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Abstract

Mathematical modeling and analysis of HIV/AIDS control measures

G.J Abiodun

Masters Full Thesis, Department of Mathematics and Applied Mathematics,
University of the Western Cape.

In this thesis, we investigate the HIV/AIDS epidemic in a population which
experiences a significant flow of immigrants. We derive and analyse a math-
ematical model that describes the dynamics of HIV infection among the im-
migrant youths and intervention that can minimize or prevent the spread of
the disease in the population. In particular, we are interested in the effects of
public-health education and of parental care.
We consider existing models of public-health education in HIV/AIDS epidemi-
ology, and provide some new insights on these. In this regard we focus atten-
tion on the papers [b] and [c], expanding those researches by adding sensitivity
analysis and optimal control problems with their solutions.
Our main emphasis will be on the effect of parental care on HIV/AIDS epidemi-
ology. In this regard we introduce a new model. Firstly, we analyse the model
without parental care and investigate its stability and sensitivity behaviour.
We conduct both qualitative and quantitative analyses. It is observed that
in the absence of infected youths, disease-free equilibrium is achievable and is
asymptotically stable. Further, we use optimal control methods to determine
the necessary conditions for the optimality of intervention, and for disease
eradication or control. Using Pontryagin’s Maximum Principle to check the
effects of screening control and parental care on the spread of HIV/AIDS, we
observe that parental care is more effective than screening control. However,
the most efficient control strategy is in fact a combination of parental care
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and screening control. The results form the central theme of this thesis, and
are included in the manuscript [a] which is now being reviewed for publication.
Finally, numerical simulations are performed to illustrate the analytical results.
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Chapter 1

General Introduction

It is estimated that HIV spreads at the rate of 7,000 people per day worldwide
[83]. It has killed more than 30 million people in the last 30 years [83]. Over
three million children under age 15 have been infected with HIV and 600 000
are newly infected annually. The majority of these children live in sub-Saharan
Africa, where between 25-40% die before their fifth birthday [83]. Apart from
inducing unbearable illness that kills people prematurely, HIV devastates fam-
ilies and communities. The epidemic continues to increase most rapidly in
Africa and Asia, where antiretroviral therapy is not sufficiently available and
health care is seriously inadequate. It also spreads among the youths and
teenagers which thus poses an extraordinary risk to life expectancy. The dis-
ease strikes children directly through infection, creates orphans and places a
heavy burden on young shoulders when family members fall ill. The most sus-
ceptible individuals at risk of acquiring this deadly disease are people having
sexual contacts with HIV infected individuals, homosexual and bisexual men,
intravenous drug abusers and persons transfused with contaminated blood [65].

1.1 HIV/AIDS biological background

Human Immunodeficiency Virus (HIV), the virus that causes the acquired im-
mune deficiency syndrome (AIDS), transferred to human in Africa probably
between 1884 and 1924 [39]. Human infection entered Haiti around 1966, and
the United States around 1970 [81]. AIDS was first recognized among homo-
sexual men in the United States in 1981 [36]. In that year through 1987, the
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average life expectancy for people diagnosed with AIDS was 18 months while
more than 38,000 cases of the diseases were reported from 85 countries [81].

The origin of AIDS was recently traced to West Africa. It was linked to the
consumption of monkey meat in Cameroon or sexual activity with monkeys,
but these theories have been proved wrong amongst Africans because this is
not a normal practice in African countries. The current theories revolve around
the idea that colonial horrors of mid-20th-century Africa allowed the virus to
jump from chimpanzees to humans and become established in human popula-
tions around 1930. Hence, it is highly probable that this is where the disease
originated since early cases of it have been traced back to colonial Africa in
the rubber plantations [36].

HIV, which was initially called pneumocystis carinii pneumonia (PCP) [36]
cannot grow or reproduce on its own but rather infect the cells of a living or-
ganism to make new copies. A virus is mainly known through its ability to
infect target cells (infectivity) and by its antigenic signature (antigenicity), de-
fined as both the capacity to induce an immune response and also its strength
and type. Immunogenicity is the ability of antigens to elicit a response from
cells of the immune system. Mutations during virus replication may therefore
release infective or non-infective viruses, of the same or of different antigenic-
ity. There are two major types of HIV: HIV-1 and HIV-2. Both types are
transmitted by sexual contact, through blood, and from mother to child, and
they both lead to AIDS. HIV-2 type is concentrated in West Africa and is
rarely found elsewhere while HIV-1 is worldwide the predominant virus and
people generally refer to it as HIV. For HIV-1, the ratio of infectious to non-
infectious particles is estimated to range from 1:1 to 1:60 000, depending on
the type of cell infected and the viral strain. Whether the virus is infective
or not, over 800 mutations affecting HIV-1 antigenicity were identified in it’s
envelop gene alone. By encoding its own replication enzymes, the virus has
control over its replication fidelity and thereby challenges heavily the immune
system, due to the huge burden imposed by the number of infective virions
produced and their antigenic diversity. This burden is even worse when the
virus targets part of the immune system, as is the case for HIV-1. In addition,
the immune cell proliferation induced by the viral attack will provide HIV-1
virions with new targets, engaging the cell-virus dynamics in an exponentially
soaring extension regime. It continuously attacks the T-cells in the human
immune system until the system can no longer fight off any other infections.
HIV-1 is related to viruses found in chimpanzees and gorillas living in west-
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Figure 1.1: Classification of HIV into Various Groups

ern Africa. Its strains can be classified into four groups: group M (the major
group), group O (the outliers group) and two new groups, N and P. The M
group is subdivided further into subtypes A, B, C, D, F, G, H, J, K, and CRFs
(circulating recombinant forms).

• Subtype A is common in West Africa [36].

• Subtype B is the dominant form in Europe, America, Japan, Thailand,
and Australia [36].

• Subtype C is the dominant form in Southern Africa, India, and Nepal
[36].

• Subtype D is generally only seen in Eastern and Central Africa [36].

• Subtype E has never been identified as a non recombinant, only recom-
bined with subtype A [36].

• Subtype F has been found in Central Africa, South America and Eastern
Europe [36].

• Subtype G have been found in Africa and Central Europe [36].

• Subtype H is limited to Central Africa [36].

• Subtype J is primarily found in North, Central and West Africa, and the
Caribbean [33].
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• Subtype K is limited to the Democratic Republic of Congo and Cameroon
[53].

Symptoms and prevention of HIV/AIDS
HIV infection or AIDS cannot easily be diagnosed based on symptoms alone.
Its symptoms are very similar to the symptoms of other illnesses. Once the
immune system is sufficiently weakened by HIV, such infections will develop
and produce any of a wide range of symptoms. So the only way to be sure if
a person is infected or not is through HIV test.
HIV can be transmitted in three main ways:

• Mother-to-child transmission (MTCT): This is when an HIV-infected
woman passes the virus to her baby during pregnancy, labour and deliv-
ery, or breastfeeding. Nine out of ten children infected with HIV were
infected through their mother either during pregnancy, labour and deliv-
ery or breastfeeding [85]. MTCT is relatively rare in well developed and
high-income countries with preventive measures. This shows that with
funding, trained staff and resources, the infections and deaths of many
thousands of children could be avoided. MTCT can also be prevented
by:

– Preventing HIV infection among prospective parents.

– Avoiding unwanted pregnancies among HIV positive women.

– Integration of HIV care, treatment and support for women found
to be positive and their families.

• Transmission through blood: This involves passing of unscreened blood
from a donor to the recipient. This can occur in medical settings es-
pecially in the less privileged countries where the use of contaminated
injections and unscreened blood transfusion are common practices. Be-
tween 1987 to 1991 in Romania, record has it that over 10,000 babies and
children were infected with HIV as a result of unsafe medical practices
[45]. The following preventions can be followed:

– A nationally coordinated blood transfusion service.

– Voluntary unpaid donors.
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– All donated blood must be tested.

– Using of blood efficiently and appropriately.

– Ensuring of a safe transfusion practice.

– Having a quality systems check throughout the blood transfusion
process.

• Sexual transmission: It is not having sex, but rather having unprotected
sex, which places young people at serious risk of HIV infection. Sexual
transmission does not account for a high proportion of child infections
but in some countries children are sexually active at an early age. This
is potentially conducive to the sexual spread of HIV among children,
especially in areas where condom use is low and HIV prevalence is high.
In sub-Saharan Africa 16 percent of young females (aged 15-19) and
12 percent of young males reported having sex before they were 15 in
2007 [38, 39]. In Lesotho, these figures are 16 percent and 30 percent,
respectively; in Kenya, 15 percent and 31 percent [40]. Someone can
eliminate or reduce their risk of becoming infected with HIV during sex
by choosing to:

– Abstain from sex or delay first sex.

– Be faithful to one partner or have fewer partners.

– Condomise, which means using male condoms or female condoms
consistently and correctly.

Children, HIV and AIDS
Over 1,000 children are newly infected with HIV every day, and of these
more than half will die as a result of AIDS because of a lack of access to
HIV treatment [89]. At the end of 2010, there were 3.4 million children
living with HIV around the world [89]. In addition to this, millions more
children every year are indirectly affected by the epidemic as a result of
the death and suffering caused in their families and communities. Record
also has it that over 390,000 children became newly infected with HIV in
2010 [84]. It is also in record that 1.8 million people who died of AIDS
during 2010, one in seven were children. Every hour, around 30 children
die as a result of AIDS [89]. Most children living with HIV/AIDS are
from sub-Saharan Africa where AIDS is known to have its greatest toll
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in the world [89].

Children affected by HIV/AIDS
Children orphaned by AIDS are at greater risk of abuse, exploitation,
discrimination, developmental problems and illness than those orphaned
by other causes. Other children are also affected: increasing numbers are
living with sick family members, or in households that are struggling be-
cause they have taken in orphans. Here are some of the ways HIV/AIDS
affects children either on their parent or on themselves:

Physical and sexual abuse : Children without parental or family pro-
tection are more vulnerable to physical and sexual abuse, which increases
their risk to HIV infection. Absence of parental protection and care,
combined with HIV infection, contributes significantly to the increase in
deaths of young children in the countries most affected by HIV/AIDS.

Poor nutrition: Families struck by HIV/AIDS may have less money
available for nutritious food. Poor childhood nutrition results in devel-
opmental problems and poor school performance.

Taking on adult responsibilities: As parents and other family mem-
bers fall ill, children increasingly take over care of the sick, care of younger
siblings, household chores and income generation. The eldest child may
take on the role of head of the household.

Child labour: Children may have to work excessively to supplement
the household income, reduced when ill adults cannot work and savings
are spent on medical treatment. Children who cannot find work may
be forced into early marriage, prostitution, and crime or begging on the
streets.

Psychological stress: Children who watch their parents suffer and
die, undergo severe emotional distress. The psychological impact of wit-
nessing a parent dying of AIDS can be greater than for children whose
parents die from more sudden causes. With AIDS, there may be long
periods of stress, suffering and uncertainty before the parent dies. In
poor communities, effective pain or symptom relief to ease the parent’s
suffering is often unavailable. Worries about future survival can add to
a child’s already high stress levels. Ongoing emotional distress can lead
to problems such as depression and aggressive behaviour.

Loss of parenting: Growing up under stress without adequate parental
guidance and support, and poorly supervised by relatives and welfare or-
ganizations, children orphaned by AIDS are at higher risk of developing
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antisocial behaviour (such as criminal activity and drug abuse) and fail-
ing to become productive members of society.

Societal discrimination and stigma: People in the community may
discriminate against children who have HIV, who have family members
with HIV, or who have been orphaned by HIV/AIDS. This puts them at
higher risk of abuse and social exclusion, and they may be denied basic
needs such as education and housing. Orphans taken in by a new family
may be expected to work harder than the other children, and may be
the last to receive benefits such as having their school fees paid. In some
communities, families will not take in orphans, because of the stigma of
caring for non-related children, particularly those associated with AIDS.
The stigma still often attached to HIV/AIDS makes it harder for children
to deal with the illness and death of their parents.

Growing up in impoverished conditions: HIV/AIDS has put great
pressure on the traditional extended family system; the ability of poor
communities to support children orphaned by AIDS is increasingly strained,
particularly in countries lacking adequate social welfare services. With
the increase of mortality among adults, the burden of caring for children
is often taken up by grandparents, who may find it hard to cope phys-
ically and economically. The result is that many children orphaned by
AIDS grow up in impoverished conditions. Some will become homeless
and be forced to live on the streets.

Negative impact on education: Children, especially girls, may drop
out of school to care for ill parents, work, or tend the household. Or-
phans may leave school because of discrimination or emotional distress,
or because they cannot afford school fees. Early school-leavers have an
increased risk of HIV infection in that they are less likely to gain the skills
needed to avoid unsafe sex, and will become economically vulnerable and
open to sexual exploitation. School performance is affected by the psy-
chological and physical stress of living with HIV/AIDS. Education is also
negatively impacted by teachers lost to the disease: AIDS-related deaths
among South African teachers rose by over 40% in 2000 and 2001.

Loss of inheritance: Sometimes parents die without making financial
provisions for their children, or with unsettled financial debts. In some
cases, wills are disregarded by relatives or customary law, with resulting
loss of inheritance for the children. Sometimes children lose the house
they were living in.
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1.2 Research aims and objectives

The main goal of this study is to investigate the impact of parental care
on HIV/AIDS among youths. We introduce a new model and determine
the optimal strategies for rolling out the intervention using Pontryagin’s
Maximum Principle. Both analytical and numerical studies of the model
will be conducted to obtain necessary information that could be useful
towards reducing the spread of HIV/AIDS.
We also intend to expand some studies on public-health [73] and care-
free susceptibles [75] by adding sensitivities analysis and optimal control
problems with their solutions.

1.3 Layout of the thesis

The thesis is organized as follows: In Chapter 1, we described the biolog-
ical background of HIV/AIDS, as well as research aims and objectives.
Chapter 2 is devoted to a literature review on mathematical modelling
of HIV/AIDS and applications of optimal control methods in epidemi-
ological models. Chapter 3 presents the preliminary background of epi-
demiological modelling as well as a background on ordinary differential
equations and optimal control theory. In Chapter 4, we analyze a model
with presence of carefree susceptibles with treatment. In addition to
paper [75], we perform the sensitivity analysis of the model parame-
ters. In Chapter 5, we analyze an HIV/AIDS model with public-health
campaigns and infective withdrawal. Also in addition to paper [73], we
perform the sensitivity analysis of the model parameters. In Chapter
6, we develop and examine a new HIV/AIDS model without parental
care. The existence and endemic equilibria is also presented. In Chapter
7, we further our studies on parental care. We apply optimal control
methods to determine the most effective control of HIV/AIDS among
youths between screening control method and parental care. Numerical
results and discussions is offered. In Chapter 8, we continue our analysis
and additions on paper [73]. We discuss the optimal control analysis
of public-health campaigns and infective withdrawal. Numerical results
and discussion is thus presented. Chapter 9 gives a concluding summary
of the whole study.
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Chapter 2

Literature Review

Mathematical models of transmission dynamics of HIV play a significant
role to improve our understanding on epidemiological patterns for dis-
eases control. There is no established vaccine yet for HIV/AIDS and it
is not likely that any highly effective one will soon be available despite
all the vigorous studies on vaccination and treatment of the disease [71].
However, mathematical models have been comprehensively used as a
means of informing control strategies, or at least their impact, since they
provide short and long term prediction of HIV and AIDS incidence. From
the initial models of May and Anderson [5, 6, 61] several modifications of
the modelling structure have been presented. Some of these issues have
also been addressed by Arazoza, Lounes [8] and Moghadas and Gumel
[64]. In particular, Anderson et al. [62] presented a simple HIV trans-
mission model to help clarify the effects of various factors on the overall
pattern of AIDS epidemic while Hyman et al. [46] assessed the impact
of variations in infectiousness considering some different levels of virus
between individuals during the chronic phase of infection. In the year
2004, Greenhalgh [28] assessed the impact of condom use on the sexual
transmission of HIV and AIDS amongst a homogeneously mixing male
homosexual population. In the same year Piqueira et al. [76] presented a
model for HIV transmission in homosexual populations by taking into ac-
count different attitudes, blood screening and effects of social networks.
Hsieh and Chen [41] structured a model for a community of two classes of
commercial sex workers and two classes of sexually active male customers
with different levels of sexual activity. Naresh and Tripathi [70] analysed
the spread of HIV infection in a population in the presence of tubercu-
losis in 2006. A year later, Naresh et al. [3] worked on modelling the
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effect of screening of unaware infectives on the spread of HIV infection,
continuing on studies by Del Valle et al. [19] on the effects of education
in a set-up with vaccination and treatment on HIV transmission in ho-
mosexuals with heterogeneity. Del Valle [19], in his studies, followed the
concepts of Blower and Maclean [63] that partly effective vaccines should
be accompanied by educational campaigns. HIV/AIDS models with a
delay due to the incubation period of the disease have been studied in
[16] of Cai et al. and other papers. An investigation on the potential
effects and benefits of educational campaigns on HIV/AIDS transmission
dynamics in a sexually active population with no other intervention, is
undertaken in [65]. Mukandavire et al. [66] also investigate the potential
effects and benefits of educational campaigns on HIV/AIDS transmission
dynamics in a sexually active population where no other intervention is
available in [65]. Another study was done by Nyabadza et al. [73] on
HIV/AIDS model with public-health information campaigns and indi-
vidual withdrawal (i.e abstinence). In this paper, they investigated the
reduction in infection by checking the sexual behaviour change through
public-health information campaigns and withdrawal of individuals with
AIDS from sexual activity. Their results showed that an increase in ef-
fective public-health information campaigns, and individual AIDS who
withdraw from sexual activities, reduces the spread of HIV/AIDS. In ad-
dition to [73], this thesis will also consider the sensitivity analysis of the
parameters used and also establish optimal strategies for the control of
the disease, in order to check the most effective control between public-
health information campaigns and withdrawal of individuals with AIDS
from sexual activity.
Williams and Anderson [92] studied a mathematical model of the trans-
mission dynamics of the HIV-1 in England and Wales. The model studies
the transmission within and between different sexual activity classes; the
needle sharing classes in the case of intravenous drug users and within
and between different risk groups such as male homosexuals, intravenous
drug users and heterosexuals. The parameters that the above authors
used were based on published data. They also noticed the importance
of mixing patterns to future trends and concluded that future trends
are uncertain within the heterosexual population. Blower and Porco [12]
developed and used mathematical models to evaluate vaccine programs
for controlling two subtypes of HIV, both for developing countries where
more than one subtype is present and for other countries where only
one subtype is present but other subtypes may invade. They formulated
a model of the basic transmission dynamics of the two HIV subtypes
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and then extended this model to also check the effects of a prophylactic
vaccine that provides a degree of protection against infection by one sub-
type and vaccine-induced cross-immunity against infection by the second
subtype. Using these models, they assessed the likely impact of using
a prophylactic vaccine when one subtype of HIV is endemic and a sec-
ond subtype is introduced into the community. Hsieh and Wang [43]
calculated the basic reproduction number for an HIV epidemic model
incorporating direct and indirect commercial sex, as well as behaviour
change by the female commercial sex workers (CSWs) and their male
customers in response to the propagation of the disease in the commu-
nity.

However, the authors are not aware of mathematical models in the liter-
ature, which includes the effect of parental care, its optimal control and
cost effectiveness. This thesis is an attempt towards filling this gap.

Ever since the development of optimal control theory, see Pontryagin et
al. [77], it has been successfully used in decision making in various appli-
cations. A very handy reference on application of optimal control theory
to epidemiology is the book of Lenhart and Workman [55]. There are
numerous studies on epidemiological models where optimal control meth-
ods were applied. For instance, Wickwire [90] applied optimal control to
a mathematical model on pest and infectious diseases control. Okosun
and Makinde [58] studied the impact of chemo-theraphy on the malaria
disease using optimal control. The paper [75] by Okosun, Makinde and
Abiodun, on transmission dynamics of HIV/AIDS with optimal control
in the presence of carefree susceptibles and treatment, investigates the
effectiveness of HIV/AIDS preventive and treatment measures. It con-
siders a mathematical model for the transmission dynamics of the disease
that includes treatment of HIV individuals, treatment of AIDS, and en-
lightenment campaign and recruitment rate of carefree susceptibles in
reducing the spread of HIV/AIDS. It also derives the necessary condi-
tions for the optimal control of the disease. This thesis also contain an
extension of [75] by carrying out the sensitivity analysis of the reproduc-
tive number (R0). Regarding HIV itself, much work has already been
done on optimal management strategies. The optimal control approaches
on drug therapy in HIV treatment was studied by Joshi [50] and Adams
et al. [2], this theme or variations of it has enjoyed further attention in
the work [32] of Garira et al., in [51] of Karrakchou et al. and in [10] by
Banks et al. In respect to this, application of optimal control theory to
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epidemiology is an important tool to test the efficacy of various policies
and control.
Okosun et al. [94] analyzed an optimal control method with SIS epi-
demic model to investigate the impact of infected immigrant in an avail
influenza transmission dynamics. Adams et al. [2] analyzed the optimal
control approaches on dynamics of multidrug therapy for HIV. Zaman et
al. [95] studied a general SIR epidemic model, applied stability analysis
to the equilibrium solutions and the used optimal control to determine
the optimal vaccination strategies to reduce the impact of the disease.
Xiefei et al. [93] used optimal control methods to study the outbreak
of SARS using Pontryagin’s Maximum Principle and genetic algorithm.
Wickwire [90] applied optimal control to mathematical model on pest
and infectious diseases control. Wiemer [91] studied Schistosomiasis us-
ing optimal control methods. In our thesis the control variables are more
of a social nature, and therefore it is completely different from the afore-
mentioned theme.
It has been pointed out that parental care has substantial effect on the
spread of AIDS among the youths. Parental care means bringing up a
child in a decent manner, providing for their moral, material, financial
needs and giving them quality education. Parental care also involves pro-
viding children with sex education and introducing them to some health
educational campaign where they can learn about transmission of dif-
ferent diseases and how they can be protected. Research clearly shows
that a child who lacks adequate parental instruction stands at risk of
recalcitrance [22]. The same study also reveals that out of 94,000 cases
of child delinquent behaviour, about 80% stems from children in a house-
hold with poor parental care and counselling. In general, a child without
adequate and sustained parental care, instruction or counselling is inse-
cure and confused. Such children may slowly or rapidly grow into drug
addiction, prostitution, vandalism and violent crime, as well as other
social vices.

In this study, our objective is to show how parental care could reduce the
spread of HIV/AIDS among the youths. We propose and analyze a non-
linear mathematical model to study the effect of parental care among the
youth with a variable size structure on epidemiological considerations.
We also determine the optimal levels of intensity of parental care for
the disease control using Pontryagin’s Maximum Principle. Both the
analytical and numerical studies of the model are conducted to obtain
necessary information that could be useful towards reducing the spread
of the disease.
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Chapter 3

Preliminary Background

In this chapter we discuss some useful mathematical background mate-
rial, used throughout our study. We define concepts such as existence
and uniqueness of a solution, Routh-Hurwitz criteria, Hartman-Grobman
theorem, Lyapunov functions, etc., and give some basic results. Our main
references on such basics are Okosun [74], Birkhoff [11], Guanrong [29],
Lenhart [55, 56], Emanuel [24].

3.1 Well-posedness for ordinary differen-

tial equations

As stated in [11], the differential equation

dx

dt
= X(x, t), (3.1)

is said to be well-posed if its solution solution exists, unique, and conti-
nously depends on its initial values. The following theorems show that
if X satisfies the Lipschitz condition (3.1), then the differential equation
(3.1) defines a well-posed initial value problem.

Definition 3.1.1 ([11], Lipschitz condition).
A family of vector fields X(x, t) satisfies a Lipschitz condition in a region
ℜ of (x, t) - space if and only if, for some so-called Lipschitz constant L,

|X(x, t)−X(y, t)| ≤ L|x− y| if (x, t) and (y, t) ∈ ℜ. (3.2)
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Theorem 3.1.2 ([11], Uniqueness Theorem).
If the vector fields X(x, t) satisfy a Lipschitz condition (3.1) in a domain
ℜ, there is at most one solution x(t) of the vector differential equation
(3.1) that satisfies a given initial condition x(t) = c in ℜ.

Theorem 3.1.3 ([11], Continuity Theorem 1).
Let x(t) and y(t) be any two solutions of the vector differential equation
(3.1), where X(x, t) is continuous and satisfies the Lipschitz condition
(3.1). Then

|x(a+ h)− y(a+ h)| ≤ eL|h||x(a)− y(a)| (3.3)

Theorem 3.1.4 ([11], Continuity Theorem 2).
Let x(t) and y(t) satisfy the differential equations

dx

dt
= X(x, t), (3.4)

dy

dt
= Y(y, t),

respectively, on a ≤ t ≤ b. Further, let the functions X and Y be defined
and continuous in a common domain D, and let

|X(z, t)−Y(z, t)| ≤ ǫ, a ≤ t ≤ b, z ∈ D. (3.5)

Finally, let X(x, t) satisfy the Lipschitz condition (3.1). Then

|(x(t))− (y(t))| ≤ x(a)− y(a)|eL|t−a| +
ǫ

L
(eL|t−a| − 1). (3.6)

3.2 Stability for ordinary differential equa-

tions

In this section, we present results which will be used to prove the local
stability for systems of ordinary differential equations. Hence the follow-
ing definitions and theorems will be used to determine the local stability
of the disease free equilibrium of a system of ordinary differential equa-
tions.
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Definition 3.2.1 ([74], The basic reproductive number).
The basic reproductive number is used to measure the ability of the
disease to reproduce, and is denoted by R0. This is defined as the ex-
pected number of secondary cases reproduced by one infected individual
in his/her entire infectious period. When R0 < 1, each infected indi-
vidual can produce an average of less than one new infected individual
during his entire period of infectiousness. In this case the disease will
not persist in the population and may be eradicated. But in a situation
where R0 > 1 implies that each infected individuals during the entire
period of infectiousness can produce more than one new infected indi-
vidual. This is a strong indication that the disease can persist and invade
the population.

Definition 3.2.2 ([74], The next generation method).
The so-called next generation method introduced by van den Driessche
et al. [88] and Diekmann et al. [20] is a general method for deriving R0

in cases where one or more classes of infectives are involved. Suppose we
have n disease compartments and m non-disease compartments, and let
x ∈ R

n and y ∈ R
m be the sizes of these compartments. Also, denote

the rate of secondary infection increase of the ith disease compartments
by Fi. However Vi is the rate of disease progression, death and recovery
decrease the ith compartment, the compartmental model can then be
written in the form:

dxi

dt
= Fi(x, y)− Vi(x, y), i = 1, ..., n, (3.7)

dyi
dt

= gj(x, y), j = 1, ...,m.

The calculation of the basic reproduction number is based on the lin-
earization of the ordinary differential equations (ODE) model about a
disease-free equilibrium, while the following assumptions ensure the ex-
istence and well-posedness of a model.

1. Assume Fi(0, y) = 0 and Vi(0, y) = 0 for all y ≥ 0 and i = 1, ..., n.
All new infections are secondary arising from infected hosts.

2. Fi(0, y) ≥ 0 for all non-negative x and y and i = 1, ..., n. Then
function F represent new infections and cannot be negative.

15

 

 

 

 



3. Vi(0, y) ≤ 0 whenever xi = 0, i = 1, ..., n. Each component, Vi

represents a net outflow from compartment i and must be negative
(inflow only) whenever the compartment is non- empty.

4. Assume
∑n

i=1 Vi(x, y) ≥ 0 for all non-negative x and y. The sum
represents the total outflow from all infected compartments. Terms
in the model leading to increases in

∑n
i=1 xi are assumed to repre-

sent secondary infections and therefore belong in F .

5. Assume the disease-free system dy
dt

= g(0, y) has a unique equilib-
rium that is asymptotically stable. That is, all solutions with ini-
tial conditions of the form (0, y) approach a point (0, y0) as t → ∞.
This point is referred to as the disease-free equilibrium.

Assuming that Fi and Vi meet above conditions, we can form the next
generation matrix (operator) FV −1 from matrices of partial derivatives
of Fi and Vi particularly

F =

[

∂Fi(x0)

∂xj

]

and V =

[

∂Vi(x0)

∂xj

]

(3.8)

where i, j = 1, ...,m and where x0 is the disease-free equilibrium. The
R0 is given by the spectral radius (dominant eigenvalue) of the matrix
FV −1.

3.2.1 Routh-Hurwitz criteria

The Routh-Hurwitz stability criterion is a necessary and sufficient con-
dition to establish the stability of a single-input, single-output (SISO),
linear time invariant (LTI) control system. The criterion establishes a
systematic way to show that the linearized equations of motion of a sys-
tem have only stable solutions. Consider the characteristic equation

Ωn + a1Ω
n−1 + a2Ω

n−2 + ...+ an−1Ω + an = 0, (3.9)

determining the n eigenvalues Ω of a real n× n square matrix A. Then
the eigenvalues Ω all have negative real parts if

H1 > 0, H2 > 0, H3 > 0, ...Hn > 0,
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where Hn are the following determinants:

H1 = |a1| ,

H2 =

∣

∣

∣

∣

a1 1
a3 a2

∣

∣

∣

∣

,

H2 =

∣

∣

∣

∣

∣

∣

a1 1 0
a3 a2 a1
a5 a4 a3

∣

∣

∣

∣

∣

∣

,

Hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 1 . . . 0
a3 a2 . . . 0
...

...
. . .

...
a2n−1 a2n−2 . . . an

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The steady state is stable (that is, Re(Ω) < 0) for all λ if and only if
Hj ≥ 0 for all j = 1, 2, 3, ..., n.
The criterion can be performed using either polynomial divisions or de-
terminant calculus.

3.2.2 Hartman-Grobman Theorem

Definition 3.2.3 ([11], Hyperbolic Fixed Point).
A hyperbolic fixed point for a system of differential equation is a point
at which the eigenvalues of the Jacobian for the system evaluated at that
point all have nonzero real parts.
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Theorem 3.2.4 ([74], Hartman-Grobman Theorem).
Let f : Rn → R

n be a smooth map with a hyperbolic fixed point p. Let A
denote the linearization of f at point p. Then there exists a neighbourhood
U of p and a homeomorphism

h : U → R
n

such that

fU = h−1 ◦ A ◦ h

that is, in the neighbourhood U of p, f is topologically conjugate to its
linearization.

The theorem explains the local behaviour of dynamical systems in the
neighbourhood of a hyperbolic equilibrium point.

3.2.3 Lyapunov functions and stability

In this Section, we (ab)use the “dot” notation. The reason for this is
that this abuse is so widespread that it is better to adopt it.
Suppose we are given an ODE

u̇ = f(u) (3.10)

and differentiable function

V : N → R, x 7→ V (x) (3.11)

where N ⊆ R
n. Denoting by t 7→ u(t) a solution of (3.11) and using the

chain rule we obtain

d

dt
V (u(t)) =

n
∑

k=1

∂kV (u(t))
duk(t)

dt
= ∇V (u(t)).f(u(t)), (3.12)

where
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∂kV (x) :=
∂V (x1, ..., xn)

∂xk

(3.13)

∇V (x) := (∂1V (x), ..., ∂nV (x))T (3.14)

for x = (x1, ..., xn)
T ∈ R

n.

Due to the above calculation, the following notation is often used

V̇ (x) = ∇V (x).f(x), (3.15)

despite V not being a function of time and the “dotted” V not being
exactly a time derivative. This notation comes for the fact that we are
“dotting” the composite of V with u, V (u(t)), with respect to time and
the rigorous notation should be V (u)) or V ◦ u. Since this is a bit more
cumbersome, we stick to “dot” notation V̇ .
Hence the following technical results, summarises the idea behind Lya-
punov functions.

Lemma 3.2.5 ([29], Lyapunov barrier).
Let V : N → R, be continuously differentiable, where N ⊆ R

m, is a
non-empty open and bounded set, with V̇ (x) ≤ 0 for all x ∈ N,, and let
m = minx∈δNV (x). Then, for any u0 ∈ N such that V (u0) < m, the set
C(u0) = {u ∈ N : V (u) ≤ V (u0)} has the property that Γ+(u0) ⊆ C ⊆
N.

Proof. Choose u0 ∈ N such that V (u0) < m. Since u(t) is continuous,
be either u0 ∈ N for all t ≥ 0 or there exist t1 > 0 such that u0 ∈ N for
0 ≤ t < t1 and u(t1) ∈ ∂N . However in the latter case, as V̇ ≤ 0 for all
u ∈ N ,

V (u(t1)) = V (u0) +

∫ t1

0

V̇ (u(t))dt ≤ V (u0) < m, (3.16)

which contradicts u(t1) ∈ ∂N, since m = minu∈∂NV (u). Therefore
u(t) ∈ C for all t ≥ 0, i.e., Γ+(u0) ⊆ C(u0).
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Definition 3.2.6 ([29], (Sign) definite functions).
A function F : N → R is positive definite at u∗ ∈ N if
(i) F(u∗) = 0
(ii) F (u) > 0 for all u ∈ N with u 6= u∗

F is negative definite if −F is positive definite.

Definition 3.2.7 ([29], Lyapunov functions).
A continuous differentiable function V : N → R, where N ⊆ R

m, is a
Lyapunov function for u̇ = f(u) at u∗ ∈ N if
(i) V (u) is positive definite at u∗, and
(ii) V̇ (u) ≤ 0 for all u ∈ N .
If in addition, V̇ (u) is negative definite at u∗, then V is a strict Lyapunov
function.

Theorem 3.2.8 ([29], Lyapunov’s first stability theorem (Lya-
punov stability condition)).
Suppose that u∗ is a fixed point of u̇ = f(x). Suppose that for some open
set N ⊆ R

m, containing u∗ there exists V : N → R, such that V is
Lyapunov at u∗. Then u∗ is Lyapunov-stable.

Proof. Let B(u∗, ǫ) be the (closed) ball of radius ǫ centered at u∗,

B(u∗, ǫ) := {u : ‖u− u∗‖ ≤ ǫ},

and choose ǫ > 0 sufficiently small that B(u∗, ǫ) ⊆ N . To prove Lya-
punov stability we need to find δ > 0 such that if u0 ∈ B(u∗, δ) then
Γ+(u0) ⊂ B(u∗, ǫ).
Note that as V is a Lyapunov function at u∗ defined on N and B(u∗, ǫ) ⊆
N it follows that V is a Lyapunov function at u∗ defined on B(u∗, ǫ). Let

m = min
u∈∂B(u∗,ǫ)

V (u),

where ∂B(u∗, ǫ) is the boundary of B(u∗, ǫ). Since a continuous function
on a compact (closed and bounded) set achieves its infimum, there exists
y ∈ ∂B(u∗, ǫ) such that V (y) = m. Moreover, since V (u) > 0 throughout
B(u∗, ǫ)|{u∗}, it follows that m > 0.
As V is continuous and V (u∗) = 0 there exists δ > 0 such that V (u) < m
for all u ∈ B(u∗, δ).
Applying Lyapunov Barrier Lemma above to the set N := B(u∗, ǫ) and
any point u0 ∈ B(u∗, δ). It gives Γ+(u0) ⊆ B(u∗, ǫ) as required. �
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Theorem 3.2.9 ([29], Lyapunov’s second stability theorem (Lya-
punov asymptotic stability condition)).
Suppose there exist a Lyapunov function and let u∗ be a fixed point of
u̇ = f(u) and suppose that for some open set N ⊂ R

m, containing u∗,
there exists V : N → R, such that V is strict Lyapunov at u∗. Then u∗

is asymptotically stable.

Proof. Since a strict Lyapunov function is a Lyapunov function, Lya-
punov’s first stability theorem implies that u∗ is Lyapunov-stable and it
remains only to prove quasi-asymptotic stability (q.a.s.).
Define ǫ and δ as in the proof of Lyapunov’s first stability theorem. Thus
if u0 ∈ B(u∗, δ) then Γ+(u0) ⊆ B(u∗, ǫ). Pick any such u0 ∈ B(u∗, δ).
Since V̇ (u(t)) ≤ 0 it follows that V (u(t)) is non-increasing in t and as V
is bounded below by 0 it follows that limt→∞V (u(t)) = c ≥ 0 exists. We
shall show that c = 0.
As Γ+(u0) is bounded, ω(u0) is non-empty. Consider any x ∈ ω(u0).
Then since there exist tk → ∞ such that S(tk)u0 → x as k → ∞, by
continuity of V,

V (x) = lim
k→∞

V (S(tk)u0) = c.

But since ω(u0) is forward invariant, if x ∈ ω(u0) then S(t)x ∈ ω(u0) for
all t ≥ 0, and so

V (S(t)x) = c ∀t ≥ 0.

Thus V̇ (x) = 0 for all x ∈ ω(u0). But V̇ (u) 6= 0 for u 6= u∗, and thus
x = u∗. So ω(u0) = {u∗}. As V is positive-definite at u∗, V (u∗) = 0, i.e.
c = 0. Therefore u(t) → u∗ as t → ∞, showing that u∗ is q.a.s. �

3.3 Compartmental Modelling

In order to model the progress of an epidemic in a large population,
comprising many different individuals in various fields, we must reduce
or subdivide the population diversity to a few key characteristics which
are relevant to the infection under consideration. These subdivisions
of the population are called compartments. The classes usually under
consideration are primarily:
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– Susceptible Class (S): A collection of individual in a population
are classified as susceptibles if they are not infected but are at risk
of being infected.

– Exposed class (E): These are individuals who have been infected
with the disease pathogen, but are not able to infect others. They
may still be in the incubating stage, and do not have immunity.
This class is also known as the latent class.

– Infected class (I): This is a collection of individuals who are in-
fected and are infectious.

– Recovered/removed class (R): These are individuals who recover
and acquire temporary or permanent immunity and may not con-
tract or transmit the disease, either because they are no longer
infectious and are immuned or because they have been vaccinated.

– Other classes: Different diseases require different compartments
and some of such are not listed here.

Compartmental models have provided valuable insights into epidemi-
ology of many infectious diseases including HIV/AIDS. Diseases that
confer immunity have a different compartmental structure from diseases
without immunity. For diseases which confer immunity, the SIR ter-
minology is used, describing the passage of individuals from susceptible
class (S) to the infective (I) and then to the removed/recovered class
(R). The term SIS describes a disease with no immunity, indicating the
movement of individuals from susceptible class to infective and then back
to susceptible class. Other possibilities include the SEIR and the SEIR
models with an exposed period, a stage of being infected and becoming
infective after a period of time, and SIRS models with temporary immu-
nity on recovery from infection.
Some other classes may be added to increase accuracy of the model.
Specifically a class V of vaccinated individuals. The sizes of each at the
time t are represented b S(t), E(t), I(t), R(t) respectively, N(t) denotes
the total population size, that is, S(t) + E(t) + I(t) +R(t) = N(t).
The transmission of diseases may be through horizontal incidence, from
infected to susceptible and vertical transmission, for example from mother
to children. The probability per unit time at which a susceptible member
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of the population are infected is called force of infection and generally
seen as a function of total number of infective individuals. The number
of individuals that become infected in any given period of time is called
incidence. It is often referred to as incidence rate, which is the incidence
per unit time. Prevalence is the proportion of the population that is
infected.

3.3.1 The basic SIR model

The basic compartmental models to describe the transmission of commu-
nicable diseases are contained in a sequence of three papers of Kermack
and McKendrick [62, 63]. The simplest models they proposed are also of
the form below with the following assumptions:

βN : average infective individual making appropriate contact sufficient
to transmit infection per unit time.
S
N

: probabilities of contact between infective with a susceptible individ-
ual
γ : fraction of infectives recovered per time.

The model is given below:

dS

dt
= −βSI, (3.17)

dI

dt
= −βSI − γI,

dR

dt
= −γI.

In this model, once I is known, R can be determined, so we may want
to consider the S and I equation only.

dI

dt
=

(βS − γ)I

−βSI
, (3.18)

= −1 +
γ

βS
.
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At this point we can easily solve for I by integrating both sides:

I = −S +
γ

β
log S + c. (3.19)

3.3.2 Mass action (density dependent)

This describes a factor that influences individuals in a population to a
degree that varies in response to the crowd of the population. It can also
be described as the probability of transmission in a given time period
a function of the number of infectious individuals in a given area. In
this case the contact rate depends on the size of the total host popula-
tion. This type of incidence has been used in modelling several infectious
diseases including HIV/AIDS. The typical SIR model for a mass action
(density dependent) transmission is given by the model due to Kermack
and McKendrick, see [53, 54].

3.3.3 Standard incidence (frequence depedent)

This is the probability of transmission in a given time period is a func-
tion of the prevalence of infection in the population. The contact rate is
assumed to be constant, that is, it depends on the proportion of suscepti-
bles and infected within the population, not the total population size that
affects the level of interactions. HIV/AIDS and other infectious diseases
has been studied using this form of incidence, see [19, 23, 33, 36]. The
typical SIR model for a standard (frequency dependent) transmission is
given by (3.18).

3.3.4 More complex SIR models

Kermack and McKendrick proposed another SIR model that includes
births in the susceptible class and deaths from all classes with the rate
proportional to each class
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dS

dt
= −βSI + µ(K − S), (3.20)

dI

dt
= βSI − γI − µI,

dR

dt
= γI − µR,

where the total population size, N is defined as the total sum of the
population in the classes. N(t) = S(t)+I(t)+R(t) with the assumptions
that there is no diseases induced death. Hethcote in 1976 [8], proposed
a more general model

dS

dt
= µK − βSI − µS, (3.21)

dI

dt
= βSI − (γ + µ+ α)I,

dR

dt
= γI − µR,

where α is the disease induced death fraction; γ rate of recovery with
acquired immunity, natural death rate µ and birth rate µK is assumed
constant. Ignoring the R class of the system (3.21), the system is reduced
to

dS

dt
= −βSI + µ(K − S), (3.22)

dI

dt
= βSI − γI − µI,

The first step is to study the steady rate, the equilibrium points is ob-
tained by setting the right hand of the system (3.23) to zero.
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− βSI + µ(K − S) = 0, (3.23)

βSI − γI − µI = 0.

The diseases free equilibrium (DFE) which describes the state where no
infection is present in the population is obtained when I∗ = 0, hence
S∗ = K. The endemic equilibrium, where infection persists at fixed level
is obtained when I∗ 6= 0, hence S∗ = µ(βK−(γ+µ+α))

β(γ+µ+α)
, I∗ = γ+µ+α

β
. The

eigenvalues of the Jacobian evaluated at these points will determine their
linear stability. Therefore, linearizing the system (3.9) to study the local
stability of the fixed point, the Jacobian matrix is obtained as

J =





−µ− βI −βS

βI βS − (γ + µ+ α)



 ,

The Jacobian matrix is given at DFE by





−µ −βK

0 βK − (γ + µ+ α)



 .

From the above matrix, the DFE of the system will be stable if
βK < (γ+µ+α). The Jacobian matrix evaluated at the endemic equilibrium
is







−µβK
β(γ+µ+α)

−(γ + µ+ α)

µ(βK−(γ+µ+α))
β(γ+µ+α)

0






.

It is obvious from this matrix that the trace is negative while the determinant
will be positive if βK − (γ + µ+ α) > 0

The basic reproduction number R0 is hence given as βK
β(γ+µ+α)

.

If R0 < 1, the disease-free equilibrium is stable and the endemic equilibrium
does not exist.
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If R0 > 1, the disease-free equilibrium is unstable and the endemic equilibrium
does exist and asymptotically stable.

3.4 Optimal control method

An optimal control is an extension of the calculus of variations and optimiza-
tion method for deriving control policies. It deals with the problem of finding
a control law for a given system such that a certain optimality criterion is
achieved [24]. Optimal control theory is fundamentally the work of Lev Pon-
tryagin and his collaborators in the Soviet Union in the early 1960s. This
method has been powerful mathematical technique derived from the calculus
of variation and is very suitable in decision making regarding composite biolog-
ical situations. The behaviour of a dynamical system is described by the state
variables(s). A control problem includes a cost functional that is a function of
state and control variables.[55, 56].
The assumption is that there is a way to control the state variable x, by acting
upon it with a suitable control. Thus the dynamics of the system (state x) de-
pends on the control u. The ultimate goal is to adjust control u to minimize or
maximize a given objective functional J(u(t), x(t), t), that attains the desired
goal and the required cost to achieving it. The optimal solution is the obtained
when the most desired goal is achieved with least cost. The functional depends
on the control and the state variables. There are different ways to calculate
the optimal control for specific model. For example, Pontryagin’s Maximum
Principle allows the calculation of the optimal control for an ordinary differ-
ential equation model system with given constraints.

Definition 3.4.1 ([55], Piecewise Continuous Functions).
Let I ⊆ R be an interval (finite or infinite). We say a finite-valued function
u : I → R is piecewise continuous if it is continuous at each t ∈ I, with the
possible exception of at most a finite number of t, and if u is equal to either
its left or right limit at every t ∈ I.

Suppose u : I → R is piecewise continuous. Let g : R3 → R be continuous in
three variables. Then, by the solution x of the differential equation

x
′

(t) = g(t, x(t), u(t)) (3.24)
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it is meant a continuous function x : I → R which is differentiable, with
x

′

satisfying the above expression, wherever u is continuous. Similarly, if
I = [a, b], then x satisfies

x(t) = x(a) +

∫ t

a

g(s, x(s), u(s))ds.

An initial condition for x(a) will be specified normally.

Definition 3.4.2 ([55], Piecewise Differentiable Functions).
Let x : I → R be continuous on I and differentiable at all but finitely points
of I. Further suppose that x

′

is continuous whenever it is defined. Then, we
say x is piecewise differentiable.

Definition 3.4.3 ([55], Continuous Differentiable Functions).
Let k : I → R. We say k is continuously differentiable if k

′

exists and is
continuous on I.

Definition 3.4.4 ([55], Concave Functions).
A function k(t) is said to be concave on [a, b] if

ak(t1) + (1− α)k(t2) ≤ k(αt1 + (1− α)t2

for all 0 ≤ α ≤ 1 and for all a ≤ t1, t2 ≤ b.

Definition 3.4.5 ([55], Convex Functions).
A function k(t) is said to be convex on [a, b] if

ak(t1) + (1− α)k(t2) ≥ k(αt1 + (1− α)t2

for all 0 ≤ α ≤ 1 and for all a ≤ t1, t2 ≤ b.

Theorem 3.4.6 ([55], Mean Value Theorem).
Let k be continuous on [a, b] and differentiable on (a, b). Then, there is some
x0 ∈ (a, b) such that k(b)− k(a) = k

′

(x0)(b− a).

We use u(t) for the control and x(t) for the state variables in our basic optimal
control problem for ordinary differential equation. The state variable satisfies
a differential equation and depends on the control variable:

x
′

= g(t, x(t), u(t)).
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The solution to the differential changes as the control function changes. Our
basic control problem consists of finding a piecewise continuous control u(t)
and the related state variable x(t) to maximize the objective function

max
u

∫ t1

t0

f(t, x(t), u(t))dt

subject to x
′

(t) = g(t, x(t), u(t)) (3.25)

x(t0) = x0 and x(t1) unrestricted.

Such a maximizing control is known as optimal control. Important character-
istics in an optimal control problem are:

– Observability:-It helps to deduce system information from control
input and observe output.

– Controllability: - control is use to steer a system from one position
to another.

– Stabilization:- implementing controls to force stability.

3.4.1 Pontryagin’s Maximum Principle

This is a powerful method for the computation of optimal controls, which has
the crucial advantage that it does not require prior evaluation of the infimal
cost function. The principle says that we can solve the optimization problem
J(u(t), x(t), t) using the Hamiltonian function H over one period. That is, the
principle converts the maximization/minimization of the objective functional,
J, coupled with the state variable into maximization/minimization point wise
the Hamiltonian with respect to the control.
We continue with the set-up of the section but assume that b, c and C are
differentiable in t and x with continuous derivatives, and the stopping set D
is a hyper plane, thus D = y +

∑

for some y ∈ R
d and some vector subspace

∑

of Rd. We define for λ ∈ R
d the Hamiltonian

H(t, x, u, λ) = λT b(t, x, u)− c(t, x, u).

Pontryagin’s maximum principle states that, if (xt; ut)t≤τ is optimal, then there
exist adjoint path(λ)t≤τ in R

d and (µ)t≤τ in R with the following properties:
for all t ≤ τ ,
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1. H(t, xt, u, λt) + µt has maximum value 0, achieved at u = ut,

2. λ̇T
t = −λT

t ∇b(t, xt, ut) +∇c(t, xt, ut),

3. µ̇t = −λT
t ḃ(t, xt, ut) + ċ(t, xt, ut),

4. ẋt = b(t, xt, ut). Moreover the following transversality conditions
hold ;

5. (λT
t +∇C(τ, xτ ))ρ = 0

and, in the time-unconstrained case,

6. Ċ(τ, xτ ) = 0.

Note that, in the time-unconstrained case, if b, c and C are time-independent,
then µt = 0 for all t.
The Hamiltonian serves as a way of remembering the first four statements,
which could be expressed alternatively as

(i) 0 = ∂H/∂u, (ii) λ̇ = −∂H/∂x, (iii) µ̇ = −∂H/∂t, (iv) ẋ = ∂H/∂λ.

Theorem 3.4.7 ([55]).
Suppose u∗(t) and x∗(t) are optimal for problem (3.26), then there exists a
piecewise differentiable adjoint variable λ(t), such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for all controls u at each time t, where the Hamiltonian H is

H = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t)),

and

dλ(t)

dt
= −∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(t1) = 0.
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Theorem 3.4.8 ([55]).
Suppose f(t, x, u) and g(t, x, u) are both continuous differentiable functions in
their three arguments and concave in u. Suppose u∗ is an optimal control for
problem (3.26) with associated state u∗, and a piecewise differentiable function
with λ(t) ≥ 0 for all t0 ≤ t ≤ t1

0 = Hu(t, x
∗(t), u(t), λ(t)).

Then for all controls u and each t0 ≤ t ≤ t1, we have

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)).

Proof. Let us fix a control u and point in time t0 ≤ t ≤ t1. Then

H(t, x∗(t), u∗(t), λ(t))

= [f(t, x∗(t), u∗(t)+λ(t)g(t, x∗(t), u∗(t))]−[f(t, x∗(t), u(t)+λ(t)g(t, x∗(t), u(t))]

= [f(t, x∗(t), u∗(t)− f(t, x∗(t), u(t))] + λ[g(t, x∗(t), u∗(t)− g(t, x∗(t), u(t))]

≥ (u∗(t)− u(t))fu(t, x
∗(t), u∗(t)) + λ(t)(u∗(t)− u(t))gu(t, x

∗(t), u∗(t)).

Applying tangent line property to f and g, and because λ(t) ≥ 0, we have

(u∗(t)− u(t))Hu(t, x
∗(t), u∗(t)) = 0. �
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Chapter 4

Transmission dynamics of
HIV/AIDS in the presence of
carefree susceptibles and
treatment

In this chapter, we discuss the model proposed by Okosun et al. [75] and
expand on it. They addressed the effectiveness of HIV/AIDS preventive and
intervention measures, comprising the treatment of HIV individuals, enlight-
enment campaign in reducing the spread of the disease subject to the inflow
of carefree susceptibles. They also considered a mathematical model for the
transmission dynamics of the disease including these measures and conditions.
They first considered the autonomous case, and calculated the basic reproduc-
tion number and investigated the existence and stability of equilibria. The
model is found to exhibit backward bifurcation implying that for the disease
to be eradicated, the basic reproductive number must be below a critical value
less than one. In the time dependent control case, they used Pontryagin’s
Maximum Principle to derive necessary conditions for the optimal control of
the disease. Finally, numerical simulations are performed to illustrate the an-
alytical results. By way of expansion on [75], we present a sensitivity analysis
of the parameters and notice the most sensitive parameters are the probability
of contact careful susceptibles and infectives.
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4.1 Model description

Carefree in our context means highly risky behaviour by individuals due to
ignorance or just not being responsible. The model that we consider here is
a slight modification of the model for HIV/AIDS transmission considered in
[75, 66, 51]. It is neither a generalization of these ones, nor is it a special case
of them. It is a standard model of HIV/AIDS in which we incorporated four
time dependent control measures simultaneously:
(i) enlightenment campaign, (ii) treatment of HIV individuals, (iii) treatment
of AIDS individuals and (iv) recruitment of carefree susceptibles. The model
sub-divides the total population at time t, denoted by Nh(t), into the following
sub-populations of carefree susceptible individuals (S1(t)), careful susceptible
individuals (S2(t)), infectious individuals (I(t)), individuals on treatment class
(T (t)) and that of AIDS suffered A(t). Thus we have

Nh(t) = S1(t) + S2(t) + I(t) + T (t) + A(t).

The susceptibles are individuals that have not contracted the infection but
may be infected through the sexual contacts. The carefree susceptible are
individuals who are not enlightened or well informed about the disease dy-
namics. The constants βi (i = 1, 2, 3, 4, 5, 6) are the probabilities of transmis-
sion of susceptible individuals supposed to have different values for different
kinds of susceptibles i.e. carefree susceptible individuals, carefree susceptibles
with infectious individuals (not under treatment) and with individuals under
treatment, careful susceptible individuals, careful susceptible with infectious
individuals and with individuals on treatment. Carefree susceptibles are re-
cruited at a rate (1 − π), where π are the proportion of individuals assumed
to be careful. When carefree individuals are enlightened and their attitude
changed they move to the careful susceptible class at a rate θ. Infectious indi-
viduals are treated at a rate σ and the rate at which the infectious individuals
without treatment progress to AIDS is δ while ρδ is the rate of progression into
AIDS by treatment. Here, ρ is the modification parameter due to treatment.
The term γ(t) measures the rate at which AIDS individuals are treated in each
time period, and µ is the natural mortality rate unrelated to HIV/AIDS. We
assume also that the AIDS class A is sexually active and so they can transmit
the disease. Here ci (i = 1, 2, 3, 4, 5, 6) are the number of sexual partners by
individuals in each of the six subclasses of susceptibles. We consider a special
case of [75] taking α = 0 and we regard the state variables as normalized. This
means S1(t)+S2(t)+I(t)+T (t)+A(t) = 1. The resulting system of equations
is shown below:
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dS1

dt
= (1− π)− λ1 − θS1 − µS1

dS2

dt
= π − λ2 + θS1 − µS2

dI
dt

= λ1 + λ2 − σI − δI − µI

dT
dt

= σI + γA− (ρδ + µ)T

dA
dt

= δI + ρδT − (γ + µ)A.

(4.1)

where

λ1 = β1c1IS1 − β3c3TS1 − β5c5AS1,

λ2 = β2c2IS2 − β4c4TS2 − β6c6AS2.

4.2 Stability of the disease-free equilibrium

The disease-free equilibrium (DFE) of the HIV/AIDS model (4.1) is given by

E0 =

(

1− π

θ + µ
,
µπ + θ

µ(θ + µ)
, 0, 0, 0

)

.

The basic reproduction number of the model in the presence of carefree sus-
ceptibles (4.1), is given by

R0π = Λ3+((1−π)µ c1 β1+(θ+π µ) c2 β2) Λ1+((1−π)µ c3 β3+(θ+π µ) c4 β4) Λ2

µ (θ+µ) (µ (γ+µ+δ ρ)) (δ+µ+σ)
,

where

Λ1 = µ (γ + µ+ ρδ) ,

Λ2 = γδ + (γ + µ) σ,

Λ3 = (δ (µ+ ρδ) + ρδσ) ((1− π) µ c5 β5 + (θ + π µ) c6 β6) .
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The DFE is locally asymptotically stable if R0π < 1 and unstable if R0π > 1.
All of the above is clarified in the paper [75].

4.3 Existence of endemic equilibrium

This section is an exercise in computational exploration. Calculating the en-
demic equilibrium point, we obtain,































































S∗
1 = (1−π)

θ+µ+β1c1I∗+β3c3T ∗+β5c5A∗
,

S∗
2 =

π+θS∗

1

β2c2I∗+β4c4T+β6c6A∗+µ
,

I∗ =
β3c3T ∗S∗

1
+β4c4T ∗S∗

2
+β5c5A∗+β6c6A∗

σ+δ+µ−β1c1S∗

1
−β2c2S∗

2

,

T ∗ = σI∗+γA∗

ρδ+µ
,

A∗ = δI∗+ρδT ∗

γ+µ
.

(4.2)

The endemic value of I∗ satisfies the following polynomial

P (I∗) = A(I∗)2 + B(I∗) + C = 0, (4.3)

where

A = (δ + µ+ σ)((µ(γ + µ) + δµρ)β1c1 + (γδ + (γ + µ)σ)β3c3)
+ δ(µ+ ρ(δ + σ))c5β5((µ(γ + µ) + δµρ)β2c2
+ (γδ + (γ + µ)σ)β4c4 + δ(µ+ ρ(δ + σ))c6β6),

B = µ(θ + µ)(µ(γ + µ) + (δµρ)(δ + µ+ σ)2(R0 −R),

C = (µ(γ + µ) + δµρ)2(1− R0π).

R0 =
D+δ µ ρ+(γ+µ) (µ c1 β1+(θ+µ) c2 β2)+(γ δ+(γ+µ)σ) (µ c3 β3+(θ+µ) c4 β4)

µ (θ+µ) (µ (γ+µ)+δ µ ρ) (δ+µ+σ)
,

where D = (µ+ ρ (δ + σ)) (δ c5 β5 + δ (θ + µ) c6 β6) .
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R0 > 1 if and only if

β6 > β+
6 := µ(δ+µ+σ)Ω−Ω1c1β1+Ωc2β2+Ω2(µc3β3+(θ+µ)c4β4+δ(µ+ρ(δ+σ))c5β5)

c6δ(θ+µ)(µ+ρ(δ+σ))
,

where























Ω = (θ + µ)(µ(γ + µ) + δµρ),

Ω1 = (µ(γ + µ) + δµρ),

Ω2 = (γδ + (γ + µ)σ).

(4.4)

4.4 Sensitivity analysis of model parameters

We carry out sensitivity analysis to investigate the model robustness to param-
eter values. This will help us to know the parameters that have high impact
on the disease’s transmission, that is, on the reproductive number R0. To
carry out this analysis, we use the normalised forward sensitivity index of a
variable to a parameter approach, described in [74]. This is known as the ratio
of the relative change in the variable to the relative change in the parameter.
Another way to derive sensitivity index is by using partial derivatives when
the variable is a differentiable function of the parameter.

Definition 4.4.1. The normalised forward sensitivity index of a variable, m,
that depends differentiable on a parameter, n, is defined as:

Υm
n =

∂m

∂n
× n

m
.

Sensitivity analysis of R0

We derive the sensitivity of R0 to each of the parameters described in Table
(4.1). The sensitivity indices are shown below:

∂R0

∂c1
× c1

R0

= (γ+µ)β1

(θ+µ) (µ (γ+µ)+δ µ ρ) (δ+µ+σ)
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∂R0

∂c2
× c2

R0

= (γ+µ)β2

µ (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

∂R0

∂c3
× c3

R0

= (γ δ+(γ+µ)σ)β3

(θ+µ) (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

∂R0

∂c4
× c4

R0

= (γ δ+(γ+µ)σ)β4

µ (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

∂R0

∂c5
× c5

R0

= δ (µ+ρ (δ+σ))β5

µ (θ+µ) (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

∂R0

∂c6
× c6

R0

= δ (µ+ρ (δ+σ))β6

µ (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

∂R0

∂β1

× β1

R0

= (γ+µ) c1
(θ+µ) (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

∂R0

∂β2

× β2

R0

= (γ+µ) c2
µ (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

∂R0

∂β3

× β3

R0

= (γ δ+(γ+µ)σ) c3
(θ+µ) (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

∂R0

∂β4

× β4

R0

= (γ δ+(γ+µ)σ) c4
µ (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

∂R0

∂β5

× β5

R0

= δ (µ+ρ (δ+σ)) c5
µ (θ+µ) (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

∂R0

∂β6

× β6

R0

= δ (µ+ρ (δ+σ)) c6
µ (µ (γ+µ)+δ µ ρ) (δ+µ+σ)

where F = (− (γ µ c3 β3)− γ (θ + µ) c4 β4 − (µ+ δ ρ) (c5 β5 + (θ + µ) c6 β6)) .

In Table 4.1., we listed some values of parameters and calculated the sensi-
tivity of R0 to such parameters. In the Table the parameters are arranged
from the most sensitive to the least. The most sensitive parameter here is
the probability of careful susceptible contact with infectives (β2) with +7.783,
followed by the number of sexual partners with infectives (c1) with +5.665.
Other important parameters is the rate at which AIDS individuals are treated
(γ) with +4.281. The least of the sensitivity parameters is the natural mor-
tality related to HIV/AIDS (µ) with -0.0186.
The sensitivity index of R0 with respect to the probability of careful suscep-
tible contact with infectives (β2) with +7.763, implying that decreasing (or
increasing) β2 by 10% decreases (or increases) R0 by 77.63%. The same ap-
plies to the number of sexual partners with infectives (c1), a decreasing (or
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increasing) of c1 by 10% decreases (or increases) R0 by 56.65%. Similarly
increasing (or decreasing) the sensitivity parameters is the natural mortality
related to HIV/AIDS (µ) by 10%, increases (or decreases) the R0 by approxi-
mately 0.186%.
For all the parameters, the sign of the sensitivity indices of R0 agrees with
intuitive expectation whether R0 increases or decreases when the parameters
increases.

Table 4.1: Sensitivity indices of R0 in “carefree” model

Parameter Parameter values Ref Sensitivity

β2 0.15 [3] +7.763

c1 4 [65] +5.665

γ 0.5 [75] +4.281

ρ 0.02 [3] -3.4634

c2 4 [65] +2.898

β4 0.015 [75] +2.833

β1 0.34 [3] +1.672

δ 0.1 [3] -1.2323

β3 0.015 [75] +0.807

µ 0.02 [3] -0.0186

In the next chapter, we do more analysis on the transmission dynamics of
HIV/AIDS model with public-health information campaigns and individual
withdrawal [73] where we check the sensitivity of each parameter used and
performs optimal control strategies.
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Chapter 5

HIV/AIDS model with
public-health campaigns and
infective withdrawal

In this chapter we consider the model proposed by Nyabadza et al. see [73].
In contribution to this paper, we analyse the sensitivity of the parameters and
optimal control strategies to know the effect of public-health campaigns pro-
grammes and voluntary withdrawal of infectives individual on the spread of
HIV/AIDS.
It is a general knowledge that most infections occur when an uninfected in-
dividual comes sexually in contact with infected individual. Contact rate is
the numbers of contact made per unit time between individuals that result in
infection. Such contact determines the rate of transmission of the disease. In
other words, contact rate determines the transmission probability which is the
probability of a new infection.

5.1 Model description

Considering a sexually active population of size N(t) at time t. We subdi-
vide the population into the following subclasses (compartments): susceptibles
S(t), asymptomatic infectives I1(t) (infectious individuals who are yet to show
symptoms of the disease), symptomatic infectives I2(t) (infectious individuals
who show symptoms of the disease) and full blown individuals AIDS A(t). We
assume that the mode of transmission is via heterosexual contacts. Then the

39

 

 

 

 



following equation holds.

N(t) = S(t) + I1(t) + I2(t) + A(t).

We also assume that each susceptible individual is equally likely to be infected
by an infectious individual.

The recruitment rate of susceptible individuals is given by µb and µ is the
per capital background mortality. The transfer rate from the asymptomatic
compartment to the symptomatic compartment is σ and the removal rate of
the symptomatic infectives as they develop to AIDS is given by ρ. The disease’s
death rate is given by δ. Thus we have the following system.







































dS
dt

= µb− µS − λ(I, A)S,

dI1
dt

= λ(I, A)S − (µ+ σ)I1,

dI2
dt

= σI1 − (µ+ ρ)I2,

dA
dt

= ρI2 − (µ+ δ)A,

(5.1)

where

λ(I, A) =
cβ{I1 + η1I2 + η2(1− q)A}

1 + α{I1 + η1I2 + η2(1− q)A} ,

η1 and η2 measure the relativity of I2 and A when compared to I1, and I =
(I1, I2).

The constants c and β are mean number of sexual partners per given time and
probability of infection respectively while q represent the proportion of indi-
viduals who voluntarily withdraw from sexual activities as a result of knowing
their HIV infection status or the disease, implying (1 − q) engage in sexual
activities. We quantify α as the effectiveness of information as it spreads in
preventing HIV transmission in an environment with public-health HIV/AIDS
information campaigns.
Note that all parameters are positive and the initial conditions of the system
(5.1) is given as

S(0) = S0 > 0, I1(0) = I10 > 0, I2(0) = I20 > 0, A(0) = A0 > 0.
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The proposed contact rate is set to depend on the number of infectived individ-
uals in the population. It is determined by λ(I, A) which is of the form cβg(I,A)

ϕ(I,A)
,

where g(I, A) = I1+η1I2+η2(1−q)A and ϕ(I, A) = 1+αg(I, A). Obviously, if
α = 0, then ϕ(I, A) = 1. The assumption here that the rate of HIV transmis-
sion in the community is basically determined by the amount of HIV/AIDS
public health information available in the community. It is important to note
that cβg(I,A)

ϕ(I,A)
tends to a close approximation of the term cβg(I, A). The inci-

dent function thus reduces to a mass action incidence function in this case.
However, cβg(I,A)

ϕ(I,A)
approaches the constant cβ

α
for a very large values of I1, I2

and A. It is also important to note that λ(I, A) is an increasing function of η1
and η2 and decreasing function of q since λ

′

(I, A) = cβ

(1+α{I1+η1I2+η2(1−q)A})2
.

In our study here, we will consider and set infectives withdrawal (q) and public-
health campaigns (α) as main controls of the transmission of HIV/AIDS. Note
that when α = 0, that is when there is no public-health campaigns, then we
have

λ(I, A) = cβ{I1 + η1I2 + η2(1− q)A}.
When q = 0, that is, when there is no voluntary withdrawal of infectives, then

λ(I, A) =
cβ{I1 + η1I2 + η2A}

1 + α{I1 + η1I2 + η2A}
.

Similarly,
λ(I, A) = cβ{I1 + η1I2 + η2A}.

when there is no public-health campaigns and no infective withdrawal, that is,
when α = q = 0.
More analysis and optimal control strategies of these two controls will be es-
tablished in Chapter 8 of this thesis.

5.2 Stability of the disease-free equilibrium

From the system equation (5.1), we can easily check that the disease-free equi-
librium is given by

E0 = (b, 0, 0, 0).
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Theorem 5.2.1. The basic reproductive number R0 of model (5.1) is given by

R0 =
βbc

µ+ σ

[

1 +
η1σ

ρ+ µ
+

η2ρσ(1− q)

(ρ+ µ)(δ + µ)

]

.

Outline of proof (a detailed proof is given in [73]). Following van den Driess-
che and Watmough [88], the basic reproductive number R0 of model (5.1) is
calculated by using the next generation matrix. It is given by

R0 = r(FV −1),

where r(.) denotes the spectral radius, with

F =













cβb cβbη1 c(1− q)βbη2

0 0 0

0 0 0













and

V =













µ+ σ 0 0

−σ µ+ ρ 0

0 −ρ µ+ δ













.

The numerical value of R0 can be routinely calculated as asserted. �

Theorem 5.2.2 ([73], p 3).
The disease-free equilibrium of system (5.1) is locally asymptotically stable
whenever R0 < 1 and unstable otherwise.

The number R0 can be expressed as

R0 = b{RI1 +
σ

µ+ σ
RI2 +

ρσ(1− q)

(ρ+ µ)(δ + µ)
RA},

where
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RI1 =
βc

µ+ σ
, RI2 =

η1βc

µ+ ρ
and RA =

η2βc

µ+ δ
.

The latter three numbers represent the contribution of the asymptomatic,
symptomatic and AIDS compartments to the overall model reproduction num-
ber R0 respectively. The proportion of asymptomatic individuals who become
symptomatic and individuals who develop to full-blown AIDS are given by σ

σ+µ

and ( ρ
ρ+σ

)( σ
σ+µ

) respectively.

5.3 Steady states and stability analysis

Existence and uniqueness of the endemic equilibrium
There is an endemic equilibrium point (S∗, I∗1 , I

∗
2 , A

∗) satisfying the following
identities:

I∗2 =
σ

µ+ ρ
I∗1 , (5.2)

A∗ =
σρ

(µ+ ρ)(µ+ δ)
I∗1 , (5.3)

λ∗(I, A) =
cβΓI∗1

1 + αΓI∗1
, (5.4)

where

Γ = 1 +
η1σ

µ+ ρ
+

η2ρσ(1− q)

(µ+ ρ)(µ+ δ)
.

Substituting λ∗(I, A) in the second equation of (5.1), we have I∗1 = 0, and

S∗ =
(σ + µ)(1 + αΓI∗1 )

cβΓ
. (5.5)

Adding the first two equations of (5.1), we obtain

µb− µS∗ − (σ + µ)I∗1 = 0.

Substituting for S∗ in the equation above, we find I∗1 as

I∗1 =
µ(R0 − 1)

αµ+ cβΓ
.
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Note from the above equation that I∗1 has only one positive solution if R0 > 1
and no other positive solution when R0 < 1. We now substitute I∗1 into
equations (5.2) to (5.5) above to get the endemic equilibrium point E1 =
(S∗, I∗1 , I

∗
2 , A

∗) ∈ Ω.















































S∗ = (µ+σ)(αµ+cβΓ+αµ(R0−1))
cβΓ(αµ+cβΓ)

,

I∗1 = µ(R0−1)
αµ+cβΓ

,

I∗2 = αµ(R0−1)
(µ+ρ)(cβΓ+αµ)

,

A∗ = µσρ(R0−1)
(µ+ρ)(αµ+cβΓ)(δ+µ)

.

(5.6)

We now consider the following theorem on the existence of the endemic equi-
librium.

Theorem 5.3.1 ([73], p 4).
If R0 > 1, the system (5.1) has a unique endemic equilibrium given by E1 in
Ω.

Remark. If R0 = 1, the endemic equilibrium E1 reduces to the disease free
equilibrium E0. Hence the potential of the spread of any infection in a popu-
lation depends on the reproduction number.

Local stability of the endemic equilibrium

The local stability of the endemic equilibrium point E1 is decided by consid-
ering the sign of the eigenvalues of the Jacobian matrix of the system (5.1).
The Jacobian matrix of the system is given as

JE1 =




















−(µ+∆1) −∆1 −η1∆1 −(1− q)η1∆1

∆1 ∆1 − (µ+ σ) η1∆1 −(1− q)η1∆1

0 σ −(µ+ σ) 0

0 −ρ 0 −(µ+ δ)





















.
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where

∆1 =
cβg(I∗, A∗)

ϕ(I∗, A∗)
and ∆1 =

cβS∗

ϕ(I∗, A∗)

(

1− αg(I∗, A∗)

ϕI∗, A∗)

)

.

Also note that 0 < αg(I∗,A∗)
ϕI∗,A∗)

< 1, showing that ∆1,∆2 are both positive. Hence

the characteristic equation of JE1 is given by

P (χ) = χ4 + ā3χ
3 + ā2χ

2 + ā1χ+ ā0χ = 0, (5.7)

where

ā3 = (µ+ σ) + (µ+ ρ) + (2µ+ δ) + (∆1 −∆2),

ā2 = (∆1 −∆2)(3µ+ δ + ρ) + σ(∆1 −∆2η1) + (2µ+ ρ+ σ)(3µ+ δ) + µδ + ρσ,

ā1 = (∆1 −∆2)[(2µ+ δ)(µ+ ρ) + µ(µ+ δ)]

+σ(2µ+ δ)(∆1 −∆2η1) + ρσ{∆1 −∆2(1− q)η2 + z,

ā0 = (µ+ σ)(µ+ δ)(µ+ ρ)(µ+∆1)[
µ∆2Γ

(µ+δ)(µ+η1)
− 1].

(5.8)

where
z = µ2[3(ρ+ σ + δ)] + 2µρ(σ + δ) + δσ(2µ+ ρ).

If ā3 > 0, ā3ā2− ā1 > 0 and ā1[ā3ā2− ā1]− ā23ā0 > 0, then the polynomial (5.7)
has roots with negative parts. Hence the following result holds:

Theorem 5.3.2 ([73], p 5).
If R0 > 1, the endemic equilibrium E1 is locally asymptotically stable.

5.4 Sensitivity analysis of model parameters

and state variables

We also carry out sensitivity analysis with the same purpose of investigating
the model robustness to parameter values. Also helps in making recommenda-
tion more credible and understandable. This analysis helps in identifying the
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parameters that have high impact on the reproductive number (R0). To carry
out this analysis, we use the normalised forward sensitivity index of a variable
to a parameter approach as described in [74].

Sensitivity analysis of R0

We derive the sensitivity of R0 to each of the parameters described in Table
(4.1). The sensitivity indices is shown below,

∂R0

∂β
× β

R0

= bc
µ+σ

[1 + η1σ
ρ+µ

+ η2ρσ(1−q)
(ρ+µ)(δ+µ)

]

∂R0

∂c
× c

R0

= βb
µ+σ

[1 + η1σ
ρ+µ

+ η2ρσ(1−q)
(ρ+µ)(δ+µ)

]

∂R0

∂µ
× µ

R0

=
b c β ((q−1) ρ σ (3µ2+ρ σ+2µ (ρ+σ)+δ (2µ+ρ+σ)) η2−1−σ (2µ+ρ+σ) η1)

(µ+σ)2(µ+ρ)2(δ+µ)2 (µ+ρ)2

∂R0

∂σ
× σ

R0

= b c β ((−δ−µ) (µ+ρ)+µ (δ+µ) η1−(q−1)µρ η2)

(δ+µ) (µ+ρ) (µ+σ)2

∂R0

∂ρ
× ρ

R0

= −
(

b c β σ ((δ+µ) η1+(q−1)µ η2)

(δ+µ) (µ+ρ)2 (µ+σ)

)

∂R0

∂q
× q

R0

= −
(

b c β ρ σ η2
(δ+µ) (µ+ρ) (µ+σ)

)

∂R0

∂δ
× δ

R0

= −
(

b c (−1+q)β ρσ η2
(δ+µ)2 (µ+ρ) (µ+σ)

)

∂R0

∂η1
× η1

R0

= b c β σ
(µ+ρ) (µ+σ)

∂R0

∂η2
× η2

R0

= −
(

b c (q−1)β ρ σ
(δ+µ) (µ+ρ) (µ+σ)

)

.

Similarly, the parameters are also arranged from the most sensitive to the
least. The most sensitive parameter here is the partner acquisition rate (c)
and probability of transmission (β), followed by the natural death rate of in-
dividual (µ) with -0.0369433. Other important parameters include the rate of
developing to AIDS (ρ) with -0.0224872. The least of the sensitivity parame-
ters is the proportion of withdrawals by AIDS cases (q).
The sensitivity index of R0 with respect to the partner acquisition rate (c)
is 3.5715, implying that decreasing (or increasing) c by 10% decreases (or in-
creases) R0 by 35.7%. Same applicable to probability of transmission (β), a
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decreasing (or increasing) β by 10% decreases (or increases) R0 by 35.7%. Sim-
ilarly increasing (or decreasing) the rate of developing to AIDS (ρ) by 10%,
increases (or decreases) the R0 by approximately 0.37%.
For all the parameters, the sign of the sensitivity indices of R0 agrees with
intuitive expectation whether R0 increases or decreases when the parameters
increases. The parameter values as from [73] is shown on Table (8.1).

Table 5.1: Sensitivity indices of R0 in education model

Parameter description Parameter Sensitivity

Partner acquisition rate c +3.5715

Probability of transmission β +3.5715

Natural death rate µ -0.0369433

Rate of developing AIDS ρ -0.0224872

Rate of becoming symptomatic σ -0.00321246

Enhancement factor η1 0.00202385

Proportion of withdrawals by AIDS q -0.000674617

Sensitivity analysis of state variables

Here, we derive the sensitivity of the state variables to each of the parameters
described in Table (5.1). The sensitivity indices is shown below,

∂S∗

∂α
× α

S∗
= −

(

µ (δ+µ) (µ+ρ) ((δ+µ) (µ+ρ) (−(b c β)+µ+σ)+b c β σ ((−δ−µ) η1+(−1+q) ρ η2))

((δ+µ) (c β+αµ) (µ+ρ)−c (−1+q)β ρ σ+c β ((δ+µ)σ η1+η2))
2

)

(5.9)
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∂I∗
1

∂µ
× µ

I∗
1

= β µ (δ+µ) (µ+ρ) (µ+b αµ+σ) ((δ+µ) (µ+ρ+σ η1)−(−1+q) ρ σ η2)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)
2

∂I∗
1

∂δ
× δ

I∗
1

= c (−1+q)β µ ρ (µ+ρ)σ (µ+b αµ+σ) η2
(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)

2

∂I∗
1

∂η2
× η2

I∗
1

= −
(

c (−1+q)β µ (δ+µ) ρ (µ+ρ)σ (µ+b αµ+σ)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)
2

)

∂I∗
1

∂η1
× η1

I∗
1

= c β µ (δ+µ)2 (µ+ρ)σ (µ+b αµ+σ)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)
2

∂I∗
1

∂β
× β

I∗
1

= c µ (δ+µ) (µ+ρ) (µ+b αµ+σ) ((δ+µ) (µ+ρ+σ η1)−(−1+q) ρ σ η2)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)
2

∂I∗
1

∂ρ
× ρ

I∗
1

= −
(

c β µ (δ+µ)σ (µ+b αµ+σ) ((δ+µ) η1+(−1+q)µ η2)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)
2

)

(5.10)











































































































∂I∗
2

∂c
× c

I∗
2

= β µ (δ+µ)σ (µ+b αµ+σ) ((δ+µ) (µ+ρ+σ η1)−(−1+q) ρ σ η2)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)
2

∂I∗
2

∂α
× α

I∗
2

= µ2 (δ+µ)σ ((δ+µ) (µ+ρ) (−(b c β)+µ+σ)+b c β σ ((−δ−µ) η1+(−1+q) ρ η2))

(µ+σ) ((δ+µ) (c β+αµ) (µ+ρ)+c β σ ((δ+µ) η1−(−1+q) ρ η2))
2

∂I∗
2

∂q
× q

I∗
2

= −
(

c β µ (δ+µ) ρ σ2 (µ+b αµ+σ) η2
(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)

2

)

∂I∗
2

∂δ
× δ

I∗
2

= c (−1+q)β µ ρσ2 (µ+b αµ+σ) η2
(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)

2

∂I∗
2

∂η1
× η1

I∗
2

= c β µ (δ+µ)2 σ2 (µ+b αµ+σ)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)
2

∂I∗
2

∂η2
× η2

I∗
2

= −
(

c (−1+q)β µ (δ+µ) ρ σ2 (µ+b αµ+σ)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)
2

)

∂I∗
2

∂β
× β

I∗
2

= c µ (δ+µ)σ (µ+b αµ+σ) ((δ+µ) (µ+ρ+σ η1)−(−1+q) ρ σ η2)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρ σ η2)
2

(5.11)
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∂A∗

∂c
× c

A∗
= β µ ρσ (µ+b αµ+σ) ((δ+µ) (µ+ρ+σ η1)−(−1+q) ρ σ η2)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρσ η2)
2

∂A∗

∂α
× α

A∗
= µ2 ρ σ ((δ+µ) (µ+ρ) (−(b c β)+µ+σ)+b c β σ ((−δ−µ) η1+(−1+q) ρ η2))

(µ+σ) ((δ+µ) (c β+αµ) (µ+ρ)+c β σ ((δ+µ) η1−(−1+q) ρ η2))
2

∂A∗

∂β
× β

A∗
= c µ ρ σ (µ+b αµ+σ) ((δ+µ) (µ+ρ+σ η1)−(−1+q) ρ σ η2)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρσ η2)
2

∂A∗

∂q
× q

A∗
= −

(

c β µ ρ2 σ2 (µ+b αµ+σ) η2
(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρσ η2)

2

)

∂A∗

∂η1
× η1

A∗
= c β µ (δ+µ) ρ σ2 (µ+b αµ+σ)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρσ η2)
2

∂A∗

∂η2
× η2

A∗
= −

(

c (−1+q)β µ ρ2 σ2 (µ+b αµ+σ)

(µ+σ) ((δ+µ) ((c β+αµ) (µ+ρ)+c β σ η1)−c (−1+q)β ρσ η2)
2

)

.

(5.12)

Table 5.2., row one shows that probability of transmission (β) is most sensitive
on AIDS individual (A∗) with 6.18892 and least sensitive on asymptomatic
infectives (I∗1 ) with 1.85668. This implies that increasing (or decreasing) (β)
by 10% will increase (or decrease) (A∗) by 61.8892% and (I∗1 ) by 18.5668%.
Similarly in row two of the same Table, an increase (or decrease) in partner
acquisition rate (c) by 10% increases (or decreases) S∗ by 0.129083%, I∗1 by
0.00105212%, I∗2 by 0.00210423% and A∗ by 0.000350706%, but we note that
c is most sensitive on S∗ and least sensitive on A∗. We can easily check for
other parameters following this trend.

49

 

 

 

 



Table 5.2: Sensitivity indices of state variables to model parameters on edu-
cation

S∗ I∗1 I∗2 A∗

β −2.27794 1.85668 3.71335 6.18892

c −0.0129083 0.000105212 0.000210423 0.0000350706

σ 0.335107 0.000439967 −0.1.11085 −1.85141

ρ 0.483908 −0.00116902 0.222164 −1.85195

q −0.0166226 −0.0000350706 −0.0000701411 −0.0000116902

µ −1.980673 −0.00556235 0.222076 0.462704

δ 0.255362 0 0 0.92578

α −0.696143 0.999715 1.99943 0.333238

b 0.0462204 0.000018212 0.0000364239 0.00000607065

η1 0.0483784 0.000105212 0.000210423 0.0000350706

η2 −0.0459651 0 0 0
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Chapter 6

HIV/AIDS model with
screening control and parental
care

This chapter together with Chapter 7 are original contributions of this thesis
and the essence of the two chapters have been submitted for publication see
[1].
In this chapter, we present and develop a model for HIV transmission. We
then analyze the stability and also carry out the sensitivity analysis of the
parameters used, reproductive number (R0) as well as for the state variables.

6.1 Model description and analysis

We propose a model which is depicted in the flow diagram of Fig. 6.1. The
total population at time t, denoted by N(t) is sub-divided into sub-population
of susceptible individuals (S(t)), individuals newly infected with HIV (I(t)),
individuals with HIV but not yet developed to AIDS (H(t)), and individuals
with AIDS (A(t)). The population size is N(t) and

N(t) = S(t) + I(t) +H(t) + A(t).

The natural death rate is µ. Susceptible individuals are recruited at a rate
(1 − ρu1)µN where ρ is the proportion of infectious youths where u1 ∈ [0, 1]
are screening control efforts on immigrant youths (a quarantine se). The sus-
ceptible acquire HIV by any blood contact with infectious youths at a rate

(1− u2)
S

N
(β1c1I + β2c2H + β3c3A)

51

 

 

 

 



where u2 accounts for parental care and β1, β2, β3 are transmission probabil-
ities. The progression rate from newly infected individuals to HIV is γ and
that of HIV to AIDS is σ. The number of partners with newly infected indi-
viduals, individuals having HIV, and individuals having AIDS are c1, c2 and
c3 respectively.
To make a significant model to be close to the real life phenomenon, we assume
that all other classes of individuals except susceptible are infectious and that
the number of infectious individuals, that is, I(t) +H(t) +A(t), are less than
that of susceptible, S(t). We further assume that parental care involves all ef-
forts and activities taken by parents to prevent their children from contracting
HIV. The resulting system of equations is shown below.







































dS
dt

= (1− ρu1)µN − S (1−u2) ( I c1 β1+H c2 β2+Ac3 β3)
N

− µS

dI
dt

= ρu1µN + S (1−u2) ( I c1 β1+H c2 β2+Ac3 β3)
N

− (γ + µ) I

dH
dt

= γI − (µ+ σ)H

dA
dt

= σH − µA.

(6.1)

Normalizing the model, we introduce the following variables

s = (S/N), i = (I/N), h = (H/N), a = (A/N).

Then the system becomes;







































ds
dt

= (1− ρu1)µ − s (1− u2) ( i c1 β1 + h c2 β2 + a c3 β3)− µs

di
dt
= ρu1µ + s (1− u2) ( i c1 β1 + h c2 β2 + a c3 β3)− (γ + µ) i

dh
dt

= γi− (µ+ σ)h

da
dt

= σh− µa.

(6.2)
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(1−ρu1)µN

��

ρu1µN

��

S
(1−u2)λS/N

//

��

I
γI

//

��

H σH
//

��

A

��
µS µI µH µA

Flow diagram for HIV/AIDS transmission

6.2 Model without parental care/control

When there is lack of parental care/control among the youths, i.e., for u2 = 0,
the above model becomes;







































ds
dt

= (1− ρu1)µ − s λ− µs,

di
dt
= ρu1µ + s λ− (γ + µ) i,

dh
dt

= γi− (µ+ σ)h,

da
dt

= σh− µa,

(6.3)

where

λ = ( i c1 β1 + h c2 β2 + a c3 β3) .

6.3 Stability of the disease-free equilibrium

In the absence of infected and infectious youths entering the population, that
is when ρ = 0, we establish the stability of the disease free equilibrium (DFE),
E0 = (1, 0, 0, 0).

Theorem 6.3.1. The basic reproductive number R0 of model (6.3) is given by

R0 =
µ ((µ+ σ) c1 β1 + γ c2 β2) + γ σ c3 β3

µ (γ + µ) (µ+ σ)
.
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Proof. Following van den Driessche and Watmough [88], the basic repro-
ductive number R0 of model (6.3) is calculated by using the next generation
matrix. It is given by

R0 = r(FV −1),

where r(.) denotes the spectral radius, with

F =













β1c1 β2c2 β3c3

0 0 0

0 0 0













and

V −1 =















1
µ

0 0

γ(1+µ)
µ (γ+µ) (µ+σ)

1
µ+σ

0

γ σ
µ (γ+µ) (µ+σ)

γ σ+µσ
µ (γ+µ) (µ+σ)

1
µ















.

The numerical value of R0 can be routinely calculated as asserted. �

Remark. If R0 < 1, system (6.3) has a unique equilibrium point, the DFE,
which can be shown to be locally asymptotically stable. If R0 > 1, the DFE
becomes unstable and we show in the sequel that the system has a different
steady state.

6.4 Steady states and stability analysis

Existence of endemic equilibrium

In search of an endemic equilibrium point, we arrive at the following point E1.

54

 

 

 

 

















































S∗ = µ (1−ρ u1)
λ+µ

,

I∗ = λµ+µ2 ρ u1

(γ+µ) (λ+µ)
,

H∗ =
γ (λµ+µ2 ρ u1)

(γ+µ) (λ+µ) (σ+µ)
,

A∗ = γ σ (λ+µρu1)
(γ+µ) (λ+µ) (µ+σ)

(6.4)

The number λ is as defined earlier, in the system of equations (6.3). At the
same time, λ is a root of the following polynomial

W1λ
∗2 +W2λ

∗ +W3 = 0; (6.5)

with,

W1 = µ (γ + µ) (µ+ σ) ,

W2 = µ2 ((µ+ σ) (γ + µ− c1 β1)− γ c2 β2)− γ µ σ c3 β3,

W3 = −µ2 ρ u1 ((µ+ σ) c1 β1 + γ c2 β2)µ+ γ σ c3 β3.

(6.6)

Let us write −W2 = ω. For the case ρ = 0, the quadratic equation (6.5) has a
root λ = 0 which corresponds to the disease-free equilibrium and another root

λ =
γ µσ c3 β3−(µ2((µ+σ) (γ+µ−c1 β1)−γ c2 β2))

µ (γ+µ) (µ+σ)
(6.7)

which is positive if and only if −W2 > 0, i.e., if ω > 0. At the same time we
note that a negative value of λ will result in a point E1 which is non-feasible.

If ρ > 0 the quadratic equation has one positive root and one negative root.
By definition of λ we have λ ≥ 0, and therefore we discard the negative root.
The positive root is given as

λ∗ =
−W2+

√
W2

2−4W1 W3

2W1
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that is,

λ∗ =
−W2+

√
4µ2 (γ+µ) ρµ (µ+σ)u1 (µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)+W2

2

2µ (γ+µ) (µ+σ)
. (6.8)

The unique endemic equilibrium therefore has its S - value given as











S∗ = µ (1−ρ u1)
λ∗+µ

,

λ∗ =
−W2+

√
4µ2 (γ+µ) ρµ (µ+σ)u1 (µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)+W2

2

2µ (γ+µ) (µ+σ)
.

(6.9)

Now we observe that;

lim
ρ→0λ

∗ = ω+|ω|
2W1

=

{

0 (ω < 0),
ω
W1

(ω > 0).

Recall from Theorem 6.3.1. that

R0 =
µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3

µ (γ+µ) (µ+σ)
. (6.10)

We note that lim
ρ→0λ

∗ = 0 if R0 < 1, and

lim
ρ→0λ

∗ > 0 if R0 > 1.

For ρ sufficiently close to zero, we use the binomial approximation (1+x)1/2 =
1 + (x/2), see [14]. Hence, from (6.10) we obtain

W1λ
∗ = ω + |ω|

[

1 + 2µ2 (γ+µ) ρ (µ+σ)u1 µ ((µ+σ) c1 β1+γ c2 β2)W2

ω2

]

. (6.11)

If R0 > 1, so that ω > 0, this gives

λ∗ ≈ ω
W1

+ µ2 (γ+µ) ρ (µ+σ)u1 µ ((µ+σ) c1 β1+γ c2 β2)
ω

. (6.12)

If R0 < 1, so that ω < 0, this gives

λ∗ ≈ ω
W1

+ µ2 (γ+µ) ρ (µ+σ)u1 µ ((µ+σ) c1 β1+γ c2 β2)
|ω|

. (6.13)

This shows that for ρ close to zero, the model has a threshold R0 = 1. For
ρ > 0, the disease remains endemic, so system (6.2) has one endemic equilib-
rium point for all parameter values for which the disease will always persist in
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the population. For R0 < 1, we find that as ρ tends to zero, then the endemic
equilibrium tends to disease-free equilibrium. Otherwise if R0 > 1 as ρ ≥ 0,
then the model has a unique endemic equilibrium.

6.5 Sensitivity analysis

The simplest form of sensitivity analysis is to simply vary one value in a model
by a given amount, and examine the impact that the change has on the model’s
results. Similarly like in previous chapters, we also perform the sensitivity anal-
ysis to check the model robustness to parameter values. This helps in knowing
the parameters that have high impact on the diseases transmission and also
helps in checking for errors in our model. Here, we also use the normalised
forward sensitivity index of a variable to a parameter approach, described in
[56], to carry out the analysis.

Sensitivity analysis of R0

We derive the sensitivity of R0 to each of the parameters described in Table
(6.1). The sensitivity indices are shown below,

∂R0

∂c1
× c1

R0

= µ (µ+σ) c1 β1

µ (µ+σ) c1 β1+γ µ c2 β2+γ σ c3 β3

∂R0

∂β1

× β1

R0

= µ (µ+σ) c1 β1

µ (µ+σ) c1 β1+γ µ c2 β2+γ σ c3 β3

∂R0

∂γ
× γ

R0

= −
(

γ µ ((µ+σ) c1 β1−µ c2 β2−σ c3 β3)
(γ+µ) (µ (µ+σ) c1 β1+γ µ c2 β2+γ σ c3 β3)

)

∂R0

∂β2

× β2

R0

= γ µ c2 β2

µ (µ+σ) c1 β1+γ µ c2 β2+γ σ c3 β3

∂R0

∂β3

× β3

R0

= γ σ c3 β3

µ (µ+σ) c1 β1+γ µ c2 β2+γ σ c3 β3

∂R0

∂c2
× c2

R0

= γ µ c2 β2

µ (µ+σ) c1 β1+γ µ c2 β2+γ σ c3 β3

∂R0

∂c3
× c3

R0

= γ σ c3 β3

µ (µ+σ) c1 β1+γ µ c2 β2+γ σ c3 β3

The parameters are arranged from the most sensitive to the least in Table
(6.1). The most sensitive parameter here is the number of partners with AIDS
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Table 6.1: Sensitivity indices of R0 in parental care model

Parameter Parameter description Sensitivity

c3 Number of partners with AIDS individual +0.769

β3 Transmission probability of getting AIDS +0.769

µ Natural death rate of individual -0.6956

γ Progression rate from susceptibles to infected -0.1688

c1 Num. of partners with infected individual +0.133

β1 Transmission probability of getting infected +0.133

σ Progression rate from HIV to AIDS -0.0546

c2 Number of partners with HIV individual +0.019

β2 Transmission probability of getting HIV +0.019

individuals (c3), followed by transmission probability of getting AIDS (β3).
Other important parameter is natural death rate of individual (µ). The least
of the sensitivity parameters is the progression rate from HIV to AIDS (σ).
The sensitivity indices of R0 with respect to the transmission probability of
getting AIDS (β3) is +0.769, implying that decreasing (or increasing) the β3 by
10% decreases (or increases) R0 by 7.69%. Similarly increasing (or decreasing)
the natural death rate (µ) by 10%, increases (or decreases) the R0 by 6.96%.

In other words HIV/AIDS infected youths/teenagers having minimal or no
partners to have blood contact with tends to reduce the transmission, other-
wise increases it.
For all the parameters, the sign of the sensitivity indices of R0 agrees with
intuitive expectation whether R0 increases or decreases when the parameters
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increases.

Sensitivity analysis of state variables
Here, we derive the sensitivity of the state variables to each of the parameters
described in Table (6.2). The sensitivity indices are shown below.















































































































































∂S∗

∂σ
× σ

S∗
= −γ µ (γ+µ) (−1+ρ u1) (µ c2 β2−µ c3 β3)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3a)
2

∂S∗

∂ρ
× ρ

S∗
= − µ (γ+µ) (µ+σ)u1

µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3

∂S∗

∂u1

× u1

S∗
= − µ (γ+µ) ρ (µ+σ)

µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3

∂S∗

∂c1
× c1

S∗
= µ2 (γ+µ) (µ+σ)2 (−1+ρ u1)β1

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂S∗

∂c2
× c2

S∗
= γ µ2 (γ+µ) (µ+σ) (−1+ρ u1)β2

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂S∗

∂c3
× c3

S∗
= γ µ (γ+µ)σ (µ+σ) (−1+ρ u1)β3

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂S∗

∂β1

× β1

S∗
= µ2 (γ+µ) (µ+σ)2 c1 (−1+ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂S∗

∂β2

× β2

S∗
= γ µ2 (γ+µ) (µ+σ) c2 (−1+ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂S∗

∂β3

× β3

S∗
= γ µ (γ+µ)σ (µ+σ) c3 (−1+ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

(6.14)
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∂I∗

∂σ
× σ

I∗
= γ µ2 (−1+ρ u1) (µ c2 β2−µ c3 β3)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂I∗

∂β1

× β1

I∗
= − µ3 (µ+σ)2 c1 (−1+ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂I∗

∂β2

× β2

I∗
= − γ µ3 (µ+σ) c2 (−1+ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂I∗

∂β3

× β3

I∗
= − γ µ2 σ (µ+σ) c3 (−1+ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂I∗

∂c1
× c1

I∗
= − µ3 (µ+σ)2 (−1+ρ u1)β1

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂I∗

∂c2
× c2

I∗
= − γ µ3 (µ+σ) (−1+ρ u1)β2

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂I∗

∂c3
× c3

I∗
= − γ µ2 σ (µ+σ) (−1+ρ u1)β3

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂I∗

∂ρ
× ρ

I∗
= µ2 (µ+σ)u1

µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3

∂I∗

∂u1

× u1

I∗
= µ2 ρ (µ+σ)

µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3

(6.15)
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∂H∗

∂ρ
× ρ

H∗
= µ2 u1

µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3

∂H∗

∂γ
× γ

H∗
= µ

(

µ

(γ+µ)2 (µ+σ)
+ µ ((−µ) (µ+σ) c1 β1+ρ u1 ((−µ) c2 β2−σ c3 β3))

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

)

∂H∗

∂u1

× u1

H∗
= µ2 ρ

µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3

∂H∗

∂β1

× β1

H∗
= µ3 (µ+σ) c1 (γ−ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂H∗

∂β2

× β2

H∗
= γ µ3 c2 (γ−ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂H∗

∂β3

× β3

H∗
= γ µ2 σ c3 (γ−ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂H∗

∂c1
× c1

H∗
= µ3 (µ+σ) (γ−ρ u1)β1

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂H∗

∂c2
× c2

H∗
= γµ3 (γ−ρ u1)β2

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂H∗

∂c3
× c3

H∗
= γ µ2 σ (γ−ρ u1)β3

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

(6.16)
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∂A∗

∂ρ
× ρ

A∗
= µu1

µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3

∂A∗

∂u1

× u1

A∗
= µρ

µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3

∂A∗

∂β1

× β1

A∗
= µ2 (µ+σ) c1 (γ σ−ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂A∗

∂β2

× β2

A∗
= γ µ2 c2 (γ σ−ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂A∗

∂β3

× β3

A∗
= γ µσ c3 (γ σ−ρ u1)

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂A∗

∂c1
× c1

A∗
= µ2 (µ+σ) (γ σ−ρ u1)β1

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂A∗

∂c2
× c2

A∗
= γ µ2 (γ σ−ρ u1)β2

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2

∂A∗

∂c3
× c3

A∗
= γ µσ (γ σ−ρ u1)β3

(µ ((µ+σ) c1 β1+γ c2 β2)+γ σ c3 β3)
2 .

(6.17)

From Table 6.2., we notice in row two that the natural death rate (µ) is most
sensitive on AIDS individual (A∗) with 6.61061, and least sensitive on suscep-
tibles individual (S∗) with 1.54053. If we thus increase or decrease µ by 10%,
then S∗ increases or decreases by 15.6653%, I∗ by 42.9449%, H∗ by 49.5083%
and A∗ by 66.1061%. Other parameters can be assessed further.

In the next chapter we proceed to study the optimal control and analysis of
our model, considering the important model parameters. Into the model we
include time dependent control measures for preventive interventions such as
parental control/care and any other control on youths. Then we apply the
optimal control method using Pontryagin’s Maximum Principle to determine
the necessary conditions for the control of HIV/AIDS.

62

 

 

 

 



Table 6.2: Sensitivity indices of state variables to model parameters on parental
care

S∗ I∗ H∗ A∗

ρ −0.02807363 −0.0259964 −0.025820357 1.25717

µ 1.54053 4.29449 4.95083 6.61061

γ 0.001135 −0.0751882 −0.000237529 −2.73045

σ 0.0000738101 −0.000000128 −0.0996473 −3.17104

u1 −0.000115202 0.0000002 0.000009198 0.071287

β1 −0.000880152 0.000001528 −0.000001175653 −0.0254013

β2 −0.0002525392 0.00000043843 −0.000000504 −0.0072883

β3 −0.144308 0.000250534 −0.000287998 −4.16474

c1 −0.00000748 0.0000000129884 −0.0000001493 −0.000215911

c2 −0.00000588 0.00000001 −0.00000001159 −0.000167631

c3 −0.000542234 0.000000914555 −0.00000108 −0.01533178
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Chapter 7

Optimal control analysis of
screening control and parental
care

We proceed to the study of the optimal control of our model of Chapter 6
and its analysis considering the important model parameters. We include into
the model time dependent control measures for preventive interventions such
as parental control/care and any other control on youths. Then we apply the
optimal control method using Pontryagin’s Maximum Principle to determine
the necessary conditions for the control of HIV/AIDS.

7.1 The control problem and solution

In order to investigate the optimal level of parental effort that would be needed
to control the disease, we propose an objective function J below, which is to
be minimized:

J =
∫ τ

0
[Q0H +Q1I +Q2A+Q3u

2
1 +Q4u

2
2]dt, (7.1)

for some τ > 0. Here Q1, Q2, Q3, Q4 are positive weights, and we choose
quadratic cost on the controls which is similar to other literature on epidemic
controls see [2, 50, 74, 55]. With the given objective function J(u1, u2), our goal
is to minimize the number of infected youths and teenagers I(t), being balance
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against minimizing the cost of control u1(t), u2(t). We choose an optimal
control u∗

1(t), u
∗
2(t) such that

J(u∗
1, u

∗
2) = min{J(u1, u2)|u1, u2 ∈ U}, (7.2)

where U = {(u1, u2) such that (u1, u2) are measurable, with 0 ≤ u1 ≤ u2 ≤ 1}.
The necessary conditions that optimal control must satisfy come from the
Pontryagin’s Maximum Principle [77]. This principle converts (6.2) and (7.2)
into a problem of minimizing point wise a Hamiltonian H, with respect to u1

and u2. The Hamiltonian is:

H = Q0H +Q1I +Q2A+Q3u
2
1 +Q4u

2
2

+ηS[(1− ρu1)µ − s (1− u2) ( i c1 β1 + h c2 β2 + a c3 β3)− µs]
+ηI [ρu1µ + s (1− u2) ( i c1 β1 + h c2 β2 + a c3 β3)− (γ + µ) i]
+ηH [γi− (µ+ σ)h]
+ηA[σh− µa],

(7.3)

where ηS, ηI , ηH and ηA are the adjoint variables. Applying Pontryagin’s Max-
imum Principle and the existence result for the optimal control from [25], we
obtain

Proposition 7.1.1. For the optimal control (u∗
1, u

∗
2) that minimizes J(u1, u2),

the adjoint variables ηS, ηI , ηH and ηA satisfy the following odes

−dηS
dt

= (−1 + u2) (i c1 β1 + h c2 β2 + a c3 β3) (ηi − ηs) + µ ηs,

−dηI
dt

= −Q1 + s c1 (−1 + u2) β1 (−η1 + η2)− γ ηh + (γ + µ) ηi,

−dηH
dt

= − (σ ηa) + (µ+ σ) ηh + s c2 (−1 + u2) β2 (ηi − ηs) ,

−dηA
dt

= −Q2 + µ ηa + s c3 (−1 + u2) β3 (ηi − ηs) ,

(7.4)

with transversality conditions

ηs(τ) = ηi(τ) = ηh(τ) = ηa(τ) = 0. (7.5)
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The optimal controls take the form :

u∗
1 = max{0, min(1, µρ ηi+µρ ηs

2Q3

)}

u∗
2 = max{0, min(1, s (i c1 β1+h c2 β2+a c3 β3) ηi−s (i c1 β1+h c2 β2+a c3 β3) ηs

2Q4

)}.
(7.6)

Proof. Fleming et al. [25] gives the existence of an optimal control due to the
convexity of the integrand of J with respect to u1, u2, a priori boundedness of
the state solutions, and the Lipschitz property of the state system with respect
to the variables. The differential equations governing the adjoint variables are
obtained by differentiation of the Hamiltonian function, evaluated at the op-
timal control.

−dηS
dt

= ∂H
∂S

= (−1 + u2) (i c1 β1 + h c2 β2 + a c3 β3) (ηi − ηs) + µ ηs,

−dηI
dt

= ∂H
∂I

= −Q1 + s c1 (−1 + u2) β1 (−η1 + η2)− γ ηh + (γ + µ) ηi,

−dηH
dt

= ∂H
∂H

= − (σ ηa) + (µ+ σ) ηh + s c2 (−1 + u2) β2 (ηi − ηs) ,

−dηA
dt

= ∂H
∂A

= −Q2 + µ ηa + s c3 (−1 + u2) β3 (ηi − ηs) .
(7.7)

By standard control arguments involving the bounds on the controls, we con-
clude

u∗
1 =







0 if ζ∗1 ≤ 0,
ζ∗1 if 0 < ζ∗1 < 1
1 if ζ∗1 ≥ 1

u∗
2 =







0 if ζ∗2 ≤ 0,
ζ∗2 if 0 < ζ∗2 < 1
1 if ζ∗2 ≥ 1

where

ζ∗1 = µρ ηi+µρ ηs
2Q3

,

ζ∗2 = s (i c1 β1+h c2 β2+a c3 β3) ηi−s (i c1 β1+h c2 β2+a c3 β3) ηs
2Q4

.

(7.8)
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Due to the boundedness of the state system, adjoint system and the resulting
Lipschitz structure of the ODEs, we obtain the uniqueness of the optimal con-
trol for small τ . Uniqueness of the optimal control follows from the uniqueness
of the optimality system, which consists of (7.1) and (7.2) with characterization
(7.3). �

7.2 Numerical results and discussion

In this section we present some numerical solutions to the control problem. An
iterative scheme is used for solving the optimality system. Using a fourth order
Runge-Kutta scheme, we start off with a guess for the control over the simu-
lated time, and solve for the state variables in a forward way. Because of the
transversality conditions (7.5), the co-state variables are solved by a backward
scheme using the current iterations solutions of the state equation. Then the
controls are updated by using a convex combination of the previous controls
and the value from the characterizations (7.6). This process is repeated and
iteration stopped if the values of the unknowns at the previous iterations are
very close to the ones at the present iterations, see [55].

We examine our deterministic model and study the effects of screening con-
trol (u1) and parental care (u2) on each of the classes. We also investigate
numerically the effect of the following optimal control strategies on the spread
of HIV/AIDS among the youths.

– Strategy A: Optimal use of screening control (u1) and parental care
(u2) on individuals.

– Strategy B: The use of only screening control (u1) on individuals.

– Strategy C: The use of only parental care (u2) on individuals.

We assume that the weight factor Q4, associated with control u2 is greater
than Q3 which is associated with u1. This assumption is based on the fact
that the cost associated with u1 will include the cost of screening and surveil-
lance, while those associated with u2 will include the cost of education, hos-
pitalization, medical test and so on. We have chosen the same set of weight
factor Q1 = 920, Q2 = 25, Q3 = 80 initial variables S(0) = 700, I(0) = 100,
H(0) = 10, A(0) = 0 to illustrate the effect of different optimal control strate-
gies on the spread of HIV/AIDS among the youths. Thus, we have considered
the spread of HIV/AIDS in an endemic population.
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Table 7.1: Parameters values used in simulating parental care model

Estimated

Parameter Parameter description value References

c3 Num. of partners with AIDS indiv. 1 Estimate

β3 Trans. prob. of getting AIDS 0 ≤ β3 ≤ 1 [65]

µ Natural death rate of individual 0.03 [16, 65]

γ Prog. rate from S to I 0.18 [65]

c1 Num. of partners with infected indiv. 4 Estimate

β1 Trans. prob. of getting infected 0 ≤ β1 ≤ 1 [65]

σ Prog. rate from HIV to AIDS 0.05 [65]

c2 Num. of partners with HIV indiv. 3 Estimate

β2 Trans. prob. of getting HIV 0 ≤ β2 ≤ 1 [65]
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Strategy A: Optimal use of screening control (u1) and parental care
(u2) on individuals.
The screening control (u1) and parental care (u2) are used to optimize the
objective function J . We observe in Fig. 7.1(b) that due to control strategies,
the number of infected individuals I decreases to zero at time t = 19 while
the population of infectious increases when there is no control. Also in Fig.
7.1(c), the number of HIV individuals decreases to zero at t = 25 when there
is control when no control. AIDS individuals in Fig. 7.1(d) increases and later
decreases to zero at t = 27 when there is control, and increases when no con-
trol. The control profile in Fig. 7.1(e) shows that maximum effort is required
on screening control (u1) till the end of intervention, while parental care (u2)
can be relaxed at a certain period of time.

Strategy B: The use of only screening control (u1) on individuals.
Here, only screening control u1 is used to optimize the objective function J
while we set the parental care (u2) to zero. We observe in Fig. 7.2(b) infec-
tives decrease to zero at t = 20 with screening control, and decrease to zero
at t = 25 when no control. It is also noted that population of HIV individuals
decrease to zero at t = 27 with screening and tends to zero at t = 30 when
uncontrolled in Fig. 7.2(c). Population of AIDS individuals first increase but
later decrease to zero at t = 30 with screening and down to zero at t = 32
in Fig. 7.2(d) when no control. The control profile in Fig. 7.2(e) also shows
that maximum effort is required by screening control (u1) even in the absence
of parental care. All these imply no much difference between controlled and
uncontrolled in the case of screening control.

Strategy C: The use of only parental care (u2) on individuals.
Simulations here are similar to that of strategy A with only slight difference.
Only the parental care (u2) is used to optimize the objective function J while
screening control (u1) is set to zero. We observe in Fig. 7.3(b) that due to
control strategies, the number of infected individuals I decrease to zero at time
t = 21 while the population of infectious increases when there is no control.
Similarly in Fig. 7.3(c), the number of HIV individuals decrease to zero at
t = 26 when there is parental care, but increase when no control. AIDS
individuals in Fig. 7.3(d) increase from initial 0 to 750 and later decrease to
zero at t = 29, but increase rapidly when there is no control. The control
profile in Fig. 7.3(e) also shows that maximum effort is required on screening
control (u1) throughout the period, while that of parental care (u2) can be
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Figure 7.1: Simulations of the HIV/AIDS model showing the effect of optimal
control strategies using screening control and parental care on individuals.
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Figure 7.2: Simulations of the HIV/AIDS model showing the effect of opti-
mal control strategies using only screening control (without parental care) on
individuals.
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relaxed at a certain period of time.
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Figure 7.3: Simulations of the HIV/AIDS model showing the effect of opti-
mal control strategies using only parental care (without screening control) on
individuals.
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Chapter 8

Optimal control analysis of
public-health campaign and
infectives withdrawal

In this Chapter, we want to investigate the optimal level of efforts that would
be needed to control HIV/AIDS with the use of public-health campaigning
and infectives withdrawal. For this to be achieved, we proceed to the study
of the optimal control of our model in Chapter 5. We include into the model
time dependent control measures for preventive interventions that is public-
health and infective withdrawal. Then we apply optimal control method using
Pontryagin’s Maximum Principle to determine the necessary conditions for the
control of HIV/AIDS.

8.1 The control problem

We propose an objective functional J , in terms of which we shall minimize the
number of human infectives and AIDS individuals.

J =
∫ τ

0
[M0I1 +M1I2 +M2A+M3q

2 +M4α
2]dt (8.1)

where M1,M2,M3,M4 are positive weights. With the given objective function
J(q, α), our goal here is also to minimize the number of infectives (I1(t), I2(t))
and AIDS A(t) individuals, while also minimizing the cost of control q(t), α(t)
and we also choose quadratic cost on the controls which is similar to other
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literature on epidemic controls. Like in Chapter 7, the squares in the inte-
grand of J ensures that the Hamiltonian is convex with respect to the control
variables. We choose optimal control q, α such that

J(q∗, α∗) = min{J(q, α)|q, α ∈ U}, (8.2)

where U = {(q, α) such that (q(t), α(t)) are measurable with 0 ≤ q ≤ α ≤ 1 } is
the control set. Here we also incorporate the Pontryagin’s Maximum Principle.
This principle concerns a Hamiltonian function H, which for our problem is as
follows

H = M0H +M1I +M2A+M3q
2 +M4α

2

+ΦS[µb− µS − λ(I, A)S]
+ΦI1 [λ(I, A)S − (µ+ σ)I1]
+ΦI2 [σI1 − (µ+ ρ)I2]
+ΦA[ρI2 − (µ+ δ)A],

(8.3)

where ΦS,ΦI1 ,ΦI2 and ΦA are the adjoint variables. Applying Pontryagin’s
Maximum Principle, we obtain the following proposition which characterizes
the optimal control.

Proposition 8.1.1. For the optimal control (q∗, α∗) that minimizes J(q, α),
the adjoint variables ΦS,ΦI1 ,ΦI2 and ΦA satisfy the following odes

−dΦS

dt
= (S − b) µ+ c β (−(α I1)−α I2 η1+A (q−1)αη2)

α (1+α I1+α I2 η1−A (q−1)αη2)

−dΦI1

dt
= (µ+ σ) I1 +

c S β (α I1+α I2 η1−A (q−1)αη2)
α (1+α I1+α I2 η1−A (q−1)αη2)

−dΦI2

dt
= − (σ I1) + (µ+ ρ) I2

−dΦA

dt
= A (δ + µ)− ρ I2

(8.4)

and with transversality conditions

ΦS(τ) = ΦI1(τ) = ΦI2(τ) = ΦA(τ) = 0. (8.5)
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The optimal controls take the form:

q∗ = max{0, min(1,
µ bΦI1

+µ bΦS

2M3

)},

α∗ = max{0, min(1, c S βM4 (I1+I2 η1+A (1−q) η2)φS

2 (1+α (I1+I2 η1+A (1−q) η2))
)}.

(8.6)

Proof. Fleming et al. [25] gives the existence of an optimal control due to the
convexity of the integrand of J with respect to q, α, a priori boundedness of
the state solutions, and the Lipschitz property of the state system with respect
to the variables. The differential equations governing the adjoint variables are
obtained by differentiation of the Hamiltonian function, evaluated at the op-
timal control.

−dΦS

dt
= dH

dS
= (S − b) µ+ c β (−(α I1)−α I2 η1+A (q−1)αη2)

α (1+α I1+α I2 η1−A (q−1)αη2)

−dΦI1

dt
= dH

dI1
= (µ+ σ) I1 +

c S β (α I1+α I2 η1−A (q−1)αη2)
α (1+α I1+α I2 η1−A (q−1)αη2)

−dΦI2

dt
= dH

dI2
− (σ I1) + (µ+ ρ) I2

−dΦA

dt
= dH

dA
= A (δ + µ)− ρ I2

(8.7)

By standard control arguments involving the bounds on the controls, we con-
clude

q∗ =







0 if ζ∗1 ≤ 0,
ζ∗1 if 0 < ζ∗1 < 1
1 if ζ∗1 ≥ 1

α∗ =







0 if ζ∗2 ≤ 0,
ζ∗2 if 0 < ζ∗2 < 1
1 if ζ∗2 ≥ 1

where

ζ∗1 =
µ bΦI1

+µ bΦS

2M3

,

ζ∗2 = c S βM4 (I1+I2 η1+A (1−q) η2)φS

2 (1+α (I1+I2 η1+A (1−q) η2))
.

(8.8)

76

 

 

 

 



The uniqueness of the optimal control follows from the uniqueness of the op-
timality system, which consists of (8.1) and (8.2) with characterization (8.3).
�

8.2 Numerical results and discussion

Here we generate some numerical solutions to our control problem using forth
order Runge-Kutta scheme. This method is also tested for convergence. We
use the scheme to solve our transversality conditions in (8.5) and update our
control with the combination of previous controls and values from characteriza-
tion (8.6). The process is repeated while iterations stop when unknown values
of the previous iterations are very close to the present ones, see also [55]. A
number of different numerical simulations are carried out for comparisons in
Fig. (8.1) to Fig. (8.3). The values of parameter used in the simulations are
presented in Table 8.1 and some of these parameters are varied to test the
robustness of our methods.

We use our model to study the effects of public-health campaigns (α) and
infectives withdrawals (q) on each of the classes. We also investigate numer-
ically the effect of the following optimal control strategies on the spread of
HIV/AIDS in a population.

– Strategy A: Optimal use of public-health campaigns (α) and infec-
tives withdrawals (α) on individuals.

– Strategy B: The use of only public-health campaigns (α) on indi-
viduals.

– Strategy C: The use of only infectives withdrawals (q) on individ-
uals.

Here we choose a set of weight factors M1=920, M2=25, M3=80 together with
initial variables S(0)=400, I1(0)=400, I2(0)=500, A(0)=600 to illustrate the
effect of different optimal control strategies on the spread of HIV/AIDS. Thus,
we have considered the spread of HIV/AIDS in an endemic population.

Strategy A: Optimal use of public-health campaigns (α) and infec-
tives withdrawals (q) on individuals.
The infectives withdrawals (q) and public-health campaigns (α) are used to
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Table 8.1: Parameter values used in simulating education model

Parameter Parameter description value Source

c Partner acquisition rate 1.5 [73]

q Proportion of withdrawals by AIDS 0.5 [73]

σ Rate of becoming symptomatic 0.14 [73]

µ Natural death rate 0.02 [16]

ρ Rate of developing AIDS 0.05 [73]

β Probability of transmission 0.5 [73]

(η1, η2) Enhancement factor 1,2 [16]

δ Disease-induced death rate 0.33 [73]

optimize the objective function J . We observe in Fig. 8.1(b) that due to con-
trol strategies, the number of asymptomatic infectives individuals I1 decreases
to zero at time t=25 while the population increases when there is no control.
Also in Fig. 8.1(c), the number of symptomatic infectives individuals I2 first
increases from initial 500 but later decreases to zero at t=25 when there is
control while decreases to zero at t=26. This implies that there is only slight
difference between when there is control and when no control in the case of
symptomatic infectives individuals I2. Both control overlap in AIDS individ-
uals in Fig. 8.1(d) and decrease from initial 600 to 0 at t=15. The control
profile in Fig. 8.1(e) shows that maximum effort is required on public-health
campaigns (α) till the end of intervention, while infectives withdrawals (q) can
be relaxed at a certain period of time.

Strategy B: The use of only public-health campaigns (α) on individ-

78

 

 

 

 



Figure 8.1: Simulations of the HIV/AIDS model showing the effect of optimal
control strategies using public-health campaigns and infectives withdrawal on
individuals.
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uals.
Here, only public-health campaigns α is used to optimize the objective func-
tion J while we set infectives withdrawal (q) to zero. We observe overlapping
in each of the classes showing that no much difference between controlled and
uncontrolled. It is also noted that there is a rapid increase in population of
asymptomatic infectives individuals I1, symptomatic infectives individuals I2
and AIDS individuals A in Fig. 8.2(b), 8.2(c), and 8.2(d) respectively. The
control profile in Fig. 8.2(e) also shows that maximum effort is required on
public-health campaigns (α) till the end of intervention even in the absence of
infectives withdrawal (q).

Strategy C: The use of only infectives withdrawal (q) on individuals.
Simulations here are similar to that of strategy A with only slight difference.
Only the infectives withdrawals (q) is used to optimize the objective function J
while public-health campaigns (α) is set to zero. We observe in Fig 8.1(b) that
due to control strategies, the number of asymptomatic infectives individuals I1
decreases to zero at time t=25 while the population increases when there is no
control. Also in Fig. 8.1(c), the number of symptomatic infectives individuals
I2 first increases from initial 500 but later decreases to zero at t=25 when
there is control while decreases to zero at t=25. This implies that there is
only slight difference between when there is control and when no control in the
case of symptomatic infectives individuals I2. Both control overlap in AIDS
individuals in Fig. 8.1(d) and decrease from initial 600 to 0 at t=17. The
control profile in Fig. 8.1(e) still showing that maximum effort is required
on public-health campaigns (α) till the end of intervention, while infectives
withdrawal (q) can be relaxed at a certain period of time.
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Figure 8.2: Simulations of the HIV/AIDS model showing the effect of opti-
mal control strategies using only public-health campaigns (without infectives
withdrawal) on individuals.
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Figure 8.3: Simulations of the HIV/AIDS model showing the effect of opti-
mal control strategies using infectives withdrawal (without public-health cam-
paigns) on individuals.
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Chapter 9

Conclusion

9.1 Observation of this research

In this study, we derived and analyzed various deterministic models for the
transmission of HIV/AIDS. In Chapter 4, we analyzed HIV/AIDS model with
carefree susceptibles and treatment. We analyzed the model for the existence
of diseases-free and endemic equilibrium points. We discovered the model can-
not have disease free equilibrium if careful susceptibles enlightenment control
is not maintained. Hence it has an endemic equilibrium point in which the
disease persists in the population. We also carried out the sensitivity analysis
for reproduction number R0. From this analysis, we found out that the most
sensitive parameter is the probability of careful susceptible contact with infec-
tives and least is the natural mortality related to HIV/AIDS.

In Chapter 5, we analyzed HIV/AIDS model with public-health campaigns
and infectives voluntary withdrawal. We analyzed the model for the existence
of diseases-free and endemic equilibrium points. We discovered the model can-
not have disease free equilibrium if infectives individuals refuse to withdraw
from sexual activities. Hence has an endemic equilibrium point in which dis-
ease persists in the population. We also carried out the sensitivity analysis
for both R0 and state variables. This analysis showed that the most sensi-
tive parameter is the partner acquisition rate and the least is proportion of
withdrawals by AIDS cases. Sensitivity analysis of the state variables was
also carried out and there we noticed that probability of transmission (β) is
more sensitive on AIDS (A∗) than on asymptomatic infectives on (I∗1 ). We also
noticed that partner acquisition rate (c) is more sensitive on (S∗) than on (A∗).
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In Chapter 6, we derived and analyzed a deterministic model for the transmis-
sion of HIV/AIDS. We also analyzed the model for the existence of disease-free
and endemic equilibrium points. We discovered that the model cannot have
a disease free equilibrium in the presence of immigration of infected and/or
infectious youths and it has an endemic equilibrium point in which the disease
persists in the community. This discovery agrees with Brauer and van den
Driessche [14] on general SIR model with infective immigrants. We also found
from the sensitivity indices analysis that the most sensitivity parameters are
number of contact with AIDS individuals (c3), transmission probability of get-
ting AIDS (β3) and natural death rate (µ). The sensitivity analysis for the
state variable shows that the natural death rate (µ) is sensitive on S∗, I∗ and
H∗.

In Chapter 7, we analzed the effect of screening control and parental care on
the transmission of the disease by performing optimal control analysis on our
model. We derived and analyzed the conditions for optimal control of the dis-
ease with screening control and parental care on youths.
From our numerical results, the control profiles in each of the strategies used
explained that maximum effort is required on screening control through the
intervention while parental care can be relaxed after a period of time. We
further found that infected immigrants have no strong impact in the disease
transmission, if there is effective parental care or control over the youths. How-
ever, the combination of the screening of infected immigrants and parental care
applied together give best and more efficient results in controlling the spread
of HIV/AIDS.

In Chapter 8, we examined the effect of public-health campaign and infectives
withdrawal on the transmission of the disease by performing optimal control
analysis on the model. We also derived and analyzed the conditions for optimal
control of the disease with public-health campaign and infectives withdrawal.
Our numerical results shows that the control profiles in each of the strate-
gies used explained that maximum effort is required on public-health cam-
paigns through the intervention while infectives withdrawal can be relaxed
after a period of time. We also found that public-health campaigns have no
strong impact in the disease transmission if there is effective infectives with-
drawal. However, the combination of public-health campaigns and infectives
withdrawal applied together offer the best and more efficient results in control-
ling the spread of HIV/AIDS. Hence the control programs that follow these
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strategies can also reduce the spread of HIV/AIDS.

In general this thesis contributes to understanding HIV population dynamics,
and informing optimal strategies for intervention. Therefore control programs
that follow these strategies can effectively reduce the spread of HIV/AIDS.

9.2 Possible continuation

Our model does not consider some factors and approach below which may
influence the spread of HIV/AIDS. Considering these factors properly may
provide a better understanding of the disease and its control.

Stochastic approach: Our model and approach in this thesis is determinis-
tic. Reviewing all analyses and comparing the results obtained with stochastic
modelling and approach will enable us to choose the best approach in control-
ling HIV/AIDS.

Culture/Religion: The impact of religion and culture on transmission of HIV/AIDS
allows us to investigate the relationship between the spread of HIV/AIDS and
religion.

Co-infection: The impact of co-infection in the dynamics of infectious disease
cannot be neglected in our present day. This will allow us to study Malaria
and HIV/AIDS co-infection and how best to control them.
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