint is im-

posed on an investment problem, the analytical results indicate that an MV-efficient

portfolio’s weights, means and variance can be extremely sensitive to changes in as-

set means. When non-negativity constraints are then also imposed on the problem,

the computational results confirm that a positively weighted MV-efficient portfolio’s
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weights are extremely sensitive to changes in asset means; however the portfolio’s

returns are not. A surprisingly small increase in the mean of just one asset could

drive half the securities from the portfolio. Even with this change, the portfolio’s

expected return and standard deviation are virtually unchanged.

Portfolio performance measure

The Composite Portfolio Performance Measurement was introduced by Treynor

([72]). He focused on a method of quantifying the performance of a portfolio, re-

gardless of the different policies or the risk tolerance of the investor ([59]). He came

up with a characteristic line that identifies a portfolio’s return volatility against

the returns of the market or benchmark. From that relationship he then suggested

that an investor should always consider portfolios that are close to the line. The

composite quantitative formula to calculate the Treynor measure is:

T =
R̄i − r̄f
βi

.

Another commonly used composite portfolio measurement, which is similar to Treynor’s,

is called Sharpe’s Ratio. This measurement, which is an extension to Treynor’s mea-

sure, was introduced by Sharpe ([66]). He was attempting to extend Treynor’s ratio

by subjecting the proposed measure to an empirical test, in order to evaluate its

predictive ability. Furthermore, he was trying to make the relationships between

the development in capital theory and the alternative models of mutual fund perfor-

mance more explicit. He also aimed to subject these alternative models to empirical

tests. The difference between Treynor and Sharpe’s measurement is that Sharpe

looks at not only the systematic risk but the whole portfolio’s risk, as we can see in

the following equation:

S =
R̄i − r̄f
σi

.

Another well-known statistical portfolio performance measure is the Information

Ratio. It is also known as the Appraisal Ratio. This ratio quantifies the ability of

a portfolio to outperform the benchmark. It divides the excess return of a portfolio

and benchmark by the standard deviation ([59]). Due to the fact that the standard

deviation is always positive, this gives an indication as to whether the portfolio will
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perform better than the benchmark. The information ratio is calculated with the

following formula:

Ri =
R̄i − R̄B

σER
.

Value at Risk

Value at Risk (VaR) is a risk measure which provides an alternative to the Markowitz

([50]) standard deviation. It is a commonly used methodology for estimating market

risks. However, there is very little consensus as to which method is superior ([15]).

Alexandra ([1]) claims that VaR was developed by Baumol in 1963, Markowitz ([50])

had the notion which clearly stated that investors should concentrate on far more

than just the expected return. There is also evidence that Roy ([63]) came up with

the confidence based risk measures. Regardless of the above, a significant need came

about in the late 1980’s due to worldwide financial disasters. Understandably, banks

wanted to protect themselves against credit risk and this is where confidence based

risk measures were needed. VaR became popular in the 1990’s and the theoretical

background was formally laid down by Jorion in 1994 ([40]). In 1994 Morgan ([54])

also launched RiskMetrics. Regulators and the financial industry advisory commit-

tees, such as the Basel Committee, recommended VaR as a method to measuring

risk.

VaR summarises the expected maximum loss over a specified time horizon with a

specific confidence level ([40]). The level of confidence is chosen based on specific

needs. For example, the Basel Committee requires a 99% confidence level for their

official reports ([4]). The most commonly used levels of confidence are 90%, 95% and

99%. VaR assumes the portfolio is frozen for the time horizon, or more generally, as-

sumes the risk profile remains constant. There are three common approaches which

estimate VaR, namely; the parametric approach, the non-parametric approach and

the Monte-Carlo methods. These common approaches are formally laid down by

Jorion ([40]) and by Morgan’s RiskMetrics technical document ([54]).

It is also important for portfolio managers to study the assets contribution of risk to

the whole portfolio. Hallerbach ([31]) shows a general analysis of decomposition by

looking at (i) the marginal contribution of the individual portfolio components to

the diversified portfolio VaR, (ii) the proportion of the diversified portfolio VaR that
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can be attributed to each of the individual components constituting the portfolio,

and (iii) the incremental effect on VaR of adding a new instrument to the existing

portfolio.

VaR gives us the total risk of a portfolio. It is an intuitive approach for investors

who are not too concerned about the finer details within a portfolio. It is essen-

tial for portfolio managers to study the assets’ contribution of risk to the entire

portfolio. Hallerbach ([31]) demonstrates a general analysis of decomposition, by

looking at (i) the marginal contribution of individual portfolio components to the

diversified portfolio VaR. ii) He looks at the proportion of the diversified portfolio

VaR that can be attributed to each of the individual components constituting the

portfolio, as well as the (iii) incremental effect on VaR when adding a new instru-

ment to the existing portfolio. Expressions for these marginal and component VaR

metrics were derived by Garman ([28]) ([29]) under the assumption that returns are

drawn from a multivariate normal distribution. Whenever these deviations from

normality are expected to cause serious distortions in VaR calculations, one has to

resort to either alternative distribution specifications or historical and Monte-Carlo

simulation methods. Although these approaches to overall VaR estimation have

received substantial interest in the literature, there were no substantial procedures

for estimating marginal VaR and component VaR in a non-normal analytical set-

ting or a Monte-Carlo or historical simulation context. He tried to fill this gap by

investigating these VaR concepts in a general distribution-free setting. He derived a

general expression for the marginal contribution of an instrument to the diversified

portfolio VaR, whether this instrument was already included in the portfolio or not.

In the general sense, he showed how a total portfolio VaR can be decomposed in

partial VaR which can then be attributed to individual instruments comprised in

the portfolio. This component of VaR has an appealing property that aggregates

linearly into the diversified portfolio VaR. He not only shows how standard results

under normality can be generalised to non-normal analytical VaR approaches, but

he also presents an explicit procedure for estimating marginal VaR in a simulation

framework. The marginal VaR estimate and the component VaR readily follow.

Portfolio optimisation using VaR and CVaR

This approach was introduced by Rockafellar and Uryasev ([60]) to optimise or hedge

a portfolio of financial instruments to reduce the portfolio’s risk. They presented and
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tested various applications. They also focused on minimising Conditional Value-at-

Risk (CVaR) rather than minimising Value-at-Risk (VaR). However, portfolios with

low CVaR don’t necessarily have low VaR as well. CVaR, also called Mean Excess

Loss, Mean Shortfall or Tail VaR, is considered a more consistent measure of risk

than VaR. Central to this new approach is a technique for portfolio optimisation

which calculates VaR and optimises CVaR simultaneously. This technique is suitable

for use by investment companies, brokerage firms, mutual funds and any business

that evaluates risks. It can be combined with analytical or scenario-based methods to

optimise portfolios with large numbers of instruments, in which case the calculations

often come down to Linear Programming or non-smooth programming.

1.4 Outline of the thesis

The remainder of this thesis is organised as follows:

• In Chapter 2 the tools needed for optimisation are explored. We focus on

Convex, Linear and Quadratic Programming.

• In Chapter 3 we look at the Modern Portfolio Theory which focuses on the

passive management of Markowitz’s portfolio selection using historical returns

and computing returns. We also follow the Capital Asset Pricing Model and

the Black-Litterman model in order to incorporate our view.

• In Chapter 4 we look at the Value at Risk (VaR), an alternative approach to

the risk measure.

• In Chapter 5 we explore some applications of the findings through various

simulation results.

• In Chapter 6 we present our concluding remarks and scope for future research.

16

 

 

 

 



Chapter 2

Optimisation Techniques for

Modern Portfolio Theory

2.1 Introduction

In this chapter we study the basic concepts surrounding the problems associated

with optimisation. We do this by exploring the underlying terminologies surrounding

optimisation. The Markowitz Portfolio Selection Model is both a concave and convex

set. We start with Convex Programming and its properties. We also deal with

the sufficient and necessary conditions called Karush Kuhn Tucker (KKT). These

conditions enable us to compute the Quadratic Programming Problem (QPP), which

we deal with later. Before we deal with QPP, we cover the Linear Programming

Problem (LPP), as this needs to be understood in order to understand QPP.

2.2 Constrained optimisation techniques

Convex Programming

Mean-Variance Optimisation deals with convex sets. We now look at the properties

of Convex Programming and we start by defining a convex set as:

Definition 2.2.1. ([44]) If we have a set of points belonging to domain D, and we

then join a line between any two points, and the line is in Domain D, then the set

is called a convex set.
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Mathematically speaking a convex set is the set of all points x1, x2 in D such that

αx1 + (1− α)x2 ∈ D.

This is reported in Figure 2.1.

Figure 2.1: Convex and non Convex Set: An illustrative example ([33]) P57

Convex functions are easy to optimise. It is interesting to note that the convexity

property gives the assurance that diversification is possible.

In general optimisation problems we are trying to solve what we call the Global

Minimum Point of the feasible set; see Figure 2.2. This is done by searching for

that point using optimisation methods, such as Linear Programming (which uses

numerical methods for instance Simplex and Interior Point Methods) or Quadratic

Programming (which uses numerical methods for example the Active Set and Interior

Point Methods).

Figure 2.2: Local minima and global minimum ([33]) P2
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Properties of convex functions

• Not all convex functions are differentiable. If a convex function is twice contin-

uously differentiable, then the corresponding Hessian is a positive semi-definite

matrix.

• All convex functions are continuous if they are considered within an open set.

• The local minima of a convex function is global. If a convex function f is twice

continuously differentiable, then the global minimum is obtained in the points

solving the first-order condition, ∇f(x) = 0.

• A sum of convex functions is a convex function.

Optimality Constraints

These constraints are usually described through the following theorem:

Theorem 2.2.1. ([41], [57]) (Karush Kuhn Tucker (KKT) Conditions for QPP)

A feasible solution x∗ ∈ Rn to the Quadratic Programming Problem (QPP)

minimise aTx+
1

2
xTBx,

subject to Cx = d,

x ≥ 0,

is optimal if, and only if, an m-vector exists λ and an n-vector µ ≥ 0 such that

aT + x∗TB = −λTC + µT ,

µTx∗ = 0.
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Theorem 2.2.2. ([41], [57]) (Karush Kuhn Tucker (KKT) Conditions for Uncon-

strained Quadratic Programming Problem (UQPP)

A feasible solution x∗ ∈ Rn to the Unconstrained Quadratic Programming Problem

minimise aTx+
1

2
xTBx,

subject to Cx = d,

x ≥ 0,

is optimal if, and only if, an m-vector exists such that

aT + xTB = −λTC.

Corollary. ([6]) Any vector x ≥ 0 satisfying Cx = d is an optimal solution to QPP

if, and only if, there is an optimal solution to UQPP.

One of the most general frameworks in which the KKT conditions are necessary

and sufficient is that of Convex Programming. Adding the assumption of convexity

makes the KKT condition necessary and sufficient ([58]).

2.3 Linear Programming

Linear Programming is one the popular optimisation problems. The popularity

of this method lies in its simplicity. Non-linear Programming is built upon this

optimisation technique. So in simple terms, this means that in order for us to

complete the computation of Quadratic Programming it is useful to have some

background of Linear Programming. A typical Linear Programming Problem reads

as follows:

min
x
f(x)

subject to

Cx = d

and
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x′is ≥ 0.

In the above system we have f(x) as the objective function, x is the decision variable,

C ∈ Rm∗n and d is a vector of certain coefficients. There are three linear outcomes

for a Linear Programme, namely; it is not feasible, it has an unbound optimum or

it has an optimal solution. It is important to note that a problem may not always

be given as a standard problem. We may have a maximisation problem and the

inequalities may be given as greater or less than. Necessary adjustments may need

to be made in order to obtain the standard form of the problem. We illustrate this

adjustment by illustrating an example using the Simplex Method. In the system of

equations above, it is seen that all the equations have to be linear, and this marks

the difference in the optimisation problems. Without loss of generality we assume

the following:

max x0 = aTx

subject to Cx ≤ d, d ≥ 0,

x ≥ 0.

Table 2.1: Simplex Algorithm
x1 x2 · · · xs · · · xn xn+1 · · · xn+r · · · xn+m b

xn+1 c11 c12 · · · c1s · · · c1n 1 · · · 0 · · · 0 b1
xn+2 c21 c22 · · · c1s · · · c2n 0 · · · 0 · · · 0 b2

...
...

...
. . .

...
...

... 0
. . .

...
. . .

...
...

xn+r cr1 cm2 · · · crs · · · crn 0 · · · 1 · · · 0 br
...

...
...

. . .
...

. . .
... 0

. . .
...

. . .
...

...
xn+m cm1 cm2 · · · cms · · · cmn 0 · · · 0 · · · 1 br
x0 −a1 −a2 · · · · · · · · · an 0 · · · 0 · · · 0 0

In Table 2.1 we have xn+i; i = 1,...,m as the slack variables. The variables that

were present in the original equation xi i = 1 · · ·n are called the decision variables.

21

 

 

 

 



CHAPTER 2. OPTIMISATION TECHNIQUES FOR MODERN PORTFOLIO
THEORY

The slack variable, or the basic variable, is obtained from the system of equations

by setting the decision variables to zero. Some relevant results regarding LPP are

Lemma 2.3.1. ([19]) Any solution to a Linear Programming Problem that is a local

minimum solution, is also a global minimum solution.

Theorem 2.3.2. ([19]) A basic feasible solution to a LPP Cx = d, x ≥ 0, aTx =

min corresponds to an extreme point in the convex set of feasible solutions to the

LPP.

Theorem 2.3.3. ([58]) The feasible region of a Linear Programming Problem is a

convex set.

Theorem 2.3.4. ([44]) Every basic feasible solution is an extreme point of the

convex set of feasible solutions.

Theorem 2.3.5. ([58]) A function f(X) is convex if the Hessian matrix H(X) =
∂2f(x)
∂xi∂xj

] is positive semi-definite.

Theorem 2.3.6. [33] Any local minimum of a convex function f(X) is a global

minimum.

If the Hessian matrix H is positive semi-definite, it is said that the Quadratic Pro-

gramming Problem’s (QPP) standard form is a convex QPP. In this case, the prob-

lem is not that much more difficult to solve than a Linear Programming Problem

(LPP). Non-convex QPP, in which H is an indefinite matrix, can be more challeng-

ing, since they can have several stationary points and local minima, see ([57]) for

further clarifications.

According to the Markowitz Model, we can see that we have a QPP. QPP is more

complex than LPP. If Q is not positive semi-definite, then our problem will be

non-convex and therefore within a non-convex problem. There may be several local

minimisers that are not global. The importance of these are seen when optimisation,

using the covariance matrices, need to be performed.

Simplex Method

The Simplex Method was developed by Dantzig ([19]). This method obtains the

basic feasible solution by searching for the optimal solution. If the optimal solution

is not achieved, it will continue to search until the lower or equal value is reached.
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This is the simplest and most common method to use in linear optimisation when

looking for the optimal solution. It is also known as the Tableau Method. We

explore this method through an illustrative example. The problem is to

maximise p = 1
2
x1 + 3x2 + x3

subject to x1 + x2 ≤ 4

2x1 + x2 − x3 ≥ 3

x1 + 3x3 ≤ 5

x1, x2, x3 ≥ 0

(2.3.1)

Now the inequalities are removed to obtain a standard form, by introducing the

slack variables. There are three inequalities and three decision variables conditions,

so we have s1, s2, ...s6 to obtain the following

maximise p = 1
2
x1 + 3x2 + x3

subject to x1 + x2 + s1 ≤ 4

2x1 +2 −x3 + s2 ≥ 3

x1 + 3x3 + s3 ≤ 5

x1, x2, x3, s1, s2, ..., s6 ≥ 0

(2.3.2)

and

p− 1
2
x1 − 3x2 − x3 row1

x1 + x2 + s1 ≤ 4

2x1 + x2 − x3 + s2 ≥ 3

x1 + 3x3 + s3 ≤ 5

(2.3.3)

The above equation is solved in terms of the decision variables x1, x2 and x3. Suppose

we set x1 = x2 = x3 = 0, we then get s1 = 4, s2 = 3 and s3 = 5 with p = 0 and

these are the basic solutions. Since we want to increase p as much as possible, we

can ask whether we are still able to increase this. Since x1,x2 and x3 ≤ 0 we can

see that we are still able to increase p due to the negative decision variables. The

following is then implemented to obtain a solution:

(i) If all variables in row1 are non-negative, we can then conclude that the basic

solution is optimal. If so, any variable can be chosen that has a negative

coefficient.

(ii) For the non-row1 rows, the computed ratio of the entered variable and pivot

row should be the one with the minimum ratio.
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We then use these rules to obtain results as in Table 2.2. The optimal solution is p

= 49/4; x1 = 1/2, x2 = 7/2, x3 = 3/2.

Wolfe’s Method

Wolfe’s ([73]) Method is an extension of the Simplex Method, which can be applied

to QPPs in which all the problem variables are non-negative. To solve a QPP we can

re-write the original constraints with slack variables and use these complementary

slack conditions to ensure that the second and third K-T conditions are satisfied.

For a QPP, the main K-T condition is obviously linear. We are therefore able

to calculate the main K-T condition (1st condition) for the given QPP and use

an extended Simplex Method (Wolfe’s Method) that ensures the complementary

slackness conditions are satisfied.

Wolfe’s Simplex Method can further be extended as follows:

(i) The main K-T condition should be constructed for all the non-negative vari-

ables.

(ii) Slack and excess variables should be added for the inequalities.

(iii) The artificial variables should be added for any equation that does not have

an obvious basic variable.

(iv) The Simplex Method is applied with the modification of never pivoting the

excess ei from the ith constraint and xi such that they both become basic.

Our focus is on Quadratic Programming, and we use the Wolfe Method in the

following section to solve a QPP through the application of Linear Programming.

In order to understand the principles of Quadratic Programming (QP) we briefly

start with Non-linear Programming.

2.4 Non-linear programming

Non-linear programming background

These are constrained optimisation problems with inequalities that are in the form

of:

maximise Z = f(x),
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Table 2.2: Results obtained by using the Simplex Method
Table 1

x1 x2 x3 s1 s2 s3 s4 s5 s6 p
1 1 0 1 0 0 0 0 0 0 4
2 1 -1 0 -1 0 0 0 0 0 3
1 0 3 0 0 -1 0 0 0 0 5
1 0 0 0 0 0 -1 0 0 0 0
0 1 0 0 0 0 0 -1 0 0 0
0 0 1 0 0 0 0 0 -1 0 0

-0.5 -3 -1 0 0 0 0 0 0 1 0

Table 2
x1 x2 x3 s1 s2 s3 s4 s5 s6 p
0 1 0 1 0 0 1 0 0 0 4
0 1 -1 0 -1 0 2 0 0 0 3
0 0 3 0 0 -1 1 0 0 0 5
1 0 0 0 0 0 -1 0 0 0 0
0 1 0 0 0 0 0 -1 0 0 0
0 0 1 0 0 0 0 0 -1 0 0
0 -3 -1 0 0 0 -0.5 0 0 1 0

Table 3
x1 x2 x3 s1 s2 s3 s4 s5 s6 p
0 1/2 1/2 1 1/2 0 0 0 0 0 2.5
0 1/2 - 1/2 0 - 1/2 0 1 0 0 0 1.5
0 - 1/2 3 1/2 0 1/2 -1 0 0 0 0 3.5
1 1/2 - 1/2 0 - 1/2 0 0 0 0 0 1.5
0 1 0 0 0 0 0 -1 0 0 0
0 0 1 0 0 0 0 0 -1 0 0
0 -2 3/4 -1 1/4 0 - 1/4 0 0 0 0 1 0.75

Table 4
x1 x2 x3 s1 s2 s3 s4 s5 s6 p
0 1/2 0 1 1/2 0 0 0 1/2 0 2 1/2
0 1/2 0 0 - 1/2 0 1 0 - 1/2 0 1 1/2
0 - 1/2 0 0 1/2 -1 0 0 3 1/2 0 3 1/2
1 1/2 0 0 - 1/2 0 0 0 - 1/2 0 1 1/2
0 1 0 0 0 0 0 -1 0 0 0
0 0 1 0 0 0 0 0 -1 0 0
0 -2 3/4 0 0 - 1/4 0 0 0 -1 1/4 1 3/4

Table 5
x1 x2 x3 s1 s2 s3 s4 s5 s6 p
0 4/7 0 1 3/7 1/7 0 0 0 0 2
0 3/7 0 0 - 3/7 - 1/7 1 0 0 0 2
0 - 1/7 0 0 1/7 - 2/7 0 0 1 0 1
1 3/7 0 0 - 3/7 - 1/7 0 0 0 0 2
0 1 0 0 0 0 0 -1 0 0 0
0 - 1/7 1 0 1/7 - 2/7 0 0 0 0 1
0 -3 0 0 -0 - 1/3 0 0 0 1 2

Table 6
x1 x2 x3 s1 s2 s3 s4 s5 s6 p
0 4/7 0 1 3/7 1/7 0 0 0 0 2
0 3/7 0 0 - 3/7 - 1/7 1 0 0 0 2
0 - 1/7 0 0 1/7 - 2/7 0 0 1 0 1
1 3/7 0 0 - 3/7 - 1/7 0 0 0 0 2
0 -1 0 0 0 0 0 1 0 0 0
0 - 1/7 1 0 1/7 - 2/7 0 0 0 0 1
0 -3 0 0 -0 - 1/3 0 0 0 1 2

Table 7
x1 x2 x3 s1 s2 s3 s4 s5 s6 p
0 1 0 1 3/4 3/4 1/4 0 0 0 0 3 1/2
0 0 0 - 3/4 - 3/4 - 1/4 1 0 0 0 1/2
0 0 0 1/4 1/4 - 1/4 0 0 1 0 1 1/2
1 0 0 - 3/4 - 3/4 - 1/4 0 0 0 0 1/2
0 0 0 1 3/4 3/4 1/4 0 1 0 0 3 1/2
0 0 1 1/4 1/4 - 1/4 0 0 0 0 1 1/2
0 0 0 41/8 17/8 3/8 0 0 0 1 49/4

Optimal solution P = 49/4 x1 = 1/2 x2 = 7/2 and x3 = 3/2
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subject to g(x) ≤ 0.

In non-linear optimisation there is no explicit condition that x ≥ 0, so if there is a

restriction that x ≥ 0, then it has to be included as a constraint within the prob-

lem. It is important to note that every minimisation problem can be written as a

maximisation problem, with some changes within the objective function.

In order to solve a Non-linear Optimisation Programming (NOP) problem, we must

first convert the inequality g(x) ≤ 0 into an equation. This gives:

g(x) + S2 = 0.

The term S2 comes from the fact that there is no explicit restriction that S is greater

or equal to zero. Remember that g(x) + S2 = 0 is a set of constraints. Similarly,

the function Z = f(x) involves more than one variable, and we generally have m

variables and n constraints for g(x) ≤ 0.

Let’s now take g(x)+S2 = 0 into the objective function by introducing the Lagrange

Multiplier. We define Lagrangian by

L = f(x)− λ(g(x) + S2).

Partial differentiation of L with respect to S will give us the conditions to find

the optimum. This leads to

∂L

∂x
= ∇f(x)− λ∇g(x), (2.4.4)

∂L

∂S
= 2λS, (2.4.5)

∂L

∂λ
= −(g(x) + S2). (2.4.6)

We are able to modify these three conditions. The constraints are relaxed and

therefore restrict the problem with an additional constraint which will form the

original problem. Maximising this gives
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λ ≥ 0, (2.4.7)

∇f(x)− λ∇g(x) = 0, (2.4.8)

λS = 0, (2.4.9)

g(x) ≤ 0. (2.4.10)

The above equations (2.4.7) to (2.4.10) give us the Kunh Tucker (KT) or Karush

Kuhn Tucker (KKT) conditions.

Quadratic Programming

Having gone through the above, we can now understand Quadratic Programming.

Quadratic Programming is a special type of Non-linear Programming. This is due

to the fact that it has a quadratic objective function, but it has linear constraints.

We write the general form of a Quadratic Programming problem as

max Z = ax+
1

2
xTBx, (2.4.11)

subject to

Cx ≤ d, (2.4.12)

with

x ≥ 0. (2.4.13)

We note that x1, x2, ..., xn is a set of decision variables. The objective function is

quadratic due to the term xTBx. We also have the linear term in the objective

function, namely ax. Constraints are linear: Cx ≤ d. Here x is explicitly stated as

well as x ≥ 0.

Definition 2.4.1. ([33]) Let B be a symmetric n × n matrix. A is called positive

definite if xTBx > 0 for all xεR, x = 0. Matrix B is called positive semi-definite if

xTBx ≥ 0 for all x ∈ R. The notion of negative (semi) definite is defined analo-
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gously. Matrix B is called indefinite if vectors x1 and x2 exist such that xT1Bx1 > 0

and xT2Bx2 < 0.

The above is applied in the portfolio theory, as we look at the allocation of wealth

to each part of the portfolio such that we

minimise risk

subject to

E(return) ≥ R

and

n∑
i=1

xi = 1.

This problem is modelled as a QPP because risk is seen as a variance/covariance

of returns. If we have a QPP like this, we then write the KKT conditions. This

QPP has an explicit condition that x ≥ 0. The KKTs are derived from the general

Non-linear Programming. So, in order to write down the KKT conditions they are

actually written as (2.4.11),(2.4.12) and (2.4.13) as constraints and then written as

the KKT conditions.

In order to do this, we write the problem as follows:

max ax+ xTBx,

G(x) = C − Ix− d ≤ 0.

We introduce the Lagrangian multiplier λ for Cx ≤ d and µ for x ≥ 0. So now we

have as many λ′s as the number of constraints and as many µ′s as the number of

variables. We also have as many x′s as the number of variables. This leads to

λ, µ ≥ 0,
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a+ 2XTB − (λµ)C − I = 0,

λg(x) = 0,

Cx ≤ d,

x ≥ 0.

A further modification of the above equations gives the following:

λ, µ ≥ 0, (2.4.14)

−XTB + λTC − µT = a, (2.4.15)

λi(Cixi − d) = 0, (2.4.16)

µjxj ≤ d, (2.4.17)

x ≥ 0, (2.4.18)

Cx+ S = d. (2.4.19)

The term λigi(x) = 0 has been written from the KKT form. It has to be written for

both sets of constraints Cx ≤ d and x ≥ 0. Note that λi actually represents λandµ,

where λ is for Cx ≤ d set and µ is for x ≥ 0 set. This gives us 2.4.16 and 2.4.17.

Since we have Cx ≤ d, we can introduce a slack variable S so that we have 2.4.19.

We therefore have

λiSi = 0, and
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µixj = 0.

Now the KKT conditions are reduced to

−2XTB + λTC − µT = a,

CX + S = d,

λiSi = 0,

µixj = 0,

λi,µ ≥ 0, X ≥ 0 and S ≥ 0.

We therefore have three systems:

−2XTB + λTC − µT = a,

CX + S = d.

}
(2.4.20)

λiSi = 0,

µjxj = 0.

}
(2.4.21)

λ, µ ≥ 0,

x ≥ 0,

S ≥ 0.

 (2.4.22)

We can write the above as

(
−2B C −I 0

C 0 0 I

)
x

λ

µ

s

 =

(
a

d

)
. (2.4.23)
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This is a set of linear equations. We can now see that we initially had a QPP

and we reduced the optimality conditions after applying KKT conditions to a linear

equation. This is a set of non-negative variables and a set of product relationships

among the variables. If we temporarily relax (2.4.21), we then get a set of linear

equations (2.4.20) subject to (2.4.22). We can then model this as a LPP. We are

able to do this, however it must be subject to the fact that (2.4.21) is not violated.

This is done by ensuring that every iteration we come across, when solving the LPP,

(2.4.21) must not be violated.

It is important to note that we can also solve the QPP by using numerical meth-

ods in order to solve it directly without employing LPP. To do this we have three

algorithms, namely: the Interior Point Algorithm; the Active Set Method and the

Gradient-Projection Method ([57]). We only employ the Interior Point Algorithm

and the Active Set Method to verify the results.

2.5 Summary

In this chapter we have investigated the important requirements needed in order to

perform optimisation. We have also looked at Linear Programming and Quadratic

Programming. In the portfolio optimisation following the mean-variance optimisa-

tion, we performed only quadratic optimisation, but we have seen that we are able to

transform a QPP to a LPP following Wolfe’s method. The Modern Portfolio Theory

builds on the Markowitz model portfolio selection after applying the mathematical

concepts to perform a QPP. As we’ve performed the algorithms of QPP we now

apply this to calculate Markowitz’s portfolio selection in the next chapter.
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Chapter 3

Modern Portfolio Theory

3.1 Introduction

In this chapter we deal with one of the main aims in the Modern Portfolio Theory,

which is to diversify a portfolio in order to eliminate non-systematic risk through the

use of optimisation. The main step towards diversification is to hold only the risk-

free asset and the tangent portfolio. The pricing model is obtained by recognising

the tangent portfolio. We do this through use of the Modern Portfolio Theory. Our

first step is to look at the mean-variance optimisation (MVO) theory, which allows us

to allocate assets within a portfolio, in order to maximise the expected return, while

minimising the risk. Following that we use Capital Asset Pricing, which extends

on MVO, by introducing a risk-free asset. This leads us to choosing the tangent

portfolio. We then consider the Black-Litterman model, which further extends on

the MVO and CAPM by allowing users to include their views about the prediction

of the expected returns. Finally, we look at the composite measures of portfolio

performance by studying the ratios of these portfolios.

3.2 Portfolio selection using Mean-Variance Op-

timisation

Mean-Variance Optimisation marked the birth of the Modern Portfolio Theory

(MPT). This was pioneered by Markowitz ([50]). He developed the framework of

MVO. In the investment world, it is widely accepted that there is trade-off between

risk and return. In order to balance this trade-off, investors understand that the
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more risk averse they are, the less compensation they will receive. The higher the

risk, the higher the potential is to receive greater compensation. Markowitz made a

huge contribution to MPT by highlighting the trade-off between risk and return as

the problem with regards to the selection of portfolios or securities (or asset classes),

in a manner that trades off the expected returns and the perceived risk of potential

portfolios ([30]).

The Markowitz model is built on a number of assumptions in relation to market

conditions and the conduct of investors. These include,

(i) Investors want to achieve the maximum possible expected return from their

wealth.

(ii) Investors are maximising a single period for the expected utility.

(iii) Investors are risk adverse and prefer a higher return on the same level of risk

and vice versa.

(iv) Decisions are based only on the risk and expected return plane.

(v) There are no taxes and transaction costs.

To gain some more insight into MPT, let us consider assets S1, S2, ...;Sn(n ≥ 2)

with random returns. Let µi and σi denote the return and the standard deviation of

return on an asset i. For i 6= j; ρi,j denotes the correlation coefficient of the returns

on assets Si and Sj. Let µ = [µ1, ..., µn]T and V = σij be the n × n symmetric

covariance matrix with σii = σ2
i and σij = ρijσiσj for i 6= j. Denoting xi by the

proportion of the total funds invested in security i, one can represent the expected

return and the variance of the resulting portfolio x = [w1; ...;wn] as follows:

E[w] = w1µ1 + · · ·+ wnµn = µTw,

and

V ar[w] =
n∑
i,j

ρijσiσjwiwj = wTV w; where ρii = 1.

Since variance is always non-negative, it follows that wTV w ≥ 0 for any w, i.e.

V is positive semi-definite. We assume that it is in fact positive-definite, which is

33

 

 

 

 



CHAPTER 3. MODERN PORTFOLIO THEORY

essentially equivalent to assuming that there are no redundant assets in the collection

S1;S2; ...;Sn ([18]). Investors are more concerned with portfolios that will be in-line

with their risk tolerance. The Markowitz model is a combination of the expected

return and the variance, which also bears in mind the risk tolerance of an investor.

Markowitz combines risk with the expected return to obtain the following objective

function:

max f(w) : µTw − AwTV w
subject to

∑n
i wi = 1,

w ≥ 0,

(3.2.1)

where µTw is the linear part, wTV w is the quadratic part and A is the risk tolerance.

Note that A is a non-negative factor which represents a trade-off between risk and

return. If A is large, this implies its risk is considered more important, while if A

is small, the model assigns more importance to the return. If V = 0 we get a LPP.

Alternatively, we can represent the above mathematically, in the following two ways:

minw
1
2
wTV w

subject to µTw ≥ R

1T .w = 1,

(3.2.2)

or

Maxw µTw

subject to wTV w ≤ σ2

1T .w = 1.

(3.2.3)

.

KKT conditions for the Markowitz Model

Looking at equation (3.2.2) we obtain the following Lagrangian

L(w, λ, ζ) =
1

2
wTV w − λ(µTw − µ)− ζ(1T .w − 1),

and the KKT conditions are

V w − λµ− ζ.1,

µTw ≥ R, 1.w = 1, λ ≥ 0,
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λT (µw −R) = 0,

for λ, ζ ∈ R.

Adding the Risk-Free Rate

If we add a risk-free asset to an investment universe, the efficient frontier changes.

In fact, Tobin ([69]), Sharpe ([65]) and Linter ([45]) showed that efficient portfolios,

with a risk-free asset added to the investment universe, are more superior than the

portfolios available to investors without the risk-free asset. When having a number

of efficient portfolios on the mean-standard deviation plane, there is one particular

unique portfolio available to each risk-free level, called the market portfolio (this

portfolio constructs the CML). If an investor decides to allocate a proportion of their

wealth to the risk-free asset, then the expected rate of return is Erp = wrµ + wfrf

and the mean-value analysis gives

Min wTV w

subject to wTµ+ wf = 1

wTµ+ wfrf ≥ R

w ≥ 0, wf ≤ 1.

Theorem 3.2.1. (Two fund theorem) ([52]) Given any two efficient portfolios, any

two portfolios can be matched (same mean-variance) as a linear combination of the

other two.

The above theorem fails if short selling is not allowed. When short selling is allowed,

the optimisation chooses more assets on the efficient portfolios as opposed to fewer

assets on the efficient portfolios. We use the Huang and Litzenburg ([34]) approach

to calculate the envelope of portfolios. We now investigate the extension of the

MVO.
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3.3 Asset pricing using the Capital Asset Pricing

Model

The Capital Asset Pricing Model (CAPM) was developed by Sharpe ([65]) and Linter

([45]). This model was formulated on the basis of the Mean-Variance Optimisation

problem of Markowitz ([50]). This method attempts to modify the rate of return

of an asset that we want to include in a diversified portfolio if we are given its

non-diversifiable risk. The method recognises the beta, i.e. the asset’s sensitivity

towards the market risk or simply the relationship between the asset’s risk and the

market risk. The goal with this method is to obtain the tangent portfolio or the

market portfolio.

Figure 3.1: Mean-Variance efficient frontier and a portfolio envelope diagram ([25])
P27

When we look at Figure 3.1 it is clear that instead of just having the envelope port-

folio, we also have two lines. We need to remember that the model also has the

assumption that the investor needs to put their wealth in two baskets, namely the

risk-free and the high risk assets. We can see from the above picture that the two

lines represent the risk-free asset. We are maximising these assets by shifting the

line Rfg until it touches the efficient frontier once. We can also see that the point

where the assets touch the efficient frontier is determined by the risk-free rate. We
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apply the very same notion that Markowitz had, in that we should ignore line G, as

there are inferior portfolios on this line. Instead we need to look at line T which is

called the Capital Allocation Line (CAL). The different portfolios on the lines are

dependent on the risk aversion of the investor. We can see that we obtain a different

portfolio when we shift Rf up and down.

Mathematically, we know from the previous chapter, that we have a concave and a

convex set. Based on this deduction, we are able to search for an optimal point by

shifting the line crossing the y-axis at point Rf until it touches the efficient frontier

once.

Markowitz came up with a technical approach to obtaining the frontier of high risk

assets. His model showed a general solution to asset allocation. Tobin ([69]) showed

that under the same conditions, the Markowitz model could be broken down into two

phases of investment choices; high risk and risk-free assets. Accordingly, a decision

can be made in two stages. Firstly, the efficient sets of investment plans are found,

and secondly the investment plan is chosen from among this set. A plan is said to

be efficient if, and only if, there is no alternative with either:

1. The same expected return and a lower standard deviation;

2. The same standard deviation and a higher expected return, or;

3. A higher expected return and a lower standard deviation.

The CAPM is an equilibrium model that specifies the relationship between risk

and the required rate of return for assets held in well-diversified portfolios.

Assumptions of the CAPM:

• Investors all think in terms of a an identical time horizon.

• All investors are anticipating the same goal (in terms of returns and risk).

• Investors can borrow or lend unlimited amounts at the risk-free rate.

• All assets are perfectly divisible.

• There are no taxes and no transactions costs.

• Trading does not affect the assets’ prices.
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• Quantities of all assets are given and fixed.

The beta can be calculated using the following formula:

Market Beta βi,M =
cov(Ri, RM)

σ2
M

and the formula to calculate the expected stock return is as follows:

E(Ri) = Rf + [E(RM)−Rf ]βiM , i = 1...N.

Zero Beta Model

This model was introduced by Black in 1972 ([9]). Assuming that the risk-free asset

exists, the market or tangent portfolio can be computed. In simple terms, this

means that as the risk-free asset has zero risk, then its beta is zero. From this Black

deduced the following formula to calculate the market portfolio:

w =
V −1{E(Rp)− c}

Total ([V −1{E(Rp)− c}])
.

In the above formula c is any constant and E(Rp) is the expected return of the

portfolio. This model fails when short selling is not allowed.

CAPM TEST(1970’s)

After the computation of a portfolio, the portfolio can be tested using the CAPM

test. This was introduced in the 1970’s by Jensen ([38]). The steps to testing a

portfolio is as follows:

(i) Pick a set of high risk assets (e.g. stocks, mutual funds, etc.);

(ii) Choose a candidate for a market portfolio. A popular candidate is the S&P500;

(iii) First pass regression: determine βi for each asset i

Ri = αi + βiRMT ;

(iv) Second pass regression: Regress asset average returns on their β′s R̄ = ϕ0 +

ϕiβi.
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3.4 Estimation of the Covariance Matrix

This topic is often neglected in the finance world, as most people are more interested

in the estimation of the expected returns. Remembering that the mean-variance,

studies the trade-off between risk and return, if the variances are ignored we are

able to ask if the estimation towards diversifying a portfolio is complete? This is

why we have the implied returns and not the implied Covariances.

The Markowitz equation

min w′V w

subject to w′1 = 1,

w′µ = q,

can be solved analytically and the solution to the equation above is as follows:

w =
C − qB
AC −B2

V −11 +
qA−B
AC −B2

V −1µ,

where A = 1′V −11, B = 1′V −1µ and C = µ′V −1µ. If the Markowitz set of equations

has inequality, then it cannot be solved analytically, and the KKT conditions have to

be employed. From the above computation of the weights, we can see the importance

of the covariance matrix. In portfolio optimisation, it is recommended that users

should utilise historical data as much as possible to achieve better results.

Variance Covariance estimation using Shrinkage Methods

The sample covariance matrix is not recommended for portfolio optimisation ([43])

and for this reason it is preferable to move away from this method. The covariance

matrix can be calculated through alternative methods such as the single index, con-

stant correlation or shrinkage amongst others. For purposes of this thesis we only

investigate the shrinkage method. The reader can refer to ([21]) for other calculation

methods. When a substantial amount of data is used, this increases the estimation

error from the covariance matrix and hence can lead to undesired portfolio optimi-
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sation ([21]).

The concept of shrinkage has been around for some time. It was first introduced

by Charles Stein in 1955; however it is not related to covariance estimation ([21]).

In relation to portfolio selection, the shrinkage estimation was first applied by Frost

and Savarino ([27] and Jorion ([39]). We follow the theory of Ledoit and Wolf ([42])

as this is the more recent method of performing shrinkage.

The ‘so called’ shrinkage method assumes that the variance matrix is a convex

combination of the sample covariance matrix and another matrix. It is given by the

following:

λ× sample covariance+ (1− λ)× other matrix 0 < λ < 1,

where the other matrix is a diagonal matrix of only variances.

Disatnik and Benninga ([21]) devised the simplest shrinkage estimation approach.

The approach is mostly based on the global minimum variance portfolio, which can

be analytically calculated through the following formulation:

GMV P =
1.V −1

1.V −1.1T
,

where V −1 is the inverse of the sample covariance matrix and 1 is a vector of ones.

They recommended that the best shrinkage operator λ, is obtained by varying the

operator (λ). A good operator is given by having a wholly positive GMVP. Regard-

less of the simplicity of this method, we used the approach of Ledoit ([43]). In order

to minimise the error from the true covariance matrix, we chose all optional shrink-

age operators. The reader is referred to ([43]) for the derivation of the estimate of

the optimal shrinkage operator.

3.5 Estimation of anticipated returns using the

Black-Litterman Model

There is no doubt that Markowitz ([50]) pioneered the Modern Portfolio Theory.

It was also developed by several other people including Sharpe ([65]) and Mossin
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([56]). Even so, this was insufficient due to the market being so unpredictable. The

main problem facing the MPT is that is uses historical data, which can be a false

predictor of future expectations. In simple terms, this means that if a company has

been performing well for the past thirty years, then this is not necessarily an indi-

cator that they will continue to perform well for the next two years. There are also

potentially high performing investments that may not have enough or any historical

data.

Market data and the MVO can produce unrealistic or concentrated portfolios. So

Black and Litterman ([12]) came up with a model that moves away from unrealistic

portfolios. Best and Grauer ([8]) demonstrated that a small increase in the expected

return of a portfolio’s assets, could force half of the assets out of the portfolio. There-

fore, the most important inputs in MVO are the expected returns. Unfortunately,

mean returns are also the most difficult input to estimate. This model also extends

by allowing investors to incorporate their own view in the optimisation of their port-

folios.

Instead of computing portfolios following the normal optimisation approach, the

Black-Litterman model starts by assuming the chosen portfolio is optimal, allowing

the investor to express their views on the expected future return. This approach

combines both the investors’ and the markets’ views regarding future expected re-

turns. This approach is followed by most professional financial advisors, which

demonstrates the effectiveness of the model when there are benchmarks, risk, a beta

or any other target ([11]). As mentioned above, the model achieves good results if

there is a benchmark. We define this benchmark as

Definition 3.5.1. ([11]) The standard used to define the risk of other portfolios.

If a benchmark is defined, the risk of a portfolio is measured as the volatility of

the tracking error - the difference between the portfolio’s return and those of the

benchmark.

This is the reverse engineering of normal portfolio optimisation. In normal cir-

cumstances, the variance-covariance matrix is used and the expected return is then

computed to get the optimal portfolio. However, in the Black-Litterman model the

optimal portfolio is taken and the returns are then computed. The weights are ob-

tained by applying the current price and multiplying it by the outstanding shares

to get the market value of a company. The market values are added and then each
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divided by the total. This creates a complete market portfolio as it is assumed that

the chosen stocks are available within the universe.

Steps towards Black-Litterman optimisation

The market portfolio weights are obtained through the use of market capitalisation.

This is done by taking the outstanding shares and the current stock price. So we

have

Market Cap = Outstanding share× Current stock price,

and then the weight of asset i is obtained from

Wi =
Market Capi

Sum(Market cap)
.

Going back to the Markowitz utility function given in (3.2.1)

f(w) = wTR− AwTV w,

such that wT1 = 1.

Now
df

dw
= R− AV w, (3.5.4)

where A is the risk aversion. We maximise by allowing

R− AV w = 0, (3.5.5)

which implies that ∏
= AV wmkt, (3.5.6)

where

∏
is the Implied Excess Equilibrium Return Vector (an N × 1 column vector),

A is the risk aversion coefficient. A can also be seen as the normalising factor (A is

directly proportional to the return). This A can be computed by using the following
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formula:

A =
E(rm)− rfr

σM
,

where E(rm) and σm are the components of the market portfolio.

V is the covariance matrix of excess returns (an N ×N matrix), and

wmkt are the market capitalisation weights (an N × 1 column vector) of the assets.

By re-arranging the above equation (3.5.6), we obtain the following:

w = (AV )−1µ,

where µ is any vector of excess returns. The equation (3.5.6) lets us compute

the vector of returns of the assumed market weights.

Estimating Returns

Here we follow the Black-Litterman model to estimate the inputs. The new vector

of returns is given by the following:

∏̂
=
∏

+τV P T [(PτV P T ) + Ω−1]
[
Q− P

∏]

where

∏̂
is the new estimated Combined Return Vector (an N × 1 column vector)

∏
is the Implied Equilibrium Return Vector (N × 1 column vector). This vector

of returns is computed by use of reverse optimisation which uses the weights ob-

tained by Market Capitalisation and the returns are obtained using equation (3.5.6).

τ is a scalar which is used in the Black-Litterman formula. They set the value to

0.025. There is very little literature on this value, but most authors use the value

of one, and here we assume this value.
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V is the covariance matrix of excess returns (N × N matrix). We are able to get

the covariance from the historical returns or from the shrinkage.

Ω is a diagonal covariance matrix of error in terms of the expressed views represent-

ing the uncertainty in each view (K ×K matrix). This is a diagonal matrix as the

views are uncorrelated. This can be calculated in several ways and in this example

we deploy ∂T τ
∑
p.

Q is the view vector (K × 1 column vector). These are the views we know about

the market deviation. There are two classes of views and they are the absolute and

relative views. Relative views are commonly used in practice and they sum to zero

in the matrix. Absolute views are less commonly used and they sum up to one.

P is a matrix that identifies the assets involved in the views (N×N matrix or 1×N
row vector in the special case of one view). This is also known as the link matrix

which defines views.

This model assumes that the expected returns are distributed normally. So we have

E(r) ∼ N(µ, V ) and we also define µ as a random mean return and µ ∼ N(π, Vπ)

where π is the estimate. With these two uncorrelated variances we have the following

formula of Vr as

Vr = Vπ + V.

This is essentially the product of two multivariate normal distributions. The model

uses the first distribution as the neutral starting point. This is the equilibrium

return which uses market data. We also need to compute the posterior variance. By

defining

M = ((τV )−1 + P TΩ−1P )−1,

we have the posterior variance as

Vp = V +M.

The second distribution is the investors view. Here we incorporate this view. We
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follow the method of Idzorek ([36]) to incorporate the confidence level. This method

is the simplest, and is also different to what He and Litterman ([32]) used. The other

alternatives can be found in Meucci ([53]) and Litterman ([47]). Idzorek represents

the views as a percentage from 0% to 100%. We now use Ω = αPV P T . When we

are 100% confident, alpha goes to zero and vice versa when confidence decreases.

From this fact we can see that

α =
1− confidence
confidence

.

Summary of the Black Litterman Methodology

(i) We start by calculating the market capitalisation in order to compute the

markets weights. We also compute the covariance matrix and the investor

decides on the risk benchmark (their risk aversion).

(ii) We then perform reverse optimisation in order to obtain the excess returns.

(iii) We clearly state our views together with our confidence levels towards those

views.

(iv) We incorporate our views to obtain our new vector of returns.

(v) We then go back to basics to run the mean-variance optimisation.

3.6 Sharpe’s style analysis to track benchmarks

This style analysis was modelled by Sharpe ([67]). Asset allocation is generally de-

fined as the allocation of an investor’s portfolio amongst a number of asset classes.

Clearly such a generalisation cannot be made operational without defining these

classes ([67]). Here we basically allocate the securities in such a way that the port-

folio’s return tracks the index ([37]). This is achieved by solving the following

Quadratic Programming Problem:

min V ar(ei) = V ar(RS −RM),

n∑
i=1

wi = 0,

45

 

 

 

 



CHAPTER 3. MODERN PORTFOLIO THEORY

wi ≥ 0,

where ei is the error between the style returns and the index return (S&P500). We

track this by minimising the variance of the error between the style returns and the

index.

3.7 Use of Portfolio Performance Measure to back-

test chosen portfolios

High betas are required for rising markets and low betas for declining markets.

Previously, MPT investors were only interested in the rate of return, as they were

unable to quantify and measure risk in terms of the variability of returns (adjusting

returns for the level of risk).

Treynor Portfolio Performance Measure

Treynor ([71]) observed a new way to rate the performance of a fund’s investment

management. He provided a basis for reviewing the performance of fund manage-

ment by using beta as a measure for risk. We calculate this measure using the

following:

T =
R̄i − r̄f
βi

,

Where

R̄i =the average rate of return for portfolio i during a specified time period,

r̄f = the average risk-free rate for the same period, and

βi =Portfolio’s beta.

A larger T value indicates a larger slope and an improved portfolio for all investors

(regardless of their risk preferences). As the numerator of this ratio Ri−rf is the risk

premium, and the denominator is a measure of risk, the total expression indicates

the portfolio’s risk premium return per unit of risk. All risk-averse investors would

prefer to maximise this value. Note that the risk variable beta measures systematic

risk and provides no indication regarding the diversification of the portfolio. It
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implicitly assumes a completely diversified portfolio, which means that systematic

risk is the relevant risk measure.

Sharpe Portfolio Performance Measure

On the other hand the Sharpe Portfolio Performance Measure is given by the fol-

lowing:

S =
R̄i − r̄f
σi

,

Where

Ri =the average rate of return for portfolio i during a specified time period,

r̄f = the average risk-free rate for the same period, and

σi = the standard deviation of portfolio i.

Sharpe’s ratio is similar to Treynor’s but looks at the total risk of the portfolio.

It seeks to measure this total risk, by including the standard deviation of returns

rather than considering only the systematic risk summarised by beta. A completely

diversified portfolio would give similar results and a poorly diversified portfolio would

give a high Treynor and a low Sharpe measure. Sharpe’s ratio can be used to

compute a set of efficient portfolios by maximising them in order to obtain two

portfolios. It will then use the two fund theorem to construct the whole efficient

frontier.

Information Ratio Portfolio Performance Measure

The Information Ratio is one of the most famous statistical portfolio performance

measures. It is also known as the Appraisal Ratio. It quantifies the ability to

outperform the benchmark, by dividing the excess return of the chosen portfolio

and the benchmark, by their standard deviation ([59]). Due to the fact that the

standard deviation is always positive, this gives an indication that, on average, a

portfolio performs better than the benchmark. We calculate the Information Ratio

with the following formula:

Ri =
R̄i − R̄B

σER
,

where
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Riis the information ratio of portfolio i,

R̄ is the average return of portfolio i for the specified time period,

R̄B is the average return of the benchmark portfolio for the specified time, and

σER is the standard deviation of the excess returns between the benchmark portfolio

and portfolio i.

3.8 Summary

In this chapter we have looked at the theory or the heart of the Modern Portfolio

Theory. We started by constructing an efficient frontier following the Mean-Variance

Optimisation theory which was modelled by Markowitz. We then investigated the

extension of the MPT by looking at the Capital Asset Pricing Model. This gave us

a more refined portfolio selection, by reducing the set of portfolios from the efficient

frontier to one portfolio choice. We then observed the Black-Litterman model which

enabled us to incorporate our returns from the benchmark or market portfolio. By

using Sharpe’s Style Analysis, we were able to consider alternative ways to track

the benchmark. By looking at the measurements of the selected portfolios, we were

able to conclude how the portfolios performed in comparison to the benchmark.
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Chapter 4

Portfolio Risk Assessment using

Value at Risk (VaR)

4.1 Introduction

Investors won’t always get the expected return on investment from their portfolios.

There is always the possibility that they will lose on an investment, and this is where

Value at Risk (VaR) comes in. VaR is an estimate of what an investor could lose,

trying to show how bad things could get. It tries to answer the question of how

much they could lose in their current position, as well as taking the current market

conditions into account ([5]). According to Hull ([35]), a financial manager will need

to make a statement based on the form: We are x percent certain that we will not

lose more than V dollars in the next N days.

It is important to note that VaR is an estimate and not an exact number. VaR

doesn’t estimate the worst case scenario as rare conditions are not taken into ac-

count. VaR will take the given stock price and estimate a drop in that price or value

which could occur in a day or a week (N=1 or N=5 respectively) with a probability

of perhaps 1% or 5% (given the confidence levels of 99% and 95% respectively).

Let’s consider the following example: suppose you are told that your VaR is $100

to a 95% confidence level. Essentially, this means that if the market is normal,

then there is a 5% chance that you could lose more than $100 in a day or a week

depending on your specified period. This period is normally within a short space of

time.
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VaR is a measure which includes every sub-section of risk, in order to give an overall

market risk of a particular portfolio. This has made VaR a popular measure in

practice, especially by banks in order to protect themselves. Central bank regulators

also use VaR to determine the capital a bank requires in order to reflect the market

risks that they are bearing ([49]).

Figure 4.1: VaR at 100-X% confidence ([35]) P444

There are three popular approaches in calculating VaR namely:

• Parametric VaR/ Variance-Covariance method;

• Historical Simulation;

• Monte-Carlo Simulation or Stochastic Simulation.

4.2 VaR Valuation using the Parametric Method

This is also known as the Variance-Covariance VaR, or Delta normal amongst others.

This is the foundation of VaR as it is the easiest and most widely used method

([30]). It was introduced by J.P. Morgan’s RiskMetrics system ([55]). This is called a

parametric method, as it assumes the probability distribution as normal. In order to

compute the parametric method, the statistical measures such as variance ([49]) are
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needed first and therefore the historical information is also required. This method is

also the fastest of the three; however it only deals with linear models. It doesn’t have

the ability to capture non-linear and non-normal models. If the underlying market

value of the portfolio has a linear function of the parameters, then that distribution

of the profit and loss is normal. We calculate VaR by obtaining the profit and loss

figures and from there calculate the variances. VaR is calculated as follows:

V aR = α
√
wVpw,

where w are the weights of the assets in the portfolio, and V is the Variance-

Covariance matrix. The parameter α can be obtained from the normal distribution

tables, depending on the level on confidence (99%→ 2.33 and 95%→ 1.65). It is

also expressed as the probability or the quantile of losses.

4.3 Numerical Simulation to estimate VaR

VaR Valuation using Historical Simulation

As the title suggests, in this instance, we only need returns from the past time

horizon. In order to calculate VaR the historical return data is used. This moves

away from the assumptions of linearity and normality (constant correlation and

deltas). As this data deals with actuals, although historical, this method is able to

capture those rare events and they are included in the model. Correlation is also

captured. The main draw-back with this method is that historical data is not an

accurate reflection of what could happen in the future. Following the Marrison ([49])

algorithm, we refer back to the rate of return and tomorrow’s scenario is calculated

as follows:

rtomorrow = rtoday(1 + ∆t).

After simulating, we then observe the lowest quantile (depending on the alpha)

from our simulated data. The returns are then sorted in ascending order and VaR

is chosen according to the confidence level required.
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Weighted Historical Simulation

This method of VaR is based on traditional historical simulation; however it actually

assigns lower weights to the return volatility. It uses the exponential moving average:

(1− λ)× λr−1.

So we essentially have a combination of approaches. The Exponential (EXP) ap-

proach, proposed by ([15]), makes the point that estimating condition volatilities and

correlations, which is precisely the task at hand, could benefit from giving greater

weight to recent returns. In Historical Simulation (HS), there is no assumption of

any distribution and consequently parameterisation is avoided. This allows the data

to assign the shape of the distribution. We obtain the VaR as follows:

1. Assign weights to the most recent returns,

2. Sort the returns in ascending order,

3. Accumulate the weights until the level of the VaR is reached.

Bootstrapping

Monte-Carlo simulation uses an algorithm to generate possible future paths of a

portfolio where else the bootstrapping1 uses the historical return instead of the

algorithm. Firstly we index the daily returns. We then randomly select a cross-

section vector of returns; a particular day from the historical window is chosen and

the returns from this data are used for each asset in the portfolio. Possible paths

are simulated and the Historical Simulation Methodology is utilised. The procedure

is as follows:

• We start by indexing the returns.

• We randomly select one index return from our available set of indexes.

• We then take the randomly selected index to simulate forward for m (depend-

ing on time horizon) number of times.

• Sort these and look for the worst case (path) depending on our alpha.

1This method is employed from Willmot ([75]) under simulation
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With this approach we did not need to specify the distributional assumption, such

as the normal distribution etc. We also have the cross-section of returns ([24]) which

automatically incorporates the correlation of the returns.

VaR calculation using Bootstrapping and Filtered Historical

Simulation

This is an improvement on the traditional Historical Simulation Method (Bootstrap-

ping). This approach takes the change in past and current volatilities of historical

returns into account, and makes the least number of assumptions about the statis-

tical properties of future prices ([3]).

Barone-Adesi et al. ([2]) proposed filtering historical simulation through the GARCH

process in order to model the future distribution of asset correlations. This method

implicitly takes into account an asset’s correlations, without restricting their values

over time or compacting them explicitly. Historical Simulation assigns equal prob-

ability to past returns, neglecting current market conditions.

This model does not assume any theoretical distribution. It is a combination of

parametric and non-parametric. This is due to the fact that GARCH modelling

is parametric and historical simulation is non-parametric. The main extension is

adoption of the historical residual returns to the current market conditions; this is

achieved through scaling the current, over the past conditional volatilities, by the

applicable ratios ([2]). This is done by dividing historical residual returns by this

volatility. The standardised residuals are then scaled by volatility forecasts that

reflect the current market conditions. The estimated returns are based on these

residuals.

A pathway is simulated by taking each asset’s returns and simulating the price path

of a portfolio through randomly picking an ‘indexed’ set of returns. Each index cor-

responds to the price of the asset which occurred in that day. The residual return

is then computed. The next step is to calculate volatilities for each asset, using

a GARCH model; however any model can be applied. The sample residuals are

changed according to the scale, by using the modelled volatility over the historical

volatility.
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Simulation of a single path This approach does not impose any theoretical distri-

bution. In order for the returns to have independent identity distribution (i.i.d), it is

required to remove serial correlations and volatility clusters. This is done by adding

a Moving Average term into the Conditional Mean Equation. The volatility cluster

is captured by modelling returns through the GARCH process ([14]). The serial

dependence is removed by adding the moving average term. ARMA-GARCH(1,1)

model can be written as follows:

rt = µrt−1 + θεt−1 + εt N(0, σt),

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−1,

where

µ is the AR(1) term,

θ is the MA term,

α0 is a constant and,

εt is the random residual.

Returns are standardised by dividing the estimated residual ε̂k.

VaR Valuation using Monte-Carlo Simulation

The Monte-Carlo method is more powerful and flexible than the other two methods

as it has the ability to capture all non-linear scenarios of a portfolio’s value with

respect of the risk factor ([49]). It also generates an infinite number of scenarios and

therefore tests numerous future outcomes. Due to this, Monte-Carlo Simulation is

fast becoming recognised as the optimal quantitative methodology for measuring

VaR.

The overview of Monte-Carlo (MC) is that it computes an infinite number of tests

or paths. Simulation is then used to compute these tests. Simulation is needed as

it’s impractical to compute an infinite number of tests manually. To calculate the

VaR using MC simulation, the portfolio prices are simulated first. It makes more

sense to incorporate the correlation into the simulation, i.e. the asset prices are

simulated in conjunction with their proportion. Having the asset’s returns increase
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in line with the proportion, we can therefore assume that the volatility is a constant

stochastic process. The series of returns are calculated from the following equation:

ds

s
= µdt+ σdz = µdt+ σε

√
dt,

where

s is the stock prize,

σ is the volatility of the asset price,

ε is the random number drawn from the standardised normal distribution.

For MC simulation, daily stock prices are used. The logarithmic returns are com-

puted in order to get the daily standard deviations and correlations. At this point,

in order to get VaR, simulated prices are sorted in ascending order to get the fifth

percent number of the simulated price. The covariance matrix is not directly com-

puted but is instead calculated using the standard deviations and correlations. To

compute VaR for a monthly period, the asset prices are simulated for 21 days as we

assume there are 252 trading days in a calendar year. We compute the following

algorithm:

1. Choose the time horizon: 1 for daily VaR, 5 for weekly VaR, 21 for monthly

VaR and 252 for yearly VaR. The length of the analysis is determined by the

estimates of the historical returns.

2. Increment of the stock prices will be based on the random number drawn from

the generator. The stochastic process is used here.

3. Increase or decrease the stock price until the end of the stock horizon.

4. Repeat the paths for N a number of times.

5. Sort the numbers from lowest to highest. VaR is then obtained from the final

stock price, according to the level of confidence required.

4.4 Marginal and Component VaR

Now that we’ve looked at computing VaR, it is important to note that we calculated

the total VaR and not the individual assets. In this section we consider the effects
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as well as the importance of diversification with the Markowitz model ([51]. When

the total risk of a portfolio is calculated, the total value of the risk is different to

the added individual risk of the stocks. The algorithm laid out by Jorion ([40]) is

followed here.

Marginal VaR

Here marginal VaR is defined as the partial derivative with respect to the component

weight. It measures the change in a portfolio’s VaR resulting from adding additional

value to a component, Jorion ([40]).

This is the algorithm which shows the impact of a stock on a portfolio, if the value

of the VaR of a particular stock is changed. We now look at the diagram obtained

from Jorion ([40]) to gain a better understanding.

Figure 4.2: Marginal and Conditional VaR ([40]) P162

If we focus on the concave line, the line is the plot of a portfolio’s VaR. The x-axis is

the position of one of a portfolio’s assets or components. Due to of the convexity of

the line, a point can be picked and a tangent line can be drawn; this is the marginal

VaR. This shows that the first derivative is the key sensitivity. The marginal VaR

of the ith component is then calculated with the following formula:

∆V aRi =
V aR

W
∗ βi.

Essentially what we are aiming to understand is how much a portfolio’s risk will

change due to the removal of a particular stock, because that particular risk value
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does not equal the individual risk due to diversification. It’s important to note that

the formula can be adjusted due to beta.

Component VaR

Component VaR is defined as a partition of the portfolio VaR which indicates a

change in VaR if a given component is deleted ([40]). This is based on the Marginal

VaR, and in order to calculate the component VaR, we first calculate the component

VaR of the ith asset as:

Com V aR = V aR.wi.βi

and the contribution percentage of the ith asset as

Com V aR

V aR
.

The percentage must add up to 100% and the deviations or differences should be

0%.

4.5 Conditional VaR

This is a further development of VaR. It was first introduced by Rockafellar ([60]).

He extended the model by asking questions regarding how much could be lost if

things got really bad. CVaR is always greater than VaR, as is evident from Fig-

ures 4.1 and 4.3 as they have the same VaR but Figure 4.3 has a riskier portfolio.

CVaR seems like a desirable measure, but VaR however, remains the most prevalent

measure in practice ([35]). This can be optimised and this is done by following the

Rockafellar and Uryasev models ([60]). By definition, a specified probability level α

(normally 0.9, 0.95 or 0.99), the α VaR of a portfolio is the lowest amount θ such

that, with probability α, the loss will not exceed θ, whereas the α CVaR is the

conditional expectation of losses above that amount. CVaR is also known as Mean

Excess, Mean Short, or Tail and it’s considered more consistent than VaR ([35]).
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Figure 4.3: CVaR lowest percentile ([35]) P445

Application to portfolio

Following the previous notion of Quadratic Programming we have the following

form:

min σ2(w),

subject to − wT q ≤ R,

wi ≥ 0,

where g(w, q) = −wT q.

We solve for

θα(w) = µ(w) + s1(α)σ(w)

and
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Ωα(w) = µ(w) + s2(α)σ(w),

where

s1 =
√

2erf−1(2α− 1)

and

s2 = (
√

2πexp(erf−1(2α− 1))2(1− α))−1.

The term erf(z) is an error function also known as the Gauss error function and it

is of the formula

erf(z) =
2√
π

z∫
0

e−t
2

dt.

Asset Assessment using Hotspots and the Best Hedge report

We’ve looked at marginal VaR, which deals with the individual contribution of risk

to a portfolio. We now extend upon that by following the process of Goldman

Sachs by Litterman ([46]). He shows how to identify the primary source of risk

“Hotspot” and how to reduce the risk hedge. This is an important process for

portfolio managers to understand. It provides an algorithm to highlight the biggest

risk contributors in a portfolio, so that managers are able to reduce a portfolio’s

risk. This is reported in The Best Hedge Report. This is broken down in two

phases. Firstly, the hotspot needs to be identified. In order to do this we look at

the highest to lowest contributors of risk in a portfolio. This highlights the asset’s

impact on a portfolio’s risk for a risk manager. The next step is to try and hedge the

portfolio risk using the potential assets after they’ve been identified. This is done

by looking at the Trade Risk profile’ ([46]). In fact we do this through portfolio

optimisation to complete the process ([46]). We go back to the VaR and CVaR

calculation by Rockafellar ([60]). The portfolio risk is then minimised by changing

the portion to obtain the best hedge for each asset through optimisation.
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4.6 Summary

In this chapter we have looked at the basic tools to estimate VaR including some com-

mon approaches namely Parametric, Historical Simulation and Monte-Carlo meth-

ods. It is clear that each method has its advantages and disadvantages. We also

looked at an indirect approach to the Historical Simulation method by bootstrapping

in order to estimate the VaR. We have covered the tools of VaR through Marginal

and Component VaR. These play an important role as they provide an indication

of an asset’s risk and not just the portfolio. Finally we concluded this chapter by

looking at CVaR, which is based on VaR but has a different notion towards the

estimation of loss. In the next chapter, we present numerical simulation for certain

portfolio investment models.
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Chapter 5

Numerical Simulation for

Investment Portfolio Models

5.1 Introduction

In this chapter we chose twenty nine stocks, S&P500 index and the one year T-

bill rate. We used historical data from http://www.finance.yahoo.com dating from

01/01/1996 to 31/12/2010. We then applied the various methods that we’ve covered

in order to compute efficient portfolios assuming our position is at 01/01/2010 and

we have a lump sum of $1 000 000. From there we measured the portfolio’s perfor-

mance in 2011 and we also show how we have measured their performance. As men-

tioned above, our stock price data was obtained from http://www.finance.yahoo.com

and the risk-free rate is from the United States Department of the Treasury.

Here we are going to conduct experiments based on the reported literature.

• First, we compute our portfolios using Quadratic Programming to obtain port-

folios based on Markowitz’s principles.

• Constrains are then added to move away from concentrated or abnormal port-

folios that can sometimes be seen with the Markowitz principles.

• The CAPM theory is then applied in order to move us even further away from

some of the abnormal Markowitz portfolios. We also try to diversify more by

adding a risk-free asset.

• The problem still exists even after applying CAPM.
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• We then follow the Black-Litterman model to reduce the problem further.

• VaR is now considered in order to try and quantify risk as a value for future

disasters. We calculate VaR with a 95% confidence level in all the calculations.

Before we present our numerical results, we would just like to highlight that as

we are dealing with a huge dimension of assets, we are only able to show some

rows and columns as all of the data cannot be presented in this thesis due to space

limitations. We also removed the asset allocation of allowing short selling as well as

groups without short selling.

5.2 Evaluation of Markowitz Portfolios

We obtained twenty nine historical prices of stocks of the S&P500 and the S&P500

from http://www.finance.yahoo.com. All the assets were adjusted for dividends

except the S&P500. Using the historical prices, we were able to compute the con-

tinuous returns of each stock to obtain the basic statistical parameters, which are

the means, variances and the correlations as follows on Table 5.1 and Table 5.2.

For the purpose of this discussion we use the geometric mean as opposed to the

arithmetic mean. The following formula is used in order to obtain the mean:

µt =

(
T∏
t=1

(1− rit)

) 1
T

− 1.
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Table 5.2: Computation of the asset covariance and correlation matrices

covariance Matrix

HPQ WHR T AZO GIS ACE AXP IBM Ford
HPQ 0.012 0.005 0.002 0 0 0.002 0.004 0.005 0.005
WHR 0.005 0.013 0.002 0.002 0.001 0.003 0.007 0.003 0.01

T 0.002 0.002 0.006 0.001 0.001 0.001 0.003 0.002 0.003
AZO 0 0.002 0.001 0.008 0 0.001 0.002 0.001 0.002

WMT 0 0.002 0.001 0.002 0 0.001 0.002 0.001 0.003
AIG 0.005 0.012 0.008 0.005 0 0.005 0.015 0.004 0.005
AA 0.007 0.009 0.003 0.002 0 0.002 0.006 0.005 0.013

CAT 0.003 0.008 0.003 0.002 0 0.003 0.006 0.003 0.009
GIS 0 0.001 0.001 0 0.003 0.001 0.001 0 0
ACE 0.002 0.003 0.001 0.001 0.001 0.007 0.004 0.001 0.002
AXP 0.004 0.007 0.003 0.002 0.001 0.004 0.009 0.003 0.008
IBM 0.005 0.003 0.002 0.001 0 0.001 0.003 0.007 0.005
Ford 0.005 0.01 0.003 0.002 0 0.002 0.008 0.005 0.025

Correlations
HPQ WHR T AZO GIS ACE AXP IBM Ford

HPQ 1 0.3215 0.2011 0.0363 0.0378 0.197 0.3397 0.5353 0.2588
WHR 0.3215 1 0.2134 0.1556 0.1942 0.3434 0.5958 0.2982 0.5133

T 0.2011 0.2134 1 0.1775 0.2469 0.2141 0.3019 0.2795 0.2737
AZO 0.0363 0.1556 0.1775 1 0.0675 0.1661 0.1937 0.1214 0.1534
GIS 0.0378 0.1942 0.2469 0.0675 1 0.1776 0.1116 -0.026 0.0548
ACE 0.197 0.3434 0.2141 0.1661 0.1776 1 0.4243 0.1877 0.2597
AXP 0.3397 0.5958 0.3019 0.1937 0.1116 0.4243 1 0.3328 0.6636
IBM 0.5353 0.2982 0.2795 0.1214 -0.026 0.1877 0.3328 1 0.2577
Ford 0.2588 0.5133 0.2737 0.1534 0.0548 0.2597 0.6636 0.2577 1

HPQ WHR T AZO GIS ACE AXP IBM Ford S&P500
Alpha 0.0053 0.007 0.0027 0.0151 0.0084 0.0091 0.0051 0.0083 0.007 0

SE 0.0067 0.6321 0.0051 0.0067 0.0038 0.0055 0.0059 0.0051 0.0102 0
T-Stat 0.7903 0.5207 2.2727 2.1805 1.6622 0.863 1.6388 0.6839

Beta 1.3777 1.3268 0.7601 0.5405 0.1974 0.7759 1.5017 1.1379 1.6973 1
SE 0.1402 0.1475 0.1075 0.1403 0.0808 0.1157 0.1242 0.1071 0.2152 0.0482

T-Stat 9.8286 8.9957 7.0719 3.8525 2.4433 6.7056 12.0873 10.6257 7.8867
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Huang and Litzenburg Approach for Asset Allocation

First we start by computing the efficient frontier of the Markowitz model by using

the Huang and Litzenburg approach. This is a simple algebraic computation. This

approach is suitable when there are no constrains on our assets. By using this

approach we solve the following model:

min w′V w

subject to w′1 = 1,

w′µ = q,

w =
C − qB
AC −B2

V −11 +
qA−B
AC −B2

V −1µ,

where

A = 1′V −11, B = 1′V −1µ and C = µ′V −1µ.

We also have one as the vector of ones and V −1 as the inverse of the covariance ma-

trix. This computes two envelope portfolios. We then use the Two Fund Theorem

to obtain the rest of the envelope.

We constructed ten portfolios with annual returns of 6% to 33% in Table 5.3. The

table shows that portfolios 1 and 2 carry higher risk and a lower expected return

than portfolios 3 and 4. From the shape of the graph in Figure 5.1(a), we can see

that we obtained an envelope portfolio. We cannot put constrains on this approach,

and this provides limitations, as the efficient frontier cannot be constructed. This

is crucial due to the assumption that we should be risk averse and we are therefore

only interested in the efficient frontier. This could also be a problem for investors

who don’t want to go short as this approach only sums up the weights of 100%

regardless of the sign. From the values at the end of the period in Figure 5.1(b),

we can see that every portfolio value has increased and every portfolio is greater

than $1 million. It is interesting to note that the profit is increasing in-line with

the increment of the expected return and the standard deviation. We also note
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that portfolio’s 1 and 2, which are not efficient, have actually made less profit than

3 and 4. This shows that the portfolio’s which are under the minimum variance

portfolio or in a lower expected return with the same standard deviation are not

good investment options.

Table 5.3: Asset allocation using Huang and Litzenburg Approach
Portfolios 1 2 3 4 5 6 7 8 9 10

Sigma 11.10% 10.00% 9.92% 10.88% 12.65% 14.95% 17.56% 20.37% 23.31% 26.33%
Return 6.00% 9.00% 12.00% 15.00% 18.00% 21.00% 24.00% 27.00% 30.00% 33.00%

PORTFOLIO WEIGHTS
HPQ 7.33% 5.26% 3.19% 1.12% -0.95% -3.02% -5.09% -7.16% -9.23% -11.30%
WHR 5.67% 5.19% 4.72% 4.24% 3.76% 3.29% 2.81% 2.33% 1.86% 1.38%

T 1.21% -1.77% -4.75% -7.73% -10.71% -13.68% -16.66% -19.64% -22.62% -25.60%
AZO 3.10% 5.34% 7.59% 9.84% 12.09% 14.33% 16.58% 18.83% 21.08% 23.32%
JPM 0.21% -0.74% -1.70% -2.65% -3.61% -4.57% -5.52% -6.48% -7.44% -8.39%
CVX -4.42% -4.38% -4.35% -4.32% -4.28% -4.25% -4.22% -4.18% -4.15% -4.12%
CB 8.87% 6.64% 4.42% 2.20% -0.02% -2.24% -4.46% -6.68% -8.91% -11.13%
KO 9.92% 6.72% 3.51% 0.31% -2.90% -6.10% -9.31% -12.51% -15.71% -18.92%

NBL 8.11% 7.14% 6.17% 5.20% 4.23% 3.26% 2.29% 1.32% 0.35% -0.62%
Dell -10.23% -5.84% -1.46% 2.93% 7.32% 11.70% 16.09% 20.48% 24.86% 29.25%
UNH -6.56% -4.70% -2.84% -0.98% 0.88% 2.74% 4.60% 6.46% 8.32% 10.18%
XOM 24.64% 27.08% 29.53% 31.98% 34.42% 36.87% 39.31% 41.76% 44.21% 46.65%

K 23.06% 17.11% 11.16% 5.21% -0.74% -6.69% -12.64% -18.59% -24.54% -30.49%
MCD -1.46% -0.06% 1.35% 2.75% 4.16% 5.56% 6.96% 8.37% 9.77% 11.18%
MHP 9.40% 10.79% 12.17% 13.55% 14.93% 16.31% 17.69% 19.07% 20.46% 21.84%
MSFT -1.30% -1.99% -2.68% -3.37% -4.06% -4.76% -5.45% -6.14% -6.83% -7.52%

GT -0.34% -4.18% -8.02% -11.86% -15.70% -19.54% -23.38% -27.22% -31.06% -34.90%
NKE -0.46% -0.80% -1.14% -1.48% -1.82% -2.15% -2.49% -2.83% -3.17% -3.51%
PFE 14.15% 9.95% 5.75% 1.54% -2.66% -6.86% -11.06% -15.27% -19.47% -23.67%
GE 3.58% 2.17% 0.75% -0.66% -2.07% -3.49% -4.90% -6.31% -7.73% -9.14%

WMT 12.77% 11.54% 10.32% 9.09% 7.87% 6.64% 5.42% 4.19% 2.97% 1.74%
AIG 0.60% 0.06% -0.48% -1.02% -1.56% -2.10% -2.64% -3.18% -3.72% -4.26%
AA 3.26% -0.35% -3.96% -7.57% -11.18% -14.79% -18.40% -22.01% -25.62% -29.23%

CAT -17.35% -8.62% 0.12% 8.85% 17.58% 26.31% 35.05% 43.78% 52.51% 61.25%
GIS 13.91% 19.84% 25.78% 31.71% 37.65% 43.58% 49.51% 55.45% 61.38% 67.32%
ACE -5.94% -3.10% -0.27% 2.57% 5.40% 8.24% 11.07% 13.91% 16.75% 19.58%
AXP -9.58% -8.43% -7.29% -6.14% -5.00% -3.85% -2.71% -1.56% -0.42% 0.73%
Ibm 8.93% 11.01% 13.09% 15.17% 17.25% 19.33% 21.41% 23.49% 25.56% 27.64%
Ford -1.10% -0.90% -0.69% -0.49% -0.28% -0.08% 0.12% 0.33% 0.53% 0.73%
Sum 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Asset allocation with no short selling allowed

We now solve the weights by using Matlab. We also add an additional constrain of

wi ≥ 0, i.e. where no short selling is allowed. So we solve this for

min w′V w,

subject to w′1 = 1,

w′µ = q,
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(a) Huang and Litzenburg Portfolio Envelope

(b) Huang and Litzenburg Portfolio Value at the end of 2011

Figure 5.1: Huang and Litzenburg envelope and value.

wi ≥ 0.

Where w′is are the weights of the assets, V is the covariance matrix and, µ is the

vector of geometric means. When we allow short selling we remove the last equation

if we have no bounds, but here we limit the short selling by up to 50% and the value

of each asset by 150%.

Results: In Table 5.4 we have ten portfolios obtained by not allowing short selling

and also allowing short selling. Most of the assets were left out by performing opti-

misation. Some portfolios are concentrated with particular assets such as the Dell

stock. This creates a problem in that the portfolio is highly volatile. From the ten

portfolios, the rate of return goes from an annual return of 10.2% to 18.63% and an

annual standard deviation of 10.97% to 45.96%. The numbers are not unreasonable;

however, this disregards our intention of diversification, i.e. having as many assets

as possible through the law of large numbers. This optimisation selected an average

of six assets out of the possible twenty nine assets. Following this we try and limit
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our assets by including an additional constrain of 0.1 ≤ wi ≤ 0.5 however, this failed

due to the fact that there is no solution which satisfies this model.

When we allow short selling, the optimisation chooses several assets and even so

these are concentrated within certain assets. In this scenario, the expected re-

turn goes from 10.73% to 98.51% while the standard deviation goes from 9.82% to

171.65%. It is interesting to note that the expected returns of portfolios 1 to 6 are

less than their standard deviation. These are the benefits of short selling, however

with that it also brings high volatility to some portfolios. We can also see from the

comparison in Figure 5.2(c) how the no short selling efficient frontier, is enclosed

under the short selling efficient frontier. This profit tends to decrease while the

standard deviations increase.

Regardless of the concentration of assets, when short selling is not allowed, we see

from Figure 5.2(d) there is profit at the end of the period. Also when allowing for

short selling, there is profit, and in fact, some portfolios have doubled and even

tripled due to short selling.

Table 5.4: Markowitz Portfolio Selection with no short selling allowed and with
short selling

Portfolio Weights when short selling is not allowed

Ports Annual Annual HPQ WHR T AXP Ibm Ford
Sigma Return

1 11.0% 10.2% 0.0% 0.0% 0.0% 0.0% 4.8% 0.0%
2 11.2% 11.1% 0.0% 0.0% 0.0% 0.0% 5.5% 0.0%
3 12.1% 12.1% 0.0% 0.0% 0.0% 0.0% 3.6% 0.0%
4 13.9% 13.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0%
5 16.4% 13.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
6 19.3% 14.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
7 22.4% 15.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
8 26.0% 16.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
9 31.6% 17.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 46.0% 18.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Portfolio Weights when short selling is allowed
Ports Annual Annual HPQ WHR T AXP Ibm Ford

Sigma Return
1 9.82% 10.73% 4.07% 4.92% -3.48% -7.77% 12.21% -0.78%
2 14.52% 20.48% -2.66% 3.37% -13.17% -4.05% 18.97% -0.12%
3 23.54% 30.23% -9.39% 1.82% -22.86% -0.32% 25.73% 0.55%
4 33.56% 39.99% -16.13% 0.28% -32.55% 3.40% 32.49% 1.21%
5 44.09% 49.74% -26.51% -5.53% -45.00% 8.27% 40.08% -0.63%
6 55.84% 59.50% -44.89% -17.52% -50.00% 21.67% 48.03% -10.46%
7 69.98% 69.25% -50.00% -29.54% -50.00% 39.55% 52.02% -23.75%
8 87.68% 79.01% -50.00% -50.00% -50.00% 49.71% 58.06% -40.16%
9 110.86% 88.76% -50.00% -50.00% -50.00% 17.58% 79.39% -50.00%

10 171.65% 98.51% -50.00% -50.00% -50.00% -50.00% 150.00% -50.00%
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(a) Mk no short eff front (b) Mk short eff front

(c) No short and short Comparison (d) Short and no short portfolio perfor-
mance

Figure 5.2: Markowitz efficient frontier and performance.

Asset allocation through Grouping

We have seen above, that the model fails when we impose restrictive bounds to the

assets. In this section we are going to allow short selling of -0.5 and will limit the

assets to 1.5. These groups will then be divided into their respective sectors:

Consumer Discretionary (WHR, AZO, MCO, GT, NKE and FORD) from 0 up to

0.7; Consumer Staples (KO, K, WMT and GIS) from 0 up to 0.55; Energy (NBL,

CVX and XOM) from 0 up to 0.25; Financials (JPM, CB, AIG, ACE and AXP)

from 0 up to 0.6; Health Care (UNH and PFE) from 0 up to 0.2; Industrial (GE

and CAT) from 0 up to 0.2; Information technology (HPQ, DELL, MSFT and IBM)

from 0 up to 0.55; Materials (AA) from 0 up to 0.1; Telecommunication Services

(T) from 0 up to 0.1. This makes the assets flexible but restricts their sector.
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Results: Setting group bounds tends to improve our results in Table 5.5. There

is an increase in the number of assets allocated i.e. concentration is reduced. We

can see that the assets have an average allocation to a possible eleven out of twenty

nine. When short sales are introduced we obtain a good return but the volatility

still persists, and the problem of having assets holding very high short positions

also still exists. When short selling is not allowed, there is hardly any improvement

in the asset allocation spread. In fact, in the consumer discretion sector, we have

one dominant asset (AZO), which is still allocated in every portfolio. We have a

similar situation for all the other sectors. This tells us that when short selling is

not allowed, there is little improvement in terms of distribution of the wealth. We

can also see that the expected return of the minimum variance portfolio through

grouping is less than that with no grouping. It also has a higher standard deviation

(return from 10.2 → 9.99% and STD 11 → 11.02). When short selling is allowed,

there is no improvement as the assets, like AA and T, are left out of the allocation.

In some assets, the excessive position is reduced but with minor significance. We

also see that the expected return of the minimum variance portfolio of the grouped

approach, has actually decreased from 10.73% to 10.60% and the standard deviation

increased from 9.82% to 9.94% when comparing it with the no group approach.

We then reduced the margin of the group, and we bound consumer discretionary

from 0.3 to 0.7, consumer staples from 0.2 to 0.55 financials from 0.3 to 0.6 and infor-

mation technology from 0.25 to 0.55. When we reduced these margins optimisation

failed. Following this outcome, we widened the margin of information technology

and it moved from 0.1 to 0.55. The expected return of the minimum variance port-

folio of the grouping approach is higher than the no grouping approach. When we

look at the groups in Figure 5.3 under the no short selling approach performance,

we can see that portfolios 3 to 8 are all in the negative position, compared to their

initial position. When short selling is allowed, portfolios 3 and 4 made a loss. Under

the no short selling approach portfolios 5 to 8 have made significant losses. This is

surprising as the efficient frontier from Figure 5.2 of the ungrouped data, is close to

the grouped data. There were no losses in the ungrouped data.
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Table 5.5: Portfolio Selection by grouping assets and imposing group bounds
Portfolio Weights when short selling is not allowed with group constrains

Annual Sigma Annual Return HPQ WHR T AXP IBM Ford
11.02% 9.99% 0.04% 0.00% 0.00% 0.00% 6.09% 0.00%
11.18% 10.84% 0.00% 0.00% 0.00% 0.00% 7.53% 0.00%
11.74% 11.68% 0.00% 0.00% 0.00% 0.00% 7.82% 0.00%
13.00% 12.53% 0.00% 0.00% 0.00% 0.00% 4.95% 0.00%
14.90% 13.38% 0.00% 0.00% 0.00% 0.00% 1.34% 0.00%
17.23% 14.22% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
19.88% 15.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
22.78% 15.92% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
25.99% 16.76% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
30.72% 17.61% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Portfolio Weights when short selling is allowed with group constrains
Annual Sigma Annual Return HPQ WHR T AXP IBM Ford

9.94% 10.60% 3.00% 3.19% 0.00% -6.21% 12.18% -1.59%
13.76% 18.67% -5.89% 2.51% 0.00% -0.38% 17.94% -3.15%
21.39% 26.74% -15.03% 1.64% 0.00% 6.66% 23.62% -4.62%
30.16% 34.80% -24.70% 2.55% 0.00% 15.78% 29.94% -5.72%
39.44% 42.87% -36.90% -0.10% 0.00% 25.79% 36.37% -8.67%
50.39% 50.94% -50.00% -7.20% 0.00% 39.03% 43.76% -15.55%
64.26% 59.00% -50.00% -19.96% 0.00% 48.73% 33.18% -26.56%
81.03% 67.07% -50.00% -34.05% 0.00% 52.82% 6.41% -39.60%

100.61% 75.14% -50.00% -50.00% 0.00% 55.45% 5.00% -50.00%
135.00% 83.20% -50.00% -50.00% 0.00% 0.00% 5.00% -50.00%

(a) Grouped Mk no short eff front (b) Grouped Mk short eff front

(c) Grouped No short and short Compari-
son

(d) Grouped Short and no short port per-
formance

Figure 5.3: Grouped Markowitz efficient frontier and performance.
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Figure 5.4: Portfolio efficient frontier group bounds comparison

5.3 Evaluation of portfolios using the CAPM an-

ticipated returns

We now change the expected return in order to see if the problem can be resolved.

We estimate the expected returns by using the CAPM. We also introduce the risk-

free asset. The risk-free rate is 6% p.a. which implies that it is 0.5% monthly. We

start by estimating betas of every asset by taking the S&P500 to be the market

portfolio. We calculate the expected returns by using the CAPM formula

E(Ri) = rf + βi[E(RM)− rf ],

where,

rf is the risk-free rate,

β is the covariance of the asset i against the S&P500 and E(RM) is the S&P500

expected return.

The process of calculating the efficient frontier is then repeated using Quadratic

Programming through setting the constrains, i.e. we restrict them by not allowing

short sales, allowing short sales, grouping and not allowing short sales as well as

allowing grouped short sales. We calculate the market or benchmark portfolio using
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Blacks zero beta to see whether the efficient frontier is moving above or below the

market portfolio.

Results: In all our calculations in Table 5.6, we can see the efficient frontier is on

the market portfolio. It is interesting to note that by using the zero beta model

we obtained the same expected return as the S&P500 geometric mean of 0.38% or

the annual mean of 4.6%. Another interesting finding is that even in the restricted

groups i.e. no short sales, the efficient frontier is above the market portfolio. When

short selling is allowed the market portfolio is very close to the efficient frontier.

The portfolios that are close to the market portfolio are evenly distributed, with the

wealth spread across various assets. When all the efficient frontiers are on the same

set of axes, we limit the optimisation to provide good returns for the level of risk.

When we look at Figure 5.3 under CAPM, by allowing short selling at the output of

t+1 we see that when holding a portfolio with a high standard deviation an investor

can go from wealthy to bankrupt. The portfolio with a standard deviation of 135%

made almost 100% return, however a portfolio with a standard deviation of 161%

lost almost 10%. The portfolio with a 210% standard deviation (portfolio number

10 under the short selling approach) has created debt of 60% of the original value.

This is due to the high position assumed in the portfolio. When we group these

assets, we see that we have avoided losses that were in the short selling approach.

Table 5.6: Portfolio selection by using CAPM returns
Risk free Expected Market Return Market sigma

0.00025 0.045791879 0.170979

Port Sigma Port Return Portfolio Weights when short selling is not allowed
HPQ WHR T AXP IBM Ford

11% 2% 0% 0% 0% 0% 5% 0%
12% 3% 4% 0% 0% 0% 10% 0%
14% 4% 6% 0% 2% 3% 11% 0%
17% 5% 7% 0% 4% 7% 12% 0%
21% 5% 7% 0% 5% 14% 11% 0%
24% 6% 7% 0% 4% 23% 9% 0%
29% 7% 3% 0% 0% 34% 0% 0%
38% 8% 0% 0% 0% 7% 0% 11%
81% 8% 0% 0% 0% 0% 0% 0%

157% 9% 0% 0% 0% 0% 0% 0%
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Figure 5.5: CAPM efficient frontiers

Figure 5.6: CAPM portfolio performances
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5.4 Tracking the benchmark portfolio using the

Sharpe Style Analysis

In this section we take a look at the historical returns of the assets. Having the

benchmark portfolio, we then obtain the style by multiplying the weights of the

portfolio with the returns of period t. We then compute the error by subtracting

the S&P500 rate of return at time t, from the style at time t. We then use Quadratic

Programming to achieve the weights of the desired portfolio which will track the in-

dex.

Results: Both for long and short positions we see from Table 5.7 that the rate of

return is just over 5% p.a. This is close to the geometric mean of the S&P500 which

is 4.56% p.a. Using the weights of no short selling and where short selling is allowed,

the values at the end of the period are $1,051,882.84 and $1 057 917 respectively. If

we invested our lump sum in the S&P500, the value at the end of the period would

be $967 103 with a negative position. This is in fact less than the two portfolios;

however, we have tracked the expected return of the S&P500. So using this, we can

see that the S&P500 is over performed.

Table 5.7: Asset allocation by tracking the benchmark using Sharpe style error
Date Style Error Style Port No Short Selling Style Portfolio Short Selling

12/1/2010 0.0706 -0.0053 HPQ 7.64% 7.76%
11/1/2010 -0.0084 0.0737 WHR 0.00% -0.24%
10/1/2010 0.0396 0.0257 T 2.59% 2.62%
9/1/2010 0.0886 -0.0233 AZO 3.33% 3.46%
8/2/2010 -0.0394 0.1047 JPM 5.68% 5.89%
7/1/2010 0.0829 -0.0176 CVX 1.51% 1.85%
6/1/2010 -0.0461 0.1114 CB 2.73% 3.59%
5/3/2010 -0.0932 0.1585 KO 7.43% 7.85%
4/1/2010 0.0051 0.0602 NBL 4.59% 4.93%
3/1/2010 0.0465 0.0188 Dell 0.64% 0.67%
2/1/2010 0.0150 0.0503 UNH 1.13% 1.04%
1/4/2010 -0.0236 0.0889 XOM 5.40% 5.00%
12/1/2009 0.0225 0.0428 K 1.28% 1.01%
11/2/2009 0.0630 0.0023 MCD 2.98% 2.64%
10/1/2009 0.0002 0.0651 MHP 7.58% 7.77%
9/1/2009 0.0315 0.0338 MSFT 5.55% 5.40%
8/3/2009 0.0416 0.0237 GT 0.07% 0.36%
7/1/2009 0.0807 -0.0154 NKE 0.00% -0.58%
6/1/2009 -0.0005 0.0658 PFE 5.61% 5.88%
5/1/2009 0.0450 0.0203 GE 12.13% 12.27%
4/1/2009 0.1157 -0.0504 WMT 3.57% 3.90%
3/2/2009 0.1138 -0.0485 AIG 0.35% 0.30%
2/2/2009 -0.1120 0.1773 AA 3.81% 3.64%
1/2/2009 -0.1009 0.1662 CAT 1.94% 2.09%
12/1/2008 0.0008 0.0645 GIS 3.88% 4.04%
11/3/2008 -0.0555 0.1208 ACE 0.00% -1.90%
10/1/2008 -0.1451 0.2104 AXP 1.35% 2.05%
9/2/2008 -0.0605 0.1258 IBM 7.23% 7.18%
8/1/2008 0.0119 0.0534 Ford 0.00% -0.50%
7/1/2008 0.0134 0.0519
6/2/2008 -0.0771 0.1424 Monthly Mean 0.73% 0.72%
5/1/2008 0.0085 0.0568 Monthly Sigma 4.95% 4.94%
4/1/2008 0.0274 0.0379
3/3/2008 0.0119 0.0534 Annual Mean 8.72% 8.66%
2/1/2008 -0.0137 0.0790 Annual Sigma 17.13% 17.12%
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5.5 Numerical asset allocation using the Black-

Litterman model

Benchmark

As we stated earlier, the Black-Litterman model is the reverse engineering of optimi-

sation. First we start by getting the benchmark portfolio. The benchmark portfolio

is obtained by estimating the outstanding shares to compute the market value of

each asset. We then obtain the proportion by dividing each market value by the

total market value of the portfolio. Now that we have the benchmark portfolio

we are now able to compute the rate of returns required in order to obtain that

benchmark. This is the complete opposite of what we’ve been doing all along by

calculating the expected returns in order to allocate the wealth. We now use these

returns to calculate the efficient frontier.

Results: With the Black-Litterman model we can see from Table 5.8 that there are

portfolios which are evenly distributed even when we don’t allow short selling. The

portfolio with the standard deviation of 4.85% and the return of 0.94% only excluded

two assets. This is not seen when assets are grouped. From the portfolios at t + 1

in Figure 5.5, we see that on the efficient frontier of Figure 5.5, the portfolios shown

before the benchmark portfolio are the ones that have a positive rate of return. When

we allow short selling and limit the groups, the portfolio didn’t perform particularly

well, as half of them had over -100% rate of return.

Figure 5.7: Efficient frontiers using market returns

Figure 5.8: Benchmark portfolio performances
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Table 5.8: Market portfolio computation and asset allocation using market portfolio
as the benchmark

Computation of the benchmark or market portfolio returns and its asset allocation

HPQ WHR T AXP IBM Ford
Benchmark Portfolio 3.36% 0.27% 6.53% 1.99% 6.81% 0.01%

Risk-free 0.025%
Expected Return 0.87% 1.02% 0.65% 1.11% 0.79% 1.24%

Port Sigma Port Return Portfolio Weights when short selling is not allowed
HPQ WHR ACE AXP IBM Ford

10.97% 4.60% 0.00% 0.00% 0.00% 0.00% 4.81% 0.00%
16.81% 9.19% 3.53% 0.50% 0.53% 0.84% 7.29% 0.00%
26.26% 13.77% 1.48% 0.00% 0.00% 7.90% 5.36% 2.09%
38.11% 18.36% 0.00% 0.00% 0.00% 9.49% 0.00% 7.28%
54.10% 22.95% 0.00% 0.00% 0.00% 0.00% 0.00% 15.20%
72.67% 27.53% 0.00% 0.00% 0.00% 0.00% 0.00% 21.72%
92.41% 32.12% 0.00% 0.00% 0.00% 0.00% 0.00% 27.07%
113.20% 36.71% 0.00% 0.00% 0.00% 0.00% 0.00% 29.54%
134.88% 41.29% 0.00% 0.00% 0.00% 0.00% 0.00% 14.77%
157.24% 45.88% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Port Sigma Port Return Portfolio Weights when short selling is allowed
HPQ WHR ACE AXP IBM Ford

9.82% 3.09% 4.07% 4.92% -1.50% -7.77% 12.21% -0.78%
34.10% 17.68% 2.57% -4.90% 3.47% 12.85% 0.79% 0.88%
66.11% 32.28% 1.06% -18.14% 8.06% 36.85% -10.96% 3.73%
100.02% 46.87% -10.05% -37.81% 16.09% 58.59% -20.20% 12.70%
135.99% 61.47% -18.81% -50.00% 11.59% 85.62% -33.19% 21.01%
174.01% 76.06% -25.40% -50.00% -14.17% 118.50% -44.41% 24.81%
213.81% 90.65% -31.01% -50.00% -50.00% 150.00% -50.00% 33.49%
256.25% 105.25% -43.85% -50.00% -50.00% 150.00% -50.00% 52.55%
301.66% 119.84% -50.00% -50.00% -50.00% 150.00% -50.00% 75.59%
384.81% 134.44% -50.00% 100.00% -50.00% 150.00% -50.00% 150.00%

Adjusting rates of returns

Alternatively, after estimating the returns from the above, the Black-Litterman

approach allows us to add our thoughts regarding what we feel the mispriced returns

are. In essence, this means that we are able to change the returns based on what

we think they are for the various assets. Due to a level of uncertainty, we only use

the 10% confidence levels on the assets we are changing. We estimate the HPQ rate

of return to be 1.1% instead of 1% and that the NBL rate will be 0.6% instead of

0.85%. With our estimations, we can see that we are able to obtain a portfolio that

performs very close to the benchmark (S&P500). However, it’s important to note

that this can cause major problems as these returns are correlated. If we are wrong

then we are also mispricing the other assets.
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Table 5.9: Portfolio selection following Black-Litterman with one opinion of one
asset

Computation of the benchmark or market portfolio and its return using the Black-Litterman Approach

Portfolio Weights when short selling is not allowed
Port Sigma Port Return HPQ WHR T AXP IBM Ford

10.97% 4.82% 0.00% 0.00% 0.00% 0.00% 4.81% 0.00%
16.45% 9.40% 6.07% 0.27% 4.93% 0.33% 8.02% 0.00%
25.52% 13.99% 7.12% 0.00% 6.43% 7.57% 7.39% 1.56%
37.09% 18.57% 2.80% 0.00% 0.00% 10.17% 0.00% 5.07%
53.01% 23.16% 0.00% 0.00% 0.00% 0.00% 0.00% 11.18%
71.72% 27.74% 0.00% 0.00% 0.00% 0.00% 0.00% 16.06%
91.70% 32.33% 0.00% 0.00% 0.00% 0.00% 0.00% 19.29%
112.85% 36.92% 0.00% 0.00% 0.00% 0.00% 0.00% 19.55%
134.74% 41.50% 0.00% 0.00% 0.00% 0.00% 0.00% 14.86%
157.24% 46.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Portfolio Weights when short selling is allowed with group constrains
Port Sigma Port Return HPQ WHR T AXP IBM Ford

9.94% 3.52% 3.00% 3.19% 0.00% -6.21% 12.18% -1.59%
26.18% 14.49% 8.59% -2.37% 10.00% 7.42% 5.61% 0.15%
50.53% 25.46% 17.68% -3.96% 10.00% 20.85% -7.63% 4.08%
76.58% 36.43% 26.29% -5.24% 4.31% 36.49% -26.49% 10.73%
104.45% 47.40% 26.59% -7.53% 0.00% 41.24% -50.00% 26.27%
136.45% 58.36% 11.28% -10.21% 0.00% 9.57% -50.00% 54.55%
171.92% 69.33% -11.57% -26.35% 0.00% -13.66% -50.00% 82.71%
209.94% 80.30% -30.64% -50.00% 0.00% -43.95% -50.00% 106.13%
251.63% 91.27% -50.00% -50.00% 0.00% -50.00% -50.00% 109.26%
313.10% 102.24% -50.00% -50.00% 0.00% 40.00% -50.00% 150.00%

Figure 5.9: Black-Litterman efficient frontiers using one opinionated market return

Figure 5.10: Black-Litterman portfolio performances using one opinionated market
return

78

 

 

 

 



CHAPTER 5. NUMERICAL SIMULATION FOR INVESTMENT PORTFOLIO
MODELS

Table 5.10: Portfolio selection following Black-Litterman with two opinions
Computation of the benchmark or market portfolio and its return using the Black-Litterman Approach

Port Sigma Port Return Portfolio Weights when short selling is not allowed
HPQ WHR T AXP IBM Ford

10.97% 4.79% 0.00% 0.00% 0.00% 0.00% 4.81% 0.00%
16.46% 9.37% 6.13% 0.29% 4.91% 0.35% 8.11% 0.00%
25.52% 13.96% 7.28% 0.00% 6.59% 7.45% 7.59% 1.57%
37.08% 18.55% 3.20% 0.00% 0.00% 9.77% 0.00% 5.33%
53.02% 23.13% 0.00% 0.00% 0.00% 0.00% 0.00% 11.46%
71.74% 27.72% 0.00% 0.00% 0.00% 0.00% 0.00% 16.48%
91.73% 32.30% 0.00% 0.00% 0.00% 0.00% 0.00% 20.00%

112.86% 36.89% 0.00% 0.00% 0.00% 0.00% 0.00% 20.41%
134.74% 41.48% 0.00% 0.00% 0.00% 0.00% 0.00% 14.86%
157.24% 46.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Port Sigma Port Return Portfolio Weights when short selling is allowed with group constrains
HPQ WHR T AXP IBM Ford

9.94% 3.50% 3.00% 3.19% 0.00% -6.21% 12.18% -1.59%
26.17% 14.45% 8.70% -2.35% 10.00% 7.40% 5.82% 0.17%
50.47% 25.40% 17.93% -3.62% 10.00% 20.75% -7.65% 4.20%
76.49% 36.35% 26.62% -4.72% 4.55% 36.37% -26.71% 10.83%

104.27% 47.30% 27.43% -7.27% 0.00% 40.81% -50.00% 26.47%
136.14% 58.25% 12.71% -9.77% 0.00% 8.70% -50.00% 54.85%
171.49% 69.21% -9.61% -25.75% 0.00% -14.86% -50.00% 83.14%
209.40% 80.16% -28.40% -50.00% 0.00% -45.51% -50.00% 107.43%
251.02% 91.11% -50.00% -50.00% 0.00% -50.00% -50.00% 110.39%
313.10% 102.06% -50.00% -50.00% 0.00% 40.00% -50.00% 150.00%

Figure 5.11: Black-Litterman efficient frontiers using two opinionated market returns

Figure 5.12: Black-Litterman portfolio performances using two opinionated market
returns
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Black-Litterman using relative views and comparison with

other models

Here we use the Black-Litterman formula to incorporate our views. We start by

computing the market capitalisation. Looking at the equilibrium, the expected re-

turns hold the following views: HPQ will outperform CVX by 50 basis points, PFE

will outperform MCD by 75 basis points and AZO will outperform XOM by 5 basis

points. We are 10% confident in our views. The expected returns we obtain from the

Black-Litterman approach give us the weights with 100% confidence. We then com-

pute the What from the 100% confidence weights. W100, What, Wmkt, Wcapm, Whist are

portfolios which are obtained from Black-Litterman returns with 100% confidence

of views, 10% confidence, market capitalisation, CAPM returns and plain historical

returns respectively.

Results: Looking at the estimation of the expected returns by the Black-Litterman

approach, equilibrium returns, geometric historical and CAPM, we see that the

returns of the Black-Litterman and equilibrium returns are close to one another.

Some of the geometric and CAPM returns are also close to each other, however

most of the Black-Litterman and equilibrium returns are not close to geometric and

CAPM returns. More than half of the stocks’ expected returns of Black-Litterman

and market are more than double the geometric and CAPM expected returns. The

biggest attraction is on AIG and GT. This is due to the fact that the Black-Litterman

expected returns are positive and the geometric returns are negative with a difference

of 7.33% and 2.7% respectively. In observing our views we can see that the HPQ

is greater than CVX. This means that HPQ has outperformed CVX and we see the

same result for XOM against AZO and PFE and MCD respectively. To be precise,

the difference between HPQ and CVX is 0.48%, XOM and AZO is 0.06% and PFE

and MCD is 0.33%. The percentages are not exactly the same as our views, but are

very close.

Portfolio Statistics results

From Table 5.12 Whist has the highest expected return of 1.53%. The W100, What

and Wmkt are close to each other at 1.34%, 1.3% and 1.3% respectively. The Wcapm

has the lowest expected return of 0.38%. The Whist has the highest expected return

and the lowest standard deviation. The Wmkt has a beta of one as expected, followed

by What with a beta of 1.013 which is very close to one. The W100, Wcapm and Whist
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have a beta of 1.135. For the Treynor (see Figure 5.13(a))and Sharpe measures (see

Figure 5.13(b)) the Wcapm is above the SML and CML lines respectively, showing

us that its output performed S&P500 index, W100, Whist, What, Wmkt are all under

the CML and SML. This indicates that they did not perform as well as the S&P500

index did. The information ratio of Wmkt and What has a zero indication which

shows that they are very close to the S&P500 index, which is as expected. W100

and Wcapm are negative, indicating that they underperformed against the S&P500.

Whist has a ratio of 0.4, which shows that it performed above the aggregate index.
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Opinion Based 

Returns Vector

(Pi hat)

Equilibrium 

Return Vector

(Pi)

Geometric

Historical Return 

Vector

CAPM 

Returns

Vector

Opinion Based 

Weights

(W 100)

Equilibrium 

Weights

(W mkt)

Geometric

Historical

Weights 

(W hsit)

CAPM

Weights

(W capm)

Opinion Based 

with confidence

(W hat)

HPQ 1.32% 1.36% 0.613% 0.516% 3.74% 3.36% -1.23% 6.51% 3.40%

WHR 1.61% 1.61% 0.482% 0.498% 0.27% 0.27% 3.70% -0.38% 0.27%

T 0.98% 1.01% 0.352% 0.296% 6.53% 6.53% -11.13% 5.35% 6.53%

AZO 0.60% 0.63% 1.364% 0.218% 2.60% 0.42% 12.40% 3.78% 0.64%

JPM 1.60% 1.59% 0.600% 0.530% 6.45% 6.45% -3.74% 0.63% 6.45%

CVX 0.84% 0.90% 0.980% 0.257% 6.70% 7.08% -4.27% 3.07% 7.05%

CB 0.68% 0.69% 0.714% 0.252% 0.65% 0.65% -0.30% 5.04% 0.65%

KO 0.75% 0.78% 0.476% 0.239% 5.93% 5.93% -3.33% 9.42% 5.93%

NBL 0.92% 0.95% 1.049% 0.301% 0.62% 0.62% 4.11% 7.78% 0.62%

Dell 1.93% 1.90% 1.552% 0.634% 0.98% 0.98% 7.93% 3.82% 0.98%

UNH 1.23% 1.17% 0.868% 0.328% 1.53% 1.53% 1.14% -2.37% 1.53%

XOM 0.65% 0.71% 0.925% 0.198% 11.47% 13.65% 34.76% -2.20% 13.43%

K 0.30% 0.30% 0.392% 0.119% 0.72% 0.72% -1.58% -1.65% 0.72%

MCD 0.75% 0.95% 0.767% 0.279% -11.42% 3.12% 4.34% -0.56% 1.67%

MHP 1.07% 1.03% 0.837% 0.347% 0.41% 0.41% 15.13% 13.17% 0.41%

MSFT 1.63% 1.60% 1.009% 0.516% 9.32% 9.32% -4.16% 6.60% 9.32%

GT 2.04% 2.14% -0.656% 0.653% 0.12% 0.12% -16.24% 1.26% 0.12%

NKE 1.05% 1.08% 1.016% 0.332% 1.59% 1.59% -1.86% -3.39% 1.59%

PFE 1.08% 0.88% 0.457% 0.269% 19.64% 5.10% -3.24% 7.41% 6.55%

GE 1.60% 1.57% 0.416% 0.486% 7.67% 7.67% -2.27% 10.82% 7.67%

WMT 0.74% 0.76% 1.028% 0.249% 7.24% 7.24% 7.70% 6.06% 7.24%

AIG 6.21% 6.12% -1.111% 0.765% 3.57% 3.57% -1.64% -1.98% 3.57%

AA 2.14% 2.20% 0.217% 0.618% 0.67% 0.67% -11.69% -1.48% 0.67%

CAT 1.60% 1.64% 1.195% 0.477% 2.46% 2.46% 18.80% 5.49% 2.46%

GIS 0.22% 0.22% 0.801% 0.095% 0.91% 0.91% 38.48% 1.72% 0.91%

ACE 0.94% 0.90% 0.967% 0.302% 0.85% 0.85% 5.74% -2.65% 0.85%

AXP 1.72% 1.75% 0.755% 0.561% 1.99% 1.99% -4.83% 10.99% 1.99%

Ibm 1.18% 1.23% 1.035% 0.431% 6.81% 6.81% 17.54% 11.14% 6.81%

Ford 1.92% 1.95% 0.460% 0.630% 0.01% 0.01% -0.26% -3.41% 0.01%

SUM 100.000% 100.000% 100.000% 100.000% 100.000%

 

Table 5.11: Black-Litterman anticipated returns and weights of portfolios through
relative views
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Table 5.12: Black-Litterman portfolio statistics and measures
Portfolio Statistics

W 100 W mkt W hat W Hist W CAPM

Risk-Free 0.03% 0.03% 0.03% 0.03% 0.03%
Expected Returns 1.34% 1.30% 1.30% 1.53% 0.38%

Excess Returns 1.31% 1.28% 1.27% 1.51% 0.36%
Variance 0.29% 0.28% 0.28% 0.14% 0.24%

Standard Deviation 5.37% 5.29% 5.28% 3.74% 4.94%
Beta 1.04 1.01 1.01 0.28 1.02

Alpha 0.02 0.02 0.02 0.02 0.02
Sharpe Ratio 0.08 0.13 0.12 0.63 0.08
Treynor Ratio 0.00 0.01 0.01 0.08 0.01

Information Ratio -0.17 0.00 0.00 0.41 -0.04

(a) Treynor’s portfolio measurement plane

(b) Sharpe’s portfolio measurement plane

Figure 5.13: Performance measurements of Black-Litterman portfolios
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5.6 Portfolio measurement using alternative ap-

proaches to back-test various portfolio per-

formances

Here we look at the three portfolio performance measurement approaches, follow-

ing the literature. Basically, a back-test for a period of one year is used. We take

monthly returns, and for the period of one year, calculate the standard deviation,

betas and returns of the portfolios. The average risk-free rate for 2010 is 0.3%.

Results: When looking at the Treynor ratio in Table 5.13, the highest ratio is

with portfolio 4 under the Markowitz grouped short category. This portfolio has

a monthly expected return of 1.3 and a monthly validity of 3.048%. Out of the

top ten portfolios, five portfolios are in the Markowitz short category, three under

Markowitz short category and two are under Huang and Litzenburg. High volatile

portfolios under Huang and Litzenburg are in the top ten. Neither portfolios 1 nor

2 are in the top ten, nor is the lowest ratio, portfolio 10 with a very high volatility.

Now looking at the Sharpe ratio in Table 5.13, the highest is portfolio 10 of Huang

and Litzenburg. The top ten portfolios are only under the Huang and Litzenburg

and Markowitz Short categories. Five portfolios under Huang and Litzenburg ap-

proach are highly volatile. Under Markowitz short category, portfolios 3-6 are the

common ones in the top ten under Sharpe’s and Treynor’s ratios.

Portfolios 4-10 of CAPM with no short and in the group’s category, have Treynor

ratios greater than Sharpe ratios. Black-Litterman 1 short, Black-Litterman 1 short

with groups each has four portfolios with a higher Treynor than Sharpe. This is

an indication of the diversification degree as these portfolios or methods are not

well diversified. We have no such portfolios under Huang & Litzenburg, Markowitz

no short with groups, Black-Litterman no short, Black-Litterman no short with

groups, Black-Litterman 1 no short, Black-Litterman 1 no short with groups, Black-

Litterman 2 no short , Black-Litterman 2 no short with groups, style and benchmark.

Information Ratio: From Table 5.14, four portfolios from Markowitz no short

with groups are in the top ten, with all of them over a ratio of 0.5. Three of them

are from Markowitz no short, two of them are from Huang and Litzenburg and
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one from Black-Litterman no short. The minimum ratio of the top ten is at 0.49

(Black-Litterman) of which the results show that these portfolios performed above

average than the index within all the categories of the top ten portfolios. The top

ten portfolios are all over the top five of the optimal portfolios i.e. they all had a

higher return and volatility.
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Table 5.13: Treynor and Sharpe ratio calculation results

Treynor
rf bar 3.44%

1 2 3 4 5 6 7 8 9 10

Marko No short 0.1469 0.1666 0.1656 0.1585 0.1495 0.142 0.1371 0.1325 0.1163 0.0889
Marko Short 0.2203 0.5569 0.9523 1.4234 2.0498 2.6477 3.0506 3.4968 3.227 1.0199

Marko No short with Groups 0.1836 0.2157 0.2494 0.2941 0.3738 0.4309 0.632 1.0021 455.79 -2.554
Marko Short with Groups 0.151 0.3168 0.4584 0.5462 0.6044 0.6437 0.6713 0.6973 0.7131 0.6742

CAPM No short 0.0414 0.0451 0.0494 0.0544 0.0603 0.0672 0.0755 0.0857 0.0986 0.1153
CAPM Short 0.0631 -0.0638 -0.033 -0.0258 -0.0226 -0.0208 -0.0196 -0.0188 -0.0182 -0.0177

CAPM No short with Groups 0.0397 0.0415 0.0434 0.0454 0.0476 0.0499 0.0524 0.0552 0.0582 0.0614
CAPM Short with Groups 0.0575 -0.1863 -0.0533 -0.0363 -0.0296 -0.026 -0.0238 -0.0222 -0.0211 -0.0203

Benchmark 0.0532
BL No short 0.1109 0.0879 0.0809 0.0833 0.0938 0.1029 0.1122 0.1226 0.1327 0.1421

BL Short 0.1273 0.077 0.0717 0.0708 0.0704 0.0703 0.071 0.073 0.0757 0.0789
BL No short with Groups -0.0617 0.4797 0.2827 0.068 -0.022 -0.0209 -0.0199 -0.019 -0.0182 -0.0177

BL Short with Groups 0.1211 0.0802 0.0759 0.0751 0.0761 0.0795 0.0837 0.0885 0.0961 0.0929
BL1 No short 0.1145 0.0909 0.0832 0.0852 0.095 0.1039 0.1139 0.1241 0.1335 0.1429

BL1 Short 0.1328 0.0791 0.0734 0.0724 0.0718 0.0714 0.0719 0.0739 0.0772 0.0796
BL1 No short with Groups 0.1117 0.0942 0.0869 0.0826 0.084 0.0911 0.0979 0.1041 0.1103 0.1175

BL1 Short with Groups 0.1263 0.0826 0.0777 0.0764 0.0775 0.0806 0.0844 0.0892 0.096 0.0935
BL2 No short 0.1038 0.0872 0.0812 0.0834 0.0942 0.1039 0.1123 0.1212 0.1312 0.1407

BL2 Short 0.1193 0.0818 0.0774 0.0758 0.075 0.0744 0.0739 0.0752 0.0787 0.0782
BL2 No short with Groups 0.1027 0.0897 0.0836 0.0807 0.082 0.0898 0.0971 0.1038 0.1097 0.1143

BL2 Short with Groups 0.1146 0.0842 0.0811 0.081 0.0822 0.0858 0.0899 0.0946 0.1011 0.0938
Huang & Litz 0.0747 0.1659 0.2614 0.3614 0.4663 0.5763 0.692 0.8137 0.9418 1.0771

Style 0.0543 0.0536

Sharpe
rf bar 3.44%

1 2 3 4 5 6 7 8 9 10

Marko No short 0.6159 0.6894 0.7153 0.6881 0.6409 0.5935 0.5516 0.5128 0.4512 0.3303
Marko Short 0.7413 1.173 1.1379 1.0888 1.0501 1.0037 0.9404 0.8618 0.7696 0.5539

Marko No short with Groups 0.5938 0.661 0.7017 0.6986 0.6665 0.6254 0.5847 0.5474 0.5125 0.461
Marko Short with Groups 0.7202 1.1062 1.0891 1.0398 0.9996 0.9424 0.8646 0.7852 0.7126 0.5908

CAPM No short 0.1735 0.1767 0.1788 0.1794 0.1771 0.1715 0.1631 0.1523 0.1404 0.1279
CAPM Short 0.2124 0.1628 0.1225 0.1052 0.0956 0.0887 0.0828 0.0775 0.0724 0.0615

CAPM No short with Groups 0.1708 0.1726 0.174 0.1751 0.1756 0.1756 0.175 0.1736 0.1713 0.1621
CAPM Short with Groups 0.2061 0.1771 0.1312 0.1084 0.0949 0.0855 0.0779 0.0714 0.0639 0.0545

Benchmark 0.2798
BL No short 0.4648 0.4647 0.4007 0.3474 0.2948 0.2568 0.2313 0.2128 0.1987 0.1877

BL Short 0.4282 0.3765 0.3247 0.3009 0.2848 0.2722 0.2619 0.2522 0.2429 0.2128
BL No short with Groups -0.2656 2.5423 1.4662 0.3316 -0.095 -0.0735 -0.0581 -0.0474 -0.0398 -0.0337

BL Short with Groups 0.4344 0.4026 0.334 0.3036 0.284 0.2656 0.2493 0.2355 0.2227 0.1998
BL1 No short 0.4801 0.4882 0.423 0.3648 0.306 0.2637 0.2355 0.2152 0.2002 0.1887

BL1 Short 0.4467 0.3942 0.3393 0.3143 0.2972 0.2835 0.2723 0.2615 0.2506 0.2299
BL1 No short with Groups 0.4805 0.5056 0.4587 0.4133 0.3719 0.3275 0.29 0.2618 0.2411 0.2234

BL1 Short with Groups 0.4531 0.4233 0.3489 0.3154 0.2937 0.2724 0.2537 0.2384 0.2244 0.201
BL2 No short 0.4354 0.4621 0.4067 0.3531 0.2965 0.2559 0.2293 0.2109 0.1968 0.1859

BL2 Short 0.4013 0.386 0.338 0.3183 0.3022 0.2889 0.2769 0.2658 0.2549 0.2381
BL2 No short with Groups 0.4417 0.4747 0.4371 0.3977 0.3605 0.3193 0.2833 0.2562 0.2361 0.2173

BL2 Short with Groups 0.411 0.4108 0.3461 0.3161 0.2975 0.2789 0.2608 0.2444 0.2291 0.2041
Huang & Litz 0.2302 0.5555 0.8624 1.0617 1.1502 1.1744 1.1705 1.1563 1.1393 1.1226

Style 0.3077 0.3044
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Table 5.14: Information Ratio calculation results

Marko No short -0.0921 -0.0355 0.0536 0.1832 0.4160 0.6918 0.8395 0.8874 0.2106 -0.2471

9 8 7 6 4 3 2 1 5 10

Marko Short 0.3061 0.3412 0.3519 0.3570 0.3578 0.3570 0.3530 0.3499 0.3489 0.3361

10 8 5 3 1 2 4 6 7 9

Marko No short with Groups-0.0874 -0.0416 0.0241 0.1091 0.2754 0.5184 0.7445 0.8471 0.8874 0.2976
10 9 8 7 6 4 3 2 1 5

Marko Short with Groups -0.0385 0.2230 0.3389 0.3615 0.3538 0.3438 0.3380 0.3228 0.3359 0.3463

10 9 5 1 2 4 6 8 7 3

CAPM No short -0.0921 -0.1188 -0.1553 -0.1545 -0.1844 -0.1993 -0.3376 -0.2349 0.0622 0.3662
3 4 6 5 7 8 10 9 2 1

CAPM Short -0.0445 -0.0636 -0.0534 -0.1062 -0.1335 -0.1352 -0.1497 -0.1682 -0.2335 -0.0827

1 3 2 5 6 7 8 9 10 4

CAPM No short with Groups-0.0874 -0.1187 -0.1506 -0.1638 -0.1769 -0.1771 -0.2644 -0.3019 -0.1518 0.1872
2 3 4 6 7 8 9 10 5 1

CAPM Short with Groups -0.0385 -0.1436 -0.2053 -0.2370 -0.2769 -0.3403 -0.3112 -0.2674 -0.0737 0.0984
2 4 5 6 8 10 9 7 3 1

Benchmark 0.0101

BL No short -0.0921 -0.0395 0.0922 -0.0173 0.1798 0.3103 0.4068 0.4903 0.4207 0.3662

10 9 7 8 6 5 3 1 2 4

BL Short -0.0445 0.0444 0.0448 0.0254 0.0204 -0.0141 -0.0254 -0.0193 -0.0323 0.1095
10 3 2 4 5 6 8 7 9 1

BL No short with Groups -0.0874 -0.1011 0.0769 0.0646 -0.0275 0.1211 0.2459 0.3397 0.4004 0.1995
9 10 6 7 8 5 3 2 1 4

BL Short with Groups -0.0385 0.0233 -0.0430 -0.0700 -0.1075 -0.0432 0.0066 0.0420 0.0985 0.2318
6 4 7 9 10 8 5 3 2 1

BL1 No short -0.0921 -0.1385 0.0433 -0.0640 0.1254 0.2436 0.3351 0.4067 0.4211 0.3662
9 10 7 8 6 5 4 2 1 3

BL1 Short -0.0445 0.0176 0.0250 0.0036 -0.0073 -0.0451 -0.0612 -0.0650 -0.0752 0.0765
6 3 2 4 5 7 8 9 10 1

BL1 No short with Groups -0.0874 -0.1483 -0.0189 0.0117 -0.0792 0.0933 0.2174 0.3096 0.3760 0.1995
9 10 7 6 8 5 3 2 1 4

BL1 Short with Groups -0.0385 -0.0213 -0.0777 -0.1051 -0.1302 -0.0664 -0.0153 0.0311 0.0882 0.2318
6 5 8 9 10 7 4 3 2 1

BL2 No short -0.0921 -0.1499 0.0430 -0.0615 0.1302 0.2502 0.3414 0.4138 0.4211 0.3662
9 10 7 8 6 5 4 2 1 3

BL2 Short -0.0445 0.0136 0.0225 0.0009 -0.0068 -0.0463 -0.0624 -0.0659 -0.0774 0.0765
6 3 2 4 5 7 8 9 10 1

BL2 No short with Groups -0.0874 -0.1530 -0.0299 0.0128 -0.0798 0.0951 0.2199 0.3127 0.3798 0.1995

9 10 7 6 8 5 3 2 1 4

BL2 Short with Groups -0.0385 -0.0239 -0.0816 -0.1086 -0.1305 -0.0672 -0.0164 0.0296 0.0867 0.2318

6 5 8 9 10 7 4 3 2 1

Huang & Litz -0.2583 -0.1252 0.0149 0.1458 0.2566 0.3445 0.4117 0.4627 0.5014 0.5311

10 9 8 7 6 5 4 3 2 1

Style -0.113769 -0.122816

Marko No short 166 126 89 69 15 6 4 2 64 203

Marko Short 51 40 33 30 28 29 32 34 35 44

Marko No short with Groups161 133 99 76 53 8 5 3 1 52

Marko Short with Groups 127 61 42 27 31 38 43 47 45 36

CAPM No short 166 177 192 191 197 198 210 201 88 23

CAPM Short 136 146 142 173 181 182 186 194 200 160

CAPM No short with Groups161 176 188 193 195 196 205 208 189 68

CAPM Short with Groups 127 184 199 202 207 211 209 206 153 78

Benchmark 108

BL No short 166 132 81 117 70 49 18 10 14 23

BL Short 136 91 90 97 102 114 122 119 125 75

BL No short with Groups 161 171 84 87 123 74 56 41 20 65

BL Short with Groups 127 100 134 152 174 135 109 94 77 60

BL1 No short 166 183 92 147 73 57 46 19 13 23

BL1 Short 136 103 98 110 113 140 143 148 154 85

BL1 No short with Groups 161 185 118 107 157 80 63 50 22 65

BL1 Short with Groups 127 120 156 172 179 150 115 95 82 58

BL2 No short 166 187 93 144 72 55 39 16 12 23

BL2 Short 136 105 101 111 112 141 145 149 155 85

BL2 No short with Groups 161 190 124 106 158 79 62 48 21 65

BL2 Short with Groups 127 121 159 175 180 151 116 96 83 58

Huang & Litz 204 178 104 71 54 37 17 11 9 7

Information Ratio

Overall Ranking
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5.7 Numerical results for VaR using various ap-

proaches

Following the Capital Asset Pricing Model, it advises us to only hold two assets

which are the market or equilibrium portfolios as well as the risk-free assets. It also

states that investors are only compensated for the market risk which is associated

with beta. This portfolio also has the maximum Sharpe ratio. From this point on

we only concentrate of the five equilibrium portfolios which are the W100 (Black-

Litterman with 100% views), What(Black-Litterman with 10% confidence level in

our view), Wmkt(equilibrium or market portfolio), Wcapm(weights obtained from the

CAPM returns) and Whist (weights obtained from the geometric historical returns).

Calculation of VaR using the Parametric Method and His-

torical Simulation

Parametric VaR

We follow our literature to estimate the Parametric VaR. We calculate the monthly

VaR at 5% using the expected volatility and return.

Results: From Table 5.15 and Figure 5.15, we can see that Whist has the lowest

VaR, whereas What and Wmkt have almost the same VaR. They are then followed

by W100 and Wcapm with the highest VaR.

We now use historical simulation. We calculate one month of VaR at 5% using

historical returns from 01/01/1996 to 31/12/2010 (fifteen years).

Results: From Table 5.16 (page 90) we see that Whist has the lowest VaR at 3.78%.

It is then followed by Wcapm which is almost double the VaR of Wcapm. W100,Wmkt

and What are very close to each other with Wmkt having the highest VaR at 8.86%.

Since we are looking at historical data, it is no surprise that Whist has the lowest

VaR. We see from Figure 5.7 (page 91) that Whist has the steepest upward daily

closings and fewer dips than the other portfolios.
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Table 5.15: Calculation of VaR using the Parametric Method
Parametric Value at a 5% risk level

W 100 W hat W mkt W capm W hist

Mean 1.34% 1.30% 1.30% 0.38% 1.53%
Sigma 5.37% 5.28% 5.29% 4.94% 3.74%

Initial Investment $ 1,000,000.00 $ 1,000,000.00 $ 1,000,000.00 $ 1,000,000.00 $ 1,000,000.00

Mean Investment Value $ 1,013,399.11 $ 1,012,958.62 $ 1,013,014.27 $ 1,003,821.25 $ 1,015,348.16
Sigma of Investment Value $ 53,651.37 $ 52,844.85 $ 52,875.28 $ 49,357.39 $ 37,378.44

Cut-off $ 925,150.46 $ 926,036.58 $ 926,042.17 $ 922,635.57 $ 953,866.09
Cumulative PDF 0.05 0.05 0.05 0.05 0.05

VaR at 1% risk level $74,850 $73,963 $73,958 $77,364 $46,134

Figure 5.15: Parametric VaR in values

Table 5.16: Historical Simulation for VaR calculations
VaR based Historical Simulation

W100 W hat W mkt W capm W hist

VaR @95% -8.46% -8.80% -8.86% -7.59% -3.87%
VaR @95% $ 84,622.05 $ 87,956.84 $ 88,587.02 $ 75,902.32 $ 38,739.38
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Figure 5.16: Portfolios daily closings and returns
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Calculation of VaR using Bootstrapping and filtered Histor-

ical Simulation

Here we run a simulation following the algorithm from the previous chapter. We

use geometric daily returns from the period 01/01/1996 to 31/12/2010, and multiply

them with the weights of the portfolios. We then test if the series of returns are

independent and identically distributed. We do this by checking if there is autocor-

relation and heteroskedasticity. If the returns are not i.i.d then we produce them by

applying an autoregressive model to the conditional mean of the portfolio returns

rτ = c+ θr(τ − 1) + ε(τ), N(0, σt)

and the GARCH model to the conditional variance

σ2
t (τ) = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−1(τ − 1).

We then standardise the residuals by following

standardised residuals =
residual

σ
.

We then compare the autocorrelation of the standardised residuals and squared

standardised residuals. Once the standardised residuals are i.i.d, we can then boot-

strap historical simulation to obtain VaR. We now calculate one month’s VaR by

simulating 10, 000 paths with a 21 day time horizon.

Results: From Figure 5.17 we can see that the portfolio returns have some serial

correlation. We also see that the squared returns have some degree of persistence.

From Figure 5.18 we observe that the standardised residuals are now almost inde-

pendently identically distributed when compared to the raw returns. Note that we

have only shown figures of W100 and we have similar results for other portfolios.

From Table 5.17 the W100 has the highest VaR followed by Wcapm, What, Wmkt and

Whist respectively. Another important point to note is that Whist not only has the

lowest VaR but also the maximum profit is higher than the maximum loss.
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Figure 5.17: Valuation of the W100 portfolio’s sample autocorrelation
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Figure 5.18: Valuation of the W100 portfolio’s standardised residual autocorrelation
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Table 5.17: VaR using FHS
VaR using FHS

W100 What Wmkt Wcapm Whist
Parameter Value Value Value Value Value

———– ———– ———– ———– ———– ———–
C 0.000724 0.000821 0.000829 0.000762 0.000814

AR)(1) -0.04103 -0.04565 -0.04561 -0.05117 -0.0354
alpha 7.71E-07 7.79E-07 7.96E-07 9.57E-07 1.19E-06

GARCH(1) 0.92928 0.92401 0.92346 0.9251 0.94397
ARCH(1) 0.068071 0.072784 0.073114 0.070922 0.046577

Maximum loss at: 22.82% 23.54% 23.39% 24.93% 16.05%
Maximum gain at: 17.48% 15.86% 15.90% 17.08% 19.58%

VaR at 95% confidence level -5.53% -5.01% -4.95% -5.33% -4.92%

VaR using Monte-Carlo

Here we get the daily return based on fifteen years of data. We then calculate the

correlation for the twenty nine stocks. We also convert the prices to logarithmic

returns. We calculate the covariance using correlation and standard deviations.

In this exercise we assume that our portfolio value is $1000000. To calculate one

month’s VaR, we also assume our time horizon to be 21 days. We then simulate 10,

000 paths. We then find the Monte-Carlo by looking for the fifth lowest portfolio

price. Note: we only show the figures from one of the portfolios

Results: With the simulated paths shown in Figure 5.19, Whist simulation has the

lowest VaR at 6.86% from Table 5.18. This means that there is a 5% chance that

our monthly VaR will not be greater than $68 616.04. It is then followed by the

What and surprisingly the Wmkt and W100 are close to each other at 8.47% and 8.49%

respectively. This also means that the monthly VaR will not be greater than $84

658.81 and $84 867.77 respectively. The Wcapm has the highest VaR at 9.91% and

there is a 5% chance that we lose more than $99 079.80.

Table 5.18: Monte-Carlo Simulation for VaR calculation
Monte-Carlo VaR at a 5% confidence level

W100 W hat W mkt W capm W hist

Mean Value $ 1,044,057.69 $ 1,036,133.45 $ 1,011,543.55 $ 1,028,881.30 $ 1,033,753.26
Sigma Value $ 139,832.81 $ 140,975.08 $ 145,943.53 $ 137,678.40 $ 122,582.29

Top Sigma Value $ 1,183,890.50 $ 1,177,108.54 $ 1,157,487.09 $ 1,166,559.71 $ 1,156,335.55
Bottom Sigma Value $ 904,224.88 $ 895,158.37 $ 865,600.02 $ 891,202.90 $ 911,170.97

Cut-off at 5% $ 915,132.23 $ 917,012.90 $ 915,341.19 $ 900,920.20 $ 931,383.96

MC VaR at 5% $ 84,867.77 $ 82,987.10 $ 84,658.81 $ 99,079.80 $ 68,616.04
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Figure 5.19: Monte-Carlo simulated paths and histogram with basic stats
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VaR Back-testing

We now run the back-testing procedure on five of our portfolios. For each portfolio

we calculate their VaR on a rolling basis. We then plot the preceding VaR against the

current actual return (profit and/or loss). We then observe whether the profit and/or

loss is greater than the estimated VaR of the previous month. VaR is calculated

using an alpha at 5% confidence level. Our goal is to look for a volatility method

which provides a more effective estimation of which portfolio has the highest number

of violations in all the methods. We use conventional historical simulation, weighted

historical simulation, riskmetrics, GARCH and t-GARCH. When the profit and/or

loss exceeds the VaR we then see this as a violation and the ideal method produces

a low number of violations. While the first 179 observations are used for in-sample

forecasting of volatility, the last 89 and (50%) observations are used for an out-

sample forecast of volatility, as well as the VaR calculation and the back-testing

procedure. A total of 89 observations are used for the out-sample volatility forecast.

Wcapm

Parameters

Alpha = 0.05

In- Sample size = 90

Out- Sample size = 89

Bandwidth size (for rolling estimates) = 89

Risk Metrics Parameter = 0.94

Weighted Historical Simulation parameter = 0.98

GARCH parameters: CST = 0.0092 GARCH = 0.2042 GARCH = 0.7859

GARCH parameters: CST = 0.0092 GARCH = 0.2042 GARCH = 0.7851 Degree

of Freedom = 200.0000

Using the above set of parameters, the results are plotted and presented in Figure

5.23 (page 103).

Results: Using the CAPM weights we found that by using the historical method we

had four violations giving us the frequency of 4.5%. We also found six violations for

the weighted historical simulation, giving us the empirical frequency of violations as

6.74%. The riskmetric method was violated five times, giving an empirical frequency
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of 5.62%. The GARCH and t-GARCH methods produced only one violation each.

This gives us a total of seventeen violations.

W100

Parameters

Alpha = 0.05

In- Sample size = 90

Out- Sample size = 89

Bandwidth size (for rolling estimates) = 89

Risk Metrics Parameter = 0.94

Weighted Historical Simulation Parameter = 0.98

GARCH parameters: CST = 0.0058 GARCH = 0.3018 GARCH = 0.6077

GARCH parameters: CST = 0.0057 GARCH = 0.3021 GARCH = 0.6084 Degree

of Freedom = 200.0000

Using the above set of parameters, the results are plotted and presented in Figure

5.20 (page 100).

Results: Using the weight of 100% confidence level from Black-Litterman, the

risk-metrics method had the highest number of violations at six, and an empirical

frequency violation of 6.74%. The second was the weighted historical simulation

which gave us five violations with an empirical frequency of 5.62%. The third was

the historical with a total number of three violations and an empirical frequency

of 3.37%. The GARCH and the t-GARCH had the least at one and zero with

an empirical frequency of 1.12% and 0% respectively. These weights of the W100

produced a total number of fifteen violations.

What

Parameters

Alpha = 0.05

In- Sample size = 90

Out- Sample size = 89

Bandwidth size (for rolling estimates) = 89
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Risk Metrics Parameter = 0.94

Weighted Historical Simulation Parameter = 0.98

GARCH parameters: CST = 0.0091 GARCH = 0.3375 GARCH = 0.5993

GARCH parameters: CST = 0.0091 GARCH = 0.3383 GARCH = 0.5999 Degree

of Freedom = 200.0

Using the above set of parameters, the results are plotted and presented in Figure

5.21 (page 101).

Results: Using the Black-Litterman weights at a 10% confidence level, the weighted

historical and the risk-metrics had the highest number of violations at five and the

empirical frequency violations were 5.62%. These were followed by the historical

method with three violations and the empirical frequency violations were 3.3%.

The GARCH and the t-GARCH didn’t have any violations. This produced a total

of thirteen violations for the Black-Litterman weights with a 10% confidence level.

Whist

Parameters

Alpha = 0.05

In- Sample size = 90

Out- Sample size = 89

Bandwidth size (for rolling estimates) = 89

Risk Metrics Parameter = 0.94

Weighted Historical Simulation Parameter = 0.98

GARCH parameters: CST = 0.0113 GARCH = 0.0840 GARCH = 0.0000

GARCH parameters: CST = 0.0113 GARCH = 0.0849 GARCH = 0.0000 Degree

of Freedom = 200.0000

Using the above set of parameters, the results are plotted and presented in Figure

5.24 (page 104).

Results: For the last 89 observations using the historical weights, the weighted

historical produced the highest number of violations at four, and the empirical fre-

quency violations were 4.49%. The historical, GARCH and t-GARCH had an equal

number of violations at three and empirical frequency violations were 3.37%. The
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risk-metrics had two violations, which were the least, and the empirical frequency

violations were 2.25%. The total number of violations from the historical weights,

out of the five methods, is fifteen.

Wmtk

Parameters

Alpha = 0.05

In- Sample size = 90

Out- Sample size = 89

Bandwidth size (for rolling estimates) = 89

Risk Metrics Parameter = 0.94

Weighted Historical Simulation Parameter = 0.98

GARCH parameters: CST = 0.0095 GARCH = 0.3366

GARCH = 0.6023 GARCH parameters: CST = 0.0095 GARCH = 0.3374 GARCH

= 0.6029 Degree of Freedom = 200.0000

Using the above set of parameters, the results are plotted and presented in Figure

5.22 (page 102).

Results: Using the market weights , the weighted historical and the risk-metrics,

these produced the highest number of violations at five and the empirical frequency

violations were 5.62%. These were followed by the historical method with three

violations and the empirical frequency violations were 3.3%. The GARCH and the

t-GARCH had no violations. This brought a total of thirteen violations for the

market weights.
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Figure 5.20: W100 backtesting
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Figure 5.21: What backtesting
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Figure 5.22: Wmkt backtesting
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Figure 5.23: Wcapm backtesting
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Figure 5.24: Whist backtesting
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Conditional VaR

We now follow Rockafellar ([61]) to calculate VaR and CVaR at a 5% confidence

level for one month. The inverse of the error function is 1.1630 giving us S1 and S2

f 1.6448 and 2.06271. We want to calculate our losses for a monthly period should

disaster strike.

Results

In this context of CVaR, we are unable to say which portfolio will suffer the highest

losses, because CVaR calculates the minimum loss. Under non-normal conditions

from Table 5.19 and Figure 5.7, Whist will have the lowest minimum loss at 6.18%

($61 752,84) which is 1.56% more than the maximum loss under normal conditions.

What is the second lowest minimum loss at 9.6% ($96 000) if disaster should strike.

W100 is the third and Wmkt has the highest at 10.07% ($100 700). The CVaR

and VaR of Wcapm, What, Wcapm and W100 are very close together at 2.1% to 2.2%

respectively. Whist has the highest return and lowest volatility, but also has the

lowest VaR and CVaR. The ratio gives an indication of what has happened in the

past. We then move from Ex Post to Ex Ante by calculating VaR. This qualifies the

future risk we can expect under normal circumstances. We can therefore calculate

our minimum loss should the market behave abnormally.

Table 5.19: CVaR Parameters and Results
Conditional Value at Risk (CVaR)

Beta = 0.95
inverse(erf) 1.163087154

c1 1.644853627
c2 2.062712808

W100 W mkt W hat W hist W capm

Port Return 1.34% 0.84% 1.30% 1.53% 0.38%
Port Risk 5.37% 5.29% 5.28% 3.74% 4.94%

VaR 7.48% 7.86% 7.40% 4.61% 7.74%
CVaR 9.73% 10.07% 9.60% 6.18% 9.80%

VaR(In $) $ 74,849.54 $ 78,584.72 $ 73,963.42 $ 46,133.91 $ 77,364.43
CVaR(In $) $ 97,268.26 $ 100,679.14 $ 96,045.13 $ 61,752.84 $ 97,988.87
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Figure 5.25: CVaR and VaR

5.8 Assets Risk Assessment using Marginal and

Component VaR

In this section we use the literature from our previous chapter in order to calculate

the assets marginal and component VaR. We also calculate the assets VaR in order

to compare the reduction of the portfolios VaR due to diversification.

Results: From Table 5.20, the portfolio with the weight from historical returns

(Whist) has produced the highest gains at almost 27% through diversification. Not

only does it have the highest percentage in diversification, but it also has the lowest

VaR amongst other portfolios. Wcapm has the second lowest gains from the VaR.

Wmkt and What have close gains at 5.90% and 5.82% respectively. This gives us an

indication that, Wmkt and What had expected returns that gave a more diversified

portfolio than other portfolios. It is also important to note that W100 portfolio had

the lowest expected return with the highest standard deviation.

Looking at Wmkt, W100 and What portfolios, AIG, GT and AA are the top contrib-

utors to risk, with AIG being the highest risk contributor. As we started with the

computation of the market portfolio, it implies that the contribution percentage of

AIG dropped to 0.218% for both W100 and What portfolios. This also highlights the

hotspots. It also shows that AIG will have the most hedging effects, followed by GT

and AA. This is as we expected as the three assets in all these portfolios have the

highest expected returns. It is surprising that portfolio W100 and What in Table 5.21

MCD and PFT have the highest deviation from the Wmkt portfolio, but they are

one of the lowest risk contributors. However in Table 5.20 , both of them combined

contribute about 5% to the total marginal risk of the portfolio.
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The total sum 1 of marginal VaR’s of the Whist is less than all the other portfo-

lios. Dell, GT and AZO are the top risk contributors to the portfolios respectively.

GT, which is ranked second within the other portfolios, is actually negative in this

portfolio Whist. This is an indication that if we remove GT from the portfolio, we

actually increase the portfolio risk i.e. GT is fully hedged.

For the Wcapm portfolio we have similar results obtained from the Wmkt, W100 and

What. Looking at the asset we changed in the Black-Litterman model, we see on the

table that the HPQ marginal VaR decreased in the W100 portfolio and increased for

W100 from 0.085% to 0.083% and 0.086% respectively. We have a similar case for

CVX, and these are the assets we changed against each other for the AZO and XOM

for MCD. The marginal risk decreases from the Wmkt to W100 and What for PFE,

the marginal risk increases from Wmkt to W100 and What. Due to the law of large

numbers, we see that in all the portfolios, the risk is gradually evenly distributed,

i.e. the marginal risk is not congested in the same assets.

1The sum of the assets doesn’t have to be equal to the VaR of the portfolio, in fact it is always
less than the portfolio VaR
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Table 5.20: Marginal VaR calculation results

Port return Varience Sigma Port Var

Undiversified
VaR Gains

Market 
Portfolio 0.71% 0.00245385 4.95% 7.44% 13.34% 5.90%

W100 0.67% 0.00250118 5.00% 7.55% 15.79% 8.24%
W hat 0.71% 0.00240761 4.91% 7.36% 13.19% 5.82%

Weights based on
Historical Returns 1.53% 0.00140257 3.75% 4.63% 31.57% 26.93%

Weights based 
on CAPM 0.84% 0.0024625 4.96% 7.32% 19.63% 12.30%

Market 
Portfolio W100 W hat

Weights 
based on
Historical 
Returns

Weights 
based 

on CAPM

HPQ 0.085% 0.083% 0.086% 0.022% 0.101%
WHR 0.097% 0.097% 0.098% 0.019% 0.098%

T 0.065% 0.061% 0.064% 0.015% 0.059%
AZO 0.026% 0.024% 0.027% 0.042% 0.030%

JPM-PW 0.103% 0.103% 0.105% 0.019% 0.100%
CVX 0.051% 0.046% 0.050% 0.032% 0.043%
CB 0.044% 0.042% 0.044% 0.021% 0.042%
KO 0.049% 0.045% 0.048% 0.016% 0.042%
NBL 0.051% 0.046% 0.049% 0.035% 0.054%
Dell 0.110% 0.112% 0.112% 0.060% 0.125%
UNH 0.061% 0.062% 0.060% 0.030% 0.057%
XOM 0.039% 0.034% 0.038% 0.030% 0.030%

K 0.016% 0.016% 0.016% 0.012% 0.016%
MCD 0.056% 0.041% 0.055% 0.026% 0.047%
MHP 0.056% 0.057% 0.056% 0.028% 0.068%
MSFT 0.101% 0.102% 0.103% 0.034% 0.101%

GT 0.137% 0.129% 0.137% -0.009% 0.143%
NKE 0.064% 0.060% 0.063% 0.029% 0.055%
PFE 0.055% 0.068% 0.057% 0.016% 0.050%
GE 0.099% 0.099% 0.099% 0.016% 0.098%

WMT 0.043% 0.042% 0.044% 0.032% 0.040%
AIG 0.223% 0.218% 0.218% 0.028% 0.169%
AA 0.127% 0.121% 0.127% 0.022% 0.125%
CAT 0.092% 0.087% 0.092% 0.043% 0.089%
GIS 0.007% 0.007% 0.007% 0.024% 0.008%
ACE 0.054% 0.055% 0.054% 0.029% 0.052%
AXP 0.108% 0.104% 0.108% 0.025% 0.114%
Ibm 0.075% 0.071% 0.075% 0.039% 0.083%
Ford 0.001% 0.118% 0.122% 0.018% 0.122%

Marginal VaR

Gains from Diversification
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Table 5.21: Component VaR calculation results

Market 
Portfolio W100 W hat

Weights 
based on
Historical 
Returns

Weights based 
on CAPM

HPQ 3.42% 4.09% 3.98% -0.57% 9.02%
WHR 0.00% 0.35% 0.36% 1.49% -0.51%

T 6.08% 5.30% 5.66% -3.64% 4.29%
AZO 0.00% 0.83% 0.23% 11.34% 1.53%

JPM-PW 8.29% 8.80% 9.19% -1.51% 0.86%
CVX 4.83% 4.09% 4.83% -2.98% 1.79%
CB 0.59% 0.36% 0.39% -0.14% 2.88%
KO 3.93% 3.55% 3.88% -1.16% 5.35%
NBL 0.69% 0.38% 0.41% 3.12% 5.71%
Dell 1.48% 1.45% 1.48% 10.29% 6.53%
UNH 1.65% 1.26% 1.26% 0.73% -1.85%
XOM 7.33% 5.15% 6.95% 22.84% -0.89%

K 0.22% 0.15% 0.16% -0.41% -0.37%
MCD 2.25% -6.15% 1.24% 2.46% -0.36%
MHP 0.00% 0.31% 0.31% 9.17% 12.24%
MSFT 12.19% 12.65% 13.00% -3.09% 9.11%

GT 0.00% 0.21% 0.22% 3.17% 2.46%
NKE 1.72% 1.27% 1.37% -1.16% -2.57%
PFE 3.73% 17.79% 5.04% -1.08% 5.08%
GE 10.61% 10.01% 10.29% -0.79% 14.54%

WMT 4.06% 4.04% 4.33% 5.29% 3.33%
AIG 12.01% 10.31% 10.58% -1.00% -4.58%
AA 1.71% 1.08% 1.16% -5.60% -2.53%
CAT 2.47% 2.83% 3.07% 17.61% 6.63%
GIS 0.10% 0.09% 0.09% 20.17% 0.18%
ACE 0.72% 0.62% 0.62% 3.55% -1.88%
AXP 2.89% 2.74% 2.91% -2.62% 17.07%
Ibm 7.04% 6.45% 6.98% 14.64% 12.60%
Ford 0.00% 0.02% 0.02% -0.10% -5.67%
Sum 100.00% 100.00% 100.00% 100.00% 100.00%

Component VaR
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Best Hedge Report

Here we want to control risk by assessing the Best Hedge of every asset. We do this

through the use of optimisation. We want to calculate best hedge and we do this

by minimising VaR and CVaR, varying one asset at a time and keeping the position

of the other assets constant. We then sort the reduction of VaR and CVaR from

highest to lowest and the highest reduction gives the best hedge.

Results: From the portfolio of Whist in Table 5.23 (page 112) , XOM, GIS and

AZO are the top three assets that have the biggest opportunity for risk reduction

in selling. We also see that we almost have the same rank of assets in the VaR and

CVaR. GE, Ford and WHR have the lowest ability to reduce the risk. Even so,

we see that in all the assets, even those in the top three, there is not that much

significance in the risk reduction of the portfolio when selling the assets, as the

highest reduction is 7.5% for VaR and 8.06% CVaR which is low compared to each

portfolio. This could be an indication of how well diversified this portfolio is. In

this portfolio we can see that some of the assets need to reach the best hedge which

is positive. This is due to the fact we are already short in those assets. In Table

5.23 (page 112), under Wcapm portfolio, AXP, GE and MSFT are the best hedging

assets while AIG, GIS and AZO are the lowest respectively. Surprisingly, Ford is

not one of the lowest best hedging assets and GIS is one of the lowest even though

it is the second in the Whist. In Table 5.22 (page 111), under the Wmkt portfolio,

GE, AXP and AA are the top portfolio risk reducers, while AZO, KG and GIS are

the lowest. Here Ford has a VaR reduction of -14.46% and this is an indication that

the asset was fully hedged at the original position. We increase the portfolio risk by

selling the asset. In What AXP, AA and CAT are the top three VaR reducers and

AA, MSFT and GE are the top three CVaR reducers. In W100 GE, AXP and AA

are the top three risk reducers while GIG, AZO and K are the lowest risk reducers.

In this portfolio the ranking of the asset is exactly the same in VaR and CVaR. This

is due to the fact that there is the same degree of difference in the asset percentage

reduction.
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Table 5.22: Best Hedge Report for W100, What and Wmkt

Rank 

Hedge 

Asset

VaR at 

best

Hedge

Percentage 

reduction

in VaR

Trade required 

to reach

the best hedge

Hedge 

Asset

CVaR at 

best

Hedge

Percentage 

Reduction

in VaR

Trade required to 

reach

the best hedge

1 GE 5.27% 29.53% (31,804.82)$         GE 6.78% 30.24% (32,546.67)$          

2 AXP 5.53% 26.06% (6,940.85)$           AXP 7.13% 26.73% (7,112.49)$             

3 AA 5.88% 21.46% (1,586.91)$           AA 7.58% 22.05% (1,629.18)$             

26 NBL 7.07% 5.57% (975.06)$              NBL 9.17% 5.76% (1,007.86)$             

27 AZO 7.27% 2.92% (3,354.19)$           AZO 9.43% 3.02% (3,471.19)$             

28 K 7.36% 1.63% (1,039.66)$           K 9.56% 1.69% (1,076.55)$             

29 GIS 7.39% 1.28% (1,393.99)$           GIS 9.60% 1.32% (1,443.69)$             

Rank 

Hedge 

Asset

VaR at 

best

Hedge

Percentage 

reduction

in VaR

Trade required 

to reach

the best hedge

Hedge 

Asset

CVaR at 

best

Hedge

Percentage 

Reduction

in VaR

Trade required to 

reach

the best hedge

1 AXP 5.30% 28.35% -7100.80 AA 5.64% 41.32% -1680.25

2 AA 5.63% 23.82% -1639.90 MSFT 5.95% 38.07% -27104.47

3 CAT 5.76% 22.07% -7526.91 GE 6.71% 30.17% -32066.09

27 NBL 6.94% 6.18% -1012.04 AZO 9.27% 3.46% -900.51

28 AZO 7.15% 3.35% -872.28 K 9.44% 1.71% -1069.34

29 K 7.27% 1.65% -1033.01 GIS 9.48% 1.31% -1414.57

Rank 

Hedge 

Asset

VaR at 

best

Hedge

Percentage 

reduction

in VaR

Trade required 

to reach

the best hedge

Hedge 

Asset

CVaR at 

best

Hedge

Percentage 

Reduction

in VaR

Trade required to 

reach

the best hedge

1 GE 5.24% 29.24% (31,265.40)$         GE 6.73% 29.98% (31,998.32)$          

2 AXP 5.30% 28.42% (7,114.78)$           AXP 6.82% 29.09% (7,278.30)$             

3 AA 5.63% 23.94% (1,644.98)$           AA 7.26% 24.52% (1,685.28)$             

27 K 7.28% 1.65% (1,031.85)$           AZO 9.28% 3.49% (597.26)$                

28 GIS 7.31% 1.25% (1,361.89)$           K 9.45% 1.71% (1,068.20)$             

29 Ford 8.48% -14.46% (7.99)$                   GIS 9.49% 1.30% (1,410.89)$             

Best Hedge Report for the W hat portfolio

Current Value at Risk at 7.40% Current Conditional Value at Risk at 9.60%

Best Hedge Report for the Wmkt portfolio

Current Value at Risk at 7.41% Current Conditional Value at Risk at 9.62%

Best Hedge Report for the W100 portfolio

Current Value at Risk at 7.48% Current Conditional Value at Risk at 9.73%
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Table 5.23: Best Hedge report for Wcapm and Whist

Rank 

Hedge 

Asset

VaR at 

best

Hedge

Percentage 

reduction

in VaR

Trade required 

to reach

the best hedge

Hedge 

Asset

CVaR at 

best

Hedge

Percentage 

Reduction

in VaR

Trade required to 

reach

the best hedge

1 AXP 4.81% 31.62% (38,597.67)$         AXP 6.15% 32.36% (39,395.88)$          

2 GE 5.01% 28.65% (41,114.09)$         GE 6.41% 29.50% (42,080.89)$          

3 MSFT 5.13% 26.94% (17,090.45)$         Ibm 6.97% 23.36% (39,874.38)$          

27 AZO 6.77% 3.72% (5,111.59)$           AZO 8.74% 3.84% (5,266.67)$             

28 GIS 6.92% 1.56% (2,711.80)$           GIS 8.94% 1.61% (2,798.30)$             

29 AIG 6.94% 1.20% 310.37$                AIG 8.96% 1.45% 346.05$                 

Rank 

Hedge 

Asset

VaR at 

best

Hedge

Percentage 

reduction

in VaR

Trade required 

to reach

the best hedge

Hedge 

Asset

CVaR at 

best

Hedge

Percentage 

Reduction

in VaR

Trade required to 

reach

the best hedge

1 XOM 5.43% 7.50% (96,338.08)$         XOM 6.83% 8.06% (100,068.20)$        

2 GIS 5.48% 6.62% (97,968.91)$         GIS 6.93% 6.75% (99,349.59)$          

3 AZO 5.54% 5.64% (16,327.79)$         AZO 6.99% 5.85% (16,703.65)$          

4 CVX 5.56% 5.27% 8,346.70$            CVX 7.00% 5.80% 8,771.34$              

5 WMT 5.58% 4.96% (12,959.03)$         WMT 7.03% 5.35% (13,498.18)$          

6 ACE 5.72% 2.48% (5,659.18)$           Ibm 7.22% 2.79% (17,909.79)$          

7 Ibm 5.73% 2.42% (16,622.42)$         ACE 7.22% 2.78% (6,013.21)$             

8 Dell 5.74% 2.10% (4,467.57)$           Dell 7.25% 2.47% (4,854.16)$             
9 MCD 5.75% 2.05% (4,648.87)$           MCD 7.25% 2.37% (4,944.71)$             

20 KO 5.84% 0.49% 1,730.08$            KO 7.38% 0.62% 1,965.93$              

21 AXP 5.85% 0.33% 1,483.72$            AXP 7.39% 0.53% 1,886.42$              

22 AA 5.86% 0.21% (11,754.19)$         PFE 7.41% 0.32% 1,373.71$              

23 PFE 5.86% 0.19% 1,043.63$            HPQ 7.41% 0.28% 303.38$                 

24 HPQ 5.86% 0.18% 243.51$                JPM-PW 7.41% 0.20% 827.14$                 

25 JPM-PW 5.86% 0.10% 578.07$                T 7.42% 0.10% 2,384.51$              

26 T 5.86% 0.04% 1,524.85$            AA 7.42% 0.10% (11,754.19)$          

27 WHR 5.87% 0.01% (156.25)$              WHR 7.43% 0.05% (360.33)$                

28 Ford 5.87% 0.00% (3.37)$                   GE 7.43% 0.03% 221.36$                 

29 GE 5.87% 0.00% (5.00)$                   Ford 7.43% 0.00% 5.60$                      

Best Hedge Report for the Wcapm portfolio

Current Value at Risk at 7.03% Current Conditional Value at Risk at 9.09%

Best Hedge Report for the W hist portfolio

Current Value at Risk at 5.87% Current Conditional Value at Risk at 7.43%
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Applying the Best Hedge Report

Looking at the Best Hedge Report for the Wmkt portfolio, we now experiment to try

and reduce the VaR of a new portfolio. We have called this portfolio WnewBL. We

reduce GE from 1.57% to 1.2% with a 70% confidence level. GIS will outperform

AXP by 30 basis points with a 50% confidence level. DELL will outperform AA

by 60 basis points with 35% confidence level. We apply these views in the Black-

Litterman model. We then compare W100 and WnewBL to see if we can achieve a

lower VaR. In the computation of the Black-Litterman model, we use the reduced

covariance matrix instead of the sample covariance matrix.

Results: WnewBL has a monthly expected return of 1.107% and a standard deviation

of 4.81%. These are both less than the W100. Using the various approaches, we

find that WnewBL has a lower VaR than W100 except for the Historical Simulation

approach. We were able to reduce VaR, but the expected return was lower.

5.9 Summary

In this chapter we applied our literature by choosing twenty-nine stocks, S&P500

index and the one year T-bill rate. We took the data and began by computing

the envelope portfolio following the Huang and Litzenburg approach. We have

seen how the portfolios performed and also observed that all of our ten portfolios

brought about a profit at the end of the year. We then looked at the performance

of the Markowitz model throughout the period of 2011, and we also saw profits

until we grouped the stocks. We saw how volatile the mean-variance optimisation

was. We then looked at the CAPM in 2011 and saw that it performed well only

when following the Markowitz mean-variance optimisation without allowing short

positions. We saw huge losses when we allowed short selling. The CAPM advises

investors to only invest in the market portfolio. We have seen that the market

portfolios made a profit in all scenarios. Using the CAPM our model was still

sensitive, and we looked at Black and Litterman. We have seen that we can also

get very poor results if our views are wrong. We then tracked the S&P500 index

by use of the Sharpe’s style analysis, and we observed little difference (both by

allowing short selling and not allowing short selling) between the market portfolio

(obtained by market capitalisation) in terms of profits. We then shifted focus to five

portfolios. We measured their performance by using the Sharpe’s, Treynor’s and
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Information Ratios. We have seen that the portfolio with the highest ratios was a

strong performing portfolio. We also looked at measuring the risk using VaR and

CVaR. We have seen that Whist had the highest expected return ratio and even the

lowest VaR in all our calculations. We have also seen that a portfolio with a low

VaR also has a low CVaR and vice versa.
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Chapter 6

Concluding Remarks and Scope

for Future Research

We have looked at the basic components of optimisation which we need for port-

folio optimisation. We have seen how Quadratic Programming builds from Linear

Programming. In future we will like to look at QPP with more complex constrains,

such as orthogonal constrains, and also the more complex QPP such as Quadratic

Fractional Programming. We will also look at Non-Convex Programming as there

are cases that are non-convex in the extension of the QPP.

There is no doubt that the Modern Portfolio Theory is the foundation of finance.

Since this is the foundation, any investor regardless of their preferences, should base

their investment goals on the MPT. Studying various assets or securities individually

is just an extra step towards portfolio optimisation. There are cases where traders

and investors have criticised the MPT, and therefore don’t use it. Professor Merton

stated that ”some people didn’t fully understand the assumptions behind the Black-

Scholes model and they applied the model incorrectly” ([17]). Understanding these

basics will allow us to relax some of the assumptions, in order to apply them in the

real world. We’ve investigated the MPT thoroughly, and now fully understand the

basic assumptions underlying it. We have seen the power of MPT, starting from the

Mean-Variance Optimisation (MVO). We have also seen that the MVO produces

highly efficient and highly risky portfolios at the same time; however, an investor

can choose their portfolios according to their risk tolerance, which at the end of the

day is critical to making decisions. We’ve also identified its weaknesses and we were

able to deal with these. It’s important not to neglect this model, and rather use the
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modifications that we’ve seen with the Capital Asset Pricing Model (CAPM). This

builds and extends on the MVO. Even the CAPM was criticised, however we’ve

observed that it brings about an important factor of being able to hold a single

market or equilibrium portfolio in line with the risk preference of the investor. The

critics of the CAPM developed an alternative method called the Asset Pricing The-

ory (APT), which has some assumptions that are related to the CAPM. We have

also seen the enormous contribution that Black and Litterman have made to the

MPT, by allowing investors to include their views on the market MVO or CAPM

returns. These returns are no longer sensitive to small changes as in mean-variance

optimization.

We’ve also observed a strong connection between risk and return. The importance

of risk management has been identified as well as VaR, which also starts by looking

at the portfolio’s risk measure. Due to diversification, the importance of risk man-

agement is within the portfolio and not within the distinctive assets of the portfolio.

Another observation has been that, we can change the expected return of the asset

in order to expand any hedging opportunities, and this is done after carefully study-

ing the overall portfolio.

In future we would like to consider adding transaction costs, options and foreign

stocks and bonds to our portfolio. We would also like to take robust portfolio

optimisation into account, as we’ve seen that optimisation is strongly dependent

on the estimation of the parameters. This will ultimately give us a more accurate

estimation. We will also look at the active management to review whether it is

worth the effort when compared to Markowitz.
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Appendix

Variance estimation approaches

ARCH

The clustering of volatilities changes over time so this plays a very important role in

risk management as we need to try and predict the volatilities. If volatility increases

so will the Value at Risk [40]). So in general we normally assume a constant vari-

ance towards our model. This problem of getting away from the constant variance

assumption was introduced by Engle [22]. From the term ARCH, the change of

variance is stipulated by heteroskedasticity. The formula follows a time series and

it is computed as follows

σ2
t = α0 +

q∑
i=1

αiε
2
t−i

where εt = σtzt and zt is a random variable with a white noise process,

α0 > 0 and αi ≥ 0, ¿0.

GARCH

The ARCH laid the foundation of estimating non-constant variance and the gener-

alised model was introduced by Bollerslev ([14]). The formula is as follows

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−1,

where α0 is a constant p lags of squared error q lags of conditional variance.

We compute and plot the autocorrelation of ε2 by

117

 

 

 

 



CHAPTER 6. CONCLUDING REMARKS AND SCOPE FOR FUTURE
RESEARCH

ρ =

∑T
t=i+1(ε̂

2
t − σ̂2

t )(ε̂
2
t−1 − σ̂2

t−1)∑T
t=1(ε̂

2
t − σ̂2

t )
2

.
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