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Abstract

The sustainable use of natural resources is of utmost importance for every
community. In particular, it is important for every given generation to plan
in such a way that proper provision is made for future generations. The sci-
entific understanding of resources use and appreciation for its life-supporting
capacity is therefore essential. Mathematical modeling has proved useful to in-
form the planning and management of strategies for sustainable use of natural
resources. Some specific topics in resource management has been studied in-
tensively through many decades. In particular, mining, fisheries, forestry and
water resources are among these. Instead of presenting a study of the latter
topics, this dissertation presents a variety of cases of mathematical modeling in
resource management. The aim is to improve the general understanding of the
relevant problems. We expand on existing literature, papers of other authors,
and add to such studies by focussing on specific items in the work, illuminating
it with further explanations and graphs, or by modifying the models through
the introduction of stochastic perturbations. In particular this dissertation
makes contributions by giving more explanation, on the so-called environmen-
tal Fisher information or EFI for brevity (Section 2.4 and Chapter 6), and
by introducing stochasticity into a pest control model (Chapter 4) and into a
savanna vegetation model (Chapter 5). In Chapter 3 we present a model from
the literature pertaining to the problem of shifting cultivation, i.e, the use of
forest land when used for subsistence level agricultural purposes, until the land
is so degraded that the occupants abandon it and move on to a new stand.
The model used to study the shifting period is similar to the forest rotation
problem.

A model, already in the literature, for biological control of a pest is studied
in Chapter 4. Onto the deterministic model we impose a stochastic pertur-
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bation, so that we obtain a stochastic differential equation model. We prove
stochastic stability of the disease-free state, when the basic reproduction num-
ber of the pest is below unity. We have performed simulations of solutions of
the stochastic system.

In Chapter 5 we review an existing ordinary differential equation model
for the competition between trees and grass in savanna environment. The
competition between them is for soil water, fed by annual rainfall. On the other
hand, trees and grass are perturbed by fire, and some other environmental
forcings such as herbivores. For this ODE model, we introduce stochastic
perturbations. The stochastic perturbations are in the form of three mutually
independent Brownian motions. Simulations to illustrate the effect of the
stochasticity are shown.

We present a three-tiered predator-prey model and consider its stability in
terms of Fisher information. This appears as Chapter 6. The Fisher informa-
tion is defined on the basis of the so-called sustainable measures hypotheses.
The model is already in the literature and in the dissertation we present sev-
eral computations to show the influence of carrying capacity of prey and of
mortality rate on EFI.

Another problem that we consider, in Chapter 7, is that of lake eutroph-
ication caused by excessive phosphorus inflow. The computations illustrates
the management of the runoff nutrients into or out of the lake. Necessary and
the sufficient conditions for an optimal utility management are obtained using
standard optimal control theory.

The results of this dissertation demonstrate the modeling techniques in
the sustainable use of natural resources. Sustainability is the quest for equal
opportunities over all generations. The manner in which this sustainability is
quantified in models is being debated and improved all the time. The discourse
on sustainability is especially important in view of a growing world popula-
tion, and with forcings such as climate change. The most important original
contribution in this dissertation is the stochastic analysis on the pest control
model and the savanna model.
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Chapter 1

Introduction and literature
review

A natural resource is a material source that occurs in a natural state and also
has economic value. This project entails a study of the use of mathematical
models in the sustainable use of natural resources. Thus we shall mostly be
concerned with the sustainable growth, development of renewable resources
and control of pollution. We explore the efficient use of natural resources
and we work mathematically towards ways and means of identifying practices
and strategies for environmentally sound management. The mathematical
methods are mainly around optimality conditions and stability analysis. We
look at resource consumption that would not jeopardise the earth’s life-support
systems in the long-term.

The scientific and technical understanding of resources use and its life-
supporting capacity is important, to inform the planning and management of
strategies for sustainable use of natural resources. Sustainable use in ecology
is also essential due to the life-support capacity of ecosystem services. Some
specific topics in resource management has been studied intensively through
many decades. In particular, mining, fisheries and forestry are among these,
obviously due to their very crucial economic value. For more on these topics
the reader is refered to the book [25] of Hanley, Shogren and White or [71] of
Tietenberg and Lewis, [51] Pearce and Turner, and [34] De Lara and Doyen.
Another extremely important natural resource that is being studied with the
aid of mathematical models is water. Especially in countries with a general
water scarcity such as South Africa, the management of the water resource
management becomes more important every year.
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Instead of presenting a study of the latter topics, in this dissertation we
present a variety of cases of mathematical modeling in resource management
as can be seen from the index page. We work on papers of other authors, and
add to such studies by focussing on specific items in the work, illuminating it
with further explanations and graphs, or by modifying the models through the
introduction of stochastic perturbations.

1.1 Historical background

In 1961, the meteorologist E. L. Lorenz used greatly simplified forecast equa-
tions to show that tiny errors in initial conditions could make forecasts outside
of a certain time period impossible (deterministic chaos). This chaotic be-
haviour was also found in models of basic growth processes. For example, the
equation developed by Verhulst in 1845 (the discrete version of which is today
known as logistic growth, or growth with limited food), also produces chaotic
behaviour. An interesting offshoot from that discovery was the development
of wonderful two-dimensional computer creativity. It was and is still often
desirable in ecology to analyse distributed growth processes in food chains (A.
J. Lotka, 1888-1949, E. P. Odum, 1983). Lotka and Volterra developed their
famous predator-prey model along these lines. Models including only three
species could display chaotic behaviour, depending on the non-linearities of
the coupled species. The basic tools include models for logistic growth, de-
layed logistic growth (M. Smith 1968), exponential growth, etc. Depending on
the ecosystems to be analysed, transporting diffusions and other processes has
to be modelled. An enormous problem was to determine the initial conditions
for model runs, in the case of forecasting, climate research, ecosystems research
etc. Extensive data assimilation via different methods, including coastal mea-
suring was needed. It became important to plan and control the manner in
which people and the natural environment interact. It brings together land
use planning, water management, biodiversity conservation, and the future sus-
tainability of industries like agriculture, mining, tourism, fisheries and forestry
[35]. The historical emphasis on sustainability traced back an early attempt
to understand the ecological nature of rangelands in the late 19th century.
Sustainability awareness has emerged very prominently in a series of meetings
and reports during the 1970’s, and the resource conservation movement origi-
nated from these events. Globally we find that the 20th century was marked
by devastating world wars, [19]. The result thereof were the vast colonial em-
pires. The rapid advances in science and technology from the first airplane
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flight to the first moon landing also indicates a sharp rise in living standards.
Increased concerns about the environment includes the loss of natural forests,
shortages of energy and water, decline in biological diversity, air pollution, the
onset of epidemics, and the ultimate emergence of world superpowers. The
planet’s population continues to explode from 1 billion in 1820 to 2 billion in
1930, 3 billion in 1960, 4 billion in 1974, 5 billion in 1987, and 6 billion in
1999. As for the 21st century, the continued exponential growth in science and
technology raises both hopes and fears. Development depended on natural
resources even more, and so on the sustainable use of natural resources. The
use of resources was considered within the framework of process and practice
of how these have shaped access and control of natural resources, see [41]. In
South Africa the land reform process and restitution in particular, has been a
means toward greater equity and more inclusive broad-based forms of natural
resource management, [52]. The harmful consequences that result from bad
environmental usages have a wide variety of causes and can be attributed to
both natural and human reasons. In Africa, natural causes include drought or
floods caused by a shortage or excess of precipitation, volcanoes, hurricanes,
and earthquakes. The human causes include over-logging, dam construction,
biological warfare, and environmental pollution. South Africa has a growing
market economy, [19] with a plethora of natural resources. Gold, platinum
and precious stones such as diamonds account for nearly half of South Africa’s
exports. Automobile assembly, textiles, iron, steel, chemicals and commercial
ship repair also play a role in the country’s economy. Nature preservations (or
nature reserves) and its exports were and still is significant in the economy of
South Africa. Jeopardizing and ignoring the need for sustainable use is seri-
ously affecting the quality of life. Ignorance on proper management strategies
and policies led to disruption or extinction of traditional habitat, temporarily
even permanently, because of a marked environmental degradation, [19].

A variety of environmental applications carry with them a number of spe-
cial demands. The demands have led to a variety of current research themes
[39]. The European Research Consortium for Informatics and Mathematics
(ERCIM), News No. 61, April 2005, reports on environmental modeling ad-
vances through distributed grid computing, knowledge from data, decision sup-
port, intelligent/adaptive user interfaces and visualization, standard of system
interfacing and automatic access within the information distributes resources.
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1.2 Literature survey

The environmental issues including air pollution, over exploitation of ecosys-
tems, and exhaustion of resources has been and still is attracting the attention
of the public. It is now clearly noted that human activities impacts seriously
on the environments. In particular, human impact includes ecological and
environmental stresses, as well as irreversible loss of species. Moreover, the
destruction of habitat in some instances are the most dramatic examples of
their effects. The activities caused by habitat loss or substantial change in the
environment, not only alter the states and dynamics of natural resources and
ecosystem. These do also alter human health, well-being, welfare and economic
wealth since these resources are the essential support features for human life.

As the need for sustainable growth, renewable resources and pollution has
been identified by authors (Lekama et al., [1], and Wirl [78]) for instance, most
work present a growth model with an environmental resource which has its own
regeneration process. In such research, a negative externality accounting for
pollution flow is introduced. The pollution flow is assumed to be proportional
to production. In a growth model, the optimal growth path is shown to con-
verge to the so-called Green Golden Rule configuration. Similar results were
obtained in the work of Heal et al., [13], on a sustainable growth model with
environmental assets as a source of utility. These were cases where the ob-
ject is the maximization of long-run or limiting utility rather than long-run
consumption. Pasqual et al. [27] studies the exploitation of natural resources
in growth models with sustainable natural resource management. The study
defined environmental problems as externalities, and most of these occurred
between different problems on sustaining both renewable resource and non re-
newables. The reasons why environmental solutions were not resolved in the
intergenerational context was that it needed improved methods for evaluat-
ing the costs and benefits affecting different generations. An intergenerational
redistribution of natural resource property rights was essential to guarantee
equality of opportunities for all generations to ensure sustainability. Adequate
redistribution of property rights depend on the type of resource, as well as
on other factors such as the rate of return on its exploitation and the current
generation’s propensity to consume. In all cases, sustainability was sufficiently
guaranteed by conceding property rights, as a whole, to the future.

In a review of sustainable management of natural resources, Balsdon et al.,
[4] and Brown [9], identified common approaches that shifting cultivation may
be applied to dynamic natural resources. In the study, shifting cultivation has
been developed in a dynamic theory. Special attention was paid to an environ-
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mental impact variable: the length of time that a given field is cultivated before
shifting to the next patch. The model produced indicated that poverty reduc-
tion will lead in some ways to accelerated extraction of a natural resource, but
also to a longer extraction period. The results produced were therefore provid-
ing support for claims of an indirect environmental benefit from the primary
goal of alleviating rural poverty. Brown [9] examined a spatiotemporal shifting
cultivation and forest cover dynamics. The study described a spatiotemporal
model of resource extraction adapted to the use of forest resources by shift-
ing cultivators. In contrast to other models of spatial resource exploitation,
decision criteria depended on a nonseparable agricultural household model ex-
tended to accommodate both the temporal and spatial dimensions. The paper
focuses on the theoretical issues related to modeling of shifting cultivation.
The discussion informs the development and implementation of a simulation
model based on the approaches described.

Fath et al. [20] and Pawlowski et al. [50] presents a sustainability index
using information theory. In the study, Fisher information has been explored
as the basis for an index of sustainability. Ecosystems under perturbations of
varying regularity and intensity is being considered to either remain within the
current regime or to make transition. That has also included a regime with
different characteristics. The Fisher information index developed is based on
the probability of finding the system in a particular state. Fisher informa-
tion was shown to be sensitive to transients in model generated data. The
early detection of transitions to undesirable regimes permitted management
intervention. In addition to that, the study in [20] examined an information
theory approach towards regime changes in ecological systems. In the study
the ecological system index were effectively developed using information theo-
ries. The Fisher information index is a measure of system order, and captures
the characteristic variation in speed and acceleration along the system’s pe-
riodic steady-state trajectories. Concepts were illustrated using ecosystems
models. When calculated repeatedly over the system period, this index tracks
steady states and transient behavior. Acccording to Fath et al., the index
could be useful in detecting system flips associated with a regime change, i.e.,
determining when systems are in a transient between one steady state and
another.

According to Pawlowski et al., [31], the results of Fisher information must
detect dynamic regime shifts in ecosystems. It must also assess the quality
of the shift in terms of intensity and pervasiveness. An information index de-
fine the degree of order and sustain the hypothetical system in the different
scenarios, Zellner et al., [81]. Karunathi et al., examined the detection and
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assessment of ecosystem regime shifts from Fisher information. In the study
they have developed a form of Fisher information that measures dynamic order
in complex systems. They proposed the use of Fisher information as a means
of: (1) detecting dynamic regime shifts in ecosystems, and (2) assessing the
quality of the shift in terms of intensity and pervasiveness. Their intensity
were reflected as the degree of change in dynamic order, and also determined
by Fisher information. The pervasiveness reflected how many observable vari-
ables are affected by the change. They introduced a new robust methodology
to calculate Fisher information from time series field data. Demonstrations de-
tected regime shifts on a Fisher information model. Mayer et al., [45] pursue
a study in dynamic regime changes in ecological systems and Fisher informa-
tion. In the study information theory has significantly advanced in the ability
to quantify the organizational complexity inherent in systems despite imper-
fect observations or response from the source system. Fisher information has
been described in three ways: (1) A measure of the degree to which a param-
eter (or state of a system) can be estimated; (2) A measure of the relative
amount of information that exists between different states of a system; (3) A
measure of the disorder or chaos of a system. Mayer et al., applied a simple,
two species Lotka- Volterra predator-prey model and dynamic systems in a
periodic steady state for development of the Fisher information.

Findings on the sustainable management of ecosystem showed that changes
in the carrying capacity of the system, give rise to different stable steady states
[4, 65]. By repeatedly calculating Fisher information over time, transitions or
flips between steady states identify changes in Fisher information. If transi-
tion phases between regimes can be detected early enough, human activity
suspected of contributing to regime changes can be altered (or continued if
the resultant steady state is desirable, such as in ecosystem restoration ef-
forts). Diwekar et al., [65] attempts an idea that incorporates sustainability in
ecosystem management. Natural regulation examined philosophies which were
made on generic food chain models using the objectives derived from the sus-
tainability hypotheses. Their results indicated a strong relationship between
the hypotheses and the dynamic behavior of the models, supporting the use
of Fisher information as a measure.

Pollution and the negligent degradation of natural resources also presents
a huge challenge to sustainable living. This problem has also attracted the
attention of researchers so for instance, Le Kama, [1], has introduced a negative
externality caused by a pollution flow which is assumed to be proportional to
production. The resource consumption requires higher investment in order not
to jeopardize the environmental management. The paper [13] of Heal et al.,
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describes the utility on a growth model within the environment, and assets as
a source of utility in consumption. Thus a production asset is valued in terms
of the long-run utility.
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Chapter 2

Mathematical preliminaries and
technical terminology

In this chapter we define the basic concepts and theorems such as of ordinary
differential equations that will be used in our project to illustrate models. The
first subsections cover the necessary stability notions and theorems and the
second subsection is on optimization and control. An important item that
we feature here, in the third subsection, is a general presentation of Fisher
information (FI). FI was introduced for the purpose of optimization measures.
It has since been used in other applications if the relevant variables can be
appropriately translated. One such instance can be observed in the work [11]
of Heriberto and Fath, who applied the idea to ecology. See also the follow
up paper [20] of Fath et al. In this chapter we present an interpretation of
FI in ecology by using measure theoretic notions. This measure theoretic
presentation is an independent (maybe even original) piece of contribution.
Finally, in this chapter we also touch on the necessary material from the theory
of stochastic analysis, for use in two of the applications chapters.

2.1 Stability in ODEs

Notation: An autonomous system of differential equation has the form

dX

dt
= F (X), X(t0) = X0 (2.1)

where
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X = (x1, ....., xn)
tr,

F (X) = (f1(x1, ....., xn), ......, fn(x1, ....., xn))
tr

and F does not depend explicitly on t. The notation “matrixtr” means the
transpose of “matrix”.

The following terminology is standard and can be found in books such as
for instance those of Allen [3], Jordan and Smith [28], and other.

Definition 2.1.1. An equilibrium solution of the differential system (2.1) is a
constant solution X̄ satisfying

F (X̄) = 0. (2.2)

Definition 2.1.2. An equilibrium solution X̄ of (2.1) is said to be locally stable
if for each ϵ>0 there exist a δ>0 with the property that for every solution X(t)
of (2.1) with initial condition X(t0) = X0 and with∥∥X0 − X̄(t0)

∥∥
2
< δ, (2.3)

we have

∥X0 −X(t)∥2 < ϵ for all t ≥ t0. (2.4)

If the equilibrium solution is not locally stable it is said to be unstable.

Definition 2.1.3. An equilibrium solution X̄ is said to be locally asymptoti-
cally stable if it is locally stable and if there exists γ>0 such that∥∥X0 − X̄(0)

∥∥
2
< γ (2.5)

implies that

lim
t→∞

∥X0 −X(t)∥2 = 0. (2.6)
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Definition 2.1.4. A positive definite function V in an open neighborhood of
the origin is said to be a Liapunov function for the autonomous differential
system,

dx

dt
= f(x, y),

dy

dt
= g(x, y),

if dV (x,y)
dt

≤0 for all (x, y) ∈ U −{0, 0} . If dV (x,y)
dt

< 0 for all (x, y) ∈ U −{0, 0},
then the function V is called a strict Liapunov function.

The following theorem is fundamental in stability analysis.

Theorem 2.1.5 (Liapunov’s Stability Theorem) [47]. Let (0,0) be an
equilibrium of the autonomous system

dx

dt
= f(x, y);

dy

dt
= g(x, y), (2.7)

and let V be a positive defined C1 function in an neighborhood U of the origin.

(i) If dV (x, y)/dt ≤ 0 for (0, 0) ∈ U − {0, 0}, then (0,0) is stable.
(ii) If dV (x, y)/dt < 0 for (0, 0) ∈ U − {0, 0}, then (0,0) is asymptotically
stable.
(iii) If dV (x, y)/dt > 0 for (0, 0) ∈ U − {0, 0}, then (0,0) is unstable.

Proof. In Case (i) the function V is a Liapunov function and in Case (ii) V
is a strict Liapunov function.
Case(i) Let ϵ > 0 be sufficiently small so that the neighborhood of the origin
of the points ∥(x, y)∥ ≤ ϵ is contained in U (∥·∥ denotes the Euclidean norm).
Let m be the minimum value of V on the boundary of the neighborhood, i.e
for ∥(x, y)∥ = ϵ.
Since V is a positive definite and the set ∥(x, y)∥ = ϵ is closed and bounded,
it follows that m > 0. Now, choose a ϵ > 0 with 0 < ϵ ≤ 0 such that
V (x, y) < m for a ∥(x, y)∥ = δ. Such a δ always exist because V is continuous
with V (0, 0) = 0. If ∥(x0, y0)∥ ≤ δ, then the solution with initial condition
(x0, y0) satisfies ∥(x, y)∥ = ϵ for t ≥ 0 since dV/dt ≥ 0 implies that V (x0, y0) ≤
V (x(t), y(t)) < m for t ≥ 0. Therefore the origin is stable.
Case(ii) The function V (x(t), y(t)) decreases along solutions that lie in U .
Thus as t → ∞, V (x(t), y(t)) approaches a limit. Suppose V → l, then it
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follows from the uniform continuity of dV (x(t), y(t))/dt solutions are bounded
and f and g are C1 that dV (x(t), y(t))/dt → 0 in an annular region excluding
the origin. This is impossible, since −dV/dt is positive definite, dV/dt = 0
only at the origin, and is (x(t), y(t)) does not tend to the origin when V → l.
It follows that V (x(t), y(t)) approaches 0, which implies (x(t), y(t)) approaches
to (0.0). Therefore the origin is asymptotically stable. �

2.2 Pareto optimality

Pareto optimal solutions are means for desirable allocation of resources such
as in Chapter 7 in matter of a value judgment. The term Pareto optimal is
usually used in economics, and also has applications in engineering. However,
in this section we will show the Pareto optimal allocation of resources with
some basic definition. We will also describe the variability approach for multi
objective optimization including the principles. The efficiency as in [63, 5]
can also be applied to the selection of alternatives in environmental resources
such as in chapter (5, 7). Moreover this section shows the minimal and uncon-
troversial test of optimality of the outcome in multi objective problems. For
instance Whinston et al., [44] describe some problems better without making
some others worse off through Pareto optimal.

Considering the classical multi-objective problem, defined as follows:

minF (x)

such that x ∈ Ψ (2.8)

where F = (f1, f2, ..., fm), (m ≥ 2) is a vector of objectives and Ψ ⊂ Rn is the
set of feasible solutions.

Therefore the following terminology are basic and can be found in lectures
such as for instance those of Selod [63], Silva and Yamakami [67], and other.

Definition 2.2.1. A solution x∗ ∈ Ψ is said to be a Pareto optimal solu-
tion of (2.8) if there exists no other feasible x ∈ Ψ such that fi(x) ≤ fi(x

∗),
for every i equals 1, ...,m, with strict inequality for at least one i.

Definition 2.2.2. A solution x∗ ∈ Ψ is said to be a locally optimal solu-
tion of (2.8) if and only if ∃ a real number σ > 0 such that x∗ is Pareto
optimal in Ψ

∩
Π(x∗, σ), for instance that @ another feasible x ∈ Ψ

∩
Π(x∗, σ)
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such that fi(x) ≤ fi(x
∗), for every i equals 1, ...,m with strict inequality for

at least one i, where Π(x∗, σ) represents σ neighbourhood of x∗ defined by
{x∈R| ∥x− x∗∥ < σ}.

Definition 2.2.3. A vector that gives the distribution of all goods among
all resources

x = (x1, x2, ..., xN) ∈
N∏
i=1

xi

which are individuals or firms is called an allocation.

An allocation is feasible if ∑
i∈I

xi
g ≤ Wg

for every g ∈ G. W = (W1, ...,Wg, ...,WM) is the vector of total initial endow-
ments of goods in the economy, where Wg is the total initial endowment of
good g. I = 1, .., i, ..., N is a set of N firm or individuals, and is assumed that
each resources faces a consumption set Xi and has a utility function

ui : Xi → R.

G = 1, ..., g, ...,M is a set of M perfectly divisible goods, and hence X i = RM
+ .

The function
xi = (xi

1, x
i
2, ...., x

i
M)

is a resource i′s consumption of goods, with xi
g the quantity of goods g allo-

cated to i.

From definition 2.2.1 to 2.2.3, it follows that an allocation x∗ = (x1∗, ..., xi∗, ..., xN∗)
is a Pareto optimum if for every g ∈ M , we have:∑

xi
g ≤ Wg

and there does not exist x feasible such that{
ui(xi) ≥ ui(x

i∗) for every i ∈ I,
∃j ∈ I, uj(xj) ≥ uj(x

j∗).
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Proposition 2.2.4. Suppose that the utility functions are quasi-concave and
twice continuously differentiable. Then any allocation x∗ solution of the fol-
lowing


Max u1(x

1
1, x

1
2, ..., x

1
M),

such that (x1, x2, ..., xM) is feasible,
and ui(x

i
1, x

i
2, ..., x

i
M) ≥ ūi for i = 2, ..., N

(2.9)

is a Pareto optimum. Reciprocally, for any Pareto optimal is a solution of the
(2.9) (written with the adequate vector of utility-level parameters (ū2, ..., ūN)).

2.3 Optimization and Control

Several generations of scientists have considered optimal control as well de-
veloped into established research areas. Its applications are found in many
fields ranging from mathematics, engineering to biomedical, and management
sciences. For an introduction to optimal control we can refer to the books
Seierstad and Sydsaeter [62] or the book [18, 61] by Kirk and Schwartz.

In this section we consider from the equation (2.1), to rewrite an au-
tonomous system of differential equation to be of the form

ẋ(t) =
dx

dt
= f(x(t)), x(t0) = x0, t > 0. (2.10)

Definition 2.3.1. A state variable x = [x1, ....., xn]
T , n ≥ 1 describing

the internal behaviour of a system, together with a so-called control variable
α = [α1, ....., αnα]

T , nα ≥ 1 is called a control system.

Here it is understood that f (f as in equation (2.10)) depends on α and
also upon some control parameters belonging to some set S ⊂ Rm, and that
makes f into function f : Rn × S → Rn. If we now take some value of s in S
and also consider the corresponding dynamics from (2.8) to be:

ẋ(t) = f(x(t), s), (t > 0) (2.11)

x(0) = x0,

then that gives the evolution of our system according to the parameter s which
is constantly being reset by the function α. As the value of the parameter
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changes, so is the system as well. We assume α : [0,∞) → S to be the func-
tion which we regard as the control on the system. Then it is understood that
the state of the system also depend on α. Thus:

ẋ(t) = f(x(t), α(t)), (t > 0) (2.12)

x(0) = x0,

We therefore define the dynamic system by the equation:

ẋ(t) = f(x(t), α(t), t), x(t0) = x0, (2.13)

where x(t) is the state variable, α(t) control variable. The prototypical control
problem consists of choosing a continuous differentiable function α(t), 0 ≤ t ≤
t1 at an initial condition, to

minimize :

∫ t1

t0

g(x(t), α(t), t)dt

subject to ẋ(t) = f(x(t), α(t), t), x(t0) = x0.
(2.14)

Definition 2.3.2. A real-valued function α(t), t0 ≤ t ≤ t1 is said to be
piecewise continuous, denoted α ∈ C[t0, t1], if there is a finite partition say
t0 = β0 < β1...βn < βn+1 = t1 such that α may be regarded as a continuous
function in C[βk, βk+1], for each k = 0, 1, ..., n.

Definition 2.3.3. A piecewise continuous control α(·), defined on some time
interval t0 ≤ t ≤ t1, with range in the control region A,

α(t) ∈ A, ∀t ∈ [t0, t1],

is said to be an admissible control.

The Pontryagin’s Maximum Principle converts the maximization or minimiza-
tion of the objective functional J , coupled with the state variable into pointwise
maximizing or minimizing of the Hamiltonian with respect to the control. For
this problem the Hamiltonian H(t, x, α, λ) is a function of four variables. Time
t is the underlying variable for each of x, α, λ and H itself. The function λ(t)
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is called the adjoint variable.

Theorem 2.3.4 If α∗(t) and x∗(t) are optimal for problem for problem (2.14),
then there exists a piecewise differential adjoint variable λ(t) such that

H(t, x∗(t), α(t), λ(t)) ≤ H(t, x∗(t), α(t), λ(t))

for all controls α at each time t, where the Hamiltonian H is

H = g(t, x(t), α(t)) + λ(t)f(t, x(t), α(t))

and

dλ(t)

dt
= −∂H(t, x∗(t), α∗(t), λ(t))

∂x
,

λ(t1) = 0.

Necessary conditions: If α∗(t) and x∗(t) are optimal, then the following
conditions hold:

λ(t)

dt
= −∂H(t, x∗(t), α∗(t), λ(t))

∂x
,

λ(t1) = 0,

∂H(t, x∗(t), α∗(t), λ(t))

∂α
= 0.

2.4 Fisher information

The notion of Fisher information (FI) was introduced in 1921 [21] in the context
of mathematical foundations of theoretical statistics. The FI is a means of
optimization measures, and it is defined as follows

FI =

∫
1

p(ϵ)

(
dp(ϵ)

dϵ

)2

dϵ, and
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p(.) is the density at the variable ϵ. FI has since been used in other applications
where the relevant variables can be appropriately translated. One such appears
in the work [11] of Heriberto and Fath, who applied the notion to ecology. In
what follows we present an interpretation of FI in ecology by using measure
theoretic notions. This measure theoretic approach is independent work in
this thesis (and maybe even original).

Consider any measure space (X,A, µ) with A a σ-algebra on the set X,
and we assume that µ is a measure on X with µ(X) < ∞. Then for any
bijective function g : X → Y, we can define an associated probability space
(Y,Ag, µg) by taking Ag = {g(B) : B ∈ A} and for each D ∈ Ag,

µg(D) =
µ(g−1(D))

µ(X)
.

Now we consider the special case of X being an interval [a, b], with A being the
Borel σ- algebra on X, and g : X → Y ⊆ Rn being a differentiable function.
Let µ be the Lesbesgue measure on X. Now we note that in this case, Ag

consides with the Borel σ- algebra on Y (Y being regarded as a subspace of
Rn. Now we also note that there is a measure λ on Y, determined by curve
length on the parametrized curve {(t, g(t)) : a ≤ t ≤ b} .

In what follows we present an analysis of the relationship between λ and µg.
For brevity we write µg = Π. By ġ(t), we mean the coordinate wise derivative
of g with respect to t. Also we assume ġ(t) ̸= 0.

For any t ∈ (a, b) and any h such that t+h ∈ (a, b), let At,h be the interval:

At,h =

{
[t, t+ h] if h > 0,

[t+ h, t] if h < 0.

We define the following function p : (a, b) → R.

p (g(t)) = lim
h→0

Π(g(At,h))

∥g(t+ h)− g(t)∥
.

Then p is the probability density function of Π on the parameterized curve Y
(or more precisely on the curve Y 0 = g(a, b)).
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Now we define ecological Fisher information (i.e., EFI) as in [65] for in-
stance, by the following equation:

EFI =

∫ T

0

1

pg(t)

(
dpg(t)

dḡ(t)

)2

dḡ(t)

In what follows we analyse this formula, transforming it into a directly usable
form. The detail we present in the sequel seems not to be in existing literature.

Proposition 2.4.1. For any t ∈ (a, b), we have p (g(t)) = (µ(t)∥ġ(t)∥)−1 .

Proof. Note that

lim
x→0

∥g(t+ h)− g(t)∥
Π(g(At,h))

= lim
x→0

∥g(t+ h)− g(t)∥
µ(At,h)/µ(X)

= µ(X)

∥∥∥∥g(t+ h)− g(t)

h

∥∥∥∥
= µ(X) ∥ġ(t)∥.

Since ∥ġ(t)∥ ̸= 0, the proposition follows.

Let us write ḡ(t) as denoting the curve length of the curve (t, g(t)), with
ḡ(0) = 0. Then we note that

dḡ(t)

dt
=

√
ġ · ġ = ∥ġ(t)∥

By the notation

dp(g(t))

dḡ(t)
for t ∈ (a, b)

we mean

lim
x→0+

pg(t+ h)− pg(t)

∥ḡ(t+ h)− ḡ(t)∥
.

This means derivative with respect to curve length. We note that by the chain
rule of differentiation we have:

dpg(t)

dḡ(t)
· dḡ(t)

dt
=

dpg(t)

dt
.
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From Proposition 2.4.1 we have

dpg(t)

dt
=

d

dt
(µ(t)∥ġ(t)∥)−1 .

Thus we have the following proposition.

Proposition 2.4.2.
dpg(t)

dḡ(t)
=

dpg(t)

d(t)
/
dḡ(t)

dt

=
d
dt
(µ(t)||ġ(t)||)−1

dḡ(t)
dt

= 1
µ(X)||ġ(t)||

d
dt

||ġ||−1. �

We can rewrite

d

dt
||ġ(t)||−1 =

d

dt
(||ġ(t)||2)

−1
2 =

d

dt
(ġ · ġ)−

1
2

which is

= −1

2
(ġ · ġ)−

3
2
d

dt
(ġ · ġ)

= −1

2
||ġ||−3 · (

∑
2ġig̈i)

= −
∑

ġig̈i
||g||3

.

Therefore

1

p(g(t))

dpg(t)

ḡ(t)

dp(g(t))

dt

= µ(X) ||ġ||
(
dp(g(t))

dt

) (
dḡ(t)

dt

)−1 (
dp(g(t))

dt

)
= µ(X) ||ġ||||ġ||

(
dp(g(t))

dt

)2

= µ(X) ||ġ||2 · 1

µ(X)2
·
(

d

dt

1

||ḡ||

)2

18

 

 

 

 



=
||ġ||2

µ(X)
·
∑

ġig̈i
||ġ||6

=
(
∑

ġig̈i)
2

µ(X) ||ġ||4

Now we have a convenient expression for EFI:

Proposition 2.4.3.

EFI =
1

T

∫ T

0

∑
ġig̈i

||ġ||4
dt.

�

2.5 Eigenvalues.

Rational management of this work requires the study of quadratic forms and
differential equations information that is both relevant and timely. Our aim is
to develop a method on calculating the dynamical ecological system for envi-
ronmental resources. We describe the characteristics equations for these work
as a basis. The author added much more details from Murray, [47, pg.501].

From the autonomous differential system (2.7) we find its trajectories phase
to be solutions of

dy

dx
=

f(x, y)

g(x, y)
. (2.15)

Suppose that for any point (x0, y0) there is a unique curve besides in the singu-
lar points (xs, ys) where both functions at its singular points is equal to zero.
Then, if we let x reflect to x− xs and y reflect to y− ys we will have (0, 0) for
a singular point of the transformed equation

f(xs, ys) = g(xs, ys) = 0.

To have a singular point at the origin we consider (2.8) which gives
f(xs, ys) = g(xs, ys) = 0 so that we have x = 0, y = 0.

In fact by considering f and g to be analytic near (0, 0) then we can ex-
pand f and g in a Taylor series and retain only the linear terms such that we
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obtain

dy

dx
=

ax+ by

cx+ dy
;

and we get

A =

(
a b
c b

)

=

(
fx fy
gx gy

)
. (2.16)

The matrix A is defined from the system and a, b, c and d are the constants.
The equivalence of the linear form to the system is

dx

dt
= ax+ by,

dy

dt
= cx+ dy. (2.17)

Solutions of (2.10) give the parametric forms of the phase curves, where t is
the parameters. Let λ1 and λ2 be the eigenvalues of A such that

0 =

∣∣∣∣ a− λ b
c d− λ

∣∣∣∣ .
Then λ1 and λ2 are found to be equal to:

1/2(a+ d± [(a+ d)2 − 4detA]1/2). (2.18)

Then solutions of (2.10) are then(
x

y

)
= c1v1e[λ1t] + c2v2e[λ2t],

where c1 and c2 are arbitrary constants and v1, v2 are the eigenvectors of A
corresponding to λ1 and λ2. We therefore present the following cases for the
correspondence in the eigenvectors.

Case I: Real eigenvalues

In the case of real eigenvalues λ1 and λ2 we then find the corresponding eigen-
vectors V1 and V2 in a direction along the solutions that travel toward or away
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from the origin. For instance, if λ1 is positive, then solutions will travel along
V1 and away from the origin. Also if λ2 is negative, then solutions will travel
along V2 and towards the origin. The generality solutions travel in a direction
which is a linear combination of V1 and V2. Therefore the origin real eigenval-
ues is classified as of either a node or a saddle.
1. Node: Both eigenvalues have the same sign and may be distinct or equal,
λ1 ≤ λ2 < 0 and 0 < λ1 ≤ λ2. The can be classified as proper or improper
[3]. A node is called proper when the eigenvalues are equal and there are two
linearly independent eigenvectors; otherwise it is called improper. A proper
node is also referred to as star point or proper solutions.
2. Saddle: Eigenvalues λ1 and λ2 have opposites signs, λ1, λ2 < 0 (eg λ1 < 0
and λ2 < 0).

Case II: Complex eigenvalues

In the case of complex eigenvalues, λ1,2 = a±ib; a, b parameters and b ̸= 0. Be-
cause solutions to the linear system dX/dt = AX include factors with cos(bt)
and sin(bt), solutions spiral around the equilibrium. So, if the Re(A) < 0,
then the solutions with eat cos(bt) or eat sin(bt) spiral inwards, toward the ori-
gin. But if Re(A) < 0, then solutions spiral outwards, away from the origin.
Finally if Re(a) > 0, the solutions are closed curves encircling the origin.
A center is obtained if eigenvalues are purely imaginary (a = 0), λ1,2 = ± ib.

2.6 Brownian Motion

Brownian motion has become one of the fundamental building blocks of mod-
ern quantitative finance. Indeed, the basic continuous time model for financial
asset prices assumes that log-return of a given financial asset follow a Brownian
motion with drift. Brownian motion is the irregular random motion of small
particles immersed in a liquid or gas, as observed by R. Brown in 1827. There
is a formal stochastic process, modelled on the Brownian motion and carrying
the same name, called the Brownian process or the Wiener process.

In real life, many phenomena has stochasticity within them or experience
randomness from without. Mathematical modellers have realised the impor-
tance of the introduction of stochasticity into mathematical models. This can
be achieved via different methods, depending on the type of model. One partic-
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ular means of incorporating stochasticity into a model is by way of stochastic
differential equations (SDE’s). For the models in this dissertation we shall
modify ODE models by adding stochastic perturbations, thereby obtaining
SDE models.

In this section we briefly introduce some of the essential concepts required
for the stochastic analysis in two of the applications chapters. Most of these
concepts are explained in the textbook [42] of Mao.

Definition 2.6.1. Let (Ω,F , P ) be a probability space with filtration {Ft}t≥t0
.

A one-dimensional Brownian motion is a real-valued continuous {Ft}-adapted
process {Bt}t≥t0

with the following properties:

(i) B0 = 0 a.s.;

(ii) for 0 ≤ s < t < ∞, the increment Bt − Bs is normally distributed with
mean zero and variance t− s;

(iii) for 0 ≤ s < t < ∞, the increment Bt −Bs is independent of {Fs}

(vi) Bt is continuous in t ≥ 0.

Stochastic stability 2.6.2.. Consider the general n-dimensional stochastic
system

dx(t) = f(t, x(t))dt+ g(t, x(t))dB(t) (2.19)

on t ≥ 0 with initial value x(0) = x0, the solution is denoted by x(t, x0).
Assume that f(t, 0) = g(t, 0) = 0 for all t ≥ 0, so the origin gives an equilibrium
point.

Definition 2.6.3. The equilibrium x = 0 of the system (2.19) is said to be
almost surely exponentially stable if for all x0 ∈ Rn

lim
x0→0

sup
1

t
ln |x(t, x0)| < 0 a.s.

Definition 2.6.4. The equilibrium solution of equation (2.19) is said to
be stochastically stable for every pair of ϵ ∈ (0, 1) and r > 0, ∃ a δ =
δ(ϵ, r, t(0)) > 0 such that

P {|x(t; t(0), x(0))| < r for all t ≥ t(0)} ≥ 1− ϵ
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whenever |x(0)| < δ.

Definition 2.6.5. The trivial solution of equation (2.19) is said to be stochas-
tically asymptotically stable if it is stochastically stable and, also for ∀ ϵ ∈
(0, 1), ∃ a δ0 = δ0(ϵ, t(0)) > 0 such that

P
{
lim
t→∞

x(t; t(0), x(0)) = 0
}
≥ 1− ϵ

whenever |x(0)| < δ0.

The generator differential 2.6.6. The differential operator L which we
define below and which is associated with the following equation:

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) t ≥ t0,

is refered to as the generator of this equation (see Oksendal). The operator L
acts on a function of V ∈ C2,1(Sh × R+;R+), as follows:

LV = Vt(x, t) + Vx(x, t) +
1

2
trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
,

where Vt =
∂V
∂t
, Vx =

(
∂V
∂x1

, ..., ∂V
∂xd

)
, Vxx =

(
∂2V

∂xi∂xj

)
d×d

.

Strong law of large numbers 2.6.7. Let M = {Mt}t≥0 be a real-valued
continuous local martingale vanishing at t = 0. Then

lim
t→∞

⟨M,M⟩t = ∞ a.s. ⇒ lim
t→∞

Mt

⟨M,M⟩t
= 0 a.s.

and also

lim
t→∞

sup
⟨M,M⟩t

t
< ∞ a.s. ⇒ lim

t→∞

Mt

t
= 0. (2.20)
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Chapter 3

Shifting cultivation

Shifting cultivation is a way of farming in which farmers use an area of land
(usually public land or land under nature conservation) until it cannot produce
good crops anymore, and then the farmer moves to a new area of land. It is a
type of farming in which the land under cultivation is periodically shifted so
that fields that were previously cropped are left to fallow. This occurs mostly
in impoverished communities. In the paper [4] of Balsdon, we find a model
of shifting cultivation with special attention on environmental impact. The
cultivation results in long periods of fallow and the need to move the zone of
active cultivation from one location to another over time. A related model is
discussed in the paper [9]. The purpose of this chapter is to briefly introduce
the model and to describe a conceptual approach in the understanding of the
modeling of shifting cultivation.

We consider the objectives described in the paper [4] of Balsdon, whereby
the resource stock over a fixed period [0, T ] as a classical problem of optimal
control is given as follows:

V =

∫ T

0

u[c(t)]eηtdt, (3.1)

c(t) = N + px(t) (3.2)

Ṡ = g[S(t)]− x(t), (3.3)

S(0) = S(0); S(t) ≥ 0. (3.4)
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The variable S is the stock of soil productivity remaining at time t, and x is
the extraction, in the form of agricultural output. The units of x and S are
defined so that one extracted unit of the resource stock always yields 1 unit of
agricultural output. The parameters p and N are the output price and non-
farm income, respectively, so that c is household consumption. The function
u [.] is utility with the usual properties.

3.1 Optimization problem

The equation (3.1) for the definition of the objective function can be rewritten
as:

V =

∫ T

0

u(N + px(t))eηtdt. (3.5)

The problem is now to maximize V , subject to the given conditions, with
respect to the extraction, x(t). This means that S(t) is the state variable
and x(t) is the control. We leave the set of admissible controls open for now.
Therefore we have the following.

Problem 3.1
Maximize V (s, x, t) with respect to x(t), subject to the conditions (3.3) and
(3.4).

Towards the solution, we require the Hamiltonian, which is as given in equation
(3.6) below. At times we shall write

eηtu = w.

We note further that the costate variable α is a function of time, i.e., λ = λ(t).

H(s, x, λ, t) = w(x, t) + λ(g(S)− x). (3.6)

Theorem 3.2
The following condition is necessary for optimality:

ẇx = −wxg
′(s). (3.7)
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Proof. Let us assume for now that the conditions S(t) ≥ 0 holds. Now we
explore the conditions for optimality that must hold:

˙λ(t) = −∂H

∂S
. (a)

The control x(t) must maximize H. (b)

Condition (a) implies that:

λ̇ = −λg′(S). (c)

Condition (b) implies that

0 =
∂H

∂x
=

∂w

∂x
− λ. (d)

The latter identity implies that:

λ̇ =
d

dt

(
∂w

∂x

)
. (e)

Now let us write
∂w

∂x
as wx.

Using equations (d) and (e) in (c) we eliminate λ and λ̇ to obtain:

d

dt
(+wx) = −wxg

′(S), i.e., ẇx = −wxg
′(S).

Thus, we have

−ηe−ηtux + e−ηtu̇x = ẇx = −wxg
′(S) = −e−ηtuxg

′(S)

which simplifies to:
ux(η − g′(S)) = u̇x.
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3.2 Optimal cultivation period

Let us denote by z, the cost of preparing a new stand for cultivation. The
optimal occupation time T ∗ is calculated similarly as the rotation period in
forestry according to the Faustmann model [26, 82].

Proposition 3.1 The optimal rotation time T satisfies the differential equa-
tion:

V ′(T ) =
η(V − z)

eηT−1
.

Proof. Suppose that the occupation time T is fixed. Let W be the discounted
wealth obtained over an infinite time horizon. Then

W = v − z + eηt(v − z) + eη2T (v − z)

= (v − z)
∞∑
i=0

e−ηT i

=
v − z

1− e−ηT
.

For optimal W we set dW
dT

= 0. Therefore, with (1− e−ηT )−1 = α, we have:

0 = W ′(T ) = αV ′(T ) + (−α2)(−e−ηT )(−η)(V − z).

Therefore we obtain

V ′(T ) =
η(v − z)e−ηT

1− e−ηT
=

η(v − z)

eηT − 1
.

Now we note that

V ′(T ) = u(1 + px(T ))e−ηT .

This yields

u(1 + px(T )) =
η(v − z)

1− e−ηT
.

This can be rewritten as:

(1− eηT ) ln(1 + px(T )) = η(v − z).
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Proposition 3.2 If we assume S(t) ≥ 0 and take u(x) = ln(N + px), then

ẋ =
c

p
(g′(S)− η) .

Proof. Recall that c = N + px. Then (*) implies that

p

c
(η − g′(s)) =

d

dt

(p
c

)
= −p2

c2
· ẋ.

Therefore
ẋ =

c

p
(g′(S)− η) . (3.8)

�
Proposition 3.3 For u(x) = (N + px)2 we have

ẋ =
2

p
(N + px)η) (η − g′(S)) .

Proof. From Theorem 3.2 we have

2p (N + px)η) (η − g′(S)) = p2ẋ, i.e,

ẋ =
2

p
(N + px)η) (η − g′(S)) . (B)

�

Thus we conclude, if the period length is sufficiently long to yield marginal
utility, the resource stock can be managed in such a way that exhaustion is
avoided. A long period of abandonment allows the rain forest to regenerate at
least partially, and the fertility of the land to be restored. The nutrient content
of both vegetation and soils is replenished and the regeneration protects the
soil from erosion.
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Chapter 4

A model for biological control of
a pest

Crops and livestock that are essential for human sustenance can be damaged
or destroyed by pests. It is important that strategies be developed to control
or eradicate such pests [24, 10]. In many cases it is not economically possible
or biological viable to completely eradicate a pest. Nevertheless, the threat
needs to be understood, monitored and controlled. Progress in science has
brought about and advanced two very significant approaches to pest controls.
These two major approaches are by chemical methods (poison) or biological
methods such as releasing predators onto the pests or releasing pest infected
with a communicable disease. There are other methods too.

Very recently, stochastic perturbation of epidemiological models have been
studied extensively, and it has been shown how stochasticity can enhance cer-
tain equilibrium points. See for instance the papers [79] and [84]. In this
chapter we study a stochastic differential equation model of a system compris-
ing a stock on which we have a pest, with the pest population being subjected
to a certain disease. The idea is to control the pest in the population by re-
leasing infected pest from the laboratory. Essentially we shall start with the
deterministic model of Chen and Tan [70] and impose a stochastic perturbation
on it. The general technique is to choose a living organism, which is referred
to as a biocontrol of the pest in the stock. So, for instance, insects can be
infected by disease-causing organisms such as bacteria, viruses or fungi. In
Chapter 6 we consider various aspects of species interactions in an ecological
zone. Such methods are relevant to this study as well. There is a vast literature
on the application of microbial disease for suppressing pests, see for instance
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[10, 16]. It may be that a disease is present in a pest population but is not
active. When conditions become favourable, an outbreak of disease may occur
spontaneously. These conditions could include high pest abundance, humidity,
temperature, etc.

4.1 The model of Chen

A simple model of releasing infected pests to suppress the abundance of the
susceptible pest was proposed by Goh [24]. The model was followed up by a
model [10] due to Burgess. Xia [80] presented a continuous time model as well
as a model with periodic release of infected pest at regular time intervals. In
this presentation we shall focus on the model 4.1 due to Tan and Chen [70].

We denote the quantity of susceptible pest at time t by S(t), and the in-
fected pest by I(t). By y(t) we denote the prey population. The symbol ν
represents the release rate of pests which are bred and subsequently infected
[10] for release onto the susceptibles. This ν will thus be a controllable param-
eter. We denote by α a parameter for the transmission coefficient, β represents
the death rate of the infected pest population. It is assumed that the infected
pests cannot recover, they are not capable of reproducing and cannot attack
the crops [83]. We assume that the susceptible pest S(t) is capable of repro-
ducing according to a logistic law. The variables r1 is a death rate and r2 is a
growth rate of susceptible pests.


Ṡ(t) = S(t)(−r1 − αI(t) + kθy(t))

İ(t) = αS(t)I(t)− βI(t) + ν
ẏ(t) = y(t)(r2 − θS(t)− ωy(t))

(4.1)

The term y(t)(r2 − θS(t) − ωy(t)) in the third equation indicates prey in the
absence of any predator which is growing in a logistic form. The contribution
of prey to the predator’s growth rate is given by kθy(t)S(t). We assume that
if the pests are infected, they will shortly die and cannot consume the prey
population.
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The system has 3 equilibrium points, E0 = (0, ν
β
, 0), E1 = (0, ν

β
, r2
ω
) and E∗ =

(S∗, I∗, y∗), with

S∗ =
r2 − ωy∗

θ
, y∗ = r1 + αI∗kθ,

I∗ =
[
2ωα2

]−1[
kθ2(

αr2
θ

− αr1ω

kθ2
− β) + kθ2((

αr2
θ

− αr1ω

kθ2
− β)2 +

4ωα2ν

kθ2
)1/2

]
In [70] it is shown that E1 is stable whenever R0 < 1 and is unstable if R0 > 1,
where the threshold R0 is given by

R0 =
kθr2β

ωr1β + ωαν
.

In the sequel we form a stochastically perturbed version of the model above,
and we prove that the point E1 is asymptotically exponentially stable. The
latter implies global stability of the point E1 in the deterministic case.

In the paper [70] of Tan and Chen, it is shown how to keep the pest numbers
at an economically viable level, by applying the proper intensity on the release
rate ν of infected pest. In what follows we give some discussion and graphs
on this subject. The insect pest can be successfully controlled by choosing the
appropriate value of the parameter ν. Thus we give the graphs to illustrates
the relations between the stable equilibrium and release rate ν. Susceptible
pests can be eradicated if the release rate ν is too high. The figure (Fig 4.1
(a)) shows a case of control of insect pest such that the number of the sus-
ceptible pests is always less than the given economic threshold. Considering
the release rate ν as in (b), we see that a good pest control programme should
reduce pest populations to a level acceptable to the crop environment. It fol-
lows from the equations that in equilibrium we have that I∗ is an increasing
function of ν and y∗ is also an increasing function of ν. This means that the
bigger the value of ν, the higher we have y∗. The increase of release rate must
be such that the number of susceptible pest will always be less than the eco-
nomic threshold (ET). Economic threshold, according to Sten, Smith, Vanden
Bosch and Hagan, 1959, is the population density of pest population, at which
control measures should be started to prevent the population from reaching
the economic injury level.

The control of insect pest is observed by the graphs:
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Figure 4.1: Simulations showing the control of insect pest in the equilibrium
E∗ and release rate ν. The economic threshold value ET = 1, r1 = 0.2, α =
0.8, k = 0.9, θ = 5, β = 0.5, r2 = 3, ω = 0.2.
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4.2 The stochastic model and its stability

We now consider a stochastic version of the model system (4.1) by perturbing
the contact term in the system above. We use a pair of complementary per-
turbations. Thus, for some constant parameter σ and a Wiener process B(t),
the dynamic behaviour of the system is modeled to be of the form:


dS = (S(t)(−r1 − αI(t) + kθy(t))dt− σI(t)S(t)dB(t)
dI = (αS(t)I(t)− βI(t) + ν)dt+ σI(t)S(t)dB(t)
dy = (y(t)(r2 − θS(t)− ωy(t)))dt.

(4.2)

In order for the system of stochastic differential equations to have a solution for
any given initial value, the coefficients of the equation have to satisfy certain
conditions. We shall omit a discussion of such condition, while only focussing
on stability, assuming that we have global positive solutions.
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For any t > 0, let us define the set:

At = {ω ∈ Ω : S(u) > 0, I(u) > 0 and y(u) > 0 for all 0 ≤ u ≤ t} .

In other words, we shall assume that every set At is of measure 1.

The following observation is popularly used in proving global stability of
deterministic systems. We also find it useful in our stochastic analysis.

Proposition 4.1. Let g(x) = x − c − c ln x
c
, for c > 0 constant. Then

g(c) = 0 and g(x) > 0 whenever x ∈ (0,∞)\{c}.

Proof. Differentiating g(x), we have g′(x) = 1−c/x. Thus we have a critical
value x = c and we note that g′′(c) = 1/c > 0, and therefore g has a min-
imum value at x = c. Furthermore we note that g(c) = 0. This completes
the proof. �

The following theorem describes stochastic stability of the equilibrium point
E1. We apply a theorem from the book of Mao, [42, Theorem 2.3 of Chapter 4]

Theorem 4.2. If R0 < 1 and ν
β
> 1 then the equilibrium point E1 is stochas-

tically stable.

Proof. Let V1 = c1S + c2

(
I − I1 − I1 ln

I
I1

)
+ c3

(
y − y1 − y1 ln

y
y1

)
be as of

Chen and Tan [70], and put U = lnV1. Let L be the operator as in Lahrouz et
al., [33]. The operator L is also refered to as the infinesimal generator of the
given system of SDE’s (see Oksendal). Now we must calculate LU , which is:

dU =
∂U

∂S
dS+

∂U

∂I
dI+

∂U

∂y
dy+

1

2

[
∂2U

∂S∂I
dSdI +

∂2U

∂S∂y
dSdy +

∂2U

∂I∂y
dIdy

]

+

[
∂2U

∂S∂S
dSdS +

∂2U

∂I∂I
dIdI +

∂2U

∂y∂y
dydy

]
=

c1
V1

(kθyS − r1S − αIS) +
c2(I − I1)

V1I
(αSI − βI + ν)

+
c3(y − y1)

V1y
(r2y − θSy − ωy2) +

1

2

[
−C2

1

V 2
1

σ2S2I2dt

]
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+
1

2

[(
c2I1
V1I2

− c22(I − I1)
2

(V1I)2

)
σ2S2I2dt

]
+

[
c1c2
V 2
1

I − I1
I

σ2S2I2dt

]

=
1

V1

[
c1(kθyS − r1S − αIS) + c2

(I − I1)

I
(αSI − βI + ν)

+c3
(y − y1)

y
(r2y − θSy − ωy2)

]
+

(σSI)2

2

[(
c2I1
V1I2

− c22(I − I1)
2

(V1I)2

)
+2

(
c1c2
V 2
1

I − I1
I

)
− C2

1

V 2
1

]
(4.3)

=
1

V1

[
−c2β(I − I1)

2

I
− c3ω(y − y1)

2 +
β

ω
(kθr2β − ωr1β − ωνα)S

]

−(σSI)2

2

[
c21
V 2
1

− 2
c1c2
V 2
1

I − I1
I

+
c22
V 2
1

(
I − I1

I

)2

− c2I1
V1I2

]

= −c2β(I − I1)
2

I
− c3ω(y − y1)

2 +
β

ω
(kθr2β − ωr1β − ωνα)S

−1

2

(
σSI

V1

)2 (
c1 − c2

I − I1
I

)2

+
1

2

(σS)2

V1

c2I1

= −1

2

(
σSI

V1

)2 (
c1 − c2 + c2

I1
I

)2

+
1

2

(σS)2

V1

c2I1

≤ 1

2

(
σS

V1

)2 [
−I2 − I1V1

]
< 0.

Therefore the point E1 is stochastically stable. �

The following are two simulations of solutions of the stochastic system. The
parameter values are different in the two simulations. In the simulation dis-
played in Fig 4.2 (a) we took ω = 15; σ = 10. This yields R0 = 0.83.
In the second simulation Fig 4.2 (b) we took ω = 13.5; σ = 15. This yields
R0 = 0.926.
In both cases we have R0 < 1 and we also note that the condition ν

β
> 1 is

satisfied. Therefore by Theorem 4.2, we expect the equilibrium point E1 to be
a stable solution. The graphs confirm this.
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Figure 4.2: Simulations showing the stochastic trajectories relation in the re-
lease rate of ν = 0.5 labeled (a), and ν = 0.05 labeled (b).
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Simulations seem to indicate that stochastic stability is obtained even if
R0 is slightly bigger than 1. A more sophisticated stability analysis will most
likely yield a better range of values for R0 to still ensure stochastic stability.
We may be able to find a new threshold invariant to indicate stochastic sta-
bility of E1.

4.3 Thresholds in the stochastic model

In concluding this chapter we consider the problem of retaining, in the long
run, a positive level of susceptible prey. As we have mentioned, it may be im-
portant to not have the susceptible pest vanish completely. The management
of the susceptible pest in the stochastic model can also be explored through
simulations. Consider the following parameter values:

r1 = 0.2; α = 0.08; k = 0.04; θ = 1; β = 0.5; r2 = 1.5; ω = 0.2; σ =
0; a = 0.1,

and the initial values

S = 1.5; I = 0; y = 5 .
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Suppose that we seek to have the system to have a stable nontrivial equilibrium
with S∗ = 0.5. The correct ν− level can be determined quite easily by means
of graphs through trial and error. We proceed by testing different values of ν,
until we get sufficiently close to the desired state. In the sketches below we
show the stable curves for the cases ν = 0.5 and for ν = 0.05. The latter value
ν = 0.05 seems to be the desired level of release rate of infected prey to keep
the numbers of the healthy prey above 0.5 with 0.5 above the equilibrium value.

Having run numerous simulations we can conclude that on the average, a
given level of ν give lower S∗ values in the stochastic case than in the deter-
ministic case, at least for R0 relatively small (but above the unity level). We
show two such simulations. In fact, the simulations have the same parameters
as in the case [70]. However in both cases it shows a clear risk of extinction of
S. The control in this case requires more sophisticated analysis, into which we
shall not venture now.
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Chapter 5

The effects of rain and fire on
savanna

Savanna is grassland ecosystem where the trees are sufficiently small or widely
spaced such that the canopy does not close. They naturally occur in areas with
annual rainfall from 300 to 1800mm. In most cases, competition such as for
instance, niche separation with respect to limiting resources such as water, lead
to tree-grass coexistence. Factors such as fire, herbivores and rainfall variability
promote tree-grass persistence through their dissimilar effects. Classification of
savannas can be split into nutrient rich or nutrient poor, fine leafed or broad
leafed, semi arid or wet. The transition between moist and dry savanna is
expected within a range of 500mm to 700mm annual rainfall, see for instance
the papers [57, 60]. This chapter discusses a very simple ordinary differential
equation model describing the competition between trees and grass in savanna
environment. The competition between them are for soil water, fed by annual
rainfall. Ultimately, when tree and grass compete for this soil water, they are
also perturbed by fire disturbance and some other environmental forcings such
as herbivores. Our main reference to this work is the paper [59] of Scholes
et al. The model captures essentially the competition for or availability of
water, and the effect of fire. We augment the model in [59] of Scholes et
al, by introducing stochastic perturbations. The stochastic perturbations we
introduce in the savanna model are in the form of three mutually independent
Brownian motions.
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5.1 History

Since 1984, savanna studies have been revolutionized and these studies have
become increasingly interdisciplinary and international in character. Until the
mid-1980s, savanna studies were based on the concepts of ecology which were
first developed in Europe and North America between about 1910 and 1940.
Plant communities were seen as ’organisms’, or ecosystems, in a state of equi-
librium. So for instance, in the paper [6] of Provenzale et al., authors regard
savannas as organisms responding to changes within ecological determinants.
The state can be determined by one or more external ecological or abiotic fac-
tors, such as climate, geology, soil or fire. Unfortunately, there was a strong
disagreement over which factor controlled savannas. British foresters working
in West Africa thought savannas were anthropogenic (human-created) com-
munities, forged out of the forest by cutting and burning trees. In contrast,
German scientists working in South West Africa (Namibia) and South America
tended to view savannas as a climatically-determined vegetation type, while
the French in Indochina (Laos, Cambodia and Vietnam) saw savannas as es-
sentially fire climaxes. There were also other more idiosyncratic explanations.
Certain geographers, for example, argued that savannas were primarily deter-
mined by geomorphology (the age of the land surface) and soils. In truth,
however, there was very little real debate or discussion between the different
schools of thought, and savanna studies soon became somewhat nationalistic,
regionally constrained, and ultimately outdated in relation to the more gen-
eral advances being made in the ecological sciences. It is now thought that all
savannas are determined by the complex interplay of ecological determinants.
These include moisture, fire, herbivory, frost and wind, as well as major his-
torical anthropogenic events. Historical events, such as the abandonment of
human settlement or enhanced global warming, may trigger a savanna into a
totally new ecological state. The relationships between the complex of vari-
ables are now analysed multivariately, using models or hierarchy theory, and
can be used to make basic international, national, and regional savanna com-
parisons. These new approaches place savanna studies at the centre of ecology.
The discussion of global environmental change and ecological determinants link
savannas directly with both world-scale and local-scale environmental fluctua-
tions. Fundamentally, savanna studies have at last come of age. Perhaps even
more importantly, savannas are no longer seen as being simple equilibrium
systems, but rather they are regarded as a vegetation type which is constantly
under a regime of change, with their biology driven by both gradual and catas-
trophic variation in the ecological determinants. Some scholars think of savan-
nas as ever moving between what are called ’multiple equilibrium states’, such
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as open grassy savannas, wooded savannas, and woodlands.

5.2 The model

We set out to find a model of tree-grass dynamics competing for soil water and
perturbed by fire. In the paper [58] of Ratnam et al., the necessity of taking
into account both disturbances and competition for resources simultaneously
is explained. This has to happen in order to capture their relative importance
towards shaping the different types of savannas. The competition of tree-grass
leads the co-existence in savannas. Additionally, we include the stochastic fire
disturbances significantly which widens the range where coexistence of trees
and grasses is found. There is a theory, see Scholes et al [59], that the co-
existence of tree and grass in savanna is controlled by fire and rainfall. We
assume soil water to be a limiting resource [77], with grasses as the supe-
rior competitor but having roots restricted to the topsoil layer, whereas trees
root both in the topsoil and the subsoil. Then the range succession model in
savannas point the extremes of grassland and forest ref: Figure 5.1.

We now present a description of the model and also discuss its behaviour
in the environment. Tilman [72], represent the temporal dynamics of tree and
grass as follows

dT

dt
= cTT (1− T )− ξTT,

dG

dt
= cGG(1−G− T )− cTTG− ξGG, (5.1)

The functions T and G represent the fraction of area covered by trees and grass
respectively. Of course then, T andGmust satisfy the condition 0 ≤ T+G ≤ 1.
The constants cT and cG are the colonization rates, whereas ξT and ξG are the
off-take rates for trees and grasses, respectively. The off-take rates ξT , ξG and
colonization rates cT , cG, has to be all positive and are measured in units
of [1/t], where t is time. From equation (5.1) our tree T and grass G are
dimensionless. If the trees are not present in the area then we have T = 0, an
area which is fully covered by trees a value T = 1, and similarly for grass. The
equation above present trees as a superior competitor, while grasses are the
inferior competitor. The take off are fire disturbances occurring mainly in the
dry season, when the perennial grasses are dormant. We find in the paper [59]
of Scholes et al., that fire consumes grass leaves as fuel, but does not generally
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kill the dormant grass buds at or below the soil surface. Fire acts differently on
grass and tree, can consumes tree leaf litter, but if grass is completely absent
it is very difficult for fire to propagate. Now follows the model of tree-grass
dynamics competing, and with perturbation by fire.

dT

dt
= cTT (1− T )− ξTT − ξFfGT,

dG

dt
= cGG(1−G− T )− cTTG− ξGOG− fG (5.2)

The term f is representing the fire, −ξFfGT represents trees’ reduction due
to fire. Under the grass rate, fG is the amount of grass fuel load. The fire
disturbances in equation (5.2) describes the consumption of grass by fire, and
is denoted by the term −fG. The term −ξGOG is the grass reduction due to
the other causes such as mortality and herbivores. Both of the terms −ξGOG
and −fG are from a removal term −ξGG in equation (5.1). The vulnerability
of trees to fire ξF , and the tree abundance are similar to that in the work
of Kumar et al., [30]. Rainfall forcing, soil water, and tree grass dynamics
are compared on checking the arid and semi-arid environments. The water
in an arid environment is the primary determinant of vegetation composition,
structure, and function for water which is present in the rooting zone [6].
Therefore the soil water dynamics is of the form

dS

dt
=

p

w1

(1− S)− δS(1− T −G)− τTST − τGSG, (5.3)

with S being the degree of saturation in available water capacity. The dynamics
of this model describes the water volume present in the root zone. The function
S ranges in the interval [0,1]; S = 0 corresponds to completely dry soil, and
S = 1 to completely saturated soil [59]. The term p/w1, is the rainfall rate
over the unit area p ≥ 0 and normalized by volume w1. The volume w1 is
based on the depth of the root zone z with the porosity n. The parameters
δ, τT , τG, normalized by volume w1, are the mean evaporation rate from the
bare soil, water uptake rate by trees, and water uptake rate by grass. The
term δS(1 − T − G) is the evaporation from bare soil, and τTSG, τGSG are
the water uptake by tree and grass respectively. The term (p/w1)S describes
the amount of rainfall exceeding the root zone capacity percolating beyond the
root zone depth.

We illustrate the dynamics by way of the following graphs. For these
simulations we used the following parameter values:
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Figure 5.1: Simulations showing the behaviour of tree and grass in competition
for water.
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The depth of the root zone z is in the range 0-1 where as the porosity n in
0.55, as used in the paper [60] of Scholes and Walker. The colonization and loss
rates are obtained by consideration of the time scales necessary to attain the
equilibrium state. The parameter δ is in the range 20yr−1, τT = 1yr−1, τG =
1yr−1, γT = 2yr−1, γG range in 20− 200yr−1, ξT = 0.3yr−1, ξGO = 2.5yr−1,
ξF = 0.02yr−1, p = 0mmyr−1, and f = 0yr−1.

From these graphs we observe that, at times where T and G are perturbed,
the existence of environmental intrude are found. Trees cannot recover, but
only grass at all time. The soil saturation S(t) is capable of reproducing in
terms of store rations.

5.3 Savanna dynamics

This section describes a spatially homogeneous model for the competition of
trees and grasses in savanna environment. The coupled dynamics emphasizes
the competition for soil moisture and the risk of fire. The dynamics illustrated
here is due to Scholes et al. [59], and the system of ordinary differential
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equations is the following.

dT

dt
= γTST (1− T )− ξTT − ξFfGT,

dG

dt
= γGSG(1−G− T )− γTSTG− ξGOG− fG, (5.4)

dS

dt
=

p

w1

(1− S)− δS(1− T −G)− τTST − τGSG.

This model of Scholes et al. is an extension of the models proposed by De
Michele et al., [75] and Luca et al., [49] for the coupled dynamics of soil mois-
ture and one plant functional group in arid and semi-arid ecosystems. From
equation (5.2) the colonization of tree and grass is replaced by the term γTS
and γGS respectively. The parameter γT and γG are the average colonization
rates. In equation (5.4), the functions of the soil moisture in colonizations of
tree and grass are in the root zone. Then, we see by equation (5.4) that in
equation (5.2) the functions of colonization rates of tree and grass are con-
stant. The dynamic system equation (5.4) is a simple ecohydrologic model of
savanna, characterized by parameters w1, δ, τT , τG, γT , γG, ξT , ξGO, ξF . The
parameter f is a fire frequency and p is the annual rainfall, and they constitute
the main environmental forcings.

The parameter values are of the range:

Symbol Unit Range
z m 0.1− 1
n − 0.05− 0.55
δ yr−1 20− 30
τT yr−1 1− 50
τG yr−1 1− 50
γT yr−1 0.15− 2.5
γG yr−1 20− 200
ξT yr−1 0.03− 0.3
ξGO yr−1 1− 3
ξF − 0.02− 0.6
p mmyr−1 0− 1800
f yr−1 0− 2

Table 5.1: The range of parameter values and environmental forcings of the
model.
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5.4 Stability map and steady state solutions

This section gives the steady state solutions of grass and tree in the savanna
environment. As we mentioned in equation (5.2), T, G and S are dimensionless
and non-negative, and T +G ≤ 1. Now the equilibrium points T ∗, G∗ and S∗

are as follows:
T (γTS(1− T )− ξT − ξFfGT ) = 0;

T ∗ = 0 or T ∗ = 1− (ξT + ξFfGT )

γTS
.

G
[
γGS(1−G− T )− γTST − ξGO − f

]
= 0;

This implies, G∗ = 0 or

G∗ = 1− (γGST + γTST + ξGO + f)

γGS

and finally

p

w1

(1− S)− δS(1− T −G)− τTST − τGSG = 0;

p

w1

− S(
p

w1

+ δ) = 0, at T ∗ = 0 and G∗ = 0

S∗ = (
p

w1

)/(
p

w1

+ δ) = 0.

The steady state solutions show effective coexistence in response to the
forcings. The behaviour of the tree-grass in the forcing are indicated (by
calobar), with the different regions of stability. The steady states of the model
in equation (5.4), on soil moisture S has p

p−δw1
for both T and G equal to zero,

and the states shows unvegetated land. Otherwise the grass G has steady
state G∗ = 1 − ξT/γTS in the absence of trees. At T = 0 and G∗ = 1 −
(ξGO + f)/γS, we have the grassland state. The equilibrium states are shown
on the map (Figure 5.2). The bare soil is more extensive when the prevalence
of fire increases. Permutations such as of saturation limit the availability of
fire forcing (Figure 5.3).
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5.5 Stability map

The stability map in Figure 5.2 depicts the environmental space defined by
rainfall and fire. Within the environmental space defined by rainfall and fire,
the positive values of the environmental forcings and state variables in (5.4) has
7 different regions. These regions are representing the stability and bistability
of tree grass coexistence in fire and rainfall. We include the mapping as from
the paper [59] of Accatino et al.,.

The parameters assumed are such that domains of environmental forcings
and state variables, has 7 different regions of stability and bistability. This
predict the changes in vegetation structure along gradients of rainfall and fire
disturbances realistically. By also looking at the map result, we have better
clarity on the distinction between climate and disturbance dependent ecosys-
tems. The scale used for upper boundary in our map is 1.2 and that is a fire
frequency, and is per year. The rainfall is in millimeter per year and that
means 1.8 upper boundary in our map, reflects 1800 mm/year.

The region (a) mapped grey shows absence of tree and grass. The result
of unvegetated area in (a) is through the high fire frequency and low rate of
rainfall. The region (b) mapped grey shows the presence of vegetation from
low rate of rainfall to high. The stable equilibrium on (b) is grassland, because
rainfall is enough for the existence of grasses. Map named (c) with colour grey
is the savanna region and dark grey forest. The rainfall p in (c) allows the
occurrence of both trees and grasses, and the stable equilibrium is savanna.
The stable equilibria on (d) coloured map grey is showing the rate of grassland
and forest, and savanna in continuous state. Therefore this explains that the
direct effect of fire on grass is greater than the indirect effect on trees.

Graph (e) in the Figure 5.2 shows the regions on effects result of environ-
mental forcings. The colours mapped blue is unvegetated area, light blue from
unvegetated is forest(trees), green is a grass, red is savanna, orange is grass
and forest, and dark red from savanna to the right side is forest and to the
upper dark red from savanna is forest and savanna. For more references on
steady state presentation of these regions, look at Solbriege et al., Sternberg
[69].
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Figure 5.2: Simulations of the stability map showing different regions of sta-
bility and bistability of environmental forcings.
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5.6 Results on vegetation changes

The behaviour of tree-grass coexistence in Figure 5.2 takes the average of dif-
ferent vegetations over a long period. This section is taking heed that the
coexistence of vegetation region is more likely than in an undisturbed case
without environmental forcings. In the presence of perturbations off-takes
rate can be greater. This results in more bare soil area, because fire increases
the chance of vegetation death.

Following Scholes et al., [59], the rainfall gradient range is greater than or
equal to 0.05 (50 mm/year) and also less than or equal to 1.8 (1800 mm/year).
Therefore through the ranges we intend to consider changes in vegetation sta-
ble states over which rainfall gradients is low, and high fire conditions. Figure
5.3 is the one showing the pattern on how the gradient range satisfy the states.
Then it follows that conditions of the gradient 0 ≤ p ≤ 200 as in frequent fire
on same gradient, gives the disturbances to be discovered at an earlier stage
of the gradient. The vegetation changes along fire gradients 0.2 < f ≤ 1 at
the annual rainfall p = 650 mm/year is considered. The environment of area
covered by trees that survived fire become lower.

However the coexistence as we check (a), (b), (d) on the Figure 5.3, extend
in the region where in constant case, only trees are found. If grasses were
not damaged too strongly when f = 0.8, either forest or grassland could be
observed, depending on the initial conditions of tree cover. For these assump-
tions, check (c), (e), (d) on this figure (5.3).

The fire disturbances indicates that most of the grass and tree covers are de-
stroyed as is shown (b) and (a). Moreover, adult trees which make up forest,
are affected less strongly as we observe the calobar in both (a), (b), (c), (d) at
rates from 0.7 till 0.8. Finding the stability, we often notice that fire destroy
only part of the adult tree cover, as taller and thicker stems often have higher
fire resistance. That is illustrated (e) in this figure. This means fire influences
the tree grass ratios illustrated in (d), and (e) as the rainfall availability deter-
mines the type of vegetation. The coexistence of tree and grass is permitted
by limited amount of water resources at annual rainfall range 25 ≤ p ≤ 100.
Moreover this range is helping us to clarify the coexistence of tree and grass
due to simultaneous influence of rainfall and fire. Therefore our assumptions
imply that savanna is the result of the co-occurrence of water limitation and
fire existence, check (d), (c), (e).
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Figure 5.3: Simulations showing different equilibrium states regions with calo-
bar representing the survived vegetation from low rate of rain fall frequency
through high fire forcings.
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(c) (d)

(e)
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5.7 Model with stochastic perturbation

Now let us consider a stochastic version of the model (5.4) equation by per-
turbing the deterministic system. We propose a model of the form below:

dT = (γTST (1− T )− ξTT − ξFfGT )dt− σ1T (t)dB1(t),

dG = (γGSG(1−G−T )−γTSTG−ξGOG−fG)dt+σ2G(t)dB2(t), (5.5)

dS = (p/w1(1−S)−δS(1−T−G)−τTST−τGSG)dt+σ3S(t)dB3(t).

The phrase dBi(t)
dt

(for subscript {1, 2, 3}) is a noise in the environment with
Bi(t) a Brownian motion, and these Brownian motions are considered to be
mutually independent. The stochastic perturbations can be interpreted as
follows. In the system, the equations associated with T , G and S, the per-
turbations are (respectively) on the parameters ξT , ξGO and δ − p/w1. The
intensity of the perturbation is determined by the parameters σi.
The following graphs compare the deterministic model (5.4) to the model (5.5)
with stochastic perturbation:
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Figure 5.4: Simulations showing savanna dynamics.
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The deterministic graphs of 5.4, indicate the systems become stable at
the year of rainfall p. At transect of 0 ≤ f ≤ 1 and 50 ≤ p ≤ 100 for an
example the absence of fire disturbance, it is possible to observe the different
sequence of tree and grass. In Figure 5.5, the result shows stability disturbed
by random intrude. Then the desired results on the comparison of the savannas
deterministics to stochastics ones depends on the type of plant species present
on the ecosystem. The result of the stochastic disturbance significantly shows
the coexistence of trees and grasses. However at the same time, tree and grass
coexistence to fire feedback can induce bistability between forest and grassland.
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Figure 5.5: Simulations showing stochastic pertubations.
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Chapter 6

Stability of a three-tiered
predator-prey system

6.1 Introduction

Ecosystems management entails and encourages the ethical use of natural re-
sources. Management strategies depend on the extent to which a natural
resource stock responds to it being harvested or exploited, [43]. An important
objective of ecosystems management is sustainability of the stock of resources.
Sustainable development is a strategy of manipulating and partly altering a
natural system or resource (e.g., constructing a building on land that has never
been used by humans) for the benefit of human livelihood, and doing it in a
manner that does not compromise similar benefits for future generations.

The concept has become a popularly accepted principle, and researchers
needed to find ways of quantifying the degree of sustainability of a given devel-
opment, and in particular, for use in ecosystems management. In this chapter
we propose, following [65], a numerical measure of quantifying stability and
sustainability of such a resource stock, or rather, of the underlying system.
The object of study is a predator-prey interaction in a food chain. In [65]
the analysis includes optimal control theory as an important mathematical
tool. The authors formulate a control problem problem based on the so- called
Fisher information (explained below, or see Chapter 2) of the ecosystem model.
The optimization problem will be that of maximizing the Fisher information,
and its solution is a description of the intervention on the system that is most
conducive to long term sustainability. The solution of this problem reveals
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the best strategy for human interactions with the system in order to maxi-
mize the sustainability of the stock. In this dissertation we focus attention on
the Fisher information itself and we perform several computations aimed at a
better understanding of Fisher information, at least for the given model.

In ecosystem management, preservation of the ecosystem requires consider-
ation of all different interactions and natural fluctuations in the system. Such
natural fluctuations may well be important for the long term stability of the
system and sustainability of the resource stock. In this chapter we shall in-
troduce the Fisher information concept as a means of quantifying the stability
of a system. The Fisher information measure will also encode the effect of re-
source use by humans. We present some computations, exploring the effect of
enrichment of the system on Fisher information, and the effect of harvesting.
By enrichment we mean that the system is modified in such a way that the car-
rying capacity of the prey increases. Regarding the harvesting, we introduce
into the system of ODE’s, the continuous external removal of prey.

6.2 Information theory and sustainable devel-

opment

information theory in ecology emerged in the development of methodologies
for quantifying the variation in a dynamical ecological system.The use of in-
formation theory combines the internal make ups of individual organisms with
the overall ecosystems structural organization [20]. An example of such an
information theory is the Shannon information (pioneered in [64]) for quan-
tifying diversity in an ecosystem. Considering the long-term effects, benefits
and drawbacks in all the decisions relevant to the ecosystem, the use of a suit-
able information theory is encouraged for the purpose of informing sustainable
development strategies. The concept has been recognized to be of paramount
importance, and considered essential to have as a quantifying measure in the
field of ecosystem management [65]. Sustainable development meets the needs
of the present without compromising the ability of the future generations to
meet their own needs [68].
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6.3 Fisher information

Fisher information quantifies the way in which information on an observable
random variable can carry unknown specifications upon which the probability
of ecosystem depends. In the paper [11] of Fath and Cabezas, Fisher informa-
tion is used as the quantifying measure of sustainability and optimal control
theory is harnessed to derive the control profiles. Also, Fisher information is
the basis of the so-called sustainable measures hypotheses, proposed by Fath et
al. We present a study of the species interactions in a predator-prey model.

In Chapter 2, the section 2.4 we have observed how the concept can be adjusted
to apply to a system of ODE’s. For stability of an ecosystem it is important
that the system is not losing or gaining species, [65]. As this chapter is a study
of the species interactions in a predator-prey model, we consider the sustainable
hypothesis. When the state of the system becomes unsustainable, the system
begins to either gain or lose Fisher information, see the paper [11] for instance.

6.4 A model of a three level food chain

The basic predator-prey model describes an interaction between two organisms
in which one of them acts as predator that captures and feeds on the other
organism that serves as the prey. This section review a model that is based on
two model with extension to third stream. We now present the model discussed
by Diwekar and Shastri, and Ryan et al [65, 56], of a three level food chain.
The equations describing the species numbers are illustrated as follows:

dx
dt

= x
[
r
(
1− x

K

)
− ay

b+x

]
,

dy
dt

= y
[
e ax
b+x

− a1y1
b1+y

− d
]
,

dy1
dt

= y1

[
e1

a1y
b1+y

− d1

]
.

(6.1)

This model describe x, y, y1 the population variables of three different species
in a food chain. These species are referred to as prey (x), predator (y), and
super-predator (y1). The parameter r is the prey growth rate and the carrying
capacity of prey is K. The parameters a, a1, b, b1, and d are the maximum
predation, half saturation constant, efficiency, and death rates of predator(y)
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and super-predator (y1).
The phrase a

b+x
is a prey mortality rate, d the predator mortality rate, and

a1
b1+y

is the predator growth rate.

We will use the model parameters for dynamically stability of system as
given in the table below

Prey Predator Super− predator
x(0) = 100 y(0) = 75 y1(0) = 150
r = 1.2 a = 2.0 a1 = 0.1
K = 710 b = 200 b1 = 250

e = 1.0 e1 = 1.12
d = 1.0 d1 = 0.04

Table 6.1: Stable parameter set of tri-trophic food chain.

6.5 Simulations

The figure below show the interaction between a prey species x and its preda-
tor, super- predator, y, y1 respectively from equation (6.1). We include the
graphs as in the paper of Diwekar and Shastri [65]. The graphs illustrates the
recovery of the system from a disturbance in the equilibrium situation. Both
the prey and the predator numbers grow in terms of their amplitude, relatively
quickly reaching a constant amplitude. We also find that in the super predator
there is a significant and a consistent drop in numbers from a value that was
initially much too high. This is to be expected by observing b2, which is the
predator half saturation. Therefore population y1 which is the super predator,
seems to be at risk of going extinct. See Figure 6.1 (c,d).

6.6 Steady states of the system

In Section 6.5 we noticed cyclicality in the system equation 6.1. A phase por-
trait of the solutions obtained in Section 6.5 is shown in Figure 6.2.
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Figure 6.1: Simulations of tri-trophic chain model comparing the maintenance
of control options and objectives through growth rate K.
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In this section we give the steady state solutions of the predator-prey model,
or more particularly, we look at the possibility of equilibrium points. In the
simulation of Figure 6.2 we find the equilibrium solutions are periodic. For the
same set of parameter values, a MAPLE computation reveals some equilibrium
points. Ignoring the negative solutions, we observe the trivial solution (every
variable vanish) along with solutions

[x = 6000, y = 0, y1 = 0],

[x = 200, y = 232, y1 = 0.],

[x = 5767.248003, y = 138.8888889, y1 = 3628.206652].

These equilibrium solutions appears to be unstable. In Figure 6.1 we test the
solution ([x = 5767.248003, y = 138.8888889, y1 = 3628.206652]).

6.7 Fisher information on model refinement

In this section we present some computations, exploring the effect of enrich-
ment of the system on Fisher information, and the effect of harvesting. One
can regard the super-predator as being the humans, and then the harvesting
is already embodied in the model. As an example, we can consider both the
predator and the prey as being two different fish species, the bigger one of
which are harvested by humans.

To calculate Fisher information, it is necessary to determine a probability
density of (6.1). We assume that the system behaviour can be refined in
a continuous dynamic system description. We also assume that the system
dynamics be periodic and that must include the equilibria. The refinement of
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equation (6.1) is of the following form.

dx
dt

= x(t)
(
r
(
1− x

K

))
− τx(t)−

(
a

b+x(t)

)
x(t)y(t)

≡
(
r
(
1− x

K

)
− τ

)
x(t)−

(
a

b+x(t)

)
x(t)y(t),

dy
dt

= e
(

a
b+x(t)

)
x(t)y(t)−

(
a1

b1+y(t)

)
y1(t)y(t)− τy(t)− dy(t)

≡ e
(

a
b+x(t)

)
x(t)y(t)− (τ + d)y(t)−

(
a1

b1+y(t)

)
y1(t)y(t),

dy1
dt

= e1

(
a1

b1+y(t)

)
y1(t)y(t)− τy1(t)− d1y(t)

≡ e1

(
a1

b1+y(t)

)
y1(t)y(t)− (τ + d1)y1(t).

(6.2)

This model shows the effect of fishing activities. The odd variation in the
species catch for an example in this model do with wide variations in fishing
activities. The fishing activity decreases the food-fish population at a rate
τx where τ > 0 reflects the intensity of fishing activity. Furthermore, fishing
activity decreases the population for an example at a rate τy and τy1. The
paper of Volterra [76] shows the variations and fluctuations in animal living
species, whereas the refinements of a model can be observed on Lotka [38].

The effect of enrichment on Fisher information is illustrated in the Figure
6.3 below. The parameter values for this simulation is as given in Table 6.1.
The time averaged Fisher information for a system with number n of species
is described

FI =

∫ Tc

0

1

Tc

(
s(t)2

v(t)4

)
dϵ, (6.3)

where

v(t) =

√√√√ n∑
i=1

dxi

dt
, for xi as in equation (6.1) (6.4)

and

s(t) =

√√√√ n∑
i=1

dxi

dt

d2xi

dt2
. (6.5)

The variables v(t) and s(t) are the velocity and acceleration terms of ecosys-
tem respectively. Note the cyclicality in the system. The period is Tc = 1.
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Figure 6.3: Graphs showing the Fisher information.
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As we can see in our graph, the evolution of the ecosystem over time, seem
to be evolving to some stable pattern. The desirable state is to manage in such
a way that ecosystem extinction is avoided.

6.8 Further illustrative simulations

Next, we study the effect of K on Fisher information, which is the carrying
capacity of prey species. We calculate Fisher information by manipulating the
parameter K. For parameters as in Table 6.1, the value of Fisher information
is computed using different values Ki of K.

Ki 550 600 650 700 750 800 850 900
FI 0.3187 0.3401 0.3580 0.3731 0.3861 0.3974 0.4073 0.4160

From the table we observe that Fisher information (FI) seems to be increasing
with K (FI is an increasing function of K). Increasing FI, means that stability
is being compromised. This is of course an interesting phenomenon (which we
shall not pursue here), relating to the so-called paradox of enrichment [55],
Rosenzweig.

To further determine the response of FI to changes in ecological system, we
consider the variation of d1 which is the predator mortality rate. When we
take the values of d1 at the specified Ki below, then the results of Fisher in-
formation in this array tables are of as shown in the tables below:
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At K = 550,

d1 0.035 0.04 0.045 0.05
FI 0.3188 0.3187 0.3186 0.3185

at K = 600,

d1 0.035 0.04 0.045 0.05
FI 0.3402 0.3401 0.3400 0.3399

at K = 650,

d1 0.035 0.04 0.045 0.05
FI 0.3580 0.3580 0.3579 0.3578

at K = 700,

d1 0.035 0.04 0.045 0.05
FI 0.3732 0.3731 0.3730 0.3729

Within the respective K on the control rate 500 ≤ K ≤ 700, the FI is in-
creasing as d1 decrease and vice versa. The control of carrying capacity and
the growth rate d1 gives a results of a lower FI as shown at respective K ≤ 550.
At the control higher d1 and K ≥ 550 the FI is increasing as well. This con-
clude that the lower carrying capacity d1 drops, the higher Fisher information
(FI).
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Figure 6.2: Diagram of predator-prey model in growth rate K and a saturation
control b
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Chapter 7

A model for managing a lake

Human existence depends on services provided by ecological resources. The
reliance as in Brauer, Maler [8, 40]) proved more needfull in rural than in
industrialised areas. Effective management of these resources is essential. In
this chapter we consider one of the problem of eutrophication. The manage-
ment is subject to alternate states, thresholds, and some states changes of lake
behaviours. The problem of a lake eutrophication is considering an excessive
phosphorus input. We shall describe a very simple model which illustrates
many of the phenomena observed in real lakes. We describe the management
of the runoff nutrients into/out of the lake. The view of this chapter is noting
the prevention of eutrophication both in urban and rural services. The phrase
eutrophication means the enrichment of an ecosystem with chemical nutrients,
typically compounds containing nitrogen, phosphorus, or both. The primary
cause is usually the excessive inputs of phosphorus, mainly due to runoff from
agriculture and urban areas. A lake may be eutrophic with the characteristics
of high nutrient input and plant production, dirty water, and toxic molecules.
On the other hand, a lake may be oligotrophic with the state characterized by
low input of nutrients and plant production, and a fair degree of clear water.

7.1 The model for eutrophication

The section highlight some problems and consider simple models for addressing
these questions. The phosphorus concentration in the lake, as explained in
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Brock et al., [12] introduced is given by the differential equation

dx

dt
= W − sx(t) + r

xq(t)

nq + xq(t)
. (7.1)

This model describe the rate W of phosphorus input from the watershed while
x is the amount of phosphorus in the water. The phrase sx(t) is the amount
of phosphorus present in the water. The rate of phosphorus loss from sedi-
mentation, outflow, and absorption by consumers or plants is assumed to be
proportional to the amount of phosphorus present. The parameter s denotes
the sedimentation rate at which phosphorus leaves the water column and enters
the sediments at the bottom of the lake. The sigmoid function

r
xq(t)

nq + xq(t)
(7.2)

is suggested as a recycling rate through the study of approximation. The ex-
ponent q describes the steepness of this sigmoid function at its inflection point,
and must be greater or equal to 2. The parameter r is the maximum recycling
rate of phosphorus and n is the concentration of phosphorus at which recycling
is half its maximum rate. The feedback function of (7.2) and constant loading
of runoff of phosphorus in water with its rate can be checked in Maler [40, p
654].

Now, a phosphorus loading for when dx
dt

= 0, is

sx(t) = W + r
xq(t)

nq + xq(t)
. (7.3)

In this case the amount of phosphorus present in the water is at equilibrium.
The additional methods of intervention to decrease a recycling or increase sed-
imentation is applied, see Fig 7.2. Whether this understanding of intervention
is feasible, depends on the properties of the lake. The health of the lake is ac-
complished not by considering only the runoff nutrients, but traditional water
hyacinths as well.

The growth of water hyacinths or algae in the lakes are at most rare in Africa.
Theory and behaviour of eutrophication in terms of ecology study are pre-
sented in papers such as of Maler, Brock et al., Brauer [40, 12, 8] and the
collective interdisciplinary articles on economics applications.
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7.2 Optimal control

We let the instantaneous utility function be u(x,W ) and the utility discount
rate be α. The social welfare function is defined:

K =

∫ ∞

0

e−αtu(x,W )dt.

The path of phosphorous loading maximize K subject to the dynamics of the
lake.

We assume the utility function to be of the form:

u = lnW − cx(t)2.

The utility is separable in phosphorous loading and the loss in amenities from
eutrophication. Therefore necessary and sufficient conditions for an optimum
are defined: The Hamiltonian can be written as

H = lnW − cx(t)2 + λ

(
W − sx(t) + r

xq(t)

nq + xq(t)

)
.

The variable λ is the co-state variable. A necessary condition for an optimum
is that the partial derivative of H with respect to W is zero:

1

W
+ λ = 0

⇔

W = −1

λ
.

The co-state variable satisfies the differential equation

dλ

dt
=

[
α + s− r

2x(t)

(1 + x2(t))2

]
λ+ 2cx(t). (7.4)

Thus it follows that the loading of phosphorus is

dW

dt
= −

[
α + s− r

2x(t)

(1 + x2(t))2

]
W + 2cx(t)W 2. (7.5)

In line with Brock et al., [12], the following shows the behaviour of the system.
The parameter values that we use are s = 0.02, α = 0.15, r = 1 and c = 0.01.
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Figure 7.1: Diagram with unique equilibrium labeled (a), and (b) multiple
equilibria.
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The vertical axes represent the loading of phosphorus W and the horizontal
axes represent the stock of phosphorous in the lake.
In Fig 7.1 (a) the two curves corresponds to stationary solutions of the two
differential equation (7.4) and (7.5) which intersect at only once. In this case
we have it optimal to take the lake back to an oligotrophic state, irrespective
of where the original state is. The optimal trajectories converges irrespective
of the initial level of eutrophication. Nevertheless, the curves can be found
different as is seen in Fig 7.1 (b)

In Fig 7.1 (b) there are three possible equilibria. The middle equilibrium is
unstable, but the two others are saddle points and potentially optimal steady
states. Following Skiba [66] we analyse the multiple equilibria by looking the
concave-convex iterations. There exists a level of initial loading x, such that if
the initial stock is less, the optimal path will take the system to convex state,
while if the initial stock is great, the optimal path will take the lake to convex
function.

If the initial stock happens to be 0.5 following Fig 7.1 (a), then the lake
will approach first oligotrophic equilibrium and second eutrophic equilibrium.

7.3 Trophic states

The section reviews the eutrophication process with reference to mineral nutri-
ent status. Following [17] we define trophic category with namely oligotrophic,
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mesotropic, and eutrophic for lake description in eutrophication. The olig-
otrophic lake is a large deep lake with crystal clear waters and a rocky or
sandy shoreline, whereas eutrophic is a shallow lake rich in organic and and
mineral nutrient supporting the abundant plant life. Mesotrophic is an inter-
mediate trophic [17] state with the characteristics between the oligotrophic and
eutrophic states. Then it follows that we review oligotrophic and eutrophic
process in eutrophication. Therefore by considering the eutrophication process
in the linear system described in Maler [40], we then note that not only green
plants can control the bottom of the lake. Thus it follows that:

dx

dt
= W − sx(t), (7.6)

dy

dt
= sx(t)− ky(t), s, k > 0, s ̸= k, (7.7)

The phrase ky(t) is the amount present in water. Here k and s are constants
describing the natural removal of phosphorous from the water.
Now, since the system is linear, we know that the solution to this model is

x(t) = eSt
[
x0 +

∫ t

0
eSpG(p)dp

]
,

where G(p) = (d(p), 0)′. From equations (7.4) and (7.5) we have the following,

S =

(
−s 0
s −k

)
.

Since S has two negative eigenvalues −s and −k, limt→∞ eStX0 = 0. The
homogeneous solution represents a transient solution. Therefore,

lim
t→∞

X(t) = lim
t→∞

eSt
∫ t

0

eSpG(p)dp,

where eSt is given by

(
e−at 0

a e−bt−e−at

a−b
e−bt

)
.

Another method to view this system is to approximate the phosphorus amount
(x) first, which is a first-order non linear homogeneous equation. Then use x
to get y. Suppose there is continuous release of a phosphorus concentration
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into lake, i.e., W is constant. Let W = 1 and x(0) = 0 = y(0). Then

x(t) =
1

s
(1− e−st),

y(t) =
1

k
+

e−st

s− k
− se−kt

k(s− k)
,

where their limits as t → ∞ are:

1

s
,
1

k

respectively.
The significant changes in runoffs results of systems (7.4) and (7.5), describes
the management expressions in terms of consumer production. Thus it ensures
that although eutrophication can increase nutrient input, any activity in the
watershed W of a lake that increases nutrient input causes eutrophication.

7.4 The run-off nutrients in the lake

The section describes an estimation of nutrients interactions in the lake. We
also describe interaction between the run-off nutrients into the lake and the
growth of either water hyacinths or algae.

Definition 7.2: Run-off nutrients is discharges into the lake from sources
such as fertilizers, sewage, phosphate, etc., which cause the eutrophication.
It follows that from the definition (7.2) we are considering a period of time
required for the existence of a concentration or amount of phosphorus in the
lake. The preference will be on eutrophic lake to oligotrophic as shown on the
Fig 7.3. Now, for the estimation nutrients existence in systems (7.4) and (7.5),
if in the lake, we have dx/dy = −sx, x(t) = x(0)e−st, and then the nutrients
is the value of t where x(t) = x(0)/2, see Fig 7.3.
Therefore the runoff nutrients is t = ln(2)/s. Suppose time is measured in
hours and the amount of nutrients of a particular phosphorus in the lake is
1/2 hour and the loading is about 5 hours, then

s = 2 ln(2) and k = ln(2)
5

.
The solution for the eutropication reactant is graphed in the figure below.
Consider the case where the amount of phosphorus is assumed periodic. This
is a reasonable situation because prescription phosphorus are often be put on
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specific intervals of time.

Suppose the amount of phosphorus put by a firm or inhabitants is prescribed
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Figure 7.2: Diagram estimating the time existence of runoff nutrients in the
lake.

every six hours. Then a reasonable assumption about the concentrations is as
follows:

d(t) =

{
2, 0 ≤ t ≤ 1/2,
0, 1/2 < t < 6,

where d(t+6) = d(t). The amount of phosphorus is released into the lake every
six hours and can be found in the lake over a half-hour period. Thus it means
that the important and interesting questions arise with periodic phosphorus
input. For example, if the concentration is changed or the period is changed
(for about every 12 hours), how does the maximum or minimum concentration
of the phosphorus be known for how long may it be found in the water? So
from the figure we see it clearly that in order for the nutrients input to be
effective, then a certain minimum concentration needs to be maintained for
the phosphorus reluctant not only.
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7.5 Management time scale and delays

We find it reasonable that the sediment in the eutrophication can occur with
delay, but also having a possibility of no delay depending on the how the
lake effects the phosphorus responses. The human activities usually results
in an increase in the biological production that occurs in the lake. Then we
define the reactants as follows, where for more understanding of time delays
of systems, we consider the examples by Loiseau et al., [37]. The following
definitions are in terms of nutrients stimulation.
Discrete delay is the reaction to the nutrients that occurs after a fixed period
of time.
Continuous delay is the reaction to the concentration that does not occur after
a fixed period of time but occurs over a continuous range of times.
Such delays can be incorporated by considering the delay differential equation
model with discrete delay of the form:

dx

dt
= sx(t) + kx(t− T ) + f(t). (7.8)

The model with continuous delay over an interval [0, T ] will give an integro-
differential equation of the form

dx

dt
= sx(t) + k

∫ T

0

x(t− p)dp+ f(t).

By letting the variable in the integral be u = t − p, leads to the integro
differential equation

dx

dt
= sx(t) + k

∫ t

t−T

x(u)dp+ f(t).

In a discrete delay differential equation (7.6), it is necessary for the initial con-
dition given on the interval [−T, 0] whereby an interval length is given by the
length of delays. Suppose x(t) = ϕ0 on [−T, 0]. Then the solution of a con-
tinuous delay integrodifferential equations is found on the successive interval
[0, T ] is [T, 2T ] and so on.
On the interval [0, T ], the differential equation is a non-homogeneous linear
differential equation without a delay because ϕ0(t) is known on [0, T ].

dx

dt
= sx(t) + kϕ0(t− T ) + f(t) (7.9)
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with the initial condition x(0) = ϕ0 can be solved to obtain x(t) = ϕ1 on
[0, T ]). So, on the interval [T, 2T ], the system (7.7) satisfies

dx

dt
= sx(t) + kx1(t− T ) + f(t)

= sx(t) + kϕ1(t− T ) + f(t)

with the initial condition x(t) = ϕ1(T ).
However, when either traditional or industrialized causes increase in intensity
and frequency, the results can cause community concern. The results can
also causes health problems, and in some cases can be catastrophic to the
environment. Thus a time scale and delays on eutrophications can undergo
self-purification processes in which the organic materials and waste are broken
down by bacterial and other biological activities naturally.
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Chapter 8

Conclusion

The scientific and technical understanding of the use of natural resources and
its life-supporting capacity is important to inform the planning and manage-
ment of strategies for sustainable use of natural resources. In this regard,
mathematical modeling has an important role. In this thesis we have reviewed
a few problems from the existing literature, related to the use of natural re-
sources. The thesis makes a contribution by giving more explation, especially
with respect to EFI (Section 2.4 and Chapter 6), and by considering stochas-
ticity (Chapters 5 and 7). In general we have attempted to improve the general
understanding of the relevant problems.

In Chapter 3 we modelled the evolution of shifting cultivation as in Balsdon
[4]. This is a complex problem, regarding the degradation of forest land when
used for subsistence level agricultural purpose, until the land is so degraded
that the occupants abandon it and move on to a new stand. The practise is
usually driven by poverty and is difficult to combat. The model used to study
the shifting period is similar to the forest rotation problem.

A model for biological control of a pest, as in the model of Chen and
Tan [70] is studied in Chapter 4. The ordinary differential equation model
assumes that the susceptible S(t) pest is capable of reproducing. We assumed
that the infected pests cannot recover, and is not capable of reproducing and
attacking the crop in question. Three equilibrium points are shown to be
possible, one of them being a disease-free state with non-zero crop. Onto the
deterministic model of [70] we impose a stochastic perturbation, so that we
obtain a stochastic differential equation model. We prove stochastic stability of
the disease-free state mentioned above, when the basic reproduction number
of the pest is below unity. We have perform some insightful simulations of

70

 

 

 

 



solutions of the stochastic system.

In Chapter 5 an ordinary differential equation model describes the compe-
tition between trees and grass in savanna environment, as in Accantino et al.,
[59]. The competition between them is for soil water, fed by annual rainfall.
On the other hand, trees and grass are perturbed by fire, and some other en-
vironmental forcings such as herbivores. The model captured essentially the
competition for or availability of water, and the effect of fire. The savana dy-
namics describes a spatially homogeneous model for the competition of trees
and grasses in the environment. Steady state solutions of grass and tree in the
environment are illustrated, to show effective coexistence in response to the
forcings. Stability maps depicts the environmental space defined by rainfall
and fire. Into the model of [59] we newly introduce stochastic perturbations.
The stochastic perturbations are in the form of three mutually independent
brownian motions. We run some simulations to illustrate the effect of the
stochasticity.

Chapter 6 presents the predator-prey model of Diwekar and Shastri [65].
We derived new theoretical results on the stability of a three-tiered predator-
prey system. We presented some computations, exploring the effect of sustain-
able development, and even the effect on harvesting. The equilibrium states
of the system are shown. The Fisher information is the basis of the so-called
sustainable measures hypotheses, as proposed by Fath et al [20]. We present
several computations to show the influence of carrying capacity of prey and of
mortality rate on FI.

In Chapter 7 following Maler [40] we considered the problem of lake eu-
trophication caused by excessive phosphorus input. The computations such as
in Figure 7.3 illustrate the management of the runoff nutrients time into/out
of the lake. Necessary and the sufficient conditions for an optimal utility man-
agement is obtained using standard optimal control theory.

The results in this thesis have demonstrated some modeling techniques in
the sustainable use of natural resources. The discourse on sustainability is
becoming more important, especially in view of a growing world population,
and with forcings such as climate change. The key idea in sustainability is the
quest for equal opportunities over all generations. The manner in which this
sustainability is quantified in models is being debated and improved all the
time.
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