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Abstract

On the design and implementation of a hybrid numerical method for singu-

larly perturbed two–point boundary value problems

Takura T.A. Nyamayaro

MSc Thesis, Department of Mathematics and Applied Mathematics, University of the

Western Cape.

With the development of technology seen in the last few decades, numerous

solvers have been developed to provide adequate solutions to the problems that

model different aspects of science and engineering. Quite often, these solvers

are tailor-made for specific classes of problems. Therefore, more of such must

be developed to accompany the growing need for mathematical models that

help in the understanding of the contemporary world. This thesis treats two-

point boundary value singularly perturbed problems. The solution to this

type of problem undergoes steep changes in narrow regions (called boundary

or internal layer regions) thus rendering the classical numerical procedures in-

appropriate. To this end, robust numerical methods such as finite difference

methods, in particular fitted mesh and fitted operator methods have exten-

sively been used. While the former consists of transforming the continuous

problem into a discrete one on a non-uniform mesh, the latter involves a spe-

cial discretisation of the problem on a uniform mesh and are known to be more

accurate. Both classes of methods are suitably designed to accommodate the

rapid change(s) in the solution. Quite often, finite difference methods on piece-
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wise uniform meshes (of Shishkin-type) are adopted. However, methods based

on such non-uniform meshes, though layer-resolving, are not easily extendable

to higher dimensions. This work aims at investigating the possibility of cap-

italising on the advantages of both fitted mesh and fitted operator methods.

Theoretical results are confirmed by extensive numerical simulations.
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Chapter 1

General Introduction

1.1 Introduction

Singular perturbation problems (SPPs) have been a challenge to the research community

in science and engineering [6]. These problems arise in a number of disciplines of ap-

plied mathematics, for example, geophysical fluid dynamics, oceanic and atmospheric

circulation, optimal control, quantum mechanics, plasticity, chemical–reaction theory,

aerodynamics, meteorology, modelling of semiconductor devices, diffraction theory and

reaction-diffusion processes.

Singular perturbation problems are in general characterised by the highest derivative

of a scalar ODE being multiplied by a small parameter, ε, known as the perturbation

parameter. There are several different types of SPPs, for the purpose of this research,

we consider linear singularly perturbed two point boundary value problems. The general

form of such problem is

−εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x), x ∈ [x0, xf ], (1.1)

with boundary conditions

u(x0) = u0, u(xf ) = uf , (1.2)

where a(x), b(x) and f(x) are sufficiently smooth functions and it is assumed that a unique

smooth solution of (1.1) exists. The parameter, ε, is taken to be much smaller than α,
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the lower bound of the first derivative coefficient, that is, ε� α ≤ a(x), else the problem

is not singularly perturbed.

The general solution of (1.1) is obtained by finding the roots of the associated poly-

nomial. If the coefficients in the differential equation depend on a parameter ε, as is the

case with SPPs, then the roots of this polynomial do so as well.

Ordinarily, analysis of the behaviour of these roots is inadequate to generalize the

behaviour of the solution of the differential equation because of the following [51]:

1. A non-homogeneous term in the equation can give rise to a term in the general

solution whose behaviour depends only, in part , on the roots of the associated

polynomial.

2. As a consequence of imposing boundary conditions, the perturbation parameter, ε,

may be present in the constants of the homogeneous terms in the general solution.

3. The set of independent variables under consideration may vary with respect to the

parameter ε.

4. The solution of the differential equation will be a function of both ε and the inde-

pendent variable, say x.

It is well known that classical numerical methods are not appropriate for solving

singularly perturbed problems.The chief reason being that the solution profile of such

problems exhibits regions of fast variation which are commonly referred to as boundary

or interior layers. In these layer regions, the classical methods either fail to capture the

behaviour of the solution or are computationally expensive when they do.

For illustration purposes we consider the simple models of SPPs found in the book by

Miller et al. [40]. We begin by considering an Initial Value Problem (IVP) on the unit

interval Ω = (0, 1).

Example 1.1.1. (Convection–reaction problem)

Given the initial value problem

εu′(x) + u(x) = 0, u(0) = u0, (1.3)

where u0 ∈ R is some given constant and 0 < ε ≤ 1, find uε ∈ C1(Ω), for all x ∈ Ω.
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The problem in Example 1.1.1 is elementary and can be solved explicitly to get

u(x) = u0 exp
(
−x
ε

)
, ε > 0. (1.4)

If ε = 0, then the order of the equation (1.3) is reduced to a trivial equation υo(x) = 0

for all x ∈ Ω. The initial condition at x = 0 cannot be imposed as a result of υo(x) ≡ 0

being completely determined. The differential equation and the reduced equation have

the same solution if and only if u0 = 0, otherwise their solutions differ. It therefore follows

that there exists a boundary layer near x = 0.

Figure 1.1: Solution profile of Example 1.1.1 with ε = 0.05.

Example 1.1.2. (Reaction–diffusion problem)

Given the equation

−εu′′(x) + u(x) = 0, (1.5)

and boundary conditions

u(0) = u0 , u(1) = u1, (1.6)

where u0, u1 ∈ R are given constants and 0 < ε ≤ 1, find u ∈ C2(Ω), for all x ∈ Ω.

A linear combination of the exponential functions {exp(−x/
√
ε), exp(−(1− x)/

√
ε)}

form the exact solution u. The reduced differential equation is of order zero and no bound-

ary conditions can be imposed on its exact solution, υ0 = 0. There will be a boundary

layer at x = 0 unless u0 = 0, as well as at x = 1 unless u1 = 0.
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Figure 1.2: Solution profile of Example 1.1.2 with ε = 0.005.

Example 1.1.3. (Convection–diffusion problem)

For a given equation

−εu′′(x) + u′(x) = 0, (1.7)

and boundary conditions

u(0) = u0 , u(1) = u1, (1.8)

where u0, u1 ∈ R are given constants and 0 < ε ≤ 1, for all x ∈ Ω, find u ∈ C2(Ω).

A linear combination of the functions {1, exp(−(1− x)/
√
ε)} form the exact solution

u. The reduced differential equation is of order one, therefore only one boundary condition

Figure 1.3: Solution profile of Example 1.1.3 with ε = 0.005.

4

 

 

 

 



Table 1.1: General solution behaviour for problem (1.1) as given in [6].

a(x) 6= 0, a(x) < 0 boundary layer at x = x0

x0 ≤ x ≤ xf a(x) > 0 boundary layer at x = xf

a(x) ≡ 0 b(x) > 0 boundary layer at x = x0 and x = xf

b(x) < 0 rapidly oscillatory solution

b(x) changes sign classic turning point

a′(x) 6= b(x), a(x∗) = 0, a′(x∗) < 0 no boundary layers,

x0 ≤ x∗ ≤ xf interior layer at x = x∗

a′(x∗) > 0 boundary layers at x = x0 and x = xf ,

no interior layer at x = x∗

can be imposed on its exact solution, υ0 = 0. There will be a boundary layer at x = 0

unless u0 = 0, as well as at x = 1 unless u1 = 0.

We summarize the general behavior we observed in the given examples in Table 1.1

as given by Ascher et al. in [5].

1.2 Models depicting singular perturbation problems

We list some models that feature singular perturbation problems.

1. Slow diffusion with heat production [52]:

We consider a one-dimensional bar described by the spatial variable x and length of

the bar L; the temperature of the bar is T (x, t), and we assume slow heat diffusion.

The endpoints of the bar are kept at a constant temperature. Heat is produced in

the bar and also exchanged with its surroundings, so we have that T = T (x, t) is

governed by the equation and conditions

∂T

∂t
= ε

∂2T

∂x2
− γ(x)[T − s(x)] + g(x)

with boundary conditions

T (0, t) = t0 , T (L, t) = t1,
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and initial temperature distribution

T (x, 0) = ψ(x).

The temperature of the neighbourhood of the bar is s(x); γ(x) is the exchange

coefficient of the heat and γ(x) ≥ d with d a positive constant so the bar is nowhere

isolated.

2. Relaxation oscillations [44]:

Consider the problem of finding the periodic solutions of equations of the form

εu′′ = f(u′, u)

for small ε when f(u′, u) = 0 has no periodic solutions. Van der Pol (1927) was the

first to treat a problem of this kind in connection with explaining the relaxation

oscillations of an electronic circuit governed by the following equation which is

named after him [44],

u′′ + u = α(u′ − 1

3
u′3). (1.9)

Rearranging (1.9), we get

u′′ = α(u′ − 1

3
u′3)− u,

which leads to
u′′

α
= (u′ − 1

3
u′3)− u

α
.

If υ = u′ and x = u/α, we get

u′′

α
= υ − υ3

3
− x,

letting ε = α−2 and using the chain rule, we get

ε
dυ

dx
= υ−1

(
υ − υ3

3
− x
)
.

3. Non-premixed combustion [54]:

We consider the model for non–premixed combustion given by the differential equa-

tion

εz′′ − z2 = −t2, −1 < t < 1,
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and

z(−1) = z(1) = 1.

Where ε is a ratio of diffusive effects to the speed of reaction, and t is a distance

coordinate, chosen so that t = 0 is the location of the flame, where the fuel and the

oxidizer meet each other and react. The functions z− t and z+ t represent the mass

fractions of fuel and oxidizer, respectively.

4. Motion of a sunflower [26]:

The movements of a sunflower can be given by the following model

εx′′(t) + ax′(t) + b sin(x(t− ε)) = 0, ε > 0, t ∈ [−ε, 0],

with x′(0) prescribed. Here the function x(t) is the angle of the plant with the

vertical at time t, the time lag ε is geotropic reaction, and a and b are positive

parameters which can be obtained experimentally.

5. The Van der Pol oscillator [44]:

We consider Van der Pol’s oscillator governed by the equation

d2u

dt2
+ u = ε(1− u2)

du

dt
,

where u is the position in space which is a function of the time t, and ε is a scalar

parameter showing the nonlinearity and the strength of the damping. When ε is

very small, the differential equation is a singular perturbation problem.

6. Undamped linear spring mass system [26]:

Consider a system with a very resistant spring. Let the prescribed specific displace-

ment be at times t = 0 and t = 1. Then one can obtain the two-point problem

ε2ẍ+ x = 0, x(0) = 0, x(1) = 1,

where ε2 (the ratio of the mass to the spring constant) is small. For nonexceptional

small positive values of ε the exact solution oscillates rapidly, so no pointwise limit

exists as ε→ 0.
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7. Ground water flow and solute transport [25]:

Consider the following equation

∂

∂t
C(X,T ) = D

∂2

∂X2
C(X,T )−ν ∂

∂X
C(X,T )−λC(X,T ), X > 0, T > 0, (1.10)

where T is the time, X is the horizontal distance taken to be zero at the soil

center and measured positive to the right of the soil center; C(X,T ) is the solute

concentration (mass of solute over volume of solute) at time T ; distance X; D is the

soil water diffusivity; ν is the average velocity and λ is the decay coefficient (1/time).

The contamination in groundwater can be calculated by means of equation (1.10).

The solute transport equation (1.10) represents the mathematical modeling for the

unknown concentration C(X,T ).We now scale this mathematical problem by select-

ing the characteristic values for the dependent and independent variables. Conse-

quently, we define dimensionless variables by

t = λT, x =
λX

ν
, c =

C

c0

, (1.11)

which lead to the following 3 results

∂C

∂T
=

∂

∂T
(c0c),

= c0
∂c

∂T
,

= c0
∂c

∂t

dt

dT
,

= c0λ
∂c

∂t
,

(1.12)

and

∂C

∂X
=

∂

∂X
(c0c),

= c0
∂c

∂X
,

= c0
∂c

∂x

dx

dX
,

= c0
λ

ν

∂c

∂x
,

(1.13)
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as well as

∂2C

∂X2
=

∂

∂X

(
∂C

∂X

)
,

=
∂

∂X

(
c0
λ

ν

∂c

∂x

)
,

= c0
λ

ν

∂2c

∂x2

dx

dX
,

= c0
λ2

ν2

∂2c

∂x2
.

(1.14)

Substituting equations (1.12), (1.13) and (1.14) in Equation (1.10), we get

∂

∂t
c(x, t) = ε

∂2

∂x2
c(x, t)− ∂

∂x
c(x, t)− c(x, t), x > 0, t > 0,

where ε = λD/ν2 � 1.

1.3 Some general techniques of solving singular per-

turbation problems

There are various methods available for solving SPPs. These methods can be categorised

under analytic methods and numerical methods. We give a brief discussion of both in

this section.

1.3.1 Numerical methods

There are several classes of numerical methods used to find numerical approximations to

the solutions of differential equations. Some of these classes are the

• Finite Difference Methods (FDMs),

• Finite Element Methods (FEMs),

• Finite Volume Methods (FVMs).

In this section, we consider the class of finite difference methods that are used to solve

singular perturbation problems. These are at times referred to as classical discretization

methods because they lay the foundation for most numerical schemes. We give the basic

steps of FDMs as given by Ascher et al. [6].
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1. We consider a grid

Ω : x0 < x1 < x2 < · · · < xn < xn+1 = xf (1.15)

2. Then we replace the derivatives in the ODE and boundary conditions with difference

quotients to form a system of algebraic equations.

3. We then obtain the approximation by solving the system of equations. This gives a

set of discrete solution values Uj ≡ U(xj), at each grid point xj.

These methods generally give solutions that converge to the exact solution as N → ∞

when solving diffferential equations.

In the case of singularly perturbed differential equations, when the coefficient of the

highest derivative, ε, is much smaller than the coefficient of the first derivative, or when

ε � 1, the solution of the problem may have degrading smoothness [23]. That means

that as the value of ε approaches 0, the error in the approximation becomes greater

[55]. Therefore, for singularly perturbed problems it is desirable to construct numerical

methods for which the accuracy of the approximate solution does not depend on ε, and

for which the size of the error depends only on the number of mesh points used [23], that

is, methods which converge uniformly with respect to the parameter ε.

We define ε− convergence as was done by Lins in [36] as follows

Definition 1.3.1. (Uniform Convergence)

Let u be the solution of a singularly perturbed problem and let U be a numerical approx-

imation of u obtained by a numerical method with N grid points. The numerical method

is said to be uniformly convergent or robust with respect to the perturbation parameter ε

in some norm ‖ . ‖ if there exists positive constants C and N0 such that

‖u− U‖ ≤ CN−p for N ≥ N0,

where the ε−uniform error constant, C, is independent of the parameter ε and the

ε−uniform rate of convergence, p, is also not dependent of ε.

As far as finite difference methods are concerned, two approaches have ordinarilly been

used by numerical analysts to obtain ε−uniform convergent methods for solving SPPs and
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these are namely fitted operator finite difference methods and fitted mesh finite difference

methods.

Fitted Operator Finite Difference Methods (FOFDMs)

These methods are generally categorised into two groups. Exponentially fitted methods

constitute one group, while the other group commonly referred to as Non–Standard Fi-

nite Difference Methods. The latter group is constructed using a rule first introduced by

Mickens [38].The basic idea behind the FOFDMs is to replace the denominator functions

of the classical derivatives with positive functions derived in such a way that they cap-

ture some notable properties of the governing differential equation [8]. In other words,

FOFDMs involve replacing the standard finite difference operator by a different finite

difference operator which reflects the singular perturbation nature of the differential op-

erator. For linear problems, such operators may be obtained by choosing the coefficients

of the difference operator so that some or all the exponential functions in the null-space of

the differential operator, are also in the null space of the finite difference operator. Such

fitted operators have been developed by many authors and usually work with uniform

meshes. The implementation of these methods is not straightforward and they usually

introduce artificial diffusion. We note that these methods can be applied without a priori

knowledge of the breadth and position of the boundary or interior layers.

Fitted Mesh Finite Difference Methods (FMFDMs)

FMFDMs involve the use of a mesh that is adapted to the singular perturbation. In this

group of numerical schemes, meshes are taken such that they are not uniform. There

are several approaches to adapting the meshes by way of redistribution of mesh points of

which the Bakhavalov and Shishkin meshes are examples.

We employ a basic Shishkin mesh to construct a piecewise-uniform mesh on the interval

Ω(0, 1) as described in [40]. The mesh will be in such a way that the boundary layer regions

have more mesh points relative to outside these regions. Let us introduce a piecewise-

uniform mesh ΩN
λ which will be generated as follows. Let a point λ satisfy 0 < λ ≤ 1/2

and let N be an even number. We divide the interval [0, 1] into two subintervals [0, λ]
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and [λ, 1]

xj − xj−1 =

 2λ/N, j = 0, 1, . . . , N/2

2(1− λ)/N, j = N/2 + 1, . . . , N.

The position and definition of λ can be adjusted to fit the particular problem that is

being solved ,i.e. λ is adapted according to the position of the layer. We denote the mesh

constructed in this manner by ΩN
λ and example of such a mesh is given in Figure 1.4,

where the transition parameter λ is defined as λ = min{1/2, ε lnN}. It should be noted

Figure 1.4: Piecewise uniform mesh Ω10
λ .

that for the case we have just constructed a mesh for, the boundary layer occurs near

x = 0. If the layer existed near x = 1 the mesh would look similar to one in Figure 1.5.

Figure 1.5: Shishkin mesh for a case with a boundary layer near x = 1.

λ is still defined as before with

xj − xj−1 =

 2(1− λ)/N, j = 0, 1, . . . , N/2

2λ/N, j = N/2 + 1, . . . , N.

We note that in both cases if λ = 1/2, then all the meshpoints are equidistants and the

mesh is uniform.

The third elementary case we anticipate is when there are layers near both x = 0 and

x = 1 boundaries in the domain Ω. In this case the example interval Ω(0, 1) is divided

into 3 subintervals. λ is still chosen satisfying 0 < λ ≤ 1/2 and there are two transition

points located at x = λ and x = 1−λ. Intervals (0, λ) and (1−λ, 1) are divided into N/4

equal subintervals and the interval (λ, 1− λ) is divided into N/2 subintervals. We define
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λ in this case as λ = min{1/4,
√
ε lnN}. The mesh length is given by

xj − xj−1 =


4λ/N, j = 1, . . . , N/4,

2(1− 2λ)/N, j = N/4 + 1, . . . , 3N/4,

4λ/N, j = 3N/4 + 1, . . . , N.

The grid generated is as illustrated in Figure 1.6. We note that in this case if λ = 1/4,

Figure 1.6: Shishkin mesh for a case with boundary layers near x = 0 and x = 1.

then all the meshpoints are equidistants and the mesh is uniform.

Another widely used mesh in FMFDMs is the Bakhvalov mesh. We give the general

mesh generating function for these meshes as follows:

φ(x) =


p
√
ε ln

(
q

q−x

)
, x = 0, . . . , β

λ(β) + λ′(β)(x− β), x = β, . . . , 1/2,

1− φ(1− x), x = 1/2, . . . , 1,

where p and q are constants, independent of ε, such that, q ∈ (0, 1/2) and p ∈ (0, q/
√
ε).

This mesh generating function is for a problem with two layers and it consists of three

parts: φ1, φ2, and φ3. The mesh points for the boundary layer regions near x = 0 and

x = 1 are generated by the functions φ1 and φ3 respectively. Function φ2 generates the

mesh points outside the layer regions and it is a tangent lone to both φ1 and φ3, and

φ2(0.5) = 0.5

It should be remarked that the construction of FMFDMs requires a priori knowledge

of the width and position of the boundary or interior layers.

1.3.2 Analytic methods

In the section we briefly discuss another category of generally used methods called analytic

methods, specifically those that fall under the sub–group of asymptotic methods. We

consider two such methods, namely matched asymptotic expansions and the method of

multiple scales.
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The Method of Matched Asymptotic Expansions

The initial development of the method of matched asymptotic expansions is credited to

Prandtl (1905), who was concerned with the flow of a fluid past a solid body such as an

aeroplane wing [24].This method involves finding several different approximate solutions,

each valid over different sections of the domain. The different solutions are then matched

together and combined to give a single approximate solution that is universally valid.

The Method of Multiple Scales

In essence, this method introduces two scales, a fast and a slow one for the independent

variable, and then treats these variables as if they are independent. The secular terms

found in each stage can be suppressed by equating the arbitrary functions from one term

in the expansion with the next. Thus a single solution is obtained that is valid over the

complete domain that can easily be expanded with lower order terms where desired.

1.4 Literature review

The relationship between cause and effect has attracted significant research endeavour in

many fields. This becomes more interesting whenever a large effect is a result of a small

cause [17]. Such is the case with singular perturbation problems where solutions present

so–called layers as the perturbation parameter approaches zero.

Ascher in [5], considers singularly perturbed boundary value problems (BVPs) as given

by

εy′ = A(t, ε)y + f(t, ε), 0 ≤ t ≤ 1,

under boundary conditions

B0(ε)y(0, ε) +B1(ε)y(1, ε) = β(ε),

where the problem defining the reduced solution is singular. Families of symmetric dif-

ference schemes, which are equivalent to certain collocation schemes based on Gauss and

Lobatto points are used to obtain numerical approximations. They extend convergence

results, previously obtained for the ”regular” singularly perturbed case. The grid selection
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procedure requires a small adjustment for the Lobatto schemes, while the Gauss schemes

are extended with no change.

In the paper by Clavero et al.[14], two compact monotone finite difference methods

to solve singularly perturbed problems of convection–diffusion type are constructed and

analyzed. They are defined as HODIE methods of order two and three, i.e., the coefficients

are determined by imposing that the local error be null on a polynomial space. For

arbitrary meshes, these methods are not adequate for singularly perturbed problems, but

using a Shishkin mesh it can be proven that the methods are uniformly convergent of

order two and three except for a logarithmic factor.

A centered difference or finite element discretization is applied to a singularly per-

turbed, one–dimensional boundary value problem in [35]. The discretization uses a piece-

wise equidistant mesh. It is proved that the pointwise error is (almost) of second order

with respect to the number of nodes, uniformly in the perturbation parameter. The proof

is based on a monotonicity argument.

A convection–diffusion two–point boundary value problem in conservative form was

considered by Kopteva and Stynes [31]. To solve it numerically they applied an upwind

conservative finite difference scheme. On an arbitrary mesh they prove bounds, which are

weighted by the small diffusion coefficient, on the errors in approximating the derivative

of the true solution by divided differences of the computed solution. On a slightly less

general mesh Kopteva and Stynes proved unweighted bounds on these errors where the

mesh is coarse. These bounds are then made more explicit for the particular cases of

Shishkin and Bakhvalov meshes.

Filiz et al. [19] propose an ε−uniform finite difference method on an equidistant mesh

which requires no exact solution of a differential equation. They begin with a full–fitted

operator method reflecting the singular perturbation nature of the problem through a

local boundary value problem. However, to solve the local boundary value problem,

they employ an upwind method on a Shishkin mesh in local domain, instead of solving it

exactly. They further study the convergence properties of the numerical method proposed

and prove it nodally converges to the true solution for any ε.

Kanth and Reddy [29] present a numerical method for solving a two point boundary
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value problem in the interval [0, 1] with regular singularity at x = 0. By employing the

Chebyshev economizition on [0, δ], where δ is near the singularity, it is replaced by a

regular problem on some interval [δ, 1]. The stable central difference method is then

employed to solve the problem over the reduced interval.

In [49], Reddy and Chakravarthy present an exponentially fitted finite difference

method for solving singularly perturbed two-point boundary value problems with the

boundary layer at one end (left or right) point. A fitting factor is introduced in a tridi-

agonal finite difference scheme and is obtained from the theory of singular perturbations.

Thomas algorithm is used to solve the system. The stability of the algorithm is investi-

gated. Several linear and nonlinear problems are solved to demonstrate the applicability

of the method. It is observed that the present method approximates the exact solution

very well.

Wazwaz [53] presents an efficient numerical algorithm for approximate solutions of

higher–order boundary value problems with two–point boundary conditions. A modified

form of the Adomian decomposition method was implemented to construct the solutions.

The approach provides the solution in the form of a rapidly convergent series. Kumar [32]

presents a three-point finite difference method based on the uniform mesh for the same

class of BVPs, in the standard form:

(xαy′)′ = f(x, y)

and

y(0) = A, y(1) = B, 0 < α < 1.

Here α ∈ (0, 1) and the constants A,B are finite. This particular method gives approxi-

mations that are O(h4)–convergent.

Bellew and O’Riordan [9] examined a coupled system of two singularly perturbed

convection–diffusion ordinary differential equations (ODEs). They constructed a numer-

ical method for the system which involves an appropriate piecewise Shishkin mesh. The

numerical approximations converge to the continuous solutions uniformly with respect to

the singular perturbation parameters.

Cakir and Amiraliyev [11], presented a finite difference method for numerical solutions
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of singularly perturbed boundary value problems for the second order ODE with nonlocal

boundary conditions. By the method of integral identities with the use of exponential basis

functions and interpolating quadrature rules with the weight and remainder term in the

integral form an exponentially fitted difference scheme on a uniform mesh is developed

which is shown to be original ε–uniform first order accurate in the discrete maximum

norm for original problem. Amiraliyev [1] was concerned with the numerical solution for

singular perturbation system of two coupled ordinary differential equations with first and

second orders and with initial and boundary conditions, respectively.

Kadalbajoo et al. [28] constructed and analysed a FOFDM which is first order ε–

uniformly convergent. With the aim of having just one function evaluation at each step,

attempts were made to derive a higher order method via Shishkin mesh to which we refer

as the FMFDM. This FMFDM is a direct method and ε–uniformly convergent with the

nodal error as O(n−2 ln2(n)) which is an improvement over the existing direct methods

(i.e. those which do not use any acceleration of convergence techniques, e.g Richardson’s

extrapolation or defect correction, etc) for such problems on a mesh of Shishkin type that

lead the error as O(n−1 ln(n)) where n denotes the total number of subintervals of [0,1].

Lubuma and Patidar [37] constructed and analysed non-standard finite difference

methods for a class of singularly perturbed differential equations. The class consists

of two types of problems: (i) those having solutions with layer behaviour and (ii) those

having solutions with oscillatory behaviour. Since no fitted mesh method can be designed

for the latter type of problems, other special treatment is necessary, which is one of the

aims they attained. The main idea behind the construction of their method is motivated

by the modelling rules for non–standard finite difference methods, developed by Mickens.

These rules allow one to incorporate the essential physical properties of the differential

equations in the numerical schemes so that they provide reliable numerical results. Note

that the usual ways of constructing the fitted operator methods need the fitting factor to

be incorporated in the standard finite difference scheme and then it is derived by requiring

that the scheme be uniformly convergent. The method that they present is fairly simple

as compared to the other approaches.

Munyakazi and Patidar [42] investigated the Richardson extrapolation as a convergence
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acceleration techniques on methods developed by Lubuma and Patidar [37] and Patidar

[45], referred to as FOFDM–II and FOFDM–I. The FOFDM–I is fourth and second order

accurate for moderate and smaller values of ε, respectively. Unfortunately, Richardson

extrapolation does not improve the order of this method. The FOFDM-II is second

order uniformly convergent and they show that its order can be improved up to four

by using Richardson extrapolation. They conclude in their article that the Richardson

extrapolation technique do not perform equally well on all type of methods.

Choo and Schultz [13] developed stable high–order methods, namely the stabilized

central difference methods (SCD methods) for solving linear two-point boundary value

problems with small coefficients for the second order terms. They developed, in partic-

ular, second–, fourth– and sixth–order methods. The methods are proved to be stable

and accurate. We have tested these methods for the one-dimensional convection-diffusion

equation including problems with and without boundary layers. The results stayed accu-

rate and stable for all values of ε tested, from 1 to 10−8. These methods are significant

in the sense that they stabilize the central difference method while improving its accu-

racy. The authors also prove that the SCD methods are unconditionally stable in the

case where both the coefficients of the differential equation are constants. Furthermore,

the formulation of these methods is simple and they are applicable to other two-point

boundary value problems with either Dirichlet or Neumann boundary conditions.

Richardson extrapolation is also investigated by Natividad and Stynes [43]. The au-

thors consider a convection–diffusion two–point boundary value problem on a piecewise–

uniform Shishkin mesh, and show that when simple upwinding is used, a version of

Richardson extrapolation improves the accuracy of the computed solution (measured in

the discrete L∞ norm) from O(N−1 lnN) to O(N−2 ln2N), where N + 1 mesh points are

used.

Kumar et al. [33] developed a scheme in which the original problem is partitioned into

inner and outer solutions of differential equations. The method is distinguished by the

following fact: the inner region problem is solved as a two–point boundary layer correction

problem and the outer region problem of the differential equation is solved as initial-value

problem with initial condition at end point.
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In 2010, Rao and Kumar [47] presented a high order parameter–robust finite difference

method for singularly perturbed reaction–diffusion problem:

Lu(x) := −εu′′(x) + b(x)u(x) = f(x) x ∈ (0, 1),

with boundary conditions

u(0) = 0 , u(1) = 0,

where 0 < ε ≤ 1 is a small parameter, f, b ∈ C4(Ω̄) with b(x) ≥ β > 0, x ∈ Ω̄ for some

positive β. The problem is discretized using a suitable combination of fourth order com-

pact difference scheme and central difference scheme on generalized Shishkin mesh. The

convergence analysis is given and the method is proved to be almost fourth order uniformly

convergent in maximum norm with respect to singular perturbation parameter ε.

In their work, Clavero and Gracia [16] were interested in the numerical approxima-

tion of one-dimension parabolic singularly perturbed problems of reaction-diffusion type.

To approximate the multi–scale solution of this problem they used a numerical scheme

combining the classical backward Euler method and central differencing. The scheme is

defined on some special meshes which are the tensor product of a uniform mesh in time

and a special mesh in space, condensing the mesh points in the boundary layer regions.

In this paper three different meshes of Shishkin, Bahkvalov and Vulanovic type are used,

proving the uniform convergence with respect to the diffusion parameter. The analysis of

the uniform convergence is based on a study of the asymptotic behaviour of the solution

of the semi–discrete problems, which are obtained after the time discretization by the

Euler method.

In [2],the authors deal with the singularly perturbed boundary value problem for a lin-

ear second–order delay differential equation. For the numerical solution of this problem,

they use an exponentially fitted difference scheme on a uniform mesh which is accom-

plished by the method of integral identities with the use of exponential basis functions

and interpolating quadrature rules with weight and remainder term in integral form. It is

shown that one gets first order convergence in the discrete maximum norm, independently

of the perturbation parameter.

Kadalbajoo and Patidar [34], a numerical study is made for solving a class of time–
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dependent singularly perturbed convection–diffusion problems with retarded terms which

often arise in computational neuroscience. A Taylor’s series expansion was employed to

approximate the retarded terms and the resulting time–dependent SPP is approximated

using parameter–uniform numerical methods comprised of a standard implicit finite differ-

ence scheme to discretize in the temporal direction on a uniform mesh by means of Rothes

method and a B–spline collocation method in the spatial direction on a piecewise–uniform

mesh of Shishkin type. The method is shown to be accurate of order O(M−1 +N−2 ln3N),

where M and N are the number of mesh points used in the temporal direction and in the

spatial direction respectively.

Bashier and Patidar [8] design a robust fitted operator finite difference method for the

numerical solution of a singularly perturbed delay parabolic partial differential equation.

Their method is unconditionally stable and is convergent with order O(k + h2), where k

is the time stepsize and h is the space step–size, which is better than the one obtained

by Ansari et al [4] where a fitted mesh finite difference method was used. Their method

was of the order O(N−1
t + N−2

x ln2Nx) , where Nt and Nx denote the total number of

sub-intervals in the time and space directions. Rao and Kumar in 2011 [48], considered a

system of M(≥ 2) coupled singularly perturbed equations of reaction–diffusion type.

Lu(x) := −Eu′′(x) + Au(x) = f(x), x ∈ (0, 1)

and boundary condtions

u(0) = a1, u(1) = a2,

where E = diag(ε, . . . , ε) is a diagonal matrix with 0 < ε � 1, f = (f1, . . . , fM)T . A

high order Schwarz domain decomposition method was developed to solve the system

numerically. The method splits the original domain into three overlapping subdomains.

On two boundary layer subdomains they use a compact fourth order difference scheme on

a uniform mesh while on the interior subdomain they use a hybrid scheme on a uniform

mesh. They prove that the method is almost fourth order ε−uniformly convergent. Fur-

thermore, they prove that when ε is small, one iteration is sufficient to get almost fourth

order ε−uniform convergence.

A comparison of classical methods for singular perturbation problems, such as El–
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Mistikawy and Werle scheme and its modifications, to exponential spline collocation

schemes is done by Kavčič et al. [30]. They discuss subtle differences that exist in apply-

ing this method to one dimensional reaction–diffusion problems and advection–diffusion

problems. For pure advection–diffusion problems, exponential tension spline collocation

is less capable of capturing only one boundary layer, which happens when no reaction

term is present. Thus an already existing collocation scheme in which the approximate

solution is a projection to the space piecewisely spanned by {1, x, exp(±px)} is inferior

to the generalization of El–Mistikawy and Werle method proposed by Ramos. The rem-

edy to this situation is obtained by considering projections to spaces locally spanned by

{1, x, x2, exp(px)}, where p > 0 is a tension parameter. Next, they exploit a unique fea-

ture of collocation methods, that is, the existence of special collocation points which yield

better global convergence rates and double the convergence order at the knots.

Amodio and Settanni [3] developed a method based on high order finite differences, in

particular on the generalized upwind method. Within its simplicity, it uses order variation

and continuation for solving any difficult nonlinear scalar problem. Several numerical tests

on linear and nonlinear problems are considered. The best performances are reported on

problems with perturbation parameters near the machine precision, where most of the

existing for two–point BVPs fail.

Rao and Chakravarthy, in their paper [46], present a finite difference method for

singularly perturbed linear second order differential–difference equations of convection–

diffusion type with a small shift, i.e., where the second order derivative is multiplied

by a small parameter and the shift depends on the small parameter. Similar boundary

value problems are associated with expected first–exit times of the membrane potential

in models of neurons. Here, the study focuses on the effect of shift on the boundary layer

behaviour or oscillatory behaviour of the solution via finite difference approach.

In [56], a singularly perturbed semi–linear boundary value problem with two param-

eters is considered. The problem is solved using exponential spline on a Shishkin mesh.

The convergence analysis is derived and the method is convergent independently of the

perturbation parameters.

The objective of [22] was to present a numerical method for solving singularly per-
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turbed turning point problems exhibiting an interior layer. The method is based on the

asymptotic expansion technique and the reproducing kernel method (RKM). The original

problem is reduced to interior layer and regular domain problems. The regular domain

problems are solved by using the asymptotic expansion method. The interior layer prob-

lem is treated by the method of stretching variable and the RKM.

Brohmer et al. [10] give an introductory survey of the defect correction approach. They

motivate this approach from its basic idea, that is, for a given mathematical problem and

a given approximate solution,

• define the defect as a quantity which indicates how well the problem has been solved,

• use this information in a simplified version of the problem to obtain an appropriate

correction quantity,

• apply this correction to the approximate solution to obtain a new improved approx-

imate solution.

• repeat above steps until desired accuracy is obtained.

Cawood et al. [12] present a posteriori error estimates for a defect correction method for

approximating solutions of convection–diffusion problems. The algorithms and estimators

include the possibility of using in the discretization a nonlinear selection mechanism, which

they find, improves solution quality in and near layers. Energy norm and L2 a posteriori

error estimates are proven for the full algorithm.

Another defect correction method based on finite difference schemes was considered for

a singularly perturbed boundary value problem on a Shishkin mesh by Frohner and Roos

[21]. The method combines the stability of the upwind difference scheme and the higher-

order convergence of the central difference scheme. The almost second–order convergence

of the scheme with respect to the discrete maximum norm, uniformly in the perturbation

parameter ε, was proved. Numerical experiments support the theoretical results.

In [7], the well-known method of Iterated Defect Correction (IDeC) based on the fol-

lowing idea: Compute a simple, basic approximation and form its defect with respect to

the given ordinary differential equation via a piecewise interpolant. This defect is used
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todefine an auxiliary, neighbouring problem whose exact solution is known. Solving the

neighboring problem with the basic discretization scheme yields a global error estimate.

This can be used to construct an improved approximation, and the procedure can be

iterated. The fixed point of such an iterative process corresponds to a certain collocation

solution. Auzinger et al. present a variety of modifications to this algorithm. These

modifications are based on techniques like defect quadrature (IQDeC), defect interpo-

lation (IPDeC), and combinations thereof. They investigate the convergence on locally

equidistant and nonequidistant grids and show how superconvergent approximations can

be obtained. Numerical examples illustrate our considerations.

1.5 Outline of the thesis

The rest of the thesis is organised as follows. In Chapter 2 we consider the fitted op-

erator finite difference methods (FOFDMs) and the fitted mesh finite difference meth-

ods (FMFDMs) to solve reaction–diffusion problems. These methods are presented and

analysed for convergence. Furthermore, the methods are numerically tested and a brief

discussion thereof is presented at the end of the chapter.

Acceleration techniques are introduced and briefly discussed in Chapter 3. Our focus

in this chapter is the indirect higher order method known as the defect correction method

which consists of the combination of a lower order upwind method with a high order

unstable method resulting in a high order and stable method. This method is implemented

for the solution of convection-diffusion problems.

Chapter 4 is devoted to the development a new finite difference method to solve two-

point boundary value convection–diffusion problems. This method seeks to combine the

advantage of accuracy of FOFDMs and the layer–resolving property of FMFDMs. The

error analysis of this hybrid method is presented as well as test examples to confirm the

theoretical findings.

Finally, in Chapter 5 we provide some concluding remarks of our research and the

scope for future work.
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Chapter 2

Fitted Operator Vs Fitted Mesh

Finite Difference Methods

In the previous chapter, we introduced singular perturbation problems as well as the

challenges associated with solving them numerically. We also briefly discussed some of

the methods which give ε−uniform approximations when solving these problems. In this

chapter, we discuss in further detail some of those methods, namely, the Fitted Operator

Finite Difference Method and the Fitted Mesh Finite Difference Method.

2.1 Introduction

In the development of ε–uniform methods for solving SPPs, two approaches have generally

been broadly used as far as finite difference methods are concerned. These approaches

are namely the Fitted Operator Finite Difference Method, here and after, refered to

as FOFDM, and a Fitted Mesh Finite Difference Method, here and after, refered to as

FMFDM. In this chapter we compare their perfomance against each other.

The notation uj := u(xj) is adopted for the set of meshpoints {xj}N0 ∈ [0, 1] and for

numerical approximations, capital letters are used with U(xj) ≈ u(xj) or Uj ≈ uj. We

also use C to denote a generic positive constant that is independent of both N and the

perturbation parameter ε.
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2.2 Fitted Mesh Finite Difference Method for reac-

tion diffusion problems

The fitted or adapted mesh finite difference methods require a priori knowledge of the

width and the location of the regions where the solution displays fast variation. This

knowledge is then used to generate an appropriate mesh hence the methods are called

fitted or adapted mesh finite difference methods.

We consider the general reaction-diffusion problem given by

−εu′′(x) + b(x)u(x) = f(x), x ∈ [0, 1], (2.1)

with boundary conditions

u(0) = u0, u(1) = uf . (2.2)

where b(x) and f(x) are sufficiently smooth functions and moreover the coefficient function

is assumed to satisfy

b(x) ≥ β > 0, for all x ∈ (0, 1).

The differential operator for this problem is given by

Lε ≡ −ε
d

dx
+ b,

and it satisfies the following maximum principle for boundary value problems (BVPs),

Maximum Principle. ([40])

Assume that a function ψ(x) satisfies ψ(0) ≥ 0 and ψ(1) ≥ 0. Then Lεψ(x) ≥ 0, for all

x ∈ Ω, implies that ψ(x) ≥ 0, for all x ∈ Ω̄.

Proof. Let x∗ be such that ψ(x∗) = minΩ̄ ψ(x) and suppose that ψ(x∗) < 0. Evidently

x∗ /∈ {0, 1}. It follows from elementary calculus that ψ′(x∗) = 0 and ψ′′(x∗) ≥ 0. Conse-

quently,

Lεψ(x∗) = −εψ′′(x∗) + bψ′(x∗),

< 0,

which is false. Therefore it follows that ψ(x∗) ≥ 0 and that ψ(x) ≥ 0, for all x ∈ Ω̄.
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The following lemma gives a bound on the solution of (2.1).

Lemma 2.2.1. ([40])

Let Ω be the interval [0, 1] and uε ∈ C2(Ω̄) be solutions to the problem in (2.1). Then, for

0 ≤ k ≤ 4, the following bounds hold

||u(k)|| ≤ C(1 + ε−k/2).

Proof. We handle first the case when k = 0. Consider the functions

ψ±(x) =
1

β
||f ||+ max{|u0|, |u1|} ± u(x).

When x = 0 we have

ψ±(0) =
1

β
||f ||+ max{|u0|, |u1|} ± u(0),

≥ 1

β
||f || , since max{|u0|, |u1|} ≥ u(0),

≥ 0.

When x = 1, the proof is analogous to the case when x = 0. Now

Lεψ
±(x) = −ε(ψ±(x))′′ + bψ(x),

= ∓εu′′ε(x) +
b

β
||f ||+ bmax{|u0|, |u1|} ± u(x),

= ±f(x) +
b

β
||f ||+ bmax{|u0|, |u1|},

≥ bmax{|u0|, |u1|} , since
b

β
||f || ≥ f(x),

≥ 0.

Applying the maximum principle, it follows that ψ±(x) ≥ 0, and therefore

|u(x)| ≤ 1

β
||f ||+ max{|u0|, |u1|} , for all x ∈ Ω̄.

We now handle the case when k = 1. Let x ∈ Ω and construct an associated neigh-

bourhood Nx = (q, q +
√
ε), such that x ∈ Nx and Nx ⊂ Ω. Then, it follows from the
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Mean Value Theorem, for some a ∈ N̄x,

|u′(a)| = u(q +
√
ε)− u(q)√
ε

,

=
1√
ε
|u(q +

√
ε)− u(q)|,

≤ 1√
ε
{|u(q +

√
ε)|+ |u(q)|},

≤ 1√
ε
{||u||+ ||u||},

≤ 2√
ε
||u||.

This can be re–written as

|u′(a)| ≤ 2ε−1/2||u|| ≤ Cε−1/2||u||.

Now

u′(x) = u′(a) + u′(x)− u′(a),

= u′(a) +

∫ x

a

u′′(w)dw,

= u′(a) +

∫ x

a

(bu(x)− f)(w)dw.

Hence

|u′| ≤ Cε−1/2.

The bounds on u and u′ and the differential equation are then used to obtain the bounds

on |u(k)| for k = 2, 3, 4.

The difference operator, LNε , approximating the differential operator, Lε, for the

reaction–diffusion problem is

LNε ≡ −εδ2 + bj, (2.3)

and it satisfies the the following

Discrete Maximum Principle. ([40])

Assume that the mesh function Ψj satisfies Ψ0 ≥ 0 and ΨN ≥ 0.Then LNε Ψj ≥ 0, for all

1 ≤ j ≤ N − 1, implies that Ψj ≥ 0, for all 0 ≤ j ≤ N.
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Proof. Let k be such that Ψk = minj Ψj and suppose that Ψ < 0. Evidently, k /∈ {0, N},

Ψj ≤ Ψk+1 and Ψj ≤ Ψk−1. If ~k = (hk+1 + hk)/2, it follows that

LNε Ψk = −εδ2Ψk + bkΨk,

= −εΨk+1 − 2Ψk + Ψk−1

~2
k

+ bkΨk,

= −ε(Ψk+1 −Ψk) + (Ψk−1 −Ψk)

~2
k

+ bkΨk,

< 0,

which is a contradiction. It follows that Ψk ≥ 0, and thus that Ψj ≥ 0, for all j,

0 ≤ j ≤ N.

Lemma 2.2.2. ([40])

If Φj is any mesh function such that Φ0 = ΦN = 0. Then

|Φj| ≤
1

β
max

1≤j≤N−1
|LNε Φj|, 0 ≤ j ≤ N.

Proof. We introduce two mesh functions

Ψ±j =
1

β
max

1≤i≤N−1
|LNε Φj| ± Φi.

with Φj ≥ Φj+1 and Φi ≥ Φj−1. Thus,

Ψ±(0) =
1

β
max

1≤j≤N−1
|LNε Φj| ± Φ(0),

=
1

β
max

1≤j≤N−1
| − εδ2Φj + bjΦj| ± Φ(0),

≥ 1

β
max

1≤j≤N−1
| − εδ2Φj|,

≥ 0.

It is easy to show analogously that Ψ±(1) ≥ 0.

Let M = (1/β) max1≤j≤N−1 |LNε Φj|, then

LNε Ψ± = −εδ2(M ± Φi) + bi(M ± Φi),

= LNε M ± LNε Φi,

= biM ± LNε Φi,

≥ 0.

It then follows from the discrete maximum principle that Ψ±i ≥ 0.
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This ε−uniform stability result for the difference operator LNε is a prompt upshot of

the discrete maximum principle. In [27] the remark is made that Lemma 2.2 implies that

the solution is unique and since the problem under consideration is linear, the existence

of the solution is implied by its uniqueness. Further, the boundedness of the solution is

implied by Lemma 2.2.2.

In literature, the Shishkin-type meshes are considered to be simpler than, say, Bakhvalov-

type meshes when comparing piecewise uniform meshes. Therefore, because of this reason,

we use a Shishkin-type mesh for the FMFDM that we are going to develop to solve linear

reaction diffusion problems. It is well known that such problems given by (2.1) have layers

at both boundaries, hence we utilise the following mesh generating function, ΩN = {xj}N0 ,

such that

hj =


4λ
N
, j = 1, . . . , N

4

2(1−λ)
N

, j = N
4

+ 1, . . . , 3N
4

4λ
N
, j = 3N

4
+ 1, . . . , N,

where hj = xj+1 − xj, N is the number of subintervals and λ is defined as

λ = min

{
1

4
, 2

√
ε

β
lnN

}
.

We develop the scheme by taking the Taylor series expansion for Uε about xj, we get

Uε(xj−1) ≈ Uj − hjU ′j +
h2
j

2!
U ′′j −

h3
j

3!
U (3) +

h4
j

4!
U (4) + . . . (2.4)

and

Uε(xj+1) ≈ Uj + hj+1U
′
j +

h2
j+1

2!
U ′′j +

h3
j+1

3!
U (3) +

h4
j+1

4!
U (4) + . . . (2.5)

We obtain the first order first derivative approximations re-arranging (2.4) and (2.5),

which gives us

D−Uj =
Uj − Uj−1

hj
and D+Uj =

Uj+1 − Uj
hj+1

, (2.6)

where hj = xj − xj−1, D
−Uj and D+Uj are commonly referred to as first order forward

and backward difference approximation for the first derivative, respectively.

Adding (2.4) and (2.5) and rearranging gives the second order second difference ap-

proximation:
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δ2Uj =
2

hj + hj+1

(
D+Uj −D−Uj

)
=

2

hj + hj+1

(
Uj+1 − Uj
hj+1

− Uj − Uj−1

hj

)
. (2.7)

Using equations (2.1),(2.2) and (2.7), and simplifying produces a tridiagonal system

of equations that can be represented in matrix notation as

AU = F, (2.8)

where A is the matrix of the system and U and F are corresponding vectors. The various

entries of this matrix and the components of the RHS vector are given by

(supdiag(A))j = r+
j , j = 1, 2, . . . , N − 2,

(maindiag(A))j = rcj , j = 1, 2, . . . , N − 1,

(subdiag(A))j = r−j , j = 2, 3, . . . , N − 1,

Fj = fj, j = 1, 2, . . . , N − 1,

F1 = f1 − r−1 U0,

FN−1 = fN−1 − r+
N−1UN ,


(2.9)

where

r+
j = −ε 2

hj+1(hj+hj+1)
,

rcj = ε 2
(hj+hj+1)

(
1

hj+1
+ 1

hj

)
+ bj,

r−j = −ε 2
hj(hj+hj+1)

.

 (2.10)

Elementary algebra gives the approximate solutions Uj as a vector in the above set of

matrices. We refer, here on, to this numerical scheme as FMFDM.

2.3 Fitted Operator Finite Difference Method for re-

action diffusion problems

We now look at the second broadly utilised approach which involves replacing the standard

finite difference operator by a fitted finite difference operator which reflects the singularly

perturbed nature of the differential operator. Such schemes are, by and large, mentioned

as fitted operator finite difference methods [40]. We note that there are two categories of

these methods, exponentially fitted methods and Non-Standard Finite Difference Methods
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developed using rules introduced by Mickens in [38]. The latter methods are the focus

of this section, specifically the FOFDM constructed by Lubuma and Patidar [39] using

these rules.

The denominator function for the FOFDM from [39] is as follows

ϕj =
2

ρj
sinh

(
ρih

2

)
, (2.11)

with ρj ≡ ρ(xj) =
√
bj/ε and bj ≡ b(xj) the coefficients of uj. The scheme is basically

developed by replacing the mesh parameter hj in the second derivative approximation

with the denominator function ϕj leading to δ2Uj in (2.7) being defined by

δ2
dUj =

Uj+1 − 2Uj + Uj−1

ϕ2
j

. (2.12)

Fitted operator finite difference methods are ordinarily implemented on equidistant grid-

points. We define the fitted difference operator of this scheme as

Ld ≡ −εδ2
d + bj. (2.13)

Analogous to the construction of the two FMFDMs we considered, the construction of

the FOFDM scheme is completed by the use of equations (2.6) and (2.12), and simplifying

produces a system of equations that can be represented in matrix notation as BU = f

with

(supdiag(B))j = r+
j , j = 1, 2, . . . , N − 2,

(maindiag(B))j = rcj , j = 1, 2, . . . , N − 1,

(subdiag(B))j = r−j , j = 2, 3, . . . , N − 1,

fj = Fj, j = 1, 2, . . . , N − 1,

f1 = F1 − r−1 U0,

fN−1 = FN−1 − r+
N−1UN ,


(2.14)

where

r+
j = − ε

ϕ2
j
,

rcj = 2 ε
ϕ2
j

+ bj,

r−j = − ε
ϕ2
j
.

 (2.15)
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Theorem 2.3.1. Assume that b(x) and f(x) are sufficiently smooth so that u(x) ∈

C4[0, 1]. Then the FOFDM is second-order ε−uniformly convergent in the sense that the

numerical solution U of the problem satisfies the error estimate

max
1≤j≤N−1

|u(xj)− U(xj)| ≤ Ch2.

2.4 Numerical simulations

We employ the maximum norm for the measurement of the error as our main objective is

to investigate the behaviour of the error in the very small realms in which the boundary

or interior layers occur. Norms such as the root mean square, may fail to capture the

behaviour of the error in layer regions as rapid changes in the solution may smooth out

because by definition they use error averages across the domain. Other examples showing

why other norms are not best suited for our objective are given in the book by J. Miller

et al.[40]. Maximum errors at all the mesh points are evaluated using the formula:

eN,ε := max
0≤j≤N

|u(xj)− U(xj)| , (2.16)

for different values of N. The numerical rates of convergence are computed using the

formula:

rk,ε := log2

(
eNk,ε

e2Nk,ε

)
, k = 1, 2, . . . (2.17)

The ε−uniform maximum errors are calculated using

EN := max
0<ε≤1

eN,ε, (2.18)

with the corresponding ε−uniform rates of convergence obtained using

rk := log2

(
ENk

E2Nk

)
, k = 1, 2, . . . (2.19)

The following linear reaction–diffusion problem considered by Amodio et al in [3], is con-

sidered for the comparison of the FMFDM and FOFDM. The test problem is considered

over the interval Ω = (−1, 1).

Example 2.4.1. ([3])

εu′′ − u = −(επ2 + 1) cos(πx),
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Figure 2.1: Solution profile of Example (2.4.1) for ε ∈ {1, 10−1, 10−2, 10−3}.

with boundary conditions

u(−1) = u(1) = exp(−2/
√
ε).

The exact solution is given by

u(x) = cos(πx) + exp

(
x− 1√

ε

)
+ exp

(
−x+ 1√

ε

)
.

The problem in Example 2.4.1 has layers of width O(
√
ε) near x = −1 and x = 1. Its

profile for different values of ε is given in Figure 2.1. Tables 2.1 and 2.2 show that for both

methods the maximum error values are bounded as ε becomes very small. However, the

FOFDM gives better results than the FMFDM regardless of how small ε gets. Tables 2.3

and 2.4 give the rates for convergence for FMFDM and FOFDM. FMFDM is ε−uniformly

convergent of almost 2 and FOFDM is ε−uniformly convergent of exactly 2 for ε� 1.
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Table 2.1: Maximum errors obtained for Example 2.4.1 using the FMFDM.

ε N = 20 N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

1 6.65E-02 1.71E-02 4.29E-03 1.07E-03 2.69E-04 6.72E-05 1.68E-05 4.20E-06

10−1 4.59E-02 1.19E-02 3.00E-03 7.49E-04 1.87E-04 4.69E-05 1.17E-05 2.93E-06

10−2 1.89E-01 9.36E-02 3.97E-02 7.58E-04 1.90E-04 4.74E-05 1.19E-05 2.97E-06

10−3 2.24E-01 1.06E-01 5.99E-02 4.40E-02 3.88E-02 3.71E-02 3.63E-02 3.55E-02

10−4 1.94E-01 7.05E-02 2.65E-02 1.21E-02 7.73E-03 6.56E-03 6.44E-03 6.67E-03

10−5 1.80Ee-01 5.62E-02 1.52E-02 3.69E-03 1.83E-03 8.53E-04 4.93E-04 6.18E-04

10−6 1.76E-01 5.13E-02 1.21E-02 3.81E-03 2.38E-03 1.30E-03 6.63E-04 3.15E-04

10−7 1.74E-01 4.97E-02 1.22E-02 4.08E-03 2.54E-03 1.39E-03 7.26E-04 3.69E-04

10−8 1.73E-01 4.92E-02 1.22E-02 4.17E-03 2.59E-03 1.42E-03 7.42E-04 3.79E-04

10−9 1.73E-01 4.91E-02 1.22E-02 4.19E-03 2.60E-03 1.43E-03 7.47E-04 3.81E-04

10−10 1.73E-01 4.90E-02 1.22E-02 4.20E-03 2.61E-03 1.43E-03 7.48E-04 3.82E-04

Table 2.2: Maximum errors obtained for Example 2.4.1 using the FOFDM.

ε N = 20 N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

1 6.55E-02 1.68E-02 4.23E-03 1.06E-03 2.65E-04 6.62E-05 1.66E-05 4.14E-06

10−1 4.29E-02 1.10E-02 2.78E-03 6.96E-04 1.74E-04 4.36E-05 1.09E-05 2.72E-06

10−2 3.95E-02 1.02E-02 2.56E-03 6.42E-04 1.61E-04 4.016E-05 1.00E-05 2.51E-06

10−3 4.18E-02 1.04E-02 2.58E-03 6.43E-04 1.61E-04 4.016E-05 1.00E-05 2.51E-06

10−4 4.58E-02 1.14E-02 2.69E-03 6.52E-04 1.61E-04 4.02E-05 1.00E-05 2.51E-06

10−5 4.66E-02 1.21E-02 2.98E-03 7.03E-04 1.66E-04 4.05E-05 1.01E-05 2.51E-06

10−6 4.67E-02 1.22E-02 3.06E-03 7.61E-04 1.84E-04 4.30E-05 1.03E-05 2.52E-06

10−7 4.67E-02 1.22E-02 3.07E-03 7.70E-04 1.92E-04 4.72E-05 1.12E-05 2.63E-06

10−8 4.67E-02 1.22E-02 3.07E-03 7.70E-04 1.92E-04 4.81E-05 1.20E-05 2.92E-06

10−9 4.67E-02 1.22E-02 3.07E-03 7.70E-04 1.93E-04 4.82E-05 1.20E-05 3.00E-06

10−10 4.67E-02 1.22E-02 3.07E-03 7.70E-04 1.93E-04 4.82E-05 1.21E-05 3.01E-06

2.5 Discussion

Broad analysis, has been done in literature, of parameter uniform numerical methods

for singularly perturbed reaction diffusion problems using fitted meshes of Bakhvalov or

Shishkin–type. It now well established that using the pointwise maximum norm, second

order (or almost second order in the case of the simpler Shishkin meshes) parameter
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Table 2.3: Rates of convergence obtained for Example 2.4.1 using the FOFDM.

ε r1 r2 r3 r4 r5 r6

1 1.96 1.99 2.00 2.00 2.00 2.00

10−1 1.96 1.99 2.00 2.00 2.00 2.00

10−2 1.96 1.99 2.00 2.00 2.00 2.00

10−3 2.01 2.01 2.00 2.00 2.00 2.00

10−4 2.01 2.08 2.05 2.01 2.00 2.00

10−5 1.95 2.02 2.08 2.08 2.03 2.01

10−6 1.94 1.99 2.01 2.05 2.10 2.07

10−7 1.94 1.99 2.00 2.00 2.02 2.07

10−8 1.94 1.98 2.00 2.00 2.00 2.01

10−9 1.94 1.98 2.00 2.00 2.00 2.00

10−10 1.94 1.98 2.00 2.00 2.00 2.00

Table 2.4: Rates of convergence obtained for Example 2.4.1 using the FMFDM.

ε r1 r2 r3 r4 r5 r6

1 1.96 1.99 2.00 2.00 2.00 2.00

10−1 1.95 1.99 2.00 2.00 2.00 2.00

10−2 1.94 1.98 2.00 2.00 2.00 2.00

10−3 0.93 0.76 0.57 0.48 0.56 0.93

10−4 1.09 0.96 0.79 0.57 0.32 0.13

10−5 1.47 1.28 1.15 0.99 0.79 0.52

10−6 1.71 1.50 1.46 1.34 1.16 0.97

10−7 1.79 1.60 1.65 1.62 1.50 1.31

10−8 1.80 1.65 1.73 1.77 1.74 1.63

10−9 1.80 1.67 1.75 1.82 1.85 1.82

10−10 1.80 1.68 1.76 1.84 1.89 1.91

uniform convergence can be globally achieved. It is often assumed that the coefficient

of the reactive term is strictly positive, i.e. bj ≥ 0 throughout the domain [18]. The

numerical results obtained for the FMFDM conform to what we have seen in literature.

Similarly with the results of the FOFDM as fitted operator finite difference methods
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generally achieve order 2 convergence.

In the next chapter, we introduce methods of improving the accuracy as well as the

rate of convergence of numerical approximations. These methods are generally known as

convergence acceleration techniques and we pay particular attention to defect correction

methods.
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Chapter 3

Defect Correction Methods on

Shishkin Meshes

In the previous chapter, we compared two ε−uniform methods, namely, the fitted op-

erator finite difference method and the fitted mesh finite difference method for solving

reaction-diffusion singular perturbation problems. In this chapter, we discuss convergence

acceleration techniques with particular focus on defect correction methods.

3.1 Introduction

Accuracy and rate of convergence of a system may be improved by direct higher order

methods or by indirect higher order methods. Direct higher order methods are con-

structed directly using, for example, the Taylor series expansions. This is the idea used

by Kadalbajoo and Patidar in [28]. Indirect higher order methods include schemes such

as the extrapolation methods and defect corrections. The general idea of these methods

is to use an easily implemented low-order method and apply some postprocessing tech-

nique to the computed solution to improve its accuracy. For extrapolation methods such

as the Richardson extrapolation, an initial approximation is found using a coarse mesh

with spacing h, then an improved approximation is found using a finer mesh with half

the mesh spacing of the coarse mesh,that is, h/2. The improved approximations are then

extrapolated on to the coarse mesh, with a linear combination of the two approximations
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then providing the higher order numerical solutions.

Defect correction methods are also indirect higher order methods. They allow low

order stabilized methods to combine with higher–order methods that are less stable such

as central differences, resulting in a higher–order method with the advantage that only

well–conditioned discrete problems have to be solved [20].

We consider this well known method for improving accuracy of finite difference schemes

and utilize ideas introduced by Frohner et al. in [20] and most of the analysis in this

chapter is based on that paper.

We consider the singularly perturbed linear convection–diffusion problem

Lu := −εu′′ − (a(x)u)′ + b(x)u = f(x), u(0) = u(1) = 0, for x ∈ (0, 1). (3.1)

where, as in previous chapters, the perturbation parameter is defined as being 0 < ε� 1,

a is taken to satisfy a ≥ α > 0 and b ≥ 0. For f and a sufficiently smooth, the solution of

u and its derivatives can be bounded by∣∣u(k)(x)
∣∣ ≤ C

(
1 + ε−k exp

(
−αx
ε

))
, for k = 0, 1, 2, 3 and x ∈ [0, 1]. (3.2)

3.2 Discretization

We consider other variations of the Shishkin mesh together with the type introduced in

Chapter 2. As before N is the discretization parameter taken to be an even positive

integer. We denote the mesh transition parameter by λ and let it be defined by

λ = min

(
1

2
,
λ0ε

α
lnN

)
,

where the constant λ0 > 0 will be fixed later. In this section we make the mild assumption

that λ = λ0εα
−1 lnN, as otherwise N−1 is exponentially small compared with ε and the

mesh is equidistant. We also assume throughout that ε ≤ N−1 as is generally the case in

practice. The layer term in (3.2) is ascertained to be smaller than N−λ0 on [λ, 1] by the

choice of the transition point. We consider a mesh ω : 0 = x0 < x1 < · · · < xN−1 < xN = 1

which is equidistant in [xN/2, 1] but graded in [0, xN/2], where we choose the transition

point [xN/2] in the Shishkin’s sense, i.e., xN/2 = λ. On [0, xN/2] let our mesh be given by
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a mesh–generating function ϕ, with ϕ(0) = 0 and ϕ(1/2) = lnN, where ϕ is continuous,

monotonically increasing and piecewise continuously differentiable. Then our mesh is

xj =

 λ0ε
α
ϕ(tj) for tj = j/N, j = 0, 1, . . . , N/2,

1−
(
1− λ0ε

α
lnN

) 2(N−j)
N

for j = N/2 + 1, . . . , N.
(3.3)

We denote by hj = xj − xj−1 for j = 1, . . . , N the local mesh sizes and by h =

maxj=1,...,N hj the maximal mesh size. For j = N/2 + 1, . . . , N the mesh is uniform and

we have N−1 ≤ hj = H ≤ 2N−1. For the maximal mesh size we have h ≤ CN−1. Examples

of the mesh–characterizing function ψ that is closely related to ϕ by

ϕ = − lnψ. (3.4)

This function, ϕ, is monotonically decreasing with ψ(0) = 1 and ψ(N/2) = N−1. We

give the followings examples of the mesh–characterizing function ψ as given by Frohner

et al. in [20] :

• Standard Shishkin mesh:

ψ(t) = exp (−2(lnN)t) .

• Bakhvalov–Shishkin mesh:

ψ(t) = 1− 2(1−N−1)t.

• Modified Bakhvalov–Shishkin (in the sense of Vulanovic):

ψ(t) = exp

(
− t

q − t

)
with q =

1

2
+

1

2 lnN
.

• Vulanovic’s improved Shishkin mesh with two transition points is generated by

ψ(t) =

 4αN t if t ∈
[
0, 1

4

]
,

2αN − βN + 4(βN − 4αN)t if t ∈
[

1
4
, 1

2

]
,

with αN = ln(lnN), βN = lnN.
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3.3 Defect correction scheme

Fröhner et al. in [20], the defect correction scheme is constructed using a first–order

accurate upwind scheme given by

[Luuu]j := −ε
{
uuj+1 − uuj
hj+1

−
uuj − uuj−1

hj

}
− ((auu)j+1 − (auu)j) + hj+1(buu)j,

= hj+1fj,

=: fuj ,

(3.5)

together with the unstable second-order central difference scheme

[Lcuc]j := −ε
{
ucj+1 − ucj
hj+1

−
ucj − ucj−1

hj

}
− (auc)j+1 − (auc)j−1

2
+ ~j(b̂uc)j,

= ~j f̂j,

=: f cj ,

(3.6)

where ~j = (hj + hj+1)/2 and gj := (gj−1 + 2gj + gj+1)/4 for any function g. Using these

difference operators we formulate our defect–correction method as follows:

1. Compute an initial first–order approximation using the upwind scheme

[Luuu]j = fuj for j = 1, . . . , N − 1, uu0 = uuN = 0.

2. Estimate the defect τ by using central differences

τj = f cj − [Lcuu]j for j = 1, . . . , N − 1. (3.7)

3. Find the defect correction δ by solving

[Luδ]j = τj for j = 1, . . . , N − 1, δ0 = δN = 0.

4. Finally, compute the corrected approximation

udc = uu + δ.
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3.4 Error analysis

In this section we carry out analysis of the convergence in our method in the discrete

norm defined by

||υ||∞,ω := max
j=1,...,N−1

|υj|.

We also introduce the following norm that we utilize later in this chapter:

||υ||∗,ω := max
j=1,...,N−1

∣∣∣∣∣
j∑
i=1

υi

∣∣∣∣∣ .
Theorem 3.4.1. Let us assume that the piecewise differentiable mesh–generating func-

tion ϕ satisfies the conditions

max
t∈[0,1/2]

ϕ′(t) ≤ CN (3.8)

and ∫ 1/2

0

ϕ′(t)2 ≤ CN. (3.9)

Let λ0 ≥ 3. Then the error of the defect–correction method given by

ηdc := udc − u,

satisfies

||ηdc||∞,ω ≤ C(N−1 max |ψ′|)2.

Proof. The error of the defect–correction method given by

ηdc = udc − u,

= uu + δ − u,

= δ + ηu.

(3.10)

Application of the upwind operator then gives

Luηdc = Luδ + Luηu,

= f c − Lcuu + Luηu,

= f c − Lcuu + Luηu + Lcu− Lcu,

= Luηu − (Lcuu − Lcu) + f c − Lcu,

= Luηu − Lcηu + f c − Lcu,

= (Lu − Lc)ηu + f c − Lcu.

(3.11)
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We use (3.5) and (3.6) to obtain the following result:

[(Lu − Lc)υ]j = −ε
{
υj+1 − υj
hj+1

− υj − υj−1

hj

}
− ((aυ)j+1 − (aυ)j) + hj+1(bυ)j,

−
[
−ε
{
vj+1 − vj
hj+1

− υj − vj−1

hj

}
− (aυ)j+1 − (aυ)j−1

2
+ ~j(b̂υ)j

]
,

= −(aυ)j+1 − 2(aυ)j + (aυ)j−1

2
+ hj+1(bυ)j − ~j(b̂υ)j,

(3.12)

for j = 1, . . . , N − 1.

We use the following stability property of the upwind operator without proof.

||υj||∞,ω ≤ C||Luυ||∗,ω for all {υj}Nj=0 with υ0 = υN = 0. (3.13)

The proof of (3.13) will be given in Section 3.4.2 by the proof of Lemma 3.4.5

We use the fact that

j∑
i=1

(hi+1(bυ)i − ~i(b̂υ)i) = −h1
(bυ)0 + 2(bυ)1 + (bυ)2

8

+ hj+1

(
(bυ)j −

(bυ)j−1 + 2(bυ)j + (bυ)j+1

8

)
+

j−1∑
i=1

hi+1

(
−1

8
(bυ)i−1 +

5

8
(bυ)i −

3

8
(bυ)i+1 −

1

8
(bυ)i+2

)

and application of the stabilty property for the upwind operator on (3.12) to get the

following result for the upwind scheme error (ηu := uu − u) :
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||ηdc||∞,ω ≤ C
∥∥Luηdc∥∥∗,ω ,

≤ C
{
‖(Lu − Lc)ηu‖∗,ω + ‖f c − Lcu‖∗,ω

}
,

≤ C

{∥∥∥∥−(aυ)j+1 − 2(aυ)j + (bυ)j−1

2
+ hj+1(bυ)j − ~j(b̂υ)j

∥∥∥∥
∗,ω
,

+ ‖f c − Lcu‖∗,ω
}

≤ C

{∥∥∥∥(aυ)j+1 − 2(aυ)j + (aυ)j−1

2

∥∥∥∥
∗,ω

+
∥∥∥hj+1(bυ)j − ~j(b̂υ)j

∥∥∥
∗,ω
,

+ ‖f c − Lcu‖∗,ω
}
,

≤ C

{
1

2

[
max

j=0,...,N−1

∣∣∣∣∣
j∑
i=1

((aυ)j+1 − 2(aυ)j + (aυ)j−1)

∣∣∣∣∣
]
,

+ max
j=0,...,N−1

∣∣∣∣∣
j∑
i=1

(
hj+1(bυ)j − ~j(b̂υ)j

)∣∣∣∣∣+ ‖f c − Lcu‖∗,ω

}
,

≤ C

{
1

2

[
max

j=0,...,N−1
|(aυ)0 − (aυ)1 − (aυ)j + (aυ)j+1|

]
,

+ max
j=0,...,N−1

∣∣∣hj+1(bυ)j − ~j(b̂υ)j

∣∣∣+ ‖f c − Lcu‖∗,ω

}
,

(3.14)

≤ C

{
max

j=0,...,N−1
|(aηu)j+1 − (aηu)j|+ max

j=0,...,N−1
|(bηu)j+1 − (bηu)j|,

+ h||bηu||∞,ω + ||f c − Lcu||∗,ω
}
,

≤ C

{
max

j=0,...,N−1
|ηuj+1 − ηuj |+ h||ηu||∞,ω + ||f c − Lcu||∗,ω

}
.

Since

C(N−1 max |ψ′|)2 ≥


maxj=0,...,N−1 |ηuj+1 − ηuj |,

h||ηu||∞,ω,

||f c − Lcu||∗,ω,

(3.15)

it follows that

||ηdc||∞,ω ≤ C(N−1 max |ψ′|)2.

We will prove the result in (3.15) in Subsection 3.4.3 that will follow.
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Remark 1. From Fröhner et al. [20] we note that by theorem 3.4.1, we can analyze the

perfomance of the scheme on the Shishkin meshes in a relatively easy way. All mesh–

generating functions given earlier, for example, are characterized by a ϕ that satisfies

(3.8) and (3.9). Table 3.1 has the maximum value of |ψ′|.

Table 3.1: Maximum values of |ψ′|

max |ψ′|

Standard Shishkin mesh C lnN

Bakhvalov-Shishkin mesh C

Modified Bakhvalov-Shishkin mesh C

Vulanovic improved Shishkin mesh C ln(lnN)

3.4.1 Some properties of Shishkin meshes

Lemma 3.4.1. Let (3.8) hold true. Then∫ xj

xj−1

(
1 + ε−1e−ασ/(kε)

)
dσ ≤ CN−1 max

t∈[0,1/2]
|ψ′(t)|,

for λ0 ≥ k > 0 and j = 1, . . . , N.

Proof. For j = N/2 + 1, . . . , N we have∫ xj

xj−1

(
1 + ε−1e−ασ/(kε)

)
dσ =

[
σ − kε

β

(
ε−1e−ασ/(kε)

)]xj
xj−1

,

= hj −
k

α

[
e−ασ/(kε)

]xj
xj−1

,

= hj −
k

α

[
e−αxj/(kε) − e−αxj−1/(kε)

]
,

≤ hj +
k

α
e−αxj−1/(kε),

≤ C
[
N−1 +N−λ0/α

]
,

{
xN/2 =

λ0ε

α
lnN at j − 1 = N/2.

}
,

≤ CN−1.
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For j = 1, . . . , N/2 we use the transformation σ = λ0εα
−1ϕ(t) to get∫ xj

xj−1

(
1 + ε−1e−ασ/(kε)

)
dσ =

λ0

α

∫ tj

tj−1

(
ε+ e−λ0ϕ(t)/k

)
ϕ′(t)dt,

=
λ0

α

∫ tj

tj−1

(
ε+ e(1−λ0/k)ϕ(t)

)
|ψ′(t)|dt,

≤ C

(
ε+N−1 max

t∈[tj−1,tj ]
e(1−λ0/k)ϕ(t) max

t∈[tj−1,tj ]
|ψ′(t)|

)
,

≤ CN−1 max
t∈[tj−1,tj ]

|ψ′(t)|,

where we have used the relation between ϕ and ψ, (3.8) and 0 ≤ ϕ(t) ≤ lnN. Combine

the two inequalities and note that max |ψ′| ≥ C.

Lemma 3.4.2. Let (3.8) be satisfied. Then

hj ≤ Cε and
hj
ε
e−αxj/(λ0ε) ≤ CN−1 max

t∈[0,1/2]
|ψ′(t)| for j = 1, . . . , N/2.

Proof. For j = 1, . . . , N/2, we have

hj = xj − xj−1,

=
λ0ε

α
(ϕ(tj)− ϕ(tj−1)) ,

=
λ0ε

α

∫ tj

tj−1

ϕ′(t)dt,

≤ λ0ε

α
N−1 max

t∈[tj−1,tj ]
|ϕ′(t)|.

(3.16)

From (3.8) we have maxt∈[0,1/2] ϕ
′(t) ≤ CN, therefore it follows that

hj ≤ Cε.

Using result for (3.16), we have

hj =
λ0ε

α
N−1 max

t∈[tj−1,tj ]
|ϕ′(t)|,

=
λ0ε

α
N−1 maxt∈[0,1/2] |ψ′(t)|

mint∈[tj−1,tj ] |ψ(t)|
,

since ϕ′ = −ψ′/ψ from definition of ψ. But

min
t∈[tj−1,tj ]

ψ(t) = min
t∈[tj−1,tj ]

e−αx/(λ0ε),

= e−αxj/(λ0ε),
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hence

hj ≤
λ0ε

α
N−1 max

t∈[0,1/2]
|ψ′(t)|eαxj/(λ0ε),

hj
ε
e−αxj/(λ0ε) ≤ λ0

α
N−1 max

t∈[0,1/2]
|ϕ′(t)|,

≤ CN−1 max
t∈[0,1/2]

|ϕ′(t)|.

Lemma 3.4.3. Let (3.9) hold true. Then

Kj
i :=

j∏
k=i

(
1 +

akhk
ε

)−1

≤ e−α(xj−xi−1)/ε, for 1 ≤ i ≤ j ≤ N/2.

Proof.

ln

(
j∏
k=i

(
1 +

αhk
ε

))
≥

j∑
k=i

[
αhk
ε
− 1

2

(
αhk
ε

)2
]
, since ln(1 + t) ≥ t− t2/2,

≥ α

ε

j∑
k=i

hk −
N/2∑
k=1

(
αhk
ε

)2

,

≥ α(xj − xi−1)

ε
− 1

2

N/2∑
k=1

(
αhk
ε

)2

.

We multiply terms both sides of the inequality and simplify to get,

j∏
k=i

(
1 +

αhk
ε

)−1

≤ e−α(xj−xi−1)/ε exp

1

2

N/2∑
k=1

(
αhk
ε

)2
 ,

≤ e−α(xj−xi−1)/ε exp

1

2
λ2

0

N/2∑
k=1

(tk − tk−1)

∫ tk

tk−1

ϕ′(τ)2dτ

 ,

≤ e−α(xj−xi−1)/ε exp

(
1

2
λ2

0N
−1

∫ 1/2

0

ϕ′(τ)2dτ

)
,

≤ e−α(xj−xi−1)/ε exp

(
1

2
λ2

0N
−1(CN)

)
by (3.9),

≤ e−α(xj−xi−1)/ε.

where (αhk)/ε = λ0

∫ tk
tk−1

ϕ′(τ)dτ for k = 1, . . . , N/2.
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Lemma 3.4.4. Suppose (3.8) and (3.9) are satisfied. Let λ0 ≥ 1. Then

hj
ε
Kj

1 ≤

 CN−1 max |ψ′| for j = 1, . . . , N/2,

CN−λ0 for j = N/2 + 1, . . . , N.

Proof. For j = 1, . . . , N/2 we consider a result from Lemma 3.4.3 as follows:

Kj
1 ≤ e−α(xj−x0)/ε,

hj
ε
Kj

1 ≤
hj
ε
e−α(xj−x0)/ε,

≤ C
hj
ε
e−αxj/(λ0ε),

≤ CN−1 max |ψ′| using Lemma 3.4.2.

Since the sequence Kj
1 is monotonically decreasing, for j = N/2 + 1, . . . , N we have

hj
ε
Kj

1 ≤
hj
ε

(
1 +

akhk
ε

)−1

K
N/2
1 ,

≤ α−1K
N/2
1 ,

≤ CN−λ0 ,

from application of Lemma 3.4.3.

3.4.2 Analysis of the error of the upwind scheme

In this section we carry out the analysis of the stable first–order method used in the

defect–correction method.

Lemma 3.4.5. Let ω : 0 = x0 < x1 < · · · < xN = 1 be an arbitrary mesh. Let {υj}Ni=0

be an arbitrary mesh function defined on ω with υ0 = υN = 0. Then

||υ||∞,ω ≤ 2α−1eγ
∗/α||Luυ||∗,ω

where γ∗ = maxx∈[0,1] c(x) ≥ 0.

Proof. We rewrite the function υ in the form

υj =
WN

VN
Vj −Wj, (3.17)
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where {Vj}Nj=0 is the solution of

[AuV ]j = 1 for j = 1, . . . , N, V0 = 0

and {Wj}Nj=0 is the solution of

[AuW ]j =

j−1∑
i−1

[Luυ]i for j = 1, . . . , N, W0 = 0,

with

[Auw]j := ε
wj − wj−1

hj
+ (aw)j −

j−1∑
i−1

hi+1(bw)i for any grid function w. (3.18)

We define a mesh function z by

zj =

j∏
k=1

(
1 +

γ∗

α
hk

)
for j = 1, . . . , N.

It follows that

1 = z0 < z1 < · · · < zN ,

with

zN =
N∏
k=1

(
1 +

γ∗

α
hk

)
,

<

N∏
k=1

e(γ∗/α)hk , since

(
1 +

γ∗

α
hk

)
< e(γ∗/α)hk ,

<
(
e(γ∗/α)h1

) (
e(γ∗/α)h2

)
. . .
(
e(γ∗/α)hN

)
,

< e(γ∗/α)(h1+h2+···+N),

< e(γ∗/α)(
∑N

k=1 hk),

< e(γ∗/α).
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Then again, z satisfies

[Auz]j = ε
zj − zj−1

hj
+ (az)j −

j−1∑
i−1

hi+1(bz)i, from (3.18),

=
ε

hj

{
j∏

k=1

(
1 +

γ∗

α
hk

)
−

j−1∏
k=1

(
1 +

γ∗

α
hk

)}
+ aj

j∏
k=1

(
1 +

γ∗

α
hk

)

−
j−1∑
i=1

hi+1bi

i∏
k=1

(
1 +

γ∗

α
hk

)
,

=
ε

hj

{[(
1 +

γ∗

α
hj

)
− 1

] j−1∏
k=1

(
1 +

γ∗

α
hk

)}
+ aj

j∏
k=1

(
1 +

γ∗

α
hk

)

−
j−1∑
i=1

hi+1bi

i∏
k=1

(
1 +

γ∗

α
hk

)
,

= ε
γ∗

α

j−1∏
k=1

(
1 +

γ∗

α
hk

)
+ aj

j∏
k=1

(
1 +

γ∗

α
hk

)
−

j−1∑
i=1

hi+1bi

i∏
k=1

(
1 +

γ∗

α
hk

)
,

> α

j∏
k=1

(
1 +

γ∗

α
hk

)
− γ∗

j−1∑
i=1

hi+1

i∏
k=1

(
1 +

γ∗

α
hk

)
,

> α

(
1 +

γ∗

α
h1

)
,

> α.

When we apply the test for the M−matrix, we conclude that Au is a M−matrix and

moreover, we can prove that

0 < Vj ≤ α−1eγ
∗/α and |Wj| ≤ Vj||Luυ||∗,ω for j = 1, . . . , N. (3.19)

From (3.17) we get

||υj|| =
∥∥∥∥WN

VN
Vj −Wj

∥∥∥∥ ,
≤
∥∥∥∥WN

VN
Vj

∥∥∥∥+ ‖Wj‖ .

Using (4.1), we have

||υj|| ≤ α−1eγ
∗/α||Luυ||∗,ω + α−1eγ

∗/α||Luυ||∗,ω,

≤ 2α−1eγ
∗/α||Luυ||∗,ω.
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Theorem 3.4.2. Let ω : 0 = x0 < x1 < · · · < xN = 1 be an arbitrary mesh. Then the

error ηu = u− uu of the upwind scheme Luuu = fu for (3.1) satisfies

||ηu||∞,ω ≤ C max
i=1,...,N

∫ xi

xi−1

(1 + |u′(s)|) ds.

Proof. Integrating (3.1) over [xj+1, xj] we get

−ε(u′j+1 − u′j)− ((au)j+1 − (au)j) +

∫ xj+1

xj

(bu)(s)ds =

∫ xj+1

xj

f(s)ds,

re–arranging gives

εu′j+1 − εu′j −
∫ xj+1

xj

(bu− f)(s)ds = −(au)j+1 + (au)j. (3.20)

We define the truncation error of the upwind scheme by

τu := Luu− fu.

Application of (3.20) ot the definition of Lu gives

j−1∑
i=1

τu =− ε
(
uj − uj−1

hj
+ u′j

)
+ ε

(
u1 − u0

h1

+ u′1

)

+

j−1∑
i=1

{
hi+1(bu− f)i −

∫ xi+1

xi

(bu− f)(s)ds

}
.

(3.21)

Taking Taylor series expansions of the right–hand side of (3.21) we get

ε

∣∣∣∣uj − uj−1

hj
− u′j

∣∣∣∣ ≤ ε

∫ xj

xj−1

|u′′(s)|ds,

≤
∫ xj

xj−1

|(f − bu+ (au)′)(s)|ds

and ∣∣∣∣hi+1(bu− f)i −
∫ xi+1

xi

(bu− f)(s)ds

∣∣∣∣ ≤ hi+1

∫ xi+1

xi

|(bu− f)′(s)| ds.

Employing the boundedness of u, we get

‖ηu‖∗,ω ≤ max
i=1,...,N

∫ xi

xi−1

(1 + |u′(s)|ds. (3.22)

Use of Lemma 3.4.5 concludes the proof.
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Corollary 3.4.1. Let ω be a Shishkin–type mesh. Suppose that (3.8) holds true. Then

the error of ηu of the upwind scheme Luuu = fu satisfies

||ηu||∞,ω ≤ CN−1 max |ψ′| for λ0 ≥ 1.

Corollary 3.4.1 is a direct result of Theorem 3.4.2, and Lemma 3.4.1 as well as the in-

equality in (3.2)

Proof. From theorem 3.4.2 we have

||ηu||∞,ω ≤ C max
i=1,...,N

∫ xi

xi−1

(1 + |u′(s)|) ds,

≤ C max
i=1,...,N

[∫ xi

xi−1

1ds+

∫ xi

xi−1

(|u′(s)|) ds
]
,

≤ C max
i=1,...,N

[
hi +

∫ xi

xi−1

(|u′(s)|) ds
]
,

≤ C

[
h+ max

i=1,...,N

∫ xi

xi−1

(|u′(s)|) ds
]
,

≤ C

[
h+ max

i=1,...,N

∫ xi

xi−1

(
1 + ε−1e−αs/ε

)
ds

] (
from (3.2)

)
,

≤ C
[
h+N−1 max |ψ′|

] (
from lemma 3.4.1

)
,

≤ C
[
2N−1 max |ψ′|

]
,

≤ CN−1 max |ψ′|.

3.4.3 Approximation of the derivatives

Theorem 3.4.3. ([20]) The error ηu = u− uu of the upwind scheme Luuu = fu for (3.1)

on a Shishkin–type mesh satisfies

|ηuj − ηuj−1| ≤

 C(N−1 max |ψ′|)2 for j = 1, . . . , N/2 and λ0 ≥ 3,

CN−2 max |ψ′| for j = N/2 + 1, . . . , N and λ0 ≥ 2.

Proof. Recalling the proof of Lemma 3.4.5 with υ = ηu, we can write the difference as

∣∣ηuj − ηuj−1

∣∣ =
WN

VN
(Vj − Vj−1)− (Wj −Wj−1), (3.23)
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where {Vj}Nj=0 is the solution of

[AuV ]j = 1, for j = 1, . . . , N, V0 = 0 (3.24)

and {Wj}Ni=0 is the solution of

[AuW ]j =

j−1∑
i−1

τui , for j = 1, . . . , N, W0 = 0. (3.25)

We furthermore, know that

|WN | ≤ VN ‖τu‖∗,ω . (3.26)

We represent the differences V −j := Vj−Vj−1 and W−
j := Wj−Wj−1 as the solution of

appropriate difference equations involving an M−matrix Mu. To derive an upper bound

on W−, we again split

W− = W̃− +W
−
d +W

−
l ,

exploiting the specific structure of the matching defining equations. Each addend will be

bounded separately.

Let

[Muw]j := ε

(
wj
hj
− wj−1

hj−1

)
+ (aw)j.

Taking the difference [AuV ]j − [AuV ]j−1 from (3.24), we see V −j is the solution of the

first–order difference equation[
MuV −

]
j

= (aj−1 − aj + hjbj−1)Vj−1, for j = 2, . . . , N,[
MuV −

]
1

= ε

(
V −1
h1

− V −0
h0

)
+ (aV −)1, for j = 1,

=
ε

h1

V −1 + a1V
−

1 , since V −0 = 0,

=

(
ε

h1

+ a1

)
V −1 ,

=
h1

ε

(
1 +

a1h1

ε

)−1

V −1 ,

it follows that

V −1 =
h1

ε

(
1 +

a1h1

ε

)−1

,

=
hj
ε
Kj

1 ,

(3.27)
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using Kj
i from Lemma 3.4.3, where the initial condition is obtained from (3.24) for j = 1.

It is evident that Mu is a L0−matrix. Application of the M−matrix criterion with

the test function wj = hj proves that Mu is an M−matrix. From (3.27) we have[
MuV −

]
j

= (a′hj + hjbj−1)Vj−1,

= (a′ + bj−1)Vj−1hj,

≤ (a′ + γ)Vj−1hj, taking 0 < c(x) ≤ γ,

≤ (a′ + γ)α−1eγ/αhj,

from the proof of Lemma 3.4.5. Taking absolute values, we get∣∣∣[MuV −
]
j

∣∣∣ ≤ + |(a′ + γ)|α−1eγ/αhj for j = 2, . . . , N,

≤ + (‖a′‖∞ + γ)α−1eγ/αhj.

It follows that∣∣V −j ∣∣ ≤ hj
ε
Kj

1 + (‖a′‖∞ + γ)α−2eγ/αhj for j = 1, 2, . . . , N,

by a discrete comparison principle.

We apply Lemma 3.4.4 to the right hand side to obtain

∣∣V −j ∣∣ ≤
 CN−1 max |ψ′| for j = 1, . . . , N/2

CN−1 for j = N/2 + 1, . . . , N.
(3.28)

For W−
j := Wj −Wj−1 and from (3.25), we have[

MuW−]
j

= (aj−1 − aj + hibj−1)Wj−1 + τuj−1, for j = 2, . . . , N, W−
0 = 0.

Splitting of W− leads to

W− = W̃− +W
−
, (3.29)

where W̃− and W
−

solve[
MuW̃−

]
j

= (aj−1 − aj + hjbj−1)Wj−1 for j = 2, . . . , N, W̃−
0 = 0

and [
MuW

−
]
j

= τuj−1 for j = 2, . . . , N, W
−
0 = 0.
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Analogous to the approach used for V −, we can use the discrete comparison principle to

obtain ∣∣∣W̃−
j

∣∣∣ ≤ (‖a′‖∞ + γ)α−2eγ/αhj+1‖τu‖∗,∞ for j = 1, 2, . . . , N.

Thus on a Shishkin-type mesh, we have∣∣∣W̃−
j

∣∣∣ ≤ CN−2 max |ψ′| for j = 1, 2, . . . , N, (3.30)

by (3.22) and Lemma 3.4.1.

Now we bound W
−
. We integrate (3.1) over [xj−1, xj] as we did in the the proof of

theorem 3.4.2, we get[
MuW

−
]
j

= τuj−1,

= −ε
(
uj − uj−1

hj
− u′j

)
+ ε

(
uj−1 − uj−2

hj−1

− u′j−1

)
+ hj(bu− f)j−1 −

∫ xj

xj−1

(bu− f)(s)ds.

We split W
−

corresponding to the diffusion terms and lower order terms:

W
−

= W
−
d +W

−
l , (3.31)

where [
MuW

−
d

]
j

= −ε
(
uj − uj−1

hj
− u′j

)
+ ε

(
uj−1 − uj−2

hj−1

− u′j−1

)
,

= −ε (χj − χj−1) with χj :=
uj − uj−1

hj
− u′j, W

−
d,1 = 0

and [
MuW

−
l

]
j

= hj(bu− f)j−1 −
∫ xj

xj−1

(bu− f)(s)ds W
−
l,1 = 0.

First we consider W
−
l and employing Taylor series expansions, we have∣∣∣∣[MuW

−
l

]
j

∣∣∣∣ ≤ Chj

∫ xj

xj−1

(
1 + ε−1e−αs/ε

)
ds,

≤ ChjN
−1 max |ψ′|.
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Thus ∣∣∣W−
l,j

∣∣∣ ≤ ChjN
−1 max |ψ′|,

≤ CN−2 max |ψ′| for j = 1, 2, . . . , N.
(3.32)

To study W
−
d we solve the defining difference equation and get

W
−
d,j = hj

j∑
k=2

Kj
k (χk−1 − χk)

= hjK
j
2χ1 + hj

j−1∑
k=2

Kj
k

akhk
ε

χk − hj
(

1 +
ajhj
ε

)−1

χj,

(3.33)

for j = 2, . . . , N. For χk, we use Taylor expansions to obtain

|χk| ≤ C

∫ xk

xk−1

(
1 + ε−1e−αs/ε

)
ds

and hence derive the two bounds

|χk| ≤ C

(
hk + ε−1e−αxk−1/ε sinh

αhk
2ε

)
(3.34)

and

|χk| ≤ C
(
hk + ε−1e−αxk−1/ε

)
. (3.35)

We observe that for k = 1, . . . , N/2 estimate (3.34) is substantially stronger than (3.35)

since sinh(αhk/(2ε)) ≤ Cαhk/(2ε) ≤ CN−1 max |ψ′|. While on the other hand, for k >

N/2, sinh(αhk/(2ε)) cannot be bounded uniformly in ε.

We now look for bounds for the three terms on the right hand side of (3.33). For the

last term, for λ0 ≥ 2 and i = 2, . . . , N/2 by (3.34) we have

hj

(
1 +

ajhj
ε

)−1

|χj| ≤ C

(
hk + ε−1e−αxk−1/ε sinh

αhk
2ε

)
,

≤ C

(
h2
j +

(
hj
ε
e−αxj/(λ0ε)

)2
)
,

≤ C
(
ε2 +

{
N−1 max |ψ′|

}2
)
, using Lemma 3.4.2

≤ C(N−1 max |ψ′|)2.

For j = N/2 + 1, . . . , N, we use (3.35) to get

hj

(
1 +

ajhj
ε

)−1

|χj| ≤ C
εH

ε+ a1H

(
H + ε−1e−αxj−1/ε

)
≤ C(N−2 + e−αλ/ε)),
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by Lemma 3.4.2. We gather the last two bounds, for λ0 ≥ 2 and we have

hj

(
1 +

ajhj
ε

)−1

|χj| ≤

 C(N−1 max |ψ′|)2 for j = 1, . . . , N/2,

CN−2 for j = N/2 + 1, . . . , N.
(3.36)

We employ (3.34) and Lemma 3.4.4 in order to bound the first term in (3.33) and we

obtain

hjK
j
2 |χ1| ≤ C

hj
ε
Kj

1

(
1 +

a1h1

ε

)
N−1 max |ψ′|

≤

 C(N−1 max |ψ′|)2 for j = 2, . . . , N/2,

CN−2 max |ψ′| for j = N/2 + 1, . . . , N,

(3.37)

if λ0 ≥ 1.

Lastly, we bound the second term in (3.33). For k < j ≤ N/2 and λ0 ≥ 3 we have by

(3.34) and by lemmas 3.4.1-3.4.3

hjK
j
k

akhk
ε
|χk| ≤ Chje

−α(xj−xk−1)/εakhk
ε
|χk| by Lemma 3.4.3,

≤ Chje
−α(xj−xk−1)/εakhk

ε

{
hk + ε−1 sinh

αhk
2ε

e−αxk−1/ε

}
using (3.34),

≤ C
hj
ε
e−αxj/(λ0ε)

(
hk
ε
e−αxk/(λ0ε)

)2

+ Chj
h2
k

ε
,

≤ C(N−1 max |ψ′|)2

∫ tk

tk−1

−ψ′(τ)

ψ(τ)
dτe−αxk/(λ0ε) + Chj

h2
k

ε
,

≤ C(N−1 max |ψ′|)2

∫ tk

tk−1

(−ψ′(τ))dτ + Chj
h2
k

ε
.

We obtain from the above the following

∣∣∣∣∣hj
j−1∑
k=2

Kj
k

akhk
ε

χk

∣∣∣∣∣ ≤ C(N−1 max |ψ′|)2

∫ 1/2

0

(−ψ′(τ))dτ + C
hj
ε

N/2∑
k=1

h2
k,

≤ C(N−1 max |ψ′|)2 for j = 2, . . . , N/2 and λ0 ≥ 3,

(3.38)

by using the result from proof of Lemma 3.4.3 that
∑N/2

k=1 h
2
k ≤ Cε2.

Now let j > N/2. We consider three distinct cases, namely k > N/2, k = N/2 and

k < N/2.
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Case 1 (k > N/2):

We use (3.35) to get

hjK
j
k

akhk
ε
|χk| ≤ CH

(
1 +

αH

ε

)k−j−1
H

ε

(
H + ε−1e−αxk−1/ε

)
,

≤ C
H3ε

ε+ αH
+ C

(
H

ε+ αH

)2

N−λ0e−(k−1−N/2)αH/ε.

Thus ∣∣∣∣∣∣hj
j∑

k=N/2+1

Kj
k

akhk
ε

χk

∣∣∣∣∣∣ ≤ CN−2 for λ0 ≥ 2. (3.39)

Case 2 (k = N/2):

Analogous to Case 1, we obtain

hjK
j
k

akhk
ε
|χk| ≤ CH

(
1 +

αH

ε

)−1 aN/2hN/2
ε

(
hN/2 + ε−1e−αxN/2−1/ε

)
,

≤ Ch2
N/2 + CN−λ0 ,

≤ CN−2 for λ0 ≥ 2, by lemma 3.4.2.

(3.40)

Case 3 (k < N/2):

We estimate, similarly to the argument that led to (3.38),

hjK
j
k

akhk
ε
|χk| ≤ CH

(
1 +

αH

ε

)(j−N/2)

e−α(xN/2−xk−1)/εakhk
ε

(
hk +

hk
ε2
e−αxk−1/ε

)
,

≤ CN−1

(
1 +

αH

ε

)−(j−N/2−1)(
hk +

hk
ε
e−αxk−1/(λ0ε)

)
if λ0 ≥ 2,

≤ CN−1

(
1 +

αH

ε

)−(i−N/2−1)

N−1 max |ψ′|,

by lemmas 3.4.1 and 3.4.2.

Thus ∣∣∣∣∣∣hi
N/2−1∑
k=2

Ki
k

akhk
ε

χk

∣∣∣∣∣∣ ≤ CN−2 max |ψ′| for λ0 ≥ 2. (3.41)

Using (3.39)-(3.41), we obtain∣∣∣∣∣hj
j−1∑
k=2

Kj
k

akhk
ε

χk

∣∣∣∣∣ ≤ CN−2 max |ψ′| for j = N/2 + 1, . . . , N and λ0 ≥ 2.
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This result used with (3.33),(3.36) and (3.37) gives

|W−
d,j| ≤

 C(N−1 max |ψ′|)2 for j = 1, . . . , N/2 and λ0 ≥ 3,

CN−2 max |ψ′| for j = N/2 + 1, . . . , N and λ0 ≥ 2.

The proposition of the theorem follows from the last inequality, (3.22), (3.23), (3.26) and

(3.28)

3.4.4 Consistency error of the central difference method

Theorem 3.4.4. ([20]) Let ω : 0 = x0 < x1 < · · · < xN = 1 be an arbitrary mesh. Then

the consistency error τ c = Lu − f c of the central difference scheme for (3.1) satisfies

‖τ c‖∗,ω ≤ C

{
max

i=1,...,N

∫ xi

xi−1

(
1 + e−αs/(2ε)

)
ds

}2

.

Proof. Integrating (3.1) over [xj−1/2 − xj+1/2] we get

−ε
[
u′j+1/2 − u′j−1/2

]
− (auj+1/2 − auj−1/2) +

∫ j+1/2

j−1/2

(bu− f)(s)ds.

Thus

j−1∑
i=1

τ ci = ε

(
u1 − u0

h1

− u′1/2
)
− (au)1 − (au)0

2
− (au)1/2

− ε
(
uj − uj−1

hj
− u′j−1

)
−

(au)j − (au)j−1/2

2
− (au)1/2

+

j−1∑
i=1

{
~i(b̂u− f̂)i

∫ i+1/2

i−1/2

(bu− f)(s)ds

}
.

Taking Taylor series expansions for u, u′ and (au)′ about the point xj, we get

ε

∣∣∣∣uj − uj−1

hj
− u′j−1/2

∣∣∣∣ ≤ 3ε

2

∫ xj

xj−1

|u′′′(s)|(s− xj−1)ds

≤
∫ xj

xj−1

|(f − bu+ (au)′)′(s)|(s− xj−1)ds

and ∣∣∣∣(au)j − (au)j−1

2
− (au)1/2

∣∣∣∣ ≤ 3

2

∫ xj

xj−1

|(au)′′(s)|(s− xj−1)ds,

while a Taylor series expansion for (bu− f) about the point xj+1 gives∣∣∣∣∣~j(b̂u− f̂)j

∫ j+1/2

j−1/2

(bu− f)(s)ds

∣∣∣∣∣ ≤ C~j
∫ xj+1

xj−1

|(bu− f)′′(s)|(s− xj−1)ds.
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Thus

‖τ c‖∗,ω ≤ C max
i=1,...,N

∫ xi

xi−1

(
1 + e−αs/ε

)
(s− xi−1)ds,

by (3.2). To bound the right-hand side of this inequality, we use∫ b

a

g(x)(x− a)dx ≤ 1

2

{∫ b

a

g(x)1/2dx

}2

,

which holds true for any positive monotonically decreasing function g on [a, b]. This can

be verified by considering the two integrals as functions of the upper integration limit.

Corollary 3.4.2. ([20]) Let ω be a Shishkin-type mesh. Suppose that (3.8) holds true.

Then the truncation error τ c of the central difference scheme satisfies

‖τ c‖∗,ω ≤ C(N−1 max |ψ′|)2, for λ0 ≥ 2.

3.5 Numerical results

In this section we present some theoretical results for the defect correction methods on

convection–diffusion problems. We use a test example previously considered by Clavero

et al. in [15]. The maximum error solutions and the rates of convergence are obtained

using fomulae in (2.16)–(2.19) from Section 2.4.

Example 3.5.1. ([15])

εu′′ + u′ = −1, x ∈ (0, 1), u(0) = u(1) = 1,

with the exact solution given by

u(x) = x+
exp(−x/ε)− exp(−1/ε)

1− exp(−1/ε)
.

Example 3.5.2. ([28])

−εu′′ + u′ = exp(x), x ∈ (0, 1), u(0) = u(1) = 0,

with the exact solution given by

u(x) =
1

1− ε

[
exp(x)− 1− exp{1− (1/ε}+ {exp(1)− 1} exp{(x− 1)/ε}

1− exp(−1/ε)

]
.
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Table 3.2: Maximum errors obtained for Example 3.5.1 using upwind scheme on Shishkin

mesh.

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

1 1.49E-03 7.49E-004 3.76E-04 1.88E-04 9.43E-05 4.72E-05 2.36E-05

10−1 8.38E-02 5.33E-02 9.22E-02 5.07E-02 2.70E-02 1.39E-02 7.07E-03

10−2 2.54E-01 1.47E-01 8.40E-02 4.68E-02 2.57E-02 1.82E-01 1.07E-01

10−3 8.38E-02 5.33E-02 3.24E-02 1.90E-02 1.09E-02 1.06E-01 6.21E-02

10−4 8.38E-02 5.33E-02 3.24E-02 1.90E-02 1.09E-02 6.08E-03 3.36E-03

10−5 8.38E-02 5.33E-02 3.24E-02 1.90E-02 1.09E-02 6.08E-03 3.36E-03

10−6 8.38E-02 5.33E-02 3.24E-02 1.90E-02 1.09E-02 6.08E-03 3.36E-03

10−7 8.38E-02 5.33E-02 3.24E-02 1.90E-02 1.09E-02 6.08E-03 3.36E-03

10−8 8.38E-02 5.33E-02 3.24E-02 1.90E-02 1.09E-02 6.08E-03 3.36E-03

10−9 8.38E-02 5.33E-02 3.24E-02 1.90E-02 1.09E-02 6.08E-03 3.36E-03

10−10 8.38E-02 5.33E-02 3.24E-02 1.90E-02 1.09E-02 6.08E-03 3.36E-03

Table 3.3: Maximum errors obtained for Example 3.5.1 using defect corrections on

Shishkin mesh.

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

1 6.29E-06 1.57E-06 3.93E-07 9.83E-08 2.46E-08 6.15E-09 1.54E-09

10−1 1.93E-03 4.79E-04 1.20E-04 2.99E-05 7.48E-06 1.87E-06 4.67E-07

10−2 9.65E-03 3.35E-03 1.21E-02 3.02E-03 7.49E-04 1.87E-04 4.68E-05

10−3 9.65E-03 3.35E-03 1.11E-03 3.59E-04 1.12E-04 1.96E-02 4.69E-03

10−4 9.65E-03 3.35E-03 1.11E-03 3.59E-04 1.12E-04 3.45E-05 1.04E-05

10−5 9.65E-03 3.35E-03 1.11E-03 3.59E-04 1.12E-04 3.45E-05 1.04E-05

10−6 9.65E-03 3.35E-03 1.11E-03 3.59E-04 1.12E-04 3.45E-05 1.04E-05

10−7 9.65E-03 3.35E-03 1.11E-03 3.59E-04 1.12E-04 3.45E-05 1.04E-05

10−8 9.65E-03 3.35E-03 1.11E-03 3.59E-04 1.12E-04 3.45E-05 1.04E-05

10−9 9.65E-03 3.35E-03 1.11E-03 3.59E-04 1.12E-04 3.45E-05 1.04E-05

10−10 9.65E-03 3.35E-03 1.11E-03 3.59E-04 1.12E-04 3.45E-05 1.04E-05

Defining the error of the defect correction method as ηdc,εN := u− udc, we estimate the

ε−uniform accuracy by using formulae given in (2.16) to (2.19) from Section 2.4.
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ε r1 r2 r3 r4 r5

10−1 0.93 0.96 0.98 0.99 1.00

10−2 0.65 -0.79 0.86 0.91 0.96

10−3 0.65 0.71 0.77 0.81 -3.28

10−4 0.65 0.71 0.77 0.81 0.84

10−5 0.65 0.71 0.77 0.81 0.84

10−6 0.65 0.71 0.77 0.81 0.84

10−7 0.65 0.71 0.77 0.81 0.84

10−8 0.65 0.71 0.77 0.81 0.84

10−9 0.65 0.71 0.77 0.81 0.84

10−10 0.65 0.71 0.77 0.81 0.84

Table 3.4: Rates of convergence obtained

for Example 3.5.1 using upwind scheme.

ε r1 r2 r3 r4 r5

10−1 2.01 2.00 2.00 2.00 2.00

10−2 1.53 -1.86 2.01 2.01 2.00

10−3 0.95 0.98 0.99 1.00 -1.98

10−4 1.53 1.59 1.63 1.67 -7.45

10−5 1.53 1.59 1.63 1.67 1.71

10−6 1.53 1.59 1.63 1.67 1.71

10−7 1.53 1.59 1.63 1.67 1.71

10−8 1.53 1.59 1.63 1.67 1.71

10−9 1.53 1.59 1.63 1.67 1.71

10−10 1.53 1.59 1.63 1.67 1.71

Table 3.5: Rates of convergence obtained for

Example 3.5.1 using defect corrections.

ε r1 r2 r3 r4 r5

10−1 0.93 0.97 0.98 0.99 1.00

10−2 0.78 -0.32 0.87 0.91 0.96

10−3 0.79 0.81 0.84 0.87 -0.28

10−4 0.79 0.81 0.84 0.87 0.88

10−5 0.79 0.81 0.84 0.87 0.88

10−6 0.79 0.81 0.84 0.87 0.88

10−7 0.79 0.81 0.84 0.87 0.88

10−8 0.79 0.81 0.84 0.87 0.88

10−9 0.79 0.81 0.84 0.87 0.88

10−10 0.79 0.81 0.84 0.87 0.88

Table 3.6: Rates of convergence obtained

for Example 3.5.2 using upwind scheme on

Shishkin mesh.

ε r1 r2 r3 r4 r5

10−1 0.97 0.99 0.99 1.00 1.00

10−2 0.97 0.98 0.99 1.00 1.00

10−3 0.97 0.98 0.99 1.00 1.00

10−4 0.97 0.98 0.99 1.00 1.00

10−5 0.97 0.98 0.99 1.00 1.00

10−6 0.97 0.98 0.99 1.00 1.00

10−7 0.97 0.98 0.99 1.00 1.00

10−8 0.97 0.98 0.99 1.00 1.00

10−9 0.97 0.98 0.99 1.00 1.00

10−10 0.97 0.98 0.99 1.00 1.00

Table 3.7: Rates of convergence obtained

for Example 3.5.2 using defect corrections on

Shishkin mesh .
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Table 3.8: Maximum errors obtained for Example 3.5.2 using upwind scheme on Shishkin

mesh.

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

1 8.88E-02 4.67E-02 2.39E-02 1.21E-02 6.09E-03 3.05E-03 1.53E-03

10−1 2.23E-01 1.30E-01 1.63E-01 8.94E-02 4.77E-02 2.46E-02 1.25E-02

10−2 2.54E-01 1.47E-01 8.40E-02 4.68E-02 2.57E-02 1.82E-01 1.07E-01

10−6 2.58E-01 1.49E-01 8.53E-02 4.75E-02 2.61E-02 1.42E-02 7.62E-03

10−7 2.58E-01 1.49E-01 8.53E-02 4.75E-02 2.61E-02 1.42E-02 7.62E-03

10−8 2.58E-01 1.49E-01 8.53E-02 4.75E-02 2.61E-02 1.42E-02 7.62E-03

10−9 2.58E-01 1.49E-01 8.53E-02 4.75E-02 2.61E-02 1.42E-02 7.62E-03

10−10 2.58E-01 1.49E-01 8.53E-02 4.75E-02 2.61E-02 1.42E-02 7.62E-03

Table 3.9: Maximum errors for Example 3.5.2 using defect corrections on Shishkin mesh.

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

1 2.47E-02 1.31E-02 6.71E-03 3.40E-03 1.71E-03 8.59E-04 4.30E-04

10−1 6.07E-02 2.96E-02 1.49E-02 4.74E-03 2.40E-03 1.22E-03 6.14E-04

10−2 7.87E-02 4.02E-02 2.03E-02 1.02E-02 5.09E-03 3.30E-02 7.60E-03

10−6 8.22E-02 4.20E-02 2.12E-02 1.07E-02 5.35E-03 2.68E-03 1.34E-03

10−7 8.22E-02 4.20E-02 2.12E-02 1.07E-02 5.35E-03 2.68E-03 1.34E-03

10−8 8.22E-02 4.20E-02 2.12E-02 1.07E-02 5.35E-03 2.68E-03 1.34E-03

10−9 8.22E-02 4.20E-02 2.12E-02 1.07E-02 5.35E-03 2.68E-03 1.34E-03

10−10 8.22E-02 4.20E-02 2.12E-02 1.07E-02 5.35E-03 2.68E-03 1.34E-03

For the test example, as was done by Frohner et al. in [20], we take λ0 = 3 and

β = 1 in the definition of the transition point. Table 3.2 confirm that the maximum

errors obtained by the upwind scheme are ε−uniform for Example 3.5.1. The accuracy of

the results is seen to be improved by the defect–correction method in table 3.3 as well as

maintaining the ε−uniform characteristic of the upwind scheme.
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Tables 3.4 and 3.6 show that the the Shishkin-type mesh used in the upwind scheme

has an almost order 1 rate of convergence for convection–diffusion problems. This is a

confirmation of the theoretical result in Corollary 3.4.1. In tables 3.5 and 3.7 we present

the rates of convergence after implementing the defect-correction. Improved rates of

almost order 2 are obtained for Example 3.5.1.

In the next chapter, we construct a hybrid method which seeks to incorporate the

advantages of fitted mesh finite difference methods and fitted operator finite difference

methods.
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Chapter 4

A Hybrid Finite Difference Method

In the previous chapter we discussed some higher order methods that improve accuracy

of numerical solutions with particular focus on defect corrections. In this chapter, we

consider two methods, one that is layer resolving (FMFDM) and the other that is relatively

more accurate (FOFDM) [41]. We combine these two methods in Section 4.4 to construct

a new hybrid method that has the good properties of both methods and gives better

numerical approximations.

4.1 Introduction

We study two-point boundary value problems related with boundary layers such as, for

instance, the flows governed by the Navier–Stokes equations [50]. The convection–diffusion

equation

Lεy ≡ −εy′′(x) + a(x)y′(x) = f(x), x ∈ Ω = (0, 1), (4.1)

with boundary conditions

y(0) = y0, y(1) = y1,

will be used as a model problem. We assume that the singular perturbation parameter

can take arbitrary small positive values, 0 < ε ≤ 1, the functions a, f ∈ C5(0, 1) and also

that a ≥ α > 0,∀x ∈ [0, 1]. It is well accepted that the solution of (4.1) has a boundary
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layer near x = 1 and its derivatives satisfy∣∣y(k)(x)
∣∣ ≤ C

(
1 + ε−k exp

(
−αx
ε

))
, 0 ≤ k ≤ 4. (4.2)

It is convenient to use an appropriate decomposition of the exact solution y when proving

uniform convergence [15]. We choose to use y = v + w, where v and w are the regular

and singular components of the exact solution respectivley. Clavero et al. [15] also note

that v and w are solutions of the following boundary value problems

Lεv = f, v(0) = v∗(0), v(1) = y(1);

Lεw = 0, w(0) = y(0)− v∗(0), w(1) = 0,

where v∗(0) is taken so that∣∣v(j)(x)
∣∣ ≤ C, 0 ≤ j ≤ 3, ε

∣∣v(4)(x)
∣∣ ≤ C, (4.3)

|w(x)| ≤ C exp
(
−αx
ε

)
,

∣∣w(j)(x)
∣∣ ≤ Cε(−j), 1 ≤ j ≤ 4. (4.4)

4.2 Fitted Mesh Finite Difference Method for convection–

diffusion problems

To approximate the solution of (4.1), we consider a finite difference scheme defined on a

Shishkin mesh. Let N be the discretization parameter. We use the transition parameter

given by Kadalbajoo and Patidar in [27]

λ = min

{
1

2
, 8ε lnN

}
, (4.5)

and divide uniformly each one of the subdomains [0, 1 − λ], [1 − λ, 1] into N/2 intervals.

Then the mesh spacing is given by

xj =

 2(1− λ)N−1, j = 1, . . . , N/2

2λN−1, j = N/2 + 1, . . . , N − 1.
(4.6)

The fitted mesh scheme is as follows

LNupūj ≡ −εδ2ūj + ajD
−ūj = fj, (4.7)
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where

δ2ūj =
1

~j

(
ūj+1 − ūj
hj+1

− ūj − ūj−1

hj

)
, D−ūj =

(
ūj − ūj−1

hj

)
,

with hj = xj − xj−1, and ~j = (hj+1 + hj)/2.

4.2.1 Some useful attributes of FMFDMs

We present here some attributes that are facilitatory in the analysis of the fitted mesh

finite difference methods.

Discrete Maximum Principle. Assume that the mesh function Ψj satisfies Ψ0 ≥ 0 and

ΨN ≥ 0. Then LNupΨj ≥ 0,∀ 1 ≤ j ≤ N − 1, implies that Ψj ≥ 0,∀ 0 ≤ j ≤ N,

Proof. Let k be such that Ψk = min Ψj and suppose that Ψk < 0. Since Ψ0 ≥ 0 and

ΨN ≥ 0, it follows that k 6= 0 and k 6= N . Evidently, Ψk+1 −Ψk ≥ 0 and Ψk −Ψk−1 ≤ 0.

Therefore,

LNupΨk = − ε

~k

(
Ψk+1 −Ψk

hk+1

− Ψk −Ψk−1

hk

)
+ ak

Ψk −Ψk−1

hk
,

≤ 0.

(4.8)

When Ψk−Ψk−1 < 0 we have LNupΨk < 0. This is clearly not true and therefore Ψk = Ψk−1.

We repeat this process with k − 2 instead of k − 1 and we have Ψk −Ψk−2 ≤ 0,

LNupΨk = − ε

~k

(
Ψk+1 −Ψk

hk+1

− Ψk −Ψk−2

hk

)
+ ak

Ψk −Ψk−2

hk
,

≤ 0,

(4.9)

which is also not true, therefore Ψk = Ψk−2. We repeat with k − 3, k − 4 and so on, with

the following result

Ψ0 = Ψ1 = · · · = Ψk−1 = Ψk < 0,

which is not true as well. It then follows Ψk > 0 and

Ψj ≥ 0, for all j, 0 ≤ j ≤ N.

From the discrete maximum principle we obtain an ε−uniform stabilty property for

the operator LNup [40].
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Lemma 4.2.1. If Φj is any mesh function such that Φ0 = ΦN = 0, then

|Φj| ≤
1

α
max

1≤i≤N−1

∣∣LNupΦi

∣∣ , ∀ 0 ≤ j ≤ N.

Proof. As in [40], we consider two mesh functions Ψ+
j ,Ψ

−
j defined by

Ψ±j =

(
1

α
max

1≤i≤N−1

∣∣LNupΦi

∣∣)xj ± Φj. (4.10)

It follows that

Ψ±0 =

(
1

α
max

1≤i≤N−1

∣∣LNupΦi

∣∣)x0 ± Φ0,

= ±Φ0,

= 0,

(4.11)

and

Ψ±N =

(
1

α
max

1≤i≤N−1

∣∣LNupΦi

∣∣)xN ± ΦN ,

=

(
1

α
max

1≤i≤N−1

∣∣LNupΦi

∣∣)± ΦN ,

=

(
1

α
max

1≤i≤N−1

∣∣LNupΦi

∣∣) ,
≥ 0,

(4.12)

and, for all 1 ≤ j ≤ N − 1,

LNupΨ
±
i =

(
1

α
max

1≤i≤N−1

∣∣LNupΦi

∣∣) aj ± LNupΦj,

≥ 0.

(4.13)

From the discrete maximum principle, if Ψ0 ≥ 0 , ΨN ≥ 0 and LNupΨj ≥ 0 for all 0 < j < N

then Ψ±j ≥ 0,∀ 0 ≤ j ≤ N.

The reduced problem obtained from (4.1) takes the form

a(x)υ′0(x) = f(x)

and has the solution

υ0(x) = u0 +

∫ x

0

f(t)

a(t)
dt,
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and it is evident that, for 0 ≤ k ≤ 3,

|υ(k)
0 (x)| ≤ C, ∀x ∈ Ω̄,

from the assumptions on a and f.

The solution y of the problem in (4.1) takes the decomposition

y = υ0 + εy∗1 + w0,

with υ0 as defined above and y∗1 satisfying

Lεy
∗
1 = υ′′0 , y∗1(0) = −ε−1w0(0), y∗1(1) = 0

and w0 is the solution of the homogeneous problem

Lεw0 = 0, w0(0) = w0(1)e−α/ε, w0(1) = u1 − υ0(1).

Evidently

|w0(0)| ≤ C, |w0(1)| ≤ C, |y1(0)| ≤ C and |υ′′0(0)| ≤ C.

Therefore, as in [40], we use the argument that y∗1 is the solution of a problem similar to

(4.1). This implies that, for 0 ≤ k ≤ 3,

|y∗(k)
1 (x)| ≤ C(1 + ε−ke−α(1−x)/ε).

We introduce the functions

Ψ±(x) = |w0(1)|e−α(1−x)/ε ± w0(x).

Application of the maximum principle gives Ψ±(x) ≥ 0, therefore

|w0(x)| ≤ Ce−α(1−x)/ε, ∀x ∈ Ω̄.

Rewritting w0 gives

w0 = w0(0)ϕ∗ + w0(1)(1− ϕ∗),

with ϕ defined as

ϕ(x)∗ =

∫ 1

x
e−A(t)/εdt∫ 1

0
e−A(t)/εdt

.
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It follows that

w′0 = (w0(0)− w0(1))ϕ′∗

and hence

|w′0(x)| ≤ C|ϕ′∗(x)| ≤ Cε−1e−α(1−x)/ε.

From the estimates of w0 and w′0 we obtain

|w(2)
0 (x)| ≤ C|ϕ(2)

∗ (x)| ≤ Cε−2e−α(1−x)/ε

and

|w(3)
0 (x)| ≤ C|ϕ(3)

∗ (x)| ≤ Cε−3e−α(1−x)/ε.

In general,

|w(k)
0 (x)| ≤ C|ϕ(k)

∗ (x)| ≤ Cε−ke−α(1−x)/ε.

As given earlier,

y = υ0 + εy1 + w0,

so the general derivatives ∀x ∈ Ω̄ and 0 ≤ k ≤ 3 are given by

y(k) = υ
(k)
0 + εy

(k)
1 + w

(k)
0 ,

this gives

|υ(k)
0 + εy

(k)
1 | ≤ Cε−(k−1)e−α(1−x)/ε

and

|w(k)
0 | ≤ Cε−ke−α(1−x)/ε.

We use the idea that y1 is decomposed analogously to uε which leads to the following

result

uε = υε + wε,

with the following results for 0 ≤ k ≤ 3 and for all x ∈ Ω̄,

|υ(k)
ε (x)| ≤ C(1 + ε−(k−2)e−α(1−x)/ε)

and

|w(k)
ε (x)| ≤ Cε−ke−α(1−x)/ε.
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We remark that υε and wε, satisfy

Lευε = f, Lεwε = 0,

with boundary conditions

υε(0) = u0 − wε(0), wε(0) = wε(1)e−α/ε,

υε(1) = u1 − wε(1),

where wε(1) is chosen so that the first and second derivatives of υε are bounded uniformly

in ε.

Lemma 4.2.2. Let xj ∈ ΩN , for a given mesh ΩN = {xj}N0 . Then, for any ϑ ∈ C2(Ω̄)∣∣∣∣(D− − d

dx

)
ϑ(xj)

∣∣∣∣ ≤ 1

2
(xj − xj−1)|ϑ|2,

and, for any ϑ ∈ C3(Ω̄)∣∣∣∣(δ2 − d2

dx2

)
ϑ(xj)

∣∣∣∣ ≤ 1

3
(xj+1 − xj−1)|ϑ|3.

Proof. ∣∣∣∣(D− − d

dx

)
ϑ(xj)

∣∣∣∣ =

∣∣∣∣ϑ(xj)− ϑ(xj−1)

xj − xj−1

− ϑ′(xj)
∣∣∣∣ ,

=
1

xj − xj−1

∣∣∣∣ϑ(xj)− ϑ(xj−1)− (xj − xj−1)ϑ′(xj)

∣∣∣∣,
=

1

xj − xj−1

∣∣∣∣ϑ(xj)− ϑ(xj−1)− xjϑ′(xj)− . . .

xj−1ϑ
′(xj) + xj−1ϑ

′(xj−1)− xj−1ϑ
′(xj−1)

∣∣∣∣,
=

1

xj − xj−1

∣∣∣∣ ∫ xj

xj−1

xj−1ϑ
′′(s)ds−

∫ xj

xj−1

sϑ′′(s)ds

∣∣∣∣,
=

1

xj − xj−1

∣∣∣∣ ∫ xj

xj−1

(xj−1 − s)ϑ′′(s)ds
∣∣∣∣,

≤ 1

xj − xj−1

∫ xj

xj−1

|ϑ|2(s− xj−1)ds,

≤ 1

xj − xj−1

(
(xj − xj−1)2

2
|ϑ|2
)
,

≤ 1

2
(xj − xj−1)|ϑ|2.
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We now prove the second part of the Lemma 4.2.2∣∣∣∣(δ2 − d2

dx2

)
ϑ(xj)

∣∣∣∣ =

∣∣∣∣ 1

~j

(
ϑ(xj+1)− ϑ(xj)

hj+1

− ϑj − ϑj−1

hj

)
− ϑ′′(xj)

∣∣∣∣ ,
=

1

~j

∣∣∣∣ (ϑj+1 − ϑj
hj+1

− ϑj − ϑj−1

hj

)
− ~jϑ′′(xj)

∣∣∣∣,
=

1

~j

∣∣∣∣ (ϑj+1 − ϑj
xj+1 − xj

− ϑj − ϑj−1

xj − xj−1

)
− xj+1 − xj−1

2
ϑ′′(xj)

∣∣∣∣,
=

1

2~j

∣∣∣∣− (xj+1 − xj)ϑ′′(xj)− 2ϑ′(xj) + 2

(
ϑj+1 − ϑj
xj+1 − xj

)
−
{

(xj − xj−1)ϑ′′(xj)− 2ϑ′(xj) + 2

(
ϑj − ϑj−1

xj − xj+1

)}∣∣∣∣,
=

1

2~j

∣∣∣∣{−(xj+1 − xj)2ϑ′′(xj)− 2(xj+1 − xj)ϑ′(xj) + 2 (ϑj+1 − ϑj)
xj+1 − xj

}
−
{

(xj − xj−1)2ϑ′′(xj)− 2(xj − xj−1)ϑ′(xj) + 2 (ϑj − ϑj−1)

xj − xj−1

}∣∣∣∣,
=

1

2~j

∣∣∣∣{−(xj+1 − s)2ϑ′′(s)− 2(xj+1 − s)ϑ′(s) + 2ϑ(s)

xj+1 − xj

}xj+1

xj

−
{

(s− xj−1)2ϑ′′(s)− 2(s− xj−1)ϑ′(s) + 2ϑ(s)

xj − xj−1

}xj
xj−1

∣∣∣∣,
=

1

2~j

∣∣∣∣ 1

xj+1 − xj

∫ xj+1

xj

(xj+1 − s)2ϑ′′′(s)ds

− 1

xj − xj−1

∫ xj

xj−1

(s− xj−1)2ϑ′′′(s)ds

∣∣∣∣,
≤ |ϑ|3

2~j

[
1

xj+1 − xj

∫ xj+1

xj

(xj+1 − s)2ds

− 1

xj − xj−1

∫ xj

xj−1

(s− xj−1)2ds

]
,

≤ |ϑ|3
xj+1 − xj−1

[
1

3
(xj+1 − xj)2 − 1

3
(xj − xj−1)2

]
,

≤ |ϑ|3
xj+1 − xj−1

[
1

3
(xj+1 − xj−1)2

]
,

≤ 1

3
(xj+1 − xj−1)|ϑ|3.

Lemma 4.2.3. Let {Yj}N0 be the solution of (4.1). Given Y0 = e−a/εYN . Then, for all

j, 0 ≤ j ≤ N/2,

0 < Yj ≤ CN−1YN .
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Lemma 4.2.4. ([40]) Let {Yj}N0 be the solution of (4.1) with Y0 = e−a/εYN , and let Zj be

the solution of the problem −εδ2Zj + bjD
−Zj = 0; 1 ≤ j ≤ N − 1

Z0 = e−b0/εZN , ZN = YN ,

where it is assumed that for all j, 0 ≤ j ≤ N, bj ≥ a. Then, for all j, 0 ≤ j ≤ N,

Zj = Yj.

4.2.2 Error analysis of the Fitted Mesh Finite Difference Method

Theorem 4.2.1. The error associated with the FMFDM satisfies [15]:

max
j
|y(xj)− ūj| ≤ CN−1(lnN)2, (4.14)

and therefore it is an almost first order uniformly convergent method.

Proof. Analogous to the decomposition of the solution y = v + w, the discrete solution

can also be decomposed as

ū = V +W,

where V gives the solution of the inhomogeneous problem ([40])

LNupV = f, V (0) = v(0), V (1) = v(1),

and W is the solution of the homogeneous problem

LNupW = 0, W (0) = w(0), W (1) = w(1).

This enables the error to be written in the following format

y − ū = (v − V ) + (w −W ), (4.15)

which in turn allows for separate estimation of the regular and singular components.
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Estimation of the regular component:

LNup(v − V ) = LNupv − LNupV,

= LNupv − f,

= LNupv − Lεv,

= (LNup − Lε)v,

= −ε
(
δ2 − d2

dx2

)
v + a

(
D− − d

dx

)
v.

Applying result from Lemma 4.2.2 we obtain,

|LNup(v − V )(xj)| ≤ −ε
(

1

3
(xj+1 − xj−1)|v|3

)
+ a

(
1

2
(xj − xj−1)|v|2

)
,

≤ C [ε(xj+1 − xj−1)|v|3 + (xj − xj−1)|v|2] ,

≤ C(xj+1 − xj−1) [ε|v|3 + |v|2] ,

≤ C(2N−1) [ε|v|3 + |v|2] ,

≤ CN−1 [ε|v|3 + |v|2] .

Using estimates of |v(j)(x)| given earlier we get∣∣LNup(v − V )(xj)
∣∣ ≤ CN−1.

Using Lemma 4.2.1 to the mesh function v − V yields

|(v − V )(xj)| ≤ CN−1. (4.16)

Estimation of the singular component:

For the singular component, we use the argument from Miller et al.[40] that the estimate

depends on whether λ = 1/2 or λ = 8ε lnN.

When λ = 1/2, we obtain a uniform mesh with 1/2 ≤ 8ε lnN. Using ideas applied

earlier in the estimation of v − V , we obtain

|LNup(w −W )(xj)| ≤ −ε
(

1

3
(xj+1 − xj−1)|w|3

)
+ a

(
1

2
(xj − xj−1)|w|2

)
,

≤ C [ε(xj+1 − xj−1)|w|3 + (xj − xj−1)|w|2] ,

≤ C(xj+1 − xj−1) [ε|w|3 + |w|2] ,

≤ C(2N−1) [ε|w|3 + |w|2] ,

≤ CN−1 [ε|w|3 + |w|2] .
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Employing estimates of |w(j)(x)| given earlier we get∣∣LNup(w −W )(xj)
∣∣ ≤ Cε−2N−1,

≤ C(16 lnN)2N−1, since ε−2 ≤ 16(lnN)2,

≤ CN−1(lnN)2.

Using Lemma 4.2.1 to the mesh function w −W gives the following estimate

|(w −W )(xj)| ≤ CN−1(lnN)2. (4.17)

When λ 6= 1/2, we have a uniform mesh in the subinterval [0, 1 − λ] with meshlength

2(1− λ)/N as well as another uniform mesh in the subinterval [1− λ, 1] with meshlength

2λ/N. Different arguments are required to bound |w −W | in the two subintervals.

Since w andW are both small and also from the triangle inequality |w−W | ≤ |w|+|W |,

we choose to bound w and W separately in the subinterval without the boundary layer,

[0, 1− λ].

As in Miller et al.[40], we use the fact that

w′0(x)

w0(1)
= −(1− e−α/a)ϑ(x) > 0,

and
w0(x)

w0(1)
= e−α/ε.

Thus w0(x)/w0(1) is positive and increasing in the interval (0,1), and as a result, for all

x in [0, 1− λ],

0 ≤ w0(x)

w0(1)
≤ w0(1− λ)

w0(1)
,

which leads to

|w0(x)| ≤ |w0(1− λ)|.

The same applies for w1(x), and since

w = w0 + εw1,

it follows that, for all x ∈ [0, 1− λ],

|w(x)| ≤ |w(1− λ)|.
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We employ the relation that λ = 8ε lnN and the estimate for |w| leading to the following

result

|w(x)| ≤ Ce−αλ/ε

≤ CN−1.

For the bound on W , the auxiliary mesh function W ∗ is introduced and it is defined

analogous to W , with the coeffcient a replaced by its lower bound α. Using result from

Lemma 4.2.4,

|W (xj)| ≤ |W ∗(xj)|, for all 0 ≤ j ≤ N.

Application of Lemma 4.2.3 leads to

|W (xj)| ≤ CN−1, for all 0 ≤ j ≤ N/2.

Combining the two estimates w and W , we obtain the following estimate for the interval

[0, 1− λ],

|w(xj)−W (xj)| ≤ CN−1, for all 0 ≤ j ≤ N/2.

For the subinterval with the boundary layer, [1 − λ, 1], it follows from ideas used earlier

that for all N/2 + 1 ≤ j ≤ N − 1,∣∣LNup(w −W )(xj)
∣∣ ≤ Cε−2|xj+1 − xj−1|,

≤ Cε−2(2λ/N),

with

|w(1)−W (1)| = 0,

and using the outcome from the interval without the boundary layer, we have∣∣w(xN/2)−W (xN/2)
∣∣ ≤ ∣∣w(xN/2)

∣∣− ∣∣W (xN/2)
∣∣ ,

≤ CN−1,

We introduce the barrier function

Φj = (xj − (1− λ))C1ε
−2λN−1 + C2N

−1,

it follows that for choice of C1 and C2, the mesh functions

Ψ±j = Φj ± (w −W )(xj),
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the following conditions hold at the boundaries of the interval

Ψ±N/2 ≥ 0, Ψ±N = 0,

and

LNupΨ
±
N/2 ≥ 0, N/2 + 1 ≤ j ≤ N − 1.

It follows from the discrete maximum principle that

Ψ±j ≥ 0, N/2 ≤ j ≤ N

and also that

|(w −W )(xj)| ≤ Φj,

≤ C1ε
−2τ−2N−1 + C2N

−1,

≤ CN−1(lnN)2, since τ = 8ε lnN.

From the two subintervals, we obtain the following estimate for the singular component

|(w −W )(xj)| ≤ CN−1(lnN)2. (4.18)

Taking absolute values of (4.15) and substituting (4.16) and (4.18), we get

|(y − ū)(xj)| ≤ |(v − V )(xj)|+ |(w −W )(xj)|,

≤ CN−1 + CN−1(lnN)2,

≤ CN−1(lnN)2.

4.3 Fitted Operator Finite Difference Methods for

convection–diffusion problems

In literature there are several Fitted Operator Finite Difference Methods (FOFDMs)

developed to solve SPPs based on the rules provided by Mickens. We consider the following

denominator function constructed by Lubuma and Patidar in [39] using Mickens rules

φ2 =
hε

aj

(
exp

(
ajh

ε

)
− 1

)
, (4.19)
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with

δ2
φu
∗
j =

u∗j+1 − 2u∗j − u∗j−1

φ2
.

the corresponding difference equations given by

Lφu
∗
j ≡ −ε

u∗j+1 − 2u∗j + u∗j−1

φ2
+ aj

u∗j − u∗j−1

h
= fj. (4.20)

The operator in (4.20) satisfies the following condition

Theorem 4.3.1. The error associated with the NSFDM satisfies

max
j
‖y(xj)− u∗j‖ ≤ CN−1 (4.21)

and therefore it is a first order uniformly convergent method.

Proof. From (4.19), we replace aj with its lower bound α and we get

1

φ2
=

1
hε
α

(
exp

(
αh
ε

)
− 1
) ,

=
1

h2
− α

2hε
+

α2

12ε2
+O(h2).

The error for the second derivative estimate is as follows(
δ2
φ −

d2

dx2

)
ϑ(xj) =

(
ϑ(xj+1)− 2ϑ(xj)− ϑ(xj−1)

φ2

)
− ϑ′′(xj),

=
1

φ2

(
ϑ(xj+1)− 2ϑ(xj)− ϑ(xj−1)

)
− ϑ′′(xj),

=
1

φ2

(
ϑ(xj) + hϑ′(xj) +

h2ϑ′′(xj)

2!
+
h3ϑ′′′(xj)

3!
+
h4ϑ(4)(ξ1,j)

4!

− 2ϑ(xj) + ϑ(xj)− hϑ′(xj) +
h2ϑ′′(xj)

2!

− h3ϑ′′′(xj)

3!
+
h4ϑ(4)(ξ2,j)

4!

)
− ϑ′′(xj),

where ξ1,j ∈ (xj, xj + h) and ξ2,j ∈ (xj − h, xj). Since

h4ϑ(4)(ξ1,j)

4!
+
h4ϑ(4)(ξ2,j)

4!
= O(h4),
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we get(
δ2
φ −

d2

dx2

)
ϑ(xj) =

1

φ2

(
h2ϑ′′(xj) +O(h4)

)
− ϑ′′(xj),

=

(
1

h2
− α

2hε
+

α2

12ε2
+O(h2)

)(
h2ϑ′′(xj) +O(h4)

)
− ϑ′′(xj),

=

(
1− αh

2ε
+
α2h2

12ε2
+O(1)

)(
h2ϑ′′(xj) +O(h2)

)
− ϑ′′(xj),

= (1 +O(h))ϑ′′(xj)− ϑ′′(xj),

= O(h).

It then follows that ∣∣∣∣(δ2
φ −

d2

dx2

)
ϑ(xj)

∣∣∣∣ ≤ Cε−1N−1. (4.22)

Using result from the first part of Lemma 4.2.2 and (4.22), we have

|Lφ(y − u∗)(xj)| ≤
{∣∣−ε (Cε−1N−1

)∣∣+ (xj − xj−1)|y|2
}
,

≤ C
{
N−1 +N−1|y|2

}
,

≤ CN−1.

(4.23)

Finally, using Lemma 4.2.1, we get

|(y − u∗)(xj)| ≤ CN−1.

4.4 A Hybrid Finite Difference Method

In this section, we introduce a hybrid method that is constructed using concepts taken

from both fitted operator finite difference methods and fitted mesh finite difference meth-

ods. For the mesh, we use a simple Shishkin mesh as given in Section 4.2. It is well

documented that fitted operator finite difference methods have order of convergence that

is superior to that of fitted mesh finite difference methods, therefore our hybrid method

also uses the denominator function constructed by Lubuma and Patidar in [39]. However,

FOFDMs are traditionally applied on uniform meshes which necessitates the following

modifications
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ψ2
1 =

ε

aj

(
exp

(
ajhj
ε

)
− 1

)
, ψ2

2 =
ε

aj

(
exp

(
ajhj+1

ε

)
− 1

)
, (4.24)

with the second derivative approximation

δ2
mu
∗∗
j =

1

~j

(
u∗∗j+1 − u∗∗j

ψ2
2

−
u∗∗j − u∗∗j−1

ψ2
1

)
.

The numerical scheme is then given by

Lψu
∗∗
j = −ε

{
1

~j

(
u∗∗j+1 − u∗∗j

ψ2
2

−
u∗∗j + u∗∗j−1

ψ2
1

)}
+ aj

u∗∗j − u∗∗j−1

hj
= fj. (4.25)

As with the FMFDM, we use the transition parameter from (4.5) and the resultant grid

(4.6) as the piecewise–uniform mesh.

Theorem 4.4.1. The error associated with the HFDM satisfies

max
j
‖y(xj)− u∗∗j ‖ ≤ CN−1. (4.26)

Proof. As with the proof of Theorem 4.2.1, we look for estimates for the singular and

regular components of the solution, where

u∗∗ = V ∗∗ +W ∗∗.

Estimation of the regular component:

Lψ(v − V ∗∗) = Lψv − LψV ∗∗,

= Lψv − f,

= Lψv − Lεv,

= (Lψ − Lε)v,

= −ε
(
δ2
ψ −

d2

dx2

)
v + a

(
D− − d

dx

)
v.

As before, we apply Lemma 4.2.2 to obtain

Lψ(v − V ∗∗) ≤ CN−1.

Using estimates of |v(j)(x)| given earlier we get∣∣LNψ (v − V ∗∗)(xj)
∣∣ ≤ CN−1.
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Using Lemma 4.2.1 to the mesh function v − V ∗∗ yields

|(v − V ∗∗)(xj)| ≤ CN−1. (4.27)

Estimation of the singular component:

When λ = 1/2, the mesh is uniform and it follows that

δ2
ψwj =

1

~j

(
wj+1 − wj

ψ2
2

−
wj − wj−1

ψ2
1

)
,

=
1

h

 wj+1 − wj
ε
aj

(
exp

(
ajh

ε

)
− 1
) − wj − wj−1

ε
aj

(
exp

(
ajh

ε

)
− 1
)
 ,

=
wj+1 − wj

hε
aj

(
exp

(
ajh

ε

)
− 1
) − wj − wj−1

hε
aj

(
exp

(
ajh

ε

)
− 1
) ,

=
wj+1 − wj

φ2
−
wj − wj−1

φ2
,

=
wj+1 − 2wj − wj−1

φ2
,

= δ2
φwj.

The result above and (4.23) leads to

|Lψ(w −W ∗∗)(xj)| = |Lφ(w −W ∗∗)(xj)|,

≤ CN−1.

It then follows from Theorem 4.3.1 that

|(w −W ∗∗)(xj)| ≤ CN−1.

Given the fact that a Shishkin mesh is piecewise uniform, that is, the meshlength is

uniform in the subinterval, [0, 1− λ], it is clear that

δ2
ψwj = δ2

φwj, 0 ≤ j ≤ N/2.

As above, it follows that

|Lψ(w −W ∗∗)(xj)| = |Lφ(w −W ∗∗)(xj)|

≤ CN−1.
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Consequently, from Theorem 4.3.1 we get

|(w −W ∗∗)(xj)| ≤ CN−1.

Using the same arguments for the interval [1− λ, 1], we obtain analogously the result

that

|(w −W ∗∗)(xj)| ≤ CN−1.

Combining the different estimates for the singular component gives:

|(w −W ∗∗)(xj)| ≤ CN−1.

Analogous to the proof of Theorem 4.2.1, we have

|(y − u∗∗)(xj)| ≤ |(v − V ∗∗)(xj)|+ |(w −W ∗∗)(xj)|,

≤ CN−1 + CN−1,

≤ CN−1.

4.5 Numerical results

In this section, we present the numerical results of several problems involving the one-

dimensional convection–diffusion equation. We shall discuss problems with constant co-

efficients as well as problems with variable coefficients.

The maximum error solutions and the rates of convergence are obtained using fomulae

in (2.16)–(2.19) from Section 2.4.

Example 4.5.1. ([27])

−εy′′(x) + y′(x) = exp(x), y(0) = y(1) = 0. (4.28)

The exact solution of (4.28) is given by

y(x) =
1

1− ε

[
exp(x)−

1− exp
(
1− 1

ε

)
+ {exp(1)− 1} exp

(
x−1
ε

)
1− exp

(
−1
ε

) ]
. (4.29)
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Table 4.1: Maximum errors obtained for Example 4.5.1 using the FMFDM.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−1 4.39E-02 2.27E-02 1.15E-02 5.82E-03 2.92E-03

10−3 2.23E-01 1.48E-01 9.28E-02 5.53E-02 3.19E-02

10−5 2.21E-01 1.47E-01 9.23E-02 5.50E-02 3.17E-02

10−7 2.21E-01 1.47E-01 9.23E-02 5.50E-02 3.17E-02

10−9 2.21E-01 1.47E-01 9.23E-02 5.50E-02 3.17E-02

10−10 2.21E-01 1.47E-01 9.23E-02 5.50E-02 3.17E-02

Table 4.2: Maximum errors obtained for Example 4.5.1 using the HFDM.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−1 2.69E-04 6.74E-05 1.68E-05 4.21E-06 1.05E-06

10−3 2.58E-02 1.42E-02 8.51E-03 5.41E-03 2.98E-03

10−5 2.67E-02 1.34E-02 6.73E-03 3.38E-03 1.71E-03

10−7 2.67E-02 1.34E-02 6.71E-03 3.35E-03 1.68E-03

10−9 2.67E-02 1.34E-02 6.71E-03 3.35E-03 1.68E-03

10−10 2.67E-02 1.34E-02 6.71E-03 3.35E-03 1.68E-03

Example 4.5.2. ([43])

−εy′′(x) + (1 + x(1− x))y′(x) = f(x), y(0) = y(1) = 0, (4.30)

where f(x) is chosen in such a way that the exact solution of (4.30) is given by

y(x) =
1− exp

(
−1−x

ε

)
1− exp

(
−1
ε

) − cos
(πx

2

)
. (4.31)
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Table 4.3: Rates of convergence obtained for Example 4.5.1 using FMFDM.

ε r1 r2 r3 r4 r5 r6

10−1 0.95 0.98 0.99 0.99 1.00 1.00

10−3 0.59 0.67 0.75 0.79 0.83 0.86

10−5 0.59 0.67 0.75 0.79 0.83 0.86

10−7 0.59 0.67 0.75 0.79 0.83 0.86

10−9 0.59 0.67 0.75 0.79 0.83 0.86

10−10 0.59 0.67 0.75 0.79 0.83 0.86

Table 4.4: Rates of convergence obtained for Example 4.5.1 using the HFDM.

ε r1 r2 r3 r4 r5 r6

10−1 2.00 2.00 2.00 2.00 2.00 2.00

10−3 0.87 0.73 0.65 8.60 1.10 1.16

10−5 1.00 1.00 0.99 0.98 0.97 0.94

10−7 1.00 1.00 1.00 1.00 1.00 1.00

10−9 1.00 1.00 1.00 1.00 1.00 1.00

10−10 1.00 1.00 1.00 1.00 1.00 1.00
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Table 4.5: Maximum errors obtained for Example 4.5.2 using FMFDM.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−1 2.05E-02 1.07E-02 5.44E-03 2.75E-03 1.38E-03

10−3 1.25E-01 8.30E-02 5.25E-02 3.14E-02 1.82E-02

10−5 1.25E-01 8.27E-02 5.24E-02 3.14E-02 1.81E-02

10−7 1.25E-01 8.27E-02 5.24E-02 3.14E-02 1.81E-02

10−9 1.25E-01 8.27E-02 5.24E-02 3.14E-02 1.81E-02

10−10 1.25E-01 8.27E-02 5.24E-02 3.14E-02 1.81E-02

Table 4.6: Maximum errors obtained for Example 4.5.2 using HFDM.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−1 2.64E-04 6.60E-05 1.65E-05 4.13E-06 1.03E-06

10−3 2.34E-02 1.24E-02 6.86E-03 3.93E-03 2.02E-03

10−5 2.39E-02 1.21E-02 6.11E-03 3.07E-03 1.55E-03

10−7 2.39E-02 1.21E-02 6.10E-03 3.06E-03 1.53E-03

10−9 2.39E-02 1.21E-02 6.10E-03 3.06E-03 1.53E-03

10−10 2.39E-02 1.21E-02 6.10E-03 3.06E-03 1.53E-03
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Table 4.7: Rates of convergence obtained for Example 4.5.2 using FMFDM.

ε r1 r2 r3 r4 r5 r6

10−1 0.94 0.97 0.99 0.99 1.00 1.00

10−3 0.56 0.66 0.74 0.79 0.83 0.85

10−5 0.56 0.66 0.74 0.79 0.83 0.85

10−7 0.56 0.66 0.74 0.79 0.83 0.85

10−9 0.56 0.66 0.74 0.79 0.83 0.85

10−10 0.56 0.66 0.74 0.79 0.83 0.85

Table 4.8: Rates of convergence obtained for Example 4.5.2 using HFDM.

ε r1 r2 r3 r4 r5 r6

10−1 2.00 2.00 2.00 2.00 2.00 2.00

10−3 0.92 0.85 0.80 0.96 1.15 1.19

10−5 0.98 0.99 0.99 0.99 0.98 0.97

10−7 0.98 0.99 1.00 1.00 1.00 1.00

10−9 0.98 0.99 1.00 1.00 1.00 1.00

10−10 0.98 0.99 1.00 1.00 1.00 1.00
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Chapter 5

Concluding remarks and scope for

future research

This thesis was concerned with two-point boundary value singularly perturbed problems.

Two categories of such problems, namely reaction-diffusion and convection-diffusion types,

were discussed. Our aim was to consider fitted mesh and fitted operator finite difference

methods, understand how they are used and then combine them in the quest to capitalise

on their advantages.

In Chapter 2, fitted mesh and fitted operator finite difference methods are used to

solve a family of two-point boundary value singular perturbation problems of reaction-

diffusion type. The analyses of these methods were presented and comparative results in

terms of accuracy and convergence were displayed. The evidence of higher accuracy and

faster convergence of FOFDM over FMFDM is indicated theoretically and numerically.

It is worth mentioning that, despite this drawback, FMFDMs enjoy the layer-resolving

property due to the fact that they are applied on very fine meshes in the layer region(s).

To boost the accuracy of FMFDMs, defect correction methods were discussed in Chap-

ter 3 for convection-diffusion problems. These are post-precessing techniques through

which a low order stabilised method is combined with a high-order method that is less

stable to obtain a higher-order and stable method. Therefore defect correction methods

bear improved results. However, since they are based on piecewise meshes, they are not

easily extendable to higher dimensions.
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It is well known that FMFDMs are layer-resolving. They are, however, less accurate

than FOFDMs which do not enjoy the layer-resolving property. In Chapter 4, we presented

the main results of this work. We combined FMFDMs and FOFDMs to design a new finite

difference method. This method was analysed for convergence. We found that this hybrid

method is more accurate than FMFDMs and is also layer-resolving.

Due to space limitation, we did not investigate the hybridisation above for reaction-

diffusion problems. Moreover, like FOFDMs, we believe the proposed hybrid method

is extendable to problems in higher dimension. We are currently working in these two

directions
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