
Nonlinear Low Frequency Wave Phenomena

in Space Plasmas

by

Rufai Odutayo Raji

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

Department of Physics,

University of the Western Cape, Cape Town, South Africa.

Supervisor: Prof. R. Bharuthram

(University of the Western Cape)

Co-supervisors: Prof. S. V. Singh,

Prof. G. S. Lakhina

(Indian Institute of Geomagnetism, Mumbai, India)

November, 2013

 

 

 

 



Abstract

Space is endowed with a rich variety of electrodynamic phenomena. Much of known

matter in the universe exists as plasmas. Plasmas occur naturally, predominantly

occupy the Sun, Stars, Auroras and Interstellar space. The solar wind is a stream of

energized, charged particles (i.e., electrons and protons, along with few heavier ions),

flowing outward from the Sun, through the solar system at a very high speed and

temperature. Once the solar wind has blown into space, the particles travel all the

way past planet Pluto and do not slow down until they reach the termination shock

within the heliosphere. Because of the author’s interest in space electrodynamics

phenomena, the focus of this thesis is “ Nonlinear low frequency wave phenomena in

space plasmas”.

The fact that the space environment hosts nonlinear wave phenomena has at-

tracted many researchers. Soliton formation and propagation is one of the most

interesting nonlinear structures in space plasmas. S3-3, Viking, POLAR, FAST,

FREJA, WIND, CLUSTER and GEOTAIL satellite observations have clearly indi-

cated that solitary wave structures are frequently observed in different regions of

the Earth’s magnetosphere, e.g. the auroral acceleration region, the plasma sheet

boundary layer (PSBL), the bow shock, the magnetopause and on cusp field lines,

the Polar cap boundary layer, the auroral kilometric radiation (AKR) source region,

the magnetosheath and Earth’s foreshock region. Various theoretical models have

been developed to describe the observed solitary wave structures at different regions

of the Earth’s magnetosphere.

In this thesis, using multispecies fluid plasma models, nonlinear electrostatic soli-

tary wave fluctuations will be investigated in magnetized plasmas. The different mod-

els used for the investigation will be guided by the satellite observations in different

regions of the Earth magnetosphere. These investigations will enable us to attempt

theoretical explanations for the nonlinear potential structures observed in the satel-
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lite data. Multispecies plasma consisting of cool and hot electrons with Maxwellian

distributions and fluid ions will be considered to study low frequency solitons. The

ions will be considered as magnetized. The study will be extended to include mag-

netized oxygen ions. The model will be modified for regions of the magnetosphere

consisting of two ions having Maxwellian distributions and magnetized electrons. The

nonthermal distributions of energetic hot electrons and the Maxwellian distributions

of cool electrons with magnetized cold ions fluid will also be considered. For all the

models, the effect of ion and electron densities, temperatures, magnetic field strenght

and propagation angle will be studied during the investigation of soliton structures.

In all the above mentioned studies, arbitrary amplitude theory is carried out by the

Sagdeev pseudo-potential method. Further investigations on the charateristics and

existence domains of the solitons is found both analytically and numerically, using

satellite data where applicable.
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Chapter 1

General introduction

The subject of this thesis is nonlinear low frequency wave phenomena in space plas-

mas. Plasma is known as the fourth state of matter, which is in the form of an

electrified gas with charged particles (i.e. the atoms dissociate into positive/negative

ions and negative electrons, such that the overall charge of a plasma is roughly zero).

Plasma, unlike other classes of matter, forms unique structures such as filaments,

beams, solitons and double layers, under the influence of a magnetic field. It is gener-

ally known that more than 99 percent of the universe is in a plasma state. Plasma oc-

curs naturally, predominantly in the sun, stars, auroras and interstellar space. Plasma

can also be created when a gas is brought to a temperature that is comparable to or

higher than that in the interior of stars. It exists in neon and fluorescent tubes, in

the sea of electrons that moves freely with energy bands in the crystalline structure

of metallic solids, and in many other objects (Parks, 1991; Peratt, 1991).

The motivation behind the studies presented in this thesis is an attempt to explain

certain satellite observations of nonlinear electrostatic fluctuations in different regions

of the Earth’s magnetosphere.

Space plasma was first observed in space by USSR Sputnik satellite on October

4, 1957, and then by Explorer I of USA on January 31, 1958. Then space became

accessible and more satellites were instrumented to study the Earth’s environment

(Parks, 1991; Moolla, 2004).

Satellite observations in auroral regions revealed that space is endowed with a rich

variety of electrodynamic phenomena. The knowledge acquired from our solar system

plasmas can be generally applied to other plasmas in the universe. This is premised
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on the fact that our solar electrodynamic system exemplifies similar dynamics that

occur in other planets, magnetosphere and solar systems (Parks, 1991).

1.1 Solar wind

The solar wind is a stream of energized, charged particles (i.e., electrons and protons,

along with few heavier ions), flowing outward from the sun, through the solar system

at a very high speed of 900km/s. The temperature reaches about 1, 000, 000oC. It is

completely made of plasmas. Once the solar wind is blown into space, the particles

travel all the way past planet Pluto and do not slow down until they reach the

termination shock within the heliosphere. The source of the solar wind is the Sun’s

hot corona. The Sun consists of several ions species of about 90% hydrogen, 10%

helium, and 0.1% of other minor constituents, such as carbon, nitrogen, and oxygen.

Solar wind has a large influence on our planet, particularly on the ionosphere, the

Earth’s magnetic field, on Earth’s auroras and on telecommunication systems (Parks,

1991).

1.2 Magnetosphere

A magnetosphere is the region surrounding a planet, where the planet’s magnetic

field dominates, and comprises the following parts: the bow shock, magnetosheath,

boundary layer, magnetotail, plasmasheet, lobes, plasmasphere, radiation belts, po-

lar wind, magnetopause and many electric currents. The magnetosphere prevents

most of the solar wind particles coming from the sun from hitting the Earth. It is

composed of charged particles and magnetic flux. These particles are responsible for

many wonderful natural phenomena such as the auroral and radio emissions. It even

generates storms (NASA). Figure 1.1 shows the Sun and Earth’s connection to solar

wind plasma.

In the case of magnetized bodies such as Mercury, Jupiter, Earth, Saturn, Uranus

and Neptune the magnetosphere formed around each of these bodies and the interac-

tion between them induces large-scale currents that can almost confine the planetary

magnetic field. Unlike unmagnetized bodies such as Mars, Venus and the comets,

the solar wind interacts with the ionized particles of their atmospheres and induces
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Figure 1.1: Sun-Earth’s Magnetosphere connection with solar wind plasma (David,
2008)

currents whose magnetic fields then divert the solar wind around them (Parks, 1991).

The motivation behind this thesis is to theoretically describe the natural phenom-

ena that occur in different regions of the Earth’s magnetosphere . In particular, our

focus will be more on the nonlinear electrostatic solitary waves and double layers

(see Section 1.3) which have been observed by satellite missions at the low frequency

regions of the Earth’s magnetosphere.

1.3 Nonlinear structures

The nonlinearities in space plasma contribute to the localization of waves leading to

different types of coherent structures in the Earth’s magnetosphere, namely solitary

waves (solitons), double layers, shock waves and vortices etc. These structures are

very important both in the laboratory experiments and theoretical analysis. The
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nonlinear structures can be responsible for turbulent flows and also play an important

role in energy transport in plasmas.

1.3.1 Solitons

Solitons are nonlinear waves. As a preliminary definition, a soliton is a single, well-

defined non-dissipative wave that can travel for a long distance without depreciating

in size or form (shape)(Mahmood, 2007). We can also say that a soliton is a nonlinear

fluctuation that propagates long distance without losing its originality. They have

the following unique properties:

• They are nonlinear localized structures which travel with permanent form and

constant velocity (Drazin and Johnson, 1989).

• They are robust against perturbations and can cross each other without change

in their shapes and velocities (Mahmood, 2007).

A solitary wave is a hump or dip shaped nonlinear wave of relatively stable profile,

which preserves its shape. It is formed due to the balance between the effects of the

nonlinearity and the dispersion.

The history of solitary waves dates back to the report of the observations by John

Scott Russell at the meeting of the Society for the Advancement of Science in 1834.

Here is an extract from the original reports:

I was observing the motion of a boat which was rapidly drawn along a

narrow channel by a pair of hoses, when the boat suddenly stopped-not so

the mass of water in the channel which it had put in motion; it accumulated

round the prow of the vessel in a state of violent agitation; then suddenly

leaving it behind, rolled forward with great velocity, assuming the form of a

large solitary elevation, a rounded, smooth and well defined heap of water,

which continued its course along the channel apparently without change of

form or dimension of speed. I followed it on horseback, and overtook it

still rolling on at a rate of some eight or nine miles an hour, preserving its

original figure some thirty feet long and a foot to foot and half in height.

Its height gradually diminished, and after a chase of one or two miles I lost
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it in the windings of the channel. Such, in the month of August 1834, was

my first chance interview with that singular and beautiful phenomenon

which I have called the Wave of Translation a name which it now very

generally bears.” (J. Scott Russell, 1844)

Later in 1895, the Korteweg-de Vries (KdV) equation was derived, to describe

the (unidirectional) propagation of waves on the surface of the shallow channel with

exact soliton solution (Scott et al. 1973, Drazin, 1984, Baboolal, 1988). In 1957,

Bernstein, Green, and Kruskal (Scott et al. 1973, Drazin, 1984, Baboolal, 1988)

predicted the existence of a broad class of nontrivial wave solutions of the Vlasov-

Poisson equations in space plasma. The model is strongly related to the existence

of trapped particles in the self-consistent electrostatic potential. The properties of

the KdV equation have been investigated extensively by a number of researchers in

terms of ion-acoustic waves (Gardner and Morikawa, 1965; Zabusky and Kruskal,

1965; Washimi and Taniuti, 1966 ). Using fluid equations, Sagdeev (1969) described

properties of solitons in a plasma consisting of hot isothermal electrons and cold

ions. More extensive investigations by laboratory experiments (Ikezi et al. 1970;

Ikezi, 1973) and theoretical analysis (Block, 1972; Tagare, 1973) have been done on

the existence and behaviors of the ion-acoustic solitary waves in various plasmas.

Experimental and theoretical investigation of ion-acoustic wave (IAW) propagation

in a plasma with the electron velocity distribution of which may be represented by

the superposition of two Maxwellian, has been done by Jones et al. (1975). Later

experiments were done in double-plasma devices (Nakamura, 1987a, 1987b) and in

conducting polymers (Heeger et al. 1988). Observations of solitons have been made

in several regions of the Earth’s magnetosphere, e.g., auroral field lines (Temerin et

al. 1982; Mozer and Temerin 1983; Temerin and Mozer, 1984; Boström et al. 1988;

Mozer et al. 1997; Ergun et al. 1998; Bounds et al. 1999), the bow shock (Bale

et al. 1998), magnetopause and on cusp field lines (Franz et al. 1998; Cattel et al.

1999), Polar cap boundary layer (Tsurutani et al. 1998), plasma sheet boundary

layer (PSBL) (Matsumoto et al. 1994; Omura et al. 1994, 1999), auroral kilometric

radiation (AKR) source region (Pottelette et al. 1999) and magnetosheath (Pickett

et al 2003, 2005). The Rossby soliton has been proposed to explain Jupiter’s great

red spot (Antipov et al. 1985) and soliton models are proposed in descriptions of

solid state devices (Scott et al.1973) and in nuclear structure theories (Gavin et al.

1987).
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These fundamental space plasma phenomena continue to interest both experimen-

talists and theoreticians alike and have been the subject of intense reviews (Scott et

al. 1973; Block, 1978; Watanabe, 1978; Tran, 1979; Buti, 1980; Nishihara and Tajiri,

1981; Smith, 1982; Shukla, 1983; Borovsky, 1984; Pecesli, 1985; Bharuthram and

Shukla, 1985, 1986; Mälkki et.al., 1989; Baboolal et al. 1990; Pottelette et.al. 1990;

Yadav and Sharma, 1990; Mace et al. 1991; Reddy and Lakhina, 1991; Reddy et.al.

1992; Cairns et al. 1995; Mamun, 1997; Malka et al. 1997; Berthomier et al. 1998;

Yadav et al. 1995; Ghosh et.al. 1996; Ghosh and Iyengar, 1997, 2002; Singh et al.

2001; Bharuthram et al 2002; Kourakis and Shukla, 2003; Singh and Lakhina, 2004;

Gill et al. 2006; Verheest et al. 2007, 2008; Lakhina et al. 2008 a and b, 2009, 2011).

1.3.2 Double layers

A double layer is a unique structure in space plasmas. It consists of two space-charge

regions (“layers”) in close proximity, with a strong electric field between the positive

charge and the negative charge. In general, double layers (which may be curved

rather than flat) separate regions of plasma with quite different characteristics. In

other words, the potential drop across the double layer is essentially monotonic and is

greater than or of the order of the electron thermal energy. It occurs over a localized

region of the plasma with dimensions, given in terms of the electron Debye length,

small in comparison with the system length. Double layers are found in a wide variety

of plasmas, from discharge tubes to space plasmas to the Birkeland currents supplying

the Earth’s aurora. They are especially common in current-carrying plasmas.

In the 1920s, double layers were known as plasmas that have a limited capacity for

current maintenance, before the observations of Langmuir in 1929 in the laboratory,

when he was investigating the cathode sheath formations in the diode. More obser-

vations of double layers have been reported in the laboratory (Coakely et al. 1979,

Sato 1982, Ameniya and Nakamura 1986), in laser plasma (Ludmirsky et al. 1985),

in the auroral region (Temerin et al. 1982; Mozer and Temerin 1983; Boehm et al.

1984), and in the magnetosphere (Mozer et al. 1985). At the moment many groups

are working on numerical simulation and theoretical models (Sato and Okuda 1980,

1981; Baboolal et al. 1988, 1990; Verheest et al. 2005, 2008; Lakhina et al. 2010,

2011).
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1.3.3 Shock waves

A shock wave is a propagating disturbance where there is sharp transition in a dy-

namic property (typically density) over a relatively small temporal or spatial interval.

Such waves of course would include double layers as special cases. Like an ordinary

wave, it carries energy and can propagate through a medium or, in some cases in

the absence of a material medium, through a field such as the electromagnetic field.

(Anderson, 1984)

The universe is woven through by plasmas in motion. Between the planets, the

stars and the galaxies there are flows of plasma and field energy, and wherever these

flows exceed the speed of sound and the Alfven speed (Shukla and Stenflo, 1997),

there will also be shock waves (Schwartz et al. 2004). In the solar system there

are shocks in front of all the planets, in their magnetotails, and in the solar corona

and solar wind. Shock waves are widely studied in space and astrophysics plasmas.

They are places where the plasma and field go through dramatic changes: changes in

density, temperature, field strength and flow speed. These changes, combined with

the collisionless nature of space plasmas and the wide variety of wave modes, produce

a rich collection of different shock types (Schwartz et al. 2004).

Shock waves have been studied in different aspects of space plasma, in supernovae

shock waves or blast waves through the interstellar medium (Giacobbe 2005), and

in the bow shock caused by the Earth’s magnetic field colliding with the solar wind

(Kivelson and Russell 1995).

1.3.4 Vortices

Vortices are spinning, often turbulent, flows of fluid. A polar vortex is a persistent,

large-scale cyclone located near one or both of a planet’s geographical poles. On

Earth, the polar vortices are located in the middle and upper troposphere and the

stratosphere. They surround the polar highs and are part of the polar front (Ting,

1991).

Coherent vortices appear in two-dimensional fluids and magnetized plasmas. In

simplest possible scenario, the vortex dynamics is governed by the Naiver Stock equa-

tion, which admits a monopolar vortex (Hasegawa 1985). However, in magnetized

dusty plasma, we have the possibility of vortices comprising a bipolar (Bharuthram
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and Shukla 1992b), a tripolar, and a chain (Vranjeŝ et al 2001). Here the vortices

are associated with nonlinear dispersive waves that possess at least a two-dimensional

character. When the velocity of the fluid (or plasma particles) motion associated with

the dispersive waves becomes locally larger than the wave phase velocity because of

the nonlinear effects, one encounters a curving of the wave front, which leads to the

formation of a two-dimensional traveling vortex structure (Shukla and Mamum 2002).

The so-called “dipole” is probably the most observed shape, but transitions to a

tripole and to a fairly circular shape are also likely. This structure has been studied

in Earth’s magnetosphere by many authors, like Kaladze and Tsamalashvili (1997),

Sreenivasan and Jones (2005), Olson and Amit (2006).

1.4 Thesis structure

The thesis is structured as follows:

In the present chapter, the basic concepts are introduced and the scope of the

present work is outlined.

In Chapter Two, we survey the literature on nonlinear structures in the Earth’s

magnetosphere, such as space observations and theoretical models of nonlinear elec-

trostatic fluctuations in auroral regions.

In Chapter Three, we provide an explanation for the low-frequency electrostatic

fluctuations observed by the spacecraft missions (e.g. S3-3, FAST, POLAR, WIND,

FREJA, Viking, CLUSTER, GEOTAIL) in the auroral regions of the Earth’s mag-

netosphere. Using quasi-neutrality conditions, evolution of solitons and double layers

are studied in a three-component plasma model consisting of ions and two electrons

species. The conditions under which the solitary waves and double layers can exist

are found both analytically and numerically for the plasma models. We show the

existence of negative potential solitary waves and double layers. Our calculations

show good agreement with Viking satellite observations of the electric field structures

in the auroral region of the magnetosphere. (The input parameter values were taken

from satellite data). This chapter is composed of three models, Model 1: Magnetized

plasma with a cold ions and two-Boltzmann electrons; Model 2: Magnetized plasma

with adiabatic ions and two-Boltzmann electrons and Model 3: Magnetized plasma

with cold ions, cool electrons and hot nonthermal electron species.
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Recent observations (FAST satellite measurements) have clearly indicated that the

auroral plasma is fully composed of several ions species (i.e. multi-ion-component)

(Cattel et al., 1998; Crumley et al., 2001). The most abundant ion components,

which comprise over 95% of the total ion density in the low auroral region, are hy-

drogen and oxygen ions. In Chapter 4 we provide the theoretical explanations for the

nonlinear electrostatic structures with multi-ion species observed in the Earth’s mag-

netosphere. In multi-component plasma models, nonlinear electrostatic structure are

studied using Sagdeev pseudo-potential technique. The present investigation concurs

with satellite observations in the auroral zone of the Earth’s magnetosphere. The

chapter is composed of three plasma models, Model 1: Magnetized plasma with cold

oxygen ions and Boltzmann distribution of hot protons and cool electrons; Model 2:

Magnetized plasma with cold oxygen ion beam and Boltzmann distribution of hot

protons and cool electrons and Model 3: Magnetized plasma with cold oxygen ions,

Maxwellian ions and two-Boltzmann electrons.

We shall present the summary of the thesis in Chapter 5.
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Chapter 2

Nonlinear structures in the Earth’s

magnetosphere

As mentioned in the previous chapter, the Earth’s magnetosphere is characterized

by linear and nonlinear wave phenomena. In this chapter a brief overview will be

provided of spacecraft observations of nonlinear fluctuations in the Earth’s magne-

tosphere. In doing so, theoretical concepts and models developed to explain the

observations will also be discussed.

2.1 Observations of nonlinear fluctuation phenom-

ena in space plasmas

Nonlinear electrostatic solitary waves traveling parallel to the background magnetic

field, which can be identified by their bipolar electric field structure parallel to the

magnetic field, have been observed in several parts of the magnetosphere (Temerin et

al. 1982). The first observations of such phenomena in the auroral acceleration re-

gion were reported by the S3-3 satellite mission in 1982 (Temerin et al. 1982). These

nonlinear electrostatic structures have been sighted in several regions along the mag-

netic field line of the magnetosphere, including the auroral kilometric radiation, cusp

field lines, plasma sheet boundary layer, polar cap boundary layer, the bow shock,

magnetosheath, magnetotail and the Earth’s foreshock region. The observations of

electrostatic solitary waves in the auroral region of the magnetosphere are categorized

into two classes by Ergun et al. (1998), either connected with ion or electron beams.
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Solitary waves in connection with ion beams may be liable to have lower speeds than

those in association with electron beams (i.e. electrons propagate at higher speeds

than ions)(Crumley et al. 2001). Viking satellite (Bostrom et al. 1988) later reported

similar observations of solitary waves propagating with background ion beams in the

auroral acceleration region. Not long ago, by the FAST (Fast Auroral Snapshot)

satellite (McFadden et al. 1999a) follow by the Polar satellite (Mozer et al. 1997;

Bounds et al. 1999). Geotail satellite were the first to announce the solitary wave

structures associated with electrons in the auroral region (Matsumoto et al. 1994),

and later by the Fast Auroral Snapshot satellite (Ergun et al. 1998), WIND satellite

(Bale et al. 1998), and POLAR satellite (Franz et al. 1998; Cattell et al. 1999 ).

The S3-3 spacecraft measurements between the altitudes of about 6000 and 8000

km, reported the observations of small-amplitude solitons and double layers compris-

ing of magnetic and electric field components in the auroral region (Temerin et al.

1982). Observed solitary waves in the ion beam region were estimated to be propa-

gating along the magnetic field line with velocity greater than 50 kms−1, with widths

corresponding ∼ 40λD. Their electric field is about 15 mV/m, their electrostatic

polarization relative parallel to the magnetic field and the duration of about 2-20 ms

for the double layer (Temerin et al. 1982).

Swedish Viking satellite measurements (Bostrom et al. 1988) at lower altitude, of

about ∼ 7000 km, detected small-scale, large-amplitude solitary waves with negative

potential, moving upwards along the magnetic field lines. Dombeck et al. (2001)

reported the solitary waves of 5-50 km s−1 speed with the potential of about 2-3 V

and the scale sizes of about 50-100 m, which is equivalent to ∼ 10λD, with a cold

electron species. The temperature and density are 5 eV and 5 cm−3 respectively

(Bostrom et al. 1988; Koskinen et al. 1990; Malkki et al. 1993). Viking observations

in the auroral magnetic zone of the magnetosphere also revealed the solitary structures

associated with both density peaks and density depression (Cairns et al. 1995).

Spacecraft data from the Polar satellite at altitudes of ∼ 6000 - 7000 km revealed

ion-related solitons in the auroral zone of the magnetosphere (Dombeck et al. 2001).

Bounds et al. (1999) recorded the solitary waves with potentials of 10-100 V, between

the hydrogenH+, and oxygen O+ beam speeds, within the range of 75-300 km s−1, the

scale size of ∼ 10− 20λD in the parallel direction with about ∼ 200 m of the Debye

length (Crumley et al. 2001). Bounds et al. (2000) showed that the ion acoustic

solitary waves were propagating in connection with up-flowing ion beams, while the
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electron acoustic solitary waves travel with down-flowing electron beams (Cattell et

al. 2001). Recent observations by Polar satellite at the low altitude regions of the

auroral zone (Dombeck et al. 2001), recorded solitary waves with a velocity of lower

amplitude near the oxygen beam velocity and higher near the hydrogen beam velocity.

Exploiting spacecraft measurements from the FAST satellite, Ergun et al. (1998)

reported the observations of fast solitary waves propagating along the magnetic field

line. These waves were associated with cold electron beams with background down-

ward electric current zone of the auroral plasma, which propagate upward at ∼ 4500

km/s. The amplitude is very large (up to 2.5 V/m), propagates at very high fre-

quency above ion acoustic speed and has potential of about ∼ 100 Volts. These

large amplitude waves have an electromagnetic signature (electron holes) traveling

anti-earthward. Later, FAST satellite mission data in the upward ion beam region

indicated that cold plasma densities are insignificant in the upward ion beam region

(Strangerway et al. 1998; McFadden et al. 1999c).

Observations made by the Freja satellite mission (Dovner et al. 1994) reported

that electrostatic solitary structures involving density depletions of the order of 10%,

associated with electric fields, were detected in the upper ionosphere in the auroral

zone.

2.2 Theoretical studies of nonlinear fluctuation phe-

nomena

Solitons are nonlinear restricted symmetric (asymmetric) electric potential structures

with no net potential drop, which have been observed in different regions of the

auroral magnetosphere (Lakhina et al. 2003). These observations has been described

by a number of authors in terms of low frequency solitons, both in magnetized (Lee

and Kan 1981; Hudson et al. 1983; Bharuthram and Shukla 1986; Qian et al., 1988;

Reddy et al., 1992) and unmagnetized plasmas (Kuehl and Imen 1985; Bharuthram

and Shukla 1986; Baboolal et al. 1990; Sayal et al. 1993). Using the Poisson equation,

Bharuthram and Shukla (1985) described the propagation of the solitary waves and

double layers in a magnetized plasma consisting of a cold ions fluid with two distinct

groups of Maxwellian electron species. They used a reductive perturbation technique

to derive a general three-dimensional differential equation for the small amplitude
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potential structures. Berthomier et al. (1998) described the characteristics of ion

acoustic solitary waves and weak double layers observed by the Viking satellite in

auroral region. Using an unmagnetized plasma model consisting of a two Boltzmann

electron temperature with hot background ions.

The space plasma in the auroral zone of the Earth’s magnetosphere is distin-

guished by multi-ion beams such as hydrogen H+, oxygen O+, helium He+ and two

temperature electron species (Koskinen et al. 1990, Lakhina et al. 2003). Reddy et

al. (1992) presented a plasma model to describe small amplitude low frequency soli-

tons and double layers in a magnetized plasma for any charge ion beam population,

together with two distinct group of electron species. On the other hand, in the high

frequency regime, theoretical models have been developed to explain the linear and

nonlinear features of broadband electrostatic noise (BEN), observed in the Earths

magnetosphere, through electron-acoustic waves (Singh and Lakhina, 2000; Singh et

al. 2001; Singh and Lakhina, 2004; Tagare et al., 2004; Kakad et al. 2007; Ghosh et

al. 2008; Lakhina et al. 2008, 2009).

In the low frequency regime, an analytical model of the coupled nonlinear ion

cyclotron and ion-acoustic waves has been developed by Reddy et al. (2002, 2006),

which could describe the FAST satellite observations in auroral region presented by

Ergun et al. 1998. Lately, Lakhina et al. (2011) investigated the properties of

low and high frequency solitary waves and double layers in an unmagnetized plasma

composed of four species: core electrons, counter-streaming electron beams and ion

species. Their model predicted the existence of three types of solitons: ion-acoustic,

slow and fast electron-acoustic modes. Furthermore, it was stated that the three

modes can coexist in different Mach number regimes or differently, depending upon

the plasma parameters.

2.2.1 Two-electron temperature plasmas

Various theoretical models have been developed to study the low frequency solitary

waves in the auroral plasma. Lee and Kan (1981) studied nonlinear low-frequency

waves in magnetized electron-ion plasma and showed, that depending upon the speed

of soliton, there are three types of nonlinear waves: periodic ion-cyclotron, periodic

ion-acoustic and ion-acoustic solitons. Bharuthram and Shukla (1985) discussed the

dynamics and structure of multi-dimensional ion acoustic solitons and double layers
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in a magnetized plasma consisting of two electron species. Incorporating the depar-

tures from quasi-neutrality, they used a reductive perturbation technique to derive

a general three-dimensional differential equation for the potential for small ampli-

tude perturbations. In a later paper, Bharuthram and Shukla, (1986) presented the

Sagdeev potential model for an unmagnetized plasma with cold ions fluid and two

Boltzmann distributed electron species and obtained the conditions for the existence

of small and large amplitude double layers. They derived a perturbation technique to

obtain a modified Korteweg-de Vries (MKdV) equation which controls the dynamics

of a weak double layer. Baboolal et al. (1990) have shown the cut-off conditions

and existence domains for arbitrary amplitude ion-acoustic solitary waves and double

layers in unmagnetized fluid plasmas. The plasma was composed of two Boltzmann

electrons temperature and a stationary cold ion fluid background. Below an electron

temperature ratio point, they found the existence of both positive potential solitons

and negative-potential solitons limited by double layer solutions.

Motivated by the Viking satellite observations of the solitary structures with neg-

ative potentials, many theoretical models using multi-component plasmas have been

developed to study nonlinear ion-acoustic waves (Pottelette et al., 1990; Yadav and

Sharma, 1990; Mace et al., 1991; Reddy and Lakhina, 1991; Reddy et al. 1992; Ya-

dav et al, 1995, Ghosh et al. 1996; Ghosh and Iyengar, 1997, 2002; Das et al. 1998;

Ghosh and Lakhina, 2004; Eliasson and Shukla, 2006). Berthomier et al. (1998)

studied low frequency solitons and weak double layers in two-temperature electron

component unmagnetized plasma. They showed that the velocity, width, and ampli-

tude of these structures are in agreement with the Viking observations in the auroral

region. Lakhina et al. (2008a,b) studied finite amplitude low and high frequency

(ion- and electron-acoustic) solitary waves in an unmagnetized auroral plasma, made

up of cold electrons and cold ions, hot background electron beam and ion beam using

the Sagdeev pseudo-potential approach. They found slow ion-acoustic, ion-acoustic

and electron-acoustic solitary waves. Recently, Baluku et al. (2010) studied the ion

acoustic solitary waves in two-temperature electron unmagnetized plasmas. They

have reported finite-amplitude results and showed that positive (compression) dou-

ble layers may be found for a limited range of cool-electron densities, in addition to

positive potential ion acoustic solitary wave structures. They have further shown, by

deriving the third derivative of the Sagdeev potential, that positive-potential double

layers can form below a critical density ratio.
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2.2.2 Nonthermal velocity distributions

Spacecraft observations (Boström et al. 1988, 1992; Dovner et al. 1994), laboratory

experiments (Malka et al. 1997; Sarri et al. 2010) and theoretical models (Mälkki

et al. 1989; Cairns et al. 1995) have provided evidence of the occurrence of abnor-

mal energetic particles present in the Earth’s magnetosphere. Plasmas with thermal

equilibrium (Maxwellian) velocity distributions have been studied over several years

(Bharuthram et al. 1985, 1986, 1987; Mahmood et al. 2003; Deng et al. 2006; Pick-

ett et al. 2008; Baluku et al. 2010; Barman and Talukdar, 2010). In recent times,

consistent attempts have been made to study the excess energetic particles effects

through Cairn’s nonthermal distribution model (Cairns et al. 1995; Mamun, 1997;

Singh and Lakhina, 2004; Bahamida et al. 2007; Djebli and Marif, 2009; Choi et

al. 2010; El-Labany et al. 2010; Ali-Fedela et al. 2010; Massood and Rizvi, 2011;

Pakzad, 2011), as well as through the Kappa’s distribution model (Hellberg et al.

2009; Sultana et al. 2010; Jung and Hong, 2011; Danetikar et al. 2011; Sahu, 2011).

Cairns et al. (1995) proposed a nonthermal distribution model for the electron

species with excess energy in order to explain the observations made by the FREJA

and Viking satellites in auroral regions of the Earth’s magnetosphere. Later, Mamun,

(1997) investigated the effects of adiabatic ion temperature and the contributions

of nonthermal distribution of electron species on arbitrary amplitude ion acoustic

solitons, using the pseudo-potential technique for a two component unmagnetized

plasma. Their results are within the spacecraft captured data. Gill et al. (2004)

used the reductive perturbation method to derive the KdV and m-KdV equations,

which govern the dynamics of ion acoustic solitons and double layers for the plasma

consisting of unmagnetized warm positive and negative ions with different masses

and charged states, and nonthermal distribution of electron species. Also, Bahamida

et al. (2007) presented a three component plasma model consisting of unmagnetized

positively charge ions, nonthermal distribution electrons and Boltzmannian positrons

to investigate the properties of arbitrary amplitude ion acoustic solitons observed at

different regions of the Earth’s magnetosphere. Verheest and Hellberg, (2010) stud-

ied the characteristics of compressive and rarefactive ion acoustic solitary waves in

a plasma consisting of positive ions and nonthermal electrons. Rarefactive solitary

waves and double layer structures were obtained when the electron nonthermality

exceeded a certain minimum. Jung and Hong, (2011) deviated from the standard

Maxwellian plasmas by considering a Lorentzian plasma. They investigated nonther-

mal effects on the propagation of the ion acoustic solitons in generalized Lorentzian
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electron-ion plasmas. Their analyses were done by obtaining the Korteweg-de Vries

(KdV) equation as a function of the spectral index in generalized Lorentzian plasmas.

Jilani et al. (2013) studied the properties of nonlinear ion acoustic solitary waves in

an unmagnetized and collisionless pair-ion plasma with a nonthermal distribution of

electron population. Using the reductive perturbation technique, they obtained the

nonlinear Korteweg-de Vries (KdV) equation for the soliton structures.

2.2.3 Multi-ions plasmas

Many theoretical analyses have been done to explain the soliton structures observed

in various regions of the Earth’s magnetosphere, which posed a lot of challenges in

the past (e.g, Temerin et al. 1982; Lotko, 1983, 1986; Lotko and Kennel, 1983;

Bharuthram and Shukla, 1985, 1986; Qian et al. 1988, 1989; Bergmann et al. 1988).

Mälkki et al. (1989) presented a theoretical explanation of the Viking satellite ob-

servations of nonlinear phase space ion hole instability in the Earth’s auroral mag-

netosphere in the presence of hydrogen and oxygen ion beam population. Reddy et

al. (1992) predicted the excitation of fast and slow hydrogen (as well as oxygen)

beam acoustic modes, which can be either rarefactive double layers, or rarefactive or

compressive solitons. The auroral plasma composed of isothermal cold and hot elec-

trons with only a H+−O+ ion beam. Nakamura (1999) investigated one-dimensional

electrostatic solitary waves in a positive ion-beam and a quasi-neutral three compo-

nent plasma system consisting of electrons, positive ions and negative ions, using a

Korteweg-de Vries (KdV) equation.

The studies of low frequency nonlinear broadband electrostatic noise in the Earth’s

auroral regions has attracted much attention during the last decade (Lakhina, 1987;

Koskinen et al., 1990; Berthomier et al. 1998; McFadden et al. 2003) due to its fre-

quent occurrence in space magnetosphere. Recent observations have clearly indicated

that the auroral plasma is fully composed of several ions species (i.e. multi-ion-

component) (Cattel et al. 1998; Crumley et al. 2001). The most abundant ion

components, which comprise over 95% of the total ion density in the low auroral

region, are hydrogen and oxygen ions. Many theoretical models have been proposed

to describe the multi-ion plasmas observed in different regions of the magnetosphere

(Wang et al. 1998; Wang and Huang, 2001; Lakhina et al. 2003, 2008), particularly

in the auroral zone where oxygen ions are the dominant ion species. Motivated by the

FAST satellite observations of waves near the cyclotron frequencies of H+, O+ and
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He+, and the associated ion beams and field-aligned currents in the auroral region of

the Earth’s magnetosphere, reported by Cattell et al. 1998, several theoretical anal-

ysis have been presented to study the nonlinear low-frequency electrostatic waves in

a magnetized oxygen ion beam plasma (Bharuthram et al. 2002; Reddy et al., 2006;

Moolla et al. 2010).

Sauer et al. (2003) described the plasma behaviors in the low-frequency range with

multi-fluid equations for protons and electrons obliquely propagating to the magnetic

field. The study was based on modifying the Hall-MHD equations in single-ion plasma

by the inclusion of a second ion population, which leads to the appearance of a new

type of stationary nonlinear wave solution called an “oscilliton”. Lakhina et al. (2003)

proposed a theoretical explanation in terms of soliton models or BGK modes/phase

space holes to the solitary pulses associated with bipolar electric field structures

observed by several satellite missions in different regions of the magnetosphere, for the

auroral plasma parameters with oxygen and hydrogen ion beam species. Ghosh and

Lakhina, (2004) presented a theoretical explanation for POLAR satellite observations

(Dombeck et al. 2001)) at low altitude region. Their analytical model showed the

anomalous width variations of rarefactive large amplitude structures in the auroral

plasmas. Choi et al. (2006) studied nonlinear ion acoustic solitary waves and double

layers in solar wind plasma consisting of Boltzmann electron and magnetized ion fluid.

In their model, they obtained new solitary wave solutions for higher order expansions

of the Sagdeev potential. Verheest et al. (2007) discussed the necessary conditions

and existence ranges for the generation of acoustic solitons (ion- and electron-acoustic)

in space plasmas with one or more ion species which are hotter than some or all of

the electron species. Recently, Moolla et al. (2010) extended the work of Reddy

et al. (2006) by including the Poisson equation, which allows the charge separation

effect rather than the quasi-neutrality condition. They revealed that the inclusion of

charge separation tends to increase the oscillation of the wave structures. Lakhina et

al. (2011) presented a model for ion- and electron-acoustic solitons and double layers

in a multi-component unmagnetized plasma, consisting of background core electrons,

two electron beams and ions. Using the Sagdeev pseudo-potential techniques, the

model predicts the existence of three types of solutions, namely, ion-acoustic, slow

and fast electron-acoustic soliton/double layer. More recently, Das (2012) studied the

effect of ion temperature on small-amplitude ion acoustic solitons in a magnetized ion-

beam plasma in the presence of electron inertia. Using the Korteweg-de Vries (KdV)

equation for a plasma model consisting of ions, electrons and ion beams, they showed
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that though both compressive and rarefactive solitons exist for the slow mode, only

compressive solitons exist for the fast mode.

2.3 The physics of solitons and double layers

Extensive investigations on laboratory experiment (Ikezi et al. 1970; Ikezi, 1973) and

the theoretical analysis (Tagare 1973; Gell and Roth 1977; Abrol and Tagare 1980;

1981) have been done on the existence and behaviors of nonlinear low frequency

soliton and double layer structures propagating in various plasmas.

The theoretical studies of solitons and double layers were classified into two cat-

egories (Baboolal, 1988), namely; small and large (finite) amplitude. In addition,

one could further sub-classify them according to whether they are stationary or time-

dependent, fluid or kinetic, analytical or numerical simulations. In all these classifi-

cations one common theme is that such structures are essentially nonlinear and thus

linear theory fails.

In the small amplitude regime, various evolutionary equations of the Korteweg-

de Vries (KdV) or modified Korteweg-de Vries (MKdV) type have been derived for

solitons and double layers. A standard way of obtaining such equations is to employ

the reductive perturbation technique (RPT) of Washimi and Taniuti (1966). In the

reductive perturbation technique (RPT) one expands the wave amplitudes in powers

of some small expansion parameters, and together with a transformation (“coordinate

stretching”) appropriate to the length and time scales in the problem, one obtains

relations in the expanded quantities, with each relation corresponding to a respective

order of the expansion parameter, and from these follows the required evolutionary

equation. Perturbation techniques have been used by many authors to investigate the

nonlinear ion-acoustic solitons and double layers in the auroral plasmas (e.g. Washimi

and Taniuti, 1966; Zakharov, 1972; Yu, 1977; Schamel, 1982a, 1982b; Bharuthram

and Shukla, 1986; Mann, 1986; Mishra et al. 1994; Tagare, 2000; Singh et al. 2005;

Shah et al. 2010; Jilani et al. 2013).

In most real situations the amplitudes of these nonlinear structures are much

larger than can be accounted for by means of small amplitude theories. In this

connection, Baboolal et al. (1988a, 1988b) have showed that unless the amplitudes

are small the KdV and MKdV can give erroneous results. In fully nonlinear large
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amplitude theory, one bases the model on the full set of fluid and Poisson equations

or Vlasov-Poisson system or a combination of such equations. Even in the time-

independent or stationary situation the solution of the general case can be quite

formidable, and, except in certain simple cases, can only be solved numerically. For

low frequency fluctuations, the system of equations can be closed with quasi-neutrality

conditions instead of using the full Poisson equation. In this case, we assume that

the characteristic length is much larger than the Debye length λD. This assumption

allows the charge neutrality condition. The study of the ion-acoustic waves in a

magnetized plasma has been the focus of many authors recently (e.g. Bharuthram et

al. 2002; Ghosh and Lakhina, 2004; Reddy et al. 2005; Barman and Talukdra, 2010;

Rufai et al. 2012, 2014).

2.3.1 The Sagdeev pseudo-potential technique

In the finite amplitude analysis one looks for soliton structures that propagate undi-

minished. Introduce a stationary frame which co-moves with the nonlinear localized

structure, then all basic equations will reduce to the first order ordinary differential

equations (ODE) (Verheest et al. 2005).

Solving the problem in a stationary frame is to reduce the system equations to

a single “equation of motion” of a “pseudo-particle” in the conservation field of a

“pseudo-potential”. The technique has been well formalized by Sagdeev (1966) after

whom the original and more generalized pseudo-potential is named (Nishihara and

Tajiri, 1981; Smith, 1982; Bharuthram and Shukla, 1986; Baboolal, 1988).

In the traditional pseudo-potential analysis (Sagdeev, 1966), the system reduced

to an energy-type integral of the form

1

2

(
dψ

dξ

)2

+ V (ψ,M) = 0 (2.1)

where V (ψ,M) is the pseudo- or Sagdeev potential, dψ/dξ is the velocity of the

pseudo-particle, ψ(ξ) is the potential, and ξ is the “spatial” coordinate.

Solving equation (2.1), we obtain

ξ =

∫
dψ√

−2V (ψ,M)
(2.2)
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which can yield the solution in the form of solitary pulses. The arbitrary amplitude

solitary wave solutions can be obtained by solving equation (2.2) numerically. (The

curves in Figure 2.2 and 2.4 show the soliton and double layer potential).

2.3.2 Existence conditions for solitons and double layers

For the existence of the soliton solutions one requires the Sagdeev potential V (ψ,M)

in equation (2.1) to satisfy the following conditions, as stated by many authors

(Bharuthram and Shukla, 1986; Ghosh and Lakhina, 2004; Lakhina et al. 2011);

V (ψ,M) = 0 , dψ/dξ = 0, and dV (ψ,M)/d(ψ) = 0 at ψ = 0, d2V (ψ,M)/d(ψ)2 <

0 at ψ = 0; V (ψ,M) = 0 at ψ = ψm (some maximum/minimum value of ψ),

dV (ψ,M)/d(ψ) < (>) 0 at ψm < (>) 0. Then, for the formation of a double layer, the

last condition changes to dV (ψ,M)
dψ

|ψ=ψm = 0 (Bharuthram and Shukla 1986; Lakhina

et al. 2009; Singh et al. 2011).

For soliton solution, Figure 2.1 and 2.2 show the Sagdeev potential V (ψ,M) and

electrostatic potential ψ structures. As shown from the equilibrium it moves away

from the initial conditions at ψ = 0 and ψ reached a maximum or minimum point

at ψm, which is not a rest point, and it reflected by the potential back to its initial

point.

For the case of double layer shows in Figure 2.3 and 2.4, the pseudo-particle trace

a path starting from the equilibrium point ψ = 0 at ξ = +∞, fall into the potential

deep and reaches a maximum or minimum value ψ = ψm at ξ = −∞, which is another

rest point from which it cannot return to its starting point.

In our work here this pseudo-potential technique will be used to study finite am-

plitude solitary waves and double layers in a magnetized multi-species plasma.
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Figure 2.1: Typical shape of a Sagdeev potential V (ψ,M)
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Figure 2.2: Soliton potential profile corresponding to V (ψ,M) in Figure 2.1
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Figure 2.4: Double layer potential ψ corresponding to V (ψ,M) in Figure 2.3

24

 

 

 

 



Chapter 3

Low frequency electrostatic

fluctuations model

In Chapter 2 the importance of the study of nonlinear fluctuations in space environ-

ments was discussed and related to satellite observations. The physical mechanisms

for the generation of soliton and double layer structures were also explained. In Sec-

tion 2.3 the Sagdeev pseudo-potential technique for the generation of solitons and

double layers was also presented. In this chapter, we shall use the technique to study

finite amplitude, low frequency electrostatic fluctuations in the space plasmas. The

conditions under which nonlinear structures such as solitons and double layers can

exist shall be investigated both analytically and numerically.

3.1 Model 1: Magnetized plasma with a cold ions

and two-Boltzmann electrons

In this model, finite amplitude non-linear ion-acoustic solitary waves are studied in a

magnetized plasma consisting of a cold ion fluid and two distinct groups of Boltzmann

electrons, using the Sagdeev pseudo-potential technique.
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3.1.1 Basic equations

The collisionless, magnetized plasma consists of cold ions and two distinct groups of

electrons, cool electrons (Nc, Tc) and hot electrons (Nh, Th) (where Nc,h are cool and

hot electron density and Tc,h are cool and hot temperature). We assume that the

plasma is embedded in a uniform external magnetic field Bo = Boẑ, where ẑ is the

unit vector along the z - axis. Further, we assume that the waves are propagating

in the (x, z) plane obliquely to the magnetic field. The Boltzmann distribution is

assumed for the densities of the cool (Nc) and hot (Nh) electron species and are given

as follows:

Nc = Nc0 exp

(
eφ

Tc

)
(3.1)

Nh = Nh0 exp

(
eφ

Th

)
(3.2)

where φ is the electrostatic potential and Nc0 (Tc), and Nh0 (Th) are the equilibrium

densities (temperature) of the cool and hot electrons, respectively. The assumption

of the Boltzmann distribution means that the electrons are in thermal equilibrium,

which is a valid assumption for low frequency phenomena, well below the electron

plasma frequency. The dynamic of the cold ions are described by the fluid equations,

namely, the continuity and the momentum equations:

∂Ni

∂t
+∇(NiVi) = 0, (3.3)

and (
∂

∂t
+Vi.∇

)
Vi = −e∇φ

mi

+ e
Vi ×Bo

mic
, (3.4)

where Ni, mi and Vi are the number density, mass and the fluid velocity of the ions,

respectively, e is the magnitude of the electron charge and c is the speed of light in

vacuum.

We begin with a linear analysis of the above set of equations. For harmonic

oscillations varying as ei(kz−ωt), i.e. propagating along the magnetic field Bo, then
∂
∂t

→ −iω, ∇ → ik. From the continuity equation (3.3), we then have

−iωNi + ikNoVi = 0
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Vi =
ωNi

Nok
(3.5)

At equilibrium, we have

Nio = Nco +Nho = No,

from which
Nho

No

= 1− Nco

No

= 1− f,

where f = Nco

No
.

Then

nc =
Nc

No

= f exp

(
eφ

Tc

)
,

nh =
Nh

No

= (1− f) exp

(
eφ

Th
.
Tc
Tc

)
,

nh = (1− f) exp

(
eφ

Tc
.τ

)
,

where τ = Tc
Th
. Using the quasi-neutrality condition, we have

ni =
Ni

No

=

[
f exp

(
eφ

Tc

)
+ (1− f) exp

(
eφ

Tc
.τ

)]
then, we can expand the exponential in a Taylor series for |eφ/Tc| � 1,

exp

(
eφ

Tc

)
=

[
1 +

eφ

Tc
+

1

2

(
eφ

Tc

)2

+ ....

]
' 1 +

eφ

Tc
.

Therefore, neglecting the higher order terms in the expansion we have

ni =

(
f

(
1 +

eφ

Tc

)
+ (1− f)

(
1 +

eφ

Tc
.τ

))
= 1 + ni1,

from which

ni1 = (f + (1− f)τ)

(
eφ

Tc

)
.

This implies

eφ =
Tcni1

(f + (1− f)τ)
.

From the momentum equation (3.4), we have

−iωVi = −eikφ
mi

. (3.6)
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Using (3.5) we have

ω
(ωni1

k

)
=

k

mi

(
Tcni1

(f + (1− f)τ)

)
.

Therefore,
ω2

k2
=

1

mi

(
Tc

f + (1− f)τ

)
,

for which
ω

k
=

(
Teff
mi

)1/2

≡ cs

is the ion acoustic phase speed, where Teff = Tc
f+(1−f)τ is the effective electron tem-

perature.

We present next the governing equations in normalized form: the densities are

normalized with respect to the total ion equilibrium density Ni0 = Nc0 +Nh0 = N0,

velocities by the effective ion-acoustic speed cs = (Teff/mi)
1/2 , distance by the

effective ion Larmor radius, ρi = cs/Ω, time by the inverse of ion gyro-frequency Ω−1,

where Ω = eB0/mic and potential φ by Teff/e. Here τ = Tc/Th is the cool to hot

electron temperature ratio, f = Nc0/N0 is cool to hot electron density ratio, Teff =

Tc/(f + (1 − f)τ) is an effective electron temperature αc = Teff/Tc, αh = Teff/Th,

α = sin θ, γ = cos θ; θ is the angle between the direction of wave propagation and the

magnetic field and ψ = eφ/Teff .

Thus, the equations (3.1) - (3.4) in normalized form can be written as

nc = f exp(αcψ). (3.7)

nh = (1− f) exp(αhψ). (3.8)

∂ni
∂t

+∇.(nivi) = 0. (3.9)

∂vi
∂t

+ vi∇vi = −∇ψ + vi × ẑ. (3.10)

Further, the equations (3.9)-(3.10) in component form can be written as

∂ni
∂t

+
∂(nivx)

∂x
+
∂(nivz)

∂z
= 0. (3.11)

∂vx
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vx = −∂ψ

∂x
+ vy, (3.12)
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∂vy
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vy = −∂ψ

∂y
− vx, (3.13)

∂vy
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vz = −∂ψ

∂z
− vz, (3.14)

moving to a stationary frame using the transformation ξ = (αx+γz−Mt)/M , where

M = V/cs is the Mach number, equations (3.11)-(3.14) become

d

dξ
(Lvni) = 0. (3.15)

Lv
dvx
dξ

= −αdψ
dξ

+Mvy. (3.16)

Lv
dvy
dξ

= −Mvx. (3.17)

Lv
dvz
dξ

= −γ dψ
dξ
. (3.18)

where Lv = −M + αvx + γvz. Our system of equations is closed with the quasi-

neutrality condition (which is justified in the study of low frequency phenomena)

ni = nc + nh = f exp(αcψ) + (1− f) exp(αhψ) (3.19)

Solving the coupled equations (3.15)-(3.19) and using appropriate boundary con-

ditions for solitary wave structures (namely, ni → 1, ψ → 0, and dψ/dξ → 0 at

ξ → ±∞), and eliminating vx, vy, and vz, we can reduce (3.15)-(3.19) to an energy

integral (see Appendix A for the details) given by

1

2

(
dψ

dξ

)2

+ V (ψ,M) = 0 (3.20)

where V (ψ,M) is the Sagdeev potential (cf. Section 2.4), given by
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V (ψ,M) = − 1(
1−M2

(
αcf exp(αcψ)+αh(1−f) exp(αhψ)
(f exp(αcψ)+(1−f) exp(αhψ))3

))2 (−M4

2n2
i

(1− ni)
2

−M2(1− γ2)ψ +M2

(
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

)
−γ

2

2

(
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

)2

−M2γ2

(
f
αc
(exp(αcψ)− 1) + (1−f)

αh
(exp(αhψ)− 1)

f exp(αcψ) + (1− f) exp(αhψ)

))
.

(3.21)

The ion density ni in the above equation is given by equation (3.19). Equation

(3.20) can be regarded as an “energy integral” of an oscillating particle of unit mass,

with the velocity dψ/dξ and the position ψ in a potential V (ψ,M). We now look for

the solitary wave solutions of (3.20).

3.1.2 Soliton and double layers characteristics

In order to obtain soliton solutions of equation (3.21), the Sagdeev potential V (ψ,M)

must satisfy the soliton conditions (cf. Section 2.3.2): V (ψ,M) = 0 , dψ/dξ = 0,

V (ψ,M) = 0 and dV (ψ,M)/d(ψ) = 0 at ψ = 0. d2V (ψ,M)/d(ψ)2 < 0 at ψ = 0;

V (ψ,M) = 0 at ψ = ψm, dV (ψ,M)/d(ψ) < (>) 0 at ψm < (>) 0. Then, for the

formation of a double layer, one more additional condition must be satisfied, i.e,
dV (ψ,M)

dψ
|ψ=ψm = 0. It can be seen from (3.21) that V (ψ,M) = dV (ψ,M)/dψ = 0 at

ψ = 0.

The soliton condition d2V (ψ,M)/dψ2 < 0 at ψ = 0 can be written as

d2V (ψ,M)

dψ2
|ψ=0 =

M2 −M2
0

M2 −M2
1

< 0 (3.22)

where

M2
0 =

γ2

fαc + αh(1− f)
= γ2. (3.23)

30

 

 

 

 



is the critical Mach number and

M2
1 =

1

fαc + αh(1− f)
= 1 (3.24)

since fαc + αh(1− f) = 1.

For γ 6= 0 :M2
o < 1(=M2

1 ) ⇒Mo < M1, then if M > M1 ⇒M > M0 from which

M2 −M2
o > 0 and M2 −M2

1 > 0, consequently (3.22) is not satisfied.

Similarly, if M < M0 ⇒ M < M1 from which M2 −M2
o < 0 and M2 −M2

1 < 0,

once again (3.22) is not satisfied.

Therefore, (3.22) is satisfied only if

M0 < |M | < M1 (3.25)

From equation (3.23) to (3.25), we obtain for oblique angles of propagation (θ 6= 0o)

the condition

γ < |M | < 1 (3.26)

which gives allowed values of Mach number M for a given angle of propagation of

solitary waves for fixed values of plasma parameters f, αc and αh. It is interesting to

note that in the magnetized plasma case, the ion-acoustic solitons and double layer

can exist only in the subsonic Mach number region as seen from (3.26). On the other

hand, for the case of unmagnetized plasma consisting of cold ions and two-temperature

Boltzmann electrons, ion-acoustic solitons and double layers were found exist only in

the supersonic Mach number regime (Berthomier et al. 1998), i.e., M > 1.

Next, we numerically solve the equation (3.20) with the Sagdeev potential V (ψ,M)

given by (3.21) for different parameters such as M, f, θ and τ . The figure 3.1 shows the

Sagdeev potential V (ψ,M) vs real potential ψ for different values ofM for other fixed

parameters namely, cool to hot electron temperature ratio, τ = Tc/Th = 0.04, cool

electron number density, f = Nc0/N0 = 0.1 and angle of propagation, θ = 15o. The

corresponding soliton potential ψ against ξ, which has been obtained by numerically

integrating equation (3.20) for the same parameters, are shown in Figure 3.2. As the

Mach number increases, the soliton amplitude increase is accompanied by a decrease

in soliton width. It is seen that the negative potential ion acoustic soliton amplitude

ψ increases with increasing M. Further, our computation reveals that soliton solutions

are not found for M > 0.9994. This conforms very well to the upper Mach number
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limit M < 1 obtained analytically (cf. equation (3.26)). Only soliton solutions can

be found, no double layer solution exists in the Mach number regime. Unlike the case

of an unmagnetized plasma reported by Berthomier et al. 1998, negative potential

solitons and double layers were found exist only in the supersonic Mach number

regime. Also Baluku et al. 2010 found positive potential solitons and double layer

solutions for M > 1.

Figure 3.3 shows the variation of the Sagdeev potential versus real potential ψ for

different values of cool electron number density f=Nco/No. The other fixed param-

eters are τ = 0.04, θ = 15o, and M = 0.98. It is observed that as the cold electron

density increases (f increasing), the soliton amplitude increases. Numerical compu-

tations show that the soliton solutions are not possible beyond f > 0.35. This is

consistent with Fig. 2(b) of Baboolal et al. 1990, where they showed that negative

solitons and double layers exist for cold electron density ratio f roughly between 0.02

and 0.35. Figure 3.4 shows the soliton potential ψ against ξ, for the same parameters

used in Figure 3.3. It is seen that as f increases, the ion-acoustic soliton potential

amplitude increases and the width also increases. The latter variation is different

from that for the Mach number M variation, where the amplitude increases but the

width decreases with M . In the Mach number case the curves are reducing in the

width.

The curves in Figure 3.5 show that as the angle of propagation θ increases (obliq-

uity increases), the soliton amplitude increases. The effect of oblique propagation on

electrostatic solitary waves have been studied in low frequency plasma extensively,

using a single electron-ion plasma model (Bharuthram et al. 2002; Choi et al. 2006;

Qureshi et al. 2010; Barman and Talukdar, 2010; Mushtaq, 2010), two electron tem-

perature plasma model (Bharuthram and Shukla, 1985, 1986; Ghosh and Lakhina,

2003) and a dust plasma model (Farid et al. 2001). The chosen parameters are the

normalized cool electron density f = 0.1, and the other parameters are the same as

for Figure 3.3. It is interesting to note that at θ = 38.0425o a double layer structure

appears (cf. Section 1.3.2 and Section 2.4.1). For θ > 38.0425o there are no soliton or

double layer solutions. Thus the double layer potential represents the upper bound-

ary for the range of possible soliton solutions. Figure 3.6 shows the corresponding

real potential ψ against ξ, for the parameters used in Figure 3.5. It is seen from the

curves that as we increase the propagation angle θ, the amplitude as well as width of

the solitons increase until the double layer boundary, which is also plotted.

32

 

 

 

 



Figure 3.7 shows the variation of the Sagdeev potential with real potential ψ for

different values of the cool to hot electron temperature ratio τ = Tc/Th for θ = 150.

Other fixed parameters are the same as for figure 3.5. It is seen that the soliton

amplitude increases with the increase in cool to hot electron temperature ratio, i.e.

as the temperature of the cool electrons increase relative to the hot electrons. It must

be pointed out that, in this case as well, a double layer solution as an upper bound has

been found to exist for τ = 0.0877117. Many authors have showed that no negative

potential soliton and double layer solutions are possible for electron temperature ratio

τ getting closer to 1 (Nishihara and Tajiri, 1981; Baboolal et al. 1990; Baluku et al.

2010). The corresponding ψ against ξ curves are shown in Figure 3.8. We observe

that as the cool to hot electron temperature ratio τ increases, the amplitude as well

as width of the soliton increases, until a double layer solution is found.

Figure 3.9 shows the variation of the Sagdeev potential with real potential cor-

respond to the double layer solutions for different values of θ and M . Other fixed

parameters are f = 0.1, and τ = 0.04. The curves show all combinations of (θ,M)

yield exactly the same value for the double layer amplitude. This corresponds to a

“point” solution as found in a study by Djebli and Marif (2009). Figures 3.10 shows

the existence domain of solitons and double layers for the fixed parameters in Figure

3.9. The curves show that a double layer solution is the upper bound for soliton solu-

tion as we increase the angle of propagation θ, for different M values. The maximum

Mach number for negative potential solitons are bounded by those of the double layer

solutions corresponding to a given θ value.

Figure 3.11 shows the variation of the Sagdeev potential V (ψ,M) against the

normalized potential ψ for different values of the cool to hot electron temperature

ratio τ and the Mach number M for the fixed parameters f = 0.1 and θ = 15o. It is

interesting to point out that the supersoliton (A new class of solitary waves known

as super-nonlinear solitons reported by several authors, e.g. Dubinov and Kolotkov,

2012; Verheest et al. 2013; Maharaj et al. 2013) solution has been found to exist

for τ = 0.095143 and M = 0.97, τ = 0.0877117 and M = 0.98, τ = 0.082394892

and M = 0.99. In this case, a series of soliton solutions have an upper bound

represented by a double layer, which is immediately coupled to a (super) soliton.

In a recent paper by Verheest et al. 2013, they stated that the associated electric

field signatures of supersolitons should be observable in available or future space

and laboratory observations in three-component plasmas (e.g. Cluster spacecraft

measurements (Pickett et al. 2004) shows a supersoliton electric field wedged between
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two regular bipolar structures. Also, in the laboratory experiments, these should

appear as “distorted” bipolar electric field forms, which may be resolved, e.g., via

proton imaging (Romagnani et al. 2008), among other techniques). Figure 3.12

shows the existence domain of solitons, double layers and supersolitons for the same

parameters in Figure 3.11. The curves were plotted for the variation of the maximum

electrostatic potential ψMax against τ for different values of the Mach number M .

In an unmagnetized plasma consisting of positive and negative ions and two electron

temperature, Baboolal et al. (1990) showed the existence domain for compressive

and rarefaction solitons bounded by negative potential double layer solutions. The

reason for smaller amplitudes for larger τ= Tc
Th

can be seen from the expression for

the effective temperature Teff = Tc/(f + (1 − f)τ), which shows that for fixed f

the normalization factor Teff decreases with increasing τ so that the corresponding

normalized potential ψ would linearly increase in magnitude. Similar behavior has

been reported by Baboolal (1988).

3.1.3 Discussion

We have shown the existence of nonlinear ion-acoustic solitary waves and double lay-

ers in a magnetized plasma with two-temperature electron species and cold ions. The

chosen plasma model supports negative potential ion-acoustic solitons and double

layers, and they are found to exist only in the subsonic (i.e., M < 1) Mach numbers

regime. In contrast, as shown by Berthomier et al. (1998), for the case of an un-

magnetized plasma these negative potential nonlinear structures can exist only in the

supersonic (i.e., M > 1) Mach number regime. We have shown that the amplitude of

the ion-acoustic solitary waves increases with the Mach number, increased obliquity

and cool electron number density.

In determining the relevance of our results to space plasmas, we apply our results

to the negative potential ion-acoustic solitary waves observed by the Viking satellite

in the auroral region of the Earth’s magnetosphere. Berthomier et al. (1998) have

reported ion-acoustic solitary structures in the auroral region with electric field am-

plitude of less than 100 mV/m, width of about 100 m, pulse duration of about 20

ms and soliton velocities in the range of ≈ 10 − 50 km/s. For illustrative purposes

we have taken the following parameters from the Viking observations (Berthomier et

al 1998), namely, nc = 0.2 cm−3, nh = 1.8 cm−3, Tc = 1 eV, Th = 26 eV which gives

Teff ≈ 7 eV. The maximum electric field for M = 0.98, θ = 350 for our model comes
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out to be 49 mV/m and corresponding soliton width, pulse duration and speed comes

out to be ≈ 270 m, 10 ms and 26 km/s, respectively. Thus, our results are in strong

agreement with the Viking observations.
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Figure 3.1: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are τ= 0.04, f=0.1, θ=15o and M= 0.97, 0.98, 0.99, 0.996, 1.00 (no
solution).
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Figure 3.2: Electrostatic potential ψ vs ξ. The parameters of Figure 3.2 andM=0.97
(—), 0.98 (- - -), 0.99 (...), 0.996 (- . -) and 0.999 (−.−).
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Figure 3.3: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are τ= 0.04, θ=15o, M=0.98 and f=0.1, 0.2, 0.25, 0.3, 0.31.
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Figure 3.4: Electrostatic potential ψ vs ξ. The parameters of Figure 3.3 and f=0.1
(—), 0.2 (- - -), 0.25 (...), 0.3 (- . -) and 0.31 (−.−).
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Figure 3.5: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are τ= 0.04, f=0.1, M=0.98 and θ=15o, 25o, 30o, 35o, 37.5o, 37.8o,
38.0425o(double layer), 38.5o.
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Figure 3.6: Electrostatic potential ψ vs ξ. The parameters of Figure 3.5 and θ=15o

(—), 25o (- - -), 30o (...), 35o (- . -), 37.5o (− − −), 37.8o (−.−), 38.0425o(−) for
double layer .
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Figure 3.7: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ.
The parameters are f= 0.1, θ=15o, M=0.98 and τ=0.01, 0.04, 0.08, 0.087,
0.0877117(double layer), 0.088.
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Figure 3.8: Electrostatic potential ψ vs ξ. The parameters of Figure 3.7 and τ=0.01
(—), 0.04 (- - -), 0.08 (...), 0.087 (- . -) and 0.0877117 (−.−).
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Figure 3.9: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are τ= 0.04, f=0.1 for θ=38.783o and M=0.97, θ=38.0422o and
M=0.98, θ=37.2888o and M=0.99.
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Figure 3.10: The existence domain of soliton for the parameters of Figure 3.9. The
upper bound for soliton solution with increasing θ is a double layer, shown as an ′′+“.
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Figure 3.11: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are f= 0.1, θ=15o for τ=0.095143 and M=0.97, τ=0.0877117 and
M=0.98, τ=0.082394892 and M=0.99.
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Figure 3.12: The maximum electrostatic potential ψMax against τ . The parameters of
Figure 3.11 and τ=0.095143 andM=0.97, τ=0.0877117 andM=0.98, τ=0.082394892
and M=0.99.

This Section has been published in Physics of Plasmas.
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Low frequency solitons and double layers in a magnetized plasma with two temperature

electrons, Physics of Plasmas, 19, 122308, 2012. http://dx.doi.org/10.1063/1.4771574.
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3.2 Model 2: Magnetized plasma with an adia-

batic ions and two-Boltzmann electrons

In Model 1 we assumed the ions to be cold. In order to investigate the effect of

temperature for the ions, we extend Model 1 to include a finite temperature of the

ions. i.e. Ti 6= 0. This results in a modification to the momentum equation (3.4) as

well as the inclusion of the ion pressure balance equation, as shown below.

3.2.1 Basic equations

Our basic set of equations for the inclusion of a finite ion temperature is identical to

the set of equations (3.3) - (3.4), with a modification to equation (3.4) as given below

(
∂

∂t
+Vi.∇

)
Vi == −e∇φ

mi

+ e
Vi ×Bo

mic
− 1

nimi

∇Pi. (3.27)

In addition, we include the ion pressure balance equation

∂Pi
∂t

+Vi.∇Pi + δPi∇Vi = 0, (3.28)

where ni, Vi and mi are the number density, fluid velocity and mass of the ions, e is

the magnitude of the electron charge, c is the speed of the light in vacuum and the

ion pressure Pi is given by the balance pressure equation (3.28). Further, ion pressure

can be written as

Pi = Pio

(
Ni

Nio

)δ
, (3.29)

where δ = (N+2)
N

is the adiabatic index. N is the number of degrees of freedom. For

magnetized adiabatic ions N = 3, hence δ = 5
3
and the ion pressure at equilibrium is

Pio = NioTi.

For the three species of plasma, the quasi-neutrality condition at equilibrium is

given by Nio = Nco + Nho = No. We normalize the variables as we did in Model 1,

with Teff = Tc/(f + (1 − f)τ) as the effective electron temperature, αc = Teff/Tc,

αh = Teff/Th, and σ = Ti/Teff , where Ti is the ion temperature.
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Then the normalized set of equations become,

nc = f exp(αcψ). (3.30)

nh = (1− f) exp(αhψ). (3.31)

∂ni
∂t

+
∂(nivx)

∂x
+
∂(nivz)

∂z
= 0. (3.32)

∂vx
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vx = −∂ψ

∂x
+ vy −

σ

ni

∂

∂x
.(ni)

5/3, (3.33)

∂vy
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vy = −∂ψ

∂y
− vx, (3.34)

∂vz
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vz = −∂ψ

∂z
− σ

ni

∂

∂z
.(ni)

5/3. (3.35)

The above set of the equations is closed with the quasi-neutrality condition

ni = nc + nh = f exp(αcψ) + (1− f) exp(αhψ). (3.36)

3.2.2 Localized stationary solution

As before, for arbitrary amplitude treatment we look for soliton structures in a ref-

erence frame moving with the wave, i.e. with the Mach number. Assuming that all

the dependent variables depend on a single independent variable ξ such that,

ξ = (αx+ γz −Mt)/M (3.37)

where M = V/cs, and V = ω/k is the wave speed and α = sin θ, γ = cos θ; θ is the

angle of the wave propagation relative to ~B0.

Transforming the ion fluid equations in terms of the coordinate ξ and integrating

with appropriate boundary conditions for solitary wave structure (namely, ni → 1,

ψ → 0, and dψ/dξ → 0 at ξ → ±∞), we obtain a single dimensionless nonlinear

differential equation in terms of the ion density ni and electrostatic potential ψ as,

d

dξ

(
dχ(ψ)

dξ

)
=M2(ni−1)+γ2σni(1−n5/3

i )−γ2ni
(
f

αc
(eαcψ − 1) +

1− f

αh
(eαhψ − 1)

)
,

(3.38)

49

 

 

 

 



where

χ(ψ) =

(
ψ +

M2

2n2
i

+
5

2
σn

2/3
i

)
(3.39)

with ni given by equation (3.37).

Now multiplying both sides of equation (3.38) by dχ/dξ and integrating once with

appropriate boundary conditions (see Appendix B for the details), we obtain

1

2

(
dχ(ψ)

dξ

)2

+ V (ψ,M) = 0. (3.40)

From equations (3.39) and (3.40), we obtain the following energy integral

1

2

(
dψ

dξ

)2

+ V (ψ,M) = 0 (3.41)

where V (ψ,M) is the Sagdeev potential (cf. Section 2.4) and is given as

V (ψ,M) = − 1(
1− M2

n3
i
(αcfeαcψ + αh(1− f)eαhψ) + 5σ

3n
1/3
i

(αcfeαcψ + αh(1− f)eαhψ)

)2×

(
−M

4

2n2
i

(1− ni)
2 −M2(1− γ2)ψ +M2H(ψ) +M2σ

(
n
5/3
i − 5

2
n
2/3
i +

3

2

)
+γ2σ

[
H(ψ) +M2

(
1

ni
+

3

2
n
2/3
i − 5

2

)]
+ γ2σ2

(
n
5/3
i − 1

2
n
10/3
i − 1

2

)
−γ

2

2
H2(ψ)− M2γ2

ni
H(ψ)− γ2σn

5/3
i H(ψ)

)
(3.42)

where ni is given by (3.36) and

H(ψ) =
f

αc
(eαcψ − 1) +

1− f

αh
(eαhψ − 1). (3.43)

In order to obtain the soliton solution from the energy integral equation (3.41),

the Sagdeev potential given by (3.42) has to satisfy the soliton conditions in Section

2.3.2 (i.e. V (ψ,M) = 0 , dψ/dξ = 0, V (ψ,M) = 0 and dV (ψ,M)/d(ψ) = 0 at ψ = 0.

d2V (ψ,M)/d(ψ)2 < 0 at ψ = 0; V (ψ,M) = 0 at ψ = ψm, dV (ψ,M)/d(ψ) < (>) 0 at

ψm < (>) 0. Then, for the formation of a double layer, one more additional condition

must be satisfied, i.e, dV (ψ,M)
dψ

|ψ=ψm = 0).
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The condition d2V (ψ,M)/dψ2 < 0 at ψ = 0 can be written as

d2V (ψ,M)

dψ2
|ψ=0 =

M2 −M2
0

M2 −M2
1

< 0 (3.44)

where

M2
o = γ2

(
1

fαc + αh(1− f)
+

5σ

3

)
=
γ2(3 + 5σ)

3
(3.45)

is the critical Mach number and

M2
1 =

1

fαc + αh(1− f)
+

5σ

3
=

3 + 5σ

3
(3.46)

since fαc + αh(1− f) = 1.

Following the same analysis as in Section 3.1.2, i.e for γ 6= 0 : γ2 = cos2 θ < 1;

which implies Mo < M1, then if M > M1 ⇒M > M0 from which M2 −M2
o > 0 and

M2 −M2
1 > 0, consequently (3.44) is not satisfied.

Similarly, if M < M0 ⇒ M < M1 from which M2 −M2
o < 0 and M2 −M2

1 < 0,

once again (3.44) is not satisfied.

Therefore, (3.44) is satisfied only if

Mo < |M | < M1. (3.47)

From equation (3.45) and (3.46), the condition (3.47) can be written as

γ

√
1 +

5σ

3
< |M | <

√
1 +

5σ

3
(3.48)

for θ 6= 0, i.e. oblique angles of propagation to the magnetic field Bo, which gives the

Mach number range for fixed values of plasma parameters f , αc, αh and σ. It is noted

that for cold ions, i.e. σ = 0, the conditions in equations (3.44 - 3.48) above, reduce

to those in Model 1. In comparison to the earlier work, we observe from equation

(3.46) that allowing for finite ion temperature (σ 6= 0) increases the upper limit of

|M | beyond 1, thereby allowing for supersonic solitons.
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3.2.3 Numerical results

The Viking satellite has observed solitary potential structures with electric field am-

plitudes of ≈ 100 m V/m, width of about 100 m, pulse duration of about 20 ms, and

potential solitary structures with a velocity range of ≈ 10 − 50 km/s. For the nu-

merical computation of equation (3.39), we choose plasma parameters of the dayside

auroral zones corresponding to the observations which are as follows: cool electron

density nc0 = 0.2 cm−3, hot electron density nh0 = 1.8 cm−3, cool electron tempera-

ture Tc = 1 eV, hot electron temperature Th = 26 eV, then the effective temperature

Teff ≈ 7 eV and σ = Ti/Teff = 0.01 (Berthomier et al. 1998).

Table 3.1 shows the unnormalized values of the soliton velocity (V ), electric field

(E), soliton width (W ), and pulse duration (τ ∗) for various values of adiabatic index

σ and the Mach number range M , respectively.

Table 3.1: Properties of ion-acoustic solitons, such as Soliton Velocity (V ), Mach
number range (Mo < |M | < M1), Electric Field (E), Soliton Width (W ) and Pulse
Duration (τ ∗), for various values of ion temperature (σ) with θ = 35o, Cool electron
density f = 0.1, and Electron temperature τ = 0.04

σ M0 < |M | < M1 V (kms−1) E(mVm−1) W (m) τ∗(ms)

0.0 0.82 - 0.999 21.24 - 25.9 0.012 - 23.8 1435.2 - 227.2 67.57 - 8.77

0.05 0.854 - 1.0365301(DL) 22.12 - 26.84 0.029 - 20.13 1139.8 - 469.04 51.53 - 17.47

0.1 0.887 - 1.0536387(DL) 22.97 - 27.29 0.065 - 21.25 923 - 428.48 40.18 - 15.7

0.15 0.919 - 1.07063756(DL) 23.8 - 27.73 0.122 - 20.64 800.8 - 427.44 33.65 - 15.41

0.2 0.95 - 1.087547(DL) 24.61 - 28.17 0.21 - 20.97 702 - 410.28 28.52 - 14.51

Table 3.1 describes the behavior of the nonlinear structures for the angle of propa-

gation, θ = 35o and other plasma parameters being f = 0.1 and τ = 0.04 respectively.

It is clear from Table 3.1 that for the minimum Mach number Mo, the soliton veloc-

ity and electric field amplitude tend to increase with σ, but the soliton width and

pulse duration decrease. Also, at the maximum Mach number of the range M1, it is

interesting to note that for σ = 0.05 and above, double layer solutions (DL) appear.

Figure 3.13 shows the range of Mach number values (see equation 3.48)) supported

by the model for the existence of finite amplitude ion-acoustic solitons as a function

of the ion temperature σ, for θ = 15o implies that γ = cos θ = 0.965925826.

Figure 3.14 shows the variation of the Sagdeev potential V (ψ,M) with real po-
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tential ψ for different values of Mach number M as shown in the curves. The chosen

fixed parameters are, τ = Tc/Th = 0.04, f = 0.1, θ = 15o and ion temperature,

σ = Ti/Teff = 0.01. It is seen that the model supports solitons with (negative) am-

plitude ψ increasing withM - values. In this case, the solitons can only exist within the

range of value 0.97 < M < 1.0056, which is consistent with the condition in equation

(3.48). In the case of cold ion in Mode 1, the range of values was 0.97 < M < 1.00 for

the same set of parameters. Our numerical computations also show that only soliton

solutions are possible within this Mach number range, no double layer solutions are

found, unlike the case of an unmagnetized plasma where both soliton and double

layer solutions are reported (Berthomier et al. 1998; Baluku et al. 2010). Figure 3.15

shows the variation of real potential ψ vs ξ for the ion-acoustic solitons, which has

been obtained numerically by integrating equation (3.42) for the same parameters as

in Figure 3.14. As the Mach number increases, the amplitude increases and the width

of ion-acoustic soliton decreases.

Figure 3.16 shows the variation of the Sagdeev potential with normalized electro-

static potential ψ for different ion temperature values (σ varying). The other fixed

parameters are, τ = 0.04, f = 0.1, θ = 15o and M = 0.98. It was noticed that

as the ion temperature increases, the ion-acoustic soliton amplitude decreases. For

the selected parameter values, the solitary wave structures are possible only for ion

temperature values in the range 0 ≤ σ ≤ 0.015. We note that σ = 0 corresponds to

the cold ions temperature in Model 1, curve corresponding σ = 0.04 in Figure 3.7.

Baboolal et al. (1989) explained this effect as the result of a reduction in charge sep-

aration or decreasing wave dispersion with increasing ion temperature. Also, several

earlier studies report similar behavior with temperature region (e.g Mahmood and

Akhtar, 2008; Barman and Talukdar, 2010). Figure 3.17 shows the variation of the

electrostatic potential ψ with ξ for the parameters in Figure 3.16. It is observed that

as ion temperature increases (σ increasing), the amplitude decreases as well as the

width of ion-acoustic soliton.

Figure 3.18 shows the variation of the Sagdeev potential versus the real potential

ψ for different cool electron number density f , and for plasma parameters, τ = 0.04,

σ = 0.01, θ = 15o and M = 0.98 respectively. The curves show that the solitary wave

amplitude increases with an increase in cool electron density. Our computations show

that the soliton solutions are not possible beyond f > 0.34, whereas for the cold ion

case in Model 1 in section 3.1, the limit is f > 0.35 for the same set of parameters.

Figure 3.19 shows the variation of real potential ψ vs ξ for the ion-acoustic solitons
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for the same parameters in Figure 3.18. It seen that the soliton amplitude as well as

the width increases as the cool electron density f increases.

Figure 3.20 shows the variation of the Sagdeev potential V (ψ,M) versus the nor-

malized electrostatic potential ψ for different propagation angles, with chosen param-

eters f = 0.1 and other fixed parameters of Figure 3.18. The curves show that as the

angle of propagation θ increases, the soliton amplitude increases. At a propagating

angle θ = 38.2885o a double layer structures appears. For θ values above 38.2885o

there are no soliton or double layer solutions. It may be pointed out that for the cold

ion case in Model 1 (section 3.1), the double layer appears at slightly lower angle of

propagation, θ = 38.0425o for the same set of parameters (Figure 3.5). It is important

to note that for the unmagnetized case, several authors (Sayal et al. 1993; Berthomier

et al. 1998; Tagare, 2000; Ghosh and Lakhina, 2004; Baluku et al. 2010) have studied

the case for parallel propagation (i.e. θ = 0o). Figure 3.21 shows the variation of

electrostatic potential ψ against ξ for ion-acoustic solitons and double layer for the

parameters in Figure 3.20. The amplitude increases but width of ion-acoustic soliton

decreases as the propagation angle increases, until a double layer appears as an upper

bound.

Figure 3.22 shows the variation of the Sagdeev potential V (ψ,M) with real elec-

trostatic potential ψ for different values of the cool to hot electron temperature ratio,

τ = Tc/Th for propagation angle θ = 15o. The other fixed parameters are the same

as in Figure 3.20. The ion-acoustic soliton amplitude increases with the increase in

cool to hot electron temperature ratio. The double layer solution appears at cool

to hot electron temperature ratio value τ = 0.092014. Whereas for cold ion case in

Model 1, the double layer solution is obtained at lower value of cool to hot electron

temperature ratio, τ = 0.0877117 for the same set of parameters. The cool to hot

electron temperature ratio, τ plays a critical role in studying two-electron tempera-

ture space plasma phenomena. Its effect has been mentioned by a number of authors

(e.g, Bharuthram and Shukla, 1986; Berthomier et al. 1998; Baboolal et al. 1990;

Baluku et al. 2010). Figure 3.23 shows the variation of the electrostatic potential ψ

against ξ for ion-acoustic solitons and double layer for the same parameters in Fig-

ure 3.22. The amplitude increases but width of ion-acoustic soliton decreases, as the

propagation angle increases.

Figure 3.24 shows the variation of the Sagdeev potential V (ψ,M) against the

real electrostatic potential ψ for different values of Mach number M . The chosen
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fixed parameters are, τ = Tc/Th = 0.04, f = 0.1, θ = 35o and ion temperature,

σ = Ti/Teff = 0.05. It is interesting to note that at M = 1.0365301 a double

layer appears, there are no solitons or double layer solutions above this value. It

is emphasized here that the nonlinear solitary structures are possible for subsonic

(M < 1) as well as double layer structures for supersonic (M > 1) for the current

theoretical model, whereas for the cold ion case in Model 1, the soliton solutions are

only possible for subsonic (M < 1) Mach number regime. Similar negative potential

soliton and double layer structures for supersonic Mach number regime (M > 1) have

been reported by Berthomier et al. 1998, for an unmagnetized plasma consisting of a

finite ion temperature and two Boltzmann electrons. Figure 3.25 shows the variation

of real potential ψ vs ξ for the ion-acoustic solitons and double layer for the same

parameters in Figure 3.24. As the Mach number increases, the amplitude increases

and the width of ion-acoustic soliton decreases

Figure 3.26 shows the variation of the Sagdeev potential V (ψ,M) against the real

electrostatic potential ψ for different values of the Mach number M and propagating

angle θ. Other fixed parameters are τ = 0.04, f = 0.1 and σ = 0.01. The curves show

all combinations of (θ,M) yield exactly the same value for the double layer amplitude,

similar to Figure 3.9 of Model 1. It also corresponds to a ”point” solution as found

by Djebli and Marif (2009). Figure 3.27 shows the existence domain of solitons and

double layers for the fixed parameters in Figure 3.26. The curves show that a double

layer solution is the upper bound for soliton solution as we increase the angle of

propagation θ, for different M values. The maximum Mach number for negative

potential solitons is bounded by those of the double layer solutions corresponding to

a given θ value.

Figure 3.28 shows the variation of the Sagdeev potential V (ψ,M) against the

real electrostatic potential ψ for different values of Mach number M and cool to hot

temperature ratio τ for the fixed parameters θ = 15o, f = 0.1 and σ = 0.01. As we

mentioned in Model 1, the curves in Figure 3.28 show the existence of the supersoliton

(Dubinov and Kolotkov, 2012; Verheest et al. 2013; Maharaj et al. 2013) solutions

for τ = 0.092014 and M = 0.98, τ = 0.0853963 and M = 0.99, τ = 0.080429328

and M = 1.00. Figure 3.29 shows the existence domain of solitons, double layers and

supersolitons for the same parameters in Figure 3.28 and for the Mach number M

= 1.0055. The curves were plotted for the variation of the maximum electrostatic

potential ψMax against τ for different values of the Mach number M . The reason for

smaller amplitudes for larger τ= Tc
Th

can be seen from the expression for the effective
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temperature Teff = Tc/(f +(1−f)τ), which shows that for fixed f the normalization

factor Teff decreases with increasing τ so that the corresponding normalized potential

ψ would linearly increase in magnitude. For τ=0.078081 and M=1.0055 only soliton

solitions can be found.

3.2.4 Discussion

We have studied the nonlinear propagation of arbitrary amplitude ion-acoustic soli-

tary waves and double layers in magnetized auroral plasma consisting of two Maxwellian

electrons and adiabatic ions. The present model extends the model presented in Model

1, by including an adiabatic ion temperature. The model predicts negative potential

solitons and double layers in the auroral region of the Earth’s magnetosphere, unlike

the case reported by Berthomier et al. (1998), of two electrons temperature in an un-

magnetized warm ion plasma, with positive potential and double layers. The Viking

satellite measurements taken in the auroral zone reported an electric field amplitude

of less than 100mV/m, with the plasma parameters nc = 0.2cm−3, nh = 1.8cm−3,

Tc = 1eV , Th = 26eV , and Ti = 0.07eV which gives Teff ≈ 7eV . The maximum

electric field for the Mach number M = 0.98, θ = 35o comes out to be 18mV/m and

the corresponding soliton width, pulse duration and speed come out to be ≈ 223m,

9ms and 25km/s, respectively.

The effect of adiabatic ions temperature is found to decrease the soliton amplitude

and increase the range values of Mach numbers for the existence of nonlinear struc-

tures, i.e. the ion temperature contribution pushes both the lower and upper limits of

Mach number to the higher side for the existence of nonlinear structures. It gradually

moved the Mach numbers regime to supersonic (M > 1). The model shows that the

amplitude of ion-acoustic solitons increases with Mach number, cool electron density

and propagating angle, but decreases with ion temperature. The present results are

in agreement with the Viking satellite observations in auroral regions.
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Figure 3.13: Existence domains of ion-acoustic solitons shown as a function of the
normalized ion temperature σ. For γ = cos 15o, using equation (3.48).
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Figure 3.14: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are τ= 0.04, f=0.1, σ=0.01, θ=15o and M = 0.98, 0.99, 0.996, 1.00
and 1.0055.
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Figure 3.15: Electrostatic potential ψ vs ξ for the fixed parameters of Figure 3.14 and
M=0.97(—), M=0.99 (- - -), M = 0.996 (...), M=1.00 (- . -) and M=1.0055(−.−).
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Figure 3.16: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are τ= 0.04, f=0.1, θ=15o, M = 0.98 and σ=0.0, 0.005, 0.01, 0.012
and 0.015.
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with σ=0.0 (—), σ=0.005 (- - -), σ=0.01 (...), σ=0.012 (- . -) and σ=0.015 (−.−).

61

 

 

 

 



−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3

ψ

V
(ψ

,M
)

 

 

f=0.1

f=0.2

f=0.25

f=0.3

f=0.31

Figure 3.18: Sagdeev potential, V (ψ,M) versus normalized potential ψ. The fixed
parameters are τ= 0.04, σ=0.01, θ=15o,M = 0.98 and f=0.1, 0.2, 0.25, 0.3 and 0.31.
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Figure 3.19: Electrostatic potential ψ vs ξ for the parameters of Figure 3.18 with
f=0.1 (—), f=0.2 (- - -), f=0.25 (...), f=0.3 (- . -) and f=0.31 (−.−).
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Figure 3.20: Sagdeev potential, V (ψ,M) vs normalized potential ψ. The fixed pa-
rameters are τ= 0.04, σ=0.01, f=0.1, M = 0.98 and θ=15o, 20o, 30o, 35o, 38o,
38.2885o-double layer, 38.5o- no solution.
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Figure 3.21: Electrostatic potential ψ vs ξ for the fixed parameters of Figure 3.20 with
θ=15o (—), θ=20o (- - -), θ=30o (...), θ=35o (- . -) and θ=38o (−.−), θ=38.2885o(−)
for a double layer.
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Figure 3.22: Sagdeev potential, V (ψ,M) vs normalized potential ψ. The fixed param-
eters are θ= 15o, σ=0.01, f=0.1, M = 0.98 and τ=0.01, 0.04, 0.08, 0.09, 0.092014-
double layer, 0.0925- no solution.
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Figure 3.23: Electrostatic potential ψ vs ξ for the fixed parameters of Figure 3.22
with τ=0.01 (—), τ=0.04 (- - -), τ=0.08 (...), τ=0.09 (- . -) and τ=0.092014(−.−)
for a double layer.
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Figure 3.24: Sagdeev potential, V (ψ,M) vs normalized potential ψ. The fixed param-
eters are σ=0.05, f=0.1, τ=0.04, θ=35o and M=0.97, 1.00, 1.03, 1.0365301- double
layer, 1.037- no solution.
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Figure 3.25: Electrostatic potential ψ vs ξ for the fixed parameters of Figure 3.24
with M=0.97(—), M=1.00 (- - -), M = 1.03 (...), and M=1.0365301(−.−) for a
double layer.
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Figure 3.26: Sagdeev potential, V (ψ,M) vs the normalized potential ψ. The
fixed parameters are σ=0.01, f=0.1, τ=0.04 for M=0.97 and θ=39.023o, M=0.98
and θ=38.28856o, M=0.99 and θ=37.582o, M=1.00 and θ=36.782o, M=1.0055 and
θ=36.358o.
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Figure 3.27: The existence domain of soliton for the fixed parameters of Figure 3.26.
The upper bound for soliton with increasing θ is a double layer, shown as an ”+”.
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Figure 3.28: Sagdeev potential, V (ψ,M) vs the normalized potential ψ. The fixed
parameters are σ=0.01, f=0.1, θ=15o and M=0.98 and τ=0.092014, M=0.99 and
τ=0.0853963, M=1.00 and τ=0.080429328.
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Figure 3.29: The maximum electrostatic potential ψMax against τ . The fixed param-
eters of Figure 3.28 and M=0.98, 0.99, 1.00, 1.0055.
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3.3 Model 3: Magnetized plasma with a cold ions,

cool electrons and hot energetic electron species

In Model 1 and 2, we assumed the Boltzmann distribution function for both cool and

hot electron densities arising from Maxwellian velocity distributions. As mentioned in

Chapter 2, Section 2.2.2, satellite observations also reveal the presence of nonthermal

species, in particular, for hot components (Cairns et al. 1995). This results in a

modification to the hot electron density in equation (3.2), as shown below.

3.3.1 Basic equations

We consider the propagation of ion acoustic waves in a three-component collisionless

plasma in the presence of an external magnetic field B0̇̂z, along the z-direction. The

dynamics of the cold ions are governed by fluid equations (3.3 - 3.4) and the cool

electron density is given by equation (3.1). The hot electrons are allowed to deviate

from Maxwellian behavior, as a result of high electrons temperature attributed to

the solar radiation for space plasmas. Thus, we adopt for our population of energetic

electrons the nonthermal distribution function given by Cairns et al. (1995):

fe(v) =
Nh0

(3α+ 1)
√
2πv2e

(
1 +

αv4

v4e

)
exp

(
− v2

2v2e

)
(3.49)

where Nh0 is the density and ve is the thermal speed of the hot electrons, and α is the

nonthermal parameter. Thus, upon integrating over velocity space gives the following

expression for the electron density (Cairns et al. 1995).

Nh = Nho(1− βφ+ βφ2) exp

(
eφ

Th

)
(3.50)

where β = 4α
1+3α

. It is noted that α = 0 corresponds to the Boltzmann density distri-

bution of hot electron contribution, arising from the Maxwellian velocity distributions

in (3.47).

To investigate the existence of arbitrary amplitude nonlinear waves in such a

plasma, we normalize the variables: densities nc, nh with total ion equilibrium density

Nio = Nco +Nho, velocities V by the acoustic speed Cs = (Teff/mi)
1/2, distance x by

effective ion Larmor radius, ρi = cs/Ω, time t by inverse of ion gyro-frequency Ω−1,
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where Ω = eB0/mic and potential φ by Teff/e. Here the temperature ratio τ = Tc/Th,

cool density ratio f = Nco/No, where Njo = (j = c, h, i) are the equilibrium densities,

and effective temperature Teff = Tc/(f + (1− f)τ), αc = Teff/Tc, αh = Teff/Th, (for

αh 6= 0 and τ 6= 0) and ψ = eφ/Teff .

Hence, the normalized set of equations (3.11) - (3.14) can be written in the sta-

tionary frame ξ = (ϕx+ γz −Mt)/M , as

d

dξ
(Lvni) = 0. (3.51)

Lv
dvx
dξ

= −ϕdψ
dξ

+Mvy. (3.52)

Lv
dvy
dξ

= −Mvx. (3.53)

Lv
dvz
dξ

= −γ dψ
dξ
. (3.54)

with the quasi-neutrality condition

ni = f exp(αcψ) + (1− f)(1− βψ + βψ2) exp(αhψ) (3.55)

where Lv = −M + αVx + γVz, M is the Mach number (wave speed), ϕ = sin θ,

γ = cos θ, ( where ϕ2 + γ2 = 1 and θ is the angle of propagation).

Now, using the quasi-neutrality condition (3.55), and solving equations (3.51) -

(3.54) with the boundary conditions (namely, ni → 1, ψ → 0, and dψ/dξ → 0 at

ξ → ±∞), and eliminating vx, vy, and vz, we have,

d

dξ

[
d

dξ

(
ψ +

M2

2n2
i

)]
= M2(ni − 1)− niγ

2

[
f

αc
(exp(αcψ − 1)

+(1− f)

(
1

αh
(exp(αhψ)− 1) + βψ(ψ − 1)

exp(αhψ)

αh

− β

α2
h

(1− exp(αhψ) + 2ψ exp(αhψ)

+
2β

α3
h

(exp(αhψ)− 1)

)]
. (3.56)
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Let

χ(ψ) =

(
ψ +

M2

2n2
i

)
, (3.57)

we have
dχ(ψ)

dξ
=
dψ

dξ
− M2

n3
i

dni
dξ

(3.58)

then differentiate ni (given in equation (3.55)) w.r.t ψ, we obtain

dni
dξ

= [fαc exp(αcψ) + (1− f) (αh exp(αhψ)

−β(1 + αhψ) exp(αhψ) + βψ(2 + αhψ) exp(αhψ))]
dψ

dξ
. (3.59)

Then, multiplying both sides of equation (3.56) by 2dχ
dξ

and integrate with the

boundary conditions ni → 1, ψ → 0, and dψ/dξ → 0 at ξ → ±∞, (see Appendix C

for the details) we obtain,

1

2

(
dψ

dξ

)2

+ V (ψ,M) = 0, (3.60)

where use has been made of (3.57) - (3.59).

As discussed in Section 2.3, equation (3.60) is regarded as an “Energy Integral”

of an oscillating pseudo-particle of unit mass, with the velocity dψ/dξ at time ξ and

the position ψ in a potential V (ψ,M).

The Sagdeev pseudo-potential (cf. Section 2.3) corresponds to

V (ψ,M) = − 1(
1− M2(fαc exp(αcψ)+(1−f)(αh exp(αhψ)−β(1+αhψ) exp(αhψ)+βψ(2+αhψ) exp(αhψ)))

(f exp(αcψ)+(1−f)(1−βψ+βψ2) exp(αhψ))3

)2×
− M4

2n2
i

(1− ni)
2 −M2(1− γ2)ψ +M2P (ψ)− γ2P 2(ψ)

2
− γ2M2P (ψ)

ni
(3.61)
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where

P (ψ) =
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
((exp(αhψ)− 1)

+βψ(ψ − 1) exp(αhψ)−
β

αh
(1− exp(αhψ) + 2ψ exp(αhψ))

+
2β

α2
h

(exp(αhψ)− 1)

)
. (3.62)

3.3.2 Numerical results

In the isothermal limit for the hot electrons, α = β = 0, the Sagdeev potential

V (ψ,M) given by (3.61) must satisfy the soliton conditions (cf. Section 2.3.2):

V (ψ,M) = 0 , dψ/dξ = 0, V (ψ,M) = 0 and dV (ψ,M)/d(ψ) = 0 at ψ = 0.

d2V (ψ,M)/d(ψ)2 < 0 at ψ = 0; V (ψ,M) = 0 at ψ = ψm, dV (ψ,M)/d(ψ) < (>)

0 at ψm < (>) 0. Then, for the formation of a double layer, one more additional

condition must be satisfied, i.e, dV (ψ,M)
dψ

|ψ=ψm = 0. It can be seen from (3.61) that

V (ψ,M) = dV (ψ,M)/dψ = 0 at ψ = 0. Finding the second derivate of the Sagdeev

potential in (3.61) at the equilibrium, reveals the region of velocity values where the

soliton solutions may exist.

Therefore, for soliton solutions

d2V (ψ,M)

dψ2
|ψ=0 =

M2 −M2
o

M2 −M2
1

< 0 (3.63)

where

M2
o =

γ2

fαc + (1− f)αh − (1− f)β
(3.64)

and the upper limit is

M2
1 =

1

fαc + (1− f)αh − (1− f)β
. (3.65)

For γ, β 6= 0 : γ2 = cos2 θ < 1, which implies Mo < M1, then if M > M1 ⇒ M >

M0 from which M2 −M2
o > 0 and M2 −M2

1 > 0, consequently (3.63) is not satisfied.

Similarly, if M < M0 ⇒ M < M1 from which M2 −M2
o < 0 and M2 −M2

1 < 0,

once again (3.63) is not satisfied.
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Therefore, (3.63) is satisfied only if

Mo < |M | < M1. (3.66)

Therefore, from equation (3.66), noting that fαc + αh(1− f) = 1, then we have

γ√
1− (1− f)β

< |M | < 1√
1− (1− f)β

, (3.67)

which in the limit of isothermal hot electrons (α = β = 0), reduces to equation (3.26)

in Model 1 (section 3.1). We recall that for Model 1 (equation (3.24)), only subsonic

solitons (M < 1) were possible. The presence of nonthermal hot electrons (β 6= 0)

also allows for M > 1, i.e supersonic solitons, as discussed in detail below.

The nonlinear ion acoustic solitary waves propagating along the external magnetic

field are investigated numerically for a plasma in which the dominant species are

the energetic hot electrons. The typical parameters considered for the numerical

evaluation are: density ratio, f , temperature ratio τ = Tc/Th , Mach number M ,

nonthermal contributions α and wave obliqueness γ = cos θ, where θ is the propagation

angle.

Table 3.2: Properties of ion-acoustic solitons, such as Soliton Velocity (V ), Mach
number range (Mo < |M | < M1), Electric Field (E), Soliton Width (W ) and Pulse
Duration (τ ∗), for various values of the nonthermal parameter α, with θ = 35o, cool
electron density f = 0.1, electron temperature ratio τ = 0.04

α β Mo < |M | < M1 V (kms−1) E(mVm−1) W (m) τ∗(ms)

0.0 0.0 0.820 - 0.999 21.24 - 25.87 0.012 - 23.52 1433.64 - 226.2 67.50 - 8.74

0.01 0.039 0.835 - 1.0185 21.63 - 26.38 0.016 - 18.67 1250 - 182.0 57.82 - 6.9

0.05 0.174 0.895 - 1.0865 23.18 - 28.14 0.043 - 11.72 790.4 - 150.28 34.1 - 5.34

0.1 0.308 0.969 - 1.1704 25.10 - 30.31 0.068 - 8.40 608.4 - 134.99 24.24 - 4.45

0.15 0.414 1.042 - 1.249 26.99 - 32.35 0.078 - 6.74 534.56 - 126.57 19.81 - 3.91

0.2 0.5 1.116 - 1.348 28.90 - 34.91 0.097 - 6.16 462.8 - 115.96 16.01 - 3.32

Table 3.2 shows the unnormalized values of the soliton velocity (V ), electric field

(E), soliton width (W ), and pulse duration (τ ∗) for various values of α and the Mach

number range M , respectively. It can be seen from Table 3.2 that for the minimum

Mach number Mo, the soliton velocity and electric field amplitude tend to increase

with Mach number Mo and α, but the width and pulse duration seems to decrease.

Also, at the maximum Mach number range M1, only the soliton velocity tends to
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increase with Mach number M1 and α, but the maximum electric field, width and

pulse duration decrease. Table 3.2 illustrates that as α (beta) increases the soliton

structures shift from the subsonic domain (M < 1) to purely supersonic (M > 1) for

α ≥ 0.15.

We have plotted the Sagdeev potential V (ψ,M) with normalized potential ψ (i.e,

amplitude and depth) for the above mentioned parameters for various values of plasma

parameters.

Figure 3.30 shows the Mach number ranges (minimum Mach numberMo and max-

imum Mach numberM1) supported by the model for the existence of finite amplitude

ion-acoustic solitons as a function of the electrons density f . The fixed parameters

are γ = cos 15o, τ = 0.04 and β ≈ 0.02.

The curves in Figure 3.31 show the variation of the Sagdeev potential V (ψ,M)

against normalized electrostatic potential ψ for different values of the Mach number

M . Other fixed parameters are f=0.1, α=0.005, τ=0.04 and θ=15o. The maximum

Mach number value is 1.007 for the nonthermal parameter α = 0.005. The negative

potential ion-acoustic solitons can exist within subsonic and supersonic Mach number

regimes due to the nonthermal hot electron contribution, unlike in the plasma model

consisting of two Maxwellian electron temperatures where only the subsonic Mach

number regime is possible (Model 1). The soliton amplitude increases with an increase

in the Mach number. Similar negative potential structures have been reported by Ali-

Fedela et al. (2010), for an unmagnetized plasma consisting of positively charged ions,

cool electrons and nonthermal hot electrons. On the other hand, several authors have

reported both positive and negative potential structures (Cairns et al. 1995; Mamun,

1997; Verheest and Hellberg, 2010) for the ion-acoustic solitary waves in nonthermal

plasmas. Figure 3.32 shows the real potential ψ vs ξ which has been usually obtained

numerically by integrating the energy integral (see equation 2.1) for the parameters

used in Figure 3.31. It clearly shows that as the Mach number increases, the ion-

acoustic soliton amplitude increases and the width decreases.

The variation of the Sagdeev potential V (ψ,M) vs normalized electrostatic po-

tential ψ is shown in Figure 3.33 for different values of the nonthermal parameter α

for other fixed parameters, namely, cool electron number density, f = 0.1, cool to hot

electron temperature ratio, τ = 0.04, angle of propagation, θ = 15o and Mach number,

M = 0.98. It is seen that as α increases, the ion-acoustic soliton amplitude decreases,

which behavior is consistent with many earlier theoretical studies (Cairns et al. 1995;
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Mamun, 1997; Singh and Lakhina, 2004; Bahamida et al. 2007; Ali-Fedela et al.

2010; Verheest and Hellberg, 2010; Pakzad, 2011; Singh et al. 2011). The curves also

show that the soliton structures can only exist within the range 0.0 ≤ α ≤ 0.007 for

Mach number value M = 0.98. For α > 0.007, no soliton solution is possible. Figure

3.34 shows the electrostatic potential ψ against ξ, for the parameters used in Figure

3.33. It shows that the negative potential ion-acoustic soliton amplitude decreases

with increase in width as the nonthermal contribution α increases.

Figure 3.35 shows the variation of the Sagdeev potential vs normalized electro-

static potential ψ for different values of the cool electron number density f . The

other fixed parameters are M = 0.98, α = 0.005, θ = 15o and cool to hot electron

temperature τ = 0.04. It is seen that the negative potential ion-acoustic soliton am-

plitude ψ increases with an increase in f . When there is only one electron species

(i.e.f = 0), no soliton solution is possible, as pointed out by Buti (1980) and Ali-

Fedela et al. (2010). Our calculations show that soliton solutions are possible for f

values in the range 0.1 ≤ f ≤ 0.37. Unlike the case of an unmagnetized nonthermal

plasma reported by Ail-Fedela et al. 2010, where a negative potential double layer

was found to exist as a boundary to the soliton solutions. Figure 3.36 shows the real

potential ψ against ξ, for the same parameters used in Figure 3.35. It shows that

as the cool electron density f increases, the ion-acoustic solitons amplitude increases

and the width also increases.

The curves in Figure 3.37 show the variation of the Sagdeev potential V (ψ,M)

against the real potential ψ for different values of the cool to hot electron temperature

ratio τ . The chosen parameters are f = 0.1 and the other fixed parameters as in

Figure 3.35. The soliton structures exist for the cool to hot electron temperature

ratio τ = Tc/Th of 0.04, 0.08, and 0.099, at a certain point where τ value is equal

to 0.1006, a double layer appears (see Section 2.3), beyond that there are no soliton

or double layer solutions, whereas in our previous study (Model 1), the double layer

solution appears at τ = 0.0877117 (see Figure 3.7). As the cool to hot electron

temperature ratio increases the soliton amplitude also increases, as found by earlier

studies (Baboolal et al. 1990; Baluku et al. 2010). Figure 3.38 shows the electrostatic

potential ψ against ξ, for the parameters used in Figure 3.37. It is seen that as the

cool to hot electron temperature increases, the amplitude as well as the width of the

ion-acoustic soliton increases. The double layer bounding is also shown.

In Figure 3.39, the curves show the variation of the Sagdeev potential with real
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potential ψ for different values of the propagation angle θ, (where cos θ = γ the waves

obliqueness). The fixed parameters are α=0.005, f=0.1, τ=0.04 and M=0.98. It

is interesting to note that at θ = 42.9105o a double layer structure appears. For

θ > 42.9105o there are no soliton or double layer solutions. The curves show that

as the angle of propagation θ increases (obliquity increases), the soliton amplitude

increases. Due to the waves obliqueness, it has been observed that the solutions for a

magnetized plasma are more restricted compared to an unmagnetized plasma (Ghosh

and Lakhina, 2004). Figure 3.40 shows the electrostatic potential ψ against ξ, for the

same parameters used in Figure 3.39. It is seen from the curves that as we increase

the propagation angle θ, the amplitude as well as width of the soliton increases until

the double layer boundary is reached.

The variation of the Sagdeev potential V (ψ,M) with normalized electrostatic

potential ψ is shown in Figure 3.41 for different combinations of θ and M to produce

a double a double layer. The fixed parameters are f=0.1, α=0.005, τ=0.04. As in

Model 1 and 2, the curves show all combinations of (θ,M) yield exactly the same

value for the double layer amplitude. This corresponds to a “point” solution as

shown in Figure 4 of Djebli and Marif (2009). As a follow up, we show in Figure 3.41.

Figure 3.42 shows the existence domain of solitons and double layers by plotting the

amplitude ψMax against angle of propagation θ for different M values. For a given

M , ψMax increases with θ until a double layer appears. We observe in Figure 3.41

that as M increases, the θ-value for a double layer solution decreases.

The variation of the Sagdeev potential V (ψ,M) against the normalized potential

ψ is shown in Figure 3.43 for different values of the cool to hot electron temperature

ratio τ and the Mach numberM for the fixed parameters f=0.1, α=0.005 and θ=15o.

It is interesting to point out that the supersoliton solution (Dubinov and Kolotkov,

2012; Verheest et al. 2013; Maharaj et al. 2013) has been found to exist only at

τ=0.10006, with corresponding Mach number valueM=0.98. It is noted that pseudo-

potential well for the soliton that immediately follows the double layers is extremely

deep. Above this particular point only soliton solutions are possible. Figure 3.44

shows the existence domain of solitons and supersolitons for the same parameters in

Figure 3.45. The curves were plotted for the variation of the maximum electrostatic

potential ψMax against τ for different values of the Mach number M . The maximum

Mach number for negative potential solitions is bounded by those of the soliton and

supersoliton solutions corresponding to a given cool and electron temperature ratio τ .

The supersoliton potential is limited by the minimum Mach number value at higher
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number of the cool to hot electron temperature ratio τ= 0.10006. Other existence

domains were bounded by soliton solutions.

3.3.3 Discussion

In this Section we have studied the oblique propagation of nonlinear ion acoustic

waves in magnetized plasma consisting of a cold ion fluid, Boltzmann distributions of

the cool electrons and nonthermal distributions of the hot electron species using the

Sagdeev pseudo-potential approach. In Model 1, we investigated the characteristics

of a plasma model composed of a cold and hot Maxwellian electron species and a cold

ion fluid. Here, we adopted Cairn’s proposed nonthermal distribution model (Cairn

et al. 1995) for the hot electron species due to the observed presence of fast energetic

particles in auroral region while the cool electrons remain Maxwellian. It was found

that the inclusion of nonthermal hot electrons extends the Mach number domain for

solitons to exist to the supersonic region. The model supports the existence of negative

potential ion-acoustic (low frequency) solitons and double layers. These are found to

have much higher amplitudes than the two Boltzmann electrons temperature. The

nonthermal distribution model of the fast energetic electrons are a common feature of

magnetosphere and ionospheric plasmas. Therefore, the present study is applied to

examine nonlinear ion-acoustic solitary waves of the mid-altitude region of the Earth’s

magnetosphere. The following parameters are taken from the Viking observations

(Berthomier et al., 1998), namely, nc = 0.2cm3, nh = 1.8cm3, Tc = 1eV , Th = 26eV ,

which gave Teff ≈ 7eV . The maximum electric field generated forM = 0.98, θ = 35o,

α = 0.1 is about 0.325mV/m and soliton width, pulse duration and speed comes out

to be ≈ 364m, 14.34ms and 25.4km/s respectively, which is within the predicted

range of values. These results are in agreement with satellite observations (Dovner

et al., 1994; Berthomier et al., 1998).
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Figure 3.30: Existence domains of ion-acoustic solitons shown as a function of the
normalized cool electron number density f , for fixed τ= 0.04, α=0.005, θ=15o.
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Figure 3.31: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are τ= 0.04, f=0.1, α=0.005, θ=15o and M=0.97, 0.98, 0.99, 1.00,
1.007.
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Figure 3.32: Electrostatic potential ψ vs ξ for the parameters of Figure 3.31, with
M=0.975(—), M=0.98 (- - -), M = 0.99 (...), M=1.00 (- . -) and M=1.007(−−−).
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Figure 3.33: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are τ= 0.04, f=0.1, θ=15o and M=0.98 with α=0.0, 0.001, 0.003,
0.005, 0.007.
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Figure 3.34: Normalized electrostatic potential ψ vs ξ for the parameters of Figure
3.33, with α=0.0 (—), α=0.001 (- - -), α=0.003 (. . .), α= 0.001 (- . -) and α=0.0
(−.−).
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Figure 3.35: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are τ = 0.04, α=0.005, θ=15o and M=0.98, with f=0.1, 0.2, 0.25,
0.3, 0.33.
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Figure 3.36: Normalized electrostatic potential ψ vs ξ for the parameters of Figure
3.35, with f=0.1(—), f=0.2 (- - -), f=0.25 (...), f=0.3 (- . -) and f=0.33(−.−).
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Figure 3.37: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are f=0.1, α=0.005, θ=15o and M=0.98, with τ=0.04, 0.08, 0.099,
0.10, 0.10006 and 0.1001-no solution.
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Figure 3.38: Normalized electrostatic potential ψ vs ξf for the parameters of Fig-
ure 3.37, with τ=0.04(—), τ=0.08 (- - -), τ=0.099 (...), τ=0.10 (- . -) and
τ=0.10006(−.−)- (a double layer).
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Figure 3.39: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are f=0.1, α=0.005, τ=0.04 andM=0.98, with θ=15o, 25o, 35o, 40o,
42o, 42.9105o and 43o-(no solution).
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Figure 3.40: Normalized electrostatic potential ψ vs ξ for the parameters of Figure
3.39, with θ= 15o (- . -), θ=25o (. . .), θ=35o (- - -), θ=40o (—), θ=42o (− − −),
θ=42.9105 (−) (double layer).
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Figure 3.41: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ.
The fixed parameters are τ= 0.04, f=0.1 and α=0.005, for θ=43.536o and M=0.97,
θ=42.9105o and M=0.98, 42.2782o,M=0.99, θ=41.6373o,M=1.00, θ=41.184o and
M=1.007.

94

 

 

 

 



10 15 20 25 30 35 40 45 50 55 60
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

θ

ψ
M

ax

 

 

M=0.97

M=0.99

M=1.00

M=1.007

+

No solution

No solution

+

No solution

++

Figure 3.42: Maximum electrostatic potential, ψMax vs propagating angle θ for the
parameters of Figure 3.41, with M=0.97, 0.99, 1.00, 1.007. The “+′′ indicates a
double layer solution.
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Figure 3.43: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ.
The parameters are σ=0.01, f=0.1, θ=15o for τ=0.10006 and M=0.98, τ=0.093
and M=0.99, τ=0.084, M=1.007. The curve corresponding to τ = 0.10006 and
M = 0.98 represents a solution that follows immediately after a double layer and
called a supersoliton.
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Figure 3.44: Maximum electrostatic potential, ψMax vs τ . The parameters of Figure
3.43 and τ=0.10006 and M=0.98, τ=0.093 and M=0.99, τ=0.084, M=1.007.

97

 

 

 

 



Chapter 4

Low frequency non-linear

fluctuations in multi-ion plasmas

In this Chapter we use the techniques developed in the previous Chapter to study low

frequency non-linear electrostatic fluctuations in multi-component plasma, with two-

ion species. In the first model (Section 4.1), we consider a three component plasma

model consisting of cold oxygen ions (temperature Ti=0) governed by fluid equations,

and Boltzmann distributions of hot proton and cool electron species. Subsequently,

we extent the model to include ion beams (Model 2 of Section 4.2) by considering a

cold oxygen ion beam. We extend Model 1 (Section 4.1) to a four component plasma

by including a hot electron species (Model 3, Section 4.3).

4.1 Model 1: Magnetized plasma with cold oxygen

ions and Boltzmann distribution of hot pro-

tons and cool electrons

In this model, low frequency arbitrary amplitude electrostatic solitary waves are stud-

ied in a three component magnetized plasma consisting of a cold oxygen ion fluid and

Boltzmann distribution of hot proton and electron species, using the Sagdeev pseudo-

potential technique (cf. Section 2.3.2).
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4.1.1 Basic equations

We consider the propagation of ion-acoustic waves in a three-component collisionless

plasma in the presence of an external magnetic field B0 = Boẑ, along the z-direction.

The density and temperature of the Boltzmann distributed cool electrons (Ne, Te)

and hot protons (Np, Tp) is given by,

Ne = Neo exp

(
eφ

Te

)
. (4.1)

Np = Npo exp

(
−eφ
Tp

)
. (4.2)

where φ is the potential of the waves and Neo,po are the ambient densities of the elec-

trons and protons, respectively, which satisfies charge neutrality condition at equilib-

rium, i.e. neo = nio + npo . The cold oxygen ion species are described by the set of

fluid equations (i.e continuity and momentum equations) as presented by Mahmood

et al. (2005).

∂Ni

∂t
+
∂(NiVix)

∂x
+
∂(NiViz)

∂z
= 0. (4.3)

∂Vix
∂t

+

(
Vix

∂

∂x
+ Viz

∂

∂z

)
Vix = − e

mi

∂φ

∂x
+ ΩiViy, (4.4)

∂Viy
∂t

+

(
Vix

∂

∂x
+ Viz

∂

∂z

)
Viy = −ΩiVix, (4.5)

∂Viz
∂t

+

(
Vix

∂

∂x
+ Viz

∂

∂z

)
Viz = − e

mi

∂φ

∂z
, (4.6)

where Ni is the oxygen ion beam density, Vix, Viy and Viz are the components of the

oxygen ion velocity along x, y, and z directions, respectively, and Ωi(= eB0/mi) is

the oxygen ion gyrofrequency and mi is the oxygen ion mass.

The oxygen ion acoustic wave linear mode can be derive from the fluid equation (i.e

continuity and momentum equations). For harmonic oscillations varying as ei(kz−ωt),

i.e. propagating along the magnetic field Bo, then
∂
∂t

→ −iω, ∇ → ikẑ. From the

continuity equation (4.3), we have

−iωNi + ikNioViz = 0,
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Viz =
ωNi

Niok
.

At equilibrium, we have

Nio +Npo = Neo,

from which
Nio

Neo

= 1− Npo

Neo

= 1− g,

where g = Npo

Neo
.

Then

ne =
Ne

Neo

= exp

(
eφ

Te

)
,

np =
Npo

Neo

= g exp

(
−αT

eφ

Te

)
,

where αT = Te
Tp

is the electron to proton temperature ratio.

Using the quasi-neutrality condition, we have

Ni = Ne −Np,

(1− g) + ni1 =

[
exp

(
eφ

Te

)
− g exp

(
−αT

eφ

Te

)]
then, we can expand the exponential in a Taylor series for |eφ/Tc| � 1,

exp

(
eφ

Te

)
=

[
1 +

eφ

Te
+

1

2

(
eφ

Te

)2

+ ....

]
'
(
1 +

eφ

Te

)
.

Therefore, neglecting the higher order terms in the expansion, we have

ni =

(
1 +

eφ

Te

)
− g

(
1− αT

eφ

Te

)
=
Nio

Neo

+ ni1,

from which

ni1 =

(
eφ

Te

)
(1 + gαT ), (4.7)

From the momentum equation (4.6), we have

−iωViz = −eikφ
mi

,
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ω

(
ωni1
Niok

)
=

k

mi

(eφ).

Therefore,
ω2ni1
1− g

=
k2

mi

eφ (4.8)

where ni1 =
Ni1

Neo
.

From (4.7) and (4.8)

ω2

k2
eφ

Te
(1 + gαT ) =

Te
mi

eφ

Te
(1− g),

ω2

k2
=

(
1− g

1 + gαT

)
Te
mi

,

ω

k
=

[(
1− g

1 + gαT

)(
Te
mi

)]1/2
≡ cs

is the ion acoustic phase speed, where Te is the electron temperature.

Introducing dimensionless variables, ι = Ωit, (η, ζ) = (x, z)/ρi, vk = Vik/cs (where

k = x, y, z) the velocity, ρi = cs/Ωi is the ion gyro-radius, M = V/cs is the Mach

number in terms of the ion acoustic speed, the potential ψ = eφ/Te, density Nj =

Njo/Neo (where j = e, i, p) and cs = ((1 − g)Te/(1 + gαT )mi)
1/2 is the oxygen ion

acoustic speed. Then, we define the nonlinear localized stationary solution in the

moving frame ξ = (αη + γζ −Mι)/M , where α = sin θ, γ = cos θ and θ is the angle

between the direction of waves propagation and the magnetic field.

Now, assuming all the dependent variables are functions of ξ, equations (4.1) -

(4.6) can be written as,

ne = exp(ψ). (4.9)

np = g exp(−αTψ). (4.10)

αvx + γvz =M

(
1− 1

ni

)
. (4.11)

M

ni

dvx
dξ

= α
dψ

dξ
−Mvy. (4.12)

M

ni

dvy
dξ

=Mvx. (4.13)

M

ni

dvz
dξ

= γ
dψ

dξ
. (4.14)
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Then, the system of equation is closed with quasi-neutrality condition for low

frequency phenomena

ni = ne − np =
exp(ψ)− g exp(−αTψ)

1− g
(4.15)

where αT = Te
Tp

, g = Npo

Neo
(< 1), then Nio

Neo
= 1 − g. Combining equations (4.11) -

(4.15) and eliminating vx, vy, vz, then integrating with the boundary conditions for

solitary wave structures ( namely, ni → 1, ψ → 0, and dψ/dξ → 0 at ξ → ±∞), we

obtain the nonlinear differential equation,

d

dξ

(
dχ

dξ

)
=M2(ni − 1)− γ2ni

[
1

1− g

[
(exp(ψ) +

g

αT
(exp(−αTψ)− 1)

]]
(4.16)

where

χ =

(
ψ +

M2

2n2
i

)
. (4.17)

Now, multiplying both sides of equation (4.16) by 2dχ/dξ, and after integrating

once with appropriate boundary conditions, we obtain the “energy-balance equation”

(see Appendix D for δvo = 0)

1

2

(
dψ

dξ

)2

+ V (ψ,M) = 0, (4.18)

where we have used the expression for ni(ψ) given in (4.15) to arrive at the Sagdeev

pseudo-potential V (ψ,M) (cf. Section 2.3) given by

V (ψ,M) = − 1(
1− M2

n3
i

(
1

1−g (exp(ψ) + αTg exp(−αTψ)
))2 ×

(
−M

4

2n2
i

(1− ni)
2

−M2(1− γ2)ψ +M2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))
−γ

2

2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))2

−M
2γ2

ni

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

)))
. (4.19)

For the soliton solutions, the Sagdeev pseudo-potential V (ψ,M) given by (4.19)

must satisfy the soliton conditions (cf. Section 2.3.2). (i.e. V (ψ,M) = 0 , dψ/dξ =
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0, V (ψ,M) = 0 and dV (ψ,M)/d(ψ) = 0 at ψ = 0. d2V (ψ,M)/d(ψ)2 < 0 at ψ = 0;

V (ψ,M) = 0 at ψ = ψm, dV (ψ,M)/d(ψ) < (>) 0 at ψm < (>) 0). At the origin, the

Sagdeev potential V (ψ,M) and its first derivative with respect to ψ vanished, and

from the condition d2V (ψ,M)
dψ2 < 0 at ψ = 0, we have

d2V (ψ,M)

dψ2
|ψ=0 =

M2 −M2
o

M2 −M2
1

< 0, (4.20)

where the critical Mach number, which is the lower limit for soliton solutions to exist,

is given by

M2
o =

γ2(1− g)

1 + gαT
< 1 since γ, g < 1 (4.21)

and for the upper limit M1, which is the maximum Mach number for soliton solution

to exist, we have

M2
1 =

1− g

1 + gαT
< 1 since g < 1. (4.22)

For γ 6= 0 : γ2 = cos2 θ < 1; which implies Mo < M1, then if M > M1 ⇒M > M0

from which M2 −M2
o > 0 and M2 −M2

1 > 0, consequently (4.20) is not satisfied.

Similarly, if M < Mo ⇒ M < M1 from which M2 −M2
o < 0 and M2 −M2

1 < 0,

once again (4.20) is not satisfied.

Therefore, (4.20) is satisfied only if

Mo < |M | < M1, (4.23)

i.e.

γ

√
1− g

1 + gαT
< |M | <

√
1− g

1 + gαT
< 1 (4.24)

which is the range values of Mach number M for a given value of wave obliqueness

(γ = cos θ), where θ is the angle of propagation. It is interesting to mention that

in the magnetized plasma consisting of cold oxygen ions and Boltzmann electron

and hot proton species, nonlinear ion-acoustic wave solutions can exist only in the

subsonic Mach number region (i.e M < 1, see equation 4.24). This Mach number

regime is similar to the case of a magnetized plasma consisting of single cold ions

and Boltzmann electron species studied by Choi et al. (2006), i.e. the nonlinear ion-

acoustic waves solutions were also found to exist only in the subsonic Mach number

region.
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4.1.2 Numerical results

Now, we numerically examine the existence of arbitrary amplitude solitons. The

energy integral and Sagdeev potential V (ψ,M) in (4.18) and (4.19) are computed

for different parameter values (e.g. Mach number M , proton density g, temperature

ratio αT = Te/Tp and obliqueness angle θ).

Table 4.1: Properties of ion-acoustic solitons, such as Soliton Velocity (V ), Mach
number range (Mo < |M | < M1), Electric Field (E), Soliton Width (W ) and Pulse
Duration (τ ∗), for various values of hot proton density (g) with θ = 35o, temperature
ratio αT = 0.1.
g Mo < |M | < M1 V (kms−1) E(mVm−1) W (m) τ∗(ms)

0.0 0.8192 - 0.999 21.22 - 25.87 0.0002 - 31.04 6058 - 119.6 285.49 - 4.62

0.01 0.8147 - 0.994 21.10 - 25.74 0.0003 - 30.53 5252 - 120.12 248.91 - 4.67

0.05 0.7965 - 0.972 20.63 - 25.17 0.0004 - 28.68 4680 - 120.9 226.85 - 4.80

0.1 0.7735 - 0.943 20.03 - 24.42 0.0021 - 26.25 2626 - 122.2 131.10 - 5.00

0.15 0.7499 - 0.915 19.42 - 23.70 0.0025 - 24.22 2381.6 - 123.14 122.64 - 5.20

0.2 0.7259 - 0.885 18.80 - 22.92 0.0049 - 22.09 1861.6 - 124.28 99.02 - 5.42

Table 4.1 describes the behavior of the nonlinear low frequency electrostatic struc-

tures for different values of the proton density, and other fixed parameters are θ = 35o

and αT = 0.1 respectively. In table 4.1, there is subsequently a decrease in the Mach

number region as the hot proton density g increases. At the minimum Mach number

region the soliton velocity, width and pulse duration tend to decrease with g but

only the electric field seems to increase. On the other hand (i.e the maximum Mach

number region), the soliton velocity and electric field tend to decrease with a further

increase in g value, while the width and pulse duration increase.

The curves in Figure 4.1 show the variation of the Sagdeev potential V (ψ,M)

against normalized electrostatic potential ψ for different Mach number M . The fixed

parameters are proton density ratio g = 0.1, temperature ratio αT = 0.1, and angle

of propagation θ = 15o. The soliton solutions exist within the Mach number range

0.915 ≤M ≤ 0.94, which is consistent with the equation (4.24). It is seen clearly from

the curves that the positive potential ion-acoustic solitons’ amplitude is increasing

as the Mach number increases. However, these positive potential structures have

been a common feature of low frequency waves in a plasma consisting of a single

electron species as shown by many authors (Temerin et al. 1982; Cairns et al. 1995;

Nakamura, 1999; Mahmood et al. 2003; Choi et al. 2006; Mahmood and Akhtar,

2008; Barman and Talukdar, 2010; Das, 2012). Figure 4.2 shows the normalized
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electrostatic potential ψ against ξ, for the same parameters used in Figure 4.1. It is

obvious from the curves that as the Mach number increases, the positive amplitude

of the ion-acoustic soliton increases and the width decreases.

The variation of the Sagdeev potential V (ψ,M) versus normalized electrostatic

potential ψ is shown in Figure 4.3 for different proton density ratio g. The fixed

parameters are Mach number M = 0.93, αT = 0.1, and θ = 15o. Above g > 0.11, no

soliton solutions are possible. The soliton amplitude increases as the proton density

ratio increases. The effects of the protons’ density on the nonlinear evolution of low

frequency electrostatic waves have been investigated by a number of authors (e.g.

Reddy et al. 2006; Moolla et al. 2010). Figure 4.4 shows the normalized electrostatic

potential ψ against ξ, for the same parameters in Figure 4.3. It shows clearly that

as the proton density ratio p increases, the ion-acoustic solitons potential amplitude

increases and the width decreases.

Figure 4.5 shows the variation of the Sagdeev potential V (ψ,M) against normal-

ized electrostatic potential ψ for different temperature ratio αT = Te/Tp. The fixed

parameters are M = 0.93, g = 0.1, and θ = 15o. It is observed that as the tempera-

ture ratio increases, the soliton amplitude increases and numerical computation shows

that the positive potential soliton solutions are not possible beyond αT > 0.35. In the

case of the nonlinear electrostatic fluctuations arising from a coupling of ion cyclotron

and ion acoustic waves, Moolla et al. (2010) showed the range of the electron-proton

temperature ratio Te/Tp <> 1.0 for the existence of the nonlinear structures. Figure

4.6 shows the normalized electrostatic potential ψ against ξ, for the same parameters

used in Figure 4.5. It is very obvious from the curves that as we increase the temper-

ature ratio αT , the ion-acoustic soliton amplitude increases and the width decreases.

In Figure 4.7, The curves show the variation of the Sagdeev potential V (ψ,M)

versus normalized electrostatic potential ψ for different values of the wave’s oblique-

ness (angle of propagation) θ. The fixed parameters are Mach number M = 0.93,

proton density ratio g = 0.1 and temperature ratio αT = 0.1. The soliton structures

exist only within the range value 15o ≤ θ ≤ 62o. In the case of a magnetized plasma

consisting of cold ions and electron species study by Choi et al. 2006, it has been

shown that the soliton solutions can only be found at the critical Mach number value

equal to the wave’s obliqueness value (i.e. Mo = γ), also in dusty plasma (Farid et

al. 2001). It shows clearly that the higher the propagating angle θ, the greater the

solitary wave’s amplitude. Figure 4.8 shows the normalized electrostatic potential ψ
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against ξ, for the same parameters used in Figure 4.7. It is seen that the positive

potential amplitude as well as width of the soliton increases with the increase in angle

of propagation.

Figure 4.9 shows the existence domain of solitons. The fixed parameters are

αT=0.1 and θ=15o. The curves were plotted for the variation of the maximum elec-

trostatic potential ψMax against p for different values of the Mach number M . The

maximum Mach number for positive potential solitions is bounded by those of the

soliton solutions corresponding to a given proton density ratio g. Only positive po-

tential solutions can be found to exist, whereas Baboolal et al. (1990) showed the cut

off conditions and existence domains for both positive and negative potential soliton

and double layers for plasma consisting of positive and negative charged ions and two

electron temperature.
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Figure 4.1: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are g= 0.1, αT=0.1, θ=15o and M=0.915, 0.92, 0.93, 0.935, 0.94.

107

 

 

 

 



−15 −10 −5 0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ξ

ψ

Figure 4.2: Normalized electrostatic potential ψ vs ξ for the parameters of Figure 4.1
with M= 0.915 (—), M=0.92 (- - -), M=0.93 (. . .), M=0.935 (- . -), M=0.94 (−).
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Figure 4.3: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are M=0.93, αT=0.1, θ=15o and g=0.07, 0.08, 0.09, 0.1, 0.11
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Figure 4.4: Normalized electrostatic potential ψ vs ξ for the parameters of Figure 4.3
with g= 0.07 (—), g=0.08 (- - -), g=0.09 (. . .), g=0.1 (- . -), g=0.11 (−)
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Figure 4.5: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are M=0.93, g=0.1, θ=15o and αT=0.01, 0.1, 0.2, 0.3, 0.35.
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Figure 4.6: Normalized electrostatic potential ψ vs ξ for the parameters of Figure 4.5
with αT= 0.01 (—), αT=0.1 (- - -), αT=0.2 (. . .), αT=0.3 (- . -), αT=0.35 (−).
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Figure 4.7: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
fixed parameters are g= 0.1, M=0.93, αT=0.1 and θ=15o, 20o, 25o, 35o, 40o.
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Figure 4.8: Normalized electrostatic potential ψ vs ξ for the parameters of Figure 4.7
with θ= 15o (—), θ=20o (- - -), θ=25o (. . .), θ=35o (- . -), θ=40o (−).
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Figure 4.9: Maximum electrostatic potential, ψMax vs p. The parameters are αT=0.1,
θ=15o and M=0.915, M=0.92, M=0.93, M=0.94.
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4.2 Model 2: Magnetized plasma with cold oxygen

ion beam and Boltzmann distribution of hot

protons and cool electrons

In the previous model (Section 4.1), we assumed that the ion’s beam velocity is zero

(vo = 0). In order to investigate the effect of a beam velocity propagating in (x,z)

direction, we extend Model 1 to include the ion beam velocity, i.e. ~vo = voẑ.

4.2.1 Basic equations

Our basic set of equations is the same as the set of equations (4.1)-(4.6) in Model 1

with viz = vo+vi1. Also, using the same dimensionless variables, we obtain the follow-

ing set of normalized equations in the localized frame ξ = (αη+ γζ −Mι)/M , where

α = sin θ, γ = cos θ and θ is the angle between the direction of waves propagation

and the magnetic field.

αvx + γvz =M −
(
M − δ

ni

)
, (4.25)(

M − δ

ni

)
dvx
dξ

= α
dψ

dξ
−Mvy, (4.26)(

M − δ

ni

)
dvy
dξ

=Mvx, (4.27)(
M − δ

ni

)
dvz
dξ

= γ
dψ

dξ
, (4.28)

where δ = γvo is the beam velocity. Eliminating vx, vy, vz and combining equations

(4.25) - (4.28) with the quasi-neutrality condition in equation (4.15), then integrating

with the boundary conditions for solitary wave structures (i.e. ni → 1, ψ → 0, and

dψ/dξ → 0 at ξ → ±∞), we obtain the nonlinear differential equation,

d

dξ

(
dχ

dξ

)
=M2(ni − 1)− γ2M2ni

(M − δ)2

[
1

1− g

[
(exp(ψ) +

g

αT
(exp(−αTψ)− 1)

]]
(4.29)

where

χ =

(
ψ +

(M − δ)2

2n2
i

)
. (4.30)
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Now, multiplying both sides of equation (4.29) by 2dχ/dξ and after integrating

once with appropriate boundary conditions, we obtain the “energy-balance equation”

(see Appendix D for the details)

1

2

(
dψ

dξ

)2

+ V (ψ,M) = 0, (4.31)

where V (ψ,M) is the Sagdeev pseudo-potential (cf. Section 2.3) and is given as

V (ψ,M) = − 1(
1− (M−δ)2

n3
i

(
1

1−g (exp(ψ) + gαT exp(−αTψ)
))2 ×

(
−M

2(M − δ)2

2n2
i

(1− ni)
2

−M2(1− γ2)ψ +M2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))
− γ2

2(M − δ)2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))2

−M
2γ2

ni

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

)))
. (4.32)

In order to obtain soliton solutions of equation (4.32), the Sagdeev potential

V (ψ,M) given by (4.32) must satisfy the soliton conditions (cf. Section 2.3.2).

(i.e. V (ψ,M) = 0 , dψ/dξ = 0, V (ψ,M) = 0 and dV (ψ,M)/d(ψ) = 0 at ψ =

0. d2V (ψ,M)/d(ψ)2 < 0 at ψ = 0; V (ψ,M) = 0 at ψ = ψm, dV (ψ,M)/d(ψ) < (>)

0 at ψm < (>) 0).

Then, the soliton condition d2V (ψ,M)/dψ2 < 0 at ψ = 0 can be written as

d2V (ψ,M)

dψ2
|ψ=0 =

M2 ((M − δ)2 −M2
o )

(M − δ)2 ((M − δ)2 −M2
1 )
< 0 (4.33)

where

M2
o =

γ2(1− g)

1 + gαT
and M2

1 =
1− g

1 + gαT

Then, from the numerator M2 < or > 0 and (M − δ)2 −M2
o < or > 0, also in the

denominator, (M − δ)2 < or > 0 and (M − δ)2 −M2
1 < or > 0.

For γ, δ 6= 0: Mo+δ < 1 =M1+δ ⇒Mo < M1, then ifM−δ > M1 ⇒M−δ > Mo

from which (M−δ)2−M2
o > 0, (M−δ)2−M2

1 > 0 consequently (4.33) is not satisfied.

Similarly, If (M − δ) < Mo ⇒ (M − δ) < M1 from which (M − δ)2 −M2
o < 0 and
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(M − δ)2 −M2
1 < 0, once again (4.33) is not satisfied.

From equation (4.33), the lowest limit for a soliton solution to exist (the critical

value) is given by

Mo + δ =
γ
√

(1− g)(1 + gαT )

1 + gαT
+ δ > 0 (4.34)

and the upper limit is

M1 + δ =

√
(1− g)(1 + gαT )

1 + gαT
+ δ > 0 (4.35)

for γ, δ and g > 0.

Therefore, (4.33) is satisfied only if

Mo + δ < |M | < M1 + δ. (4.36)

From equation (4.34 - 4.36), we obtain

γ

√
1− g

1 + gαT
+ δ < |M | <

√
1− g

1 + gαT
+ δ (4.37)

for θ 6= 0, equation (4.37) gives the Mach number range for fixed values of plasma

parameters g, αT and δ. At beam velocity δ = 0, the conditions in equations (4.33

- 4.37) above will reduce to those in Model 1 (Section 4.1). It is interesting to point

out that the inclusion of the beam velocity allows supersonic solutions (M > 1) for

the upper limit of the Mach number |M |.

4.2.2 Numerical results

Now, we numerically examine the existence of arbitrary amplitude solitons. The

energy integral and the Sagdeev potential V (ψ,M) given by (4.31) and (4.32) are

computed for different parameter values (e.g. Mach number M , proton density g =

Npo/Neo, temperature ratio αT = Te/Tp, beam velocity δ = γvo and obliqueness angle

θ).

Table 4.2 shows that the characteristics of the arbitrary amplitude nonlinear elec-

trostatic structures in auroral plasmas for different values of the ion beam velocity

δ and other fixed plasma parameters are, hot proton density g = 0.1, temperature
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Table 4.2: Properties of ion-acoustic solitons, such as Soliton Velocity (V ), Mach
number range (Mo < |M | < M1), Electric Field (E), Soliton Width (W ) and Pulse
Duration (τ ∗), for various values of ion beam velocity (δ) with θ = 35o, hot proton
density g = 0.1, temperature ratio αT = 0.1.

δ Mo < |M | < M1 V (kms−1) E(mVm−1) W (m) τ∗(ms)

0.0 0.7735 - 0.943 20.03 - 24.42 0.002 - 26.25 2626 - 122.2 131.1 - 5.00

0.01 0.7818 - 0.953 20.25 - 24.68 0.0037 - 26.71 2138.24 - 120.64 105.59 - 4.89

0.05 0.8148 - 0.984 21.10 - 25.49 0.0084 - 27.24 1588.6 - 117.0 75.29 - 4.59

0.1 0.8558 - 1.025 22.17 - 26.55 0.0098 - 28.56 1460.16 - 112.32 65.86 - 4.23

0.15 0.8969 - 1.066 23.23 - 27.61 0.014 - 29.66 1268.8 - 108.16 54.62 - 3.92

0.2 0.938 - 1.105 24.29 - 28.62 0.017 - 30.98 1107.6 - 104.0 45.60 - 3.63

ratio αT = 0.1 and angle of propagation θ = 35o respectively. In Table 4.2, it clearly

shows that both the minimum and maximum electric field amplitudes of the soliton

increase with increases in the ion beam velocity. This may be attributed to the fact

that as the ion beam δ increases, the minimum and maximum Mach numbers for

which soliton solutions are obtained and soliton velocity also increase, leading to an

increase in electric field amplitude. But the soliton width as well as pulse duration

decreases with the increase in ion beam velocity.

The variation of the Sagdeev potential V (ψ,M) versus the normalized potential

(ψ) is shown in Figure 4.10 for various values of Mach number as shown in the graph.

The fixed parameters are, proton density ratio, g = 0.1, beam velocity, δ = 0.1,

temperature ratio Te/Tp = 0.1 and propagation angle, θ = 15o. It is seen that

the positive potential ion-acoustic soliton amplitude, ψ increases with the increasing

Mach number M . Further numerical computation reveals that soliton solutions are

not found for M > 0.953. Unlike the case of small-amplitude ion acoustic solitons

in magnetized plasmas reported by Das, (2012) both positive and negative potential

solitons were found for plasma consisting of warm ions, cold ion-beams and electron

species forM < 1. Figure 4.11 shows the normalized electrostatic potential ψ against

ξ, for the same parameters used in Figure 4.10. It is obvious from the curves that

as the Mach number increases, the positive potential amplitude ion-acoustic soliton

increases and the width decreases.

The curves in Figure 4.12 show the variation of the Sagdeev potential V (ψ,M)

against the electrostatic potential ψ for different values of proton density ratio g.

Other fixed parameters areM=0.93, αT=0.1, δ=0.01 and θ=15o. The positive poten-
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tial soliton amplitude increases with an increase in proton density g, beyond g > 0.138,

soliton solutions are not possible. Otherwise, if the proton density is assumed to be

zero (i.e. g = 0), then the problem will automatically reduce to the case investi-

gated by Choi et al. 2006. Figure 4.13 shows the normalized electrostatic potential ψ

against ξ, for the same parameters in Figure 4.12. It shows clearly that as the proton

density ratio g increases, the ion-acoustic soliton’s potential amplitude increases and

the width decreases.

In Figure 4.14, the graphs show the variation of the Sagdeev potential V (ψ,M)

versus the normalized potential (ψ) for different values of the angle of propagation θ.

The chosen parameters are proton density ratio, g = 0.1, and other fixed parameters

of Figure 4.12. It is observed that as the angle of propagation θ increases, the soliton

amplitude increases. Also, the wave’s obliqueness γ reduced the solitons amplitude,

as mentioned by many authors (Farid et al. 2001; Choi et al. 2006; Barman and

Talukdar, 2010). For θ > 70o there are no soliton solutions. Figure 4.15 shows the

normalized electrostatic potential ψ against ξ, for the same parameters used in Figure

4.14. It is seen that the positive potential amplitude as well as the width of the soliton

increases with the increase in angle of propagation.

The variation of the Sagdeev potential V (ψ,M) against the normalized electro-

static potential ψ is shown in Figure 4.16 for different values of the temperature ratio

αT . The other fixed parameters are, M=0.93, θ=15o, g=0.1 and δ=0.01. It is seen

that the positive potential soliton amplitude, ψ increases with the increasing tem-

perature ratio αT . Similar observations were recorded for the study of the parallel

and perpendicular electric field structures that exhibit a spiky appearance (Reddy

et al. 2006; Moolla et al. 2012). On the other hand, Das, (2012) revealed that it

is the inclusion of ion temperature in the plasma consisting of warm ions, electrons

and cold ion-beams, that is responsible for the existence of both compressive and rar-

efactive soliton structures. Figure 4.17 shows the normalized electrostatic potential

ψ against ξ, for the same parameters used in Figure 4.16. It is very obvious from the

curves that as the temperature ratio αT increases, the ion-acoustic soliton amplitude

increases and the width decreases.

Figure 4.18 shows the variation of the Sagdeev potential V (ψ,M) against the

electrostatic potential (ψ) for different values of beam velocity δ and other fixed

plasma parameters namely proton g = 0.1, temperature ratio, αT = 0.1, angle of

propagation, θ = 15o and Mach number M = 0.93. The soliton amplitude decreases
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as the beam velocity δ increases. Similar effect of beam velocity has been mentioned

by many authors (e.g. Nakamura, 1999; Reddy et al. 2006; Lakhina et al. 2008;

Moolla et al. 2010). Figure 4.19 shows the normalized electrostatic potential ψ

against ξ, for the same parameters used in Figure 4.18. It clearly shows that as the

beam velocity δ increases, the ion-acoustic soliton amplitude decreases and the width

increases.

In Figure 4.20, the curves show the existence domain of solitons. The fixed pa-

rameters are αT=0.1, δ=0.01, and θ=15o. The curves were plotted for the variation of

the maximum electrostatic potential ψMax against p for different values of the Mach

number M . The maximum Mach number for positive potential solitions is bounded

by those of the soliton solutions corresponding to a given proton density ratio g
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Figure 4.10: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are g= 0.1, δ=0.01, αT=0.1, θ=15o andM=0.925, 0.93, 0.94, 0.945, 0.953.
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Figure 4.11: Normalized electrostatic potential ψ vs ξ for the parameters of Figure
4.10 with M= 0.925 (—), M=0.93 (- - -), M=0.94 (. . .), M=0.945 (- . -), M=0.953
(− − −).
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Figure 4.12: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
paramters of δ= 0.01, M=0.93, αT=0.1, θ=15o and g=0.085, 0.1, 0.12, 0.13, 0.138.
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Figure 4.13: Normalized electrostatic potential ψ vs ξ for the parameters of Figure
4.13 with g= 0.085 (—), g=0.1 (- - -), g=0.12 (. . .), g=0.13 (- . -), g=0.138 (−−−).
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Figure 4.14: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are δ= 0.01, M=0.93, αT=0.1, g=0.1 and θ=15o, 20o, 25o, 35o, 40o.
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Figure 4.15: Normalized electrostatic potential ψ vs ξ for the parameters of Figure
4.15 with θ= 15o (—), θ=20o (- - -), θ=25o (. . .), θ=35o (- . -), θ=40o (− − −).

127

 

 

 

 



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

−5

ψ

V
(ψ

,M
)

 

 

α
T
=0.01

α
T
=0.1

α
T
=0.2

α
T
=0.3

α
T
=0.53

Figure 4.16: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are δ= 0.01, M=0.93, g=0.1, θ=15o and αT=0.01, 0.1, 0.2, 0.3, 0.53.
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Figure 4.17: Normalized electrostatic potential ψ vs ξ for the parameters of Figure
4.17 with αT= 0.01 (—), αT=0.1 (- - -), αT=0.2 (. . .), αT=0.3 (- . -), αT=0.53
(− − −).
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Figure 4.18: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are g= 0.1, M=0.93, αT=0.1, θ=15o and δ=0.0, 0.005, 0.01, 0.012, 0.016.
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Figure 4.19: Normalized electrostatic potential ψ vs ξ for the parameters of Figure
4.19 with δ= 0.0 (—), δ=0.005 (- - -), δ=0.01 (. . .), δ=0.012 (- . -), δ=0.016 (−−−).
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Figure 4.20: Maximum electrostatic potential, ψMax vs g. The parameters are
αT=0.1, θ=15o and M=0.925, M=0.93, M=0.94, M=0.953.
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4.2.3 Discussion

We have examined finite amplitude ion-acoustic solitary waves in a magnetized three

components space plasma with cold oxygen-ions beams and Boltzmann distributions

of proton and electron species. Motivated by FAST satellite observations of waves near

the cyclotron frequencies ofH+, O+ andHe+ in the auroral region reported by Cattell

et al., (1998), we investigated in detail the evolution of solitons in the auroral region of

the Earth’s magnetosphere, and the existence of the Mach number domain for solitary

wave solutions to exist. The numerical computation of plasma parameters (i.e. Mach

number, temperature ratio, proton concentration, beam velocity and obliqueness)

variational effect on the properties of the ion-acoustic solitons was obtained with

positive potential structures. The model supports only positive potential ion-acoustic

solitons. The model allowed the solitons to exist only in the subsonic Mach number

regime, whereas the inclusion of an ion beams allowed the nonlinear structures to

exist at both subsonic and supersonic Mach number regime (see Table 4.1). For the

plasma parameters, Mach number M = 0.93, beam velocity δ=0.01 and propagating

angle θ=35o, the electric field amplitude, width, pulse duration and speed of the

soliton structures comes out to be 22mV/m, 130m, 5ms and 24km/s, respectively.
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4.3 Model 3: Magnetized plasma with cold oxy-

gen ions, Maxwellian ions and two-Boltzmann

electrons

In this Section, we extend Model 1 (Section 4.1), to a four component plasma, by

including a Boltzmann distribution of hot electron species. This Model is also a

modification of Model 1 (Section 3.1) with additional Maxwellian ion species. We

shall investigate the effect of the additional component in the plasma model. This

results in the set of equations below.

4.3.1 Basic equations

We consider a four-component, homogeneous, collisionless, and magnetized plasma

comprising of Boltzmann distributions of cool ions (Nci, Tci), cool electrons (Nce,

Tce) and hot electrons (Nhe, The) and background cold oxygen-ions fluid (Ni, Ti, Vi).

The finite amplitude ion-acoustic waves are propagating in the z direction at angle

θ to the external magnetic field Bo, which is assumed to be in the (x, z)-plane. The

Boltzmann distribution is assumed for the densities of the cool (Nce) and hot (Nhe)

electrons and cool (Nci) ion species, and are given as follows:

Nce = Nceo exp

(
eφ

Tce

)
, (4.38)

Nhe = Nheo exp

(
eφ

The

)
, (4.39)

Nci = Ncio exp

(
eφ

Tci

)
, (4.40)

where φ is the electrostatic potential and Nceo (Tce), Nheo (The) and Ncio (Tci) are

the equilibrium densities (temperature) of the cool, hot electrons and cool ions re-

spectively. The assumption of the Boltzmann distribution means that the electrons

and cool ions are in thermal equilibrium, which is a valid assumption for low fre-

quency phenomena, well below the electron plasma frequency. The dynamics of the

cold oxygen ions is described by the fluid equations, namely, the continuity and the

momentum equations:
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∂Ni

∂t
+∇(NiVi) = 0 (4.41)

and (
∂

∂t
+Vi.∇

)
Vi = −e∇φ

mi

+ e
Vi ×Bo

mic
, (4.42)

where Ni, mi and Vi are the number density, mass and the fluid velocity of the oxygen

ions, respectively, e is the magnitude of the electron charge, c is the speed of light in

a vacuum.

We begin with a linear analysis, using the continuity and momentum equation

in (4.41 - 4.42) with the Boltzmann distribution of cool ions, cool and hot electron

densities. For harmonic oscillations varying as ei(kz−ωt), i.e propagating along the

magnetic field Bo, then
∂
∂t

→ −iω, ∇ → ikẑ. From the continuity equation, we have

−iωNi + ikNoVi = 0,

Vi =
ωNi

Nok
.

At equilibrium, we have

Nio = Nceo +Nheo −Ncio = No,

from which
Nheo

No

= 1− Nceo

No

= 1− f

and
Nio

No

= 1− Ncio

No

= 1− g

where f = Nceo

No
and g = Ncio

No
.

Then

nce =
Nce

No

= f exp

(
eφ

Tce

)
,

nhe =
Nhe

No

= (1− f) exp

(
eφ

The
.
Tce
Tce

)
,

nhe = (1− f) exp

(
eφ

Tce
.τ

)
,

ncio =
Ncio

No

= g exp

(
−αci

eφ

Tce

)
,
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where τ = Tce
The

and where αci =
Tce
Tci

.

Using the quasi-neutrality condition, we have

(1− g) + ni1 =
Ni

No

=

[
f exp

(
eφ

Tce

)
+ (1− f) exp

(
eφ

Tce
.τ

)
− g exp

(
−αci

eφ

Tce

)]
then, we can expand the exponential in a Taylor series for |eφ/Tc| � 1,

exp

(
eφ

Tce

)
=

[
1 +

eφ

Tce
+

1

2

(
eφ

Tce

)2

+ ....

]
' 1 +

eφ

Tce
.

Therefore, neglecting the higher order terms in the expansion, we have

ni = f

(
1 +

eφ

Tce

)
+ (1− f)

(
1 +

eφ

Tce
.τ

)
− g

(
1− αci

eφ

Tce

)
= 1− g + ni1,

from which

ni1 = (f + (1− f)τ + gαci)

(
eφ

Tce

)
, (4.43)

From the momentum equation (4.42), we have

−iωVi = −eikφ
mi

,

ω

(
ωni1
Nok

)
=

k

mi

(eφ),

ω2ni1
1− g

=
k2

mi

(eφ), (4.44)

where ni1 = Ni1

No
.

From (4.43) and (4.44)(
ω2

k2

)
eφ

Tce
(f + (1− f)τ + gαci) =

Tce
mi

(
eφ

Tce
(1− g)

)
,

for which
ω

k
=

[(
(1− g)

(f + (1− f)τ + gαci)

)(
Tce
mi

)]1/2
≡ cs

is the ion acoustic phase speed.
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Then the normalized set of the governing equations are

nce = f exp(αceψ), (4.45)

nhe = (1− f) exp(αheψ), (4.46)

nci = g exp(−αciψ), (4.47)

∂ni
∂ι

+
∂(nivix)

∂η
+
∂(niviz)

∂ζ
= 0, (4.48)

∂vix
∂ι

+

(
vix

∂

∂η
+ viz

∂

∂ζ

)
vix = −∂ψ

∂η
+ viy, (4.49)

∂viy
∂ι

+

(
vix

∂

∂η
+ viz

∂

∂ζ

)
viy = −vix, (4.50)

∂viz
∂ι

+

(
vix

∂

∂η
+ viz

∂

∂ζ

)
viz = −∂ψ

∂ζ
. (4.51)

and our system of the equation is closed with the quasi-neutrality condition (cf.

Section 2.3)

ni = nce + nhe − nci =
feαceψ + (1− f)eαheψ − ge−αciψ

1− g
. (4.52)

The normalisations used are oxygen-ion gyro-frequency Ω(= eB0/mic), ι = Ωit,

(η, ζ) = (x, z)/ρi, Vk = vik/cs (where k = x, y, z) is the velocity, effective ion-acoustic

speed cs = ((1−g)Tce/mi(f+(1−f)τ+gαci))1/2, ρi = cs/Ωi is the ion gyro-radius, the

total ion equilibrium density Nio = Nceo +Nheo −Ncio = No, τ = Tce/The is the cool

to hot electron temperature ratio, f = Nceo/No is cool to hot electron density ratio,

the ion density ratio, g = Ncio/No, Teff = Tce/(f + (1− f)τ) is an effective electron

temperature, then αce = Teff/Tce, αhe = Teff/The, αci = Teff/Tci and electrostatic

potential ψ = eφ/Teff .

In order to derive the Sagdeev potential (cf. Section 2.3), we transformed all

the dependent variables in equation (4.48) - (4.51) to a single independent variable

ξ = (αη+ γζ−Mι)/M , where M = V/cs is the Mach number, α = sin θ, γ = cos θ; θ

is the angle between the direction of wave propagation and the magnetic field. Then,

integrating with appropriate boundary conditions for solitary wave structure (namely,

ni → 1, ψ → 0, and dψ/dξ → 0 at ξ → ±∞), we obtain a single dimensionless
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nonlinear differential equation in terms of oxygen-ion density ni and electrostatic

potential ψ as,

d

dξ

(
dχ(ψ)

dξ

)
=M2(ni − 1)

− γ2ni

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

))
(4.53)

where

χ(ψ) =

(
ψ +

M2

2n2
i

)
(4.54)

with ni given by equation (4.52).

Multiplying both sides of equation (4.53) by 2dχ(ψ)/dξ and integrating once with

appropriate boundary conditions (see Appendix E for the details), we obtain

1

2

(
dχ(ψ)

dξ

)2

+ V (ψ,M) = 0, (4.55)

which can be expressed as

1

2

(
dψ

dξ

)2

+ V (ψ,M) = 0, (4.56)

where the Sagdeev pseudo-potential V (ψ,M) is given by

V (ψ,M) = − 1(
1− M2

n3
i

(
1

1−g (fαcee
αceψ + (1− f)αheeαheψ + gαcie−αciψ

))2×
(
−M

4

2n2
i

(1− ni)
2 −M2(1− γ2)ψ

+M2

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

))
−γ

2

2

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

))2

−M
2γ2

ni

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

)))
. (4.57)

Equation (4.56) is the “energy balance equation” for a unit mass in a conserva-
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tive force field, with velocity dψ/dξ at position ψ, and time ξ in a pseudo-potential

V (ψ,M).

4.3.2 Soliton and double layer solutions

We examined the Sagdeev pseudo-potential V (ψ,M) given by (4.57) to determine

the conditions and the behavior of localized solutions necessary for the ion-acoustic

solitons and double layer structures to exist. In doing this, the soliton and double

layer conditions (cf. Section 2.3.2) (i.e. V (ψ,M) = 0 , dψ/dξ = 0, V (ψ,M) = 0

and dV (ψ,M)/d(ψ) = 0 at ψ = 0. d2V (ψ,M)/d(ψ)2 < 0 at ψ = 0; V (ψ,M) = 0 at

ψ = ψm, dV (ψ,M)/d(ψ) < (>) 0 at ψm < (>) 0. Then, for the formation of a double

layers, one more additional condition must be satisfied, i.e, dV (ψ,M)
dψ

|ψ=ψm = 0).

Moreover, the soliton condition d2V (ψ,M)/dψ2 < 0 at ψ = 0 can be written as

d2V (ψ,M)

dψ2
|ψ=0 =

M2 −M2
0

M2 −M2
1

< 0 (4.58)

where

M2
0 =

γ2(1− g)

fαce + (1− f)αhe + gαci
(4.59)

is the critical Mach number and

M2
1 =

1− g

fαce + (1− f)αhe + gαci
(4.60)

the upper limit of the Mach number.

Since fαce + (1− f)αhe = 1 and g < 1, equation (4.59) and (4.60) can be written

as

|M0| =
γ
√

(1− g)(1 + gαci)

1 + gαci
< 1 (4.61)

and

|M1| =
√
(1− g)(1 + gαci)

1 + gαci
< 1. (4.62)

For γ 6= 0 : γ2 = cos2 θ < 1; which implies Mo < M1, then if M > M1 ⇒M > M0

from which M2 −M2
o > 0 and M2 −M2

1 > 0, consequently (4.58) is not satisfied.

Similarly, if M < M0 ⇒ M < M1 from which M2 −M2
o < 0 and M2 −M2

1 < 0,

once again (4.58) is not satisfied.
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Therefore, (4.58) is satisfied only if

M0 < |M | < M1. (4.63)

From equation (4.63), we obtain a condition

γ

√
1− g

1 + gαci
< |M | <

√
1− g

1 + gαci
< 1 (4.64)

which determines the existing domain of the corresponding nonlinear wave solutions.

It is very important to mention that the soliton characteristic allows the same Mach

number M range values in subsonic Mach number regime with the plasma model in

Section 4.1 (Model 1). If the second ions (Maxwellian) species equal to zero (i.e. g =

0) then, the system will automatically reduce to Model 1 (Section 3.1).

4.3.3 Numerical results

We now apply our results to the Viking satellite observations in the auroral region of

the Earth’s magnetosphere as reported by Berthomier et al. (1998). The parameters

are as follows: the cool electron density and temperature nce = 0.2cm−3 and Tce =

1eV , hot electron density and temperature nhe = 1.8cm−3 and The = 26eV , which

gives the effective temperature Teff ≈ 7eV with an electric field amplitude less than

100mV/m. We further present the numerical computations of the energy integral in

equation (4.56) and Sagdeev potential V (ψ,M) given by (4.57) for different plasma

parameters such as Mach number M = 0.93, electron density ratio f = 0.1, electron

temperature ratio τ = 0.04, propagating angle θ = 15o, ion density ratio g = 0.1,

where αci = Teff/Tci is taken as 0.1.

Table 4.3 describe the behavior of the nonlinear low frequency electrostatic struc-

tures for different values of cool ion density g, for other fixed parameters f = 0.1,

τ = 0.04 and θ = 35o respectively. In Table 4.3, it is clearly shown that the Mach

number region (both the minimum Mo and maximum M1) and soliton velocity are

subsequently decreased with an increase in cool ion density g. Also at the Mo region,

both the width and pulse duration tend to decrease with g but only the electric field

seems to increase. On the other hand (i.e the maximum Mach number region M1),

the width and pulse duration tend to increase with an increase in g value. Meanwhile,

the electric field slightly tends to increase as cool ion density increases, but it is very
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Table 4.3: Properties of ion-acoustic solitons, such as Soliton Velocity (V ), Mach
number range (Mo < |M | < M1), Electric Field (E), Soliton Width (W ) and Pulse
Duration (τ ∗), for various values of cool ion density (g) with θ = 35o, cool electron
density f = 0.1, electron temperature τ = 0.04 and ion temperature αci = 0.1.

g Mo < |M | < M1 V (kms−1) E(mVm−1) W (m) τ∗(ms)

0.0 0.8192 - 0.999 21.22 - 25.87 0.00016 - 23.54 6058 - 226.2 285.49 - 8.74

0.01 0.8147 - 0.994 21.10 - 25.74 0.00025 - 24.43 5252 - 232.96 248.91 - 9.05

0.05 0.7965 - 0.965406(DL) 20.63 - 25.00 0.00039 - 21.41 4659.2 - 392.6 225.85 - 15.70

0.1 0.7735 - 0.913235(DL) 20.03 - 23.65 0.0024 - 16.80 2626 - 446.16 131.10 - 18.87

0.15 0.7499 - 0.8625081(DL) 19.42 - 22.34 0.0036 - 14.44 2397.2 - 456.04 123.44 - 20.41

0.2 0.7259 - 0.8130593(DL) 18.80 - 21.06 0.009 - 12.09 1862.12 - 477.36 99.05 - 22.67

interesting to notice that at g=0.05 the double layer solution starts to appear and

the electric field gradually reduces.

The variation of the Sagdeev potential V (ψ,M) against the normalized potential ψ

is shown in Figure 4.21 for different values of Mach numberM . The fixed parameters

are cool electron number density, f = 0.1, cool ion density, g = 0.1, cool to hot

electron temperature ratio, τ = 0.04 and angle of propagation, θ = 15o. The curves

show that the soliton’s amplitude increases with an increase in the Mach number. No

soliton solutions are found for M > 0.942. This result is consistent with Ghosh and

Lakhina, 2004. Further numerical computation shows that the nonlinear solutions

can exist only in the subsonic Mach number region. In this case, the Mach number

regime is dependent upon the cool ion density ratio, this confirmed very well in Table

4.3 that the upper Mach number limit isM < 1 at g = 0 (see Section 3.1). Unlike the

case of an unmagnetized plasma consisting of two ion species and double Maxwellian

electrons, the nonlinear solutions were found to exist only in the supersonic Mach

number regime (i.e. M > 1) (Baboolal et al. 1990; Jain et al. 1990). Figure 4.22

shows the normalized electrostatic potential ψ against ξ which has been obtained

numerically by integrating equation (4.56) for the same parameters used in Figure

4.21. It is seen clearly that as the Mach number increases, the solitons’ potential

amplitude increases and the width decreases.

Figure 4.23 shows the variation of the Sagdeev potential V (ψ,M) versus the real

electrostatic potential ψ for different cool electron number density f . The chosen

parameters are Mach number M = 0.93 and the other parameters are the same as in

Figure 4.21. As the cool electron density increases, the solitons amplitude increases
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and numerical computations show that the soliton solutions are not possible beyond

f > 0.30. Jain et al. (1990) have shown the existence of double layer solutions for

the electron density ratio of 0.1 and 0.3. Also, Ghosh and Lakhina, (2004) showed

the existence of rarefactive ion acoustic solitary waves for two different initial cold

electron concentrations (0.15 and 0.35) for propagating angle θ = 30o. Figure 4.24

shows the potential ψ against ξ, for the same parameters used in Figure 4.23. It

shows that as the cool electron density f increases, the ion-acoustic solitons potential

amplitude increases and the width also increases.

In Figure 4.25, the curves show the variation of the Sagdeev potential V (ψ,M)

versus the real electrostatic potential ψ for different cool ion number density g. Other

fixed parameters are τ = 0.04, f = 0.1, θ = 15o and M = 0.93. It is seen that the

ion-acoustic solitons’ amplitude increases with increasing ion density ratio g. Beyond

g > 0.12 no soliton solution is possible. It is very important to mention that the Mach

number existence domain is deeply dependent on cool ion density. The inclusion of

the second ion species has been investigated by many authors (e.g. Baboolal et al.

1990; Jain et al. 1990; Bychekov et al. 1995; Ghosh and Lakhina 2004). Figure

4.26 shows the normalized electrostatic potential ψ against ξ for the same parameters

used in Figure 4.25. It clearly shows that as the Mach number increases, the solitons’

potential amplitude increases and the width decreases.

The curves plotted in Figure 4.27 show the variation of the Sagdeev potential

V (ψ,M) versus the normalized electrostatic potential ψ for different values of the

oblique propagation angle θ. The fixed parameters are cool ion density ratio g=0.1

and other parameters of Figure 4.25. It is observed that a unique nonlinear structure

(double layer) appears at θ=33.46808o. The curves clearly shows that as the angle

of propagation theta increases, the solitons’ potential amplitude increases. There is

no soliton or double layer solution above θ > 33.46808o. Whereas, in Figure 2 of

Ghosh and Lakhina, (2004) they showed the existence of only positive and negative

potential solitons for a magnetized plasma consisting of two ion species and two

electrons temperature, for θ = 0o to 60o. Figure 4.28 shows the normalized potential

ψ against ξ, for the same parameters used in Figure 4.27. It is very obvious from the

curves that as we increase the propagation angle θ, the amplitude as well as width of

the soliton and double layer increases.

Figure 4.29 shows the variation of the Sagdeev potential V (ψ,M) against the real

electrostatic potential ψ for different values of the cool to hot electron temperature
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ratio τ=Tce/The. The fixed parameters are θ=15o, g=0.1, f=0.1 and M=0.93. It

is interesting to note that at τ=0.0724351 a double layer structure appears. Above

τ > 0.724351 there is no soliton or double layer solution possible. The curves clearly

shown that the negative potential ion-acoustic solitons amplitude increases with the

increase in cool to hot electron temperature ratio. Likewise, the effect of the cool

to hot electron temperature ratio has been mentioned by many authors (Nishihara

and Tajiri, 1981; Baboolal et al. 1990; Baluku et al. 2010). Figure 4.30 shows the

potential ψ against ξ, for the same parameters used in Figure 4.29. It clearly shows

that as the cool to hot electron temperature increases, the amplitude as well as width

of the soliton and double layer increases.

The curves in Figure 4.31 show the variation of the Sagdeev potential V (ψ,M)

against the normalized electrostatic potential ψ for different values of Mach number

M . The fixed parameters are cool electron density, f=0.1, cool to hot electron tem-

perature, τ=0.04, cool ion density, g=0.05 and propagating angle, θ=35o. It is very

interesting to note that at M=0.965406, a double layer solution appears. Also, the

negative potential ion-acoustic soliton amplitude, ψ increases with increasing M . It

has been mentioned by Ghosh and Lakhina, (2004) that for a large θ the rarefactive

solitary wave solutions may turn out to be a weak double layer. Figure 4.32 shows the

normalized electrostatic potential ψ against ξ for the same parameters used in Figure

4.31. It is seen clearly that as the Mach number increases, the solitons potential

amplitude increases and the width decreases.

In Figure 4.33, the curves show the variation of the Sagdeev potential with real

potential corresponds to the double layer solutions for different values of θ and M .

Other fixed parameters are cool electron density f = 0.1, cool to hot electron temper-

ature ratio τ = 0.04 and cool ion density g = 0.1. The curves show all combinations

of (θ,M) yield exactly the same value for the double layer amplitude, as shown in

Model 1, 2 and 3 of Chapter 1. This corresponds to a “point” solution as found in a

study by Djebli and Marif (2009). Figure 4.34 shows the existence domain of solitons

and double layers for the fixed parameters in Figure 4.33. The curves show that a

double layer solution is the upper bound as we increase the angle of propagation θ,

for different M values. The maximum Mach number for negative potential solitons

are bounded by those of the double layer solutions corresponding to a given θ value.

The variation of the Sagdeev potential V (ψ,M) against the normalized potential

ψ is shown in Figure 4.35 for different values of the cool to hot electron temperature
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ratio τ and the Mach number M for the fixed parameters f = 0.1, g = 0.1 and

θ = 15o. It is interesting to point out that the supersoliton (Dubinov and Kolotkov,

2012; Verheest et al. 2013; Maharaj et al. 2013) solution has been found to exist

for τ = 0.080898 and M = 0.916, τ = 0.077948 and M = 0.92, τ = 0.0724351

and M = 0.93. Similar results have been shown in Model 1, 2 and 3 of Chapter 1.

Figure 4.36 shows the existence domain of solitons, double layers and supersolitons

for the same parameters in Figure 4.35. The curves were plotted for the variation of

the maximum electrostatic potential ψMax against τ for different values of the Mach

number M . In an unmagnetized plasma consisting of positive and negative ions

and two electron temperature, Baboolal et al. (1990) showed the existence domain

for compressive and rarefaction solitons bounded by negative potential double layer

solutions. The reason for smaller amplitudes for larger τ= Tc
Th

can be seen from the

expression for the effective temperature Teff = Tc/(f + (1 − f)τ) which shows that

for fixed f the normalization factor Teff decreases with increasing τ so that the

corresponding normalized potential ψ would linearly increase in magnitude. Similar

behavior has been reported by Baboolal, (1988).

4.3.4 Discussion

We have studied four component ion-acoustic solitons in a magnetized multi-ions

space plasma consisting of cold oxygen-ion fluid, Maxwellian ions and two distinct

groups of Boltzmann distributions electron (cool and hot). It was found that the

inclusion of second ion species (Maxwellian) in the model enhanced the amplitude

of the ion-acoustic solitary waves and allowed the nonlinear structures to exist at

subsonic Mach number regime. Regarding the auroral region parameters, the Viking

satellite observations (Berthomier et al. 1998) reported the cool electron density and

temperature nce = 0.2cm−3 and Tce = 1eV , hot electron density and temperature

nhe = 1.8cm−3 and The = 26eV , which gives the effective temperature Teff ≈ 7eV

with total electric field amplitude of less than 100mV/m, width of about 100m, about

20ms of pulse duration and ≈ 10− 50km/s soliton velocities range respectively. For

M=0.93, θ=15o the maximum electric field comes out to be 2mV/m and correspond-

ing soliton width, pulse duration and speed comes out to be ≈ 189m, 8ms and

24km/s, respectively.

The inclusion of a second ion species allowed the nonlinear structures to exist at

subsoinc Mach number regime of the same region with the plasma model consisting of
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magnetized cold oxygen-ion fluid and Boltzmann distributions of proton and electron

species described in Section 4.1. To our surprise, the numerical results showed the

existence of negative potential solitons and double layers in the same Mach numbers

regime. Our findings may be useful for improving our understanding of the nonlinear

fluctuations in the auroral region of the Earth’s magnetosphere.

145

 

 

 

 



−0.09 −0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0
−20

−10

0

x 10
−5

ψ

V
(ψ

,M
)

 

 

M=0.916

M=0.92

M=0.925

M=0.93

M=0.94

Figure 4.21: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are τ= 0.04, f=0.1, g=0.1, θ=15o and M = 0.916, 0.92, 0.925, 0.93, 0.94.
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Figure 4.22: Electrostatic potential ψ vs ξ. The parameters of Figure 4.21 and
M=0.916 (—), 0.92 (- - -), 0.925 (...), 0.93 (- . -) and 0.94 (− − −).
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Figure 4.23: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are τ= 0.04, g=0.1, θ=15o, M=0.93 and f=0.05, 0.1, 0.15, 0.2, 0.25.
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Figure 4.24: Electrostatic potential ψ vs ξ. The parameters of Figure 4.23 and f=0.05
(—), 0.1 (- - -), 0.15 (...), 0.2 (- . -) and 0.25 (− − −).
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Figure 4.25: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are τ= 0.04, f=0.1, θ=15o, M=0.93 and g=0.07, 0.09, 0.1, 0.11, 0.12.
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Figure 4.26: Electrostatic potential ψ vs ξ. The parameters of Figure 4.25 and g=0.07
(—), 0.09 (- - -), 0.1 (...), 0.11 (- . -) and 0.12 (− − −).

151

 

 

 

 



−1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−10

−8

−6

−4

−2

0

2
x 10

−3

ψ

V
(ψ

,M
)

 

 

θ=15o

θ=20o

θ=25o

θ=30o

θ=33o

θ=33.46808o

θ=33.6o

Figure 4.27: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ.
The parameters are τ= 0.04, f=0.1, g=0.1, M=0.93 and θ=15o, 20o, 25o, 30o, 33o,
33.46808o, 33.6.
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Figure 4.28: Electrostatic potential ψ vs ξ. The parameters of Figure 4.27 and θ=15o

(—), 20o (- - -), 25o (...), 30o (- . -), 33o (− − −), 33.46808o(−) for double layer.
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Figure 4.29: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are f=0.1, g=0.1, θ=15o, M=0.93 and τ=0.01, 0.04, 0.06, 0.07, 0.072,
0.0724351, 0.0725.
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Figure 4.30: Electrostatic potential ψ vs ξ. The parameters of Figure 4.29 and τ=0.01
(—), 0.04 (- - -), 0.06 (...), 0.07 (- . -), 0.072 (− − −), 0.0724351 (−) for double
layer.
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Figure 4.31: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ. The
parameters are f=0.1, g=0.05, θ=35o, τ=0.04 and M=0.80, 0.85, 0.90, 0.95, 0.96,
0.965406, 0.967.
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Figure 4.32: Electrostatic potential ψ vs ξ. The parameters of Figure 4.31 and
M=0.80 (—), 0.85 (- - -), 0.90 (...), 0.95 (- . -) 0.96 (− − −) and 0.965406 (−).
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Figure 4.33: Sagdeev potential, V (ψ,M) vs normalized electrostatic potential ψ.
The parameters are f=0.1, g=0.1 for θ=34.74123o and M=0.916, θ=34.3889o and
M=0.92, θ=33.9314o and M=0.925, θ=33.46808o and M=0.93, θ=32.5242o and
M=0.94.
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Figure 4.34: The maximum electrostatic potential ψMax vs θ. The parameters of
Figure 4.33 and M=0.916, 0.92, 0.925, 0.93, 0.94.
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Figure 4.35: Sagdeev potential, V (ψ,M) vs the normalized potential ψ. The pa-
rameters are g=0.1, f=0.1, θ=15o and M=0.916 and τ=0.080898, M=0.92 and
τ=0.077948, M=0.93 and τ=0.0724351, M=0.94 and τ=0.06816- soliton solution
only.
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Figure 4.36: The maximum electrostatic potential ψMax vs τ . The parameters of
Figure 4.35 and M=0.916, 0.92, 0.93, 0.94- soliton solution only.
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Chapter 5

Summary and conclusion

In this chapter, the summary and conclusion of our investigations on nonlinear low

frequency wave phenomena in space plasmas are presented. This study investigated in

detail the nonlinear electrostatic structures in a magnetized plasma propagating along

the auroral magnetic field lines of the Earth’s magnetosphere, as reported by several

spacecraft missions (i.e. S3-3, FREJA, POLAR, FAST, CLUSTER and WIND). Non-

linear low frequency (ion-acoustic) electrostatic modes have been detected in several

regions of the Earth’s magnetosphere (Temerin et al. 1982, Bostrom et al. 1988).

These waves were categorized as low frequency due to the presence of stationary ion

species (which are almost 103 times heavier than an electron). Several theoretical

studies have been undertaken to study the nonlinear structures in multicomponent

plasmas.

Chapter 3 presents a plasma model that can describe the evolution of solitons and

double layers in the auroral zone of the Earth’s magnetosphere, with two Boltzmann

electrons distribution and cold ions fluid. The present study is an extension of the

earlier work carried out by Berthomier et al. (1998), and Baluku et al. (2010), by

including the magnetized effect, using the Sagdeev potential techniques. Analytical

investigations of plasma consisting of Boltzmann distribution of two electron species

and cold ions governed by fluid dynamic equations, were performed. Consequently,

a numerical investigation of the Sagdeev potential amplitude on different plasma

parameters such as Mach number, cool to hot electron density ratio, propagation

angle and cool to hot electron temperature ratio, were done.

This model supports the negative potential ion-acoustic solitons and double layers,
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and which were found to exist only in the subsonic Mach numbers regime. In contrast

as shown (Berthomier et al. 1998; Baluku et al. 2010), for the case of unmagnetized

plasma, these negative potential nonlinear structures can exist only in the supersonic

Mach number regime. The amplitude of the ion-acoustic solitons increases with Mach

number, increased angle of propagation, cool electron density, and cool to hot electron

temperature ratio.

The study was extended to investigate the finite ions’ temperature effects on

plasma consisting of two distinct groups of Boltzmann distributions of electrons and

ions fluid. Assuming quasi-neutrality condition, the Sagdeev pseudo-potential tech-

nique was used to obtain the nonlinear localized solution and further investigation

of the soliton characteristics was done to obtain critical Mach numbers for the exis-

tence of the soliton solutions. The inclusion of adiabatic ion temperature allows the

nonlinear structure to exist for both subsonic and supersonic Mach number regimes.

The double layers exist at a lower angle of propagation as hot ion temperature is

increased. The amplitude of ion-acoustic solitary waves increases with Mach number,

cool electron density, propagating angle and decreases with ions temperature. The

present results concur with the Viking satellite observations in the auroral region.

This study was motivated by Cairn’s nonthermal velocity distribution model for

the energetic hot electron species in the study of soliton structures with density de-

pletions observed by FREJA and Viking satellites in auroral regions of the Earth’s

Magnetosphere (Cairns et al. 1995). The theoretical investigation of solitary waves

and double layers in auroral plasmas with two temperature electron population was

also conducted. The effect of energetic hot electron species on the magnetized plasma

model consisting of cold ions fluid, Boltzmann distribution of cool electrons and non-

thermal distribution of hot energetic electron species was investigated. A detailed

description of where the limitations in parameter space originate from, in terms of

the two sonic points (lower and upper limit) and the occurrence of double layers was

provided.

Chapter 4 described the finite amplitude, ion-acoustic solitary waves in magne-

tized three-components plasma consisting of cold oxygen ion beams, hot protons and

cool electrons. The electrons and protons were considered as point particles and their

density distribution taken as Boltzmann, while the heavy ions component was consid-

ered as a fluid. Using the Sagdeev potential technique and assuming charge neutrality

condition, the investigation showed the evolution of only positive potential solitons.
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The speed of obliquely propagating soliton was found only at subsonic Mach number

region without a beam. Then the inclusion of beam velocity to the plasma model ex-

tended the solitons existence domain to both subsonic and supersonic Mach number

regimes. Subsequently, numerical investigations of the Sagdeev potential and elec-

trostatic potential variations were done on the following plasma parameters: Mach

number, propagation angle and hot proton density.

Furthermore, the occurrence of nonlinear low frequency waves in a multi compo-

nents plasma made up of a magnetized cold oxygen-ions fluid, Maxwellian cool ion

species and Boltzmann distributions of cool and hot electron population were studied,

using the Sagdeev pseudo-potential technique. This model is a modification of Model

1 (Section 3.1) by including second ion species (Boltzmann distributed), likewise it is

also a modification of three-component plasma model in Section 4.1 by including ad-

ditional Boltzmann electron distribution. The inclusion of additional species in this

plasma model was studied and the conditions under which the soliton and double

layer solutions can exist were found both analytically and numerically. The theoret-

ical analysis showed that the Mach number regime was found to exist only in the

subsonic domain. This model also supports the negative potential ion-acoustic soli-

tons and double layers, which were found to exist only in the subsonic Mach numbers

regime.

The Sagdeev potential variations were plotted on Mach numbers, electron density,

propagation angle, cool to hot temperature ratio and cool ions contributions, and

also showed the electrostatic potential profile. This investigation has shown that the

additional species has a lot of influence on the nonlinear structures.

The theoretical results were compared to the actual satellite measurements. The

findings provide good agreement.
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Appendix A

Algebraic expression for the

Sagdeev potential in a magnetized

plasma with cold ions and two

temperature electrons

The Boltzmann distribution is assumed for the densities and temperature of the cool

(Nc, Tc) and hot (Nh, Th) electron species and are given as follows:

cool electrons

Nc = Nc0 exp(
eφ

Tc
). (A.1)

hot electrons

Nh = Nh0 exp(
eφ

Th
). (A.2)

Cold ions (described by the fluid equations)

continuity equation

∂Ni

∂t
+∇(NiVi) = 0. (A.3)

momentum equation(
∂

∂t
+Vi.∇

)
Vi = −e∇φ

mi

+ e
Vi ×Bo

mic
, (A.4)
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eqations (A.1)-(A.4) are unnormalized.

Normalized set of equations

nc =
nc0
ni0

exp

(
eφ

Teff
.
Teff
Tc

)

nc = f exp(αcψ) (A.5)

nh =
nh0
ni0

exp

(
eφ

Teff
.
Teff
Th

)

nh = (1− f) exp(αhψ) (A.6)

∂ni
∂t

+∇.(nivi) (A.7)

∂vi
∂t

+ vi∇vi = −∇ψ + vi × z (A.8)

use transformation

ξ = (αx+ γz −Mt)/M (A.9)

The quasi-neutrality condition is

nc + nh = ni (A.10)

from equations (A.7)-(A.8)

∂ni
∂t

+
∂(nivx)

∂x
+
∂(nivz)

∂z
= 0 (A.11)

∂vx
∂t

+ (vx
∂

∂x
+ vz

∂

∂z
)vx = −∂ψ

∂x
+ vy (A.12)

∂vy
∂t

+ (vx
∂

∂x
+ vz

∂

∂z
)vy = −vx (A.13)
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∂vz
∂t

+ (vx
∂

∂x
+ vz

∂

∂z
)vz = −∂ψ

∂z
(A.14)

from equation (A.9)

∂ξ

∂x
= α/M,

∂ξ

∂z
= γ/M,

∂ξ

∂t
= −1,

∂

∂t
= − ∂

∂ξ
,
∂

∂x
= α/M

∂

∂ξ
,
∂

∂z
= γ/M

∂

∂ξ
, (A.15)

equation (A.15) into (A.11)

−dni
dξ

+
α

M

d(nivx)

dξ
+

γ

M

d(nivz)

dξ
= 0 (A.16)

−Mdni
dξ

+ α
d(nivx)

dξ
+ γ

d(nivz)

dξ
= 0 (A.17)

dni
dξ

(−M + αvx + γvz) = 0 (A.18)

d

dξ
(Lvni) = 0 (A.19)

where

Lv = −M + αvx + γvz

equation (A.15) into (A.12)

−dvx
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vx = − α

M

dψ

dξ
+ vy. (A.20)

−Mdvx
dξ

+ αvx
dvx
dξ

+ γvz
dvx
dξ

= −αdψ
dξ

+Mvy (A.21)

(−M + αvx + γvz)
dvx
dξ

= −αdψ
dξ

+Mvy (A.22)

Lv
dvx
dξ

= −αdψ
dξ

+Mvy (A.23)
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equation (A.15) into (A.13)

−dvy
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vy = −vx. (A.24)

−Mdvy
dξ

+ αvx
dvy
dξ

+ γvz
dvy
dξ

= −Mvx (A.25)

(−M + αvx + γvz)
dvy
dξ

= −Mvx (A.26)

Lv
dvy
dξ

= −Mvx (A.27)

equation(A.15) into (A.14)

−dvz
dξ

+ (
α

M
vx
d

dξ
+

γ

M
vz
d

dξ
)vz = − γ

M

dψ

dξ
. (A.28)

−Mdvz
dξ

+ αvx
dvz
dξ

+ γvz
dvz
dξ

= −γ dψ
dξ
. (A.29)

(−M + αvx + γvz)
dvz
dξ

= −γ dψ
dξ

(A.30)

Lv
dvz
dξ

= −γ dψ
dξ
. (A.31)

from equation (A.18)
dni
dξ

(−M + αvx + γvz) = 0 (A.32)

ξ = ∞ , ni = 1 , vz = 0 ,vx = 0

ni(−M + αvx + γvz) = C (A.33)

C = −M

ni(−M + αvx + γvz) = −M

−M + αvx + γvz = −M
ni

(A.34)
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Lv = −M
ni

(A.35)

from equation(A.30) we have

−M
ni

dvz
dξ

= −γ dψ
dξ

(A.36)

dvi
dξ

=
γni
M

dψ

dξ
(A.37)

from (A.35) we have

−M + αvx + γvz = −M
ni

differentiate w.r.t dξ we have

0 + α
dvx
dξ

+ γ
dvz
dξ

=
M

n2
i

dni
dξ

(A.38)

dvx
dξ

= −γ
2ni
αM

dψ

dξ
+

M

αn2
i

dni
dξ

(A.39)

from equation (A.10)

ni = nc + nh

f exp(αcψ) + (1− f) exp(αhψ)

integrate equation (A.40)∫
dvx
dξ

dξ +
γ2

M

∫
(f exp(αcψ) + (1− f) exp(αhψ))

dψ

dξ
dξ =

∫
M

n2
i

dni
dξ

dξ. (A.40)

αvx +
γ2

M
(
f

αc
exp(αcψ) +

(1− f)

αh
exp(αhψ)) = −m

ni
+ C (A.41)

vx = 0, ni = 1, ψ = 0
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γ2f

αcM
+
γ2(1− f)

αhM
+M = C

αvx =M − M

ni
− γ2

M
(
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1))

vx =
1

α
[M − M

ni
− γ2

M
[
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)]] (A.42)

from equation (A.22)

(−M + αvx + γvz)
dvx
dξ

= −αdψ
dξ

+Mvy

−M
ni

dvx
dξ

= −αdψ
dξ

+Mvy

−M
ni

[
−γ

2ni
αM

dψ

dξ
+

M

αn2
i

dni
dξ

]
= −αdψ

dξ
+Mvy

γ2

α

dψ

dξ
− M2

αn3
i

dni
dξ

+ α
dψ

dξ
= Mvy

(
α2 + γ2

αM
)
dψ

dξ
− M2

αn3
i

dni
dξ

= vy (A.43)

α2 + γ2 = sin2 θ + cos2 θ = 1

from equation (A.26)

(−M + αvx + γvz)
dvy
dξ

= −Mvx

−M
ni

dvy
dξ

= −Mvx

dvy
dξ

= nivx. (A.44)
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equation (A.43) into (A.44)

d

dξ

[
1

αM

dψ

dξ
− m

αn3
i

dni
dξ

]
= nivx.

d

dξ

[
(

1

αM
)
dψ

dξ
− m2

n3
i

dni
dξ

]
= ni

[
1

α

(
M − M

ni
− γ2

M
[
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

)]
.

d

dξ

[
d

dξ
(ψ +

M2

2n2
i

)

]
=M2(ni − 1) + niγ

2

[
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

]
.(A.45)

let

t = ψ +
M2

2n2
i

.

dt

dξ
=
dψ

dξ
− M2

n3
i

dni
dξ

. (A.46)

ni = nc + nh.

ni = f exp(αcψ) + (1− f) exp(αhψ).

dni
dξ

= [αcf exp(αcψ) + αh(1− f) exp(αhψ)]
dψ

dξ
.

dt

dξ
=
dψ

dξ
− M2

n3
i

αcf exp(αcψ) + αh(1− f) exp(αhψ)
dψ

dξ
.

dt

dξ
=

(
1−M2 (αcf exp(αcψ) + αh(1− f) exp(αhψ)

(f exp(αcψ) + (1− f) exp(αhψ))3

)
dψ

dξ
. (A.47)

multiply both side of equation (A.46) by 2 dt
dξ

and integrate∫
2
dt

dξ

d

dξ
(
dt

dξ
)dξ =∫

2

[
M2(ni − 1) + niγ

2

(
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

)]
dt

dξ
dξ.
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(
dt

dξ

)2

=

2

[∫
M2(ni − 1)

dt

dξ
dξ + γ2

∫
ni

(
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

)]
dt

dξ
.dξ.

1

2

[
1−M2

(
αcf exp(αcψ) + αh(1− f) exp(αhψ)

(f exp(αcψ) + (1− f) exp(αhψ))3

)]2(
dψ

dξ

)2

=M2

[
f

αc
(exp(αcψ)− 1) +

(1− f)

αhψ
(exp(αhψ)− 1)

]
−M2ψ −M4

[
− 1

ni
+

1

2n2
i

+
1

2

]
−γ2

∫
f exp(αcψ) + (1− f) exp(αhψ)

[
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

]
dψ

+M2γ2
∫ [

f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

]
(
αcf exp(αcψ) + αh(1− f) exp(αhψ)

(f exp(αcψ) + (1− f) exp(αhψ))2

)
dψ.

let
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1) = p

f exp(αcψ) + (1− f) exp(αhψ) =
dp

dψ
. (A.48)

1

2

[
1−M2

(
αcf exp(αcψ) + αh(1− f) exp(αhψ)

(f exp(αcψ) + (1− f) exp(αhψ))3

)]2(
dψ

dξ

)2

= −M
4

2n2
i

(1− ni)
2 −M2ψ +M2

[
f

αc
(exp(αcψ)− 1) +

(1− f)

αhψ
(exp(αhψ)− 1)

]
−γ2

∫
dp

dψ
.p.dψ +M2γ2

∫ [
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

]
(
αcf exp(αcψ) + αh(1− f) exp(αhψ)

(f exp(αcψ) + (1− f) exp(αhψ))2

)
dψ.

now, let

g = f exp(αcψ) + (1− f) exp(αhψ).

αcf exp(αcψ) + αh(1− f) exp(αhψ)dψ = dg. (A.49)
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1

2

[
1−M2

(
αcf exp(αcψ) + αh(1− f) exp(αhψ)

(f exp(αcψ) + (1− f) exp(αhψ))3

)]2(
dψ

dξ

)2

= −M
4

2n2
i

(1− ni)
2 −M2ψ +M2

[
f

αc
(exp(αcψ)− 1) +

(1− f)

αhψ
(exp(αhψ)− 1)

]
− γ2

[
p2

2

]
+M2γ2

∫ [
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

]
dg

g2
.

Also,let

dv =
dg

g2
. (A.50)

v = −1

g
. (A.51)∫

pdv = pv −
∫
vdp. (A.52)

we have

1

2

[
1−M2

(
αcf exp(αcψ) + αh(1− f) exp(αhψ)

(f exp(αcψ) + (1− f) exp(αhψ))3

)]2(
dψ

dξ

)2

= −M
4

2n2
i

(1− ni)
2 −M2ψ +M2

[
f

αc
(exp(αcψ)− 1) +

(1− f)

αhψ
(exp(αhψ)− 1)

]
−γ

2

2

[
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
(exp(αhψ)− 1)

]2
+M2γ2

[
f
αc
(exp(αcψ)− 1) + (1−f)

αh
(exp(αhψ)− 1)

f exp(αcψ) + (1− f) exp(αhψ)

]
+M2γ2ψ.

1

2

(
dψ

dξ

)2

+ V (ψ) = 0 (A.53)

V (ψ) = − 1(
1−M2

(
αcf exp(αcψ)+αh(1−f) exp(αhψ)
(f exp(αcψ)+(1−f) exp(αhψ))3

))2 ×



−M4

2n2
i
(1− ni)

2 −M2(1− γ2)ψ

+M2
(
f
αc
(exp(αcψ)− 1) + (1−f)

αh
(exp(αhψ)− 1)

)
−γ2

2

[
f
αc
(exp(αcψ)− 1) + (1−f)

αh
(exp(αhψ)− 1)

]2
+M2γ2

[
f
αc

(exp(αcψ)−1)+
(1−f)
αh

(exp(αhψ)−1)

f exp(αcψ)+(1−f) exp(αhψ)

]
.
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Appendix B

Algebraic expression for the

Sagdeev potential in a magnetized

plasma with adiabatic ion and two

temperature electrons

The Boltzmann distribution is assumed for the densities and temperature of the

cool(nc, Tc) and hot (nh, Th) electron species and are given in normalized form as

follows:

cool electrons

nc =
nc0
ni0

exp

(
eφ

Teff
.
Teff
Tc

)
nc = f exp(αcψ) (B.1)

hot electrons

nh =
nh0
ni0

exp

(
eφ

Teff
.
Teff
Th

)
nh = (1− f) exp(αhψ) (B.2)

The hot adiabatic ions is described by the fluid equations.

Continuity equation:
∂ni
∂t

+∇(niVi) = 0.
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Momentum equation:(
∂

∂t
+Vi.∇

)
Vi = −e∇φ

mi

+ e
Vi ×Bo

mic
− 1

nimi

∇p̃i.

equation of state
∂pi
∂t

+ Vi∇.pi + δpi.∇Vi = 0

from the equation of state

Vi.∇pi = 0

then
1

p

dpi
dt

= − δ

n

dni
dt
,

where

δ∇.Vi =
1

n

dni
dt

then, integrate

pi = pi0

(
no
ni0

)δ
if N is the number of degrees of freedom, δ is given by

δ =
N + 2

N

from continuty and momentum equations (normalized)

∂ni
∂t

+
∂(nivx)

∂x
+
∂(nivz)

∂z
= 0 (B.3)

∂vx
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vx = −∂ψ

∂x
+ vy −

σ

ni

∂

∂x
.(ni)

5/3 (B.4)

∂vy
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vy = −∂ψ

∂y
− vx (B.5)

∂vz
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vz = −∂ψ

∂z
− σ

ni

∂

∂z
.(ni)

5/3 (B.6)

then, the set of equations are closed with the quasi-neutrality condition

ni = nc + nh = f exp(αcψ) + (1− f) exp(αhψ) (B.7)

stationary frame

ξ = (αx+ γz −Mt)/M (B.8)
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∂ξ

∂x
=

α

M
,
∂ξ

∂z
=

γ

M
,
∂ξ

∂t
= −1

from equation (3)

−dni
dξ

+
α

M

dnivx
dξ

+
γ

M

dnivx
dξ

= 0

M
dni
dξ

=
dni
dξ

(αvx + γvz)

integrate with the boundary condition

ξ → 0, ni → 1, ψ = 0, vx = vz = 0

M = −C

Mni −M = ni(αvx + γvz)

αvx + γvz =M

(
1− 1

ni

)
(B.9)

from equation (B.4)

−dvx
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vx = − α

M

dψ

dξ
+ vy −

5σα

3n
1/3
i M

dni
dξ

−Mdvx
dξ

+ (αvx + γvz)
dvx
dξ

= −αdψ
dξ

+Mvy −
5σα

3n
1/3
i

dni
dξ(

−M +M − M

ni

)
dvx
dξ

= −αdψ
dξ

+Mvy −
5σα

3n
1/3
i

dni
dξ

−M
ni

dvx
dξ

= −αdψ
dξ

− 5σα

3n
1/3
i

dni
dξ

+Mvy (B.10)

from equation (B.5)

−dvy
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vy = −vx

−Mdvy
dξ

+ (αvx + γvz)
dvy
dξ

= −Mvx(
−M +M − M

ni

)
dvy
dξ

= −Mvx

1

ni

dvy
dξ

= vx (B.11)
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from equation (B.6)

−dvz
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vz = − γ

M

dψ

dξ
− 5σα

3n
1/3
i M

dni
dξ

−Mdvz
dξ

+ (αvx + γvz)
dvz
dξ

= −γ dψ
dξ

+
5σα

3n
1/3
i

dni
dξ(

−M +M − M

ni

)
dvz
dξ

= −γ

(
dψ

dξ
+

5σα

3n
1/3
i

dni
dξ

)

M

ni

dvz
dξ

= γ

(
dψ

dξ
+

5σα

3n
1/3
i

dni
dξ

)
(B.12)

differentiate equation (B.9) w.r.t . ∂ξ, we have

α
dvx
dξ

+ γ
dvz
dξ

=
M

n2
i

dni
dξ

(B.13)

then, substitute equation (B.12) into (B.13)

α
dvx
dξ

+ γ

(
γni
M

(
dψ

dξ
+

5σ

3n
1/3
i

dni
dξ

))
=
M

n2
i

dni
dξ

dvx
dξ

=
M

αn2
i

dni
dξ

− 5γ2σn
2/3
i

3αM

dni
dξ

− γ2ni
αM

dψ

dξ
(B.14)

integrate equation (B.14)

α

∫
dvx
dξ

dξ +
γ2

M

∫
ni
dψ

dξ
dξ =M

∫
1

n2
i

dni
dξ

dξ − 5γ3σ

3M

∫
n
2/3
i

dni
dξ

dξ

αvx +
γ2

M

(
f

αc
exp(αcψ) +

(1− f)

αh
exp(αhψ)

)
= −M

ni
− γ2σ

M
n
5/3
i + C

at

vx = 0, ni = 1, ψ = 0

γ2

M

(
f

αc
+

1− f

αh

)
+M +

γ2σ

M
= C
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therefore,

αvx =M

(
1− 1

ni

)
+
γ2σ

M
(1−n5/3

i )− γ2

M

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αcψ)− 1)

)
(B.15)

equation (B.14) into (B.10)

−γ
2

α

dψ

dξ
− M2

αn3
i

dni
dξ

+
5γ2σn

−1/3
i

3α

dni
dξ

= −αdψ
dξ

− 5ασ

3n
1/3
i

dni
dξ

+Mvy

(
γ2 + α2

α

)
dψ

dξ
− M2

αn3
i

dni
dξ

+
5σn

−1/3
i

3

(
γ2 + α2

α

)
dni
dξ

=Mvy

then

γ2 + α2 = 1,

since

cos2 θ + sin2 θ = 1

we have,

1

αM

(
dψ

dξ
− M2

n3
i

dni
dξ

+
5σn

−1/3
i

3

dni
dξ

)
= vy (B.16)

now, substitute equation (B.11) into (B.16)

d

dξ

(
dψ

dξ
− M2

n3
i

dni
dξ

+
5σn

−1/3
i

3

dni
dξ

)
=Mαnivx (B.17)

d

dξ

(
d

dξ

(
ψ +

M2

2n2
i

+
5

2
σn

2/3
i

))
=M2(ni − 1) + γ2σni(1− n

5/3
i )− γ2ni

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αcψ)− 1)

)
(B.18)

let

t = ψ +
M2

2n2
i

+
5

2
σn

2/3
i ,

then
dt

dξ
=
dψ

dξ
− M2

n3
i

dni
dξ

+
5

3
σn

−1/3
i

dni
dξ

ni = f exp(αcψ) + (1− f) exp(αhψ)
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dni
dξ

= (αcf exp(αcψ) + αh(1− f) exp(αhψ)
dψ

dξ

dt

dξ
=

(
1− M2

n3
i

(αcf exp(αcψ) + αh(1− f) exp(αhψ)

+
5σn

−1/3
i

3
(αcf exp(αcψ) + αh(1− f) exp(αhψ)

)
dψ

dξ

Mutiply both sides of equation (B.18) by 2 dt
dξ

and integrate

2

∫
dt

dξ
.
d

dξ

(
dt

dξ

)
dξ = 2

[∫
M2(ni − 1) + γ2σni(1− n

5/3
i )

−γ2ni
(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)]
dt

dξ

1

2

(
dt

dξ

)2

= −M
4

2n2
i

(1− ni)
2 −M2(1− γ2)ψ +M2

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)
+ σM2

(
n
5/3
i − 5n

2/3
i

2
+

3

2

)
+ γ2σ

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)

− γ2M2σ

(
− 1

ni
− 3n

2/3
i

2
+

5

2

)
+ γ2σ2

(
n
5/3
i − n

10/3
i

2
− 1

2

)

− γ2

2

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)2

− γ2M2

ni

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)
− γ2σn

5/3
i

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)
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then, we obtain

1

2

(
dψ

dξ

)2

=
1(

1− M2

n3
i
(αcf(eαcψ + αh(1− f)eαhψ) + 5σ

3n
1/3
i

(αcf(eαcψ + αh(1− f)eαhψ)

)2×

− M4

2n2
i

(1− ni)
2 −M2(1− γ2)ψ +M2

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)
+ σM2

(
n
5/3
i − 5n

2/3
i

2
+

3

2

)
+ γ2σ

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)

− γ2M2σ

(
− 1

ni
− 3n

2/3
i

2
+

5

2

)
+ γ2σ2

(
n
5/3
i − n

10/3
i

2
− 1

2

)

− γ2

2

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)2

− γ2M2

ni

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)
− γ2σn

5/3
i

(
f

αc
(exp(αcψ)− 1) +

1− f

αh
(exp(αhψ)− 1)

)
(B.19)
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Appendix C

Algebraic expression for the

Sagdeev potential in a magnetized

plasma with cold ion, cool electron

and nonthermal hot electron

The density and temperature of the Boltzmann distributed cool electrons (nc, Tc) and

nonthermal distributed hot electrons (nh, Th) in normalized form are:

cool electrons

nc =
nc0
ni0

exp

(
eφ

Teff
.
Teff
Tc

)
nc = f exp(αcψ) (C.1)

hot electrons (nonthermal)

nh =
nh0
ni0

(1− βφ+ βφ2) exp

(
eφ

Teff
.
Teff
Th

)
nh = (1− f)(1− βφ+ βφ2) exp(αhψ) (C.2)

where

β =
4α

1 + 3α
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magnetized cold ions (described by the fluid equations) (normalized)

∂ni
∂t

+
∂(nivx)

∂x
+
∂(nivz)

∂z
= 0 (C.3)

∂vx
∂t

+ (vx
∂

∂x
+ vz

∂

∂z
)vx = −∂ψ

∂x
+ vy (C.4)

∂vy
∂t

+ (vx
∂

∂x
+ vz

∂

∂z
)vy = −vx (C.5)

∂vz
∂t

+ (vx
∂

∂x
+ vz

∂

∂z
)vz = −∂ψ

∂z
(C.6)

the quasi-neutrality condition

ni = nc0 + nh0 = f exp(αcψ) + (1− f)(1− βψ + βψ2) exp(αhψ) (C.7)

localized frame

ξ = (αx+ γz −Mt)/M (C.8)

∂ξ

∂x
=

α

M
,
∂ξ

∂z
=

γ

M
,
∂ξ

∂ξ
∂t = −1,

∂t = −∂ξ, ∂x =
α

M
∂ξ, ∂z =

γ

M
∂ξ

from equation (C.3)

−dni
dξ

+
α

M

dnivx
dξ

+
γ

M

dnivz
dξ

= 0

−Mdni
dξ

+ α
dnivx
dξ

+ γ
dnivz
dξ

= 0

dni
dξ

(−M + αvx + γvz) = 0

d

dξ
(Lvni) = 0 (C.9)

where

Lv = −M + αvx + γvz

from equation (C.4)

−dvx
dξ

=

(
αvx
M

d

dξ
+
γvz
M

d

dξ

)
vx = − α

M

dψ

dξ
+ vy

−Mdvx
dξ

+ αvx
dvx
dξ

+ γvz
dvx
dξ

= −αdψ
dξ

+Mvy
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(−M + αvx + γvz)
dvx
dξ

= −αdψ
dξ

+Mvy

Lv
dvx
dξ

= −αdψ
dξ

+Mvy (C.10)

from equation (C.5)

−dvy
dξ

=

(
αvx
M

d

dξ
+
γvz
M

d

dξ

)
vy = −vx

−Mdvy
dξ

+ αvx
dvy
dξ

+ γvz
dvy
dξ

= −Mvx

(−M + αvx + γvz)
dvy
dξ

= −Mvx

Lv
dvy
dξ

= −Mvx (C.11)

from equation (C.6)

−dvz
dξ

=

(
αvx
M

d

dξ
+
γvz
M

d

dξ

)
vz = − γ

M

dψ

dξ

−Mdvz
dξ

+ αvx
dvz
dξ

+ γvz
dvz
dξ

= −γ dψ
dξ

(−M + αvx + γvz)
dvz
dξ

= −γ dψ
dξ

Lv
dvz
dξ

= −γ dψ
dξ

(C.12)

now, integrate equation (C.9) with boundary conditions

ξ → ∞, ni = 1, vx = vz = 0

we have

ni(−M + αvx + γvz) = C

C =M

then

−M + αvx − γvz = −M
ni

Lv = −M
ni

(C.13)
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equation (C.13) into (C.12)

(−M + αvx + γvz)
dvz
dξ

= −γ dψ
dξ

M

ni

dvz
dξ

= γ
dψ

dξ

dvz
dξ

=
γni
M

dψ

dξ
(C.14)

differentiate equation (C.19) w.r.t ξ, we have

0 + α
dvx
dξ

+ γ
dvz
dξ

=
M

ni

dni
dξ

α
dvx
dξ

+
γ2ni
M

=
M

ni

dni
dξ

dvx
dξ

= −γ
2ni
αM

dψ

dξ
+

M

αni

dni
dξ

(C.15)

then integrate with boundary conditions

ξ → 0, vx = 0, ni = 1, ψ = 0

we obtain

αvx+
γ2

M

[
feαcψ

αc
+ (1− f)

(
eαhψ

αh
− β

(
ψ − 1

αh

)
eαhψ

αh
+ β

(
ψ2 − 2ψ

αh
+

2

α2
h

)
eαhψ

αh

)]
= −M

ni
+C

then
γ2

M

[
f

αc
+ (1− f)

(
1

αh
+

β

α2
h

+
2β

α3
h

)]
+M = C

we have

vx =
1

α

[
M

(
1− 1

ni

)
− γ2

M

(
f

αc
(eαcψ − 1) + (1− f)

(
1

αh
(eαhψ − 1) + βψ(ψ − 1)

eαhψ

αh

− β

α2
h

(1− eαhψ + 2ψeαhψ +
2β

α3
h

(eαhψ − 1)

))]
(C.16)

equation (C.15) into (C.10)

−M
ni

(
−γ

2ni
αM

dψ

dξ
+

M

αn2
i

dni
dξ

)
= −αdψ

dξ
+Mvy
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(
γ2 + α2

αM

)
dψ

dξ
− M

αn3
i

dni
dξ

= vy

since

γ2 + α2 = cos2 θ + sin2 θ = 1

we have
1

αM

(
dψ

dξ
− M2

n3
i

dni
dξ

)
= vy

1

αM

[
d

dξ

(
ψ +

M2

2n2
i

)]
= vy (C.17)

from equation (C.11)

(−M + αvx + γvz)
dvy
dξ

= −Mvx

−M
ni

dvy
dξ

= −Mvx

dvy
dξ

= nivx (C.18)

equation (C.16), (C.17) and (C.18) together

d

dξ

[
d

dξ

(
ψ +

M2

2n2
i

)]
=M2(ni − 1)− niγ

2

[
f

αc
(eαcψ − 1) + (1− f)(

1

αh
(eαhψ − 1) + βψ(ψ − 1)

eαhψ

αh
− β

α2
h

(1− eαhψ + 2ψeαhψ) +
2β

α3
h

(eαhψ − 1)

)]
(C.19)

let

t = ψ +
M2

2n2
i

then
dt

dξ
=
dψ

dξ
− M2

n3
i

dni
dξ

ni = feαcψ + (1− f)(1− βψ + βψ2)eαhψ

dni
dξ

=
[
fαce

αcψ + (1− f)
(
αhe

αhψ − β(1 + αhψ)e
αhψ + βψ(2 + αhψ)e

αhψ
)] dψ
dξ

and

dt

dξ
=
dψ

dξ
−M

2

n3
i

[
fαce

αcψ + (1− f)
(
αhe

αhψ − β(1 + αhψ)e
αhψ + βψ(2 + αhψ)e

αhψ
)] dψ
dξ
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now, multiply both side of equation (C.19) with 2 dt
dξ

and integrate, we obtain

1

2

(
dt

dξ

)2

= −M
4

2n2
i

(1− ni)
2 −M2(1− γ2)ψ +M2P (ψ)− γ2P (ψ)2

2
− γ2M2P (ψ)

ni

then, we obtain

1

2

(
dψ

dξ

)2

+
1(

1− M2(fαc exp(αcψ)+(1−f)(αh exp(αhψ)−β(1+αhψ) exp(αhψ)+βψ(2+αhψ) exp(αhψ)))
(f exp(αcψ)+(1−f)(1−βψ+βψ2) exp(αhψ))3

)2×
− M4

2n2
i

(1− ni)
2 −M2(1− γ2)ψ +M2P (ψ)− γ2P (ψ)2

2
− γ2M2P (ψ)

ni
= 0 (C.20)

where

P (ψ) =
f

αc
(exp(αcψ)− 1) +

(1− f)

αh
((exp(αhψ)− 1)

+βψ(ψ − 1) exp(αhψ)−
β

αh
(1− exp(αhψ) + 2ψ exp(αhψ))

+
2β

α2
h

(exp(αhψ)− 1)

)
(C.21)
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Appendix D

Algebraic expression for the

Sagdeev potential in a magnetized

plasma with two ion species and

electrons

The density and temperature of the Boltzmann distributed cool electrons (ne, Te)

and hot protons (np, Tp) in normalized form are given by

cool electron

ne = neo exp

(
eφ

Te

)
(D.1)

hot proton

np = npo exp

(
−eφ
Tp

)
(D.2)

and

ne = ni + np (D.3)

now, let ψ = eφ
Te
, npo

neo
= p

ne =
neo
neo

exp(ψ) = exp(ψ) (D.4)

np =
npo
neo

exp

(
−eφ
Tp

)
= g exp

(
−eφ
Te

Te
Tp

)
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np = g exp(−αTψ) (D.5)

where αT = Te
Tp

Therefore,

ni =
exp(ψ)− g exp(−αTψ)

1− g
(D.6)

Magnetized cold oxygen ion beam (described by the fluid equations) (normalized)

∂ni
∂t

+
∂(nivix)

∂x
+
∂(niviz)

∂z
= 0 (D.7)

∂vix
∂t

+

(
vix

∂

∂x
+ viz

∂

∂z

)
vix = − e

mi

∂φ

∂x
+ Ωiviy (D.8)

∂viy
∂t

+

(
vix

∂

∂x
+ viz

∂

∂z

)
viy = −Ωivix (D.9)

∂viz
∂t

+

(
vix

∂

∂x
+ viz

∂

∂z

)
viz = − e

mi

∂φ

∂z
(D.10)

dimensionless variables: ι = Ωit, (η, ζ) = (x, z)/ρs, Vk = vik/cs (where k = x, z),

Ω = cs/ρs. Then, equation (D.7)-(D.10) becomes

∂ni
∂ι

+
∂(nivx)

∂η
+
∂(nivz)

∂ζ
= 0 (D.11)

∂vx
∂ι

+

(
vx
∂

∂η
+ vz

∂

∂ζ

)
vx = −∂ψ

∂η
+ vy (D.12)

∂vy
∂ι

+

(
vx
∂

∂η
+ vz

∂

∂ζ

)
vy = −vx (D.13)

∂vz
∂ι

+

(
vx
∂

∂η
+ vz

∂

∂ζ

)
vz = −∂ψ

∂ζ
(D.14)

define a localized stationary frame

ξ = (αη + γζ −Mι)/M (D.15)

where

∂ι = −∂ξ, ∂η =
α

M
∂ξ, ∂ζ =

γ

M
∂ξ (D.16)

from equation (D.11)

−dni
dξ

+
α

M

dnivx
dξ

+
γ

M

dnivx
dξ

= 0
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M
dni
dξ

=
dni
dξ

(αvx + γvz)

integrate with the boundary condition

ξ → 0, ni → 1, ψ = 0, vx = 0, vz = vo

we have

Mni + C = ni(αvx + γvz)

M + C = γvo

C = δ −M (D.17)

where δ = γvo

ni(αvx + γvz) =Mni + δ −M

αvx + γvz =M − M − δ

ni
(D.18)

from equation (D.12)

−dvx
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vx = − α

M

dψ

dξ
+ vy

−Mdvx
dξ

+ (αvx + γvz)
dvx
dξ

= −αdψ
dξ

+Mvy

(−M + αvx + γvz)
dvx
dξ

= −αdψ
dξ

+Mvy(
−M +M − M − δ

ni

)
dvx
dξ

= −αdψ
dξ

+Mvy

−
(
M − δ

ni

)
dvx
dξ

= −αdψ
dξ

+Mvy (D.19)

from equation (D.13)

−dvy
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vy = −vx

−Mdvy
dξ

+ (αvx + γvz)
dvy
dξ

= −Mvx(
−M +M − M − δ

ni

)
dvy
dξ

= −Mvx
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(
M − δ

ni

)
dvy
dξ

=Mvx (D.20)

from equation (D.14)

−dvz
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vz = − γ

M

dψ

dξ

−Mdvz
dξ

+ (αvx + γvz)
dvz
dξ

= −γ dψ
dξ(

−M +M − M − δ

ni

)
dvz
dξ

= −γ dψ
dξ(

M − δ

ni

)
dvz
dξ

= γ
dψ

dξ
(D.21)

now, differentiate equation (D.18) w. r .t. dΩ, we have

α
dvx
dξ

+ γ
dvz
dξ

=

(
M − δ

n2
i

)
dni
dξ

(D.22)

substitute equation (D.21) in equation (D.22)

dvx
dξ

= −
(

γ2ni
α(M − δ)

)
dψ

dξ
+

(
M − δ

αn2
i

)
dni
dξ

(D.23)

integrate equation (D.23), we have

αvx +
γ2

M − δ

[
1

1− g

(
ex +

g

αT
e−αTψ

)]
= −M − δ

ni
+ C (D.24)

using boundary conditions

vx = 0, ni = 1, ψ = 0

we obtain
γ2

M − δ

[
1

1− g

(
1 +

g

αT

)]
+ (M − δ) = C

αvx = (M − δ)

(
1− 1

ni

)
− γ2

M − δ

[
1

1− g

(
(eψ − 1) +

g

αT
(e−αTψ − 1)

)]
(D.25)

equation (D.23) into (D.19), we have

γ2

α

dψ

dξ
− (M − δ)2

αn3
i

dni
dξ

= −αdψ
dξ

+Mvy
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1

αM

[
dψ

dξ
− (M − δ)2

n3
i

dni
dξ

]
= vy (D.26)

since

α2 + γ2 = 1

equation (D.20) into (D.26), we have

1

αM

[
d

dξ

(
dψ

dξ
− (M − δ)2

n3
i

dni
dξ

)]
=
niMvx
M − δ

d

dξ

[
d

dξ

(
ψ +

(M − δ)2

2n2
i

)]
=
αniM

2vx
M − δ

d

dξ

[
d

dξ

(
ψ +

(M − δ)2

2n2
i

)]
=M2(ni−1)− γ2M2ni

(M − δ)2

[
1

1− g

(
(eψ − 1) +

g

αT
(e−αTψ − 1)

)]
(D.27)

let

χ = ψ +
(M − δ)2

2n2
i

dχ

dξ
=
dψ

dξ
− (M − δ)2

n3
i

dni
dξ

or

dχ

dξ
=

1−
(M − δ)2

(
1

1−g (e
ψ + αTge

−αTψ
)

n3
i

 dψ

dξ
(D.28)

Multiply both sides of equation (D.27) by 2dχ
dξ

and integrate

1

2

(
dχ

dξ

)2

=

(
−M

2(M − δ)2

2n2
i

(1− ni)
2

−M2(1− γ2)ψ +M2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))
− γ2

2(M − δ)2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))2

−M
2γ2

ni

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

)))
(D.29)
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equation (D.28) into (D.29), we have

1

2

(
dψ

dξ

)2

=
1(

1− (M−δ)2
n3
i

(
1

1−g (exp(ψ) + gαT exp(−αTψ)
))2 ×

(
−M

2(M − δ)2

2n2
i

(1− ni)
2

−M2(1− γ2)ψ +M2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))
− γ2

2(M − δ)2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))2

−M
2γ2

ni

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

)))
= 0 (D.30)

which can be written as “Energy integral equation”

1

2

(
dψ

dξ

)2

+ V (ψ,M) = 0 (D.31)

where

V (ψ,M) = − 1(
1− (M−δ)2

n3
i

(
1

1−g (exp(ψ) + gαT exp(−αTψ)
))2 ×

(
−M

2(M − δ)2

2n2
i

(1− ni)
2

−M2(1− γ2)ψ +M2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))
− γ2

2(M − δ)2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))2

−M
2γ2

ni

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

)))
(D.32)

at beam velocity = 0 (i.e., δ = γvo = 0).

V (ψ,M) = − 1(
1− M2

n3
i

(
1

1−g (exp(ψ) + gαT exp(−αTψ)
))2 ×

(
−M

4

2n2
i

(1− ni)
2

−M2(1− γ2)ψ +M2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))
−γ

2

2

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

))2

−M
2γ2

ni

(
1

1− g

(
(exp(ψ)− 1) +

g

αT
(exp(−αTψ)− 1)

)))
(D.33)

193

 

 

 

 



Appendix E

Algebraic expression for the

Sagdeev potential in a magnetized

plasma with cold oxygen ions, cool

ions and two temperature electrons

The density and temperature of the Boltzmann distribution of the cool (nce, Tce) and

hot (nhe, The) electrons and cool (nci, Tci) ion species and are given in normalized

form as follows:

cool electrons:

nce = nce0 exp

(
eφ

Tce

)
nce =

nce0
ni0

exp

(
eφ

Teff

Teff
Tce

)
nce = f exp(αceψ) (E.1)

hot electrons:

nhe = nhe0 exp

(
eφ

The

)
nhe =

nhe0
ni0

exp

(
eφ

Teff

Teff
The

)
nhe = (1− f) exp(αheψ) (E.2)
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Cool ions:

nci = nci0 exp

(
− eφ

Tci

)
nci =

nci0
ni0

exp

(
− eφ

Teff

Teff
Tci

)
nci = g exp(−αciψ) (E.3)

Magnetized Cool Oxygen ions (normalized)(described by the fluid equations) :

∂ni
∂t

+
∂(nivx)

∂x
+
∂(nivz)

∂z
= 0 (E.4)

∂vx
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vx = −∂ψ

∂x
+ vy (E.5)

∂vy
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vy = −vx (E.6)

∂vz
∂t

+

(
vx

∂

∂x
+ vz

∂

∂z

)
vz = −∂ψ

∂z
(E.7)

The quasi-neutrality condition

ni = nce + nhe − nci =
feαceψ + (1− f)eαheψ − ge−αciψ

1− g
(E.8)

stationary frame

ξ = (αx+ γz −Mt)/M (E.9)

∂ξ

∂x
=

α

M
,
∂ξ

∂z
=

γ

M
,
∂ξ

∂t
= −1

from equation (E.4)

−dni
dξ

+
α

M

dnivx
dξ

+
γ

M

dnivx
dξ

= 0

M
dni
dξ

=
dni
dξ

(αvx + γvz)

integrate with the boundary condition

ξ → 0, ni → 1, ψ = 0, vx = vz = 0

then

M = −C
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Mni −M = ni(αvx + γvz)

αvx + γvz =M

(
1− 1

ni

)
(E.10)

from equation (E.5)

−dvx
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vx = − α

M

dψ

dξ
+ vy

−Mdvx
dξ

+ (αvx + γvz)
dvx
dξ

= −αdψ
dξ

+Mvy(
−M +M − M

ni

)
dvx
dξ

= −αdψ
dξ

+Mvy

−M
ni

dvx
dξ

= −αdψ
dξ

+Mvy (E.11)

from equation (E.6)

−dvy
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vy = −vx

−Mdvy
dξ

+ (αvx + γvz)
dvy
dξ

= −Mvx(
−M +M − M

ni

)
dvy
dξ

= −Mvx

1

ni

dvy
dξ

= vx (E.12)

from equation (E.7)

−dvz
dξ

+

(
α

M
vx
d

dξ
+

γ

M
vz
d

dξ

)
vz = − γ

M

dψ

dξ

−Mdvz
dξ

+ (αvx + γvz)
dvz
dξ

= −γ dψ
dξ(

−M +M − M

ni

)
dvz
dξ

= −γ dψ
dξ

M

ni

dvz
dξ

= γ
dψ

dξ
(E.13)

196

 

 

 

 



differentiate equation (E.10) w.r.t . ∂ξ, we have

α
dvx
dξ

+ γ
dvz
dξ

=
M

n2
i

dni
dξ

(E.14)

equation (E.13) into (E.14)

α
dvx
dξ

+ γ2
(
ni
M

dψ

dξ

)
=
M

n2
i

dni
dξ

i.e
dvx
dξ

= −γ
2ni
αM

dψ

dξ
+

M

αn2
i

dni
dξ

(E.15)

integrate equation(E.15)

α

∫
dvx
dξ

dξ +
γ2

M

∫
ni
dψ

dξ
dξ =M

∫
1

n2
i

dni
dξ

dξ

αvx +
γ2

M

(
1

1− g

(
f

αce
eαceψ +

1− f

αhe
eαheψ +

g

αci
e−αciψ

))
= −M

ni
+ C

using boundary conditions:

vx = 0, ni = 1, ψ = 0

we have
γ2

M

(
1

1− g

(
f

αce
+

1− f

αhe
+

g

αci

))
+M = C

therefore,

αvx =M

(
1− 1

ni

)
−γ2

M

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

))
(E.16)

equation (E.15) into (E.11)

γ2

α

dψ

dξ
− M2

αn3
i

dni
dξ

= −αdψ
dξ

+Mvy

(
γ2 + α2

α

)
dψ

dξ
− M2

αn3
i

dni
dξ

=Mvy

Since

α2 + γ2 = 1

1

αM

(
dψ

dξ
− M2

n3
i

dni
dξ

)
= vy (E.17)
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equation (E.17) into (E.12)

d

dξ

(
dψ

dξ
− M2

n3
i

dni
dξ

)
= αMnivx (E.18)

equation (E.18) becomes

d

dξ

(
d

dξ

(
ψ +

M2

2n2
i

))
=M2(ni − 1)− γ2ni

(
1

1− g

(
f

αce
(eαceψ − 1)

+
1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

))
(E.19)

let

t = ψ +
M2

2n2
i

dt

dξ
=
dψ

dξ
− M2

n3
i

dni
dξ

dni
dξ

=
1

1− g

(
fαcee

αceψ + (1− f)αhee
αheψ + gαcie

−αciψ
) dψ
dξ

i.e

dt

dξ
=

(
1− M2

n3
i

(
1

1− g

(
fαcee

αceψ + (1− f)αhee
αheψ + gαcie

−αciψ
))) dψ

dξ

Multiply both side of equation (E.19) by 2 dt
dξ

and integate

∫
2
dt

dξ

d

dξ

(
dt

dξ

)
dξ = 2

[∫
M2(ni − 1)− γ2ni

(
1

1− g

(
f

αce
(eαceψ − 1)

+
1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

))]
dt

dξ
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we obtain

1

2

(
dt

dξ

)2

=

(
−M

4

2n2
i

(1− ni)
2 −M2(1− γ2)ψ

+M2

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

))
−γ

2

2

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

))2

−M
2γ2

ni

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

)))
then, substitute for t

1

2

(
dψ

dξ

)2

=
1(

1− M2

n3
i

(
1

1−g (fαcee
αceψ + (1− f)αheeαheψ + gαcie−αciψ

))2×
(
−M

4

2n2
i

(1− ni)
2 −M2(1− γ2)ψ

+M2

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

))
−γ

2

2

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

))2

−M
2γ2

ni

(
1

1− g

(
f

αce
(eαceψ − 1) +

1− f

αhe
(eαheψ − 1) +

g

αci
(e−αciψ − 1)

)))
(E.20)
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