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ABSTRACT 

 

THE MOLECULAR EVOLUTION AND EPIDEMIOLOGY OF  
RUBELLA VIRUS 

L.J. Cloete 

M. Scientiae (Bioinformatics) thesis, South African National Bioinformatics Institute, 

University of the Western Cape 

Despite widespread rubella virus (RV) vaccination programs, annually RV still 

causes severe congenital defects in an estimated 100,000 children globally. A 

concerted attempt to eradicate RV is currently underway and analytical tools to 

monitor the global decline of the last remaining RV lineages will be useful for 

assessing the effectiveness of this endeavour. Importantly, RV evolves rapidly 

enough that much of its epidemiological information might be inferable from RV 

genomic sequence data. 

Using BEASTv1.8.0, I analysed publically available RV sequence data to estimate 

genome-wide and gene-specific nucleotide substitution rates, to test whether the 

current estimates of RV substitution rates are representative of the entire RV genome. 

During these investigations, I specifically accounted for possible confounders of 

nucleotide substitution rate estimates, such as temporally biased sampling, sporadic 

recombination, and natural selection favouring either increased or decreased genetic 

diversity (estimated by the PARRIS and FUBAR methods) at nucleotide sites within 

RV nucleic acid secondary structures (predicted by the NASP method).  

I determined that RV nucleotide substitution rates range from 1.19×10-3 

substitutions/site/year (in the E1 region) to 7.52×10-4 substitutions/site/year (in the 

P150 region). I found that these differences between nucleotide substitution rate 

estimates in various RV gene regions are largely attributable to temporal sampling 

biases, such that datasets containing a higher proportion of recently sampled 

sequences will tend to have inflated estimates of mean substitution rates. Although 

there exists little evidence of positive selection or natural genetic recombination in 
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RV, I revealed that RV genomes possess extensive biologically functional nucleic 

acid secondary structures and that purifying selection acting to maintain these 

structures contributes substantially to variations in estimated nucleotide substitution 

rates across RV genomes. 

Although both temporal sampling biases and purifying selection favouring the 

conservation of RV nucleic acid secondary structures have an appreciable impact on 

substitution rate estimates, I find that these biases do not preclude the use of RV 

sequence data to date ancestral sequences and evaluate the associated RV 

phylodynamics. The combination of uniformly high substitution rates across the RV 

genome and strong temporal signal within the available sequence data enabled me to 

analyse the epidemiological and demographical dynamics of this virus during these 

attempts to eradicate it. By implementing a generalized linear model (GLM) and 

symmetrical model of discretized phylogeographic spread, I was able to identify 

several predictive variables of geographical RV spread and detect transmission 

linkages between distinct geographical regions. These results suggest that, in addition 

to strengthened vaccination strategies, there also needs to be an increased effort to 

educate people about the effects of vaccination and risks of RV infection. 
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PREFACE 

It is vital that gains made by various global rubella vaccination programs are not 

undone by resurgent Rubella virus (RV) outbreaks, such as that exemplified by the 

measles epidemic in South Africa (National Institute for Communicable Diseases 

(NICD), South Africa 2010) and the United Kingdom (Wise 2013). Comprehensive 

rubella and congenital rubella syndrome (CRS) surveillance systems to monitor 

immunity within vaccinated populations needs to be strengthened, to better anticipate 

changes in the epidemiological dynamics caused by vaccination programs, and to 

improve our understanding of the factors that influence the evolution of RV. In this 

respect, it is vital that we continue collecting and characterising circulating RV 

genome   data   as   this   could   potentially   be   used   to   monitor   the   virus’   evolutionary,  

demographic and epidemiological dynamics in the face of intensified control 

strategies.  

Besides increased volumes of genomic sequence data, an important prerequisite for 

using RV sequences in such surveillance efforts is the demonstration that the rates at 

which RV genomes are evolving are high enough, that they can be reliably used to 

track both epidemiologically relevant fluctuations in virus population sizes, and viral 

movement events (such as transmission between individuals or migration between 

different countries or continents). 

In this regard, it is very promising that RV structural E1 polyprotein gene region 

sequences display high degrees of clock-like evolution and mean nucleotide 

substitution rates ranging between 0.61×10-3 (Jenkins et al. 2002) and 1.65×10-3 

substitutions/nucleotide/year (Zhu et al. 2011) - a rate of evolution that should be 

within the bounds required to extract meaningful phylogeographic and demographic 

information from RV genomic sequence data. It is noteworthy that Togavirus 

nucleotide substitution rates estimated by Jenkins et al. (2002), using the same  

strict-clock maximum likelihood-based methods employed on the RV structural E1 

polyprotein region, are substantially slower than those estimated for RV, whereas a 
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study (Zhu et al. 2011) employing a more sophisticated Bayesian relaxed molecular 

clock–based inference method reported RV structural E1 polyprotein nucleotide 

substitution rates approximately equivalent to those of other Togaviruses  

(Cherian et al. 2009; Volk et al. 2010; Suwannakarn et al. 2011). 

Using publically available RV full genome and gene-specific sequences sampled over 

the past 51 years I aimed to assess whether current RV nucleotide substitution rates 

estimates are representative of the entire RV genome. During these investigations I 

specifically accounted for possible confounders of nucleotide substitution rate 

estimates such as sporadic genetic recombination and natural selection favouring 

either increased genetic diversity in response to host immune pressures, or decreased 

genetic diversity at nucleotide sites involved in the formation of genomic secondary 

structures. In addition, I reconstructed a plausible history of RV’s geographical 

spread and determined when in relation to the past rubella epidemics, the major 

globally circulating RV genotypes arose. Finally, I investigated how this virus 

persisted in the face of intensified vaccination efforts.  
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1. INTRODUCTION 

1.1 Togaviridae 
The family Togaviridae derived its name from the Latin word toga (meaning a 

Roman mantle or cloak), as members of the family were among the first  

well-characterized viruses known to contain a lipid envelope. Consequently, many 

enveloped viruses were incorrectly classified as Togaviruses. Several of the original 

viruses have since been reclassified into different families and as a result, the family 

Togaviridae currently comprises only two genera: Alphavirus and Rubivirus.  

The primarily arthropod-borne genus Alphavirus contains approximately 30 species, 

has a wide range of hosts and is known to replicate in a variety of different cell types, 

whereas the monospecific genus Rubivirus is exclusively transmitted between 

humans by Rubella virus (RV). Members of both genera contain single-stranded 

positive sense ribonucleic acid (RNA) genomes enclosed within small, lipid-

enveloped, icosahedral particles approximately 70 nm in diameter. The genomes 

range between 10,000–12,000 nucleotide (nt) in length (Wolinsky et al. 2001) and 

encode two open reading frames (ORF); the non-structural (NSP) and structural (SP) 

proteins. However, despite these similarities in genomic organization, structure and 

replication strategy, Alphavirus and Rubivirus share little genetic homology, and are 

in fact only distantly related (Frey 1994). A recent study even suggested that 

Rubivirus might be more closely related to the genus Flavivirus (family: 

Flaviviridae), based on analysis of the structural E1 polypotein (DuBois et al. 2013). 
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1.2 Background on Rubella virus 
Rubella (German: Rötheln), or German measles as it is more commonly known, is 

caused by a RV infection. The disease was initially described in 1740, when Friedrich 

Hoffmann documented the first clinical description (Ackerknecht 1982). His findings 

were later independently confirmed by two German physicians (hence, the common 

English eponym), namely de Bergen (1752) and Orlow (1758; Wesselhoeft 1949). 

However, due to the similar nature of these diseases, both of these physicians 

incorrectly believed that rubella was considered a derivative of measles and it was 

only in 1814, that George de Maton first suggested that rubella be considered as a 

distinct disease.  

During 1841, the British physician Henry Veale recorded a rubella outbreak in a 

boys’   school   in   India.   Prior to this outbreak, the disease was medically known as 

Rötheln, however, he documented his findings as rubella (a Latin diminutive 

meaning  “little  red”) which he suggested was  a  more  “soothing”  term for the English 

ear (Veale 1866). Nonetheless, it was only in 1881 that rubella was officially 

recognised as a distinct disease (Forbes 1969).  

In 1914, Alfred Fabian Hess first proposed that a virus was the cause of the disease 

known as rubella (Hess 1914) and in 1938, Hiro and Tosaka confirmed his results, 

when they successfully passed RV to children using filtered nasal washings (Atkinson 

et al. 2012). However, it was not until 1962, that the first RV was isolated (Parkman 

et al. 1962; Weller and Neva 1962). 

Up until 1941, rubella was considered to be a relatively mild disease with few 

complications that occurs mostly during childhood. However, in the same year the 

Australian ophthalmologist Norman McAllister Gregg reported that infants with 

congenital cataracts and heart disease tended to have mothers with a history of RV 

infection during early pregnancy (Gregg 1941).  Despite several years of scepticism 

against his findings,  Gregg’s  observations  were eventually confirmed by independent 

reports published in Australia (Pitt and Keir 1965), Sweden (Lundstorm 1962) and 
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the United States of America (Greenberg et al. 1957). These publications collectively 

established the role of RV in congenital cataracts, as well as the simultaneous 

association with heart disease and deafness in infants, and for the first time the 

associated effects of RV infection in infants were collectively termed congenital 

rubella syndrome (CRS). See Table 1. 

 

Today, several viruses (Enterovirus, Adenovirus, Parvovirus B19 and Arbovirus) are 

known to cause rubella-like rashes and consequently, RV infections are often 

confused with the associated diseases, such as measles and dengue, if not examined 

using molecular diagnostics (Banatvala 2006). Due to the inability to distinguish 

rubella from these other infections, estimation of the prevalence of rubella and 

congenital rubella outbreaks prior to 1914 is not possible. However, major epidemics 

have been reported since the 1960s, both in developed and developing countries 

(Dudgeon 1975a; Cooper 1975; Donadio et al. 2003; Zheng et al. 2003; Wang et al. 

2012). Since the first development of successful RV vaccines, indigenous RV 

Table 1: The main historical developments of Rubella virus. 
 
1740 
First clinical description of rubella by Friedrich Hoffmann 

1881 
Rubella officially recognised as a distinct disease at the International Congress on Medicine 

1914 
Alfred Fabian Hess proposed that rubella was caused by a virus 

1938 
Hiro and Tosaka successfully passed Rubella virus to children using filtered nasal washings, 

confirming  Alfred  Hess’s  findings 

1941 
Norman McAllister Gregg recognises the teratogenic effects of Rubella virus 

1962 

Rubella virus isolated in cell culture for the first time 
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infection and CRS have been virtually eradicated in many developed countries around 

the world (Peltola et al. 2000; Song et al. 2012; Abernathy et al. 2013). However, this 

virus still continues to cause devastating epidemics throughout much of the world 

(Centers for Disease Control and Prevention 2013; Pham et al. 2013; Paradowska-

Stankiewicz et al. 2013). 

 

1.2.1 Structure and genome organization 
RV is an enveloped virus with a ~9,762 nt positive-sense, single-stranded RNA 

genome which contains  a  5’-methylated nucleotide cap and a  3’-polyadenylated tail 

and comprises two ORFs. The  presence  of  a  5’-methylated  nucleotide  cap  and  a  3’-

polyadenylated tail resembles cellular messenger RNA (mRNA) and allows RV 

genomes to be directly translated by the host enzymes. The  5’  proximal ORF encodes 

the non-structural proteins (NSPs; P150 and P90) that function in RNA replication, 

whereas   the   3’   proximal ORF encodes the structural proteins (SPs; capsid protein, 

CP, and two envelope glycoproteins, E1 and E2) that together make up the virion 

(Figure 1). RV genomes also contain three untranslated regions (UTR’s), which 

include 40 nt at the 5’  end  of  the  genome  (5’  UTR), ~118 nt between the SP and the 

NSP ORFs, and 59   nt   at   the   3’   end   of   the   genome   (3’   UTR). RV genomes also 

maintain the highest genomic GC content (~70%) of all known RNA viruses (Frey 

1994).  

The genomic RNA of RV serves as mRNA for the translation of the NSP, or as a 

template for anti-sense genomic RNA synthesis. The NSP in turn encode the viral 

proteins responsible for genome replication, by utilizing the cellular translational 

machinery. Embedded within the P150 gene is the methyl transferase- (involved in 

viral RNA capping) and cysteine protease domain (associated with the proteolytic 

cleavage of P200), a region of hyper-variability (2120–2440nt; contains higher than   
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Figure 1. Genomic coding regions analysed. A schematic representation of the Rubella virus genome. The 
two ORFs, the non-structural (P150, P90; brown boxes) and structural polyproteins (CP, E2, E1;  
green boxes), are represented by 2 distinct boxes, and the UTRs as black horizontal lines. Boundaries of 
individual genes within the two coding regions are shown by solid vertical lines. The RdRp domain within 
the P90 gene is depicted by a vertical dotted-line. Specific coordinates of regions analysed: P150, 41–3943nt;  
RdRp, 4826–6388nt; CP, 6512–7411nt; E2, 7412–8257nt; E1, 8258–9703nt. 
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50% variability compared to other genes; Zhou et al. 2007) and the Q-domain (1491–

2409nt; shares similar functions with the capsid protein, and is associated with RNA 

binding and interactions with cellular proteins; Tzeng and Frey 2009). Domains 

encoding the helicase and RNA-dependant RNA polymerase (RdRp) are located 

within the P90 gene (Frey 1994). It has been demonstrated that mutations within the 

NSPs result in an accumulation of anti-sense RNA, and a decrease in positive-sense 

RNA synthesis, indicating that translation of the NSPs are crucial for RNA 

replication (Liang and Gillam 2000). 

The SP ORF is translated into a precursor polyprotein (P100) that is then cleaved into 

individual SPs. In contrast to Alphavirus capsid protein, which possess autoprotease 

activity, RV requires cellular signal peptidase for the capsid protein to be released 

from the P100 polyprotein. The principle antigenic components and neutralization 

domains are located on the E1 glycoprotein between 8900–9113nt (Katow and 

Sugiura 1985; Terry et al. 1988; Dominguez et al. 1990; Hobman et al. 1991; Chaye 

et al. 1992). The E1 glycoprotein also retains a putative neutralization domain (8882-

8975nt) and various other antigenic sites involved in virus attachment and initiation 

of infection (Wolinsky et al. 1991). 

RV virions are ~70 nm in diameter and typically consist of a lipid envelope 

containing the two viral glycoproteins, E1 and E2 and a nucleocapsid, containing the 

viral RNA and the capsid protein (Figure 2).  The nucleocapsid core has a diameter of 

30–35 nm with a T=4 icosahedral symmetry (Frey 1994; Liu et al. 1996) and 

comprises multiple copies of disulphide-linked homodimer capsid protein (M. Baron 

and Forsell 1991). The capsid protein is bound to the viral membrane by the  

C-termini and retains the putative signal peptide of the E2 glycoprotein. The N-

termini, which is located within the viral envelope, contains a major RNA binding 

domain (6596–6680nt). This region is also involved in regulating subgenomic RNA  
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synthesis (Frey 1994; Liu et al. 1996). The viral lipids within the envelope are 

derived from the host-cell. The heavily glycosylated E1 and E2 glycoproteins are 

class 1 transmembrane proteins. Together they exist as heterodimers forming 

glycosylated spikes on the surface of the virion (Nakhasi et al. 2001). The crystal 

structure of the RV E1 glycoprotein is significantly different from homologous 

structures in Alphavirus and Flavivirus and it is thought that these differences likely 

originated as a result of several insertions within this RV gene region (DuBois et al. 

2013). This is possibly due to stronger evolutionary constraints of viruses alternating 

between arthropod and vertebrate hosts, compared to RV which are exclusively 

transmitted between humans. 

 

 

 

 

Figure 2. Schematic representation of the Rubella virus virion structure. The green and brown 
horizontal boxes within the Rubella virus particle represent the structural and non-structural polyproteins 
corresponding to Figure 1. The virion is ~70 nm in diameter, with the nucleocapsid core  
~35 nm. It consists of a lipid envelope with two viral glycoproteins (E1 and E2), which exist as 
glycosylated transmembrane heterodimer spikes on the surface of the virion, and a T=4 icosahedral 
nucleocapsid contains the viral RNA and the capsid protein (CP). 
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1.2.2 Medical significance 
RV is a disease causing agent that is associated with a nonthreatening self-limiting 

rash, low-grade fever and swelling of the lymph nodes (Ford et al. 1992). It is 

predominantly a childhood disease; however if contracted by a pregnant woman 

during early pregnancy, RV can be a powerful teratogenic agent, causing CRS 

(Wolinsky et al. 2001). Postnatally acquired RV symptoms among children are 

usually mild or absent, with most instances passing as subclinical or unrecognised 

occurrences. Adults however can develop malaise and fever associated with viremia 

(Figure 3), prior to the onset of a rash (Banatvala and Brown 2004). 

Complications due to natural RV infection are rare and tend to occur more frequently 

in women than males and children (Atkinson et al. 2012). These include arthritis, 

encephalitis, hemorrhagic manifestations, orchitis, neuritis, and progressive 

panencephalitis. 

While arthritis occurs in approximately 70% of adult women, the associated joint 

symptoms occur simultaneously with the onset of the rash and may persist for up to 

one month post infection. Encephalitis occurs in approximately 1 in 6000 cases, and 

haemorrhagic manifestations occur in around 1 in 3000 cases. These complications 

may last several days, but most individuals fully recover and chronic conditions are 

rare (Atkinson et al. 2012). Adverse effects to vaccination include symptoms such as 

acute- and chronic arthritis, swelling of the lymph nodes, neuropathies and 

thrombocytopenia and are usually mild and transient in nature (Ford et al. 1992).  

 

 

 

 



 
 

9 

  

 

 

Figure 3. Immunological, virological and clinical feautures of a Rubella virus infection. A schematic representation of the 
immunological, virological and clinical feautures of Rubella virus infection. Primary infection and replication occurs in the nasopharynx, 
upper respiratory tract and the regional lymph nodes. Viraemia follows 5–7 days post-infection. The average time to the onset of 
symptoms is represented by light gray horisontal boxes below the x-axis. Serological anibody repsonses are represented by solid brown 
lines whereas virion concentration is represented by a dashed red line (adapted from Banatvala and Brown 2004). 
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1.2.3 Transmission and clinical diagnosis 
RV is transmitted between hosts via large particle aerosols, which are secreted by the 

respiratory tract. Infection generally occurs in collectives of children, who may then 

infect their parents. Adult-to-adult infection is also more frequent among military 

recruits and on cruise ships (Ingalls et al. 1967) demonstrating that prolonged contact 

between hosts is necessary for RV to be successfully transmitted to susceptible 

individuals. Infants affected by CRS shed large quantities of RV from their body 

secretions for up to 1 year after birth, which could potentially result in RV 

transmission to susceptible adults caring for them (Atkinson et al. 2012). The average 

number of successful transmissions from a single case of rubella (basic reproductive 

number, R0) in developed countries was estimated to be between 3–8 (Edmunds et al. 

2000).  

Primary implantation and replication occurs in the nasopharynx, upper respiratory 

tract and the regional lymph nodes and viraemia typically follows ~5–7 days after 

exposure, during which time transplacental infection of the fetus occurs  

(Heggie and Robbins 1969; Banatvala 2006; Atkinson et al. 2012). In the first week 

of exposure, rubella may be present atypically or with non-specific symptoms 

(Hemphill et al. 1988) and as a consequence, various other diseases can imitate RV 

infection, making accurate clinical diagnosis of rubella unreliable. In a study 

performed in the United Kingdom among children younger than five presenting a 

rash, only 3% of cases were positively confirmed as rubella (Ramsay et al. 2002) and 

in various tropical regions, Alphavirus and Flavivirus have been reported to cause 

rubella-like symptoms (Schmaljohn and McClain 1996).  

Because of such difficulties distinguishing RV symptoms from various other diseases, 

only positive laboratory identification methods provide definitive means to achieve 

this. Reliable detection of an acute RV infection is achieved either by positive viral 

cultures, detection of RV by polymerase chain reaction (PCR), the presence of 

rubella-specific IgM antibodies, or a significant rise in IgG antibodies with paired 

acute- and convalescent-phase sera (Atkinson et al. 2012). 
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RV infection involves an initial latent period, with maximum virus production 

occurring 24–48 hours after infection (Hemphill et al. 1988), and is succeeded by an 

incubation period which persists for 14–21 days. During this time, swelling of the 

lymph nodes may occur, and in around two thirds of cases, individuals develop a rash 

which typically starts on the face and in the neck area. During the preceding 1–3 

days, the rash continues to spread downward from the face and neck to the body and 

gradually begins to fade. Depending on the degree of skin pigmentation, the rash may 

be difficult to detect, but may be more prominent after hot showers or –baths. The 

rash is also only occasionally associated with an itch sensation, and the individual 

spots do not unite into larger bodies. Viraemia ends as humoral immune responses 

develop. However, RV may still be present in the pharynx and urine for up to 1–2 

weeks (Reef and Plotkin 2013). 

 

1.2.4 Congenital rubella syndrome and congenitally acquired 
Rubella virus infection 
Internal organ development in a growing fetus occurs between 3–8 weeks  

(first trimester) past gestation. During this time, maternally acquired RV infection is 

likely to result in a generalized and persistent infection, leading to multiple defects 

that affect nearly all organs and as a result, may lead to foetal death, spontaneous 

abortion, or premature delivery (Atkinson et al. 2012). This is a result of the inability 

of the placental barrier to protect against vertical transmission, as well as the inability 

of the foetal defence mechanisms to launch an effective immune response  

(Banatvala 2006).  

Although few animal models (Rayfield et al. 1986; Cusi et al. 1995) have been 

proposed to successfully study symptomatic RV infections, cell line studies suggests 

that a mechanism of RV-associated programmed cell death (Pugachev and Frey 

1998a) and interaction between RV non-structural P90 and cellular proteins that 

regulate cell growth (cell-cycle regulatory retinoblastoma protein; cytokinesis 
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regulatory protein citron-K kinase) might be responsible for the teratogenicity (Atreya 

et al. 2004). It has however been shown that no CRS-specific mutations exist within 

RV genomes, and that samples from CRS patients do not form monophyletic clusters 

on phylogenetic trees (Katow 2004). 

By the end of the first trimester, organogenesis is complete. During the second 

trimester, foetal humoral and cell-mediated immune responses gradually mature and 

passive transfer of maternal rubella-specific IgG occurs, consequently reducing the 

frequency and severity of congenital infection (Figure 4) and foetal damage (Miller et 

al. 1982; Banatvala 2006). 

 

 

Risk of congenital 
infection 

Risk of defects 

0

10

20

30

40

50

60

70

80

90

100

2  -  10 11  -  12 13  -  16 17  -  18 19+

Pe
rc

en
ta

ge
 o

f a
ss

oc
ia

te
d 

ris
k 

Weeks past gestation 

Figure 4. Associated risk of congenital rubella syndrome. The red solid line represents the risk of 
congenital Rubella virus infection in the weeks post gestation and the brown dashed line represents the 
risk of permanent foetal defects associated with congenital rubella syndrome (adapted from 
Miller et al. 1982). 
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The outcome and range of congenital infection abnormalities are largely associated 

with the gestational age at which the maternal rubella infection occurred. Deafness is 

the most common, and often the only, defect reported. It might however not become 

apparent for some time, but can persist indefinitely. Some clinical features (Table 2), 

including  CRS anomalies include cataracts, glaucoma, retinopathy, cardiac defects, 

impaired foetal growth and mental retardation may show delayed onset until early 

adolescence or adulthood (Cutts et al. 1997, Atkinson et al. 2012).  
 

Table 2.  Congenital rubella syndrome abnormalities, onset, and persistence of symptoms. 
Adapted from (Dudgeon 1975b; Parkman 1996; Cutts et al. 1997). 

Type of defect Associated abnormalities 
Time of symptom 

recognition 

Transient 

features 

Permanent 

features 

General Low birth weight 

Micrognathia 

Neonatal 

Neonatal 

+ 

- 

- 

+ 

Ocular Cataracts (unilateral/bilateral) 

Microphtalmia 

Glaucoma 

Pigmentary retinopathy 

Infancy 

- 

Infancy 

Infancy 

- 

- 

- 

- 

+ 

+ 

+ 

+ 

Cardiovascular Patent ductus arteriosis 

Ventricular septal defect 

Peripheral pulmonic artery stenosis 

Myocarditis 

Infancy 

Infancy 

Infancy 

- 

- 

- 

- 

+ 

+ 

+ 

+ 

- 

Auditory Sensorineural deafness 

Deafness-associated speech defects 

Infancy 

Infancy 

- 

- 

+ 

+ 

Central nervous 
system 

Mental retardation 

Pyschomotor retardation 

Meningoencephalitis 

Progressive rubella panencephalitis 

Microcephaly 

Infancy 

- 

Neonatal 

Neonatal 

Neonatal 

- 

- 

+ 

- 

- 

+ 

+ 

- 

+ 

+ 

 

RV can be recovered from neonatal tear, nasopharynx, urine and stool samples, and 

continues to replicate in infant excretions, consequently infecting susceptible 

individuals. Children affected by CRS have also been shown to have a higher than 

expected incidence of autism (Atkinson et al. 2012). In addition to the apparent 
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abnormalities at birth or shortly thereafter, disease manifestations, such as diabetes 

and Dawsons disease, are generally delayed until early adolescence (Banatvala 2006). 

 

1.2.5 Epidemiology 
Phylogenetic studies have revealed that two major clades of RV exist with constituent 

members that differ from one another at between 8 and 10% of genomic sites. 

Whereas clade 1 consists of one provisional (1a) and nine recognised (1B, 1C, 1D, 

1E, 1F, 1G, 1H, 1I, and 1J) RV genotypes, clade 2 contains three recognised (2A, 2B 

and 2C) genotypes (World Health Organization 2005; World Health Organization 

2007; World Health Organization 2013a). Until the 2000s, clade 2 genotypes were 

restricted to Eurasia (Katow 2004; Zhou et al. 2007), however, genotype 2B viruses 

have subsequently become widely distributed geographically (Figure 5), and together 

with 1E and 1G, are the genotypes most frequently found among the more recently 

sampled isolates (Abernathy et al. 2011). Although globally there is only 1 serotype 

of RV (Zheng et al. 2003), it has been demonstrated that RV strains exist that differ in 

properties such as haemagglutination (Londesborough et al. 1995), plague 

morphology (Kouri et al. 1974), temperature sensitivity, virus yield and cell tropism 

(Chantler et al. 1993). 

In 1941, widespread outbreaks of rubella were recorded amongst high concentrations 

of previously unexposed soldiers being mobilized to Sydney, Australia during the 

Second World War. Infection then spread to the general population when these troops 

returned home prior to serving overseas. This epidemic was particularly significant in 

that upon spreading to the general population, it yielded the first noted associations 

between RV and CRS (Gregg 1941).  

 

 

 

 



 
 

15 

 

 
Figure 5. Global distribution of Rubella virus genotypes. Distribution of genotypes were mapped based on the documented sampling location (at 
the time of analysis) of publicly available sequences, as a means of supplementing the known genotypic geographical distribution (World Health 
Organization 2006; Abernathy et al. 2011). Names coloured in red and blue denote clade 1 and 2 genotypes, respectively. 
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In the spring of 1963, an outbreak of rubella began in Europe and later spread to 

North America (1964–1965) (Witte et al. 1969; Plotkin 2006) and Asia (1965–1969; 

Ueda 2009). During this global rubella pandemic (1962-1965), an estimated  

12.5 million rubella cases were recorded in the United States alone, resulting in 

11 250 foetal deaths, 2100 neonatal deaths and 20 000 infants born with CRS 

(Atkinson et al. 2012).  

RV remains endemic throughout most of the world, even though comprehensive 

vaccine programs have been implemented in most developed countries. In these 

developed countries, vaccination programs have almost eradicated the disease, and 

more recent occurrences are mainly attributed to importations from non-vaccinated 

countries or countries with low-uptake rates. It is however of ongoing concern that in 

many developing countries, vaccination programmes are absent and consequently, the 

world’s  population  is  still  being  infected  naturally   (Wolinsky et al. 2001; Best et al. 

2005; Centers for Disease Control and Prevention 2005a). 

Epidemic cycles are highly variable between developed and developing countries, but 

tend to arise in the spring or early summer when the climate is temperate. In regions 

with low vaccination coverage, outbreaks typically recur with an average periodicity 

of between 5-9 years (World Health Organization 2011). The magnitude of outbreaks 

depends on a number of factors, including the number of susceptible individuals 

within a population, population densities, RV genotype distribution throughout the 

affected geographical area, socioeconomic factors and the quality of healthcare 

services available. Infection rates are also typically highest among individuals living 

in close proximity, such as student populations, cruise ship passengers and military 

establishments (Preblud and Alford 1983). Within non-vaccinated populations, CRS 

associated defects remain at least as high as for developed countries prior to the 

introduction of vaccination programs (Cutts et al. 1997). Because of the uneven 

adoption and coverage of rubella control programs among countries around the world, 

RV infections constitute a significant on-going global health threat. 
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Genotype diversity can be relatively heterogeneous in these populations  

(Donadio et al. 2003; Zheng et al. 2003), and presumably this pattern will be even 

more extreme if movements of people are unconstrained between neighbouring 

countries where rubella is endemic as the population may comprise many 

importations from independent epidemics. These relatively diverse RV populations 

are thought to exist in a source–sink relationship with other global RV populations 

with continuous low-level migration reseeding the regions of the world with high 

degrees of vaccine coverage where indigenous viruses no longer occur naturally 

(Tookey et al. 2000; Reef et al. 2002; Centers for Disease Control and Prevention 

2005b). 

In response to the ongoing global circulation of RV, the World Health Organization 

(WHO) has set a revised target for elimination of rubella by 2015, as well as the 

global eradication of rubella and CRS by 2020 (World Health Organization 2012). 

 

1.2.6 Vaccines and vaccination strategies 
During the rubella pandemic (1962–1965), it became increasingly apparent that the 

incidence of CRS was largely underestimated. This emphasized the need for an 

effective RV vaccine, and between 1965 and 1967, several RV vaccines were 

developed (Meyer et al. 1969; Prinzie et al. 1969; Plotkin et al. 1969). The first of 

these was licenced for commercial use during 1969-1970, and mass vaccination 

programs soon followed in several developed countries (Ueda 2009). 

In the United States of America, three RV vaccines were licenced, including HPV-77 

(attenuated in African green monkey kidney and later dog kidney cell cultures; Meyer 

et al. 1969), HPV-77 (attenuated in duck embryo cell cultures; Hilleman et al. 1969) 

and Cendehill (attenuated in rabbit kidney cell cultures; Prinzie et al. 1969) whereas 

the RA27/3 vaccine (attenuated in human diploid cells; Plotkin et al. 1969) was the 

only vaccine licenced in Europe. The initial vaccines licenced in Japan were the 
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Takahasi- (attenuated in rabbit kidney cell cultures) and Matsuura vaccines 

(attenuated in Japanese quail-embryo fibroblasts; Perkins 1985), however, five 

additional vaccines have been developed since then, including DCRB19, KRT, 

MEQ11, TO-336 and SK2. During 1980, the BRD-2 vaccine was developed in China 

(attenuated in human diploid cells; Zheng et al. 2003; Reef and Plotkin 2013).  

In the United States of America, the HPV-77 (attenuated in duck embryo cell 

cultures) was widely distributed during 1969 and 1970 and it also formed part of the 

first measles-mumps-rubella-containing vaccine (MMR). This vaccine was shown to 

successfully protect around 65–94% of vaccinated individuals (Davis et al. 1971), 

however, comparative studies of HPV-77 and RA27/3 revealed that HPV-77 

displayed lower antibody levels (Wallace and Isacson 1972), less persistent 

seropositivity (Balfour and Amren 1977), lower resistance to infection (Fogel et al. 

1978), less herd immunity (Klock and Rachelefsky 1973) and a higher incidence of 

joint symptoms (Spruance and Smith 1971) compared to RA27/3. Additionally, 

RA27/3 can be administered intranasally (Ogra et al. 1971; Plotkin et al. 1973).  In 

1979, RA27/3 was licenced in the United States of America, and this resulted in the 

withdrawal of Cendehill from the American licensure and subsequently, HPV-77 was 

replaced by RA27/3 in a new MMR vaccine (MMR-II). In 2014, RA27/3 is the most 

widely used vaccine strain throughout the world, with the exception of countries such 

as China and Japan (Perkins 1985; Reef and Plotkin 2013). 

Some countries initiated different vaccination strategies, most of which attained 

partial success. In the United Kingdom, Australia and Japan, adolescent girls were 

vaccinated (Dudgeon 1985; Cheffins et al. 1998; Ueda 2009) whereas the United 

States of America included RV-containing vaccines (RCVs) into their routine 

immunization schedule to vaccinate infants, in the hope of eventually depleting the 

reservoir of susceptible individuals (Preblud et al. 1980). In contrast, Iceland 

implemented serologic screening programs to identify and vaccinate only women 

detected as susceptible to RV (Farber and Finkelstein 1979).  
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Most of these strategies were eventually revised to include routine immunization of 

infants as well as targeted vaccination of women and adolescent girls (Watson et al. 

1998; McLean et al. 2013). By maintaining high vaccination coverage, increasing 

monitoring systems, and introducing a second dose of MMR, many countries 

succeeded in eliminating indigenous RV (Peltola et al. 2000; Plotkin 2006; Song et al. 

2012). By 2010, 131 of the 194 WHO Member States had adopted some form of 

prevention using either selective or universal mass immunization vaccination 

strategies, usually in response to national or regional rubella outbreaks (Banatvala and 

Brown 2004; World Health Organization 2012). 

By 2013, most developed countries had included RCVs into their childhood 

immunization schedule, and as a result, countries in the WHO Pan American region 

have eliminated rubella and CRS (Castillo-Solórzano et al. 2011), whereas the 

European region has registered a 98% reduction between 2000 and 2009 (number of 

reporting member states increased from 41 to 46). In contrast, only a few developing 

countries have included RCVs in their schedule (Figure 6) and consequently the 

WHO eastern Mediterranean region, comprising no developed countries, only 

registered a 35% reduction in rubella and CRS cases between 2000 and 2009 (number 

of reporting member states increased from 11 to 15). The WHO African and southeast 

Asian regions registered a 20-fold (number of reporting member states increased from 

7 to 38) and 14-fold (number of reporting member states increased from 3 to 9) 

increase in rubella cases over the same period (Reef et al. 2011). 

Unsurprisingly, the incidence of CRS in regions that had not included RCVs into 

their childhood immunization schedule is much higher compared to regions that had 

introduced some form of mass vaccination (Cutts and Vynnycky 1999). In 1996, 

approximately 22,000 children were born with CRS in Africa, 46,000 children in 

South-East Asia and 12,634 children in the Western Pacific regions. Very few 

countries in these regions have introduced immunization vaccination strategies since 

then, and therefore, there is no reason to believe that the current burden of CRS 
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is likely to be different to the estimates for 1996, and could in fact, have increased 

since then (Cutts and Vynnycky 1999). Unfortunately the incidence of CRS in 

countries with either, limited vaccination programs, or poor vaccine-uptake, remains 

at least as high as that for developed countries prior to the introduction of vaccine 

programs (Cutts et al. 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Countries presently including Rubella virus vaccination into their routine 
immunization schedules. Most developed countries have included Rubella virus-containing vacccines 
into their childhood immunization schedule. In contrast, only a few developing countries have included 
Rubella virus-containing vacccines in their schedule.  

Source:www.childinfo.org/files/immunization_summary_2012_en.pdf 
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Table 3: The main epidemiological and vaccination developments in the history of Rubella virus. 

 
1963–1965 

Extensive European and North American epidemics, resulting in an estimated 12.5 million cases in USA alone 

1965–1969 
Extensive Asian epidemics 

1969–1970 

Attenuated Rubella virus vaccines licensed in the United States and the United Kingdom (USA universal 

childhood vaccination program; UK selective vaccination of prepubertal school girls) 

1971 

Measles-mumps-rubella-containing vaccine (MMR) vaccine was licensed in the USA 

1976 

First live attenuated Rubella virus vaccine was developed in Japan 

1978–1983 

Severe UK epidemics 

1980 

BRD-II vaccine was developed in China 

1988 

UK adapts vaccination policy to offer MMR to preschool children of both sexes 

1989-1991 

Resurgence of rubella in the USA 

2010 
131 (68%) of the World Health Organization states include Rubella virus vaccination in their national 

immunization schedules 

2012 

World Health Organization revised target for global eradication of Rubella virus to 2020 

 

1.2.7 Economic impact 
The cost associated with the rubella pandemic (1962–1965) in the United States of 

America was estimated at $840 million (Atkinson et al. 2012). If current estimates are 

accurate, then with 100,000 cases of rubella and CRS still being reported worldwide 

annually (World Health Organization 2013b), it is clear that the associated human and 

socio-economic costs remain extremely high and extract a heavy toll, particularly in 

developing countries where rubella remains endemic. Cost-benefit analysis studies 

(World Health Organization, Department of Vaccines and Biologicals 2000; Hinman 

et al. 2002; Bennett et al. 2002) that have been conducted, both in developed and 
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developing countries, to investigate the benefit of rubella elimination against the cost 

of vaccination, found a 13.3 benefit-to-cost ratio (Irons et al. 2000). All of these 

studies, except a study performed in Finland in 1979 (Elo 1979), have confirmed that 

the benefits of routine immunization and mass vaccination outweigh the costs, 

suggesting that rubella vaccination is medically and economically justifiable, 

especially when combined with the measles vaccine.  

Different immunization delivery strategies have also been studied with sometimes 

contrasting results. For example, studies in Denmark (Bjerregaard 1991) and Israel 

(Golden and Shapiro 1984; Berger et al. 1990) estimated it to be more cost-beneficial 

to vaccinate infants and adolescent girls, whereas research performed in the United 

States of America reported that it was more cost-effective to immunize 12-year old 

girls (Stray-Pedersen 1982). 

During 2012, CRS was estimated to cost between 4,200 and 57,000 US dollar per 

case annually in middle-income countries, and up to $140,000 over a lifetime in high-

income countries (Babigumira et al. 2013). Nonetheless, even with the relatively low 

price of RV vaccines (especially when supplied by UNICEF or subsidised by GAVI) 

developing countries are still slow to add RV vaccines to their national immunization 

schedules. A recent study (Babigumira et al. 2013) suggested that this could be due to 

the fact that public health interventions in many of these developing countries might 

be more cost-effective. Additionally, when vaccine coverage (less then 80%) 

sufficiently decreases viral circulation in a population, there could be a shift in 

susceptibility from children to young mothers, and countries could be at risk of 

increasing the incidence of CRS (Schoub et al. 2009). By 2011, measles vaccination 

already formed part of the routine immunization schedule of all developing countries 

and substituting monovalent measles vaccines for measles-rubella-containing vaccine 

(MR) or MMR, could serve as a means of eliminating RV (World Health 

Organization 2011). 
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2. METHODS 

2.1 Assembly of Rubella virus datasets 
Sequences analysed in this thesis (sampled between 1961-2013) were retrieved from 

the NCBI GenBank (see Appendix 1 for Python script used to retrieve publically 

available sequences). Consequently, all sequence accession numbers used refer to 

those of the NCBI GenBank. Alignments of the RV datasets described below were 

performed using MUSCLE (Edgar 2004) and subsequently manually edited using 

MEGA v5.05 (Tamura et al. 2011). 

Fourteen separate RV multiple sequence alignment datasets were analysed  

(see Table 4): (dataset i) a full genome dataset, containing a representative sample of 

RV genotypes, was generated to predict the presence of genome-wide nucleic acid 

secondary structural elements. At the time of the analysis, only 34 full genome 

sequences were available in GenBank, excluding vaccine strains and multiple 

sequences generated from particular isolates. The reason that only ten of the 34 

available full genome sequences were selected for the prediction of genome-wide 

nucleic secondary structural elements was to reduce the computational burden 

imposed by the Nucleic Acid Structure Prediction (NASP) software (Semegni et al. 

2011). These ten sequences were selected from distinct clades within a neighbour 

joining phylogenetic tree (calculated using MEGA v5.05; Tamura et al. 2011) after 

which the most divergent sequences within each of the selected clades were identified 

using pairwise genetic distances (calculated using SDT v1.0; Muhire et al. 2013;  

see Appendix 2). 

Since recombination can have a pronounced undesirable effect on the accurate 

inference of phylogenetic trees (Schierup and Hein 2000; Posada and Crandall 2002), 

the estimation of precise nucleotide substitution rates (Martin et al. 2011) and the 

inference of positive selection (Anisimova et al. 2003), I opted to test the effect of 

recombination on my RV genome-wide nucleotide substitution rate estimates, by 

creating both (dataset ii) a full genome recombination-included (RI) dataset 
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containing 34 full genome sequences and (dataset iii) a full genome recombination-

free (RF) dataset containing 32 full genome sequences from which the two sequences 

identified by the computer program RDP v4.17 (Martin et al. 2010) as having been 

derived through recombination were excluded. 

Table 4.  Summary description of the various datasets used in the thesis (also see Appendix 3). 

Dataset Description Acronym Number of 
sequences 

Temporal 
range 

Alignment 
length 

i Full genome, representative sample 
containing 10 Rubella virus 
genotypes (extracted from dataset ii) 

- 10 1961-2008 9762 nt 

ii Full genome (not tested for 
recombination) 

Full Genome RI 34 1961-2009 9762 nt 

iii Full genome (without 2 detected 
recombinant isolates) 

Full Genome RF 32 1961-2009 9762 nt 

iv Capsid structural protein CP 52 1961-2009 900 nt 

v RNA-dependent RNA polymerase RdRp 56 1961-2009 672 nt 

vi Envelope glycoprotein 2 E2 54 1961-2009 846 nt 

vii P150 non-structural protein P150 34 1961-2009 3943 nt 

viii Envelope glycoprotein 1 E1 640 1961-2012 739 nt 

ix Unbiased envelope glycoprotein 1, 
extracted from dataset ii 

Unbiased E1 34 1961-2009 739 nt 

x Temporally balanced envelope 
glycoprotein 1 

Temporally 
Balanced E1 

45 1961-2012 739 nt 

xi Envelope glycoprotein 1, without 2 
detected recombinant isolates 
and 437nt NASP predicted base-
paired nucleotide sites 

E1 RF UnPR 638 1961-2012 302 nt 

xii Envelope glycoprotein 1, without 2 
detected recombinant isolates, 
containing only 437nt NASP 
predicted base-paired nucleotide sites 

E1 RF PR 638 1961-2012 437 nt 

xiii Full genome, without 2 detected 
recombinant isolates and 1960nt 
NASP predicted base-paired 
nucleotide sites. 

Full Genome RF 
UnPR 

32 1961-2009 7802 nt 

xiv Full genome, without 2 detected 
recombinant isolates, containing 
only 1960nt NASP predicted base-
paired nucleotide sites 

Full Genome RF 
PR 

32 1961-2009 1960 nt 
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For the NSP and SP datasets, the various gene regions were excised from the 

available 34 full genome sequences, and supplemented by additional publically 

available sequences from GenBank for the specific gene region of interest. The result 

being (dataset iv) a Capsid gene region dataset (CP) containing 52 sequences (dataset 

v) a RNA-dependent RNA polymerase (RdRp) gene region dataset containing 56 

sequences. Only 672nt of the full 2445nt RdRp gene region was used for analyses, as 

some of the supplementary sequences did not contain the entire gene region. (dataset 

vi) an E2 gene region dataset (E2) containing 54 sequences (vii) a P150 gene region 

dataset containing 34 sequences, and (dataset viii) an E1 gene region dataset (E1) 

containing 640 sequences. The 739nt used during analysis of the E1 gene region 

correspond to the RV genotyping window, and is therefore the most sampled dataset. 

However, since only 5% of the sequences within the E1 gene region dataset were 

collected prior to 1990, it is likely that the estimated nucleotide substitution rates (the 

rate at which persistent mutations become fixed in a population) still comprise 

mutations which are yet to be purged from the sampled population by neutral genetic 

drift, consequently resulting in inflated nucleotide substitution rate estimates (Duffy 

et al. 2008). Similarly, the maintenance of nucleic acid secondary structures within 

single-stranded RNA molecules potentially also impose significant constraints on the 

evolutionary dynamics of the underlying nucleotide sequences, as the structures exist 

as meta-stable conformations. Thus, to test the effect of temporal bias within my E1 

gene region dataset and investigate the constraints imposed on nucleotide substitution 

rate estimates by nucleic acid secondary structures, I created (dataset ix) an unbiased 

E1 dataset containing only the E1 gene region, extracted from the 34 full genome 

recombination-included (RI) dataset sequences (dataset x) and temporally balanced 

E1 datasets (see Appendix 4 for the Python script written to generate the temporally 

balanced datasets) containing 53 sequences. To generate the temporally balanced E1 

datasets, I sorted the E1 gene region dataset sequences into their respective decades 

and a maximum of 13 sequences from each decade were randomly selected for 

analysis, as this was the actual number of sequences available from the 1960s. As 
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only two and three sequences were available from the 1970s and 1980s, respectively, 

I decided to include all of these sequences. This random selection process was 

repeated to generate 10 replicate datasets, each of which was analysed independently. 

Furthermore, I created (dataset xi) an E1 recombination-free dataset of 638 sequences 

with all nucleotide sites removed that were predicted to be base-paired within nucleic 

acid secondary structures identified by the computer program NASP (E1 RF UnPR), 

(dataset xii) an E1 recombination-free dataset of 638 sequences containing only sites 

that were predicted by NASP to be base-paired (E1 RF PR), (dataset xiii) a full 

genome recombination-free dataset of 32 sequences with all sites removed that were 

predicted to be base-paired within nucleic acid secondary structures (Full Genome RF 

UnPR) and (dataset xiv) a full genome recombination-free dataset of 32 sequences 

containing only sites that were predicted by NASP to be base-paired (Full Genome 

RF PR). See Figure 7 for the relationship between these datasets, as well as an 

analysis pipeline of the software and methods used during this thesis. 

 

2.2 Evolutionary model selection 
The best-fit nucleotide substitution model was estimated using model test as 

implemented in MEGA v5.05, and the degree of clock-like evolution evident within 

the analysed sequence datasets was evaluated using root-to-tip genetic distance  

vs. sampling date regression analyses as implemented in the computer program,  

Path-O-Gen v1.4 (available from http://tree.bio.ed.ac.uk/software/pathogen/; 

Drummond et al. 2003). Identification of the best-fit combined molecular clock and 

demographic model was determined using Bayes factor (BF) tests, calculated as the 

ratio of the marginal likelihoods of the alternative models as determined using the 

computer program Tracer v1.5 (Rambaut et al. 2009). 
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Figure 7. Graphical representation of the analysis pipeline. Sequence alignments and datasets were 

prepared using MEGA v5.05. SDT v1.0 was used to calculate pairwise genetic distances between 

sequences and the NASP method implemented to predicted potentially paired sites across the Rubella 

virus genome. GARD and RDP v4.17 was utilised to detected potential recombination breakpoints, 

which served as input for the selection analysis methods (PARRIS, FUBAR, and SPIDERMONKEY). 

Both PARRIS and FUBAR were used to determine synonymous substitution rates across the coding 

regions, whereas SPIDERMONKEY was used to detect sites which may be coevolving while still 

mainting complementary base-pairings. DOOSS v1.0 was used to rank and annotate the NASP 

predicted nucleic acid secondary structures from the FUBAR and SPIDERMONKEY results.  

BEAST v1.8 was implemented to estimate nucleotide substitution rates and the time to the most recent 

common ancestors (TMRCA) and the resulting trace files analysed in TRACER. Finally, the BEAST 

generated maximum clade credibility (MCC) tree files were summarised and annotated using FigTree. 
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2.3 Identification of nucleic acid secondary structures within 
Rubella virus genomes 
Nucleic acid secondary structures are created through the formation of hydrogen 

bonds between complementary bases of a nucleotide sequence. Extensive nucleic acid 

secondary structures exists within the genomes of many mammalian and plant single-

stranded RNA viruses (Simmonds et al. 2004) with the most biologically relevant 

structural elements displaying high degrees of conservation. Within viral RNA 

genomes such as RV, the collection of pairings between complementary bases (A-U, 

C-G and G-U;;   the   latter   being   referred   to   as   a   weak   ‘wobble’   pair)   allows   single-

stranded RNA molecules to assume a meta-stable structural conformation. 

RV genomes contain a number of known biologically functional genomic secondary 

structures (Dominguez et al. 1990; Nakhasi et al. 1994; Pogue et al. 1996; Chen and 

Frey 1999; Zheng et al. 2003). However, these genomes have an extremely high GC 

content and it is therefore likely that they may contain additional currently 

uncharacterised evolutionarily conserved structures that might in turn, constrain 

nucleotide substitution rates. Thus, to identify these evolutionarily conserved RV 

nucleic acid secondary structures, I implemented the computer program NASP 

(Semegni et al. 2011) using the default settings.  

NASP utilised the hybrid-ss software (Markham and Zuker 2008) to predict groups of 

plausible secondary structural elements present within the ten RV full genome 

sequences that were previously identified from a neighbour joining phylogenetic tree 

(calculated using MEGA v5.05; Tamura et al. 2011) and pairwise genetic distances 

(calculated using SDT v1.0; Muhire et al. 2013) as reflecting the most representative 

sample of RV genotype diversity (dataset i; see Appendix 2 and 3). If it can be 

assumed that RV genomes have evolved to form meta-stable nucleic acid secondary 

structures, then randomly shuffling nucleotides within these genomes would 

influence their base pairing potential, resulting in higher minimum free energies 

(MFE) estimates. Thus, to establish support for the predicted structures, NASP 

implemented a series of randomised nucleotide-shuffling permutation tests to 
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determine which of the structures represent predicted folds associated with lower 

minimum free energies (MFE) estimates than could be accounted for by chance. 

These are collectively referred to as the high confidence structure set (HCSS). 

To assess whether individual nucleotides predicted to be base-paired (within the high 

confidence structure set) were coevolving in a way consistent with selection 

favouring the maintenance of complementary base-pairing, I used a modification 

(Muhire et al. 2014) of the SPIDERMONKEY (Poon et al. 2008) method. 

Synonymous nucleotide substitution rates at the third codon position within coding 

regions were subsequently estimated using the maximum likelihood phylogenetic-

based selection characterization methods PARRIS (Scheffler et al. 2006) and FUBAR 

(Murrell et al. 2013). Third codon positions were utilised by PARRIS and FUBAR as 

only 30% of nucleotide changes at this position result in non-synonymous 

substitutions, whereas nucleotide changes at the first and second codon position will 

result in non-synonymous substitutions 96% and 100% of the time, respectively. 

The NASP predicted structural elements were visualised using DOOSS v1.0 (Golden 

and Martin 2013) and ranked in order of their likely biological functionality 

according to the: (i) associated degrees of conservation (determined by NASP); (ii) 

degrees of synonymous substitution rate reduction at codon sites containing paired 

nucleotides (determined by PARRIS; Scheffler et al. 2006); (iii) degree of 

complementary coevolution between nucleotides predicted to be base-paired, as 

determined by a SPIDERMONKEY-based method (Poon et al. 2008) described in 

Muhire et al. (2014). 

I also tested for evidence of genome-wide associations between (i) base-paired 

nucleotides (within the high confidence structure set) and decreased synonymous 

substitution rates, and (ii) base-paired nucleotides (within the high confidence 

structure set) and nucleotide sites coevolving to maintain complementary base-

pairings. The former was tested using a Mann Whitney U-test to compare median 

synonymous nucleotide substitution rate estimates (determined by PARRIS) at third 

codon positions between paired and unpaired sites whereas the latter employed a 
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Fishers exact test to find associations between nucleotide sites coevolving to maintain 

complementary base-pairings (determined by the SPIDERMONKEY-based method) 

and base-pairing between nucleotide site pairs (determined by NASP). 

 

2.4 Detection of sporadic Rubella virus recombination 
To account for the potentially confounding effects of recombination on RV 

nucleotide substitution rate estimates, I analysed the 34 sequence full-genome and 

640 sequence E1 datasets (dataset ii and viii, respectively) for evidence of inter and 

intra-strain recombination using RDP v4.17. Using this program I was able to 

characterise probable recombination events, identify recombinants and likely parental 

sequences, and localize possible recombination breakpoints. Only potential 

recombination events detected by three or more out of the seven independent 

recombination detection methods implemented in RDP v4.17 were considered as 

genuine recombination events. The Genetic Algorithm for Recombination Detection 

(GARD; Kosakovsky Pond et al. 2006) was also used to detect recombination 

breakpoints during the previously mentioned PARRIS and FUBAR analyses (dataset 

ii). Similarly, the SPIDERMONKEY-based analyses was performed on the 

recombination-free datasets produced by RDP v4.17. 

 

2.5 Positive selection analysis 
Because positive selection results in the fixation of advantageous mutations at a faster 

rate than neutral mutations, it can have a pronounced undesirable effect on the 

accurate estimation of precise long-term nucleotide substitution rates. To test whether 

there is evidence for positive selection acting at codon positions within the RV 

genome, I analysed the full genome recombination-included (RI) dataset (dataset ii) 

using the fixed effects likelihood-based parametric selection inference method 

(FUBAR) implemented on the DATAMONKEY website (available from 

http://www.datamonkey.org/; Delport et al. 2010). 
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2.6 Bayesian phylogenetic analysis 
A Bayesian Markov chain Monte Carlo (MCMC) method implemented in  

BEAST v.1.8.0 (Drummond and Rambaut 2007; Drummond et al. 2012) was used to 

estimate the overall nucleotide substitution rates (in contrast to the previously 

estimated synonymous nucleotide substitution rates exclusively at all third codon 

position) and the times to the most recent common ancestors (TMRCAs) for datasets 

ii-xiv (Table 4, Appendix 3). BEAST is a flexible probabilistic method for testing 

hypotheses and estimating evolutionary parameters, such as nucleotide substitution 

models, demographic models and molecular clocks, from an inferred posterior 

distribution of phylogenetic trees measured through time.  

Four different evolutionary models were investigated, including either a non-

parametric (Bayesian skygrid plot; BSP; Gill et al. 2013) or parametric (constant 

population size; Kingman 1982) demographic model together with a strict (a 

molecular clock model adopts uniform nucleotide substitution rates across all 

ancestral branches of a phylogenetic tree) or uncorrelated lognormal relaxed 

molecular clock model (a molecular clock model that permits rate variation among all 

branches of a phylogenetic tree, uncorrelated to the rate of the ancestral branch). For 

each dataset, between three and ten independent replicate runs of a Markov chain 

were performed using BEAST, ranging between 2.0×106 and 4.0×108 steps in length. 

All analyses were continued until the effective sample sizes (ESS) of all relevant 

model parameters were above 200: a criterion encompassing the number of 

uncorrelated parameter samples and the speed at which sampling occurred prior to 

convergence of the Markov chain Monte Carlo (MCMC) method to stationarity. 

When similar results were obtained from independent runs of the Markov chain, these 

were combined using LogCombiner v1.8.0, which is available in the BEAST package 

(Drummond and Rambaut 2007; Drummond et al. 2012).  

Bayes factor tests, which compares the ratio of the marginal likelihoods between two 

independent models, were implemented to identify the best-fit clock and demographic 

model. Unlike other methods of testing (such as likelihood ratio tests and Akaike 
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Information Criterion), Bayes factor tests allow the comparison of non-nested models 

(non-parametric Bayesian skygrid plot vs. parametric constant population size 

demographic models). 

 

2.7 Phylodynamics of Rubella virus 
As nucleotide sequences contain  a  “molecular  footprint”  of historical adaptations and 

geographical spread (Holmes 2004), I decided to reconstruct the RV spatiotemporal 

history of the 640 sequence E1 gene region dataset using a symmetrical diffusion 

model (Lemey et al. 2009) and Bayesian MCMC method implemented in BEAST 

v1.8.0. The diffusion model considers the geographical spread among a finite number 

of discrete sampling locations and accounts for uncertainty both in the evolutionary 

relationships of the analysed sequences, and in the geographical locations of ancestral 

sequences. This is achieved by modelling the locations for taxa as continuous-time 

Markov chains (CTMCs). Using this method, it is possible to predict when, where 

and with what degree of certainty ancestral RVs most likely existed. Bayes factor 

(BF) tests with a cut-off of BF = 5.0 were performed, using the computer program, 

SPREAD v1.0.6 (available from http://www.phylogeography.org/SPREAD.html; 

Bielejec et al. 2011), to evaluate the relative degree of statistical support for inferred 

epidemiological linkages between sampling locations (BF > 100 represents decisive 

support; BF > 5.0 represents substantial support; BF < 5.0 represents negligible 

support). To further quantify the spatial spread and assess source-sink dynamics, 

“Markov  jump  counts”  were  implemented (Minin and Suchard 2008), which permits 

a measure of both the number of transitions among sampling locations (Markov 

jumps) and the waiting times between these transitions (Markov rewards).  

To improve computational performance on the large E1 gene region dataset, I 

capitalised on the BEAGLE v2.1 (Ayres et al. 2012) high-performance phylogenetic 

library in conjunction with BEAST. In addition, by subdividing sequences into 

clusters of geographically proximate sampling locations, I was able to include all 
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sequence data while keeping the number of samples per location as balanced as 

possible. To optimally define groups of sequences displaying definite geographical 

clustering, I used the sampling geocoordinates and a hierarchical clustering method 

(called hclust; see Appendix 5) implemented in R (R Development Core Team 2008). 

The geocoordinates at the centroids of 11 discrete geographical clusters identified by 

this approach were used as the sampling locations for phylogeographic analyses 

performed in this thesis. 

Tools available in SPREAD v1.0.6 were used to produce a graphical animation in 

.kml (key markup language) file format of the spatio-temporal movement dynamics 

of ancestral RV sequences. These .kml files contain information on statistically 

supported routes and times of virus movements as identified using Bayes factor tests 

(BF > 5), and can be viewed using Google Earth (available from 

http://earth.google.com). 

By adopting a probabilistic model-based approach developed by Lemey et al. (2014), 

I also tested a range of pre-defined predictive variables and identified the key drivers 

of geographical RV spread. To achieve this, I employed a generalized linear model 

(GLM), which parameterizes rates of pairwise location movements as a log linear 

function (Lemey et al. 2014). This method uses nucleotide sequence data to determine 

the predictive variables (among those investigated) with the most explanatory power 

and estimate their effective contributions in explaining the inferred patterns of 

phylogeographic spread. In this regard, several predictive variables were considered, 

including log-transformed measures of geographical distance, demographic and 

economic data, the average number of years of education completed and location 

sample sizes. To account for temporal changes in predictor measurements between 

1961-2013 (which currently might only be fully assessed using an extremely 

parameter-rich discrete epoch approach, Bielejec et al. 2014; not implemented in this 

thesis), I opted to average values for each sampling location across their entire range.  

 

 

 

 

 

 



 
 

34 

This could be done, since the relative differences remain similar over the time period, 

and all predictive variables are standardized (with a mean of 0 and a variance of 1) 

after log-transformation. Subsequently, these values were aggregated to obtain a 

single discrete value per geographical cluster. 

The predictive variables of geographical RV spread implemented in the GLM 

include: 

(i) Geographical distance. To assess whether geographical proximity could 

predict RV spread, I calculated great circle distances (as the crow flies) 

between the centroids of all pairs of geographical clusters, using a R-script 

(see Appendix 6).  

(ii) Level of education. Education is a major component of social and 

economical well-being, irrespective of whether a country is classified as 

developed or developing. Consequently, the World Bank Education Index, 

calculated from the mean and expected years of schooling, was used as 

empirical data for including this predictor into the GLM 

(http://knoema.com/WBKEI2013/knowledge-economy-index-world-bank-

2012?tsId=1017860). 

(iii) Vaccination coverage. Data reported from the WHO Immunization Summary 

(http://www.childinfo.org/files/immunization_summary_2012_en.pdf) was 

used to determine whether RV-containing vaccines were included in the 

national childhood immunization schedule for each sampling location 

considered. For countries utilizing the combination MR or MMR, estimates 

for RV vaccination coverage were based on the WHO-UNICEF estimates 

(http://www.who.int/gho/immunization/measles/en/) of first dose measles-

containing vaccine. 

(iv) Population size and density. Estimates on population sizes and densities per 

sampling   location,   measured   as   “thousands”   and   “number   of   people   per  

square   metre”,   were obtained from the United Nations World Population 

Prospects. 
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(v) Annual gross national income (GNI) per capita. Estimates for the historical 

income level of each geographical cluster were obtained from the World Bank. 

(vi) Sample sizes. To test whether sample sizes differences had any potential to 

bias my estimations, I considered sampling sizes at both the origin and 

destination of each geographical cluster separately.  
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3. RESULTS AND DISCUSSION 

3.1 Biologically relevant nucleic acid secondary structures within 
Rubella virus genomes 
NASP identified 661 potentially conserved nucleic acid secondary structural 

elements; 121 of which, account for >95% difference in the estimated minimum free 

energy between the actual sequences and the randomised versions of the sequences. 

Collectively, these formed the high confidence structure set (HCSS) upon which I 

focused further analyses. Furthermore, approximately 21% of the nucleotides within 

the 121 conserved structural elements of the HCSS were predicted to be base-paired 

(Figure 8 and Table 5).  

Well-supported nucleic acid secondary structural elements within the HCSS were 

identified in both the NSP and SP coding gene regions, with the majority inferred to 

have occurred in the SP ORF (Figure 8; Table 5). All four of the previously 

characterised RV genomic structural elements (within RV coding regions) were 

within the top 20 of those highlighted in the DOOSS consensus ranking. In this 

ranking, structures (Appendix 7) are ordered according to their associated degrees of 

conservation, synonymous substitution rate reduction at codon sites containing paired 

nucleotides and the amount of evidence for complementary coevolution between 

nucleotides predicted to be base-paired (see Methods section). In the SP coding gene 

region, two well-characterized structural elements known to be involved in 

calreticulin binding (Chen and Frey 1999) were ranked first and seventh (Figure 9) 

and a structural element serving as a template for the sub-genomic RNA promoter on 

the negative-sense strand (Tzeng and Frey 2002) was ranked fourth. In the NSP gene 

coding region, a structural element promoting genomic positive strand synthesis 

(Pugachev and Frey 1998b), was ranked eighteenth (Table 5). Notably, whereas four 
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Figure 8. Genome-wide predicted high confident structure set and synonymous substitution rates. Pairs of vertical lines above the genome 
represent the base-paired nucleotide regions within the high confidence structure set (HCSS; Table 5) whereas the positions of the fifteen highest 
ranked structures are indicated by arrows (see Methods). Genome coordinates are displayed on the x-axis. The vertical lines below the gene map 
indicate site-to-site variation in synonymous nucleotide substitution rate estimates (see colour key on right). Blue and green coloured lines represent 
codon sites displaying elevated or reduced synonymous nucleotide substitution rates, respectively, relative to the mean. 
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of the top 10 ranked structures were situated within the E1 gene region (including the 

three highest ranked structures), none of the top 20 ranked structures were located in 

the E2 NSP region (Figure 8). 

  

Figure 9. Example of NASP predicted nucleotide secondary structures of Rubella virus. This 
structure (labelled SL2) has been previously proposed (Chen and Frey 1999) to interact with 
human calreticulin (CAL). The rank refers to the DOOSS consensus rank of the specific predicted 
nucleotide secondary structure as it forms part of the high confidence structure set (HCSS; see 
Figure 8 and Table 5). Site-to-site variations in synonymous nucleotide substitution rates are 
indicated by colours ranging from blue to green (see colour key). Nucleotides falling outside the 
coding region are shaded in grey. The proposed CAL binding site (U-U bulge), is highlighted in 
orange, while the region critical for RV-CAL interaction and the stop codon are highlighted in 
purple and red, respectively. 
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Consensus Rank Coordinates 1 Structure length (nt) Proposed biological function 

1 9576-9614 38 Involved in CAL binding (E1)2 

2 9469-9518 49 - 

3 9304-9333 29 - 

4 6483-6517 34 Subgenomic promoter (CP)3 

5 96-136 40 - 

6 2289-2390 101 - 

7 9679-9701 22 Involved in CAL binding (E1)2 

8 140-253 113 - 

9 2321-2347 26 - 

10 822-974 152 - 

11 853-942 89 - 

12 6845-6871 26 - 

13 847-949 102 - 

14 5875-5903 28 - 

15 6596-6621 25 - 

16 204-230 26 - 

17 148-247 99 - 

18 15-66 51 (5' UTR - P150)4 

19 9477-9510 33 - 

20 9261-9294 33 - 

21 6329-6374 45 - 

22 9614-9629 15 - 

23 4999-5022 23 - 

24 1929-1955 26 - 

25 4261-4317 56 - 

26 8229-8283 54 - 

27 9064-9221 157 - 

28 8004-8545 541 - 

29 4378-4411 33 - 

30 8146-8385 239 - 

31 8173-8203 30 - 

32 6260-6309 49 - 

Table 5. Consensus ranking of NASP predicted high confidence structure set (HCSS) 
structural elements across the entire Rubella virus genome. 
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Consensus Rank Coordinates 1 Structure length (nt) Proposed biological function 

33 153-190 37 - 

34 8207-8366 159 - 

35 286-309 23 - 

36 1385-1412 27 - 

37 7321-7337 16 - 

38 7122-7159 37 - 

39 7296-7320 24 - 

40 3320-3345 25 - 

41 565-2948 2383 - 

42 8839-8868 29 - 

43 8040-8097 57 - 

44 6274-6297 23 - 

45 9076-9191 115 - 

46 7237-7259 22 - 

47 6441-6472 31 - 

48 7001-7022 21 - 

49 4239-4330 91 - 

50 4792-4815 23 - 

51 8773-8822 49 - 

52 1866-1884 18 - 

53 416-433 17 - 

54 25-56 31 - 

55 6707-6746 39 - 

56 165-182 17 - 

57 4561-5165 604 - 

58 194-239 45 - 

59 3594-3622 28 - 

60 4622-4641 19 - 

61 1903-1970 67 - 

62 3494-3637 143 - 

63 898-914 16 - 

64 731-749 18 - 

65 4124-4151 27 - 

Table 5. continued. 
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Consensus Rank Coordinates 1 Structure length (nt) Proposed biological function 

66 1078-1106 28 - 

67 492-511 19 - 

68 8409-8433 24 - 

69 6757-6779 22 - 

70 4496-4514 18 - 

71 1839-1899 60 - 

72 7732-7757 25 - 

73 7387-7533 146 - 

74 4445-4459 14 - 

75 5590-5607 17 - 

76 341-357 16 - 

77 9437-9466 29 - 

78 9489-9502 13 - 

79 1423-1578 155 - 

80 8830-8874 44 - 

81 7081-7188 107 - 

82 4822-4838 16 - 

83 30-47 17 - 

84 5989-6203 214 - 

85 3642-3728 86 - 

86 2642-2672 30 - 

87 7434-7457 23 - 

88 1718-1737 19 - 

89 870-931 61 - 

90 4711-4739 28 - 

91 319-375 56 - 

92 5664-5716 52 - 

93 2748-2767 19 - 

94 5658-5722 64 - 

95 4573-5154 581 - 

96 4667-4685 18 - 

97 4771-4845 74 - 

98 6067-6159 92 - 

Table 5. continued. 
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Consensus Rank Coordinates 1 Structure length (nt) Proposed biological function 

99 3979-4008 29 - 

100 4764-4852 88 - 

101 8910-8953 43 - 

102 3898-3927 29 - 

103 1743-1770 27 - 

104 5515-5538 23 - 

105 5032-5063 31 - 

106 3542-3567 25 - 

107 3127-3210 83 - 

108 8765-8828 63 - 

109 3783-3874 91 - 

110 1180-1344 164 - 

111 595-614 19 - 

112 8467-8506 39 - 

113 8795-8813 18 - 

114 9394-9410 16 - 

115 2956-2997 41 - 

116 4331-4431 100 - 

117 4778-4820 42 - 

118 7648-7674 26 - 

119 2017-2124 107 - 

120 6018-6039 21 - 

121 4274-4298 24 - 
 

1 Coordinates in reference sequence [GenBank: JN635281]. 

2 Chen,   M,   Frey,   T.   1999.   “Mutagenic   analysis   of   the   3′   cis-acting elements of the rubella virus 
genome.”  J Virol 73:3386–403. 

3 Tzeng,  W,  Frey,  T.  2002.  “Mapping the rubella virus subgenomic promoter.”  J Virol 77:3189-201 

4 Pugachev, K, Frey, T. 1998. “Effects  of  defined  mutations  in  the  5′  nontranslated  region  of  rubella  
virus genomic RNA on virus viability and macromolecule synthesis.” J Virol, 72:641–50.  

Table 5. continued. 
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3.2 Coevolution selection tests and synonymous nucleotide 
substitution rate estimates at base-paired vs. unpaired sites 
Given the very high GC contents of RV genomes, it is expected that they will have a 

reasonably high degree of nucleic acid secondary structure irrespective of any 

potential roles on the biology of this virus. If most of the detected structural elements 

have no biological function, then there should be little evidence of natural selection 

operating to maintain these structures. If, however, base-paired nucleotides within 

structural elements are either evolving under stronger negative selection than 

unpaired sites (selection against change), or are co-evolving with their base-paired 

partners (i.e. they are evolving non-independently), this could plausibly have an effect 

on nucleotide substitution rate estimates. 

To test this hypothesis I used the FUBAR (Murrell et al. 2013) and  

PARRIS (Scheffler et al. 2006) methods to estimate RV synonymous nucleotide 

substitution rates within the NSP and SP coding gene regions (see Figure 8).  I 

specifically tested for evidence of selection against synonymous substitutions at 

codons containing   paired   nucleotides   at   their   third   positions   (referred   to   as   “paired  

codon   sites”).   Using   a   Mann-Whitney U-test, I compared median estimated 

nucleotide substitution rates at paired and unpaired codon sites. These tests revealed 

that both the NSP and SP coding gene regions displayed significantly lower 

synonymous nucleotide substitution rates at paired codon sites than at unpaired codon 

sites (PARRIS p-value = 2.288×10-2 and FUBAR p-value = 4.068×10-5 for the SP 

coding gene region; PARRIS p-value = 5.205×10-3 and FUBAR p-value = 1.118×10-6 

for the NSP coding gene region). 

To further test whether base-paired sites were co-evolving so as to maintain 

complementary nucleotide base-pairings, I used a SPIDERMONKEY-based method 

(Poon et al. 2008; Muhire et al. 2014). Consequently, I found a significant association 

between the NASP predicted base-paired nucleotide sites (within the high confidence 

structure set; HCSS) and genomic sites predicted to be coevolving with one another 

in a complementary fashion (using the SPIDERMONKEY-based method; p-value = 
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2.2×10-16). Although this finding suggests that a large proportion of nucleotides 

within RV genomes are not independently evolving, it is not possible to quantify the 

ratio of sites co-evolving against those that are not, using this method. 

These results then suggest that the 117 previously unreported structures predicted by 

NASP are likely biologically relevant as their constituent nucleotides are not evolving 

in a strictly neutral fashion. It is however not possible to determine, based on these 

analyses, which individual structural elements are biologically functional, as this 

would require further validation (using SHAPE analysis to confirm the existence of 

the NASP predicted nucleotide secondary structures; Wilkinson et al. 2006) and 

extensive molecular testing (using mutagenesis; Shepherd et al. 2005) which is 

beyond the scope of this thesis. 

 

3.3 Recombination within Rubella virus genome sequences 
Since recombination undermines the accuracy of phylogenetic inference  

(Schierup and Hein 2000; Posada and Crandall 2002), and some evidence of 

recombination has previously been reported in the RV sequences deposited in 

sequence databases (Zheng et al. 2003; Zhou et al. 2007; Abernathy et al. 2013),  

I opted to scan my datasets for evidence of recombinant sequences. Collectively, 

evidence of only two recombinant sequences were identified; [GenBank:JN635285; 

isolated in USA in 1988] and [GenBank:AF435866; isolated in Slovakia in 1974]. 

I detected a previously unreported intra-genotype (1a) recombination event within the 

P150 NSP gene region of isolate [GenBank:AF435866] (Figure 10A), which is 

currently provisionally classified as genotype 1a, and has not previously been 

investigated for evidence of recombination using a full genome sequence. It is 

noteworthy that the sequence for isolate [GenBank:AF435865, isolated in Germany 

in 1984], which was identified by RDP4.17 as the isolate that contributed a large 

nucleotide segment to the detected recombinant isolate sequence  
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Figure 10. Pairwise identity plots of the potential recombination events detected in the 34 sequence 
full genome Rubella virus dataset. The non-structural and structural coding gene regions are shown 
above each plot in brown and green boxes, resprectively. The y-axis represents the mean pairwise identity 
between the compared sequences within a 30-nucleotide window, moved one nucleotide at a time along the 
length of the genome. Pairwise comparisons between the major (isolate contributing a larger segment of 
nucleotide sequence) and minor (isolate contributing a smaller segment of nucleotide sequence) parental 
sequences are shown in orange, between the major parental sequence and the detected recombinant 
sequences in blue, and between the minor parental sequence and the detected recombinant sequences, in 
purple. The area outlined in pink demarcates the boundries of the potential recombinant regions (P value < 
0.05). 
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[GenBank:AF435866], was determined in the same laboratory (Hofmann et al. 2003) 

as [GenBank:AF435866] – a fact which suggests that [GenBank:AF435866] may be a 

laboratory artefact rather than a genuine natural recombinant (Han and Worobey 

2011). I also detected significant evidence for an inter-genotype recombination event 

within the NSP P150 gene region of sequence [GenBank:JN635285] (Figure 10B), 

which is consistent with the results of Abernathy et al. (2013). 

 

3.4 Positive selection within Rubella virus coding regions         
In contrast to the results of a previous study (Hofmann et al. 2003), my analysis of 

selection pressures acting on individual codon sites using the FUBAR method found 

no significant evidence (highest posterior probability = 0.77 that dN/dS >1) of sites 

within the RV coding regions that were detectably evolving under positive selection 

pressure. Instead, around 91% of the NSP and 81% of the SP gene coding region 

sites, respectively, were inferred to be evolving under negative selection pressure 

with posterior probability estimates of greater then/equal to 0.9. This finding is 

consistent with results obtained by Zhou et al. (2007).   

 

3.5 Temporal structure of Rubella virus genome sequences  
The degree of clock-like evolution evident within the various sequence datasets was 

analysed using root-to-tip genetic distance versus sampling date regression analyses 

with the computer program, Path-O-Gen v1.4 (Drummond et al. 2003; Rambaut 

2013). These analyses revealed high degrees of temporal structure in all datasets as 

evidenced by correlation coefficients ranging between 0.9 (for the full genome 

recombination-included (RI) dataset) and 0.67 (for the E1 dataset) [datasets ii and 

viii, respectively, see Methods section].  In the absence of pervasive recombination 

and positive selection, this indicated that all of the assembled datasets could be 

productively used to produce unbiased estimates of nucleotide substitution rates and 

times to the most recent common ancestors (TMRCAs).  
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3.6 Nucleotide substitution rates across the Rubella virus genome 
Also consistent with previous studies (Zhou et al. 2007; Abernathy et al. 2013), the 

best fit nucleotide substitution models for the different RV datasets were TN93 with 

either a calculated proportion of invariant sites (I) or gamma distributed rate variation 

(G). For all analysed datasets (see Appendix 3) the uncorrelated lognormal relaxed-

clock models had significantly higher likelihoods than the strict-clock models under 

both demographic models tested (constant population size, Bayesian skygrid plot). 

However, both demographic models fitted the data equally well.  

Of the genomic regions analysed, the E1 SP-coding gene region  displayed the 

highest estimated nucleotide substitution rate (1.19×10-3 substitutions/site/year; 95% 

highest posterior density (HPD) Bayesian confidence intervals = 1.04×10-3 – 

1.35×10-3), and the P150 NSP region the lowest (7.52×10-4 substitutions/site/year; 

95% HPD = 5.85×10-4 – 9.26×10-4; Figure 11A). All of these estimates, with the 

exception of the E1 gene region (dataset viii), had substantially overlapping 95% 

HPD’s  with   the   rates   reported   previously   for  RV  by   Jenkins   et   al.   (2002). The E1 

gene region nucleotide substitution rate estimate was however roughly twice as high 

as that previously estimated using a dataset of 50 sequences sampled between 1961 

and 2001 (Jenkins et al. 2002). Nevertheless, all of my estimates were substantially 

lower than the rates reported for the E1 gene region within RV genotype 1E isolates 

sampled in China between 2001 and 2009 (Zhu et al. 2011). 

Similar genome-wide nucleotide substitution rate estimates to those reported here 

have also been reported for Chikungunya virus (Cherian et al. 2009; Volk et al. 2010; 

Suwannakarn et al. 2011), another Togavirus in the genus Alphavirus, using the same  
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Figure 11. Nucleotide substitution rate and mean TMRCA estimates for the different Rubella 
virus sequence datasets. A. Nucleotide substitution rate estimates for the different Rubella virus 
datasets under the appropriate nucleotide substitution model run under a constant population size and 
relaxed-clock evolutionary model.  B. Estimates of the time to the most recent common ancestor 
(TMRCA) for the different Rubella virus sequence datasets under a constant population size and an 
uncorrelated lognormal relaxed molecular clock model. 
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methods of estimation as those employed here. However, it is impossible to 
enumerate the proportion of the nucleotide changes present in my datasets that 

represent transient mutations that will ultimately be purged from the population by 

genetic drift (or weak purifying selection).  

It is likely that, due to the inclusion of larger numbers of recently sampled E1 gene 

region sequences compared to those used to obtain the Jenkins et al. (2002) estimates 

(only 5% of the 640 samples considered in this thesis were collected prior to 1990), 

my nucleotide substitution rate estimates for this gene region are inflated and reflect a 

composite of the RV basal mutation rate (i.e. the rate at which all mutations occur) 

and its substitution rate (i.e. the rate at which persistent mutations become fixed in a 

population; Duffy et al. 2008). 

To test whether my nucleotide substitution rate estimates for the E1 gene region were 

inflated due to the inclusion of larger numbers of recently sampled sequences, I 

analysed a dataset including only the E1 gene region extracted from the available 34 

full genome sequences (dataset ix, see Methods section). I found that the estimated 

nucleotide substitution rate was similar to the rates inferred for the other RV genomic 

regions  (see  “Unbiased  E1”  in  Figure  11A). Similarly, lower nucleotide substitution 

rates  were   also   inferred   from   the   analysis   of   the   “temporally   balanced”   E1   dataset  

(dataset x) containing only a random subset of 53 E1 gene region sequences sampled 

between  1961  and  2012  (see  “Temporally  Balanced  E1”  in Figure 11A). These results 

therefore suggest that the nucleotide substitution rate estimates for the E1 gene region 

are strongly affected by the temporal imbalance within this dataset, and when this 

bias is taken into account, the nucleotide substitution rate estimates for the E1 gene 

region are similar to the remainder of the genome. 

 

 

 

 

 

 

 



 
 

50 

3.7 Estimated dates of the time to the most recent common 
ancestor of Rubella virus 
Regardless of differences between the datasets with respect to estimated nucleotide 

substitution rates, the associated estimates of the mean TMRCAs for the different RV 

lineages analysed here all ranged between 1884 (95% HPD = 1841–1921) for the full 

genome recombination-included (RI) dataset and 1926 (95% HPD = 1904–1947) for 

the RdRp dataset (see Figure 11B and Figure 12). The mean TMRCA estimates for 

the E1 dataset with the various evolutionary models tested here were well within this 

range (between 1901; 95% HPD = 1858-1932) implying that sampling biases such as 

those evident in the E1 dataset have not had a particularly large impact on TMRCA 

estimates. 

Regardless of the fact that the clade 2 genotypes were rendered paraphyletic by the 

genotype 2A and 2C isolates from China and Russia, respectively, the estimated ages 

for both the ancestral nodes of the clade 2 genotypes were older than that of the clade 

1 genotypes, irrespective of the evolutionary model and dataset used, and were also 

positioned basally to the clade 1 genotypes, however with negligible posterior support 

(Figure 12). This result indicates that the RV isolates sample in this thesis likely 

originated in China/Russia, which is consistent with previous reports on the origin of 

RV (Katow 2004). Finally, it is important to stress that these estimates do not indicate 

the date when RV first emerged. They simply indicate when the most recent common 

ancestor (MRCA) of the RV genotypes analysed in this thesis likely existed. 

 

3.8 The effects of recombination, selection and nucleic acid 
secondary structure on Rubella virus substitution rate estimates 
To evaluate the potentially confounding effects of recombination and nucleic acid 

secondary structure on the estimation of nucleotide substitution rates, all the 

previously performed Bayesian phylogenetic analyses were repeated on the 
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 Figure 12. Maximum clade credibility tree for the full genome recombination-free dataset. Maximum clade credibility tree constructed from 
the 32 full genome recombination-free dataset under the TN93+G+I nucleotide substitution model and the Bayesian skyline plot, relaxed-clock 
evolutionary model. Branches are coloured according to the region of sampling and the taxon labels according to the genotype. Internal nodes 
with posterior support greater than 90% are indicated by a filled circle and greater than 80% by an open circle. Thick grey boxes at the root and 
most basal nodes of clade 1 and 2 genotypes, respectively, represent the range of 95% highest posterior density (HPD) confidence intervals of the 
time to the most recent common ancestor. 
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34 sequence full genome recombination-included (RI) dataset and 640 sequence E1 

gene region datasets (dataset ii and viii, respectively), subsequent to removing the two 

detected recombinants and excising all NASP predicted base-paired nucleotide sites 

within nucleic acid secondary structures of the high confidence structure set 

(HCSS).The mean nucleotide substitution rate estimate for the 32 sequence full 

genome recombination-free (RF) dataset was similar to the rate inferred from the 34 

sequence full genome recombination-included (RI) dataset (Figure 11A). Likewise, 

nucleotide substitution rate estimates remained unchanged after all NASP predicted 

base-paired nucleotide sites were excised from the full genome recombination-free 

(RF) dataset (compare  “Full  Genome  RI”,  “Full  Genome  RF”  and  “Full  Genome  RF  

UnPR”, respectively). However, when only the NASP predicted base-paired 

nucleotide sites within the full genome recombination-free (RF) dataset were 

considered, a substantially lower nucleotide substitution rate was inferred (compare 

“Full  Genome  RF UnPR”  and  “Full  Genome  RF PR”).     

Similar to   results   from   the   “Full   Genome   RF   PR”   dataset,   reduced nucleotide 

substitution rates were inferred for the E1 gene region dataset after the two detected 

recombinant sequences were removed and only the NASP predicted base-paired 

nucleotide sites were considered (“E1   RF   PR”). This suggests that the constraints 

imposed by the combined effects of recombination and nucleic acid secondary 

structures act to significantly reduce nucleotide substitution rate estimates. 

 

3.9 A global view of Rubella virus geographical spread 
In order to determine how RV attained its current global distribution, I analysed the 

640 sequence E1 gene region dataset under a symmetric continuous-time Markov 

chain (CTMC) model. This method constructs a reversible diffusion rate matrix 

between the geographical sampling clusters (Figure 13; determined using hclust,  

see Methods section) and implements Euclidian distance between these clusters as a 

prior for inferring geographical spread.  
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Figure 13. Hierachical clustering of 11 sampling regions. Hierachical clustering  analysis was done 
using the R function hclust (Appendix 5, publicly available from various online repositotires) by 
implementing the Complete-linkage clustering method. Sampling locations were grouped based on the 
clustering analysis and geographical proximity. The 11 clustered regions were used for 
phylogeographic analysis by assigning each region as a single discrete trait. Clustering of sampling 
locations into 11 geographical regions, which resulted in the highest posterior support, are shown 
above. Each grouping is represented as a separate colour. 
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Forty-four statistically supported (Bayes factor > 5.0) geographical linkages were 

reported from this analysis (Figure 14), denoting that every inferred movement of RV 

between two statistically supported geographically clusters could be considered as 

reliable. Consequently, more than one instance of geographical spread could be 

inferred between two geographical clusters (Figure 15). Collectively, 62% of the 

inferred RV movements between the supported geographical linkages were 

intercontinental events. Unsurprisingly, the genotypes with the most widespread 

geographical distribution (World Health Organization 2007), namely genotype 1E 

(present in 22 countries over 5 continents) and 2B (present in 19 countries over 5 

continents), were involved in the majority of these. Contrary to previous reports 

(Icenogle et al. 2011) that RV genotype 2B only started circulating endemically in the 

Americas during 2006-2007, my analysis inferred that genotype 2B was already 

introduced into North America from Western Europe sometime between 1981-1991. 

My analysis also identified a statistically supported link relating to reports that the 

1962–1965 global rubella pandemic originated in Europe and later spread to the USA 

(Witte et al. 1969). However, since RV genotype 1a isolates (GenBank:JN635218 and 

GenBank:L16233) have been sampled in the USA prior to the pandemic, it is 

apparent that genotype 1a (the genotype proposed to be largely responsible for the 

spread of RV from Europe into USA during the 1962–1965 pandemic) was already 

present in at least 2 continents prior to the pandemic (Frey et al. 1998). However, 

further elucidation of the epidemiology prior to, and during, the 1962–1965 global 

rubella pandemic is constrained by a lack of both sequence data from this period, and 

detailed epidemiological information relating to known historical RV geographical 

spread.  
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Figure 14. Bayes factor supported Rubella virus movement pathways. Phylogeographical analysis of the 11 geographical clusters (white dots, see 
Figure 13) revealed 44 statistically supported (Bayes factor > 5.0) viral movement pathways, indicated the connecting lines between white dots. 
Movement pathways are coloured with a gradient ranging from yellow (lowest support) to red (highest support). 
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Figure 15. Geographical spread of Rubella virus. The spread of Rubella virus between geographically 
distinct regions are represented by yellow lines on the globes. The y-axis corresponds to the inferred date 
of geographical spread (in years), represented in 5-year intervals. For each inferred date, four separate 
images are shown, representing rotation of the earth at the specific time period. From left, the 
geographical regions shown are Asia, Africa & Europe, the Atlantic Ocean and the Americas. 
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Figure 15. Geographical spread of Rubella virus. The spread of Rubella virus between geographically 
distinct regions are represented by yellow lines on the globes. The y-axis corresponds to the inferred date 
of geographical spread (in years), represented in 5-year intervals. For each inferred date, four separate 
images are shown, representing rotation of the earth at the specific time period. From left, the 
geographical regions shown are Asia, Africa & Europe, the Atlantic Ocean and the Americas. 
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Figure 15. Geographical spread of Rubella virus. The spread of Rubella virus between geographically 
distinct regions are represented by yellow lines on the globes. The y-axis corresponds to the inferred date 
of geographical spread (in years), represented in 5-year intervals. For each inferred date, four separate 
images are shown, representing rotation of the earth at the specific time period. From left, the 
geographical regions shown are Asia, Africa & Europe, the Atlantic Ocean and the Americas. 
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Figure 15. Geographical spread of Rubella virus. The spread of Rubella virus between geographically 
distinct regions are represented by yellow lines on the globes. The y-axis corresponds to the inferred date 
of geographical spread (in years), represented in 5-year intervals. For each inferred date, four separate 
images are shown, representing rotation of the earth at the specific time period. From left, the 
geographical regions shown are Asia, Africa & Europe, the Atlantic Ocean and the Americas. 
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3.10 The geographical origin of the most recent common Rubella 
virus ancestor 
The most probable location of the MRCA of contemporary RV isolates was inferred 

to be the Eastern Europe, Western & Northwest Asia region (with 26.85% posterior 

probability support, Figure 16A). Notably, an Asian origin of the modern RV 

genotypes corresponds with previous reports of this virus (Katow 2004). It should 

however be stressed, that both the regions indicated for ancestral viruses in my 

analysis and movements inferred from these regions, are simply the most plausible 

given the regions from which RV E1 sequences were sampled. Such unavoidable 

sampling biases in my analysis mean that it is possible that the actual location of the 

MRCA might, for example, be in another region from which no samples are 

available.  

It is also noteworthy that the time in the late 19th century (1898; 95% HPD = 1858–

1932) when the most recent common ancestor of the sampled RV isolates is inferred 

to have most likely existed, is consistent with historical accounts of RV infections 

(Forbes 1969), and with the most recent common ancestor date estimates of the 

various other RV genomic regions analysed in this thesis (Figure 12B). It is however 

important to stress that these estimates do not specify the actual date when RV first 

emerged. It simply indicates when and with which degree of uncertainty the most 

recent common ancestor of the RV isolates analysed in this thesis likely existed. 

To evaluate the degree to which sample size differences from the different 

geographical regions considered might have biased my estimates of the most probable 

ancestral location of the MRCA, I ran the same data under a tip-swap null model 

where the sampling locations of all the analysed sequences were randomized across 

the tips of the posterior distribution of trees. Consequently, by randomly selecting 

regions as the most probable ancestral location of the most recent common ancestor, 

you would expect approximately equal support for each region. 
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However, if a sample size bias exists within the data, then by chance the regions with 

the highest sample sizes would be selected more often. However, as expected from 

this model, several regions (with almost equal probabilities) were inferred as the most 

probable location of the MRCA (Figure 16B), indicating that the phylogenetic signal 

in the data is sufficiently strong to overcome the systematic bias affecting these 

estimates, towards the regions with the largest sample size (caused by the unevenness 

in the sampling scheme with respect to geographical sampling locations). 

 

0% 5% 10% 15% 20% 25% 30%

North America

South America

East Africa through West Africa

Western Europe

Central Europe through North Africa

Eastern Europe, Western & Northwest Asia

Southern & Southeast Asia

China & Mongolia

Taiwan

Korea & Japan
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Root probability 

The most probable location of the most recent common ancestor 

Figure 16. Most probable location of the most recent common ancestor of Rubella virus and  
tip-swap null model. The analysis indicated that Eastern Europe, Western & Northwest Asia was the 
most probable location of the most recent common ancestor of the sampled Rubella virus isolates (red 
lines). To evaluate the degree to which sample size variations biased my estimates, I ran the same data 
under a tip-swap null model (brown lines), where sampling locations of all the analysed sequences 
were randomized across the tips of the posterior distribution of trees. These results indicated that the 
phylogenetic signal present in the data is sufficiently strong to overcome any sample size biases that 
might exist. 
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3.11 A global view of Rubella virus spatial diffusion and 
phylodynamics 
To test a range of variables that could potentially predict the geographical spread of 

RV, I employed a probabilistic generalized linear model (GLM) approach. This 

method was used to quantify the frequency that each predefined variable was utilized 

to predict geographical spread (inclusion probability) and estimate Bayes factor 

support for each variable as the ratio between the prior probability (defined before 

analysis as 0.052, an independent Bernoulli probability distributions reflecting a 50% 

probability that no predictive variable will be utilized) and the inclusion probabilities 

(BF > 10 represents decisive support; BF > 3.0 represents substantial support; BF < 

3.0 represents negligible support). Additionally, the GLM analysis provided 

regression coefficients for each predictive variable (predictor coefficient), which 

quantified changes in the rate of RV transmission as a function of changes in the 

frequency that each variable was utilized to predict geographical spread. 

This analysis revealed several predictive variables that were strongly associated with 

the geographical spread of RV (Figure 17). Of the predictive variables considered, 

education was estimated as the predictor best explaining geographical spread. This is 

reflected in the frequency (Bayes factor support = 20.69) at which this predictor was 

included in the GLM, and the contribution of this variable (predictor coefficient = -

0.579) when included. This indicated that transmission rates were higher out of 

geographical regions with a lower education index (calculated from the mean years of 

schooling completed and the expected years of schooling in the respective region) 

compared to regions with a higher education index. Unsurprisingly, the rate of RV 

transmission was also higher amongst regions with low vaccination coverage 

compared to regions that maintained a high vaccination coverage, as is apparent by 

the statistical support (Bayes factor > 3) for the inclusion of this predictive variable, 

and the negative predictor coefficient. 
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The high inclusion probabilities of income (Bayes factor = 13.93 and 3.40) and 

education (Bayes factor = 20.69 and 3.58) provided additional support for vaccination 

coverage as a strong predictive variable, since it has been proposed that people with 

lower levels of education (defined by the education index) are less likely to vaccinate 

their children (Wright and Polack 2006), and generally also have a lower level of 

income (Ladd 2012). Altogether, the GLM analysis indicated that the geographical 

spread of RV tended to occur more frequently from regions with a low level of 

education and income into regions that maintain high levels of both education and 

Figure 17. Generalized  linear  model  results  from predictive variables of Rubella virus spread. 
The inclusion probabilities indicate the frequency at which this variable was included in the 
generalized linear model, and the predictor coefficient the estimated size of the effect when included. 
The red line represents Bayes factor support equal to three. 
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income. If these historical patterns of geographical spread inferred by the GLM 

remain unchanged, then these results suggests that, in addition to strengthened 

vaccination strategies, there also needs to be an increased effort to educate people 

about the effects of vaccination and the risks of RV infection, in the attempt to 

eradicate RV globally. 

Interestingly, the analysis did not reveal any support for geographical proximity as a 

predictive variable of RV geographical spread (Bayes factor support < 1),  instead 

transmission rates between the sampled geographical regions were inferred to be 

higher when considering regions with both high population sizes (Bayes factor 

support > 15) and densities (Bayes factor support > 12). This finding is not 

completely unexpected, since prolonged close proximity with an infected individual 

is often needed for transmission of RV (Ingalls et al. 1967). 

To further evaluate the geographical spread of RV, I employed Markov Jump counts 

and rewards, which quantified the observed number of transitions between the 

sampled regions along the phylogenetic tree, and estimates the contribution of each 

region to the persistence of RV through time. This analysis inferred that Taiwan was 

the geographical region that donated and received the highest number of RVs, 

followed by North America, China & Mongolia, and Southern & Southeast Asia. 

However, since China & Mongolia and Taiwan comprise the highest number of 

samples within my 640 sequence E1 gene region dataset, respectively, it is likely that 

in relation to the other geographical regions, the inferred number of transitions to and 

from these regions would be higher. To test this hypothesis, I subsampled the 640 

sequence E1 gene region dataset to contain an equal number of isolates per sampling 

region. Additionally, I also subsampled the 640 sequence E1 gene region dataset so 

that each region contained a sample size proportionate to the population size of that 

specific region. The results inferred from both of these subsampled datasets were 

congruent with those inferred before subsampling. This confirmed that estimates from 

both the GLM predictor and Markov Jump analysis are likely reliable, , and that 

sampling biases have not influenced these results. 
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4. CONCLUSION 
My analysis identified 117 previously unreported nucleotide secondary structures, 

most of which were inferred to likely be biologically functional. Consistent with the 

results of previous studies, I have shown that evidence for recombination (Zheng et 

al. 2003; Zhou et al. 2007; Abernathy et al. 2013) and positive selection (Hofmann et 

al. 2003) is sparse. However, my results indicated that nucleotides in RV genomes are 

likely not evolving in a strictly neutral fashion, as base-paired nucleotides involved in 

the formation of nucleotide secondary structures displayed significantly lower 

nucleotides substitution rate estimates compare to nucleotides that were unpaired. 

Similarly, I demonstrated that temporally biased sampling in RV gene regions, such 

as the E1 structural glycoprotein, resulted in higher mean nucleotide substitution rate 

estimates. Fortunately, such biases had a negligibly negative impact on the utility of 

E1 gene region sequences for dating ancestral RV sequences under uncorrelated 

lognormal relaxed-clock evolutionary models. The inferred nucleotide substitution 

rate estimates were also sufficiently high, indicating that RV E1 gene region 

sequences (the most frequently sampled RV genome region) contained sufficient 

phylogenetic signal to be appropriate for sequence-based inferences of RV 

demographic and movement dynamics. 

As a result, I was able to identify several geographical regions that acted as 

transmission hotspots for the geographical spread of RV. Furthermore, my analyses 

indicated that a lower level of education, rather then vaccination coverage, largely 

drove the spread of RV on an intra- and intercontinental scale. Finally, this thesis 

hopes to inform future policy makers about the past demographic patterns of RV, 

enabling them to make well-informed decisions in the effort to eradicate RV by 2020.  
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6. APPENDICES 
 

Usage: python script_name.py <GenBank_search_term> 

 

from Bio import Entrez 

search_term = sys.argv[1] 

search_handle = Entrez.esearch(db="nucleotide", term=search_term, usehistory="y") 

search_results = Entrez.read(search_handle) 

search_handle.close() 

 

gi_list = search_results["IdList"] 

count = int(search_results["Count"]) 

webenv = search_results["WebEnv"] 

query_key = search_results["QueryKey"] 

batch_size = 5 

out_handle = open("output_file_name.fasta", "w") 

for start in range(0, count, batch_size): 

    end = min(count, start+batch_size) 

    print "Going to download record %i to %i" % (start+1, end) 

    fetch_handle = Entrez.efetch(db="nucleotide", rettype="fasta", retmode="text",retstart=start,  
    retmax=batch_size, webenv=webenv, query_key=query_key) 

    data = fetch_handle.read() 

    fetch_handle.close() 

    out_handle.write(data) 

out_handle.close() 

print ("Script Done") 

 

 

 

Appendix 1. Python script used to retrieve publically available sequences, with user specific search 
query, from the NCBI GenBank. At the time of analysis, 1254 sequences were available for the search 
term   “Rubella virus”. Using pairwise identities, as determined by SDT v1.0, known resequenced and 
duplicate samples were identified and removed. Sequences were subsequently subdivided into various 
datasets for further analysis (see Table 4). 
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Appendix 2. Neighbour joining phylogenetic tree generated for Nucleic Acid Structure Prediction (NASP) of genome-wide nucleic acid secondary 
structural elements. Neighbour joining phylogenetic tree, containing a representative sample of RV genotypes (dataset i), was constructed from 34 full 
genome sequences available in GenBank at the time of analysis. Of these 34 full genome sequences, only ten were used for genome-wide nucleic acid 
secondary structure prediction, to reduce the computational burden imposed by the NASP software. These ten sequences (taxa labelled in blue) were selected 
from distinct clades within the neighbour joining phylogenetic tree, after which the most divergent sequences within each of the selected clades were identified 
using pairwise genetic distances. Isolate genotypes are depicted in square brackets next to taxon labels, respectively. 
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GenBank 
Accession No. 

Country of 
sampling 

Collection 
Date 

Genotype Dataset 
i ii iii iv v vi vii viii ix x xi xii xiii xiv 

AB047330 Japan 1967 1a 
 

x x x x x x x x x x x x x 

AB071280 Japan 1993 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB222609 Japan 1968 1a 
 

x x x x x x x x x x x x x 

AB233430 Japan 2002 - 
 

  
 

  
 

x 
 

  
 

  
 

  
 

  

AB285128 Japan 2003 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285129 Japan 2004 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285130 Japan 2001 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285131 Japan 2004 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285132 Japan 2002 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285133 Japan 2002 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285134 Japan 2002 - 
 

  
 

x 
 

  
 

x 
 

  x x 
 

  

AB285135 Japan 2002 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285136 Japan 2002 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285137 Japan 1994 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285138 Japan 2004 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285139 Japan 2004 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285140 Japan 2004 - 
 

  
 

x 
 

x 
 

x 
 

x x x 
 

  

AB285141 Japan 2004 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285142 Japan 2004 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285143 Japan 2004 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285144 Japan 2004 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB285145 Japan 2003 - 
 

  
 

x 
 

x 
 

x 
 

  x x 
 

  

AB546233 Vietnam 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  
 

Appendix 3. Full description of datasets used in thesis. A full description of the Rubella virus sequences and datasets used in this study, including the 
accession number, genotype assignment, collection date, country of origin and dataset assignment (also see Table 4 in text). 

 

 

 

 

 

 



 
 

79 

GenBank 
Accession No. 

Country of 
sampling 

Collection 
Date 

Genotype Dataset 
i ii iii iv v vi vii viii ix x xi xii xiii xiv 

AB588189 Japan 1969 - 
 

x x x x x x x x x x x x x 

AB588190 Japan 1969 - x x x x x x x x x x x x x x 

AB588192 Japan 1969 - 
 

x x x x x x x x x x x x x 

AB621553 Japan 2011 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB632389 Japan 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB640794 Japan 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB646368 Japan 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB665169 Japan 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB674470 Japan 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB674471 Japan 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB683468 Japan 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB683469 Japan 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB702680 Japan 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB702681 Japan 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB702682 Japan 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB702683 Japan 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB702684 Japan 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB702685 Japan 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB702686 Japan 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB735186 Japan 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB735187 Japan 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB735188 Japan 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB735189 Japan 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  
  

Appendix 3. Full description of datasets used in thesis. Continued… 
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GenBank 
Accession No. 

Country of 
sampling 

Collection 
Date 

Genotype Dataset 
i ii iii iv v vi vii viii ix x xi xii xiii xiv 

AB739704 Japan 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745027 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745028 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745029 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745030 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745031 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745032 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745033 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745034 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745035 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745036 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745037 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745038 Vietnam 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB745039 Vietnam 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB753257 Japan 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB753258 Japan 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB753259 Japan 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB753260 Japan 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB753261 Japan 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AB753262 Japan 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AF039107 USA 1961 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AF435865 Germany 1984 1a 
 

x x x x x x x x x x x x x 

AF435866 Slovakia 1974 1a 
 

x 
 

x x x x x x x 
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AF551761 Germany 1999 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

AM258944 Belarus 2005 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258945 Belarus 2004 1G  
 

  
 

  
 

x 
 

  
 

  
 

  
 

  

AM258946 Belarus 2005 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258947 Belarus 2005 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258948 Belarus 2005 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258949 Belarus 2005 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258950 Belarus 2004 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258951 Belarus 2004 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258952 Belarus 2004 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258953 Belarus 2005 1H 
 

  
 

  
 

x 
 

  
 

  
 

  
 

  

AM258954 Belarus 2004 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258955 Belarus 2005 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258956 Belarus 2005 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AM258957 Belarus 2005 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161349 Italy 1991 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

AY161350 Italy 1991 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161351 Italy 1991 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

AY161352 Italy 1991 1I 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161353 Italy 1991 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161354 Italy 1991 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161355 Italy 1991 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161356 Italy 1991 - 
 

  
 

  
 

  
 

x 
 

  x x 
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AY161357 Italy 1991 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

AY161358 Italy 1991 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161359 Italy 1992 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161360 Italy 1992 1I 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161361 Italy 1993 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161362 Italy 1993 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161363 Italy 1993 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161364 Italy 1993 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161365 Italy 1994 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161366 Italy 1994 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161367 Italy 1994 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161368 Italy 1994 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

AY161369 Italy 1994 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161370 Italy 1994 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161371 Italy 1995 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161372 Italy 1995 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161373 Italy 1995 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161375 Italy 1997 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161376 Italy 1997 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161377 Italy 1997 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161378 Italy 1997 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY161379 Italy 1997 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY247016 Russia 1968 - 
 

  
 

  
 

  
 

x 
 

x x x 
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AY247017 Russia 1969 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

AY247018 Russia 1973 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

AY247019 Russia 1997 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

AY253148 Russia 1969 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

AY258322 China 1979 2A x x x x x x x x x x x x x x 

AY280704 Myanmar 2001 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY280705 Myanmar 2001 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY280706 Myanmar 2001 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY280707 Myanmar 2002 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY397695 Japan 1997 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

AY397696 Japan 1997 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

DQ085331 Italy 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

DQ085332 USA 1998 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

DQ085333 USA 1999 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

DQ085334 USA 1998 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

DQ085335 USA 1998 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

DQ085336 USA 1998 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

DQ085337 Canada 1997 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

DQ085338 Israel 1968 2B 
 

x x x x x x x x x x x x x 

DQ085339 Argentina 1988 1B 
 

x x x x x x x x x x x x x 

DQ085340 Russia 1997 2C x x x x x x x x x x x x x x 

DQ085341 Mexico 1997 1C 
 

x x x x x x x x   x x x x 

DQ085342 Korea 1996 2B 
 

x x x x x x x x   x x x x 
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DQ085343 Italy 1997 1E 
 

x x x x x x x x x x x x x 

DQ388279 Russia 1967 2C 
 

x x x x x x x x x x x x x 

DQ388280 Germany 1992 1G 
 

x x x x x x x x   x x x x 

DQ388281 New Zealand 1991 1D 
 

x x x x x x x x   x x x x 

DQ388282 USA 1998 1C 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388283 USA 1999 1C 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388284 USA 1998 1E 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388285 USA 1998 1E 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388286 United Kingdom 1986 1a 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388287 USA 1997 1D 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388288 USA 1998 1C 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388289 USA 1999 1C 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388290 USA 1998 1E 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388291 Italy 1991 1B 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388292 Germany 1992 1B 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388293 Italy 1993 2B 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388294 Italy 1994 2B 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388295 Italy 1997 1E 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388296 Korea 1996 1D 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388297 Russia 1973 1a 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388298 United Kingdom 1978 1B 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388299 USA 1997 1C 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388301 Israel 1992 1B 
 

  
 

  x   
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DQ388302 USA 1998 1C 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388303 Canada 1997 1E 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ388305 United Kingdom 1986 1B 
 

  
 

  x   
 

  
 

  
 

  
 

  

DQ454161 Russia 2005 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

DQ454162 Russia 2004 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

DQ458965 Brazil 1999 1a 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

DQ897934 Russia 2006 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

DQ897935 Russia 2006 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF182759 Russia 2005 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF182760 Russia 2005 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF182761 Russia 2005 1G 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

EF182762 Russia 2005 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF182763 Russia 2006 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF182764 Russia 2006 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF182765 Russia 2006 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF199889 Russia 2006 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF199893 Russia 2004 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649760 Russia 2000 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649761 Russia 2000 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649762 Russia 2000 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649763 Russia 2000 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649764 Russia 2000 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649765 Russia 2000 2C 
 

  
 

  
 

  
 

x 
 

  x x 
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EF649766 Russia 1999 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649767 Russia 2004 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649768 Russia 2005 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649769 Russia 2002 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649770 Russia 2002 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF649771 Russia 2004 2C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EF672032 Taiwan 2005 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU240899 Great Britain 2007 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU240900 Great Britain 2007 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518606 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518607 Spain 2004 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518608 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518609 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518610 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518611 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518612 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518613 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518614 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518615 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518616 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518617 Spain 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU518618 Spain 2008 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU622498 Peru 2004 - 
 

  
 

  
 

  
 

x 
 

  x x 
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EU622499 Peru 2004 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU622500 Peru 2004 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU622501 Peru 2004 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU622502 Peru 2005 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU622503 Peru 2005 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU622504 Peru 2005 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU622505 Peru 2005 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

EU622506 Peru 2005 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ436377 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ436378 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ656218 China 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ656219 China 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711660 Russia 2006 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711661 Russia 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711662 Russia 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711663 Russia 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711664 Russia 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711665 Russia 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711666 Russia 2008 1G 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

FJ711667 Kazakhstan 2006 - 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

FJ711668 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

FJ711669 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711670 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
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FJ711671 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711672 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711673 Russia 2005 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711674 Russia 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711675 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711676 Russia 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711677 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711678 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711679 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711680 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711681 Russia 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711682 Russia 2006 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711683 Ukraine 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711684 Kazakhstan 2006 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711685 Kazakhstan 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711686 Russia 2008 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711687 Russia 2007 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711688 Russia 2007 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711689 Russia 2004 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711690 Russia 2008 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711691 Russia 2007 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711692 Russia 2008 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711693 Russia 2008 1H 
 

  
 

  
 

  
 

x 
 

  x x 
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FJ711694 Russia 2006 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711695 Russia 2008 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711696 Russia 2008 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711697 Russia 2004 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711698 Russia 2004 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ711699 Kazakhstan 2008 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ774999 Sudan 2005 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ775000 Sudan 2005 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875029 China 2000 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875030 China 2001 2A 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875031 China 2001 2A 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875032 China 2000 2A 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875033 China 2006 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875034 China 1999 1F 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875035 China 1999 1F 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875036 China 2001 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875037 China 2001 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875038 China 2001 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875039 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875040 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875041 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875042 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875043 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
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FJ875044 China 2001 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875045 China 2002 1F 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875046 China 2002 1F 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875047 China 2006 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875048 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875049 China 2003 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875050 China 2003 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875051 China 2005 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875052 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875053 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875054 China 2004 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875055 China 2005 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875056 China 2006 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875057 China 2006 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875058 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875059 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875060 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875061 China 2006 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875062 China 2006 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875063 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875064 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875065 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875066 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
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FJ875067 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875068 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875069 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875070 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ875071 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971761 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971762 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971763 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971764 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971765 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971766 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971767 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971768 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971769 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971770 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971771 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971772 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971773 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971774 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

FJ971775 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971776 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971777 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971778 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
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FJ971779 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971780 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971781 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971782 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FJ971783 Argentina 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546966 France 1995 - 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546967 France 1995 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546968 France 1995 1H 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546969 France 1996 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546970 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546971 France 1997 1E 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

FN546972 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546973 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546974 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546975 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546976 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546977 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546978 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546979 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546980 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546981 France 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546982 France 1997 1E 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

FN546983 France 1998 1E 
 

  
 

  
 

  
 

x 
 

  x x 
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FN546984 Portugal 1998 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546985 France 1998 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546986 France 1999 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546987 France 1999 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546988 France 1999 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546989 France 1999 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546990 France 1999 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546991 France 1999 1E 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

FN546992 France 1999 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546993 France 1999 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546994 France 2000 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546995 France 2000 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546996 France 2000 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546997 France 2000 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546998 France 2000 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN546999 France 2000 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547000 France 2000 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547002 France 2001 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547003 France 2001 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547004 France 2001 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547005 France 2001 1B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547006 France 2002 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547007 France 2002 1E 
 

  
 

  
 

  
 

x 
 

  x x 
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FN547008 France 2002 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547009 France 2002 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547010 France 2002 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547011 France 2002 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547012 France 2002 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547013 France 2002 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547014 Tunisia 2003 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547015 France 2003 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547016 France 2003 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547017 France 2004 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547018 France 2004 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547019 France 2005 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547020 France 2005 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FN547021 France 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717206 Bosnia-Herzegovina 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717207 Bosnia-Herzegovina 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717208 Bosnia-Herzegovina 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717209 Bosnia-Herzegovina 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717210 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717211 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717212 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717213 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717214 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
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FR717215 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717216 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717217 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717218 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717219 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717220 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717221 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

FR717222 Bosnia-Herzegovina 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GQ329848 Brazil 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GQ329849 Brazil 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GQ329850 Brazil 2005 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU174756 Canada 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU254251 Brazil 2006 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU254252 Brazil 2007 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU254253 Brazil 2007 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU254254 Brazil 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU254255 Brazil 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU289729 China 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU289730 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU289731 China 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU353072 USA 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU353076 USA 2005 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

GU968187 Brazil 2007 1a 
 

  
 

  
 

  
 

x 
 

  x x 
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HM211177 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HM212630 Brazil 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HM212631 Brazil 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HM212632 Brazil 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HM212633 Brazil 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HM212634 Brazil 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HM461998 China 2010 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HQ199838 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HQ893749 Vietnam 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HQ893750 Vietnam 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HQ893751 Vietnam 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HQ893752 Vietnam 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HQ893753 Vietnam 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HQ893754 Vietnam 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HQ893755 Vietnam 2010 2B 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

HQ893756 Vietnam 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HQ893757 Vietnam 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

HQ893758 Vietnam 2010 2B 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

JF702819 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702820 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702821 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702822 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702823 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
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JF702824 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702825 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702826 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702827 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702828 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702829 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702830 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702831 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702832 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702833 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702834 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702835 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702836 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702837 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702838 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702839 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702840 China 2009 1E 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

JF702841 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702842 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702843 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702844 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702845 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702846 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
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JF702847 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702848 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702849 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702850 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702851 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702852 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702853 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702854 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702855 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702856 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702858 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702859 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702860 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702861 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702862 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702863 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702864 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702865 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702866 China 2008 1E 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

JF702867 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702868 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702869 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF702870 China 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
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JF702871 China 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JF911797 Canada 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN036398 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN036399 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN544447 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN544448 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN575762 Canada 2011 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN582035 Argentina 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN582036 Argentina 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN582037 Argentina 2009 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN635281 USA 1961 1a x x x x x x x x x x x x x x 

JN635282 USA 1998 1B x x x x x x x x x   x x x x 

JN635283 USA 1991 1C 
 

x x x x x x x x   x x x x 

JN635284 USA 1998 1C x x x x x x x x x   x x x x 

JN635285 USA 1988 1D 
 

x 
 

x x x x x x x 
 

  
 

  

JN635286 USA 2008 1E x x x x x x x x x   x x x x 

JN635287 USA 1998 1E 
 

x x x x x x x x x x x x x 

JN635288 USA 2008 1E 
 

x x x x x x x x   x x x x 

JN635289 USA 2007 1G 
 

x x x x x x x x   x x x x 

JN635290 USA 2005 1G x x x x x x x x x   x x x x 

JN635291 USA 1997 1J x x x x x x x x x   x x x x 

JN635292 USA 2007 2B 
 

x x x x x x x x   x x x x 

JN635293 USA 2000 2B 
 

x x x x x x x x   x x x x 
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JN635294 USA 2008 2B x x x x x x x x x   x x x x 

JN635295 USA 2009 2B 
 

x x x x x x x x   x x x x 

JN635296 USA 2008 2B 
 

x x x x x x x x   x x x x 

JN661163 Malaysia 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN661164 Malaysia 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN661165 Malaysia 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN661166 Malaysia 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN661167 Malaysia 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN661168 Malaysia 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN661169 Malaysia 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN661170 Malaysia 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN661171 Malaysia 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN661172 Malaysia 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JN827384 China 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ031213 China 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ283993 India 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ283994 India 2007 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ283995 India 2008 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ413980 India 2009 2B 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

JQ639404 China 2006 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ639405 China 2006 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ639406 China 2006 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ639407 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
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JQ639408 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ639409 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ639410 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ639411 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ639412 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979489 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979490 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979491 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979492 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979493 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979494 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979495 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979496 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979497 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979498 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979499 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979500 China 2007 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979501 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979502 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979503 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979504 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979505 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979506 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  
  

Appendix 3. Full description of datasets used in thesis. Continued… 
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GenBank 
Accession No. 

Country of 
sampling 

Collection 
Date 

Genotype Dataset 
i ii iii iv v vi vii viii ix x xi xii xiii xiv 

JQ979507 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979508 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979509 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979510 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979511 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979512 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979513 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979514 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979515 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979516 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979517 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979518 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979519 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979520 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979521 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979522 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979523 China 2009 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979524 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979525 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979526 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979527 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979528 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979529 China 2010 1E 
 

  
 

  
 

  
 

x 
 

x x x 
 

  
  

Appendix 3. Full description of datasets used in thesis. Continued… 
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GenBank 
Accession No. 

Country of 
sampling 

Collection 
Date 

Genotype Dataset 
i ii iii iv v vi vii viii ix x xi xii xiii xiv 

JQ979530 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979531 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979532 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979533 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979534 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979535 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979536 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979537 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979538 China 2010 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979539 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979540 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979541 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979542 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979543 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979544 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979545 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979546 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979547 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979548 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979549 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979550 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979551 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JQ979552 China 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  
  

Appendix 3. Full description of datasets used in thesis. Continued… 
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GenBank 
Accession No. 

Country of 
sampling 

Collection 
Date 

Genotype Dataset 
i ii iii iv v vi vii viii ix x xi xii xiii xiv 

JX036507 China 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX036508 China 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX036509 China 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX036510 China 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX112763 China 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX112764 China 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX112765 China 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX171315 Russia 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398300 Great Britain 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398301 Great Britain 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398302 Great Britain 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398303 Great Britain 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398304 Great Britain 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398305 Great Britain 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398306 Great Britain 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398307 Great Britain 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398308 Great Britain 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398309 Great Britain 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398310 Great Britain 2012 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398311 Great Britain 2012 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398312 Great Britain 2012 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX398313 Great Britain 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477651 USA 2011 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  
  

Appendix 3. Full description of datasets used in thesis. Continued… 
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GenBank 
Accession No. 

Country of 
sampling 

Collection 
Date 

Genotype Dataset 
i ii iii iv v vi vii viii ix x xi xii xiii xiv 

JX477652 USA 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477653 USA 2010 1J 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477654 USA 2010 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477655 USA 2012 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477656 USA 2012 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477657 USA 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477658 USA 2010 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477659 USA 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477660 USA 2011 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477661 USA 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX477662 USA 2012 2B 
 

  
 

  
 

  
 

x 
 

x x x 
 

  

JX531652 China 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX646676 Mexico 2012 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679257 Peru 2005 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679258 Peru 2004 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679259 Peru 2004 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679260 Peru 2004 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679261 Peru 2004 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679262 China 2008 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679263 Guyana 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679264 Guyana 1997 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679265 Cote d'Ivoire 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679266 Cote d'Ivoire 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  
  

Appendix 3. Full description of datasets used in thesis. Continued… 
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GenBank 
Accession No. 

Country of 
sampling 

Collection 
Date 

Genotype Dataset 
i ii iii iv v vi vii viii ix x xi xii xiii xiv 

JX679267 Cote d'Ivoire 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679268 Cote d'Ivoire 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679269 Cote d'Ivoire 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679270 Cote d'Ivoire 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679271 Cote d'Ivoire 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679272 Cote d'Ivoire 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679273 Ghana 2008 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679274 Ghana 2005 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679275 Ghana 2004 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679276 Ghana 2005 1G 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679277 Belize 1994 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679278 Honduras 2004 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679279 Peru 2005 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679280 Peru 2004 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679281 Peru 2004 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX679282 Peru 2004 1C 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

JX913763 China 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

KC138719 China 2012 1E 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

KC288128 India 1992 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

KC288129 India 1992 2B 
 

  
 

  
 

  
 

x 
 

  x x 
 

  

M15240 USA 1964 1a   x x x x x x x x x x x x x 

Appendix 3. Full description of datasets used in thesis. Continued… 
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Usage: python script_name.py <input.fasta> <date_of_oldest_isolate> 
<date_of_most_recent_isolate> <number of_random_output_replicates> 

 

import sys 

from Bio import SeqIO 

from random import sample 

 

seq_fasta_file = open(sys.argv[1]) 

start_decade = sys.argv[2] 

end_decade = sys.argv[3] 

 

start_decade = str(start_decade[:-1]) + “0” 

end_decade = str(end_decade[:-1]) + “0” 

end_decade = int(end_decade) 

 

decades_dict = {} 

decade = int(start_decade)  

while decade <= end_decade: 

 decades_dict[decade] = [] 

 decade += 10 

 

count = int(start_decade[2:3]) 

decade = int(start_decade) 

number_per_decade_dict = {} 

while decade <= end_decade: 

 for record in SeqIO.parse(seq_fasta_file, “fasta”): 

 

 

 

 

Appendix 4. Python script written to generate temporally balanced random subsamples. All 
isolates are sorted into their respective decades. The user is then queried about the number of isolates that 
should be selected from each decade. The user-specific number of isolates from each decade are then 
randomly selected, and written to file as a new alignment. The user can specify how many times this 
process should be repeated. 
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  if count > 9: 

   count = 0 

  name_split = record.id.split("_") 

  if len(name_split[2]) == 4:     

   name_split = int(name_split[2][2:3]) 

  else: 

   name_split = int(name_split[2][0]) 

  if name_split == count: 

decades_dict[decade].append(">" + str(record.id) + "\n" + str(record.seq)  
+ "\n") 

 count += 1 

 number_per_decade = raw_input("There are "+str(len(decades_dict[decade])) + " samples 
              from " + str(decade) + ". Amount to use? ") 

 number_per_decade_dict[decade] = int(number_per_decade) 

 decade += 10 

 seq_fasta_file.seek(0)         

seq_fasta_file.close() 

 

number_output_files = sys.argv[4] 

output_name_count = 1 

while output_name_count <= int(number_output_files):      

 output_file = open("output_filename_" + str(output_name_count) + ".fasta", "w") 

 decade = int(start_decade) 

 while decade <= end_decade: 

random_sample = sample(decades_dict[decade],  
int(number_per_decade_dict[decade])) 

  output_file.writelines(random_sample) 

  decade += 10 

 output_name_count += 1 

 output_file.close() 

print ('Script Done”) 
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Usage: R-package 

library(SoDA) 

library(maps) 

library(mapdata) 

 

distGPS <- function(input) 

{ 

  dMat <- matrix(0,ncol=nrow(input),nrow=nrow(input)) 

  colnames(dMat) <- input[,1] 

  rownames(dMat) <- input[,1] 

  for(i in 1:(nrow(input)-1))   { 

    for(j in (i+1):nrow(input)) 

    { 

      a <- geoDist(input[i,2],input[i,3],input[j,2],input[j,3]) 

      dMat[i,j] <- a 

      dMat[j,i] <- a 

    } 

  } 

dMat 

centroid <- function(clustout,input) 

{ 

  seqGrp <- lapply(clustout,names) 

  out <- lapply(seqGrp,centerGrp,input) 

  sequenceN <- unlist(seqGrp) 

  Lon <- NULL 

  Lat <- NULL 

  Nom <- NULL 

for(i in 1:length(sequenceN)) 

  { 

 

 

 

Appendix 5. H-clust R script used to group sequences into geographically proximate regions. This 
hierarchical clustering method defines optimal geographical groupings, using the centroid geocoordinates 
of each sampling location. 
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Lon <- c(Lon,input[,3][input[,1]==sequenceN[i]]) 

    Lat <- c(Lat,input[,2][input[,1]==sequenceN[i]]) 

    Nom <- c(Nom,sequenceN[i]) 

  } 

  Grp <- NULL 

  X <- NULL 

  Y <- NULL 

  for(i in 1:length(out)) 

  { 

    coord <- out[[i]] 

    seqName <- seqGrp[[i]] 

    Nom <- c(Nom,seqName) 

    Grp <- c(Grp,rep(i,length(seqName))) 

    X <- c(X,rep(out[[i]][1],length(seqName))) 

    Y <- c(Y,rep(out[[i]][2],length(seqName))) 

  } 

  result <- data.frame(nom=Nom,Grp=Grp,CentroidLon=X,CentroidLat=Y,Lon=Lon,Lat=Lat) 

} 

 

centerGrp <- function(X,input) 

{ 

  dataGrp <- input[match(X,input[,1]),] 

  Xm <- mean(as.numeric(as.character(dataGrp[,3]))) 

  Ym <- mean(as.numeric(as.character(dataGrp[,2]))) 

  out <- c(Xm,Ym) 

  out 

} 

 

setwd("/output/working/directory/") 

geocoordinates <- read.csv("geocoordinates.csv", dec=".", sep=",", header=TRUE) 
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m <- c("complete","ward", "single", "centroid", "average", "mcquitty" , "median") 

pdf("clustering.pdf") 

for(i in 1:length(m)) 
plot(hclust(as.dist(distance_matrix_GPS),method=m[i]),ylim=c(0,1),cex=0.5,main=m[i],xlab="",ylab="") 

dev.off() 

 

hierachical_clustering_GPS <- hclust(as.dist(distance_matrix_GPS),method="complete") 

plot(hierachical_clustering_GPS,ylim=c(0,1),cex=0.5) 

clustering_out <- identify(hierachical_clustering_GPS) 

grouping <- centroid(clustering_out,geocoordinates) 
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Usage: R-package 

library (fields) 

 

setwd("/output/working/directory/") 

latlong_mat <- read.csv("locations_geoccordinates.csv",sep=",",na.strings="",row.names=1) 

 

great_dist_mat <- rdist.earth(matrix(c(latlong_mat$Longitude,latlong_mat$Latitude), 
ncol=2),matrix(c(latlong_mat$Longitude,latlong_mat$Latitude), ncol=2), miles=FALSE, R=6371) 

 

rownames (great_dist_mat) <- rownames(latlong_mat) 

colnames (great_dist_mat) <- rownames(latlong_mat) 

diag(great_dist_mat) <- 0 

 

write.table((great_dist_mat), file = "great_circ_dist.csv", sep = ';', col.names=NA) 

 

 

 

Appendix 6. R script written to estimate great circle distances (as-the-crow-flies). This script 
implements the Haversine formula to determine the pairwise great circle distances between the centroid 
geocoordinates of all sampling locations. 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. The rank 
refers to the DOOSS consensus rank of the specific predicted nucleotide secondary structure as it forms 
part of the high confidence structure set (HCSS; see Figure 9 and Table 5). Site-to-site variations in 
synonymous nucleotide substitution rates are indicated by colours ranging from blue to green (see colour 
key). Nucleotides falling outside the coding region are shaded in grey. 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 

 
 

 

 

 



 
 

128 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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Appendix 7. Top-20 NASP predicted nucleotide secondary structures of Rubella virus. Continued… 
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