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ABSTRACT 

Cervical cancer is the leading cause of cancer mortality among black women in South Africa. 

It is estimated that this disease kills approximately 8 women in South Africa every day. 

Cervical cancer is caused by the human papillomavirus (HPV) with the most common 

screening method for cervical cancer being Papanicolaou (Pap) smear, test amongst others. 

However, less than 20% of South African women go for these tests. There are several reasons 

why women do not go for these tests but the invasiveness of the test is one of the major 

causes for the low rate of screening. Lateral flow devices offer medical diagnosis at the point-

of-care, allowing for the quick initiation of the appropriate therapeutic response. These tests 

are more cost-effective for the healthcare delivery industry, and can potentially be used by 

patients to self-test in the privacy of their homes and allow them to make informed decisions 

about their health. Therefore, the aim of this study was to use computational methods to 

identify serum biomarkers for cervical cancer that can be used to develop a point-of-care 

diagnostic device for cervical cancer.  

 

An in silico approach was used to identify genes implicated in the initiation and development 

of cervical cancer. Several bioinformatics tools were employed to extract a list of genes from 

publicly available cancer repositories. Multiple gene enrichment analysis tools were 

employed to analyze the selected candidate genes. Through this pipeline, ~28190 genes were 

identified from the various databases and were further refined to only 10 genes. The 10 genes 

were identified as potential cervical cancer biomarkers. A subcellular compartmentalization 

analysis clustered the proteins encoded by these genes as cell surface, secretory granules and 

extracellular space/matrix proteins. The selected candidate genes were predicted to be 

specific for cervical cancer tissue in a cancer tissue specificity meta-analysis study. The 

expression levels of the candidate genes were compared relative to each other and a graph 

constructed using gene expression data generated by GeneHub-GEPIS and TiGER databases. 

Further gene enrichment analysis was performed such as protein-protein interactions, 

transcription factor analysis, pathway analysis and co-expression analysis, with 9 out of the 

10 of the candidate genes showing co-expression.  
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A gene expression analysis done on cervical cancer cell lines, other cancer cell lines and 

normal fibroblast cell line revealed differential expression of the candidate genes. Three 

candidate genes were significantly expressed in cervical cancer, while the seven remaining 

genes showed over expression in other cancer types. The study serves as basis for future 

investigations to diagnosis of cervical cancer, as well as for cancers. Thus, they could also 

serve as potential drug targets for cancer therapeutics and diagnostics. 

 

 

Key Words: cervical cancer, early diagnosis, biomarkers, bioinformatics, gene 

enrichment analysis 
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CHAPTER 1: Literature Review 

     1.1. Cancer Overview 

Cancer is a very complex disease that develops due to the accumulation of genetic and 

epigenetic changes that allow for deviation from normal cellular and environmental control 

(Kumar et al., 2009). Cancer is a common term used for a group of more than 100 diseases 

that affect any part of the body and is also known as neoplasms or tumours. The most 

prominent characteristics of cancer are the uncontrolled proliferation of cells beyond their 

normal boundaries, the ability to invade and invade adjoining body tissue and that they can 

metastasize to other tissue. Cancer morbidity or mortality is a result of metastases (Kumar et 

al., 2009). Cancer is a disease that affects people of all races and age groups and is 

responsible for about 13% of all deaths.  According to the World Health Organisation (WHO) 

there were around 12 million new cases of cancer in 2008, and 7 million deaths resulting 

from cancer in the same year. Among the known cancer types, lung cancer is the most 

common cause of death in both genders, followed by breast cancer in females and prostate 

cancer in males (Iyoke and Ugwu, 2013). According to estimates by the International Agency 

for Research on Cancer (IARC), in 2008, 53% of the 12.7 million new cases of cancer and 

63% of the 7.6 million cancer deaths occurred in developing countries (Iyoke and Ugwu, 

2013).  

 

A portion of the cancer types are specific to a particular sex, such as uterine sarcoma, cervical 

and ovarian cancer in females and prostate cancer in males. There are more than a 100 

distinct types of human cancers that have been described and different tumour subtypes are 

found within specific organs (Grizzi and Chiriva-Internati, 2006). Cancerous cells are 

neoplastic and they proliferate in defiance to normal cell control, thus preventing normal 

cellular function, tissue, and organ formation with the potential of becoming malignant and 

colonising surrounding tissues (Abbott et al., 2006). Cancers are classified by the type of cell 

and tissue they originate from. Approximately 90% of cancers are characterised as 

carcinomas, which develop from epithelial cells with the most common sites being the breast, 

lung, prostate and colon (Petersen et al., 2003). The high prevalence of carcinomas is due to 

the fact that epithelial cells are the site of active cell proliferation and are constantly exposed 

to both physical and chemical carcinogens. Sarcomas are tumours that originate from 
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connective tissue or mesenchymal cells, whereas cancers that arise from hemopoietic cells 

are lymphomas and leukaemia. All the different types of cancers can be further subdivided 

based on specific cell type, location in the body and the structure of the tumour (Petersen et 

al., 2003). The majority of cancers occur as a result of initial somatic hypermutation of a 

single cell that must undergo a number of mutations in order to become cancerous, a process 

that is described in Hanahan and Weinberg’s hypothesis of 6 cumulative alterations (Hanahan 

and Weinberg, 2000). Surgery is used to remove benign tumours and they consist of 

neoplastic cells which remain clustered together in a single mass. When aggressive cancerous 

cells divide, they penetrate the basement membrane. The result of this local invasion is 

neoplastic cell adherence to adjacent tissue and through, production of proteolytic enzymes 

and factors such as matrix metalloproteinases (MMPs); degradation of the extracellular 

matrix (ECM) is caused in surrounding tissue. As a result cancer cells are able to cross tissues 

into neighbouring stroma, thus facilitating deeper invasion and metastasis. This process is 

responsible for tumours becoming malignant as the cells invade the surrounding tissue and 

cross the basal lamina to enter the blood stream (Laerum, 1997). Tumours that are metastatic 

are able to survive in circulation and have the ability to travel through blood vessels to other 

organs and through the lymphatic vessels to lymph nodes. As a consequence, the 

development of secondary tumours at a site far away from the primary tumour is a hallmark 

of cancers that are more aggressive and rendering them difficult to eradicate (Liotta and 

Kohn, 2001).  

 

1.1.1. Pathogenesis of Cancer 

There are 6 hallmarks of cancer that define malignancy as hypothesised by Hanahan and 

Weinberg: (i) sustaining proliferative signalling, (ii) evading growth suppressors, (iii) 

activating invasion and metastasis, (iv) enabling replicative immortality, (v) inducing 

angiogenesis and (vi) resisting cell death as shown in figure 1.1 (Hanahan and Weinberg 

2011).  It is believed that the majority of cancer cell genotypes are a manifestation of these 

six essential alterations in cell physiology that collectively dictate malignant growth.

 

 

 

 



 

  

 

 

Figure 1.1: The six hallmark capabilities of cancer, adapted from Hanahan & Weinberg 2011. 
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1.1.1.1. Sustaining Proliferative Signalling  

The ability of cancer cells to sustain chronic proliferation is the most fundamental trait of 

cancer cells. Normal tissues carefully control the production and release of growth-promoting 

signals that instruct entry into and progression through the cell growth-and-division cycle, 

thereby ensuring a homeostasis of cell number and thus maintenance of normal tissue 

architecture and function. Cancer cells, by deregulating these signals, become masters of their 

own destinies (Hanahan and Weinberg 2011). The tumor cells generate many of their own 

growth signals by altering extracellular growth signals, transcellular transducers of those 

signals, or intracellular circuits that translate these signals into action (Mees et al., 2009). The 

enabling signals are conveyed in large part by growth factors that bind cell-surface receptors, 

typically containing intracellular tyrosine kinase domains. The latter proceed to emit signals 

via branched intracellular signalling pathways that regulate progression through the cell cycle 

as well as cell growth (that is, increases in cell size); often these signals influence yet other 

cell-biological properties, such as cell survival and energy metabolism. Tumour cells are 

therefore less dependent on exogenous growth stimulation (Hanahan and Weinberg 2011).   

 

1.1.1.2. Evading Growth Suppressors 

Cancer cells have the ability to evade antiproliferative signals, such as soluble growth 

inhibitors and immobilized inhibitors, in order to progress (Hanahan and Weinberg 2000). 

These signals block proliferation by either forcing the cells out of the active proliferative 

cycle into the G0 phase of the cell cycle, or by inducing the cells to permanently give up their 

proliferative potential by making them enter into post mitotic states. At the molecular level, 

most antiproliferative signals are funnelled through retinoblastoma 1 (RB1) and its two 

relatives, retinoblastoma-like 1 (RBL1) and retinoblastoma-like 2 (RBL2) proteins. 

Disruption of the RB1 pathway allows proliferation, causing cells insensitive to antigrowth 

factors that normally operate along this pathway to block progression (Weinberg, 1995).  

 

Cancer cells also circumvent powerful programs that negatively regulate cell proliferation 

and many of these programs depend on the actions of tumour suppressor genes. The two 

prototypical tumour suppressors encode the RB (retinoblastoma) and tumor protein p53 
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(TP53 proteins); which operates as central control nodes within two key complementary 

cellular regulatory circuits that govern the decisions of cells to proliferate or alternatively, 

activate senescence and apoptotic programs (Hanahan and Weinberg 2011).   

 

1.1.1.3. Resisting Cell Death 

In the face of aberrant and potentially cancerous growth signalling, normal cells activate 

programmed cell death (Apoptosis). Apoptosis is also activated in response to DNA damage, 

although other cellular stresses can also be features of cancerous cells. Apoptosis thus 

represents a crucial mechanism to avoid accumulation of damaged cells and mutations that 

can culminate in cancer formation (Fulda, 2009). Programmed cell death, is triggered by a 

variety of physiological signals, and will unfold in a precisely choreographed series of steps, 

including disruption of cellular membranes, breakdown of cytoplasmic nuclear skeletons, 

degradation of chromosomes, and fragmentation of the nucleus (Fulda, 2009). Cancer cells 

acquire the ability to evade this induction of cell death and this ability is crucial for 

maintaining tumour growth and allowing cancerous cells to form in the first stage of disease 

development. Part of the ability of tumour cells to evade programmed cell death is derived 

from survival signals supplied by the stromal compartment (Hanahan and Weinberg 2011).  

Failure of apoptosis is essential to all types of cancer and the apoptotic program is present in 

a latent form in almost all cell types in the body (Hanahan and Weinberg 2011).   

 

Cells use a variety of ways to avoid cell death; some of these strategies are less clearly 

understood than others. One of the most commonly mutated tumour suppressor genes is the 

p53 gene. 50% of the tumour apoptosis evasive characteristics are a result of p53 protein 

inactivation.  More than half of all types of human cancers have a mutated or missing gene 

for p53, resulting in a damaged or missing P53 protein. As an alternative to achieving the loss 

of P53, cancer cells can compromise the activity of P53 by increasing the inhibitors of P53, 

or silencing the activators of P53. The P13 Kinase-AKT/ PKB pathway is another pathway 

used by tumour cells to evade programmed cell death. This pathway is concerned with the 

anti-apoptotic survival signals. This survival signalling circuit is found to be up-regulated 

either by extracellular factors such as IGF-1and IL-3, or by intracellular signals involving 

RAS, thus leading to evasion of apoptosis (Wong, 2011). 
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1.1.1.4. Inducing Angiogenesis 

Induced angiogenesis is the process by which cancer cells induce and sustain the growth of 

new blood vessels. Oxygen and nutrients are crucial for cell function and survival, they are 

supplied by the vasculature. Cells within aberrant proliferative lesions initially lack this 

angiogenic ability, reducing their capability to expand. Cancer cells on the other hand 

overcome this restriction by inducing and sustaining angiogenesis (Hanahan and Folkman 

1996). Tumour growth depends on angiogenesis to first provide oxygen and nutrients to 

proliferating cells and to then provide a physical route for metastasis transport. Tumours, like 

normal tissues also require sustenance as well as the ability to evacuate metabolic wastes and 

carbon dioxide. The tumour-associated neovasculature generated by the process of 

angiogenesis addresses these needs (Hanahan and Weinberg 2011).   

 

Tumour cells make use of the vascular network and penetrate into the blood using it as a 

transport channel, circulating through the intravascular channel and then proliferate to distant 

sites. Since nutrients and oxygen are a necessity for cancer cells, angiogenesis becomes an 

important factor for the progression of cancer. Angiogenesis therefore becomes a multistep 

process of which angiogenic factors (VEGF, bFGF TGF-alpha etc.) play a huge role. It 

involves degradation of the basement membrane in tissues; endothelial cells which are 

activated by angiogenic factors (Nishida et al., 2006). Upon further migration, they 

proliferate and stabilise and angiogenic factors will further continue the angiogenic process 

forming new blood vessels. Angiogenesis therefore creates a vascular support for cancer cells 

and absence thereof will result in tumours becoming necrotic or even becoming apoptotic. 

Angiogenic factors have thus received remarkable attention, with the VEGF family being one 

of the major angiogenic agents in neoplastic tissues (Nishida et al, 2006). 

 

1.1.1.5. Activating Invasion and Metastasis 

Invasion of normal host tissue by the tumour and metastasis ultimately leads to death of the 

cancer patient. Cancer cells acquire the ability to become motile and migrate from the 

original tumour site and this is the acquisition of the invasive and metastatic phenotype. 

Changes promoting invasion happens at the cellular level, including changes in the 

expression of surface markers which allow the cells to adhere to the surrounding tissues. 
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Metastasis is a particularly complex process, but usually occurs by cancer cells invading 

blood vessels and hitchhiking through the circulatory system to other sites of the body 

(Hanahan and Weinberg 2011).   

 

1.1.1.6. Enabling Replicative Immortality 

The ability of cancerous cells to avoid controlled growth often involves finding ways of 

repairing or lengthening the telomeres to prevent them from shortening, allowing indefinite 

replication (Hanahan and Weinberg 2011). About 10% of cancers develop as result of 

inherited genetic susceptibility; therefore a 90% risk of cancer development can be attributed 

to a combination of diet, environment, cultural and lifestyle factors (Bell, 2005). Mitogenic 

growth factors are required by normal cells to stimulate proliferation; however cancerous 

cells have developed autonomy from this mode of down-regulation. Cells that are cancerous 

have the ability to gain self-sufficiency for growth signalling by overexpression or 

constitutive activation of growth factor receptors, thus synthesising their own growth factors 

and deregulating downstream signalling targets (Peters et al., 2001). Cancerous cells evade 

negative anti-growth signals which act by forcing cells out of the cell cycle into a resting, 

quiescent state (G0), or by inducing cells to undergo differentiation into a post-mitotic state. 

This can also be achieved by abrogation of growth-inhibitory receptor function (Zeimet et al., 

2000). Cancerous cells have the ability to evade programmed apoptotic cell death by 

abrogation of pro-apoptotic sensor receptor signalling that monitors the extracellular and 

intracellular environment. Cells in every tissue survive by being in close proximity to a blood 

vessel to supply oxygen and nutrients. Cancer cells have developed mechanisms to encourage 

growth of new blood vessels from pre-existing vessels (angiogenesis) by changing the 

angiogenesis inducers such as vascular endothelial growth factor (VEGF) and inhibitors such 

as thrombospondin-1 (Hanahan and Folkman 1996). As previously mentioned cancer can 

originate in any part of the body and cancers that develop in the female reproductive system 

are known as women's reproductive cancers. These encompass cancer of the breast, cervix, 

ovaries, endometrium, vagina and vulva. The most persistently occurring cancers of the 

reproductive system in women worldwide are breast, cervical and ovarian cancer (Getahun, et 

al., 2013).  
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1.2. Cervical Cancer 

1.2.1. Global Cervical Cancer Burden 

Cervical cancer (CC) is the third most prevalent cancer amongst women globally, with 

approximated 83,195 new cases and 35,673 mortality cases in 2012 (Human Papillomavirus 

and Related Diseases Report, South Africa, 2014). More than 80% of the global burden 

occurs in developing countries, where cervical cancer accounts for 13% of all female cancers. 

However, cervical cancer is not limited to the developing world as it is considered in Europe 

as a significant public health problem with an incidence rate of 10.6 per 100 000. As a result 

of better developed prevention programmes, Western Europe has a lower incidence and 

mortality rate when compared to Central and Eastern Europe (Mareea and Moitse, 2014). In 

western countries, the incidence and mortality of CC have declined substantially over the past 

decades, whereas in developing countries there is a slight increase in mortality (Figure 1.2). 

This is probably due to the lack of screening and the greater impact of infectious cofactors in 

the latter regions. Age-adjusted incidence rates vary from about 10 per 100 000 per year in 

many industrialized countries to more than 40 per 100 000 in some developing countries. 

More than 88% of deaths occur in low-income countries and it is predicted to increase to 

91.5% by 2030 (Maree and Wright, 2010).  

 

 

 

 



 

 

Figure 1.2: Estimated cervical cancer incidence worldwide in 2008. GLOBOCAN 2008, International Agency for Research on Cancer (IARC). 

The red and dark highlighted areas have the highest incidence rates. 
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Cervical cancer is the second most frequently diagnosed cancer in women after breast cancer 

and the leading cause of cancer death in African women
 
(Jemal et al., 2012). Eastern and 

Western Africa are the highest risk regions with Age Standardised Rate (ASR) greater than 

30 per 100 000, Southern Africa with ASR 26.08 per 100 000, South-Central Asia (ASR 24.6 

per 100 000), and South America and Middle Africa with 23.9 and 23.0 ASRs respectively. 

Low-risk regions are Western Asia, Northern America and Australia/New Zealand with 

ASRs less than 6 per 100 000. Cancer of the cervix is most prevalent in women in Eastern 

Africa, Melanesia and South-Central (Globocan, 2008).Cervical Cancer was responsible for 

approximately 275 000 deaths in 2008 and 88% of these cases occurred in developing 

countries. Africa reported 53 000 death cases, 31 700 in the Caribbean and Latin America 

and Asia with 159 800 deaths (Figure 1.2) (Globocan, 2008).  

 

According to Globocan 2012, cervical cancer is the fourth most common cancer in women, 

and the seventh overall, with an estimated 528 000 new cases in 2012. There were an 

estimated 266 000 deaths from cervical cancer worldwide in 2012, accounting for 7.5% of all 

female cancer deaths. Almost nine out of ten (87%) cervical cancer deaths occur in the less 

developed regions. According to the IARC, there were 453 531 cases of cervical cancer in 

developing countries in 2008 representing 89% of global estimates. Also 273 000 deaths 

occur worldwide every year due to cervical cancer out of which 83% occur in developing 

countries ((Iyoke and Ugwu, 2013). It is estimated that 80-90% of cervical cancer cases in 

developing countries occur amongst women of age 35 and older. Cervical cancer develops 

very slowly from precancerous lesions to advance cancer.  On a global scale the incidence of 

cancer is low in women under the age of 25 years, however, the incidence increases at age 35 

to 40 years and reaches the maximum in women of ages 50 and 60 years  (Alliance for 

Cervical Cancer Prevention, 2005). It is estimated that about 83% of all new cases of cervical 

cancer and 85% of all deaths related to cervical cancer are occurring in developing countries 

as shown in Figure 1.2 (Anorlu, 2008).   
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1.2.2. Cervical Cancer Burden in Africa and South Africa 

In Africa, there is an absence of accurate information relating to the extent of cancer and this 

is mostly due to cancer registries being limited. However, this does not reflect the magnitude 

of the cancer problem on the African continent. The African continent has a population of 

267.9 million women from age 15 years and older who are at risk of developing cervical 

cancer, with an estimation of 80 000 women diagnosed with cervical cancer annually and 

over 60 000 women perishing from this disease (Denny, 2012). The incidence of cervical 

cancer in Africa varies substantially by region, with the highest rates in Africa (ASIR>40 per 

100 000) all found in Eastern, Southern and Western Africa as shown in figure 1.3 (Denny, 

2012). There are many compelling factors that contribute to the high prevalence of cervical 

cancer in Africa. These include limited human and financial resources, competing health 

needs, poorly developed healthcare systems, war and civil strife, women being uninformed 

and disempowered and the nature of cytological-based screening programmes (Mareea and 

Moitse, 2014). 

 

 

 

 



 

 

Figure 1.3: Incidents and mortality of cervical cancer in 2008. Source Jemal et al., 2011,  

http://onlinelibrary.wiley.com/doi/10.3322/caac.20107/pdf  
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Other factors include lack of access to preventative measures, late diagnosis, treatment and 

palliation for cancer related disease. The African continent has poor accessibility to cancer 

therapies (Denny, 2012). In South Africa, cervical cancer is the second most diagnosed 

cancer in women with, 7735 new cases being diagnosed yearly and is the most common 

cancer in women aged 15-44 years (Table 1.1 and Figure 1.4) (Human Papillomavirus and 

Related Diseases Report, 2014). Cervical cancer has the highest incidence rate in South 

Africa, followed by breast cancer, lung cancer, cancer of the trachea and bronchi (Maree and 

Wright, 2010). In South African women, cervical cancer is the primary cause of death with 

approximately 4248 new cancer deaths occurring each year with the highest death rate among 

black women between the ages of 66-69 years (Figure 1.4). South African women, 

particularly black women, most often present late with cancer that is already in an advanced 

stage (Francis et al., 2011). 

 

Table 1.1: Incidence of cervical cancer in South Africa (estimations for 2012) 

Indicator South Africa Southern Africa World 

Annual number of new cancer cases 7,735 8,652 527,624 

Crude incidence rate
ɑ
 30.2 29.3 15.1 

Age-standardized incidence rate
ɑ
 31.7 31.5 14.0 

Cumulative risk (%) at 75 years old 3.1 3.1 1.4 

*Adapted from Human Papillomavirus and Related Diseases Report, 2014.  

 

The total age-adjusted incidence rate (ASIR) of cancer in the black population is far lower 

than the corresponding white population. Black women are most at risk of developing 

cervical cancer when compared to their white and coloured counterparts. According to the 

Department of Health of KwaZulu-Natal, cancer of the cervix accounts for 18.5% of 

gynaecological cancers, with approximately 5000 new cases being reported annually (Walker 

et al., 2002).   

 

 

 

 



 

 

Figure 1.4: Cervical cancer mortality compared to other cancers in women of all ages in South Africa, adapted Human Papillomavirus and 

Related Diseases Report, 2014. 
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1.3. Physiology and Anatomy of the Cervix 

The cervix is the lower portion of uterus that connects to the upper portion of the uterus. It is 

cylindrical in shape and connects the vagina and the uterus as depicted in figure 1.5 

(Junqueira and Carneiro, 2005). There are two narrow openings present in the cervix namely 

the internal and external ostiums (os). The location of the internal os is the topmost portion of 

the cervix and opens into the uterus and the external os is located at the minor portion of the 

cervix and opens into the vagina (Stevens and Lowe, 2005). The endocervical canal or canal 

of the cervix, which can change in width and length, is the passageway between the external 

ostiums and the uterine cavity. The cervix is divided into two parts, the endocervix which is 

the portion proximal to the uterus and the ectocervix proximal to the vagina. The endocervix 

has a fusiform shape and is composed of a single layer of mucous-secreting columnar 

epithelium and the ectocervix has a convex, elliptical surface and is composed of 

nonkeratinized stratified squamous epithelium (Arends et al., 1998). The transformation zone 

(TZ) or squamo-columnar junction  is the portion adjacent to the edge of the endocervix and 

ectocervix, where the columnar epithelium is converted to squamous epithelium by a process 

known as metaplasia. The transformation zone is the area where the majority of abnormal 

changes occur and is susceptible to carcinogens and diseases (Ross and Pawlina, 2006).  

 

 

 

 



 

 

Figure 1.5: Diagram of the uterus indicating the cervix, internal and external ostiums and the cervical canal (Martini and Bartholomew, 2007). 
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1.4. Risk Factors for Cervical Cancer 

The majority of women will be exposed to the human papilloma virus (HPV) virus at some 

stage in their life, however, only a fraction develop persistence of infection and subsequent 

life-threatening cervical disease, thus implicating other factors in cervical cancer 

pathogenesis. Risk factors associated with squamous cervical cancer, besides infection with 

HPV, include early age of coitus debut, numerous sexual partners, hormonal contraceptives, 

high parity, smoking and other sexually transmitted infections (STIs) (Dahlstrom et al., 

2011). The daunting challenge is to determine to what extent these risk factors possess 

inherent capabilities to induce cervical cancer, or if they advance proxy measures for the risk 

for present and/or past  high-risk (HR) HPV infection. Infection with HPV is the main factor 

responsible for initiation of cervical cancer through sexual intercourse. Out of the 100 

different HPV types, about 40 of these affect the genital areas. The other types infect the skin 

on other areas of the body such as hands or feet. HPV 6 and 11 are responsible for causing 

warts which develop in a period of six to eight weeks (Likes and Itano, 2003). 

 

The HPV is very difficult to identify because it’s asymptomatic, hence there is a need for 

routine cervical check-ups and HPV testing (Godfrey, 2007). There are about 13 high risk 

HPV strains that cause high-grade cervical cell abnormalities, with the high risk strains 

detected in 90% of cervical cancer incidences, with 70% of these caused by HPV 16 and 18. 

Infection by one HPV strain does not necessarily guarantee that a person is not susceptible to 

infection by a second or more strains. Individuals infected with mucosal HPV, about 5% to 

30% get infected with more than one viral type simultaneously (Pink book, 2011). A woman 

that has multiple sexual partners is at an increased risk of contracting HPV which is dominant 

in men (Likes and Itano, 2003). Also at risk of HPV infection are women with three or more 

full term pregnancies and this is due to the different hormonal changes associated with 

pregnancy. Girls aged 17 years or younger are also at an increased risk when they have their 

first full term pregnancy and are more at risk of developing cervical cancer later on in life 

when compared to women who get pregnant at age 25 years and above (American Cancer 

Society, 2010).  
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The risk associated with hormonal contraceptives could be explained by their hormonal 

influence on the cervical mucosa, thus rendering it more susceptible to persistent/progressing 

infection. According to Appleby et al., 2007, this can also be attributed to a higher risk for 

HR-HPV due to a concurrent tendency to (1) the infrequent use of condoms since already on 

contraception and (2) more likely to indulge in sexual activity than those not using 

contraceptives. Therefore, it is important to adjust for information on these factors as far as 

possible, and with large scale analyses, an association to contraceptive use still needs to be 

demonstrated (Appleby et al., 2007). High parity has been consistently found to increase the 

risk of squamous cell cervical carcinoma among HPV positive women. It leads to direct 

exposure of the transformation zone in the cervix to HPV infection, thus increasing the risk of 

cervical cancer (Munoz et al., 2002).  

 

1.5. Human Papilloma Virus and Cervical Cancer 

Human papilloma virus is the most common sexually transmitted virus. HPVs are double 

stranded DNA viruses, which are very small, with their genomes encoded by approximately 

8000 base pairs. There are nearly 100 types of HPV, with different variations in their genetic 

and oncogenic potential. Cervical cancer is caused by HPV strains that belong to a few 

phylogenetically related “High-risk” (HR) species (alpha-5, 6, 7, 9, 11) of the mucosotropic 

alpha genus. The types found most frequently associated with CC (-16, -18, -31, -33, -35, -45, 

-52, -58) and four less-common types (-39, -51, -56, -59) are classified in Group 1. The 

remaining types of HPV in the HR alpha species are classified as “possibly carcinogenic” 

(Group 2. 2A: -68; 2B: -26, -30, -34, -53, -66,-67, -69, -70, -73, -82, -85, -97). Finally, HPV -

6 and -11, which belong to the alpha-10 species, were not classifiable as to their 

carcinogenicity in humans (Group 3) and were also described as low risk (LR) strains (Abreu 

et al., 2012). Worldwide, the most common HR-HPV strains are -16 and -18, and 

approximately 70% of CC is due to these genotypes. LR-HPV strains, principally -6 and -11, 

are predominantly involved in the development of genital warts (Abreu et al., 2012).  HPV 16 

accounts for about half of the cervical cancer cases in the United States and Europe (Gómez 

and Santos, 2007). The HPV 18 strain has been also associated with adenocarcinoma of the 

cervix, but the connection is less pronounced and is age dependent (Gómez and Santos, 

2007). 
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1.6. Development of Cervical Cancer 

More than 80% of the population is infected with HPV at some point in their life. In rare 

cases (1%), this infection will eventually lead to cervical cancer and simultaneous infections 

with multiple HPV types are common (Southern Africa Litigation Centre, 2012). The 

majority of HPV infections, irrespective of the type, are asymptomatic and resolve over a 

short period of time without treatment, as the woman’s immune system will usually suppress 

or eliminate the HPV infection. The HPV infection persists in a small percentage of women 

(Southern Africa Litigation Centre, 2012). Cervical cancer develops over time when 

persistent HPV infection triggers alterations in the cells of the cervix, called precursor lesions 

or cervical intraepithelial neoplasia (CIN), or recently referred to as squamous intraepithelial 

lesions (SIL) (Southern Africa Litigation Centre, 2012). When these pre-cancerous lesions 

are left untreated, they can eventually lead to cancer. The lesions can progress from low 

grade (CIN 1) to high grade (CIN 2 and CIN 3) as their size, shape and number increases. 

Following its natural course, progression of the disease is slow and can take as long as 10 to 

20 years from the initial infection with HPV to invasive cancer (Southern Africa Litigation 

Centre, 2012).  

 

There are four steps involved in the development of cervical cancer: (i) HPV transmission, 

(ii) viral persistence, (iii) progression of a clone of persistently infected cells to precancer and 

(iv) invasion. Backward steps can also occur such as clearance of HPV infection and 

regression of precancer to normality as indicated in figure 1.6 (Schiffman et al., 2007).  There 

is a high chance for progression to precancerous lesions and ultimately invasive lesions, when 

HPV acquisition is followed by HPV persistence instead of clearance. HPV 16 and 18 

account for about 70% of all Squamous Cell Carcinoma (SCC) and for up to 85% of all 

adenocarcinomas. HPV has the ability to incorporate into human DNA, with HPV 16, 18 and 

45 being predominant HPV types in cervical cancer as they are more likely to integrate into 

the human genome than other HPV types (Hoste et al., 2013). When these three types of 

HPV cause cervical cancer, the patients are diagnosed on average 4 to 5 years earlier than 

those caused by other high-risk types (Hoste et al., 2013). HPV 16 and 18 positive Low-grade 

Squamous Intraepithelial Lesion (LSIL) is more likely to progress to CC than LSIL 

containing other HPV genotypes. HPV 16 and 18 account for 35% of LSIL but nearly 70% of 

CC worldwide. HPV 16 is more persistent and more likely to progress to CIN3+ (CIN3, 
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carcinoma in situ and invasive CC) than other high risk HPV types (Hoste et al., 2013). The 

onco-proteins E6 and E7 deactivate essential processes associated with tumour genes like p53 

and pRb functioning (Botha and Dochez, 2012). This ubiquitous infection does not lead to 

disease progression in all infected individuals and certain processes make individuals more 

susceptible to the development of pre-malignant and malignant disease. Since HPV is almost 

exclusively an epithelial disease, the virus is poorly presented to the adaptive immune 

system, which is important for induction of long term immunity. Most natural infections of 

HPV do not cause significant immunoglobulin responses and therefore the immune response 

after natural infections is not very pronounced (Botha and Dochez, 2012). After the initial 

exposure to HPV there is an incubation period of between 1 and 8 months after which the 

first HPV-related lesions might appear. There is active growth of the virus for a period of 

between 3 and 6 months but usually there are host-immune responses that will in most cases 

clear the infection by about 9 months (Botha and Dochez, 2012). A large percentage of the 

population will have sustained clinical remission but a small proportion will develop chronic 

infection and become HPV-DNA positive on repeated testing. These are the individuals that 

will be at highest risk for the development of pre-malignant conditions and later invasive 

cancer (Botha and Dochez, 2012). 

 

 

 

 



 

 

Figure 1.6: Major steps in cervical cancer carcinogenesis. HPV infection followed by clearance by the immune system or progression to 

precancer and invasion. The top row shows cytology and the bottom row shows colposcopy (Schiffman et al., 2007).  
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1.7. Types of Cervical Cancer 

There are two types of cells that line the surface of the cervix: which are the glandular cells 

and the squamous cells. Glandular cells are found in the middle and upper third of the cervix 

close to the lining of the uterus and these cells have a column-shape or columnar appearance. 

Squamous cells are thin, flat cells that line the bottom third of the cervix. The transformation 

zone or the squamocolumnar junction is the borderline between the glandular cells and 

squamous cells and this is the area where cervical dysplasia and cancer usually occur 

(Jefferies, 2008). These cells eventually develop into different types of cancer which include 

the following:  

 Squamous cell carcinoma: Cancer that develops from the cells covering the outer 

surface of the cervix at the top of the vagina (ectocervix).  

 Adenocarcinoma: is the type of cancer that develops from the glandular cells lining 

the cervical canal or in the upper portion of the cervix (endocervix). 

 Adenosquamous carcinomas: these are rare, mixed cancer cell types which contain 

features of both squamous cells and adenocarcinoma.   

 Small cell carcinoma and cervical sarcoma: are the other rare cancer types that can 

develop in the cervix (<1% of all cervical cancers) (Jefferies, 2008). 

 

Squamous cell carcinoma and adenocarcinoma are the most frequent types of cervical cancer 

and they are responsible for 85-90 % and 10-15 % of all cervical cancer cases respectively. 

They develop from the distinctive precursor lesions CIN / SIL and adenocarcinoma in situ 

(AIS) respectively (Lax, 2011). Invasive cancer occurs when the abnormal cells invade the 

deep muscle, fibrous tissue and the organs surrounding the uterus. Staging is the process of 

finding out how far the cancer has spread and the stage of cervical cancer informs about the 

size of the tumour, how deeply the tumour has invaded tissues within and around the cervix 

and whether there is metastasis to lymph nodes or distant organs. Determining the stage of 

the cancer is critical in determining what type of treatment should be offered (Southern 

Africa Litigation Centre, 2012). 
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1.8. Classification and Stages of Cervical Cancer 

There are various cervical cancer stages that indicate the extent and site of infection. The 

International Federation of Gynaecology and Obstetrics (FIGO) system is used in staging of 

invasive cervical cancer based on clinical criteria like size, penetration depth within the 

cervix and spreading within and beyond the cervix as shown in figure 1.7. According to the 

FIGO system, cervical cancer is divided into 4 different stages, with 10 sub-stages from IA to 

IVB (Koyama et al., 2007). In stage I, the cancer cells are strictly limited to the cervix and 

are divided into stage 1A, 1B1 and 1B2 depending on the depth of penetration. Stage II 

cancerous cells extend beyond the cervix to the upper two thirds of the vagina (IIA) or the 

parametrial tissue (IIB) and not to the pelvic side wall. Furthermore, stage III describes a 

tumour that has spread to the lower third of the vagina (IIIA) or to the pelvic side wall (IIIB) 

and in stage IV, the cancer is advanced and has invaded the mucosa of the bladder or rectum 

(IVA) or has metastasised to distant sites outside the pelvis (IVB) (Koyama et al., 2007).

 

 

 

 



 

 

Figure 1.7:  Illustration of the various stages of cervical cancer according to FIGO, adapted from Fauci et al., 2008. 
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1.9. Current Therapy and Prognosis of Cervical Cancer 

Normally, cervical cancer early stages are either treated with surgery, including radical 

hysterectomy or pelvic lymph node dissection or a combination of chemotherapy and 

radiation (Rasty et al., 2009). Stage IA cervical cancers are treated with surgery with a  five-

year survival rate exceeding 95%, however, for stage IB or early stage IIA surgery and 

chemo radiotherapy are the choice of treatment with a five-year survival rate of 80%. The 

locally advanced stages IIB, III and IVA are treated with chemo radiotherapy, with both 

brachytherapy and external radiation being given in combination with adjuvant cisplatin-

based chemotherapy which has been demonstrated to increase the efficacy of radiotherapy 

(Klopp and Eifel 2011). The five-year survival rates are 65%, 40% and less than 20% for 

stage IIB, III and IVA respectively, with stage IVB benefiting from local radiotherapy, which 

is combined with carboplatin and 5-FU-based chemotherapy and the disease is not curable 

once it reached this stage (Klopp and Eifel 2011). There are other tumour characteristics that 

are not included in the FIGO staging system that also influence prognosis of cervical cancer 

such as tumour volume as determined with high accuracy using imaging techniques in 

particular Magnetic Resonance Imaging (MRI) (Chiang and Quek, 2003).  

 

The presence of lymph node metastases is another factor that influences survival of cervical 

cancer patients. The lymph node metastasis incidence correlates with other parameters of 

poor prognosis such as increasing stage, diameter of the tumour, lymphovascular space 

involvement and parametrial involvement with another important independent prognostic 

factor for cervical cancer being the presence of positive lymph nodes. Also of important 

prognostic significance is the number of positive lymph nodes, site and number of nodal sites 

(Creasman and Kohler, 2004). An important aspect of the treatment regime is the incidence of 

serious side effects after therapy. As a result of the anatomical location of the cervix in the 

pelvis, the lower uterus, bladder and posterior urethra are exposed to radiation during 

treatment of cervical cancer. A consequence of this is several urinary adverse effects (AEs). 

The probability of developing grade 1 and 2 AEs following radiotherapy for cervical cancer 

has been reported to be 28%, increasing by an additional 17.4% in five years (Elliott and 

Malaeb, 2011). The acute toxic effects caused by treatment last for a short time and may be 

resolved with medical management. However, the long term toxic effects may cause 

permanent impairment in the quality of life of the survivors.  
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Since the recurrence rate is very high and the incidence of side effects is quite frequent, there 

is still a great need for improved treatment strategies (Klopp and Eifel, 2011). 

 

1.10. Screening and Diagnosis of Cervical Cancer 

There are two approaches used for the control of cervical cancer: primary and secondary 

prevention. Primary prevention involves a risk-reduction approach through behavioural 

interventions for sexual health care seeking behaviour or through the mass immunization 

against high risk HPVs. These preventive methods can eliminate the probability of the 

development of the disease and, in the case of cervical cancer, one would prevent its onset by 

eliminating the risk of being infected with HPV. This can be achieved either by abstaining 

from sexual intercourse or through HPV vaccination (Sehgal and Singh, 2009). Secondary 

prevention includes screening for precancerous lesions and treating them. This stops the 

progression of the disease once the individual has already been infected. Routine screenings 

for cervical cancer precursors followed by appropriate treatment is an effective preventative 

measure in curbing the incidence of cervical cancer (Sehgal and Singh, 2009).  

 

1.10.1. Screening of Cervical Cancer 

The objective of screening programmes is to lessen the rate of mortality and morbidity due to 

cervical cancer and to reduce the number of patients suffering from cervical cancer.  Basic 

screening programmes can lead to down-staging of cervical cancer, which in its own right 

offers benefits for patients (Botha et al., 2010). The lack of efficient high quality precancer 

screening, treatment resources and poor or lack of infrastructure results in an increased 

number of deaths in developing countries as a result of cervical cancer (Alliance for Cervical 

Cancer Prevention, 2009). Cancer of the cervix is preventable and highly curable by 

screening especially for those women who are asymptomatic for precancerous cervical cancer 

lesions. Early detection leads to faster and more successful treatment. It has been 

demonstrated by various studies that women who have been screened at least once in their 

lifetime between the ages of 30 and 40 have a reduced cervical cancer risk by 25-36% 

(Cervical Cancer Action, 2007).  
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It has been recommend by the American Congress of Obstetricians and Gynaecologists that 

cervical cytology screening begins at age 21 years and thereafter be repeated every 2 years 

for women aged 21-29 years and every 3 years for women aged 30 years or older who have 

had three prior normal pap smears. It is recommend that women who are infected with human 

immunodeficiency virus (HIV), immunosuppressed, and women previously treated for CIN 

2, CIN 3 or cancer should undergo frequent screening. Women aged 65–70 years with three 

prior consecutively normal pap smears, and no abnormal pap smears over a period of 10 

years may discontinue screening (Brown and Trimble, 2012).  

 

1.10.2. Current Status of Cervical Screening in South Africa 

There are two healthcare systems in South Africa with 80% of the population depending on 

the public sector, providing cost-free healthcare and 20% utilises private health care as they 

have medical insurance or can afford to pay for it (SouthAfrica.Info 2012). However, the 

South African Department of Health, in 1999, developed and adopted a National Cancer 

Control Policy which included a national programme for cervical cancer screening. The 

screening programme allows asymptomatic women aged 30 years and older three Pap smears 

within a ten-year period in their lifetime. The cervical cancer screening programme is 

implemented at district level at nurse-led primary health care clinics, which serve as an 

entrance to the public health care service (Mojaki et al., 2010). The rationale behind the 

starting age was based on the fact that cervical cancer affects women in early to late middle 

age.  The goal of the programme was to screen 70% of women in the targeted age group 

within 10 years from the initiation of the programme and to decrease cervical cancer 

incidence by 64% (Smith et al., 2003).  

 

However, according to Gakidou, et al., 2008 only 20% of the target population was screened. 

In some areas of the country the screening programme has been implemented but not 

throughout the country. The outcome is that presently there is no population-wide screening 

programme in South Africa. However, in some areas partial screening does take place and in 

the private sector opportunistic screening is commonly practised (Botha et al., 2010). In 

South African women, cervical cancer remains the second most common cancer and is most 

common in black women, accountable for 31% of the cancer burden in this group.  The 
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reflection of these figures is debatable as the registry is an under-representation. There are 

far-reaching implications associated with not being screened, as women with micro-invasive 

cervical cancer may not experience noticeable signs and symptoms and only seek health care 

when symptoms are evident and the disease is advanced (Maree and Moitse, 2014).  

 

1.10.3. Cervical Cancer Screening Methods 

Screening of cervical cancer is a way of preventing the disease from developing and 

diagnosing it at an early pre-cancerous stage. The three screening modalities are cytology, 

HPV detection and visual inspection. 

 

1.10.3.1. The Papanicolaou Test 

The Papanicolaou (Pap) smear test, also known as exfolative cervicovaginal cytology, is the 

most common technique used for screening and diagnosis of cervical cancer in its early 

stages. Women who are 18 years and older and sexually active are encouraged to undergo 

annual Pap smear tests. Cells are collected from the cervix by inserting a speculum inside the 

vagina and removing cells using a cotton swab or a small brush (Duraisamy et al., 2011).  

The cells are fixed on a glass slides and are sent to a cytology laboratory and evaluated by a 

trained cytologist or cytotechnician who determines the cell classification as atypical 

squamous cells of undetermined significance, low grade squamous intraepithelial lesions and 

high grade squamous intraepithelial lesions. Should abnormalities be encountered, additional 

tests will be performed (Duraisamy et al., 2011).  The value of the Pap smear in screening of 

cervical cancer cannot be disputed as the method has resulted in a reduction in cervical 

cancer related mortalities. However, there are several limits to this test such as sensitivity to 

detect precursors of cervical cancer which is less than 50%, inadequate collection and transfer 

of cells to the slide, presence of obscuring blood, inhomogeneous distribution of abnormal 

cells and inflammation or thick areas of overlapping epithelial cells. There is an occurrence 

of false-negative results associated with the Pap test and it is said that it is unlikely to detect 

60% of the general cervical cancer cases (Duraisamy et al., 2011).  
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1.10.3.2. Pelvic Examination 

The pelvic examination is also an important technique in cervical cancer detection and is very 

similar to the Pap smear. A speculum is inserted into the vagina and the doctor examines the 

vagina and surrounding organs both visually and manually. The doctor inserts gloved hands 

into the vagina and feels the cervix and surrounding areas with the fingers (Duraisamy et al., 

2011).  

 

1.10.3.3. HPV DNA Screening 

This procedure is targeted at identifying high risk HPV strains 16, 18, 31, 33, 35, 39, 45, 51, 

52, 56, 59 and 68 which are commonly associated with high grade cervical intraepithelial 

neoplasia (HSIL) and invasive cancer of the cervix. Various methods such as southern blot 

hybridation are used with this screening method, however they are very laborious and tedious 

and are not suitable for clinical usage because they demand use of fresh tissue and not easy to 

conduct in mass screening programmes (Kerkal and Kulkarni, 2006). However, Hybrid 

capture 2 assay is a more suitable technique used and is utilised mostly in HPV-DNA 

screening. Samples that are used for screening are obtained from cell suspensions acquired 

from liquid based cytology or use of the cytocervical brush (Kerkal and Kulkarni, 2006).  

 

The FDA has approved three types of tests to detect oncogenic HPV DNA: Hybrid Capture 2 

test, Cervista_ HPV HR test and Cervista® HPV 16/18. The Hybrid Capture 2 test was 

approved in 2003 and it detects 13 oncogenic HPV types (16, 18, 31, 33, 35, 39, 45, 51, 52, 

56, 58, 59, and 68) by making use of full genome probes complementary to HPV DNA, 

specific antibodies, signal amplification, and chemiluminescent detection. The Cervista_ 

HPV HR test was approved in 2009 and detects 14 HR HPV types (16, 18, 31, 33, 35, 39, 45, 

51, 52, 56, 58, 59, 66, and 68) using a signal amplification method for detecting specific 

nucleic acid sequences. This method uses a primary reaction that occurs on the targeted DNA 

sequence and a secondary reaction that produces a fluorescent signal. There are two 

limitations associated with these tests. Firstly, neither test can differentiate between single 

HPV genotype infections and multiple concurrent HPV genotype infections and secondly, 

they cannot quantitate viral load. The third HPV DNA test, Cervista_ HPV 16/18 was 
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approved in 2009 and it only detects HPV 16 and 18, the genotypes most commonly 

associated with cancer, using a similar method to the Cervista_ HPV HR assay (Brown and 

Trimble, 2012).  

 

1.10.4. Visual Approaches to Screening 

Cervical cancer screening is limited by social infrastructure of the society being screened and 

financial resources, relying on methods that are low-cost and require fewer visits to the clinic. 

Therefore, alternative methods of screening may be implemented quickly and cheaply, such 

as visual inspection alone or with a magnifying device are presently utilised in low resource 

settings (Brown and Trimble, 2012). There are three approaches involved: (i) Visual 

inspection of the cervix with acetic acid (VIA), (ii) visual inspection after application of 

Lugol’s iodine (VILI) and (iii) visual inspection with magnification (VIAM) (Duraisamy et 

al., 2011).  

 

1.10.4.1. Visual Inspection with Acetic Acid  

For this procedure the cervix is examined following the application of acetic acid. A bivalve 

speculum is used to expose the cervix and 4% dilute solution of acetic acid is applied to the 

cervix. Lesions that stain acetowhite are regarded as positive for VIA and those with dull 

white plaques and faint borders are considered low grade VIA, whereas those with sharp 

borders are considered high grade VIA. If no acetowhite lesions are detected, the test is 

considered negative. Various studied have demonstrated VIA to be reliable, sensitive and cost 

effective in comparison with Pap smear testing, especially in low resource countries 

(Duraisamy et al., 2011). Visual inspection using acetic acid wash has a sensitivity of 79% 

(95% CI 73 to 85%) and a specificity of 85% (95% CI 81 to 89%) for the detection of CIN2+ 

lesions (Brown and Trimble, 2012). 
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1.10.4.2. Visual Inspection with Lugol's Iodine (VILI)   

After the cervix is examined using VIA, it is painted with Lugol's iodine solution and 

examined with the naked eye. Small high-grade lesions are easier to identify within the larger 

low-grade area. Abnormal areas of squamous epithelium (CIN or inflammation) does not 

stain brown. VILI is believed to be more accurate and more reproducible than VIA and to be 

much better than a Pap smear in identifying CIN (Duraisamy et al., 2011). The use of Lugol’s 

iodine solution can increase sensitivity marginally, by 10% compared to other screening 

methods, and does not change the specificity (Brown and Trimble, 2012). 

 

1.10.4.3. Visual Inspection with Magnification  

This is the technique that visualises the cervix under low magnification after application of 

acetic acid. Using a magnifying device to aid in evaluating the cervix has comparable 

sensitivity and specificity to VIA only. The sensitivity and specificity of visual detection are 

dependent on the skill of the provider and vary widely (Brown and Trimble, 2012). 

 

1.10.5. Cervical Cancer Diagnostic Methods 

If an abnormal result is obtained following a screening process, often additional tests needs to 

be performed to determine the extent of the pre-cancer or cancer. 

 

1.10.5.1. Colposcopy 

Colposcopy is magnified visual examination of the ectocervix, squamous columnar junction 

(SCJ) and endocervical canal. It is accompanied by a biopsy of any abnormal-looking tissue 

and is also similar to a Pap smear (Duraisamy et al., 2011). A solution that stains abnormal 

cells white is applied to the cervix and the doctor views the cells using a high-powered 

microscope to detect abnormal cancerous cells. Colposcopy is used as a diagnostic test and 

not a screening test. Other techniques that are used include Cone biopsy, Endocervical 

Curettage, Loop electrosurgical procedure (LLETZ/LEEP) and imaging (Duraisamy et al., 

2011). 
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1.10.5.2. Cone Biopsy 

Cone Biopsy is a procedure that is also known as conization, where a cone-shaped piece of 

tissue is removed from the cervix. The cone base is formed by the exocervix and the apex of 

the cone is from the endocervical canal with the transformation zone (the area in the cervix 

where pre-cancers and cancer are likely to develop) is contained within the cone specimen. 

Cone biopsy is also used as treatment to remove many pre-cancers and some very early 

cancers completely. If a huge amount of tissue is removed, the result is a higher risk of giving 

birth prematurely if the individual it to become pregnant (Duraisamy et al., 2011). 

 

1.10.5.3. Endocervical Curettage 

Endocervical curettage also called endocervical scraping is a procedure where a curette is 

inserted into the endocervical canal to scrape the inside of the canal to remove some of the 

tissue which is sent to the laboratory for analysis. Side effects associated with this procedure 

include light bleeding and abdominal cramping pain (Duraisamy et al., 2011). 

 

1.10.5.4. Loop Electrosurgical Procedure 

The Loop Electrosurgical Procedure also called loop excision of the transformation zone 

(LLETZ). This is a procedure where a thin wire loop heated with electrical current is used to 

remove tissue. Mild cramping during and after the procedure and mild-to-moderate bleeding 

for several weeks are some of the side effects associated with this method (Duraisamy et al., 

2011). 

 

1.10.5.5. Imaging 

Certain imaging techniques are performed in order to determine if the cancer has spread 

beyond the cervix. These include Magnetic Resonance Imaging (MRI) and Computed 

Tomography (CT) scans. The usefulness of a CT scans is to help identify if the cancer has 

spread to the lymph nodes in the abdomen and pelvis (Duraisamy et al., 2011). 
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1.10.6. HPV Vaccines 

The most cost-effective method to prevent cervical cancer against infectious agents is through 

vaccination. The primary goal of HPV vaccination is to reduce the incidence of cervical 

cancer and precancerous lesions. The other objective is to decrease the rate of cancers and 

other benign lesions related with HPV infection (Zarchi et al., 2009). There are two vaccines 

available Gardasil® (Merck, Sharpe and Dohme) and Cervarix® (GlaxoSmithKline). The 

vaccines are based on the virus-like particle (VLP) technology, where viral genes encoding 

surface proteins are used to produce empty virus shells, capable of inducing effective immune 

responses without any infectious or malignant potential. Both vaccines have prophylactic 

properties and do not clear existing HPV infection or treat HPV-related disease (Souter, 

2012). The purpose should be to administer both vaccines before the start of sexual activity 

and the first exposure to HPV infection as this is when the individual would derive the most 

benefit from these vaccines (Souter, 2012). Both vaccines are highly immunogenic and nearly 

all individuals develop an antibody response one month after completing the three-dose 

series. It is not yet known how long these vaccines protective efficacies last; however, to date 

it has been maintained for the duration of the observation periods: 9.4 years for Cervarix® 

and five years for Gardasil® (Souter, 2012). 

 

1.10.6.1. Gardasil
®
 

Gardasil
®

 is a quadrivalent vaccine that contains virus-like particles for HPV subtypes 6, 11, 

16 and 18. It is designated for prevention of cervical, vaginal and vulva pre-cancers and 

cancers as well as anogenital warts that are caused by HPV types 6, 11, 16 and 18 in females 

aged 9-26 years. The vaccine is administered as a series of three intramuscular injections at 

0.2 and 6 months. It is delivered into the deltoid muscle or in the higher anterolateral area of 

the thigh (Souter, 2012). Internationally, Gardasil® is used up to the age of 26 years in men 

and 45 years in women. In South Africa, Gardasil® is also registered for use in boys aged 9-

17 years for the prevention of anogenital warts (Souter, 2012). 
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1.10.6.2. Cervarix
®

 

Cervarix® is a bivalent vaccine that contains virus-like particles for HPV subtypes 16 and 18. 

It is indicated for the prevention of cervical pre-cancers and cancers caused by HPV types 16 

and 18 in females from nine years of age. Cervarix® is given as a series of three 

intramuscular injections at 0, 1 and 6 months, delivered into the deltoid muscle (Souter, 

2012).  Both Gardasil and Cervarix vaccines are preventive, not curative for HPV infection or 

HPV-related diseases. Therefore, HPV vaccine is most useful when given to girls and women 

prior to infection. Vaccination is able to reduce up to 70% of cervical cancer related to HPV 

infection and even prevents precancerous and cancerous lesions of the genitalia. It must be 

remembered that the HPV vaccine does not eliminate the need for continued Pap smears as 

30% of cervical cancers are caused by HPV types that are not included in these vaccines 

(Souter, 2012).  

 

1.10.7. Limitations of Current Screening Methods 

The major challenge for cervical cytology is the need to detect rare events. A specimen 

collected by liquid-based cervical cytology contains a minimum of 5 000 normal squamous 

cells, with most samples containing 50 000 or more normal cervical squamous epithelial cells 

as well as benign endocervical cells and inflammatory components. On the other hand, HSILs 

may often be based on the detection of only a very small number of abnormal cells; 

frequently in the range of 10–100 dysplastic cells per slide (Ling et al., 2008). Current 

methods for cervical cancer screening are not only labour-intensive but are also highly 

subjective and have a relatively low sensitivity and specificity rate for the detection of some 

high-grade clinically significant lesions. With the liquid-based Pap test, the sensitivity of 

cervical screening has increased to about 80% from 65% compared to the conventional Pap 

smear, resulting in an improvement of the overall clinical, economic, and patient outcomes. 

However, the specificity of liquid-based Pap test dropped from 95% with conventional Pap 

smear to about 75% (Ling et al., 2008). Unfortunately only a small percentage of cervical 

cancer patients are diagnosed in the early stages (stage 0 and 1). This has prompted the search 

for cervical cancer biomarkers, although biomarkers have been identified, these have not yet 

been successful in the detection of CC.  
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1.11. Biomarker Applications in Cancer  

The discovery of biomarkers in cancer is becoming extremely important and it is very clear 

that people would benefit tremendously by a greater availability of such effective molecular 

indicators that can be monitored non-invasively from readily accessible body fluids. A widely 

accepted and comprehensive medical definition describes a biomarker as a characteristic that 

can be objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes and pharmacologic responses to a therapeutic intervention (Aebersold 

et al., 2005). The National Cancer Institute (NCI) defines a biomarker as a biological 

molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal 

process, or of a condition or disease. Cancer biomarkers can be messenger ribonucleic acid 

(mRNA), deoxyribonucleic acid (DNA), proteins, metabolites or processes such as apoptosis, 

angiogenesis or proliferation (Kulasingam and Diamandis, 2008). The markers are produced 

either by the tumour itself or by other tissues in response to the presence of cancer or other 

associated conditions such as inflammation. Such biomarkers can be found in a variety of 

fluids, tissues and cell lines. Contrary to common belief, biomarkers are not only or 

necessarily molecules, they are any type of measurable change which may have clinical 

relevance (Kulasingam and Diamandis, 2008).  

 

For instance biomarkers can be certain proteins present on the tumour or released by the 

tumour in the blood, which serves as an indication for recurrence of the disease after curative 

surgical intervention. A biomarker can also be the expression level of mRNA or the presence 

of a gene mutation targeted by a drug (Kulasingam and Diamandis, 2008). Various 

characteristics are used to classify biomarkers such as molecular biomarkers or imaging 

biomarkers, with molecular biomarkers being tumour-associated proteins, mRNA or DNA 

fragments which are used either individually or in signatures of multiple molecules. 

Additionally, different functional subgroups of proteins, such as enzymes, glycoproteins, 

oncofetal antigens and receptors, may serve as useful biomarkers. Furthermore, tumour 

changes such as genetic mutations, amplifications, translocations and changes in microarray 

profiles (signatures) may also be utilized as tumour markers (Smith et al., 2003). Imaging 

biomarkers are anatomical, physiological, biochemical or molecular characteristics which are 

detectable using certain parameters or features from imaging modalities such as MRI, CT or 

Positron Emission Tomography (PET) (Smith et al., 2003). There are various advantages in 
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discovery of new biomarkers, such as improved diagnosis and predicting response to both 

current treatment regimens and to novel molecularly targeted agents (Eifel, 2006). Cancer 

biomarkers have several applications such as early diagnosis of cancers, improved 

reproducibility of the histopathological diagnoses, surveillance of individuals at risk and post 

therapy monitoring (Wentzensen and von Knebel Doeberitz, 2007).  

 

1.12. Classification of Biomarkers 

Biomarkers are classified based on the sequence of events from the onset of exposure to 

disease detection and they play an essential role in providing some insights into prognosis, 

disease progression and response to treatment (Manne et al., 2005). There is a variety of 

biomarkers available; they are utilized in experimental research and clinical settings.  

Biomarkers are grouped in to different categories such as early detection, diagnostics, 

prognostics and predictive biomarkers. Other types are classified based on biomolecules such 

as DNA, RNA and proteins (Mayeux, 2004). Therefore, biomarkers are invaluable tools for 

cancer detection, diagnosis, patient prognosis and treatment selection. They can also function 

in localizing the tumour and determine its stage, subtype and response to therapy. 

Identification of such signatures in surrounding cells or at more distal and easily sampled 

sites of the body viz., cells in the mouth (instead of lung) or urine (instead of urinary tract) 

can also influence the management of cancer (Bhatt et al., 2010). A significant focus of 

clinical research, as evident by the large number of publications, has been the discovery and 

validation of biomarkers with the primary aim of facilitating disease diagnosis (Bhatt et al., 

2010). 

 

1.12.1. Diagnostic Biomarkers 

Diagnostic biomarkers are used to assist in making a specific diagnosis and in relation to 

cancer these biomarkers may be assessed on tumour specimens; however, diagnostic 

biomarker research is performed on serum or plasma. The ideal source material for biomarker 

analysis is the blood, because it is easy to sample and relatively cheap. Furthermore, in 

preclinical research, it is common to encounter molecules of interest, which can be actively 

released in the bloodstream by tumour cells or leak out as a result of the high cell turnover 

 

 

 

 



 

 
30 

 

rates typical of tumours (Kulasingam and Diamandis, 2008). The ultimate goal of diagnostic 

biomarkers would be to apply them in a disease screening setting or in suspected cancer 

patients, those that are at higher risk of developing the disease. For example, the presence of 

Bence–Jones protein in urine remains one of the strongest diagnostic indicators of multiple 

myeloma (Kulasingam and Diamandis, 2008). Novel or putative biomarkers may be 

developed into simple diagnostic tests assaying one or two biomarkers or more complex tests, 

where multiple biomarkers are assayed. Based on improved knowledge at the molecular 

level, such tests can provide faster, more accurate or information-rich diagnostics of many 

diseases (Hempel et al., 2008).  

 

Biomarker-based tests can confirm clinical diagnosis and may provide other information 

concerning prognosis and best treatment options. These diagnostic tests may enable 

identification of disease or disease susceptibility in its early stages, before it can be diagnosed 

by other means, providing opportunities for prevention of disease progression or better 

disease management leading to better patient outcomes and a reduction in the direct and 

indirect costs of disease (Hempel et al., 2008). Improved diagnostics to detect cancer at an 

early stage, when it is curable with current methods would provide the greatest benefit to 

cancer patients. For the majority of cancers, 5-10 year survival often approaches 90% for 

cancers detected at an early stage, whilst it may drop to 10% or less for cancers detected at a 

later stage. It is well established that screening to detect cancer earlier saves lives. For 

instance, the Pap smear strongly reduces mortality through early detection of pre-neoplastic 

cervical cancer lesions; moreover, the test is employed widely despite its significant 

inconvenience, unpleasantness, cost and requirement for clinical expertise (Aebersold et al., 

2005). 

 

1.12.2. Prognostic Biomarkers 

The role of prognostic biomarkers is to acquire knowledge about the natural history of the 

disease in terms of metastatic potential, likelihood of tumour progression and probability of 

patient survival independently of treatment. Prognostic biomarkers are relevant in cancer 

research for various reasons such as, when it is used to determine that the expression of a 

protein, gene or other molecules is directly correlated with an aggressive phenotype. This 

may give important information about the biology of the disease and which pathways are 
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activated when the phenotype is more aggressive. Furthermore, from a clinical aspect, 

availability of validated strong and independent prognostic tumour markers may be used to 

stratify patients in randomized clinical trials aiming at evaluating the effect of diverse drugs 

(Kulasingam and Diamandis, 2008). 

 

1.12.3. Predictive Biomarkers 

The function of predictive biomarkers is to determine in which subset of patients with a 

particular disease, drug treatment will be more effective. It is indeed a common clinical 

observation that the same treatment may induce excellent responses in some patients while in 

others it will not have any effect. Ideally, after testing for a panel of predictive biomarkers for 

different treatment regimens, one could administer the most effective drug only to those 

patients who, on the basis of the results from the biomarker analysis, will benefit most likely 

from that specific treatment. Biomarkers can also be used to predict toxicity and be 

particularly valuable for choosing between drugs with the same activity, but different toxicity 

profiles (Kulasingam and Diamandis, 2008).  

 

1.13. Non-invasive Monitoring of Biomarkers 

People at risk for development of cancer or with cancer would benefit tremendously by 

superior methods for determining cancer risk, detecting and localising cancer at its earliest 

stage, profiling for therapeutic decision making and monitoring response to therapy in real 

time. For some of these applications, it will not be known whether a tumour exists or, if it 

does its anatomical site. Thus, there is a need for biomarkers that can be monitored 

noninvasively in readily available bodily fluids (Aebersold et al., 2005). Tumours seep DNA 

and proteins into circulation and they also induce dramatic alterations of the surrounding 

stroma (e.g. alterations in basement membranes, angiogenesis and lymphogenesis) and 

release proteases that digest normal tissues and plasma proteins (Aebersold et al., 2005). 

Therefore, it is rational to expect many biomarkers to be present in blood and other fluids. 

Indeed, several individual plasma proteins (i.e., prostate-specific antigen (PSA), cancer 

antigen 125 (CA125), Carcinoembryonic antigen (CEA), and alpha fetoprotein (AFP) 

antigen) are in clinical use as markers of the presence of a tumour, response to therapy or of 

tumour recurrence (Aebersold et al., 2005). Any proteins that are differentially expressed in 
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cancer tissue when compared to normal tissue, or any proteins that are known to be involved 

in the cancer process, are good sources of candidate biomarkers for cancer. 

 

1.14. Characteristics of an Ideal Biomarker 

An ideal biomarker ought to explain the occurrence of a moderate proportion of the disease in 

the community and must have several qualities in order to be clinically applicable. Firstly, the 

biomarker test must be safe and easy to perform, meaning it must be as non-invasive as 

possible using external body fluids or blood (Fathi et al., 2014). The biomarker test should be 

done at the bedside or as a relatively simple laboratory test using a rapid and reliable 

standardised platform. Secondly, a biomarker should be highly specific for the disease and 

preferably be able to identify subtypes and causes of the disease. Thirdly, a biomarker should 

be sensitive for early detection as possible. Additionally, the sensitivity and specificity of the 

biomarker should be relatively high, thus reducing false-positive and false-negative values 

(Fathi et al., 2014). An ideal cancer biomarker should be measured easily, reliably and cost-

effectively using an assay with high analytical sensitivity and specificity. An ideal biomarker 

should be present in detectable quantities at early or preclinical stages and the quantitative 

levels of the cancer biomarker should reflect tumour burden (Hanash et al., 2008).  

 

1.15. Cancer Biomarkers in Clinical Use 

Cancer biomarkers are present in tumour tissues or serum and they include a wide range of 

molecules such as DNA, mRNA, transcription factors, secreted proteins and cell surface 

receptors. Proteins designated as clinical cancer biomarkers are those offered commercially 

by ARUP or by Mayo Medical Laboratories, also offered for internal use by either NIH or the 

Fred Hutchinson Cancer Research Centre (Hanash et al., 2008). Table 1.2 contains cancer 

biomarkers that are approved by the Food and Drug Administration (FDA) (Sahab et al., 

2008), and table 1.3 shows certain types of biomarkers and their applications.  

 

Table 1.2: FDA Approved Biomarkers 

Cancer Biomarker 

Prostate PSA 
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Breast CA15.3, Her-2/neu, CA27-29 

Ovarian CA125 

Testicular Human corionic 

Thyroid Thyroglobulin 

Pancreas CA19–9 

*Adapted from Sahab et al, 2007 

 

Table 1.3: Different types of Cancer Biomarkers 

Cancer 

Biomarker 

Tumour Application Typical Sample 

AFP Hepatocellular carcinoma, 

Hepatoblastoma 

Diagnostic and 

prognostic 

Blood 

BRCA-1, BRCA-2 Breast cancer Diagnostic  

CA125 Epithelial ovarian carcinoma, 

Fallopian tube cancer 

Diagnostic and 

prognostic 

Blood 

CA 15-3 Breast cancer Diagnostic and 

prognostic 

Blood 

CA 19-9 Pancreatic cancer, Bladder 

cancer 

Diagnostic and 

prognostic 

Blood 

CEA Colorectal cancer Diagnostic and 

prognostic 

Serum 

hCG Germ cell  tumours (ovarian, 

Testicular) 

Diagnostic Serum 

PSA Prostate cancer Diagnostic and 

prognostic 

Blood 

Thyroglobulin Papillary and follicular thyroid 

cancer 

Diagnostic and 

prognostic 

Serum 

*Adapted from Fathi et al., 2014 
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1.16. Mechanisms of Biomarker Elevation in Biological Fluids 

The levels of proteins are physiologically maintained in body fluids and thus, in disease states 

proteins may become elevated as a result of the disease by various mechanisms. These 

include and not limited to gene over-expression, angiogenesis, invasion and destruction of 

tissue architecture and lastly increased protein secretion and shedding (Jarjanazi et al., 2008). 

Firstly, increased quantities of proteins may be a result of increases in the specific gene or 

chromosome copy number (gene amplification), epigenetic modifications such as DNA 

methylation and increased transcriptional activity. The imbalance between gene repressors 

and activators causes an increase in transcriptional activity (Jarjanazi et al., 2008). Secondly, 

invasion of tissues by the tumour may allow release of molecules into the interstitial fluids 

directly, reabsorbed by the lymphatics and subsequently into the blood. In the case of 

epithelial cancer types, proteins must break through the basement membrane of the invading 

tumour before entering the circulation (Jarjanazi et al., 2008). Thirdly, approximately 20-25% 

of proteins are secreted, thus elevated protein levels may occur as a result of aberrant 

secretion or shedding of membrane-bound proteins containing an extracellular domain (ECD) 

(Jarjanazi et al., 2008). 

 

Furthermore, single nucleotide polymorphisms may cause alterations in the signal peptide of 

proteins resulting in atypical secretion patterns. Cancer-associated glycoproteins may be 

released into circulation due to the change in the polarity of the cancer cells. Also, increased 

protease expression may lead to increased ECD cleavage of membrane bound proteins, 

resulting in increased circulating levels of these cleaved products (Jarjanazi et al., 2008). 

There are five major mechanisms by which molecules can be elevated in biological fluids 

during initiation and progression of cancer. Such molecules could serve as effective cancer 

biomarkers. A representation of the different human body fluids that could be used as a 

source of biomarkers for specific types of cancers is shown in table 1.4. The various 

mechanisms of elevation are outlined below.  
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Table 1.4: Human biological fluids: a source for biomarker discovery 

Human biological fluid Cancer type 

Plasma Broad spectrum of diseases 

Serum Broad spectrum of diseases 

Cerebrospinal fluid Brain 

Nipple aspirate fluid Breast 

Breast cyst fluid Breast 

Ductal lavage Breast 

Cervicovaginal fluid Cervical and endometrial 

Stool Colorectal 

Pleural effusion Lung 

Bronchoalveolar lavage Lung 

Saliva Oral 

Ascites fluid Ovarian 

Pancreatic juice Pancreatic 

Seminal plasma Prostate and testicular 

Urine Urological 

*Adapted from Jarjanazi et al., 2008 

 

1.16.1. Gene Overexpression 

The protein encoded by the gene can be expressed in increased quantities as a result of 

increases in gene or chromosome copy number (i.e. gene amplification) or through increased 

transcriptional activity. The latter process could be the result of imbalances between gene 

repressors and gene activators. Epigenetic changes, such as DNA methylation, are also 

known to affect gene expression. On a larger scale, chromosomal translocations can result in 

gene regulation by promoters that are sometimes enhanced by steroid hormones; transposons 

can serve a similar role (Kulasingam and Diamandis, 2008). 
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1.16.2. Increased Protein Secretion and Shedding 

Another way by which molecules can be elevated in biological fluid is aberrant secretion or 

shedding of membrane-bound proteins with an extracellular domain, given that 20-25% of all 

proteins are secreted. Alterations in the signal peptide of proteins as a result of single 

nucleotide polymorphisms can result in atypical secretion patterns (Kulasingam and 

Diamandis, 2008). The release of cancer-associated glycoproteins into circulation is caused 

by change in polarity of cancer cells, this result in elevation of molecules in biological fluids. 

Increased circulating levels could also be caused by increased expression of proteases that 

cleave the ECD portion of membrane proteins. Alfa-fetoprotein is one of the many proteins 

secreted into circulation, it is rapidly released from both normal and cancer cells. Human 

epidermal growth factor receptor 2 (HER2) currently serving as a breast cancer biomarker is 

a classic example of shedding of membrane proteins into bodily fluids (Kulasingam and 

Diamandis, 2008). 

 

1.16.3. Angiogenesis, Invasion and Destruction of Tissue Architecture 

Invasion of tissue by the tumour might allow direct release of molecules into the interstitial 

fluid and subsequent delivery by the lymphatics into the blood. For epithelial cancer types, 

the proteins must break through the basement membrane of the invading tumour before they 

appear in the blood. For instance PSA is abundantly expressed by prostatic columnar 

epithelial cell and secreted into the glandular lumen (Kulasingam and Diamandis, 2008). 

 

1.17. Bioinformatics 

Bioinformatics is the application of computer technology to the management of biological 

information. It is the science of storing, extracting, organizing, analysing, interpreting and 

utilizing information from biological sequences and molecules. Bioinformatics has been 

driven by advances in sequencing of DNA and mapping techniques. Rapid developments 

over the past few decades in genomic, other molecular research technologies and 

developments in information technologies have combined to produce remarkable amounts of 

information related to molecular biology. The main aim of bioinformatics is to increase the 
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understanding of biological processes (Raza, 2010). One of the numerous ways to apply 

bioinformatics methods to cancer, relating to signalling, proliferation, communication and 

specificity of disease metabolisms is through cancer bioinformatics. Another developing 

science is clinical bioinformatics, merging medical informatics, clinical informatics, 

bioinformatics, mathematics, omics science and information technology together. Clinical 

bioinformatics is considered as one of the crucial factors for addressing important clinical 

challenges in early diagnosis, predictive prognosis and effective therapies in cancer patients. 

The development of cancer bioinformatic-specific methodologies or the introduction of new 

and advanced bioinformatics tools is strongly desired to address the specific challenge of 

cancer (Wu et al., 2012). The application, specificity and integration of methodologies, 

computational tools, software and databases which can be utilised to explore the molecular 

mechanisms of cancer and identify and validate novel biomarkers, network biomarkers and 

individualized medicine in cancer should be seriously considered (Wu et al., 2012).   

 

Cancer bioinformatics is anticipated to play a vital role in identifying and validating 

biomarkers specific to clinical phenotypes connected to early diagnosis, measurements to 

monitor the progress of the disease and the response to therapy and predictors for the 

improvement of a patient’s quality of life. The first and critical step in discovering and 

developing new diagnostic and therapies for disease is to understand the interaction between 

bioinformatics and clinical informatics (Wu et al., 2012). Bioinformatics can enable 

clinicians to answer fundamental questions based on individual patient details including 

disease characteristics, laboratory results, proteomic, genomic and metabolic information. 

The progression of biomarker discovery is impossible without bioinformatics, which 

connects individual discovery processes, including experimental design, study execution and 

bioanalytic analysis. Bioinformatics has supported translational research, which has provided 

critical tools for transforming data into medical practise and has prompted biomarker 

breakthroughs and drug development. The development of cheaper, less invasive tests that 

will benefit both clinicians and patients can be permitted by the use of clinically validated 

biomarkers (Suh et al
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1.17.1. Analysis of Gene Expression 

Expression of various genes can be determined by measuring mRNA levels with various 

techniques such as microarrays, expressed cDNA sequence tag (EST) sequencing, serial 

analysis of gene expression (SAGE) tag sequencing, massively parallel signature sequencing 

(MPSS), or various applications of multiplexed in-situ hybridization and so forth (Raza, 

2010). 

 

1.17.2. Analysis of Protein Expression 

There are various ways to measure gene expression including mRNA and protein expression; 

however protein expression is one of the best indicators of actual gene activity since proteins 

are generally final catalysts of cellular activity. Protein microarrays and high throughput mass 

spectrometry (HTMS) can provide a preview of the proteins present in a biological sample. 

Bioinformatics plays a major role in making sense of protein microarray and HT MS data 

(Raza, 2010). 

 

1.18. Sources of Biomarkers  

One of the major concerns in biomarker research is the accessibility of the source of 

biological matrix. Amongst a wide variety of available body fluids, blood is considered the 

most promising and other fluids such as urine, amniotic fluid, synovial fluid, saliva, nipple 

aspirate fluid, and cerebrospinal fluid to mention a few cannot offer a protein profile as 

representative as that of blood and availability of these samples may be restricted. Blood as a 

source of biomarkers is easily accessible; its collection is minimally invasive, low risk and 

cheap (Tambor et al., 2010).  

 

1.18.1. Blood 

Blood is the most commonly used biological fluid for biomarker analysis in clinical practice. 

The advantages of using blood, serum and plasma as a source to mine for biomarkers is that it 

can be obtained through a minimally invasive procedure, it is abundantly available and some 
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constituents of blood reflect diverse pathological states. The prime importance of blood is 

that it is in contact with virtually all cells of the organism and due to specific secretion, 

shedding from the surface or non-specific leakage, tissue-related proteins are released into the 

blood stream. Thus, pathologically affected cells with deregulated proteomes may create a 

specific barcode by releasing disease-related proteins into circulating blood. Furthermore, the 

barcode can also be represented by molecules resulting from the organism’s response to the 

disease (Zhang et al., 2007). 

 

1.18.2. Proximal Fluids and Tissue 

Exploring biological fluids proximal to tumours is an attractive strategy for the identification 

of tumour-secreted proteins. Various types of fluid and effusion offer access to the proteins 

from tumour tissue that may be released into extracellular fluids through secretion or through 

cell and tissue breakdown (Hanash et al., 2008). Proximal fluids are an alternative to blood as 

a source of biomarkers, even though they are not as representative as blood, their expedience 

increases if the nidus of a disease is in close proximity with the particular body fluid. For 

instance, urine may be a prospective source of kidney disease biomarkers or cerebrospinal 

fluid for central nervous system diseases (Quintana et al., 2009). According to Jurisicova et 

al, certain proteins originating from the tissue could subsequently appear and be monitored in 

the bloodstream. The secretion and shedding of tumour proteins into the bloodstream are 

expected to occur as a result of leaky capillary beds, protease cleavage and high rates of cell 

death within the tumour mass. However, these samples are often complex incorporating many 

different types of cells. Often, tumour biopsies may not simply contain tumour tissues but 

also include blood components as well as normal tissue (Jurisicova et al., 2008).  

 

Urine has been used for hundreds of years as a source for biomarker discovery and has 

become an extremely valuable body fluid for the discovery of biomarkers. Urine is able to 

provide important diagnostic information about certain biological disorders and conditions. It 

is a powerful diagnostic fluid utilized in point-of-care devices and biomarkers for various 

cancers have become evident in urine. For instance urinary protein biomarkers for prostate 

cancer and breast cancer are calgranulin B/MRP-14 and ADAM 12 respectively. The use of 

urinary biomarkers to diagnose diseases is a long-standing practice. Proteins that are found to 
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be differentially expressed can be used as biomarkers for the diagnosis and prognosis of the 

disease and may be used as therapeutic targets for future treatment and management of the 

disease (Tantipaiboonwong et al., 2005).   

 

1.19. Methods for Cancer Biomarker Discovery 

The discovery of biomarkers have proven to be one of the most broadly applicable and 

successful means of translating molecular and genomic data into clinical practise. The 

comparisons between healthy and diseased tissues have highlighted the importance of tasks 

such as class discovery (detecting novel subtypes of a disease) and class prediction 

(determining the subtype of a new sample) (Segata et al., 2011). There are various 

advantages of identifying a biomarker or a panel of biomarkers based on the expectation that 

it will lead to the development of a sensitive and reliable assay that is easily readable. That 

capability developed and validated in a platform, leads to the ability to develop an assay that 

is able to detect biomarkers (i.e. proteins) at extremely low concentrations (Larner, 2008).  In 

order to ensure long-term and widespread success the assay platform needs to be as non-

invasive as possible. Following the development of an assay kit, the ultimate goal would be 

to translate this assay into a user friendly, hand-held point-of-care (POC) device which is able 

to monitor this panel of biomarkers in body fluids such as blood or urine with minimal 

invasive procedures (Larner, 2008). Advances in genomics, proteomics, transcriptomics, and 

metabolomics have generated many candidate biomarkers with the potential for diagnostic 

and clinical value. 

 

1.19.1. Genomics 

Genomics is the study of all nucleotide sequences in the genome of an organism.  The widely 

used genomic technologies in cancer research include single nucleotide polymorphism (SNP) 

array, next‑generation sequencing (NGS) technologies, such as Roche 454, ABI SOLiD, 

Illumina Solexa and Helicos. Genomics is applied in cancer biomarker discovery to seek 

specific biomarkers related to genome alterations caused by cancer, for instance DNA 

sequence changes, copy number aberrations, chromosomal rearrangements and epigenetic 

modifications such as DNA methylation. There are various advantages for DNA methylation 
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since it has emerged as highly promising biomarkers offering stability and easy detection 

using PCR or array-based approaches in blood, sputum and urine thus making it suitable for 

non-invasive clinical detection (Zhang et al., 2011). The human leukaemia antigen (HLA) 

was found to be associated with renal cell carcinoma subsequent to cytokine therapy. 

Furthermore, haplotypes are observed in most key genes thus contributing to cancer 

progression by creating allelic imbalances. Srinivas et al, 2001 noted that SNPs can be mostly 

present at the initiation of many epithelial tumours thus causing loss in heterozygosity in 

many tumour suppressor genes. All these serve as possible gene markers for cancer. Wang et 

al used integrative transcriptomics and proteomics for identification of novel liver cancer 

biomarkers. 

 

1.19.2. Transcriptomics 

Transcriptomics is a technique that measures the relative amount of all mRNAs in an 

organism in order to determine the patterns and levels of gene expression. DNA microarray is 

a power technique used in Transcriptomics. Microarray-based gene expression profiling of 

human cancers has generated hundreds of novel diagnostic and prognostic biomarkers as well 

as therapeutic targets (Zhang et al., 2011).  

 

1.19.3. Proteomics 

Proteomics is used to study proteins expressed in a cell, tissue or organism, including all 

protein isoforms and posttranscriptional modifcations. There are two proteomic approaches: 

gel-based and gel-free proteomics. In the gel-based technique, proteins are separated and 

quantified using two-dimensional polyacrylamide gel electrophoresis (2D-Gel), with mass 

spectrometry to identify molecules of interest (Zhang et al., 2011). In the gel-free approach, 

“shotgun" proteomics are employed in the combined use of multidimensional liquid 

chromatography (MDLC) combined with tandem mass spectrometry. The basic strategies 

include digesting proteins into peptides and sequencing them using tandem mass 

spectrometry and identifying the generated sequences using automated database searches. In 

an attempt to identify cancer biomarkers, proteomics has been widely applied to analyse 

serum, saliva, cerebrospinal fluid and nipple-aspirated fluid (Zhang et al., 2011).  
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Recent proteomics studies in pancreatic cancer have identified proteins differentially 

regulated in cancer samples and have led to the discovery of several candidate biomarkers. 

An example of a known biomarker discovered through the use of proteomic technologies is 

CA19-9. This is the only widely used marker for pancreatic cancer and is frequently elevated 

in pancreatic cancer but can also be expressed in other malignancies. Moreover, CA19-9 

levels can be elevated in such benign conditions as acute and chronic pancreatitis, hepatitis, 

and biliary obstruction. The sensitivity and specificity of CA19-9 are 80–90%, limiting its 

value as a screening marker for the general populace (Chen et al., 2005).  

  

1.19.4. Secreted Protein Approach 

A candidate biomarker should be a secreted protein, because secreted proteins have the 

highest probability of entering the circulation. Examining tissues or biological fluids near to 

the tumour site of origin could facilitate identification of candidate molecules for further 

investigation. This approach is supported by the increasing evidence that tumour growth and 

progression is dependent on the malignant potential of the tumour cells as well as on the 

microenvironment surrounding the tumour e.g. stroma, endothelial cells and immune and 

inflammatory cells (Kulasingam and Diamandis, 2008). Some of the widely used cancer 

biomarkers such as CEA, CA125 and HER2 are membrane-bound proteins, which are shed 

into the circulation. However, the identification of secreted proteins in tissues or other 

biological fluids does not necessarily mean that the proteins will be detectable in the sera of 

cancer patients. Serum-based diagnostic tests rely on the stability of the protein, its clearance, 

its association with other serum proteins and the extent of post-translational modifications 

(Kulasingam and Diamandis, 2008).   

 

1.19.5. Cancer Biomarker Family Approach 

The cancer biomarker family approach is based on the premise that if a member of a protein 

family is already an established biomarker, then other members of that family might also be 

good cancer biomarkers. For instance, PSA is a member of the human tissue kallikrein family 

and kallikreins are secreted enzymes with trypsin-like or chymotrypsin-like serine protease 

activity. This enzyme family consists of 15 genes clustered in tandem on chromosome 

19q13.4.63. Currently PSA (KLK3) and KLK2 have important clinical applications as 
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prostate cancer biomarkers. KLK6 has been studied as a novel biomarker for ovarian cancer. 

Similarly, KLK3, KLK5 and KLK14 have been shown to be increased in the serum of 

patients with breast cancer, thereby potentially serving as diagnostic markers (Kulasingam 

and Diamandis, 2008). 

 

1.20. Serum Markers for Cervical Cancer 

The Pap smear test has resulted in a remarkable decline in cervical cancer incidence and 

mortality rates; however it has its imperfections. The Pap smear has an average sensitivity of 

51% to detect CIN and average specificity of 98%. In order to improve these qualitative 

parameters several attempts have been made amongst them the use of liquid-based cytology, 

repetition of Pap smears every 1-3 years and also the addition of HR-HPV detection. 

Regardless of these efforts, the number of false-positive and false-negative results is 

considerably high (Litjens et al., 2013). Increasing the rate of screening among groups of 

women who are at a higher risk of cervical cancer will reduce the incidence and mortality 

associated with this malignancy. Another approach would be to establish appropriate serum 

testing for early diagnosis of cervical cancer. Additional disease markers are thus needed to 

identify women at risk. The most commonly used serum marker for squamous cell cervical 

carcinoma, which makes up 85–90% of all cervical carcinomas, is the squamous cell 

carcinoma antigen (SCC). Elevated levels of serum SCC have been detected in 28–85% of 

cervical squamous cell carcinomas (Ueda et al., 2010).  

 

Table 1.5 outlines cervical cancer diagnostic serum markers in clinical use, with the positive 

rates (elevated serum levels) detected for the indicated serum markers, in cases of squamous 

cell carcinoma (squamous), adenocarcinoma (adeno), or for all histological types. In some 

studies elevated levels of SCC were demonstrated to have a predictive value for prognosis. 

Pre-treatment levels of SCC have been shown to be related to the stage of the disease, size of 

the tumor, depth of the stromal invasion, the lymph-vascular space involvement, and lymph 

node metastasis. The SCC marker has been used also in cervical cancer patients for follow-up 

examination and increased levels were shown to precede the clinical detection of recurrence 

of the disease (Ueda et al., 2010). 
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Table 1.5: Diagnostic serum markers for cervical cancer in clinical use 

Serum markers Positive rate 

SCC Squamous  28–85% 

CYFRA 21-1 Squamous 42–52% 

CA 125 Adeno 27–75% 

                            CA 19-9   
 

Adeno 35–42% 

CEA Adeno 26–48% 

IAP 43–51% 

*Adapted from Ueda et al., 2010 

 

The serum tumour marker CYFRA 21-1 1 (serum fragments of cytokeratin 19) is used for 

squamous cell carcinoma of the uterine cervix. Elevated levels have been detected in 42–52% 

of patients. Pre-treatment levels of CYFRA 21-1 are related to stage of the disease, size of the 

tumor, depth of the stromal invasion, the lymph-vascular space involvement, and lymph node 

metastasis. Elevated levels of CYFRA 21-1 do not have predictive value for prognosis and 

have been reported to be useful in monitoring response to radiotherapy and chemotherapy. It 

is used also in follow-up examination of cervical cancer patients (Ueda et al., 2010). Raised 

serum CA 125 levels are associated with the stage of the cervical disease and are of some 

prognostic significance. Immunosuppressive acidic protein (IAP) marker is elevated in 

cervical carcinomas. IAP levels are linked to disease stage and lymph node metastasis and are 

of predictive value for prognosis (Ueda et al., 2010). The number of candidate biomarkers for 

the diagnosis of cervical cancer is overwhelming. However, the majority of these biomarkers 

have been tested on histological samples only. A lack of sensitivity and specificity has, so far, 

given most of the tumor markers in current use an unsatisfactory predictive value. 
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1.21. Problem Identification  

Development of cervical cancer involves sequential progression from normal cervical 

epithelium to preneoplastic cervical intraepithelial neoplasia and finally invasive cervical 

cancer. It has been shown by increasing evidence that early detection by testing for HR HPV 

and cervical papilloma smears have declined mortality rate associated with cervical cancer. 

However, these methods lack the capability to detect directly the development of cervical 

cancer. Therefore new and less invasive biomarkers are desired for the improvement of 

detection and prognostic outcome of cervical cancer (Ma et al., 2014).  Consequently, there is 

a need for a diagnostic tool that is non-invasive by allowing for the detection of cervical 

cancer in bodily fluids. It should be sensitive enough to detect cancer in its early as well as 

pre-invasive stages and it should be consistently accurate across all ethnicities and ages. 

Additionally, it should be specific for cervical cancer with minimal generation of false 

positives or false negative results (Kumar and Sarin, 2009). The most significant molecular 

signatures implicated in cervical cancer are the HPV oncogenes E6 and E7. Unfortunately, 

they are ambiguous (non-specific) because they have been found to be associated with subset 

of head and neck cancers. If molecular signatures are used to signal the disease, ideally they 

should be present when the individual has cervical cancer and absent when the individual is 

healthy (Mishra and Verma, 2010).  Discovering molecules that are solely expressed in the 

cervix tissue is not always feasible since cancerous cells are renegade normal cells. 

Henceforth, there is ongoing research for molecules differentially expressed or altered in a 

manner that discriminates them from normal cells (Tiffin et al., 2005). Considering the 

importance of the issue, the current study was initiated with the aim to identify potential 

biomarkers that can help in cervical cancer diagnosis, as well as a parallel study to identify 

biomolecules that can detect HPV infections with high specificity as well as sensitivity. 
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CHAPTER 2: Identification of Biomarkers Using an in silico Approach 

2.1. Background 

Advancement in DNA microarray technologies has made it possible for the differential 

expression levels of up to tens of thousands of genes to be effectively and efficiently 

measured under various conditions simultaneously. The information gained from these 

experiments is successfully implemented in gene function prediction, drug development, 

disease diagnosis and patient survival analysis (Raza and Parveen, 2012). Priority for the 

discovery of candidate biomarkers has always been granted to differential quantitative 

proteomic studies; however, candidate biomarkers can also be selected by in silico analysis 

starting with various publicly available databases. Through this route, the search can be 

established for candidate biomarkers that result from experiments and/or knowledge in 

scientific literature and/or the public domain (i.e. websites) (Rodríguez-Pérez et al., 2008).  

 

2.1.1. Data Mining 

Data mining (DM) is extracting or “mining” knowledge from large amounts of data. It is the 

science of discovering new interesting patterns and relationships in huge amounts of data. 

Data mining can defined as the process of discovering significant new correlations, patterns 

and trends by exploring large amounts of data stored in warehouses (databases). Thus Data 

Mining is also referred to as Knowledge Discovery in Databases (KDD). Mining of 

biological data assists in extracting useful knowledge and trends from massive datasets 

gathered in biology and in other life science areas such as medicine (Raza, 2010). There are 

numerous applications of data mining in bioinformatics such as gene discovery, protein 

function domain determination, functional motif detection, diagnosis of diseases, protein 

function inference, disease prognosis, optimization of disease treatment, reconstruction of 

protein and gene interaction networks, protein sub-cellular location prediction and data 

cleansing (Raza, 2010). 
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2.1.2. Microarray Data Mining 

Microarray data mining is the application of Bioinformatic approaches in microarray data 

analysis in order to discover biological entities and pathways that define a phenotype such as 

human diseases. Microarray data mining has proved to be a productive approach to discover 

target genes associated with human diseases and has been increasingly used to detect 

diagnostic or prognostic marker genes. Supervised classification and unsupervised clustering 

are the two basic approaches broadly applied in microarray data mining. In the latter 

approach a group of genes that share coherent expression across a subset of conditions is 

determined using clustering methods such as hierarchical clustering, principal component 

analysis (PCA) and self-organising maps (SOM) (Kapushesky et al., 2011). A supervised 

analysis approach searches for genes that can distinguish between known samples and 

conditions. In a typical example of supervised analysis, the global gene expression profiles of 

disease tissues or fluids will be compared to those in normal tissues or fluids (e.g. cancer vs. 

healthy tissues/fluids) from which a list of target genes or biological pathways that are 

important in a particular disease will be identified (Kapushesky et al., 2011). 

 

2.1.3. Gene Expression Profiling using Microarrays 

Various techniques have been developed for using microarray gene expression data to study 

several aspects of cancer biology, with an accumulation of microarray data suitable for cancer 

target discovery. Many gene expression studies on numerous types of cancers are connected 

with entire datasets that can be downloaded from public repositories specifically dedicated to 

the dissemination of this valuable data. These include websites such as the Stanford 

Microarray Database (http://genome-www5.stanford.edu/MicroArray/SMD), the NCBI’s 

Gene Expression Omnibus repository (http://www.ncbi.nlm.nih.gov/geo), the EBI’s 

ArrayExpress (http://www.ebi.ac.uk/arrayexpress) and the MIT Cancer Genomics Program 

(http://www.broad.mit.edu/cancer/), making these databases valuable resources for target 

gene discovery (Desany and Zhang, 2004). Interesting targets are not solely defined by their 

expression patterns, other criteria such as type of molecule (e.g. kinase), subcellular 

localization (e.g. cell surface) and biological pathway (e.g. angiogenesis) are of importance in 

the decision to follow-up on a potential new target. To this end, resources such as the Gene 

Ontology Project (http://www.geneontology.org), the Kyoto Encyclopaedia of Genes and 
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Genomes Pathways Project (http://www.genome.ad.jp/kegg) attempt to place genes in the 

context of biological function, location and pathway (Desany and Zhang, 2004). 

 

2.1.4. Digital Expression Profiling using EST and SAGE 

Gene expression profiling is not only applicable with microarrays, however, digital 

expression based on either expressed sequence tags (ESTs) or serial analysis of gene 

expression (SAGE) is also complementary to microarrays and can be just as powerful. Both 

EST-derived expression and SAGE are centred on the principle that the frequency of 

sequence tags sampled from a pool of cDNAs is directly proportional to the expression level 

of the corresponding gene (Desany and Zhang, 2004). There are three key advantages of EST 

and SAGE over microarrays; firstly, the simple digital data format in sequence clone counts 

and frequencies enables direct and platform-independent data comparison among different 

data collections from multiple tissues. Secondly, since there is no need for designing any 

DNA chips, no prior knowledge of gene sequence is required and therefore many novel genes 

not covered by microarrays are represented (Desany and Zhang, 2004). 

 

Lastly, since the expression levels are represented by mRNA abundance relative to all 

transcripts and it is thus independent of probe selection and hybridization biases. Through 

these advantages digital expression becomes a more quantitative measurement of gene 

expression than microarrays (Desany and Zhang, 2004). A significant fraction of these ESTs 

are derived from cancer tissues as a result of the large-scale efforts of the Cancer Genome 

Anatomy Project (CGAP; http://www.ncbi.nlm.nih.gov/ncicgap) at the National Cancer 

Institute (NCI) to generate EST libraries from tumour samples. ESTs present an attractive 

resource for differential expression analysis between normal and cancer tissues (Desany and 

Zhang, 2004). 
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2.2. Biological Databases 

In the past decade, genome-wide gene expression assays, the majority using microarrays and 

more recently high throughput sequencing have become common tools in biomedical and 

biological research. Most assays are performed to answer specific questions, for example to 

determine which genes are differentially expressed in a particular disease state in comparison 

to a healthy condition in a tissue or cell type (Kapushesky et al., 2011). The accessibility of 

biological data is of paramount significance for bioinformatics applications and fortunately 

there are innumerable biological databases that gather data and organize it in such a way that 

their content is easily accessible. Biological databases are grouped into three categories 

depending on the type of stored data: (i) primary databases, which contain DNA and protein 

sequences, (ii) secondary databases, derive their information from a primary database and 

(iii) composite database, combine numerous sources from primary databases (Kapushesky et 

al., 2011). 

 

This section of the study aimed at identifying proteins/genes implicated in cervical cancer, by 

extracting gene lists from various databases namely Oncomine, Gene Expression Atlas, and 

TiGER to name a few. The gene lists will be functionally characterised by assigning GO 

terms suitable for gene products that could be detected in bodily fluids. It is objectively 

targeted at prioritising these genes through literature mining using databases such as PubMed, 

iHOP and Google Scholar etc. It not feasible to cover all the available biological databases 

due to their high number, however, major databases of interest will be covered in this thesis. 

 

2.2.1. Gene and Gene Expression Databases 

    2.2.1.1. Gene Expression Atlas  

Gene expression atlas (GEA) (http://www.ebi.ac.uk/gxa/) is a database launched by the 

European Bioinformatics Institute (EBI). This database allows users to query gene expression 

under various biological conditions, including different cell types, developmental stages, 

physiological states, phenotypes and disease states. The database contains information about 

more than 200 000 genes from nine species and almost 4500 biological conditions studied in 
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over 30 000 assays from over 1000 independent studies. GEA can help investigators 

determine which conditions or where in the organism is a gene of interest differentially 

expressed and which genes are differentially expressed in a condition or site for example in a 

disease or in an organ (Kapushesky et al., 2011).  

 

2.2.1.2. Oncomine 

Oncomine (http://www.oncomine.org) is a cancer microarray database and web-based data-

mining platform aimed at facilitating discovery from genome-wide expression analyses. 

Oncomine contains 65 gene expression datasets comprising nearly 48 million gene 

expression measurements from over 4700 microarray experiments. Differential expression 

analyses comparing most major types of cancer with their respective normal tissues as well as 

a variety of cancer subtypes and clinical-based and pathology-based analyses are available for 

exploration. Data can be queried and visualized for a selected gene across all analyses or for 

multiple genes in a selected analysis (Rhodes et al., 2004). Oncomine is designed from a 

collection of microarray studies focusing on published literature using sophisticated data 

normalization and statistical methods to enable comparison of results across multiple 

platforms and experiments (Rhodes et al., 2007). This database also provides tools that 

enable organisation and visualisation to prioritise and identify certain patterns from the 

processed and integrated experimental information collected on literature that has been 

published. The objective of Oncomine is to provide the public with micro-array data that has 

been identified from literature studies that have composed data of gene expression patterns of 

different disease states, cancer stages and experimental populations and conditions with 

statistical support for all genes in the experiment (Rhodes et al., 2004).  

 

Oncomine to date has accumulated over 18 000 cancer gene expression experiments and 

automated analysis has identified the genes, pathways, regulatory networks and functional 

networks that are activated and/ or repressed in human cancers (Rhodes et al., 2007). 

Oncomine produces different types of outputs, i.e. a search using a gene can produce 

different experiments, and one can search by cancer types and disease property. Amongst 

other types of outputs Oncomine also produces list of authors that have done similar studies 

confirming the users query (Rhodes et al., 2004). 
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2.2.1.3. Integrative Oncogenomics  

The Integrative Oncogenomics (intOGen) database (http://www.intogen.org/) is a cancer 

analysis tool database designed to facilitate the integration, analysis, exploration and 

interpretation of oncogenomic data for the identification of genes and groups of genes 

involved in cancer development. This database aims at facilitating the detection of the most 

recurrent alterations that drive tumourigenesis. It collates, annotates and analyses high-

throughput data regarding transcriptional, genomic and mutational changes taking place in 

tumours from different studies annotated with specific cancer types. Currently, intOGen 

contains 118 studies for mRNA expression profiling and 188 studies for genomic alterations, 

covering in total 64 different tumor topographies (Perez-Llamasy et al., 2011).  

 

2.2.1.4. Cancer Genome Anatomy Project 

The Cancer Genome Anatomy Project (CGAP) (http://cgap.nci.nih.gov/) of the National 

Cancer Institute (NCI) is an attractive starting point for cancer-specific gene discovery. 

CGAP is a collaborative network of cancer researchers with a common goal to decipher the 

genetic changes that occur during cancer formation and progression. This database sought to 

determine the gene expression profiles of normal, precancer and cancer cells, which 

ultimately leads to improved detection, diagnosis and treatment of patients. This database 

consists of expression information (mRNA) of thousands of known and novel genes in 

diverse normal and tumour tissues. By monitoring the electronic expression profile of many 

of these sequences making it possible to compile a list of genes that are selectively expressed 

in the cancers (Strausberg, et al., 1997).  

 

2.2.1.5. C-It  

C-It (http://c-It.mpi-bn.mpg.de) is a knowledge database focusing on uncharacterized genes 

to build a starting point for biologists to study genes with unknown functions. The database 

implements literature information from the PubMed database to identify genes that lack 

publication records. Based on the assumption that genes are likely to fulfil important 

functions when their expression is enriched in a certain tissue, C-It uses the tissue expression 

information of UniGene, ESTs profiles to identify tissue-enriched genes (Gellert et al., 2010). 
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C-It combines microarray and SAGE data to give users integrated access to comprehensive 

transcriptional profiles. The database is designed to include additional expression studies, 

which might provide more comprehensive coverage of gene expression patterns and tissue-

enriched splicing isoforms. C-It is thus an excellent starting point to study uncharacterized 

genes (Gellert et al., 2010). 

 

2.2.1.6. Tissue-specific Gene Expression and Regulation 

TiGER (Tissue-specific Gene Expression and Regulation) is a web database that gives 

comprehensive information of human gene specificity using three types of data: the gene 

expression profile (EST), combinational gene regulation (based on transcription factor 

binding sites) and a cis-regulatory module (CRM) (http://bioinfo.wilmer.jhu.edu/tiger/). The 

database is also a good example for comparison of EST data and Microarray data.  At present 

the database contains expression profiles for 19,526 UniGene genes, combinatorial 

regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq 

genes (Liu et al., 2008). For comparison of this research predicted result, only the record 

from gene expression profile will be used. 

 

2.2.1.7. VeryGene  

VeryGene (http://www.verygene.com/) is a web-accessible database for the annotation of 

human tissue-specific genes, with a primary focus on integration with disease association and 

drug targets. A significant effort was made to integrate tissue-specific genes (TSGs) from two 

large-scale data analyses with information on subcellular localization, Gene Ontology, 

Reactome terms, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Mouse 

Genome Informatics (MGI), Mammalian Phenotype, disease association, and drug targeting 

(Yang et al., 2011). To date there are 3960 annotated TSGs derived from 127 normal human 

tissues and cell types, including 5672 gene-disease and 2171 drug-target relationships. This 

database can be used as a discovery tool by generating novel inferences and a potentially 

useful resource for many applications, for instance, screening for therapeutic targets or 

biomarkers by tissue, subcellular localization, or gene-drug relationship or looking for 

functional enrichment of similarly localized genes or genes participating in a common 

pathway/disease or vice versa (Yang et al., 2011). 
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2.2.1.8. Gene Expression Barcode 2.0  

The Gene Expression Barcode 2.0 (GEB) is the first database to provide reliable absolute 

measures of expression for most annotated genes for 131 human and 89 mouse tissue types, 

including diseased tissue (http://barcode.luhs.org/). This is made possible by a novel 

algorithm that leverage information from Gene Expression Omnibus (GEO) and 

ArrayExpress public repositories to build statistical models that permit converting data from a 

single microarray into expressed/unexpressed calls for each gene (McCall et al., 2011). The 

database can create a gene expression barcode for a single microarray that provides 

information about the expression states of all genes. GEB has combined thousands of gene 

expression barcodes to create vast catalogs of transcriptome information spanning hundreds 

of cell types and tens of thousands of genes. These catalogs are easily accessible via a series 

of web tools that allow an investigator to readily access gene and/or cell type specific 

information (McCall et al., 2011). 

 

2.2.1.10. Database for Annotation, Visualization and Integrated Discovery 

DAVID (Database for Annotation, Visualization and Integrated Discovery) is a database that 

has numerous features (http://david.abcc.ncifcrf.gov/). DAVID is a publicly available high-

throughput annotation tool that systematically maps a large number of interesting genes to a 

list of associated Gene Ontology terms and then statistically highlights genes that are over 

enriched for those terms (Ashburner et al., 2000). This increases the likelihood that the 

researcher will identify the biological process most pertinent to the biological phenomena 

under study (Khatri and Draghici, 2008). The annotation tool in DAVID provides several 

gene annotation options including; GenBank, Unigene, LocusLink, RefSeq, Gene Symbol, 

Gene Name, OMIM, Affymetrix description, Summary and Gene Ontology. Each of these 

tools can be used for various reasons or functions, for this study the Gene Ontology (GO) 

annotation tool will be of interest since Gene Ontology is a controlled vocabulary that is 

applied to the functions of genes and proteins. The functional classifications that are used in 

DAVID are those included in the Locus Report provided by NCBI (Dennis et al., 2003). This 

feature will categorize the genes that have been identified into three categories namely, 

Biological Processes, Molecular Function and Cellular Components. The cellular component 

category is of particular importance to this study as the objective is to identify genes that are 
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expressed on the cell surface of the cervix as this will indicate their shedding into biological 

fluid for diagnostic purposes (Huang et al., 2008).  

 

2.2.1.11. Human Protein Atlas  

The Human Protein Atlas (HPA) (http://www.proteinatlas.org/) uses high-resolution images 

to show protein expression profiles in 46 normal tissues, 20 cancer types, and 47 cell lines for 

the human species. The gene-centric manner of HPA enables the comparison of proteomic 

data (antibody) and genomic (microarray) data. The expression intensity is marked as “level 

of antibody staining” with Strong, Moderate, Weak and Negative levels. Only genes marked 

as “Strong” will be considered as specific/selective for the purpose of this project and only 46 

normal human tissues will be used for comparison (Uhlen et al., 2010).  

 

2.2.1.12. Cervical Cancer Gene Database  

The Cervical Cancer gene Database (CCDB, http://crdd.osdd.net/raghava/ccdb) is a manually 

curated catalog of experimentally validated genes that are thought, or are known to be 

involved in the different stages of cervical carcinogenesis. The database have compiled 537 

genes that are linked with cervical cancer causation processes such as methylation, gene 

amplification, mutation, polymorphism and change in expression levels, as evident from 

published literature. Each record contains details related to gene like architecture (exon–

intron structure), location, function, sequences (mRNA/CDS/protein), ontology, interacting 

partners, and homology to other eukaryotic genomes, structure and links to other public 

databases, thus augmenting CCDB with external data (Agarwal et al., 2011). Also, manually 

curated literature references have been provided to support the inclusion of the gene in the 

database and establish its association with cervical cancer. In addition, CCDB provides 

information on microRNA altered in cervical cancer as well as a search facility for querying-

several browse options and an online tool for sequence similarity searches, thereby providing 

researchers with easy access to the latest information on genes involved in cancer of the 

cervix (Agarwal et al., 2011). 

 

 

 

 

 

http://www.proteinatlas.org/


 

 
65 

 

2.3. Text Mining 

Text mining (TM) is the computational discovery of new, previously unknown information 

by automatically extracting information from different written sources. There are two major 

steps involved in text mining, information retrieval (IR) and information extraction (IE). 

Information retrieval finds literature or abstracts associated to a specific topic with the help of 

general search engines or specifically designed IR searching tools such as google scholar, 

GoPubMed, iHOP, PolySearch and GeneWays just to mention a few (Yang et al., 2009).   

There are two search methods in IR: rule-based or knowledge based and statistical or 

machine learning. The first approach uses patterns that rely on basic biological insights, for 

instance <cervical> and <cell surface>, to find literature or abstracts of interest on genes 

implicated in cervical cancer and simultaneously found on the surface of the cell. The second 

approach utilises synthetic parse trees (which can also be rule-based) or classifiers to classify 

the related biomedical literature (Yang et al., 2009). A prerequisite for IE is named entity 

recognition (NER), which relies on tools or methods for automatic term recognition in order 

to extract entities such as genes, proteins, drugs or other molecules. Text mining has been 

broadly applied to identify disease-associated entities (genes/proteins) and to understand their 

roles in diseases. The goal of text mining is to filter knowledge and present information to 

users in a concise and an understandable format (Faro et al., 2012). 

 

2.3.1. Text Mining Databases 

2.3.1.1. Universal Protein Knowledgebase 

Universal Protein Knowledgebase (UniProt) (http://www.uniprot.org) is a database formed 

by multiple sources such as the Swiss-Prot, TrEMBL and PIR protein database activities, in 

order to provide the scientific community with a single, centralized, authoritative resource for 

protein sequences and functional information. The database provides a comprehensive, fully 

classified, richly and accurately annotated protein sequence knowledgebase, with extensive 

cross-references and query interfaces (Apweiler et al., 2004).  
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2.3.1.2. Human Gene Navigator  

Human Gene Navigator (HuGENavigator) (http://www.hugenavigator.net/) is a searchable 

and a continuously updated knowledge base (KB) in human genome epidemiology, including 

information on population prevalence of genetic variants, gene-disease associations, gene-

gene and gene- environment interactions, and evaluation of genetic tests (Yu et al., 2008).  

 

2.3.1.3. GoPubmed   

GoPubMed (www.gopubmed.org) is a web server knowledge-based search engine for 

biomedical texts. The database allows users to explore PubMed search results with the GO 

annotation approach, a hierarchically structured vocabulary for molecular biology. 

GoPubMed provides the following benefits: firstly, it gives an overview of the literature 

using abstracts by categorizing these abstracts according to their GO term annotations and 

thus allowing users to quickly navigate through the abstracts by category (Doms and 

Schroeder, 2005). Secondly, it automatically shows general ontology terms related to the 

original query, which often do not even appear directly in the abstract. Thirdly, it enables 

users to verify its classification since the GO terms are highlighted in the abstracts and as 

each term is labelled with an accuracy percentage. Lastly, exploring PubMed abstracts with 

GoPubMed is useful as it shows definitions of GO terms without the need for further reading 

of additional literature (Doms and Schroeder, 2005). 

 

2.3.1.4. PolySearch 

PolySearch (http://wishart.biology.ualberta.ca/polysearch) is a web accessible tool that is 

designed specifically for extracting and analyzing text-derived relationships between human 

diseases, genes/proteins, mutations, drugs, metabolites, pathways, tissues, organs and sub-

cellular localizations. It also displays links and ranks text, as well as sequence data in 

multiple forms and formats (Cheng et al., 2008). A feature that distinguishes PolySearch 

from other biomedical text mining tools is the fact that it extracts and analyses not only 

PubMed data, but also text data from multiple databases (DrugBank, SwissProt HGMD, 

Entrez SNP, etc.). This integration of current literature text and database ‘factoids’ allows 
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PolySearch to extract and rank information that is not easily found in databases or in journals 

alone (Cheng et al., 2008). PolySearch supports >50 different classes of queries against 

nearly a dozen different types of text, scientific abstract or bioinformatic databases. 

PolySearch also exploits a variety of techniques in text mining and information retrieval to 

identify, highlight and rank informative abstracts, paragraphs or sentences. This database 

consists of seven basic components: (i) a web-based user interface for constructing queries; 

(ii) a collection of internal and external biomedical databases; (iii) a collection of biomedical 

synonyms (custom thesauruses and all entity lists); (iv) a general text search engine for 

extracting data from heterogeneous databases; (v) a schema for selecting, ranking and 

integrating content; (vi) a display tool for displaying and synopsizing results and (vii) a PCR 

primer-designing tool to facilitate SNP and mutation studies (Cheng et al., 2008). 

 

2.3.1.5. Information Hyperlinked over Proteins 

Information Hyperlinked over Proteins (iHOP) (http://www.ihop-net.org/ ) is an online text-

mining service that provides a gene-guided network to access PubMed abstracts. The concept 

underlying iHOP is that by using genes and proteins as hyperlinks between sentences and 

abstracts, the information in PubMed can be converted into one navigable resource 

(Hoffmann and Valencia, 2004). Navigating across interrelated sentences within this network 

rather than the use of conventional keyword searches allows for stepwise and controlled 

acquisition of information. Moreover, this literature network can be superimposed onto 

experimental interaction data to facilitate the simultaneous analysis of novel and existing 

knowledge. The network presented in iHOP contains 28.4 million sentences and 110,000 

genes from over 2,700 organisms, including the model organisms Homo sapiens, and many 

more (Hoffmann and Valencia, 2004).  

Aims of this chapter 

1) Explore several databases (as outlined above) for the extraction of potential 

biomarkers for the early diagnosis of cervical cancer using in silico methods 

2) Refinement of the compiled gene list obtained from method 1 using literature mining 

tools. 
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Figure 2.1: Outline of the in silico methodology for biomarker discovery 
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2.4.1. Extraction of Candidate Biomarkers 

The focus of this research analysis approach was to retrieve and filter genes differentially 

expressed in cervical cancer compared to normal tissues, to a manageable gene list. A 

bioinformatics pipeline was used to interrogate different databases and in this study eight 

databases were mined to identify proteins highly specific to or strongly expressed in the 

cervix tissue and genes differentially expressed in cervical cancer. The pipeline was divided 

into three sections: i) Data-mining of publicly available databases, ii) Literature- mining, and 

iii) Gene enrichment analysis (Figure 2.1). 

 

 2.4.1.1. Oncomine Database  

The first set of genes was searched on Oncomine with the following input query: 1. Analysis 

type: Cancer vs. normal, cervical cancer vs normal, differential analysis and outlier analysis. 

2. Cancer type: Cervical cancer. 3. Data type: mRNA and 4. Pathology subtype: Stage and 

grade type. The second set of genes was searched with the above mentioned criteria, 

however, with the addition of Human Papillomavirus (HPV) infection status selected under 

molecular subtype. 

 

2.4.1.2. Gene Expression Atlas Database  

The GEA database was searched for genes differentially expressed in cervical cancer using 

the following parameters, <all genes >< up/down in ><homosapiens>< cervical cancer. The 

following GO terms were also used as a search criteria, cell surface, membrane, integral to 

membrane and plasma membrane to filter the up/down regulated genes identified. 

 

2.4.1.3. intOGen Database  

The Integrative Oncogenomics database was queried using the search criteria, all experiments 

were selected in the browser. The tumor type cervix uteri C53 (Adenocarcinoma and 

squamous cell carcinoma) was chosen and genes/modules was left as default “all”. 
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2.4.1.4. CGAP Database  

The Cancer Genome Characterization Initiative database was searched using the gene finder 

function, using the default setting: tissue, function, location or keyword. The cervix tissue 

type was selected as Homo sapiens.  

 

2.4.1.5. C-It Database 

The database was searched for proteins enriched in cervix tissue (human data only). 

Literature information search parameters of fewer than five publications in PubMed and 

fewer than three publications with the Medical Subject Headings (MeSH) term of the 

searched tissue were used.   

 

2.4.1.6. TIGER Database 

The Tissue-specific Gene Expression and Regulation (TiGER) database was searched for 

proteins preferentially expressed on the cervix tissue based on ESTs by using “Tissue View”.  

 

2.4.1.7. VeryGene Database 

The database was searched for the cervix tissue using “Tissue View” for tissue-selective 

proteins.  

 

2.4.1.8. Gene Expression Barcode 2.0 Database 

Gene expression barcode was searched for genes expressed in >95% samples of cervical 

cancer tissue by selecting gene expression. The consensus input type was chosen, using the 

affymetrix human genome U 133A (HGU 133a). 
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2.4.2. Analysis of Gene Lists 

A command line script using Ubuntu software was used to eliminate duplicates per list of 

genes from each of the databases and  to combine the list of genes together using the 

following command line (cat FILE NAMES |sort -u > OUTPUT FILE NAME) in Ubuntu. A 

total of 27 datasets were combined and thereafter, the genes were submitted to DAVID for the 

same enrichment analyses. 

 

2.4.3. Functional Characterisation using DAVID 

The candidate gene lists was then submitted to The Database for Visualization and Integrated 

Discovery (DAVID) Version 6.7 for gene enrichment through the following steps.  

 Step 1: Gene List Submission: start analysis was selected and a gene list was uploaded. 

Gene identifiers were selected as “official_gene_symbol”. In the list type “gene list” was 

chosen and the gene list was submitted. Homo sapiens were the selected as the organism from 

which the protein products were derived. 

 

 Step 2: Analyze gene list using DAVID tools: Functional annotation clustering was selected 

from the functional annotation tools. The classification stringency was set to high or left at 

default “medium”. On the “options” setting the following were selected, display, fold change 

and Bonferroni analysis. Using the same setting “option” re-run was chosen. 

 

Step 3: Choose annotation clusters: different clusters were searched by identifying the 

following GO terms: cell surface, secreted, secretory granules, extracellular matrix, 

extracellular space and extracellular membrane. The newly derived list of genes were 

exported and saved. Gene Ontology was selected and the cellular component with the highest 

percentage (100%) was chosen. The classification data was displayed with a count of the 

number of genes annotated to be “cell surface, secretory granules, extracellular matrix and 

extracellular space” as the output. When selected, the genes were displayed with gene 

identifier, gene name and class of species. 
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2.4.4. Comparison to Reference Lists 

After gene enrichment in DAVID, the list of genes were cross-referenced against the genes 

from HPA and CCDB, to ascertain the ability of Bioinformatics to correctly identify genes 

that were implicated in cancer through experimental studies and to gauge its 

reproducibility/variability. CCDB was mined for the extraction of a reference gene list 

containing documented experimentally verified cervical cancer genes. Genes were 

individually entered into HPA to search for a moderate to strong association with cervical 

cancer expression. Genes were also cross-referenced with each other to identify overlapping 

genes. No genes were eliminated at this point, but all candidate genes were further subjected 

to literature mining to ascertain if genes were already experimentally verified as cervical 

cancer genes, despite not being found in the reference gene lists. 

 

2.4.5. Literature Review of the Candidate Entities 

A text mining approach was used to search each gene from the output obtained from DAVID 

against literature. Uniprot, PolySearch, Google Scholar, HuGENavigator, GoPubmed and 

iHOP were used to search for abstracts or journal articles using the “gene symbols” the 

Boolean term “AND” and terms that imply neoplastic cervical cancer tissue e.g. <cervical 

cancer> AND <gene name>. A search was then done through the relevant literature for any 

information or data that links the gene as a biomarker for cervical cancer. All genes found to 

have been validated or inferred as biomarkers for cervical cancer were recorded and these 

genes will be eliminated from further analysis. Subsequent to these mining approaches, a 

final list of putative genes was compiled and the genes were subjected to tissue specificity 

analysis.  
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2.5. Results and Discussion 

2.5.1. Identification of Eligible Cancer Biomarkers 

The approach presented here was designed to exploit several cancer databases to identify 

genes encoding proteins with differential expression that could be secreted into bodily fluids 

and subsequently be used as potential biomarkers for the early diagnosis of cervical cancer.  

The methods that were used are complementary to the extent that they query fundamentally 

different aspects of biological knowledge stored within these databases. A series of data 

mining steps was used to increase the stringency such that the huge number of entities 

(genes/proteins) present in various databases and in literature was reduced to a manageable 

size. At each step, the criteria, choice of tool, and databases were selected to reduce the list of 

identified hits. From the Oncomine platform, data mining of 5 microarray datasets: (i) 

Bachtiary cervix, (ii) Biewenga cervix, (iii) Bittner cervix, (iii) Pyeon Multi-Cancer and (iv) 

Scotto cervix for genes differentially expressed in cervical cancer compared with their 

expression in normal tissues led to the identification of a list of 16023 differentially expressed 

gene profiles. The output was five seed lists which varied from 1%, 5% to 10% fold 

expression derived from each dataset. This means that from the five datasets, a total of 15 

seed lists were presented as an output.  

 

The second set of genes consisted of three datasets, Bittner Cervix, Scotto Cervix and Pyeon 

Multi-cancer with a total of 49674 genes as outlined in section 2.4.1.1. The results was 3 seed 

lists which varied from 1%, 5% to 10% fold expression derived from each dataset.  This 

means that from the three datasets, a total of 9 seed lists were presented as an output.  Each 

dataset is titled according to the first author, which is used as a classifier. The selected 

datasets were categorised based on the different folds/levels of gene expression as compared 

to the normal as per condition of each study. Table 2.1 depicts a summary of all genes that 

were extracted from all datasets presented as percentage fold (1%, 5% and 10%) irrespective 

from the study it was obtained. Each dataset represent a study that has been conducted, under 

certain experimental conditions and each gene list extracted from each dataset represents the 

outcome of that study. It was therefore pivotal that the sampling strategies and conditions at 

which these studies were conducted were well understood. All the seed lists in Oncomine 
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produced 24185 genes, after combining all the seed lists and eliminating redundant genes, a 

total of 16023 genes remained. 

 

Table 2.1: Summary of the genes extracted from Oncomine 

Fold Expression % No. of genes Extracted 

1% 

5% 

10% 

10483 

53548 

99316 

 

Conversely GEA a general microarray database generated an output based on all data 

available to support the query as outlined in section 2.4.1.2. This database can be queried for 

datasets from functional genomic experiments using the meta-analysis of microarray and high 

throughput sequencing data. Two sets of gene lists were extracted from GEA, first dataset 

consisting of all genes up/downregulated in cervical cancer and the second set included genes 

queried with various GO terms such as cell surface etc. (refer to section 2.4.1.2). This was 

done to increase the sample size and also include genes that may not appear in the 

background. The first set produced 13431 genes using the query term up/downregulated in 

cervical cancer, and set 2 resulted in 11996 genes using GO terms with a summary of the 

number of genes extracted from the various GO terms shown in table 2.2. In summary the 

total number of genes mined from GEA were 6696 following curation.  

 

Table 2.2: Summary of gene set 2 mined from GEA based on GO terms 

GO Terms No. of genes extracted 

Cell surface 2288 

Membrane 5116 

Integral to membrane 2288 
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Plasma membrane 2304 

 

For clarification the set of genes extrapolated from GEA were not particularly from one study 

but from multiple experiments combined in a global repository. Thus, one gene list from 

GEA is extrapolated from multiple experiments. IntOGen allows for the extraction of genes 

involved in expression changes and copy number variations across multiple tumours and 

cancer types. This database generated 22686 genes. However, the actual number of genes 

extracted using this database was 836 genes after duplicates were removed. VeryGene, a 

curated database containing tissue specific enriched genes identified 20 tissue-selective 

proteins. C-It focuses on tissue-enriched gene variants and differentially expressed genes that 

are still uncharacterised and identified 1075 tissue-enriched proteins after filtering of genes 

according to the set parameters and the TiGER database identified 209 proteins preferentially 

expressed in tissue. The gene expression barcode database produced 836 genes found in 

cervical cancer and the CGAP database identified 8216 genes after removal of common 

genes. A summary of all the genes extracted from the various databases as well as the number 

of common genes that were removed in each database are indicated in table 2.3 with the total 

number of genes identified. 

 

Table 2.3: Total number of genes identified from mining gene and protein databases 

Databases No. of genes 

identified 

 No. of genes 

duplicated 

No. of unique 

genes 

Oncomine 24185 8162 16023 

Gene Expression Atlas 18458 11762 6696 

intOGen 22686 21850 836 

Gene Expression 

barcode 

1099 263 836 

CGAP  8337 121 8216 

C-It 1601 526 1075 

TIGER 281 72 209 

VeryGene 20 0 20 
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Total  number of  

combined genes 

Total number  of 

eliminated genes 

Final number of 

genes after curation 

34033 5398 28190 

 

2.5.2. Gene Enrichment Analysis 

A total of 28190 genes were uploaded to DAVID for enrichment bioinformatics analysis and 

the output was 113 genes. The enrichment analyses of GO terms including biological process, 

cellular component and molecular function were performed on the 113 genes by using the 

functional clustering annotation tools as highlighted by figure 2.2, 2.3 and 2.4 respectively. 

The default options with medium/high classification stringency were used, and finally cluster 

names were extracted from the most biologically relevant GO term assigned to that cluster. 

 

 

 

 



 

 

Figure 2.2: Functional Characterisation of genes in DAVID based on their biological process using GO analysis.  

 

 

 

 



 

 

 Figure 2.3: Functional Characterisation of genes in DAVID based on their cellular component using GO analysis. 

 

 

 

 

 



 

Figure 2.4: Functional Characterisation of genes in DAVID based on their molecular function using GO analysis 
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2.5.3. Literature Review of the Candidate Entities 

Subsequent to functional characterisation in DAVID, the list of candidates were further 

investigated in order to select a subset of higher priority genes that will be further validated as 

putative biomarkers for cervical cancer. Further analysis and assessment of the resulting hits 

were performed retrospectively using various databases such as Uniprot, PolySearch, Google 

Scholar, HuGENavigator, GoPubmed and iHOP. To find links and cited articles to 

genes/proteins and identify the particular gene product if the gene name or synonym is 

known. The entities obtained were checked by carefully reading the associated literature 

references or original publications. This subset of candidates included genes that have not yet 

been inferred as putative biomarkers in cervical cancer or have not yet been experimentally 

validated to be connected to cervical cancer. From the 28190 genes that were investigated in 

DAVID, only 113 genes matched the stringent criteria imposed in this work and these were 

further investigated using literature mining. The genes were searched in literature using the 

selected GO terms, a total of 36 genes were identified and 7 genes were found to be common 

amongst the list and these were eliminated from the study as highlighted in table 2.4. Thus 

after review of literature, only 29 candidate genes remained and these were not 

experimentally linked to cervical cancer to date. As depicted in table 2.4, a number of these 

genes had been implicated in cervical cancer through various experimental studies.  

 

Table 2.4: Gene Categorisation based on literature 

Go Terms No. of genes identified No. of genes experimentally 

validated 

Cell surface 14 2 

Secretory granules 7 1 

Extracellular space 7 3 

Extracellular matrix 8 1 

 

Biomedical literature in this research study ensured that extensive information was 

investigated prior making conclusions. The literature search confirmed the database mining 

route impressing confidence in the candidate genes, thus indicating that out of more than 28 

000 genes extracted from databases, the study managed to prioritise these genes and also 
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obtained a subset of genes that have been experimentally validated to be implicated in 

cervical carcinogenesis. After literature studies, a total of 29 genes remained as candidate, 

after experimentally validated genes were eliminated and only those genes showing no 

relation to cervical cancer were deemed as novel biomarkers.  

 

2.6. Discussion and Conclusion 

Cervical cancer continues to represent a major health problem for women from developing 

countries. Cervical cancer lethality occurs because most patients are first diagnosed in 

advanced stages. Even if early stages are successfully treated, advanced cervical cancer 

represents a major problem due to increased rates of recurrence and distant metastasis 

(Balacescu et al., 2014). Cancer is an intricate disease whereby many proteins, genes and 

molecular processes are involved. Genes and proteins do not work independently, but are 

organised into co-regulated units that perform a common biological function. The alteration 

of these functional elements leads to the development of a particular cancer phenotype and 

subsequently their study cannot be undertaken from the classical one-gene approach (Sanz-

Pamplona et al., 2012). A systems biology approach, the analysis of the molecular 

relationship between the implicated genes and proteins as a whole, is required to understand 

the disease phenotype. Research on biomarkers will help in understanding diseases at the 

initial stages of development. Therefore the introduction of bioinformatics has improved 

ways in which new hypothesis is generated for knowledge discovery (Sanz-Pamplona et al., 

2012). 

 

In this chapter several in silico methodologies were employed to interrogate microarray 

databases in order to unearth the affluence of information that goes unnoticed in databases. 

Various bioinformatics tools were utilised to excerpt a list of genes based on input queries. 

The databases chosen for this study were based on several factors (i) the number of times 

they are curated (verify the accuracy of the information held by these databases) (ii) how 

often they are referenced as reliable source of data for biomarker discovery studies. The data 

that was retrieved from all databases was effectively refined to ascertain that each step is 

treated as an independent validation step thus enhancing the signal-to-noise ratio (Baron et al, 

2011). This research aimed at identifying tissue-specific biomarkers by making use of 
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publicly available gene and protein databases. According to Prassas et al (2012), mining 

protein expression databases for the identification of candidate biomarkers seems more 

relevant since serological biomarkers are protein-based. Using gene expression databases also 

has limitation since the considerable variation between mRNA and protein expression and 

gene expression does not account for post-translational modification events. Thus, mining 

both gene and protein expression databases minimizes the limitations of each platform 

(Prassas et al., 2012). The databases were searched for genes and proteins highly specific to 

or strongly expressed in cervical tissue. The search criterion was designed to accommodate 

the design of the databases. In the gene expression databases the criteria used were set for 

maximum stringency for candidate identification to identify a manageable number of 

candidates. Through the methods that were employed in this study, ~ 361122 genes and 1902 

proteins highly specific to or strongly expressed in the cervical tissue and cervical cancer 

were filtered from the microarray databases and further refined to 113 genes using DAVID.  

 

As with the candidate lists, most array or sequencing databases generate large sets of gene 

lists that may contain thousands of candidate genes (Huang et al., 2008). The integration and 

interpretation of these heterogeneous data in order to draw meaningful scientific inference 

from can be a challenging task (Huang et al., 2008). Furthermore, it can be difficult to 

evaluate the biasedness of results and whether gene lists from multiple databases are 

reproducible or whether they generate overlapping genes. Enrichment analysis allows one to 

take a data-driven approach to framing results in a functional context (Huang et al., 2008). 

Functional annotation allows for the clustering of putative genes according to their cellular 

component, molecular function and biological process by using sequence similarity 

techniques. Gene Ontology provides ontology of a large number of terms which are 

representative of the gene product properties or the functions of the gene products. The Gene 

Ontology covers three domains; Cellular component, the parts of the cell or its environment; 

Molecular function, the activities of the gene product at the molecular level; and Biological 

processes, molecular events pertaining to function of integrated living units. Most of the 

genes in a genome are annotated with the ontology terms relevant to the gene products. Each 

gene is associated with many ontology terms and each term is associated with more than one 

gene. Genes that are similar in their functioning, share many common ontology terms. A GO 

Enrichment analysis on a set of genes analyses the GO terms associated with the set and 
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returns the enriched terms in the order of decreasing significance as described in section 

2.4.3. In this study, Gene ontology cellular localization annotations of ‘extracellular space’, 

‘cell surface ’, ‘secretory granules’ and ‘extracellular matrix’ (Figure 2.3) were selected to 

identify a protein as secreted or shed. Many groups in biomarker discovery use Gene 

Ontology protein cellular localisation annotations of ‘extracellular space’, ‘plasma 

membrane’ and so forth to identify a protein as secreted or shed, hence, this study was able to 

identify such biomarker candidates thus making this research valuable and this pipeline can 

be integrated in other biomarker discovery studies for other types of cancer. Proteins 

interacting with cancer-related proteins have a higher probability of being related with the 

cancer process than non-interacting proteins. Hence, the study of those proteins may be an 

efficient way to discover novel cancer genes and cancer biomarkers. The significance is given 

by the p-values, which is the probability that of a term occurring in the set by chance or a true 

hit. If the GO enrichment analysis on a particular set of genes returns many terms with very 

high significance i.e. very low p-values, then that set of genes is highly similar in its 

properties. When the clustering of the genes was analysed (which combined totalled 113), 

most of the genes were projected to be enriched for cell surface receptor-linked signal 

transduction as their primary biological process as shown in figure 2.2. The results for 

molecular function categorization were consistent with the biological process assigned to 

these genes, whereby the great majority of the genes were predicted to participate in signal 

transduction, 17 of the gene variants were allocated to receptor binding (Figure 2.4).  

 

Aberrations in signal transduction have been linked to the characteristics of cancer such as 

increased proliferation and inhibition of apoptosis (Rowinsky, 2003), the latter being one of 

the categories the genes was allocated to by DAVID, while 12 of the genes were predicted to 

function in secretion (Figure 2.2). The majority of the genes were predicted to be intrinsic 

and integral to membrane and 16 of the genes were enriched for the cell surface (Figure 2.3). 

This is promising since the targeted biomarkers for this study were those that are easily 

detectable in bodily fluids. Many of the functional categories such as apoptosis, signalling 

and focal adhesion were compatible with similar Bioinformatics cancer studies, such as the 

analyses carried out by Romaschin et al (2009) and Zang et al (2011). The dissimilarities in 

this study compared to others can be attributed to this study’s focusing on retrieving secreted 

cancer genes as opposed to any significant genes in cervical cancer. Determining the 
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subcellular localization of a protein can provide insights into how it functions and the 

pathways that are involved, as well as highlighting whether the protein could either provide a 

therapeutic target or act as a biomarker. In many biomarker studies secreted proteins are 

targeted because they are more likely to be present in body fluids and eventually measured by 

non-invasive assays (Klee and Sosa, 2007). After extensive literature studies, 29 genes 

remained as candidate biomarkers. Inclusion parameters were well defined for each selection 

method so as to attain a list of candidate genes that were differentially expressed in cervical 

cancer and can be located in biological fluids. Secreted or shed proteins have the highest 

chance of entering the circulation and being detected in the serum (Prassas et al., 2012). 
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CHAPTER 3: In Silico Expression Analysis of Putative Biomarkers 

3.1. Introduction 

In order to extract most key features from the data, methods for visualization and analysis of 

large-scale data are of utmost importance (Hastie et al., 2009). Enrichment analysis allow for 

the biological interpretation of large gene and protein lists by investigation of the functional 

categories present in the data. Tools that allow construction of biological networks are 

utilised for visualizing relationships such as protein-protein interactions, and are valuable for 

extracting meaningful information from extensive data sets (Hastie et al., 2009). The large 

amounts of data generated by high-throughput strategies in genomics and proteomics often 

results in long lists of interesting genes, which are challenging to interpret. The biological 

knowledge stored in the vast number of databases described can be exploited to allow for a 

systematic functional analysis of these lists to summarize the most relevant properties. 

Bioinformatic tools for enrichment analysis have been successful in adding valuable 

information to large-scale biological studies (Huang et al., 2009). 

 

Biological processes and functions within a cell are seldom dependent on a single gene, 

however most often made up of a group of genes and this is the principal basis behind 

enrichment analysis. Co-functioning genes are likely to be selected together if a certain 

process or function is atypical in a biological study (Huang et al., 2009).  Once a certain 

functional term has been associated with a set of genes, a test has to be performed to 

determine if the enrichment based on the proportion of associated genes is significantly 

different than what would be expected by chance alone. Thus, an enrichment of a gene set 

uses a statistical model such as binomial, hyper-geometric or a chisquare or Fisher’s exact 

test for equality of proportions to calculate overrepresented or enriched terms, where a p-

value examines the significance of the enrichment (Draghici et al., 2003). To determine 

whether a functional term is overrepresented in a set of genes or not, a reference or 

background list is used for comparison and for determination of the degree of enrichment. A 

reference set can for example consist of the entire genome of the species being analyzed, or 

the complete set of genes with the potential of being part of the annotation category in 

question. When many categories are considered and hence a large number of tests are 

performed, a multiple-testing correction such as False Discovery Rate, Bonferroni or 
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Benjamini-Hochberg can be useful to correct for false rejections of the null hypothesis. Some 

examples of bioinformatic enrichment analysis tools include GoMiner, Onto-Express, GSEA 

and DAVID (Huang et al., 2009). Gene ontology (GO) terms have been the most primarily 

used annotation data to date, however, recently several of the new or updated tools have 

started to comprise a larger assortment of underlying information, such as data on KEGG 

pathways, Online Mendelian Inheritance in Man (OMIM) disease associations, protein 

domains and gene-expression result in their annotation databases (Huang et al., 2009). The 

differences between the many available methods lie mainly in their supported gene 

identifiers, choice of statistical model, reference data, annotation data, mapping between 

databases and many other aspects that can have a great impact on the results. Therefore it is 

highly important to be aware of the strengths and drawbacks of each method when deciding 

which one to use (Huang et al., 2009). 

 

3.1.1. GeneHub-GEPIS 

GeneHub-GEPIS (http://www.gepis.org/./) is a web application that performs digital 

expression analysis on human and mouse tissues based on an integrated gene database, using 

aggregated EST library information and EST counts. The application calculates the 

normalized gene expression levels across a large panel of normal and tumor tissues, thus 

providing rapid expression profiling for a given gene (Zhang et al., 2007). The backend 

GeneHub component of the application contains pre-defined gene structures derived from 

mRNA transcript sequences from major databases and includes extensive cross references for 

commonly used gene identifiers. ESTs are then linked to genes based on their precise 

genomic locations as determined by Genomic Mapping and Alignment Program (GMAP). In 

addition, the gene-centric design makes it possible to add several important features, 

including text-searching capabilities, the ability to accept diverse input values, expression 

analysis for microRNAs, basic gene annotation, batch analysis, and linkage between mouse 

and human genes (Zhang et al., 2007).  
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3.1.2. Genecards 

Genecards (http://www.genecards.org/) is an integrated database of human genes that 

provides concise genome related information on all known and predicted human genes. It 

extracts and integrates a carefully selected subset of gene related transcriptomics, genetic, 

proteomic, functional and disease information, from dozens of relevant sources. The 

information is automatically mined and integrated from a variety of data sources, resulting in 

a web based card for each of the 7000 human genes that currently have an approved gene 

symbol published by the  HUGO/ Genome Database (GDB) nomenclature committee (Stelzer 

et al., 2011). The aim of the database is to provide immediate current knowledge on a given 

gene. Source databases, mined to compile information stored by GeneCards, include SWISS-

PROT, OMIM, Gene Atlas and GDB. This composite database aims to integrate information 

fragments, scattered over a variety of specialised databases into a coherent picture. Genecards 

is a freely accessible web resource that offers one hypertext card for each of the genes in the 

database and the recent version features both novel infrastructure and an improved search 

engine (Stelzer et al., 2011).  

 

3.1.3. GeneMania 

GeneMania (http://pages.genemania.org/) uses a heuristic algorithm derived from ridge 

regression to predict the function of a set of input genes. It functions by finding directly 

interrelated/interacting genes and uses functional association from multiple genomics and 

proteomics network data to link genes/proteins of interest in real-time (Mostafavi et al., 

2008). Two genes are linked if their expression levels are similar across a specific condition 

in a gene expression study. The data is collected from publications within Gene Expression 

Omnibus (Mostafavi et al., 2008). 

 

3.1.4. STRING 

The database STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) aims to 

provide comprehensive, yet quality controlled collection of protein-protein associations for a 

large number of organisms (http://string-db.org/). The associations are derived from high 

throughput experimental data, from the mining of databases and literature, and from 
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predictions based on genomic context analysis (Von Mering et al., 2005). STRING integrates 

and ranks these associations by benchmarking them against a common reference set, and 

presents evidence in a consistent and intuitive web interface. Importantly, the associations are 

extended beyond the organism in which they were originally described, by automatic transfer 

to orthologous protein pairs in other organisms, where applicable. STRING currently holds 

730 000 proteins in 180 fully sequenced organisms (Von Mering et al., 2005).  STRING 

specializes in three ways: (i) it provides uniquely comprehensive coverage, with >1000 

organisms, 5 million proteins and >200 million interactions stored; (ii) it is one of very few 

sites to hold experimental, predicted and transferred interactions, together with interactions 

obtained through text mining; and (iii) it includes a wealth of accessory information, such as 

protein domains and protein structures, improving its day-to-day value for users 

(Franceschini et al., 2013) 

 

3.2. Network Analysis 

The majority of processes in the cell are dependent on various proteins working together in 

signalling cascades or larger complexes and co-operating inside organelles. The interaction 

partners of a protein can contribute to defining its function and it is known that co-expressed 

genes are more likely to interact and be involved in the same biological pathway than genes 

that are not expressed at the same time (Bader et al., 2003). Thus protein interactions and 

other relationships between biological molecules are important areas to study. Such 

interactions are often visualised by networks or more formally two-dimensional graphs 

consisting of vertices (nodes) connected pair wise by edges. The connections can express 

various forms of relationships such as proteins known to interact with one another or be co-

expressed sharing a domain belonging to the same protein family or being evolutionary 

related (Pavlopoulos et al., 2008). 
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3.3. Methods and Materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Representation of the in silico enrichment analysis 
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3.3.1. Verification of In Silico Expression Profiles 

The TIGER and GeneHub-GEPIS databases were used to manually verify the expression 

profiles of the proteins and genes identified as “potentially” being secreted for strength and 

specificity of expression (figure 3.1). These databases were chosen above others as they offer 

a gene expression chart based on ESTs. These databases were also used as a source of 

elimination. The rationale was to determine whether the genes were expressed in other types 

of female cancers apart from cervical cancer and whether the proteins were expressed in other 

female tissues besides the cervix. The female cancers/tissues chosen were: cervix, breast, 

ovary, uterus, colon, lung and skin. For each tissue, proteins with gene expression profiles 

showing similar values of expression or high expression in more than the selected tissue were 

eliminated. If the gene or protein was absent in the cervix but was present in the other tissues, 

that protein or gene was eliminated from further study. If high expression was observed in the 

tissue of interest (cervix), but not in the other tissues, the protein or gene was not eliminated.  

If a protein was observed to be highly expressed in another tissue distinct from the criterion 

set for elimination, that particular protein was not eliminated. For data accuracy the lack of 

specificity had to be observed in both databases before non-specific genes were officially 

eliminated. The TIGER database was used to manually check for the expression of each gene 

individually across different cancer types by using “Gene View” and GeneHub-GEPIS 

database: was used to search each gene individually by using “Search by Accession/Gene 

Symbol”. In addition to accounting for tissue specificity, a co-expression analysis was carried 

out.  

 

3.3.2. Co-Expression Analysis 

To ascertain if these genes shared a similar expression pattern, a co-expression analysis was 

performed using GeneMania (http://www.genemania.org/). The genes of interest (GOI) were 

searched for co-expression in Homo sapiens.  

 

3.3.3. Transcription Factor Analysis 

To confirm if the putative genes had any connection to cancer through their regulatory 

network, a transcription factor (TF) analyses was carried out. All possible TFs regulating a 
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specific gene were extracted from Genecards and DAVID and validated for an association 

with cervical cancer development using literature mining. The TFs predicted to be associated 

with 80% or more genes were carried forward for further analysis. 

 

3.3.4. STRING Analysis 

An analysis in STRING 9.0 (http://string-db.org/) was carried out with the intention to view 

the most common pathway via Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(http://www.genome.jp/kegg/pathway.html). By performing the analysis in STRING via 

KEGG it was easier to observe the actual number of GOI enriched for a specific pathway. 

STRING also grouped the genes of interest according to their biological process, molecular 

function and cellular component via their protein-protein interaction network. 
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3.4. Results and Discussion 

3.4.1. In silico Tissue Specificity Expression Analysis 

The 29 candidate genes were subjected to a cross cancer analysis in TiGER and GeneHub-

GEPIS according to their specificity for cervix tissue. The figures 3.2-3.11 provide a 

graphical display of the individual candidate genes. In TiGER, the profile expression level is 

normalized with tissue-library size. Each value for a gene in a tissue is a ratio of observed 

ESTs to the expected one in that particular tissue. The expected number of ESTs is the 

product of total ESTs of the genes and the fraction of total ESTs in the tissue among all ESTs 

in 30 tissues. In GeneHub-GEPIS, Digital expression unit (DEU) is the number of matching 

clones per 1 million library clones and is directly proportional to the copy number of mRNA 

per cell. Statistical significance was measured by the Z- test (p<0.025). A cross-cancer 

analysis in TiGER and GeneHub-GEPIS was used to characterize the 29 remaining genes 

according to their specificity for the cervical cancer tissue. Figures 3.2-3.11 gives a graphical 

display of the 10 candidate genes that showed expression in the cervix tissue for both 

databases, with GeneHub-GEPIS displaying expression between cancerous and normal 

tissue. A drawback of using only functional association data of DEGs is that it does not take 

into account any physical interactions between genes or proteins (Glaab et al., 2012). This 

prompted further analysis of the 10 candidate genes by submitting these candidate genes to 

STRING to investigate gene-gene (protein-protein) interactions or possible co-expression and 

co-regulation in cancer-related metabolic pathways. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Expression profile of Gene 1, Adapted from TiGER (A) and GeneHub-GEPIS (B), 2013. Normal expression is shown in blue while 

over-expression in tumour tissue is shown in yellow.    
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Figure 3.3: Expression profile of Gene 2, Adapted from TiGER (A) and GeneHub-GEPIS (B), 2013. Normal expression is shown in blue while 

over-expression in tumour tissue is shown in yellow.  
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Figure 3.4: Expression profile of Gene 3, Adapted from TiGER (A) and GeneHub-GEPIS (B), 2013. Normal expression is shown in blue while 

over-expression in tumour tissue is shown in yellow.  
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Figure 3.5: Expression profile of Gene 4, Adapted from TiGER (A) and GeneHub-GEPIS (B), 2013. Normal expression is shown in blue while 

over-expression in tumour tissue is shown in yellow. 
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Figure 3.6: Expression profile of Gene 5, Adapted from TiGER (A) and GeneHub-GEPIS (B), 2013. Normal expression is shown in blue while 

over-expression in tumour tissue is shown in yellow. 
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Figure 3.7: Expression profile of Gene 6, Adapted from TiGER (A) and GeneHub-GEPIS (B), 2013. Normal expression is shown in blue while 

over-expression in tumour tissue is shown in yellow. 
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Figure 3.8: Expression distribution of Gene 7, Adapted from TiGER (A) and GeneHub-GEPIS (B), 2013. Normal expression is shown in blue 

while over-expression in tumour tissue is shown in yellow. 
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Figure 3.9: Expression distribution of Gene 8, Adapted from TiGER (A) and GeneHub-GEPIS (B), 2013. Normal expression is shown in blue 

while over-expression in tumour tissue is shown in yellow. 
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Figure 3.10: Expression distribution of Gene 9, Adapted from TiGER (A) and GeneHub-GEPIS (B), 2013. Normal expression is shown in blue 

while over-expression in tumour tissue is shown in yellow. 
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Figure 3.11: Expression distribution of Gene 10, Adapted from TiGER (A) and GeneHub-GEPIS (B), 2013. Normal expression is shown in blue 

while over-expression in tumour tissue is shown in yellow.   
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3.4.2. STRING Analysis  

The results from the STRING database indicated that the ten genes were not all linked as 

measured by parameters such as co-expression in STRING, with only one interaction 

observed as illustrated in figure 3.12. However, 50% (5/10) of the genes were shown to be 

enriched for receptor binding when classified based on their molecular function. Due to the 

fact not much scientific inference was drawn from protein interactions between the genes of 

interest, further analysis were done by conducting a co-expression analysis in order to search 

for a possible link between the putative genes and a common pathophysiological process. 

 

 

 

 



 

 

 

Figure 3.12: STRING showed that five (shown in red) out of the ten putative genes are 

implicated in receptor binding (gene names not shown) (Adapted from STRING, 2013). 
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3.4.3. Co-Expression Analysis  

According to GeneMania, 90% (9/10) of the putative genes are co-expressed as depicted in 

figure 3.13. Therefore, it can be deduced that there is a strong probability that the candidate 

genes co-function in the same pathophysiological process/disease. Following co-expression 

analysis, the putative genes were further subjected to TF analysis. It has been documented 

that co-expression analysis may also reveal information regarding the regulatory system of 

the candidate genes. Genes that are shown to have similar expression patterns, generally they 

are also controlled by the same underlying regulatory system (Heyer et al., 1999). 
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Figure 3.13: Co-expression analysis display of the putative genes, adapted from GeneMania, 2013. 
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3.4.4. Transcription Factor Analysis 

Relevant TFs for the ten candidate genes were extracted from Genecards and DAVID and 

these were validated for their association with cervical cancer through published literature. 

Genecards is a web based database that extracts data from genetics, proteomics, 

transcriptomics, functional and disease information to provide a complete summary of a 

specific gene. It was discovered that the putative genes are associated with multiple TFs 

implicated in cervical carcinogenesis such as c-Myc, c-Jun, NFkB and E2F. However, 100% 

(10/10) of the putative genes were projected to be modulated by perixosome proliferator-

activated gamma (PPARγ), while 80% (8/10) were predicted to be regulated by 

TAL1BETAITF2, p53 and CCAAAT enhancer binding protein alpha (C/EBPα). PPARγ is a 

ligand-dependent transcription factor that belongs to the nuclear hormone receptor family and 

is known to regulate cell differentiation and apoptosis (Han et al., 2003, Smith et al., 2001). 

With the TF analysis, the genes were analysed individually with their associated TFs, yet no 

real association between the genes of interest and their TFs could be visualized. Hence, a 

gene-gene interaction analysis considering the putative genes and their three TFs of interest 

(which together totalled 13 genes) was carried out in STRING to observe a network view of 

their interactions. 

 

STRING analyses indicated that when a wider view of the 13 genes/proteins was considered, 

they were remarkably all re-centred around Proliferating cell nuclear antigen (PCNA) as 

shown in figure 3.14. The E7 oncoprotein of high-risk HPV has been shown to activate 

PCNA, causing its up-regulation in cervical intraepithelial neoplasia, the premalignant 

condition of cervical cancer (Branca et al., 2006). Since PCNA is up-regulated in pre-

invasive cervical cancer and the candidate genes are linked to PCNA, they could potentially 

serve as early diagnostic molecular markers. Similarly, the relationship of p53 and the GOI 

were once again reaffirmed via PCNA. The p53 is known to induce and up-regulate PCNA 

(Paunesku et al., 2001). When PCNA and p53 are both up-regulated, they function in DNA 

repair. However, when p53 is down-regulated (or absent) due to degradation via the HPV E6 

oncogene and PCNA is up-regulated due to E7 induction, cell proliferation occurs instead 

(Paunesku et al., 2001). Hence the two viral oncogenes, E6 and E7 function together to 

promote cervical carcinogenesis by inversely modulating PCNA and p53. PCNA and p53 in 

combination have been suggested as valuable diagnostic biomarkers in low-grade cervical 
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intra-epithelial neoplasia (CIN - the first stage of cervical cancer when a diagnosis is ideal) 

(Goel et al., 2011). Henceforth, the genes directly interacting with p53 and PCNA could act 

as molecular signatures in the early diagnosis of cervical cancer. Although this information 

was promising in possibly implicating the putative genes in cervical cancer, the co-expression 

analysis demonstrated the significance of considering genes interacting with the putative 

genes. Hence, the ten putative genes, their interacting genes (extracted from GeneCards) and 

their TFs (which altogether totalled 79 genes) were once more assessed in STRING. 

 

 

 

 



 

 

Figure 3.14: The ten putative genes and their corresponding 3 cervical cancer-associated transcription factors were all linked to Proliferating cell 

nuclear antigen (PCNA) (PCNA is shown in the red rectangle, while p53 is shown in the blue rectangle). Disconnected nodes are not shown 

(Adapted from STRING, 2013). 
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3.4.5. STRING analysis with GOI, interacting genes and TFs 

STRING explores and assigns functions of genes based on gene-gene interactions; it 

confirmed the results obtained by the GO analysis carried out in DAVID. The categories 

enriched with the highest number of genes were selected. STRING showed that of the 79 

genes, 27 were enriched for cell surface receptor signalling pathways, while 17 genes were 

predicted to participate in G-protein coupled receptor (GPCR) signalling when clustered 

according to biological process (Figure 3.15). The molecular functions showed corresponding 

categorization with the majority of the genes involved in receptor binding (19 genes) and 

signal transducer activity (19 genes) (Figure 3.16). The highest proportion of genes was 

found in the plasma membrane component of the cell (Figure 3.17). The logical and 

systematic next step was to carry out a pathway analysis on the genes of interest. 

 

 

 

 



 

 

Figure 3.15: Distribution of genes according to their biological process. The images on the left show the genes (red) involved in cell surface 

receptor signalling (A) and G-protein coupled receptor signalling (B). The partial table on the right shows the number of genes predicted to 

participate in the most enriched biological process and their corresponding statistical values (Adapted from KEGG, 2013). 

 

 

 

 



 

 

 

 

 

Figure 3.16: Distribution of genes according to molecular function. The images on the left show the genes (red) involved in receptor binding (A) and signal 

transducer activity (B). The partial table on the right shows the number of genes predicted to participate in the most enriched molecular functions and their 

corresponding statistical values (Adapted from KEGG, 2013). 

 

 

 

 



 

 

Figure 3.17: Distribution of genes according to their cellular component. The images on the left show the genes (red) localized in the plasma 

membrane (A) and the extracellular space (B). The partial table on the right shows the number of genes predicted to be found in the most 

enriched cellular components and their corresponding statistical values (Adapted from KEGG, 2013). 
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3.4.6. Pathway Analysis 

When a KEGG pathway analyses was carried out in STRING, by inputting the ten putative 

genes, their directly interacting genes (which totalled 79 genes) and TFs, most of the genes 

were mapped to the Natural killer cell-mediated cytotoxicity (11 genes) and Oxidative 

phosphorylation pathways (9 genes) for FDR<0.01) as shown in figure 3.18, the most 

enriched pathways were selected. These enriched pathways were confirmed by DAVID, 

which additionally mapped 18 genes to signalling by GPCR. It was interesting to note that 

many of the genes in STRING were also mapped to the mitochondrial proton-transporting 

adenosine triphosphate (ATP) synthase complex. Signalling pathways (previously associated 

with the GOI) modulate ATP production via mitochondrial oxidative phosphorylation 

(Fosslien, 2008). Altered signal transduction is known to directly affect mitochondrial 

proteins, while mitochondrial dysfunction has been highlighted as one of the recurrent 

features of neoplastic cells (Solaini et al., 2010). Hence, many of the GOI were predicted to 

participate in diverse cancer metabolic pathways. 

3.4.7. A Gene Profile for cervical cancer diagnosis 

However, no single biomarker has to date been effective in the diagnosis or treatment of 

cervical cancer (Folgueira et al., 2005); most likely because cancers are complex diseases 

which are often also multigenic in nature. Several studies have revealed that considering a 

gene profile (a combination of many genes) may be more effective in implicating/diagnosing 

a specific disease, as opposed to using a single gene common to many biological processes 

(Folgueira et al., 2005). Although the number of genes enriched for these pathways seem 

small, if even one of the candidate genes can be positively implicated in a cervical cancer 

pathway and its co-expression with another candidate gene as well as transcriptional co-

regulation by PPARγ can be verified, then a possible gene profile for cervical cancer can be 

established. Since the probability that a set of the same genes can be associated with all 

cancers is very low, combining the GOI as biomarkers in a cervical cancer diagnostic tool can 

be very promising. Bioinformatics have been invaluable in predicting genes and their 

functions that could previously not be identified using quantitative genetics data (Guan et al., 

2012). However, since microarray data and Bioinformatics algorithms in general may be 

affected by “noise” that may generate errors, this data must be empirically verified (Rajeevan 

et al., 2001). 

 

 

 

 



 

Figure 3.18: The Natural Killer cell-mediated cytoxocity was a one of the most enriched pathways (Adapted from KEGG, 2013). 
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3.5. Discussion and Conclusion 

Understanding how genes are expressed and regulated in various tissues or under various 

conditions can help elucidate the molecular mechanisms of tissue development and function 

(Liu et al., 2008). The changes in gene expression can be identified or evaluated by in silico 

gene expression analysis. Gene expression profiling is a technology that is used to identify 

genes that are active in a sample of tissues or cells, for both diseased and normal states. Gene 

expression profiling allows for the sub-classification of tumours by providing diagnostic and 

prognostic information of genes that are differentially expressed in tumours (Thomas et al., 

2013). The availability of large amounts of sequence data, coupled with the advances in 

computational biology provides an ideal framework for in silico gene expression analysis 

(Murray et al., 2007). Although in silico gene identification remains a difficult task, public 

(freely available) and private (subscription) expressed sequence tag (EST) databases 

represent an important source for biomarker or target discovery (Terstappen and Reggiani, 

2001). These databases contain short sequence information of expressed genes; this leads to 

their identification and is indicative of the encoded proteins (Marra et al., 1998).  

 

The analysis of gene expression patterns derived from large EST databases have become a 

valuable tool in the discovery of prognostic and diagnostic markers. Sequence data derived 

from a variety of cDNA libraries provides a wealth of information for identifying genes that 

can be used for the development of pharmaceutical products as well as potential diagnostic 

biomarkers (Fannon, 1996). The tissue specificity of a gene is a measure of the relative 

distribution of gene expression across major tissue types in the human body. Tissue-specific 

genes enable an assay to detect small increases in the serum protein levels which can be 

unambiguously attributed to a neoplastic lesion or disease onset in the affected organ 

(Vasmatzi et al., 2007). According to Vasmatzi et al (2007), the discovery of novel serum 

biomarkers must not only identify differentially expressed genes encoding products with 

selected cellular localization but should also identify genes with high specificity in the tissue 

type of interest. The 29 remaining genes were further investigated for tissue-specificity in 

TiGER and GeneHub-GEPIS to identify genes specific to cervical cancer.  
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After the cross-cancer analysis, only ten putative genes with sufficient specificity remained 

(Figures 3.4-3.13). Guan et al (2012) demonstrated that prediction performance is 

significantly improved when incorporating tissue-specific networks as opposed to global 

functional data. By accounting for tissue-specificity one can identify more accurate candidate 

disease genes (Guan et al., 2012) and bypass redundant laboratory work (Zang et al., 2004). 

Bioinformatics analysis investigating potential protein-protein interactions and cellular 

pathways were performed for the ten candidate genes. This was done to identify if there are 

any commonalities between the genes products and if they are involved in a cancer pathway 

or pathways related to cancer such as apoptosis and cell cycle regulation. Based on the 

protein interactions between the genes; some genes can be indirectly implicated in pathways 

based on the fact that these genes interact with proteins involved in those particular pathways. 

Proteins have the ability to form a wide range of direct and indirect interactions with each 

other that can be conceptualized as networks. Analysing genes as a network increases its 

statistical power in human genetics and can assist in predicting diseased phenotypes 

(Szklarczyk et al., 2011).  

 

The interactions that are generated can be conceptualized as networks; this allows the 

genome to be seen as more than a static collection of distinct genomic functions (Skrabanek 

et al., 2008). STRING provides a source for all functional links between proteins. STRING’s 

main strengths are that it has a unique comprehensiveness; it provides a confidence score and 

an interactive user interface (Szklarczyk et al., 2011). In STRING analysis only one 

interaction was observed for the ten putative genes and since not much information was 

drawn from the protein-protein interaction studies, further in silico analysis was conducted. 

Network knowledge can give rise to understanding the biological function and dynamic 

behaviour of cellular systems, generating biological hypothesis about putative biomarkers, 

therapeutic targets or deregulated pathways in cancer. Cancer-related proteins have a higher 

ratio of promiscuous structural domains, making them more prone to interact with other 

proteins. In fact, they have a large number of interacting proteins and occupy a central 

position in the networks (Sanz-Pamplona et al., 2012). Gene co-expression network analysis 

identifies groups of genes highly correlated to each other in expression levels across multiple 

samples. Genes that are functionally related to each other are believed to express similarly 

and thus have high correlations between their expression profiles. So, functionally similar 
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genes group together in gene co-expression networks. In this study 90% of the genes were 

shown to be co-expressed. Co-expression studies are conducted because there is evidence that 

co-expressed genes may be functionally related, for instance, genes encoding the various 

subunits of a complex protein will have similar expression patterns (Heyer et al., 1999). 

According to Mostafavi et al (2008), two genes are linked if their expression levels are 

similar across a specific condition in a gene expression study. The process of regulation of 

gene transcription is controlled by a group of regulators called transcription factors (TFs). 

TFs facilitate the final steps in the relay of information from the cell surface to the nucleus 

and the gene. This is accomplished by the interaction of the TFs with specific DNA elements, 

these elements are usually situated upstream of the sequence that encodes the gene (Eckert et 

al., 2013). Transcription factors are cellular components that regulate gene expression and 

their activities subsequently control cell function and cellular response to the environment 

(Vaquerizas, 2009).  

 

A constructive approach to establishing a gene regulatory network is to identify the 

regulatory components such as the TFs that may induce the expression of a set of co-

expressed genes underlying a biological process or diseased phenotype (Whitfield et al., 

2012). If the TFs regulating the candidate genes are known to be oncogenic, the genes could 

possibly be associated with cancer. In order to establish a connection between the putative 

genes through a common regulatory element, an analysis was conducted so as to determine if 

all the ten putative genes shared a common transcription factor. According to Jung et al 

(2005), PPARγ shown to be associated with most of the candidate genes, is down-regulated 

in newly transforming cervical neoplasia. The genes PPARγ regulates can therefore possibly 

serve in the early diagnosis of cervical cancer. Interestingly, a link between PPARγ and 

C/EPB was established by demonstrating that a decrease in PPARγ also facilitated a decrease 

in the levels of C/EPB. C/EBPα is a differentiation-inducing transcription factor. 

Furthermore, loss of function or inactivation of C/EBPα is commonly associated with 

squamous cell line cancers and most of the cells affected in cervical cancer are squamous 

cells (Koschmieder, 2009). This could therefore further contribute to the specificity of the 

candidate biomarkers for cervical cancer (which was already demonstrated by the tissue 

specificity analysis).  
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Similarly, the HPV oncoproteins E6 has been shown to neutralize p53, effectively reducing 

its levels and its subsequent ability to effectively suppress tumour formation (Tommasino et 

al., 2003). The rationale of this study is to find biomarkers that can detect cervical cancer in 

its pre-invasive stage and the HPV oncogenes E6 and E7 are responsible for many of the 

changes that occur when the neoplastic tissue forms in the cervix. Therefore establishing 

which genes and/or transcription factors are targeted by these oncogenes, it will be possible 

to use those genes/transcription factors or a combination thereof to design a diagnostic tool 

specific for cervical cancer detection. By performing a network-based analyses based on gene 

variants and their interacting genes, one can explore how sub-network level features 

contribute to the phenotype of a complex disease such as cancer (Okser, 2013). Signalling 

pathways are activated by extracellular proteins (ligands), which bind their specific cell 

surface receptors which  dimerize or oligomerize at the cell surface to begin the intracellular 

signalling phase (Darnell Jnr, 2002). GPCR’s constitute the largest family of cell surface 

molecules responsible for converting extracellular stimuli into intracellular signals and have 

emerged as key players in tumourigenesis and metastasis (Dorsam and Gutkind, 2007).  

 

Events such as signal transduction are often targeted by oncogenes to sustain growth signals 

for uncontrolled proliferation (Chial, 2008). Hence, it is highly likely that the GOI are 

targeted by the HPV E6 and E7 oncogenes for dysregulation. TFs participate at the ends of 

signal transduction and stress-response pathways by up or down regulating certain genes. All 

primary and 39 modifier genes leading to cancer partake in at least one of these two pathways 

(Nebert, 2002). Since the annotated molecular function of the GOI also predicted their 

participation in one of the critical cancer pathways (signal transduction), this further 

strengthens their possible implication in cancer-related pathways. However, this does not 

mean that they can be easily detected in bodily fluids, which is necessary for a biomarker 

based test to be non-invasive. Hence, their cellular localization was also considered. More 

specifically, most genes were predicted to be secreted into the extracellular space or to be 

localized in the extracellular region and on the cell surface. This is very promising since the 

targeted genes are those that facilitate the entry of cervical cancer biomarkers into the 

circulatory system. Nevertheless, events such as cell surface binding and signal transduction 

are normal biological processes that do not generally translate into cancer. Although, it is 

worthwhile to reiterate that 90% of the GOI’s were shown to be co-expressed, while all of the 
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GOI were regulated by the same element showing possible co-regulation and co-expression. 

As previously stated, the general consensus is that there is likely to be a relationship between 

co-expression and co-regulation and that co-expressed and/or co-regulated genes are likely to 

function in the same metabolic pathway (Emmert-Streib and Glazko, 2011). By considering 

pathways one can observe gene sets that function in a coordinated manner to define a 

biological process (Emmert-Streib and Glazko, 2011). KEGG stores higher order functional 

information in the form of pathways showing graphical representations of cellular processes 

and metabolic processes (Kanehisa and Goto, 2000). Natural killer cells are known to target 

foreign and cancer cells for apoptosis via multiple mechanisms. If any of these genes from 

this pathway are mutated or deregulated it could therefore negatively influence their ability to 

induce cancer cells to undergo apoptosis. Similarly the genes involved in oxidative 

phosphorylation could make for ideal targets for oncogenes since a wide spectrum of 

oxidative phosphorylation deficit has been associated with tumourigenesis (Solaini et al., 

2010).  

 

This study managed to discover and identify putative biomarkers to be further validated using 

molecular methodologies. Combining biological data mining, text mining and in silico gene 

enrichment techniques proved to be effective in classifying genes and linking them to 

cervical cancer. The advent of microarray based technology has helped study the expression 

patterns of more than 40,000 genes at a time. Several groups have used microarray based 

technology to look for differentially expressed genes in the different stages of cervical 

tumourigenesis. Few studies have followed up and validated the microarray data in a large 

number of genes (Rajkumar et al., 2011). However, in silico methods need to be coupled with 

in-vitro work to confirm the in-silico approach and also establish the confidence of the 

identified putative markers in a biological system. 
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CHAPTER 4: Differential Expression Analysis of Putative Biomarkers Using Molecular 

Techniques 

4.1. Background 

Gene expression analysis is increasingly important in various biological research fields. 

Understanding the patterns of expressed genes is expected to provide insight into the complex 

regulatory networks and will probably lead to identification of genes implicated in disease. 

Quantifying gene expression levels can yield valuable clues about the function of a gene, for 

instance, accurate measurements of gene expression can identify the type of cells or tissues 

where a particular gene is expressed, reveal individual gene expression levels in defined 

biological states and detect alterations in gene expression levels in response to specific 

biological stimuli (Fraga et al., 2008). This section of the study is aimed at validating the ten 

putative genes identified in chapter 2 by in silico expression analysis. This was accomplished 

by means of molecular expression profiling using qPCR in cervical cancer cell lines, other 

types of cancer as well as non-cancerous cell lines. 

 

4.1.1. Quantitative real-time PCR (qPCR) 

Real-time polymerase chain reaction (PCR) has gained popularity in the past few years and 

has become the most widely used technique in modern molecular biology. This technique 

depends on fluorescence-based detection of amplicon DNA and permits the kinetics of PCR 

amplification to be monitored in real time, making it possible to quantify nucleic acids with 

extraordinary ease and precision (Guescini et al., 2008). Quantitative real-time PCR (qPCR) 

has become a very versatile technique to examine expression changes of one or more genes 

of interest in various pathological states such as cancer. This method offers a broad range of 

advantages over standard methods such as Northern blot and semi-quantitative PCR due to its 

specificity, sensitivity, simplicity, costs and high-throughput. Thus, it has become the most 

emerging tool for absolute and relative quantification of mRNA transcription levels (Jacob et 

al., 2013). This technique is very sensitive for the detection and quantification of gene 

expression levels particularly for low abundance mRNA in tissues that have low mRNA 

concentrations and to elucidate small changes in mRNA expression levels (Pfaffl et al., 

2002). PCR can be broken into three major steps (Figure 4.1): exponential phase, log-linear 
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phase and plateau phase. During the first 10-15 cycles (linear ground phase), the PCR is at 

the initiation stage and emission of fluorescence at each cycle has not risen above background 

and during this time the baseline fluorescence is calculated. At the exponential phase, the 

amount of fluorescence has reached a threshold where it is significantly higher than the 

background levels. In the log-linear phase, the PCR reaches its optimal amplification period 

with the PCR product doubling after every cycle in ideal reaction conditions. Lastly, the 

plateau stage is reached when reaction components become limited and the fluorescence 

intensity is no longer useful for data calculation (Wong and Medrano, 2005).  

 

 

 

Figure 4.1: Graph illustrating the phases of the PCR amplification curve, adapted from Fraga 

et al., 2008.  
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4.1.2. Quantitation Strategies in qPCR 

There are two strategies used to quantify gene expression in qPCR viz.: absolute 

quantification and relative quantification. Absolute quantitation relies on a standard curve 

which is generated by using serially diluted standards of known concentration. The standard 

curve produces a linear relationship between the cycle threshold (Ct) and initial amounts of 

total RNA or cDNA, allowing the determination of the concentration of unknowns based on 

their Ct values. The Ct is defined as the number of cycles required for the fluorescent signal 

to cross the threshold (i.e. exceeds background level). Ct levels are inversely proportional to 

the amount of target nucleic acid in the sample (i.e. the lower the Ct level the greater the 

amount of target nucleic acid in the sample) (Wong and Medrano, 2005). In relative 

quantitation strategy changes in gene expression are measured based on either an external 

standard or a reference sample known as a calibrator. When a calibrator is used, the results 

are expressed as a target reference ratio (Wong and Medrano, 2005). This method depends on 

the comparison between expression of a target gene versus a reference gene and the 

expression of the same gene in target sample versus reference samples (Yuan et al., 2006). 

This chapter aimed at testing the ten target genes identified in chapter 2 by in silico 

methodology, by generating expression profiles across an array of cancer cell lines in order to 

identify putative biomarker significantly expressed in cervical cancer.  

 

This was achieved by utilising various molecular techniques such as cell culture, RNA 

extraction, synthesis of cDNA and qPCR. In order to calculate the expression of a target gene 

in relation to a suitable reference gene, various mathematical models have been established. 

These models can ascertain relative expression levels either without real-time PCR efficiency 

correction as shown in equation 4.1 or with kinetic PCR efficiency correction in equations 4.2 

and 4.3 (Pfaffl, 2001). Existing models are capable of determining a single transcription 

difference between one control and one sample, e.g. LightCycler Relative Quantification 

Software, or permit a group-wise comparison of up to one hundred samples, e.g. Relative 

Expression Software Tool (REST) and REST-XL (Pfaffl, 2001). 

Equation 4.1 

R = 2 
- [ΔCp sample - ΔCp control]

 

R = 2 
- ΔΔCp
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Equation 4.2 

Ratio =          (Etarget) Δ
Cp target (control – sample)

 

�             ________________________________ 

                     (Eref) �Δ
Cp ref (control – sample)

 

 

 
Equation 4.3 

 

Ratio =             (Etarget)
 ΔCp target (MEAN control – MEAN sample)

 

                      ________________________________________________ 

                         (Eref) 
ΔCp ref (MEAN control – MEAN sample) 

 

 
 

The relative expression ratio of a target gene is calculated on the basis of its actual real-time 

PCR efficiency (E) or on a static E of 2, and the crossing point difference (ΔCp) of one 

unknown sample versus one control. The relative computation procedure, using either REST 

or REST-XL, is based on the mean Cp of the investigated groups (Equation 4.3) (Pfaffl, 

2004). 

 

4.1.3. Amplification Efficiency 

An imperative consideration when doing relative quantification is amplification efficiency of 

the PCR reaction. Techniques that have been previously used to calculate gene expression 

have been established on the hypothesis that the amplification efficiency of the reaction is 

ideal, indicating the doubling of the PCR product concentration during each cycle within the 

exponential phase of the reaction (Gibson et al., 1996). Even so, various PCR reactions lack 

perfect amplification efficiencies and calculations without an appropriate correction factor 

may substantially miscalculate the initial concentration (Liu and Saint, 2002). Generally, the 

reactions amplification efficiency is calculated using data collected from a relative standard 

curve with equation 4.4 (Rasmussen, 2001). 

Equation 4.4 Efficiency  

(E) = [10(-1/slope)]-1 
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4.1.4 Data Evaluation 

The Pfaffl model (2002) calculates gene expression by combining gene quantification and 

normalisation into a single calculation. The model makes use of amplification efficiencies of 

the target and reference genes which are also used for normalisation to correct for differences 

between two assays. The Pfaffl method makes use of excel based software known as REST® 

which automates data analysis using this model. REST uses a pairwise Fixed Reallocation 

Randomisation test to calculate result significance and is also able to indicate if the reference 

gene is suitable for normalisation. Expression ratios are calculated by the REST software 

based on Ct values of the target gene relative to the reference gene and based on the results, 

the software generates a plot of the expression ratios for all samples involved (Wong and 

Medrano, 2005).  

 

The aim of this chapter was to validate the putative biomarkers that were identified using an 

in silico approach described in chapter 2. This was accomplished by using various molecular 

techniques including cell culture, mRNA extraction cDNA synthesis and qPCR. 
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4.2. Materials and Methods 

Cell Culture Media and Reagents  

Dulbecco's Minimal Essential Medium (DMEM)                                   Invitrogen 

Dimethyl Sulphoxide (DMSO)                                   Sigma 

Eagle's Minimal Essential Medium (EMEM)                                    Sigma 

Fetal Bovine Serum (FBS)                                   Invitrogen 

Leibovitz's L-15 Medium                                   Sigma 

McCoy's 5a Medium Modified                                    Sigma 

MCDB                                   Sigma 

Phosphate Saline Buffer (PBS)                                   Invitrogen 

Roswell Park Memorial Institute Medium (RPMI) 1640                                   Sigma 

  

Materials and Suppliers  

Agarose             Whitehead Scientific 

Bovine Serum Albumin    Roche 

Cell culture media and reagents    Invitrogen 

Diethylpyrocarbonate (DEPC) 

Ethanol 

Ethylene Diamine Tetra-acetic acid (EDTA)  

Gel Loading Dye (6X)          

Hydrochloric Acid 

 

Sigma 

Merck 

Merck 

Merck 

Fermentas 
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KAPA Taq extra hotstart readymix KAPABiosystems 

KAPA SYBR FAST qPCR kit KAPABiosystems 

Nuclease free water   

Nucleospin® Tripep kit 

Oligonucleotides 

Sodium Dodecyl Sulphate (SDS) 

SYBR® Safe DNA Gel stain 

SYBR® Fast Master Mix (2x) ABI Prism 

Sodium Hydroxide 

Transcriptor First Strand cDNA Synthesis Kit 

TEMED (N, N, N’, N’-Tetra methylethylene-diamine)            

Tris [Hydroxymethyl] aminoethane (Tris) 

Tris (2-carboxyethyl) phosphine (TCEP) 

Trypsin 

Merck 

Fermentas 

Macherey-Nagel 

Inqaba Biotech 

Promega 

Invitrogen 

Lasec 

Merck 

Roche 

Sigma 

Merck 

Sigma 
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4.2.1. Cell Culture Approach 

4.2.1.1. Cell Lines and Media 

All the cell lines that were used during the course of this research were purchased from ATCC 

(American Type Culture Collection), shown in table 4.1. The cells were cultured in their 

respective growth medium per instructions of the supplier. Cell lines used in this study are 

adherent and semi-adherent.  

Table 4.1: List of cell lines used in this research study 

Cell line Origin Growth medium 

HeLa 

CaSki 

HT-3 

HPV18 cervical cancer 

HPV16 cervical cancer 

Cervix Carcinoma 

DMEM + 10% FBS 

DMEM + 10% FBS 

McCoy's 5a + 10% FBS 

A549 Lung carcinoma EMEM + 10% FBS 

MCF-7 Breast adenocarcinoma DMEM + 10% FBS 

KMST-6 Normal skin cell line DMEM + 10% FBS 

SK-OV-3 

CAOV3 

           Ovarian Carcinoma McCoy's 5a + 10% FBS 

DMEM + 10% FBS 

T-84 Colorectal adenocarcinoma DMEM-F12 +10% FBS 

 

4.2.1.2. Starting Cell Culture from frozen Cells: 

Frozen cryovials were placed in a water bath at 37ºC, for 1-2minutes, until defrosted. Slowly, 

drop by drop, cells were diluted in pre-warmed media (table 4.1) in a 15 mL tube and then 

centrifuged for 5-10 minutes. The supernatant was removed (as much as possible); making 

sure the pellet was not disturbed so as to remain intact. The pellet was then ressuspended in 

the respective media and the entire tube’s content transferred to a 25 cm
2
 Flask (T25). The 

flask was then incubate at 37ºC with 5% CO2 for 24 hours, after which all the medium was 

removed and replaced with new medium to ensure no DMSO remained in the cells. 
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4.2.1.3. Maintenance of Human Cells 

A schedule of cell maintenance, feeding and passaging was adopted to maintain appropriate 

cell density, nutrient concentration and pH levels in cultures. Cells were best passaged when 

growing logarithmically, at 70 to 80 % confluency. A schedule used for routine maintenance, 

every 2 days medium was changed if the confluency was below 40-50% and every day until 

70-80 % confluency was reached upon which the cells were passaged. 

 

4.2.1.4. Sub-Cultivating 

All the media (table 4.1) was pre-warmed to 37ºC. The culture was inspected for 

contamination. If no contamination was present and the cells were at 70-80% confluence, the 

medium was aspirated with a sterile Pasteur pipette and the cells were washed with 5 mL of 

PBS to remove any residual medium (~15 seconds). After the PBS was aspirated with a 

sterile Pasteur pipette, 1 mL of 0.05% trypsin-EDTA (TE) was added, evenly dispersed over 

the surface by gently rocking the flask. The flask was then placed in the incubator with the 

cap screwed tightly. After 2 minutes the flask was taken to the microscope to check the 

progress of the detachment. When the cells were detached, 5 mL of new media was added, 

rinsing the surface of the flask to inactivate the trypsin. The cells were collected by 

centrifugation at 3000 xg. 

 

4.2.1.5. Changing Medium 

Cells were fed with their respective media; the culture was inspected under the microscope to 

ensure no contamination was present. The old medium was aspirated from the flask with a 

sterile Pasteur pipette and 5 mL of new medium was added. The freezing down of cells was 

subsequent to trypsinisation of cells. Centrifugation was done at 3000 xg for 3 min. The 

supernatant was then discarded and the pellet resuspended in 90% complete medium and 

10% DMSO. The resuspended cells were aliquoted as 1ml fractions into cryotubes and stored 

at -150
o
C. 
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4.3. Analytical Laboratory Techniques 

4.3.1. Extraction of RNA 

Cells were prepared prior to RNA extraction as described in section 3.2.1; the cell pellet was 

washed with PBS and then collected by centrifugation at 3000 xg. The nucleospin kit was 

used to isolate RNA and proteins respectively according to the manufacturer instructions. 

However for the purposes of this research only RNA extraction will be the focus. The cells 

were lysed by adding buffer RP1 (350 μl) and 3.5 μl, of 20mM Tris (2-carboxyethyl) 

phosphine (TCEP) to the cell pellet and were vortex vigorously for a minute. The cells were 

washed with 350 μl 70% ethanol and were transferred to a new Eppendorf; the pellet was 

collected by centrifugation at 11 000 xg for 30sec. The silica membrane was desalted by 

adding 350 μl MDB and the pellet was collected by centrifugation at 11 000 xg. A 1: 100 

stock solution of recombinant deoxyribonuclease (rDNAse) in reaction buffer of rDNAse was 

added to the RNA silica membrane of the column. Thereafter the DNA was digested by 

adding 95 μl DNase reaction mixture; the cells were incubated at room temperature for 15 

min. The silica membrane was washed and dried by adding 200 μl RA2 (wash 1), then 600 μl 

RA3 (wash 2) and lastly 250 μl RA3 for 30 secs and 2min at 11 000 xg respectively.  

Furthermore, the RNA was eluted using 60 μl RNAse free water and centrifuged at 11000 xg 

for 1 minute. The concentration and quality of RNA was assessed using the Nanodrop ND-

1000 spectrometer (NanoDrop Technologies) and all RNA samples were stored at -20
0
C.  

 

4.3.2. Agarose Gel Electrophoresis of RNA 

Agarose gels were prepared by dissolving agarose powder in 1X TBE buffer prepared with 

Diethylpyrocarbonate (DEPC) water by heating until agarose was dissolved. The solution 

was cooled and 0.8X SYBR safe gel stain was added. The solution was then poured into a gel 

tray and the tray was placed into the electrophoresis tank filled with 1X TBE buffer.  RNA 

samples were prepared by mixing 1 part of the RNA with 6X loading dye and heated for 2-5 

minutes at 95
0
C. After loading the gel was electrophoresed for 60 minutes at 100 V and the 

RNA was visualised using the UVP system from Bio-Rad.  
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4.3.3. cDNA Synthesis 

The cDNA was synthesized using the Transcriptor First Strand cDNA synthesis kit (Roche) 

according to the manufacturer’s instructions. All the reagents were kept on ice throughout the 

experiment. The template primer mixture was prepared with the following reagents in a 

sterile, nuclease-free, thin walled PCR tube as shown in table 4.2 to a final volume of 13μL.  

 

Table 4.2: Reagents for Template Primer Mix 

Reagent Final Concentration 

RNA 1 μg 

Anchored-oligo (dT) 18 Primer 2.5 μM 

PCR grade H2O Variable 

 

 

Once all the reagents in table 4.2 were mixed, the reaction mixture was heated for 10 minutes 

at 65
0
C in a pre-heated thermal block cycler to denature the template. The reaction mixture 

was immediately cooled and the remaining reagents were added as specified in the following 

table 4.3. 

 

Table 4.3: Reagents for final cDNA Synthesis Mixture 

Reagents Final Concentration 

Transcriptor Reverse Transcriptase reaction buffer 1 X 

Protector RNAse inhibitor 20 U 

Deoxynucleotide Mix 1 mM each 

Transcriptor Reverse Transcriptase 10 U 

 

 

 

 

 



 

 
120 

 

Once all the reagents in table 4.3 were added, they were carefully mixed and the tube 

centrifuged briefly to collect the sample to the bottom of the tube. The tube was placed in the 

thermal block cycler and the RT reaction mixture was incubated for 33 minutes at 55
0
C. The 

Transcriptor Reverse Transcriptase was inactivated by heating the mixture for 5 minutes at 

85
0
C and the tube was placed on ice in order to stop the reaction. The cDNA was quantified 

using the Nanodrop ND-1000 Spectrophotometer (Nanodrop Technologies). The cDNA was 

stored at -20
0
C. 

 

4.3.4. Primer Design 

Gene specific oligonucleotides were designed for cDNA amplification and oligonucleotide 

sequences are shown in table 4.4. Each oligonucleotide was designed to be 20bp long using 

the NCBI primer design algorithm (www.ncbi.nlm.nih.gov). The oligonucleotide sequences 

were sent for synthesis to Inqaba biotech (http://www.inqababiotec.co.za/). Once the 

oligonucleotides were synthesized, a 100 μM stock solution of the oligonucleotides was 

prepared by re-suspending the pellet into 1x TE buffer (10 mM Tris, pH 7.5 to 8.0, 1 mM 

EDTA). The concentrated oligonucleotides stocks were stored at -20
0
C. 

 

Table 4.4: Oligonucleotide sequences for PCR amplification of cDNA 

Primer  Forward Sequences (5’-3’) Reverse Sequence (5’-3’) length(bp) 

Gene 1 GTTCTTCGATGAGCCCACCA GCAGACTTTTCCCCGGTACA 193 

Gene 2 CTAGAGGACCTGGGGACACG CGTTGTAGGCACGGTTGTTG 288 

Gene 3 GGCCACTTCGTCCACCTACT TTCCAATTGGTCCAGGTCGT 295 

Gene 4 GAACCTGGAGCGGATTACCC AGATACACCTCCACCAGGCT' 84 

Gene 5 TCCAGATATTGCCAGGGATGC CCTCATAGGTAGCCACAGCAG 192 

Gene 6 CCTGCTTCCTTTAGCGTGAAC GGTCCTTGTCACTGGCTCTT 290 

Gene 7 TAGCTCTGACTGGGCTGACT TAGCTCTGACTGGGCTGACT 289 
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Gene 8 GCCAAGGAAAAACGAGGCTG AGGCCATTCTTGTCGCTGAA 98 

Gene 9 TCTCTGAGCAGGAATCCTTTGT GCTACAGCGATGAAGCAGCA 261 

Gene 10 TGATGAGATTGGCGTGGCTT AGGATACCTGGCCTCCACAT 190 

PTEN CTCAGCCGTTACCTGTGTGT AGGTTTCCTCTGGTCCTGGT 129 

HpRT-1  TGCTCGAGATGTGATGAAGG TCCCCTGTTGACTGGTCATT  

GAPDH ACCCACTCCTCCACCTTTG CTCTTGTGCTCTTGCTGGG  

 

 

4.3.5. PCR Amplification of cDNA 

In order to verify reverse transcription and accessibility of cDNA for PCR, PCR was 

performed as shown in table 4.5. In this PCR, sequences from the 5’ and 3’ end of the 

candidate genes were amplified. The amplified PCR products were visualized for the 

expected size on a 2 % Agarose gel. The gel was stained with SYBR safe DNA stain and 1X 

TBE was used as the electrophoresis buffer (see section 4.3.2). 

 

Table 4.5: Standard PCR Reaction Composition 

Reagent  Final Concentration 

2X KAPA Taq Extra Hotstart ReadyMix with 

dye (2 mM MgCl2 at  1X) 

1 X 

Forward Primer  10 μM 

Reverse Primer  10 μM 

PCR-grade water Variable 

Template DNA  250 ng 
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The reaction mixture was cycled with the following parameters as shown by table 4.6 

 

Table 4.6: PCR cycling protocol 

Step Temperature Duration Cycles 

Initial Denaturation 95 °C 5 min 1 

Denaturation 95
 
°C 30 sec  

20-40 Annealing Primer Specific 30 sec 

Extension 72
 
°C 45 sec 

Final Extension 72
 
°C 10 min 1 

Hold 4
 
°C α 1 

 

4.3.6. Quantitative Real-Time PCR (qPCR) Protocol 

Expression levels of the ten selected genes were assessed with quantitative real-time PCR 

(qPCR). PTEN was added to the panel as a positive control as it is a gene that has been 

shown to be expressed in cervical cancer. Two housekeeping genes, GAPDH and HPRT were 

used as reference genes. All reactions were performed on the LightCycler® 480 System 

(Roche Applied Science) instrument. The reactions were prepared as outlined in table 4.7: 

Table 4.7: Reagents for a standard qPCR reaction 

Reagents Final Concentration 

SYBR GreenI Master Mix (10X) 1X 

Forward Primer (100 μM) 10 μM 

Reverse Primer (100 μM) 10 μM 

cDNA 250 ng 

PCR Grade dH2O Variable 

Final Volume 20 μl 
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The reactions were performed using the selected candidate genes; a positive control (PTEN), 

a calibrator (a cocktail of cDNA from all cell lines) and a no-template control (water). An 18 

µl aliquot of reaction mastermix was transferred to each well of the white 96 well plates. A 2 

µl aliquot of cDNA (250 ng) from various cancer cell lines was then added as the PCR 

template. A negative control was set up for each run containing 2 µl of PCR-grade water as a 

substitute for cDNA. The white 96 well plates were sealed with clear sealing foil for the 

LightCycler® 480 system and cycled on the LightCycler® 480 instrument according to the 

parameters in table 4.8. The evaluating parameters selected for data analysis were 

fluorescence (d[F1]/dT), melting temperature (Tm) and crossing point (Cp). The Second 

Derivative Maximum algorithm was employed for Cp determination where Cp was measured 

at the maximum increase of fluorescence.  

 

Table 4.8: qPCR Run Protocol 

Detection Format Block Type Reaction Volume 

SYBR® Green 96 well 20 μl 

Program Name Cycles Analysis Mode 

Pre-incubation 1 None 

Amplification 45 Quantification 

Melting Curve 1 Melting Curves 

Cooling 1 None 

Program Name Target (°C) Acquisition Mode Hold (hh:mm:ss) 

Pre-Incubation 95 None 00:10:00 

 

Amplification 

95 None 00:00:30 

Primer 

dependent 

None 00:00:20 
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72 Single 00:00:01 

 

Melting Curve 

95 None 00:00:30 

65 None 00:01:00 

97 Continuous 5-10 acquisitions/
0
C 

Cooling 40 None 00:00:30 

 

 

Specificity of real-time PCR primers was determined by amplification plots, melting 

temperature, and melting curve analysis using LightCycler Software, Version 1.5 (Roche 

Diagnostics). The standard or calibration curves were generated by the LightCycler software 

using serially diluted cDNA standards (250 ng to 0.25 ng) was quantified in each real-time 

PCR run and each dilution was amplified in duplicate. Data on expression levels for 

housekeeping genes were obtained in the form of crossing points or cycle threshold (Cp/Ct). 

Data acquisition was done through pairwise comparison using the geometric mean. The PCR 

efficiencies were calculated using the REST® software and all Ct values were taken into 

consideration according to the following equation: E=10[-1/slope] (Pfaffl 2001). The 

expression levels of all genes were determined relative to the housekeeping genes using the 

following equation: 

 

 

R=     (Etarget) 
ΔCptarget (MEAN control- MEAN sample) 

 

        (Ereference)
 ΔCpreference (MEAN control- MEAN sample) 
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4.4. Results and Discussion
 

The relative expression levels of the ten candidate genes identify through in silico 

methodologies were determined across an array of cancer cell lines using qPCR. 

Housekeeping genes (HKGs) / endogenous controls were selected to compensate for the 

inevitable sample variations observed in qPCR experiments. These variances such as 

preparation of RNA from biological samples, even the conversion step can affect the 

reliability of the qPCR results, thus, the consistency and reliability of qPCR experiments is 

significantly improved by including endogenous controls (Pfaffl, 2004). There are several 

alternative techniques used to normalize qPCR experiments, however the most commonly 

used strategy is normalization to an internal reference or a housekeeping gene. Housekeeping 

genes are widely used as reference genes since their expression is assumed to be stable. The 

ideal reference gene must be constitutively expressed and unregulated regarding the 

experimental conditions, treatment, and stage of the disease. It should be expressed at a 

similar level as the target gene (Nestorov et al., 2013).  

 

Therefore the selection of reliable housekeeping genes would correct sample-sample 

variations; hence display constant expression in all tissues under variable conditions, 

allowing a comparative analysis across all samples (Kubista et al., 2006). The most 

recommended and mostly used reference genes in qPCR studies are GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase), BA (B-Actin), HPRT1 (hypoxanthine 

phosphoribosyltransferase1), and UBC (ubiquitin C), to highlight a few (Nestorov et al., 

2013). However for this research only GAPDH and HPRT1 were used as reference genes 

since they are also present in all nucleated cell types and essential for cell survival (Pfaffl, 

2001). 

 

4.4.1. Amplification Curve and Melting Curve Analysis 

To investigate the expression levels of the ten target genes, eleven cell lines, of which three 

were cervical cancer as shown in table 4.2.1 were used and this was carried out as described 

in section 4.3.6. Before proceeding with qPCR analysis, it is imperative to verify that the 

PCR amplification is specific under the actual qPCR conditions. This was done in the Roche 
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LightCycler® 480 using the melting curve analysis feature. It is good laboratory practise to 

perform melting curve analysis after each real-time PCR run as a quality control step, as it is 

used to distinguish target amplicons from PCR artifacts such as primer-dimers or misprimed 

products (Fraga et al., 2008). The KAPA SYBR FAST qPCR kit optimized for LightCycler® 

480 uses SYBR® Green I dye chemistry to detect and quantitate the accumulation of an 

amplicon. SYBR Green represents the simplest and the most economical choice for real-time 

PCR product detection. This fluorogenic intercalating dye emits a strong fluorescent signal 

upon binding to double-stranded DNA (dsDNA) while unbound dye in solution exhibits little 

undetectable fluorescence. SYBR Green I can be used with any pair of primers, for any 

target, with no need for any additional fluorescence-labelled oligonucleotide (Nestorov et al., 

2013).   

 

The major drawback of using this dye is that both specific and nonspecific PCR products are 

detected, because SYBR green will bind to any double-stranded DNA in the reaction, 

including primer-dimers and other nonspecific reaction products, leading to overestimation of 

the target sequence concentration (Nestorov et al., 2013). Melting peaks are generated by 

plotting the negative derivative (-dF/dT) of the melting curve. From figure 4.2, it can be 

observed from the amplification curves that there was no non-specific background 

amplification. Furthermore, the melting curve analysis shows specific, single, narrow, and 

distinctive melting peaks (Nolan et al, 2006). As indicated by the figure only the target 

products were amplified. Each amplification product for the target genes demonstrated a 

specific and characteristic melting curve. No primer dimerization or nonspecific products 

were generated for the applied number of amplification cycles for the respective target genes. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Amplification curve and melting peak of GAPDH and target gene 10. 
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4.4.2. Generation of an Absolute Standard Curve 

The standard curve method is the most common approach in determining relative 

quantification, where the standard curve is generated for both the target and reference gene of 

choice (Sharkey et al., 2004) (Livak, 1997). The standard or calibration curves were 

generated by the Roche LightCycler software. The quantity of each target gene is mainly 

determined by means of a standard curve and subsequently expressed relative to a reference 

gene and they were used to calculate the efficiency of qPCR (Figure 4.3). To generate a 

standard curve, the serially diluted cDNA standard (250 ng to 0.25 ng) was quantified in each 

real-time PCR run. Each dilution was amplified in duplicate or triplicate. For each standard, 

the concentration was plotted against the cycle number at which the fluorescence signal 

increased above the threshold value (Ct) or crossing point (Cp). The gradient generated by 

each standard curve was used in the equation: Efficiency (E) = 10
-1/slope

 - 1 to determine the 

reaction efficiency (Rasmussen, 2001), with table 4.9 showing the efficiency and gradient of 

the housekeeping gene (GAPDH) and candidate genes.  

 

Table 4.9: qPCR efficiencies and standard curve gradients of target genes 

 Efficiency (E) Gradient 

GAPDH 1.99 -3.35 

Gene 1 1.94 -3.47 

Gene 2 1.92 -3.52 

Gene 3 1.93 -3.50 

Gene 4 1.92 -3.52 

GENE 5 1.97 -3.52 

Gene 6 1.97 -3.39 

Gene 7 1.95 -3.45 

Gene 8 1.94 -3.48 
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Gene 9 1.92 -3.52 

GENE 10 1.95 -3.45 

PTEN 1.94 -3.47 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Standard curves of the housekeeping gene (GAPDH) and one of the target genes (gene 10) 
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4.4.3. qPCR data Analysis and Quantification of Gene Expression 

Gene expression was quantified using the Pfaffl model which combines gene quantification 

and normalization and was calculated with the aid of Microsoft Excel based application, 

Relative Expression Software Tool  (REST-348) - Version 1 (Pfaffl et al., 2002). For this 

mathematical model, it is essential to determine the crossing point (Cp) value of each 

transcript. Given that Cp values decrease linearly with an increasing target quantity, Cp 

values could be used as a quantitative measurement of the input target number (Heid et al., 

1996). This method involved comparing the Cp values of the investigated transcripts with a 

control. The Cp values of both the control and the genes of interest were normalized to an 

appropriate housekeeping gene. REST-384 calculates relative expression using the statistical 

model Pair Wise Fixed Reallocation Randomization Test. For each sample, Cp values for the 

reference and target genes were randomly reallocated to the control and sample groups. 

Differences in gene expression levels between control and samples were evaluated in group 

means for statistical significance by randomization tests (Pfaffl et al., 2002). Descriptive 

statistics such as the sample means, minimal (Min) and maximal (Max) values, standard 

deviation (SD), and coefficient of variance expressed as a percentage (CV%), of the derived 

Cp values were computed for each investigated gene to determine intra-sample variation. 

 

 

An analysis was done to evaluate the specificity of the putative genes for cervical cancer by 

analysing their expression patterns in three different cervical cancer cell lines; six different 

cancer cell lines and one non-cancerous cell line (refer to table 4.2.1). The normal skin 

fibroblast cell line, KMST-6 was used as a non-cancerous cell line since there is no non-

cancerous cell line for the cervix tissue. The ten putative genes were relatively measured in 

the various cancer types against the KMST-6 cell line which served as a control using the 

Pfaffl method as depicted in figure 4.4. Differential expression of the genes was observed 

across all cancer cell lines, with gene 5 and gene 8 being significantly highly expressed in 

cervical cancer cell lines: Hela, Caski and HT-3 in comparison to other cancer cell lines. 

Furthermore, gene 10 is also highly differentially expressed in the cervical cancer when 

compared to other cancer types. Genes 5, 8 and 10 thus have the highest potential to be 

biomarkers for cervical cancer. This study was designed to identify genes that were 

differentially expressed during cervical cancer development, meaning genes that were either 

up-regulated or down-regulated.  

 

 

 

 



 

Figure 4.4: Relative expression ration plot of the ten putative genes across various cancer cell lines. 
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The data obtained from the in silico tissue specificity analysis in section 3.4, corresponds 

with the data acquired using qPCR analysis. Genes 5, 8 and 10 were shown to be highly 

specific to the cervix tissue as highlighted in figures 3.8, 3.11 and 3.13 respectively. The 

relative expression plot showed that the other putative genes were highly expressed in other 

cancer cell lines in comparison to cervical cancer cell lines. Table 4.10 represents a 

microcosm illustration of the relative expression ratio plot depicting the fold expression ratios 

of the putative genes across all cell lines. 

 

Table 4.10:  Fold expression ratios of 10 putative genes 

 Hela Caski HT3 A549 T84 MCF 7  SKOV3 Caov3 

Gene 1 1.080 1.032 -1.014 -1.014 -1.014 1.009 -1.277 -1.098 

Gene 2 1.241 1.186 1.133 1.133 1.133 1.159 -1.091 1.046 

Gene 3 1.608 1.112 1.275 -1.035 -1.035 -2.168 -1.042 5.129 

Gene 4 1.106 1.057 1.009 1.107 1.107 1.082 -1.091 -1.073 

Gene 5 9.569 6.088 3.681 3.597 2.163 1.495 1.005 2.686 

Gene 6 1.080 1.032 -1.014 -1.014 -1.014 1.009 -1.018 -1.098 

Gene 7 1.213 1.159 -1.014 -1.014 -1.014 2.485 1.005 1.022 

Gene 8 2.600 3.612 4.132 1.272 1.243 -1.307 -3.017 -1.707 

Gene 9 1.080 1.032 -1.014 1.107 1.107 1.133 -1.018 -1.098 

Gene 10 4.033 2.495 -3.531 1.883 1.033 1.009 3.311 -1.001 

PTEN 1.459 1.883 -4.659 5.452 2.726 4.532 5.428 -1.124 

  

 

The seven putative genes showed to be differentially expressed in different cancer cell lines, 

however from table 4.10 it could be deduced that gene 7 was more significantly expressed in 

MCF7 cell lines, which is a breast cancer cell line. In contrast gene 3 showed a significant 

expression in CAOV3, an ovarian cancer cell lines. Gene 3 and gene 7 could serve as 

potential biomarkers for ovarian and breast cancer respectively. The fact that some of the 

putative genes showed up-regulation in other cancer types is positive; hence this study is a 

part of a bigger research for biomarker discovery for various cancers such as breast, ovarian, 

lung and prostate cancer. These candidates will be further validated in the respective cancers 

where they showed differential expression as potential biomarkers.  
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Phosphatase and tensine homologue (PTEN) has been implicated in biomarker studies as an 

indicator for cervical cancer. PTEN a tumour-suppressor gene is involved in cellular 

differentiation, reproduction and apoptosis, as well as cellular adhesion and mobility. The 

loss or down-regulation of PTEN plays an important role in the multiple steps of 

tumourigenesis and progression of malignancies (Qi et al., 2014). According to Grigore et al, 

PTEN expression in squamous cell carcinoma is lower compared with normal cervical 

epithelium. It might be used as a marker for early diagnosis and prognosis of cervical cancer. 

In this study PTEN was included as a positive control isolated from the candidate genes 

obtained from the in-silico pipeline (Chapter 2). It’s inclusion as part of the candidate genes 

rendered as evidence of the pipeline to identify novel as well as existing biomarkers for 

cervical cancer. This meant that the putative biomarkers should have a fold change 

expression ratios similar to the positive control and even more. However from the data 

obtained it can be deduced that this biomarker was not significantly expressed in cervical 

cancer cell lines. All the candidate biomarkers were over-expressed in comparison to the 

positive control in cervical cancer, thus suggesting these genes as possible biomarkers for 

further validation. PTEN was over-expressed in other cancer cell line, with significant 

expression in SKOV3 (ovarian cancer), MCF-7 (breast cancer) and A549 (lung cancer). 

However this is not surprising because according to Loures et al, PTEN inactivation may 

play an important role in the pathogenesis of a variety of human malignancies.  

 

A study done by Eijsink et al indicated that a loss of PTEN expression frequently occurs in 

early-stage cervical cancer. Qi et al (2014) established that PTEN plays an important role in 

the occurrence and development of cervical cancer and the PTEN protein expression 

phenotype can be considered as an indicator for the pathophysiological behaviour of cervical 

cancer. The fact that our putative biomarkers showed a significant expression to the PTEN 

biomarker indicates that these genes could also play a role in early stage cervical cancer, 

especially, genes 5, 8 and 10 since they showed substantial differential expression in cervical 

cancer cell lines. From the literature studies conducted in chapter 2, there were no known 

associations of these putative genes with cervical cancer and it was not clear what their 

involvement is in cervical cancer. However, the top three candidate biomarkers, gene 5, 8 and 

10 will be discussed according to various publications.  
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Gene 5 is an 855 amino acid secreted protein that localizes to the extracellular space/ matrix, 

is not attached to membranes and contains three peptidase S1 domains. It is a Proteolytic 

enzyme or protease, which is a protein that performs a common biochemical reaction, the 

hydrolysis of peptide bonds. Proteases act as highly specific processing enzymes and perform 

a selective and limited cleavage of specific substrates. These proteolytic processing events 

are essential for the regulation of multiple events such as cell cycle progression, tissue 

morphogenesis and remodelling, cell proliferation and migration, ovulation, angiogenesis, 

haemostasis, apoptosis, and autophagy. Consistent with these diverse and essential roles of 

proteases in living organisms, structural changes in these enzymes or alterations in their 

expression patterns underlie many pathological conditions such as metabolic diseases, 

neurodegenerative disorders, cardiovascular alterations, arthritis, and cancer (Cal et al., 

2005).  

 

Most of the well-characterized members of the S1 family of serine proteases are either 

secreted enzymes or exocytosed from secretory vesicles into the extracellular environment. A 

structurally distinct group of S1 serine proteases, termed broadly as the membrane-anchored 

serine proteases, has emerged that are synthesized with amino- or carboxy-terminal 

extensions that serve to anchor their serine protease catalytic domains directly at the plasma 

membrane. Additional membrane-anchored serine proteases of the S1 family each possess an 

amino-terminal signal peptide and enter the secretory pathway. Surface localization studies 

demonstrate that membrane-anchored serine proteases normally localize to the cell surface 

and are differentially distributed on apical or basolateral surfaces of polarized cells in patterns 

unique for each protease (Antalis et al., 2011). 

 

 

Gene 8 is a 29-amino acid COOH-terminally, highly conserved but unique neuroendocrine 

peptide originally isolated from intestine. This gene mediates biological effects by interacting 

with high-affinity cell surface receptors. Expression of gene 8 peptides has been detected in 

pheochromocytoma, pituitary adenoma, neuroblastic tumours, gastrointestinal cancer, 

squamous cell carcinoma, brain tumours, melanoma, breast cancer and embryonal carcinoma. 

In several cancers and tumour cell lines expression of gene 8 receptors has been shown as 

well. Expression of peptide or receptors has been correlated with tumour stage or subtypes of 

pituitary adenoma, neuroblastic tumours, colon carcinoma and squamous cell carcinoma. 

Gene 8 and its receptors are promising targets for diagnosis and treatment of several types of 
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tumours. There are several explanations for a possible influence of the circulating levels of 

gene 8 on cancer growth. For instance, circulating levels may be influenced by cancer growth 

as a result of altered expression of gene 8 in cancer tissues. As gene 8 is an inhibitory factor 

in regulating cell proliferation the protection mechanism would be increased with the cancer 

growth. Gene 10 is an aminoacyl-tRNA synthetase (ARS) that links the amino acid glycine to 

its corresponding tRNA prior to protein translation and is one of three bifunctional ARS that 

are active within both the cytoplasm and mitochondria (McMillan et al., 2014). Gene 10 

catalyzes the attachment of glycine to tRNA-gly in the cytoplasm and mitochondria and thus 

plays an essential role in protein synthesis. Park et al (2012) have implicated secreted 

extracellular gene10 in immune surveillance against cancer. Gene 10 is secreted by 

macrophages in response to FAS ligand that is released from tumor cells and acts as a 

cytokine with a distinct role against specific tumor cells, this enzyme is essential for protein 

synthesis in all cells and tissues. ARS are being increasingly recognized as having important 

secondary functions that include regulation of transcription, translation, splicing and 

apoptosis. ARS mutations have been implicated in a wide range of human diseases 

(McMillan et al., 2014). 

 

 

4.5. Conclusion 

A critical step in the biomarker discovery pipeline is validation of biomarkers. Before any 

biological entity can be stated as a biomarker all required tests must be done in order to prove 

that the entity is fit for such a purpose. There are some limitations in array technologies even 

though they are comprehensive and relatively accurate in analysing gene expression and have 

been used in numerous human malignancy studies. Microarray results are influenced by 

various external factors such as RNA extraction. Consequently, differentially expressed genes 

in such preliminary discovery efforts need to be confirmed using alternative methods such as 

qPCR (Hu et al., 2006). Even though microarray technology is growing broadly, qPCR is still 

one of the best methods used extensively for gene expression studies in tissue samples 

(Pfaffl, 2001) and as such was used in this study. Quantitative real time PCR has the 

capability to quantify rare transcripts and small changes in gene expression. The difference in 

gene expression has the ability to shed light on the role of a gene or gene product in a 

particular process. Changes in gene expression of a particular gene or a group of genes can be 

indicative of a diseased state as the body tries to maintain homeostasis (Pfaffl, 2001). 
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This research study intended to validate the ten putative genes identified using an in silico 

approach in cervical cancer cell lines in comparison to a non-cancerous cervical cell line and 

relative to other cancer types. However, at present there are no non- cancerous cervical cell 

line, therefore normal fibroblast cell lines were used instead. A postulation established for 

this study was based on the theory that genes differentially expressed in cervical cancer 

compared to normal, non-diseased state might shed light into the progression and diagnosis of 

this disease. Further evaluation of the expression levels of these genes in other cancer types 

may lead into understanding which genes could possibly be explored as putative biomarkers 

for diagnostic and therapeutic purposes in cervical cancer and if new discoveries can be 

uncovered to better understand the role of these genes in other cancers. This aim was 

achieved by evaluating the expression levels of these genes using qPCR.  The gene 

expression levels of the ten putative genes were evaluated across various cancer cell lines 

represented in table 4.2. The results from qRT-PCR were analysed using the REST-384© 

software package through Pfaffl model (Pfaffl, 2001). The software tested for significant 

results by means of randomisation test and target genes with a p-value less than 0.05 were 

deemed as showing significant gene expression in cancer cells relative to the calibrator 

(KMST-6). 

 

A relative expression ratio plot was generated using the software as shown in figure 4.3. The 

gene expression levels for all cancer types were measured relative to a normal fibroblast cell. 

Three genes: 5, 8 and 10 showed a significant differential expression in cervical cancer 

comparative to other cancer types.  It was noted that five genes: 1, 6, 7, 9, and 10 were down-

regulated in HT3 (cervical cancer), with gene 10 being significantly down-regulated. This 

correlates with the design of the study to identify biomarkers differentially expressed in 

cervical cancer. Furthermore, it was interesting to observe that the expression of these 

putative genes had an expression ratio significantly above PTEN, a gene reported as a 

biomarker for cervical cancer. This suggested that these genes might play a role in cervical 

cancer development and be stronger indicators of disease onset and or progression compared 

to PTEN. The genes that showed slight expression in cervical cancer cannot be disregarded to 

have no significant role in cervical cancer. As it has been documented cancer is a 

heterogeneous disease and is very complex; hence some genes are expressed at basal levels at 

one point during the course of cancer development (Mishra and Verma, 2010).  
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Studies performed on cell lines can be limiting due to that analysis on tissues is outside a 

biological system. The assumption that some genes could be expressed at one point or stage 

of the disease state at which the tissue was isolated may not necessarily present the holistic 

process of cancer. These genes can be further defined in other cancer types, thus these genes 

were further investigated in other cancer types to evaluate if they will display a similar profile 

as they have in cervical cancer. The expression ratios exhibited by the putative genes 

revealed the need to understand mechanism at which these genes are associated to other 

cancers. As depicted in figure 4.3 it was clear that although these genes were differentially 

overexpressed across all cancer types, none were specific to one type of cancer. Therefore, 

the other seven genes (1, 2, 3, 4, 6, 7, and 9), showed overexpression in other cancer types in 

comparison to cervical cancer. Gene 3 was over-expressed in an ovarian cancer cell line 

(CAOV3). 

 

It is evident that the genes presented in this study were expressed ubiquitously across all 

cancer types that were investigated. Some genes showed upregulated expression in cervical 

cell lines while other genes remained unchanged. The genes highlighted yellow in table 4.10 

were of interest as they exhibited overexpression above PTEN.  The study brought about an 

understanding that the red highlighted genes (gene 3 and 7) showed upregulated expression in 

ovarian and breast cancer respectively. It also managed to prioritise genes significantly 

overexpressed in cervical cancer and may be pursued further as biomarkers for cervical 

cancer. These studies serve as basis for future investigations to determine whether these 

candidate genes can be exploited as potential biomarkers for diagnosis of cancers in general, 

as well as, for specific cancers. Thus, they could also serve as potential drug targets for 

cancer treatment. 
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CHAPTER 5: General Discussion and Future Directions 

Cancer is emerging as an under-recognised global threat to human development. It is 

estimated that there will be 22.2 million new cases of cancer and 12.7 million cancer-related 

deaths worldwide in 2030(Ginsburg, 2013). More than half of new cases and two-thirds of 

cancer deaths will occur in low and middle-income countries, where access to early, accurate 

diagnosis and quality care are woefully lacking. The increasing burden of cancer has 

especially harsh consequences for women due to gender discrimination, cultural taboos and 

stigma, all of which conspire to limit women’s choices to seek care even when it is available 

(Ginsburg, 2013). In South Africa however, women, especially black women, present with 

advanced cancer–too late for them to be cured. Not only the World Health Organisation, but 

also the Cancer Association of South Africa (CANSA) stresses prevention and early detection 

as the best way to fight the disease (Maree and Wright, 2010).  Early diagnosis of cancer is 

difficult because of the lack of specific symptoms in early disease and the limited 

understanding of aetiology and oncogenesis (Cho, 2007).  

 

One of the main reasons for high death rates in cancer patients is due to the lack of well-

validated and clinically useful biomarkers with adequate sensitivity and specificity to detect 

this disease at early stages. However, cervical cancer is curable when detected early before 

the development of metastasis. Development of cervical cancer is a multi-step process 

initiated by persistent infection with high-risk human papillomavirus, which in a limited 

number of cases progresses via cervical intraepithelial neoplasia to invasive cervical cancer 

that usually spans 10-20 years, which offers a period of several years to detect the tumour in 

an early stage and to interfere with the natural cause of the disease.  

 

All South African women have access to cervical cancer screening at primary health clinics 

however the screening uptake is only approximately 20%, thus most women present with late 

cervical cancer. A study conducted by Van Schalkwyk et al (2008), revealed that women 

were willing to be diagnosed but were failed by the health care system, with their initial 

interaction with the health care system not resulting in prompt diagnosis or treatment and 

they repeatedly had to go back before being diagnosed  (Issah et al., 2011). Early detection of 

CC can therefore significantly reduce the mortality associated with this malignancy. 
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However, current screening methods including Pap smear test, colposcopy, pathological and 

preoperative diagnosis either lack the required sensitivity and specificity or are costly and 

invasive. Some biomarkers such as the CEA levels and tumour-associated gene mutations 

have only shown some prognostic or predictive value (Cho, 2007). There is therefore an 

urgent need for developing new diagnostic/screening tests and identifying putative 

biomarkers to diagnose, predict and monitor the progress of CC and eventually find more 

efficient drug targets for this disease.  

 

The aim of this study was to discover biomarkers that could aid in the early diagnosis of 

cervical cancer. A diagnostic system that can detect biomarkers that are found in bodily fluids 

can serve as a less invasive, inexpensive and specific and sensitive method for detection. The 

in silico approach used in this study was successful in identifying genes that are associated 

with cervical cancer as well as those who have not yet been associated with the disease thus 

verifying that data obtained from this pipeline was reliable. The methodology employed in 

chapter two allowed for genes to be proficiently prioritised based on various categorical 

levels. The results indicated that this pipeline can save time and can be incorporated in 

biomarker discovery studies successfully. A study done by Prassas et al (2012), used a 

similar bioinformatic approach to identify proteins with tissue-specific expression for 

biomarker discovery, their study managed to identify previously studied cancer biomarkers. 

This study identified ten putative biomarkers and they were verified in each step of 

elimination and were confidently selected for further validation.   

 

Databases house vast amounts of information therefore for biomarker identification in silico 

approaches were carefully selected to uncover the wealth of information. Furthermore each 

tool employed in this study was able to prioritize and discriminate between data that was 

required for the next step of the study and eliminate those that were not. This required the 

user to establish parameters of inclusion or exclusion and these were defined in Chapter 2. 

The study made use of multistep processes which involved data mining, literature mining, 

refinement and annotation tools that have led to the identification of putative biomarkers for 

cervical cancer. The identification of candidate biomarkers on a small scale as opposed to 

wet-bench techniques could lead to more biomarkers being identified in shorter periods of 
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time (Magni et al., 2010). Understanding genes on the transcriptional level gives new insight 

into how the genes are regulated; it can also implicate them in various pathways and can 

indicate similar protein-protein interactions. The in silico pipeline proved to be valuable in 

extracting complex candidate gene lists. Most of the genes were predicted to be enriched for 

various cancer-associated processes by Gene Ontology (DAVID), protein-protein interactions 

(STRING) and pathway analysis (KEGG). The GOI were predicted to be transcriptionally 

coupled to PPARγ (down-regulated in pre-invasive cervical cancer) and to be interacting with 

PCNA, thereby showing potential value for providing an early diagnosis of cervical cancer. 

Ninety percent (90%) of the GOI were co-expressed, while many genes participated in 

cancer-related pathways. This could implicate their possible role in a coordinated cervical 

cancer pathway. Lastly, their potential tissue specificity and sensitivity was also 

demonstrated by various in silico analyses. This section of the study successfully implicated 

the ten cell surface gene products in cancer based on their regulatory elements, interacting 

proteins and pathway analysis. The in silico biomarker discovery should be a continuous 

study in a quest to identify potential novel genes since microarray databases are frequently 

updated. Further bioinformatics studies should be done between the putative biomarkers and 

known clinical biomarkers for cervical cancer. Gene expression profiles should also be 

established by combining the candidate genes with their interacting proteins for early 

diagnosis. Further investigation of the GOI and their regulatory elements through projects 

such as the ENCODE Consortium could also provide valuable insights and help to map a 

possible cervical cancer pathway. 

 

It is well accepted that in silico prediction of biomarkers should not be separated from in-

vitro validation in a biological system. With that in mind, a molecular approach was 

employed to confirm gene expression patterns of the ten putative biomarkers which were 

identified using an in silico approach. An important aspect of cancer aetiology lies in the 

stepwise accumulation of genetic and epigenetic changes. These changes contribute to the 

development of cancer and they vary between different cancer types and stages, tissues and 

individual (Sadikovic et al., 2008). Bioinformatics approach in conjunction with 

experimental validation provided a powerful combination to carry out this research study. 

qPCR significantly simplifies and accelerates the process of producing reproducible and 

reliable quantification of target genes transcription.  
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The study revealed that PTEN was differentially expressed in CC cell lines and it is therefore 

being investigated as a potential biomarker for the prognosis of CC. However, the PTEN 

biomarker was significantly overexpressed in A549 (lung cancer), MCF7 (breast cancer) and 

SKOV3 (ovarian cancer), thus making this biomarker not to be specific and sensitive for 

cervical cancer. The study also revealed that the ten putative genes were differentially 

expressed in the cancer cell lines as compared to the non-cancerous cell line (KMST6). Three 

genes were shown to be potential biomarkers for cervical cancer, gene 5, gene 8 and gene 10.  

Gene 3 was upregulated in ovarian cancer and gene 7 was overexpressed in breast cancer.  In 

conclusion, the work presented in this thesis has revealed several candidate putative 

biomarkers that need to be tested on samples from cervical cancer patients in combination 

with known cervical cancer biomarkers used in clinical settings.  

 

Further studies could include confirming the expression of protein products of differentially 

expressed gene candidates in media of various human cell lines (cancer and non-cancerous) 

using western blots. Furthermore, the presence of these proteins could be investigated in 

cervical cancer patient samples using ELISA. This study may open avenues into nano-

diagnostics by using nano-devices. Biomarkers can exist in small quantities in biological 

fluids and may be masked by other proteins. The application of nanotechnology can ensure 

the detection of these biomarkers on a nano-scale. By combining nanotechnology in the form 

of gold nanoparticles, the study can be used to develop a lateral flow device for the detection 

of CC as shown in Figure 5.1. This has the potential for a diagnostic test to be developed that 

is more cost effective and can rapidly be adopted into clinical practice. Also, it may be 

possible to test for these biomarkers in serum or other bodily fluids thus avoiding invasive 

diagnostic tests.

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: A nanotechnology lateral flow assay where ligands will bind to the biomarkers for a positive result. 
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