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ABSTRACT
Numerical techniques for optimal investment consumption models

by

Bernardin Gael Mvondo

MSc thesis, Department of Mathematics and Applied Mathematics, Faculty of

Natural Sciences, University of the Western Cape

The problem of optimal investment has been extensively studied by numerous re-

searchers in order to generalize the original framework. Those generalizations have

been made in different directions and using different techniques. For example, Perera

[Optimal consumption, investment and insurance with insurable risk for an investor in

a Levy market, Insurance: Mathematics and Economics, 46 (3) (2010) 479-484] applied

the martingale approach to obtain a closed form solution for the optimal investment,

consumption and insurance strategies of an individual in the presence of an insurable

risk when the insurable risk and risky asset returns are described by Levy processes

and the utility is a constant absolute risk aversion. In another work, Sattinger [The

Markov consumption problem, Journal of Mathematical Economics, 47 (4-5) (2011)

409-416] gave a model of consumption behavior under uncertainty as the solution to a

continuous-time dynamic control problem in which an individual moves between em-

ployment and unemployment according to a Markov process. In this thesis, we will

review the consumption models in the above framework and will simulate some of

them using an infinite series expansion method − a key focus of this research. Several

numerical results obtained by using MATLAB are presented with detailed explanations.

November 2014.
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Chapter 1

General introduction

We start this thesis by giving a background overview on investment consumption prob-

lem. In so doing, we will mention what an investment consumption model means and

how it is interpreted in the mathematical finance world and finally we briefly mention

about the methods used to solve investment consumption models.

1.1 The optimal investment problem

The optimal investment consumption problem explains the optimal strategy an investor

can use to spend her money in order to maximize her discounted utility and minimize

the risk (loss) when she is confronted with only few investment choices; the money

can be saved in the bank account that is the risk free asset (bond), the money can be

invested in the risky asset (stock market) and lastly, use the money on consumption.

Such problems of optimal investment have been extensively studied by numerous

researchers in order to generalize the original framework proposed by Samuelson [48].

These generalizations have been made in different directions, and using different tech-

niques. Intertemporal investment models in continuous time have been studied by

Samuelson [48] who considered a discrete-time investment-consumption model with

the objective of maximizing the overall expected utility of consumption. Using the

dynamic stochastic programming approach, he succeeded in obtaining the optimal

1

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 2

decision for the investment-consumption model. Merton [38] extended the model of

Samuelson [48] to construct an explicit solutions under the assumption that the stock

price follows a Geometric Brownian Motion process and the individual preferences are

of special type. In particular he showed that under the assumption of log-normal stock

returns and hyperbolic absolute risk aversion (HARA) utility, the optimal proportion

of investment in the risky asset is constant. The investor may also borrow money to

finance investment at an interest rate hence in that work, the objective was to choose

investments, borrowing, and consumption in order to maximize the total expected dis-

counted utility of consumption, where utility is determined according to a log utility

function.

As far as the issue of incompleteness is concerned, Cvitanic and Karatzas [15],

Karatzas et al. [26], Harrison and Pliska [21], Pliska [45], Karatzas et al. [27], Cox and

Huang [13], Cuoco [14], Brennan et al. [8], Brennen and Schwartz [9], Zariphopoulou

[56] and many others have studied incompleteness due to constraints on the portfolio,

as they impose that the portfolio must remain in a certain set. Not long ago, Cheung

and Yang [55] investigated a dynamic investment-consumption problem in a regime

switching environment. In this case, the price process of the risky asset was modeled

as a discrete-time regime-switching process, and it was shown that the optimal trading

and consumption strategies are consistent with the belief that investors should put a

decent amount of their wealth in the risky asset and consume less when the underlying

Markov chain is in a better state.

According to some researchers, it may be more realistic to assume that the eco-

nomic uncertainty is resolved gradually since more and more information is available

as time passes. Generally, two approaches are considered for analyzing these problems:

stochastic control and martingale analysis. This thesis examines a general investment

and consumption problem and discusses a numerical method for solving an optimal con-

sumption problem. Below we give some more specific information regarding necessary

mathematics of an investment-consumption model.

The investor consumes wealth Xt at a nonnegative rate Ct and distributes it be-

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 3

tween two assets continuously in time. One asset is a bond that is a riskless security

with instantaneous rate of return r; the other asset is a stock whose value is driven by

a Wiener process. The previous studies in this area have two common features. First

one was to provide solutions that relied on the duality approach and/or variational

techniques. The second one adopted the assumption of exponential or HARA utility

function (especially a logarithmic utility function) in order to obtain explicit solutions.

Hence on this investment-consumption model, it has been assumed either that the

utility function U(c) is HARA or that R (the interest rate) is equal to r (the risk-free

interest rate). When the utility function is HARA, there is a simple explicit solution,

whereas the Hamilton-Jacobi-Bellman (or dynamic programming) equation can be lin-

earized in case R = r as in [17]. When U(c) is merely asymptotically HARA for small

and large c, then the optimal investment and consumption policies are found using

asymptotic approximations (see Fleming and Zariphopoulou [18]) for small and large

wealth x. For intermediate x, the optimal policies are usually determined numerically.

Such numerical studies can be used to confirm or to refute various conjectures about

the structure of optimal policies. For instance, the fraction of the investor’s wealth in

stock is not a monotone function of the wealth x as mentioned in [17].

It would be of great importance to also mention another assumption with optimal

investment-consumption problems, that is, the known duration of the planning horizon

(such as 10 or 20 years). Usually, when making an investment, the investor knows with

certainty the time of eventual exit but in practice, investors may be forced to exit the

market before their planned investment horizons due to a variety of reasons such as

financial crisis, fatal illness, or death. In these situations, the time of exit is no longer

certain. Consequently it is of both practical and theoretical importance to develop

a comprehensive theory of optimal investment-consumption decisions under uncertain

time horizon as induced by the mortality risk.

The method used in this thesis is the infinite series expansion method which was

introduced by Tebaldi and Schwartz [50]. For the logarithmic utility function, there is

not much literature or work presented using infinite series expansion.

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 4

The purpose of this thesis is to solve an optimal consumption problem in its general

framework, derived from Merton’s original problem [38]. We will pay close attention

in the way the investor should behave when we alternate economics parameters and

deduce the optimal policy. It is of utmost importance to underline that we will solely

take into consideration the case where we have a logarithmic utility function and an

infinite time horizon. It should further be noted that the focus of this thesis is not to

provide the underlying theory of the developed method but to provide implementation

and simulation results.

In what follows, we provide some mathematical preliminaries that are useful for the

smooth reading of the rest of the thesis.

1.2 Mathematical preliminaries

Stochastic processes

A stochastic process is a collection of random variables, which is often used to represent

the evolution of some random value, or system, over time and whose development is

governed by probability laws. A stochastic process (according to [7]) is defined as

Definition 1.2.1. Given an index set I, a stochastic process, indexed by I is a collec-

tion of random variables {Xλ : λ ∈ I} on a probability space (Ω;F ;P ) taking values in

a set S. The set S is called the state space of the process.

Two important properties of random processes are mean square continuity and

mean square differentiation which are defined below (as in [24]).

Definition 1.2.2. A random process X(t) is said to be mean square (m.s) continuous

if

lim
ϵ→0

E
[
(X(t+ ϵ) −X(t))2

]
= 0. (1.2.1)

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 5

Definition 1.2.3. The m.s derivative X ′
(t) of a random process X(t) can be defined

as

l.i.mϵ→0
X(t+ ϵ) −X(t)

ϵ
= X

′
(t), (1.2.2)

where l.i.m. denotes limit in the mean (square), provided that

lim
ϵ→0

E

[(
X(t+ ϵ) −X(t)

ϵ
−X

′
(t)

)2
]

= 0. (1.2.3)

Brownian motion process

In the development of our thesis, we will also use a random process called the Brow-

nian motion process also called the Wiener process. The Brownian motion process

is continuous stochastic process that is hugely used in physics and finance to model

random behaviors that evolve over time. The term Brownian motion can also refer to

the mathematical model used to describe such random movements.

In order to clearly state what a Brownian motion process is, the concept of station-

ary and independent increments are useful. We introduce them as per below.

Definition 1.2.4. A random process X(t); t ≥ 0 is said to have independent incre-

ments if when ever 0 < t1 < t2 < ... < tn,

X(0), X(t1) −X(0), X(t2) −X(t1), ..., X(tn) −X(tn−1), (1.2.4)

are independent. If X(t); t ≥ 0, has independent increments and X(t) −X(s) has the

same distribution as X(t + h) −X(s + h) for all s, t, h ≥ 0, s < t, then the process

X(t) is said to have stationary and independent increments.

In the view of definition 1.2.4, the Brownian motion process (denoted again by X(t)

to avoid notational complexities) is characterized by the following properties [24]:

1. X(t) has stationary and independent increments,

2. The increment X(t) −X(s); t > s, is normally distributed.

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 6

3. E[X(t)] = 0, and

4. X(0) = 0 .

Note that the Brownian motion process is the most vital stochastic process. Often, it

is utilized to model the behavior of stock prices.

Note also that the investment-consumption model described in this thesis assumes

that the market should be perfect, with continuous trading possibilities and no trans-

action costs and that the investor has a logarithmic utility function, U(c) = log (c),

which fulfill the conditions in the following definition:

Definition 1.2.5. The utility function U(c) : S → R, S ⊆ R measures the investors

risk attitude and preferences. The function has the following properties: U(c) ∈

C2(R+) with U ′(c) > 0 (non-satiation) and U ′′(c) < 0 (risk aversion).

Now before we discuss the formulation of the problem along with the associated

Hamilton-Jacobi-Bellman equation, we present the economic setting of this problem as

follows:

• The evolution equation for the price of the riskless bond with positive interest

rate r is described as

dB(t) = rB(t)dt, t > 0.

• The price estimated by the holder of the stock follows the geometric Wiener

process, which in differential form can be written as

dS(t) = αS(t)dt+ σS(t)dW1(t), t > 0,

where α(> r) is the rate of return and σ is the volatility, W1(t) is the Wiener

process associated with the stock price.

• The price proposed by the buyer (illiquid asset) with correlation coefficient ρ

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 7

satifies

dH(t)

H(t)
= (µ− δ)dt+ η

(
ρdW1(t) +

√
1 − ρ2dW2(t)

)
, H(0) = h, t > 0, (1.2.5)

where µ is the expected rate of return on the risky illiquid asset, ρ is the cor-

relation between the illiquid asset and the stock price, δ is the interest paid by

the illiquid asset and η is the continuous standard deviation of the rate of return,

W2(t) is the Wiener process associated with the illiquid asset.

Definition 1.2.6. If the log-price process lnS(t); t ≥ 0, is governed by a Brownian

motion with a drift, S(t) = S(0)eαt+σW (t); t ≥ 0, where α > 0 and σ > 0, then the

stock price process S = (S(t))t≥0 is called a geometric Brownian motion.

Now that the processes have been defined and written in differential form, we can

now formulate the model analytically approximate its solution.

The continuous model and the Hamilton-Jacobi-Bellman

equation

Now we will look at a continuous investment problem and the formulation of a model

to solve the latter and as a conclusion, the derivation of the Hamilton-Jacobi-Bellman

equation.

The evolution equations for the prices of the bond Bt (the riskless asset) and the

stock St (the risky asset) are given by

dBt = rBtdt and

dSt = αStdt+ σStdWt,

respectively, where Wt ≥ 0 is a standard Brownian motion. We denote by π0
t and πt

the amounts the investor puts at time t in bonds and stocks, respectively, whereas Ht

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 8

represents the amount borrowed. The total wealth of the investor is given by Lt =

π0
t + πt - Ht . Taking into account the results in [18], the evolution equation for the

investor’s wealth is given by

dLt = rLtdt+ [(α− r)πt − (R− r)Ht]dt− ctdt+ σπtdWt, (1.2.6)

with initial condition L0
t = l and (r − R) = δ (defined in the economic setting). The

problem is constrained by the fact that the quantities Ht, πt, ct and Lt must all be

nonnegative.

We define the value function by

V (l) = sup
A

E

{∫ ∞

0

e−βtU(ct)dt

}
, (1.2.7)

where U is the utility function, β is the discount factor and A(Ht, πt, ct) the set of

admissible controls which are measurable with respect to the process Wt. We assume

that U satisfies the following assumptions [17]:

Assumption 1.2.7. : U is a strictly increasing, strictly concave function in

C[0,∞) ∩ C3(0,∞). Furthermore limc↘0 U’(c) = ∞, limc↗∞ U ′(c) = 0, U(0) = 0.

Now a summary of the results from Fleming and Zariphopoulou [18] and Za-

riphopoulou [56] that will be useful in studying some numerical schemes, are indicated

below (see [17] for further details).

Theorem 1.2.8. [17] The value function V (l) is concave and strictly increasing. Fur-

thermore V is continuous on [0,∞), with V (0) = 0. If U(c) ↗ M as c ↗ ∞, with

M <∞, then V (l) ↗M/β as l ↗ ∞.

Proof. See [17].

To derive the HJB equation we make use of the dynamic programming method in

addition to the Ito’s formula which is well known from the literature.

We define

H(c) = U(c) − cVl = log (c) − cVl, (1.2.8)

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 9

and

G(π) =
1

2
Vllπ

2σ2 + Vlhηρπσh+ π(α− r)Vl(l, h). (1.2.9)

The Hamilton-Jacobi-Bellman (HJB) equation for our stochastic control problem is

βV = G(π) + rlVl +H(c), l > 0, (1.2.10)

By rewriting equation (1.2.10) more carefully using the economic setting, we obtain

1

2
η2h2Vhh + (rl + δh)Vl + (µ− δ)hVh + max

c≥0
H(c) + max

π
G(π) = βV, (1.2.11)

Next, we reduce equation (1.2.11) to be able to solve it numerically.

Theorem 1.2.9. [17] The value function is the unique, nondecreasing, concave viscos-

ity solution of equation (1.2.11) on (0,∞), such that V (x) ↘ 0 as x↘ 0.

Proof. See [17].

A Reduction of the problem

In order to use the appropriate numerical method, a transformation is used to reduce

this problem from a PDE to an ODE. The steps as in ([40]) and ([50]) are as follows:

z =
l

h
,

V (l, h) = K +
log h

β
+W (z),

where K is a constant which we will be set later stage.
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Differentiating V , we get

Vh =
1

hβ
− l

h2
W ′ ⇒ hVh =

1

β
− zW ′,

Vl =
1

h
W ′ ⇒

lVl = zW ′,

hVl = W ′,

Vhh = − 1

h2β
+

2l

h3
W ′ +

l2

h4
W ′′,

⇒ h2Vhh = − 1

β
+ zW ′ + z2W ′′,

Vll =
1

h2
W ′′ ⇒


h2Vll = W ′′,

lhVll = zW ′′,

l2Vll = z2W ′′,

Vlh = − 1

h2
W ′ − l

h3
W ′′ ⇒ h2Vlh = −W ′ − zW ′′.

Hence the right hand side in equation (1.2.11) becomes

βV = βK + log h+ βW, (1.2.12)
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whereas the left hand side leads to

max
π

G(π) = max
π

[
1

2
Vllπ

2σ2 + Vlhηρπσh+ (α− r)Vlπ

]
,

= max
π

[
1

2
W ′′σ2π

2

h2
− (W ′ + zW ′′)ηρσ

π

h
+ (α− r)W ′π

h

]
,

= max
π1

[
1

2
W ′′σ2π2

1 − (W ′ + zW ′′)ηρσπ1 + (α− r)W ′π1

]
,

= max
π1

[
1

2
W ′′(σ2π2

1 − 2ηρzπ1σ) −W ′ηρσπ1 + (α− r)W ′π1

]
,

= max
π1

[
1

2
W ′′(σπ1 − ηρz)2 −W ′ηρσπ1 + (α− r)W ′π1

]
− η2

2
ρ2z2W ′′,

= max
φ

1

2
W ′′σ2φ2 + (−ηρσ + α− r)︸ ︷︷ ︸

k1

(
φ+

ηρz

σ

)
W ′

− η2

2
ρ2z2W ′′,

= max
φ

[
1

2
W ′′σ2φ2 + k1φW

′
]
− η2

2
ρ2z2W ′′ +

ηρk1

σ
zW ′.

max
c≥0

H(c) = max
c≥0

[−cVt + log c] = max
c≥0

[
− c

h
W ′ + log c

]
= max

c1≥0
[−c1W ′ + log c1] + log h.

In the above, π1 = π
h
, h > 0; φ = π1 − ηρz

σ
; and c1 = c

h
.

The rest of the factor on left hand side is

1

2
η2h2Vhh + (rl + δh)Vl + (µ− δ)hVh =

η2

2
(− 1

β
+ 2zW ′ + z2W ′′) + (rz + δ)W ′,

+(µ− δ)(
1

β
− zW ′),

=
η2

2
z2W ′′ + (η2 + r − (µ− δ))zW ′,

+δW ′ − η2

2β
+
µ− δ

β
.

Cancelling the term log h on both sides of the equation and setting K to be

K =
µ− δ

β2
− η

β2
, (1.2.13)
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equation (1.2.11) can now be written as (see also [3])

η2

2
(1 − ρ2)z2W ′′ + kzW ′ + δW ′ + max

φ

[
1

2
W ′′σ2φ2 + k1φW

′
]

+ max
c≥0

[−cW ′ + log c] = βW,

where k = η2+r−(µ−δ)− ηρk1

σ
and k1 = −ηρσ+α−r.We also make the transformation

ς = c− δ to get rid of the term δW ′. By doing so, we end up with the reduced HJB

equation ([3])

η2

2
(1 − ρ2)z2W ′′ + kzW ′ + max

φ
G2(φ) + max

ς≥−δ
H2(ς) = βW, (1.2.14)

with

G2(φ) = 1
2
W ′′σ2φ2 + k1φW

′,

H2(ς) = −ςW ′ + log (ς + δ).

The above equation (1.2.14) will be solved by using the infinite series expansion method

in chapter 4.

1.3 Literature review

In this section, we present some works from the literature that deals with optimal

investment-consumption choice of an investor who can invest in a risky and safe assets.

Muthuraman [43] considered the presence of fractional transaction costs with the

objective of maximizing the discounted utility of consumption where the utility function

is a power function. He described an efficient numerical model that transforms the

arising free-boundary problem to a sequence of fixed-boundary problems. He proved

the convergence of the scheme and also showed that the converged solution is the

optimal value function. Finally, he compared and contrasted the results obtained by

his procedure with certain well-known results and approximations. His model also
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maximizes portfolios with several risky assets and the stock price follows a geometric

Brownian motion. The investor has initial choices in both the risky and safe assets.

In time, the investor can choose to either spend the money on consumption, spend

the money on buying stock or keep the money in the bank by selling stock. Therefore

when transacting (buying or selling stock), the investor pays a fraction of the value

transacted to a third party that made the transaction possible (transaction costs).

Moreover the investor obtains utility by consuming money from the bank.

According to the literature, the investor is allowed to trade in continuous time and

in infinitesimal quantities. The optimal strategy suggested by Merton [37] continuously

transacts to hold fixed proportions of overall wealth in different stocks and consumes

a various but fixed fraction of wealth. Merton’s strategy it is required that an infinite

number of transactions be made in any define time interval. This implies that Mer-

ton’s policy can no longer be optimal when transaction costs are present. With the

presence of transaction costs, the investor would want to make limited transactions.

In particular, the investor would do some transactions only if the fraction of his hold-

ings in stock is sufficiently distant from Merton’s optimal fraction to guarantee the

transaction. Magill and Constantinides [35] first considered proportional transaction

costs and conjectured that the optimal policy would be characterized by an interval of

inaction, thus the optimal strategy would not transact as long as the fraction of wealth

in stock lies in this interval. When the fraction lies outside the interval the optimal

policy would be to buy or sell just enough such that the fraction falls into the interval.

The problem with proportional transaction costs is now understood to be a singular

stochastic control problem. Taksar et al. [51] made this observation as they obtained

optimal policies for a model without consumption that maximized asymptotic growth

rate of portfolio. Davis and Norman [16] solved the Merton problem [38] with propor-

tional transaction costs for the one-stock case. They provided the characteristics of

the optimal strategy, and conditions under which the Hamilton-Jacobi-Bellman equa-

tion has a smooth solution. They also provided a computational method to derive the

optimal policy.
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Numerical methods for the one-stock problem can be found in Davis and Norman

[16]; Tourin and Zariphopolou [53]. Moreover, the computational complexity of these

methods even for the one-stock case are very high. Zariphopolou [57] indicated that

usually a computation of these methods on a computer takes hours to obtain satisfac-

tory boundaries, however the method that they presented takes only few seconds to

yield boundaries that converge within a tolerance of 10−6.

Muthuraman [43] also gave a description of the model, a brief discussion of the value

function and the Hamilton - Jacobi - Bellman (HJB) equation that characterized the

value function. Finally, Muthuraman [43] compared and contrasted his results with

the results obtained by Davis and Norman [16], asymptotic expansions obtained by

Janecek and Shreve [25] and approximations suggested by Constantinides [12].

Now we present some works from the literature that deals with multiperiod optimal

investment-consumption strategies with mortality risk and environment uncertainty.

Li et al. [31] derived explicitly the optimal investment consumption strategies for

an investor with constant relative risk aversion (CRRA) preferences. To do so, they

investigated three related investment-consumption problems for a risk-averse investor:

(i) an investment-only problem that implies utility from only terminal wealth, (ii) an

investment-consumption problem that involves utility from only consumption, and (iii)

an extended investment-consumption problem implying utility from both consumption

and terminal wealth. Li et al. [31] focused on discrete time rather than the continuous-

time frameworks common in the literature of such problem.

As a first contribution, Li et al. [31] introduced a new type of uncertainty: economic

environment uncertainty, in addition to the asset return uncertainty. Specifically, they

described the economic environment uncertainty by an event tree generated by a finite

number of states of nature while the asset return uncertainty will allow for random-

ness of risky asset returns in any time period and under any given economic state at

the beginning of the time period. Thus their contributions was (i) to model these

investment-consumption problems using a discrete model that takes into account the

environment, mortality and the market risk, (ii) to derive explicit expressions of the op-

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 15

timal investment-consumption policies the model problems under study. They tackled

the first two model problems by using dynamic programming approach, and the third

is solved by using a similar technique in Lakner and Ma-Nygren [30] for a continuous-

time investment-consumption problem with known exit time. As a conclusion, they

realised that many of their findings are consistent with the well-known findings from

the continuous-time models ([5, 6, 37, 38, 47]), even though their models have the extra

characteristics of modeling the environment uncertainty and the uncertain exit time.

The common uncertainty considered in the literature is the one due to the economy.

Munk [42] used a diffusion model to model the asset price dynamics in which both the

drift and diffusion terms are a function of another one-dimensional diffusion process.

This one-dimensional diffusion process can be interpreted as a model to the economic

uncertainty. In discrete time the economic uncertainty is usually specified by a set

of states, each of which is a description of the economic environment for all dates.

Moreover, it is commonly assumed that once an economic environment is known, the

returns of risky assets in any time period are no longer uncertain. This may be a

contradiction to what it commonly observed in practice but in recent years several

models have been suggested to tackle this problem. As such, Cheung and Yang [55]

suggested the use of the Markovian regime-switching model to capture the economic

uncertainty. In their model the underlying economy switches between a finite number

of states, and the returns of risky assets during a time period, which depend on the

economic state at the beginning of that time period, can still be uncertain (see, Cheung

and Yang [55] for further insight).

Now we present some works from the literature that deals with the subject of

Taylor series approximations to expected utility and the applicability of the technique

to optimal portfolio selection problems by Garlappi and Skoulakis [20].

The use of polynomial approximations for the computation of expected utility is

quite broad in the literature (Hlawitschka [22], Loistl [34]). Despite the fact that nu-

merical techniques, such as quadrature and Monte Carlo simulation for approximating

integrals have become more sophisticated and powerful since the initial work of Ar-
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row [4] and Pratt [46], more recently the subject of polynomial approximations has

re-surfaced in the context of dynamic portfolio choice. It turns out that, due to the

numerical complexity of these problems, it is often computationally efficient to approx-

imate the utility function by a polynomial obtained via a Taylor expansion. However,

the use of Taylor series for the approximation of expected utility is delicate since a few

issues must be clarify prior to applying the approximation.

As mentioned in [20], it is important to ensure that a series converges to the exact

expected utility as more terms are added. Obviously, convergence depends on the type

of utility function: for utility functions such as the exponential, the series converges for

all possible level of returns while for other utility functions (power utility), convergence

is guaranteed only on a specific range of portfolio returns.

The purpose of Garlappi and Skoulakis [20] paper was to fill the gap observed in

the issues that raise from the Taylor’s approximation and they did so by establishing a

set of conditions under which Taylor series can be used as a sound computational tool

for both the evaluation of expected utility of a given portfolio as well as the solution

to a portfolio choice problem. The results are found under the assumption of a HARA

utility function and a bounded distribution of assets.

Finally, they showed that, when asset returns are skewed, one can improve the

precision and efficiency of the Taylor expansion by applying a simple nonlinear trans-

formation to asset returns designed to symmetrize the transformed return distribution

and shrink its support.

Now we present some works from the literature that deals with the dynamic con-

sumption and portfolio choice of an investor with habit formation in preferences and

access to a complete financial market with time-varying investment opportunities by

Munk [41].

Many studies have modeled the dynamics of market prices mostly assuming a power

utility of terminal wealth or an additively time separable power utility of consumption.

A more plausible representation of preferences is to allow for habit formation in the

sense that the utility of a given current consumption level is a decreasing function of the
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past consumption level [41]. Munk [41] therefore asked the following questions: what

are then the optimal portfolio and consumption strategies for investors with habits for

consumption? Do the main qualitative properties of optimal portfolio strategies for

investors with standard time-separable preferences carry over to investors with habit

formation? Answers to these questions are provided in the same work by Munk [41].

An exact and simple characterization of the optimal behavior under general, possi-

bly non-Markov, dynamics of market prices is derived (see [41]).

With general, possibly non-Markov, dynamics in investment opportunities Munk

[41] provided an exact and simple characterization of the optimal consumption and

portfolio policies in terms of wealth and habit level and two relatively simple stochastic

processes. The optimal portfolio in risky assets is a combination of three portfolios: (i)

the standard myopic mean-variance portfolio, (ii) a hedge portfolio providing insurance

against adverse movements in investment opportunities as well as variations in future

costs of ensuring consumption at the habit level, and (iii) a portfolio ensuring that the

agent can consume at least at the habit level in the future. Consequently, the optimal

asset mix of an investor with habit formation will differ from that of an investor without

habit formation for two reasons: financial assets may differ in their abilities to ensure

that future consumption will exceed a certain minimum defined by the habit level and

in their abilities to hedge against variations in the habit level.

Finally, Munk [41] studied the optimal consumption and investment strategies with

and without habit formation in a model where both the Sharpe ratio of the stock

market and the short-term interest rate vary. While this combined model still features

a complete market, it does allow for an imperfect correlation between the current price

level and the expected return of the stock, in contrast to the Wachter model ([54])

referred to above where interest rates are assumed constant.

1.4 Outline of the thesis

Rest of the thesis is organized as follows:

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 18

In Chapter 2, we discuss some applications of the Markov model applied to invest-

ment problems.

Chapter 3 deals with a systematic presentation of some of the numerical methods

that are used for typical consumption models applied in financial markets.

In Chapter 4, we present the main method, namely, the infinite series expansion

method, and then apply it to solve a model problem. We then present and discuss

some numerical results and discussion on them in this chapter.

Finally, we conclude this thesis work in Chapter 5, where we also indicate some

scope for further research.

 

 

 

 



Chapter 2

Some Markov models and their

applications

This chapter deals with some consumption models that use the Markov model in par-

ticular as a backbone to solve the specific investment problems yielding to interesting

conclusions.

2.1 A model of consumption behavior under uncer-

tainty

In this section, we briefly review the problem of consumption behavior under uncer-

tainty developed by Sattinger [49] and an algorithm for its solution. We will not

compute the latter nor illustrate it thereof, this will be an overview for the interested

reader.

Sattinger [49] argues that, in the Markov consumption problem (hereafter MCP ),

an individual moves between two states, employment and unemployment, following

a continuous-time Markov chain process. The individual earns different incomes in

the two states and at each point in time must determine the level of accumulation

or decumulation of an asset that yields a constant interest rate [49]. Also a constant

19
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relative risk aversion (CRRA) utility function is assumed in this case.

The idea in this model is to develop a method for generating a numerical solution

of the differential equations and maximize the expected value, both of which will be

discussed in the next section, using consumption levels near the singularity. The ap-

proach is formulated by setting the problem in continuous time, applying methods of

differential equations instead of dynamic programming.

The next section presents the differential equation model for consumption in the

two states and shows some analytic results.

Model setup and solution to the model

Assumption 2.1.1. [49] An individual moves between two states of a continuous-time

Markov process. Let p1 be the transition rate from state 1 to state 2, and let p2 be the

transition rate from state 2 to state 1. The individual earns income at the rate yi when

in state i. Let A[t] be the individual’s assets at time t. The individual earns income

from assets at the rate rA, where r is positive and constant over time. Let Ci[A] be the

consumption rate chosen if the individual is currently in state i with assets A. If the

individual is in state i, the rate of change of assets is

dA

dt
= rA+ yi − Ci[A], i = 1, 2. (2.1.1)

The consumer’s instantaneous, time-separable utility takes the Constant Relative Risk

Aversion (CRRA) form

U [C] = λ−1Cλ, 0 < λ < 1. (2.1.2)

Future utility is discounted at the rate b. The individual may borrow against future in-

come but may not default on borrowed funds. With i[t] denoting the state the individual

is in at time t, the individual seeks to maximize the expected value

E0

∫ ∞

0

e−btλ−1Cλ
i[t]dt,
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subject to the budget constraint in equation (2.1.1) that determines changes in assets

over time, the no-Ponzi condition that the individual may not default on debt, and the

stochastic transitions between state 1 (employment) and state 2 (unemployment) [49].

Assume y1 > y2 and let Vi[A] be the value function for the individual in state i with

asset level A in current value form [49]. Then [49]

bV1[A] = MaxC1U [C1] + p1(V2[A] − V1[A]) + (rA+ y1 − C1)V1A, (2.1.3)

bV2[A] = MaxC2U [C2] + p2(V1[A] − V2[A]) + (rA+ y2 − C2)V2A. (2.1.4)

Under the assumption stated above, with 0 < λ < 1, y1 > y2 ≥ 0 and pi ≥ 0,

i = 1, 2, the optimal consumption levels satisfy the following differential equations:

dC1

dA
=

(C1/(1 − λ))(r − b− p1(1 − (C1/C2)
1−λ))

rA+ y1 − C1

, (2.1.5)

dC2

dA
=

(C2/(1 − λ))(r − b− p2(1 − (C2/C1)
1−λ))

rA+ y2 − C2

. (2.1.6)

The above assumption is of great importance since it allows us to have a good under-

standing of what will follow as we will see below.

Note: If p1 = p2 = 0 in equations (2.1.5) and (2.1.6), the differential equations

generate the standard risk-free solution [49]

Ci =
b− rλ

1 − λ
(rA+ yi).

Huggett [23] previously showed that there will be a break-even point in state 1 when a

condition equivalent to b > r holds. If we let Amin be the lowest allowable asset level,

p1, p2 > 0, with b > r there will be a break-even point at an asset level As in the interval

(Amin,∞) such that C1 = rAs +y1 in state 1, and at As, (r−b)V1A +p1(V2A−V1A) = 0,
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the differential equation (2.1.5) will have a singularity, and

C2 = C1

(
p1

p1 + b− r

)1/(1−λ)

. (2.1.7)

There will be no singularity or break-even point in state 2 for assets in the interval

(Amin,∞).

In what follows, we present the iterative method of deriving a numerical solution

to the MCP elaborated by Sattinger [49].

The method shown by Sattinger [49] involves choosing consumption levels in state

1 and state 2 at an asset level near a singularity such that consumption in state 2

approaches zero as assets approach the minimal level. The search for initial conditions

then reduces to finding the scalar value of assets at which a singularity occurs.

Given numerical values for all parameters, the steps in the numerical solution as

describe in [49] are as follows:

1. Pick an arbitrary As > Amin.

2. Calculate C1[As] as rAs+y1, C2[As] as C1[As](p1/(p1+b−r))1/(1−λ) from equation

(2.1.7), dC1/dA from the positive analytic solution for dC1/dA , and dC2/dA from

equation (2.1.6).

3. For a small ϵ, calculate C1[As − ϵ] as rAs + y1 − ϵ(dC1/dA) and C2[As − ϵ] as

(rAs + y1)(p1/(p1 + b− r))1/(1−λ) − ϵ(dC2/dA).

4. Using C1[As−ϵ] and C2[As−ϵ] at As−ϵ as initial conditions, solve the differential

equations (2.1.5) and (2.1.6) backwards to lower asset levels.

5. Let η be a small increment of assets consistent with accuracy goals. If Amin =

−y2/r, then from Result 2, C2 at Amin + η is approximately C2η = η(b + p2 −

rλ)/(1 − λ). If assets in the solution in 4 reach Amin + η before C2 reaches C2η,

choose a higher As. At a higher As, the curves for C1 and C2 will be below the
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curves at the former As, so C2 at Amin + η will be lower. If the solution in 4

does not reach Amin + η before C2 reaches C2η, choose a lower As. At a lower As,

the curves for C1 and C2 will be higher than the curves at the former As, so C2

reaches C2η at a lower asset level.

6. Repeat 2 through 5 until a desired accuracy is reached.

7. With the solution from 6, use C1[As−ϵ] and C2[As−ϵ] as initial conditions for the

numerical solution of the differential equations below As. Use C1[As + ϵ] = rAs +

y1 + ϵ(dC1/dA) and C2[As + ϵ] = (rAs +y1)(p1/(p1 + b−r))1/(1−λ)+ ϵ(dC2/dA)

as initial conditions for the numerical solution above As.

This concludes the steps in elaborating an explicit solution to a consumption be-

havior problem under uncertainty developed by Sattinger [49].

2.2 A model of consumption optimization with trans-

action costs

Model setup and solution to the model

In this section we consider the work of Li [32], on transaction costs and consumption.

Li [32] assumed that the consumer has an infinite lifespan in a cash-in-advance

economy. The consumer can hold either cash or assets. The nominal interest rate for

cash is zero, but assets bear a risk free real return, r. The nominal interest rate, i, is

equal to r + π, where π is the inflation rate. The following notations are used in the

model ([32]):

• Ct is the consumption in period t,

• θt is a binary variable that indicates whether the consumer pays the transaction

cost,

• θt = 1 if the consumer does and θt = 0 if the consumer does not,
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• Mt is the real cash holding before receiving the labor income,

• At is the real balance of the asset account,

• ∆t is the real value of labor income,

• ρ is the coefficient of relative risk aversion (CRRA),

• i is the nominal interest rate,

• π is the inflation rate,

• r = i− π is the real interest rate, and

• ψ is the transaction cost.

Having described all parameters, Li [32] formulated an optimization problem that the

consumer has to solve in order to distribute his cash and the equation is as follows

max
θt,Ct,Mt+1

E0

∞∑
0

βtU(Ct), (2.2.1)

subject to

if θt = 0 then

At+1 = (1 + i− π)At,

Mt+1 = (1 − π)(Mt + ∆t − Ct),

(2.2.2)

and

if θt = 1 then

At+1 = (1 + i− π)
(
AtMt + ∆t − Ct − Mt+1

1−π
− ψ

)
,

Mt+1 is to be determined by the consumer,
(2.2.3)

where

Ct ≤Mt + ∆t if θt = 0, (2.2.4)

and

lim
t→0

At

(1 + r)t
≥ 0. (2.2.5)
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Because the three control variables are jointly determined at time t, the maximization

problem is formulated with respect to the vector [Ct, θt,Mt+1] as in [32]. Assuming

a CRRA type of utility function, U(C) = (C1−ρ − 1)/(1 − ρ), the optimization is

represented as the following Bellman equation as in [32]:

V (At,Mt,∆t) = max[V NT (At,Mt,∆t), V
TR(At,Mt,∆t)], (2.2.6)

where

V NT (At,Mt,∆t) = max
Ct

U(Ct) + βE∆t+1V (At+1,Mt+1,∆t+1), (2.2.7)

subject to constraint equations (2.2.2), (2.2.4), (2.2.5) and

V TR(At,Mt,∆t) = max
Ct,Mt+1

U(Ct) + βE∆t+1V (At+1,Mt+1,∆t+1), (2.2.8)

subject to constraint equations (2.2.3) and (2.2.5). The system has three value func-

tions V NT (corresponding to θ = 0), V TR (corresponding to Θ = 1), and V , the

upper contour of V NT and V TR (see [32] for figure), is the value function of the whole

optimization problem. The consumption policy functions for (2.2.7) and (2.2.8) are de-

noted as CNT (At,Mt,∆t) and CTR(At,Mt,∆t) respectively [32]. The consumer decides

θt and Ct according to ([32]):

θt =

1 if V TR(At,Mt,∆t) > V NT (At,Mt,∆t),

0 otherwise,

(2.2.9)

and correspondingly

C(At,Mt,∆t) =

C
TR(At,Mt,∆t) if θ = 1,

CNT (At,Mt,∆t) if θ = 0.

(2.2.10)

Furthermore Li [32] argued that the motion of state variables At and Mt follows
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equations (2.2.2) and (2.2.3). Equation (2.2.2) shows that when θt = 0, assetAt is intact

in period t, and accrues real interest, r, or i− π. At+1 is simply equal to (1 + i− π)At

([56]). Equation (2.2.3) shows that after making the consumption expenditure, the

consumer will carry a real cash balance (1 − π)(Mt + ∆t − Ct) into the period t + 1.

When θt = 1, consumer will either withdraw cash or save cash [32]. If the consumer

chooses to consume the amount Ct and to carry a real cash balance, Mt+1, into the next

period,At +Mt + ∆t −Ct −Mt+1/(1− π)−Ψ will be left in the asset account. In this

case, Mt+1 becomes a control variable that has to be pinned down by the consumer.

In what follows, we present the results to the model introduced by Li [32] which

somehow did not have a closed form solution. Li [32] simulated the model using the

converged distribution of the state variables. He chose some baseline parameters on a

quarterly basis (see [32] table 2) to simulate the model.

Li [32] then focused his paper on consumption’s response to two types of income

shocks, unanticipated transitory income shocks and news about one-shot future income

changes. Therefore he simply assumed that income shocks are drawn from an indepen-

dent and identically distributed process. In so doing, a positive probability is assumed,

which in the base line parametrization is equal to 1%, in each period that the consumer

will receive zero income [32]. If the investor does receive a positive income in a given

period, the income is drawn from a log-normal distribution with unit mean (µ∆ = 1)

and standard deviation (σ∆) equal to 0.1 as mentioned in [32].

Following Carroll [10], r is set to be equal to 0.015, yielding a 6% annual rate, and

set β at 0.975, which gives an annual discount rate of 10%. More over, following the

calibration in Aiyagari and Gertler [1] ψ is assumed to be equal to 0.01.

In his research, Li [32] computed the model using the grid searching method. He

iterated the Bellman equations system (2.2.6)-(2.2.8) until the average absolute gap

between the policy functions of two consecutive iterations becomes sufficiently small

(< 0.0001) as in [32]. Adopting the algorithm introduced in Carroll [11], he discretized

the specified log-normal income distribution using 99 grid points. A plot of the con-
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sumption function, projected onto the hyperplane of A = 0.5 is established (see figure

3 in [32]).

For comparison, he ploted a consumption function of the model with no transaction

cost (see the same figure 3 in [32]). The most striking feature of the consumption

function with transaction costs is that it is neither continuous nor monotonic.

2.3 A stochastic optimization investment-consumption

model

In this section, we consider the work of Alghalith [2] presented in his paper on stochastic

investment-consumption model. We present the model and its solution as introduced

by Alghalith [2].

In the previous studies in this area, the usual assumption is that the parameters of

the model depend on a random external economic factor (stochastic volatility models)

in incomplete markets; examples include Focardi and Fabozzi [19], Pham [44] and Liu

[33]. In his works, Alghalith [2] derived a general explicit solutions to the investment-

consumption model without the restrictive assumption of HARA or exponential utility

function and without relying on the existing duality or variational methods.

The model and its solution

The model of Alghalith [2] uses a two-dimensional standard Brownian motion

{W1s,W2s, Fs}t<s<T based on the probability space (Ω, Fs, P ) , where {Fs}t<s<T is the

augmentation of filtration. Similar to previous models, he considered a risky asset, a

risk-free asset and a random external economic factor. The risk-free asset price process

is given by S0 = e
∫ T

t r(Y s)ds, where r(Ys) ∈ C2
b (R) is the rate of return and Ys is the

economic factor [2].
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The dynamics of the risky asset price are given by [2]

dSs = Ss{µ(Ys)ds + σ(Ys)dW1s},

where µ(Ys) and σ(Ys) are the rate of return and the volatility, respectively.

The economic factor process is given by

dYs = g(Ys)ds + ρdW1s +
√

1 − ρ2dW2s, Yt = y,

where |ρ| < 1 is the correlation factor between the two Brownian motions and gYs ∈

C1(R) with a bounded derivative [2].

The wealth process is given by

Xπ,c
T = x+

∫ T

t

{r(Ys)X
π,c
s + (µ(Ys) − σ(Ys))πs − cs}ds+

∫ T

t

πsσ(Ys)dW1s,

where x is the initial wealth, {πs, Fs}t<s<T is the portfolio process and {cs, Fs}t<s<T is

the consumption process, with
∫ T

t
π2

sds < ∞,
∫ T

t
c2sds < ∞, and c ≥ 0 as in [2]. The

trading strategy (πs, cs) ∈ A(x, y) is admissible (that is, Xπ,c
s ≥ 0). Define θ(Ys) ≡

σ−1(Ys)(µ(Ys) − r(Ys)).

The investor’s objective is to maximize the expected utility of the terminal wealth

and consumption

V (t, x, θ(y)) = SupEπ,c

[
U1(Xπ,c

T ) +

∫ T

t

U2(cs)ds|Ft

]
, (2.3.1)

where V (·) is the indirect utility function, U(·) is continuous, bounded and strictly

concave utility function [2].

At this point, we now present the results to the model introduced by Alghalith [2].
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He started off by rewriting equation (2.3.1) as

V (·) = SupEπ,c

[
U1

(
x+

∫ T

t

{rXπ,c + (µ− r)π − ac+ b}ds+

∫ T

t

πσdW 1
s

)
(2.3.2)

+

∫ T

t

U2(c)ds|Ft

]
,

where a is a shift parameter with initial value equals one, b is a shift parameter with

initial value equals zero [2]. Differentiating both sides of equation (2.3.2) with respect

to µ and b, respectively, he obtained

Vµ(·) = (T − t)π∗
tE
[
U1′(·)|Ft

]
,

Vb(·) = (T − t)E
[
U1′(·)|Ft

]
,

where the subscripts denote partial derivatives; thus

π∗
t =

Vµ(·)
Vb(·)

, (2.3.3)

where * denotes the optimal value. Similarly he obtained

Va = −(T − t)c∗tE
[
U1′(·)|Ft

]
, (2.3.4)

and hence

c∗t = −Va(·)
Vb(·)

. (2.3.5)

Consider the following nth-order exact Taylor expansion of V (·)

V (x, θ, a, b) = V +Vxx+Vθθ+Vaa+Vbb+...+
1

n!

∑
n1,n2,n3,n4

δnV

δxn1δθn2δan3δbn4
xn1θn2an3bn4 .

(2.3.6)

Differentiating equation (2.3.6) with respect to µ, a and b (around b = 0 and a = 1),
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respectively, we see that

Vµ(·) = σ−1(y)

(
Vθ + ...+

1

n!

∑
n1,n2

δnV

δxn1δθn2δan3δbn4
xn1θn2−1

)
, (2.3.7)

Va(·) = Va + ...+
1

n!

∑
n1,n2

δnV

δxn1δθn2δan3δbn4
xn1θn2 , (2.3.8)

Vb(·) = Vb + ...+
1

n!

∑
n1,n2

δnV

δxn1δθn2δan3δbn4
xn1θn2 . (2.3.9)

All the derivatives in the right-hand side of equations (2.3.7)-(2.3.9) are constant and

therefore for a constant α we have [2]

Vµ(·) = σ−1(y)

(
α0 + ...+

∑
n1,n2

αn1,n2x
n1θn2

−1

)
,

Va(·) = α1 + ...+
∑
n1,n2

αn1,n2x
n1θn2 ,

Vb(·) = α2 + ...+
∑
n1,n2

αn1,n2x
n1θn2 .

Consequently, using equations (2.3.3) and (2.3.5), he obtained

π∗
t = σ−1(y)

α0 + ...+
∑

n1,n2
αn1,n2x

n1θ(y)n2−1

α2 + ...+
∑

n1,n2
αn1,n2x

n1θ(y)n2
, (2.3.10)

c∗t = −
α1 + ...+

∑
n1,n2

αn1,n2x
n1θ(y)n2

α2 + ...+
∑

n1,n2
αn1,n2x

n1θ(y)n2
. (2.3.11)

Equations (2.3.10) and (2.3.11) are the optimal strategy an investor will use (c∗t for

the consumption process and π∗
t for the portfolio process) in order to maximize her

investment-consumption without the restrictive assumption of HARA.
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2.4 Summary and discussions

In this chapter we presented a few applications of the Markov model to different

investment-consumption problems. The Markov model is indeed a powerful tool in

mathematical finance and it is used by many researchers in investment consumption

problems to derive explicit solutions to a specific model. We could recommend the

Markov model to the interested researchers as cornerstone for future research. In the

next chapter, we discuss some methods for solving optimal consumption models.

 

 

 

 



Chapter 3

Methods for solving consumption

models

In previous chapter we presented some Markov models and their solutions. In this

chapter we present other methods used to solve optimal consumption models.

3.1 Markov chain approximation method

Kushner and Dupuis [29] introduced the approximating Markov chain approach and is

very well detailed in the literature. In the following subsections we revisit the theory

that is used for this method and derive the formulae for the optimal consumption

problem and give a description on how the approximate Markov solution is obtained.

To help us in our task, the approach of Fitzpatrick and Fleming [17] in developing the

approximation is followed.

Given h ≤ 0 and a positive integer N , the introduction of a grid SN
h = {ih :

0 ≤ i ≤ N}, which shall be the state space for the Markov chain is needed. The

32
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control-dependent transition probabilities are taken to be

P π,ϕ,c
ii+1 =

{
1

2
σ2π2 + h[(b− r)π + r(hi)]

}
/Q,

P π,ϕ,c
ii−1 =

{
1

2
σ2π2 + h[(R− r)ϕ+ c)]

}
/Q,

P π,ϕ,c
ii = 1 − P π,ϕ,c

ii+1 − P π,ϕ,c
ii−1 ,

for 1 ≤ i ≤ N − 1 and (π, ϕ, c) ∈ ΓN
i,h as in [17], where

ΓN
i,h = {(π, ϕ, c) : 0 ≤ π, ϕ, c ≤ KNh, π − ih ≤ ϕ},

is the set of admissible control values [17]. The constant K gives an artificial bound

on the controls. The boundary probabilities are taken as in [17]

P π,ϕ,c
00 = 1,

P π,ϕ,c
NN−1 =

{
1

2
σ2π2 + h[(R− r)ϕ+ c)]

}
/Q

andP π,ϕ,c
NN = 1 − P π,ϕ,c

NN−1.

The normalizing constant Q is taken to be ([17])

Q = max
0≤π,ϕ,c≤KNh

0≤i≤N

{
σ2π2 + h [(b− r)π + rih+ (R− r)ϕ+ c]

}
,

= σ2(KNh)2 +Nh2 [(b− r)h+ r + (R− r)K +K] .

When dealing with convergence questions, it shall be required that h→ 0 and Nh→ ∞

as well. This will ensure a total capture of all of the behavior of the continuous problem

with the discretized approximation [17]. Kushner [28, 29] showed in his works that, if

the time scale is discretized with ∆t = h2/Q, then the Markov chain with the above

transition probabilities will have first and second moments which closely match those

of the continuous process. The control problem for the chain is then to determine

controls {(πk, ϕk, ck) : k ≥ 0} so that Eih

{∑∞
k=0 ∆te−βt∆tU(ck)

}
is maximized. The
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discrete HJB equation for this problem is therefore

Vi = max
(π,ϕ,c)∈ΓN

i,h

{
e−β∆t

∑
j

P π,ϕ,c
ij Vj + ∆tU(c)

}
, (3.1.1)

for 1 ≤ i ≤ N with V0 = 0. Expanding this equation in terms of the prescribed

transition probabilities shows that, for 1 ≤ i ≤ N − 1, hence

Vi = max
(π,ϕ,c)∈ΓN

i,h

{
eβ∆t

Q

[
1

2
σ2π2(Vi+1 + Vi−1 − 2Vi) + h(b− r)π(Vi+1 − Vi)

− h(R− r)ϕ(Vi − Vi−1) − hc(Vi − Vi−1)] + ∆tU(c)}

+ rih2(Vi+1 − Vi)
e−β∆t

Q
+ e−β∆tVi

= max
0≤π,ϕ,≤KNh

π−ih≤ϕ

{
eβ∆t

Q

[
1

2
σ2π2(Vi+1 + Vi − 2Vi) + h(b− r)π(Vi+1 − Vi)

− h(R− r)ϕ(Vi − Vi−1)]} + e−β∆trih2(Vi+1 − Vi)/Q

+ e−β∆tVi + max
0≤c≤KNh

[
∆tU(c) − e−β∆t

Q
hc(Vi − Vi−1)

]
.

As in [17], we note that

D+Vi = (Vi + 1 − Vi)/h,

D−Vi = (Vi − Vi−1)/h,

D2Vi = (Vi+1 + Vi−1 − 2Vi)/h
2 and

FN,h(y) = max
0≤c≤KNh

[
U(c) − e−β∆t · c · y

]
.

From Assumption 1.2.7 in chapter 1, we see that FN,h is a strictly decreasing function
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of y. Using these definitions, in addition to the fact that ∆t = h2/Q, yields

Vi

(
1 − e−β∆t

∆t

)
= max

0≤π,ϕ,≤KNh
π−ih≤ϕ

{
e−β∆t

[
1

2
σ2π2D2Vi + (b− r)πD+Vi

+(R− r)ϕD−Vi

]}

+ e−β∆trihD+Vi + FN,h(D
−Vi), 1 ≤ i ≤ N − 1, (3.1.2)

an equation which is a finite difference approximation of the continuous HJB equation

(1.2.11) [17]. Note that, for i = N , we get a slightly different form ([17]):

VN = max
0≤π,ϕ,≤KNh

π−Nh≤ϕ

[
e−β∆t

Q

(
1

2
σ2π2(VN−1 + VN) + h(R− r)π(VN−1 − VN)

)]

+ e−β∆tVN + max
0≤c≤KNh

[
∆tU(c) − e−β∆t

Q
hc(VN − VN−1)

]
.

Later, it shall be shown that VN−1 − VN ≤ 0, so that this equation reduces to

1 − e−β∆t

∆t
VN = FN,h(D

−VN), (3.1.3)

which resembles a boundary condition of βV = F (Vx) at the right endpoint. In order

to study these equations and their solutions, define the set

Xh =
{
Vi ∈ RN+1 : V0 = 0, Vi ≥ 0 for 1 ≤ i ≤ N

}
,

and the map Xh → Xh (as in [17]) by

(ThV )i =


max0≤π,ϕ,c≤NKh

π−ih≤ϕ

{
e−β∆t

∑
P π,ϕ,c

ij Vj + ∆tU(c)
}

1 ≤ i ≤ N,

0 i = 0.

(3.1.4)

The solution of the discreteHJB equation is, of course, a fixed point of Th. To establish

the existence of such a fixed point, it is important to recall the following result.
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Proposition 3.1.1. [17] The mapping Th is a contraction on Xh, when Xh is equipped

with the supremum norm ∥V ∥h = sup1≤i≤N |Vi|.

Since Th is a contraction, it has a unique fixed point in Xh. Denote this fixed point

by V h. In the sequel, we shall want to work with V h as a function on [0,∞), and

therefore we introduce the continuous linear interpolation

υh(x) =


V h

i x = ih,

V h
i + h−1(V h

i+1 − V h
i )(x− ih) ih < x < (i+ 1)h,

V N
h x ≥ Nh.

This is the interpolation that Fleming and Fitzpatrick [17] used to approximate the

value function of the continuous problem in their paper. Furthermore, a discussion of

some of the properties of the solution V h of the discrete HJB equation follows.

Property 3.1.2. [17] The function υh(x) is nondecreasing on [0,∞).

Proof. We show that Th preserves nondecreasing functions, which implies that the fixed

point must be nondecreasing. Let V ∈ Xh be nondecreasing; that is, Vi ≤ Vi+1 for

each i. Suppose that 1 ≤ i ≤ N − 2, and choose π∗, ϕ∗, c∗ so that they attain the

maximum in

ThVi = max
0≤π,ϕ,c≤NKh

π−ih≤ϕ

[
e−β∆t

∑
j

P π,ϕ,c
ij Vj + ∆tU(c)

]
.

We write P ∗
ij = P π∗,ϕ∗,c∗

ij to simplify the notation.

ThVi+1 − ThVi = max
0≤π,ϕ,c≤NKh
π−(i+1)h≤ϕ

[
e−β∆t

∑
j

P π,ϕ,c
i+1j Vj + ∆tU(c)

]

−

[
e−β∆t

∑
j

P ∗
ijVj + ∆tU(c∗)

]
≥ e−β∆t

∑
(P ∗

i+1j − P ∗
ij)Vj.

Examining the definitions of the Pij,s, we see P ∗
1+1i+2 = P ∗

ii+1 + h2r/Q, P ∗
1+1i+2 = P ∗

ii−1
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+ h2r/Q and P ∗
i+1i = P ∗

ii−1 , so that

ThVi+1 − ThVi ≥
[
P ∗

ii+1(Vi+2 − Vi+1) + P ∗
ii(Vi+1 − Vi)

+ P ∗
ii−1(Vi − Vi−1) +

h2r

Q
(Vi+2 − Vi+1

]
e−β∆t

≥ 0 if V is increasing.

Of course, Vi ≥ 0, so that V1 ≥ V0 = 0. We must still check ThVN−1 ≤ ThVN , if

VN−1 < VN .

ThVN − ThVN−1 = max
π,ϕ,c

[∑
P π,ϕ,c

Nj Vje
−β∆t + ∆tU(c)

]
−max

π,ϕ,c

[∑
P π,ϕ,c

N−1jVje
−β∆t + ∆tU(c)

]
≥ e−β∆t

[
P ∗

NN−1VN−1 + (1 − P ∗
NN−1)VN − P ∗

N−1N−2VN−2

− P ∗
N−1N−1VN−1 − P ∗

N−1NVN

]
,

where π∗, ϕ∗, c∗ is optimal for state N − 1.

Writing

PNN+1 =

(
1

2
σ2π∗2 + h(b− r)π∗ + hr(Nh)

)
/Q,

PNN = 1 + PNN+1 + PNN−1,

we have

ThVN − ThVN−1 ≥ e−β∆t
[
P ∗

NN−1VN−1 − P ∗
N−1N−2VN−2 + P̂NNVN − P ∗

N−1N−1VN−1

+P̂NN+1VN + P ∗
N−1NVN

]
.
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As before, we see that

PNN+1 =
h2r

Q
P ∗

N−1N ,

PNN+1 =
−h2r

Q
P ∗

N−1N−1,

P ∗
NN−1 =P ∗

N−1N−2.

Hence, if V is nondecreasing, we have

ThVN−ThVN−1 ≥ e−β∆t

[
P ∗

NN−1(VN−1V N − 2) + P ∗
N−1N−1(VNV N − 1) − h2r

q
VN

]
≥ 0.

Therefore, the unique fixed point of Th must be nondecreasing.

Property 3.1.3. [17] If β > b, vh(x) is concave.

Proof. We work backwards (in x), showing D2Vi = (Vi+1 − 2Vi + Vi−1)/h
2 ≤ 0 for each

i = 1, ..., N − 1. Now

VN = max
π,ϕ,c

[∑
P π,ϕ,c

Nj Vje
−β∆t + ∆tU(c)

]
.

Suppose that D2VN−1 > 0. Then from equation (3.1.3), we have

1 − e−β∆t

∆t
(VN − VN−1) = − max

0≤π,ϕ,≤NKh
π−(N−1)h≤ϕ

[
e−β∆t

(
1

2
π2σ2D2VN−1 + (b− r)πD+VN−1

− (R− r)ϕD−VN−1

)]
− e−β∆trh(N − 1)D+VN−1

+ FN,h(D
−VN) − FN,h(D

−VN−1)

< 0 + FN,h(D
−VN) − FN,h(D

−VN−1)

< 0,

since D2VN−1 > 0 and FN,h is a decreasing function. Hence, VN − VN−1 < 0, a

contradiction. Thus, we must have D2VN−1 ≤ 0. Similarly, suppose 1 < i < N − 2,
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and using backward induction on i, assume that D2Vi+1 < 0. Then

1 − e−β∆t

∆t
(Vi+1 − Vi) = max

π,ϕ

[
e−β∆t

(
1

2
π2σ2D2Vi+1

+ (b− r)πD+Vi+1 − (R− r)ϕD−Vi+1

)]
− max

π,ϕ

[
D+Vi+1

(
1

2
π2σ2D2Vi

+ (b− r)πD+Vi − (R− r)ϕD−Vi

)]
+
(
r(i+ 1)hD+Vi+1 − r(ih)D+Vi

)
e−β∆t

+ FN,h(D
−Vi+1) − FN,h(D

−Vi).

Let π∗, ϕ∗ be optimal for i + 1. Choose Θ ∈ [0, 1] such that π∗ - Θh and ϕ∗ are

admissible for i.

Put π̂ = π∗ − Θh (≥ 0) then

1 − e−β∆t

∆t
(Vi+1 − Vi) ≤ e−β∆t

(
1

2
π∗2σ2D2Vi+1 −

1

2
σ2π̂2D2Vi

)
+ e−β∆t

(
(b− r)π∗D+Vi+1 − (b− r)π̂D+Vi

)
− e−β∆t

(
(R− r)ϕ∗(D−Vi+1 −D−Vi)

)
− e−β∆t

(
(r(i+ 1))h(D+Vi+1 − r(ih)D+Vi)

)
+ FN,h(D

−Vi+1) − FN,h(D
−Vi),

≤ e−β∆t

[
1

2
π∗2σ2D2Vi+1 −

1

2
σ2π̂2D2Vi

]
+ e−β∆t

[
(b− r)π∗(D+Vi+1 −D+Vi) + h(b− r)D+Vi

]
− e−β∆t

[
(R− r)ϕ∗D2Vi · h

]
+ e−β∆t

[
r(i+ 1))h(D+Vi+1 −D+Vi) + rhD+Vi

]
+ FN,h(D

−Vi+1) − FN,h(D
−Vi) (for π̂ ≥ π∗ − h).
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Collecting terms, we have

1 − e−β∆t

∆t
(−e−β∆tb)(Vi+1 − Vi) ≤ e−β∆t

(
1

2
π∗2σ2D2Vi+1 −

1

2
σ2π̂2D2Vi

)
+ e−β∆t

[
(b− r)π∗D2Vi+1 · h

]
− e−β∆t

[
(R− r)ϕ∗D2Vi · h

]
− FN,h(D

−Vi+1)

+ FN,h(D
−Vi).

Now assume that D2Vi > 0. Then D−Vi+1 > D−Vi. Since D2Vi+1 ≤ 0 and FN,h is

strictly decreasing, the right-hand side is < 0.

Also,

1

∆t
(1 − e−β∆t − ∆te−β∆tb) =

1

∆t
(1 − e−β∆t(1 + β∆t)) > 0 iff β > b.

For β > b, we then have Vi+1 − Vi < 0, contradicting the fact that Vi is nondecreasing

in i. Hence, D2Vi ≤ 0 and V h(x) is concave.

The Convergence of the value functions

In this section, it will be shown that vh(x) → v(x) as h → 0, uniformly on each

compact interval in [0,∞), and that (vh)′(x) → v′(x) as h → 0 uniformly on compact

subintervals of [0,∞) . This information, as we shall see, can be used to prove that the

optimal controls for the approximate problem converge to the optimal controls for the

continuous problem [17]. The first thing is to deal with the choice of N . It is desirable

that Nh→ ∞ , so that the approximations cover more and more of the interval [0,∞) ,

and so that the artificial constraints on the controls disappear. Thus taking N = N(h)

to be a function of h such that N(h) → ∞ and N(h) ·h→ ∞, as h→ 0 . Furthermore,

it is assumed the β > b throughout the section.
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Lemma 3.1.4. [17] Suppose that vh(x) → u(x) uniformly on [0, B] for each B > 0.

Then u(x) is a viscosity solution of equation (1.2.11).

Proof. For Ψ ∈ C2(0,∞) define

AΨ = G(x,Ψx,Ψxx) + rxΨ + F (Ψx) − βΨ. (3.1.5)

Then equation (1.2.11) implies that AΨ = 0. We shall show that u(x) must be a

viscosity subsolution. Showing that it is a viscosity supersolution is similar. Let us

also define (AhΨ)(Xh), for xh = ih, 1 ≤ i ≤ N − 1, by

(AhΨ)(ih) = e−β∆t max
π,ϕ

[
1

2
π2σ2D2Ψ(ih) + (b− r)π D+Ψ(ih) − (R− r)ϕD−Ψ(ih)

]
+ e−β∆tr(ih)D+Ψ(ih) + FNh[D

−Ψ(ih)] −
(

1 − e−β∆t

δt

)
Ψ(ih).

Note that Ah satisfies

ThΨ − Ψ = ∆tAhΨ and AΨ = lim
h→0

AhΨ, (3.1.6)

the convergence being uniform on each compacts subinterval of (0,∞).

Suppose that Ψ ∈ C2(0,∞), and x0 > 0 are such that u−Ψ has a strict local maximum

at x0. We must show AΨ(x0) ≥ 0.

Since vh(x) → u(x) uniformly on each finite interval, there exists xh such that xh → x0

as h→ 0 and vh(x) − Ψ(x) has a local maximum on the grid SN
h for x = xh.

Now Vh = ThV
h, and vh(ih) = V h

i , so we must have Ψ(xh) ≤ ThΨ(xh), and therefore

AhΨ(xh) ≥ 0. Using equation (3.1.7), we get AΨ(xo) ≥ 0.

This proves lemma 3.1.4.

The above lemma states that the scheme is consistent; that is, if the approximations

converge, they converge to a solution of the continuous problem. We must argue that

they do in fact converge and also that they converge to the correct solution. According
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to Theorem 1.2.10 in [17], this is the unique, nondecreasing concave viscosity solution

which satisfies the boundary condition v(0) = 0. To that end, we proceed with more

assumptions on U and a sequence of lemmas.

Assumption 3.1.5. [17] The function U(c) satisfies

lim
c↘0

U(c)

cp
=

1

p
and lim

c↗∞

U(c)

cq
=

1

q
,

for some p, q with 0 < p, q < 1 .

As established in [18], this assumption states that U acts asymptotically like a

HARA function. Furthermore, it is shown in [18] that v(x) satisfies

lim
x↘0

v(x)

xp
= K and lim

x↗∞

v(x)

xq
= M,

for some K,M > 0, so that there exist x0 > 0, L > 0 with v(x) ≤ w(x), where

w(x) = Lxp on [0, x0] and Aw ≤ 0 on (0, x0). From the form equation (3.1.6) of the

operator A, it is clear that L̂ > L implies ŵ(x) = L̂xp satisfies Aŵ ≤ 0 on (0, x0). The

facts lead us to the following lemma.

Lemma 3.1.6. [17] Suppose that U satisfies Assumption 1.2.8 and Assumption 3.1.5,

and that Nh; 0 < h ≤ h0 is a collection of positive integers with Nh · h→ ∞ as h→ 0.

Then the functions vh are equicontinuous at x = 0.

Proof. Choose L̂ such that eβ∆tL < L̂, and such that

L̂

L∆t
(1 − e−β∆t) ≥ 1,

for all ∆t = h2/Q with h ≤ h0 and Nh as above. Put ŵ(x) = L̂xp as above, and

w(x) = Lxp . Fix 0 < h ≤ h0 and 1 ≤ i ≤ N − 1 such that ih < x0. From Taylor’s
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expansion we see that

D2wi = w′′(ih) +
h2

4!
[w(4)(αh

1) + w(4)(αh
2)] ≤ w′′(ih),

D+wi = w′(ih) +
h

2
[w′′(αh

3)] ≤ w′(ih), and

D−wi = w(ih) − h

2
[w′′(αh

4)] ≥ w′(ih),

where (i− 1)h ≤ αh
1 , α

h
4 ≤ ih and ih ≤ αh

2 , α
h
3 ≤ (i+ 1)h as in [17].

Then we see that

1

∆t
[Thŵi − ŵi] = max

0≤π,ϕ<KNh
π−ih≤ih

(
e−β∆t

[
1

2
π2σ2D2ŵi + (b− r)πD+ŵi

−(R− r)ϕD−ŵi

])
+e−β∆trihD+ŵi + FN,h(e

−β∆tD−ŵi) −
1 − e−β∆t

∆t
ŵi

≤ max
0≤π,ϕ

π−ih≤phi

(
1

2
π2σ2D2wi + (b− r)πD+wi − (R− r)ϕD−wi

)

+rihD+wi + F (D−wi) −
1 − e−β∆t

∆t
· L̂
L
wi

= max
0≤π,ϕ

π−ih≤phi

(
1

2
π2σ2

(
w′′(ih) +

h2

4!
[w(4)(αh

1) + w(4)(αh
2)]

))
,

+(b− r)π

(
w′(ih) +

h2

2
w′′(αh

3)

)
− (R− r)ϕ

[
w′(ih) − h2

2
w′′(αh

4)

]
+rih

(
w′(ih) +

h2

2
w′′(αh

3)

)
− F

(
w′(ih) − h2

2
w′′(αh

4)

)
−L̂
L

(
1 − e−β∆t

∆t

)
wi.
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Since w′′(·), w(4)(·) are negative, we have

1

∆t
[Thŵi − ŵi] = max

0≤π,ϕ
π−ih≤phi

(
1

2
π2σ2w′′(ih) + (b− r)πw′(ih)

)

+r(ih)w′(ih) + F (w′(ih)) − βw(ih) +

(
β − L̂

L

(
1 − e−β∆t

∆t

))
wi

≤ 0 + β − L̂

L

(
1 − e−β∆t

∆t

)
wi,

since Aw(ih) < 0. Furthermore β− (L̂/L)((1− e−β∆t)/∆t) < 0, so we have Thŵi < ŵi,

which in turn implies V h(ih) ≤ ŵ(ih). Since ŵ is continuous at the origin, and since

vh ≥ 0 for all h, the proof is complete.

Next we discuss an extension of equicontinuity to any interval [0,B].

Lemma 3.1.7. [17] Suppose v satisfies Assumption 1.2.8 and Assumption 3.1.5, and

that Nh : 0 < h ≤ h0 satisfies Nh · h ↗ ∞ as h → 0. Then the functions V h are

equicontinuous on [0, B], for each B > 0.

Proof. From the previous remarks it is clear that there are constants K,M > 0 and

0 < γ < 1 such that v(x) < w̄(x) = Kxγ +M for all x ≥ 0. By an argument analogous

to the one of the previous lemma, we have Ahw̄i < Aw̄(ih) ≤ 0, for 1 ≤ i ≤ N − 1.

Thus w̄(x) ≥ vh(x) on [0, (N − 1)h]. From the equation AhV
h
i = 0,

we have that

(
1 − e−β∆t

∆t

)
w̄(ih) ≥

(
1 − e−β∆t

∆t

)
V h

i ≥ r(ih)D+Vie
−β∆t,

which yields equicontinuity of the sequence vh, on any interval [a,B] with

0 < a < B < ∞. The previous lemma gives equicontinuity at x = 0, and the proof is

complete.

These lemmas lead to the following theorem
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Theorem 3.1.8. [17] Assume Assumption 1.2.8, Assumption 3.1.5 and β > b. Then

as h → 0, the functions vh converge uniformly on compact subsets of [0,∞) to v, the

unique concave,continuous at 0 viscosity solution of Av = 0, with v(0) = 0.

Proof. By the Arzela-Ascoli theorem, every subsequence of vh has a further subsequence

that converges, and that limit must be a viscosity solution. Furthermore, that limit

must be concave, nondecreasing and continuous at 0 with v(0) = 0. Theorem 3.1.8

then follows from Theorem 1.2.10.

The following is to show that the derivatives vh(x) converge.

Lemma 3.1.9. [17] (vh)′(x) → v′(x) uniformly on each interval [a, b], 0 < a ≤ b <∞

Proof. We take (vh)′(ih) = D + V h
i . Suppose x > 0, ϵ > 0. Choose γ > 0 such that

|x− y| < γ ⇒ |v′(x) − v′(y)| < ϵ/2.

By the mean value theorem, there exist ξγ ∈ (x− γ, x) and ηγ ∈ (x, x+ γ) such that

v(x) − v(x− γ) = v′(ξγ) · γ,

v(x+ γ) − v(x) = v′(ηγ) · γ .

Let

ph
γ = 1

γ

(
vh(x) − vh(x− γ)

)
,

qh
γ = 1

γ

(
vh(x+ γ) − vh(x)

)
.

Because vh is concave, we have ph
γ ≥ vh′

(x) ≥ qh
γ . By Theorem 3.1.8, as h→ 0

ph
γ → 1

γ
(v(x) − v(x− γ)),

qh
γ → 1

γ
(v(x+ γ) − v(x)).

Hence, for small h we have,

|ph
γ − v′(ξγ)| < ϵ/2, |qh

γ − v′(ηγ)| < ϵ/2.
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Thus

v′(x) − ϵ < v′(ηγ) − ϵ/2 < qn
γ ≤ vh′

(x) ≤ pN
γ < v′(ξγ) + ϵ/2 < v′(x) + ϵ.

Therefore, for all h sufficiently small, we have |vh′ − v′(x)| < ϵ. Thus, for each x > 0,

vh′
(x)− v′(x) as h→ 0. Since the functions in question are all nonincreasing, we have

vh′
(x) → v′(x) uniformly on each interval [a, b] (0 < a ≤ b <∞).

This proves Lemma 3.1.9.

Note: This convergence cannot be extended to [0, b), because v′(0) = ∞.

Before proving convergence of the controls, it is important to recall the finite difference

form of the HJB equation. Let π∗
i , ϕ∗

i give the maximum on the right side of equation

(3.1.3). For x = ih, 1 ≤ i ≤ N −1, three cases can occur in the maximization over π, ϕ

:

−b− r

σ2

D+Vi

D2Vi

≤ x.

In this case

π∗
i = −b− r

σ2

D+Vi

D2Vi

, ϕ∗
i = 0 − b−R

σ2

D+Vi

D2Vi

− R− r

σ2
h ≤ x < −(b− r)D+Vi

σ2D2Vi

.

then in the case when π∗
i = x , ϕ∗

i = 0,

x < −(b−R)D+Vi

σ2D2Vi

− R− r

σ2
h,

when

π∗
i = min

(
−(b−R)D+Vi

σ2D2Vi

− R− r

σ2
h,KNh

)
ϕ∗

i = π∗
i − x,

put

GN,h(x, p,m, q) = max
0≤π,ϕ<KNh

π−x≤ϕ

(
1

2
σ2π2q + (b− r)πp− (R− r)ϕm

)
e−β∆t.
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The calculations above, yield [17]

GN,h =



−1
2

(b−r)2

σ2
p2

q
,

if − (b−r)
σ2

p
q
≤ x,

1
2
σ2x2q + (b− r)xp,

if − (b−R)
σ2

p
q
− R−r

σ2 h ≤ x < − (b−R)
σ2

p
q

1
2
σ2q

(
− (b−R)

σ2
p
q
− R−r

σ2 h
)2

+(b− r)
(
− (b−R)

σ2
p
q
− R−r

σ2 h
)
p

−(R− r)
(
− (b−R)

σ2
p
q
− R−r

σ2 h− x
)
m,

if x ≤ − (b−R)
σ2

p
q
− R−r

σ2 h ≤ KNh,

1
2
σ2(KNh)2q + (b− r)(KNh)p− (R− r)(KNh− x)m,

if KNh ≤ −(− (b−R))
σ2

p
q
− (R−r)h

σ2 h.

Equation (3.1.3) therefore takes the form

Vi

(
1 − e−β∆t

∆t

)
= GN,h(ih,D

+Vi +D−Vi +D2Vi) + r(ih)D+Vi +FN,h(D
−Vi), (3.1.7)

with FN,h(p) as in equation (3.1.2). A tedious calculation shows that the finite difference
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equation (3.1.3) can be solved for D2Vi

D2Vi = HN,h(x, Vi, D
+Vi, D

−Vi),

and that, as h→ 0,

HN,h(x, Vi, D
+Vi, D

−Vi) → H(x, v, v′),

uniformly for x ∈ [a, b], for each a > 0, b <∞, where v(x) solves v′′ = H(x, v, v′) as in

[18]. Since the first and second differences converge to the corresponding derivatives,

it follows that the approximate controls π∗
i , ϕ∗

i converge as h → 0 and ih → x to the

optimal controls π∗(x), ϕ∗(x) for the continuous problem (see [18], Theorem 2.2).

The approximate optimal consumption control c∗i satisfies c∗i = (U ′)−1(e−β∆tD−Vi). In

a similar way, c∗i → c∗(x) as h→ 0 and ih→ x, where c∗(x) = (U ′)−1(v′(x)) as in [17].

3.2 Finite Difference Method

This approach is illustrated by Munk [39] in his PhD dissertation on optimal con-

sumption/portfolio policies and contingent claims pricing and hedging in incomplete

markets. We will introduce the approach and just highlight the majors articulations

from this work. The set-up provided henceforth is also used in the next approach which

will be titled as the finite element approach.

Munk [39] considered a stochastic system on a filtered probability space (Ω,F,F,P),

where F is a σ − algebra on (Ω,P) and F = {Ft|t ∈ T} is a non-decreasing and right-

continuous filtration. He distinguished between two cases: (i) T = [0;T ] for some

T > 0 and (ii) T = [0;∞). He assumed that (a) F0 is the σ − algebra generated

by the zero sets of the probability measure P and (b) FT = F in the finite horizon

case or F =
∨

t≥0 Ft in the infinite horizon case. He assumed that F is generated by a

d− dimensional standard Wiener process w (with independent component processes).

First, he focused on the infinite horizon case T = [0;∞), since the notation will be
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somewhat messier in the finite horizon case T = [0;T ] and assumed that an adapted

process x = {x(t)|0 ≤ t <∞} exists, such that, at any time t ≥ 0, the vector x(t) ∈ Rp

describes the state of the system at that time. In his works, he referred to x (or x(t)) as

the state variable. The state variable is influenced by the choice of a feedback control

a : Rp → Rq , with a(x) denoting the control applied at time t when x(t) = x, in such

a way that x evolves according to the stochastic process

dx(t) = f(x(t), a(x(t)))dt+ g(x(t), a(x(t)))dw(t), (3.2.1)

where f : Rp × Rq → Rp and g : Rp × Rq → Rp×d are continuous functions which

satisfy sufficient conditions for equation (3.2.1) to have a solution. Define S(x, a) =

g(x, a)g(x, a)T that is S : Rp × Rq → Rp×p. Munk [39] defined a feedback control a

is admissible if a is progressively measurable and a(x(s)) ∈ A ⊂ Rq for all s ≥ 0.

Furthermore, it may be required that the state variable stays within a certain subset

of Rp. With such a condition, the set of admissible controls can depend on the initial

value x of the state variable. Denote the set of admissible controls given x by A(x).

Define

W (x, a) = E

[∫ ∞

0

exp

{∫ t

0

β(x(s), a(x(s)))dt

}
L(x(t), a(x(t)))dt|x(0) = x

]
,

and

V (x) = sup
a∈A(x)

W (x, a), (3.2.2)

V is referred to as the value function. L is a continuous function satisfying a polynomial

growth condition.

Brennan, Schwartz and Lagnado [8] solved an optimal investment problem by a

much particular and specific algorithm, which, applied to the general optimal control

problem mentioned above, is as follows.
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Consider the HJB equation associated with the control problem,

sup
a∈A

{
f(x, a)TV ′(x) +

1

2
tr(S(x, a)V ′′(x)) + L(x, a) ⇔ β(x, a)V (x)

}
= 0.

Define a grid on the state space. Let a0 be any admissible control. Then compute an

estimate V0 of the value function by solving numerically the PDE

f(x, a0)
TV ′(x) +

1

2
tr(S(x, a0)V

′′(x)) + L(x, a0) ⇔ β(x, a0)V (x) = 0, (3.2.3)

with a finite-difference method. A new control is then computed as

a1(x) = arg max
a∈A

{
f(x, a)TV ′

0(x) +
1

2
tr(S(x, a)V ′′

0 (x)) + L(x, a) ⇔ β(x, a)V0(x)

}
= 0,

(3.2.4)

for all x in the grid. Then a new estimate V1 of the value function is found by solving a

PDE like equation (3.2.3) replacing a0 with a1, etc. Brennan, Schwartz and Lagnado

[8] reported that stability of the approach is enhanced, when some upwind difference

approximations are used (confer Munk [39] for details).

3.3 Finite Element Method

McGrattan [36] solved a stochastic growth model using finite element method. We look

at a description of the method according to McGrattan [36].

Being the most commonly used in modern business cycle and growth literatures, the

stochastic growth model has been used to test the performance of alternative numerical

methods. McGrattan [36] showed that the method is easy to apply and that, for

examples such as the stochastic growth model, it gives accurate solutions within a very

short period of time. She also showed how inequality constraints can be handled by

redefining the optimization problem with penalty functions.

McGrattan [36] applied a method that is widely used in engineering applications

such as structural analysis and aerodynamic design to compute the equilibrium of
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a growth model. This method, called the finite element method, is an algorithm for

solving functional equations and, for certain problems, is both fast and accurate. Using

the Taylor and Uhlig [52] application, she demonstrated that the finite element method

works extremely well when applied to a case with an analytical solution. For cases

without such a solution, she showed that the method yields decision functions similar

to discretized dynamic programming in a fraction of the computing time. Finally,

McGrattan [36] showed that the method can also be applied to problems with inequality

constraints. Even for a constrained problem, the finite element method performs well.

In their study of alternative methods for solving the stochastic growth model, Taylor

and Uhlig [52] focused on the tradeoff between speed and accuracy. In this regard, the

finite element method offers several advantages over many of the algorithms that Taylor

and Uhlig [52] analyzed. With the finite element method, the first step in solving the

functional equation is to subdivide the domain of the state space into nonintersecting

subdomains called elements. The domain is subdivided because the method relies on

fitting low-order polynomials on subdomains of the state space rather than high-order

polynomials on the entire state space. The result is a system of equations that is sparse.

Furthermore, as the dimensionality of the problem increases, higher-order functions can

be used where needed, with fewer grid points or adaptive grid techniques can be used

to better resolve the grid in regions of the state space where nonlinearities occur [52].

In summary, McGrattan’s [36] paper described the finite element method by apply-

ing it to one example namely the stochastic growth model (the interested reader can

refer to McGrattan [36]). She showed that the method is easy to apply and, for exam-

ples such as the stochastic growth model, gives accurate solutions within a very short

time frame. She also showed how inequality constraints can be handled by redefining

the optimization problem with penalty functions.
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3.4 Infinite series expansion method

Besides the methods presented above, there is also a popular method, namely, Infi-

nite Series Expansion Method, to solve such consumption models. We will explore

this method in details to solve an optimal investment consumption model in the next

chapter.

3.5 Summary and discussions

We presented different numerical methods to solve an optimization problem. The

difference among the methods have been clearly established and it should also be men-

tioned that each method uses a particular set of conditions before being implemented.

Therefore, it is of utmost importance for the investor to look into the conditions before

venturing into optimizing any portfolio. In next chapter, we give a detailed discussion

of the infinite series expansion method.

 

 

 

 



Chapter 4

Infinite series expansion method

applied to an optimal investment

consumption model

In previous chapter we discussed several methods to solve a variety of consumption

models. In this chapter we use a specific method, namely the Infinite series expansion

method, to solve an optimal investment consumption model.

4.1 Model problem

The model we are solving here originates from the Merton’s original problem [38].

When attacking questions on investments, we are always mindful about the investor

behavior hence the fundamental concept of utility plays a big role. To begin, we assume

that we are dealing with an investor who is risk averse, simply put, an investor that

will dismiss an investment if she deems the latter a reasonable target for exploitation,

attack or worse. We also move with the assumption of non-satiation, that the investor

always prefers more return than less hence the utility function will always be increasing.

Since the investor is risk averse, we will expect an either downward or upward concavity

depending on the investment, meaning that we will observe a decrease of the marginal
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utility of wealth as the wealth itself increases. Presently, the aim would be to maximize

the investor expected utility during his active time given that an infinite time span has

been preferred. We can therefore proceed with this now that all the main parameters

to formulate the problem mathematically have been presented. We define the value

function (refer equation 1.2.8),

V (l) = sup
A

E

{∫ ∞

0

e−βtU(ct)dt

}
. (4.1.1)

The equation above (4.1.1) was originally introduced by Merton and an explicit solution

to the equation exists.

4.2 The Infinite series expansion method

In this section we describe in detail how the optimal consumption problem can be

solved using infinite series expansion. We will utilize the fact that it is possible to

find an infinite series expansion that solves a transformed version of equation (1.2.17).

Once this series expansion has been found, we will be able to return to W (z) and hence

also find the optimal controls using MATLAB as in [3]. We will also be looking at the

behavior of the value function for high and low correlation, income and stock volatility

and finally, we will present the results obtained in [3] and use our own set of values to

generate additional plots that might be helpful in dictating our investor’s choices.

4.2.1 Homogeneity transformation: computational solution

We begin by recalling equation (1.2.14) and writing it carefully, we get

η2

2
(1 − ρ2)zW

′′
+ kzW ′ − k2

1

2σ2

(W ′)2

W ′′ + δW ′ − logW ′ − 1 = βW. (4.2.1)

 

 

 

 



CHAPTER 4. INFINITE SERIES EXPANSION METHOD APPLIED TO AN
OPTIMAL INVESTMENT CONSUMPTION MODEL 55

[To simplify equation (4.2.1), we set a new constant Ki and a function F such that

K1W +K2zW
′ +K3z

2W
′′

+K4
(W ′)2

W ′′ + F (W ′) = 0, (4.2.2)

where

K1 = −β,

K2 = k = η2 + r − µ+ δ +
ηρk1

σ

= η2 + r − µ+ δ − η2ρ2 +
ηρ

σ
(α− r),

K3 =
η2

2
(1 − ρ2),

K4 = − k2
1

2σ2
= −(−ηρσ + α− r)2

2σ2
,

F (x) = δx− log x− 1.

Looking at equation (4.2.2), we observe a recurrence of terms of the form zkW (k)(z)

which we will use in finding the solution. Now we need to find where this pattern is

disrupted. We can see that

K4
(W ′)2

W ′′ = K4
(zW ′)2

z2W ′′ , (4.2.3)

but what happens to the term F (W ′)? By observing carefully and applying the

Legendre transform on the function F (W ′), the transformation will return a new vari-

able y and a new function W̃ (y) such that

W̃ (y) = max
z

(
W (z) − z

y

)
. (4.2.4)

By simple mathematics, the maximum on the right hand side gives us y = 1
W ′(z)

and

the inverse of this transformation is

W (z) = min
y

(
W̃ (y) − z

y

)
, (4.2.5)
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and the maximum on the right hand side gives us z = y2W̃ ′(y)] [3]. From the above,

the following relationships hold

y =
1

W ′(z)
,

z = y2W̃ ′(y),

W ′′(z) =
dW ′

dz
=

d1
z

dy2W̃ ′(y)
=

dỹ

d 1

ỹ2
W̃ ′( 1

ỹ
)

=
1

− 1

ỹ4
W ′′( 1

ỹ
) + 2 1

ỹ3
W̃ ′( 1

ỹ
)

=
1

y4W̃ ′′ − 2y3W̃ ′
,

hence the term F (W ′) takes the form

F (W ′) = F

(
1

y

)
=
δ

y
+ log y − 1,

which turns equation (4.2.2) into:

K1W̃ + (K1 +K2 + 2K4)yW̃ ′ −K3
(W̃ ′)2

W̃ ′′ − 2
y
W̃ ′

−K4y
2W̃ ′′ +

δ

y
+ log y = 1. (4.2.6)

Presently, we can try to find a solution to the ODE. If we assume W̃ to contain the

term −1
K1

log y, by intuition, we can guess that the remaining terms would contain the

derivatives of log y with some constant in front of them. Let us call these constants Bk

and see what we get [3].

W̃ = − 1

K1

log y +B0 +
∞∑

n=1

Bny
−n, (4.2.7)

W̃ ′ = − 1

K1y
−

∞∑
n=1

nBny
−n−1 =

∞∑
n=0

Cny
−n−1, (4.2.8)

W̃ ′′ = − 1

K1y2
+

∞∑
n=1

n(n+ 1)Bny
−n−2 =

∞∑
n=0

Dny
−n−2. (4.2.9)
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By comparing this to equation (4.2.6) we can now look at the individual terms y−k for

k = 0, 1, 2... to get an expression for Bk. Furthermore,

(W̃ ′)2

W̃ ′′ − 2
y
W̃ ′

=

∑∞
n=0Cny

−n−1∑∞
n=0Dny−n−2 − 2

∑∞
n=0Cny−n−2

= y

∑∞
n=0Cny

−n∑∞
n=0(Dn − 2Cn)y−n

. (4.2.10)

At this point we make the assumption that this can be written as an infinite sum

y
∑∞

n=0Eny
−n . Multiplying both sides by the denominator on the left hand side and

dividing by y gives us that

∞∑
n=0

Cny
−n =

(
∞∑

n=0

Eny
−n

)(
∞∑

n=0

(Dn − 2Cn)y−n

)
. (4.2.11)

Comparing the individual terms y−k on both sides we get that on the left hand side

Ck is the term multiplied by y−k and on the right hand side we will get a sum of terms

on the form Ei(Dj − 2Cj) which have the property that i + j = k. The following

relationships between the constant are as follows [3]

Cn =
∞∑

n=0

En−i(Di − 2Ci), (4.2.12)

C0 = − 1

K1

, (4.2.13)

Dn =
1

K1

, (4.2.14)

Dn = −(n+ 1)Cn = n(n+ 1)Bn, n ̸= 0. (4.2.15)

The first step is to find E0 using the fact that C0 and D0 are known. [Once E0 is found,

we can use equation (4.2.6)and get B0 by comparing the constant term]. Then we can

use (4.2.12) to express E1 as a function of B1. By repeating this process we can get all

the constants Bn and En. Let us proceed with our theory. First we can use (4.2.12)

to express En as a function of Bn. It is also assumed that all Bi and Ei are known for
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i < n ([3]):

C0 = E0(D0 − 2C0)

⇒ E0 =

(
1

K1

− 2

(
− 1

K1

))−1(
− 1

K1

)
= −K1

3

1

K1

= −1

3
,

Cn =
n∑

i=0

En−i(Di − 2Ci)

= −1

3
(Dn − 2Cn) +

n−1∑
i=1

En−i(Di − 2Ci) + En
3

K1

,

⇒ En =
K1

9
n2Bn − K1

3

n−1∑
i=1

En−i(i(i+ 1) + 2i)Bi

= F 1
nBn + F 2

n .

For B0, we get that

B0 =
1

K2
1

(
2K1 +K2 + 2K4 −

1 +K4

3
K3

)
. (4.2.16)

Now that En is expressed as a function of Bn we can insert the results into equation

(4.2.6) and solve for Bn.

K1Bny
−n+(K1+K2+2K4)Cny

−n−K3y
−n

n∑
i=0

EiCn− i−K4Dny
−n =

δy
−1, n = 1,

0, n > 1.

(4.2.17)

Using that Cn, Dn and En can be described as functions of Bn we can solve for Bn and

get that (for n > 1)

(
K1 − (K1 +K2 + 2K4)n+K3

(
1

k1

F 1
n +

n

3

)
− n(n+ 1)K4

)
= K3

(
n−1∑
i=1

EiCn−i −
1

K1

F 2
n

)
, (4.2.18)
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Bn =
K3

(∑n−1
i=1 EiCn−i − 1

K1
F 2

n

)
(
K1 − (K1 −K2 + 2K4)n+K3

(
1

K1
F 1

n + n
3

)
− n(n+ 1)K4

) . (4.2.19)

It is possible to estimate the coefficients numerically now that we have all the required

formulae.

4.2.2 Simulating the method

The coefficients Bn, W̃ (y), W̃ ′(y) and W̃ ′′(y) are known therefore it is now possible to

recall our previous steps and obtain W (z),W ′(z) and W ′′
(z) by remembering that [3]:

z = y2W̃ ′,

W (z) = W̃ + yW̃ ′,

W ′(z) =
1

y
,

W ′′(z) = − 1

y4W̃ ′′ + 2y3W̃ ′
.

Several plots of the value function and optimal controls as a function of z are shown

with different values of income volatility δ, correlation ρ, stock volatility σ

Next, we will be presenting the results of the infinite series expansion method and

detailed interpretations of our results.

4.3 Numerical results using the infinite series expan-

sion method

In this section we present numerical results for the model under consideration. The

values of some parameters used in the simulation are shown in Table 4.3.1

In the plots, we use the ratio z = l/h, where l denotes initial wealth and h denotes

initial income. The normalization in this plots means that the optimal controls and the

money invested in the riskless asset (bond) add up to one (and this is made possible
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Table 4.3.1: Parameters for simulation

Correlation ρ 0.0
Income volatility η 0.3
Time preference rate β 0.4
Stock volatility σ 0.5

since the initial wealth l is greater than zero) . [It should be noted that the wealth

process L(t) can go down to zero but that should not be a worry for our investor since

positive wealth can be achieved again due to the presence of random income flow][3].

Note that in the following plots h > 0. The first parameter we choose to vary, is

the correlation ρ, between changes in income and changes in the risky stock market.

From figures 4.4.1 and 4.4.2 we observe that the value function follows the same pattern

as the correlation that is; the higher the correlation ρ, the higher the value function

and the lower the correlation, the lower the value function.

Figure 4.4.3 describes the optimal consumption for different values of ρ and figure

4.4.4 describes the optimal risky investment for different values of ρ. We observe again

the same behavior on both figures and that is; the consumption and risky investment

should be high for high correlation [3].

The result suggests that the investor should use a large proportion of her wealth on

consumption, investment and stock market if the correlation is high. It might sound

peculiar at first, but there is a chance that our investor would both make profit on

the risky market and also obtain a high income flow (because of the high correlation).

Since we assumed an investor that will not accept an investment that is a reasonable

target for exploitation or attack, the chance of making profit is indeed positive. Note

that the difference in proportion of wealth to be put into risk-free bond, risky stock

market and consumption is minimal. The allocation of wealth is estimated to be 25%

consumption, 35% risk-free assets and 40% risky investments.
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Figure 4.3.1: Objective function F(z) for the correlation coefficient ρ = -0.8, -0.4, 0.0,
0.4.
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Figure 4.3.2: Objective function F(z) for the correlation coefficient ρ = -0.6, -0.2, 0.1,
0.4.
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Figure 4.3.3: Control process for consumption c∗/l for the correlation coefficient ρ =
-0.8, -0.4, 0.0, 0.4.
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Figure 4.3.4: Control process for investment π∗/l for the correlation coefficient ρ =
-0.8, -0.4, 0.0, 0.4.

 

 

 

 



CHAPTER 4. INFINITE SERIES EXPANSION METHOD APPLIED TO AN
OPTIMAL INVESTMENT CONSUMPTION MODEL 63

The next interesting parameter is the volatility of the stock σ. Figure 4.4.5 and

Figure 4.4.6 illustrate a description of the value function for different values of σ. We

observe that the value function is highest for highest values of stock volatility and

lowest for lowest values of stock volatility. Figures 4.4.7 and 4.4.8 indicate that our

investor should spend a considerable amount of money on the risky assets when there

is small fluctuation in the market (stable market); that is when σ is low and also to

consume a smaller proportion of her wealth. Note that the change in consumption

is small, while the change in investments in risky stock markets is very high. This

means that the distribution between risky and risk-free investments is highly affected

by changes in stock volatility as described in [3].
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Figure 4.3.5: Objective function F(z) for stock’s volatility σ = 0.3, 0.4, 0.5, 0.6.
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Figure 4.3.6: Objective function F(z) for stock’s volatility σ = 0.1, 0.2, 0.3, 0.4.
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Figure 4.3.7: Control process for consumption c∗/l for stock’s volatility σ = 0.3, 0.4,
0.5, 0.6.
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Figure 4.3.8: Control process for investment π∗/l for stock’s volatility σ = 0.3, 0.4, 0.5,
0.6.
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Finally, another parameter of our interest is the income volatility η. Figure 4.4.9

and figure 4.4.10 declare that the value function is shifted upwards for increasing values

of η. In figures 4.4.11 and 4.4.12 we can see that the optimal consumption and optimal

risky investment also follow this pattern. In other words the investor should invest more

money on the risky stock market and also consume more if the income volatility is high.

This can be justified by the fact that our investor needs to make risky investments to

avoid bankruptcy and the income generated (profit) will serve for future investments

[3]. When studying the result for the optimal consumption, we must always bear

in mind what we are trying to optimize. Maximizing wealth is not solely what the

investor should focus on, but rather to maximize the utility function as such, a high

consumption with high income volatility might be wiser.
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Figure 4.3.9: Objective function F(z) for income volatility η = 0.1, 0.2, 0.3, 0.4.
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Figure 4.3.10: Objective function F(z) for income volatility η = 0.3, 0.4, 0.5, 0.6.
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Figure 4.3.11: Control process for consumption c∗/l for income volatility η = 0.1, 0.2,
0.3, 0.4.
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Figure 4.3.12: Control process for investment π∗/l for income volatility η = 0.1, 0.2,
0.3, 0.4.
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It is clear from the above sets of numerical simulations that the parameter that has

a truly large influence on our optimal investments is the market volatility. It affects

the distribution between risky and risk-free investments. The other parameters have

interesting effects but they do not affect the total ratios as much.

4.4 Summary and discussions

In this chapter, we described the implementation of the method called the infinite series

expansion for solving an optimal investment-consumption model. We also presented

several numerical results describing the effect of individual parameters in the model.

The next chapter is the conclusion chapter where we give an overall summary of the

whole thesis. We highlight challenges that we encountered and mention a few points

on how we intend to extend the work contained in this thesis. Some scope for future

research is also mentioned.

 

 

 

 



Chapter 5

Concluding remarks and scope for

future research

This thesis deals with general investment and consumption problems and discusses nu-

merical methods for solving such consumption models. After discussing some methods

from the literature, we detailed out a method, namely, the infinite series expansion

method and its application to solve a model problem. Extensive numerical results are

presented and along with a thorough discussion on them.

As far as the scope for future research is concerned, we intend to explore the pro-

posed infinite series expansion method by using other types of utility functions than

those already considered in this thesis. Further modification on the conditions on util-

ity functions may also lead to a simpler derivation of the HJB equation. This we will

explore in future.
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