
 

Immunohistochemical Analysis of a Panel of Human and 

Murine Markers on Xenografted Human Vaginal Mucosa: 

A Comparative Study 

By 

Wanider Bingham 

 

Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Magister 

Scientiae 

In the Department of Medical Biosciences 

University of the Western Cape 

 

Supervisors: Prof D Hiss 

Co-Supervisor: Prof J Hille 

 

15 November 2012 

 

 

 

 



ii 

Immunohistochemical Analysis of a Panel of Human and 

Murine Markers on Xenografted Human Vaginal Mucosa: 

A Comparative Study 

Wanider Bingham 

KEYWORDS 

Athymic Nude Mice 

Vaginal Mucosa 

Xenografts 

Cytokeratins 

Collagen Type IV 

Laminin 

Elastin 

Fibronectin 

Langerhans Cells 

Vascular Endothelial Growth Factor Receptor (VEGFR) 

Immunohistochemistry 

 

 

 

 

 



iii 

ABSTRACT  

Immunohistochemical Analysis of a Panel of Human and Murine Markers on 

Xenografted Human Vaginal Mucosa: A Comparative Study 

W. Bingham 

MSc Thesis, Department of Medical Biosciences, University of the Western Cape 

 

Athymic nude mouse models have been extensively used to study biological behaviour of 

normal and diseased human tissues. In such models, immune-deficient mice act as hosts for 

cysts constructed from human material. A unique biocyst model that entails transplantation of 

human vaginal cysts into athymic nude mice has been implemented to study diseases of oral 

mucosa. To date, only one immunohistochemical study of this biocyst model has been 

reported. Nevertheless, conclusions made in that study were only based on the observed 

expression patterns of human and murine markers. Statistical assessment of 

immunohistochemical data had been omitted by the investigator. Therefore, the objective of 

this study was to further delineate the immunohistochemical profile of normal human vaginal 

tissue and human vaginal tissue that had been xenografted into nude mice. 

Experimental cysts constructed from human vaginal mucosa were xenografted into athymic 

nude mice and harvested 9-weeks post transplantation. Immunohistochemical analysis of 

normal human vaginal tissue and human vaginal tissue that had been xenografted into nude 

mice was performed using a panel of human and murine markers. Expression patterns of 

human and murine markers were assessed. Human markers included cytokeratin 1, 

cytokeratin 5, cytokeratin 13, cytokeratin 14, collagen type IV, laminin, elastin, fibronectin, 

Langerhans cells and VEGFR-3. Murine markers included collagen type IV, laminin, 
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fibronectin, Langerhans cells and VEGFR-2. Staining intensities were quantified and 

statistically analysed using one-way ANOVA with subsequent Friedman’s test for multiple 

comparisons. Since the sample size was small, the power of the test statistic was enhanced by 

including Dunn’s post-test for further multiple comparisons.  

A strong positive expression of all cytokeratins was detected in both normal and xenografted 

vaginal tissues. Human markers that exhibited weak to moderate positive expression were 

collagen IV, laminin, fibronectin and VEGFR-3. Human elastin and human Langerhans cells 

exhibited strong and varying expression patterns respectively. Weak expression patterns for 

all murine markers were reported, with an exception of VEGFR-2 which was negatively 

expressed in all xenografted vaginal tissues. Significant differences (P<0.05) in the mean 

staining intensities between normal and xenografted vaginal tissues were reported for 

cytokeratin 1, fibronectin and Langerhans cells. There were no statistical differences (P>0.05) 

in the mean staining intensities for other markers. 

In conclusion, immunohistochemical studies proved that human vaginal tissue could not only 

survive in nude mice, but could also become active and develop structures necessary for 

survival, in this case, a newly formed stromal layer. The epithelium and stromal layer 

exhibited a human ecosystem. 

 

November 2012  

 

 

 

 



v 

DECLARATION 

I declare that ‘Immunohistochemical Analysis of a Panel of Human and Murine Markers on 

Xenografted Human Vaginal Mucosa: A Comparative Study’ is my own work, that it has not 

been submitted for any degree or examination in any other university, and that all the sources 

I have used or quoted have been indicated and acknowledged by complete references. 

 

…………………… 

Wanider Bingham 

15 November 2012 

 

 

 

 



vi 

DEDICATION 

This dissertation is dedicated to the memory of the most amazing grandfather, George 

Bingham. I thank you for the love and care you always showed when you were still in this 

world. 

 

 

 

 



vii 

ACKNOWLEDGEMENTS 

To Prof. D Hiss, I sincerely thank you for supervising the project and teaching me a million 

things throughout my study. I also wish to extend my gratitude to my co-supervisor Prof. J 

Hille for idealizing the study. 

To Mr. C Kok, many thanks for playing a critical role in this study. I extend my immense 

gratitude for your constant guidance and patience throughout this project. All the comments 

and inputs have been vital to the successful completion of this thesis. 

To my family, particularly my grandmother, my heartfelt thanks for your financial and 

emotional support throughout my life. Your continuous support and unconditional love has 

given me strength to accomplish what I have thus far.  

Mr. Y Mnyamana and Mr. D Jwambi, I appreciate all the technical assistance you offered 

with regards to computers. 

To Prof G Van’ Der Horst, Dr L Marie and Mrs. C Opuwari, I am grateful for your 

availability whenever I needed assistance. You are the reason behind my improved 

microscopy skills. 

Many thanks to the Department of Anatomical Pathology, University of Stellenbosch, for 

providing the resources used in the study and the Department of Medical Biosciences, 

University of the Western Cape for providing all the equipment I needed to compile this 

write-up. 

Finally, I thank the National Health Laboratory Service Research Trust for their financial 

contribution to the project. 

 

 

 

 



viii 

TABLE OF CONTENTS 

TITLE PAGE………………………………………………………………………………………………………… ii 

ABSTRACT………………………………………………………………………………………………………...... iii 

DECLARATION…………………………………………………………………………………………………....... v 

DEDICATION……………………………………………………………………………………………………...... vi 

ACKNOWLEDGEMENTS………………………………………………………………………………………...... vii 

TABLE OF CONTENTS……………………………………………………………………………………………. viii 

LIST OF ABBREVIATIONS………………………………………………………………………………………... xiii 

LIST OF FIGURES………………………………………………………………………………………………...... xvi 

LIST OF TABLES………………………………………………………………………………………………........ xvii 

LIST OF APPENDIXES………………………………………………………………………………………........... xviii 

CHAPTER ONE: INTRODUCTION………………………………………………………………………........... 1 

1.1 Background…………………………………………………………………………………………………...... 1 

1.2 Rationale……………………………………………………………………………………………………...... 2 

1.3 Purpose of the study……………………………………………………………………………………………. 3 

 1.3.1 Aim…………………………………………………………………………………………………........ 3 

 1.3.2 Objectives……………………………………………………………………………………………...... 3 

 1.3.3 Research Question………………………………………………………………………………………. 3 

1.4 Research Methodology…………………………………………………………………………………............ 4 

1.5 Organization of Chapters……………………………………………………………………………................ 4 

1.6 Concluding Remarks…………………………………………………………………………………………… 4 

CHAPTER TWO: LITERATURE REVIEW…………………………………………………………………….. 5 

2.1 Organization of Human Vaginal Mucosa……………………………………………………………………… 5 

 2.1.1 The Epithelium………………………………………………………………………………………….. 6 

 2.1.2 The Basement Membrane……………………………………………………………………………….. 7 

 2.1.3 The Connective Tissue………………………………………………………………………………….. 8 

2.2 Animal Models…………………………………………………………………………………………………. 8 

 2.2.1 Significance of Athymic Nude Mice in the Medical World…………………………………………….. 8 

2.3 Cytokeratins……………………………………………………………………………………………………. 9 

2.4 Collagen Type IV………………………………………………………………………………………………. 10 

 

 

 

 



ix 

 2.4.1 The α-Chains of Collagen IV…………………………………………………………………………… 10 

 2.4.2 Expression and Interaction of Collagen IV……………………………………………………………... 11 

 2.4.3 Collagen IV Assembly………………………………………………………………………………….. 11 

2.5 Laminin………………………………………………………………………………………………………… 12 

 2.5.1 Family of Laminin Glycoproteins………………………………………………………………………. 12 

 2.5.2 Tissue Distribution of Laminin Isoforms and Receptors……………………………………………….. 13 

 2.5.3 The Interaction of Laminin with Cell Surface Receptors………………………………………………. 14 

 2.5.4 Prominent Role of Laminins……………………………………………………………………………. 15 

 2.5.5 The Role of Laminin in Pathology……………………………………………………………………… 15 

2.6 Elastin………………………………………………………………………………………………………….. 16 

 2.6.1 The Synthesis of Elastin from Tropoelastin…………………………………………………………….. 16 

 2.6.2 Structural Properties of Elastin…………………………………………………………………………. 16 

 2.6.3 Elastogenesis……………………………………………………………………………………………. 17 

2.7 Fibronectin……………………………………………………………………………………………………... 18 

 2.7.1 Brief Overview of Fibronectin………………………………………………………………………….. 18 

 2.7.2 Fibronectin as a Constituent of the Plasma and Extracellular Matrix………………………………….. 18 

 2.7.3 Fibronectin as a Mediator of Cellular Interactions……………………………………………………… 19 

 2.7.4 Functional Domains of Fibronectin……………………………………………………………………... 20 

 2.7.5 The Association of Fibronectin Depletion with Tumorigenicity………………………………………. 23 

2.8 Langerhans Cells……………………………………………………………………………………………….. 23 

 2.8.1 Langerhans Cells as Regulators of Immune Responses………………………………………………… 24 

2.9 Vascular Endothelial Growth Factor Receptor (VEGFR)…………………………………………………….. 25 

 2.9.1 Angiogenesis……………………………………………………………………………………………. 25 

 2.9.2 VEGF Family and Receptors……………………………………………………………………………. 26 

 2.9.3 Expression and Differential Roles of VEGFs and VEGFRs……………………………………………. 27 

2.10 Immunohistochemistry………………………………………………………………………………………… 30 

 2.10.1 Immunohistochemical Stain…………………………………………………………………………… 31 

 2.10.2 Immunohistochemistry Detection Systems……………………………………………………………. 32 

2.11 Concluding Remarks…………………………………………………………………………………………… 32 

CHAPTER THREE: MATERIALS AND METHODS……………………………………………………........... 33 

3.1 Ethical Approval……………………………………………………………………………………………….. 33 

 

 

 

 



x 

3.2 Experimental Design - Part 1: Tissue Preparation……………………………………………………………... 33 

 3.2.1 Cyst Production…………………………………………………………………………………………. 33 

 3.2.2 Athmic Nude Mice……………………………………………………………………………………… 34 

 3.2.3 Cyst Xenografts…………………………………………………………………………………………. 34 

 3.2.4 Cyst Retrieval…………………………………………………………………………………………… 34 

3.3 Experimental Design - Part 2: Immunohistochemistry………………………………………………………… 35 

 3.3.1 Principle…………………………………………………………………………………………………. 35 

 3.3.2 Antibodies……………………………………………………………………………………………….. 36 

 3.3.3 Procedure……………………………………………………………………………………………….. 37 

 3.3.4 Light Microscopy………………………………………………………………………………………. 38 

 3.3.5 Scoring Criteria…………………………………………………………………………………………. 39 

3.4 Statistical Analysis…………………………………………………………………………………………….. 40 

3.5 Positive Controls……………………………………………………………………………………………….. 40 

 3.5.1 Positive Human Tissue Controls………………………………………………………………………... 40 

 3.5.2 Positive Mouse Tissue Controls………………………………………………………………………… 41 

3.6 Negative Controls……………………………………………………………………………………………… 42 

 3.6.1 1st Negative Control Tissue……………………………………………………………………………... 42 

 3.6.2 2nd Negative Control Tissue…………………………………………………………………………….. 42 

3.7 Acronyms used in the Study…………………………………………………………………………………… 42 

CHAPTER FOUR: RESULTS……………………………………………………………………………………... 43 

4.1 Human Cytokeratin 1 Expression Profile……………………………………………………………………… 43 

 4.1.1 Immunohistochemical Scores for Cytokeratin 1……………………………………………………….. 43 

 4.1.2 Statistical Comparisons of Cytokeratin 1 Staining Intensities…………………………………………. 44 

 4.1.3 Photomicrographs of Vaginal Mucosae Stained for Cytokeratin 1……………………………………... 45 

4.2 Human Cytokeratin 5 Expression Profile……………………………………………………………………… 46 

 4.2.1 Immunohistochemical Scores for Cytokeratin 5………………………………………………………... 46 

 4.2.2 Statistical Comparisons of Cytokeratin 5 Staining Intensities………………………………………….. 47 

 4.2.3 Photomicrographs of Vaginal Mucosae Stained for Cytokeratin 5……………………………………... 48 

4.3 Human Cytokeratin 13 Expression Profile…………………………………………………………………….. 49 

 4.3.1 Immunohistochemical Scores for Cytokeratin 13………………………………………………………. 49 

 4.3.2 Statistical Comparisons of Cytokeratin 13 Staining Intensities………………………………………… 50 

 

 

 

 



xi 

 4.3.3 Photomicrographs of Vaginal Mucosae Stained for Cytokeratin 13……………………………………. 51 

4.4 Human Cytokeratin 14 Expression Profile…………………………………………………………………….. 52 

 4.3.1 Immunohistochemical Scores for Cytokeratin 14………………………………………………………. 52 

 4.4.2 Statistical Comparisons of Cytokeratin 14 Staining Intensities………………………………………… 53 

 4.4.3 Photomicrographs of Vaginal Mucosae Stained for Cytokeratin 14……………………………………. 54 

4.5 Collagen Type IV Expression Profile………………………………………………………………………….. 55 

 4.5.1 Immunohistochemical Scores for Collagen IV…………………………………………………………. 55 

 4.5.2 Statistical Comparisons of Collagen IV Staining Intensities……………………………………………. 56 

 4.5.3 Photomicrographs of Vaginal Mucosae Stained for Human Collagen IV……………………………… 57 

 4.5.4 Photomicrographs of Vaginal Mucosae Stained for Mouse Collagen IV………………………………. 58 

4.6 Laminin Expression Profile……………………………………………………………………………………. 59 

 4.6.1 Immunohistochemical Scores for Laminin…………………………………………………………… 59 

 4.6.2 Statistical Comparisons of Laminin Staining Intensities………………………………………………... 60 

 4.6.3 Photomicrographs of Vaginal Mucosae Stained for Human Laminin………………………………….. 61 

 4.6.4 Photomicrographs of Vaginal Mucosae Stained for Mouse Laminin…………………………………... 62 

4.7 Human Elastin Expression Profile……………………………………………………………………………... 63 

 4.7.1 Immunohistochemical Scores for Elastin………………………………………………………………. 63 

 4.7.2 Statistical Comparisons of Elastin Staining Intensities…………………………………………………. 64 

 4.7.3 Photomicrographs of Vaginal Mucosae Stained for Human Elastin……………………………………. 65 

4.8 Fibronectin Expression Profile………………………………………………………………………………… 66 

 4.8.1 Immunohistochemical Scores for Fibronectin………………………………………………………….. 66 

 4.8.2 Statistical Comparisons of Fibronectin Staining Intensities……………………………………………. 67 

 4.8.3 Photomicrographs of Vaginal Mucosae Stained for Human Fibronectin………………………………. 68 

 4.8.4 Photomicrographs of Vaginal Mucosae Stained for Mouse Fibronectin………………………………. 69 

4.9 Langerhans Cells Expression Profile…………………………………………………………………………... 70 

 4.9.1 Immunohistochemical Scores for Langerhans Cells……………………………………………………. 70 

 4.9.2 Statistical Comparisons of Langerhans Cells Staining Intensities……………………………………… 71 

 4.9.3 Photomicrographs of Vaginal Mucosae Stained for Human Langerhans Cells………………………… 72 

 4.9.4 Photomicrographs of Human and Murine Tissues Stained for Mouse Langerhans Cells………………. 73 

4.10 Vascular Endothelial Growth Factor Receptor (VEGFR) Expression Profile…………………………………. 74 

 4.10.1 Immunohistochemical Scores for VEGFR…………………………………………………………….. 74 

 

 

 

 



xii 

 4.10.2 Statistical Comparisons of VEGFR Staining Intensities………………………………………………. 75 

 4.10.3 Photomicrographs of Vaginal Mucosae Stained for VEGFR………………………………………….. 76 

CHAPTER FIVE: DISCUSSION AND CONCLUSION……………………………............................................ 77 

5.1 Interpretation of Results……………………………………………………………………………………….. 77 

 5.1.1 Analysis of Cytokeratin 1 Expression Profile………………………………………………………….. 77 

 5.1.2 Analysis of Cytokeratin 5 Expression Profile…………………………………………………………... 78 

 5.1.3 Analysis of Cytokeratin 13 Expression Profile…………………………………………………………. 78 

 5.1.4 Analysis of Cytokeratin 14 Expression Profile…………………………………………………………. 79 

 5.1.5 Analysis of Collagen Type IV Expression Profile……………………………………………………… 79 

 5.1.6 Analysis of Laminin Expression Profile………………………………………………………………… 80 

 5.1.7 Analysis of Elastin Expression Profile………………………………………………………………….. 81 

 5.1.8 Analysis of Fibronectin Expression Profile…………………………………………………………….. 82 

 5.1.9 Analysis of Langerhans Cells Expression Profile………………………………………………………. 82 

 5.1.10 Analysis of Vascular Endothelial Growth Factor Receptor Expression Profile………………………. 83 

5.2 Conclusion……………………………………………………………………………………………………... 84 

CHAPTER SIX: LIMITATIONS OF THE STUDY AND FUTURE PROSPECTS…………………………… 86 

6.1 Problems Encountered and Recommendations………………………………………………………………… 86 

6.2 Future Directions………………………………………………………………………………………………. 86 

REFERENCES……………………………………………………………………………………………………….. 88 

APPENDIX I: Immunohistochemical Staining Protocol…………………………………………………………….. 94 

APPENDIX II: Immunohistochemistry Washing Buffers…………………………………………………………… 96 

APPENDIX III: Antigen Retrieval Buffers…………………………………………………………………………... 97 

APPENDIX IV: Blocking Solutions…………………………………………………………………………………. 98 

APPENDIX V: Immunohistochemistry Diluent Solution……………………………………………………………. 99 

APPENDIX VI: Novocastra™ Lyophilized Monoclonal Antibodies……………………………………………….. 100 

APPENDIX VII: Statistical Analysis Data…………………………………………………………………………... 104 

 

 

 

 

 



xiii 

LIST OF ABBREVIATIONS 

Acronym Description 

Ab -Antibody 

ABC -Avidin-biotin conjugates 

AFM -Atomic force microscopy 

ANOVA -Analysis of variance 

BM -Basement membrane 

B-SA -Biotin-streptavidin 

BVs -Blood vessels 

C -Carboxyl 

CD -Circular dichroism 

cFN -Cellular fibronectin 

CK -Cytokeratin 

CT -Connective tissue 

DAB -Diaminobenzidine 

DCT -Distal convoluted tubules 

DPX -Mountant (glue) 

DC -Dendritic cell 

DDR-1 -Discoidin domain receptor-1 

dH2O -Distilled water 

EBP -Elastin binding protein  

ECs -Endothelial cells 

ECM -Extra cellular matrix 

EDTA -Ethylene diamine tetracetic acid 

EHS -Engelbreth-Holm-Swarm 

ELISA -Enzme linked immunosorbent assay 

Ep -Epithelium 

FFPE -Formalin fixed paraffin embedded 

FGR -Fibroblast growth factor 

FK506 -Tatrolimus / fujimycin 

 

 

 

 



xiv 

FKBP65 -Tatrolimus binding protein 

Flk -Fetal liver kinase 

FN -Fibronectin 

GBM -Glomerular basement membrane 

GM-CSF -Granulocyte-macrophage colony-stimulating factor 

HIV -Human immunodeficiency virus 

H2O -Water 

H2O2 -Hydrogen peroxide 

HRP -Horseradish peroxidase 

IGF -Insulin-like growth factor 

IHC -Immunohistochemistry 

JCT -Juxtacanalicular tissue 

Kd -Kilodalton 

KDR -Kinase insert domain receptor 

LCs -Langerhans cells 

LOXL -Lysyl oxidase like 

LTBP -Latent transforming growth factor binding protein 

M -Molar 

MAGP -Microfibril associated glycoprotein 

Mcg -Small membrane coated granules 

MFAP -Microfibril associated protein 

Mm -Millimolar 

Ml -Milliliters 

mRNA -Messenger ribonucleic acid  

N -Amino 

NHLS -National Health Laboratory Services 

NC -Non-collagenous 

nm -Nanometer 

NM -Nude mouse 

NVT -Normal vaginal tissue 

NVTα -Normal vaginal tissue of the previous study 

 

 

 

 



xv 

PAP -Peroxidase anti-peroxidase 

PBS -Phosphate buffer solution 

PCR -Polymerase chain reaction 

PCT -Proximal convoluted tubules 

PDGF -Platelet derived growth factor 

pFN -Plasma fibronectin 

PIGF -Placental growth factor 

RTK -Receptor tyrosine kinase 

sECM -Specialized extracellular matrix 

Sv -Snake venom-derived 

TEM -Transmission electron microscopy  

TGF -Transforming growth factor 

TGF-β2 - Transforming growth factor beta-2 

TK -Tyrosine kinase 

TM -Trabecular meshwork 

TNF -Tumor necrosis factor 

VEGF -Vascular endothelial growth factor 

VEGFR -Vascular endothelial growth factor receptor 

VPF -Vascular permeability factor 

XVT -Xenografted vaginal tissue 

XVT-h -Xenografted vaginal tissue – human antigen localization 

XVT-m -Xenografted vaginal tissue – mouse antigen localization 

XVTα -Xenografted vaginal tissue of the previous study 

α -Alpha 

β -Beta 

ºC -Degree Celsius 

µg -Microgram 

µg/ml -Microgram per milliliters 

µm -Micrometer 

µl -Microliter 

γ -Gamma 

 

 

 

 



xvi 

LIST OF FIGURES 

Figure Description Page 

Figure 2.1 Classical Model of Elastogenesis 17 

Figure 3.1 Indirect Conjugate (Sandwich) Method 36 

Figure 4.1 Mean Cytokeratin 1 Staining Intensity by Vaginal Mucosal Type 44 

Figure 4.2 Immunohistochemical Staining of Cytokeratin 1 on Vaginal Mucosal Tissues 45 

Figure 4.3 Mean Cytokeratin 5 Staining Intensity by Vaginal Mucosal Type 47 

Figure 4.4 Immunohistochemical Staining of Cytokeratin 5 on Vaginal Mucosal Tissues 48 

Figure 4.5 Mean Cytokeratin 13 Staining Intensity by Vaginal Mucosal Type 50 

Figure 4.6 Immunohistochemical Staining of Cytokeratin 13 on Vaginal Mucosal Tissues 51 

Figure 4.7 Mean Cytokeratin 14 Staining Intensity by Vaginal Mucosal Type 53 

Figure 4.8 Immunohistochemical Staining of Cytokeratin 14 on Vaginal Mucosal Tissues 54 

Figure 4.9 Mean Collagen IV Staining Intensity by Vaginal Mucosal Type 56 

Figure 4.10 Immunohistochemical Staining of Human Collagen IV on Vaginal Mucosal Tissues 57 

Figure 4.11 Immunohistochemical Staining of Mouse Collagen IV on Human and Murine 
Tissues 

58 

Figure 4.12 Mean Laminin Staining Intensity by Vaginal Mucosal Type 60 

Figure 4.13 Immunohistochemical Staining of Human Laminin on Vaginal Mucosal Tissues 61 

Figure 4.14 Immunohistochemical Staining of Mouse Laminin on Human and Murine Tissues 62 

Figure 4.15 Mean Elastin Staining Intensity by Vaginal Mucosal Type 64 

Figure 4.16 Immunohistochemical Staining of Human Elastin on Vaginal Mucosal Tissues 65 

Figure 4.18 Mean Fibronectin Staining Intensity by Vaginal Mucosal Type 67 

Figure 4.19 Immunohistochemical Staining of Human Fibronectin on Vaginal Mucosal Tissues 68 

Figure 4.20 Immunohistochemical Staining of Mouse Fibronectin on Human and Murine Tissues 69 

Figure 4.21 Mean Langerhans Cells Staining Intensity by Vaginal Mucosal Type 71 

Figure 4.22 Immunohistochemical Staining of Human Langerhans Cells on Vaginal Mucosal 
Tissues 

72 

Figure 4.23 Immunohistochemical Staining of Mouse Langerhans Cells on Human and Murine 
TissuesTissues 

73 

Figure 4.24 Mean VEGFR-3 and VEGFR-2 Staining Intensity by Vaginal Mucosal Type 75 

Figure 4.25 Immunohistochemical Staining of Human VEGFR-3 and VEGFR-2 on Vaginal 
Mucosal Tissues 

76 

 

 

 

 



xvii 

LIST OF TABLES 

Table Description Page 

Table 2.1 Functional Domains of Laminin 13 

Table 3.1 Antibodies used for Immunohistochemical Analysis of Mouse Antigens 36 

Table 3.2 Antibodies used for Immunohistochemical Analysis of Human Antigens 37 

Table 3.3 Immunohistochemical Scoring Criteria for Human and Murine Markers 39 

Table 3.4 Immunohistochemical Scoring Criteria for Collagen IV and Laminin 39 

Table 3.5 Positive Human Control Tissues Used for Human Antigen Retrieval 41 

Table 3.6 Positive Mouse Control Tissues Used for Mouse Antigen Retrieval 41 

Table 4.1 Immunohistochemical Scoring of Human Vaginal Mucosa for Human Cytokeratin 1 
Antigens 

43 

Table 4.2 Immunohistochemical Scoring of Human Vaginal Mucosa for Human Cytokeratin 5 
Antigens 

46 

Table 4.3 Immunohistochemical Scoring of Human Vaginal Mucosa for Human Cytokeratin 13 
Antigens 

49 

Table 4.4 Immunohistochemical Scoring of Human Vaginal Mucosa for Human Cytokeratin 14 
Antigens 

52 

Table 4.5 Immunohistochemical Scoring of Human Vaginal Mucosa for Human and Mouse 
Collagen IV Antigens 

55 

Table 4.6 Immunohistochemical Scoring of Human Vaginal Mucosa for Human and Mouse 
Laminin Antigens 

59 

Table 4.7 Immunohistochemical Scoring of Human Vaginal Mucosa for Human Elastin 
Antigens 

63 

Table 4.8 Immunohistochemical Scoring of Human Vaginal Mucosa for Human and Mouse 
Fibronectin Antigens 

66 

Table 4.9 Immunohistochemical Scoring of Human Vaginal Mucosa for Human and Mouse 
Langerhans Cells Antigens 

70 

Table 4.10 Immunohistochemical Scoring of Human Vaginal Mucosa for Human VEGFR-3 and 
Mouse VEGFR-2 Antigens 

74 

 

 

 

 

 



xviii 

LIST OF APPENDIXES 

Appendix Description Page 

Appendix I Immunohistochemical Staining Protocol 94 

Appendix II Immunohistochemistry Washing Buffers 96 

Appendix III Antigen Retrieval Buffers 97 

Appendix IV Blocking Solutions 98 

Appendix V Immunohistochemistry Diluent Solution 99 

Appendix VI Novocastra™ Lyophilized Monoclonal Antibodies 100 

Appendix VII Statistical Analysis Data 104 

 

 

 

 

 

 

 

 

 



1 

CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND  

Animal models have been extensively used to identify clinically efficacious agents of various 

human disorders. Amongst these models is the athymic nude (nu/nu) mouse model. The 

discovery of athymic nude mice has led to effective transplantation and propagation of 

various human tissues and cell lines into mice [1-3]. On the contrary, the predictive value of 

these athymic nude mouse models still remains a subject of controversial debate. 

Thompson et al., [4] implemented a biocyst model in which human vaginal epithelium was 

used to construct cysts which were then transplanted into athymic nude mice. They proposed 

this model as an in vivo biotest system to study oral mucosal disorders in humans [4]. 

Moreover, they hypothesized that the epithelium of the cyst remains unchanged after 

transplantation into immune-deficient mice. Thompson et al., [4] established that allowing 

cysts to remain in mice for 9-weeks was an ample period to allow integration of cysts into a 

murine environment. Nevertheless, Thompson and colleagues’ work was not entirely 

successful due to infection incurred by the cysts. Further investigation of this remarkable 

model was therefore undertaken by Wang and Hille [5]. They identified possible sources of 

infection that had initially affected the integrity of the experimental cysts. With stringent 

infection control measures, Wang and Hille obtained intact cysts 9-weeks post 

transplantation. They presented evidence that the structure of the epithelium remained 

unchanged, thus confirming the hypothesis made by Thompson et al., [4]. Although Wang 

and Hille refined Thompson’s cyst model, immunohistochemical profiling of the transplanted 

epithelial cysts remained unknown. For that reason, Kok [6] undertook a study in which he 
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characterized and compared normal human vaginal mucosa and transplanted epithelial cysts. 

The study entailed histological and immunohistochemical profiling of normal vaginal tissues 

and transplanted experimental cysts [6]. Kok’s immunohistochemical data had not been 

statistically assessed. Therefore, conclusions made were based on the observed expression 

patterns of human and murine markers. 

To the best of our knowledge, Kok’s study of this biocyst model is the only one with 

relatively extensive immunohistochemical results. We therefore undertook this study in an 

attempt to reassess the immunohistochemical profile of normal vaginal tissues in comparison 

to xenografted vaginal tissues. To clarify the discussion of the comparative results, our study, 

incorporates for the first time, statistical assessment of the staining intensities of human and 

murine markers. We attempted to elucidate the nature of the epithelium, the basement 

membrane and stromal layer of the xenografted tissue based, not only on the expression 

patterns of markers, but also on the level of statistical significance. 

1.2 RATIONALE 

Human vaginal mucosa serves as a portal for various micro-organisms, including those that 

are pathogenic. The penetration of human vaginal mucosa by micro-organisms often leads to 

infections. Some of the infections are strongly associated with the development of carcinoma 

of the cervix, vagina and vulva. Carcinoma of the cervix, ovaries and vagina affect a 

significant number of women worldwide, with approximately 80, 720 cases reported 

annually, with an estimated mortality rate of 28, 120 women per year [7]. Advances in 

surgery and chemotherapy have improved survival for carcinomas, but such improvements 

have not been that remarkable [7]. Several researchers rely on athymic nude mouse models to 

study carcinomas [2, 8], and to establish diagnostic and therapeutic modalities [8]. This study 

is imperative in that it provides information about the morphology of human vaginal mucosa 
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that had been xenografted into athymic nude mice. It is hoped that information obtained from 

this study will facilitate future research application, particularly in cases where mice models 

are used to identify efficacious agents for various infections. 

1.3 PURPOSE OF THE STUDY 

1.3.1 Aim 

The aim of this study was to analyze and compare morphological characteristics of normal 

human vaginal mucosa and human vaginal mucosa that had been xenografted into athymic 

nude mice. 

1.3.2 Objectives 

 Firstly, we used immunohistochemistry to investigate expression profiles of 

cytokeratin 1, 5, 13 and 14, collagen type IV, laminin, elastin, fibronectin, Langerhans 

cells,VEGFR-2 and VEGFR-3 in normal vaginal tissues and xenografted vaginal 

tissues. 

 Based on the outcome of the first objective, the staining intensity of all vaginal tissues 

was assessed semi-quantitatively and scored according to a specified scoring system. 

 Staining intensities reported were statistically compared. Staining intensities reported 

by Kok were also included in statistical tests. 

 The nature of the epithelium, basement membrane and stromal layer were ultimately 

determined based on the expression patterns of human and mouse markers as well as 

on statistical data. 

1.3.3 Research Question 

The research question was, ‘Are morphological characteristics of human vaginal tissue 

retained after transplantation into athymic nude mice?’ 
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1.4 RESEARCH METHODOLOGY 

The study was undertaken in an academic research environment at the University of 

Stellenbosch and the University of the Western Cape. An experimental prospective research 

design consisting of two phases was used. The first phase involved preparation of human 

vaginal tissues whereas the second phase entailed immunohistochemical profiling of human 

vaginal tissues. In the first phase, cysts were constructed from human vaginal mucosae, 

xenografted into athymic nude mice and retrieved 9-weeks post transplantation. In the second 

phase, expression patterns of human and murine markers were investigated 

immunohistochemically. Tissue sections were then scored according to a semi quantitative 

scoring system. Mean staining intensities of normal and xenografted vaginal tissues were 

statistically analyzed using GraphPad Prism 5.0 (GraphPad Software, Inc). 

1.5 ORGANIZATION OF CHAPTERS 

 Chapter 1 – Introduction 

 Chapter 2 – Literature Review 

 Chapter 3 – Materials and Methods 

 Chapter 4 – Results 

 Chapter 5 – Discussion and Conclusion 

 Chapter 6 – Limitations of the Study and Future Prospects 

1.6 CONCLUDING REMARKS 

Chapter 1 gave an overview of the research project. The background, aim and objectives as 

well as the significance of the project were outlined to present the rationale of conducting this 

study. Chapter 2 will review the literature of human vaginal mucosa and athymic nude mouse 

models. The markers under investigation and immunohistochemistry will also be reviewed in 

the next chapter. 
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CHAPTER TWO 

LITERATURE REVIEW 

Human vaginal mucosa is the first part of the female genital tract that encounters commensal 

bacteria and pathogenic micro-organisms [9]. Knowledge of the histological distribution of 

proteins in the extracellular-matrix (ECM) of human vaginal mucosa is scarce, although a 

better understanding of this may lead to improved protection of vaginal mucosa. Moreover, 

for several decades, the laboratory mouse has been the primary species in which experimental 

treatments for various conditions have been tested [1, 2, 8, 10]. However, the predictive value 

of a mouse model has been and still remains the subject of detailed investigations. This 

chapter will review human vaginal mucosa and athymic nude mice. The focus of this chapter 

will also be on some aspects of biochemistry and molecular biology of human and murine 

markers under investigation. The chapter will be concluded by briefly discussing 

immunohistochemistry, a technique that was used to analyze expression profiles of the 

markers under investigation. 

2.1 ORGANIZATION OF HUMAN VAGINAL MUCOSA 

The human vagina is a muscular tube that extends from the ectocervix to the vestibule [11]. 

The vagina serves as a conduit for menstrual flow, receives the erect penis during sexual 

intercourse and acts as a birth canal. Under normal conditions, the length of the vagina is 

approximately 6-7.5 cm across the anterior wall and 9 cm across the posterior wall. The 

vagina extends upwards and back into the pelvic cavity. It is posterior to the urinary bladder 

and urethra, anterior to the rectum and is attached to these structures by connective tissues. 

The vaginal wall comprises three layers namely, adventia, muscularis and mucosa. Adventia, 
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the outer fibrous layer, consists of a dense connective tissue interlaced with elastic fibers. 

This outer layer attaches the vagina to the surrounding organs. The middle muscular layer is 

predominantly composed of smooth muscle fibers. The inner mucosal layer consists of 

stratified squamous epithelium [12]. This layer lacks mucous glands and vaginal mucus is 

therefore provided by cervical and vestibular glands [12]. The key role of vaginal tissue is to 

provide protection from strain during copulation [13]. Since the mucosa is the subject of this 

study, its constituents, the epithelium, the basement membrane and connective tissue will be 

briefly discussed.  

2.1.1 Epithelium: A Protective Barrier 

The epithelium serves as one of the primary tissues that cover and protect the exterior surface 

and the interior cavities of the body [14]. The epithelium is classified according to certain 

characteristics such as the number of cell layers, the shape and distinct functions of the cells. 

As already stated above, the human vaginal mucosa consists of stratified squamous epithelia 

[12, 14, 15]. It is a highly flexible structure commonly referred to as non-keratinized 

epithelium and consists mainly of squamous cells [14]. The epithelium rests on both the 

lamina propria and an underlying sub-mucosa [15]. It is differentiated in a manner that allows 

it to fulfill certain demands such as protecting the underlying tissues from mechanical, 

chemical and microbial stress. The surface epithelial layers act as permeability barriers that 

regulate movement of substances across the mucosa, thereby protecting the underlying deeper 

tissues. If the barrier is compromised, then potentially lethal substances may adhere to the 

surface of the mucosa, penetrate it and induce pathologic changes which could present as 

local or systemic diseases. The permeability barrier of the epithelium is influenced by the 

composition and organization of lipids found on superficial cell layers of the tissue. This 

barrier is relatively inert due to terminally differentiated cells of the epithelium. These 

properties are factors that enable the mucosa to remain functional for extensive periods 
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during ex-vivo studies. The intermediate cell layers of the epithelia comprise small membrane 

coated granules (mcg), which extrude their contents into the intercellular space [14]. 

2.1.2 Basement Membrane: A Specialized ECM 

The extracellular matrix (ECM) is a diverse and dynamic protein network that plays a critical 

role in cell and tissue function [16-20]. Originally, the ECM was perceived as a physical 

scaffold that provides mechanical support and strength to cells and tissues [17, 18]. However, 

it has now been established that the ECM does not only promote the interaction between cells 

and tissues, but also elicits biochemical signaling [17]. Physical and chemical features of the 

ECM are essential for development and for responses to physiological and pathological 

signals [21]. 

The basement membrane (BM) is a 50-100 nm complex and highly organized layer of the 

ECM and is commonly referred to as specialized extracellular matrix (sECM) [21, 22]. BMs 

are found in every tissue of the human body [22, 23] and their formation is necessary for 

normal tissue development and function [21]. Although BMs of different tissues are 

heterogeneous [23], they all provide structural integrity and regulate vital cellular signaling 

cues from the microenvironment [21, 22, 24]. BMs separate cell monolayers from the 

underlying connective tissue [22, 24-26]. BMs are divided into lamina lucida, lamina densa 

and the sublamina densa [25, 27-29]. The lamina densa defines the electron dense region of 

the BM. This region is mainly composed of collagen and laminin networks crosslinked by 

nidogen/entactin and percelan [28]. These components are essential for BM stability [22, 28, 

30]. BM components interact with cell-surface receptors and non-integrin receptors to 

monitor biological activities which include development, proliferation, differentiation, 

growth and migration of cells [21]. A detailed discussion of the structure and roles of 

collagen IV and laminin is included in subsequent sections. 
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2.1.3 Connective Tissue: A Supportive Component 

The connective tissue is the most abundant type of tissue that binds cells which occur in 

tissues throughout the body. This fibrous tissue consists of relatively few cells which 

synthesize connective tissue matrix. Physical properties of the matrix promote functions of 

the connective tissue. Connective tissues provide mechanical support by inducing strength, 

stability, protection and tissue repair. Moreover, connective tissues provide a surface area for 

intercellular exchange. Such an exchange is critical for a continuous supply of essential 

substances and removal of waste products [31]. 

2.2 ANIMAL MODELS 

Animal models have been used extensively to study biological behavior of human tissues. 

This has led to the development of various animal models of malignant diseases. The 

majority of these models can be grouped into two. The first group which consists of grafts of 

tumor material can be categorized into immune-competent or immune-deficient animals. The 

second group consists of genetically engineered mice that replicate a specific cancer genotype 

[1]. Although these two groups both possess unique qualities, the ability of the second group 

in illustrating significant clinical activities remains unclear [1]. Since this study entails using 

immune-deficient mice, the significance of athymic nude mice will thus be briefly reviewed 

in the following sub-section. 

2.2.1 Significance of Athymic Nude Mice in the Medical World 

A nude mutant mouse was discovered more than four decades ago [2, 8, 32]. It was named 

athymic nude mouse because it lacks a functionally active thymus. A nude mouse is a timid 

and genetically odd animal that is hairless due to a single autosomal recessive gene [32, 33]. 

Since the first successful hetero-transplantation of human colonic adenocarcinoma into nude 
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mouse by Rygaard and Povlsen, several laboratories have been using these nude mice [1]. 

Athymic nude mice are therefore regarded unique due to their lack of cell-mediated immune 

response [32]. 

Athymic nude mouse (NM) model has now become an established tool to investigate the 

biology and pathophysiology of human diseases [2, 8, 32], and to develop diagnostic and 

therapeutic strategies [8]. For instance, the model allows routine and efficient transplantation 

and propagation of human tumor tissues into mice [1]. Since NMs have an ability to host 

cancer cells without rejection, the effects of therapeutic drugs or radiation are determined 

using these strains of mice [8]. In addition, it has been reported that in general, xenografts in 

NMs retain their original morphology and biology and show a high degree of genetic 

integrity. Nonetheless, in some cases, original morphology and biology is not retained. It has 

been reported that changes in cell growth and morphology of xenografts could result from 

immunological and local factors including, cell-to-cell or cell-to-matrix interactions, growth 

factors, cytokines, hormones and locally active enzymes [8]. For instance, some studies have 

demonstrated that although tumor xenografts normally retain the phenotype of the original 

tumor, the metastic potential is lost [8]. This clearly indicates that there are biological and 

morphological changes that occur when human tissues are transplanted into a murine 

environment. Therefore, if therapeutic approaches to treating conditions of the female genital 

tract using NM models are to be achieved, it is important to determine which morphological 

properties of human vaginal tissues change after transplantation into NMs. 

2.3 CYTOKERATINS 

Cytokeratin (CK) is a cytoskeletal intermediate filament protein expressed in various human 

epithelial cells. The expression of CKs is specific for each epithelial cell type. At least 20 CK 

subtypes are known with molecular weight ranging from 40 to 70 kD. Acidic type I CKs are 
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designated CK9 to CK19 whereas Basic Type II CKs are designated CK1 to CK8 [34, 35]. It 

has been reported that CKs are involved in the formation of cellular frameworks and can 

serve as markers of malignancies associated with the epithelium [36]. 

2.4 COLLAGEN TYPE IV 

Collagens constitute 30% of the total protein mass in humans, which makes collagens the 

main components of the ECM. Predominantly expressed collagen types include interstitial 

matrix type I and basement membrane type IV [17]. This section provides a brief overview of 

the structure and expression of collagen. The involvement of collagen IV in BM assembly is 

also summarized. 

2.4.1 The α-Chains of Collagen IV 

Type IV collagen is a non-fibrillar collagen that constitutes approximately 50% of all BMs 

[22, 37, 38]. Studies have shown that non-fibrillar collagen occurs at embryonic stage day 4.5 

(E4.5) in mice. Non-fibrillar collagens can be distinguished from connective tissue fibrillar 

collagens by the presence of globular non-collagenous (NC) domains [22]. Collagen IV 

consists of six distinct chains referred to as α-chains (α1-α6) [21, 22, 39, 40]. Each α-chain is 

400 nm long and consists of three domains namely, Amino (N)-terminal 7S domain, triple 

collagenous domain and carboxyl (C)-terminal non-collagenous (NC) globular domain [22, 

41]. The triple collagenous domain has repetitive Gly-X-Y amino acid sequence where X and 

Y represent proline and hydroxyproline respectively. The sequence of amino acids is crucial 

for structural integrity of collagen IV protomer and suprastructure. Short sequence 

interruptions of the collagenous domain provide a sufficient degree of flexibility. The 7S and 

NC1 domains are essential for type IV collagen network formation [22]. Although the six α-

chains are homologous, their NC1 domains are not the same. Cells secrete Type IV collagen 

as protomers [22], which are essentially three distinct heterotrimers termed α1α1α2, α3α4α5 
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and α5α5α6 [21, 22]. Protomers serve as the building blocks of type IV collagen networks 

[22]. Assembled protomers are distributed on tissues in a specific manner and ultimately 

define the structure and function BMs [21]. 

2.4.2 Expression and Interaction of Collagen IV 

Collagen IV exists as α1α1α2 heterotrimer during development [21], where it is evenly 

distributed in BMs [17, 21, 42].  However, during maturation, the α1α1α2 heterotrimer gets 

partially displaced by another heterotrimer such as α3α4α5. This has been observed in the 

kidney glomeruli, the skin, oesophagus and smooth muscle cells [21]. Mechanical stability of 

BMs is mainly influenced by collagen IV scaffold [3, 21, 43, 44]. This protein provides 

mechanical support to tissues and is actively involved in tissue function [45]. Collagen IV 

interacts with various cells including platelets, hepatocytes, hepatocytes, and keratinocytes. 

Endothelial cells (ECs), pancreatic cells as well as tumor cells have also been reported to 

interact with collagen IV. Collagen IV interactions are regulated by integrins and non-

integrin receptors. Integrins that have been identified in collagen IV interactions include 

α1β1, α2β1, α3β1, α6β1, α10β1, α11β1, αvβ3, and αvβ5. Non-integrin receptors that have 

been reported in such interactions include CD44 and discoidin domain receptor-1 (DDR-1). 

Moreover, it has been indicated that DDR-1-collagen IV interactions are critical for the 

structural integrity and filtration function of BMs in the kidney [21]. 

2.4.3 Collagen IV Assembly 

Self-assembly of collagen IV suprastructure is responsible for BM assembly [22]. Collagen 

IV together with laminin are enmeshed to form the basic framework of BMs. Protomers and 

NC1 domains, which induce triple helix formation are both formed in the Golgi apparatus. 

These protomers are then secreted and self-assembled into collagen IV suprastructure. Four 

protomers interact through their 7S domains which are then covalently stabilized. This 
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interaction has been shown to have a structure that resembles a ‘spider shape’. In addition, 

two protomers interact through NC1 trimers to form NC1 hexamer, which is also stabilized 

by a covalent bond. Both these types of protomer interaction establish a unique scaffold 

which plays a critical role in the formation of BMs [22]. 

2.5 LAMININ 

The laminin family of glycoproteins was first discovered as a product of mouse Engelbreth-

Holm Swarm (EHS) sarcoma cells almost three decades ago [18, 27, 28]. This non-

collageneous glycoprotein is significantly implicated in various biological activities such as 

BM assembly and regulation of cellular differentiation, adhesion and migration [28, 46]. In 

this section, the structure and distribution of laminin as well as the role it plays in BM 

formation and tumor invasion shall be briefly explored. 

2.5.1 Family of Laminin Glycoproteins 

Laminins are extracellular heterotrimeric glycoproteins composed of different combinations 

of chains designated α-, β-, and γ-chains [18, 21, 22, 28, 30, 47, 48], depending on sequence 

identity and protein domain organization [22]. These large molecules are 400-900 kDa in 

weight and exhibit a cross-like structure [28, 48]. To date, five α, four β, and three γ chains 

[28, 47-49], including splice variants [28] have been identified. In vertebrates, these subunits 

assemble into at least sixteen laminin isoforms termed laminin 1-15 [21, 28, 48]. Each 

laminin chain is composed of rodlike, globular and coiled regions. The separate chains are 

linked by disulphide bonds at the coiled coil regions. The 400 kDa α-chain is the largest [22, 

28], and comprises of long and short arms at the carboxyl-terminal and amino-terminal ends 

respectively. The C-terminal end of the long arm consists of domains named LG 1-5 [28]. 

The β- and the γ-chains are approximately 200 kDa and differ from the α-chain by the 

absence of the G domains [22]. The C-terminal end of the α-chain interacts with integrin 
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receptors and dystroglycans. Moreover, the N-terminal end also binds to integrin receptors, 

although it is more implicated in laminin polymerization. The β and γ chains associate with 

other components of the ECM [28]. 

Table 2.1: Functional Domains of Laminin 

 
Adapted from [50] 

 

2.5.2 Tissue Distribution of Laminin Isoforms and Receptors 

Laminin, one of the major constituents of the BM [51-54] has been implicated in various 

ECM-regulated activities. Such activities include interaction with epithelial cells, stimulation 

and maintenance of tumor initiation and development [49]. All 15 laminin isoforms are 

constituents of BMs. Expression patterns of laminin isoforms are modulated both temporally 

and spatially within organisms [28]. This leads to distinct distribution of the different laminin 

isoforms during development and in adult tissues [21, 22, 28, 48]. Therefore the laminin 

isoforms fulfill precise key roles in modulating tissue structure and cell behavior [21, 28, 48]. 

Laminin 1 (111), the isoform that was first identified during development at E4.5 in mice, is 

the highly expressed type in the BM [22, 46]. Laminin-111 and laminin-511 are the main 

isoforms essential for embryonic development, whereas other isoforms are implicated during 

organ maturation and specific tissue functions [21]. The α1 chain, present in laminin 1 (111) 

and 3 (121), is highly expressed in epithelial cells during early embryogenesis. Its expression 

becomes more restricted during development and is then only found in adult reproductive 

organs, kidney and liver [28]. Laminin-111 has also been found in the chondrocytes of 
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healthy human cartilage [21]. Laminins 2 (211), 4 (221) and 12 (213) consist of the α2, which 

is mostly expressed in the neuromuscular system [21, 28], where they coordinate postsynaptic 

and presynaptic maturation [21]. The α3 chain, found in laminins 5 (332), 6 (311), and 7 

(321), is localized to the skin and other epithelia. Laminin-332 plays a significant role in skin 

function. Furthermore, expression of this isoform has been observed in embryonic cartilage 

[21]. The α4 chain, found in laminins 8 (411), 9 (421), and 14 (423), is expressed in cells of 

mesenchymal origin. Laminin 8 together with laminin 10 (511), 11 (521) and 15 (523) are 

readily expressed throughout the body in adult epithelial, neuromuscular, and vascular tissues 

[28].  

2.5.3 The Interaction of Laminin with Cell Surface Receptors 

Integrins and non-integrin molecules are some of the major laminin cell surface receptors [28, 

53]. More than eight integrins that have been identified include α1β1, α2β1, α5v1, α3β1, 

α6β1, α6β4, αvβ3, αvβ5 and α7β1 [28]. Each integrin is sequence-specific and thus 

recognizes and interacts with a specific set of isoforms. The recognition site located on the 

integrin receptor is formed by the combination  of its α- and β-chains [28]. The G-domain at 

the C-terminal end serves as the major site for laminin cell adhesion [22]. Therefore, laminin-

integrin interaction occurs substantially at the C-terminal end of the α-chain. However, such 

an interaction can also occur at the N-terminal end. The β- and γ-chains can also partake in 

laminin-integrin interaction [28]. Some of laminin interactions include α-dystroglycan with 

laminin α1 and α2 chains and the Lutheran blood group glycoprotein which interacts 

exclusively with laminin α5 chains [21]. Non-integrin cellular receptors for laminins include 

syndecans [21] and heparin sulphate proteoglycans [28]. Interaction of laminin with non-

integrin receptors also occurs at the C-terminal of the α-chain [28]. 
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2.5.4 Prominent Role of Laminins: Basement Membrane Assembly 

Laminins play a critical role in providing structure to the ECM and adhesion of cells to the 

BM [22, 55, 56]. It has now been established that the precise manner in which alpha subunits 

interact with integrins or non-integrin receptors is essential for the self-assembly and 

polymerization of laminin networks [21]. This network assembling of laminin heterotrimeric 

laminins into oligomers is necessary for BM formation [21, 22, 57]. As already stated, the 

scaffold of enmeshed laminin and type IV collagen networks is the basic framework of BMs 

[22, 54, 58]. In the Golgi apparatus, ionic interactions enhance βγ dimer formation, which is 

subsequently stabilized and secreted when the α-chain is included. Disulfide bridges provide 

stability for the three chains at their intersection point, thereby allowing laminin to self-

assemble into a honeycomb-like polymer. The mechanism of self-assembly still remains 

elusive, but it appears to be calcium dependent and associated to the globular domain VI of 

each chain. It has also been proposed that the three-arm interaction model for laminin 

polymer self-assembly could be responsible for the honeycomb network [22, 28]. 

2.5.5 The Role of Laminin in Pathology: Tumor Invasion 

Under physiological or pathological states, the ECM houses laminin fragments that are 

unable to polymerize into networks, consequently promoting cell migration as has been 

illustrated by laminin-332 [21]. Laminin 332 has been reported to partake in cell migration, 

and it has hence been implicated in tumor invasion [28, 50]. Highly expressed laminin γ2-

chain has been noted in many epithelial human cancers such as lung and colon cancers. This 

high expression level of γ2-chain, particularly at the leading edges has been linked to cancer 

invasiveness. Moreover, the detection of this chain has been proposed to serve clinical 

diagnostic and prognostic purposes. Most of the γ2 chains that were detected in tumor cells 

were positioned in the cytoplasm [28]. 
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2.6 ELASTIN 

Tissue flexibility and extensibility are critical properties in multicellular organisms [59]. 

Elastic fibers, the insoluble macromolecules of the ECM, are the key components of 

connective tissues [60, 61]. Elastic fibers provide resilience to connective tissues, which aids 

in long-range deformability. Moreover, passive-elastic recoil of connective tissues is another 

property provided by elastic fibers [59, 62]. These properties are essential for the long-term 

function of different forms of tissues. Elastic fibers comprise two morphologically and 

chemically distinct constituents namely elastin and microfibrils. About 90% of the fiber is 

constituted by elastin [62-64] which is on the internal core and is enclosed by microfibrils 

[59, 62]. The structure of elastin, with particular focus on the events that lead to formation of 

elastin are described in this section.  

2.6.1 Elastin: A Protein Synthesized from Tropoelastin 

Elastin is a chemically inert, highly insoluble polymer synthesized from a precursor molecule 

tropoelastin [60, 62, 63, 65]. Tropoelastin, a soluble, non-glycosylated and hydrophobic 

protein provides stability to elastin through its covalently cross-linked molecules. 

Tropoelastin is about 60-70 kDa and can exist as either an open globular molecule or a 

distended polypeptide [62]. Expression of this precursor molecule with subsequent elastin 

formation appears in fibroblast, vascular smooth muscles cells, endothelial cells and 

chondrocytes [63]. Elastin is classified as a major ECM tissue protein that is critically 

involved in tissue elasticity and resilience [62, 63, 65, 66].  

2.6.2 Structural Properties of Elastin 

Several studies have been undertaken to establish structural properties of soluble elastin, 

however, a consensus has not yet been attained. Macroscopically, elastin appears as a pale 
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yellow amorphous mass. Transmission electron and atomic force microscopy (TEM and 

AFM) studies have indicated that elastin is a fibrillar substructure composed of 

approximately 5nm thick filaments that are parallel-aligned and resemble a twisted rope. 

Circular dichroism (CD) is another study that has been done to illustrate that human 

tropoelastin consists of 3% α-helix, 41% β-sheet, 21% β-turn and 33% of other structures 

[62]. 

2.6.3 Elastogenesis: From Tropoelastin to Elastic Fibers 

Formation of elastic fibers is a highly organized process that entails a chain of events. The 

interaction of microfibrils and tropoelastin during formation of elastic fibers is a process 

limited to foetal and early neonatal development [64]. These critical events include control of 

intracellular transcription and translation of tropoelastin, intracellular processing and 

secretion of the protein into the ECM. Moreover, the transport and alignment of tropoelastin 

at elastogenesis sites and conversion of tropoelastin to insoluble elastin polymer form part of 

elastogenesis events [62]. The process of elastogenesis is summarized in Figure 2.2. 

 

Figure 2.1: Classical Model of Elastogenesis. Tropoelastin is transcribed from a single gene and alternatively 

spliced in the nucleus. (A) Subsequent to translation and signal sequence cleavage, tropoelastin associates with 

EBP and FKBP65 in the rough endoplasmic reticulum. The tropoelastin-EBP complex then moves through the 

Golgi and gets secreted to the cell surface. (B) Secreted tropelastin gets oxidized by a lysyl oxidase family 

member and tropoelastin associates with microfibrils and other tropoelastin molecules through coacervation to 

generate the nascent elastic fiber. (C) Continued secretion, oxidation and deposition of tropoelastin occupy the 

bulk of elastin synthesis. EBP-elastin binding protein; FKBP65-65-kDa FK506 binding protein; MAGP-

microfibril associated glycoprotein; LTBP-latent transforming growth factor β-binding protein; MFAP-

microfibril associated protein; LOXL-lysyl oxidase like. Source: [62]. 
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2.7 FIBRONECTIN 

Fibronectin (FN) is a complex glycoprotein associated with cellular interactions which 

involve inter-communication between cells and the extracellular material [67]. The active 

form of FN is an elongated protein assembled into an insoluble fibril [68]. The transformation 

of the FN molecule into a fibril is an extensively regulated cell-mediated process [68]. This 

section details biological and structural characteristics of fibronectin. The role fibronetin 

plays in cellular interactions and in tumorigenesis is also outlined. 

2.7.1 Fibronectin: Brief Overview 

Fibronectin is widely expressed by multiple cell types and it has been demonstrated that it is 

essential for development in vertebrates. Evidence of this has been provided in studies in 

which inactivation of the FN gene resulted in early embryonic lethality of mice [69]. This 

major ECM protein exists as an asymmetric dimer consisting of two identical subunits of 

approximately 250 kDa. These subunits are covalently bonded at a region close to the 

carboxyl-terminus by a pair of disulfide bonds [67-70]. Each monomer consists of three types 

of repeating units named type I, type II and type III [68-70]. The FN molecule contains 12; 2 

and about 15 type I, type II and type III repeats, respectively. These repeats contribute to 

approximately 90% of the FN sequence [69]. Although FN molecules are derived from a 

single gene, the resulting protein can exist in multiple forms that arise from alternative 

splicing of a single pre-mRNA that can yield as many as 20 variants in human FN [68, 69]. 

2.7.2 Fibronectin: Constituent of the Plasma and the ECM 

FN is an abundant soluble constituent of the plasma (300 µg/ml) and other body fluids. It also 

forms an insoluble constituent of the ECM [67, 69]. Moreover, the molecule is also scattered 

in the juxtacanalicular tissue (JCT) and in the trabecular beams [68]. Although FNs can be 

synthesized by a vast number of cells in vitro, fibroblasts and ECs appear to be the major 
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producers. Apart from fibroblasts and ECs, FNs can also be synthesized by chondrocytes, 

myoblasts, macrophages, hepatocytes, epithelial and amniotic cells [67]. Based on solubility 

traits, two types of FN termed plasma (pFN) and cellular (cFN) FNs have been identified. 

pFN exists as a soluble protein whereas cFN is a less-soluble form [67, 69, 70], that has the 

appearance of fibrillar extracellular matrix [69]. Although pFN and cFN can be distinguished, 

they have structural similarities [67]. pFN is synthesized predominantly in the liver by 

hepatocytes [67, 69], although ECs and macrophages could also contribute given their close 

association with the bloodstream [67]. Glucose, glucocorticoids, ascorbic acid and 

transforming growth factor beta-2 (TGF-β2) are some of the factors that regulate FN 

expression in the trabecular meshwork (TM). TGF-β2 also enhances cross-linking of FN to 

itself and the surrounding ECM through action of tissue transglutaminase. TGF-FN complex 

is resistant to degradation, and thus, self-cross-linking of FN may stimulate deposition and 

retention of FN in the ECM [68]. 

2.7.3 Fibronectin: A Mediator of Cellular Interactions 

FNs have been implicated in a wide variety of cellular interactions with the ECM. Such 

interactions include cellular adhesion and morphology [18, 55, 67, 69, 70], cytoskeletal 

organization, cell migration, embryonic differentiation, oncogenic transformation, 

phagocytosis, chemotaxis and hemostasis or thrombosis [67]. Some of these cellular 

interactions are discussed below. 

The adhesion of FNs to solid substrates is the most basic role of FNs that has been 

extensively studied [67]. Numerous studies have indicated that FNs promote the adhesion and 

spreading of cells to a variety of materials including plastic, collagen, gelatin, and fibrin [67, 

69]. Cells that synthesize less or no FN often require additional exogenous FN to enhance 

adhesion and spreading. Inadequate synthesis of FN by these cells often results from their 
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oncogenic transformation. Concomitant with the spreading induced by an addition of FN, 

cells usually acquire highly ordered intracellular microfilament bundles [67]. The role of FN 

in phagocytosis was initially suggested on the basis of in vivo results which indicated that 

there is an association between the levels of pFN and the ability of an organism to clear 

unwanted material from the circulatory system. It was suggested that FN operates as a ‘non-

specific opsonin’ for thereticulo-endothelial system. This became even more intriguing when 

it became apparent that FN has a binding affinity for certain bacteria such as Staphylococcus 

aureus. Data from in vitro studies also presented evidence that FN stimulates phagocytosis of 

gelatin-coated beads by certain macrophages although heparin is required as a cofactor [67]. 

Hemostasis and thrombosis are additional biological processes that particularly involve pFN. 

FN is also involved in the regulation of several pathways. It has been reported that FN 

induces myogenesis and inhibits myoblast fusion, chondrogenesis and melanogenesis. In 

addition to this, FN has also been reported to stimulate adrenergic differentiation in explanted 

neural crest cells [67]. Extensive literature from other cell types suggests that FN and its 

receptors provide mechanical support for cell attachment and mediate a wide variety of 

biological processes that entail regulation of outflow resistance, including matrix production, 

ECM turnover, gene expression, growth factor signaling and cytoskeletal organization. 

Moreover, FN and its receptors regulate cellular mechano-responsiveness to physical forces 

such as stretch [68]. 

2.7.4 Functional Domains of Fibronectin 

The most important characteristic of FN is its ability to precisely interact with a wide variety 

of macromolecules. The best-established interactions which have been reported are the 

interactions with gelatin, collagens, fibrin, heparin and proteoglycans [67]. The ability of this 

molecule to perform so many functions is chiefly due to their flexible structure and functional 

domains [67, 68]. It has been shown that polypeptide regions of FNs are somewhat 
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susceptible to attack by a number of proteases. Such proteases cleave these polypeptide 

regions to generate separate, structured domains. composed of specific ligand binding sites 

[67]. The domains are briefly summarized below. 

2.7.4.1 Collagen-Binding Domain 

The first FN domain to be isolated was collagen-binding domain. This FN region is 

approximately 30-40000 daltons [67] and is composed of repeats I and II [69]. This region 

can be produced from digestion of an intact FN with chymotrypsin, subtilisin, thermolysin or 

pronase. Although this region is still unable to mediate cell interactions, it does interact with 

collagen or gelatin affinity columns [67]. Interestingly, such interactions are more effective 

with denatured collagen (gelatin) than are with native collagen. The presence of collagen-

triple helix appears to play a significant role in FN-collagen interactions [69]. In addition, 

larger fragments can be generated under various proteolytic conditions which allow mapping 

of the domain close to the amino-terminus [67]. 

2.7.4.2 Cell-Binding Domain 

This cell-binding region can be generated from other FN fragments that do not bind to 

collagen affinity columns. This domain exists for provision of other cell-binding activities. 

The region has the ability to mediate interaction between cells and collagen. A fragment of 15 

000 daltons still retains a significant amount of the cell-binding activity of the intact FN, but 

does not allow either collagen or heparin binding [67]. 

2.7.4.3 Fibrin and Transglutaminase Interaction Sites 

FN is also composed of two major fibrin-binding sites termed fibrin I and fibrin II [69]. The 

major site is located at the N-terminal domain and it is generated from type I, type 4 and type 

5 repeats. The interaction of FN with fibrin is essential for cell adhesion or cell migration into 
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fibrin clots [69]. Initial stages of wound healing may therefore require binding of FN to fibrin 

from blood [67].  

2.7.4.4 Glycosaminoglycan-Binding Domain 

The binding of FN to heparin and heparin-sulphate is involved in the uptake of foreign 

substances by macrophages and in structural organization of the ECM. In vitro studies have 

indicated the complex nature of FN-heparin interactions with more than two constituents of 

moderate binding affinity. The molecule can have either two or three distinct regions that 

bind to heparin. One binding site is located in the FN amino-terminal domain. A second 

binding site is located near the C-terminus of the molecule. The presence of these multiple 

heparin-binding domains with their respective sensitivities to divalent cations and salt 

concentrations indicates that FN interactions are indeed complex [67]. 

2.7.4.5 Disulfides and Sulfhydryls 

Analysis of FN fragments has indicated that its subunits are bound by inter-chain disulfides 

and are located near the carboxyl terminus of the molecule. Both the amino-terminal and the 

collagen-binding domains have a high degree of intra-chain disulfides. The amino-terminal 

domain has roughly 10% half cysteine and possibly 10 intra-chain disulfides. The intra-chain 

disulfides may be liable for the compact protease-resistant structure of this domain. The intra-

chain disulfides of the collagen-binding domain are vital for collagen binding. In addition, 

every FN subunit is composed of more than one sulfhydryl group with one group located 

approximately 170 000 daltons from the amino-terminus and the other close to the carboxyl-

terminus. Inhibition of FN interaction with the cell surface matrix often results if sulfhydryl 

groups are alkylated. There are possibilities that these sulfhydryls partake in inter-molecular 

disulphide bonding of FN to other FN molecules or to other cell surface components such as 

proteoglycans [67]. 
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2.7.4.6 Heparin-Binding Domain 

FN contains two major heparin-binding domains that have a binding affinity for heparin 

sulphate proteoglycans. Heparin II, the stronger heparin-binding domain is located at the C-

terminus whereas the weaker binding domain, Heparin I, is positioned at the amino-terminal 

end of the protein. Heparin II has a high binding affinity for glycosaminoglycan and 

chondroitin sulphate, whereas Heparin I domain contains a Staphylococcus-aureus-binding 

site that mediates FN interactions with the bacterium. Heparin-binding domains of other cell 

types can induce cell adhesion [69]. 

2.7.5 Fibronectin Depletion: The Association with Tumorigenicity 

Oncogenic transformation leads to pleiotropic changes in cellular properties. Such changes 

include decreased adhesion, rounded morphology and loss of cytoskeletal organization [67]. 

Studies have indicated that loss of FN is also concomitant with this oncogenic transformation 

[67, 71]. In some instances, an addition of FN can be used to revert such changes, thus it is 

possible that they reflect a common effect of the transforming agent. Reduced synthesis, 

reduced binding and increased rates of degradation are some of the factors that have been 

linked to loss of FN. Moreover, in vivo studies have indicated a relation between FN 

depletion and tumorigenesis [67]. These reports suggest that a correlation between FN 

depletion and acquisition of metastatic potential may exist. Given that FN is involved in the 

adhesion of cells to ECMs, tumor invasion and metastasis may induce a shift in the cellular 

function of FN [67]. 

2.8 LANGERHANS CELLS 

In 1868 from a study of the human skin, dendritic leukocytes of the epidermis were first 

identified by a German clinician, Paul Langerhans [13, 72-74]. The study demonstrated that 

cells, which now bear his name, Langerhans, are non-pigmented cells with a dendritic 
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morphology [73, 74]. As time passed, it became apparent that Langerhans cells (LCs) do not 

only reside in the epidermis, but are also present in many other tissues, including the female 

genital tract. In electron microscopy, Birbeck granules contained within LCs serve as the key 

identifying feature of the cells [13, 73-75]. Initially, physiological knowledge of LCs was 

limited. However, culture systems that permit in vitro generation of mouse and human LCs 

are now enabling researchers to gain more insight on the physiology of LCs. In vitro 

production of Human LCs is currently obtained using either bone marrow progenitors 

cultured in granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis 

factor (TNF) or blood monocytes cultured with GM-CSF [72, 76, 77]. 

2.8.1 Langerhans Cells: Regulators of Immune Responses 

LCs are the principal cells that regulate immune surveillance [13, 77-79] of various mucosal 

barriers, including that of the reproductive tract [13]. In the female reproductive tract, LCs 

are hormonally controlled and their role is tightly regulated. LCs play an integral role in 

antigen acquisition and immune effector mechanisms. Moreover, the cells are involved in 

detection and response of the reproductive tract to invading pathogens such as causative 

agents of sexually transmitted infections [13]. Pathogen detection is made possible by the 

presence of Toll-like receptors and C-type lectins on LCs. Such receptors and lectins identify 

pathogen-associated molecular patterns such as constituents of the bacterial wall, or bacterial 

and viral nucleic acid motifs [77]. Conversely, LCs may also present a negative effect on the 

immune system. In one study, a reconstructed vaginal mucosa integrating Langerhans cells 

was developed to provide evidence that Langerhans cells support transmission of HIV-1 

strains to peripheral blood mononuclear cells [80]. 
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2.9 VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR 

A closed circulatory system consists of a network of blood vessels essential for the 

development and maintenance of all tissues in the body [81]. Normal vasculature is 

architecturally structured to bring oxygen and nutrients to cells, allow for specific exchange 

of contents, and remove waste such as a urea and lactic acid in a streamlined, efficient 

manner [7, 81-83]. Vasculogenesis, the emergence of these blood vessels, is one of the 

earliest events in embryogenesis during which mesodermal cells differentiate into 

hemangioblasts [83, 84]. Vasculogenesis is completed with the formation of the primary 

vascular plexus, and all further transformations and maturation of the vascular network 

proceed during angiogenesis [83].  

2.9.1 Angiogenesis: Modulator for Physiological and Pathological Processes 

Angiogenesis, a complex process of new blood vessel formation from pre-existing vascular 

networks [81, 83, 85-88], is critical for the development and maintenance of any living tissue 

[7]. Angiogenesis is closely regulated by a balance between factors that stimulate and factors 

that inhibit the development of new vasculature [87, 89]. Angiogenesis is essential for both 

physiological and pathological processes [87, 90]. In healthy adults, the levels of angiogenic 

factors are in equilibrium and ECs are mostly quiescent [85, 87]. Under such circumstances, 

angiogenesis is restricted to certain processes such as wound healing, development and 

reproduction. Nonetheless, under pathologic states such as tumor growth, progression and 

metastasis [81, 82, 87, 89], rheumatoid arthritis, and atherosclerosis [81, 87], pathologic 

angiogenesis comes into play [81, 82, 87]. During pathologic angiogenesis, the balance of 

pro- and anti-angiogenic factors is shifted such that the production of pro-angiogenic factors 

outweighs anti-angiogenic factors, resulting in new blood vessel formation [85, 87, 89]. 

Increased blood vessel formation provides tumors with oxygen and nutrients which enable 
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the growth and progression of tumors [81, 87]. Angiogenic factors responsible for this shift 

include hypoxia, activated oncogenes and metabolic stress [86].  

During the past two decades, extensive studies have indicated that several factors including 

vascular endothelial growth factor (VEGF), angiopoietin and ephrins are major contributors 

of blood vessel formation [91]. Among these pro-angiogenic factors, the VEGF family 

proteins and receptors have been the center of interest. They have thus, been extensively 

characterized due to their prominent role as angiogenesis mediators [7, 81, 85]. This section 

proceeds by describing VEGF-VEGFRs and their role in angiogenesis and vasculogenesis 

2.9.2 VEGF Family and Receptors 

Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein with a molecular 

weight of 34-45 kDa [85, 86]. VEGF, also known as vascular permeability factor (VPF) [7], 

undergoes alternative splicing to yield mature proteins of 121, 165, 189 and 206 amino acids 

[85]. The VEGF family consists of 7 secreted glycoproteins: VEGF-A, VEGF-B, VEGF-C, 

VEGF-D, VEGF-E, VEGF-F and placental growth factor (PIGF) [81, 85, 86]. All members 

except VEGF-E and svVEGF are encoded in the mammalian genome [81]. Three high-

affinity VEGF tyrosine kinase receptors that have been identified include VEGF receptor 

(VEGFR)-1 (flt-1), VEGFR-2 (flk-1/KDR) and VEGFR-3 (flt-4) [81, 83, 86, 91]. These 

receptors belong to the superfamily of receptor tyrosine kinases (RTKs) [83]. Based on 

structural features, these receptors are highly homologous to each other [83, 85, 87, 91]. 

VEGFR-1 and VEGFR-2 consist of 1338 and 1356 amino acids in humans, respectively [91]. 

Furthermore,VEGFR-1 and VEGFR-2 consist of 7 extracellular immunoglobulin-like 

domains (Ig 1-VII) [81, 83, 85, 91], a single transmembrane protein, and a consensus tyrosine 

kinase (TK) domain, which is interrupted by an inter-kinase insert to yield TK-1 and TK-2 

fragments  [83, 85, 87]. VEGFRs have an additional downstream carboxy terminal region 
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[87, 91]. The different VEGF family members have distinct binding affinities for their 

respective receptors [84, 85]. All VEGF-A isoforms bind to VEGFR-1 and VEGFR-2, 

whereas PIGF1, PIGF2 and VEGF-B have a binding affinity for only VEGFR-1. VEGF-C 

and VEGF-D bind to VEGFR-2 and VEGFR-3, whereas VEGF-E has a specific binding 

affinity for VEGFR-2 [85]. 

2.9.3 Expression and Differential Roles of VEGFs and VEGFRs 

2.9.3.1 VEGF-A: A Key Mediator for Angiogenesis 

In vivo experiments have demonstrated that VEGFs play a crucial role in physiologic 

vasculogenesis and angiogenesis [85]. Moreover, VEGFs are also involved in inflammatory 

processes [83]and other pathologic conditions such as arthritis, diabetic retinopathy and 

psoriasis [83, 85]. VEGF expression is triggered by hypoxia. This has been demonstrated by 

a highly expressed VEGF mRNA under conditions of low oxygen in pathological cases. 

Furthermore, VEGF expression is enhanced by a wide range of factors that include epidermal 

growth factor (EGF), transforming growth factors (TGFα and TGFβ), insulin-like growth 

factor 1 (IGF-1), fibroblast growth factors (FGR) and platelet derived growth factors (PDGF) 

[83].  

VEGF-A is a major regulator for angiogenesis that interacts and stimulates two tyrosine 

kinase receptors VEGFR-1 and VEGFR-2 [84]. It has been reported that VEGF-A is over-

expressed in many human solid tumors [83, 85], which ultimately induces new blood vessel 

formation in the growing tumor [83]. Tumor vessels are readily permeable, and this allows 

tumor cells to penetrate their surrounding vascular networks and metastasize to other organs 

[83]. This is associated with tumor progression and poor prognosis [85]. 
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2.9.3.2 The Initial Expression of the VEGF Receptors 

During murine development, the expressions of both VEGFR-1 and VEGFR-2 are initially 

detected at E7.5 in mesodermal cells of the tail region [91]. At E7.5-8.0, VEGFR-2 positive 

cells migrate to the head region and yolk sac, and differentiate into primitive ECs [91]. 

Hematopoiesis is initiated when ECs create blood islands at yolk sac [91]. Interestingly, 

VEGFR-1 and VEGFR-2 have also been detected in both liquid and solid tumor cells [84]. 

Gene targeting studies in mice have indicated that VEGFs and VEGFRs play a role in 

development of a vascular system [84]. In these studies, VEGF appears particularly important 

because loss of even a single Vegf allele results in embryonic lethality at days 11 to 12 [84]. 

Vegfr2-/- mice die at embryonic days 8.5 to 9.5 due to defect in the development of 

hematopoietic and ECs resulting from impaired vasculogenesis [84]. Moreover, members of 

the VEGF family are involved in other biological processes, including lymphangiogenesis, 

vascular permeability, and hematopoiesis [84]. 

2.9.3.4 VEGFR-1: A Negative Regulator for Angiogenesis and a Positive Regulator of 

Macrophage Functions 

Initially, VEGFRs were reported to be expressed exclusively on various ECs [85]. However, 

emerging evidence indicates that VEGFRs are also expressed by other cell types including 

tumor cells [85]. In addition to ECs, VEGFR-1 is also expressed by macrophages, 

monocytes, hematopoietic stem cells and certain non-endothelial cells [81, 84]. VEGFR-1 

and VEGFR-2 play a role in physiological and pathological angiogenesis [84]. In early 

embryogenesis, the soluble form of VEGFR-1 acts as a negative regulator of VEGF-A by 

inhibiting VEGF-A and VEGFR-2 interaction [84]. This antagonistic action is essential to 

maintain equilibrium for an appropriate level of angiogenesis [84, 91]. The role of VEGFR-1 

as a negative regulator of VEGF-A has been established from data of gene activation 

experiments in which Flt1-/- mice died between 8.5 and 9.5 days of embryonic development 
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due to excessive growth and disorganization of blood vessels [84]. VEGFR-1 induces tumor 

growth, metastasis, and inflammation in partly a macrophage-dependent manner [91]. This 

receptor interacts with its ligands to initiate dimerization followed by 

trans/autophosphorylation of tyrosine residues at the cytoplasmic kinase domain. However, 

autophsphorylation of VEGFR-1 by VEGF-A is weak [83]. It has been suggested that 

VEGFR-1 is mainly a negative regulator of the activity of VEGF-A on vascular endothelial 

cells rather than mitotic signal transduction. This suggestion was based on structural 

peculiarity of VEGFR-1 as its soluble form produced by alternative splicing [83]. This form 

is not a transmembrane protein and has no tyrosine kinase domain, thus its inability to 

transduce a signal.VEGFR-1 also plays a role in blood vessel permeability [83]. VEGFR-1 

mediates monocyte migration, recruitment of EC progenitors, hematopoietic stem cell 

survival and release of growth factors from liver ECs [84]. 

2.9.3.5 VEGFR-2: A Key Receptor for Angiogenesis  

From the postnatal to adult stages, VEGFR-2 is readily expressed in ECs [84, 91]. In 

endothelial cells, VEGF-A stimulates VEGFR-2 gene expression via a positive feedback 

mechanism [91]. In addition to that, this receptor is expressed in a fraction of hematopoietic 

cells which may be the progenitor for ECs [84, 91]. However, the level of expression is 

significantly lower than that found in ECs, thus, it is inconclusive whether low VEGFR-2 

levels in hematopoietic cells could have any biological impact [91]. A low VEGFR-2 

expression is also observed in neuronal cells, osteoblasts, pancreatic duct cells, and 

progenitor cells. Biological role of VEGFR-2 in these non-endothelial cells remains unclear 

[91]. In tumor vasculature, VEGFR-2 expression is 3-5-fold higher than in normal 

vasculature [91]. 

VEGFR-2 has now been accepted as the main mediator of VEGF-A biological activity [83]. 

VEGFR-2 is actively involved in both embryonic angiogenesis and hematopoiesis [83]. Mice 
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with an inactive gene flk1 die between 8.5 and 9.5 days of embryonic development [83]. The 

death of the animals results from disturbed vasculogenesis, as well as lack of EC 

differentiation and hematopoiesis [83]. Activation of VEGFR-2 stimulates a number of signal 

transduction pathways that induce mitogenesis, migration and survival of ECs [83]. This has 

been confirmed from in vivo studies in which inactivation of VEGFR-2 inhibited 

angiogenesis whereas activation of the receptor had an opposite effect [83]. In addition to 

that, VEGF-E, which interacts exclusively with VEGFR-2 induced cell proliferation and 

formation of tubular structures in endothelial cells in vitro and stimulated in vivo 

angiogenesis [83].  

2.9.3.6 VEGFR-3: The Lymphangiogenesis Key Receptor  

The expression of VEGFR-3 occurs during late stages of embryonic development. This 

receptor is mainly restricted to the lymphatic system endothelium [83, 84]. It regulates 

lymphangiogenesis [83, 84], a process that becomes selectively affected when the 

intracellular signaling pathways associated with this receptor are disturbed [83]. 

2.10 IMMUNOHISTOCHEMISTRY: A POWERFUL DIAGNOSTIC TOOL 

The introduction of immunochemical techniques in routine pathology laboratories has 

enabled pathologists to improve their diagnostic abilities. Immunohistochemistry (IHC) is a 

crucial and powerful diagnostic tool that serves to identify and localize distinct antigens in 

tissues or cells based on antigen-antibody recognition [92-94]. Immunohistochemistry also 

termed immunocytochemistry seeks to exploit the specificity that occurs during the 

interaction of an antibody with its antigen-antigen at a light microscopic level [92]. This 

technique does not only enable detection of abnormal tissues, but it also enables pathologists 

to determine the immunophenotype of normal cells and neoplastic counterparts [93]. 

Immunohistochemistry is a critical tool in illustrating tumor cell lineage and metastasis. 
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Moreover, immunohistochemical semi-quantitative data is often used in the identification and 

illustration of prognostic and predictive markers [92]. This means that immunohistochemical 

staining may have therapeutic implications in various diseases.  

2.10.1 Immunohistochemical Stain: More than just a special Stain  

As emphasized by pioneers in the field of functional morphology, the primary objective of all 

staining techniques is to identify micro-chemically the existence and distribution of 

components that have already been identified macro-chemically. The basic critical principle 

of special stains, including immunohistochemical stains, is a sharp visual localization of 

target components in cells or tissues, based on satisfactory signal-to-noise ratio [92]. Over the 

years, several technical developments have led to the extensive use of immunohistochemistry 

today. In surgical pathology laboratories, antigens can now be successfully demonstrated in 

routinely processed formalin-fixed paraffin-embedded (FFPE) tissues [92, 95]. The 

enzymatic label (horseradish peroxidase) with a suitable chromogenic substrate allows 

visualization of the labelled antibody by light microscopy. A rapid growth of commercially 

available antibodies and the on-going refinement of immunohistochemical tools contribute 

towards the pivotal role of immunohistochemistry in medical diagnostic procedures. 

Moreover, demands for improved reproducibility and quantification have made researchers 

aware that immunohistochemistry can be ‘more than just a special stain’. If all 

immunohistochemical processes are sufficiently monitored, the technique can provide tissue-

based immune-assay with reproducibility and quantitative features similar to those of an 

enzyme-linked immunosorbent assay (ELISA) test. This means that not only will the protein 

or antigen be detected, but an accurate and reliable amount of that particular antigen will be 

measurable [92]. 

 

 

 

 



32 

2.10.2 IHC Detection Systems 

Various IHC methods have been established to achieve greater sensitivity during the staining 

of FFPE tissues. The methods range from a one-step direct conjugate detection system to 

multiple-step detection systems such as peroxidase anti-peroxidase (PAP), avidin-

biotinconjugates (ABC) and biotin-streptavidin (B-SA). The main methods of 

immunostaining that are readily used include direct, indirect, alkaline phosphatase, 

peroxidase-anti-peroxidase and avidin-biotin methods [93]. In the study, the indirect 

conjugate (sandwich) method was used. It is a relatively simple modification of the direct 

conjugate method [92]. 

2.11 CONCLUDING REMARKS 

Chapter 2 outlined the biology of human vaginal mucosa and the value of athymic nude mice. 

The chapter was continued by exploring human and murine markers under investigation. The 

chapter was concluded by a brief discussion of immunohistochemistry. Chapter 3 will give a 

detailed description of the research methodology, including a procedure for 

immunohistochemistry. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 ETHICAL APPROVAL 

This study is a follow-up of two previous MSc research studies conducted separately by 

Wang [5] and Kok [6] for which prior ethical approval had been granted by the University of 

Stellenbosch and the University of the Western Cape (Reference Numbers N09/10/271 and 

N05/04/061).  This study is partly a validation and partly a further investigation of the tissue 

characteristics of a novel in-vivo research model. It verifies the results and introduces 

enlightening statistics on the interpretation of the staining intensities of tissue preparations 

reported previously by Kok [6]. 

3.2 EXPERIMENTAL DESIGN – PART 1: TISSUE PREPARATION 

3.2.1 Cyst Production 

Human vaginal mucosa was obtained from Tygerberg Hospital (Cape Town, South Africa) in 

a study conducted by Wang and Hille [5]. The vaginal mucosa had been removed during 

corrective procedures. A carrier medium containing 10% foetal calf serum (Delta 

Bioproducts, SA); minimum essential medium; streptomycin, penicillin and amphotericin-β 

was used to transport vaginal mucosa to the laboratory. In the laboratory, vaginal mucosa was 

divided twice, one portion served as a control for immunohistochemical examination whereas 

the other portion was used to produce experimental cysts. From the latter portion, the 

epithelium and its underlying connective tissue were separated with extreme caution in order 

to avoid injury to vaginal epithelium. Moreover, this was done to enhance successful 

separation of the epithelium from the connective tissue. Epithelial fragments of 
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approximately 8 X 4 mm in size were prepared. A glass ball of 2 mm in diameter was placed 

on each epithelial fragment and the tissue was sutured around the glass ball with DexonR 

(DG American Cyanamid Company, USA). A total of 24 cysts were prepared. Stringent 

infection control measures were also applied to reduce potential bacterial infection of vaginal 

epithelium. 

3.2.2 Athymic Nude Mice 

Male athymic mice aged 4-6 weeks were obtained from the Animal House at the University 

of Cape Town (Cape Town, South Africa). The animals were housed in pathogen-free 

isolators under controlled conditions of light and humidity. The temperature was maintained 

at 26°C and a light cycle consisting of 12 hours of light and 12 hours of darkness. The mice 

were provided with a suspension of 1.8% tetracycline in their drinking water. Sterilized mice 

feed was also provided ad libitum. 

3.2.3 Cyst Xenografts 

The cysts were xenografted into the dorsal neck region of immune-deficient mice using a 

trocar. Only one cyst was implanted per animal. Successful integration of newly implanted 

experimental cysts in host nude mice was achieved 9-weeks post implantation. During the 9-

week period, terramycin and/or gentamicin were administered to the animals to minimize the 

high risk of infection associated with xenografts. 

3.2.4 Cyst Retrieval 

After a 9-week period, the implanted cysts were harvested from the animals. The animals 

were anaesthetized with a mixture of fentanyl and hypnodil. Surgical procedures were 

performed under sterile conditions. The cysts were fixed in buffered formalin, routinely 

processed and embedded in paraffin wax for subsequent use. Cysts with a morphologically 
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intact vaginal epithelium, a conspicuous adjacent stroma and no illustrations of infection 

were used. Cysts that were ruptured with excessive inflammation and signs of infection were 

excluded. As a result of the above mentioned selection criteria, only 10 cysts were in 

conditions suitable for experimental purposes. In this study, the phrases ‘normal vaginal 

tissues’ and ‘xenografted vaginal tissues’ refers to original tissues and their paired implanted 

cysts, respectively. 

3.3 EXPERIMENTAL DESIGN – PART 2: IMMUNOHISTOCHEMISTRY 

3.3.1 Principle 

As already stated in Chapter 2, immunohistochemistry is a technique used for localizing 

specific antigens in tissues or cells based on antigen-antibody recognition [92]. This method 

exploits the specificity provided by antibody-antigen interaction at a light microscopic level. 

The basic critical principle of immunohistochemistry is a sharp visual localization of target 

components in a cell and tissue, based on satisfactory signal-to-noise ratio [92]. In daily 

practice, satisfactory results are obtained by amplifying the signal while simultaneously 

reducing specific background staining. In this study, indirect conjugate (sandwich) detection 

system was used to localize human and murine markers in normal vaginal tissues and 

xenografted vaginal tissues. In this method, the primary antibody that has specificity against 

the antigen in question (e.g., rabbit anti-mouse antibody) was added to a vaginal tissue 

section, and excess antibody was rinsed off. The labeled secondary antibody, which has 

specificity against the antigen on the primary rabbit antibody, was then added. Adding a 

secondary antibody is important for labeling sites on the tissue that express the primary 

antibody, which, in turn, is bound to the antigen [92]. 
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Figure 3.1: Indirect Conjugate (Sandwich) Method. The primary antibody is unlabeled. The method uses a 

labeled secondary antibody, having specificity against the primary antibody. Boxed-Antigen determinant on 

primary antibody; Px-Peroxidase label; F-Fluorescein label. Source: [92]. 

3.3.2 Antibodies 

Mouse anti-human primary antibodies raised against 10 human antigens were used. Human 

primary antibodies used were; anti-cytokeratin 1, anti-cytokeratin 5, anti-cytokeratin 13, anti-

cytokeratin 14, anti-collagen type IV, anti-laminin, anti-elastin, CD1a, anti-fibronectin and 

anti-VEGFR-3 (Leica Microsystems, SA). Rabbit anti-mouse primary antibodies raised 

against 6 mouse antigens were also used. The primary antibodies directed against mouse 

antigens included anti-collagen type IV, anti-laminin, Langerin, anti-fibronectin and anti-

VEGFR-2 (Biocom Biotech CC, SA). 

Table 3.1: Rabbit Anti-Mouse Antibodies used for Immunohistochemical Analysis of Murine Markers 

Antibody Reference 
Code 

Specificity Dilution Antigen Retrieval Method 

C7510-50S Collagen type IV 1:100 EDTA/Citrate Buffer Solution 
LS-C25107 Laminin 1:100 EDTA/Citrate Buffer Solution 
F4215-46 Fibronectin 1:100 EDTA/Citrate Buffer Solution 
LS-C735 Langerhans cells 1:100 EDTA/Citrate Buffer Solution 
V2100-17C2 VEGFR-2 1:50 EDTA/Citrate Buffer Solution 
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Table 3.2: Mouse Anti-Human Antibodies used for Immunohistochemical Analysis of Human Markers 

Antibody Reference 
Code 

Specificity Dilution Antigen Retrieval Method 

NCL-CK1 Cytokeratin 1 1:20 EDTA Buffer Solution 
NCL-CK5 Cytokeratin 5 1:100 EDTA/Citrate Buffer Solution 
NCL-CK13 Cytokeratin 13 1:100 EDTA Buffer Solution 
NCL-LL002 CK14 Cytokeratin 14 1:20 EDTA Buffer Solution 
NCL-COLL-IV Collagen type IV 1:100 Enzyme Digestion 
NCL-LAMININ Laminin 1:100 Enzyme Digestion 
NCL-ELASTIN Elastin 1:100 Enzyme Digestion 
NCL-FIB Fibronectin 1:100 Enzyme Digestion 
NCL-CD1A-235 Langerhans cells 1:15 EDTA/Citrate Buffer Solution 
NCL-L-VEGFR-3 VEGFR-3 1:50 EDTA/Citrate Buffer Solution 

 

3.3.3 Procedure 

Formalin-fixed, paraffin embedded blocks were cut into 3 µm sections. The sections were 

mounted on positively charged slides coated with Poly-L-Lysine solution (Sigma Aldrich, Pty 

Ltd, SA) and incubated overnight at 26°C. The first step involved dewaxing (deparaffinizing) 

tissue sections in xylene for 5 minutes, followed by immersing them in decreasing grades of 

alcohol for 2 minutes with each alcohol. 2X 100% alcohol, 2X 96% alcohol and 1X 70% 

alcohol were used. Sections were washed in water (H2O) for 4 minutes and distilled water 

(dH2O) for 2 minutes. Human antigen retrieval using anti-cytokeratin 1, anti-cytokeratin 13 

and anti-cytokeratin 14 antibodies was performed using ethylene diamine tetracetic acid 

(EDTA) based buffer of pH 9.0 at 100°C for 10-15 minutes. Human antigen retrieval using 

anti-cytokeratin 5; CD1a and anti-VEGFR-3 antibodies was performed using citrate buffer of 

pH 6.0 at 100°C for 10-15 minutes. Human antigen retrieval using anti-collagen type IV; 

anti-laminin, anti-elastin and anti-fibronectin antibodies was performed using pepsin 

digestion method at 37°C for 30 minutes. All mouse antigens were retrieved using EDTA 

based buffer of pH 9.0 at 100°C for 10-15 minutes. A summarized version of the methods 

used for antigen retrieval is indicated on Table 3.1 and Table 3.2. Sections were washed in 

phosphate buffer solution (PBS), immersed in 3% hydrogen peroxide (H2O2) to block 

endogenous peroxidase activity, and washed again in PBS. Subsequent blocking was done 

with normal rabbit serum of 1:20 dilution for 20 minutes. Excess PBS was drained off and 
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tissue slides were dry-blotted to prevent further dilution of antibodies in PBS during 

incubation. Excess PBS was also removed to enhance optimum binding of antibodies. 

Sections were incubated with 250 µl primary antibodies at room temperature for 30 minutes 

and rinsed in PBS for 2 minutes. Sections were then incubated with 300 µl biotinylated 

secondary link antibodies at room temperature for 30 minutes and rinsed in PBS. Further 

incubation of sections was done with 300 µl streptavidin horse radish peroxidase (HRP) at 

room temperature for 30 minutes. A chromogen substrate consisting of 1 ml substrate buffer 

and 50 µl 3,3-diaminobenzidine (DAB) was added to each section. Sections were incubated 

at room temperature for 10 minutes, rinsed in water for 2 minutes and immersed in 

hematoxylin for 25 seconds. Sections were dehydrated using an increasing grade of alcohols 

by dipping sections 10 times per alcohol. Increasing grades of alcohol used were 1X 70% 

alcohol, 2X 96% alcohol and 2X 100% alcohol. Slides were rinsed with 2X xylene to ensure 

complete dehydration. A small drop of DPX mountant (glue) (Sigma Aldrich, Pty Ltd, SA) 

was placed on each cover slip and stained sections were subsequently mounted onto cover 

slips. Sections were left to air dry before being analyzed. 

3.3.4 Light Microscopy 

Tissue sections were analyzed by brightfield using 10X, 20X and 40X objectives of Nikon 

Eclipse 55! microscope (Nikon Instruments, Inc.). Images were taken using NIS Elements 

(Nikon Instruments, Inc.) software and Nikon Digital Sight DS-U2 camera (Nikon 

Corporation). Immunohistochemical structures of interest such as the epithelium, basement 

membrane and stromal layer were assessed on each tissue section. Sections were scored 

according to a scale explained in the next section. 
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3.3.5 Scoring Criteria 

Following immunohistochemical staining of normal tissues and xenografted tissues, staining 

intensity of markers was assessed along the epithelium, the basement membrane and stromal 

layer. Staining intensity for each tissue was scored according to a semi-quantitative scoring 

system stipulated on Table 3.3 and Table 3.4. Semi-quantitative scoring procedure was 

performed in triplicate. Tissue sections were awarded a score of between 0 and 4 for all 

human and murine markers except for collagen IV and laminin which could only be awarded 

a maximum score of 3. 

Table 3.3: Immunohistochemical Scoring Criteria for Human and Murine Markers 

IHC Score Description of the IHC Score 
0 Negative Staining (No Positively Stained Cells) 
1 Very Few Positively Stained Cells (10-25%) 
2 Rare Positive Staining (25-50%) 
3 Strong, Non-Uniform Positive Staining (50-75%) 
4 Strong, Uniform Positive Staining (>75%) 

 
Table 3.4: Immunohistochemical Scoring Criteria for Collagen IV and Laminin 

IHC Score Description of the IHC Score 
0 Negatively Stained Basement Membrane 

1 Rare Positively Stained Basement Membrane 
2 Strong, Interrupted Stained Basement Membrane 
3 Strong, Uniformly Stained Basement Membrane 
4  

 

In selected cases, immunohistochemical scores staining scores were recorded by two 

independent observers before final scores could be established. This was done to ensure that 

optimum scores were used for statistical analysis. 
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3.4 STATISTICAL ANALYSIS 

Staining intensities were statistically analyzed using GraphPad Prism5.0 (GraphPad 

Software, Inc). Firstly, Normality tests were performed to determine whether or not the data 

was sampled from a Gaussian distribution. Since the data was not normally distributed, 

repeated-measures one-way ANOVA with subsequent non-parametric Friedman’s test was 

used to compare mean staining intensity of the paired vaginal tissues. Since Friedman’s test 

ranks values in each row, it is not affected by sources of variability that may equally affect all 

values in a row. This matched test was therefore chosen to control experimental variability 

between tissue sections, and thus enhancing the power of the test statistic. Dunn’s post-test 

was chosen to make further multiple comparisons between normal and xenografted vaginal 

tissues. Scores reported from Kok’s study were also statistically assessed. A significance 

level of P<0.05 was used for all tests and comparisons. All comparisons were conducted in 

triplicate to avoid statistical errors. Results were expressed in terms of mean ± standard error 

of mean (SEM). 

3.5 POSITIVE CONTROLS 

In order to ascertain immunohistochemical staining results, positive controls that were processed 

in-house by Kok [6] were used in the current study. 

3.5.1 Positive Human Tissue Controls 

Seven human surgical tissues were used as positive controls (Table 3.5). The tissues had been 

obtained from the Division of Anatomical Pathology of the national health laboratory service 

(NHLS) (Tygerberg Hospital, Cape Town, South Africa). 
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Table 3.5: Positive Human Control Tissues Used for Validation of IHC Staining 

Mouse Anti-Human Antibody Antibody Reference Code Positive Control Tissue 

Cytokeratin 1 NCL-CK1 Human Skin 

Cytokeratin 5 NCL-CK5 Human Prostate 

Cytokeratin 13 NCL-CK13 Human Tonsil 

Cytokeratin 14 NCL-LL002 CK14 Human Skin 

Collagen Type IV NCL-COLL-IV Kidney/Basement Membrane 

Laminin NCL-LAMININ Kidney/Small Intestine 

Elastin NCL-ELASTIN Kidney/Small Intestine 

Fibronectin NCL-FIB Normal Kidney 

CD1a (Langerhans Cells) NCL-CD1A-235 Human Skin 

VEGFR-3 NCL-L-VEGFR-3 Human Placenta 

 

3.5.2 Positive Mouse Tissue Controls 

Two athymic nude mice obtained from the Animal House at the University of Cape Town 

(Cape Town, South Africa) had been used to process mouse tissues that served as positive 

controls. The mice had been dissected by Kok [6] at the division of Anatomical Pathology of 

the NHLS (Tygerberg Hospital, Cape Town, South Africa). 

Subsequent tissue fixation had been performed at the division of Anatomy and Histology of 

the NHLS (Tygerberg Hospital, Cape Town, South Africa). Table 3.6 lists mice tissues that 

served as positive controls for IHC staining. 

Table 3.6: Positive Mouse Control Tissues Used for Validation of IHC Staining 

Rabbit Anti-Mouse Antibody Antibody Reference  Positive Control Tissue 

Collagen Type IV C7510-50S Mouse Kidney / Liver 

Laminin LS-C25107 Mouse Skin / Liver 

Fibronectin F4215-46 Mouse Skin / Liver 

Langerhans Cells LS-C735 Mouse Lung / Skin 

VEGFR-2 V2110-17C2 Mouse Pancreas / Kidney 
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3.6 NEGATIVE CONTROLS 

Negative tissue controls were included in the study to confirm the specificity of the 

immunohistochemical test and to assess the presence of non-specific background staining. 

Negative controls used had also been prepared in a previous study by Kok [6]. Normal human 

vaginal mucosa was used as a negative control. This step was important to substantiate the 

specificity of mouse antigen markers as well as to exclude cross reactivity with human 

antigens. 

3.6.1 Negative Tissue: Control 1 

The 1st negative control was a tissue section in which rabbit anti-mouse antibody was 

replaced with PBS. This was done to identify any false positive results. 

3.6.2 Negative Tissue: Control 2 

The 2nd negative control was incubated with a primary antibody and biotinylated secondary 

antibody and streptavidin HRP were replaced with PBS. The second control was included to 

verify negative staining of antigens. 

3.7 ACCRONYMS USED IN THE STUDY 

The acronyms NVT and XVT shall be used to denote normal vaginal tissues and xenografted 

vaginal tissues, respectively. NVTα and XVTα will denote normal and xenografted vaginal 

tissues of the previous study, respectively. The letters –h and –m will denote localization of 

human and mouse antigens (markers) respectively. 
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CHAPTER FOUR 

RESULTS  

4.1 HUMAN CYTOKERATIN 1 EXPRESSION PROFILE 

4.1.1 Immunohistochemical Scores for Cytokeratin 1 

Varied staining patterns of Cytokeratin 1 (CK1) were observed along the epithelium in both 

normal and xenografted vaginal tissues. All normal tissues displayed a moderate to strong 

positive staining of CK1. Weak reactivity patterns were seen in 6 of 10 xenografted tissues 

whereas the remaining 4 of 10 tissues stained negatively for CK1 (Table 4.1). 

Table 4.1: Immunohistochemical Scoring of Human Vaginal Mucosa for Cytokeratin 1. Scores reflect the 
difference in the staining intensity between normal vaginal tissues and xenografted vaginal tissues. Mouse anti-
human monoclonal antibody raised against cytokeratin 1 antigens was used in both tissues. 

Tissue Reference No. 

Immunohistochemical Score 

Normal Vaginal Tissue 

NCL-CK1 Ab 

Xenografted Vaginal Tissue 

NCL-CK1 Ab 

15392/06 2 0 

15396/06 4 0 

16173/06 2 1 

16175/06 4 1 

16176/06 4 2 

8960/06 3 0 

8961/06 3 2 

10156/06 4 1 

17559/06 4 1 

17560/06 4 0 

*Scoring System; 0-Negative Staining; 1-Poor Staining (10-25%); 2-Rare Positive Staining (25-50%); 3-Some Positive 
Staining (50-75%); 4-Strong Uniform Positive Staining (>75%). 

NCL-CK1 - Reference Code for Human Cytokeratin 1 Antibody; Ab - Antibody. 
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4.1.2 Statistical Comparisons of Cytokeratin 1 Staining Intensities 

Mean staining intensities for cytokeratin 1 in NVT, XVT, NVTα and XVTα were 3.4±0.2667, 

0.8±0.2494, 3.8±0.2000 and 1.3±0.3350, respectively. Repeated-measures one-way ANOVA 

with subsequent Friedman’s test (Friedman Statistic=27.69) showed significant differences in 

the staining intensities between the tissue groups (P<0.0001). Dunn’s post-test for multiple 

comparisons of the groups showed significant differences between NVT and XVT, NVTα and 

XVTα (P<0.05). A high significant difference was noted between NVTα and XVT (P<0.05). 
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Figure 4.1: Mean Cytokeratin 1 Staining Intensity by Vaginal Mucosal Type. Data is expressed 

as mean ± standard error of mean (n=10). Friedman’s test indicates that tissue types are significantly 

different (P<0.0001). Dunn’s post test specifies tissue types that are significantly different (P<0.05) 

as denoted by similar alphabets.  

NVT-Normal Vaginal Tissue; XVT-Xenografted Vaginal Tissue; αCorne Kok-Unpublished Work. 

*Significant; **Very Significant; ***Extremely Significant 
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4.1.3 Photomicrographs of Vaginal Mucosae Stained for Cytokeratin 1 

  

  

 

Figure 4.2. Immunohistochemical Staining of Cytokeratin 1 on Vaginal Mucosal Tissues. CK1 staining 

performed on (A) and (B) normal vaginal tissues. (C) and (D) xenografted vaginal tissues. Small arrows 

point to cells expressing CK1. Big arrow points to superficial and intermediate epithelial layers where CK1 

is predominantly expressed. Ep-Epithelium; BM-Basement Membrane; CT-Connective Tissue. 

(Magnifications X100). 
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4.2 HUMAN CYTOKERATIN 5 EXPRESSION PROFILE 

4.2.1 Immunohistochemical Scores for Cytokeratin 5 

Cytokeratin 5 (CK5) was abundantly present in both normal and xenografted tissues. Positive 

staining was expressed along the epithelium, particularly on the basal layer (Figure 4.4). A 

strong, widespread distribution pattern was reported in 8 of 10 normal tissues and in 3 of 10 

xenografted tissues (Table 4.2). Positive staining with rare interruptions was observed in 7 of 

10 xenografted tissues. 

Table 4.2: Immunohistochemical Scoring of Human Vaginal Mucosa for Cytokeratin 5. Scores reflect the 
difference in the staining intensity between normal vaginal tissues and xenografted vaginal tissues. Mouse anti-
human monoclonal antibody raised against cytokeratin 5 antigens was used in both tissues. 

Tissue Reference No. 

Immunohistochemical Score 

Normal Vaginal Tissue 

NCL-CK5 Ab 

Xenografted Vaginal Tissue 

NCL-CK5 Ab 

15392/06 4 3 

15396/06 4 3 

16173/06 4 3 

16175/06 4 4 

16176/06 4 4 

8960/06 3 3 

8961/06 3 3 

10156/06 4 4 

17559/06 4 3 

17560/06 4 2 

*Scoring System; 0-Negative Staining; 1-Poor Staining (10-25%); 2-Rare Positive Staining (25-50%); 3-Some Positive 
Staining (50-75%); 4-Strong Uniform Positive Staining (>75%). 

NCL-CK5 - Reference Code for Human Cytokeratin 5 Antibody; Ab - Antibody. 
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4.2.2 Statistical Comparisons of Cytokeratin 5 Staining Intensities 

Mean staining intensities for cytokeratin 5 in NVT, XVT, NVTα and XVTα were 3.8±0.1333, 

3.2±0.2000, 4.0±0.0000 and 3.6±0.1633, respectively. Repeated-measures one-way ANOVA 

with subsequent Friedman’s test (Friedman Statistic=13.35) indicated significant differences 

in the mean staining intensities between the tissues (P=0.0039). However, according to 

Dunn’s multiple comparison test, there were no statistically significant differences in the 

staining intensities between all the tissue groups (P>0.05)  
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Figure 4.3: Mean Cytokeratin 5 Staining Intensity by Vaginal Mucosal Type. Data is expressed 

as mean ± standard error of mean (n=10). Friedman’s test indicates a significant difference between 

tissue types (P=0.0039). Conversely, Dunn’s post test indicates that tissue types are not significantly 

different (P>0.05). 

NVT-Normal Vaginal Tissue; XVT-Xenografted Vaginal Tissue; αCorne Kok-Unpublished Work. 
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4.2.3 Photomicrographs of Vaginal Mucosae Stained for Cytokeratin 5 

  

  

 

Figure 4.4. Immunohistochemical Staining of Cytokeratin 5 on Vaginal Mucosal Tissues. CK5 staining 

performed on (A) and (B) normal vaginal tissues. (C) and (D) xenografted vaginal tissues. Small arrows 

point to cells expressing CK5. Big arrow points to the basal epithelial layer where CK5 is mostly localized. 

Ep-Epithelium; BM-Basement Membrane; CT-Connective Tissue. (Magnifications X100 for A, C, D and 

X200 for B). 
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4.3 HUMAN CYTOKERATIN 13 EXPRESSION PROFILE 

4.3.1 Immunohistochemical Scores for Cytokeratin 13 

Normal and xenografted vaginal tissues displayed positive staining for cytokeratin 13 

(CK13). CK13 was observed along the superficial, intermediate and parabasal layers of the 

epithelium (Figure 4.6) in both normal and xenografted tissues. A relatively similar strong 

staining pattern was reported in 9 of 10 normal tissues. A moderate to strong staining of 

CK13 was noted in 9 of 10 xenografted tissues while 1 xenografted tissue stained negatively 

(Table 4.3) 

Table 4.3: Immunohistochemical Scoring of Human Vaginal Mucosa for Cytokeratin 13. Scores reflect the 
difference in the staining intensity between normal vaginal tissues and xenografted vaginal tissues. Mouse anti-
human monoclonal antibody raised against cytokeratin 13 antigens was used in both tissues. 

Tissue Reference No. 

Immunohistochemical Score 

Normal Vaginal Tissue 

NCL-CK13 Ab 

Xenografted Vaginal Tissue 

NCL-CK13 Ab 

15392/06 4 4 

15396/06 4 0 

16173/06 4 4 

16175/06 4 3 

16176/06 4 3 

8960/06 4 3 

8961/06 4 3 

10156/06 3 2 

17559/06 4 3 

17560/06 4 2 

*Scoring System; 0-Negative Staining; 1-Poor Staining (10-25%); 2-Rare Positive Staining (25-50%); 3-Some Positive 
Staining (50-75%); 4-Strong Uniform Positive Staining (>75%). 

NCL-CK13 - Reference Code for Human Cytokeratin 13 Antibody; Ab - Antibody. 
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4.3.2 Statistical Comparisons of Cytokeratin 13 Staining Intensities 

Mean staining intensities for cytokeratin 13 in NVT, XVT, NVTα and XVTα were 

3.9±0.1000, 2.7±0.3667, 4.0±0.0000 and 4.0±0.0000, respectively. Repeated-measures one-

way ANOVA with subsequent Friedman’s test (Friedman Statistic=22.76) indicated 

significant differences in the mean staining intensities between all tissue groups (P<0.0001). 

Further statistical analysis with Dunn’s multiple comparison test showed significant 

differences between NVTα and XVT and between XVT and XVTα (P<0.05). 
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Figure 4.5: Mean Cytokeratin 13 Staining Intensity by Vaginal Mucosal Type. Data is expressed 

as mean ± standard error of mean (n=10).  Friedman’s test indicates a statistical difference between 

tissue types (P<0.0001). Further analysis with Dunn’s post test shows tissue types that are 

significantly different (P<0.05) as denoted by similar alphabets. 

NVT-Normal Vaginal Tissue; XVT-Xenografted Vaginal Tissue; αCorne Kok-Unpublished Work. 
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4.3.3 Photomicrographs of Vaginal Mucosae Stained for Cytokeratin 13 

  

  

 

Figure 4.6. Immunohistochemical Staining of Cytokeratin 13 on Vaginal Mucosal Tissues. CK13 

staining performed on (A) and (B) normal vaginal tissues. (C) and (D) xenografted vaginal tissues. Small 

arrow points to a cell expressing CK13. Big arrows point to the parabasal epithelial layer where CK13 is 

mostly localized. A star indicates diffusely expressed CK13 in all epithelial layers of this particular 

xenografted tissue. Ep-Epithelium; CT-Connective Tissue. (Magnifications X100). 
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4.4 HUMAN CYTOKERATIN 14 EXPRESSION PROFILE 

4.4.1 Immunohistochemical Scores for Cytokeratin 14 

Cytokeratin 14 (CK14) was demonstrated consistently in both normal and xenografted 

vaginal tissues. CK14 was predominantly localized to the basal epithelial layer (Figure 4.8). 

A strong, uniformly stained epithelium was observed in 9 of 10 normal tissues and in 3 of 10 

xenografted tissues (Table 4.4). In most cases, xenografted tissues exhibited interrupted 

staining patterns. 

Table 4.4: Immunohistochemical Scoring of Human Vaginal Mucosa for Cytokeratin 14. Scores reflect the 
difference in the staining intensity between normal vaginal tissues and xenografted vaginal tissues. Mouse anti-
human monoclonal antibody raised against cytokeratin 14 antigens was used in both tissues. 

Tissue Reference No. 

Immunohistochemical Score 

Normal Vaginal Tissue 

NCL-LL002CK14 Ab 

Xenografted Vaginal Tissue 

NCL-LL002CK14 Ab 

15392/06 4 3 

15396/06 4 4 

16173/06 3 3 

16175/06 4 3 

16176/06 4 4 

8960/06 4 2 

8961/06 4 3 

10156/06 4 4 

17559/06 4 1 

17560/06 4 3 

*Scoring System; 0-Negative Staining; 1-Poor Staining (10-25%); 2-Rare Positive Staining (25-50%); 3-Some Positive 
Staining (50-75%); 4-Strong Uniform Positive Staining (>75%). 

NCL-LL002CK14 - Reference Code for Human Cytokeratin 14 Antibody; Ab - Antibody. 
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4.4.2 Statistical Comparisons of Cytokeratin 14 Staining Intensities 

Mean staining intensities for cytokeratin 14 in NVT, XVT, NVTα and XVTα were 

3.9±0.1000, 3.0±0.3333, 4.0±0.0000 and 4.0±0.0000, respectively (Figure 4.7). Repeated-

measures one-way ANOVA with subsequent Friedman’s test (Friedman Statistic=18.55) 

indicated significant differences in the mean staining intensities between tissue groups 

(P=0.0003). Conversely, further analysis with Dunn’s multiple comparison test, showed no 

statistical differences in the staining intensities between tissue groups (P>0.05)  
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Figure 4.7: Mean Cytokeratin 14 Staining Intensity by Vaginal Mucosal Type. Data is expressed 

as mean ± standard error of mean (n=10). Friedman’s test indicates a statistical difference between 

tissue types (P=0.0003). On the contrary, Dunn’s post test does not show any statistical difference 

between tissue types (P>0.05).  

NVT-Normal Vaginal Tissue; XVT-Xenografted Vaginal Tissue; αCorne Kok-Unpublished Work. 
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4.4.3 Photomicrographs of Vaginal Mucosae Stained for Cytokeratin 14 

  

  

 

Figure 4.8. Immunohistochemical Staining of Cytokeratin 14 on Vaginal Mucosal Tissues. CK14 

staining performed on (A) and (B) normal vaginal tissues. (C) and (D) xenografted vaginal tissues. Small 

arrows point to cells expressing CK14. Big arrow points to the basal epithelial layer where CK14 is mostly 

localized. Ep-Epithelium; BM-Basement Membrane; CT-Connective Tissue. (Magnifications X100). 
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4.5 COLLAGEN TYPE IV EXPRESSION PROFILE 

4.5.1 Immunohistochemical Scores for Collagen IV 

Human collagen IV was moderately expressed along the basement membrane in 8 of 10 

normal tissues (Table 4.5). Limited or absent human collagen IV staining patterns were 

observed along the basement of xenografted tissues. In addition, positive staining was also 

noted around blood vessels in both normal and xenografted tissues (Figure 4.10). Only 3 of 

10 xenografted tissues stained positively for mouse collagen IV whereas the other 7 tissues 

stained negatively (Table 4.5). 

Table 4.5: Immunohistochemical Scoring of Human Vaginal Mucosa for Collagen IV. Scores reflect the 
difference in the staining intensity between normal vaginal tissues and xenografted vaginal tissues. The 
following collagen IV antibodies were used (a) Mouse anti-human monoclonal Ab; (b) Mouse anti-human 
monoclonal Ab; and (c) Rabbit anti-mouse monoclonal Ab. 

 

Tissue Reference No. 

Immunohistochemical Score 

Normal Vaginal Tissue Xenografted Vaginal Tissues 

(A) NCL-COLL-IV Ab (B) NCL-COLL-IV Ab (C) C7510-50S Ab 

15392/06 1 0 1 

15396/06 1 1 0 

16173/06 2 1 1 

16176/06 2 1 0 

8961/06 2 1 1 

8926/06 2 1 0 

10156/06 2 2 0 

10159/06 2 0 0 

17560/06 2 0 0 

10501/06 2 1 2 

*Scoring System; 0-Negative Staining; 1-Rare Positive Staining; 2-Rare Interrupted Positive Staining; 3-Strong Uniform 
Positive Staining. 

NCL-COLL-IV - Reference Code for Human Collagen IV; C7510-50S - Reference Code for Mouse Collagen IV; Ab - 
Antibody. 
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4.5.2 Statistical Comparisons of Collagen IV Staining Intensities 

Mean staining intensities for collagen IV in NVT, XVT-h and XVT-m were 1.8±0.1333, 

0.8±0.2000 and 0.5±0.2236, respectively. Mean staining intensities in NVTα and XVTα-h and 

XVTα-m were 1.4±0.1633, 0.7±0.1528 and 0.6±0.1757, respectively. Repeated-measures 

one-way ANOVA with subsequent Friedman’s test (Friedman Statistic=16.79) indicated 

significant differences between the mean staining intensities between the tissue groups 

(P≤0.0049). Further statistical analysis with Dunn’s multiple comparison test showed no 

statistical differences in the mean staining intensities between the tissue groups (P>0.05). 
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Figure 4.9: Mean Collagen IV Staining Intensity by Vaginal Mucosal Type. Data is expressed as 

mean ± standard error of mean (n=10). Friedman’s test indicates a statistical difference between 

tissue types (P=0.0049). Conversely, Dunn’s post test does not show any statistical difference 

between tissue types (P>0.05).  

NVT-Normal Vaginal Tissue; XVT-Xenografted Vaginal Tissue; αCorne Kok-Unpublished Work; h- Human Antigen 

Localization; m-Mouse Antigen Localization. 
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4.5.3 Photomicrographs of Vaginal Mucosae Stained for Human Collagen IV 

  

  

 

Figure 4.10. Immunohistochemical Staining of Human Collagen IV on Vaginal Mucosal Tissues. 

Collagen IV staining performed on (A) and (B) normal vaginal tissues. (C) and (D) xenografted vaginal 

tissues. Small arrows point to cells expressing collagen IV. Stars indicate that collagen IV is strongly 

expressed along the basement membrane and some blood vessels. Ep-Epithelium; BM-Basement 

Membrane; CT-Connective Tissue; BVs-Blood Vessels. (Magnifications X100 for A, B, C and X200 for D). 
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4.5.4 Photomicrographs of Human and Murine Tissues Stained for Mouse Collagen IV 

 

 

 

Figure 4.11. Immunohistochemical Staining of Mouse Collagen IV on Human and Murine Tissues. 

Collagen IV staining performed on (A) positive control - mouse kidney tissue (B) and (C) xenografted 

vaginal tissues. Stars indicate negative expression of mouse collagen IV along the basement membrane. 

PCT-Proximal Convoluted Tubules; DCT-Distal Convoluted Tubules; Ep-Epithelium; CT-Connective 

Tissue; BVs-Blood Vessels. (Magnifications X100 for A, B and X200 for C). 
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4.6 LAMININ EXPRESSION PROFILE 

4.6.1 Immunohistochemical Scores for Laminin 

Human laminin was staining patterns were varied in both normal and xenografted vaginal 

tissues. The basement membrane and blood vessels exhibited positive staining of human 

laminin (Figure 4.13). Positive staining of human laminin was reported in 6 of 10 normal 

tissues and 7 of 10 xenografted tissues. A weak positive staining of mouse laminin was noted 

in only 2 of 10 xenografted tissues (Table 4.6). 

Table 4.6: Immunohistochemical Scoring of Human Vaginal Mucosa for Laminin. Scores reflect the 
difference in the staining intensity between normal vaginal tissues and xenografted vaginal tissues. The 
following laminin antibodies were used (a) Mouse anti-human monoclonal Ab; (b) Mouse anti-human 
monoclonal Ab; and (c) Rabbit anti-mouse monoclonal Ab. 

 

Tissue Reference No. 

Immunohistochemical Score 

Normal Vaginal Tissue Xenografted Vaginal Tissues 

(A) NCL-LAMININ Ab (B) NCL-LAMININ Ab (C) LS-C25107 Ab 

15392/06 1 1 0 

15396/06 2 1 0 

16173/06 2 1 1 

16176/06 0 0 0 

8961/06 0 0 0 

8926/06 0 0 0 

10156/06 0 1 0 

10159/06 2 1 1 

17560/06 3 2 0 

10501/06 3 1 0 

*Scoring System; 0-Negative Staining; 1-Rare Positive Staining; 2-Rare Interrupted Positive Staining; 3-Strong Uniform 
Positive Staining. 

NCL-LAMININ - Reference Code for Human Laminin Antibody; LS-C25107 - Reference Code for Mouse Laminin; Ab - 
Antibody. 
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4.6.2 Statistical Comparisons of Laminin Staining Intensities 

Mean staining intensities for laminin in NVT, XVT-h and XVT-m were 1.3±0.3958, 

0.8±0.2000 and 0.2±0.1470, respectively. Mean staining intensities in NVTα and XVTα-h and 

XVTα-m were 1.3±0.3000, 0.7±0.2134 and 0.0±0.0000, respectively. Repeated-measures 

one-way ANOVA with subsequent Friedman’s test (Friedman Statistic=22.59) indicated 

significant differences in the mean staining intensities between tissue groups (P=0.0004). 

Further statistical analysis with Dunn’s multiple comparison test showed no statistical 

differences in the mean staining intensities between all tissue groups (P>0.05), with an 

exception for NVT and XVTα (P<0.05). 
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Figure 4.12: Mean Laminin Staining Intensity by Vaginal Mucosal Type. Data is expressed as 

mean ± standard error of mean (n=10). Friedman’s test indicates that tissue types are significantly 

different (P=0.0004). Dunn’s multiple test specifies tissue types that are statistically different 

(P<0.05) as denoted by similar alphabets. 

NVT-Normal Vaginal Tissue; XVT-Xenografted Vaginal Tissue; αCorne Kok-Unpublished Work; h-Localization of 

Human Antigens; m-Localization of Mouse Antigens. 
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4.6.3 Photomicrographs of Vaginal Mucosae Stained for Human Laminin 

  

  

 

Figure 4.13. Immunohistochemical Staining of Human Laminin on Vaginal Mucosal Tissues. Laminin 

staining performed on (A) and (B) normal vaginal tissues. (C) and (D) xenografted vaginal tissues. Small 

arrows point to cells expressing laminin. Stars indicate that laminin is strongly expressed along the basement 

membrane and some blood vessels. Ep-Epithelium; BM-Basement Membrane; CT-Connective Tissue; BVs-

Blood Vessels. (Magnifications X100 for A, C and X200 for B, D). 
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4.6.4 Photomicrographs of Human and Murine Tissues Stained for Mouse Laminin 

 

 

 

Figure 4.14. Immunohistochemical Staining of Mouse Laminin on Human and Murine Tissues. 

Laminin staining performed on (A) positive control - mouse kidney tissue (B) and (C) xenografted vaginal 

tissues. Stars indicate negative expression of mouse laminin along the basement membrane. PCT-Proximal 

Convoluted Tubules; DCT-Distal Convoluted Tubules; Ep-Epithelium; CT-Connective Tissue. 

(Magnifications X100 for A, B and X200 for C). 

 

B 

C 

Ep 

CT 

Ep 

CT 

DCT 

A 
PCT 

 

 

 

 



63 

4.7 HUMAN ELASTIN EXPRESSION PROFILE 

4.7.1 Immunohistochemical Scores for Elastin 

A strong and well defined positive staining of elastin was seen across the stromal layer in 

both normal and xenografted vaginal tissues (Figure 4.16). Positive elastin staining was also 

observed along the basement membrane of some tissues. Interestingly, positive staining was 

reported in 8 of 10 normal tissues whereas 10 of 10 xenografted tissues stained positively 

(Table 4.7). 

Table 4.7: Immunohistochemical Scoring of Human Vaginal Mucosa for Elastin. Scores reflect the 
difference in the staining intensity between normal vaginal tissues and xenografted vaginal tissues. Mouse anti-
human monoclonal antibody raised against elastin antigens was used in both tissues. 

Tissue Reference No. 

Immunohistochemical Score 

Normal Vaginal Tissue 

NCL-ELASTIN Ab 

Xenografted Vaginal Tissue 

NCL-ELASTIN Ab 

15392/06 4 3 

15396/06 3 3 

16173/06 4 4 

16175/06 3 4 

16176/06 3 3 

8960/06 3 3 

8961/06 3 4 

10156/06 4 4 

17559/06 0 4 

17560/06 0 3 

*Scoring System; 0-Negative Staining; 1-Poor Staining (10-25%); 2-Rare Positive Staining (25-50%); 3-Some Positive 
Staining (50-75%); 4-Strong Uniform Positive Staining (>75%). 

NCL-ELASTIN - Reference Code for Human Elastin Antibody; Ab - Antibody. 
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4.7.2 Statistical Comparisons of Elastin Staining Intensities 

Mean staining intensities for elastin in NVT, XVT, NVTα and XVTα were 2.7±0.4726, 

3.5±0.1667, 4.0±0.0000 and 3.9±0.1000, respectively. Repeated-measures one-way ANOVA 

with subsequent Friedman’s test (Friedman Statistic=14.78) indicated significant differences 

in the mean staining intensities of the tissue groups (P=0.0020). Further statistical analysis 

with Dunn’s multiple comparison test showed no statistical differences between the tissue 

groups (P>0.05). 
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Figure 4.15: Mean Elastin Staining Intensity by Vaginal Mucosal Type. Data is expressed as the 

mean ± standard error of mean (n=10). Friedman’s test indicates that tissue types are significantly 

different (P=0.0020). However, Dunn’s multiple comparison test indicates that tissue types are not 

significantly different (P>0.05). 

NVT-Normal Vaginal Tissue; XVT-Xenografted Vaginal Tissue; αCorne Kok-Upublished Work. 
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4.7.3 Photomicrographs of Vaginal Mucosae Stained for Human Elastin 

  

  

 

Figure 4.16. Immunohistochemical Staining of Human Elastin on Vaginal Mucosal Tissues. Elastin 

staining performed on (A) and (B) normal vaginal tissues. (C) and (D) xenografted vaginal tissues. Small 

arrows indicate a positive and uniformly stained connective tissue. Stars indicate that elastin is also 

expressed along the basement membrane of some vaginal tissues. Ep-Epithelium; BM-Basement Membrane; 

CT-Connective Tissue; BVs-Blood Vessels. (Magnifications X100 for A, B, C and X200 for D). 
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4.8 FIBRONECTIN EXPRESSION PROFILE 

4.8.1 Immunohistochemical Scores for Fibronectin 

A weak to moderate positive staining of human fibronectin was observed along the basement 

membrane and connective tissue in normal and xenografted tissues (Figure 4.18). Positive 

staining was reported in all normal tissues and in 7 of 10 xenografted tissues. Negative 

staining of mouse fibronectin was reported in 8 of 10 xenografted tissues whereas the other 2 

tissues exhibited weak and moderate staining (Table 4.8). 

Table 4.8: Immunohistochemical Scoring of Human Vaginal Mucosa for Fibronectin. Scores reflect the 
difference in the staining intensity between normal vaginal tissues and xenografted vaginal tissues. The 
following fibronectin antibodies were used (a) Mouse anti-human monoclonal Ab; (b) Mouse anti-human 
monoclonal Ab; and (c) Rabbit anti-mouse monoclonal Ab. 

 

Tissue Reference No. 

Immunohistochemical Score 

Normal Vaginal Tissue Xenografted Vaginal Tissues 

(A) NCL-FIB Ab (B) NCL-FIB Ab (C) F4215-46 Ab 

15392/06 1 0 0 

15396/06 1 1 0 

16173/06 2 1 2 

16176/06 2 1 0 

8961/06 2 1 0 

8926/06 2 1 0 

10156/06 2 2 1 

10159/06 2 0 0 

17560/06 2 0 0 

10501/06 2 1 0 

*Scoring System; 0-Negative Staining; 1-Poor Staining (10-25%); 2-Rare Positive Staining (25-50%); 3-Some Positive 
Staining (50-75%); 4-Strong Uniform Positive Staining (>75%). 

NCL-FIB - Reference Code for Human Fibronectin Antibody; F4215-46 - Reference Code for Mouse Fibronectin Antibody; 
Ab - Antibody. 
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4.8.2 Statistical Comparisons of Fibronectin Staining Intensities 

Mean staining intensities for fibronectin in NVT, XVT-h and XVT-m were 1.8±0.1333, 

0.8±0.2000 and 0.3±0.2134 respectively. Mean staining intensities for NVTα and XVTα-h and 

XVTα-m were 4.0±0.0000, 4.0±0.0000 and 0.0±0.0000 respectively. Repeated-measures one-

way ANOVA with subsequent Friedman’s test (Friedman Statistic=47.27) indicated 

significant differences in the mean staining intensities between tissue groups (P<0.0001). 

Further statistical analysis with Dunn’s multiple comparison test showed slight significant 

differences between NVTα and XVT-h and between XVT-h and XVTα-h (P<0.05).  A high 

statistical difference (P<0.05) was reported between the following tissue groups; NVTα and 

XVT-m, XVT-m and XVTα-h, NVTα and XVTα-m as well as XVTα-h and XVTα-m. 
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Figure 4.17: Mean Fibronectin  Staining Intensity by Vaginal Mucosal Type.  Data is expressed as 

mean ± standard error of mean (n=10) . Friedman’s test indicates that tissue types are significantly 
different (P<0.0001).  Further analysis with Dunn’s post test specifies tissue types that are significantly 

different (P<0.05) as denoted by identical alphabets.  

OVT-Original Vaginal Tissue; X VT-Xenografted  Vaginal Tissue; αCorne Kok-Unpublished Work; h - Human Antigen 

Localization; m-Mouse Antigen Localization.  

*Significant; **Very Significant; ***Extremely Significant  
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4.8.3 Photomicrographs of Vaginal Mucosae Stained for Human Fibronectin 

  

  

 

Figure 4.18. Immunohistochemical Staining of Human Fibronectin on Vaginal Mucosal Tissues. 

Fibronectin staining performed on (A) and (B) normal vaginal tissues. (C) and (D) xenografted vaginal 

tissues. Small arrows indicate positive and uniformly stained connective tissue. Blood vessels are also 

stained positively. A star denotes positive expression of fibronectin along the basement membrane of that 

particular vaginal tissue. Ep-Epithelium; CT-Connective Tissue; BVs-Blood Vessels. (Magnifications X200 

for A, B, and X400 for C, D). 
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4.8.4 Photomicrographs of Human and Murine Tissues Stained for Mouse Fibronectin 

 

 

 

Figure 4.19. Immunohistochemical Staining of Mouse Fibronectin on Human and Murine Tissues. 

Fibronectin staining performed on (A) positive control - mouse kidney tissue (B) and (C) xenografted 

vaginal tissues. Stars indicate negative expression of mouse fibronectin throughout the connective tissue and 

the epithelium. PCT-Proximal Convoluted Tubules; DCT-Distal Convoluted Tubules; Ep-Epithelium; CT-

Connective Tissue. (Magnifications X200 for A, C and X400 for B). 
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4.9 LANGERHANS CELLS EXPRESSION PROFILE 

4.9.1 Immunohistochemical Scores for Langerhans Cells 

Staining patterns observed for human Langerhans cells (LCs) were varied in both normal and 

xenografted tissues. Positive staining of human LCs was scattered across the epithelium, 

particularly on the basal and parabasal layers (Figure 4.21). Human LCs were positively 

expressed in all normal tissues. In general, xenografted tissues stained positively for LCs, 

with only 3 of 10 tissues having stained negatively. Mouse LCs were negatively stained in 8 

of 10 xenografted tissues (Table 4.9) 

Table 4.9: Immunohistochemical Scoring of Human Vaginal Mucosa for Langerhans Cells. Scores reflect 
the difference in the staining intensity between normal vaginal tissues and xenografted vaginal tissues. The 
following antibodies were used (A) Mouse anti-human monoclonal Ab; (B) Mouse anti-human monoclonal Ab; 
and (C) Rabbit anti-mouse monoclonal Ab. 

 

Tissue Reference No. 

Immunohistochemical Score 

Normal Vaginal Tissue Xenografted Vaginal Tissues 

(A) NCL-CD1A-235 Ab (B) NCL-CD1A-235 Ab (C) LS-C735 Ab 

15392/06 4 0 0 

15396/06 4 3 1 

16173/06 4 2 1 

16176/06 1 1 0 

8961/06 1 1 0 

8926/06 2 3 0 

10156/06 2 0 0 

10159/06 1 0 0 

17560/06 1 3 0 

10501/06 1 1 0 

*Scoring System; 0-Negative Staining; 1-Poor Staining (10-25%); 2-Rare Positive Staining (25-50%); 3-Some Positive 
Staining (50-75%); 4-Strong Uniform Positive Staining (>75%). 

NCL-CD1A-235 - Reference Code for Human Langerhans Cells Antibody; LS-C735 - Reference Code for Mouse 
Langerhans Cells Antibody; Ab - Antibody. 
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4.9.2 Statistical Comparisons of Langerhans Cells’ Staining Intensities 

Mean staining intensities for Langerhans cells in NVT, XVT-h and XVT-m were 2.1±0.4333, 

1.4±0.4000 and 0.2±0.1333, respectively. Mean staining intensities for NVTα, XVTα-h and 

XVTα-m were 4.0±0.0000, 0.3±0.1528 and 0.0±0.0000, respectively. Repeated-measures 

one-way ANOVA with subsequent Friedman’s test (Friedman Statistic=40.55) indicated 

significant differences in the mean staining intensities between the tissue groups (P<0.0001). 

Further statistical analysis with Dunn’s multiple comparison test showed significant 

differences between NVT and XVT-m and between NVT and XVTα-m (P<0.05). A moderate 

significant difference was reported between NVTα and XVTα-h (P<0.05). A high statistically 

significant difference was reported between; NVTαand XVT-m, NVTα and XVTα-m 

(P<0.05). 
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Figure 4.20: Mean Langerhans Cells Staining Intensity by Vaginal Mucosal Type. Data is 

expressed as mean ± standard error of mean (n=10). Friedman’s test indicates that tissue types are 

significantly different (P<0.0001). Further analysis with Dunn’s post test specifies tissue types that 

are significantly different (P<0.05) as denoted by similar alphabets. 

NVT-Normal Vaginal Tissue; XVT-Xenografted Vaginal Tissue; αCorne Kok-Unpublished Work; h- Human Antigen 

Localization; m-Mouse Antigen Localization. 

*Significant; **Very Significant; ***Extremely Significant 
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4.9.3 Photomicrographs of Vaginal Mucosae Stained for Human Langerhans Cells 

  

  

 

Figure 4.21. Immunohistochemical Staining of Human Langerhans Cells on Vaginal Mucosal Tissues. 

Langerhans cells staining performed on (A) and (B) normal vaginal tissues. (C) and (D) xenografted vaginal 

tissues. Small arrows point to positively expressed LCs along the epithelium. Big arrow points to a strong 

and uniformly stained basal epithelial layer of this particular normal tissue. Ep-Epithelium; BM-Basement 

Membrane; CT-Connective Tissue; BVs-Blood Vessels. (Magnifications X100 for A and X200 for B, C, D). 
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4.9.4 Photomicrographs of Human and Murine Tissues Stained for Mouse Langerhans Cells 

 

  

 

Figure 4.22. Immunohistochemical Staining of Mouse Langerhans Cells on Human and Murine 

Tissues. Langerhans cell staining performed on (A) and (B) normal vaginal tissues. (C) xenografted vaginal 

tissues. A star indicates that LCs are negatively expressed along the epithelium. Ep-Epithelium; CT-

Connective Tissue. (Magnifications X100 for B, C and X200 for A). 
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4.10 VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR 

EXPRESSION PROFILE 

4.10.1 Immunohistochemical Scores for VEGFR 

Human VEGFR-3 did not show any obvious cytoplasmic staining reaction in all tissues. 5 of 

10 normal tissues showed a very weak scattered positivity on some areas of the connective 

tissue whereas the other 5 normal tissues were completely negative. 9 of 10 xenografted 

tissues stained negatively for human VEGRF-3. All xenografted tissues displayed absolutely 

no reactivity for mouse VEGFR-2 (Table 4.10).  

Table 4.10: Immunohistochemical Scoring of Human Vaginal Mucosa for VEGFR-3 and VEGFR-2. 
Scores reflect the difference in the staining intensity between normal vaginal tissues and xenografted vaginal 
tissues. The following antibodies were used (A) Mouse anti-human monoclonal Ab raised against VEGFR-3; 
(B) Mouse anti-human monoclonal Ab raised against VEGFR-3; and (C) Rabbit anti-mouse monoclonal Ab 
raised against VEGFR-2. 

 

Tissue Reference No. 

Immunohistochemical Score 

Normal Vaginal Tissue Xenografted Vaginal Tissues 

(A) NCL-L-VEGFR-3 Ab (B) NCL-L-VEGFR-3 Ab (C) V2110-17C2 Ab 

15392/06 1 0 0 

15396/06 1 0 0 

16173/06 1 0 0 

16176/06 1 0 0 

8961/06 1 0 0 

8926/06 0 0 0 

10156/06 0 1 0 

10159/06 0 0 0 

17560/06 0 0 0 

10501/06 0 0 0 

*Scoring System; 0-Negative Staining; 1-Poor Staining (10-25%); 2-Rare Positive Staining (25-50%); 3-Some Positive 
Staining (50-75%); 4-Strong Uniform Positive Staining (>75%). 

NCL-L-VEGFR-3 - Reference Code for Human VEGFR-3 Antibody; V2110-17C2 - Reference Code for Mouse VEGFR-2 
Antibody; Ab - Antibody. 
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4.10.2 Statistical Comparisons of VEGFR Staining Intensities 

Mean staining intensities for VEGFR-3 in NVT, XVT-h, NVTα and XVTα-h were 

0.5±0.1667, 0.1±0.1000, 0.0±0.0000 and 0.0±0.0000, respectively. Mean staining intensities 

for VEGFR-2 in XVT-m and XVTα-m were both 0.0±0.0000. Repeated-measures one-way 

ANOVA with subsequent Friedman’s test (Friedman Statistic=20.00) showed significant 

differences in the mean staining intensities between the tissue groups (P=0.0012). However, 

according to Dunn’s multiple comparison test, there were no statistically significant 

differences between the tissue groups (P>0.05). 
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Figure 4.23: Mean VEGFR-3 and VEGFR-2 Staining Intensity by Vaginal Mucosal Type. Data 

is expressed as mean ± standard error of mean (n=10). Friedman’s test indicates a statistical 

difference between tissue types (P=0.0012). Conversely, Dunn’s post test does not show any 

statistical difference between tissue types (P>0.05).  

NVT-Normal Vaginal Tissue; XVT-Xenografted Vaginal Tissue; αCorne Kok-Unpublished Work; h-Localization of 

Human VEGFR-3 Antigens; m-Localization of Mouse VEGFR-2 Antigens. 
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4.10.3 Photomicrographs of Vaginal Mucosae Stained for VEGFR 

  

  

 

Figure 4.24. Immunohistochemical Staining of VEGFR-3 and VEGFR-2 on Human Vaginal Mucosal 

Tissues. VEGFR-3 staining performed on (A) normal and (B) xenografted vaginal tissues. VEGFR-2 

staining performed on (C) normal and (D) xenografted vaginal tissues. Small arrows point to negatively 

expressed VEGFR along the epithelium, the connective tissue and around blood vessels. Big arrow points to 

a light positive staining of VEGFR-3 on the connective tissue. Ep-Epithelium; CT-Connective Tissue; BVs-

Blood Vessels. (Magnifications X200 for B, C, D and X400 for A). 
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CHAPTER FIVE 

DISCUSSION AND CONCLUSION 

As already stated, there is only one immunohistochemical study of the biocyst model 

proposed by Thompson et al., [4] Therefore our results will be discussed in relation to that 

one immunohistochemical work done by Kok [6]. The ultimate goal of this chapter was to 

use data obtained to elucidate the nature of the epithelium, the basement membrane (BM) and 

stromal layer that had formed between the xenografted epithelial cyst and its surrounding 

mouse tissue. 

5.1 INTERPRETATION OF RESULTS 

5.1.1 Analysis of Cytokeratin 1 Expression Profile 

Cytokeratin 1 (CK1) is a large keratin isotype of 68 kDa found in complex epithelia [96]. We 

firstly evaluated the expression pattern of human CK1 in NVTs and XVTs. CK1 was stained 

with mouse anti-CK1 primary antibody that reacts with squamous epithelia. 

We observed in all NVTs, strong positively stained epithelial cells, particularly at the 

superficial and intermediate epithelial layers. In XVTs, the expression pattern of CK1 was 

either absent or moderate. Although our findings are consistent with those of the previous 

study, there is an interesting difference. Kok reported negative staining in most experimental 

cysts with a thin epithelium and positive staining in cysts with a thick epithelium [6]. In our 

study, the observed expression of CK1 was not well defined, nor was it different in XVTs 

with a thin or thick epithelium. Statistical analysis with Dunn’s post test revealed significant 

differences between the staining intensity of NVTs, XVTs, NVTα and XVTα (P>0.05). It 
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therefore appears that a loss of CK1 occurred either during transplantation process or while 

xenografted vaginal tissues were in a mouse environment. 

5.1.2 Analysis of Cytokeratin 5 Expression Profile 

Cytokeratin 5 (CK5) is 58 kDa intermediate filament protein of the basal epithelial layer of 

various tissues [97, 98]. CK5 is considered a marker of basal epithelial cells and 

myoepithelial cells of normal breast tissue. In addition, it has been reported as a progenitor 

cell marker in neoplastic tissues [97, 99].We evaluated the expression of human CK5 by 

staining tissues with mouse anti-CK5 monoclonal antibody. 

The epithelium was considered positive when distinct cytoplasmic staining was present. The 

epithelium exhibited CK5 positive material in both NVTs and XVTs. Positive reaction of 

CK5 was localized to the parabasal and basal epithelial layers. CK5 staining was well defined 

and uniformly distributed in NVTs. Conversely, some XVTs exhibited occasional 

interruptions in the staining patterns observed. Similarly, Kok also reported even and uneven 

staining in NVTs and XVTs respectively. Despite qualitative differences in the staining 

patterns between NVTs and XVTs, statistical analysis with Dunn’s post test revealed no 

significant differences between NTVs, XVTs, NVTα and XVTα (P>0.05). 

5.1.3 Analysis of Cytokeratin 13 Expression Profile 

Cytokeratin 13 (CK13) is an acidic intermediate filament protein of 54 kDa. It is the primary 

constituent of squamous, non-keratinized epithelium, transitional epithelium and 

pseudostratified epithelium. CK13 is often used as a marker of various epithelium-derived 

cancers [100]. Human CK13 was stained with mouse anti-CK13 monoclonal antibody. 

Data presented herein indicates positive staining of CK13 in both NVTs and XVTs (Table 

4.3). Positive staining was predominantly localized to the parabasal epithelial layer. In some 

tissues, positive staining of the BM was also noticed. Moreover, the staining intensity seen in 
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NVTs was greater than that exhibited by XVTs. This contradicts findings of previous work, 

in which a similar strong uninterrupted staining was reported in all vaginal tissues. 

Nevertheless, further statistical comparisons demonstrate no significant differences in the 

mean staining intensities between NVTs, XVTs, NVTα and XVTα (P>0.05).Therefore, we 

can confidently state that, although slight differences in the expression patterns between 

NVTs and XVTs were observed, human CK13 was indeed retained in a murine environment. 

5.1.4 Analysis of Cytokeratin 14 Expression Profile 

Cytokeratin 14 (CK14) is a member of the family of acidic type I cytokeratins [101] 

expressed by myoepithelial cells [102]. CK14 is expressed in the basal layer of stratified 

squamous and non-squamous epithelia [101, 103]. Human CK14 was stained with LL002, a 

sensitive monoclonal antibody that can distinguish stratified epithelial cells from simple 

epithelial cells. 

CK14 was detected as cytoplasmic staining in the basal epithelial layer of vaginal tissues. 

Intense positive expression of CK14 was reported in all NVTs and XVTs. Statistical 

comparisons revealed no significant differences between NVTs, XVTs, NVTα and XVTα 

(P>0.05). A relatively strong expression of CK14 in both NVTs and XVTs reflects that this 

human marker is entirely maintained in a murine environment. 

5.1.5 Analysis of Collagen Type IV Expression Profile 

The ECM plays a critical role in cell migration, proliferation and differentiation [21, 45] 

Degradation of the ECM is implicated in many physiological and pathological conditions. 

ECM degradation is characterized by several factors, including a reduction of collagen and 

elastin fiber networks. In this section, we also explored whether or not transplantation leads 

to a loss of collagen IV, the major constituent of BMs. Tissues were stained with mouse anti-
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human antibodies and rabbit anti-mouse antibodies that recognize human and mouse collagen 

IV respectively. The antibodies react positively with the BM. 

We report diffuse positive expression of human collagen IV along the BM and blood vessels 

in 10/10 NVTs and 7/10 XVTs (Table 4.5). Strong staining with occasional interruptions was 

noted in NVTs whereas XVTs presented thin staining patterns of human collagen IV. This 

coincides with data of Kok’s study. Limited human collagen IV staining in XVTs could be 

due to injury incurred by the BM when the epithelium was separated from the underlying 

connective tissue during construction of cysts. Although mice that were used to host tissues 

were immune-deficient, they may still be other murine factors that contributed to a loss of 

human collagen IV in XVTs. Limited or absent staining of mouse collagen IV was also 

observed along the BM of XVTs. Interestingly, mouse collagen IV staining was not evident 

around blood vessels of XVTs that had stained positively along the BM. Statistical analysis 

shows no significant differences in the expression patterns of human collagen IV and mouse 

collagen IV in all vaginal tissues. Our statistical data therefore suggests no significant loss of 

human collagen IV after transplantation. 

5.1.6 Analysis of Laminin Expression Profile 

Like collagen IV, laminin is also one of the major constituents of the BM [21, 22, 48]. This 

large disulphide-bonded glycoprotein also occurs in the ECM, at sites other than the BM 

during early stages of development. Several studies have demonstrated that laminin is highly 

expressed in BMs of different human tissues [55]. In this section, we also examined the 

extent to which laminin is expressed by the BM of vaginal tissues. 

As expected, human laminin was present along the BM of NVTs and XVTs. Blood vessels 

along the stromal layer also exhibited laminin positive material. Expression patterns of 

human laminin in NVTs and XVTs were relatively low to moderate. A very weak staining of 
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mouse laminin was observed in only 2 XVTs. Similarly, Kok also reported low to moderate 

expression of human laminin and negatively expressed mouse laminin. It also appears that 

damage to the BM could be responsible for these findings. Furthermore, our data is not 

consistent with published studies in which a high expression of laminin was reported [55]. 

This contrast could be that human tissues assessed in those studies were different from 

vaginal tissues and had neither been xenografted into mice. The statistical test revealed no 

significant differences in the staining intensities between all tissues (P>0.05). 

5.1.7 Analysis of Elastin Expression Profile 

Elastin is a polymeric protein and a major constituent of the ECM. It is a principal protein of 

elastic fibers that imparts elasticity to several tissues. Several literature reports indicate that 

elastin can change its morphology during ageing and different disease states [62, 63, 65, 66] 

Here, we also investigated whether or not elastic fibers of vaginal tissues remain unchanged 

after transplantation. 

Data presented herein indicates an intense positive staining of elastic fibers in both NVTs and 

XVTs. Positive staining was densely distributed across the stromal layer. In some tissues, 

positive staining of the BM was also noted. Interestingly, positive staining occurred in all 

XVTs, but in 8/10 NVTs. In addition, the staining intensity seen in XVTs was higher than 

that exhibited by NVTs. It is therefore suggested that increased elastin may be a secondary or 

reactive production of elastin by stromal cells adjacent to the cyst. This contradicts findings 

of the previous study, in which strong uniform staining was reported in all NVTα and XVTα. 

This discrepancy could not be explained. Nevertheless, further statistical comparisons 

demonstrate no significant differences between NVTs, XVTs, NVTα and XVTα (P>0.05). 

Therefore, we can confidently state that, elastic fibers do indeed remain the same after 

transplantation. 

 

 

 

 



82 

5.1.8 Analysis of Fibronectin Expression Profile 

Fibronectin (FN) is a major adhesion glycoprotein that promotes interaction between 

epithelial cells and the ECM [67]. Vaginal tissues were stained with mouse anti-human 

antibodies and rabbit anti-mouse antibodies that recognize human and mouse FN 

respectively. The antibodies react positively with the connective tissue matrix. 

Positive FN reaction was identified as brown cordlike and reticular structures along the BM, 

the stromal layer and around blood vessels. A moderate positive reaction of human FN was 

detected in NVTs and XVTs. None of the tissues reacted positively for mouse FN. These data 

are consistent with Kok’s findings. The staining patterns reported for NVTs, XVTs, NVTα 

and XVTα were statistically different (P<0.05). 

5.1.9 Analysis of Langerhans Cells Expression Profile 

Langerhans cells (LCs) are a group of antigen presenting cells of bone marrow origin which 

mainly reside on basal and suprabasal epithelial layers [104]. LCs are highly effective and 

play a vital role in the regulation of immune surveillance of mucosal barriers [13, 78]. 

Epidermal LCs can be identified using a number of markers. Accurate identification of LCs 

requires stable markers that are uniquely expressed on LCs [105]. Such markers include 

OKT6, Leu6 and CD1a. A positive staining reaction with such markers is regarded as the 

‘gold standard’ for the identification of LCs [106]. CD1a is considered an exceptional 

marker, because unlike other markers, it stains both the dendrites and Birbeck granules 

contained within a cell body [105]. Several studies often use CD1a for the quantification of 

LCs in various human tissues. Therefore, in this study, human LCs were stained with CD1a. 

Mouse LCs were stained with Langerin (CD207). 

Human LCs were detected as CD1a-positive brown stained cells in all NVTs and XVTs. 

Positively expressed human LCs with defined dendrites were localized to the basal and 
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suprabasal epithelial layers. Mouse LCs were negatively expressed in 8/10 tissues. Strikingly, 

when mouse skin was used as a positive control and stained with Langerin, the result 

remained negative despite attempts to optimize the experiment. Such an observation raises 

the question why mouse LCs were not functional. A weak positive staining observed in 2 

XVTs may have been a false-positive result. Statistical comparisons revealed significant 

differences between the staining intensities of NVTs, XVTs, NVTα and XVTα (P<0.05). It 

appears that human LCs are not entirely sustained in a murine environment because their 

expression was greater in NVTs than XVTs. A well-defined dendritic morphology of human 

LCs observed in NVTs could reflect optimal immune surveillance of vaginal tissue prior to 

transplantation. 

5.1.10 Analysis of Vascular Endothelial Growth Factor Receptor 

Expression Profile 

Lymphatic vasculature plays a critical role in tumor metastasis, and as such, the mechanisms 

that regulate the growth of lymphatic vessels have become an attractive field in cancer 

research. VEGFR-3 is a key receptor for lymphangiogenic factors VEGF-C and VEGF-D. 

Emerging data indicates that VEGFR-3 contributes to angiogenesis, and hence its use as a 

marker for lymphatic vessels in several studies [107]. VEGFR-2 is a cell membrane receptor 

kinase expressed by endothelial cells and hematopoietic cells. VEGFR-2 is the main mediator 

of VEGF-A biological activity is actively involved in embryonic angiogenesis and 

hematopoiesis [83]. Human VEGFR-3 was stained with mouse anti-human primary antibody 

whereas mouse VEGFR-2 was stained with rabbit anti-mouse primary antibody. 

We observed in 5/10 NVTs, small brown clusters of what appeared to be positively expressed 

VEGFR-3 along the stromal layer. In XVTs, VEGFR-3 was only expressed in one tissue. 

These findings contradict those of the previous study. Although brown clusters that were 

 

 

 

 



84 

observed in NVTs were reported as positive staining of VEGFR-3, further statistical analysis 

with Dunn’s post test revealed no significant differences between the staining intensities of 

all tissues (P>0.05). We can therefore say the degree of positivity observed in those NVTs is 

not meaningful to postulate that VEGFR-3 marker was indeed expressed. Furthermore, since 

the staining did not occur around blood vessels as expected, it could have then been false-

positive results. None of the tissues expressed mouse VEGRF-2, and this is coincides with 

the immunohistochemical results of the previous study. 

5.2 CONCLUSION 

This study provides the basis for the characterization of human vaginal tissues that were 

xenografted into athymic nude mice. Immunohistochemical analysis of a panel of human and 

murine markers was performed to determine whether or not the morphology of human 

vaginal epithelium is retained after transplantation into a murine environment. The ultimate 

goal was to determine the nature of the stromal layer that had developed between xenografted 

cysts and mouse tissues. 

Firstly, given that human cytokeratins were positively and strongly expressed on the 

epithelium of xenografted tissues, we can confidently state that the epithelium of the 

xenograft was still of human origin. Moreover, positively expressed human Langerhans cells 

and negatively expressed mouse Langerhans cells on the epithelium confirm this statement. 

Morphology of the epithelium is indeed retained despite transplantation into a murine 

environment, thus reaffirming findings of previous work. Secondly, although mouse collagen 

and mouse laminin were positively expressed in a few xenografted tissues, the degree of 

positivity was not as well defined as it was with human collagen IV and human laminin. 

However, there were no statistical differences in the staining intensities between human and 

mouse markers. These data are inconclusive and we can therefore only speculate that the BM 
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is mainly, but not entirely of human origin. Thirdly, human elastin and human fibronectin 

reacted positively with the stromal layer. Only one xenografted tissue reacted positively for 

human VEGRF-3. On the contrary, negative expression of mouse fibronectin and mouse 

VEGRF-2 was reported in most of the xenografted tissues. These expression patterns are very 

different from those of the previous study. According to our data, the stromal layer is of 

human origin. We therefore cannot agree with one of Kok’s conclusions which suggested that 

the stromal layer is a combination of human and murine tissue. However, the fatty-tissue 

muscular layer interface at the periphery of the stroma is indeed a combination of human and 

murine tissue as suggested in the previous study. 

In summary, the concept of ‘cyst transplantation’ is attractive, but it requires continued 

efforts before any definitive conclusions can be made. Currently, little is known about the 

effect that athymic nude mouse environment has on human vaginal cysts. Therefore, more 

information is required to determine physiological changes that occur when human vaginal 

tissues are subjected to a murine environment. 
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CHAPTER SIX 

LIMITATIONS OF THE STUDY AND FUTURE 

PROSPECTS 

6.1 PROBLEMS ENCOUNTERED AND RECOMMENDATIONS 

 The number of experimental cysts was not sufficient because cysts that had been 

ruptured and inflamed were excluded from the study. It is therefore important to 

construct a large number of cysts, to cover for any mishaps. In addition, a large 

number of cysts could provide a more comprehensive statistical data. 

 Staining patterns with some rabbit anti-mouse primary antibodies could not be 

interpreted, making it difficult to award scores. 

 Some slight background staining was noted in a few tissues. Since the antibodies used 

were monoclonal, we can disregard the fact that background staining could be due to 

non-specific antibody binding. We can therefore only suggest that the presence of 

endogenous enzymes was responsible for background staining. Working dilution of 

the antibodies could be increased to address this issue. 

6.2 FUTURE DIRECTIONS 

 We aim to gain further insight into the underlying mechanisms and factors that 

contributed to morphological changes that were observed in the xenografted human 

vaginal tissues. 
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 We intend to implement an in vivo biotest model integrating various human tissue 

types. The different tissues types will be xenografted to investigate whether their 

natural-tissue architecture is retained. 

 Our future objective is to include a large panel of antibodies for each marker in order 

to determine any discrepancies in the expression patterns of human and murine 

markers. 

 In a study by Sivard et al., [80] an in vitro reconstructed vaginal mucosa incorporating 

Langerhans cells was developed. Such an in vitro culture model offers a great 

opportunity for a study that compares fresh human vaginal mucosa with reconstructed 

vaginal mucosa. 

 Athymic nude mouse model provides excellent research opportunities for several 

studies. This model could be used to evaluate protein and gene expression of various 

human tissues using biochemical techniques such as polymerase chain reaction (PCR) 

and Western blot analysis. 
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APPENDIXES 

APPENDIX I 

IMMUNOHISTOCHEMICAL STAINING PROTOCOL 

Table I: Chronological Instructions Followed During IHC Staining 

Step Brief Description 

 
Tissue Sectioning and Incubation 

 
Mount paraffin-embedded tissues 

Incubate overnight at 26°C 

Dewaxing Deparaffinize sections in Xylene for 5 minutes 

Place in decreasing grades of alcohol (100%, 96% and 70% ) for 2 minutes with 
each alcohol 

Rehydrate with distilled water for 2 minutes 

Antigen Retrieval Heat sections with the recommended unmasking solution (Citrate buffer, pH 6.0 
for 10-15 minutes; EDTA buffer, pH 9.0 for 10-15 minutes; Pepsin for 30 
minutes) 

Wash with PBS buffer 

Peroxidase Blocking Block sections using 3% hydrogen peroxide (H2O2) for 5 minutes 

Wash with PBS buffer 

Subsequent Blocking Block with normal rabbit serum (1:20 diluted) and drain off excess without 
washing 

Primary Antibody Incubation Incubate sections with primary antibody at room temperature for 30 minutes 

Wash with PBS buffer 

Biotinylated Secondary Antibody 
Incubation 

Incubate sections with Biotinylated Secondary Link antibody at room temperature 
for 30 minutes 

Wash with PBS 

Streptavidin-HPR Incubation Incubate sections with Streptavidin-HPR at room temperature for 30 minutes 

Wash with PBS buffer 

Chromogen Substrate Add a solution of substrate buffer and DAB to each section 

Incubate at room temperature for 10 minutes 

CuSO4 Addition  Incubate sections with CuSO4 at room temperature for 10 minutes  

Rinsing Rinse slides with water for 2 minutes 

Counterstaining Dip slides in Hematoxylin for 25 seconds 

Rinsing Rinse slides with water for 5 minutes 
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Dehydration Rehydrate the sections by immersing in increasing grades of alcohol (70%, 96% 
and 100%) 

Dip the sections in Xylene until clear 

Mounting of Sections Place DPX glue on the cover slips 

Place the stained sections over the cover slips 

Allow to air dry 
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APPENDIX II 

IMMUNOHISTOCHEMISTRY WASHING BUFFERS 

Table II: Different Concentrations of Phosphate Buffered Saline (PBS) 

Concentration of the buffer Measurement of the Constituents 

 
10X Working PBS (0.1 M PBS, pH 
7.2) 

 
Na2HPO4 (anhydrous) ………………………………………. 10.9 g 

NaH2PO4 (anhydrous) ………………………………………… 3.2 g 

NaCl …………………………………………………………… 90 g 

Distilled H2O …………………………………………….... 1000 ml 

20X Stock PBS Solution (0.2 M PBS, 
pH 7.2) 

Na2HPO4 (anhydrous) ……………………………………….. 21.8 g 

NaH2PO4 (anhydrous) ………………………………………… 6.4 g 

NaCl ………………………………………………………….. 180 g 

Distilled H2O …………………………………………….... 1000 ml 

Mix to dissolve the solution, adjust the pH to 7.2 using NaOH and HCl and 
store at room temperature. 

10X Working PBS – Tween 20 (0.1 M 
PBS, 0.5% Tween 20, pH 7.2) 

Na2HPO4 (anhydrous) ……………………………………….. 10.9 g 

NaH2PO4 (anhydrous) ………………………………………… 3.2 g 

NaCl …………………………………………………………… 90 g 

Distilled H2O ……………………………………………….. 1000 ml 

20X Stock PBS – Tween 20 Solution 
(0.2 M PBS, 1% Tween 20, pH 7.2) 

Na2HPO4 (anhydrous) ……………………………………….. 21.8 g 

NaH2PO4 (anhydrous) ………………………………………… 6.4 g 

NaCl ………………………………………………………….. 180 g 

Distilled H2O …………………………………………………1000 ml 

Mix to dissolve the solution, adjust the pH to 7.2 using NaOH and HCl. Add 
5 ml of Tween 20 and store at room temperature. 
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APPENDIX III 

ANTIGEN RETRIEVAL BUFFERS 

Table III: Constituents of the Unmasking Solutions used During IHC 

Antigen Retrieval Buffer Measurement of the Constituents 

 

Sodium Citrate Buffer (10 Mm Sodium 
Citrate, 0.05% Tween 20, pH 6.0) 

 
Tris-sodium citrate (dehydrate)……………………………… 2.94 g 

Distilled H2O ……..………………………………………... 1000 ml 

Mix well to dissolve. Adjust the pH to 6.0 with 1 N HCl, add 0.5 ml Tween 
20 and mix well. Store the solution at room temperature for up to 3 months 
or at 4ºC for longer usage. 

Citrate Buffer (10 Mm Citric Acid, 
0.05% Tween 20, pH 6.0) 

Citric acid (anhydrous) …………...…………………………. 1.92 g 

Distilled H2O ……..……………………………………….. 1000 ml 

Mix well to dissolve. Adjust the pH to 6.0 with NaOH, add 0.5 ml Tween 20 
and mix well. Store the solution at room temperature for up to 3 months or at 
4ºC for longer usage. 

Tris EDTA Buffer (pH 9.0) Tris (Hydroxymethyl) Aminomethane …………...………… 6.055 g 

EDTA (Ethylenediaminetetra acetic acid ……..……………… 1.86 g 

Distilled H2O ……..………………………………………. 5000 ml 

Mix well to dissolve. Adjust the pH to 9.0 with 0.1 M NaOH or 0.1 N HCl. 
Store the solution at 4ºC. 
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APPENDIX IV 

BLOCKING SOLUTIONS 

Table IV: Constituents of the Blocking Solutions used During IHC 

Blocking Solution Measurement of the Constituents 

 

Peroxidase Blocking Solution (3% 
H2O2 in PBS) 

 
30% H2O2 …………...……………………………………………2 ml 

1X PBS ……..……………………………………………….…..18 ml 

Mix well and store at 4ºC for up to 3 months. 

Peroxidase Blocking Solution (0.3% 
H2O2 in Methanol 

30% H2O2 …………...…………………………………………0.2 ml 

Methanol ……..……………………………………………..… 18 ml 

Mix well and store at 4ºC. 

Normal Rabbit Serum NCL-R-Serum …………...………………………………………1 ml 

PBS Buffer ……..……………………………………………… 19 ml 

Rabbit serum is used as a negative control or as a blocking reagent in IHC 
staining. It is also used as a ‘no primary’ antibody control. 
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APPENDIX V 

IMMUNOHISTOCHEMISTRY DILUENT SOLUTION 

Novocastra IHC diluent is used to dilute primary antibodies, Biotinylated secondary antibodies and 

Streptavidin-HPR in immunohistochemical staining procedures. 

Novocastra IHC Diluent – 500 ml  

MANUAL POLYMER DETECTION SYSTEM 

Biotinylated secondary antibody is applied for the detection of mouse IgG, mouse IgM and rabbit IgG primary 

antibodies. 

RE7103 Biotinylated secondary antibody – 25 ml 

Streptavidin-HPR is a streptavidin-cojugated horseradish peroxidase reagent. 

RE7104 Streptavidin-HPR – 25 ml 

Novolink DAB (polymer), RE7230-K is a two part DAB kit comprising of: 

RE7143 DAB Substrate buffer – 30 ml 

RE7105 DAB Chromogen – 3 ml 
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APPENDIX VI 

NOVOCASTRA™ LYOPHILIZED MOUSE MONOCLONAL ANTIBODIES 

Cytokeratin 1 

Product Code NCL-CK1 

Intended Use Research only 

Specificity Human cytokeratin 1 intermediate filament protein (68kD) 

Recommendations on Use IHC: Working dilution of 1:20 – 1:40, incubation at 25°C for 60 minutes 

Positive Controls IHC: Normal skin 

Staining Pattern Cytoplasmic 

Storage and Stability 
Store unopened at 4°C, product performance is maintained up to expiry date 

General Overview 
Present in complex epithelium; reacts with all squamous epithelium 

 
Cytokeratin 5 

Product Code NCL-CK5 

Intended Use In vitro diagnostic purposes 

Specificity Human cytokeratin 5 intermediate filament protein 

Recommendations on Use IHC: Working dilution of 1:100, incubation at 25°C for 30 minutes 

Positive Controls Prostate 

Staining Pattern Cytoplasmic 

Storage and Stability 
Store unopened at 2 - 8°C, product performance is maintained up to expiry date 

General Overview 
Present in the cytoplasm of many non-keratinized stratified squamous epithelia 

 

Cytokeratin 13 

Product Code  NCL-CK13 

Intended Use Research only 

Specificity Human cytokeratin 13 intermediate filament protein (54kD) 

Recommendations on Use IHC: Working dilution of 1:100 – 1:200, incubation at 25°C for 60 minutes 

Positive Controls IHC: Tonsil 

Staining Pattern Cytoplasmic staining of mucosa 
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Storage and Stability 
Store unopened at 4°C, product performance is maintained up to expiry date 

General Overview 
Expressed as a major component of squamous, non-keratinized epithelium, 
transitional epithelium, pseudostratified epithelium and myoepithelium 

 

Cytokeratin 14 

Product Code NCL-LL002 

Intended Use In vitro diagnostic purposes 

Specificity Human cytokeratin 14 intermediate filament protein 

Recommendations on Use IHC: Working dilution of 1:20, incubation at 25°C for 60 minutes 

Positive Controls IHC: Normal skin 

Staining Pattern Cytoplasmic 

Storage and Stability 
Store unopened at 2 – 8°C, product performance is maintained up to expiry date 

General Overview 
Stains the basal layer of stratified squamous and non-squamous epithelia 

 

Collagen IV 

Product Code NCL-COLL-IV 

Intended Use Research only 

Specificity Human collagen type IV 

Recommendations on Use IHC: Working dilution of 1:100 – 1:200, incubation at 25°C for 60 minutes 

Positive Controls IHC: Kidney, basement membranes 

Staining Pattern Basement membranes 

Storage and Stability 
Store unopened at 4°C, product performance is maintained up to expiry date 

General Overview 
Major constituent of basement membranes 

 

Laminin 

Product Code NCL-LAMININ 

Intended Use Research only 

Specificity Human laminin (850kD)  

Recommendations on Use IHC: Working dilution of 1:50 – 1:100, incubation at 25°C for 60 minutes 

Positive Controls IHC: Kidney, skeletal muscle, small intestine 

Staining Pattern Basement membranes of blood vessels, smooth muscle, ganglia and muscle fibers 

Storage and Stability 
Store unopened at 4°C, product performance is maintained up to expiry date 
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General Overview 
Organized within basement membranes such as those associated with epithelia, 
surrounding blood vessels, nerves and underlying pial sheaths of the brain 

 

Elastin 

Product Code NCL-ELASTIN 

Intended Use Research only 

Specificity Human insoluble elastin 

Recommendations on Use IHC: Working dilution of 1:100 – 1:200, incubation at 25°C for 60 minutes 

Positive Controls IHC: Kidney, small intestine, liver 

Staining Pattern Extracellular 

Storage and Stability 
Store unopened at 4°C, product performance is maintained up to expiry date  

General Overview 
Present in connective tissue and imparts the property of elasticity to vertebrate 
elastic tissue 

 

Fibronectin 

Product Code NCL-FIB 

Intended Use Research only 

Specificity Cell-attachment domain of human fibronectin 

Recommendations on Use IHC: Working dilution of 1:100 – 1:200, incubation at 25°C for 60 minutes 

Positive Controls IHC: Normal kidney 

Staining Pattern Extracellular staining of connective tissue matrix 

Storage and Stability 
Store unopened at 4°C, product performance is maintained up to expiry date 

General Overview 
Present in basement membranes and extracellular connective tissue matrix 

 

CD1a 

Product Code NCL-CD1a-235 

Intended Use In vitro diagnostic purposes 

Specificity Human CD1a molecule 

Recommendations on Use IHC: Working dilution of 1:15 – 1:30, incubation at 25°C for 60 minutes 

Positive Controls IHC: Normal skin 

Staining Pattern Staining of Langerhans cells 

Storage and Stability 
Store unopened at 2 - 8°C, product performance is maintained up to expiry date 

General Overview 
Stains Langerhans cells and dendritic cells of skin and tonsil 
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Vascular Endothelial Growth Factor Receptor 

Product Code NCL-L-VEGFR-3 

Intended Use Research only 

Specificity Human vascular endothelial growth factor receptor-3 

Recommendations on Use IHC: Working dilution of 1:50 – 1:100, incubation at 25°C for 60 minutes 

Positive Controls IHC: Placenta 

Staining Pattern Cytoplasmic 

Storage and Stability 
Store liquid antibody at 4°C, product performance is maintained up to expiry date 

General Overview 
Present in many tissues including lung, intestine, brain and placenta 
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APPENDIX VII 

STATISTICAL ANALYSIS DATA 

Table VII - a: Statistical Comparisons of Cytokeratin 1 Staining Intensity 
Parameter 
Table Analyzed Cytokeratin 1     
 
Friedman test       
P value < 0.0001     
Exact or approximate P value? Gaussian Approximation     
P value summary ****     
Are means signif. different? (P < 0.05) Yes     
Number of groups 4     
Friedman statistic 27.69     
 
Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 
OVT vs XVT 20.50 Yes ** 
OVT vs OVT -3.500 No Ns 
OVT vs XVT 15.00 No Ns 
XVT vs OVT -24.00 Yes *** 
XVT vs XVT -5.500 No Ns 
OVTvs XVT 18.50 Yes ** 

 

 

Table VII - b: Statistical Comparisons of Cytokeratin 5 Staining Intensity 
Parameter 
Table Analyzed Cytokeratin 5     
 
Friedman test       
P value 0.0039     
Exact or approximate P value? Gaussian Approximation     
P value summary **     
Are means signif. different? (P < 0.05) Yes     
Number of groups 4     
Friedman statistic 13.35     
 
Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 
OVT vs XVT 10.50 No ns 
OVT vs OVT -4.000 No ns 
OVT vs XVT 3.500 No ns 
XVT vs OVT -14.50 No ns 
XVT vs XVT -7.000 No ns 
OVTvs XVT 7.500 No ns 

 

 
Table VII - c: Statistical Comparisons of Cytokeratin 13 Staining Intensity 
Parameter 
Table Analyzed Cytokeratin 13     
 
Friedman test       
P value < 0.0001     
Exact or approximate P value? Gaussian Approximation     
P value summary ****     
Are means signif. different? (P < 0.05) Yes     
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Number of groups 4     
Friedman statistic 22.76     
 
Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 
OVT vs XVT 15.00 No ns 
OVT vs OVT -1.500 No ns 
OVT vs XVT -1.500 No ns 
XVT vs OVT -16.50 Yes * 
XVT vs XVT -16.50 Yes * 
OVTvs XVT 0.0 No ns 

 

 

Table VII - d: Statistical Comparisons of Cytokeratin 14 Staining Intensity 
Parameter 
Table Analyzed Cytokeratin 14     
 
Friedman test       
P value 0.0003     
Exact or approximate P value? Gaussian Approximation     
P value summary ***     
Are means signif. different? (P < 0.05) Yes     
Number of groups 4     
Friedman statistic 18.55     
 
Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 
OVT vs XVT 12.00 No ns 
OVT vs OVT -2.000 No ns 
OVT vs XVT -2.000 No ns 
XVT vs OVT -14.00 No ns 
XVT vs XVT -14.00 No ns 
OVTvs XVT 0.0 No ns 

 

 

Table VII - e: Statistical Comparisons of Collagen IV Staining Intensity 
Parameter 
Table Analyzed Collagen IV     
 
Friedman test       
P value 0.0049     
Exact or approximate P value? Gaussian Approximation     
P value summary **     
Are means signif. different? (P < 0.05) Yes     
Number of groups 6     
Friedman statistic 16.79     
 
Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 
OVT vs XVT – h 12.50 No Ns 
OVT vs XVT – m 24.50 No Ns 
OVT vs OVT 6.500 No Ns 
OVT vs XVT - h 19.50 No Ns 
OVT vs XVT - m 24.00 No Ns 
XVT - h vs XVT – m 12.00 No Ns 
XVT - h vs OVT -6.000 No Ns 
XVT - h vs XVT - h 7.000 No Ns 
XVT - h vs XVT - m 11.50 No Ns 
XVT - m vs OVT -18.00 No Ns 
XVT - m vs XVT - h -5.000 No Ns 
XVT - m vs XVT - m -0.5000 No Ns 
OVTvs XVT - h 13.00 No Ns 
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OVTvs XVT - m 17.50 No Ns 
XVT - h vs XVT - m 4.500 No Ns 

 

Table VII - f: Statistical Comparisons of Laminin Staining Intensity 
Parameter 
Table Analyzed Laminin     
 
Friedman test       
P value 0.0004     
Exact or approximate P value? Gaussian Approximation     
P value summary ***     
Are means signif. different? (P < 0.05) Yes     
Number of groups 6     
Friedman statistic 22.59     
 
Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 
OVT vs XVT – h 8.500 No ns 
OVT vs XVT – m 20.50 No ns 
OVT vs OVT 0.5000 No ns 
OVT vs XVT - h 11.50 No ns 
OVT vs XVT - m 25.00 Yes * 
XVT - h vs XVT – m 12.00 No ns 
XVT - h vs OVT -8.000 No ns 
XVT - h vs XVT - h 3.000 No ns 
XVT - h vs XVT - m 16.50 No ns 
XVT - m vs OVT -20.00 No ns 
XVT - m vs XVT - h -9.000 No ns 
XVT - m vs XVT - m 4.500 No ns 
OVTvs XVT - h 11.00 No ns 
OVTvs XVT - m 24.50 No ns 
XVT - h vs XVT - m 13.50 No ns 

 

 

Table VII - g: Statistical Comparisons of Elastin Staining Intensity 
Parameter 
Table Analyzed Elastin     
 
Friedman test       
P value 0.0020     
Exact or approximate P value? Gaussian Approximation     
P value summary **     
Are means signif. different? (P < 0.05) Yes     
Number of groups 4     
Friedman statistic 14.78     
Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 
OVT vs XVT -5.000 No ns 
OVT vs OVT -14.50 No ns 
OVT vs XVT -12.50 No ns 
XVT vs OVT -9.500 No ns 
XVT vs XVT -7.500 No ns 
OVTvs XVT 2.000 No ns 

 

 

Table VII - h: Statistical Comparisons of Fibronectin Staining Intensity 
Parameter 
Table Analyzed Fibronectin     
 
Friedman test       
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P value < 0.0001     
Exact or approximate P value? Gaussian Approximation     
P value summary ****     
Are means signif. different? (P < 0.05) Yes     
Number of groups 6     
Friedman statistic 47.27     
 
Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 
OVT vs XVT – h 11.50 No ns 
OVT vs XVT – m 19.50 No ns 
OVT vs OVT -16.50 No ns 
OVT vs XVT - h -16.50 No ns 
OVT vs XVT - m 23.00 No ns 
XVT - h vs XVT – m 8.000 No ns 
XVT - h vs OVT -28.00 Yes * 
XVT - h vs XVT - h -28.00 Yes * 
XVT - h vs XVT - m 11.50 No ns 
XVT - m vs OVT -36.00 Yes *** 
XVT - m vs XVT - h -36.00 Yes *** 
XVT - m vs XVT - m 3.500 No ns 
OVTvs XVT - h 0.0 No ns 
OVTvs XVT - m 39.50 Yes *** 
XVT - h vs XVT - m 39.50 Yes *** 

 

 

Table VII - i: Statistical Comparisons of Langerhans Cells Staining Intensity 
Parameter 
Table Analyzed Langerhans Cells     
 
Friedman test       
P value < 0.0001     
Exact or approximate P value? Gaussian Approximation     
P value summary ****     
Are means signif. different? (P < 0.05) Yes     
Number of groups 6     
Friedman statistic 40.55     
 
Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 
OVT vs XVT – h 9.500 No Ns 
OVT vs XVT – m 25.00 Yes * 
OVT vs OVT -11.50 No Ns 
OVT vs XVT - h 21.00 No Ns 
OVT vs XVT - m 28.00 Yes * 
XVT - h vs XVT – m 15.50 No Ns 
XVT - h vs OVT -21.00 No Ns 
XVT - h vs XVT - h 11.50 No Ns 
XVT - h vs XVT - m 18.50 No Ns 
XVT - m vs OVT -36.50 Yes *** 
XVT - m vs XVT - h -4.000 No Ns 
XVT - m vs XVT - m 3.000 No Ns 
OVTvs XVT - h 32.50 Yes ** 
OVTvs XVT - m 39.50 Yes *** 
XVT - h vs XVT - m 7.000 No Ns 
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Table VII - j: Statistical Comparisons of VEGFR Staining Intensity 
Parameter 
Table Analyzed VEGFR     
 
Friedman test       
P value 0.0012     
Exact or approximate P value? Gaussian Approximation     
P value summary **     
Are means signif. different? (P < 0.05) Yes     
Number of groups 6     
Friedman statistic 20.00     
 
Dunn's Multiple Comparison Test Difference in rank sum Significant? P < 0.05? Summary 
OVT vs XVT – h 12.00 No ns 
OVT vs XVT – m 15.00 No ns 
OVT vs OVT 15.00 No ns 
OVT vs XVT - h 15.00 No ns 
OVT vs XVT - m 15.00 No ns 
XVT - h vs XVT - m 3.000 No ns 
XVT - h vs OVT 3.000 No ns 
XVT - h vs XVT - h 3.000 No ns 
XVT - h vs XVT - m 0.0 No ns 
XVT - m vs OVT 0.0 No ns 
XVT - m vs XVT - h 0.0 No ns 
XVT - m vs XVT - m 0.0 No ns 
OVTvs XVT - h 0.0 No ns 
OVTvs XVT - m 0.0 No ns 
XVT - h vs XVT - m 0.0 No ns 
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