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Abstract

Far-Infrared-Radio Relations in Clusters and Groups at Intermediate
Redshift

S. M. Randriamampandry

PhD Thesis, Department of Physics & Astrophysics Group, University of the Western

Cape.

In this thesis, we present a multi-wavelength analysis of star-forming galaxies to shed

new light on the evolution of the far-IR-radio relations in intermediate redshift (0.3 < z

< 0.6) galaxy clusters and galaxy groups. The far-infrared (far-IR) emission from galax-

ies is dominated by thermal dust emission. The radio emission at 1.4 GHz is predom-

inantly produced by non-thermal synchrotron radiation. The underlying mechanisms,

which drive the far-IR-radio correlation, are believed to arise from massive star forma-

tion.

A number of studies have investigated the relationship as a function of redshift in

the field and have found no evolution out to at least z ∼ 2, however few works have

been done in galaxy clusters. In nearby clusters, the median logarithmic ratio of the

far-IR to radio luminosity is qFIR = 2.07±0.74, which is lower than the value found in

the field, and there is an indication of an enhancement of radio emission relative to the

far-IR emission. Understanding the properties of the far-IR-radio correlation in a sample

of distant and massive cluster and groups plays an important role in understanding the
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physical processes in these systems.

We have derived total infrared luminosities for a sample of cluster, group, and field

galaxies through an empirical relation based on Spitzer MIPS 24 µm photometry. The

radio flux densities were measured from deep Very Large Array 1.4 GHz radio continuum

observations. We have studied the properties of the far-IR-radio correlation of galaxies

at intermediate redshift clusters by comparing the relationship of these galaxies to that

of low redshift clusters. We have also examined the properties of the galaxies showing

radio excess to determine the extent that galaxy type or environment may explain the

radio excess in galaxy clusters.

We find that the ratio of far-IR to radio luminosity for galaxies in an intermediate

redshift cluster to be qFIR = 1.72±0.63. This value is comparable to that measured in low

redshift clusters. A higher fraction of galaxies in clusters show an excess in their radio

fluxes when compared to low redshift clusters, and corroborates previous evidence of a

cluster enhancement of radio excess sources at this earlier epoch as well. We have also

investigated the properties of the far-IR-radio correlation for a sample of galaxy groups

in the COSMOS field. We find a lower percentage of radio-excess sources in groups

as compared to clusters. This provides preliminary evidence that the number of radio-

excess sources may depend on galaxy environment. We also find that a larger fraction of

radio-excess sources in clusters are red sequence galaxies.

May 2014
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Chapter 1

Introduction

1.1 Overview

Galaxy clusters are the largest gravitational bound structures in the Universe. Clusters

contain from a few hundred to thousands of galaxies within a radius of the order of ∼ 2

Mpc (Abell 1958; Abell et al. 1989) although much of the baryonic material is contained

in a hot, X-Ray emitting gas (e.g. Briel et al. 1992; White and Fabian 1995). Clusters are

massive with a total mass typically ranging from∼ 1014 M� to≥ 1015 M�. The fraction

of the total mass of a galaxy cluster consists of ∼ 5% stars, ∼ 15% hot intracluster gas,

and roughly ∼ 80% dark matter. Clusters provide evidence of dark matter and they are

unique laboratories to study the evolution of large scale structures in the Universe as

well as the evolution of galaxies in high density regions. Understanding the properties of

galaxies in clusters plays an important role in understanding galaxy evolution.

In this work, we study the correlation between the far-IR and radio luminosities

from galaxies in clusters and groups using a multi-wavelength observations. The multi-

wavelength data sets include optical spectroscopic, infrared, and radio observations. De-

spite the ability to observe across the entire electromagnetic spectrum, multi-wavelength

studies have opened up new views of galaxies that could lead to a complete picture of
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CHAPTER 1. INTRODUCTION 2

their evolution. Here the critical importance of a multi-wavelength approach for disen-

tangling the observed far-IR and radio relationship for galaxies at intermediate redshift

clusters and groups and its implications are further pursued.

This Chapter covers a general overview of cluster galaxies and multi-wavelength

analysis that are needed for this work. In Section 1.2, we provide a short review of galaxy

classification. In Section 1.3, we briefly outline the properties of local cluster galaxies,

the relationship between galaxy types and environment, and the postulated physical pro-

cesses that drive galaxy evolution in clusters. In Section 1.4, we introduce the need for

multi-wavelength studies and summarise the dominant mechanisms that produce infrared

and radio emission in galaxies. We briefly review radio source populations that include

radio galaxies and active galactic nuclei (AGN) as well as star-bursting galaxies in Sec-

tion 1.5. We outline the structure of this thesis in Section 1.6.

1.2 Galaxy Classification

Galaxies are divided into classes based on their shape or morphology. The Hubble clas-

sification scheme divides galaxies into four classes: Ellipticals (E), Lenticulars (S0),

Spirals (S), and Irregulars (Irr). The Hubble classification scheme (Hubble 1926, 1936)

known as the Hubble tuning fork diagram is shown in Figure 1. The images shown in the

montage were taken from Faulkes Telescope North and are displayed for a visual illus-

tration. Galaxies that appear to have spiral structures are called spiral galaxies. Elliptical

galaxies tend to be smoother and elliptically shaped. Lenticular galaxies (S0) are disk

galaxies with no spiral arms, while Irregular galaxies (Irr) are galaxies that have other

shapes which do not fit into these three major classes.

The Hubble morphological classification of galaxies has two basic galaxy types:

early-type (E and S0) dominated by ellipticals and late-type (S, SB and Irr) dominated by

spirals. Elliptical galaxies are composed of old stars moving in random orbits and have

very little gas. Ellipticals can be divided into subclasses depending on their ellipticity

which is the ratio between the major and minor axis. Spiral galaxies are composed of a

 

 

 

 



CHAPTER 1. INTRODUCTION 3

Figure 1: The Hubble tuning fork diagram of galaxy classification. The classification
shown here consists of three types of galaxies which include ellipticals, S0, normal and
barred spirals. The division of the S0 class into barred and unbarred, and irregular galax-
ies are not shown. (Credit: Las Cumbres Observatory Global Telescope Network).

flat rotating disk with a central bulge. The disk component contains young stellar pop-

ulation, gas, and dust, while the bulge component is populated by old stars. Spirals can

be divided into normal spirals and barred spirals if they have bars in the central regions.

Normal and barred spirals can still be divided into subclasses depending on the looseness

of their spiral structures (see, Choudhuri 2010, Chapter 9, for a review).

1.3 Evolution of Galaxies in Clusters

1.3.1 Observed Relationships in Clusters

1.3.1.1 Colour-Magnitude Relationship

It has been established that local galaxies have a bimodal distribution in color space

(Strateva et al. 2001; Baldry et al. 2004; Balogh et al. 2004) that allows the separation

 

 

 

 



CHAPTER 1. INTRODUCTION 4

of the red sequence (early-type) galaxies with low SFRs from the blue cloud (late-type)

galaxies with high SFRs. These findings were further constrained for high-redshift galax-

ies in the colour-magnitude diagram of galaxies out to at least z ∼ 1 (Bell et al. 2004).

The bimodality of galaxy properties is also observed in their colour-magnitude diagram,

luminosity function, and stellar mass (Faber et al. 2007; Drory et al. 2009). This implies

that the morphology of galaxies correlates with their intrinsic properties such as colour,

mass, and age.

1.3.1.2 Morphology-Density Relationship

The “Morphology-Density Relationship” (MDR) is a correlation between morphology

and galaxy environment and was discovered by Dressler (1980). The MDR reveals that

early-type galaxies preferentially reside in the cores of local massive clusters, whereas

star forming disk galaxies reside mostly on the outskirts of clusters or in the field. This

relationship between the galaxy morphology and the galaxy density or environment has

also been found to hold for galaxy groups (Postman and Geller 1984).

The giant elliptical galaxies in massive clusters have been found to be in place at

earlier epochs around redshift of at least z ∼ 0.6 (Ellis et al. 1997) or even at z ∼ 1

(Lubin et al. 1998). The MDR seen in the local clusters is perhaps the result of the

build-up of the red sequence which is known to start at some point in the past. The red

sequence is populated by early-type galaxies. In particular, S0 galaxies are rare in distant

(z ∼ 0.5) clusters (Dressler et al. 1997), indicating they are relatively recent arrivals in

the cluster environment. Transformations between galaxy morphological types include

conversion of spirals into S0 galaxies via environmental mechanisms (Fasano et al. 2000;

Smith et al. 2005; Postman et al. 2005).

1.3.1.3 Butcher & Oemler Effect

It is now well established that elliptical galaxies are found to reside in local cluster cores,

while spiral galaxies tend to dwell in the cluster outskirts (MDR). In contrast, at higher

 

 

 

 



CHAPTER 1. INTRODUCTION 5

redshift, it is also found that the fraction of blue, star-forming galaxies in cluster cores

increases with redshift. Butcher and Oemler (1978) found, for the first time, that the cores

of galaxy clusters at z ∼ 0.4 contain a large number of blue galaxies with an increasing

level of star-formation activity.

The build-up of the fraction of blue galaxies within the core of clusters as a function

of redshift is known as the “Butcher-Oemler effect” (Butcher and Oemler 1978, 1984).

This increase of the fraction of blue galaxies as a function of redshift has been found to

be even stronger in the sample of galaxies studied by Rakos and Schombert (1995) where

at z ∼ 0.4 the blue fraction was 20% and at z ∼ 0.9 the blue fraction was 80%. Figure 2

shows the original “Butcher-Oemler effect” or “BO effect” along with some more recent

works for a comparison.

These distant blue galaxies have been observed to transform into passive galaxies

over cosmic time and eventually build-up the red-sequence population (e.g. Smail et al.

1997). Therefore, it is likely that a large population of cluster blue galaxies evolve into

(red) local ellipticals which fulfill the existence of MDR.

It has been suggested that a variety of processes across different environments of

the cluster transform spiral galaxies into S0 population in clusters (Moran et al. 2007).

The frequently proposed physical processes that are predicted to be responsible for these

transformations include ram-pressure stripping, mergers, galaxy harassment, strangula-

tion, and starvation. We provide a brief review for these physical mechanisms in the next

section.

1.3.2 Transformation Mechanisms in Clusters

A number of physical mechanisms have been proposed to explain the observed morpho-

logical and SFR evolutions of cluster galaxies. In this Section, we attempt to provide a list

of the most important physical mechanisms that are likely driving morphological trans-

formations in cluster galaxies. These proposed transformational mechanisms have long

been invoked to explain the trend seen on both the MDR and BO effect. We summarise

 

 

 

 



CHAPTER 1. INTRODUCTION 6

Figure 2: The Butcher-Oemler effect. This figure shows a comparison of the fraction
of blue galaxies within clusters at different redshifts. The original data of Butcher and
Oemler (1984) (empty circles), data from Smail et al. (1998) (filled circles), and data
from Pimbblet et al. (2002) (filled triangles). The Butcher-Oemler evolutionary trend is
shown as the dashed line. (Figure adopted from Pimbblet 2003).

 

 

 

 



CHAPTER 1. INTRODUCTION 7

the most relevant ones as follows.

“Ram-pressure stripping” is among the mechanisms that removes a galaxy’s gas via

interactions between a galaxy and the intracluster medium (ICM) (Gunn and Gott 1972).

The galaxy’s gas is stripped by the pressure due to the passage of the galaxy through the

ICM. Simulations have shown that galaxy’s gas could be stripped from the disk (Abadi

et al. 1999; Quilis et al. 2000) and/or from the halo (Larson et al. 1980; Bekki et al.

2002). Ram-pressure stripping is likely to be efficient within the central region of clus-

ters, where there is a large amount of hot ICM gas (Haynes and Giovanelli 1986; Bureau

and Carignan 2002; Vollmer 2003). It is also predicted to be more effective in rich clus-

ters because the relative velocity of a galaxy is larger in these systems (Bahcall 1977;

Fujita and Nagashima 1999; Fujita 2001).

“Galaxy-galaxy mergers” are predicted to occur via interactions between equal-mass

(major merger) galaxies which could create an elliptical galaxy (Toomre and Toomre

1972; Naab and Burkert 2003). It can also occur when unequal mass (minor merger)

spiral galaxies are interacting (interactions could cause the B-O effect, e.g. Lavery and

Henry 1988) which could form an S0 galaxy (Icke 1985; Bekki 1998). Galaxy mergers

seem to rarely happen in cluster cores due to large relative velocity of galaxies (Ma-

mon 1992; Makino and Hut 1997), which would prevent the formation of gravitationally

bound pairs during close encounters. On the other hand, mergers are likely to occur in a

relatively low galaxy density at the cluster outskirts (Mihos 2003).

“Galaxy-galaxy harassment” is predicted to occur when two unequal mass galaxies

moving at high velocity come to close encounters (Moore et al. 1996). The tidal forces

due to high-speed encounters would disturb the gas in the galaxies which could trigger

star formation. Galaxy harassment would be important for lower mass galaxies and could

affect morphology and star formation rate of cluster galaxies (Moore et al. 1998, 1999).

Galaxy and the cluster gravitational potential is predicted to tidally interact via either

“starvation” or “strangulation” (Larson et al. 1980; Balogh et al. 2000; Bekki et al. 2001)

mechanism that can strip off galaxy’s halo gas due to the cluster environment which can

trigger or truncate star formation. Alternatively, the interactions between a galaxy and the

 

 

 

 



CHAPTER 1. INTRODUCTION 8

cluster gravitational potential can tidally compress the galactic gas which would increase

the star formation rate of a galaxy (Byrd and Valtonen 1990; Valluri 1993; Henriksen and

Byrd 1996; Fujita 1998).

“Strangulation” is predicted to occur via tidal interactions between the galaxy and

the cluster potential well where a galaxy’s envelope of hot gas is being stripped off. This

envelope of hot gas is no longer available to cool and accrete gas onto a galaxy to sustain

star formation (Larson et al. 1980; Diaferio et al. 2001). This mechanism would truncate a

galaxy’s star formation but the quenching process would occur over longer timescales (>

1 Gyr) (Poggianti 2004). “Starvation” is predicted to occur via tidal interactions between

a galaxy and cluster dark matter halo where galaxy’s hot gas halo is being stripped off

(Bekki et al. 2002), halting the accretion of cold halo gas onto the galaxy disk to fuel star

formation. Due to the cluster potential forces, starvation would tidally truncate galaxy’s

star formation with slower quenching time at about few Gyr.

To illustrate which mechanism is expected to be more important in what regions

of the cluster environment, a diagram that indicates the effectiveness of each proposed

mechanisms for two massive intermediate redshift (z∼0.5) clusters (MS0451-03 cluster

is part of our cluster sample) are shown in Figure 3. In this graph it is noted that tidal

processes in this diagram refer to interactions with the cluster potential, while tidal forces

during galaxy-galaxy interactions are a component of the harassment mechanism (Moran

et al. 2007). As can be seen, tidal stripping is more effective in cluster cores, while

ram pressure stripping, starvation, and harassment play an important role towards larger

radii. Galaxy-galaxy mergers dominating at the cluster outskirts. Moran et al. (2007)

studies suggested that spiral (infalling) galaxies are being slowly converted into S0s via

a heterogeneous process that nevertheless proceeds robustly across a variety of different

environments. It is likely that ICM-related processes globally affect star formation rate

(quenching), while tidal-driven processes (e.g. harassment) is likely to be effective in

morphological transformation. Nonetheless, the magnitude of the importance of each

mechanism is still controversial.

Although these proposed mechanisms have provided us some important clues for

 

 

 

 



CHAPTER 1. INTRODUCTION 9

Figure 3: This schematic diagram shows the clustercentric radius and an example of per-
formances of the listed physical mechanisms. It indicates the effectiveness of each of the
proposed physical mechanisms that may be fully halting star formation or transforming
the visual morphology of a radially infalling galaxy. The physical mechanisms acting in
two clusters are being compared that consists of CL0024+17 (solid line) and MS0451-03
(dashed line). The arrows indicate the virial radius of each cluster. (Figure from Moran
et al. 2007).

 

 

 

 



CHAPTER 1. INTRODUCTION 10

galaxy evolution, no substantial observational evidence has been gathered to demonstrate

which processes are the dominant mechanisms driving the evolution of galaxies. To date,

the details of the mechanisms that quench and or trigger star formation which transform

blue (spiral), actively star-forming galaxies into red (elliptical), passive galaxies are still

a subject of debate. In the next Section, we introduce a multi-wavelength analysis that

aims to shed new light on our understanding the evolution of these galaxies.

1.4 Multi-wavelength Astrophysics

The ideal approach to studying the details of a cluster’s populations is to have large sam-

ple drawn from a very deep and large survey. There have been extensive work in aiming

to achieve this although there are still various limitations such as a survey’s depths. An

alternative approach to address these issues is to carry out a multi-wavelength analysis.

Multi-wavelength approach aims to study galaxy’s properties in different part of the elec-

tromagnetic spectrum and combine them in order to yield a much more complete view of

the galaxy’s features.

In Figure 4, we show a picture of radio galaxy Centaurus A in a panchromatic view

to illustrate the different features that can be viewed at different wavelengths. As can

be seen, an analysis from one waveband does reveal unique features which the other

wavelengths do not. Therefore, studies of galaxies using multiple observations at differ-

ent wavelengths (i.e. taken at different wavelengths that include γ-ray, x-ray, ultraviolet

(UV), visible, infrared (IR), and radio waveband) consolidate these features to enable us

to study the evolution of galaxies in greater details. For instance, unlike the visible light,

in the IR one sees galaxies obscured by dust, while in the X-ray and radio wavelengths

galaxies’ large scale structures are readily observed.

Understanding the morphological transformation and evolution of star formation rate

are among the important goals in astrophysics. Multi-wavelength analysis of star forming

galaxies in clusters is one of the most promising approaches to investigate them and the
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Figure 4: The Centaurus A galaxy or NGC 5128 observed at various wavelengths. Mon-
tage of galaxy imagery to illustrate the different features that can be viewed at different
frequencies. (Credit: Ángel R. López-Sánchez).

evolution of galaxies via the link between star formation, cluster environment, and galaxy

properties. In order to fully understand the processes driving these evolutions in clusters

a multi-wavelength approach is needed.

1.4.1 Infrared Emission

IR emission is emitted by any astronomical object that radiates heat. In galaxies, most

far-IR emission is produced by starlight re-processed by dust (Beichman 1987; Soifer

et al. 1987), IR dust thermal emission. IR galaxies are galaxies that emit more radiation

in the wavelength range about (0.7–350 µm) than all other wavelengths. IR emission

from galaxies can be split into three spectral regions that consists of near-IR (NIR; 0.7–

5 µm), mid-IR (MIR; 5–25 µm), and far-IR (FIR; 25–350 µm). NIR observations are

useful tools to study the stellar mass of galaxies. The MIR can be used to probe various

properties of dusty obscured star formation activity. The FIR are excellent tracers of very

cold gas where intense star formation is triggered.

The capability of the ground based observations is limited by the atmospheric seeing
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since IR emissions (also γ-ray, X-ray, and UV light) are either absorbed or scattered by

the Earth’s atmosphere. Space observatories which detect IR light include the Infrared

Astronomical Satellite (IRAS, Neugebauer et al. 1984), Infrared Space Observatory (ISO,

Kessler et al. 1996), Spitzer Space Telescope (Spitzer, Werner et al. 2004), and the Her-

schel Space Observatory (Herschel, Pilbratt et al. 2010). Each of these satellites has

revolutionised, at some level, our IR view of galaxies both at low and high redshift.

1.4.2 Radio Emission

Radio continuum emission arises from both thermal and non-thermal processes. The

non-thermal emission includes “synchrotron emission”, while the thermal emission in-

cludes “free-free emission”. Different type of galaxies produce radio emission in various

mechanisms where one production mechanism can be more dominant when compared to

others.

1.4.2.1 Non-Thermal Radio Emission

The non-thermal radio emission known as synchrotron emission is produced by elec-

trons moving at relativistic velocities that gyrate along a magnetic field. In Figure 5, a

schematic to illustrate the production of synchrotron radiation is shown. The energies of

the emitted photons significantly depend on the energy of the electrons and on the mag-

netic field strength. For an electron, the power law distribution is used to approximate its

energy spectrum which is given by:

P(ω)∼ ω
−α (1)

where α is the spectral index, ω is the frequency of the gyration. Likewise, for the sum

of the energy spectrum of individual electrons, the spectrum of synchrotron radiation can

also be characterized by a power law spectrum.
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Ptot(ω)∼ ω
−(p−1)/2 (2)

where α = (p−1)
2 is the spectral index, p is the particle distribution index. The radio

synchrotron spectrum is often written in the form Sν ∼ ν−α where Sν is the radio flux

density at frequency ν , and α is the spectral index. For a complete derivation of the above

equations, we refer the readers to Chapter 6 of the text-book by Rybicki and Lightman

(1979).

Figure 5: Synchrotron radiation is produced when relativistic cosmic-rays electrons spiral
around magnetic field. (Credit: http://nrumiano.free.fr).

The value of the spectral index depends on the properties of the astronomical sources.

For AGN, it generally lies between (-1 < α < +1), while α ∼ 0.8 is typical for normal

star-forming galaxies (Condon 1992). As shown in Figure 6, the spectrum of synchrotron

emission steepens at higher frequencies. The common sources that produce synchrotron

emission include supernova remnants, radio galaxies, and AGN. The synchrotron radia-

tion can be polarized (up to 75%) in a regular magnetic field.

1.4.2.2 Thermal Radio Emission

The thermal emission or bremsstrahlung also known as free-free emission is due to decel-

erating electrons interacting with an ionized gas. This form of radiation occurs when an

 

 

 

 



CHAPTER 1. INTRODUCTION 14

electron passes close to a positive ion and is decelerated by Coulomb forces. In thermal

equilibrium, velocities of the electrons will obey the Maxwell-Boltzmann distribution.

The velocity and the energy (E) of the electron are determined by their temperature T .

The intensity of the bremsstrahlung radiation at energy E is given by

I(E,T) = AG(E,T)Z2neni(kT)1/2e−E/kT (3)

where G(E,T) is the Gaunt factor, ne and ni are the electron and ion densities, respectively.

A is a constant, k is Boltzmann’s constant, and Z is atomic number.

The common sources that produce free-free emission include HII regions, gas heated

by X-rays from massive stars, star-forming galaxies, and the ICM. The thermal radio

emission is not intrinsically polarized, but rather a random process.

1.4.2.3 Synchrotron versus Free-Free Emission

In Figure 6, we display the observed radio spectrum of spiral galaxy M82 that includes

both synchrotron and free-free emissions. The far-IR spectrum of this bright nearby

starburst galaxy is also shown. The synchrotron emission is shown in the dot-dashed

line, while free-free emission is indicated in the dashed line, and dust emission is drawn

using a dotted line. The solid line is the sum of the three components.

As we can see in Figure 6, HII regions in M82 become opaque below ν ∼ 1 GHz

due to free-free absorption, while the free-free component is largest at an observed fre-

quency > 30 GHz. The dust emission (T ∼ 45 K) with opacity proportional to ν1.5

(Condon 1992) dominates the emission at higher frequencies. Thermal emission or “free-

free emission” (dashed line) is from HII regions ionized by massive (M > 15 M�) and

shorter-lived stars. The free-free component particularly dominates the poorly observed

frequency range which is between 30 and 200 GHz.
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Figure 6: A graph showing the flux density (Jy) as function of frequency (GHz) and
wavelength (cm). The synchrotron emission is shown in the dot-dashed line, while free-
free emission is indicated in the dashed line, and dust emission is drawn in dotted line.
The solid line is the sum of the three components. Synchrotron radiation (dot-dashed
line) from cosmic-ray electrons accelerated by the supernova remnants of massive (M >
8 M�) and short-lived (t < 3×107 yr) stars governs the radio continuum emission of M82
at frequencies 30 GHz. (Figure adopted from Condon 1992).
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1.5 Radio Source Population

The population of extragalactic radio sources can be broadly divided into two categories:

(1) star-forming galaxies which consists of galaxies where its radio emission is predomi-

nantly fuelled via (ongoing) star formation related-processes; (2) AGN which consists of

galaxies where its radio emission is predominantly fuelled via an active nucleus; powered

by an accretion activity on to a super massive black-hole.

In particular, star-forming galaxies and active galactic nuclei (AGN) are two main

populations of radio sources in deep radio surveys at 1.4 GHz (20 cm) (Condon 1984;

Windhorst et al. 1985). At this frequency the radio emission is dominated by synchrotron

emission powered either by cosmic-ray electrons accelerated in supernova remnants or

by accretion onto the central supermassive black hole (e.g. Condon 1992). It is also

known that the radio properties of star-forming galaxies and AGN (e.g. Seyferts, LIN-

ERs) are comparable, at least, in the local Universe (Sadler et al. 1999), thus additional

observations at other wavelengths are often needed to disentangle AGN and star-forming

galaxies in the radio regime. We provide a brief description of these radio sources as

follows.

1.5.1 Radio Galaxies

The majority of radio galaxies often have steep spectrum with α ∼ 0.5 – 1. The optical

counterparts of radio galaxies are usually elliptical and show continuum emission and/or

broad and narrow emission lines.

The main features that distinguish AGN from “normal” star-forming galaxies in-

clude high nuclear luminosity, broad-band (non-thermal) continuum emission, presence

of strong high ionisation lines in their optical spectra, rapid variability of lines and con-

tinuum, and jets. Furthermore, AGN show strong features in the radio and emit jets of

plasma that feed energy and particles to the radio lobes (Begelman et al. 1984).
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1.5.2 Active Galactic Nuclei

The term active galactic nuclei (AGN) refers to the existence of a very energetic central

region of a galaxy which shows substantial radiation over a portion or across the elec-

tromagnetic spectrum. The excess emission has been observed through γ-ray to radio

wavelengths. It is known that most, or perhaps all, massive galaxies host a supermassive

black hole at their centre (Kormendy and Richstone 1995). It is believed that the radia-

tion from AGN is powered by accretion of material into a supermassive black hole in the

central region of a galaxy and is not connected to stellar activity. AGN are known to be

significant sources of energy in the Universe. Radio AGN release a substantial energy at

radio wavelengths.

AGN can be broadly classified, via radio luminosities, into radio-quiet (L1.4 GHz ≤

1022 W Hz−1 sr−1) and radio-loud (L1.4 GHz > 1022 W Hz−1 sr−1) (Jarvis and Rawlings

2004). (1) Radio-quiet AGN, which consists of ∼ 90% of the overall AGN population,

are divided into two subclasses: (a) high optical luminosity radio quiet AGN or quasars,

Seyfert galaxies; (b) low luminosity AGN, Low Ionisation Nuclear Emission lines Re-

gions (LINERS). (2) Radio-loud AGN, which are characterised by strong radio emission,

typically consists of quasars and blazars.

The current unified model of AGN postulates the presence of black-hole surrounded

by an accretion disk where the primary emission comes from (Antonucci 1993). The

accretion disk is the result of materials such as interstellar gas that orbit the black-hole

which powers up the AGN. The rapidly rotating matter is heated and ejected at a relativis-

tic speed which produce the jets emitted at different wavelengths from radio to γ-rays.

There are also the presence of two gas clouds regions with different radii and velocity

dispersions that eventually constitute the broad line region (BLR) and the narrow line

region (NLR) (see, Urry and Padovani 1995). Finally, a torus which consists of a thick

dust particles and molecular gas, and is one of the basis component in the model.
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1.5.3 Star-Forming / Starburst Galaxies

Starburst galaxies are undergoing an episode of tremendous star formation. The stellar

populations of starburst galaxies are dominated by massive OB stars (e.g. Aitken et al.

1982; Conti 1991) and evolved red supergiants stars (Oliva et al. 1995). Their high IR

bolometric luminosities are known to be dominated by young hot giant stars formed

from recent or ongoing intense star formation activity (e.g. Moorwood 1996), and nebular

emission lines (including those of the Balmer series) are observed in their optical spectra.

In starburst galaxies, by definition, the rate at which stars are forming is higher (Scoville

and Young 1983) hence gas depletion is faster, and therefore the duration of the starburst

episode is short (∼ 109 yr).

There are two main emissions from star-forming galaxies which consists of line emis-

sion and continuum emission. Line emission results from atomic processes that only

have a very specific quantized energies. While continuum emission is processed through

non-quantized exchange of energy where the radio photons emitted have a continuous

energy distribution. We provide further detail of the continuum emission with particular

relevance to this work as follows.

There are two main types of continuum emission: the thermal radiation and the non-

thermal radiation. In the case of thermal radiation, emission depends solely on the tem-

perature of the emitter such as free-free radiation (see other e.g. blackbody radiation at

short wavelengths). The non-thermal radiation does not depend on the temperature of the

emitters but requires magnetic field and an example of such emissions is the synchrotron

radiation (see other e.g. maser radiation). The dominant mechanism for radio emission

in star-forming galaxies are free-free emission (for cooler sources with temperature about

< 10 K) and synchrotron emission.
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1.6 Outline of this Thesis

Understanding the evolution of galaxies remains one of the most important goals in astro-

physics. In this thesis, we present a multi-wavelength data analysis of galaxies in clusters

and groups at intermediate redshift in an attempt to shed new light on the evolution of

these galaxies. In particular we look at the still unrevealed nature of the far-IR-radio rela-

tionship in massive and distant galaxy clusters as well as in groups where the relationship

is relatively unexplored.

Chapter 1 covers a general overview of the evolution of cluster galaxies and multi-

wavelength techniques and analyses that are needed for this work.

Chapter 2 provides a literature review of the far-IR-radio relations. In particular it

covers an overview of the early work, theoretical models, prediction and observations

for the relation for field galaxies. It also provides a thorough overview of far-IR-radio

correlation for low redshift galaxy clusters.

Chapter 3 gives the details of the spectroscopic redshifts for each cluster and describes

our selection of the cluster and galaxy samples.

Chapter 4 introduces the specifications of the VLA continuum observations, data

reductions, and data analysis.

Chapter 5 summarizes the IR data followed by the details of the photometry and data

analysis as well as the method for measuring IR luminosities of galaxies.

Chapter 6 presents and discusses our findings on the far-IR-radio relationship for a

sample of distant galaxy clusters.

Chapter 7 presents and discusses our findings on the radio and infrared properties of

galaxy groups in the COSMOS field.

Chapter 8 provides a summary and conclusions of our findings followed by the future

work.

 

 

 

 



Chapter 2

The Infrared and Radio Properties of

Galaxies

2.1 Overview

Multi-wavelength analysis using IR and radio observations play an important role for a

better determination of the properties of galaxies, especially those suffering from obscu-

ration due to dust at optical wavelengths. Observations by the Very Large Array (VLA,

Hjellming and Bignell 1982) and the Spitzer Space Telescope (Spitzer, Werner et al.

2004) have rapidly increased the number of multi-wavelength studies of star-forming

galaxies. The study of the correlation between the far-IR and radio continuum emissions

for normal star-forming galaxies, the so-called “far-IR-radio correlation”, is among the

most interesting results of multi-wavelength studies in astrophysics. Like other cutting-

edge topics in extragalactic astronomy, the far-IR-radio correlation also has a long history

which is given as per outlined as follows.

This Chapter is dedicated to provide a thorough literature review on the far-IR-radio

correlation. Section 2.2 introduces the early works on the IR-radio correlation. Section

2.3, Section 2.4, and Section 2.5 present various aspects behind the relationship that

include theoretical modelling, spatially resolved studies within galaxies, and simulation.

20
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Section 2.6 presents the universality of the relation for field galaxies, then reviews the

observed relation for star forming galaxies as a function of redshift, and also focuses

especially on the state-of-the-art for cluster galaxies at low redshift. Section 2.7 presents

the far-IR-radio relationship for AGN. In Section 2.8, we provide the main motivation for

this thesis work.

2.2 The IR-radio Relationship: Earlier Works

The history of the IR-radio correlation began four decades ago when van der Kruit (1971)

discovered a relation between mid-IR luminosity at 10 µm and the radio luminosity at

1415 MHz. The paper of van der Kruit (1971) first showed the existence of the observed

relation for the nuclei of Seyfert galaxies. The two emissions were believed to be orig-

inating within the core of Seyfert galaxies. The existence of the relation between these

emissions for Seyfert galaxies was further confirmed by Rieke and Low (1972). A sub-

sequent analysis by van der Kruit (1973) reported that the relation might also persist for

the nuclei of normal spiral galaxies.

Radio emission originating from the nuclei of spiral galaxies was found to be asso-

ciated with either starbursts or active nuclei (Condon et al. 1982). Furthermore, Condon

et al. (1982) found that the IR and radio fluxes from these nuclei were linearly correlated.

The non-thermal radio emission is believed to be produced by relativistic electrons ac-

celerated in supernova remnants (Harwit and Pacini 1975), while the IR emission is pos-

tulated to be thermal emission coming from starlight of young massive stars re-radiated

by dusty HII regions (Harwit and Pacini 1975; Rickard and Harvey 1984).

The initial works on the IR-radio relation use IR data at 10 µm, although many sub-

sequent works have benefited from the availability of observations from the Infrared

Astronomical Satellite (IRAS, Neugebauer et al. 1984) at 12 µm, 60 µm, and 100 µm.

Helou et al. (1985) were among the earliest to use IRAS to explore the far-IR-radio corre-

lation in the disks of galaxies. Helou et al. (1985) were the first to define the well-known

parameter, q, which is the logarithmic ratio of the far-IR-radio luminosities that has been
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used to measure the tightness of the far-IR-radio correlation. The relation between the

IRAS far-IR (FIR, 40 – 120µm) luminosities and the 20 cm radio continuum luminosities

were found to be universal. Figure 7 shows the behaviour of the FIR-radio correlation

for nearby cluster and field galaxies observed by Helou et al. (1985).

The relation has been found to hold for various galaxy morphological types includ-

ing spiral galaxies in Virgo (Helou et al. 1985), a sample of mixed galaxies including

spiral and irregular galaxies (Wunderlich et al. 1987), barred spiral galaxies (Hummel

et al. 1988), lenticular and various other stages of spiral galaxies (Dressel 1988), and

FIR bright elliptical galaxies (Wrobel and Heeschen 1991). The relation between the

radio and far-IR emission seems to universally hold even for these different morpholog-

ical types of normal star-forming galaxies although both the IR and radio emissions are

known to be produced through different mechanisms of (ongoing) massive star formation

(Harwit and Pacini 1975; Wunderlich and Klein 1988).

Nevertheless, some early observational work had already claimed that the magnetic

field seemed to affect the observed relation. For example, by using “minimum energy

conditions” as an assumption to estimate the strength of the magnetic field, Hummel

(1986) noticed that the frequency distribution of the deviations of the far-IR-radio relation

varies with the frequency distribution of the magnetic field strengths for Sbc galaxies.

The deviations in the relation was the first evidence that the scatter in the far-IR-radio

correlation is due to a magnetic field (Hummel 1986).

2.3 The IR-radio Relationship: Theoretical Models

A number of theoretical models have been developed to explain the observed tight cor-

relation between the far-IR and radio luminosities. Among the models that have been

proposed to explain the observed global far-IR-radio correlation are presented as follows:

(i) The “calorimeter” theory was proposed by Voelk (1989) which assumes that all

of the ultraviolet (UV) radiation from massive stars are absorbed by interstellar
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Figure 7: The 20 cm radio continuum luminosity (L1.4GHz) against the far-IR luminosity
(LFIR) for Virgo cluster and field galaxies. (Figure adopted from Helou et al. 1985).
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dust that re-radiates this energy in the far-IR and all of the cosmic-ray electrons are

trapped in and dissipated by radio synchrotron emission within the galaxy (optically

thick model). The proportionality between far-IR and radio emission shall then be

achieved if both UV light from massive stars and cosmic-ray electrons from su-

pernova remnants are correlated with the supernova rate (Voelk 1989). This model

also assumed that the energy density of the magnetic field and the interstellar ra-

diation field are proportional which maintains a constant ratio of synchrotron to

inverse Compton losses. The subsequent “calorimeter” model by Lisenfeld et al.

(1996) offers a variable optical depth for the stellar UV radiation and finite escape

probabilities for the cosmic-ray electrons.

(ii) Chi and Wolfendale (1990) proposed a model to explain the non-linearity of the far-

IR-radio relation which postulated that the strong suppression of the non-thermal

emission (Klein et al. 1984; Price and Duric 1992) from low-luminosity galaxies is

due to increasing escape probability of the cosmic-ray electrons. As these galaxies

are small in size and have lower magnetic field strengths leading to a decreased elec-

trons confinement. Thus the cosmic rays are more likely to escape from the galaxy

which leads to a faster decrease in synchrotron luminosity than in FIR luminosity

(Klein et al. 1984; Chi and Wolfendale 1990).

(iii) The “non-calorimetric” model considered by Helou and Bicay (1993) allows most

of the UV radiations and cosmic-ray electrons to escape the galaxy disc and assume

that the disc scale-height and escape scale-length for CR electrons is correlated (op-

tically thin model). The large dependence of the synchrotron emission on the mag-

netic field is compensated by coupling the magnetic field strength (important for

the synchrotron emissivity) and gas density (important for UV absorption) locally.

This was a plausible explanation to ensure that the tight far-IR-radio correlation is

maintained (i.e. by maintaining equal escape rates for photons and CR electrons).

(iv) Alternative “non-calorimetric” models have also been proposed to explain the ob-

served far-IR-radio correlation. Niklas and Beck (1997) proposed that observations

 

 

 

 



CHAPTER 2. THE INFRARED AND RADIO PROPERTIES OF GALAXIES 25

favor a combination of the correlations between the volume density of the cold gas,

star formation rate, and the magnetic field strength, and that between the star forma-

tion rate and the far-IR luminosity. Their model assumes an equipartition between

the magnetic field strength and cosmic ray electrons energy. This model seems to

explain the observed far-IR-radio relation on both a global and also local scales

(i.e. spatially resolved studies on kpc scale– see §2.4) within the discs of individual

galaxies.

The validity of these suggested models is still under intense scrutiny.

2.4 IR-radio Relationship: Spatially Resolved Studies

The correlation holds not only on galactic scales but is also found to hold for regions

within star-forming galaxies (Beck and Golla 1988; Bicay and Helou 1990; Paladino et al.

2006). In particular, Beck and Golla (1988) showed that the far-IR-radio correlation also

holds within M31 and M33 spiral galaxies down to scales on the order of a few 100 pc.

Further investigations of the observed local correlation within star-forming galaxies have

been carried out (Hoernes et al. 1998; Hughes et al. 2006; Murphy et al. 2006; Tabatabaei

et al. 2007a) in aiming to shed new light on the detail of the origin of the far-IR-radio

correlation and its driving mechanisms.

Strong constraints on the calorimetry model (Voelk 1989) and non-calorimetric model

(Helou and Bicay 1993; Niklas and Beck 1997) may be further achieved, for exam-

ple, when the spatial scales on which the far-IR-radio correlation breaks down is well-

determined. These spatially resolved studies show that while both IR and radio emis-

sions peak at nearly similar spatial scales (Hoernes et al. 1998), radio images appear to

be smeared versions of the IR images (Murphy et al. 2006) reflecting the diffusion of the

cosmic ray electrons in the ISM (Bicay and Helou 1990).

The local galaxies are a good place to spatially resolve galaxies at parsec scales due to

their proximity. As a result, much work has also been focused on the details of the nature

 

 

 

 



CHAPTER 2. THE INFRARED AND RADIO PROPERTIES OF GALAXIES 26

of the far-IR radio correlation whether the relation is linear or not, which is defined as

LRadio ∼ Lγ

IR where γ is the slope of the relationship. In the next Subsections, we briefly

present a combination of the different components of the IR and radio emission that have

been studied as among the interests of some early works.

2.4.1 Radio Emission Components

Radio emission of local galaxies have been decomposed into thermal and the non-thermal

components (Price and Duric 1992; Hughes et al. 2006) at various spatial scales. For

example, Price and Duric (1992) found that the total far-IR emission remains correlated

with both the thermal bremsstrahlung (γ ∼ 1) and the non-thermal synchrotron emissions

(γ ∼ 1.13) which holds over 5 orders of magnitude in luminosity though the synchrotron

slope is slightly higher. For further details on decomposing the radio emission as well

as a technique for measuring the distribution of the non-thermal spectral index see e.g.

Tabatabaei et al. (2007b) on their analysis of M33.

2.4.2 IR Emission Components

IR emission of local galaxies have been decomposed into two components that consist of

warm dust emission from young massive stars (traced by shorter IR waveband) and cold

dust emission from lower mass old stars (traced by longer IR waveband) and analysed

separately (e.g. Pierini et al. 2003). It is found that the total radio emission remains

correlated with both the warm far-IR emission (γ ∼ 1) and the cold far-IR emission (γ ∼

1.13) and the correlation can still be tight but not linear.

2.4.3 Radio Components versus far-IR Components

Berkhuijsen et al. (2000) have decomposed the radio emission into thermal and non-

thermal emissions, and the far-IR emission into warm and cold dust emissions for a local

galaxy (M31). The cold far-IR emission versus either thermal or non-thermal emission
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was found to have a higher slope (γ ≥ 1), while the warm far-IR emission against either

thermal or non-thermal emission was found to correlate much stronger. It turns out that γ

is greater than unity for some cases which was defined as the non-linearity in the relation-

ship. The non-linearity between the synchrotron component and cold far-IR component

is among the challenges. In the next subsection, we present some works that focus on

non-linear aspects of the relationship.

2.4.4 The IR-radio Relationship: Non-linearity

The observed far-IR-radio correlation shows a non-linearity that is evident in the observed

luminosities. The observed non-linearity may be due to an increase of the local far-IR-

radio luminosity ratio which has been found to increase as a function of the galaxy surface

brightness (Marsh and Helou 1995; Hoernes et al. 1998; Hippelein et al. 2003). On the

other hand, the observed non-linearity may be due to the decreasing of the global far-IR-

radio luminosity ratio which has been found to decrease as the radio power of galaxies

increases faster than the infrared luminosity (Fitt et al. 1988; Cox et al. 1988; Devereux

and Eales 1989; Condon et al. 1991). Furthermore, Cox et al. (1988) analyzed a sample

of luminous galaxies at 151 MHz and found that their radio luminosities are higher with

respect to those predicted in the far-IR.

The non-linearity in the local / global far-IR-radio correlation may imply that the

far-IR or radio luminosity is not directly tracing the star formation activity. The non-

linearity found in the global far-IR-radio correlation has been linearized in various ways

as follows.

(a) Fitt et al. (1988) and Devereux and Eales (1989) subtracted the far-IR emission con-

tributions that come from old stellar populations of each galaxy and found a linear

far-IR-radio correlation. Devereux and Eales (1989) specifically subtracted a fixed

fraction of the blue luminosity from the far-IR luminosity of each galaxy and as-

sumed that the intensity of the radiation field heating the cirrus component is propor-

tional to the blue luminosity.
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(b) Condon et al. (1991) linearized the far-IR-radio correlation using optical blue to radio

luminosities ratio and found that non-linearity is due to heating of dust by old stellar

populations.

These plausible methods for linearization seem to be in agreement with the proposed

two-components model of Helou (1986); Lonsdale Persson and Helou (1987). Their

model splits the far-IR emission into two components: (1) warm “active” component

and (2) “cirrus” component. The first one comes from dusty molecular clouds heated by

the massive young stars (5 – 20 M�) (Xu 1990) while the second one is being heated

by old stars and the general interstellar radiation field. To obtain a linear far-IR-radio

correlation, it seems that the contribution of the second component to the LFIR needs

to be subtracted assuming that the cirrus is heated by the older and radio-quiet stellar

population. Furthermore, the empirical correction of Condon et al. (1991) is consistent

with the two-component model of Helou (1986) and Lonsdale Persson and Helou (1987)

if the population of young (< Gyr) massive (M ≥ 8 M�) stars heat the HII regions

(warm dust component) and also contribute to the heating of the cirrus component (cool

dust component).

2.5 The IR-radio Relationship: Simulation

A number of studies have recently investigated the physics of the far-IR-radio relationship

by numerical simulation. For example, Bressan et al. (2002) considered a comprehen-

sive model of the far-IR-radio correlation that includes stellar population synthesis, dust

radiative transfer, and a simplified model of radio emission from cosmic rays generated

by supernova (SN). It was shown that the correlation in starburst galaxies may not be

surprising if the synchrotron mechanism dominates the inverse Compton scattering and

the decay of the SN rate is longer than the cooling time of electrons (Bressan et al. 2002).

However, for post-starburst galaxies with high IR, a radio excess (a factor of 5 or so) is

expected due to the fact that the timescale for radio emission is longer with respect to the

timescale for IR emission (Bressan et al. 2002). They argued that the significantly lower
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q-values for post-starburst galaxies is not due to radio emission enhancement rather than

evolutionary effect of galaxies (i.e. morphological effect and SFR changes). This effect

leads to a scatter in q that has been found to match well the observed scatter in ULIRGs.

Many different models which include a few or many of the physical processes thought

to influence the behaviour of the Far-IR-radio correlation (e.g. dust opacity) have been

proposed to address the observed scatter in qFIR without success (Bicay and Helou 1990;

Murphy et al. 2006). By re-visiting the calorimetric model, Lacki et al. (2010) pre-

dict the linearity of the correlation to be the result of a complex combination of the

bremsstrahlung, inverse Compton cooling, ionisation, and the relative fraction of cosmic

ray electrons and observing frequency. It is argued that deviations from linearity of the

IR and radio luminosity ratio is unavoidable and the linearity of the global relationship

may be due to a conspiracy of various factors (Lacki et al. 2010).

2.6 The Observed far-IR-radio Relationships

The current availability of various space telescopes with a wide range of IR filters al-

lows for the easy estimation of IR luminosities. There are several definitions of the IR

luminosities used in the literature based on these observations. We provide these various

definitions as follows. On the one hand, the monochromatic IR fluxes often include the

IRAS 12, 60 µm, and the Spitzer 24, 70, 160 µm as well as the Herschel 250, 360, 500

µm; (these define q12, q60, etc.). On the other hand, the integrated IR luminosity usu-

ally includes the far-IR luminosity L(FIR, 40 – 120µm), total IR luminosities L(TIR, 8 –

1000µm), and L(TIR, 3 – 1100µm). The monochromatic q is defined as the logarithmic

ratio of the monochromatic IR flux and radio flux. The integrated q is defined as the

logarithmic ratio of the integrated IR luminosity and radio luminosity. In the next Sub-

section, we note that the total IR luminosity used throughout this work is mostly defined

as L(TIR, 8 – 1000µm), and in other cases we always use subscript to distinguish them.
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2.6.1 Far-IR-radio Relationship in Nearby Universe

Apart form Helou et al. (1985) which is already discussed in §2.2, Yun et al. (2001)

also further studied the correlation between the IRAS far-IR flux and the radio flux of a

sample of 1809 local field galaxies. They were the first to define the radio- or IR-excess

objects as those sources with radio or IR emission exceeding the far-IR-radio correlation

prediction by a factor of 5. This is the measured 5σ scatter around the nominal qFIR =

2.34±0.01 i.e. over roughly five orders of magnitude in luminosity. Yun et al. (2001)

strikingly also found a tight linear correlation between the far-IR and radio luminosity

with small fraction of radio-excess sources (< 1%; 10 galaxies in the sample).

Bell (2003) demonstrated that either the radio or FIR luminosity is not directly pro-

portional to star formation. They showed that the IR luminosity traces most of the star

formation in luminous galaxies and only a small fraction of the star formation in faint

galaxies, suggesting a revision for SFR calibrations. Bell (2003) used IRAS data to

compute qTIR using L(TIR, 8 – 1000µm) and qFIR L(FIR, 40 – 120µm) and found that

the far-IR-radio correlation is almost linear. They argued that this linearity is observed

not because the IR and radio emission reflect the SFRs correctly but because in low-

luminosity galaxies they are both underestimated by similar factors. In other words, the

observed linear correlation is rather just the competition of the lower dust content and

suppressed synchrotron emission that balance each other.

2.6.2 Far-IR-radio Relationship as a function of Redshift

Here we present a chronological non-exhaustive list of all studies that have investigated

the far-IR-radio relationship as a function of redshift in field galaxies.

The far-IR-radio relationship was, for the first time, extended by Garrett (2002) to

cover high redshift galaxies. Garrett (2002) used data taken from the Infrared Space

Observatory (ISO) at 15µm and extrapolated using the SED templates of local galaxies.

They found that the far-IR-radio correlation holds up to at least z ∼ 1.3. Gruppioni

et al. (2003) later used European Large-Area ISO Survey mid-infrared data at 15 µm
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to compute q15. They showed that the mid-IR-radio correlation also holds well and is

almost as tight as the far-IR-radio relationship out to at least z ∼ 0.6.

Appleton et al. (2004) were among the first to use Spitzer observations at 24 µm, and

the 70 µm First Look Survey (FLS) to probe the mid-IR- and far-IR-radio correlation

of field galaxies as a function of redshift. They used q24 of 508 sources and q70 of 227

sources to study the mid-IR- and far-IR-radio correlation, respectively. Appleton et al.

(2004) results demonstrated that both mid-IR- and far-IR-radio correlation consistently

hold out to at least z ∼ 1.

For sub-millimeter galaxies, the correlation between the submm and radio emission

at 450 µm (q450) has been found to hold up to at least z ∼ 2 (Chapman et al. 2005).

Frayer et al. (2006) used Spitzer observations at 70 µm to probe the evolution of the far-

IR-radio correlation in the extragalactic First Look Survey (xFLS) region. They found

that the observed q70 holds out to z∼ 1. Studies of the far-IR-radio correlation using q350

also confirmed the relation holds out to z ∼ 3 for sub-millimeter galaxies (Kovács et al.

2006).

Murphy et al. (2006) carried out a detailed analysis of the far-IR-radio correlation

within nearby field galaxies where they used Spitzer observations at 24 µm and 70 µm to

compute q24, q70, and qFIR. They showed that the local far-IR-radio relationship within a

galaxy at∼ 0.1-1 kpc scales holds as well as the global far-IR-radio relationship. Further-

more, Murphy et al. (2006) also used an image-smearing model to approximate a galaxy

radio map as a smoother version of its IR image due to the diffusion of CR electrons and

found that the far-IR-radio relationship for these nearby spiral galaxies improved by a

factor of 2.

Boyle et al. (2007) applied a stacking technique to the Australia Telescope Compact

Array radio data at the positions of Spitzer Wide Field Survey sources at 24 µm to reach

an RMS down to 1 µJy. Boyle et al. (2007) found that the mid-IR-radio relationship

using q24 holds and extends well to faint sources down to few µJy radio flux densities.

Beswick et al. (2008) applied a similar technique down to an order of magnitude deeper

than the works of Boyle et al. (2007). They found a small deviation from mid-IR-radio
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correlation at the faintest infrared flux densities.

Ibar et al. (2008) found that the mid-IR-radio relationship using q24 holds out to z ∼

3.5. Sajina et al. (2008) used Spitzer observations at 70 µm and 160 µm to study the far-

IR-radio relationship for a sample of higher redshift field galaxies. They found a lower

qFIR values from z ∼ 1.5 out to z ∼ 3. Garn et al. (2009) used Spitzer observations at

24µm, 70µm and GMRT observations at 610 MHz to determine q24. They found a good

linear correlation between the IR and the radio luminosities out to z ∼ 2.

Murphy et al. (2009a) used Spitzer observations at 24 µm with IR luminosity L(TIR,

8 – 1000µm) derived by SED fitting of the observed 24 µm data to compute qTIR. They

found that the relationship shows no evidence for evolution over z ∼ 0.6 – 2.6. Seymour

et al. (2009) used Spitzer observations at 70 µm and reported a decrease in observed q70

with redshift for their sources detected either in the imaging or stacked images. They

argued that the decrease in q70 towards z ∼ 3 implies a change in the ULIRG SED at

high redshift. Younger et al. (2009) used Spitzer MIPS observations to test the far-IR-

radio correlation in ULIRGs. They also found that the far-IR-radio correlation at higher

redshift out to ∼ 3 is consistent with the local relation.

Ivison et al. (2010a) used observations from the Balloon-borne Large Aperture Sub-

millimetre Telescope (BLAST) at 250 µm and found no evidence of q250 redshift depen-

dence out to z ∼ 3. They stacked radio data at the position of Spitzer observations at

24 µm and computed qTIR defined as IR luminosity L(TIR, 8 – 1000µm). They found a

steady decrease of qTIR as a function of redshift (where qTIR ∼ (1 + z)−0.15±0.03) from

z ∼ 1. The tentative decline was speculated to be due to an increase of radio back-

ground activity. Ivison et al. (2010b) subsequent studies used Hershel observations in

the GOODS-North field to study the far-IR-radio correlation for a IR-selected galaxy

sample. They found no evolution of the qTIR defined under L(TIR, 8 – 1000µm) out to z

∼ 2, when discarding 18 galaxies at z < 0.5 which had the least reliable data.

Jarvis et al. (2010) used data from the Hershel-ATLAS to study the evolution of qTIR

defined as L(TIR, 8 – 1000µm) and found no evidence for evolution of the far-IR-radio

correlation in the redshift between 0 < z < 0.5. They showed that claims for deviation
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of the correlation in the literature may partially be a result of resolving out extended

emission from the high spatial resolution radio data.

Sargent et al. (2010a) used Spitzer MIPS observations at 24 and 70 µm to investigate

the evolution of the IR-radio correlation in the COSMOS field. They computed both q24,

q70 and qTIR defined as L(TIR, 8 – 1000µm) for a jointly IR- and radio-selected sample.

They confirmed that the qTIR relation does not change out to at least z ∼ 1.4, and with

local relationship q24, q70 likely to still hold across the redshift range 2.5 < z < 5. We

note their jointly IR- and radio-selected sample contains relatively similar abundances

of star-forming galaxies and AGN at < 1.4, which may imply that IR-selected sample

would naturally pick up more dusty starburst galaxies or obscured AGN, while radio-

selected sample would favor more active radio galaxies (radio-AGNs). Sargent et al.

(2010b) subsequently used Spitzer MIPS observations at 24 and 70 µm for a sample of

galaxies in the COSMOS field. They further confirmed that the qTIR defined as L(TIR, 8

– 1000µm) for ULIRGs remains unchanged out to z∼2

Bourne et al. (2011) used Spitzer MIPS observations at 24, 70, 160 µm to study the

far-IR-radio relationship at higher redshift using stacking technique. They computed q24,

and qTIR for a stellar mass selected galaxies in the Extended Chandra Deep Field South.

They found that qTIR does not show significant evolution between the redshift range out

to z ∼ 2. While they also found a tentative decline beyond z ∼ 1 when qTIR is based on

70 µm flux.

Mao et al. (2011) used Spitzer observations at 70 µm to investigate the evolution of

the far-IR-radio correlation at higher redshift using both survival and stacking technique.

They computed q70 and qTIR for a star-forming galaxies in the Extended Chandra Deep

Field South. They found that the qTIR does not change in the redshift range 0 < z < 2.

Furthermore, no evolution in the relationship was found out to z ∼ 2 when using MIPS

70 µm .

Overall, the behaviour of the far-IR-radio correlation for field galaxies is remarkably

similar out to at least a redshift of z ∼ 2. In these field studies, the relationship has been

found to hold for various galaxy types out to z ∼ 3 as well. In summary, these works in
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the field galaxies have found and confirmed that there is no firm evidence for evolution of

the far-IR and radio luminosity ratio as a function of redshift particularly from the nearby

Universe out to at least z∼2 (e.g. Appleton et al. 2004; Ibar et al. 2008; Sargent et al.

2010a,b; Bourne et al. 2011; Mao et al. 2011).

2.6.3 Far-IR-radio Relationship in Galaxy Clusters

In this section, we present a chronological list of all studies which investigate the be-

haviour of the far-IR-radio relationship in low redshift clusters. It is well known that

the star formation rates of galaxies in high density environments are often different from

that of field galaxies. It stands to reason that the far-IR-radio correlation may behave

differently in clusters as well.

Andersen and Owen (1995) used IRAS observations to compute qFIR. Andersen

and Owen (1995) was among the first to look at the effect of the cluster environments

on both the IR and radio luminosities in the nearby cluster galaxies. They found that

spiral galaxies in rich clusters have enhanced radio emission. It was postulated that the

excess radio emissions in rich clusters may be due to the galaxy’s interstellar medium

(ISM) being compressed via ram pressure when the galaxy moves through the ICM. In

poor clusters galaxy-galaxy tidal interaction may be the responsible of the excess radio

emissions.

Rengarajan et al. (1997) used IRAS observations and radio continuum data at 1.4

GHz to study the effect of cluster environment on the IR and radio properties of nearby

cluster galaxies. They found that the radio luminosity of cluster galaxies showed a strong

connection with cluster radial distance such that it increases towards the cluster core.

On the other hand, no correlation was found between the far-IR luminosity and the clus-

ter radius. They also found that the correlation tends to depend on galaxy type with Sc

galaxies having a stronger correlation when compared to early-type galaxies. The ob-

served changes in SFR within the cluster environment were not found to be responsible

for the radio emission enhancement. Rengarajan et al. (1997) proposed that the radio
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emission enhancement may be due to the result of the interplay between the increased

magnetic field and the increased diffusion of cosmic ray electrons in the galaxys disc as

well as the SN rate.

Miller and Owen (2001) used IRAS observations to compute qFIR to study the effect

of cluster environment on the far-IR-radio correlation in nearby Abell cluster galaxies.

Miller and Owen (2001) found that the far-IR-radio correlation for star-forming galaxies

in clusters show an excess of radio emission relative to their IR emission. They found

that the radio emission of star-forming galaxies is enhanced within the cluster core by

a factor of 2 or 3. The enhancement of radio emission was argued as not due to the

AGN component but rather to cluster environmental effect. They postulated that thermal

pressure from the ICM is most likely the source of magnetic field compression rather

than the ram pressure; resulting in lower qFIR values for galaxies in rich clusters.

Reddy and Yun (2004) used IRAS observations to compute qFIR. Reddy and Yun

(2004) studied the effect of the cluster environment on the star formation and AGN activ-

ity in 7 nearby galaxy clusters by focusing on a sample of 114 cluster galaxies. They also

find evidence of an excess of radio emission for cluster galaxies, especially for early-type

galaxies (70%, and all may host AGN) which was more pronounced towards the cluster

core. They found that the far-IR luminosity does not change with cluster projected ra-

dius, though the collisional heat of dust in the cluster core may affect this observed far-IR

luminosity. They supported the proposed model such that the thermal compression of the

galaxy’s ISM due to the ICM may increase the magnetic field giving rise to synchrotron

emission from the disk of a galaxy within the cluster core.

Murphy et al. (2009b) used Spitzer MIPS observations observations to compute qFIR.

Murphy et al. (2009b) investigated the far-IR-radio relationship of Virgo cluster galaxies

by focusing on the effects of the ICM on the ISM of the cluster galaxies. By smoothing

MIPS images, they created mock radio maps for a sample of 10 Virgo cluster galaxies.

They have compared these mock radio maps to VLA observations and found that there is

a deficient of radio emission in the outer part of the galaxy which was interpreted as the

galaxy’s edges being affected by the ICM. The observed radio-deficit regions found in
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these galaxies were interpreted to be a signature that galaxies encountering an ICM wind

sweeping the CR-electrons away at the edges.

In the nearby clusters, an enhancement of radio sources have noticeably been found

towards the cluster cores (Ledlow and Owen 1995), and the excess of radio emission with

respect to the far-IR emission from these galaxies is believed to be the main driver of the

deviation observed in the far-IR-radio correlation between field and cluster galaxies. This

is indicated in the observed differences between the nominal qFIR values of 2.34±0.01

(Yun et al. 2001) for field galaxies and the qFIR values of 2.07±0.74 (Reddy and Yun

2004) for cluster galaxies.

Clearly, for cluster galaxies the far-IR and radio emissions are still found to be cor-

related but many local galaxies studies have found that the relation is relatively offset

compared to the field. In fact, the far-IR-radio relationship in the cluster galaxies has

more scatter than those found for field galaxies, and it is due to an excess of radio emis-

sion for cluster galaxies (Reddy and Yun 2004). In Table 1, we attempt to summarise

various definition of IR-luminosity and q-values in the literature.
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2.7 Far-IR-radio Relationship for AGN

Although the far-IR-radio correlation is known to be driven primarily by star formation

activity, it has been noticed that the far-IR and radio fluxes for cluster AGN are also

correlated (Miller and Owen 2001). However, Miller and Owen (2001) found larger

scatters in the observed far-IR-radio relationship for AGN when compared with star-

forming galaxies, as a result of an excess of radio emission for these sources. This has

been found in a number of studies which showed that the strong departure from the

observed relationship is an indication of AGN activity (e.g. Sopp and Alexander 1991;

Reddy and Yun 2004; Norris et al. 2006).

2.8 Thesis Motivation

The far-IR-radio relationship is relatively unexplored at higher redshifts clusters where

we do observe an increase in radio sources and star-forming galaxies (Butcher and Oem-

ler 1984), transitional galaxies like E+A (Barger et al. 1996), and AGN (Martini et al.

2009) in galaxy clusters. It is established that the relationship is known to be scattered in

the nearby clusters resulting in lower values of qFIR (Reddy and Yun 2004).

We build upon the works of Yun et al. (2001) and Reddy and Yun (2004) in study-

ing the far-IR-radio relation of cluster galaxies at intermediate redshift. This thesis is

motivated by the lack of study to look for potential deviations of the far-IR-radio rela-

tionship at intermediate redshift galaxies in clusters as well as in groups. This work uses

multi-wavelength observations of a sample of clusters of galaxies and aims to shed some

light on the unraveled behaviour of the far-IR-radio relationship in clusters and groups of

galaxies at intermediate redshifts.

At these redshifts, galaxy clusters are also expected to offer an unique opportunity to

study galaxy properties as a function of the cluster high density environment. For cluster

galaxies, studies of the relationship would be as an extended examination on the effects

of the cluster environment. Furthermore, the far-IR-radio connection is of great interest,
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as it can constrain the relative importance of SF and comic ray electrons in establishing

the observed properties of cluster star-forming galaxies.
 

 

 

 



Chapter 3

Cluster Sample & Spectroscopic

Redshift

3.1 Overview

In this Chapter, we present the cluster and galaxy samples used in this work. The Chapter

is structured as follows. In Section 3.2, we briefly describe the procedure for selecting

our cluster sample. In Section 3.3, we present the multi-wavelength data being analyzed

in this thesis. We then present the available spectroscopic redshift in the literature hence

the size of galaxy sample for each cluster. In Section 3.4, we provide short notes on indi-

vidual galaxy clusters that include a brief history and the basic properties of the cluster.

3.2 Cluster Sample

The cluster sample analyzed in this work consists of six clusters of galaxies in the redshift

range between 0.3 and 0.6. The choice of the redshift interval was based on our objective

which is to measure the far-IR-radio correlation in a sample of massive clusters (velocity

dispersion: σ > 500 km s−1) at intermediate redshift range. This sample serves as an

intermediate redshift baseline which we will compare to the low redshift clusters works.

41
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The sample selection criteria ensured that we study the far-IR-radio correlation of cluster

galaxies in the unexplored parameter space in mass and redshift.

The selected cluster sample was limited to the availability of archival VLA radio con-

tinuum observations at 1.4 GHz and Spitzer super mosaic MIPS observations at 24 µm.

The details of the selection of these clusters can be described as follows. We first searched

clusters and then inspected their public multi-wavelength data for the following cluster

catalogues which are given in a particular order in the following. The WIYN Long Term

Variability (WLTV) cluster list, MAssive Cluster Survey (MACS) catalogue, Crawford

et al. (2011) cluster list, Sloan Digital Sky Survey (SDSS), Abell, European Southern Ob-

servatory Distant Clusters Survey (EDisCS), and Cluster Lensing And Supernova survey

with Hubble (CLASH).

Since we aim to study rich clusters at intermediates redshift as defined above and with

larger virial radius R200 ≥ 2 Mpc where possible. Cluster sample was then limited by

the availability of the multi-wavelength observations, while galaxy sample was limited

by the availability of the spectroscopic redshifts of galaxies in the clusters. These are the

main criteria that were used to search the available catalogues of clusters and catalogue

of galaxies and led to the sample presented in Table 2.

In Table 2, we provide a central position and mean redshift along with the total spec-

troscopic redshift of galaxies available for each selected cluster. Spectroscopic redshifts

for the cluster and field galaxies in MS0451 and Cl0016 clusters were obtained from

Crawford et al. (2011). The spectroscopic redshifts for galaxies in the remaining clusters

in the sample were obtained from the literature. We retrieved any available spectroscopic

redshifts in the range 0 < z < 1 for our sample galaxies from the NASA/IPAC Extra-

galactic Database (NED) for the sources in these clusters. The size of galaxy sample for

each cluster was limited to the availability of the spectroscopic redshift. In Table 2, we

organize these clusters depending upon the usefulness of the available archival data from

the literature.
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Table 2: Recapitulation of clusters of galaxies studied in this work. This list is organised
based on the available infrared (IR) super mosaic images MIPS at 24 µm, radio contin-
uum data at 1.4 GHz, and the number of sources with spectroscopic redshift (Spec-z)
.

Cluster Cluster Redshift RA DEC Spec-z
Full Name Name Tag (z) (h:m:s) (d:m:s)
MS 0451.6-0305 MS0451 0.540 04:54:10.90 -03:01:06.90 350-1107
Cl 0016+16 Cl0016 0.550 00:18:33.80 16:26:17.00 577
Abell 0370 A370 0.370 02:39:50.50 -01:35:08.00 180
MS 1512.4+3647 MS1512 0.372 15:14:25.10 36:36:30.00 370
NSCS J121119+391250 J121119 0.340 12:11:16.10 39:11:41.00 35
1RXS J032649.5-004341 J032649 0.448 03:26:49.50 -00:43:41.00 43

3.3 Multi-wavelength Data

The multi-wavelength observations consist of deep VLA (VLA; Hjellming and Bignell

1982) continuum observations at 1.4 GHz and the Spitzer Infrared Array Camera (IRAC;

Fazio et al. 2004) and the Multiband Imaging Photometer for Spitzer (MIPS; Rieke et al.

2004) data along with optical spectroscopic data from the literature. The spectroscopic

redshifts are key in measuring the far-IR-radio relationship as they ensure that we only

select confirmed cluster members and field galaxies. The multi-wavelength data there-

fore allow us to investigate the still unrevealed nature of the far-IR-radio relationship of

spectroscopically confirmed galaxies in massive and distant galaxy clusters.

We retrieved observations of the cluster sample that include the VLA observations us-

ing the National Radio Astronomy Observatory (NRAO) science data archive1 advanced

tool, whilst all of the Spitzer super mosaic imaging available at the Spitzer Enhanced

Imaging Products using SEIP science data archive2. In Figure 8, we show a montage of

optical images of the clusters for visual check purposes for all clusters.

The cluster sources and field galaxies in MS0451 and Cl0016 have been classified

as star-forming galaxies via emission lines diagnostics that include measurement of the

1https://archive.nrao.edu/archive/advquery.jsp
2http://irsa.ipac.caltech.edu/data/SPITZER/Enhanced/Imaging/
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Figure 8: Montage of images of the cluster sample presented in Table 2. WIYN deep R-
band (9.6’×9.6’) optical image for MS0451 cluster and SDSS r-band (5’×5’) for other
clusters are shown. (Credit: DSS-SAO: SkyView accessed via DS9).

width of the [OII]3727, Hα , Hβ and [OIII]5007 emission lines. Cluster members were

identified in the clusters through a “shifting-gapper” analysis (see Crawford et al. 2014)

similar to Fadda et al. (1996) which determined membership through analysis of the

radius-velocity diagram.

In Table 3, we summarise the velocity dispersion (σ ) and virial radius (R200) for the

well-studied clusters in our sample.

Table 3: Basic properties of the well-studied clusters that include velocity dispersion (σ )
and virial radius (R200).

Cluster σ (km s−1) R200 (Mpc) Reference
MS0451 1354 2.5 Crawford et al. (2009)
Cl0016 1230 2.25 Crawford et al. (2009)
MS1512 575 2.0 Lotz et al. (2003)
A370 1263 2.57 Lah et al. (2009)
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3.4 Notes on Individual Clusters

We provide a short note on individual galaxy clusters that include a brief history and the

basic properties of each cluster as follows.

3.4.1 MS 0451.6-0305

The galaxy cluster MS0451 was identified from the Einstein Medium Sensitivity Survey

(EMSS) (Gioia et al. 1990; Stocke et al. 1991). The cluster redshift was confirmed by

Gioia and Luppino (1994) and further refined by the Canadian Network for Observational

Cosmology (CNOC) observations (Yee et al. 1996). It is a distant, rich (in cluster galaxy

members) and X-ray luminous cluster which is also found to have a high X-ray tempera-

ture (Donahue 1996). The basic properties of the cluster that include velocity dispersion

and virial radius are presented in Crawford et al. (2009) Table 1.

3.4.2 Cl 0016+16

The galaxy cluster Cl0016 was in the Einstein Extended Medium Sensitivity Survey

(EMSS) (Stocke et al. 1991) and it is one of the distant cluster under the Clark Lake

Radio Observatory (Cl) catalogue. Cl0016 is a rich and X-ray luminous cluster and has

long been studied in the optical including cluster galaxy population studies using both

photometric data (Koo 1981) and spectroscopic observations (Dressler et al. 1999; Craw-

ford et al. 2011). This cluster has also been used to determine the Hubble constant value

via its X-ray properties and SZ effect (see, Hughes and Birkinshaw 1998). The basic

properties of the cluster that include velocity dispersion and virial radius can be found in

Table 1 of Crawford et al. (2009).
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3.4.3 Abell 0370

The galaxy cluster A370 was part of Abell rich galaxy cluster sample in the Palomar

Observatory Sky Survey (Abell 1958). This cluster is one of the distant and rich clusters

included in the revised Abell clusters catalogue (Abell et al. 1989, ACO). Studies of the

evolution of galaxy population in A370 cluster have long been carried out (e.g. Couch

et al. 1994) and the redshifts for the ACO have been compiled by Struble and Rood

(1999). The basic properties of the cluster that include velocity dispersion and virial

radius can be found in Lah et al. (2009).

3.4.4 MS 1512.4+3647

The galaxy cluster MS1512 was in the X-ray sources included in the Einstein Extended

Medium Sensitivity Survey (EMSS) then identified in the optical (Gioia et al. 1990;

Stocke et al. 1991). MS1512 is a rich cluster and was part of Canadian Network for

Observational Cosmology Cluster Redshift Survey (CNOC1) sample (Abraham et al.

1998). The basic properties of the cluster that include virial mass and radius are pre-

sented in Molikawa et al. (1999); Lotz et al. (2003).

3.4.5 NSCS J121119+391250

The galaxy cluster J121119 was in the Einstein Extended Medium Sensitivity Survey

(EMSS) X-ray sources then identified in the optical (Stocke et al. 1991). J121119 was

detected in the intermediate redshift galaxy cluster catalogue of the Northern Sky Optical

Cluster Survey (Lopes et al. 2004). The cluster observational properties in the literature

include cluster spectroscopic redshift (Mullis et al. 2003), spectroscopic data follow-up

(Horner et al. 2008), and other cluster properties such as X-ray and Sunyaev Zel’dovich

(SZ) (Piffaretti et al. 2011).
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3.4.6 1RXS J032649.5-004341

The galaxy cluster J032649 was in the extragalactic X-ray sources included in the ROSAT

1RXS catalogue (Voges et al. 1996) and discovered as part of the cluster in the ROSAT

All Sky Survey Bright Source Catalogue (RASS-BSC) (Voges et al. 1999). The basic

X-ray properties of the cluster is presented in Gilmour et al. (2009) who studied the

distribution of AGN in galaxy clusters at z > 0.1.

 

 

 

 



Chapter 4

VLA Data Reduction and Analysis

4.1 Overview

This Chapter presents the radio observations and data analysis for this work. In Section

4.2, we give a brief introduction of the VLA parameters that are needed for the data

reduction. In Section 4.3, we present our VLA observations. In Section 4.4, we provide

a summary of the procedures for the data reduction. In Section 4.5, we present the data

analysis that include source extraction and cataloguing. In Section 4.6, we provide the

formulation for deriving the rest frame radio luminosity for our sample galaxies.

4.2 Introduction

The primary beam (PB) of the each VLA antenna is given by PB = λ

D where λ is the

wavelength and D is the diameter of the reflecting surface of the telescope. The diameter

of each dish in the VLA telescope is 25 meters. To work out the PB value for each

antenna, we used the small angle approximation to convert linear distance into angular

size in arcsec (i.e. 206 265 arcsec in a radian). For the case of L-band observations i.e.

at 1.4 GHz or 20 cm, the VLA PB is as follows:

48
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PB =
20

2500
× 206265

60
∼ 30′

The VLA angular resolution (θ ) is given by θ = λ

B where λ is the observing wave-

length and B is the baseline which depends on the array configurations of the telescope.

The VLA antennas configurations are summarised in Table 4. The angular resolution in

arcsec for all four different array configurations given in Table 4 are provided as follows.

For an A-array configuration (36.4 km), it is then given by:

θ =
20

3640000
×206265∼ 1.2”

For B (11.1 km), C (3.4 km), and D (1.03 km) array configurations, VLA angular reso-

lutions are about 4”, 12”, 40”, respectively.

Table 4: The VLA telescopes array configurations.

Array Configuration Max. Antennas Separation (km)
A 36.4
B 11.1
C 3.4
D 1.03

4.3 VLA Observations

Very Large Array (VLA) archival observations at 1.4 GHz were retrieved from the Na-

tional Radio Astronomy Observatory (NRAO) data archive. VLA continuum observa-

tions were selected based on the target total on-source integration time (TOS). The TOS

included in the sample were set by the availability of the Spitzer observations counter-

parts. The maximum TOS of raw uv data set were taken for each cluster when its Spitzer

observations at 24 µm were available.
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Table 5: The VLA radio continuum observations obtained at 1.4 GHz. The indicated
observing time is the total time on-source (TOS) in each intermediate frequencies (IFs)
for the target excluding calibrators integration time.

Cluster Project Array BW Res. Sensitivity Time
Name ID Conf. MHz (arcsec) (mJy beam−1) (hrs)
MS0451 AN109/AB1199 BnA/A 25 3.9/1.4 0.052/0.04 20.6
Cl0016 AF304 D 50 44 0.015 2.55
A370 BK127 D 50 44 0.015 3.81
MS1512 AP245/AH491 A/C 50/12.5 1.4/12.5 0.041/0.051 2.21
J121119 AP219/AP245 BnA/A 50 3.9/1.4 0.064/0.04 1.48
J032649 AE147 B 50 3.9 0.025 0.82

The continuum observations (and pseudo-continuum data i.e. in spectral line mode

for observations at bandwidths of 25 MHz or narrower; for the case of MS0451) were

obtained in two IFs i.e. VLA standard L-band continuum frequencies of 1364.9 MHz

and at 1435.1 MHz, with dual polarization in both left and right circular polarization. In

Table 5, we summarise the details of the observing parameters that include cluster name,

project ID, array configurations, bandwidths, resolutions, sensitivities, and TOS for each

cluster.

4.4 VLA Data Reductions

The radio data reduction and analysis were entirely conducted using the NRAO Astro-

nomical Image Processing System (AIPS, Greisen 2003) package. The reductions fol-

lowed the standard calibration procedure that includes data inspection, exploring source

visibilities, flagging corrupted data, phase and flux calibrations. We summarise the main

steps of the reduction process as follows.

In the data inspection process, for the case of Project ID AB1199, data quality issues

were reported in the NRAO data achieve. We first fixed the log files warnings posted in

the NRAO VLA data archive that include Doppler Tracking error and Mozaicing error.

These issues come from the fact that observations were acquired during the upgrade of the
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VLA in which a mix of EVLA with VLA antennas has been set over the observing period.

As instructed, a workaround that fixed this problem was to discard the EVLA antennas

and all the associated baselines. Therefore, we excluded all three EVLA antennas that

were present in the array during the observing run.

The data visibilities were explored with AIPS task UVPLT. Over the reduction pro-

cess, any corrupted data were visually identified and flagged. Polarization was kept as

default (Stokes I) since we are mainly interested in the total flux of the sources in the

field. For each cluster, amplitude and phase were tracked using a nearby “secondary”

calibrator, while absolute flux and bandpass were set via a well-known “primary” cali-

brator or a model where appropriate. Finally, the amplitude and phase solutions found

were interpolated onto the target data.

In the case that the cluster observations were made in two sets of days, we indepen-

dently reduced them and treated each array configuration as a single epoch. We then

combined the two fully calibrated uv data sets in the uv-plane using AIPS task DBCON.

No re-weighting was considered as the removal of corrupted data and calibration were

performed in a similar fashion for each dataset. No self-calibration was applied since we

are essentially interested in detecting point-like sources. The final calibration solutions

were applied to the averaged IF at 1.4 GHz. The mapping parameters are based on the

higher resolution data i.e. on the larger array configuration.

In the imaging process, we used a wide field imaging technique to image a larger

field of view which is well beyond the primary beam. Using AIPS SETFC routine, we

aimed to cover facets on all bright sources within one square degree of the pointing centre

to properly account for flux and also the diminishing caused by sidelobe contamination.

Facets were auto-generated for our targeted field coverage, resulting of the number of

facets given in Table 6. Each facet was set to the same pixel scaling and image size in

pixels, and these are also summarised in Table 6. The imaging processes were performed

using AIPS task IMAGR. For all field, during the cleaning process, regions cleaned were

limited to each bright source by putting clean box around it.

In the end, we examined our images background noise and found it to be comparable
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Table 6: Number of facets, pixel scaling, and images size.

Cluster Number of facets Field covered (◦) Pixel scaling (”) Facet Image (IMAGR)
MS0451 61 1.03×1.03 0.3 4096”×4096”
Cl0016 19 1.17×1.17 10 256”×256”
MS1215 721 1.02×1.02 0.3 1024”×1024”
A370 19 1.17×1.17 10 256”×256”
J121119 55 1.06×1.06 0.3 4096”×4096”
J032649 73 1.06×1.06 1 1024”×1024”

to previously reduced data in the literature. Besides, no convolutional artifacts were

particularly inspected around point sources.

The details of the final cleaned and flattened maps which include convolved beam size

(HPBW), position angle (PA), image RMS noise, imaged FOV coverage are summarized

in Table 7. As an example, for MS0451 cluster we obtained images with a 1σ RMS noise

level of 12 µJy, with a 1.99”×1.8” synthesised beam (HPBW) at a position angle 0.56◦.

Table 7: Summary of the specifications for the final cleaned and flattened maps that
include convolved beam size (HPBW) and RMS noise of the images in µJy beam−1.

Cluster Conv. Beam Size (”) RMS Noise P. Angle Image (FLATN) (”) FOV (◦)
MS0451 1.99×1.63 12 0.56 8192×8192 0.7×0.7
Cl0016 56.21×45.07 110 69.65 512×512 1.4×1.4
MS1215 1.39×1.29 52 -70.63 2048×2048 0.2×0.2
A370 55.79×44.51 55 -47.06 512×512 1.4×1.4
J121119 1.58×1.40 53 74.33 8192×8192 0.68×0.68
J032649 5.42×4.43 46 -27.07 2048×2048 0.57×0.57
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4.5 Radio Data Analysis

4.5.1 Source Extraction and Cataloguing

We conducted an automated source detection and extraction in all images using a built-in

function in the AIPS package. We used AIPS “Search And Destroy” (SAD) routine to

detect sources and estimate flux densities of the sources in our maps.

SAD routine automatically searches for potential sources in a radio map, estimates their

flux densities, generates and outputs source catalogue based on Gaussian fitting proce-

dures. The routine is designed to find sources that have integrated and peak flux densities

greater or equal than a given detection threshold. To run SAD, a RMS noise map for each

cluster image is required.

(i) Firstly, AIPS task RMSD was used to produce a RMS noise map for each clus-

ter image. The calculation of the noise map was preceeded by fitting a Gaussian

function to the histogram of the pixels values. The noise maps were all calculated

within a 30” in diameter correspond to 100 neighbor pixels, i.e. IMSIZE=100,-1,

OPTYPE=‘HIST’, by following the method of Morrison et al. (2010); Wold et al.

(2012).

(ii) Secondly, we ran SAD routine in signal-to-noise mode where S/N≥3 cut off was

applied to both integrated and peak flux densities. SAD considers that each group

of pixels above the given S/N is a potential source (island). SAD fits one or more

Gaussian components to these islands and then estimates the size of the source.

(iii) Finally, a list of potential radio sources is then generated and output along with the

associated best fit parameters. The AIPS task SAD has been used to generate initial

radio source catalogues for large radio continuum surveys such as in the Deep Swire

Field of Owen and Morrison (2008); VLA-COSMOS of Schinnerer et al. (2010);

and GOODS-North Field of Morrison et al. (2010).
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4.5.2 Unresolved & Marginally Resolved Sources

Source classification and flux density were assigned based on the method adopted by

Owen and Morrison (2008) that uses the best-fit major axis value. Following Owen and

Morrison (2008) method, we used our 1.4 GHz photometry catalogue resulted from AIPS

task SAD to assign the flux density of the sources. For marginally resolved sources i.e.

sources that have lower-limit best-fit major axis greater than zero, the integrated flux

densities are directly assigned to the sources. While the peak flux densities are equal to

integrated flux density for the unresolved sources (Low MAJ-AXIS = 0).

Radio sources in our moderate redshift clusters are mostly point-like sources and thus

were classified as unresolved and marginally resolved. Therefore, we entirely made use

of the flux densities computed through AIPS SAD routine. The uncertainty in the inte-

grated flux densities for both unresolved and marginally resolved sources were computed

through AIPS SAD routine over the source detection and extraction processes.

4.6 Radio Luminosity (L1.4GHz)

We determined the rest-frame radio luminosities (L1.4GHz) of the sources by converting

the integrated radio flux densities (S1.4GHz) using the following equation (Sargent et al.

2010b).

L1.4GHz(W Hz−1) =

(
4π [DL(z)]2

(1+ z)1−α

)
×S1.4GHz (4)

where S1.4GHz is the integrated flux density at 1.4 GHz in Jy, and DL(z) is the luminosity

distance at the redshift of the source in metre. The K-correction 1/(1+z)(1−α) consists of

1/(1 + z)−α terms which is the “colour” correction and 1/(1 + z) terms which is “band-

width” correction (Morrison et al. 2003). The radio spectral index α is the power law

slope of the synchrotron radiation, and is defined as Sν ∼ ν−α . We assumed α ∼ 0.8 for

normal star-forming galaxies of Condon (1992).

Since the uncertainty in the integrated radio flux density measured from AIPS is only
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a tentative estimates of the uncertainty, therefore, we worked out the representative error

bars in L1.4GHz to be as either the standard deviation of the means which is given by√
∑(x−x̄)2

n(n−1) or rather solely by the standard deviation.

 

 

 

 



Chapter 5

Infrared Observations and Analysis

5.1 Overview

This Chapter presents the infrared observations and analysis for this work. In Section

5.2, we present our infrared observations that include the specifications of the Spitzer

post basic calibrated data and the sensitivities of the super mosaic imaging. In Section

5.3, we describe the data analysis that includes photometry and the IR source catalogue.

In Section 5.4, we provide the details for matching radio sources counterparts from IR

source catalogue. In Section 5.5, we present our methods for estimating IR luminosities

of galaxies. In Section 5.6, we describe our attempt to use IR longer wavelengths data

for MS0451 cluster.

5.2 Spitzer Observations

The Spitzer Space Telescope (Spitzer, Werner et al. 2004) features three science instru-

ments which consists of the Infrared Array Camera (IRAC, Fazio et al. 2004), the In-

frared Spectrograph (IRS, Houck et al. 2004), and the Multiband Imaging Photometer

for Spitzer (MIPS, Rieke et al. 2004). MIPS has three detector arrays at 24 µm, 70 µm,

160 µm. IRAC operates simultaneously at four wavelengths of 3.6 µm, 4.5 µm, 5.8

56
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µm and 8 µm. In this work, we retrieved and analysed Spitzer MIPS archival observa-

tions at 24 µm along with IRAC data where available for a sample of galaxy clusters at

intermediate redshift.

There are two high level products that we accessed through the Spitzer data archive

centre. It consists of post basic calibrated data (PBCD) products and the Spitzer en-

hanced imaging products (SEIP) or super mosaic images. These mosaic products were

all produced from a pipeline-processed basic calibrated data (BCD) through the Spitzer

MOPEX (Makovoz and Marleau 2005) software package. The differences between the

two products can be described as follows:

(a) The PBCD products were retrieved through the Spitzer heritage archive (SHA1).

Each single bandpass of the IRAC and MIPS data has multiple pointings and thus several

mosaic images. The PBCD product consists of one particular program or one specific

observing run. Each program is associated with a specific list of astronomical observation

request (AOR) or a list of observing parameters.

(b) The super mosaic images were retrieved through the Spitzer enhanced imaging

products archive (SEIP2). The super mosaic images were produced from a combination

of multiple programs. Thus, MIPS imaging at 24µm as well as each single bandpass of

IRAC where available is made of a combination of several mosaic images from multiple

pointing. As a result, super mosaic images are much deeper and have wider field of

view (FOV) than the PBCD images. The super mosaic images of the MIPS at 24µm for

each cluster consist of a single large mosaic-ed imaging ranging from 0.25 to 0.6 square

degrees in size.

We initially attempted to use the PBCD products for our analysis by choosing the

most suitable dataset available for the cluster MS0451. However, our sample was limited

by the insufficient data coverage and depth for both the IRAC and MIPS 24µm images

(e.g. 93.6 sec integration time per pixel for the IRAC bands and 30.93 sec for the MIPS at

24µm). Therefore, in this work we make use of the large and deep super mosaic images.

1http://sha.ipac.caltech.edu/applications/Spitzer/SHA
2http://irsa.ipac.caltech.edu/data/SPITZER/Enhanced/Imaging/
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5.2.1 Super Mosaic Imaging

Spitzer MIPS 24 µm imaging mosaics along with the coverage maps and the uncertainty

maps for the cluster sample were retrieved from the Spitzer SEIP data archive. This high

level product consists of a combination of multiple programs and has a field of view of

∼ 0.3◦×0.3◦. The MIPS 24 µm data has a median pixel scaling of 2.45” and a mean

FWHM of 5.9”.

Additionally, Spitzer IRAC super mosaics at 3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm were

also retrieved although images are only available for few clusters. The IRAC images have

a median pixel scaling of ∼ 1.2” and the image mean FWHM is 1.66”, 1.72”, 1.88”, and

1.98”, respectively.

5.2.2 Image Sensitivity

We summarise the image sensitivities which is the mean integration time for each cluster

in Table 8. The mean integration time of the MIPS 24µm super mosaic imaging are given

in seconds per pixel.

Table 8: The Spitzer super mosaic MIPS 24µm mean exposure time in seconds per pixel.

Cluster Exp. time (sec pix.−1)
MS0451 1637
Cl 0016 764
A370 2646
MS1512 566
J032649 45
J121119 438
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5.3 Spitzer Data Analysis

We used the most recent version of APEX 18.5.6, Spitzer MOPEX, software to perform

aperture photometry via the APEX User List Single Frame pipeline. The Spitzer IRAC

and MIPS images are in units of surface brightness i.e. in Mega Jansky per Steradian

(MJy Sr−1). The Spitzer APEX is specifically designed to handle images in these units

and flux density is output in µJy (Makovoz and Marleau 2005).

5.3.1 Aperture Photometry

5.3.1.1 Aperture Sizes

There are five default aperture sizes in APEX which consists of 4”, 6”, 8”, 10” and 20”

in radius for the IRAC pipeline, while four default aperture sizes that consists of 1.22”,

2.45”, 5.31” and 7” for the MIPS 24µm imaging. The optimal aperture sizes for the

measurements were selected based on sizes that are likely to produce the minimum flux

density error. The default aperture sizes in APEX turns out to fall within the ideal range

for error estimates as within a radius of about 3 pixels scaling of the image and also

consistent with the point sources assumption of about 9”.

For the Spitzer super mosaic IRAC images (where 1 pixel = 1.2”), we worked out that

flux density errors estimated within 3.6” should represent well the uncertainties for the

measurements in the IRAC images. Likewise, for MIPS (1 pixel = 2.45”) errors should

be estimated within 7.35”. The aperture size for our measurements for both the MIPS

24µm and IRAC 3.6, 4.5, 5.8 and 8 µm data were selected based on these criteria and the

optimal size suggested for point sources based on the pixel sampling of the MIPS 24 µm

PSF3. The MIPS 24µm aperture size of 5.31” in radius and the IRAC aperture size of 4”

in radius were used.
3irsa.ipac.caltech.edu/data/SPITZER/docs/
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5.3.1.2 Photometry

Optical coordinates were used to perform aperture photometry on the Spitzer observa-

tions. Aperture photometry was done using APEX (Makovoz and Marleau 2005, Spitzer

MOPEX). The aperture size was set to a radius of 5.31” in the MIPS 24 µm imaging.

The RMS noise of each image are given in Table 10.

Our cluster sources are expected to be essentially unresolved at this redshift in the

MIPS 24 µm data. Thus, we note that we did not perform an aperture correction for our

flux density measurements, because this only applies to resolved sources. If our sources

were resolved additional corrections may be needed to compensate for any missing flux.

5.3.1.3 Flux Density Upper / Lower limits

Photometry was performed on the MIPS 24 µm image for all spectroscopic sources in

our sample appearing in those images. Sources outside of the MIPS 24 µm image were

removed from our sample along with sources with flux densities below the RMS noise.

In a few cases, we defined a lower limit on MIPS flux density at 24µm resulting from

cases in which sources have poor detection due to high background noise in the images

(e.g. at the edges), where a value of ≥ 2σ of the RMS noise level was substituted for

these sources, except for MS0451 which is at ≥ 1.5σ .

5.3.1.4 Photometric Catalogue

We summarise the number of sources with secure spectroscopic redshifts that were suc-

cessfully detected in the IR photometry for the full cluster sample in Table 9. For ex-

ample, the final catalogue of MS0451 sources with secure spectroscopic redshifts and IR

photometry consists of 157 cluster galaxies and 483 field galaxies.
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5.4 Matching of Radio Sources Counterparts

We searched for radio source counterparts in the 1.4 GHz photometry catalogue using the

optical positions. We determined the optimum value for our search radius by conducting

a series of searches that include four matching radius of 1.3”, 1.63”, 1.99” and 3.24”.

We selected these search radii trial values to be within the FWHM of the imaging with a

search radius of < (FWHM
3 ), where a matching radius of 2” was used. Furthermore, any

unambiguous identification were also discarded from the final catalogue.

We summarise the number of sources in both the IR and radio catalogue and the num-

ber of matched sources in Table 9. Due to the limited number of the IR-radio matched

sources, we note that we have additionally included sources at ≥ 1.5σ either in IR or in

radio into the analysis. For example, we matched IR-radio sources 18 out of 156 cluster

member galaxies and 45 out of 483 field galaxies in MS0451.

Table 9: Summary of the number of sources in the IR and radio catalogue. The radio
counterparts were matched within the matching radius of FWHM/3 or 2” (or FWHM of
the larger PSF of the two bands involved in the match). Confirmed cluster members are
indicated in (CG) and field galaxies are denoted in (FG).

Cluster IR photometry SAD radio catalogue (S/N≥3) IR-radio catalogue
MS0451 157 (CG) 9545 18 (CG)
MS0451 483 (FG) — 45 (FG)
Cl0016 412 170 10
MS1512 94 724 3
A370 115 253 5
J032649 8 996 2
J121119 5 10130 2

We show an example of multi-wavelength cut-out from the optical, IR, and radio

images for selected cluster galaxies in Figure 9. Our full sample of matched sources

is presented in Table 10 for cluster galaxies and field galaxies. Table 10 provides the

details of all stages in the analysis that include cluster name, spectroscopic redshift, IR

photometry, RMS noise of the MIPS 24 µm image in µJy, IR lower limit, 1.4 GHz

photometry, matching radius, and IR-radio matched catalogue. In the next Section (§5.5),
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we derive the IR luminosities along with other intrinsic properties for the resulting IR-

radio galaxy sample.

Figure 9: Montage of multi-wavelength observations for MS0451 cluster that consists of
optical R-band, MIPS 24µm, VLA 1.4 GHz, NVSS 1.4 GHz images. As can be seen,
our VLA data are much better than NVSS. A DS9 regions of detected cluster galaxies in
MS0451 shown in green circles that include (in top-down order) source ID 1178, 1081,
1143, 940, 1093, 1158, and 1118 are shown.
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5.5 IR Luminosities of Galaxies

The total IR luminosities of our sample galaxies were derived from empirical relations

that use the MIPS data at 24µm which were adopted from Rieke et al. (2009). It is based

on the formulation of Sanders et al. (2003) and defined as (TIR, 8–1000µm). The details

of the formulations are given as follows.

5.5.1 The IR Luminosity at 24µm (L24µm)

We determined L24µm based on the best-fit SFR calibration which uses the 24µm flux

density as formulated in Rieke et al. (2009). The SFR can be estimated using Equation

5; (see also Rieke et al. 2009, Equation 14):

log(SFR) = A(z)+B(z) (log(4πD2
L f24,obs)−53) (5)

where the SFR is in M� yr−1, DL is the luminosity distance in cm, and f24,obs is the ob-

served flux density at 24µm in Jy. The coefficients A(z) and B(z) are redshift-dependent

and can be obtained by interpolating the values in Table 1 of Rieke et al. (2009). The

24µm luminosity, L24µm, was calculated using Equation 6 and 7. Hence, we now have

the K-corrected monochromatic or spectral luminosity (L24µm) estimated at ν = 24µm.

SFR [M� yr−1] = 7.8×10−10L(24µm,L�)

L(24µm,L�) =
SFR [M� yr−1]

7.8×10−10 ; for (6 × 108L� ≤ L24µm ≤ 1.3 × 1010L�) (6)

SFR [M� yr−1] = 7.8×10−10L(24µm,L�)× (7.76×10−11L(24µm,L�))0.048
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L(24µm,L�)=
(

SFR [M� yr−1]

7.8×10−10× (7.76×10−11)0.048

)0.954

; if (L24µm > 1.3×1010L�)

(7)

In addition to L24µm, we also computed the IR luminosities, LTIR, L60µm, and LFIR to

allow a comparison of our measurements to other works. We adopt the definition from

Rieke et al. (2009) that LTIR is the luminosity between L(TIR; 8–1000 µm) and we adopt

the definition of LFIR from Helou et al. (1985) as L(FIR; 42–122 µm). We provide the

details of these transformations in the proceeding sections.

5.5.2 Estimating Total IR Luminosity (LTIR)

We estimated the total IR luminosity LTIR from the rest-frame IR luminosity L24µm.

Rieke et al. (2009) compute LTIR, L(TIR; 8–1000 µm), as described in Sanders et al.

(2003); Sanders and Mirabel (1996). The LTIR luminosity estimator of Sanders and

Mirabel (1996) is defined at λ = 8–1000 µm, and is fully defined as L(TIR; 8–1000

µm):

LTIR [L�]∼ 4.93×10−22(13.48Lν(12µm)+5.16Lν(25µm)+2.58Lν(60µm)+Lν(100µm))

where Lν [erg s−1Hz−1] is defined as the luminosity per unit frequency at a frequency

ν = c/λ where c is the speed of light.

The LTIR was computed based on the 24µm luminosity (L24µm) using the empirical

relation of Rieke et al. (2009); (see, Equation (A6) in Rieke et al. 2009), which is given

by Equation 8.

log LTIR = (1.445±0.155)+(0.945±0.016) log L24µm (8)

Furthermore, in order to be consistent for all our calculations and comparisons, we

also used other formulations of Rieke et al. (2009) to estimate the L60µm which is pre-

sented as per below.
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5.5.3 Inferring IR Luminosity (L60µm)

We inferred the L60µm using the following relation taken from Rieke et al. (2009) as well;

(see, Equation (A7) in Rieke et al. 2009), that is given by Equation 9.

log(LTIR) = (1.183±0.101)+(0.920±0.010) log(L60µm)

Hence, log(L60µm) =
log(LTIR)−1.183

0.920
(9)

5.5.4 Inferring Far-IR Luminosity (LFIR)

It is also common to study the relationship between the IR and radio luminosity using

the classical far-IR luminosity as defined by Helou et al. (1988) at λ = 42–122 µm. The

far-IR luminosity L(FIR; 42–122 µm) estimator is given by:

LFIR [L�]∼ 3.29×10−22× (2.58Lν(60µm)+Lν(100µm))

where Lν [erg s−1Hz−1] is defined as the luminosity per unit frequency at a frequency

ν = c/λ where c is the speed of light.

We inferred the LFIR based on the assumption that the global ratio of LTIR, L(TIR;

8–1000 µm), and LFIR L(FIR; 42–122 µm) luminosity is approximately 2 (see e.g. Bell

2003), and also in LTIR defined as L(TIR; 3–1100 µm), (see Dale et al. 2001; Dale and

Helou 2002). We adopted the relation presented in Equation 10.

LTIR/LFIR ∼ 2; or LFIR ∼ 0.5×LTIR (10)
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5.6 Herschel Data & Analysis

We examined data from the recently available Herschel observations in the field of MS0451

cluster which consists of both PACS/PACS Evolutionary Probe (PEP) (Lutz et al. 2011;

Magnelli et al. 2013) and the SPIRE/Herschel Multi-tiered Extragalactic Survey (Her-

MES) (Oliver et al. 2012; Smith et al. 2012).

The PACS data do not fully cover our field of view and we were only able to detect

two sources in the SPIRE observations of MS0451 cluster. As the Herschel data are not

expected to significantly modify our results (due to inferior quality of the available data)

and due to the small number of sources with data, we did not attempt any further analysis

using this data. Furthermore, we did not pursue either data collection search and hence

analysis for the rest of the clusters in our sample.

 

 

 

 



Chapter 6

The far-IR-radio Correlation in Cluster

Galaxies at Intermediate Redshift

6.1 Overview

In the previous Chapters, we have presented our multi-wavelength observations, cluster

sample, galaxy sample, data reduction, and data analysis. Furthermore, we have mea-

sured the radio and IR luminosities for our sample of cluster galaxies at intermediate

redshifts. In this Chapter, we aim to measure the far-IR-radio relationship of these galax-

ies to test how this relationship changes between lower and intermediate redshift cluster

galaxies as well as field galaxies.

This Chapter is organised as follows. In Section 6.2, we cover a brief background

introduction for this work. In Section 6.3, we provide a formulation for computing the

IR and 1.4 GHz luminosity ratio qFIR. In Section 6.4, we present our results for the cluster

and field galaxy samples. In Section 6.5, we describe potential caveats that may affect

this study. In Section 6.6, we discuss the properties of the far-IR-radio correlation for

both our cluster and field galaxy samples. Finally, in Section 6.7, we draw conclusions

from our findings.
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6.2 Introduction

Radio continuum emission from normal star-forming galaxies can be a powerful tracer

of recent star formation activity (Condon 1992). The radio luminosities at 1.4 GHz are

tightly correlated with the far-IR luminosities for various galaxy types (e.g. van der Kruit

1971; Helou et al. 1985; Condon et al. 1991), in a broad range of star-forming systems

(see Helou 1991; Condon 1992; Yun et al. 2001), and over a wide range of redshift (e.g.

Garrett 2002; Appleton et al. 2004; Sargent et al. 2010a,b; Ivison et al. 2010a,b; Bourne

et al. 2011)

The correlation is believed to be driven by the internal star formation rate. Radio

emission from these galaxies are predominantly produced from the synchrotron emission

of cosmic-ray electrons accelerated in supernova shocks whereas the infrared emission is

due to ultraviolet light from young massive stars that is absorbed and re-radiated by dust

(Condon 1992, and references therein). However, it is still unclear what maintains this

strong correlation seen over such a wide range of galaxies (Murphy 2009).

The far-IR-radio correlation shows lower far-IR to radio luminosity ratios in galaxy

clusters than that found in the field (Andersen and Owen 1995; Reddy and Yun 2004)

with much of the variation coming from a subset of objects with large deviations from the

relationship (Miller and Owen 2001). A number of different processes drive the evolution

of galaxies in clusters such as gravitational interactions and ram pressure (see e.g. Boselli

and Gavazzi 2006, for a review), and result in transforming blue, star-forming galaxies

into the ubiquitous red, quiescent galaxies that dominate cluster populations today. These

physical processes have been invoked to explain the differences seen in the far-IR-radio

relationship as measured between the cluster and field (Murphy et al. 2009b).

Unfortunately, little work has been done at higher redshifts where we see an in-

crease of star-forming galaxies (Butcher and Oemler 1984), transitional galaxies like

E+A (Barger et al. 1996), and AGN (Martini et al. 2009) in galaxy clusters. Despite stud-

ies looking at the multi-wavelength properties of galaxies in distant clusters (e.g. Best

et al. 2002; Saintonge et al. 2008), no systematic study has been made of the far-IR-radio
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relationship in these clusters, and so, the present work is an unique opportunity to explore

part of parameter space in redshift and environment that has not previously been probed.

6.3 The Luminosity Ratio qIR

We characterised the quantitative measure of the far-IR-radio relationship by calculating

the median logarithmic ratio of IR and radio luminosity (qFIR), where qFIR is dimension-

less. The luminosity ratio was estimated using the commonly used equation of Helou

et al. (1985) as follows:

q = log
(

L
3.75×1012 W

)
− log

(
L1.4GHz

W Hz−1

)
(11)

where L1.4GHz is the rest frame radio luminosity in W Hz−1, and L is the infrared lumi-

nosity in W. The 3.75×1012 term is the normalizing frequency in Hz at 80 µm (Helou

et al. 1985). The subscript of q indicates which infrared luminosity is being used (i.e.

qTIR is for LTIR). For calculating q24, the constant used to normalise the infrared lumi-

nosity was 1.125×1012 W.

6.4 Results

We primarily aim to compare the far-IR-radio relationship in an intermediate redshift

clusters to nearby clusters, and to do so, we will compare our results to the lower redshift

measurements of Reddy and Yun (2004). As their results are reported in L60µm and qFIR

within L(FIR; 42–122 µm), we transform our L24µm results into comparable bands (see

Eq. 9 and 11). We report the luminosities for all the cluster sources in Table 13 and field

sources in Table 14.
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Figure 10: The 20 cm radio continuum luminosity (L1.4GHz) against the IR luminosity
(L60µm) for all cluster sources in our sample. The dashed line indicates the formal linear
least-square fit (log L60µm = 8.92 luminosity cutoff) of the low redshift cluster galaxies
from Reddy and Yun (2004). The IR luminosity and radio luminosity lower limits is
indicated in dotted lines for all cluster sources (log L60µm = 9.0; log L1.4GHz = 21.18),
and in dashed dotted lines for MS0451 (log L60µm = 9.83; log L1.4GHz = 22.6). The error
bars correspond to average 1σ errors.
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6.4.1 The IR and Radio Luminosities

In Figure 10, we show the relationship between the rest frame radio luminosity at 1.4 GHz

(L1.4GHz) against the IR luminosity (L60µm) for all cluster sources in our sample. The

dashed line indicates the formal linear least-square fit of the cluster galaxies of Reddy and

Yun (2004). Most of MS0451 cluster sources are consistent with Reddy and Yun (2004)

relationship. IR luminosities upper limits were plotted for J121119 sources. The IR

luminosity upper limit is indicated in the dashed dotted vertical line. Our IR luminosity

and radio luminosity lower limits for MS0451 are log L60µm = 9.83 and log L1.4GHz =

22.6, respectively (see dashed dotted lines in Figure 10). For comparison, our lower limits

are higher than that of the low redshift cluster galaxies (log L60µm = 8.92, log L1.4GHz =

20.47) of Reddy and Yun (2004).

6.4.2 The far-IR Luminosity and qFIR

In Figure 11, we present the far-IR luminosity (LFIR) to radio luminosity (L1.4GHz) ratio

(qFIR) versus L60µm. The dashed dotted grey line delineates our sample limiting mag-

nitude. The mean qFIR for these cluster galaxies is qFIR = 1.42±0.70. This value is

consistent with Reddy and Yun (2004) value of qFIR = 2.07±0.74 and is also comparable

with Andersen and Owen (1995); Miller and Owen (2001); Murphy et al. (2009b) (see

Table 1).

In addition, Figure 11 shows no IR-excess sources (qFIR≥3.04) as defined by Yun

et al. (2001), a radio- or IR-excess galaxy is defined to have at least five times greater

radio (IR) flux than what is expected from the field galaxy at that redshift for a given far-

IR luminosity. We find that the percentage of galaxies that have radio-excess is 51±15%

(18 of 35). This number of radio-excess cluster members is higher than the percentage

found by Reddy and Yun (2004) (11%) for low redshift clusters. However, our percent-

age of excess objects is likely an overestimation due to the limiting flux in our radio

measurements as discussed below.

The mean qFIR values and the qFIR standard deviation for each cluster are summarised
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Figure 11: The logarithmic of the far-IR luminosity to 1.4 GHz radio continuum lumi-
nosity ratio (qFIR) versus the IR luminosity (L60µm) for all sources in our sample. The
nominal value of qFIR for field galaxies (qFIR=2.34) of Yun et al. (2001) is plotted in the
solid black horizontal line. The criteria for both delineating the radio-excess (qFIR≤1.64)
and IR-excess (qFIR≥3.04) are shown in the dashed lines. The error bars correspond to
average 1σ errors. The dash dotted grey line represents our sample limiting flux.
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as follows. The cluster MS0451 sources has a mean qFIR = 1.80±0.61 with a fraction of

28±14% (5 of 18) radio-excess sources. However, due to the radio flux limit, we are

preferentially sampling only radio excess sources and likely overestimating our percent-

age of these sources. For comparison, if we limit our sources at log(L60µm) = 10.5 which

would be comparable to our radio flux limit for sources at the qFIR value for non-excess

sources, then our percentage of excess sources is only 13%. This should be considered

to be a lower limit for our percentage of radio-excess sources.

For the remaining clusters, our limiting flux in the radio data prevents us from mea-

suring much, if any, of the population that would lie on the z = 0 far-IR-radio relationship

for normal galaxies. As such, we only present our raw measurements for qFIR and excess

populations. Sources in Cl0016 have a mean qFIR = 0.67±0.32 with a fraction of 5 of 5

radio-excess sources. Sources in A370 have a mean qFIR = 1.1±0.55 with a fraction of 3

of 5 radio-excess sources. Sources in MS1512 have a mean qFIR = 1.07±0.86 with a frac-

tion of 2 of 3 radio-excess sources. Sources in J032649 have a mean qFIR = 1.55±0.65

with a fraction of 1 of 2 radio-excess sources. Sources in J121119 have a mean qFIR =

1.14±0.20 with a fraction of 2 of 2 radio-excess sources.

For the full sample excluding sources below our flux limits, we find a mean qFIR =

1.43±0.73. The observed lower value of qFIR = 1.43±0.73 has been found in clusters

(Reddy and Yun 2004; Murphy et al. 2009b) as well as in the field (Garrett 2002; Kovács

et al. 2006; Sajina et al. 2008).

We also compare our other measurements to other works as well. We find mean

value of q24 = 1.33±0.73 and qTIR = 1.72±0.7 for cluster sources while q24 = 1.62±0.64

and qTIR = 1.97±0.63 for our field sources. A comparison of q24 and qTIR values in the

field indicates that our values are not inconsistent with previously published values of

q24 (Boyle et al. 2007; Rieke et al. 2009; Sargent et al. 2010a; Bourne et al. 2011) and

qTIR (Murphy et al. 2009a; Sargent et al. 2010a; Ivison et al. 2010a; Jarvis et al. 2010;

Ivison et al. 2010b). For a full comparison with other works, see Table 1 in Chapter 2.

The measured q-values are summarised in Table 11 for each cluster and in Table 12 for

the full sample, these will be further discussed in Section 6.6.
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Table 11: Summary of our measured qFIR-values.

Cluster qFIR
MS0451 1.80±0.61
Cl0016 0.67±0.32
A370 1.10±0.55
MS1512 1.07±0.86
J032649 1.55±0.65
J121119 1.14±0.20

Table 12: Summary of all measured q-values.

Sample q24 qFIR qTIR
Sources in clusters 1.33±0.73 1.42±0.70 1.72±0.70
Sources in the field 1.62±.64 1.67±0.63 1.97±0.63

6.4.3 The qFIR-values as a function of Galaxy Type

In Figure 12, we show the far-IR luminosity (LFIR) to radio luminosity (L1.4GHz) ratio

(qFIR) against L60µm particularly for MS0451 and Cl0016 both cluster and field galaxies.

We split our sample from these two galaxy clusters into blue cloud (BC) and red sequence

(RS) galaxies following the definition in Crawford et al. (2011) for both cluster and field

samples. We see that none of the subsamples show any different behaviour. In Figure 12,

red and blue colours indicate RS and BC sources and they all have secure photometric

measurements from our imaging data. The number of sources that have secure photomet-

ric classification is 17 of 23 cluster sources and 23 of 50 field sources, and we focus on

these sources with robust photometric information of these two clusters throughout the

discussion.

Of these galaxies with known photometric classification, our mean qFIR is 1.72±0.63

for cluster sources with a fraction of 35±17% (6 of 17) radio-excess, and 1.58 ± 0.71

for field galaxies with a fraction of 56±19% (13 of 23) radio-excess. Out of the cluster

population, 50±30% (4 of 8) RS galaxies are radio-excess sources. In their sample,
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Figure 12: The logarithmic of the far-IR luminosity to 1.4 GHz radio continuum lumi-
nosity ratio (qFIR) versus the IR luminosity (L60µm) for MS0451 and Cl0016 sources.
The nominal value of qFIR for field galaxies (qFIR=2.34) is plotted in the solid black hor-
izontal line. The criteria for both delineating the radio-excess (qFIR≤1.64) and IR-excess
(qFIR≥3.04) are shown in the dashed lines. The error bars correspond to average 1σ
errors. The solid grey line represents our sample limiting flux.

 

 

 

 



Reddy and Yun (2004) find 28% of radio-excess galaxies are early type and that all also

display evidence of AGN activity. For the BC cluster galaxies, we find 22±17% (2 of

9) radio-excess sources, which is consistent with the results of Miller and Owen (2001)

and Reddy and Yun (2004). In the field, 6 of 13 of the blue galaxies show evidence

for an enhanced radio emission, while 5 of 10 of field RS sources show evidence for

an enhanced radio emission. The large fraction of field galaxies with enhanced radio

emission is possible due to the presence of AGN as well as sampling a significant number

of sources that are at higher redshift than our clusters where the scatter in the relationship

can become large especially for 24 µm measurements (e.g. Appleton et al. 2004).

6.4.4 The qTIR-values as a function of Redshift

In Figure 13, we plot qTIR as a function of redshift for the COSMOS field (Sargent et al.

2010a) and for all sources in our sample. Our qTIR values are similarly defined as the qTIR

of Sargent et al. (2010a) where IR luminosity is L(TIR, 8 – 1000µm) and both follow the

method of Helou et al. (1985). Figure 13 shows a number of cluster galaxies with an

enhanced radio emission at intermediate redshift, while for a given error bar range we

see that the distribution of qTIR values for field galaxies (and some blue cluster galaxies)

displays similar trend as those of Sargent et al. (2010a).

6.4.5 The qFIR-values against Galaxy Type and Cluster Radius

In Figure 14, we plot the far-IR and radio luminosity ratio (qFIR) as a function of the

galaxy projected radius R [Mpc]. In aiming to use radius as a proxy for local density,

similar to Reddy and Yun (2004), we define RCore, RRing as the projected cluster-centric

distance at R ≤ 0.5 Mpc and between [0.5, 1.5] Mpc, respectively. Miller and Owen

(2001) and Reddy and Yun (2004) found a higher fraction of core galaxies that have a

radio-excess but we see no evidence of this in our sample drawn from two clusters. The

bulk of our sources seems to be scattered in the ring region and also lies well below

nearby clusters relation as indicated in the solid horizontal line.
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Figure 13: Plot of qTIR values against redshift for both COSMOS field galaxies from
Sargent et al. (2010a) in the redshift range between 0.3 < z < 0.6 and all sources in our
sample. The error bars correspond to average 1σ errors.
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qFIR for MS0451 and Cl0016 sources. The mean value of qFIR for low redshift cluster
galaxies of Reddy and Yun (2004) is shown in the solid horizontal line (qFIR=2.07).
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The error bars correspond to average 1σ errors.
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6.5 Potential Caveats

Before interpreting our findings, there are some caveats related to the derived luminosities

which need to be considered.

6.5.1 Far-IR-radio Relation: Presence of AGN

For comparison purposes and conformity to the previous work in the literature (Reddy

and Yun 2004), we do not a priori exclude AGN, but analyse both star-forming galaxies

and AGN together. It has been established that faint radio populations are mostly found

to be composed of star-forming galaxies and radio-quiet AGN (e.g. Jarvis and Rawlings

2004). It is also acknowledged that there is generally a contribution to the net radio flux

from an AGN which can affect the observed relationship.

To investigate the contributions from AGN to the sample, we first considered the op-

tical spectra and noted that none of the optical spectra available show broad-line emission

indicating the presence of an AGN, although spectra are only available for MS0451. We

then followed the method of Stern et al. (2005) to check for AGN contamination using

IRAC color-color plots. We particularly adopted the formulation in AB mag system by

Messias et al. (2010) as shown in their Figure 4.

In Figure 15, we show the colour [5.8]-[8] (AB) against [3.6]-[4.5] (AB). We have

only plotted sources from MS0451 and Cl0016 in this plot due to the availability of IRAC

measurements. In the plot, we have differentiated between radio-excess sources and nor-

mal sources as well as field and cluster galaxies. From the radio-excess cluster sources,

we find no sources show any indication of being an AGN according to the classification

as defined by Stern et al. (2005); Messias et al. (2010). For field sources, we find only

1 of 18 sources consistent with AGN activity, although another two radio excess sources

also have colors with [3.6]-[4.5] > 0, which may be indicative of AGN activity (Messias

et al. 2010).

Additional diagnostics (spectral line ratios, X-ray observations) will be needed to
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further confirm the absence of AGN from our sample, but based on a lack of broad lines

in the optical spectroscopy and IR colours, it would appear that AGN do not dominate

our radio excess sample of galaxies.

−4 −3 −2 −1 0 1 2 3 4
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Cluster Radio−excess
Cluster Non Radio−excess

Figure 15: Plot of AGN indices. IRAC color-color diagnostic for AGN.

6.5.2 Far-IR Luminosity derived from 24 µm

Observations at 24 µm may not fully provide an unbiased estimator of the star formation

since the peak of the IR SED tracing the cold dust component peaks between 60 µm

and 170 µm (Pierini et al. 2003). Furthermore, 24 µm data may be affected by dust
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heating from older stellar populations especially for early-type galaxies (Young et al.

2009; Calzetti et al. 2010).

In contrast, Dale et al. (2001) argued that 20-42 µm is essentially a good tracer of the

bulk of dust emission and hence can be a robust recent star formation indicator. Recent

studies of the relationship in the field have also found consistent results between mid-

infrared MIPS 24 µm and MIPS 70 µm results (e.g. Appleton et al. 2004; Beswick et al.

2008). In addition, Murphy et al. (2011) find that 24 µm observations are a sufficient

tracer of the total IR luminosity of galaxies for galaxies with L24µm<1012 L�, which

includes all of our cluster sample.

Galametz et al. (2013) combined Spitzer and Herschel data and noted that an inclu-

sion of 24 µm wavelength is essential in order to robustly derive the total IR luminosity

for nearby star-forming galaxies. In addition, for luminous galaxies at z < 1.3, measure-

ment based on mid-IR is in agreement with those measured directly with Herschel, as

already shown by Elbaz et al. (2011).

6.5.3 Higher Radio Flux Limit

It is also possible that the abundance or observed radio-excess sources might be due

to selection bias. Since our sample is IR-selected and we may only select bright radio

sources, resulting the observed enhanced radio emission with respect to the far-IR emis-

sion. If true, it might have significantly affected our measurements. For example, by

examining the far-IR luminosity cut off at log(L60µm) > 10.5 (Figure 12) we would have

only observed half of the cluster radio-excess sources. In Table 15, we summarise the

limiting radio flux and radio luminosity.

6.5.4 Small Sample Size

Given the fact that we have studied a cluster sample containing only a relatively small

number of members, it is important to note that the current results may suffer from small
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Table 15: Summary of radio flux upper limit and radio luminosity.

Cluster Radio flux upper limit (µJy) Radio luminosity (W Hz−1)
MS0451 36 1022.6

Cl0016 220 1023.4

A370 165 1022.9

MS1512 156 1022.1

J121119 159 1021.2

sample size. In our sample, we did not detect any of the brightest cluster galaxy (which

is obscured by a foreground galaxy) while Reddy and Yun (2004) have 4 cDs in their

sample.

6.6 Discussion

Among the low redshift cluster studies, the far-IR-radio relationship in rich cluster galax-

ies is characterised by a lower value of qFIR as compared to the field that is indicative

of an excess of radio emission. Cluster environmental effects are believed to drive these

observations (Andersen and Owen 1995; Rengarajan et al. 1997). Andersen and Owen

(1995) postulated that the ISM of galaxies in rich clusters is being compressed via ram

pressure as the galaxies move through the ICM resulting in greater radio emission. More

recent work has further examined various models to shed some light on the causes of en-

hanced radio emission that seems globally present in cluster galaxies (Miller and Owen

2001; Reddy and Yun 2004; Murphy et al. 2009b). The most common scenarios include

thermal pressure compression by the ICM and the ram pressure stripping of ISM, which

are both likely to augment the galactic magnetic field.

If we compare our results with the study of low redshift clusters by Reddy and Yun

2004, we find the following: (1) the intermediate redshift cluster sample has a lower value

of qFIR = 1.72±0.63, but one that is consistent within the errors with the low redshift

value of qFIR = 2.07±0.74; (2) the fraction of radio-excess objects in clusters between low
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and high redshift is greater (11% vs. 35±17%) where 35% is from the secure photometric

sample; (3) a larger fraction of the field population (56±19% vs. 1%) shows excess radio

emission at intermediate redshifts. However, we caution that any results from this work

may suffer from the small sample size studied here.

Our measurement of qTIR in the field at intermediate redshift is consistent with previ-

ous work (Murphy et al. 2009a; Sargent et al. 2010a), and little or no evolution has been

reported in the evolution of the qTIR value in the field at these redshifts (e.g. Sargent et al.

2010a,b; Ivison et al. 2010b; Bourne et al. 2011). However, the significant increase in the

scatter in the qFIR value is inconsistent with these works as well as the scatter measured

by Yun et al. (2001) at low redshift. The high scatter that we are measuring may be due to

preferentially selecting radio bright objects especially at higher redshift. For this reason,

we will focus on the observed fraction of radio-excess objects seen in the cluster and the

behaviour of both red and blue galaxies in the clusters.

In the intermediate redshift cluster, we observe a higher fraction of radio-excess

galaxies as compared to lower redshift. The 66±43% (4 of 6) of the sources classified as

radio-excess sources are red sequence galaxies. Reddy and Yun (2004) found that 9 of 13

excesses sources at low redshift had AGN signatures and were early-type galaxies. From

visual inspection of their spectra, none of our radio-excess galaxies show the telltale IR

colours of an AGN, but the large offset of the other galaxies from the relationship may

still be indicative of nuclear activity.

As can be seen in Figure 12, most of the blue galaxies appear normal and have a very

small scatter in their qFIR values. We find two blue galaxies showing a radio-excess. In

Figure 14, we do not see any strong radial trends against the qFIR values. However, we

notice that there is a significant scatter within the ring galaxies. Overall, inspection of the

median qFIR value indicates that the far-IR-radio relation for cluster blue galaxies at z ∼

0.5 is similar to the cluster sample at low redshift.

The quenching mechanisms, such as mergers and ram pressure stripping, at these

redshifts must be occurring in such a manner so as not to strongly affect the radio-IR

relationship. At low redshift clusters, one interpretation of the presence of radio-excess
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within the virial radius can be the results of interstellar medium (ISM) stripped off via

ram pressure exerted by infalling galaxies. As we do not see any environmental effects

in the blue cluster population at intermediate redshifts, it is possible that the quench-

ing mechanism is different than it is at low redshift although a larger sample would be

required to verify this.

However, we note the radio spectral index α depends on frequency and galaxy prop-

erties and thus using a single spectral index may also alter the value of q (e.g. Bourne

et al. 2011). However, the majority of work of this kind has been using the standard

spectral index for normal star-forming galaxies; α ∼ 0.8 of Condon (1992). Recent re-

sults from the local infrared luminous galaxies of Murphy et al. (2013) found that the

mid-infrared and radio properties of star-forming galaxies, particularly for those com-

pact starburst galaxies, tend to have a flatter (α ∼ 0.5) spectral index. This may be a

concern for galaxies in clusters as Crawford et al. (2006, 2011) find an increase in com-

pact galaxies in clusters at these redshifts. The recently upgraded VLA correlator now

makes it possible to measure the spectral index over a wide bandwidth within a single

observation, so it will be a powerful tool for determining the IR-radio relation for large

field and cluster samples in the future.

Radio-excess Sources

The radio-excess galaxies can be explained by the dominance of red sequence radio-

excess sources in these clusters. It has been found that rich clusters at intermediate red-

shift (z∼0.5) have higher fraction of strong radio emitting sources than in the nearby

clusters (e.g. Hill and Lilly 1991). Furthermore, a common characteristic of each clus-

ter could be the presence of post star-bursting phase of galaxies. It has been suggested

that the observed radio-excess sources could be a result of the presence of a number of

post start-burst galaxies in the core of rich clusters (Bressan et al. 2002). The observed

radio-excess sources in these clusters may therefore be due to the enhancement of radio

sources towards the cluster cores.
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In addition, a number of mechanisms can also specifically affect the observed radio

emission. These include ram pressure stripping, thermal compression, and gas compres-

sion. We discuss the effectiveness of these mechanisms to our results as follows.

(a) Ram Pressure Stripping

Figure 14 shows an indication of the effects of ram pressure stripping where we

clearly find that the majority of galaxies are more clustered in the ring region and

to a lesser extent into the core region of the clusters. The increased emitted syn-

chrotron power caused by magnetic field enhancement resulting from the ISM being

compressed by the ICM has been observed (Scodeggio and Gavazzi 1993; Andersen

and Owen 1995; Rengarajan et al. 1997; Gavazzi and Boselli 1999).

In particular, sources in MS0451 show greater extent of the ram pressure stripping

process in Figure 14, and this is consistent with previous findings on the physical

processes analysis for this cluster (Moran et al. 2007).

(b) Thermal Compression

Thermal compression also likely plays an important role within the 1.5 Mpc of the

cluster centers (Reddy and Yun 2004) which is apparent in our Figure 14 where we

do see cluster sources within this radius appear to have lower qFIR values. The ICM

pressure and the hot gas in the ICM itself can also compress the ISM of a galaxy. The

simple pressure exerted by the ICM will then enhance the magnetic strength which

will eventually increase the emitted synchrotron power (Miller and Owen 2001).

(c) Galaxy-Galaxy Interactions

Alternatively, the observed radio emission enhancement may be due to galaxy-galaxy

interaction (Moss and Whittle 1993) and galaxy harassment due to the cluster envi-

ronment (Lake et al. 1998). Galaxy harassment is more effective outside of the cluster
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core out to the cluster outskirts which eventually triggers AGN activation however

Figure 14 does not seem to support this model.

IR-excess Sources

We do not find any IR-excess sources in our sample. The depression of the observed

far-IR emission is postulated to be a collision of the ICM electron with heated dust grains

Irwin et al. (2001), resulting a removal of cool dust (cirrus) component via ICM wind

which is a major contributor to the total far-IR emission. However, Reddy and Yun

(2004) found that collisional dust heating only has a small effect in dust heating rate and

therefore has no significant effect on the far-IR emission for most galaxies living in the

cluster environment.

6.7 Conclusion

We have studied the far-IR-radio relation in a sample of distant galaxy clusters and in-

vestigated, for the first time, how this relationship behaves at lower and intermediate

redshift cluster environment as well as the field. We have constructed the far-IR-radio

relationship of star-forming galaxies using deep VLA and Spitzer archival data. We have

measured the rest frame radio luminosity at 1.4 GHz and the total IR luminosity ratios

for both sample of confirmed cluster and field galaxies. We based our conclusions upon

the results from sources with known photometric classification, and we note that our cal-

culated values might be overestimated due to the limiting flux for the radio luminosity.

Our main findings are summarised as follows:

(i) We find that the far-IR-radio relationship for distant cluster populations (qFIR =

1.72±0.63) is in agreement with those measured in the low redshift clusters (qFIR

= 2.07±0.74), and indicates evidence of a cluster enhancement of radio-excess

sources at this earlier epoch as well.
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(ii) We find two radio-excess populations among the blue star forming galaxies and the

four RS galaxies where the latter are likely to be obscured AGN if they are similar

to the low redshift sample.

(iii) We find that cluster galaxies (qFIR = 1.72±0.63) and field galaxies (qFIR = 1.58 ±

0.71) appear to have similar values and scatter of qFIR. However, further analysis

(as well as much better data) are required to confirm the observed scatter in qFIR for

field galaxies due to higher probability of elevated AGN activities in the field.

(iv) In agreement with other findings in the low redshift cluster galaxies (Miller and

Owen 2001; Reddy and Yun 2004), our results suggest that cluster environmental

effects can also be equally important at this earlier epoch, implying that the physical

mechanism responsible for the far-IR-radio relationship in clusters is related to the

ICM – with a limited role played by the galaxy-galaxy interactions and mergers.

 

 

 

 



Chapter 7

The far-IR-radio Correlation:

Environment of Galaxies in Groups

from the COSMOS field

7.1 Overview

In Chapter 6, we showed that the far-IR-radio correlation for cluster galaxies show a

radio-excess population that do not appear to be associated to AGN. We reported that the

cluster galaxies have lower value of qFIR which is also an indication of radio-excess. In

this Chapter, we aim to use cross-matched galaxies in groups to study the effect of local

environment on the far-IR-radio correlation in groups of galaxies. The local density is

based on the number of galaxy members in the group and it is used to explore the far-IR-

radio correlation as a function of galaxy type with the main intention of quantifying the

behavior of the far-IR-radio correlation in groups as compared to that of cluster galaxies.

The Chapter is structured as follows. In Section 7.2, we give a brief introduction for

this work. In Section 7.3, we present our galaxy sample that include the VLA-COSMOS

photometry catalogue, S-COSMOS photometry catalogue, and an optical spectroscopic

redshift catalogue. In Section 7.4, we present the methods and analysis performed for this
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work. In Section 7.5, we present our results. In Section 7.6, we discuss the properties of

the far-IR-radio correlation for the group sample along with a comparison to the cluster

sample. Finally, in Section 7.7, we draw conclusions from our findings.

7.2 Introduction

Galaxy groups can be considered as being as scaled-down versions of clusters. The

definition of a group and cluster is extremely loose but the common rule assigns galaxy

groups as systems that consists of a number of galaxies up to 50 members. The term

“galaxy group” that is used in this work refers to a collection of galaxies with two or more

members living in the same dark matter halo bound by mutual gravitational attraction.

In general, galaxies are preferentially found in groups or clusters where most of phys-

ical processes occur. As the transformation mechanisms in group environment can be

similar to the cluster that include most notably galaxy harassment and ram-pressure strip-

ping, depending on the group host halo mass, and the dynamics of the group. Therefore,

studies of the properties of the IR and radio emission in the group member galaxies and

the far-IR-radio relation both group and cluster population may provide important clues

to the role of the environmental processes in galaxy evolution.

Studies of galaxies in clusters, groups, and the general field at higher redshift have

shown an increased star formation activity in all environments. The basic hypothesis

of the far-IR-radio relationship of star-forming galaxies is known to be a result of cou-

pling between star formation activity and supernova rate. The far-IR emission mainly

generated through re-processing of starlight by dust, while radio emission is predomi-

nantly coming from cosmic rays electrons traveling through magnetic field (Harwit and

Pacini 1975; Rickard and Harvey 1984). To the best of our knowledge, in studying of

far-IR-radio relationship, there have been no work looked at the relationship in groups as

a function of galaxy type.
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7.3 Galaxy Sample

The Cosmic Evolution Survey (COSMOS, Scoville et al. 2007) uses multi-wavelength

data, which include imaging and spectroscopic observations from X-rays to radio wave-

lengths, to study galaxy formation and evolution as a function of redshift (out to z ∼

5) and the large scale structure environment, covering a 2 square degree area in the sky.

We used two data sets from the COSMOS survey which consists of the VLA-COSMOS

sources catalogue and the Spitzer S-COSMOS sources catalogue. The catalogues were

retrieved through the online tool GATOR from the COSMOS data archive1. In addition,

we obtained two catalogues of optical spectroscopic redshifts which come from the ESO

VLT zCOSMOS catalogue and the Magellan telescope.

7.3.1 VLA-COSMOS Photometry Catalogue

The VLA-COSMOS project (Schinnerer et al. 2004, 2007) has observed the COSMOS

field at 1.4 GHz (20 cm) with the VLA in A- and C- array configuration. The images

have uniform RMS noise in the central (1◦×1◦) on average RMS of 10.5 µJy and the flux

densities were measured with AIPS (Greisen 2003).

We used a “joint” catalogue from the VLA-COSMOS (Schinnerer et al. 2010) which

consists of the VLA-COSMOS Deep project merged with the revised catalogue of the

VLA-COSMOS Large project (Bondi et al. 2008). The total number of sources obtained

from the “joint” catalogue is 2864 detected at S/N ≥ 5.

7.3.2 S-COSMOS Photometry Catalogue

The S-COSMOS project (Sanders et al. 2007) has Spitzer imaging of the COSMOS

field in all IRAC and MIPS filters. The S-COSMOS project FWHM of the point spread

function at 24 µm is 5.8 and a 1σ point source detection limit of ∼ 0.018 mJy over a

large fraction of the imaged area (Le Floc’h et al. 2009). The flux densities in the MIPS

1http://irsa.ipac.caltech.edu/data/COSMOS/
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24 µm were measured with the PSF-fitting algorithm DAOPHOT (Stetson 1987).

We used a catalogue that consists of MIPS at 24 µm from the S-COSMOS GO3

catalogue (Le Floc’h et al. 2009). The total number of sources obtained from the GO3

catalogue is 17713 with total flux density ranging from 0.15 to 126.515 mJy and an

uncertainty in the flux density from 0.012 to 9.05 mJy.

7.3.3 Optical Spectroscopic Redshift

In this work, we used spectroscopic redshifts of sources totaling 10126 which consists of

9168 obtained from the VLT zCOSMOS (Lilly et al. 2007, 2009) which are supplemented

by 958 source redshifts obtained from the Magellan (Baade) telescope (Trump et al.

2007).

7.4 Method and Analysis

We searched for S-COSMOS counterparts to each VLA-COSMOS source using a match-

ing radius of 2”. We then used the matched IR-radio catalogue to search for optical spec-

troscopic counterparts using a similar matching radius. The resulting sample consists of

573 sources that are successfully matched in the IR-radio and have secure spectroscopic

redshifts. We measured the IR and radio luminosities as well as various galaxy’s q for

this galaxy sample.

The computation of the radio luminosity, far-IR luminosity, and q is carried out fol-

lowing the same step described in previous Chapters i.e. in Chap. 4 §4.6, Chap. 5 §5.5,

and Chap. 6 §6.3. The rest frame radio luminosities were measured following the method

of Sargent et al. (2010b) (see Equation 4), while the IR luminosities were all estimated

via the empirical relations of Rieke et al. (2009) (see Equation 8 and Equation 10). The

ratio of the IR luminosity and the radio luminosity were measured using the formulation

of Helou et al. (1985) (see Equation 11).

As we aim to study galaxies in groups, we then cross-matched our catalogue with the
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20k zCOSMOS galaxy groups catalogue of Knobel et al. (2012). A group of galaxies is

defined as a set of galaxies that occupy the same dark matter halo (Knobel et al. 2012).

The group members were identified based on two group-finding algorithms (Knobel et al.

2009) which consists of the Friends-of-Friends (FOF) (Eke et al. 2004) and Voronoi–

Delaunay method (VDM) (Marinoni et al. 2002; Gerke et al. 2005).

7.5 Results

7.5.1 The qTIR-values as a function of Redshift

In Figure 16, we plot qTIR as a function of redshift for the COSMOS field (Sargent et al.

2010a) and our sample. Our qTIR values are similarly defined as the qTIR of Sargent

et al. (2010a) where IR luminosity is L(TIR, 8 – 1000µm) and both follow the method

of Helou et al. (1985). Figure 16 clearly shows that the distribution of our qTIR values

displays similar trend when compared with those of Sargent et al. (2010a). As expected,

both qTIR measurements are consistent with one another.

Our catalogue contains 183 sources in 0.3 < z < 0.6 where the measured mean value

of qTIR is 2.40±0.38. For comparison, Sargent et al. (2010a) sample with redshift cut off

0.3 < z < 0.6 consists of 423 sources having a mean value of qTIR is 2.41±0.38. We note

that in addition to the radio sources with S/N ≥ 5 from the “joint” catalogue, Sargent

et al. (2010a) subsequently searched for additional radio detections with S/N > 3 in the

original observations. This results in the difference between the number of sources in our

sample and Sargent et al. (2010a).

7.5.2 The IR and Radio Luminosities

In Figure 17, we present the rest frame radio luminosity at 1.4 GHz (L1.4GHz) against the

IR luminosity (L60µm). Galaxies in groups are represented by filled hexagon symbols and

non-groups are drawn in circles. Figure 17 shows the linear correlation found between
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Figure 16: Plot of qTIR as a function of redshift. Comparison of our measured qTIR for
the field galaxies in the VLA-COSMOS deep project with S-COSMOS GO3 catalogue
and the published qTIR from COSMOS catalogue (Sargent et al. 2010a, see also the lower
panel of their Figure 17) where here qTIR restricted only to 0.3 < z < 0.6. The error bars
correspond to average 1σ errors.
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Figure 17: The 20 cm radio continuum luminosity (L1.4GHz) against the far-IR luminosity
(L60µm) for the field galaxies in the VLA-COSMOS deep project and the S-COSMOS
GO3 catalogue. The error bars correspond to average 1σ errors.
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the two luminosities for field star-forming galaxies (Yun et al. 2001; Bell 2003).

7.5.3 The qFIR-values as a function of Galaxy Environment
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Figure 18: The logarithmic of the far-IR luminosity to 1.4 GHz radio continuum lumi-
nosity ratio (qFIR) versus the IR luminosity (L60µm) for the field galaxies in the VLA-
COSMOS deep project and the S-COSMOS GO3 catalogue. The error bars correspond
to average 1σ errors.

In Figure 18, we show the far-IR luminosity (LFIR) to radio luminosity (L1.4GHz) ratio

(qFIR) against L60µm. The boundaries delineating between IR- (qFIR ≥ 3.04) and radio-

excess (qFIR ≤1.64) are adopted from Yun et al. (2001). As discussed in Sargent et al.
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(2010a), the scatter in qFIR at higher redshift (from z ∼ 1.4) is found to significantly

increase, thus we applied a cut off in redshift for Figure 18 and use 0 < z < 1 (resulting

in total number of sources in the sample to 492) for a robust analysis of qFIR and for a

consistency to the COSMOS analysis in the literature.

7.6 Discussion

The mean qFIR for the galaxy groups is qFIR = 2.04±0.5, while qFIR = 2.15±0.45 for

non-group sources. This mean qFIR value for groups is comparable with the low redshift

clusters (qFIR = 2.07±0.74) (Reddy and Yun 2004) as well.

We find that the fraction of IR and radio-excess for the non-groups member galaxies

is 1±0.5% (6 of 474) and 10±1.5% (50 of 474), respectively. Galaxies in groups do

not show any IR-excess, while the radio-excess is found to be 16±10% (3 of 18). This

fraction is higher than that found in the field, but the small sample size means that it is not

significantly different. When we run a Monte Carlo simulation by selecting 18 sources

randomly from the full field sample, we find that 30% of the time the same number of

excess sources is selected as in our group sample. Further observations will be required

to confirm if the fraction of radio excess sources is indeed higher in groups.

We investigate the properties of qFIR of galaxies in groups by splitting our sample

from the galaxy groups into blue cloud (BC) and red sequence (RS) galaxies. Blue objects

were defined as sources having B− I < 2.5 mag and we found that the 4 of 18 are RS

and 14 of 18 are BC. Out of the radio-excess sources in groups, 1 of 3 is RS galaxy and

2 of 3 are BC galaxies. The group size of these radio-excess sources comprises of two or

three spectroscopic group members.

A number of AGN-like sources are expected in the COSMOS field catalogue. There-

fore, one caveat is that we do not have information on the fraction of sources with AGN

activity in the catalogue. Given this constraint, we cannot infer the presence of an AGN

in the field source, though the galaxies in groups are spectroscopically confirmed thus
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bone fide (Knobel et al. 2012).

We find that 16±10% (3 of 18) of the galaxies in groups are radio-excess sources

with one RS galaxy. When combined with our results from massive clusters showing

up to a fraction of 35±17% radio-excess sources, we may be seeing hints that the num-

ber of radio-excess sources depends on the environment of the galaxies, similar to the

morphology-density relationship seen within clusters by Dressler (1980); Dressler et al.

(1997) and its extension into group regime (Postman and Geller 1984). We suggest that

this shared properties is expected since galaxy clusters are built at least partially from

galaxy groups, therefore what occurs in cluster environment depends at least partially on

galaxy groups.

It is also possible for mechanisms such as stripping, strangulation, and mergers to oc-

cur in groups prior to infall onto clusters – known as “pre-processing” (e.g. Fujita 2004).

Pre-processing quenches group members and field galaxies which have yet to fall into

the cluster. In fact, it has been suggested that galaxy pre-processing occurs in groups

which are later accreted into massive clusters Zabludoff and Mulchaey (1998); McGee

et al. (2009). It has also been found that pre-processing is even more effective in com-

pact groups compared to loose groups (Coenda et al. 2012). If the massive groups were

infalling into the richest clusters, we conversely speculate that the extreme properties of

the far-IR-radio relationship we observed in massive galaxy clusters may be the result of

some pre-processing of galaxies in groups before infalling into the cluster (e.g. Zabludoff

and Mulchaey 1998; McGee et al. 2009).

The pre-processing in groups has also been found to significantly contribute to the

observed SFR-density relationship (e.g. von der Linden et al. 2010). Interestingly, it has

been shown that both cluster environment (Poggianti et al. 2006, 2008) and group en-

vironment (Poggianti et al. 2006) can effectively reduce star-formation activity within

galaxies. These imply the existence of SFR-density relationship in groups, thus support-

ing the proposed extension of the excess of radio sources into group regime. However,

due to the small size of our group sample, a quantification of the correlation requires

further works such as studies of larger sample and wider redshift.
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7.7 Conclusion

In this Chapter, we have studied the properties of the far-IR-radio relationship for the

COSMOS field galaxies both in group and in non-group members. We find a lower

percentage of radio-excess sources in groups as compared to clusters. Our results are

summarised as follows:

(i) We find that the distribution of the measured qTIR is in good agreement with other

measurements in the COSMOS field by Sargent et al. (2010a), implying that the

methods used are consistent with each other.

(ii) Consequently, our results confirm that the measured far-IR-radio relationship for

group and non-group member galaxies in the COSMOS field holds as well.

(iii) Despite the small sample size and large percentage error, we find that galaxies in

groups possibly have a higher fraction of radio-excess sources 16±10% (3 of 18)

when compared with the non-group galaxies 10±1.5% (50 of 474). If confirmed

with additional observations, this extends the observation of radio excess sources to

the group regime.

 

 

 

 



Chapter 8

Conclusions and Future Work

8.1 Overview

The present work is devoted to the enhancement of our current understanding of the far-

IR-radio correlation of cluster galaxies for an intermediate redshift cluster sample and to

some extent to sample of groups of galaxies. We have explored deep VLA and Spitzer

observations to study a representative sample of galaxy clusters and galaxy groups.

In the local Universe, it is known that galaxies in groups and clusters which inhabit

dense environments have properties substantially different from galaxies in low density

or field environments. Here we have used three samples that span different environments.

The samples used include cluster galaxies, field galaxies, and group galaxies which are

all classified based on spectroscopic and photometric information.

This final Chapter is structured as follows. In Section 8.2 we first recap the obser-

vations, samples, and data analysis then we summarise our findings. In Section 8.3, we

conclude by reviewing our main results. In Section 8.4, we present some future work. In

Section 8.5, we include a list of scientific acknowledgment.
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8.2 Summary

In this work, we have compared the properties of the far-IR-radio correlation of cluster

galaxies in an intermediate redshift cluster sample to their low redshift cluster galaxies

counterparts as well as galaxies in groups. We have investigated the link between the

synchrotron emission traced by the radio continuum observations at 1.4 GHz and the

thermal dust emission traced by the far-infrared data.

The far-IR-radio correlation for these clusters allowed us to better understand the star

formation and cosmic-ray production in massive cluster at intermediate redshift. In addi-

tion, we found that the far-IR-radio relationship can be used to evaluate the main radia-

tion mechanisms that produced proportional emissions and with radio-excess in clusters

at low and intermediate redshift.

The results in this thesis can be summarised as follows: Chapter 1 has covered a

general overview of the evolution of cluster galaxies and multi-wavelength technique

and analysis that are needed for this work. Chapter 2 has provided a literature review of

the far-IR-radio correlation. In particular it has covered an overview of the early work,

theoretical models, prediction and observations for the relation for field galaxies. It has

also provided a thorough overview of far-IR-radio correlation for low redshift galaxy

clusters. Chapter 3 has given the details of the spectroscopic redshifts for each cluster

and described our selection of the cluster and galaxy samples. Chapter 4 has introduced

the specifications of the VLA continuum observations, data reductions, and data analysis.

Chapter 5 has summarised the IR data followed by the details of the photometry and data

analysis as well as the method for measuring IR luminosities of galaxies.

• Chapter 6 has presented and discussed our findings on the far-IR-radio relationship

for a sample of distant galaxy cluster.

• Chapter 7 has presented and discussed our findings on the radio and infrared prop-

erties of galaxy groups in the COSMOS field.
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8.3 Conclusions

In this thesis, we have studied the properties of the far-IR-radio correlation of cluster

galaxies at intermediate redshifts, by comparing the relationship of these galaxies to the

local clusters, and by giving particular focus on the interactions of intermediate-redshift

galaxies with their environment, and also by looking at the extent to which galaxy type

and groups environment the relationship may explain the radio-excess in cluster galaxies.

We reported that the cluster galaxies have lower values of qFIR which is an indicative of

radio-excess. Furthermore, we also find a lower percentage of radio-excess sources in

groups as compared to clusters.

Chapter 6 has presented and discussed our findings on the far-IR-radio relationship in

the massive galaxy clusters. We find that the far-IR-radio relationship for distant cluster

populations (qFIR = 1.72±0.63) is in agreement with those measured in the low redshift

clusters (qFIR = 2.07±0.74), and indicates evidence of a cluster enhancement of radio-

excess sources at this earlier epoch as well. We find two excess populations among the

blue star forming galaxies and the four RS galaxies with radio-excess are likely to be ob-

scured AGN if they are similar to the low redshift sample. We find that the cluster galax-

ies (qFIR = 1.72±0.63) and the field galaxies (qFIR = 1.58±0.71) at intermediate redshifts

appear to have similar qFIR values and scatter. However, further analysis is required to

confirm the observed scatter in qFIR for field galaxies due to higher probability of elevated

AGN activities in the field. In agreement with other findings in the low redshift cluster

galaxies (Miller and Owen 2001; Reddy and Yun 2004), our results suggest that cluster

environmental effects can also be equally important at this earlier epoch, implying that

the physical mechanism responsible for the far-IR-radio relationship in clusters is related

to the ICM – with limited role played by the galaxy-galaxy interactions and mergers.

Chapter 7 has presented and discussed our findings on the radio and infrared proper-

ties of galaxies in the COSMOS group. We find that the distribution of the measured qTIR

is in good agreement with other measurements in the COSMOS field by Sargent et al.

(2010a), implying that the methods used are consistent with each other. Consequently,
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our results confirm that the measured far-IR-radio relationship for group and non-group

member galaxies in the COSMOS field holds as well. Despite the small sample size and

large percentage error, we find that galaxies in groups possibly have a higher fraction

of radio-excess sources 16±10% (3 of 18) when compared with the non-group galaxies

10±1.5% (50 of 474), and if confirmed with additional observations, this extends the

relationship to the group regime.

8.4 Future Work

Although the results presented in Chapter 6 and Chapter 7 give a clear indication that

distant cluster galaxies do show radio-excess and to some extent in the group regime,

it would be useful to quantify this result with a study of a larger sample of cluster and

group members to better constrain the statistical results. In the future, it will be possible

to measure the far-IR-radio relationship for distant cluster galaxies more accurately from

the upcoming wider and deeper surveys such as MeerKAT and the Square Kilometre

Array (SKA) will provide.

The present work has clearly indicated the importance of multi-wavelength observa-

tions in the studies of galaxies in clusters and groups. We are privileged to be working at

a time when so many new telescopes and instruments are being commissioned plus those

that will be coming online soon, which have the potential to provide answers many of the

questions risen from this work.

Future multi-wavelength investigation of cluster galaxies will greatly benefit from the

multi-wavelength surveys from the Southern African Large Telescope (SALT) spectro-

scopic information and when combined with the upcoming deep continuum surveys from

the JVLA (e.g. Stripe 82 survey) and the MeerKAT/SKA (e.g. MeerKAT International

Gigahertz Tiered Extragalactic Exploration or MIGHTEE survey), as they will provide

an excellent resource for the identification of these galaxies.

In the near future, we will carry out star formation and AGN studies in massive galaxy
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clusters at higher redshift. It aims to shed new light on the star formation properties

of cluster galaxies and their evolution as function of redshift. It also intends to look

for systematic evolution in the far-IR-radio relationship in a such distant and extreme

environment.
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