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ABSTRACT: 

Cancer is one of the leading causes of death worldwide. According to the WHO, cancer 

accounted for 7.4 million deaths world wide in 2004. The metallo-compound cisplatin has 

been used for years as an effective antitumor agent for treating solid tumours such as 

breast, bladder, lung, oesophageal, and head and neck carcinomas. However, the use of 

cisplatin as an antitumor agent has been limited because of its association with problems 

such as lack of selectivity for cancer cells over normal cells, development of resistance to 

cisplatin treatment, and side effects such as nephrotoxicity. Recent studies on anticancer 

drugs have focussed on alternative anticancer agents such as gold compounds in both 

Au(I)  and (III) oxidation states, which have shown to be potential anticancer drug agents 

because of their ability to induce apoptosis in several human cancer cells. Some gold 

complexes have shown to be able to selectively kill cancer cells over normal cells.  

 
METHODS: In view of this, fifteen bidentate amino--and iminophosphine ligands coded 

(TTL) and their corresonding mono- and dinuclear Au(I) complexes coded (TTC) were 

synthesised and screened for their pro-apoptotic effects on a panel of cell lines. This panel 

consisted of ten human cancer cell lines (A549J, Caski, HepG2, HeLa, Hek293, H157, 

H157, Jurkat, MCF-7, and MG-63), one non-cancerous human cell line (KMST-6), and 

two rodent cell lines (CHO and 3T3). To further elucidate the mechanism of apoptosis, 

other markers of apoptosis such as mitochondrial membrane depolarisation, caspase-3 

activation and DNA fragmentation were investigated. The mode of action through which 

these gold complexes and ligands induce apoptosis were also studied by investigating the 

generation of ROS, lipid peroxidation, the uptake of Au and thioredoxin redox system.  

 

 

 

 



 

 II 

 

RESULTS: This demonstrated that some of the phosphine ligands and gold(I) complexes 

selectively inhibited the growth of cultured human cancer cells. These compounds 

induced morphological changes in cultured cells that were indicative of apoptosis. An 

apoptosis assay which detects phosphatidyl serine exposure confirmed that some of the 

phosphine ligands and gold(I) complexes selectively induced apoptosis in cancer cells. 

TTC18 and TTL5 demonstrated the highest pro-apoptotic activity and were further 

investigated. Cells treated with TTC18 and TTL5 were also positive for other markers of 

apoptosis, which included the activation of caspase-3, the fragmentation of DNA and the 

depolarisation of mitochondria. Cell cycle analysis shows that TTL5 induced cell cycle 

block in the G1 phase. This was not observed for TTC18 though it induced apoptosis in 

H157 cells. Both TTC18 and TTL5 induced the production of ROS. However, the 

oxidative damage induced by TTL5 was significantly higher in comparison to TTC18. 

The cytoprotective effects of several antioxidants were investigated. L-glutathione was 

shown to protect H157 cells against the effects of TTC18. ICP-MS data also show that the 

intracellular levels of Au are reduced in the presence of L-glutathione.  

 

CONCLUSION: This study demonstrated that some of the phosphine ligands and gold(I) 

complexes tested here show promise as anticancer agents. On the whole, the cytotoxicity 

of the gold(I) complexes were much higher compared to the phosphine ligands, but it is 

particularly TTC18 and TTL5 that can potentially be developed further as anticancer 

agents.  
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KEYWORDS: Anti-cancer drug, Apoptosis, Cytotoxicity, Cytoprotection, Gold(I) 

complexes, Thioredoxin, Lipid peroxidation, Oxidative damage, Phosphine ligands, 

Reactive Oxygen Species. 
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CHAPTER ONE 
 
1.1 Cancer defined 

Cancer is not a single disease and different authors have defined it in different ways.  

Foster (2008), defined cancer as a class of diseases that result from the deregulation of the 

cell cycle whereby damaged or mutated cells which under normal circumstances are 

destroyed, are allowed to progress through the cell cycle thereby accumulating mutations 

that result in the uncontrolled growth of the cells, and this results in the formation of 

tumours or increased production of abnormal cells that have lost proper function. Foster 

(2008), further stated that these mutations are mainly found in proto-oncogenes as well as 

in tumour suppressor genes. Hanahan and Weinberg (2000); Croce (2009), described 

cancer as a disease that involves mutations in the genome and these mutations produce 

oncogenes with dominant gain of function and tumour suppressor genes as well as 

microRNA genes that have recessive loss of function. While Huang et al., (1997), reported 

that cancer is caused by compound mutations in a single cell and its progeny and that 

germ-line mutations may predispose a person to heritable /familial cancers. Another 

description of cancer by Coleman and Tsongalis (2001) is that cancer is a genetic disease 

or a disease of abnormal gene expression.  

 

 

1.2 Cancer incidence  

Cancer affects people and animals of different ages including foetuses however, for most 

cancers the risk increases with age (Irigaray et al., 2007).  Parkin et al., (2000), gave an 
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estimated figure of over ten million new cancer cases every year world wide however, this 

figure excluded non-melanoma skin cancers. Out of this figure over six million deaths 

were estimated.  In the USA cancer is the second leading cause of death the first being 

accidental deaths (Gurib-Fakim, 2006; Jemal et al., 2008). Jemal et al., (2008) reported an 

overall estimate of 1.44 million new cancer cases in the USA alone without the inclusion 

of carcinoma in situ of any site except urinary bladder, basal cell and squamous cell 

cancers of the skin.  Kushi et al., (2006), indicated that about 500,000 people die of 

cancer each year worldwide indicating that cancer is a world wide problem.  

 

1.3 Causes of cancer  

Most of the research work on the causes, development and effects of cancer focus mainly 

on three main research areas: (i) those that focus on agents as well as events that cause or 

aid in genetic changes in cells that eventually become cancerous (Su et al., 2002) (ii) 

studies that show the damage in affected genes (Angèle and Hall, 2000) (iii) biological 

studies that show genetic changes in both normal and cancerous cells (Mathews et al., 

2009). There are various agents or events that have been linked to causing or initiating the 

development of cancer.  Some of such agents or events may include: dysfunction of the 

immune system, hereditary hormonal imbalances, mutations due to chemical carcinogens 

or ionizing radiation, bacterial, viral or parasitic infections and occupational exposures 

(Irigaray et al., 2007).  
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Table 1.2: Causes of cancer 

Cause                                                                                           Example            References 
Dysfunction of the immune 
system 

The human 
immunodeficiency virus 
(HIV) and associated 
malignancies  (ARL) 
 

Wood and Harrington, 2005 
Bower et al., 2006 
 

Hereditary  About 10% of ovarian 
cancers (OC) 

Lynch and Chapelle, 2003 
Russo et al., 2009 

Hormonal imbalances 
 

Benign and premenopausal 
breast diseases. 

Berstein et al., 2006; 
Linkov et al., 2008. 

Mutations due to chemical 
carcinogens  

Nasal cavities and paranasal 
sinuses, stomach, liver, 
kidney, uterine cervix, 
myeloid leukaemia, lung, 
oral cavity and pancreas  

Toyomura et al., 2004, 
Sasco et al., 2004; Pöschl 
and seitz, 2004. 
 

 Ionizing radiation 
 

Childhood leukemia, basal 
cell carcinoma (BCC), skin 
melanoma, nonmelanocytic 
skin cancers  

Feychting et al., 2005; 
English, 1997; Rukin et al., 
2007. 

Bacterial, viral or parasitic 
infections 

Adenocarcinoma of the 
distal stomach 

Irigaray et al., 2007; Wen 
and Moss, 2008 

Transmission Anogenital carcinomas Teksam et al., 2004;  
Edgren et al 2007. 

Pollution 

 

Skin cancer, keratosis and 
hyperpigmentation, kidney, 
lung and liver cancers 

Hopenhayn-Rich et al., 
1996. 

Occupational Exposures 

 

Lung cancers; 
hepatocellular carcinoma 

Siemiacki. et al., 2004; 
Alberg et al., 2007. 

Hereditary  Ovarian cancers (OC) Lynch and Chapelle, 2003 
Russo et al., 2009. 
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1.4 Classification of cancer  

Tumours are complex and as such it is necessary to classify them so that it can be easy to 

identify them. Members of a class inherit the properties of their ancestors as such 

prediction of prognosis can be made and drugs that can target a particular class of cancer 

can be developed and compared between homogeneous groups of patients (Louis et al., 

2001). Louis et al., (2001), further reported that cancer classification is the basis on which 

clinicians make critical therapeutic recommendations to their individual patients. Louis et 

al., (2001), gave an example of neuro-oncologits that they apply therapies in a relatively 

uniform way for all patients with a given tumour type. Tumours have been grouped and 

classified based on features that are common to the members of the group/groups 

(Berman, 2004). The tumours are classified based on  the type of cell that resembles the 

tumour and the tissue that is thought to be the origin of the tumour.  Accordingly, the 

tumours are named using words with Latin or Greek root (Louis et al., 2001). Cancers are 

generally categorised/classified as follows: 
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Table 1.2: Classification and description of some cancers 
 

Cause                                                                                           Example            References 
Dysfunction of the immune 
system 

The human 
immunodeficiency virus 
(HIV) and associated 
malignancies  (ARL) 
 

Wood and Harrington, 2005 
Bower et al., 2006 
 

Hereditary  About 10% of ovarian 
cancers (OC) 

Lynch and Chapelle, 2003 
Russo et al., 2009 

Hormonal imbalances 
 

Benign and premenopausal 
breast diseases. 

Berstein et al., 2006; 
Linkov et al., 2008. 

Mutations due to chemical 
carcinogens  

Nasal cavities and paranasal 
sinuses, stomach, liver, 
kidney, uterine cervix, 
myeloid leukaemia, lung, 
oral cavity and pancreas  

Toyomura et al., 2004, 
Sasco et al., 2004; Pöschl 
and seitz, 2004. 
 

 Ionizing radiation 
 

Childhood leukemia, basal 
cell carcinoma (BCC), skin 
melanoma, nonmelanocytic 
skin cancers  

Feychting et al., 2005; 
English, 1997; Rukin et al., 
2007. 

Bacterial, viral or parasitic 
infections 

Adenocarcinoma of the 
distal stomach 

Irigaray et al., 2007; Wen 
and Moss, 2008 

Transmission Anogenital carcinomas Teksam et al., 2004;  
Edgren et al 2007. 

Pollution 

 

Skin cancer, keratosis and 
hyperpigmentation, kidney, 
lung and liver cancers 

Hopenhayn-Rich et al., 
1996. 

Occupational Exposures 

 

Lung cancers; 
hepatocellular carcinoma 

Siemiacki. et al., 2004; 
Alberg et al., 2007. 

Hereditary  Ovarian cancers (OC) Lynch and Chapelle, 2003 
Russo et al., 2009. 
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1.5 Cancer pathophysiology 

Six fundamental elements that underlie the pathology of human cancers were described by 

Hanahan and Weinberg  (2000), to be self sufficiency in growth signals, insensitivity to 

anti-growth signals, evasion of apoptosis, sustained angiogenesis, limitless replicative 

potential, tissue invasion and metastasis. However, Kroemer and Pouyssegur(2008), 

added another “avoidance of immuno-surveillance” to the list of fundamental elements 

that underlie the pathology of human cancer. Further to this, another emerging 

fundamental element is the alterations in cellular bioenergetics (Pathania et al., 2009). 

The main contributors to cancer pathophysiology being mutations in oncogenes and also 

epigenetics come into play. 

 

 

1.5.1 Oncogenes 

The major cause of cancer is the alterations in oncogenes, microRNA genes and tumour-

suppressor genes (Croce, 2008). Most of these alterations are somatic events, however, 

germ-line mutations have been reported to predispose a person to heritable or familial 

cancers (Emery et al., 2001).  It is believed that a single genetic alteration is uncommon 

for the development of cancer but it is evident that a multistep process of sequential 

alterations in many oncogenes, tumour-suppressor genes, or microRNA genes is required 

for cancer development (Doucas and Berry, 2006). 
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1.5.2 Proto-oncogenes 

Proto-oncogenes are genes that are responsible for coding proteins that regulate cell 

differentiation, growth, signal transduction and mitosis in normal cells (Salgia and 

Abidoye, 2006). Some examples of proto-oncogenes include MYC, ERK, BCL-2 and 

RAS (Salgia and Abidoye, 2006; Doucas and Berry, 2006). Proto-oncogenes however, 

when mutated,  or over expressed or when their original function has been modified with 

small modifications, they become oncogenes. Oncogenes are genes that have the potential 

to change normal cell machinery function into a cancerous tumour cell. According to 

Croce CM, (2008); Hanahan and Weinberg, (2000); oncogenes were discovered in 

retroviruses as the initiators of cancers in animals and avians.  These genes modify the 

normal functions of cells. For instance, they are responsible for deregulation of the cell 

cycle machinery and have been implicated as important contributors to human 

carcinogenesis (Hanahan and Weinberg, 2000).  There are three main ways by which 

proto-oncogenes have been known to transform into oncogenes.  Such ways are: point 

mutation whereby a single nucleotide base repair is inherently altered or translocation in 

which a segment of the chromosome breaks off and attaches to another chromosome or by 

amplification whereby there is an increase in the number of copies of the proto-oncogene 

(Hanahan and Weinberg, 2000; Doucas and Berry, 2006). 
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1.5.3 Epigenetics  

 Epigenetics is the study of heritable changes in gene expression  that are not due to any 

alteration  in the DNA sequence for instance DNA methylation (Esteller, 2008) and 

several histone modifications that are involved in chromatin remodelling  (Kristensen et 

al., 2009). DNA methylation is known to take place mainly at the  carbon-5 position of 

cytocine residues within CpG dinucleotides in mammalian cells. This process is done by 

DNA methyltransferases (DMNT’s) and S-adenosyl-methionine (SAM). DNA 

methylation is a normal process in mammalian embryogenesis. However, a wide variety 

of cancers have shown to either have a decrease or an increase in DNA methylation 

(Feinberg and Vogelstein, 1983). To a large extent DNA hypomethylation in most cancers 

is a frequent occurrence (Yegnasubramanian et al., 2008; Lana et al., 2009). In some 

cancers  hypermethylation of DNA has also been reported (Herman, 1999; Sasaki et al., 

2003; Yegnasubramanian et al., 2008; Zou et al., 2009).  Interestingly, DNA methylation 

and histone modifications are reversible processes and Esteller(2008), indicated that  

dormant hypermethylated tumour suppressor genes can be  awakened with drugs which 

can re-express the DNA methylated genes in cancer cells by using demethylating agents  

and rescue their functionality. Esteller (2008), pointed out that demethylating agents have 

not shown activity against solid tumours. Conversely, Donepudi et al., (2007), indicated 

that hypomethylating agents have shown effectiveness at low doses in the treatment of 

hematologic malignancies. 
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1.5.4 Self-sufficiency in growth signals 

Growth factors (GFs) are the main growth–regulatory polypeptides that stimulate cell 

proliferation in culture and most likely also in vivo (Goustin et al., 1986). Insulin and 

adrenocorticotropic hormones are known polypeptides however, GFs differ in the mode in 

which they are  elicited and delivered to the responding cell (Goustin et al., 1986). 

According to Kroemer and Pouyssegur (2008), GFs activate receptor tyrosine kinases 

(RTKs), and these in turn stimulate two other key signal-transducing kinase pathways: the 

Ras→Raf→MAP kinase (ERK) pathway and the phosphatidylinositol 3-kinase (PI3K) 

pathway. Kroemer and Pouyssegur, (2008), further reported that ERK and PI3K converge 

to activate mammalian target of rapamycin (mTOR) which is responsible for cell growth 

stimulation. Almost all cancers are known to have mutations in genes such as 

Neuroblastoma (N-Ras), Kirsten (K-Ras), B-Raf, Harvey (H-Ras), the p110a PI3K 

subunit, and RTKs, which regulate cell signalling and growth (Rajkumar, 2001). 

Alternatively mutations may occur in the downstream effector genes (such as the kinases 

Akt and PDK1) (Kroemer and Pouyssegur, 2008). Growth factor receptors (GFRs) have 

also been implicated to play a major physiological role in the normal process of growth 

and differentiation (Rajkumar, 2001). Accordingly, Rajkumar (2001), further mentioned 

that this process is achieved through the binding of the growth factor to its receptor 

subsequently leading to receptor dimerization and phosphorylates a number of 

cytoplasmic proteins, which also sets off a cascade of events that lead to the activation of 

transcription factors in the nucleus. The transcription factors lead to increased mRNA 

synthesis, translation of the mRNA, increased protein synthesis, which eventually leads to 
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either cell growth or differentiation (Rajkumar, 2001; Harrington et al., 2007). Hanahan 

and Weinberg, (2000), reported that mitogen growth signals are needed for normal cells to 

move from a quiescent condition into an active proliferative condition. According to 

Hanahan and Weinberg, (2000), in cell culture, normal cells require more than one growth 

factor for proliferation. When grown under normal laboratory conditions, normal cells 

usually deplete growth factors more frequently than other components in the media and 

accordingly become rate limiting for proliferation. On the other hand, for cancer cells, the 

loss or decrease in specific growth factors is a common incidence and often may lead to 

growth advantage, a basic feature of cancer cells (Goustin et al .,1986). Similarly, 

Pathania et al., (2009), mentioned that a basic characteristic feature of cancer cells is self-

sufficiency in the absence of GFs. 

 

 

1.5.5 Limitless replicative potential 

Almost all normal vertebrate cells undergo a finite number of cell divisions known as 

Hayflick limit and this cell division is determined by an intrinsic mitotic clock that 

involves the maintenance of telomeres (Effros and Walford , 1984). Following the finite 

number of divisions, the cell eventually enters into senescence, a state in which cells stop 

replication (Bodnar et al., 1998). Normal cells for instance human fibroblasts can divide 

60 to 80 times before they can halt their replication process.  Contrary, cancer cells may 

replicate indefinitely if they have a continued supply of nutrients (Granger et al., 2002). 

According to Bellantuono, (2004), the maintenance of telomeric DNA is what underlies 
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the ability of tumours to possess unlimited replicative potential. Current evidence 

indicates that the capability to sustain tumour growth and metastasis is contained in a 

subpopulation of cells called stem cells (SCs) or tumour-initiating cells (Klonisch et al., 

2008; Todaro et al., 2010). It is suggested that stem cells have the capabilities of self-

renewal in which case they grow indefinitely and differentiate or develop into different 

types of cells or tissues, following mitogen stimulation (Granger et al 2002; Moore, 

2007). It is believed that impairment of stem cell differentiation leads to unlimited 

replication in cancer cells (Klonisch et al., 2008; Kitamura et al., 2009). Cancer stem cells 

(CSCs) have been found to express stem cell-like surface markers such as CD34 in 

leukemia cells and CD44 in breast cancers (Kitamura et al., 2009; Pfeiffer and Schalken, 

2010), which can be used to identify cancerous cells from a mixture of cells. 

 

 

1.5.6 Telomeres  

Telomeres are hexameric DNA sequences found at the ends of chromosomes 

characterized in all vertebrates by tandems of TTAGGG/CCCTAA repeats. Telomeres 

prevent chromosomal end-to-end fusions and maintain genomic stability (Herbert, 2008). 

Telomeric DNA ends in a single-strand G-rich overhang presumably between 50 and 300 

nucleotides at the 3' end (Herbert, 2008). It has been proposed that the telomere bends 

back on itself forming a "T-loop" structure and telomeric DNA together with its 

associated capping protein complexes have been given the name telosome or shelterin 

(Granger et al., 2002; Weinert, 2005). In most normal human cells telomeres shorten with 
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each cellular division because of “end-replication problem” (Granger et al., 2002). During 

replication, DNA polymerase adds a DNA primer only in the 5′to 3′ direction in order to 

initiates synthesis and is done in segments known as Okazaki fragments (Timson et al., 

2000). However, the 3′ terminal end of the lagging strand of linear DNA cannot be fully 

synthesized since there is no DNA at end of the chromosome to serve as a template for the 

next Okazaki fragment to fill in the gap between the last Okazaki fragment and the end of 

the chromosome as a result, the ends of the chromosomes are not replicated hence the 

telomere continuously shorten with each round of replication (Granger et al., 2002; 

Herbert, 2008). In a normal situation cells undergo replicative senescence the moment 

telomeres have shortened to a certain length. However, cells that have lost critical 

checkpoint controls for example p53/Rb can bypass senescence and their telomeres 

continue to shorten and they usually die (Dikmen, 2009). In rare instances however, the 

presence of critically short or dysfunctional telomeres can result in end fusions and 

genomic instability, (Dikmen, 2009), as a result a cell acquires mutations that can lead to 

the cell progress towards cancer (Dikmen, 2009). Some telomere-associated proteins 

known to play a role in telomerase’s accessibility include the telomeric repeat binding 

factors 1 and 2 (TRF1 and TRF2), TRF-1 interacting protein 2 (TIN2), POT1 (protection 

of telomeres 1), TPP1, Rap1 and tankyrase 1, which is a telomeric member of the Poly 

adenosine diphosphate (ADP)-ribose polymerase (PARP) family of proteins (Herbert, 

2008). 

 

Telomerase is a specialized reverse transcriptase enzyme produced by cells that adds 

hexameric repeats of TTAGGG DNA sequences to the ends of chromosomes to prevent 
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the shortening of telomeres that occur during cell division (Testorelli, 2003). In effect, the 

adding of TTAGGG repeats to the depleted ends of chromosomes extend the 3' end of 

chromosomes and this results in the continued multiplication of the cell (Artandi, 2010). 

Most healthy cells are reported not to make telomerase (Artandi, 2010). One exception 

however, is the stem cells (SC). Stem cells are involved in the continued renewal of blood 

and skin cells, and also those cells that line the intestinal tract. The main human enzyme 

consists of a reverse transcriptase protein (TERT) (Kirwan and Dokal, 2009). Premature 

shortening of telomere and mutation of telomerase components are associated with 

syndromes such as dyskeratosis congenita and idiopathic pulmonary fibrosis (Kirwan and 

Dokal, 2009). Telomerase and the maintenance of telomeres are key players in the ability 

of stem and cancer  cells to bypass senescence and be immortal (Ju and Rudolph, 2006). 

For this reason telomerase are attractive targets for the development of novel anti-cancer 

therapeutics (Aubert and Lansdorp, 2008).  

 

Most types of cancer cells are known to have telomerase but most normal somatic cells do 

not express telomerase or that telomerase is limited in normal cells (Testorelli, 2003), 

which means that the enzyme might be used as a target for anticancer drugs (Rezler et al., 

2002). The increased presence of telomerase in cancer cells makes them retain their 

telomerase homeostasis and potentially survive indefinitely (Cian et al., 2008). On the 

other hand the limited presence of telomerase in non-cancer cells made them to divide 

with minimal cell divisions and eventually die or go into senescence. Using this scenario, 

agents can be developed to specifically target telomerase to allow them to shrink and 
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disappear without disrupting the functioning of most normal cells. Current anticancer 

drugs kill both cancerous and non-cancerous cells, and development of agents that would 

target telomerase would be less toxic as they would specifically kill the cancer cells over 

the non-cancerous cells thereby reducing side effects (Klonisch et al., 2008). An example 

of a telomerase inhibitor is GRN163L which is in phase I/II clinical trials and appears to 

be promising anticancer agent (Kelland, 2007).   

                
Figure 1.1: The telomerase/telomere pathway and main points of possible therapeutic 
intervention. Pathway modulators may result in either mainly telomere erosion (e.g., BIBR1532) 
resulting in relatively slow phenotypic anticancer effects or predominantly telomere uncapping 
(e.g., RHPS4) producing more rapid anticancer effects. Agents such as GRN163L probably 
mainly affect telomere erosion but also seem to induce telomere uncapping (Adapted from 
Kelland, 2007). 
 

1.5.7 Sustained Angiogenesis 

Vasculogenesis is the term used to describe the initial steps involved in the formation of 

the vascular system during embryogenesis (Alessi et al., 2004). From the pre-existing 

vessels angiogenesis sets (sprouts) in to form new blood and lymphatic vessels 
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(Sköldenberg et al., 2000; Djonov et al., 2000). Further, Sköldenberg et al., (2000), 

mentioned that angiogenesis is one of many mechanisms required for the building and 

maintenance of blood supply of the body’s tissues, disposition of metabolic waste 

products and also allowing metastatic spread. This however, (Cox, et al., 2000), occurs in 

response to the metabolic demands of tissues and tumours. It is well known that all solid 

tumours are angiogenesis-dependant (and most probably many leukaemia’s as well) 

(Keshet and Ben-Sasson, 1999; Bjerkvig, 2009).  In cancer development, angiogenesis is 

crucial as the supply of oxygen and nutrients are required to support the growth of the 

solid tumour or leukemia thereby overcoming hypoxia and starvation (Bjerkvig, 2009. 

Tumour growth is also dependent on the balance between proliferating cells and cells 

dying through apoptosis and necrosis (Alessi et al., 2004). Cells resist apoptotic cell death 

because of the presence of mutations in genes that eventually produce phenotype cells 

which  resist apoptosis and therefore have a survival advantage (Alessi et al., 2004). 

 

There are four major steps implicated in the development of angiogenesis and these are: 

(i) breaking through the basal lamina that envelopes existing blood vessels by proteases 

(ii) migration of endothelial cells towards a source signal and sprouting (iii) proliferation 

of endothelial cells and (iv) formation of tubes/new basement membrane with final blood 

flow (Gambino, 2002; Gupta and Qin, 2003). Several other factors have been implicated 

in angiogenesis however, one of the major potent and predominant factor implicated is the 

vascular endothelial growth factor (VEGF), a member of six structurally related families 

of proteins (Clark and Jones, 1999; Li and Eriksson, 2001). In order for VEGF to be 
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produced, it has to be stimulated by upstream activators, such as growth factors, 

oncogenes, cytokines, hormones and other environmental factors (Djonov et al., 2003). 

Once VEGF is produced, it promotes cell proliferation and growth, and also cell survival 

as observed with experiments on endothelial cells (Gerhardt et al., 2003).  The VEGF 

family interacts with vascular endothelial growth factor receptors (VEGFRs) to exert their 

angiogenic effects (Demir et al., 2006; 2007). The binding of VEGF to its receptors on the 

surface of endothelial cells activates intracellular tyrosine kinases, triggering multiple 

downstream signals that promote angiogenesis. Although there are many variants of 

VEGF and their receptors, the angiogenic effects of VEGF pathway are primarily 

mediated through the interaction of VEGF-A (the most common variant, often referred to 

as VEGF) with receptor-2 (VEGFR-2) (Li and Eriksson, 2001; Gambino et al., 2002). 

The role of other non-VEGF factors is not fully known however; it is thought that they 

play secondary roles in angiogenesis, most likely additional non-angiogenic pathways 

(Risau et al., 1988; Djonov et al., 2003; Ferrara, 2004).  

 

Matter (2001) proposed that drugs on tumour angiogenesis be classified into two main 

classes namely (i) drugs that interfere with the process of forming new blood vessels, and 

(2) vasculotoxins that destroy newly formed blood vessels thereby producing antitumour 

effects. Keshet and Ben-Sasson, (1999), mentioned that the supply of both nutrients and 

oxygen in angiogenesis are critical in maintaining the growth of tumours.  As such Matter, 

(2001), Ryan et al., (2005), suggested that inhibiting the supply of both nutrients and 

oxygen to the tumour could render the tumour incapable of growth. Therefore 
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development of anticancer drugs that can target the tumour vasculature rather than the 

tumour itself could be of fundamental importance. Recently several research works in 

anticancer drug has focused into the development of drugs that inhibit angiogenesis 

growth factors or block their receptors (Bjerkvig et al., 2009). Of particular importance is 

the targeting of the VEGF-signalling pathway, which has an important role in stimulating 

neovascular growth and survival (Wedge et al., 2002; Ryan et al., 2005). Some of such 

drugs include ZD6474 an orally bio available inhibitor of VEGF receptor-2 tyrosine 

kinase activity developed by AstraZeneca. Wedge et al (2002) showed that ZD6474 could 

selectively inhibit tyrosine kinase activity of VEGFR-2 of VEGF-stimulated endothelial 

cells. .  ZD6474 blocks VEGF receptor-2 pathways another drug Avastin is reported to 

bind to VEGF (Herbst et al., 2007). Another anticancer agent that targets the VEGF is 

Bevacizumab developed by Avastin, Genentech a recombinant humanized monoclonal 

antibody, which was approved for the treatment of colorectal cancer and non-small cell 

lung cancer by the Food and Drug Agency (FDA) (Heinzman et al., 2008). According to 

Heinzman et al., (2008), the mechanism through which Bevacizumab acts is that it binds 

to VEGF with high specificity subsequently neutralizing the growth factor and preventing 

its interaction with its receptors. Endothelial cells are inhibited from proliferation 

resulting in the hindrance of tumour progression (Bamias and Dimopoulos, 2003; 

Heinzman et al., 2008).  
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1.5.8 Tissue invasion and metastasis 

Metastasis is the ability of cancerous cells to break off from their original sites and form 

tumours at a different part of the body (Campbell and Der, 2004; Stafford et al., 2008;  

Geiger  and Peeper,  2009). Cancer invasion is the processes whereby cancer cells break 

away from a tumour, circulate through the circulatory or lymph system and eventually 

enters adjacent tissue (Campbell and Der, 2004). Sierra  (2005); Geiger  and Peeper,  

(2009), reported that tissue invasion and metastasis occur in a sequence of distinct steps, 

which have been termed as a “metastatic cascade. Cancer invasion and metastasis are said 

to be two most lethal of cancer phenomena responsible for 90% of cancer-related deaths 

(Ruiter, 2001; Neal and Berry, 2006; Geiger and Peeper,  2009), and metastasis is said to 

be the hallmark of malignancy (Iiizumi et al., 2008). Iiizumi et al., (2008) hinted that at 

the moment there are no efficient anticancer drugs available for treating patients whose 

cancers have metastasized. Campbell and Der (2004) indicated that the signalling and the 

mechanisms that promote tissue invasion and metastasis are extremely intricate.  

 

1.5.8.1 Promoters and suppressors of tissue invasion and metastasis. 

Cells have genes that can promote tissue invasion and metastasis and also genes that can 

suppress issue invasion and metastasis.  Most cancer cells however, have the ability to 

overcome the effects of most of the tissue suppressor genes (Hwang-Verslues et al., 

2008). Some of the membrane bound metastasis suppressor genes include KAI1, 

cadherins, ovarian cancer G-protein coupled  receptor, and CD44 (Yoshida et al., 2000; 

Stafford et al., 2008). KISS1, Nm23, RhoGDI2, BRMS1, SSeCKs, MAP kinase kinase 4 

(MKK4/7/p380), TIMPs, Drg1, RKIP, DCC1, gelsolin, caspase-8, RRM1, and DCC1 are 
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some of the cytoplasmic metastasis suppressors genes reported (Shevde et al., 2002; 

Robinson et al., 2003; Mitchell et al., 2006; Woolworth et al., 2009). Metastasis 

suppressors that are said to reside predominantly in the nucleus include CRSP3/TXNIP, 

BRMS1, Nm23 and Drg1 (Yoshida et al., 2000).  However, it is reported that genes 

BRMS1, Nm23 and Drg1 can also be localized to both the cytosol and the nucleus which 

means that they may function as metastasis suppressors in both compartments but 

Yoshida et al., (2000), argued that further studies are required to iron out the precise role 

of each gene in each of the cellular compartments.  

 

Under normal conditions tissue cells adhere to one another with cell-to-cell adhesion 

molecules and to a mesh of protein known as extracellular matrix (ECM) composed of 

molecules such as glycosaminoglycans, proteoglycans, collagens and non-collagenous 

glycoproteins and these fill the space between the cells (Rozario and DeSimone, 2009). 

The extracellular matrix allows interactions of proteins on the cell surface of different 

cells thereby allowing the cells to survive and also proliferate as they exchange different 

important molecules. One of such molecules is a nuclear protein called E type cyclin 

dependent kinase 2 (E-CDK2) which regulates cell growth, division as well as apoptosis 

(Guo and Hay 1999; O’Cnnor et al., 2000). According to Chin et al., (2005), cells begin 

their reproductive cycle only after they attach to a surface. Chin et al., (2005), further 

reported that inhibitory effects of E-CDK2 in the nuclei of cells stops functioning or shuts 

down if the cells have not attached to anything and the cells stop growing and eventually 

die by apoptosis. Cancer cells however, are able to exist without being anchored and their 

E-CDK2 protein remains active and allows the cancer cells to grow and reproduce 
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(Okegawa et al., 2002). The reasons E-CDK2 remains active are unknown, but 

researchers think that oncogenes may be responsible. Other abnormalities of cancer cells 

include missing of adhesion molecules such as cadherins and intergrins (Okegawa et al., 

2002), and also the increased involvement of matrix metalloproteases (MMPs) enzymes 

which are known to be involved in cell proliferation, differentiation, remodelling of the 

extracellular matrix (ECM), vascularisation and cell migration (Chang and Werb, 2001). 

Cancer cells are reported to use proteases such as urokinase plasminogen activator (uPA), 

cathepsin B (CB) cathepsin D and the enzymes MMPs to dissolve basement membranes 

and other extracellular matrices, which allows the cancer cells to penetrate the basement 

membranes of blood vessels and have access to other parts of the body (Chin et al., 2005). 

Other studies have shown that certain tumours have an affinity to specific organs of the 

body and they only anchor to those specific organs even if the cancer cells reached all 

other organs in the body and it is only when the cancer cells reach those specific organs 

do they metastasis and reproduce (Terranova et al., 1986; Brooks et al., 2010). 

 

1.5.8.2 Targeting tissue invasion and metastasis 

Metastatic cancers originate from a primary site and despite the spread they are still 

named by their primary site for instance, if breast cancer spreads to the lungs, it remains 

breast cancer (Labianca et al., 2004; Bodner et al., 2006).  Consequently, treatment for 

metastatic cancers depends on where the cancer originated from and not by its secondary 

site (Iiizumi et al., 2008). Further, Iiizumi et al., (2008), reported that one major problem 

with cancer treatment is that a small percentage of metastatic cancers are discovered but 
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their primary tumour is not identified and in such cases treatment is based on the location 

of the cancer rather than the origin. Both primary and metatastic tumours can be treated 

concurrently by blocking the promoters or the suppressors required for tissue invasion, 

metastasis or tumour vascularisation (Sarkar et al., 2005). Some of such drugs developed 

to that effect  include different kinds of agents that block the ligand-recepter  interaction 

of metastasis-promoters such as hepatocyte growth factor (HGF)  (figure 1.2) and its 

receptor c-Met  (Comoglio and Vigna, 1995; Christensen et al., 2005). Other agents 

include those that antagonize and inhibit the transcriptional activity of metastasis 

promoter (β-Catenin) such as autocrine motility factor (AMF), urokinase plasminogen 

activator (uPA) and matrix metalloproteinase (MMP) (Iiizumi et al., 2008). Additionally 

Yoshida et al., (2000) and Iiizumi et al., (2008), found that small molecules such as 

NM23, Kiss-1, MKK4 and NDRG1 have been developed in order to restore the 

expression or mimic the function of metastasis-suppressor genes (MSG). 
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Figure 1.2:  Signal pathway of tumour metastasis. Tumour metastasis is a result of complex 
interplay of both positive (a) and negative (b) factors. These pathways and their factors are 
potential targets for anti-metastatic therapy. The drugs currently under development are shown as 
black oval shapes (Adapted from Iiizumi et al., (2008). 
 

 

1.5.9 Evasion of apoptosis (a universal characteristic of all cancer cells) 

Apoptosis is defined as cell death properly programmed to eliminate unwanted cells from 

an organism and is essential for the maintenance of the organism’s homeostasis (McCabe 

and Dlamini 2005; Prevarskaya et al., 2010). The term apoptosis was introduced into 

modern scientific writing by Kerr, Willey and Currie (1972), in which they described it as 

a cell death (programmed cell death/cell suicide) different from necrosis. The term was 
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chosen for it’s meaning for it represented the falling of leaves as used in ancient Greek 

(Kerr et al., 1972; Cruchten, 2002).  Since then this term has been in accepted use in 

biomedical sciences. While cell proliferation and tissue growth are important, apoptosis is 

equally important for the normal development of the tissue including morphogenesis and 

removal of harmful cells (Tsujimoto and Shimizu, 2000). On the other hand, (McCabe 

and Dlamini, 2005; Prevarskaya et al., 2010), stated that increased levels of apoptosis as 

well as low levels of apoptosis have profound effects on the organism. Increased 

apoptosis can lead to several pathological conditions, for instance motor neuron diseases 

such as amyotrophic lateral sclerosis (ALS) cerebral dementia  such as Alzheimer’s and 

inherited  ataxias (Honig and Rosenberg 2000), type 1 diabetes which involves 

destruction of immune-mediated islets of Langerhans and AIDS (Badley and Dockrell, 

1997). On the other hand, decreased apoptosis can lead to diseases such as inflammation, 

cancer, restenosis, autoimmune diseases and persistent infections (Reed, 2000). Players in 

the apoptotic pathways have been identified and used as targets for anticancer drugs. The 

targeting of such players  in the apoptotic pathways can either have a direct  pro-apoptotic 

effect or can cause cancer cells to become susceptible to cytotoxics (Melet et al., 2008). It 

has been reported  (Marzano et al, 2006; Melet et al., 2008), that most cancers develop 

drug resistance because of lack of successful induction of apoptosis and also because of 

defects in the apoptotic pathway. According to Hanahan and Weinberg (2000), acquired 

resistance toward apoptosis is a hallmark of most if not all types of cancer and Fulda and 

Debatin 2004, 2006; Abdollahi  and Folkman, 2009), reported that almost all cancer cells 

contain mutations in their genes that enable them to evade apoptosis. This is achieved 
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through several means one example is the one which involves the active interaction 

between oncogenes and/or mutated tumour suppressor genes. For instance over 50% of 

cancers are reported to have mutations in their tumour suppressor gene p53 an important 

pro-apoptotic regulator gene (Ashkenazi, 2002). The mutation of p53 has  been implicated 

in the facilitation of tumourigenesis (Ashkenazi, 2002; 2008a, 2008b). Another means by 

which cancer cells evade apoptosis is through continued elevated signalling of oncogenes 

thereby driving increased cellular proliferation genes such as Myc, and  Ras (Fadeel and 

Orrenius, 2005). Other studies however, have reported that Myc under other 

circumstances can induce apoptosis for instance under cellular stress, DNA damage, or 

when levels of survival factors are low (Ziegler and Groscurth, 2004). Another means by 

which cancer cells overcome apoptosis as mentioned by Fulda and  Debatin (2004), is 

through up regulation of the anti-apoptotic PI3 kinase (PI3K)-Akt/PKB survival pathway  

which can result due to loss of the tumour suppressor gene PTEN, a phospholipid 

phosphatase that normally down regulates the Akt survival signal or other signals such as 

IGF-1/2 that can trigger the oncogene Ras (Frisch and Screaton, 2001; Fulda and  Debatin 

2004).  Yet another means by which cancer cells evade apoptosis is  through the up 

regulation of the expression of the non-signalling decoy receptor for the FAS ligand, 

which may prevent activation of the FAS receptor (Ashkenazi, 2002).  
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1.5.9.1 Characteristics of apoptotic and necrotic cell death. 

Apoptosis is characterised with distinct set of biochemical and physiological changes 

involving the endoplasmic reticulum (Duvall and Wyllie, 1986), cytoplasm, mitochondria, 

nucleus and plasma membrane (Bortner et al., 1995; Frédérich et al., 2003; Edinger and 

Thompson, 2004; Krysko et al., 2008). The final feature of apoptosis is the budding off of 

the nucleus into numerous fragments of 50-300 kbp and eventually into approximately 180-

bp fragments that can be viewed upon agarose gel electrophoresis as characteristic DNA 

ladders (Zamzani and Kroemer, 1999; Lawen, 2003). These fragments are encapsulated 

within apoptotic bodies (Bortner et al., 1995; Frédérich et al., 2003), and since they are 

surrounded by an intact plasma membrane, they are easily engulfed by macrophages 

(Lawen, 2003), and apoptosis usually occurs without leakage of cell contents and usually 

without inflammation (Edinger and Thompson, 2004). However, Otsuki et al., (2003), 

further reported that  should phagocytosis not occur, the apoptotic bodies may lyse  and this 

may result in apoptotic necrosis. While apoptosis is a normal cell death, it can as well be 

initiated. Lawen, (2003), reported that anti-cancer agents can induce apoptosis. Accidental 

cell death on the other hand, referred to as or cellular necrosis, is the consequence of injury 

or toxicity and results in cell lysis (Frohlich and Madeo, 2000; LaCasse et al, 2005). In this 

form of cell death, the cell swells and disintegrates in an unordered manner, eventually 

leading to the destruction of the cellular organelles and finally rupture of the plasma 

membrane and leakage of the cell contents into the surrounding environment with the 

consequent of inflammation  (Lawen, 2003). According to Otsuki et al., 2003), necrosis is 

terminal-stage cell death, which has no morphological definition. 
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1.5.9.2 Mechanisms of Apoptosis and the mammalian plasma membrane 

The mammalian cell membrane is a semi-fluid mosaic structure made of phospholipids, 

proteins and some cholesterol.  Phospholipids are the major components of the membrane 

and are arranged in the form of a “bi-layer”, each arranged in an amphipathic structure 

(Avers, 1982; Fadeel, 2004). The major feature associated with apoptosis is the loss of the 

phospholipid asymmetry and the subsequent exposure of negatively charged 

phosphatidylserine (PS) from the inner to the outer surface of the cell membrane. This 

charge is necessary for recognition and engulfment of the apoptotic cell by macrophages 

(Fadok et al., 2001). Furthermore, Fadok et al., (2001), reported that the plasma membrane 

asymmetry in viable cells is maintained by the activity of an aminophospholipid 

translocase, which is believed to be a 120-kDa Mg2+-dependent adenosine triphosphatase 

(ATPase) This adenosine triphosphatase (ATPase) transfers any phosphatidylserine (and, to 

some extent, phosphatidylethanolamine) that may have reached the outer leaflet back to the 

inner leaflet of the plasma membrane (Wyllie et al., 1984). Fadok et al., (2001), 

demonstrated that the rapid appearance of phosphatidylserine (PS) on the cell surface 

during cellular activation and during apoptosis, is mainly due to the activation of a lipid-

nonspecific membrane phospholipid scrambling. This activity results in the movement of 

phospholipids bi-directionally across the plasma membrane, and in so doing increases the 

surface expression of phosphatidylserine. For this reason, (Barrett et al., 2001; Fadok et al., 

2001; Fadeel, 2004), reported that phosphatidylserine is commonly used as a marker for 

apoptosis since macrophages attach and engulf cells exposing phosphatidylserine on their 

surface.  
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1. 5.9.3 Pathways of Apoptosis 

1.5.9.3.1 The Intrinsic Pathway 

The intrinsic pathway of apoptosis is activated by mitochondrial disruption following 

cytochrome c release (Reed and Pellecchia; 2005). Cytochrome c is associated with 

permeabilisation of mitochondrial outer membrane and the subsequent formation of the 

apoptosome, which in turn activates executioner caspases such as caspase-3 (Regula, et 

al., 2003). There is evidence that the “apoptosome” oligomeric structure of approximately 

1 MDa is formed by the interaction of cytochrome c, Apaf-1, ATP and procaspase-9 (Zou, 

2003; Nagata, 2005). This pathway is reported to be initiated by growth factor 

withdrawal, UV irradiation, ischemia, oxidative stress and cytotoxic drugs (Ashe and 

Berry, 2003). Members of the Bcl-2 family are reported to control this pathway of 

apoptosis (Lawen, 2003).  

 

1.5.9.3.2 The Extrinsic Pathway 

This involves the binding of cell death signal to cell surface receptors that transduce 

extracellular signals across the plasma membrane and through the activation of 

intracellular signalling pathways, bring about the appropriate functional response (Farrow, 

2000). Some cell surface receptors are needed to transmit apoptotic signals initiated by 

ligands (e.g., specific antibodies) or by natural ligands called death receptors (DRs) to the 

inside of the cell and this plays a critical role in instructive apoptosis (Schlegel and 

Williamson, 2001; Ashkenazi, 2008b). Death receptors are part of the tumour necrosis 

factor (TNF) gene super-family and provide a rapid and also efficient route to apoptosis  
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(Kumar et al., 2005). These receptors can activate caspases within seconds of ligand 

binding, causing an apoptotic cell death within hours (Nagata, 1997, 2000). Both extrinsic 

and intrinsic pathways of apoptosis however, converge to induce effector caspases which 

are the final executioners of cell death (Lawen, 2003), although, other studies have 

reported caspase-independent forms of apoptosis (Richard et al., 2002; Ajiro et al., 2008; 

Liang et al., 2008).  

 
Figure 1.3. The two major apoptosis pathways. Unlike the intrinsic pathway, the extrinsic 
pathway operates independently of p53. Agents that target the extrinsic pathway therefore provide 
a novel approach to activating apoptosis in cancer cells regardless of p53 status (Adapted from 
Ashkenazi, 2008b). 
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Table 1.3: Some of the features measured in apoptosis cell research 

Feature Some Detection Techniques References 
Structural evaluation 
 

Light microscopy/TEM/Phase 
contrast microscopy Fluorescence 
microscopy 
 

Gorman et al., (1996). 
Otsuki et al., 2003). 
 

Exposure of 
Phosphatidylserine 

Annexin V/ APOPercentage™ 
Apoptosis assay 
 

Meyer et al., 2007 
Krysko et al., (2008 AB). 
Vermes et al., (1995) 

Caspase activation/ 
Cleavage 

Flow cytometry / colorimetry 
/Western blot 
 

Krysko et al., (2008). 
Sabraham and Shaham,  
(2004). 

DNA fragmentation 
 

Flow cytometry / Fluorescence 
microscopy/agarose gel 
 

Otsuki et al., (2003) 
Sgonc and Gruber (1998). 
Nagase et al., (2002) 

Mitochondrial 
depolarization 

Flow cytometry (TMRE/JC-
1/DiOC6

 /Mito Flow) 
 

Otsuki et al., 2003). 
Jayaraman, (2005). 

Bad/Bax/Bak/Bcl-2/BxL/-
p53/Cytochrome-
c/PARP-1 cleavage 
 

Flow cytometry / western blot 
 

Prasad et al., (2006) 
Rigobello, (2004) 

DNA perturbations 
 

Propidium Iodide/Acridine orange/ 
5-bromo-2t deoxyuridine (BrdU)  
(Cell cycle analysis) 
 

Darzynkiewicz Z et al., 
(2001); Ho et al., (2009) 
Bertino et al., (2003) 

Cellular viability assay 
 

Neutral Red/Annexin V /MTT assay Repetto et al.,(2008); 
Mosmann, (1983). Babich 
and Borenfreund, (1991). 
 

ROS production 
 

Dihydroethidine (DHE) and 2′,7′-
dichlorofluorescein diacetate 
(DCFH-DA) 
 

Prasad et al., (2006) 
Wei et al., (2000) 
Arrigo, (1999) 

Analysis of lactate 
dehydrogenase release 
(LDH) 
 

CytoTox 96 Assay 
 

Krysko et al., (2008). 
 

Analysis of cytokeratin 18 
release.  
 

ELISA 
 

Krysko et al., (2008). 
 

Cytokines ELISA 
 

Krysko et al., (2008). 
 Single cell layer Hematoxylin and Eosin staining Otsuki et al., (2003). 

MDA product. Lipid Peroxidation Catala, (2009) 
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1.5.9.4 Role of Caspases in Apoptosis    

Caspases are a group of cysteine proteases which are members of the interleukin-1beta-

converting enzyme family and are responsible for cleaving target proteins at specific 

aspartate residues and are essential for carrying out apoptosis in eukaryotic cells (Wang and 

Lenardo, 2000; Mita et al., 2006; Chowdhury et al., 2008). All caspases exist within the 

cell as pro-enzymes but become active upon activation resulting in a cascade of events that 

ultimately cause apoptosis (Wang and Lenardo, 2000). Earlier studies put the number of 

members of caspases in mammals to 14 (Wang and Lenardo, 2000), however, recent 

reports indicate that there are 15, although caspase-15 has not been identified in the human 

and mouse genomes (Eckhart, 2005; Chowdhury et al., 2008). The caspases have further 

been grouped into two major sub-families, namely inflammatory and apoptotic caspases 

(Logue and Martin, 2008). The apoptotic caspases have further been subdivided into two 

sub-groups, initiator caspases and executioner caspases (Chowdhury et al., 2008). The 

substrates of apoptotic caspases are responsible for cellular disassembling, while 

inflammatory caspases mediate the proteolytic activation of inflammatory cytokines. 

Thornberry and Lazebnik, (1998), reported that specificity of individual caspase is due to 

its ability to recognise three amino acid residues lying upstream of the aspartate residue in 

the substrate.  

 

The apoptotic caspases have been classified into two groups: the initiator (the upstream) 

and the effector/executioner (downstream) caspases (Sabraham and Shaham, 2004; 

Rupinder et al., 2007). The initiators are categorized by their long prodomains (i.e. having 
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>90 amino acids) and they contain either death effector domain (DED) (for instance 

caspase-2, -8, -9a -10 and-12) in mammals (Chowdhury et al., 2008), or Dronc and Dredd 

in fruit flies (Kilicc, 2002), while the executioner (downstream) caspases contain short 

prodomains (20-30 amino acids), (such as caspase-3, caspase-6 and caspase-7) in mammals 

(Ashkenazi, 2002; Chowdhury et al., 2008) and Drice, Decoy, Damm, Dcp1 and Strica in 

fruit flies (Kilicc, 2002). The only apoptotic caspase found in the nematode worm 

Ceanorhabditis elegans is the cell-death abnormality-3 (CED-3) which works as both 

initiator as well as effector caspase (Kilicc, 2002). The other caspases such as -1, -4, and -5 

are reported to be mainly involved in cytokine maturation but have not been reported to be 

involved in apoptosis (Stennicke and Salvesen, 1998).  Following activation, caspases 

prodomains cleave into large and small subunits (Lawen, 2003), with eventual formation of 

active caspases  as illustrated in figure 1.5. Once the initiator caspases are formed, they 

cleave further to trigger effector caspases (Sabraham and Shaham, 2004).  It is the effector 

caspases that cleave cellular substrates with eventual cell death.  Effector caspase -3, is 

reported to cleave a lot of critical cellular substrates, for instance inhibitor of caspase-

activated DNase (ICAD), Rho-associated coiled-coil forming kinase (ROCKI), poly (ADP-

ribose) polymerase (PARP) a DNA repair enzyme, actin (Lawen, 2003; Sabraham and 

Shaham, 2004). 
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Figure 1.4. Caspase structure. (A) The caspase family. Three major groups of caspases are 
presented. Group I: inflammatory caspases; group II: apoptosis initiator caspases; group III: 
apoptosis effector caspases. The CARD, the DED, and the large (p20) and small (p10) catalytic 
subunits are indicated. (B) Scheme of procaspase activation. Cleavage of the procaspase at the 
specific Asp-X bonds leads to the formation of the mature caspase, which comprises the 
heterotetramer p202–p102, and the release of the prodomain. The residues involved in the 
formation of the active centre are shown (Adapted from Rupinder, 2007). 
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Figure 1.5: A schematic representation of structural features of mammalian caspases. C, H and R 
represent the active site residues. (adapted from Chowdhury et al., 2008). 
 

1.5.9.5 The role of Bcl-2 family members in apoptosis 

The Bcl-2 family, which consist of 25 anti-apoptotic and pro-apoptotic members in 

mammals, control the mitochondrial pathway of apoptosis (Tsujimoto, 1998; Gross et al., 

1999). The Bcl-2 family members interact to maintain a balance between proliferating and 

dying cells (Hu and Kavanagh, 2003). Anti-apoptotic members hinder the release of 

mitochondrial apoptogenic factors such as cytochrome c and AIF (apoptosis-inducing 

factor) into the cytoplasm (Tsujimoto, 1998), while the pro-apoptotic members induce the 
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release of caspases from death antagonists via heterodimerization and also by inducing the 

release of mitochondrial apoptogenic factors into the cytoplasm to activate a cascade of 

caspase activation (Galteland et al., 2005). In this case, the Bcl-2 family members are like 

critical life-death decision makers within the common pathway of apoptosis (Tsujimoto, 

1998). Over expression of anti-apoptotic Bcl-2 family members disturb the ratio of the pro- 

and anti-apoptotic Bcl-2 proteins and hence prevent cell death (Kang and Reynolds, 2009). 

However, when pro-apoptotic Bcl-2 family members are over expressed, apoptosis 

proceeds (Hu and Kavanagh 2003). Changes in the mitochondrial function determines 

whether apoptosis will take place or not (Friend et al., 1986).  The release of cytochrome c 

from the mitochondria has been implicated as a switch to turn apoptosis on or off and this is 

regulated by the pro-apoptotic and anti-apoptotic proteins of the Bcl-2 family (Hu 

and Kavanagh, 2003). The pro-apoptotic proteins are found in the cytosol under normal 

circumstances where they act as scavengers of cellular damage or stress (Er et al., 2006). 

Following cellular stress or damage however, these proteins relocate to the mitochondria 

surface where the anti-apoptotic proteins are normally located (Hu and Kavanagh, 2003). 

This results in the interaction between pro- and anti-apoptotic proteins and causes 

disruption of the normal function of the anti-apoptotic proteins leading to the formation of 

pores in the mitochondria and hence the release of cytochrome c and other pro-apoptotic 

molecules from the intermembrane space (Gross et al., 1999). The release of cytochrome c 

aids in the formation of the apoptosome, which activates the caspase cascade (Gross et al., 

1999). One other important molecule which is activated upon DNA damage is the p53 

tumour suppressor gene (Mak and Yeh, 2002; Ashkenanzi, 2008), which when over 
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expressed has been implicated to arrest cells in the G1 and G2/M phases of the cell cycle 

(Ashe and Berry, 2003), and in the case of severe DNA damage and depending on cell type 

as well as oncogene composition of the cell, p53 is reported to initiate apoptosis by 

inducing the transcription of the pro-apoptotic proteins such as Bad or genes that generate 

induction of ROS (Ashe and Berry, 2003; Paradies et al., 2010). Most cancers are reported 

to have loss of  p53 function which if properly functioning prevents the development of 

cancer (Maximov and Maximov, 2008).  

 

The BCL-2 family of proteins are known to posses up to four conserved BCL-2 homology 

(BH) domains termed BH1, BH2, BH3, and BH4, in correspondence to α-helical 

segments (Gross et al., 1999), (figure 1.6) and these have been subdivided into three 

classes namely, anti-apoptotic, pro-apoptotic, and the ‘BH3-only’ pro-apoptotic members 

(Breckenridge and Xue, 2004). The first subdivision of anti-apoptotic Bcl-2 members, 

comprise of Bcl-XL, Bcl-2, Bcl-w, A1/Bfl-1, Mcl-1 and Boo/Diva/Bcl-B (figure 1.7) and 

these have been implicated in the inhibition of cytochrome c release by blocking the 

activation of the multi-domain pro-apoptotic proteins Bax and Bak (Breckenridge and 

Xue, 2004; Tahir et al., 2007). Most of anti-apoptotic members are reported to show 

sequence conservation in all four domains (Cory and Adams 2002). The second 

subdivision includes the multi-domain pro-apoptotic protein members Bax and Bak (Cory 

and Adams 2002). The third group comprises pro-apoptotic members, such as Bad, Bik, 

Bid, Bim, Hrk, Bmf, Noxa, and Puma, which act as molecular sensors of cellular stress or 

damage (Regula et al., 2003; Paradies, 2010). They are discriminated from Bax and Bak 
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in that they have only the BH3 domain and they are mobilized and activated to induce 

apoptosis by modulating the activity of the other Bcl-2 family members (Tahir et al., 

2007). It has been shown that most pro-apoptotic members show less sequence 

conservation of the first α-helical segment, BH4 (Gross et al., 1999) (figure 1.7). All the 

proteins in these three classes are able to form either homo-oligomer or hetero-dimers 

with one another and seem to have well-defined functions in the regulation of 

mitochondrial membrane permeabilization (MMP) (Gross et al., 1999; Kirkin and Zörnig, 

2004). 

 

 

Figure 1.6: Bcl-2 protein domain organisation. Abbreviations: BH1-4, Bcl-2 homology domains; 
TM, transmembrane domain; α1–7, known alpha-helical regions (adapted from Cory and Adams, 
2002). 
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Figure 1.7. Summary of anti-apoptotic and pro-apoptotic BCL-2 members (Adapted from Gross 
et al., 1999). 
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1.5.10 The cell cycle and cancer  

1.5.10.1 Defining the cell cycle 

The cell cycle is defined by DeWolf and Gaston, (2005), as the manner by which cells 

grow, replicate their genome, then separate the 2 copies of the genome into two 

genetically identical daughter cells (Bertino et al., 2003). In simple term it is a process of 

cell division. The process however, is regulated by multifaceted molecular connections.  

The process mimics a clock with orderly movement as the cell moves through the phases 

of the cycle with each phase executed with a precise predetermined timetable. The phases 

of the cycle are divided into 4 phases, which are G1—a phase whereby the cell prepares to 

synthesize DNA, S-phase is a period of DNA synthesis, G2-phase is the period whereby 

the cell prepares itself for cell division and M-phase is the phase of cell division (mitosis) 

(Weinberg and Lundberg, 1999). 

 

1.5.10.2 Cell cycle, Insensitivity to anti-growth signals and Disease  

Deregulation of the cell cycle has a consequence on disease development. The cell cycle is 

involved in the control of cellular proliferation, growth, and sensitizing cells to apoptosis so 

as to keep a balance between proliferating cells and dying cells (Shah and Schwartz, 2001). 

As previously reported in section 1.5.10, increased cell proliferation can lead to diseases 

such as cancer while decreased cell proliferation can lead to diseases such as 

neurodegenerative disorders, autoimmune diseases, viral infections, stroke, anaemia and 

AIDS (Pucci et al 2000). In the case of cancer, there are basically three major factors that 

have been implicated in cancer development. Since apoptosis and cell proliferation are 
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interlinked, the events that are implicated in the evasion of apoptosis section 1.5.10 are the 

same that are implicated in cells to have insensitivity to antigrowth signals.  One of the 

factors is that cells avoid the apoptotic program by down-regulating the apoptotic inducers 

such as p53 (Bennett, 1999). The second factor is that survival signals such as 

phosphatidylinostol-3-Kinase (P13K) are inappropriately or excessively induced (Dong et 

al., 1999). The third factor involves mutations in proto-oncogenes or tumour suppressor 

genes. Mutations in proto-oncogenes or tumour suppressor genes may allow cancerous cells 

to grow and divide thereby passing on mutations to daughter cells that can resist apoptosis 

(Dong et al., 1999). According to Pucci et al., (2000); Bertino et al., (2003), understanding 

the basic knowledge of the stages of the cell cycle is of ultimate importance because novel 

therapies that can target genes which are involved in circumventing apoptosis or inhibiting 

the proper functioning of the cell cycle at each phase of the cell cycle for instance the 

cyclin dependent kinase inhibitors (CDKIs) can be developed.  

 

1.5.10.3 Stages of the cell cycle 

There are four stages of the cell cycle however, the process has been divided into two main 

events: the S-phase  (DNA doubling phase) during which chromosomes replicate and the 

M-phase (halving of DNA phase) during which the replicated chromosomes segregate into 

two daughter nuclei (Arellano and Moreno, 1997). In between S and M phases there are 

two gaps: Gap-1 (G-1) is the phase also known as growth phase. It is a phase in which 

various enzymes that are required in S phase for DNA replication are synthesized at an 

increased rate and the cell also prepares itself for replication of the chromosomes  (Resende 
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et al., 2010). The duration of time in which cells spend in G-1 is reported to be extremely 

variable, even among different cells of the same species (Shackelford et al., 2000). 

Following the G-1 is the S phase in which DNA is now starting to be synthesized (doubling 

phase of DNA) and at the end of DNA synthesis duplication of the centrosome takes place 

(Singh et al., 2009). The G-2 phase is the phase prior to M phase. In G-2 phase microtubules 

that are necessary during the mitosis stage are produced  (Dekoj et al., 2007). M phase is 

the mitosis phase in which the cell eventually divides into two and it does not begin until 

the previous S phase has completed (Lewis, 1990). The G0 phase also known as the “post-

mitotic” is the phase in which the cells go into quiescent (Ishidate et al., 2000). Non-

proliferating cells of multi-cellular organisms are usually found in G0 stage (Yoshikawa, 

2000), and these are mostly adult cells that usually enter the G0 from G-1 and neurons may 

remain quiescent for long periods of time, possibly indefinitely (Yoshikawa, 2000; Wang et 

al., 2010).  Most cells however, remain in interphase, i.e. the period between cell divisions 

(comprising G-1, S and G-2 phases), for at least ninety percent of the cell cycle. DNA repair 

genes are said to be active throughout the cell cycle, mostly during G-2 after DNA 

replication and before the chromosomes prepare for mitosis (Pucci et al., 2000).  

 

1.5.10.4 Cell cycle and check control points 

In general there are two ways by which genes control the cell cycle (Bertino et al., 2003).  

Some genes control and promote the production of proteins that are required for the cell 

cycle to take place as well as control the initiation of each phase of the cell cycle. On the 

other hand, there are genes that negatively regulate the cell cycle by inhibiting the cell from 
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moving from one phase of the cell cycle to the next step/phase. As cell proliferation 

proceeds however, there are check points that guarantee that all the genetic material are 

kept integral, not damaged, not incomplete or miscopied.  Should there be any problem(s) 

to the genetic material, the checkpoints halt the cell from proceeding to the next phase of 

the cell cycle until the problem has been rectified. In the case that the damage cannot be 

rectified, the cell is removed by apoptosis (Pucci et al., 2000). The stages of the cell cycle 

have three classified DNA damage checkpoints. These check points are G1/S (G1) 

checkpoint, intra-S phase checkpoint, and G2/M checkpoint. Within these check points 

there are many more checkpoints such as spindle checkpoint and morphogenesis 

checkpoint (Hartwell and Weinert, 1989). The spindle checkpoint arrests cell cycle at M 

phase until all chromosomes are aligned on spindle. This checkpoint is very important for 

equal distribution of chromosomes (Hartwell and Weinert, 1989). Morphogenesis 

checkpoint detects abnormalities in cytoskeleton and arrests cell cycle at G2/M transition 

(McMillan et al., 1999). Schwartz and Rotter (1998), reported four key check points in the 

cell cycle. At the end of the G1 phase, G2 phase and after DNA has been replicated in the S 

phase to check for damages. Again at the end of the M phase a checkpoint is available to 

stop cytokinesis in case the chromosomes are not properly aligned on the mitotic spindle. 

Checkpoint failure often causes mutations and genomic arrangements resulting in genetic 

instability (Bertino et al., 2000). Genetic instability is a major factor of birth defects and in 

the development of many diseases, most notably cancer. Therefore, checkpoint studies are 

very important for understanding mechanisms of genome maintenance as they have direct 
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impact on the ontogeny of birth defects and the cancer biology (Schwartz and Rotter, 

1998). 

 

 1.5.10.5 Cell cycle checkpoints and anticancer drugs 

Most anticancer drugs are designed to target different stages of the cell cycle so that the 

cell should not proceed through to the next stage (Taylor, 2009). Damage to DNA or the 

spindle apparatus normally triggers cell cycle arrest or apoptosis, depending on the degree 

of damage and the cellular context. Cell cycle arrest most frequently occurs at the G1/S or 

G2/M boundaries (Shapiro and Harper, 1999). Some anticancer agents for instance 

alkylating, anti-tumour antibiotics, platinum compounds and other miscellaneous agents, 

work in such away that they bind to DNA in the S phase of the cell cycle in order to stop 

DNA synthesis (Gonzalez et al., 2001; Pasettoa et al., 2006). Some plant-derived 

anticancer agents such as vinca alkaloids (vinblastine, vincristine, vinorelbine), docetaxol 

and paclitaxel target the microtubules to stop the cells from synthesizing components 

required for mitosis or hinder chromosome separation (Das et al., 2001; Jordan and 

Wilson, 2004; Shah and Schwartz, 2006). Taxanes are known to stabilize the microtubules 

causing a G2/M arrest, followed by apoptosis  (Darwiche et al., 2007). Anti-metabolites 

stop production of nucleotides, which are used for DNA synthesis, and some anticancer 

drugs target cells in G1 to inhibit nucleotides production for DNA synthesis. Some of such 

drugs include 6- mercaptopurine (6-MP), 6-thioguanine (6-TG), azathioprine, 5-

fluorouracil (5-FU) and methotrexate (Bertino et al., 2003). Some anticancer drugs 

destruct the metabolic processes of the cell to stop the cell from its metabolic processes 
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(antimetabolites) (Fuksa et al., 2010). One such drug is methotrexate (MTX) which when 

used in combination with other drugs such as 5-fluorouracil and cyclophosphamide can be 

used in the adjuvant treatment of cancer of the breast and it targets the enzyme 

dihydrofolate reductase (DHFR) of rapidly growing and reproducing cells by binding and 

deactivating the enzyme which is key for DNA synthesis  (Bast et al., 2000; Su and Ciftci, 

2002). 

 

1.5.10.6  Role of cyclins and cyclin-dependent kinases (Cdks) in cell cycle regulation. 

Cyclins are activating partners of the conserved family of protein kinases that regulate the 

passage of cells through the cell cycle by forming complexes with other protein kinases 

known as cyclin dependent kinases (Pines, 1995).  Cyclin-dependent kinase (Cdks), are 

proteins, which belong to a well-conserved family of serine/threonine protein kinases and 

act as control switches in the regulation of the cell when activated as the cell goes through 

several stages of the cell cycle  (Pucci et al., 2000; Sledge et al., 2003). While Cdks are 

positively regulated by cyclins to move the cell from one phase to the other, cyclin 

dependent kinase inhibitors (Cdks) negatively regulate movement of the cell from one 

phase to the other (Golsteyn, 2005; Shah and Schwartz, 2006; Laine et al., 2010). To date 

according to (Yata and Esashi, 2009), there are eleven human CDKs identified however,  

CDKs 1, 2, 4 and 6 have well characterized roles in cell cycle regulation, while the role of 

the others is not clear (Makin and Dive, 2001). On the other hand, a considerable number of 

cyclins has also been identified to date viz: cyclins A-T (Golsteyn, 2005). The most notable 

cyclins however, are cyclins D, A, E, and B1 since they have shown to subdivide the cell 
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cycle into different clear stages (Golsteyn, 2005; Laine et al., , 2010). These cyclins have 

been found in abundance during specific phase of the cell cycle in which they are required 

and subsequently decrease during phases in which they are not required (Shah and 

Schwartz, 2001). It was shown by Weigel and Moore, (2007); Laine et al.,  (2010);  that 

cyclin D1 is expressed and can be detected in early G1 of the cell cycle while cyclin E is 

expressed and can be detected in late G1 specifically G1/S peak (Lee et al., 2010; Song et 

al., 2010). Expressions of cyclin A can be detected in early G2/M phase while B1 can be 

detected in late G2/M phase (Golsteyn, 2005; Nakayama and Nakayama, 2005; 

Visudtiphole et al., 2009). Cyclin H has been shown to be expressed in all phases of the cell 

cycle (Vermeulen et al., 2003 a, b). 

                 

              

Figure 1.8: The eukaryotic cell cycle and its control mechanisms. The cell cycle consists of four 
phases: G-1, S, G-2 and M. Regulation of the cell cycle is done by the Cyclin-dependent kinases.  
 

 

 

 

 

 

 



 47 

1.5.10.7  Role of p53 in cell cycle regulation 

The p53 protein is a transcription factor that has been mapped to human chromosome 

17p13 and consists of 393 amino acids that bind to DNA (Atalay and Ozturk, 2000; 

Buganim and Rotter, 2009). Under normal conditions the p53 protein is present at low basal 

levels in the cells and is very unstable (el-Deiry et al., 1992). However, following nutrient 

starvation, DNA damage (by chemotherapeutic drugs, UV light and protein kinase 

inhibitors that involve kinases called ataxia telangiectasia related (ATR) and casein kinase 

ΙΙ),  (Lowe and Lin, 2000), hypoxia and activation by oncogenes, the p53 protein is induced 

to greater levels (Moll and Petrenko, 2003). Its activation may involve different post-

translational modifications including phosphorylation methylation and acetylation 

(Selivanova, 2010). Phosphorylation is the key event of its activation and may involve 

some 15 different kinases (Moll and Petrenko 2003; Najjar  and Fagard,  2010), and  its 

ubiquitination by the ubiquitin-ligase mouse double minute (Mdm2), negatively regulates 

p53 activity (Najjar  and Fagard,  2010).   

 

The p53 protein has several functions, however, the major function is to sense damage to 

the DNA and halt the progression of the cell through the cycle in G1 (Agarwal, 1995), by 

activating the transcription of another protein called p21 Waf1/Cip1 which blocks the activity 

of Cdk2 which is required for the progression of the cell through G1 (Minnella et al., 2002; 

Lozano and Zambetti, 2005). In case of DNA damage, cell cycle blocking enables the cell 

to repair the DNA damage before it is replicated. In the event that the DNA damage is so 

severe that repair is not possible, p53 induces the cell to undergo apoptosis (Lozano and 
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Zambetti, 2005). The p53 protein has been coined the “guardian of the genome” and also 

known as “a tumour suppressor gene” because it allows only good cells to progress through 

the cell cycle while "bad" cells are forced to commit suicide (el-Deiry et al., 1992). If the 

p53 protein is mutated, cells with damaged DNA can progress through the cell cycle and 

might most likely result into the development of tumours/cancers (Vousden, 2000). In the 

case that a person inherits only one functional copy of the p53 gene from his/her parents, 

the person is predisposed to cancer and usually develops numerous independent tumours in 

different tissues of the body during early adulthood, a condition known as Li-Fraumeni 

syndrome although this condition is rare (Senzer et al., 2007).   Mutations in both copies of 

the p53 gene and non-functioning of p53 protein has however been implicated in more than 

half of all human cancers (Bennett, 1999). Apart from activating the transcription factor 

p21, the p53 protein is also known to induce the 14-3-3σ (sigma) protein a unique member 

of 14-3-3 family of proteins, which negatively regulates the cell cycle but has a positive 

feedback effect on p53 activity in response to DNA damage to initiate cell cycle checkpoint 

control (Lee and Lozano, 2006).  

 

Yet other studies have reported of another tumour suppressor protein known as STAT-1, a 

transcription factor, which has been implicated, to inhibit cell growth and promote 

apoptosis (Townsend et al., 2004). Following DNA damage, STAT-1 has been shown to 

interact directly with p53 to initiate cell cycle block and induce apoptosis if necessary 

(Townsend et al., 2004). Hence, although STAT-1 negatively regulates Mdm2, it also acts 

as a co-activator for p53 (Vermeulen et al., 2003b). Therefore STAT-1 is another member 
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of a growing family of proteins implicated as a partner in the modulation of the p53 

activated apoptosis pathway (Najjar and Fagard, 2010).  The p53 protein is also known for 

its ability to relocalise death receptors like for instance Fas from the Golgi to the cell 

surface (el-Deiry et al., 1992; Bennett, 1999; Vousden, 2000), and also for its direct 

involvement in the intrinsic pathway of apoptosis (Marchenko et al., 2000).  

 

1.5.10.8 The Retinoblastoma (Rb) gene and its role in cell cycle control 

The Rb gene was the first tumour suppressor to be identified through human genetic studies 

in 1986 and it encodes a nuclear protein of 928 amino acids (Wiman, 1993; Feakins et al., 

2003).   Further studies on Rb gene led to the identification of p107 and p130, two related 

Rb proteins which are more closely related to each other than either one is to Rb (Wiman, 

1993; Yoshikawa, 2000; Zhu, 2005). These three proteins (Rb, p107 and p130) are 

commonly known as “pocket proteins” because they share onco-protein binding sequences 

(Cobrinik, 2005). While Rb has several functions such as maintenance of chromosome 

stability (Zheng and Lee, 2002), regulation of replication machinery (Zheng and Lee, 

2002), regulation of differentiation (male/female) (Berckmans and De Veylder, 2009), the 

major role of Rb however, is to regulate the cell cycle machinery specifically at the G1 

phase of the cell cycle (Seeley, 2007), in accordance with promoter-specific transcription 

factors (Zieske et al., 2004). The transcription factors associated with Rb are the E2Fs and 

DPs (Zheng et al., 1999). Currently there are eight known E2Fs and two known DPs 

(Wiman, 1993). E2F1, 2, and 3a are commonly believed to be “activator E2Fs” regulated 

by Rb while E2F3b, E2F4, E2F5, E2F6 and E2F7 are “repressor E2Fs,” (Figure 1.9).  E2F4 
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and E2F5 are regulated by p107/p130, although this is not conclusive (Wiman, 1993; 

Cobrinik, 2005). However, Rb is best known as a repressor of the E2F/DP family of 

transcription factors, which control expression of genes involved in cell proliferation and 

survival (Zheng et al., 1999; Zhu, 2005). The Rb protein is mostly present in a 

hypophosphorylated form in quiescent cells (Zieske, 2004). Following appropriate 

stimulation however, Rb protein is phosphorylated by activated cyclin-dependent kinases 

(Cobrinik, 2005). This phosphorylation dislocates the interaction of Rb protein with the 

transcription factor E2F. Once free, E2F activates the transcription of genes necessary for 

DNA synthesis (Zheng et al.,1999). The active hypophosphorylated form of the 

retinoblastoma protein (pRb) binds and blocks the action of the transcription factor E2F, 

inhibiting transition from the G1 phase to the S phase of the cell cycle (Boer and Murray, 

2000; Hanahan and Weinberg, 2000; Harashima and Schnittger, 2010). The increased 

concentration of Rb protein at promoter site coupled with E2F, binds adjacent transcription 

factors, preventing their contact with the basal transcription complex, in so doing blocking 

transcription (Day et al., 1997).  It has also been reported  by Vidal and Koff, (2000); 

Bertino et al., (2003); Feakins et al., (2003) that cyclin D1 stimulates phosphorylation of 

Rb by associating with cyclin-dependent kinases (CDKs) and p16 binds to CDKs 4 and 6, 

blocking their association with D-type cyclins and in so doing preventing the 

phosphorylation of Rb and blocking the activity of E2F. Hanahan and Weinberg, (2000); 

Zhu, (2005), noted that the repression of E2F is crucial to Rb tumour suppression activity 

therefore mutations to the Rb gene have profound consequences since there is a disturbance 

in the ability of Rb to interact and repress E2F.  Wiman, (1993); Mittnacht, (2005); 
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Mastrangelo et al  (2007), reported that the deletion of both Rb alleles have shown to play a 

rate-limiting role in retinoblastoma and also in the sarcomas that mainly arise in families 

that carry the mutated Rb gene as well as non-retinal, sporadic cancers; for instance small 

cell carcinoma of the lung, breast, bladder, prostate and glioblastomas. Maximum 

phosphorylation of Rb proteins is related with S phase of the cell cycle (Mancini 1994; Zhu 

2005).  Some studies have focused on the restoration of Rb gene functionality using novel 

small-molecule inhibitors of CDKs and to some extent this has clinically been successful  

(Sridhar et al., 2006). 

 

 

 

Figure 1.9: Interactions among pocket proteins and E2F transcription factors. Pocket proteins 
can be subdivided into the pRB and p107/p130 groups. pRB prefers to bind to the activator E2Fs, E2F1, 
E2F2, and E2F3a; as well as to E2F3b, which function mainly as a repressor. p107 and p130 prefers to bind 
the repressor E2Fs, E2F4 and E2F5. E2F6 and E2F7 forming transcriptional repressor complexes but do not 
bind pocket proteins. The DP1 and DP2 proteins form heterodimers with E2F1−6 to allow binding to DNA 
(not shown), whereas E2F7 binds as a homodimer (Adapted from Cobrinik, 2005). 
 

 

1.5.11  Role of PARP-1 in DNA repair 

Poly(ADP-ribose) polymerase (PARP-1) is a 113-kDa protein composed of 1014 amino 

acids and the gene coding for this protein has been mapped at the q41–q42 position of 
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chromosome 1 (Bouchard et al., 2003). PARP-1 has been reported to be involved in several 

functions such as DNA replication, transcription, DNA repair, apoptosis, chromatin 

structure, cell cycle arrest, initiation of cell death induced by different stimuli following 

DNA damage and stabilization of the genome (Carrozza et al., 2009; Sabisz et al., 2010). 

Although PARP-1 has several functions, the major function of this enzyme however, is to 

help in base excision repair (BER) and recombination of single-stranded DNA strand 

breaks through the activation of DNA repair and check point control enzymes (Bouchard et 

al., 2003; Süsse et al., 2004). Following DNA damage, (Caldecott et al., 1996; Malanga et 

al 1998), reported that the enzyme binds to only one strand of a broken DNA and then 

recruits XRCC1, DNA ligase IIIα, DNA polymerase β and polynucleotide kinase to the 

broken end. Additionally, Bouchard et al., (2003), reported that PARP-1 binds to DNA 

strand breaks with high affinity and subsequently poly(ADP-ribosyl)ates itself and other 

nuclear proteins involved in chromatin structure, DNA base excision repair and 

recombination and this complex then repairs the broken part. Wesierska-Gadek et al., 

(2003), suggested that the amino-terminal and central fragments of PARP-1 were required 

for complexion of PARP-1 with p53 protein subsequent modification for poly(ADP-

ribosyl)ation. According to Bouchard et al., (2003), Poly(ADP-ribosyl)ation occurs in all 

cells with nucleus but not in yeast.  
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1. 6 Metallo-organic compounds 

Metal compounds are synthesized drugs whose centre contains a metal with other 

substances known as ligands bound to it (Huang et al., 2005). The metal and the ligand 

together form a complex known as organo-metallic complex (Huang et al., 2005). When 

metals bind to elements N, O or S they form a chelate ring that binds to metals more 

tightly as compared to non-chelate form (Huang et al., 2005). Biologically, the ligand is 

responsible to change the biological activity of the metal in which case the ligand is used 

as a carrier of the metal to its active site (Shaw, 1999). According to Berners-Price and 

Sadler, 1996; Shaw, 1999, in some cases, an inactive metal drug might be administered 

but in the processes becomes active after undergoing ligand exchange or other reactions 

and become what is termed as a pro-drug. These reactions may be involved in metal 

substitutions or redox reactions (Berners-Price and Sadler, 1996). 

 

1.6.1 Metal compounds as medicinal agents 

Historically the use of metal compounds as medicinal agents dates back to as early as the 

16th century with reports documenting the therapeutic use of metals or metal containing 

compounds as anticancer treating agents (Huang et al., 2005). The earliest metal 

containing compounds to be studied in medicinal chemistry are the iron complexes as 

they were and are still being used for the treatment of hypochromic anaemia caused by 

iron deficiency (Schwietert and McCue, 1999). To date several metal containing 

compounds have been synthesized and used as medicinal agents in the treatment of 

various ailments for instance antimony (antiprotozoal) (Maltezou, 2009), platinum 
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(anticancer) (Timerbaev et al., 2006; Michalke, 2010), silver (antimicrobial) (Ahmad, 

2006), gold (antiarthritic) (Alama et al., 2009), iron (antimalarial) (Alama et al., 2009), 

vanadium (antidiabetic) (Rehder et al., 2003; Ahmad, 2006) and bismuth (antiulcer) 

(Ahmad, 2006) among others. Metals can be used in medicine because they have the 

ability to bind and interact with important biological molecules such as proteins and DNA 

(Gras, 2010). This comes about because these biological molecules are sufficient in 

electrons while metal ions are deficient in electrons as a result, the metal ions tend to bind 

to the biological molecules (Huang et al., 2005). In addition, metal ions also tend to bind 

to small molecules that are crucial to life such as O2 (Schindler et al., 1998). More also in 

some cases the presence of metals results in the generation of reactive oxygen species 

(ROS), whose presence is believed to play crucial though poorly understood roles that can 

alter drug-induced cytotoxic responses and affect cancer pathogenesis (Sasabe et al., 

2010). Scientists take advantage of the benefits which metals offer and use them to 

modulate biological systems (Sanchez-Ruiz, 2010). For instance, metals can bridge 

substrate to enzymes or metals can participate in the correct tertiary folding of proteins 

(Lange SJ and Que Jr, 1998). While metals can be used in biological systems however, 

care should be noted that transition metals can generate potentially harmful effects, hence 

their levels in normal homeostasis or therapeutic intervention should be strictly controlled 

because most are toxic especially when used in excess (Fairbrother et al., 2007). All other 

drugs require the understanding of their mechanism of action. Similarly, the use of metals 

in drug development also depends mainly on the understanding of their mechanism of 

action (MOA) upon which their selective toxicities can be controlled (Reedijk, 2008). 
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1.6.2 Challenges in metal drug discovery  

The biggest challenge faced with metal drug discovery is that most metal compounds 

have poor physico-chemical properties such as inadequate solubility, hydrolytic instability 

and that most of the compounds tend to readily decompose when exposed to solvents, 

humidity, light or air (Schwietert and McCue, 1999). Additionally, most metal drugs are 

cytotoxic and also lack selectivity to act only on the affected cells but rather they act on 

both affected as well as non-affected cells. As if this is not adequate, there has been 

limited knowledge about the mode of action (MOA) by which metal drugs brings about 

their biological activities, how much of the drug has been assimilated and how much has 

been inactivated (Timerbaev et al., 2006). Because of these problems there has been a 

general reluctance in the development of metal-based drugs  (Timerbaev et al., 2006; 

Hindo et al., 2009).  

 

1.6.3 Cisplatin as an anticancer agent 

Cisplatin is a metallo-compound and has been used as an anticancer agent for over 25 

years (Gonzalez et al., 2001; Alderdena, 2006) in the treatment of solid tumours such as 

testicular, ovarian, head and neck, and bladder cancers (Lebwohl and Canetta, 1998; 

Timerbaev et al., 2006), with a cure rate of as high as 90% (Reedijk, 2003). It is of 

particular importance to note that cisplatin exhibits anti-tumour activity while its trans 

isomer does not show any activity (Reedijk and Lohman, 1985). This shows that minor 

variations in the structure of a metal can bring about powerful effects on its biological 
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toxicities (Ciccarrelli et al., 1985; Brabec and Marc, 1993; Brabec and Kaspaarkova, 

2005). Although cisplatin has been widely used successfully as an anti-cancer agent for 

several years, however, its use has had several problems. Some of such problems include 

lack of selectivity in killing of tumour tissue, toxicity and acquired drug resistance (Hindo 

et al., 2009). For these reasons over the years, several thousands of platinum analogues 

have been synthesized and tested with the major urge of developing novel anticancer 

drugs that have modes of action (MOA) distinct from those of the parent cisplatin (Pasetto 

et al., 2006; Hindo et al., 2009). Only a small number of compounds (between 28 and 40) 

were taken into clinical trials because they showed to have enhanced therapeutic index as 

compared to that of cisplatin (Lebwohl and Canetta, 1998; Michalke, 2010). Out of the 

compounds that went into clinical trials apart from cisplatin however, only three Pt drugs 

were approved as anti-cancer drugs (carboplatin, world wide; oxaliplatin in a few 

countries only; nedaplatin in Japan only) (Lebwohl and Canetta, 1998). Of these, 

carboplatin has shown to provide significant advantage over cisplatin in reducing some of 

cisplatin’s toxicities. Notwithstanding carboplatin receiving worldwide approval in 

reducing some of cisplatin’s toxicities, its use however, has not enlarged the spectrum of 

platinum-sensitive cancers, and neither has it proved active in cisplatin-resistant cancers 

(Weiss and Christian, 1993; Pasetto et al., 2006). Another obstacle faced with carboplatin 

is its myelosuppression (Dygai et al., 2007).  
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1.6.4 Gold compounds  

Gold (Au) is a metallic element that has been used in a variety of forms for many 

centuries and it exists in many different oxidative states: –I, 0, II, III, IV, and V (Fricker, 

1996; Alama et al., 2009). According to Fricker, (1996), only AU(0), I and III, are stable 

in aqueous solutions however, AU(I) and AU(III) are unstable in respect to AU(0). 

Fricker, (1996), further reported that AU(I) is more stable than AU(III) but AU(III) 

complexes are strong oxidizing agents as they get reduced to AU(I) and are therefore 

more toxic than AU(I). Tiekink, (2002) and Rackham et al., (2007), reported that “Soft” 

gold(I), (meaning easily polarisable) (Tiekink, 2002), binds only weakly to “hard” oxygen 

and nitrogen ligands; however, it exhibits a very high affinity for “soft” donor atoms 

(sulphur and/or phosphorus) (Tiekink, 2002),  and thus forms numerous complexes with 

sulphur, selenium, and phosphorus containing ligands, while AU(III) complexes have 

preferences for hard atoms donors such as nitrogen, oxygen and carbon. Biologically, the 

range of sulphur-containing molecules with biological activity is diverse, as a result many 

investigations have been evaluated on the anti-tumour activity of phosphinegold(I) 

complexes directed at cysteine residues within critical in vivo putative targets (Huang  et 

al., 2005).  

 

1.6.4.1 Gold (Au) compounds for treatment of Rheumatoid arthritis 

Rheumatoid arthritis is a painful and disabling chronic autoimmune disease, which causes 

inflammation and progressive erosion of the joints (Gonzalez-Gay et al., 2005).  So far 

the cause of the disease is not known. Current treatment mainly focuses on alleviating the 
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symptoms and preventing the progressive destructive processes of the disease (Gandin et 

al., 2010). The treatment for this disease uses anti-inflammatory agents, analgetics and so-

called disease modifying antirheumatic drugs (DMARDs) which use methotrexate (MTX)  

or combined therapy of intermediate to high doses of glucocorticoids and combinations of 

MTX with TNF blockers (Smolen and Weinblatt, 2008) or  the disease can be treated with 

gold complexes such as aurothioglucose (solganol), aurothiomalate (myocrisin) 

aurothiosulfate (sanocrysin), aurothiopropanol sulfonate (allocrysin) and 

triethylphosphinegold(I)tetraacetylthioglucose (auranofin) to arrest or slow down the 

disease progression and lower bone and cartilage damage (Fricker, 1996; Kean 1997; 

Gandin et al., 2010). The use of DMARDs is critical since once damage to the joints is 

done, the damage is usually irreparable and anti-inflammatory agents and analgesics 

cannot help alleviate the problem. Of the above-mentioned gold salts auranofin 

triethylphosphine (2,3,4,6-tetra-O-acetyl-β-1-d-thiopyranosato-S) gold(I), is of particular 

interest because it can be administered orally as opposed to the other gold salts, which are 

normally given by injection and moreover, auranofin is the first metal phosphine complex 

which was introduced into clinical practice for cryotherapy, after successful studies 

conducted on gold(I) thiolate compounds (Gandin et al., 2010). Cryotherapy has been 

practiced for more than 60 years (Song et al., 1999; Tiekink, 2002; Ott, 2009).  Another 

important feature of auranofin is that it is labile and its liability has been linked to be due 

to the metal–thioglucose bond, which suggests that slight modification of this interaction 

could produce changes in its biological profile (Gandin et al., 2010).  
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1.6.4.2 Gold(I) complexes with multiple phosphine ligands 

Phosphine is a compound with a chemical formula PH3 (Bond et al., 1969). Phosphines 

are also said to be a group of organophoshorus compounds with the formula R3P (where 

R=organic derivative/condensed aromatic group)  (Tefteller et al., 1965).  In most cases 

phosphine ligands PR3 carry alkyl and aryl substituent at the phosphorus atom. In a more 

general sense however, R may also be a halogen atom (phosphorus halides, PX3) or, for 

example, an OR group (phosphites, P(OR)3) (Tefteller et al., 1965). Generally, organic 

phosphines (phosphanes) PR3 play an important role as ligands in coordination chemistry 

and also in organometallic chemistry (Vogler and Kunkely, 2002). Organophosphines are 

easy to synthesize, are excellent ligands for transition metals and are also important in 

catalysts where they complex to various metal ions/complexes derived from chiral 

phosphines that can catalyze reactions to give chiral products (Pascariu et al., 2009). As a 

result, the steric attributes of phosphine ligands are easily controlled and one can be able 

to fine-tune the reactivity of the metal complex (Pascariu et al., 2009). Additionally, 

phosphines are also known to stabilize transition metals in low oxidation states but their 

versatility as ligands is also documented by their ability to coordinate transition metals in 

higher oxidation states including metals with d0 electronic configuration owing to their 

electron donating and accepting abilities (Vogler and Kunkely, 2002). Phosphine is used 

extensively as a fumigant and it is highly toxic as it can easily kill in fairly low 

concentrations (Bond et al., 1969). Ott, (2009), reported that agents with multiple 

phosphine ligands attached to the gold(I) central atom are mostly active implicating 

[Au(dppe)2] as being the lead compound for their activities (Ott, 2009) (figure 1.10).  
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Figure 1.10: Examples of Gold(I) complexes with multiple phosphine ligands (Adapted from Ott, 
2009). 

 

1.6.4.3 Gold (Au) compounds for the treatment of cancer 

The use of gold in medicine dates back to antiquity when Arabic and Chinese physicians 

are reported to have used gold preparations for the treatment of various ailments (Tiekink, 

2002), and also gold alloys in restorative dentistry (Möller, 2002). Following the 

discovery of metal platinum complexes as anticancer agents, researchers have since 

resorted to investigating other novel inorganic anti-tumour agents that can specifically kill 

cancer cells, but have less toxic side effects than their platinum counterparts (Irena, 2006). 

One of such metal compound is gold. Gold complexes have been reported to have 
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anticancer properties and are currently attracting considerable attention due to their wide 

and diverse structural types and varied ligand binding modes which offers considerable 

potential in fine-tuning their biological properties (Tiekink 2002; Bradley et al., 2007). 

That is why apart from being used in cryotherapy, auranofin has also been studied for its 

antitumor activities and so far results have shown that auranofin possesses in vivo 

antitumor activity against P388 murine leukemia and also in vitro cytotoxic potency 

against both B16 melanoma and P388 leukemia cells (Simon et al., 1981; Mirabelli et al., 

1985). Of late in vitro studies on auranofin have shown that auranofin is effective against 

in cisplatin-resistant human ovarian cancer cells. Cells treated with auranofin have 

reportedly exhibited increased levels of TrxR activity indicating that cytotoxic activity 

that underlie phosphine Au(I) drugs exhibits a mechanism of action (MOA) different from 

that caused by cisplatin (Huang et al., 2005; Marzano, 2008; Ott, 2009). In particular, 

auranofin has been implicated as a potent inhibitor of thioredoxin reductase, whereby it 

alters the redox state of the cell leading to an increased production of hydrogen peroxide 

and oxidation of the components of the thioredoxin (Trx) system, with resultant creation 

of conditions that enhanced apoptosis (Marzano, 2008). Gold complexes have been 

reported to induce apoptosis in several cancer cells as well as cells that have acquired 

resistance to specific drugs. Their mode of action has been attributed to inhibition of 

mitochondrial and cytosolic proteins (figure1.11) mainly glutathione and thioredoxin 

systems (Arnér and Holmgren, 2006; Che and Siu, 2010). 
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Figure 1.11: Model depicting the mechanism of action of cell death induction by gold(I/III) 
compounds. The mitochondrial respiratory chain produces superoxide anion that dismutes to 
hydrogen peroxide and oxidizes thioredoxin in a reaction mediated by peroxiredoxin. Thioredoxin 
reductase, inhibited by gold(I/III) complexes, is unable to reduce back oxidized thioredoxin that 
accumulates together with hydrogen peroxide and both act on several different intramitochondrial 
targets leading to the opening of the mitochondrial permeability transition pore and/or to an 
increase of the permeability of the outer membrane. Hydrogen peroxide is then released to the 
cytosol where causes oxidation of Trx1, that, similarly, to mitochondrial thioredoxin (Trx2), 
cannot be reduced back by the gold(I/III)-inhibited thioredoxin reductase. Oxidized thioredoxin 
stimulates the MAP kinases pathways leading to cell death (Adapted from Bindoli   et al., 2009). 
 

Recent studies have shown that gold nanoparticles can be used to target drug delivery to 

particular cancers and in such way increase their efficiency such as has been used in 

pancreatic cancer treatment (Patra et al., 2010). Yet another study by Lum et al., (2010), 

showed that some gold compounds induced apoptosis as well as prolonged the survival of 

hepatocellular carcinoma (HCC)-bearing rats and also inhibited the tumour growth of 
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mice bearing nasopharyngeal carcinoma (NPC), neuroblastoma and colon carcinoma. 

Lum et al., (2010), showed that gold-1a prolonged the survival of NPC metastasis-bearing 

mice and also inhibited intra-hepatic and lung metastasis. Histological studies, showed 

that gold-1a markedly reduced tumour microvessel formation. Consistently, their in vitro 

studies, showed that gold-1a inhibited migration and invasion of C666-1 human NPC 

cells. Conclusively, data from Lum et al., (2010), strongly supported the use of gold(III) 

compounds for the treatment of cancer metastasis.  

 

1.7 Problem statement  

Despite cisplatin’s success story in combating most of the solid tumours (Zhang and 

Lippard, 2003; Elwell, 2006; Keter et al., 2008), most cancers however, frequently 

develop resistance to cisplatin, lack sensitivity, increased DNA repair capacity, poor 

pharmacokinetics profile, and failure to selectively kill cancer cells over normal cells 

(Alderdena et al. 2006). Cisplatin treatment also increases production of intracellular 

thiols (e.g. glutathione and metallothionein), which leads to harmful side effects such as: 

nausea, emetogenesis, hair loss, neurotoxicity, ototoxicity, nephrotoxicity and 

myelosuppression among others (Kumar and Clark, 1990; Brabec and Kasparkova, 2005; 

Wang and Lipard, 2005; Bravo et al., 2010). These limitations have prompted a search 

for more effective and less toxic metal-based anti-tumour agents (Brabec and 

Kasparkova, 2005; Elwell, 2006). 
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1.8 Hypothesis 

In this study novel water soluble classes of phosphine ligands which will have minor 

variations in their structure and their respective Au (1) complexes will be synthesized and 

assessed for possible anticancer activities. This is in respect to recent studies which have 

shown that different classes of gold-based compounds, in both Au(I) and Au(III) 

oxidation states, induce apoptosis in several cancer cells via mitochondrial cell death 

pathways (Barnard and Price, 2007; Rackham, 2007; Ott, 2009). Bis-chelated Au(I) 

phosphine complexes have to some extent demonstrated to selectively induce apoptosis in 

cancer cells over normal cells (Rackham, 2007) though with a narrow spectrum.  We 

hypothesize that the variations made to the newly synthesized structures of these 

compounds will bring the much-needed change in the biological activity of these 

compounds.  

 

1.9 The aims of the project  

The aims of this project are two fold: Firstly, to screen the compounds for pro-apoptotic 

activity and evaluate their potential anticancer agents. Secondly, to evaluate the 

mechanism of action of the promising compounds.  

 

1.10 The specific objectives 

1. To screen the fifteen synthesized bidentate amino-and iminophosphine ligands for 

pro-apoptotic activity on a panel of human cell lines and to determine their 

potential as anticancer agents. 
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2. To screen the fifteen synthesized bidentate mono and dinuclear Au(I) complexes 

for pro-apoptotic effects on a panel of human cell lines and to determine their 

potential as anticancer agents. 

 
3. To investigate the underlying mechanisms through which the bidentate amino-and 

iminophosphine ligands or their cognate mono and dinuclear Au(I) complexes 

induce biological activities. 
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CHAPTER TWO 

2.1 General Stocks 

 

2.1.1 Chemicals Supplier 

Acrylamide:bis-acrylamide 40% (37.5:1)……………………….... Promega 

Agarose……………………………………………………………. Promega 

Ammonium acetate……………………………………………….. Merck 

Ammonium persulphate (APS)…………………………………… Merck 

Ampicillin………………………………………………………….. Roche 

Ascobic acid………………………………………………………. Sigma 

Boric acid…………………………………………………………. Sigma 

Bovin Serum Albumin (BSA)……………………………………. Roche 

Bromophenol blue………………………………………………… Roche 

Cesium chloride (CsCl)…………………………………………… Roche 

Calcium chloride………………………………………………….. Sigma 

Catalase…………………………………………………………… Sigma 

Cisplatin…………………………………………………………… Sigma 

Coomassie Brilliant Blue R250……………………………………. Sigma 

Diethyl pyrocarbonate (DEPC)…………………………………… Roche 

Diethyldithiocarbamate (DDTC)………………………………….. Alexis 
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Dimethyl sulphoxide (DMSO )……………………………………. Sigma 

Dithiothreitol (DTT)………………………………………………. Roche 

Dulbecco’s Modified Eagle Medium (DMEM).………………….. GIBCO 

DNA molecular weight marker…………………………………… Fermentas 

Dream Taq…………………………………………………………. Fermentas 

E.coli One Shot® TOP10F’ Chemically competent cells…………. Invitrogen 

Ethanol……………………………………………………………. Merck 

Ethidium bromide…………………………………………………. Merck 

Ethylene diamine tetra-acetic acid (EDTA)………………………. Merck 

Foetal calf serum (FCS)…………………………………………... Roche 

G418……………………………………………………………….. Roche 

Glucose……………………………………………………………. Sigma 

Glycerol…………………………………………………………… Saarchem UniVAR 

Glycine……………………………………………………………. Merck 

Ham’s F12………………………………………………………… Invitrogen 

Hydrochloric acid…………………………………………………. Saarchem UniVAR 

Hydrogen peroxide (H2O2)……………………………………….. Sigma 

L-Broth……………………………………………………………. Merck 

L-glutathione (reduced)…………………………………………… Sigma 

Magnesium Chloride……………………………………………… Merck 

Metafectene® Pro Transfection reagent ………………………….. Biontex 
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Methanol………………………………………………………….. Merck 

4-Morpholine propanesulphonic acid (MOPS )…………………. Roche 

n-butanol………………………………………………………….. Merck 

Nutrient Agar……………………………………………………… Merck 

Oligonucleotides………………………………………………….. Inqaba 

Paraformaldehyde………………………………………………… Sigma 

Penicillin-Streptomycin…………………………………………… Invitrogen 

Pfu Taq Polymerase….…………………………………………… Fermentas 

Phosphate Buffered Saline (PBS) without CaCl2+ and MgCl2+…. GIBCO 

Potassium acetate…………………………………………………. Merck 

Potassium chloride………………………………………………... Merck 

Propan-2-ol………………………………………………………... Merck 

Propidium Iodide………………………………………………….. Sigma 

Proteinase K………………………………………………………. Roche 

Pyrrolidine dithiocarbamate (PDTC)……………………………… Alexis 

RNase A…………………………………………………………… Roche 

RiboRuler ™ High-range RNA ladder……………………………. Fermentas 

Roswell Park Memorial Institute (RPMI) medium……………….. Invitrogen 

Sodium acetate……………………………………………………. Merck 

Sodium chloride…………………………………………………… Merck 

Sodium dodecyl sulphate (SDS)…………………………………... Roche 
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N,N,N´,N´-Tetramethylethylene-diamine (TEMED ).…………... Promega 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT)…………………………………………………………….. 

Sigma 

Thiobarbituric acid………………………………………………... Sigma 

Trichloroacetic acid……………………………………………….. Sigma 

Tris(hydroxymethyl) aminomethane……………………………… BDH 

Triton X-100………………………………………………………. Sigma 

Trypsin…………………………………………………………….. Invitrogen 

Tryptone…………………………………………………………… Merck 

Tween 20………………………………………………………….. Merck 

 

2.1.2 Commercial kits/antibodies/molecular probes Supplier 

Anti-Actin (C-2) HPR antibody ………….……………………… Santa Cruz 

Active caspase-3-FITC assay………….…...................................... BD Biosciences 

Annexin V PE assay…………......................................................... BD Biosciences 

APO-Direct™ (TUNEL) assay……………..................................... BD Biosciences 

APOPercentage™ apoptosis assay………....................................... Biocolor  

CM-H2DCFDA molecular probe………..………………………... Invitrogen 

CytoBuster™ protein extraction reagent………………………….. Novagen 

Goat anti-mouse IgG –HPR…………............................................. Santa Cruz 

Glutathione Assay…………............................................................. Sigma 

ImProm-ll™ Reverse Transcriptase System ………....................... Promega 
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NucleoSpin TriPrep RNA extraction  kit…………………………. Fermentas 

pcDNA™ 3.1 Directional TOPO® expression kit …………......... Promega 

Tetramethyl Rhodamine (TMRE) ……........................................... Promega 

Anti-Trx-2 antibody……………...................................................... Santa Cruz 

Thioredoxin reductase assay…………............................................. Sigma 

Wizard® plus DNA purification system ………………………...... Promega 

Wizard® SV gel and PCR clean up system ………......................... Promega 
 

 

2.1.3 General stock solutions and buffers 

Ampicillin 

100mg/ml stock was prepared in sterile deionised water, filter sterilised using a 0.22µM 

filter and stored at -20oC. 

 

Ammonium Persulfate (APS) (10%) 

APS 10% solution was prepared fresh daily in a microcentrifuge tube and the appropriate 

amount of water (e.g. 40mg would require 400µL water) was added and the tube was 

maintained on ice for the day. 

 

Digestion Buffer 

100mM NaCl, 10mM Tris-Cl (pH 8), 25mM EDTA (pH 8), and 0.5% SDS. Proteinase K 

(to a final concentration of 0.1mg/ml) was added just before use. 

 

 

 

 

 

 



 

 74 

 

Glycerol Bromophenol Blue (GBB) 

30% glycerol (v/v), 15mM EDTA (pH 8.0) and 0.5% bromophenol blue (w/v). 

 

L-Broth 

1% tryptone, 0.5% yeast extract, 0.5% NaCl and 0.2% glucose. 

 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

A stock solution was prepared by making a 5mg/ml solution in PBS  

 

Neutralisation Solution 

3M potassium acetate (pH 5.0). 

 
Paraformaldehyde Fixative 

Paraformaldehyde (16g) was dissolved in 80 ml of deionised water by stirring at 70oC in a 

fume cupboard. One drop of 2M NaOH was added. The solution was cooled down slowly 

to room temperature and the volume was adjusted to 100ml with deionised water. The 

solution was filtered through a 0.45-micron filter and a 100ml of 2x PBS added. The 

paraformaldehyde solution was stored at 4oC wrapped in foil. 

 

Phenylmethanesulfonylfluoride/ phenylmethylsulfonylfluoride (PMSF) 

A 10mM stock solution was prepared in isopropanol. 
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Propidium iodide (PI)  

A 1mg/ml stock solution of PI was prepared in 3.8mM sodium citrate pH 7.0 and a working 

stock was prepared by combining 950µL PBS, 400µL PI and 100µL RNase A.  

 

Protein Lysis buffer 

150mM NaCl, 10mM Tris, 1mM MgCl2, 0.1mM ZnCl2, 1% (w/v) Triton X-100, 10mM 

DTT, 0.5mM PMSF pH 7.4. 

 
RNase (DNase free) 

A 20mg/ml stock solution was prepared in a buffer containing 0.1M sodium acetate and 

0.3mM EDTA (pH was adjusted to 4.8 with acetic acid). This solution was boiled for 15 

minutes and cooled quickly by placing it in ice water and stored at -20oC. 

 

Tris EDTA (TE) Buffer 

1M Tris-Cl (pH 7.5) and 500mM EDTA (pH 8.0). 

All solutions were made in deionised water unless otherwise stated. 

 

 

2.2.  Methods 

2.2.1 Synthesis of Compounds 

The methods for the synthesis of phosphine ligands and gold complexes were previously 

described (Williams et al., 2007). In short 15 phosphine ligands were synthesized as 

shown in Figure 2.1-A The ligands were named TTL2, 4, 5, 6, 9, 11, 14, 15, 18, 19, 20, 
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22, 23, 25 and 28 (table 2.1). The phosphine ligands were complexed with CIAu(tht) in a 

1: 1 ratio to  produce cognate mononuclear (Figure 2.1-B) or in a 1:2 ratio dinuclear Au 

complexes (Figure 2.1-C). The complexes were named TTC2, 4, 5, 6, 9,11,14,15,18,19, 

20, 22, 23, 25 and 28 (table 2.2). 

 

  

 

 

 

 

 

 

 

 

Figure 2.1 Synthesis of phosphine ligands (A), which were coded (TTL) and corresponding gold 
complexes  (B or C), which were coded (TTC).  

A 

C 

B 
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e 

Table 2.1: Phosphine ligands 
(TTL) 

Table 2.2: Gold complexes  
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Table 2.3: Cell lines used in this study 
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2.2.2 Preparing metallo-compounds 

Stock solutions of the metallo-compounds were prepared in DMSO and working 

concentrations were prepared in cell culture media. The final DMSO concentration was 

less than 0.1%.  

 

2.2.3 Culturing of cells  

A vial of frozen cultured cells was taken from the -150°C-freezer. The cells were thawed in 

a water-bath set at 37°C by submerging the vial in water. The cells were transferred into 

cell culture flasks containing the appropriate pre-warmed complete culture medium and 

incubated at 37°C in a humidified incubator containing 5% CO2.  

 

2.2.4 Cell count  

Cell counts were performed as per the manufacturer’s instructions using the Countess™ 

automated cell counter (Invitrogen).  

 

2.2.5 Morphological evaluation treated and untreated cells  

Different cell lines (listed in Table 2.3) were cultured in 6 well culture plates to 90% 

confluency. The cells were treated with various concentrations of the compounds ranging 

from 5µM to 50µM, while the negative control cells were left untreated. The cells were 

incubated for 24 hours at 37°C in a humidified CO2 incubator. Following incubation, the 
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cells were studied using an inverted Nikon light microscope. Photographs were taken at 

20X magnification using a Leica EC3 digital camera.  

 

2.2.6 The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

Assay 

Cell proliferation was determined using the MTT assay following the methods described by 

Mosmann (1983); Eguchi et al., (1997) and Freimoser et al., (1999). Adherent and 

suspension cell cultures were processed with minor differences. 

 

Adherent cells were trypsinized and a concentration of 2.4×104 cells/ml was prepared in 

50ml tubes. The cells were plated (100µL/well) in 96 well cell culture plates. The cells 

were cultured at 37°C in a humidified CO2 incubator until 90% confluency was reached. 

The culture medium was removed and replaced with 100µL of fresh medium, which 

contained various concentrations of the test compounds. The concentrations of the test 

compounds ranged from 5 to 100µM. Triplicate wells were done for each concentration. 

The concentrations of positive control (cisplatin) ranged from 100 to 2000 µM. The cells 

were incubated at 37°C in a humidified CO2 incubator for 20 hours. After 20 hours, 10µL 

of 5mg/ml MTT solution was added to each well and the plates were incubated for a further 

4 hours. At the end of the 24hour incubation period, the media was removed and the plate 

was blotted on a paper towel. DMSO (100µL) was added to each well. The plates were 

placed on a rotating shaker for 10 minutes. Thereafter the optical density was read at 
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560nm using a LabSystems Multiscan Plus microplate reader. Cellular viability was 

calculated using the following formulae:  

 

 

The results were expressed as a percentage of the control. Results of cellular viability were 

tabulated as mean absorbance of each compound expressed as a percentage of the untreated 

control. IC50 values were tabulated from the graphs as compound concentrations that 

reduced the absorbance at 560 nm by 50% of the untreated control wells. Triplicate 

experiments were conducted and the results were expressed as means ± SD.  

 

2.2.7 Measurement of cell surface modifications 

2.2.7.1 The APOPercentage™  apoptosis assay  

The assay was done as described by Meyer et al., (2007). In brief, the cells were plated in 

24 well cell culture plates at a cell density of 2.5×104 cells/ml and incubated for 24 hours 

at 37°C in a humidified CO2 incubator. The cells were treated for 24 hours with various 

concentrations of the test compounds, ranging from 5 to 50µM. As a positive control, 

cells were also treated with 0.5mM cisplatin. Following the 24hour treatment, the medium 

containing the floating cells was removed and transferred to 15ml centrifuge tubes. The 

adherent cells were trypsinized and combined with the floating cells. The cells were 

recovered by centrifugation. The cells were washed twice with PBS and stained for 30 

minutes with APOPercentage™ dye. The cells were analyzed on a FACScan™ (Becton 
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Dickson) instrument equipped with a 488nm Argon laser. APOPercentage™ fluorescence 

was measured using the FL3 channel.  

 

2.2.7.2 The Annexin V-PE labelling assay by Flow Cytometry. 

Cells were seeded at 1.5×106 cells/ml in 6 well cell culture plates and were incubated at 

37°C in a humidified CO2 incubator until 90% confluency. The cells were treated with 

various concentrations of the test compounds ranging from 15 to 50µM. After a 24hour 

treatment, both the floating and adherent cells were transferred to a 15ml tube. The cells 

were harvested by centrifugation and washed twice with PBS. The cell pellet was 

resuspended in 1x binding buffer at a concentration of ~1.0x106 cells/ml. The cells were 

incubated for 15 minutes in the dark at room temperature after 5µL Annexin V-PE of was 

added. 7-Amino-actinomycin D (5µL) was added to the cells before the cells were analyzed 

on a FACScan™ (Becton Dickson) instrument equipped with a 488 nm Argon laser. 

Forward scatter (FSC) and side scatter (SSC) settings were used to differentiate cells from 

cell debris. Cell fluorescence was measured by using both the FL3 channel (7-AAD) and 

FL2 channels (Annexin-V-PE). A minimum of 10,000 cells per sample was acquired and 

analyzed using CELLQUEST Pro software (BD Biosciences). 

 

2.2.8 Measurement of Mitochondrial membrane potential (∆Ψ) using TMRE.  

Cells were cultured in 6 well cell culture plates at 1.0×106 cells/ml at 37°C in humidified 

CO2 incubator. When the cells reached 90% confluency, the culture media was removed 

and replaced with media containing 30µM of the test compounds. The cells were incubated 
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at 37°C in humidified CO2 incubator for various time points ranging from 0 to 12hours. At 

each time point, floating and adherent cells were transferred to a 15ml tube. The cells were 

recovered by centrifugation. The cells were incubated for 30 minutes in medium containing 

1µM TMRE. The cells were washed with PBS and analyzed by flow cytometry using a 

FACScan™ (Becton Dickson) instrument equipped with a 488 nm Argon laser. Forward 

scatter (FSC) and side scatter (SSC) was used to differentiate population of cells and cell 

debris. TMRE fluorescence was measured using the FL-1 channel. A minimum of 10,000 

cells per sample was acquired and analyzed using CELLQUEST Pro software (BD 

Biosciences). 

 

2.2.9 Evaluation of caspase-3 activation 

Cells were cultured as indicated in section 2.2.7.2 and were treated with 30µM of the test 

compounds or 0.5mM of cisplatin (positive control) and incubated at 37°C for 24 hours in 

a humidified CO2 incubator. Following incubation, floating and adherent cells were 

transferred to a 15ml tube and washed twice with cold PBS by centrifugation. The cells 

were resuspended in 0.5ml Cytofix/Cytoperm™ at a concentration of ~1.0x106 cells/ml 

then incubated on ice for 20 minutes. The cells were centrifuged for two minutes at 2000-x 

g and washed twice with 0.5 ml Perm/Wash buffer at room temperature. Total number of 

samples was determined and the amount of Perm/Wash buffer and antibody calculated so 

that each sample received 100µL Perm/Wash™ buffer and 20µL antibody. Thereafter, the 

cells were incubated for 30 minutes at room temperature in the dark. At the end of the 

incubation period, the cells were washed twice in 1.0ml Perm/Wash™ buffer. The cells 
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were resuspended in 0.5ml Perm/Wash buffer and analyzed on a FACScan™ (Becton 

Dickson) instrument equipped with a 488 nm Argon laser as a light source. Cell 

fluorescence was measured by setting the Forward (FSC) and Side Scatter (SSC) to 

differentiate cell populations and cell debris. On a log histogram dot plot, FL1 channel 

(Active Caspase-3 FITC) was measured against relative cell numbers. A minimum of 

10,000 cells per sample was acquired and analyzed using CELLQUEST PRO Software 

(BD Biosciences). 

 

2.2.10 Evaluation of time and dose response by detecting caspase-3 activation 

To evaluate dose response, H157 cells were treated with various concentrations of TTC18 

that ranged from 5µM to 50µM for 24 hours at 37°C for 24 hours in a humidified CO2 

incubator. For time response, the cells were treated with 50µM and incubated at 37°C for 

various time points that ranged fro 0 to 24 hours. Thereafter the caspase-3 assay described 

in section 2.2.9 was followed. The cells were analyzed on a FACScan™ (Becton Dickson) 

instrument equipped with a 488nm Argon laser as a light source. The experiments were 

done in triplicate. 

 

2.2.11 Measurement of DNA perturbations  

2.2.11.1 Evaluation of DNA Fragmentation by APO-DIRECT™    

Cells were cultured in 6 well cell culture plates at a cell density of 2.0x106 cells per ml at 

37°C for 24 hours in a humidified CO2 incubator. The cells were allowed to reach 90% 

confluency before they were treated with various concentrations of the test compounds that 
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ranged from 30µM to 50µM. As positive control cells were treated with 0.5mM cisplatin. 

Upon addition of the test compounds, the cells were incubated at 37°C for 24 hours in a 

humidified CO2 incubator. Following treatment, floating and adherent cells were 

transferred to a 15ml tube and centrifuged. The cells were fixed in 5ml 1% (W/V) 

paraformaldehyde in PBS and placed on ice for 15 minutes and centrifuged for 5 minutes at 

300 x g. The supernatant was discarded and the pellet was washed twice with PBS and 

resuspended in 0.5ml PBS. Ice-cold 70% (v/v) ethanol (5ml) was added to the cells in order 

to permeabilize the cells. The cells were stored at –20°C for 48 hours prior to staining. 

After permeabilization, the cells were harvested by centrifuging the tube for 15 minutes at 

300 x g and the alcohol was removed by aspiration being careful not to disturb the cell 

pellet. The pellet was washed twice with wash buffer. Thereafter, 50µL of staining solution 

(provided in the kit) was added to the tube and incubated at 37°C for 4 hours and 1.0 ml of 

rinse buffer was added to the tube and centrifuged for 300 x g for five minutes. This 

procedure was repeated twice, before 1ml PI/Rnase A (which was provided in kit) solution 

was added to the cell pellet and incubated for 30 minutes at room temperature. The cells 

were analyzed on a FACScan™ (Becton Dickson) instrument equipped with a 488 nm 

Argon laser as a light source. Forward (FSC) and Side Scatter (SSC) setting were used to 

differentiate cell populations and cell debris. Green fluorescence (FITC-dUTP) was 

measured using the FL1 channel. A minimum of 10,000 cells per sample was acquired and 

analyzed using CELLQUEST PRO Software (BD Biosciences).  
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2.2.11.2 Cell cycle analysis using the propidium iodide assay 

In this assay H157 cells were cultured in 6 well cell culture plates at 2.0x106 cells per ml 

and were cultured to 90% confluency. After which, the cells were treated with 15µM of 

complexes TTC18 and TTL5 respectively for various time points that ranged from 3 to 36 

hours incubated at 37°C in 5% humidified incubator. At the end of each time point, 

floating cells were transferred to 15ml tubes and centrifuged for 5 minutes at 10,000 x g 

and the supernatant was discarded. The cells were washed twice with cold PBS and the 

pellet resuspended in 200µL PBS before fixing with 2ml cold 70% ethanol drop wise to 

avoid cell aggregation. The cells were left at -20°C for 48 hours. After that, the samples 

were centrifuged at 250 x g for 10 min at 4°C and washed twice with cold PBS. Then 

250µL PBS, PI and Rnase A mixture was added to the cell pellet, mixed gently and 

incubated at 37°C for 30 minutes at room temperature in the dark.  Cells were analyzed on 

a FACScan™ (Becton Dickson) instrument equipped with a 488 nm Argon laser as a light 

source. Forward (FSC) and Side Scatter (SSC) to discriminate cell populations and cell 

debris. Two dual parameter and two single parameter displays were created. A gated 

standard dual parameter display was done by displaying DNA peak signal on the Y-axis 

and the DNA width displayed on X-axis dot plot while DNA content was displayed on 

linear histogram dot plot (FL2). A minimum of 10,000 cells per sample was acquired and 

analyzed using CELLQUEST PRO Software (BD Biosciences). 
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2.2.12 Determination of ROS  

To evaluate intracellular ROS, the molecular probe 5-(and-6)-chloromethyl-2', 7'-

dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) was used as described 

by Wei et al., (2000) with minor modifications. In brief H157 and Jurkat cells were 

cultured in 24 well cell culture plates and were treated with 30µM of the most active gold 

complex, TTC18 or the most active phosphine ligand TTL5. Additionally H2O2 at 400 µM 

was used as a positive control. The cells were treated for 24 hours at 37°C in 5% 

humidified incubator. Following treatment, floating and adherent cells were transferred to 

15 ml tubes and washed twice with PBS with each wash subjected to 300 x g of 

centrifugation for 5 minutes. Cells were stained with 7.5 µM (CM-H2DCFDA) prepared 

in PBS and incubated for 30 minutes at 37°C in a 5% humidified CO2 incubator following 

which they were analyzed on a FACScan™ (Becton Dickson) instrument equipped with a 

488 nm argon laser.  Cell fluorescence (DCF) was measured using (FL-1 channel) against 

relative cell numbers.  

 

 
2.2.13 Determination of Lipid peroxidation 

The thiobarbituric acid reactive substances (TBARS) assay (used to monitor lipid 

peroxidation) was done as described by Wei et al., (2000) with minor modifications. Jurkat, 

H157, KMST-6 cells were cultured in 6 well culture plates at 1.0 x 106 cells/ml and were 

incubated at 37°C in a 5% humidified CO2 incubator until a 90% confluency was reached. 

The cells were treated with 50µM of TTC18 or TTL5 or as a positive control 400µM of 

H2O2 was used. The cells were incubated for 24 hours at 37°C in a humidified CO2 
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incubator. Subsequently, floating and adherent cells were transferred to 15ml tubes and 

washed twice with PBS subjecting each washing centrifugation at 10,000-x g for 5 minutes. 

The cells were resuspended in the residue PBS and transferred to 2 ml centrifuge tubes to 

which 2.8% of trichloroacetic acid (400µL) and 0.67% of thiobarbituric acid (600µL) were 

added and mixed and incubated at 95°C for 1 hour. The cells were cooled and n-butanol 

(300µL) was added to each tube and mixed vigorously. The cells were centrifuged at 

10,000-x g for 10 minutes in a micro centrifuge and 100µL of the supernatant was 

transferred into triplicate wells of a 96 well culture plate. Absorbance of the samples were 

read at 532nm using a LabSystems Multiscan Plus plate reader. Results were expressed as 

percentage of untreated cells. 

 

 
2.2.14 Investigating the cyto-protective potential of antioxidants against oxidative 

effects of gold complex and phosphine ligand induced cell death. 

 

2.2.14.1 The cyto-protective potential of vitamin C  

Various cell lines (Jurkat, H157 and KMST6) were seeded at 2.0 x104 in 24 well cell 

culture plates and were allowed to reach a 90% confluency in an incubator set at 37°C 

with 5% CO2 humidified atmosphere. The cells were treated with various concentrations 

of vitamin C that ranged from 200µM to 2000µM for 24 hours. Following the treatment, 

the cells were evaluated for apoptosis induction using the APOPercentage™ apoptosis 

assay to access if vitamin C on its own induced apoptosis. Having established the basal 

apoptosis level of vitamin C a single dose of vitamin C that did not have apoptotic effects 
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on the cells was used to treat the cells for 24 hours before the cells were treated with 

50µM of TTC18 or TTL5. Alternatively, the cells were concurrently treated with vitamin 

C and TTC18 or TTL5. The cells were incubated for 24 hours at 37°C 5% humidified 

CO2 incubator and the cells were evaluated for apoptosis induction using the 

APOPercentage™ apoptosis assay as described.  

 

2.2.14.2 The cytoprotective potential of PDTC and DDTC 

Various cell lines (Jurkat, H157 and KMST6) were seeded at 2.0 x104 in 24 well tissue 

culture plates and were allowed to reach 90% confluency in 37°C incubator with 5% CO2 

humidity. The cells were treated for 24 hours with various concentrations of PDTC or 

DDTC that ranged from 100µM to 200µM. Following the treatment, the cells were 

evaluated for apoptosis induction using the APOPercentage™ apoptosis assay to assess 

the basal level at which PDTC or DDTC induced apoptosis. Having established the basal 

apoptosis level of PDTC or DDTC a single dose of PDTC or DDTC that did not have 

apoptotic effects on the cells was used to treat the cells for 24 hours. Following treatment 

the media containing PDTC or DDTC was removed and replaced with media that 

contained 50µM of TTC18 or TTL5. Alternatively, the cells were concurrently treated 

with 200µM PDTC or DDTC and 50µM TTC18 or TTL5. The cells were treated for 24 

hours at 37°C in 5% humidified CO2 incubator. Following treatment, the cells were 

evaluated for apoptosis induction using the APOPercentage™ apoptosis assay.  
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2.2.14.3 Investigating the cytoprotective potential of catalase 

H157 were seeded at 2.0 x105 in 12 well tissue culture plates and were allowed to reach 

90% confluency in an incubator set at 37°C with 5% CO2 humidity. There after, the cells 

treated with various concentrations of catalase that ranged from 150µM to 200µM for 24 

hours. Following the treatment, the cells were evaluated for apoptosis induction using the 

APOPercentage™ apoptosis assay to access the basal level at which catalase induces 

apoptosis. Having established the basal apoptosis level of catalase, the cells were treated 

with a single dose of 200µM catalase for 24 hours at 37°C with 5% CO2 humidity 

incubator after which the media containing catalase was removed and replaced with media 

that contained 50µM of TTC18 or TTL5 and cells were put back in the incubator and 

treated for 24 hours. Following treatment, the cells were evaluated for apoptosis induction 

using the APOPercentage™ apoptosis assay as described.  

 

2.2.14.4 The cytoprotective potential of L-glutathione (reduced) 

Various cell lines (Jurkat, H157 and KMST6) were seeded at 2.0 x104 in 24 well tissue 

culture plates and were allowed to reach 90% confluency at 37°C incubator with 5% CO2 

humidity. Thereafter the cells were treated for 24 hours with various concentrations of L-

glutathione that ranged from 2mM to 5mM. Following treatment, the cells were evaluated 

for apoptosis induction using the APOPercentage™ apoptosis assay to assess the basal 

level at which L-glutathione induced apoptosis. The media containing the antioxidant L-

glutathione was removed and replaced with media that contained 50µM of TTC18 or 

TTL5 and the cells were treated for various time points. Alternatively the cells were 
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concurrently treated with 2.5mM of L-glutathione and 50µM of TTC18 or TTL5 also for 

various time points and cells were evaluated for apoptosis induction using the 

APOPercentage™ apoptosis assay. 

 

2.2.15 Investigating Au uptake using Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS) analysis 

H157 cells were cultured at 37°C with 5% CO2 humidity in 12 well culture plates seeded 

at 2.0x 105 cells /ml and were allowed to reach 90% confluency before they were 

concurrently treated with 2.5mM L-glutathione and 50µM TTC18 or TTL5 or only treated 

with 50µM TTC18 or TTL5 for different time points that ranged from 30 minutes to 8 

hours. Cell treatment was started with the highest time point. Following treatment, 

floating and adherent cells were transferred to 15ml tubes and cells were washed twice 

with 1ml cold PBS centrifuging at 10,000 x g for 5 minutes for each wash. After last 

wash, the supernatant was completely removed and the pellet was resuspended in 300µL 

of ice cold Milli-Q and 500µL 70% HNO3. Following which, the cells were digested at 

70°C for 2 hours. At the expiry of the digestion period, samples were diluted 1:10 with 

Milli-Q water in preparation for Inductively coupled plasma mass spectrometry (ICP-MS) 

analysis. Gold analysis was done as described by (Rackham et al., 2007). In short, 

analysis was done using an Agilent 7700 ICP-MS with a micromist concentric nebulizer, 

and a double-pass spray chamber maintained at 2°C. The instrument was calibrated in the 

range 1– 1000 ppb using a NIST-traceable reference standard. A quality control standard 
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was analysed to verify the accuracy of the analysis, which was better than 98% 

confidence. 

 
2.2.16 Determination of Thioredoxin 

In order to determine the DNTB reduction due only to the thioredoxin reductase activity 

present in the sample, two assays were performed: the first measurement was of the total 

DNTB reduction by the sample and the second one was the DNTB reduction by the sample 

in the presence of the thioredoxin reductase inhibitor solution. The difference between the 

two results was the DTNB reduction due to thioredoxin reductase activity.  

 

The assay was performed at room temperature (25°C) in 96 well plates in order to assay 

for more samples, however the results were tabulated as for 1ml samples. The assay was 

carried out using the Sigma assay kit. All reagents were prepared according to the 

manufacture’s instructions with no modifications. 

 

2.2.16.1 Preparation of cells extracts 

H157 cells were cultured to 90 % confluency in 6 well tissue culture plates at 37°C in a 

humidified CO2 incubator and were treated with various concentrations of TTC18 or 

TTL5 that ranged from 30 to 50µM for 24hours. Following treatment, adherent and 

floating cells were transferred to 15ml tubes and washed twice with PBS centrifuging for 

5 minutes at 300-x g for each wash. After the last wash, supernatant was completely 

discarded and a 1 ml volume of CelLytic containing protease inhibitor at 1:100 was added 
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to the cell pellet. The cells were vigorously mixed and centrifuged for 10 minutes at 

10,000-x g and the supernatant was used as the enzyme sample.  

 

2.2.16.2 The thioredoxin assay 

The assay procedure is as shown in table 2.4. A working buffer of 180µL was placed in 

each well of a 96 well culture plate and the other components were added according to the 

reaction scheme in table 2.4. For the total activity of the unknown sample x µL of the 

sample and 70-x µL of 1x assay buffer were added and for the inhibition of thioredoxin 

reductase reaction, x µL of the sample, 10-x µL of 1x assay buffer, and 4µL of diluted 

inhibitor solution were added and the solutions were mixed by gently tapping the plate on 

the side or gently shaking using a plate shaker. The reaction scheme for 96 well plate is 

shown in table 2.4. 

 

 

 

  

 

 

 

 

 

 

 

Table 2.4: Thioredoxin reaction scheme for 96 well Plate 
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The reaction was started by the addition of 6µL of the DTNB solution to each well and 

mixed by gently tapping the plate on the side or gently shaking using a plate shaker. The 

rate of formation of the yellow colour was determined by measuring the increase in 

absorption (∆A412/min) for each reaction using a POLARstar Omega plate reader and the 

amount of enzyme activity present was calculated. 

 

The spectrophotometer was set at 412 nm using an enzymatic kinetic program as follows: 

Delay=120 seconds 

Interval=10 seconds 

Number of readings=6 

 

2.2.16.3 Calculations for a 96 well plate 

Unit/ml = ∆A412/min (thioredoxin reductase) x dilution x vol 
                                     Enzvol 
 
∆A412/min (thioredoxin reductase) = [∆A412/min (sample)- [∆A412/min (sample)+ inhibitor)] 

dil: sample dilution factor 

vol: volume of reaction in ml 

enzol: volume of enzyme in ml 

The calculation of the enzymatic activity was adjusted for difference in path length between 

1 ml curette (1cm) and the plate, by dividing the calculated activity (unit/ml) obtained by 

0.55. 
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Unit definition: One unit of mammalian thioredoxin reductase will cause an increase in 

∆A412 of 1.0 per minute per ml (when measured in a non-coupled assay containing DNTB 

alone) at pH 7.0 at 25oC. 

 

2.2.17 RNA isolation 

2.2.17.1 Isolation of RNA from cultured mammalian cells 

RNA isolation and purification was done using the SV Total RNA Isolation System. 

When preparing RNA care was taken not to contaminate the samples with ribonucleases 

by working on ribonucleases-free environment and wearing clean disposable gloves that 

were changed regularly. All solutions were prepared according to the kit manufacture’s 

instructions. RNA was isolated from KMST-6 cells cultured in 25 cm2 cell culture flasks 

and isolation was done when the cells were 80% confluent. To isolate RNA, the media 

was removed and cells were washed twice with ice-cold sterile PBS and trypsinized. 

After which, the cells were transferred to 15ml centrifuge tubes and centrifuged at 300-x 

g for 5 minutes at room temperature. The supernatant was discarded and the pellet 

resuspended in residual PBS and washed twice at room temperature with ice-cold sterile 

PBS by centrifugation at 300-x g for 5 minutes each wash. After the last wash, the cells 

were resuspended in 500µL PBS from which a cell count of 1.0 x 610 cells/ml was 

prepared and transferred to 2ml centrifuge tubes and centrifuged at 300-x g for 5 

minutes. The supernatant was discarded and 175µL Lysis Buffer was added to the tubes. 

The cells were mixed and 35µL of RNA dilution buffer was added to the 175µL and 

mixed by inverting the tubes 3-4 times. The tubes were placed in a heating block set at 
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70ºC and heated for 3 minutes and centrifuged for 10 minutes at 12,000-x g at room 

temperature. Following centrifugation the cleared lysine solution was transferred to a 

new microcentrifuge tube and 200µL of 95% ethanol was added to the cleared lysine. 

 

Collection tubes and spin columns for each sample were assembled by placing the spin 

columns in the collection tubes. The sample mixture to which ethanol was added was 

transferred to the spin columns/collection tubes assembly and centrifuged at 12,000-x g 

for 1 minute at room temperature. The solution collected in the collection tubes was 

discarded and the spin columns put back into the collection tubes.  Then 600µL of RNA 

wash solution was added to the spin columns and again centrifuged for 1 minute at 

12,000-x g. There after, 50µL of freshly prepared DNase incubation mixture 40 µL Core 

Buffer, 50µL 0.09M MnCl2 and 5 µL DNase 1 enzyme prepared in this order and mixed 

by pipetting) was added to each of the membrane spin column tubes and incubated for 

15 minutes at 20-25ºC. After incubation, 200µL DNase stop solution was added to the 

spin columns and centrifuged for 1 minute at 12,000-x g at room temperature. After 

which 600µL RNA wash solution was added to the spin columns and centrifuged for 1 

minute at 12,000-x g.  The collection tubes were emptied and 250µL RNA wash solution 

was added to the spin columns and centrifuged for 2 minutes at high speed. The spin 

columns were transferred into new collection tubes. RNA was eluted by addition of 

100µL nuclease-free water to the spin column membranes making sure to completely 

cover the surface of the membranes and then centrifuged for 1 minute at 12,000-x g. The 

spin columns were discarded and the eluted purified RNA was quantified using a 
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Namedrop. The samples were aliquot into 20µL aliquots, and the concentration was 

indicated on the tubes and stored at -80ºC. 

 

 

2.2.17.2 RNA gel electrophoresis 

To assess the total RNA quality, the RNA was size fractionated by electrophoresis. RNA 

was electrophoresed on 1% agarose gel prepared in 1xTAE buffer then 0.5µg/ml ethidium 

bromide was added.  The samples were prepared by adding 5 µL RNA, 1 µL of 6x DNA 

loading dye, 6µL formamide (for denaturation of RNA) and heated at 65ºC for 5 minutes. 

RNA high-range (0.2-6 kb) molecular weight marker to estimate the size of RNA fragments 

were loaded onto a pre-cast gel alongside the samples and electrophoresed at 70 V for 30 

minutes. RNA was visualized with short wave UV light on a transilluminator and 

photographed using the Sony UVP image Store 5000 photographic system. 

 

2.2.18 Preparation of cDNA using ImProm-II™  Reverse Transcriptase system. 

For first strand cDNA synthesis, the ImProm-II™  Reverse Transcriptase system kit for 

reverse transcription (Invitrogen) was used. A tube containing the RNA of interest with 

known RNA concentration was removed from the -80ºC freezer and placed on ice to thaw. 

A required volume according to concentration was removed from the tube and any unused 

portion of the sample was returned to the freezer. The RNA volume was determined with 

consideration to the final volume of the reaction mixture. The reaction mixture for 
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annealing the oligo dT primer to the target RNA consisted of the components listed in table 

2.5 

Table 2.5: Reaction mixture for annealing the dT oligo 

Reaction Component Volume 
RNA up to 1µg/reaction   XµL 
Primer - oligo (dT), (0.5µg/reaction)   XµL 
Nuclease-Free Water   XµL 

 
Final Volume   5.0µL 

 

The tube was closed tightly and placed into a polymerase chain reaction (PCR) machine 

and was heated to 70ºC for 5 minutes and immediately chilled on ice-water for at least 5 

minutes. After which, the tube was short spun for 10 seconds in a microcentrifuge to 

collect any condensed parts and maintain the original volume. The tube was kept closed 

tight on ice until the reverse transcription reaction was added.  

 
Reverse transcription reaction components were added to the tube while on ice and the 

reaction components are shown in table 2.6.  
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Table 2.6: Reaction mixture for the first strand cDNA synthesis reaction  

Reaction Component Volume 

ImpProm-llTM 5x reaction buffer   XµL 

MaCl2 (final concentration 1.5-8.0mM)   4.0µL 

dNTP Mix (final concentration 0.5mM each dNTP)   1.0µL 

Recombinant Ribonuclease Inhibitor   20u 

ImProm-llTM Reverse Transcriptase   1.0µL 

Nuclease-Free Water to 15µL final volume   XµL 

Final Volume   15.0µL 
 

The 5µL of the target RNA was transferred to the 15µL of the reverse transcription 

reaction mixture on ice to have a final volume of 20µL. The tube was placed in a PCR 

machine and incubated for 1 hour at 42ºC followed by incubation at 70ºC for 15 minutes 

to inactivate reverse transcriptase activity, and cooled to 4ºC for 5 minutes. The 

synthesised cDNA was used for amplification using the standard PCR cycling protocol. 

The resulting cDNA was quantified using a Nanodrop and the resultant first strand cDNA 

preparation was aliquoted into 5µL aliquots and kept at -20ºC. To assess the 

successfulness of the reverse transcription procedure, 1µL of the cDNA product was PCR 

amplified using specific primers (Reaction mixture shown in table 2.7) and to view the 

results of the PCR reaction the samples were run on a 1% agarose gel.  
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Table 2.7: Reaction mixtures for PCR amplification  

 

 

 

 

 

 

 

 

 

 

 

Reaction component 1x 

Pfu DNA polymerase 10x buffer with MgSO4 2.5µL 

dNTPs mix 10mM each 1.0µL 

FP (1µM) 1.5µL 

RP (1µM) 1.5µL 

Pfu polymerase Taq (1.25 u) 0.25µL 

Nuclease free water 14.25µL 

Template (1µg) 1.0µL 

MgCl2 3.0µL 

Total reaction volume 25µL 
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2.2.19 Colony PCR 

The compositions of the colony PCRs were the same as described for the amplification of 

Trx-2 in table 2.7, except that the amplifications were performed with Dream Taq 

polymerase (Fermentas). The PCR conditions are tabled in table 2.8. 

 

Table 2.8: PCR reaction conditions 

Condition Temperature (°C) Time 

Denaturation           95    2 minutes 

Denaturation           92   30 seconds 

Annealing           61   30 seconds 

Amplification           72   30 seconds 

Extension           72   10 minutes 

Hold            4           

 

2.2.20 The pcDNA™ 3.1 D/V5-His-TOPO cloning vector 

The pcDNA™ 3.1 D/V5-His-TOPO cloning vector (Figure 2.2) 5.5kb vector designed 

for high-level stable and transient expression in mammalian hosts. Accordingly, high-

level stable and non-replicative transient expression can be carried out in most 

mammalian cells. Stably transfected cells can be generated by selecting the cells in the 

Neomycin. The vector contain human cytomegalovirus immediate-early (CMV) promoter 

for high level expression and a topoisomerase-I activated TOPO TA box which allow for 

the directional insertion of PCR products by ligation.  

35 cycles 
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Figure 2.2: pcDNA™ 3.1 D/V5-His-TOPO cloning vector mammalian expression vector.  

 

 

2.2.21 Genotype of Bacterial strains  

One Shot® TOP10 Chemically competent cells: Genotype of TOP10 Cells. F- mcr A ∆ 

(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15∆lacX74recA1 araD139 ∆ (ara-leu) 7697 galU 

galK rpsL (StrR) end  A1 nupG López et al., (2009), was used  in this experiment.   

 

2.2.22 Selection of transformed bacteria 

For experiments with E. coli containing ampicillin resistant plasmids, transformed cells 

were plated on Nutrient-agar with ampicillin at 100 µg/ml.  Selection was maintained 

during growth in liquid culture by the inclusion of ampicillin at 100 µg/ml. 

 

2.2.23 Storage of bacterial strains and clones 

Overnight cultures were diluted by the addition of an equal volume of 80% sterile glycerol. 

Stocks were stored at -80ºC. 
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2.2.24 TOPO® cloning procedure  

2.2.24.1 Design of PCR primers for the amplification of Trx-2 

PCR primers were designed in such away that 4 base pair sequences (CACC) that are 

necessary for directional cloning on the 5’ end of the forward primer were included and 

were fused in frame for optimal expression. The designed PCR primers were: FORWARD 

PRIMER (>>>): 5'-CACCACCATGGCTCAGCGACTTCTTC-3' and REVERSE 

PRIMER (<<<): 5'-TCAGCCAATCAGCTTCTTCA-3'. The underlined sequence will 

allow for the directional cloning of the PCR product. The sequence in red corresponds to 

the human Trx-2 sequence (NM_012473.3).  

 

2.2.24.2 PCR amplification of Trx-2 

A thermostable proofreading DNA polymerase (Pfu Taq Polymerase) and the designed 

PCR primers were used to produce the PCR product.  
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2.2.24.3 TOPO® Ligation reaction 

The reaction was carried out at room temperature (~25°C). The reaction mixture is 

described in table 2.9.  

                                   Table 2.9: TOPO® Ligation reaction 

Reagent Volumes 

Fresh PCR product 3µL 

Salt Solution 1µL 

Sterile Water 1µL 

TOPO® Vector 1µL 

Final volume 6µL 

   

The reaction was gently mixed and incubated for 5 minutes at room temperature and then 

placed on ice.  

 

2.2.24.3 Transformation of E.coli cells 

For DNA transformations One Shot® TOP10 Chemically competent cells were thawed on 

ice and an aliquot (2µL) of the cells were added to the 6uL TOPO ligation reaction. This 

reaction was gently mixed then incubated for 20 minutes on ice. The cells were heat 

shocked for 30 seconds at 42ºC without shaking and immediately transferred the tube on 

ice. Following which, SOC medium (250µL) was added. The tube was placed in a shaking 

incubator (200rpm, at 37ºC) for 1 hour. An aliquot (50uL) of the culture was plated on a 
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nutrient agar plate containing 100µg/ml ampicillin and incubated at 37ºC overnight. Plates 

were checked for growth and if present, the clones were individually picked for analysis for 

the presence of positive clones. 

 

2.2.24.4 Analyzing for transformed colonies by PCR 

Colonies from the ligation plates were picked and each dissolved in 10µL of sterile distilled 

H2O. The colony mixture was used as a template for PCR reaction. PCR reactions were 

carried out as described in section 2.2.19.1 for standard PCR using specific 

oligonucleotides at a concentration of 10pmole. A negative control, substituting 1µL of 

deionised water for the bacterial suspension was also performed. The products of the PCR 

were analysed by agarose gel electrophoresis. Glycerol stocks and large scale plasmid 

preparations were prepared for positive clones. 

 

2.2.25 Agarose gel electrophoresis of DNA 

DNA was size fractionated by agarose gel electrophoresis on 1% gel containing 0.5µg/ml 

ethidium bromide and electrophoresed in 1 x TBE buffer. The DNA sample was mixed 

with glycerol Bromophenol Blue (GBPB) before loading onto the gel. DNA size markers 

(Fermentas LabAid™ GeneRuler™ DNA ladders-10bp-48502) were loaded alongside the 

samples to estimate the size of DNA fragments. After electrophoresis the DNA was 

visualized with short wave UV light on a transilluminator and photographed using the Sony 

UVP Image Store 5000 photographic system. When DNA was to be recovered from the gel, 

a hand held long wavelength lamp was used to avoid damage to the DNA and a sterile 
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blade used to excise the desired band from the gel. DNA was purified from gels as 

described in section 2.2.27. 

 

2.2.26 Purification of DNA fragments from agarose gels 

PCR fragments from agarose gels were purified with Wizard SV gel and PCR clean up 

system (Promega). The excised agarose embedded fragment was weighed. Capture buffer 

(100µL) was added for every 10mg of agarose. The agarose was melted in the buffer by 

placing the tube in a heating block set at 60ºC. After incubation the sample was transferred 

to a GFX column within a collection tube and centrifuged for 30 seconds at 13,000-x g. 

The flow through was discarded and the column placed back in the collection tube. Wash 

buffer (500µL) was added to the column and the tube was centrifuged for 1 minute at 

13,000-x g. The collection tube was removed and placed in a 1.5ml centrifuge tube. Elution 

buffer (20µL) was placed directly on the matrix of the column and incubated at room 

temperature for 1 minute. The tube was centrifuged for 1 minute at 13, 000-x g to collect 

the DNA. The DNA was aliquoted and stored at -20ºC.  

 
 

2.2.27 Preparation of Plasmid DNA 

Glycerol stocks of the appropriate plasmids were thawed on ice. LB (50ml) containing the 

appropriate antibiotic was inoculated with the glycerol stock. The culture was incubated 

(with shaking) overnight at 37°C. The culture was centrifuged at 6,000x g at 4°C in a 

Beckman centrifuge. The plasmid DNA was isolated as per the manufacturer’s 
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instructions using the Wizard® plus DNA purification system. Plasmid DNA was stored at 

-20°C. 

 

2.2.28 Sequencing of cloned DNA product 

Clones to be sequenced were plated on Nutrient agar containing the appropriate antibiotic 

and submitted to Inqaba Biotech core sequencing facility for sequencing. 

 

2.2.29 DNA transfection of cultured cells 

Transient and stable cells were propagated with the aid of Mectafectene® Pro. Cells were 

seeded in a 6-well cell culture plate at 2.0x105 cells/ml and incubated at 37ºC in a 

humidified CO2 incubator until growing area was 90% covered. The complete medium was 

removed from the wells and cells were washed 2x with serum free medium. After that 1 ml 

of serum free medium was added to the cells. Stock solution and the genetic material used 

for the transfection were removed from the fridge and kept at room temperature to warm. 

Before use the stock solutions were gently mixed. The following solutions were prepared in 

two separate wells of a 96 well tissue culture plate.  

 

Solution A: 0.5-1.5 µg of DNA in a 50µL serum-and antibiotic-free cell culture medium.  

 

Solution B 1.0-7.0 µL of Metafectene® in 50µL serum-and antibiotic-free cell culture 

medium.  

 

 

 

 

 



 

 108 

The DNA lipid ratio was kept at 1:2 (µg DNA: µL Metafectene®). The solutions were 

mixed gently by pipetting once. Then the DNA solution was added to the transfection 

reagent i.e. Solution A was added to Solution B and not the other way round. The combined 

mixture was pipetted once gently up and down and incubated at Room temperature for 20 

minutes. The DNA/Lipid complex was added drop wise to the cells and swirled with care. 

The plates were incubated at 37ºC in a 5% humidified CO2 incubator for 2 hours and then 

1ml of complete medium was added to the cells and incubated for 24 hours before start of 

selections. G418 was used for selections at 800 µg/ml for 3 to 4 weeks until resistant 

colonies were visible, after which cells were maintained in 500 µg/ml of the antibiotic. 

 

2.2.30 Extraction of proteins from cell lines 

Transfected and un-transfected KMST-6 cells were grown to 90% confluency in T25 cell 

culture flasks. Cells were washed twice with 1x PBS following which 500µL of CytoBuster 

was added to the flask and cells were incubated for 5 minutes at room temperature. Cells 

were scrapped with a cell scrapper and transferred to a microcentrifuge tube and 

centrifuged for 5 minutes at 16,000xg at 4ºC. The supernatant was transferred to a new 

microcentrifuge tube and stored at -20ºC. 
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2.2.31 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of proteins (SDS-

PAGE) 

2 .2.31.1 Preparation of samples 

Protein concentrations of samples were determined using the Bradford assay. Protein 

samples were loaded onto gels at 1 µg/µL following heating at 95ºC for 10 minutes. 

 

2.2.31.2 Preparation of gels 

Proteins were separated by denaturing SDS-PAGE under reducing conditions according to 

the method of Laemmli (1970). Briefly, gels were made from 40% stock of premixed 

37.5:1 acrylamide: bisacrylamide and consisted of separating and stacking gels which were 

poured between two assembled glass plates separated by a 1.5mm thick comb spacer. The 

gels were prepared in 1.5 mm Hoeffer dual gel casters and about 10 ml were enough for 

one gel. The separating gel was poured to about 1 cm below the wells of the comb and a 

bout 1ml water-saturated 1-butanol was overlayed on top of the separating gel and was let 

to set. Once set, the butanol was poured off and gel rinsed with deionised water. Stacking 

gel (~5 ml) was poured over the running gel and to make wells the comb was inserted into 

the stacking gel immediately and was let to set. When the stacking gel was set, the comb 

was removed and the gel was transferred to the Mighty Small apparatus (Hoeffer) 

containing running buffer. 

 

 

 

 

 



 

 110 

 
2.2.31.3 Loading and electrophoresis of samples 

Two equal volumes of the samples were loaded into two different gels and electrophoresis 

at 100V/cm until the loading dye barely leaked out of the gel into the running buffer. One 

of the gels was blotted onto a PVDF membrane while the other was stained with Coomassie 

stain. 

 

2.2.31.4 Staining and Destaining of SDS-PAGE gels 

The Coomassie blue stain gel was stained with coomassie solution for 30 minutes. 

Destaining was achieved by multiple washes with SDS-PAGE destaining solution while 

shaking.  

 

2.2.32 The Western blot assay  

A Bio-Rad MiniProtein Trans Blot system was used to transfer proteins separated by SDS-

PAGE onto PVDF membrane. Gels, sponges, Whatman paper were equilibrated in pre-

chilled transfer buffer for 30 minutes. PVDF membrane was immersed in 100% methanol 

for 15 to 20 seconds and was left immersed in pre-chilled transfer buffer for about 30 

minutes to equilibrate before blotting took place. To assemble the transfer apparatus, the 

sponge was placed on the black side of the transfer cassette, followed by the Whitman 

paper, the gel, the PVDF membrane, Whatman paper and lastly the sponge once more. 

Then bubbles were squeezed out by simply rolling a tube over the sponge. The cassette was 

closed and placed in the Bio-Rad MiniProtein tank making sure that the black side is also 

on the same black side of the tank. Pre-chilled transfer buffer was added to cover the tank 
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and protein was electro-blotted onto the PVDF membrane at 100V constant for 1 hour 20 

minutes. Following blotting, the PVDF membrane was blocked with 5% BSA in TBST at 

room temperature for 20 minutes. The PVDF membrane was immediately incubated in 

1:500 dilution of the primary antibody prepared in TBST to which 0.25M NaCl was added 

and incubated overnight at 4ºC while shaking. The membrane was rinsed at room 

temperature three times with 10 ml TBST, each rinse lasting 5 minutes while shaking. 

Thereafter the membrane was incubated in secondary antibody diluted at 1:2,000 in TBST 

and incubated at room temperature for 45 minutes while shaking. Finally the membrane 

was rinsed twice with TBST for 5 minutes each rinse and once with TBS without tween-20 

also for 5 minutes while shaking. The membrane was placed on Saran Wrap making sure 

that the side with the blotted protein is upright. Super Signal West Pico Chemiluminescent 

substrate was prepared by mixing 1ml of solution A and 1 ml of solution B as per 

manufacture’s instructions (Thermo Scientific) and the substrate mixture was pipetted over 

the membrane making sure that the substrate covered the entire membrane. The substrate 

was left on the membrane for 5 to 10 minutes, and then the membrane was placed between 

two clear plastic sheets placed inside an x-ray cassette. CL-XPosure film (Thermo 

Scientific) was placed over the membrane and exposed for 2 to 5 minutes.  The film was 

removed and developed using the automated Curix 60 AGFA-Gevaert N.V (F-Nr.1419) 

film processing system.  
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2.2.32.1 Blot Stripping 

The blot was stripped for another primary antibody. The stripping was performed by pre-

wetting the membrane in methanol for a few seconds, 5 minutes wash in deionised water, 5 

minutes incubation in 0.2M NaOH, another 5 minutes wash in deionised water and finally 5 

minutes wash in TBST. The membrane was then blocked with blocking buffer as described 

in section 2.2.33. Following stripping and blocking, the membrane was stained with 

another antibody (actin antibody). 
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CHAPTER THREE: Investigating the toxicity of phosphine ligands and 

gold(I) complexes. 

 
3.1 Introduction 

When a cell has undergone apoptosis, it is systematically disposed of without causing 

damage or stress to neighbouring cells (as reviewed in chapter 1, section 1.5.9.1). 

The dying cell has characteristic morphological changes, which include cell 

shrinkage, disappearance of microvilli on plasma membrane, the chromosomal DNA 

is fragmented into nucleosome size units of about 200 bp (as reviewed in chapter 1, 

section 1.5.9.1), as well as the nucleus and the cell itself is fragmented. It is possible 

to identify apoptotic cells using in vitro assays. Since the apoptotic cell undergoes 

cell condensation and therefore reduction in cell volume, the morphological changes 

can be observed by light microscopy, and its condensed nuclei can be stained with 

fluorescent dyes such as Hoechst or DAPI (Whiteside et al., 1998; Boya et al., 

2005). The apoptotic cell also exposes phosphatidyl-serine (PS) on the cell surface 

(reviewed in chapter 1, section 1.1.5.9.2). PS externalisation can be observed with 

dyes such as APOPercentage™ or fluorescent-labelled Annexin V.  

 

Mitochondria also play a key role in apoptosis (reviewed in chapter 1, section 

1.5.9.1) and Lum and Nagley, 2003). Dissipation of t h e  mitochondrial membrane 

potential (⊗¬m) is a key event in the intrinsic apoptosis pathway. Mitochondrial 

membrane potential can be measured by employing fluorescent dyes such as 

rhodamine 123 (R123), and tetramethylrhodamine ethyl ester (TMRE), which are 

 

 

 

 



 

	
  

115	
  

fluorescent probes that can be used to monitor the membrane potential of 

mitochondria (Scaduto Jr. and Grotyohann, 1999). The opening of pores in the 

mitochondria results in the  release  of  signalling proteins, which includes 

cytochrome c (Reviewed in chapter 1, section 1.5.9.3.1). Cytochrome c is found in 

mitochondrial intermembrane space and upon its release to the cytosol through the 

outer membrane forms the apoptosome (a complex with Apaf-1, pro-caspase-9 and 

ATP or dATP).  The apoptosome triggers activation of downstream post 

mitochondrial caspases like caspase-3 and caspase-7 (Lum and Nagley, 2003; 

Patrushev et al., 2004). This activation of downstream caspases by proteolytic 

cleavage consequently results in the biochemical and morphological changes that 

are characteristic of apoptosis, consequently resulting in DNA fragmentation (Lum 

and Nagley, 2003). The fragmented DNA can be detected by assays such as 

Terminal deoxynucleotide transferase dUTP Nick End Labelling (TUNEL) or by 

electrophoresis of the isolated DNA on agarose gel and changes in DNA content 

of the cell can also be measured by cell cycle analysis (Frédérich et al., 2003). 

The neutral red assay or the MTT assay can be used to assess ce l l  v i ab i l i t y  and 

the  determination of IC50.  It is imperative that in order to assess apoptosis several 

assays be employed in order to affirm the results. 

The aims of this chapter are: 

 
• To screen 15  bidentate   amino  and  iminophosphine  ligands   

for apoptosis induction in a panel of cell lines shown in 

chapter 2 (table 2.3). 
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• To screen 15 mono and dinuclear Au(I) gold complexes for 

apoptosis induction in a panel of cell lines shown in chapter 2 

(table 2.3). 
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3.2 Evaluating the effects of TTL and TTC on cell morphological 

Darzynkiewicz  (1997) indicated the importance of confirming the mode of cell 

death by the use of light and electron microscopy. To assess morphological changes 

caused due to apoptosis induction, various cell lines shown in table 2.3, 

morphological features of cells treated with TTL and TTC were evaluated 

according to method described in section 2.2.5 Morphological changes that can 

be associated with cell death and potentially apoptosis could be observed for some 

of the phosphine ligands and the complexes (tables 3.1 and 3.2). The morphological 

changes that were observed bioactive compounds included cell shrinkage, inhibition 

of cell growth and cell detachment. Some of the compounds failed to induce any 

morphological changes in the cells. Jurkat cells were highly sensitive to the effects of 

both TTL and TTC compounds. Thirteen cells lines were screened in this study and 

50µM of TTC18 induced morphological changes in all of them (table 3.2).  TTL5 

was the most toxic phosphine ligand, inducing morphological changes in eight of the 

cell lines tested in this study (table 3.1). 

 

 

3.3  Measurement of cellular viability using the MTT assay  

The tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide  

 (MTT) assay was developed by Mosmann in 1983 to measure cellular growth and 

survival by detecting living cells. In this assay, metabolically active and therefore 

live cells reduce MTT to yield non-water-soluble violet formazan crystals. 
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Metabolically inactive and therefore dead cells fail to reduce MTT. The MTT assay 

was used to determine the IC50 value for both TTL (table 3.3) and TTC ( table 3.4) 

samples on a panel of 13 cell lines. The procedure is described in chapter 2, section 

2.2.6. A comparison between the phosphine ligands (TTL) and gold complexes 

(TTC) shows that the IC50 values for the most of the phosphine ligands is above 

100µM, while the IC50 values for most of the gold complexes were below 50µM. 

The IC50 values for the positive control, cisplatin was above 100µM for all the cell 

lines used in this study. 
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Table 3.1: Summary of morphological changes observed in cultured cells in 
response to treatment with phosphide ligands (TTL). The cells were treated for 
24hours with 50µM of the compounds and then studied under the light microscope. 
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Table 3.2: Summary of morphological changes observed in cultured cells in 
response to treatment with phosphide ligands (TTC). The cells were treated for 
24hours with 50µM of the compounds and then studied under the light 
microscope. 
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Table 3.3: Cytotoxicity of phosphine ligands (TTL). A panel of cells were treated for 
24hrs with 50µM of the compounds and cell viability was assessed using the MTT assay. 
Treatments that caused apoptosis in more than 50% of the cells are in red. 
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Table 3.4: Cytotoxicity of gold complexes (TTC). A panel of cells were treated for 
24hrs with 50µM of the compounds and cell viability was assessed using the MTT 
assay. Treatments that caused apoptosis in more than 50% of the cells are in red. 
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3.4 Evaluating the induction n of apoptosis using the APOPercentage™ assay 

The APOPercentage apoptosis assay was used to assess the induction of apoptosis 

in cultured cells. As previously described the p r i nc ip l e  o f  t he  assay is based  

on  a  dye  that the dye enters the cells upon phosphatidylserine transmembrane 

movement ('flip-flop' mechanism).   

 

A panel of cell lines were cultured to 90% confluence in 24 well cell culture plates. 

Thereafter, the cells were either left untreated or treated with a single dose of 50µM 

of the phosphine ligands (TTL) or gold complexes (TTC) for 24 hours. Following 

treatment, the cells were stained with APOPercentage apoptosis dye as described 

in section 2.2.7.1 and analysed by flow cytometry. Results for TTL and TTC 

compounds are tabulated in table 3.5 and table 3.6, respectively. The data is also 

summarised in table 3.7 and table 3.8, showing which compounds induced more 

than 50% cell death. The induction of apoptosis under these conditions was selective. 

In general, the TTC compounds were more bioactive than the TTL compounds. 

TTL5 demonstrated higher pro-apoptotic activity than the other phosphine ligands, 

inducing more than 50% apoptosis in five cell lines (A549J, Caski, CHO, HepG2, 

Jurkat and KMST6). The most bioactive gold complexes were TTC2, TTC4, TTC18, 

TTC20, TTC22 and TTC25, with TTC18 demonstrating the highest pro-apoptotic 

activity. TTC18 induced more than 50% apoptosis in all thirteen cell lines used in 

this study. Jurkat cells were highly sensitive to the effects of both TTL and TTC 

compounds. 
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Table 3.5: Apoptotic activity of phosphine ligands (TTL). A panel of cells were 
treated for 24hrs with 50µM of the compounds and apoptosis was assessed using the 
APOPercentageTM assay. Treatments that caused apoptosis in more than 50% of the 
cells are in red. 
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Table 3.6: Apoptotic activity of gold complexes (TTC). A panel of cells were treated 
for 24hrs with 50µM of the compounds and apoptosis was assessed using the 
APOPercentageTM assay. Treatments that caused apoptosis in more than 50% of the 
cells are in red. 
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Table 3.7: Summary of pro-apoptotic activities of phosphine ligands (TTL) in cultured 
cells. 
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Table 3.8: Summary of pro-apoptotic activities of gold complexes (TTC) in cultured 
cells. 
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3.5 Evaluating the cleavage of caspase-3 

Based on the results obtained for the APOPercentage asay, the gold complex 

TTC18 and the phosphine ligand TTL5 stood out as the most bioactive compounds. 

Consequently these two compounds were selected for further testing. Two cell lines, 

Jurkat and H157 were selected to evaluate whether apoptosis induced by TTC18 and 

TTL5 is also associated with the activation of caspase-3.  

 

The activation of downstream caspases by proteolytic cleavage results in 

biochemical and morphological changes that are characteristic of apoptosis. It 

should however be noted that caspase-independent forms of apoptosis have been 

reported (Liang et al., 2008). Evaluation of the involvement of caspases especially 

the effector caspases provides an insight into whether the mode of apoptosis is 

caspase-independent or not. Jurkat and H157 cells were treated with TTC18 and 

TTL5. The anti-active caspase-3-PE antibody was used to assess whether treatment 

with these compounds result in the cleavage of caspase-3 (Figure 3.1). The presence 

of the anti-active caspase-3-PE antibody was confirmed by flow cytometry. Both 

TTL5 and TTC18 induced caspase-3 cleavage in H157 and Jurkat cells as shown 

in figure 3.1 compared to untreated cells. However, the percentage of cells 

showing the presence of cleaved caspase-3 was higher for TTC18. In addition, 

caspase-3 cleavage was higher number in Jurkat cells compared to H157 cells.  
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Figure 3.1: The activation of caspase-3 in Jurkat and H157 cells. Jurkat and 
H157 cells were treated for 24 hours with 30µM of the gold complex TTC18 and 
the phoshine ligand TTL5. Cisplatin was used a positive control. The cleavage of 
caspase-3 was assessed using an anti-active caspase-3-PE antibody. Cells were 
analyzed by flow cytometry on a FACScan™(Becton Dickson) instrument 
using the FL-3 channel. The experiment was done in triplicate and data is 
represented in a bar graph as the mean percentage anti-active caspase-3 
positive cells. 

 

 

 

 

 

 



 

	
  

130	
  

3.6 Evaluating dose and time dependent activation of caspase-3 

A dose is defined as the amount of chemical or physical agent that comes into 

contact with a living organism or part of a living organism or an amount absorbed 

into the organism (Rozman and Doull, 1998). Rozman and Doull defined toxicity as 

the  accumulation  of  injury  over  short  or  long  periods  of  time,  which  renders  

an organism incapable of functioning within the limits of adaptation, meaning that 

toxicity is a function of time in addition to the dose. As regards to dose dependence, 

Levy (1982), Ishaque and Aighewi (2008), defined dose dependence as the change in 

effects that treatment  like  for  instance  radiation,  chemotherapy  or  antibiotics  

may  have  on  an organism and is key to scientific study of poisons. In essence, this 

effect can be assessed over a period of time. If the effects change in response to 

change in the dosage or treatment, then the effects are referred to as dose-dependence 

(Rozman and Doull, 2001; Ishaque and Aighewi, 2008).  Again if the increase in 

time also results in effect change, then it can categorically be said that effect has 

dependence on time. Rozman and Doull (2001) indicated that in toxicological studies 

analysis of time as a variable of toxicity showed the existence of at least three 

independent time scales (toxicokinetic, toxicodynamic and exposure 

frequency/duration), which interact with the dose and consequently result in the 

huge toxicological effects known as toxicity.   

 

The present study was aimed at investigating the relationship of time and dose to 

gold compound and ligand-induced apoptosis in cell death. It is important to know 
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whether induction of apoptosis with these compounds responds in accordance with 

drug concentration as well as duration of treatment. Knowing dose and time 

responses helps to quantify a therapeutic agent such as a drug to be taken at one time 

or stated intervals. Paracelsus (1493-1541) in Tan and Yeow (2003), publication, 

indicated that “all substances are poisons: there is none which is not a poison, 

however the dose makes the poison. It depends only upon the dose whether a poison 

is poison or not. At extremely low doses, a given substance may be non-toxic and 

even beneficial (hormesis concept), while at intermediate doses, it may be toxic. At 

high doses, it may be lethal. Meaning that varying the amount of the poison affected 

the severity of the effects. This therefore underscores the importance of 

understanding dose response relationships”.  

 

Since apoptosis requires active cell participation and is therefore primarily caused by 

physiological stimuli, a variety of varied doses may lead the cell to die by apoptosis 

or necrosis (Lennon et al., 1991). One other important aspect of dose-response 

relationship is the concept of threshold. Eaton and Klaassen, (1996), reported that 

most types of toxicities do not occur below the level at which there are no effects 

from the exposure to the chemical.  Further, Gibaldi et al., (1982); Eaton and 

Klaassen, (1996), reported that the human body has defences against many toxic  

agents.  For instance, cells  in  human  organs,  especially  in  the  liver  and kidneys, 

break down chemicals into nontoxic substances that can be eliminated from the body 

in urine and faeces. In this way, the human body can take some toxic insult (at a 
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dose that is below the threshold) and still remain healthy (Levy, 1982; Eaton and 

Klaassen, 1996). To assess the effect of dosage, H157 were treated with various 

concentrations (5, 15, 30, 50µM) of the most active gold complex TTC18 (Figure 

3.2 A) and to assess the effect of exposure time the cells were treated for various 

time points (Figure 3.2 B). Figure 3.2 A shows a dose-dependent increase in 

caspase-3 cleavage. No caspase-3 cleavage was observed at 5µM. Figure 3.2 B 

shows that caspase-3 cleavage started to increase between 6 and 12 hours.  

 

  
Figure 3.2: Dose and time dependent activation of caspase-3.  H157 cells were 
treated f o r  2 4  h o u r s  with increasing concentrations (5 to 50µM) of the gold 
complex TTC18 (panel A). To assess time response the cells were treated with a 
single dose of 50µM for 6, 12, 18 and 24 hours (panel B). The cells were stained 
with anti-active caspase-3-PE antibody and subsequently analyzed by flow 
cytometry. The experiment was done in triplicate and data is represented in line 
graphs as the mean percentage anti-active caspase-3 positive cells. 
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3.7 Evaluation of DNA Fragmentation using the APO-DIRECT™  assay  

The final step in the apoptotic pathway is DNA fragmentation with resultant cell 

death following the activation of  endonucleases  in  the  apoptotic  pathway  and  is  

also one  of  the hallmarks of apoptotic cell death. As reviewed in chapter 1, section 

1.5.9.4.1, it is well documented that endonucleases degrade chromatin higher order 

structures into fragments of  ~300 kb and 50 kb lengths and subsequently into 200 

bp ladders (Nagata, 2000). In order to detect DNA fragmentation, several assays 

are available such as the agarose gel electrophoresis (Pablo et al., 1998), fiberglass 

filters (Chow et al., 1989) or staining with bis-benzimidazole, Hoechst 33342 and  

propidium  iodide  (Ormerod  et  al.,  1993).  Another method frequently used to 

detect DNA fragmentation is the TUNEL assay. Apoptotic cells are identified by 

using the enzyme TdT that catalyzes the addition of dUTPs that are labelled with a 

marker such as FITC. DNA strand break labelling appears to be most specific as 

DNA strand break sites are identified by the conjugate FITC-labelled dUTP’s 

(Darzynkiewicz et al., 1997; Huerta et al., 2007). The assay however, can also label 

cells that have undergone severe DNA damage. It is possible to detect the degraded 

DNA using several assays such as electron microscopy (EM), DNA laddering 

using agarose gel electrophoresis. H157 cells were treated for 24 hrs with 30µM 

TTC18 and TTL5. DNA damage was assessed using the APO-DIRECT™ assay 

(Figure 3.3). Both TTL5 and TTC18 induced DNA fragmentation in H157 and 

Jurkat cells. However, the percentage of cells showing the presence of 

fragmented DNA was higher for TTC18.  
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Figure 3.3: DNA fragmentation in H157 cells. Panel A is a demonstration of the 
TUNEL and In situ end-labelling (ISEL) techniques (Huerta et al., 2007). 
Following treatment DNA fragmentation was assessed using the APO-DIRECT™ 
assay and the  cells were analysed by flow cytometry using a 
FACScan (Becton Dickson) instrument. FITC-dUTP labelling was measured 
using the FL-1 channel. Panel B shows two dot plots of untreated and cisplatin 
treated cells. The DNA content is on the X-axis and FITC-dUTP is on the Y-axis. 
The region labelled, R1 represents cells that are negative for FITC-dUTP, while 
R2 represents cells that are positive for FITC-dUTP. The numbers in R2 is the 
percentage of cells in R2 region. Panel C is a summary of the results for H157 
cells treated for 24 hours with 30µM of gold complex TTC18 and phosphine ligand 
TTL5. The experiment was done in triplicate and data is represented in a bar 
graph as the mean percentage FITC-dUTP positive cells. 
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3.8 Investigating the effects of TTC18 and TTL5 on cell cycle 

As the cell proliferation proceed from  one  stage  of  the  cell  cycle  to  the  

other,  all mechanisms necessary for apoptosis are present throughout the cell cycle 

(Alenzi, 2004). DNA synthesis can be halted at any stage of the cell cycle when cells 

are exposed to harmful environmental agents such as mutagenic chemicals or  

radiation  (Papamichos-Chronakis et  al., 2006). In essence, DNA synthesis is halted 

in order for the cell to repair damaged DNA. If the DNA damage is repairable, the 

damage is repaired and cell proliferation continues, however if the damage is 

severe, the cell commits suicide (Wyllie et al., 1984). In the case of anticancer drug 

development, Pucci et al., (2000) and Bertino et al., (2003) pointed out that the 

basic understanding of the stages of the cell cycle is imperative as novel 

therapies may be developed to target the genes that are involved in circumventing 

apoptosis or inhibiting the proper functioning of the cell cycle for example the 

cyclin dependent kinase inhibitors.  

 

One of the methods used to perform cell cycle analysis is the propidium iodide (PI) 

method. PI is a nucleic dye that intercalates single or double stranded DNA/RNA 

and fluoresces red. Since PI also stains RNA, this should first be removed with 

ribonuclease. PI can be used to identify the percentage of cells that are in one of the 

three phases of the cell cycle or to demonstrate the presence of apoptotic bodies 

(fragmented cells with low DNA content), which appear in the Sub-G1 phase. The 

intensity of the PI signal is directly proportional to the DNA content. Following 
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staining with the PI, cells that have lost DNA will take up less of the dye and will 

appear to the left of the G1 peak (the so- called “sub-G1 peaks”, i.e. cells with lower 

fluorescence level than G0+G1 cells) and are hence considered apoptotic. The major 

disadvantage is that apoptotic G2-Phase cells that exhibit a reduced DNA content 

could represent the DNA content of a G1-cell. Therefore it may not be detected as 

apoptotic and this can result in an underestimation of the apoptotic population. 

 

To assess whether TTC18 and TTL5 affect cell cycle progression, H157 cells were 

treated for 6, 12, 18 and 24 hours with 15µM of TTC18 and TTL5 (Figure 3.4). The 

sub-G1 population for the untreated (Figure 3.4 C) and TTL5 treated (Figure 3.4 D) 

cells were below 2%, while the sub-G1 population for TTC18 treated cells 

incrementally increased from 2% to 12% over the 24hr period. This increase in the 

sub-G1 population was accompanied by a decrease in the G1 population, which later 

lead to the blockage of cell cycle progression at G1. Cells treated with TTL5 showed 

a time dependent increase in the G1 population, which appeared to be associated with 

a decrease in S and G2/M phases. 
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Figure 3.4: Cell cycle analysis of H157 cells. H157 cells were treated for 6, 12, 18 
and 24 hours with 15µM of gold complex TTC18 and phosphine ligand TTL5 and 
stained with PI as described in chapter 2, section 2.2.10.2.  Cells were analysed 
using a FACScan (Becton Dickson) instrument equipped with a 488 nm argon 
laser as a light source. Panel A shows how the analysis was done. Panel A1 shows 
histogram plot of the DNA content on the X-axis and counts on the Y-axis. Indicated 
on the histogram are the three main stages (G1, G2 and S-phase) of the cell cycle and 
the Sub-G1 phase. Panel A2 shows the stages of the cell cycle. Panels B, C and D 
show the cell cycle profile of untreated, TTL5 treated and TTC18 treated H157 
cells, respectively. The experiment was done in triplicate and data is represented in 
a bar graph as the mean percentage cells. 
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3.9 Evaluating mitochondrial depolarisation using the TMRE assay 

There are several functions associated with mitochondria. Mitochondria are involved in 

bioenergetics, apoptosis and cell signalling (Lum and Nagley, 2003). Mitochondria have 

been implicated in influencing life and death decisions by initiating or inhibiting cell 

death (Krohn et al. 1999). The depolarisation of the mitochondrial membrane potential 

was shown to be required for the subsequent release of pro-apoptotic factors from the 

mitochondria. However, Krohn et al., (1999), showed that apoptosis can also occur in the 

absence of mitochondrial depolarisation. 

 

The molecular probe tetramethylrhodamine ethyl ester (TMRE) can be used to assess 

mitochondrial membrane depolarisation or loss of the electrochemical gradient across the 

mitochondrial membrane (Jayaraman, 2005). TMRE is a cationic, lipohilic dye that 

accumulates inside the membrane regions of healthy functioning mitochondria 

according to the Nernst equation potential in a voltage dependent manner (Kronhn et 

al., 1999). TMRE fluoresces bright orange/red in viable cells, which dissipates when the 

cells become apoptotic. The loss of fluorescence can be measured by flow cytometry. To 

evaluate mitochondrial membrane depolarisation, H157 cells were treated for 6, 12, 18 

and 24 hours with 30µM of the gold complex TTC18, the phoshine ligand TTL5. The 

mitochondrial membrane potential (⊗¬m) was evaluated as described in chapter 2, 

section 2.2.8 (Figure 3.5). Both TTC18 and TTL5 induced mitochondrial depolarisation 

in H157 cells in a time dependent manner. However, the number of cells with depolarised 

mitochondria was higher for TTC18 than TTL5. There was a significant increase in 
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depolarization with cells treated with TTC18 compared to cells treated  with TTL5 at 18 

and 24hrs.   

 
 

 
Figure 3.5: Assessing mitochondrial depolarisation using TMRE. H157 cells were cultured 
in 6 well plates as described in chapter 2, section 2.2.8. The cells were either left untreated 
or treated with 30µM of TTC18, or TTL5. The cells were stained with TMRE at 6, 12, 18 
and 24 hours. TMRE fluorescence was measured on a FACScan™(Becton Dickson) 
instrument using the FL-3 channel. 
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3.10  Summary 
 

The toxicity of fifteen phosphine ligands and fifteen gold(I) complexes were evaluated 

on a panel of 13 cell lines. Light microscopy was used to assess whether 50µM of these 

compounds can induce any morphological changes in these cells. The IC50 values for all 

30 compounds were determined for each cell line using the MTT assay. The pro-

apoptotic activity of all 30 compounds was evaluated on the panel of cell lines. The 

cells were treated for 24 hours with 50µM of the compounds and apoptosis was 

assessed using the APOPercentage assay. Based on the results obtained for the MTT 

assay and the APOPercentage assay, the gold(I) complexes were more bioactive than 

the phosphine ligands. The gold complexes TTC2, TTC4, TTC18, TTC20, TTC22, 

TTC25 and the ligand TTL5 were noticeably the most active compounds. The sensitivity 

of the cell lines varied, with Jurkat cells being very susceptible to the compounds. 

 

The two most active compounds TTC18 and TTL5 were further tested on two cell lines 

(H157 and Jurkat). Three additional apoptosis assays, the caspase-3 cleavage assay, the 

DNA fragmentation assay and the mitochondrial depolarisation assay were used to 

confirm the activation of apoptosis. TTC18 was more bioactive than TTL5 and Jurkat 

cells were more sensitive to the effects of the two compounds. The effects of TTC18 and 

TTL5 on the mitochondrial potential of H157 cells were assessed using TMRE probe. 

 

The effects of TTC18 and TTL5 on the cell cycle regulation of H157 cells were 

investigated over a 24 hour period. TTC18 induced apoptosis in H157 cells, while TTL5 
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induced cell cycle block in the G1 phase. 
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CHAPTER THREE: Investigating the toxicity of phosphine ligands and 

gold(I) complexes. 

 
3.1 Introduction 

When a cell has undergone apoptosis, it is systematically disposed of without causing 

damage or stress to neighbouring cells (as reviewed in chapter 1, section 1.5.9.1). 

The dying cell has characteristic morphological changes, which include cell 

shrinkage, disappearance of microvilli on plasma membrane, the chromosomal DNA 

is fragmented into nucleosome size units of about 200 bp (as reviewed in chapter 1, 

section 1.5.9.1), as well as the nucleus and the cell itself is fragmented. It is possible 

to identify apoptotic cells using in vitro assays. Since the apoptotic cell undergoes 

cell condensation and therefore reduction in cell volume, the morphological changes 

can be observed by light microscopy, and its condensed nuclei can be stained with 

fluorescent dyes such as Hoechst or DAPI (Whiteside et al., 1998; Boya et al., 

2005). The apoptotic cell also exposes phosphatidyl-serine (PS) on the cell surface 

(reviewed in chapter 1, section 1.1.5.9.2). PS externalisation can be observed with 

dyes such as APOPercentage™ or fluorescent-labelled Annexin V.  

 

Mitochondria also play a key role in apoptosis (reviewed in chapter 1, section 

1.5.9.1) and Lum and Nagley, 2003). Dissipation of t h e  mitochondrial membrane 

potential (ΔΨm) is a key event in the intrinsic apoptosis pathway. Mitochondrial 

membrane potential can be measured by employing fluorescent dyes such as 

rhodamine 123 (R123), and tetramethylrhodamine ethyl ester (TMRE), which are 
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fluorescent probes that can be used to monitor the membrane potential of 

mitochondria (Scaduto Jr. and Grotyohann, 1999). The opening of pores in the 

mitochondria results in the  release  of  signalling proteins, which includes 

cytochrome c (Reviewed in chapter 1, section 1.5.9.3.1). Cytochrome c is found in 

mitochondrial intermembrane space and upon its release to the cytosol through the 

outer membrane forms the apoptosome (a complex with Apaf-1, pro-caspase-9 and 

ATP or dATP).  The apoptosome triggers activation of downstream post 

mitochondrial caspases like caspase-3 and caspase-7 (Lum and Nagley, 2003; 

Patrushev et al., 2004). This activation of downstream caspases by proteolytic 

cleavage consequently results in the biochemical and morphological changes that 

are characteristic of apoptosis, consequently resulting in DNA fragmentation (Lum 

and Nagley, 2003). The fragmented DNA can be detected by assays such as 

Terminal deoxynucleotide transferase dUTP Nick End Labelling (TUNEL) or by 

electrophoresis of the isolated DNA on agarose gel and changes in DNA content 

of the cell can also be measured by cell cycle analysis (Frédérich et al., 2003). 

The neutral red assay or the MTT assay can be used to assess ce l l  v i ab i l i t y  and 

the  determination of IC50.  It is imperative that in order to assess apoptosis several 

assays be employed in order to affirm the results. 

The aims of this chapter are: 

 
• To screen  15  bidentate   amino  and  iminophosphine  ligands   

for apoptosis induction in a panel of cell lines shown in 

chapter 2 (table 2.3). 
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• To screen 15 mono and dinuclear Au(I) gold complexes for 

apoptosis induction in a panel of cell lines shown in chapter 2 

(table 2.3). 

 

 

 

 

 



 

	
  

117	
  

3.2 Evaluating the effects of TTL and TTC on cell morphological 

Darzynkiewicz  (1997) indicated the importance of confirming the mode of cell 

death by the use of light and electron microscopy. To assess for morphological 

changes caused due to apoptosis induction, various cell lines shown in table 2.3 were 

cultured in 6 well culture plates at a density of 2.5 x 105 cells per ml and were 

allowed to grow to 90% confluency. The cells were either left untreated or treated 

with 50µM of the gold complexes or the phosphine ligands and incubated at 37°C 

for 24 hours in a humidified CO2 incubator. The morphology of the treated cells 

was studied by light microscopy. Morphological changes that can be associated 

with cell death and potentially apoptosis could be observed for some of the 

phosphine ligands and the complexes (tables 3.1 and 3.2). The morphological 

changes that wee observed bioactive compounds included cell shrinkage, inhibition 

of cell growth and cell detachment. Some of the compounds failed to induce any 

morphological changes in the cells. Jurkat cells were highly sensitive to the effects of 

both TTL and TTC compounds. Thirteen cells lines were screened in this study and 

50µM of TTC18 induced morphological changes in all of them.  TTL5 was the most 

toxic phosphine ligand, inducing morphological changes in eight of the cell lines 

tested in this study. 

 

 

3.3  Measurement of cellular viability using the MTT assay  

The tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide  
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(MTT) assay was developed by Mosmann in 1983 to measure cellular growth and 

survival by detecting living cells. In this assay, metabolically active and therefore 

live cells reduce MTT to yield non-water-soluble violet formazan crystals. 

Metabolically inactive and therefore dead cells fail to reduce MTT. The insoluble 

purple formazan product formed can serve to estimate the number of mitochondria 

and hence the number of living cells in the sample. The amount of formazan 

crystals formed within the living cells can be solubilised with a solution of dimethyl 

sulfoxide (DMSO) or an acidified ethanol solution, or a solution of the detergent 

sodium dodecyl sulfate (SDS) in diluted hydrochloric acid to form a coloured 

solution. According to Mosmann (1983), the absorbance of this coloured solution 

can be measured and quantified using a spectrophotometer set at a wavelength 

between 500 and 600 nm. The absorption maximum wavelength is dependent on 

the solvent employed. This method can therefore be used to measure cellular 

cytotoxicity, proliferation or activation (Freimoser et al., 1999). The MTT assay was 

used to determine the IC50 value for both TTL (table 3.3) and TTC ( table 3.4) 

samples on a panel of 13 cell lines. The procedure is described in chapter 2, section 

2.2.6. A comparison between the phosphine ligands (TTL) and gold complexes 

(TCC) shows that the IC50 values for the most of the phosphine ligands is above 

100µM, while the IC50 values for most of the gold complexes were below 50µM. 

The IC50 values for the positive control, cisplatin was above 100µM for all the cell 

lines used in this study. 
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3.4 Evaluating the activation of apoptosis using the APOPercentage™ assay 

The APOPercentage apoptosis assay was used to assess the induction of apoptosis 

in cultured cells. As previously described the p r i nc ip l e  o f  t he  assay is based  

on  a  dye  that the dye enters the cells upon phosphatidylserine transmembrane 

movement ('flip-flop' mechanism).   

 

A panel of cell lines were cultured to 90% confluence in 24 well cell culture plates. 

There after, the cells were either left untreated or treated with a single dose of 50µM 

of the phosphine ligands (TTL) or gold complexes (TTC) for 24 hours. Following 

treatment, the cells were stained with APOPercentage apoptosis dye as described 

in section 2.2.7.1 and analysed by flow cytometry. Results for TTL and TTC 

compounds are tabulated in table 3.5 and table 3.6, respectively. The data is also 

summarised in table 3.7 and table 3.8, showing which compounds induced more 

than 50% cell death. The induction of apoptosis under these conditions was selective. 

In general, the TTC compounds were more bioactive than the TTL compounds. 

TTL5 demonstrated higher pro-apoptotic activity than the other phosphine ligands, 

inducing more than 50% apoptosis in five cell lines (A549J, Caski, CHO, HepG2, 

Jurkat and KMST6). The most bioactive gold complexes were TTC2, TTC4, TTC18, 

TTC20, TTC22 and TTC25, with TTC18 demonstrating the highest pro-apoptotic 

activity. TTC18 induced more than 50% apoptosis in all thirteen cell lines used in 

this study. Jurkat cells were highly sensitive to the effects of both TTL and TTC 

compounds. 
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3.5 Evaluating the cleavage of caspase-3 

Based on the results obtained for the APOPercentage asay, the gold complex 

TTC18 and the phosphine ligand TTL5 stood out as the most bioactive compounds. 

Consequently these two compounds were selected for further testing. Two cell lines, 

Jurkat and H157 were selected to evaluate whether apoptosis induced by TTC18 and 

TTL5 is also associated with the activation of caspase-3.  

 

The activation of downstream caspases by proteolytic cleavage results in 

biochemical and morphological changes that are characteristic of apoptosis. It 

should however be noted that caspase-independent forms of apoptosis have been 

reported (Liang et al., 2008). Evaluation of the involvement of caspases especially 

the effector caspases provides an insight into whether the mode of apoptosis is 

caspase-independent or not. Jurkat and H157 cells were treated with TTC18 and 

TTL5. The anti-active caspase-3-PE antibody was used to assess whether treatment 

with these compounds result in the cleavage of caspase-3 (Figure 3.1). The presence 

of the anti-active caspase-3-PE antibody was confirmed by flow cytometry. Both 

TTL5 and TTC18 induced caspase-3 cleavage in H157 and Jurkat cells. However, 

the percentage of cells showing the presence of cleaved caspase-3 was higher for 

TTC18. In addition, caspase-3 cleavage was higher number in Jurkat cells.  
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Figure 3.1: The activation of caspase-3 in Jurkat and H157 cells. Jurkat and 
H157 cells were treated for 24 hours with 30µM of the gold complex TTC18 and 
the phoshine ligand TTL5. Cisplatin was used a positive control. The cleavage of 
caspase-3 was assessed using an anti-active caspase-3-PE antibody. Cells were 
analyzed by flow cytometry on a FACScan™(Becton Dickson) instrument 
using the FL-3 channel. The experiment was done in triplicate and data is 
represented in a bar graph as the mean percentage anti-active caspase-3 
positive cells. 
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3.6 Evaluating dose and time dependent activation of caspase-3 

A dose is defined as the amount of chemical or physical agent that comes into 

contact with a living organism or part of a living organism or an amount absorbed 

into the organism (Rozman and Doull, 1998). Rozman and Doull defined toxicity as 

the  accumulation  of  injury  over  short  or  long  periods  of  time,  which  renders  

an organism incapable of functioning within the limits of adaptation, meaning that 

toxicity is a function of time in addition to the dose. As regards to dose dependence, 

Levy (1982), Ishaque and Aighewi (2008), defined dose dependence as the change in 

effects that treatment  like  for  instance  radiation,  chemotherapy  or  antibiotics  

may  have  on  an organism and is key to scientific study of poisons. In essence, this 

effect can be assessed over a period of time. If the effects change in response to 

change in the dosage or treatment, then the effects are referred to as dose-dependence 

(Rozman and Doull, 2001; Ishaque and Aighewi, 2008).  Again if the increase in 

time also results in effect change, then it can categorically be said that effect has 

dependence on time. Rozman and Doull (2001) indicated that in toxicological studies 

analysis of time as a variable of toxicity showed the existence of at least three 

independent time scales (toxicokinetic, toxicodynamic and exposure 

frequency/duration), which interact with the dose and consequently result in the 

huge toxicological effects known as toxicity.   

 

The present study was aimed at investigating the relationship of time and dose to 

gold compound and ligand-induced apoptosis in cell death. It is important to know 
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whether induction of apoptosis with these compounds responds in accordance with 

drug concentration as well as duration of treatment. Knowing dose and time 

responses helps to quantify a therapeutic agent such as a drug to be taken at one time 

or stated intervals. Paracelsus (1493-1541) in Tan and Yeow (2003), publication, 

indicated that “all substances are poisons: there is none which is not a poison, 

however the dose makes the poison. It depends only upon the dose whether a poison 

is poison or not. At extremely low doses, a given substance may be non-toxic and 

even beneficial (hormesis concept), while at intermediate doses, it may be toxic. At 

high doses, it may be lethal. Meaning that varying the amount of the poison affected 

the severity of the effects. This therefore underscores the importance of 

understanding dose response relationships”.  

 

Since apoptosis requires active cell participation and is therefore primarily caused by 

physiological stimuli, a variety of varied doses may lead the cell to die by apoptosis 

or necrosis (Lennon et al., 1991). One other important aspect of dose-response 

relationship is the concept of threshold. Eaton  and Klaassen, (1996), reported that 

most types of toxicities do not occur below the level at which there are no effects 

from the exposure to the chemical.  Further, Gibaldi et al., (1982); Eaton and 

Klaassen, (1996), reported that the human body has defences against many  toxic  

agents.  For  instance,  cells  in  human  organs,  especially  in  the  liver  and 

kidneys, break down chemicals into nontoxic substances that can be eliminated from 

the body in urine and faeces. In this way, the human body can take some toxic insult 
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(at a dose that is below the threshold) and still remain healthy (Levy, 1982; Eaton 

and Klaassen, 1996). To assess the effect of dosage, H157 were treated with various 

concentrations (5, 15, 30, 50µM) of the most active gold complex TTC18 (Figure 

3.2 A) and to assess the effect of exposure time the cells were treated for various 

time points (Figure 3.2 B). Figure 3.2 A shows a dose-dependent increase in 

caspase-3 cleavage. No caspase-3 cleavage was observed at 5µM. Figure 3.2 B 

shows that caspase-3 cleavage started to increase between 6 and 12 hours.  

 

 

 

 

 



 

	
  

133	
  

Figure 3.2: Dose and time dependent activation of caspase-3.  H157 cells were 
treated f o r  2 4  h o u r s  with increasing concentrations (5 to 50µM) of the gold 
complex TTC18 (panel A). To assess time response the cells were treated with a 
single dose of 50µM for 6, 12, 18 and 24 hours (panel B). The cells were stained 
with anti-active caspase-3-PE antibody and subsequently analyzed by flow 
cytometry. The experiment was done in triplicate and data is represented in line 
graphs as the mean percentage anti-active caspase-3 positive cells. 
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3.7 Evaluation of DNA Fragmentation using the APO-DIRECT™  assay  

The final step in the apoptotic pathway is DNA fragmentation with resultant cell 

death following the activation of  endonucleases  in  the  apoptotic  pathway  and  is  

also one  of  the hallmarks of apoptotic cell death. As reviewed in chapter 1, section 

1.5.9.4.1, it is well documented that endonucleases degrade chromatin higher order 

structures into fragments of  ~300 kb and 50 kb lengths and subsequently into 200 

bp ladders (Nagata, 2000). In order to detect DNA fragmentation, several assays 

are available such as the agarose gel electrophoresis (Pablo et al., 1998), fiberglass 

filters (Chow et al., 1989) or staining with bis-benzimidazole, Hoechst 33342 and  

propidium  iodide  (Ormerod  et  al.,  1993).  Another method frequently used to 

detect DNA fragmentation is the TUNEL assay. Apoptotic cells are identified by 

using the enzyme TdT that catalyzes the addition of dUTPs that are labelled with a 

marker such as FITC. DNA strand break labelling appears to be most specific as 

DNA strand break sites are identified by the conjugate FITC-labelled dUTP’s 

(Darzynkiewicz et al., 1997; Huerta et al., 2007). The assay however, can also label 

cells that have undergone severe DNA damage. It is possible to detect the degraded 

DNA using several assays such as electron microscopy (EM), DNA laddering 

using agarose gel electrophoresis. H157 cells were treated for 24 hrs with 30µM 

TTC18 and TTL5. DNA damage was assessed using the APO-DIRECT™ assay 

(Figure 3.3). Both TTL5 and TTC18 induced DNA fragmentation in H157 and 

Jurkat cells. However, the percentage of cells showing the presence of 

fragmented DNA was higher for TTC18.  

 

 

 

 



 

	
  

135	
  

 
Figure 3.3: DNA fragmentation in H157 cells. Panel A is a demonstration of the 
TUNEL and In situ end-labelling (ISEL) techniques (Huerta et al., 2007). 
Following treatment DNA fragmentation was assessed using the APO-DIRECT™ 
assay and the  cells were analysed by flow cytometry using a 
FACScan (Becton Dickson) instrument. FITC-dUTP labelling was measured 
using the FL-1 channel. Panel B shows two dot plots of untreated and cisplatin 
treated cells. The DNA content is on the X-axis and FITC-dUTP is on the Y-axis. 
The region labelled, R1 represents cells that are negative for FITC-dUTP, while 
R2 represents cells that are positive for FITC-dUTP. The numbers in R2 is the 
percentage of cells in R2 region. Panel C is a summary of the results for H157 
cells treated for 24 hours with 30µM of gold complex TTC18 and phosphine ligand 
TTL5. The experiment was done in triplicate and data is represented in a bar 
graph as the mean percentage FITC-dUTP positive cells. 
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3.8 Investigating the effects of TTC18 and TTL5 on cell cycle 

As the cell proliferation proceed from  one  stage  of  the  cell  cycle  to  the  

other,  all mechanisms necessary for apoptosis are present throughout the cell cycle 

(Alenzi, 2004). DNA synthesis can be halted at any stage of the cell cycle when cells 

are exposed to harmful environmental agents such as mutagenic chemicals or  

radiation  (Papamichos-Chronakis et  al., 2006). In essence, DNA synthesis is halted 

in order for the cell to repair damaged DNA. If the DNA damage is repairable, the 

damage is repaired and cell proliferation continues, however if the damage is 

severe, the cell commits suicide (Wyllie et al., 1984). In the case of anticancer drug 

development, Pucci et al., (2000) and Bertino et al., (2003) pointed out that the 

basic understanding of the stages of the cell cycle is imperative as novel 

therapies may be developed to target the genes that are involved in circumventing 
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apoptosis or inhibiting the proper functioning of the cell cycle for example the 

cyclin dependent kinase inhibitors.  

 

One of the methods used to perform cell cycle analysis is the propidium iodide (PI) 

method. PI is a nucleic dye that intercalates single or double stranded DNA/RNA 

and fluoresces red. Since PI also stains RNA, this should first be removed with 

ribonuclease. PI can be used to identify the percentage of cells that are in one of the 

three phases of the cell cycle or to demonstrate the presence of apoptotic bodies 

(fragmented cells with low DNA content), which appear in the Sub-G1 phase. The 

intensity of the PI signal is directly proportional to the DNA content. Following 

staining with the PI, cells that have lost DNA will take up less of the dye and will 

appear to the left of the G1 peak (the so- called “sub-G1 peaks”, i.e. cells with lower 

fluorescence level than G0+G1 cells) and are hence considered apoptotic. The major 

disadvantage is that apoptotic G2-Phase cells that exhibit a reduced DNA content 

could represent the DNA content of a G1-cell. Therefore it may not be detected as 

apoptotic and this can result in an underestimation of the apoptotic population. 

 

To assess whether TTC18 and TTL5 affect cell cycle progression, H157 cells were 

treated for 6, 12, 18 and 24 hours with 15µM of TTC18 and TTL5 (Figure 3.4). The 

sub-G1 population for the untreated (Figure 3.4 C) and TTL5 treated (Figure 3.4 D) 

cells were below 2%, while the sub-G1 population for TTC18 treated cells 

incrementally increased from 2% to 12% over the 24hr period. This increase in the 
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sub-G1 population was accompanied with a decrease in the G1 population. Cells 

treated TTL5 showed a time dependent increase in the G1 population, which 

appeared to be associated with a decrease in S and G2/M phases. 
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Figure 3.4: Cell cycle analysis of H157 cells. H157 cells were treated for 6, 12, 18 
and 24 hours with 15µM of gold complex TTC18 and phosphine ligand TTL5 and 
stained with PI as described in chapter 2, section 2.2.10.2.  Cells were analysed 
using a FACScan (Becton Dickson) instrument equipped with a 488 nm argon 
laser as a light source. Panel A shows how the analysis was done. Panel A1 shows 
histogram plot of the DNA content on the X-axis and counts on the Y-axis. Indicated 
on the histogram are the three main stages (G1, G2 and S-phase) of the cell cycle and 
the Sub-G1 phase. Panel A2 shows the stages of the cell cycle. Panels B, C and D 
show the cell cycle profile of untreated, TTL5 treated and TTC18 treated H157 
cells, respectively. The experiment was done in triplicate and data is represented in 
a bar graph as the mean percentage cells. 
 

 
 

 

 

 

 



 

	
  

140	
  

3.9 Evaluating mitochondrial depolarisation using the TMRE assay 

There are several functions associated with mitochondria. Mitochondria are involved in 

bioenergetics, apoptosis and cell signalling (Lum and Nagley, 2003). Mitochondria have 

been implicated in influencing life and death decisions by initiating or inhibiting cell 

death (Krohn et al. 1999). The depolarisation of the mitochondrial membrane potential 

was shown to be required for the subsequent release of pro-apoptotic factors from the 

mitochondria. However, Krohn et al., (1999), showed that apoptosis can also occur in the 

absence of mitochondrial depolarisation. 

 

The molecular probe tetramethylrhodamine ethyl ester (TMRE) can be used to assess 

mitochondrial membrane depolarisation or loss of the electrochemical gradient across the 

mitochondrial membrane (Jayaraman, 2005). TMRE is a cationic, lipohilic dye that 

accumulates inside the membrane regions of healthy functioning mitochondria 

according to the Nernst equation potential in a voltage dependent manner (Kronhn et 

al., 1999). TMRE fluoresces bright orange/red in viable cells, which dissipates when the 

cells become apoptotic. The loss of fluorescence can be measured by flow cytometry. To 

evaluate mitochondrial membrane depolarisation, H157 cells were treated for 6, 12, 18 

and 24 hours with 30µM of the gold complex TTC18, the phoshine ligand TTL5. The 

mitochondrial membrane potential (ΔΨm) was evaluated as described in chapter 2, 

section 2.2.8 (Figure 3.5). Both TTC18 and TTL5 induced mitochondrial depolarisation 

in H157 cells in a time dependent manner. However, the number of cells with depolarised 

mitochondria was higher for TTC18 than TTL5. 
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Figure 3.5: Assessing mitochondrial depolarisation using TMRE. H157 cells were cultured 
in 6 well plates as described in chapter 2, section 2.2.8. The cells were either left untreated 
or treated with 30µM of TTC18, or TTL5. The cells were stained with TMRE at 6, 12, 18 
and 24 hours. TMRE fluorescence was measured on a FACScan™(Becton Dickson) 
instrument using the FL-3 channel. 
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3.10  Summary 
 

The toxicity of fifteen phosphine ligands and fifteen gold(I) complexes were evaluated 

on a panel of 13 cell lines. Light microscopy was used to assess whether 50µM of these 

compounds can induce any morphological changes in these cells. The IC50 values for all 

30 compounds were determined for each cell line using the MTT assay. The pro-

apoptotic activity of all 30 compounds was evaluated on the panel of cell lines. The 

cells were treated for 24 hours with 50µM of the compounds and apoptosis was 

assessed using the APOPercentage assay. Based on the results obtained for the MTT 

assay and the APOPercentage assay, the gold(I) complexes were more bioactive than 

the phosphine ligands. The gold complexes TTC2, TTC4, TTC18, TTC20, TTC22, 

TTC25 and the ligand TTL5 were noticeably the most active compounds. The sensitivity 

of the cell lines varied, with Jurkat cells being very susceptible to the compounds. 

 

The two most active compounds TTC18 and TTL5 were further tested on two cell lines 

(H157 and Jurkat). Three additional apoptosis assays, the caspase-3 cleavage assay, the 

DNA fragmentation assay and the mitochondrial depolarisation assay were used to 

confirm the activation of apoptosis. TTC18 was more bioactive than TTL5 and Jurkat 

cells were more sensitive to the effects of the two compounds. The effects of TTC18 and 

TTL5 on the mitochondrial potential of H157 cells were assessed using TMRE probe. 

 

The effects of TTC18 and TTL5 on the cell cycle regulation of H157 cells were 

investigated over a 24 hour period. TTC18 induced apoptosis in H157 cells, while TTL5 

 

 

 

 



 

	
  

143	
  

induced cell cycle block in the G2 phase. 
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CHAPTER FOUR: Assessing TTC18 and TTL5 as inducers of oxidative stress. 
 
 
 
 

4.1 Introduction 
 

Living cells are in a tightly regulated intracellular redox state, which is regulated  by  thiol  

containing  molecules  such  as glutathione and thioredoxin. Redox homeostasis is 

important in order for biological processes such as DNA synthesis, cell cycle regulation, the 

transcriptional activation of genes, enzyme activation and programmed cell death (Arrigo, 

1999). Redox homeostasis controls the level of intracellular reactive oxygen species (ROS), 

which are formed as side products of biological reactions that use the electron transfers, for 

example oxidative phosphorylation. It is also noted that small amounts of ROS are 

important in modulating cell metabolism, gene expression and also in post-translational 

modification of proteins (Sies, 1991). When the intracellular levels ROS produced by 

oxidizing agents such as peroxides, radiations, toxins, high doses of inflammatory cytokines 

or glutathione depriving drugs exceed the levels of antioxidants, ROS can become toxic 

causing oxidative injuries or oxidative stress (Arrigo, 1999). Oxidative stress has been 

implicated in many diseases including cancer atherosclerosis, acquired immunodeficiency 

syndrome (AIDS), rheumatoid arthritis (RA), Alzheimer’s, aging and Parkinson’s 

(Townsend et al., 2003).  Several studies demonstrated that gold compounds to induce 

apoptosis by increasing intracellular levels of ROS (Townsend et al., 2003; Leonard et al., 

2004; Wang et al., 2005; Omata et al., 2006), 

 
 
 

 
 
 
 
 

 

 

 

 



 

 

 144	
  

The aim of this chapter is: 
 

To further investigate the mechanisms through which the gold complex TTC18 and the 

phosphine ligand TTL5 induce apoptosis. This chapter will specifically evaluate the 

production of ROS in cultured cells treated with these compounds. 

 

4.2 Assessing ROS generation 

Several assays are available to assess intracellular ROS production. One such assay use 5-

(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA), a non-

fluorescent probe that freely permeates into cells. CM-H2DCFDA is not fluorescent and is 

hydrolysed to DCFH by intracellular esterases when inside the cell. DCFH is oxidized to 

the highly fluorescent 2', 7'-dichlorodihydrofluorescein (DCF) in the presence of ROS. 

DCF can be detected by flow cytometry and can therefore be used to detect intracellular 

ROS.  

 

H157 and Jurkat cells were treated for 24 hours with 50µM TTC18 and TTL5. ROS 

production was evaluated using CM-H2DCFDA (Figure 4.1). Both TTC18 and TTL5 

induced the production of ROS in H157 and Jurkat cells. However, ROS production in 

Jurkat cells was higher. Jurkat cells also produced higher levels of ROS in response to 

H2O2-treatment. In addition, TTC18 produced higher levels of ROS in comparison to TTL5 

in H157 only.  
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Figure 4.1: ROS production in Jurkat and H157 cells. Jurkat and H157 cells were treated for 24 
hours with 50µM of TTC18 and TTL5. As a positive control, cells were also treated with 400µM 
of H2O2. The production of ROS was evaluated using the CM-H2DCFDA molecular probe. Cell 
fluorescence was measured by flow cytometry as described in chapter 2, section 2.2.12. The 
experiment was done in triplicate and data is represented in a bar graph as the mean 
percentage DCF positive cells. 
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4.3 Assessing lipid peroxidation 

Lipid peroxidation is defined as the oxidative degradation of the cell membrane 

phospholipids and polyunsaturated fatty acids (PUFA) (Kelly et al., 1998) and the process 

can be  catalyzed  by  free  radicals  (non  enzymatic  lipid  peroxidation)  or  enzymes 

(enzymatic   lipid   peroxidation)   (Halliwell   and   Chirico,   1993;   Gutteridge,   1995; 

Türkdogan  et al., 1998). During lipid peroxidation, free radicals remove electrons 

from lipids in the cell membranes resulting in cell damage and increased production of 

free radicals. It is the free radicals that cause oxidative damage to nuclear DNA and 

proteins (Türkdogan et al., 1998).   Lipid hydroperoxides are the initial products that are 

formed when lipids are damaged by oxidative stress and are used as indicators of 

oxidat ive stress  (Kelly et al., 1998; Halliwell and Chirico, 1993; Halliwell and 

Chirico, 1993; Kell et al., 1998; Shao et al., 2009; Catala, 2009). Lipid hydroperoxides 

have been reported by Niki et al., (2005) as unstable products of lipid peroxidation and are 

substrates for several enzymes including glutathione peroxidases and phospholipases. 

Some of the hydroperoxides generated as a result of advanced lipid peroxidation include 

4-hydroxy-2-nonenal (4-HNE) and 4-hydroxyl-2- hexenal (4-HHE) (Catala, 2009) and 

malondialdehyde (MDA) (Halliwell and Chirico, 1993; Niki et el., 2005).  

 

Catala (2009) reported that hydroperoxides could be reduced to their corresponding 

alcohols by glutathione peroxides. However, Catala, (2009) reported that a decrease in 

glutathione peroxides could result in the degradation of the hydroperoxides that can lead 

to oxidative stress. Niki et al., (2005) reported that oxidative damage occurs when 

oxidative stress exceeds the antioxidant capacity of the cell. However, exposure to low 
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levels of stress may enhance the defence capacity of the cell.  

 

Recent studies have shown that gold based compounds in both (I) and (III) oxidation states 

have pro-apoptotic and anti-proliferative properties against selected human cell lines and 

have been reported to induce apoptosis through the inhibition of thioredoxin reductase and 

subsequent  increase  in  hydrogen  peroxide  and  deregulation  of mitochondrial 

functions which consequently leads to cell death (Kerimova et al., 2000; Rigobello et 

al., 2007; Casini et al., 2007; Rackham et al., 2007; Bindoli, 2009). 

 

One of the ways to assess oxidative damage is the measurement of the end products of 

lipid peroxidation as they are generally accepted markers of oxidative stress (Williamson 

et al., 2008). A well- established assay for screening and monitoring lipid peroxidation 

is the thiobarbituric acid reactive substances (TBARS) a s s a y  (Botsoglou et al., 1994; 

Sheu et al., 2003). Most researchers use the TBARS assay to evaluate presence of MDA 

in drugs, food, as well as human and animal tissue samples. MDA is a secondary lipid 

oxidation product. However, because thiobarbituric acid reacts with a number of other 

oxidation products including 4-HNE, other unsaturated aldehydes and endoperoxides from 

enzymatic routes, the TBARS assay is not very specific. The p r i nc ip l e  o f  t he  

TBARS assay is based on the production of a coloured adduct from the reaction of 

lipid peroxidation products. One of the lipid peroxidation products is MDA. The MDA 

forms a 1:2 adduct with thiobarbituric acid (TBA). This adduct can be measured 

calorimetric method at 532nm or fluorometric method measured at 553nm (Wei et al., 

2000) or by HPLC (Halliwell and Chirico, 1993; Botsoglou et al., 1994).  
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Oxidative damage in H157 cells treated for 24 hours with TTC18 and TTL5 was assessed 

using the TBARS assay to evaluate the production of MDA (Figure 4.2) using the 

calorimetric method.  H157 cells produced MDA in response to TTC18 and TTL5 

treatment. However, MDA production was significantly higher for TTL5 in comparison to 

TTC18.  
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Figure 4.2: Assessing oxidative stress using the TBARS assay. H157 cells were 
either left untreated or treated for 24 hours with two concentrations (30µM or 50µM) 
of the gold complex TTC18 (A) and the phosphine ligand TTL5 (B). As a positive 
control, the cells were also treated with 400µM H2O2. TBARS was determined 
using the procedure described in chapter 2, section 2.2.13.  
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4.4 Evaluating the cytoprotective effects of antioxidants 

Several antioxidants have been reported to protect cells from the  effects of free 

radicals (Mittler, 2002), and xenobiotics (Sandermann Jr., 1992; Nordberg and Arnér, 

2001). Glutathione (GSH) is the main antioxidant regulatory system in the cell 

(Arrigo, 1999; Leonard et al., 2004). Glutathione is one of the systems that cells 

use to maintain redox homeostasis and to cope with high levels of ROS produced 

during oxidative stress (Arrigo, 1999).   The cells protect themselves from excess ROS 

by blocking the production  of  ROS,  or  by  sequestering  transition  metals  that  have  

free electrons, or by scavenging or detoxifying the ROS with enzymes, or antioxidants 

such as vitamin C or E or thiol-containing molecules (Arrigo, 1999). A number of 

anticancer drugs have been implicated to exert their cytotoxic effects by altering GSH 

levels in the cells (Sies, 1991) and as noted by Tew (1994) and also by Stordal and 

Davey (2007), increased levels of cellular GSH could play a major role in desensitising 

cells to apoptosis. Wang et al., (2005) further stated that cells treated with anticancer 

agents may inhibit GSH and this may facilitate ROS accumulation in the cells and 

increase cytotoxicity. Leonard et al, (2004) further noted that cells attempt to defend 

themselves from the cytotoxic effects of ROS by neutralizing the effects of ROS with 

antioxidants and that the balance between oxidants and antioxidant defences are critical 

in maintaining redox homeostasis.  

 

Thiol-containing  molecules  such  as  reduced  glutathione  and  ascorbic  acid 

(vitamin  C)  are  known  to   be   strong  antioxidants  (Stordal  and  Davey,   

2007; Cotgreave    and    Gerdes, 1998),    and    Diethyldithiocarbamate    (DDTC)    
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and Pyrrolidine dithiocarbamate  (PDTC) are widely used dithiocarbamates in 

clinical use (Zhu et al., 2002).    Many of the biological effects of dithiocarbamates 

are a result of their  metal-chelating  properties  (Schreck  et  al.,  1992;  Zhu  et  al.,  

2002). Dithiocarbamates potentially inhibit/block the damaging effects of oxidizing 

compounds (Schreck et al., 1992). Enzymes such as superoxide dismutase and 

catalase also play important roles in converting superoxide to H2O. 

 

In sections 4.2 and 4.3 it was demonstrated that that the gold complex TTC18 and 

phosphine ligand TTL5 induced the production of intracellular ROS, which is also 

associated with oxidative stress. In order to determine if antioxidants could protect the 

Jurkat, H157 and KMST-6 cells from the oxidative effects of the gold complex (TTC18) 

and the phosphine ligand (TTL5), the cells were pre-treated with several antioxidants, 

which included vitamin C (Figure 4.3), PDTC (Figure 4.4), DDTC (Figure 4.5), 

catalase (Figure 4.6) and L-glutathione (Figure 4.7).  

 

Treatments with the increase in concentrations of antioxidants only were not toxic to the 

cells (Figure 4.3-A, Figure 4.4-A, Figure 4.5-A, Figure 4.6-A and Figure 4.7-A). Pre-

treatments with vitamin C (Figure 4.3-B), PDTC (Figure 4.4-B) DDTC, (Figure 4.5-B), 

catalase (Figure 4.6-B), and L-glutathione (Figure 4.7-B) failed to protect Jurkat, H157 

and KMST-6 cells from the effects of TTC18 and TTL5. Since pre-treatment with the 

antioxidants  failed to protect the cells against the effects of TTC18 and TTL5, the cells 

were also concurrently treated with the antioxidants and TTC18 or TTL5. Concurrent 

treatment with vitamin C, PDTC, DDTC also failed to protect the cells (data not shown). 

However, the concurrent treatment with L-glutathione and TTC18 protected H157 cells 
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against the effects of TTC18 (Figure 4.7-C). The cell viability increased from 2% 

(TTC18 only) to 80% (concurrent treatment with L-glutathione and TTC18). However, 

Jurkat and KMST-6 cells were not protected by L-glutathione. 
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Figure 4.3: Investigating the cytoprotective potential of vitamin C. Jurkat, H157 and 
KMST6 cell were either left untreated or treated with increasing concentrations of vitamin 
C (200 to 2 000µM) for 24 hours and evaluated for apoptosis induction using the 
APOPercentage™ apoptosis assay (panel A). To investigating the cytoprotective potential 
of the antioxidant vitamin C, the cells were pre-treated with 2000µM of vitamin C for 24 
hours then treated with 50µM of phosphine ligand TTL5 (panel B) or 50µM of gold 
complex TTC18 (panel C) and evaluated for apoptosis induction using the 
APOPercentage™ apoptosis assay. The experiment was done in triplicate and data is 
represented in bar graphs as the mean percentage apoptotic cells. 
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Figure 4.4: Investigating the cytoprotective potential of PDTC. Jurkat, H157 and 
KMST6 cell were either left untreated or treated with increasing concentrations of PDTC 
(100 to 200µM) for 24 hours and evaluated for apoptosis induction using the 
APOPercentage™ apoptosis assay (panel A). To investigating the cytoprotective potential 
of the antioxidant PDTC, the cells were pre-treated with 100µM of PDTC for 24 hours 
then treated with 50µM of phosphine ligand TTL5 (panel B) or 50µM of gold complex 
TTC18 (panel C) and evaluated for apoptosis induction using the APOPercentage™ 
apoptosis assay. The experiment was done in triplicate and data is represented in bar 
graphs as the mean percentage apoptotic cells. 
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Figure 4.5: Investigating the cytoprotective potential of DDTC. Jurkat, H157 and 
KMST6 cell were either left untreated or treated with increasing concentrations of DDTC 
(100 to 200µM) for 24 hours and evaluated for apoptosis induction using the 
APOPercentage™ apoptosis assay (panel A). To investigating the cytoprotective potential 
of the antioxidant DDTC, the cells were pre-treated with 100µM of DDTC for 24 hours 
then treated with 50µM of phosphine ligand TTL5 (panel B) or 50µM of gold complex 
TTC18 (panel C) and evaluated for apoptosis induction using the APOPercentage™ 
apoptosis assay. The experiment was done in triplicate and data is represented in bar 
graphs as the mean percentage apoptotic cells. 
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Figure 4.6: Investigating the cytoprotective potential of catalase. H157 cells were either 
left untreated or treated with two concentrations of catalase (150 and 200µM) for 24 hours 
and evaluated for apoptosis induction using the APOPercentage™ apoptosis assay (panel 
A). To investigating the cytoprotective potential of the catalase, the cells were pre-treated 
with 150µM catalase for 24 hours and then treated with 50µM of phosphine ligand TTL5 
or 50µM of gold complex TTC18 (panel B) and evaluated for apoptosis induction 
using the APOPercentage™ apoptosis assay. The experiment was done in triplicate and 
data is represented in bar graphs as the mean percentage apoptotic cells. 
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Figure 4.7: Investigating the cytoprotective potential of L-glutathione. Jurkat, H157 and 
KMST6 cell were either left untreated or treated with increasing concentrations of L-
glutathione (2 to 5mM) for 24 hours and evaluated for apoptosis induction using the 
APOPercentage™ apoptosis assay (panel A). To investigating the cytoprotective potential 
of the antioxidant L-glutathione, the cells were pre-treated for 24 hours with 2.5mM L-
glutathione then treated for 24 hours with 50µM of phosphine ligand TTL5 or 50µM of 
gold complex TTC18 (panel B). Alternatively, the cells were co-treated for 24 hours with 
2.5mM L-glutathione and 50µM TTL5 or 50µM TTC18 (panel C). The cells were 
analysed for the induction of apoptosis using the APOPercentage™ apoptosis assay. The 
experiment was done in triplicate and data is represented in bar graphs as the mean 
percentage apoptotic cells.  
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4.5 Evaluating the uptake of TTC18 using ICP Mass Spectrometry analysis 

In section 4.4 it was shown that concurrent treatment with TTC18 and L-glutathione 

protects H157 cells against apoptosis. In order to elucidate whether L-glutathione affects 

cellular uptake of TTC18, the uptake assay  described  in  chapter  two, section 2.2.15 was 

performed. The role of speciation in correlation with cellular uptake and cytotoxicity can 

aid in determining the amount of drug to treat the cells with (Dopp et al., 2010). In many 

cases for bioactivity to occur, the host cells must be able to take up the drug (Ghezzi et al., 

2004), although compound uptake does not necessarily constitute to bioactivity. Some 

compounds maybe taken up by cells but remain biologically inactive (Okada et al., 1993; 

McKeage et al., 2000). In this section the  uptake of the most active gold complex 

TTC18 o v e r  a  8 - h o u r  p e r i o d  w a s  evaluated in H157 cells in the absence and 

presence of the antioxidant, L-glutathione. Figure 4.8 shows that the amount of gold present 

in H157 cells were much lower when cells are concurrently treated with TTC18 and L-

glutathione. 
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Figure 4.8: Assessing the cellular uptake of TTC18. H157 cells were either left untreated 
or treated with 30µM of  the  gold complex (TTC18) for 30min, 2hrs, 4hrs and 8hrs in 
the presence and absence of 2.5mM L-glutathione. Following treatments, the Au uptake 
assay described in chapter 2, section 2.2.15. 
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4.6 Summary 
 

TTL18 and TTL5 induced ROS in both Jurkat and H157 cells. However, Jurkat and H157 

responded very differently to the treatments. Close to 100% of the Jurkat cells treated with 

TTL18, TTL5 and the positive control (H2O2) were  positive for ROS production, while 

the response of H157 cells varied depending on the treatment (figure 4.1). TTC18 induced 

ROS in a higher number of H157 cells. Both TTL5 and TTC18 induced oxidative stress in 

H157 cells. However, treatment with 50µM TTL5 produces 10× more MDA in these cells 

(figure 4.2). The lipid peroxidation caused by TTL5 in H157 cells is therefore 

significantly higher. Pre-treatment of H157, Jurkat and KMST-6 cells with antioxidants 

(vitamin C, PDTC, DDTC catalase and L-glutathione) failed to protect these cells against 

the effects of TTL5 and TTC18 (figures 4.3-4.6). Concurrent treatment with the 

gluthatione and TTC18 protected H157 cells but not Jurkat and KMST-6 cells against the 

effects of TTC18 (figure 4.7). The ICP-MS results show that H157 cells take up TTC18 

within 30 min of the treatment and that the concurrent treatment with L-glutathione 

reduces the uptake of TTC18 into H157 cells (figure 4.8). 
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CHAPTER FIVE: Evaluation of cytoprotective potential of thioredoxin. 

 

5.1 Introduction 

As discussed previously in chapter four (section 4.4), there are several antioxidants known 

to protect cells from xenobiotics. Two other major intracellular redox systems that 

have been reported to protect cells from xenobiotics are the thioredoxin (Trx) and 

glutathione systems, which also play other roles such as controlling cell proliferation and 

cancer development (Marks, 2006). The Trx system is composed of thioredoxin (Trx), 

thioredoxin reductase (TrxR1) and nicotinamide adenine dinucleotide phosphate (NADPH)  

(Arnér  and  Holmgren,   2006). Peter Reichard and co-workers discovered the 

thioredoxin system  in  1964.  They reported that  the  system involves hydrogen donation 

for the enzymatic synthesis of cytidine deoxyribonucleoside diphosphate by ribonucleotide 

reductase, which was observed in Escherichia coli (Holmgren and Lu, 2010). Since the 

system was reported, many studies have shown that thioredoxin reductase (TrxR) is a 

selenoenzyme, which has three isoforms namely: TrxR1 found in the cytosol, TrxR2 

found in mitochondria and TrxR3 or TGR (thioredoxin glutathione reductase) found 

mainly in testis (Madeja   et al., 2005; Holmgren and Lu, 2010). The Trx enzyme 

contains a conserved –Cys–Gly–Pro–Cys– active site, which is essential for the redox 

regulatory function of the Trx (Madeja et al., 2005; Holmgren and Lu, 2010). TrxR 

performs various biological functions that are essential in life of higher organisms 

(Bindoli et al., 2009). The studies done by Bindoli et al., (2009), showed that the 

disruption of either TrxR1 or TrxR2 genes is embryonic lethal phenotype.  It was shown 

that TrxR1 null embryos were affected mainly by compromised cell proliferation 

whereas TrxR2 null embryos suffered from severe anaemia and improper heart 
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development (Bindoli et al., 2009). On the other hand, it was shown that TrxR is over 

expressed in many tumour cells and the increased presence of TrxR is thought to 

contribute to drug resistance (Madeja et al., 2005; Marks, 2006; Casini, 2008; Che and 

Siu, 2010). Trx is therefore emerging as  a  new  target  for  anti-cancer  drug  discovery  

(Arnér  and Holmgren, 2006; Liu et al., 2009). 

 

5.2 Gold compounds as inhibitors of thioredoxin and glutathione 

Several studies have reported the use of Auranofin and other gold (I) complexes as anti- 

arthritic drugs, and also showed that gold complexes inhibit the growth of cultured tumour 

cells in vitro and many have shown to have anti-mitochondrial activity (McKeage, 2002). 

Additionally, other studies have shown that gold complexes induced apoptosis in a variety 

of cancer cells as well as cancer cells that had acquired resistance to specific anti-cancer 

drugs (Marks, 2006; Powis and Kirkpatrick, 2007). Their mode of action has been 

attributed to inhibition of mitochondrial and cytosolic proteins mainly glutathione and 

thioredoxin systems (Arnér and Holmgren, 2006; Che and Siu, 2010). It has been shown 

that inhibition of glutathione and thioredoxin reductase (Tiekink, 2002; Gandin, 2010), 

results in the alteration in the balance of hydrogen peroxide production and its removal 

results in the disturbance of the normal electron flow along the respiratory chain (Arnér 

and  Holmgren,  2006;  Cox,  2008;  Ott,  2009).  The  mitochondrial  respiratory  chain 

produces superoxide anion that dismutes to hydrogen peroxide and oxidizes thioredoxin 

in a reaction mediated by peroxiredoxin (Bindoli et al., 2009). According to Bindoli et al., 

(2009), gold(I/III) complexes inhibit thioredoxin reductase, and inhibition of TrxR  leads 

to its own accumulation as well as accumulation of hydrogen peroxide inside the cell. 

Bindoli et al., (2009), further reported that increased accumulation of H2O2 results in 
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mitochondrial perturbations leading to the opening of the mitochondrial permeability 

transition pore and/or increase in the permeability of the mitochondrial outer membrane 

consequently releasing cytochrome c as well as H2O2 to the cytosol where H2O2 causes 

oxidation of Trx1, and oxidation of mitochondrial thioredoxin (Trx-2), which cannot be 

reduced back to thioredoxin reductase. Alteration of the redox state results in the creation 

of conditions that enhance apoptosis (Marzano et al., 2007), for instance stimulation of 

the MAP kinases pathways that leads to cell death (Bindoli et al., 2009) and release of 

cytochrome c that binds with apaf-1, ATP and procaspase-9 to form apoptosome complex 

that activate caspase-9 and in turn activate down stream executioner caspases leading to 

cell death (Rigobello et al., (2004). Both cancer cells and non cancerous cells are known 

to be resistant to permeability transition (Rigobello et al., 2004), therefore, compounds or 

drugs that disrupt permeability transition, are considered to be of therapeutical value 

(Bindoli et al., 2009; Liu et al., 2009; Che and Siu, 2010). The over expression of 

mitochondrial thioredoxin (Trx-2) has been reported to protect cells from the effects of 

oxidizing agents and to assess this cyto-protective effect against the gold complex or 

phosphine ligand oxidative cell death, Trx-2 was over expressed and cells were subjected 

to apoptosis induction. 

 

The aim of this chapter: 

To assess whether the over expression of Trx-2 protects H157 cells against the effects of 

the gold complex (TTC18) and the phosphine ligand (TTL5). 

 

5.3 Cloning of Trx-2 

Forward and reverse primers were designed for the amplification of Trx-2 and cloning of 

the PCR product into the pcDNA™ 3.1 D/V5-His-TOPO cloning vector. Total RNA was 
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isolated from KMST-6 cells. The total RNA was used as a template to synthesize a cDNA 

library of KMST-6 cells using the ImProm-II™  Reverse Transcriptase system as described 

in chapter 2, section 2.2.18. The cDNA library was used as template to amplify Trx-2 

(Figure 5.1). The expected size for the human Trx-2 gene product is 496 bp. The PCR 

produced a 500bp product, which is in agreement with the expected result. 

 

The Trx-2 PCR product was cut from the agarose gel and the DNA was isolated from the 

gel as described in chapter 2, section 2.2.26. The isolated DNA was used as an insert for 

the ligation reaction into the pcDNA™ 3.1 D/V5-His-TOPO cloning vector as described in 

chapter 2, section 2.2.24.3. The ligation products were transformed into One Shot® TOP10 

Chemically competent E.coli cells (described in chapter 2, section 2.2.24.4). The 

transformed colonies were screened by colony PCR for the presence of the Trx-2 PCR 

product (described in chapter 2, section 2.2.24.4). Six colonies were screened for the 

presence of Trx-2 (Figure 5.2). Four of the colonies produced a ~500bp PCR product. 

Glycerol stocks were prepared for all four colonies as described in chapter 2, section 

2.2.23. Colony number 4 was selected for sequence analysis. The colony was plated on 

Nutrient agar and submitted to Inqaba Biotech core sequencing facility for sequencing. 

The DNA sequence data was analyzed using the Basic Local Alignment Search Tool 

(BLAST) (http://blast.ncbi.nlm.nih.gov/). The DNA sequence was searched against the 

human RefSeq database (blastn). The BLAST output is shown in Figure 5.3. The human 

Trx-2 DNA sequence (accession number, NM_012473.3) was the most significant match. 

The alignment between clone 4 and NM_012473.3 shows an identity or match of 100% for 

the 496 base pairs. 
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The DNA sequence for colony number 4 was translated into protein sequence using the 

ExPASy Bioinformatics Resource Tool (http://web.expasy.org/translate). The translated 

sequence aligned with the protein sequence for human Trx-2 (accession number, 

NP_036605.2). The two protein sequences were aligned using the Align Two (or more) 

sequences BLAST tool (bl2seq) (Figure 5.4). The alignment between clone 4 and 

NP_036605.2 shows an identity or match of 100% for the 165 residues. 
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Figure 5.1: PCR amplification of Trx-2. Trx-2 was PCR amplified from a cDNA library 
prepared from KMST-6 cells and electrophoresed on a 1% agarose gel. Lane M is the 
molecular weight marker, lane B is the negative control (water control) and lane 1 is the 
PCR product produced from KMST-6 cells. 
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Figure 5.2: Screening transformed colonies for the presence of Trx-2 by colony PCR. Six 
colonies were selected for screening. The PCR products were electrophoresed on a 1% 
agarose gel. Lane M is the molecular weight marker while lanes B1 is the water blank, 
while lanes 2, 3, 4, 5, 6 and 7 is the screen for the six different clones.  
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Figure 5.3: Analysis of sequence data for colony number 4. BLAST output for DNA 
sequence obtained for colony 4. A shows a graphic summary of the BLAST hits on the 
query sequence (colony number 4), B shows a description of the most significant hit and C 
shows the alignment to the most significant hit.
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Figure 5.4: Sequence alignment of clone 4 and Trx-2. The DNA sequence of clone 4 was 
converted into protein sequence and aligned to the protein sequences of Trx-2 
(NP_036605.2). 
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5.4 Over expression of Trx-2 in H157 cells 

The Trx-2 PCR product was successfully cloned into the pcDNA™ 3.1 D/V5-His-TOPO 

cloning vector to produce the pcDNA™ 3.1 D/V5-His-TOPO/Trx-2 construct. Plasmid 

DNA was prepared for colony 4 as described in chapter two, section 2.2.27. This DNA 

was used to transfect H157 cells as described in chapter two, section 2.2.29. Stably 

transfected cells were generated by selecting the transfected cells in G418. The over 

expression of the Trx-2 in the transfected cells was investigated using Western blot 

analysis (Figure 5.5). Total protein was isolated from H157 cells and mutant H157 cells 

that was transfected with the pcDNA™ 3.1 D/V5-His-TOPO/Trx-2 vector as described in 

chapter two, section 2.2.31. The protein samples were electrophoresed on a 

polyacrylamide gel as described in chapter two, section 2.2.31 and Western blot analysis 

was performed as described in chapter two, section 2.2.32 using an anti-Trx-2 antibody. 

Figure 5.5 shows that cells transfected with the pcDNA™ 3.1 D/V5-His-TOPO/Trx-2 

vector express higher levels of Trx-2 compared to H157 control cells. 

 

To confirm that the increased levels of Trx-2 also increase the thioredoxin reductase 

activity in H157 cells, the thioredoxin reductase activity was measured in H157 cells and 

the Trx-2 transfected H157 cells as described in chapter 2, section 2.2.16. Figure 5.6 

shows that the thioredoxin reductase activity) is higher in the Trx-2 transfected  H157 cells  

(i.e. cells over expressing Trx-2 compared to untreated controls. Treatment with the gold 

complex TTC18 completely suppressed the thioredoxin reductase activity in H157 cells, 

while treatment with the phosphine ligand TTL5 had very little or no significant effect on 

the thioredoxin reductase activity. 
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Figure 5.5: Evaluating the expression of Trx-2 by Western blot analysis. The 
expression of Trx-2 in H157 (lane 1) and H157 cells transfected with pcDNA™ 3.1 D/V5-
His-TOPO/Trx-2 vector (lane 2) were investigated using the anti-Trx-2 antibody. The 
anti-actin antibody was used to confirm equal total protein loading in lanes 1 and 2. 
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Figure 5.6: Thioredoxin reductase activity in H157 cells that over express Trx-2. The 
thioredoxin reductase activity was determined in H157 cells (untransfected) and mutant 
H157 cells that over express Trx-2 (transfected). The cells were also treated with TTC18 
and TTL5 for 24 hours. A shows thioredoxin reductase activity in the absence of the 
inhibitor, while B shows thioredoxin reductase activity in the presence of the inhibitor.  
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5.5 Evaluating the cytoprotective potential of Trx-2 over expression 

Sections 5.3 and 5.4 showed that H157 cells transfected with the pcDNA™ 3.1 D/V5-

His-TOPO/Trx-2 vector over express Trx-2 and that the over expression of Trx-2 is also 

associated with increased thioredoxin reductase activity the mutant H157 cells. 

Moreover, TTC18 completely inhibited this activity 

 

To evaluate whether the over expression of Trx-2 can protect cells against the effects of 

TTC18 and TTL5, the mutant H157 cells were treated with these compounds and the 

induction of apoptosis was assessed using the APOPercentage™ assay. Figure 5.7 shows 

that the percentage apoptosis observed in H157 cells and H157 cells that over expression 

Trx-2 is the same. TTL5 at 50µM and TTC18 at 30 and 50µM induced apoptosis in 

untransfected and transfected cells compared to untreated controls. Overexpression of Trx-

2 did not have a significant effect on apoptosis induced by these agents compared to 

untransfected cells. 
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Figure 5.7: Assessing the cytoprotective effects of Trx-2 over expression. H157 cells 
(untransfected) and H157 cells that over express Trx-2 (transfected) were treated for 24 
hours with TTC18 and TTL5. The induction of apoptosis was determined by flow 
cytometry as described in chapter 2, section 2.2.7.1. 
 

 
 

	
  

	
  

	
  

	
   	
  

	
  

	
  
	
  	
  

 

 

 

 



 

 

 176	
  

 5.6: Summary 

The human gene encoding Trx-2 was successfully amplified from the cDNA library of 

KMST-6 cells. This PCR product was cloned into the pcDNA™ 3.1 D/V5-His-TOPO 

vector. Sequence analysis confirmed that the DNA sequence and the translated protein 

sequence match the human Trx-2 gene with a 100% identity. No mutations were found. 

H157 cells were transfected with the pcDNA™ 3.1 D/V5-His-TOPO/Trx-2 plasmid DNA 

and cells that stably over express Trx-2 were generated by selecting the transfected cells in 

G418. The over expression of Trx-2 was confirmed by Western blot analysis (figure 5.5), 

which shows that the transfected cells express more Trx-2 in comparison to untransfected 

H157 cells. H157 cells that were tranfected with pcDNA™ 3.1 D/V5-His-TOPO/Trx-2 

also showed higher thioredoxin reductase activity than untransfected H157 cells. 

Treatment with TTC18 completely suppressed thioredoxin reductase activity in both 

untransfected and transfected H157 cells (figure 5.6). There was a moderate reduction in 

thioredoxin reductase activity in response to TTL5 treatment in both untransfected and 

transfected H157 cells (figure 5.6). The over expression of Trx-2 failed to protect H157 

cells against the effects of TTC18 and TTL5. 
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CHAPTER 6: DISCUSSIONS, CONCLUSION AND FUTURE PERSPECTIVES  
 
 

6.1. Phosphine ligands and gold(I) complexes induce morphological changes in 

cultured cells 

Based on morphological features cell death can be classified into different types (Häcker, 

2000; Kroemer et al., 2005; Roos and Kaina, 2006). Yet other studies have also reported 

cell deaths with no observable morphological changes (Jänicke et al., 1998). 

Morphological observations can be combined with biochemical assays in order to 

evaluate the underlying mechanisms of apoptosis (Häcker, 2000).  

 

In this study the pro-apoptotic activity of 15 phosphine ligands (TTL) and the 15 gold(I) 

complexes (TTC) were evaluated. The gold(I) complexes and the phosphine ligands 

selectively induced morphological changes in the panel of thirteen cell lines that were 

screened in this study. This panel consisted of 10 human cancer cell lines, 1 non-

cancerous human cell line and two rodent cell lines (Table 2.3). The morphological 

changes that were observed were studied by light microscopy and included cell shrinkage 

and cell detachment. Based on the morphological changes that were observed, the effects 

of some of the compounds were more severe than others. Some of the compounds were 

able to induce morphological changes in particular cell lines, but failed to have the same 

effect on other cell lines. In general, the gold(I) complexes were more bioactive than the 

phosphine ligands under the conditions that this study was performed.  
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The gold(I) complexes induced morphological changes in a wide range of cell types 

(summarized in Table 3.2).  All the gold complexes induced noticeable morphological 

changes in Jurkat cells and in CHO cells, except TTC20 and 25, which failed to induce 

noticeable morphological changes in CHO cells. TTC2, TTC4, TTC5, TTC6, TTC11, 

TTC18, TTC19, TTC20, TTC22 and TTC25 induced morphological changes in more than 

two cell lines. However, TTC18 induced noticeable morphological changes in all the cell 

lines tested.  

 

Compared to the gold complexes, the phosphine ligands failed to induce noticeable 

morphological changes in most of the cell lines (summarised in Table 3.1). Jurkat cells 

appeared to be very sensitive to the phosphine ligands, with all 15 phosphine ligands 

inducing noticeable morphological changes in Jurkat cells. TTL5 also induced noticeable 

morphological changes in large number of different cell lines, which include CHO, HeLa, 

HepG2, A549J, H157, KMST-6, MG-63 and Hek 293-T cells. TTL5 stood out as the most 

active compound amongst the phosphine ligands.  

 

6.2. Phosphine ligands and gold(I) complexes selectively inhibit cell growth of cancer 

cells 

The IC50 values for all 30 compounds (15 phosphine ligands and the 15 gold(I) 

complexes) were determined on the panel of thirteen cell lines. The IC50 values obtained 

for the phosphine ligands and gold complexes are shown in Tables 3.3 and 3.4, 

respectively. For the purpose of this study, compounds with IC50 values of 50µM or lower 

were considered to be significantly bioactive. The MTT assay showed that the IC50 values 
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for most of the phosphine ligands were above 50µM. Only two of the phosphine ligands 

(TTL5 and TTL19) had IC50 values below 50µM in more than 3 cell lines. The IC50 values 

for TTL19 and TTL5 were below 50µM in seven cell lines  (A549J, CHO, HT29, Jurkat, 

KMST-6, MCF-7 and Hek293-T) and five cell lines (HeLa, H157, Jurkat, MG-63 and 

Hek293-T), respectively. Jurkat, 3T3 and Hek293-T cells were more sensitive to 

phosphine ligands, while Caski cells were the most resistant cell line.  

 

In comparison the IC50 values for most the gold(I) complexes were below 50µM. Except 

for TTC2 and TTC9, all the other complexes had IC50 values below 50µM in more than 3 

cell lines. Based on the MTT assay 3T3, HepG2 and Jurkat cells were more sensitive to 

the effects of the gold(I) complexes. 

 

6.3. Phosphine ligands and gold(I) complexes selectively induce apoptosis in cancer 

cells  

For the purpose of this study, compounds that induced apoptosis in more than 50% of the 

cells treated for 24 hours with 50µM of the compound were considered to have significant 

pro-apoptotic activity.  The APOPercentageTM assay showed that most of the TTL 

compounds failed to induce apoptosis in more than 50% of the cells treated with 50µM of 

the ligands (Table 3.5 and the summary in Table 3.7) and were therefore not considered 

to have significant pro-apoptotic activity. Jurkat cells were more sensitive to the 

phosphine ligands. Eleven of the phosphine ligands (TTL2, TTL4, TTL5, TTL6, TTL9, 

TTL11, TTL14, TTL15, TTL18, TTL19 and TTL20) induced more than 50% apoptosis in 
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Jurkat cells. TTL5 was the most active phosphine ligand, inducing significant pro-

apoptotic activity in five of the cell lines (A549J, CHO, HepG2, Jurkat and KMST-6). 

 

The APOPercentageTM assay showed that most of the gold complexes induced significant 

levels of apoptosis in the panel of cell lines tested in this study (Table 3.6 and the 

summary in Table 3.8). Six of the gold(I) complexes (TTC2, TTC4, TTC18, TTC20, 

TTC22 and TTC25) induced significant levels of apoptosis in more than three cell lines. 

However, the most active gold(I) complex was TTC18 since it induced significant levels 

of apoptosis in all thirteen cell lines tested in this study, while the least active gold(I) 

complex was TTC28. The non-cancerous KMST-6 cells were highly resistant to the 

effects of the gold(I) complexes. TTC18 is the only gold(I) complex that was able to 

induce significant levels of apoptosis in these cells. 

 

The APOPercentage™ assay demonstrated that the phosphine ligands and gold(I) 

complexes selectively induced apoptosis in a number of human cancer cell lines. The 

most active phoshine ligand (TTL5) and gold(I) complex (TTC18) were selected for 

further study. The objectives were to investigate whether these compounds also activate 

other markers of apoptosis and to elucidate the mechanism of action. Two cell lines; H157 

and Jurkat were selected for this study. Three additional markers of apoptosis (caspase-3 

cleavage, mitochondrial depolarisation and DNA fragmentation) were used to study the 

activation of apoptosis. 
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6.4. TTC18 and TTL5 activate caspase-3 

The activation of caspase-3 is a universal marker for the induction of apoptosis. The 

cleavage of caspase-3 was assessed in H157 and Jurkat cells following treatment with 

TTC18, TTL5 and cisplatin (used as a positive control). The results (Figure 3.1) showed 

that all three treatments induced caspase-3 cleavage in both cell lines. However, the 

percentage cells that were positive for caspase-3 cleavage was higher for Jurkat cells than 

H157 cells, suggesting that Jurkat cells were more sensitive to the effects of TTC18, 

TTL5 and cisplatin. H157 cells responded very differently to TTC18 and TTL5. TTC18 

induced caspase-3 cleavage in about ~60% H157 cells, compared to ~20% for TTL5 

(Figure 3.1), suggesting that TTC18 is more cytotoxic than TTL5. 

 

In order to evaluate whether the cleavage of caspase-3 in H157 is a dose and time 

dependent event, the cells were either treated with increasing doses (5, 15, 30 and 50µM) 

of TTC18 for 24 hours or the cells were treated with 50µM TTC18 for different time 

periods (6, 12, 18 and 24 hours). Figure 3.2-A shows a concentration dependent increase 

in the number of cells staining positive for cleaved caspase-3. Figure 3.2-B shows time 

dependent increase in caspase-3 activation over 24 hours.  

 

6.5. TTC18 and TTL5 induce DNA fragmentation 

DNA fragmentation is one of the hallmarks of apoptosis. The APO-DIRECT™ assay was 

used to evaluated DNA fragmentation in H157 and Jurkat cells following the treatment of 

the cells with 30µM TTC18 and 30µM TTL5. As a positive control, the cells were also 
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treated with 1mM cisplatin. The dot plots in Figure 3.3-B show the results generated for 

untreated H157 cells and H157 cells treated for 24 hours with 1mM cisplatin. The dot 

plots compare DNA content (X-axis) and FITC-dUTP labelling (Y-axis). R1 and R2 

represent the viable and apoptotic (i.e. FITC-DUTP positive cells), respectively. Figure 

3.3-C shows a summary of the data for the DNA fragmentation assay. Cisplatin, TTL5 

and TTC18 induced DNA fragmentation in both H157 and Jurkat cells. Compared to 

H157 cells, Jurkat cells were more sensitive to the effects of cisplatin, TTL5 and TTC18. 

The results for cisplatin showed that ~68% of Jurkat cells and ~40% of H157 cells were 

positive for DNA fragmentation. A similar trend was observed for TTL5 and TTC18 

where the number of Jurkat cells that were positive for DNA fragmentation was 

significantly higher in comparison to H157 cells. 

  

6.6. TTL5 block cell cycle progression in G1 phase 

Cell cycle analysis can also be used to study the activation of apoptosis. In addition, this 

assay can also be used to assess if the test compound has any effect on cell cycle 

progression. The mechanisms of several anticancer drugs are based on blocking cell cycle 

progression in fast growing cells, which include cancer cells. This assay can therefore also 

provide information on the potential of TTC18 and TTL5 as anticancer agents and give 

some insight into the possible mechanism of these compounds. H157 cells were treated 

for 24 hours with low doses (15µM) of TTC18 and TTL5. The cell cycle progression of 

the cells was evaluated at 6, 12, 18 and 24 hours. The rational was to investigate the 

effects of a sub-lethal dose of the gold(I) complex on the cell cycle. The results (Figure 

3.4-D) showed that TTC18 treatment resulted in an incremental increase in the cells in 
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sub-G1 population over 24 hours. This implies that TTC18 induced apoptosis H157 cells. 

In general, the G1 population for TTC18 treated cells declined over the 24hr treatment. 

However, it is not clear if TTC18 induced cell cycle block in the H157 cells. 

 

On the contrary, TTL5 treatment did not cause an increase in the sub-G1 population 

(Figure 3.4-C). The G1 cell population increased over the 24hr treatment. This was 

accompanied with a decrease in the S and G2/M cell populations. This suggests that TTL5 

treatment results in a cell cycle block in the G1 phase. It is likely that the cells trapped in 

the G1 phase will eventually activate apoptotic pathways if the cells are treated for a 

longer period.  

 

6.7. TTC18 and TTL5 induce mitochondrial depolarisation 

Mitochondrial depolarization is an event that is associated with the activation of the 

intrinsic apoptosis pathway. In this study the TMRE probe was used to assess whether 

TTC18- and TTL5-induced apoptosis involve mitochondrial depolarization. H157 cells 

were treated with 30µM TTC18 or 30µM TTL5, and the mitochondrial potential of the 

cells were assessed at 6, 12, 18 and 24 hours (Figure 3.5). Both TTC18 and TTL5 

resulted in a time dependent increase in the number of cells with depolarised 

mitochondria. However, it was clear that the number of H157 cells with depolarized 

mitochondria was higher for TTC18 treated cells than for TTL5 treated cells (Figure 3.5).  
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Taken together these results confirm that both TTC18 and TTL5 induce apoptosis in 

cultured cells. The induction of apoptosis is associated with the cleavage of caspase-3, 

DNA fragmentation and mitochondrial depolarization. However, the mechanism of TLL5 

and TTC18 induced cell death appears to be very different. At low concentrations (15µM) 

TTL5 induced cell cycle block in the G1 phase. Under the same conditions TTC18 

induced apoptosis as indicated by the increase in sub-G1 population. Furthermore, the 

data also confirm that TTC18 is a more effective pro-apoptotic agent compared to TTL5.  

 

6.8. TTC18 and TTL5 induce ROS production 

The CM-H2DCFDA probe was used to investigate the production of ROS in H157 and 

Jurkat cells following treatment with TTC18 and TTL5 (Figure 4.1). As a positive 

control, the cells were also treated with H2O2. TTC18, TTL5 and H2O2 induced ROS 

production in both H157 and Jurkat cells. However, the number of cells that were positive 

for ROS production was significantly higher for Jurkat cells than H157 cells. 

Interestingly, H2O2 failed to generate ROS production H157 cells. 

 

6.9. TTC18 and TTL5 cause oxidative damage 

ROS production does not necessarily result in oxidative damage. To evaluate whether 

treatment with TCC18 and TTL5 cause oxidative damage the TBARS assay was 

performed. This assay indirectly monitors lipid peroxidation by evaluating the presence of 

MDA, which is a secondary lipid oxidation product. Lipid peroxidation is thus an 

indication of oxidative damage. The TBARS assay was performed on H157 cells treated 

 

 

 

 



 

 186 

with 30µM and 50µM TTC18 and TTL5 (Figure 4.2). Both TTC18 and TTL5 induced 

TBARS in H157 cells, suggesting that the ROS produced by TTC18 and TTL5 result in 

oxidative damage. However, H157 cells produced significantly higher levels of TBARS in 

response to TTL5 treatment. TBARS production in H157 cells treated with 50µM TTL5 

was 30× higher compared to TBARS production in untreated H157 cells. In comparison, 

TBARS production in H157 cells treated with 50µM TTC18 was only 2.5× higher than the 

untreated control. These results appear to contradict the results obtained for the ROS assay, 

since ROS production was higher for TTC18 than TTL5. However, the CM-H2DCFDA 

probe does not detect of all types of ROS. In addition, it should be noted that the production 

of ROS does not necessarily result in membrane damage (Millie et al., 2006).  

 

6.10. L-glutathione protect H157 cells against TTC18 

This study showed that the mechanism of TTC18 and TTL5 induced cytotoxicity may 

involve the production of ROS, which cause oxidative damage in H157 cells. To 

investigate this further, cells were pre-treated for 24 hours with antioxidants (vitamin C, 

catalase, L-glutathione, PDTC and DDTC) before treatment with TTC18 and TTL5. 

Antioxidants can potentially protect cells against the oxidative effects of oxidizing agents 

such as TTC18 and TTL5. To evaluate the potential toxicity of the antioxidants, KMST-6, 

H157 and Jurkat cells were treated with increasing concentrations of the antioxidants 

(Vitamin C, catalase, PDTC, DDTC and L-glutathione) and apoptosis was assessed using 

the APOPercentage™ assay (Figure 4.3-A, Figure 4.4-A, Figure 4.5-A, Figure 4.6-A 

and Figure 4.7-A). None of the antioxidants tested in this study induced cell death in 
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KMST-6, H157 or Jurkat cells. To evaluate whether the antioxidants can protect the cells 

against the effects of TTC18 and TTL5, the cells (KMST-6, H157 and Jurkat) were 

concurrently treated with TTC18 or TTL5 and the antioxidants (Figure 4.3-B and -C, 

Figure 4.4-B and -C, Figure 4.5-B and -C, Figure 4.6-B and Figure 4.7-B). The 

antioxidants failed to protect the cells. Since it was possible that a 24hr pre-treatment with 

the antioxidants resulted in a transient increase in the intracellular levels of the 

antioxidants, the cells were also concurrently treated with the antioxidants and TTC18 or 

TTL5. Vitamin C, catalase, PDTC and DDTC failed to protect the cells against the effects 

of TTC18 and TTL5 (data not shown). L-glutathione also failed to protect the cells 

against the effects of TTL5, however it was able to protect H157 cells against the effects 

of TTC18 (Figure 4.7-C). The viability of H157 cells increased from ~2% in the absence 

of L-glutathione to ~80% in the presence of L-glutathione. Interestingly, the other two cell 

lines Jurkat and KMST-6 were not protected by the concurrent treatment with L-

glutathione. 

 

6.11. Intracellular levels Au is reduced in the presence of L-glutathione  

To evaluate the uptake of TTC18 into cells, ICP-MS was used to assess the intracellular 

levels of Au in H157 cells following treatment with TTC18. H157 cells were treated with 

30µM TTC18 and the presence of Au was assessed at 30min, 2hrs, 4hrs and 8hrs (Figure 

4.8 shows that Au accumulated in the cells within 30min after treatment with TTC18. It 

was previously shown that concurrent treatment with L-glutathione protect H157 cells 

against the effects of TTC18. To investigate whether L-glutathione affected intracellular 
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levels of Au in H157 cells during treatment with TTC18, this experiment was also 

performed in the presence of L-glutathione. Figure 4.8 show that the intracellular levels 

of Au were lower when H157 cells were concurrently treated with L-glutathione and 

TTC18. This confirms the cytprotective effects of L-glutathione. 

 

6.12. Over expression of Trx-2 do not protect cells against the effects of TTC18 and 

TTL5 

This study showed that TTC18 and TTL5 induce apoptosis in human cancer cells and that 

the mechanism of cell death most probably involves the generation of ROS. However, the 

treatment of cells with antioxidants (vitamin C, catalase, PDTC and DDTC) failed to 

protect the cells against the effects of TTC18 and TTL5. L-glutathione was the only 

antioxidant that protected H157 cells against the effects of TTC18.  

 

Two intracellular redox systems (the thioredoxin and glutathione systems) have been 

described (Arnér and Holmgren, 2006; Bindoli  et al., 2009; Che and Siu, 2010). Previous 

studies investigated the involvement of redox systems in the mechanism of cytoprotection 

(Patenaude et al., 2004). The thioredoxin reductase enzymes (Trx-1, Trx-2 and Trx-3) are 

often targeted in these studies (Eriksson, et al, 2009; Zeng and Wang, 2010). To further 

investigate the mechanism of TTC18 and TTL5 induced apoptosis, the human Trx-2 gene 

was cloned and the protein encoded by this gene was over expressed in H157 cells.  

 

The human Trx-2 gene was PCR amplified from a cDNA library prepared from total RNA 

isolated from KMST-6 cells (Figure 5.1). The PCR product was cloned into the 
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mammalian expression vector, pcDNA™ 3.1 D/V5-His-TOPO. The successful cloning of 

Trx-2 was confirmed by sequence analysis. BLAST analysis shows a 100% match to the 

human Trx-2 gene sequence with the sequence ID, NM_012473.3 (Figure 5.3). A protein 

sequence alignment between the human Trx-2 protein sequence (NP_036605.2) and the 

cloned sequence show a 100% match (Figure 5.4). This data confirms the cloning of 

human Trx-2 sequence into the pcDNA™ 3.1 D/V5-His-TOPO vector. Furthermore that 

the DNA sequence was cloned in the right frame and that no mutations, substitutions or 

deletions were present in the sequence. 

 

H157 cells were transfected with plasmid DNA of the pcDNA™ 3.1 D/V5-His-TOPO 

vector into which Trx-2 was cloned. Cells that are stably transfected with the pcDNA™ 

3.1 D/V5-His-TOPO-Trx-2 vector was generated by selecting the cells in G418 antibiotic. 

To confirm that these cells over express Trx-2, total protein was extracted from cells that 

were stably transfected and Western blot analysis was performed using an anti-Trx-2 

antibody (Figure 5.5). The Western blot analysis show that transfected cells express more 

Trx-2 protein compared to untransfected control cells. The anti-actin antibody was used as 

a loading control to show that the same amount of total protein was loaded for the two 

protein samples. 

 

The over expression of Trx-2 in H157 cells should result in increased thioredoxin 

reductase activity in the transfected cells as shown in Figure 5.6. The thioredoxin 

reductase activity in the untreated control cells is significantly higher in the transfected 

 

 

 

 



 

 190 

cells compared to the untransfected cells. Treatment with TTC18 completely suppressed 

thioredoxin reductase activity in both transfected and untransfected H157 cells, while 

TTL5 had very little effect on the thioredoxin reductase activity in these cells. 

 

It is clear that the thioredoxin redox system is involved in the mechanism of TTC18 

induce cell death. The suppression of thioredoxin reductase activity may possibly 

contribute to the effects of TTC18. To investigate whether the over expression of Trx-2 

can protect H157 cells, the Trx-2 over expressing cells were treated with TTC18 and 

TTL5 and cell death was quantified using the APOPercentage™ assay. Figure 5.7 shows 

that the over expression of Trx-2 failed to protect H157 cells against the effects of TTL5 

and TTC18. It is likely that the level of Trx-2 over expression is not sufficient to block the 

effects of TTC18.  Alternatively, other Trx genes should be targeted. 

 

6.13. Conclusion  

The major objective of this study was to screen the toxicity of 15 novel phosphine ligands 

and 15 novel gold(I) complexes and to explore the potential application of these 

compounds as potential anticancer agents. The investigations into the cytotoxicity of the 

compounds involved analysing the pro-apoptotic activities of the compounds in a panel of 

cultured human cancer cell lines.  This study demonstrated that some of phosphine ligands 

and gold(I) complexes tested show promise as anticancer agents. Particularly TTC18 and 

TTL5 can potentially be further developed as anticancer agents. These compounds 

selectively induced apoptosis in cultured human cancer cell lines. The mechanism of 
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cytotoxicity involves the generation of ROS and consequent oxidative stress, which 

activate apoptotic pathways.  

 

6.14. Future perspectives 

This study focussed very much on only two of the 30 compounds (TTC18 and TTL5). It 

would be advisable to investigate some of the other compounds that also showed good 

cytotoxic activity in the cancer cells. Therefore, TTC2, TTC4, TTC20 and TTC22 should 

be further investigated.  
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