
UNIVERSITY OF THE WESTERN CAPE

A Comparison of Machine Learning

Techniques for Hand Shape Recognition

by

Roland Foster

A thesis submitted in fulfillment for the

degree of Master of Science

in the

Faculty of Science

Department of Computer Science

Supervisor: Mehrdad Ghaziasgar

Co-supervisor: James Connan

February 2015

http://www.uwc.ac.z
http://www.cs.uwc.ac.za/~rfoster
http://www.cs.uwc.ac.za
http://www.cs.uwc.ac.za

Declaration

I, Roland Foster, declare that this thesis “A Comparison of Machine Learning Tech-

niques for Hand Shape Recognition” is my own work, that it has not been submitted

before for any degree or assessment at any other university, and that all the sources I

have used or quoted have been indicated and acknowledged by means of complete ref-

erences.

Signature: . Date: .

i

“Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful

beyond measure. It is our light, not our darkness that most frightens us. We ask our-

selves, ’Who am I to be brilliant, gorgeous, talented, fabulous?’ Actually, who are you

not to be? You are a child of God. Your playing small does not serve the world. There is

nothing enlightened about shrinking so that other people won’t feel insecure around you.

We are all meant to shine, as children do. We were born to make manifest the glory of

God that is within us. It’s not just in some of us; it’s in everyone. And as we let our

own light shine, we unconsciously give other people permission to do the same. As we

are liberated from our own fear, our presence automatically liberates others.”

Marianne Williamson

Abstract

There are five fundamental parameters that characterize any sign language gesture.

They are hand shape, orientation, motion and location, and facial expressions. The

SASL group at the University of the Western Cape has created systems to recognize

each of these parameters in an input video stream. Most of these systems make use

of the Support Vector Machine technique for the classification of data due to its high

accuracy. It is, however, unknown how other machine learning techniques compare to

Support Vector Machines in the recognition of each of these parameters.

This research lays the foundation for the process of determining optimum machine learn-

ing techniques for each parameter by comparing Support Vector Machines to Artificial

Neural Networks and Random Forests in the context of South African Sign Language

hand shape recognition. Li, a previous researcher at the SASL group, created a state-

of-the-art hand shape recognition system that uses Support Vector Machines to classify

hand shapes.

This research re-implements Li’s feature extraction procedure but investigates the use of

Artificial Neural Networks and Random Forests in the place of Support Vector Machines

as a comparison. The machine learning techniques are optimized and trained to recognize

ten SASL hand shapes and compared in terms of classification accuracy, training time,

optimization time and classification time.

Keywords

Hand Shape Recognition, Face Detection, Skin Detection, Background Subtraction,

Morphological Operations, Haar Features, Support Vector Machine, Artificial Neural

Networks, Random Forests, Optimization.

iii

Acknowledgements

I would first like to thank our Heavenly Father for making all of this possible by granting

me the wisdom, strength and focus I needed to study at the University of the Western

Cape and to complete this research. Thank you for guiding me throughout my decisions

in my life, especially the decision to study further to pursue my MSc degree.

A big thank goes to my parents for all of their support, both emotionally and financially,

throughout my life. I am very fortunate in the fact that I could put my focus solely

into my studies and you guys would see to all my needs. Thank you for your words of

wisdom and motivation and for always showing an interest in my studies.

A special thank you goes to my supervisor Mehrdad Ghaziasgar for your guidance,

support, wisdom and patience. You truly showed me that it doesn’t matter what the

size of the problem is, if you break it down into simpler subsets, anything can be achieved.

I thank you for all of the help you have given me during this research, it has been highly

appreciated. To my co-supervisor James Connan, thank for all of your support and

guidance from afar.

To my friends and extended family, I’d like to say thank you for all your kind words of

support and motivation. Thank you for always being there in times of need. To my lab

mates Kenzo, Nathan, Diego, Dane, Ibraheem, Warren and Imran, I thank you guys for

making our lab a fun place of learning. I would also like to thank you guys for your

advice and assistance.

I would like to thank the University of the Western Cape for the opportunity to complete

my studies here. For the past 6 years of my life, I’ve found the lecturers very helpful. I

extend my deepest gratitude to all of my lecturers throughout my years of study.

Lastly, but most importantly, to Shannon, thank you for always being there for me and

for your support, patience, understanding and love. It really means the world to me and

so do you.

Publications

• Title: A Comparison of Machine Learning Techniques for Hand Shape Recogni-

tion.

Authors: Roland Foster, Mehrdad Ghaziasgar, James Connan, Reginald Dodds.

Published in the SATNAC Conference in Port Elizabeth, 2014.

• Title: A Comparison of Machine Learning Techniques for Hand Shape Recogni-

tion.

Authors: Roland Foster, Mehrdad Ghaziasgar, James Connan.

Published in the SATNAC Conference in Stellenbosch, 2013.

Contents

Declaration of Authorship i

Abstract iii

Keywords iii

Acknowledgements iv

Publications v

List of Figures ix

List of Tables xi

Abbreviations xii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Research Question . 4

1.3 Research Objectives . 5

1.4 Premises . 5

1.5 Thesis Outline . 6

2 Related Work 8

2.1 Hand Shape Recognition Using Machine Learning Techniques 9

2.1.1 Hardware-Based Systems . 10

2.1.2 Vision-Based Systems . 13

2.2 Gesture Recognition Using Machine Learning Techniques 17

2.2.1 Hardware-Based Systems . 18

2.2.2 Vision-Based Systems . 21

2.3 Comparisons of Machine Learning Techniques 24

2.4 Summary and Conclusion . 27

3 Techniques for Hand Shape Recognition 30

3.1 Image Processing Techniques for Hand Shape Recognition 30

vi

Contents vii

3.1.1 Canny Edge Detection . 30

3.1.1.1 Smoothing the Image Using a Gaussian Filter 31

3.1.1.2 Computation of the Image Gradients 32

3.1.1.3 Applying a Non-maximum Suppression 33

3.1.1.4 Double Thresholding . 33

3.1.2 Face Detection . 34

3.1.2.1 Haar-Like Wavelet Feature Detection 35

3.1.2.2 The Use of An Integral Image to Compute Haar-Like
Features . 36

3.1.2.3 The Use of AdaBoost to Select Haar-Like Features 37

3.1.2.4 A Rejection Cascade of Weak Feature Classifiers 38

3.1.2.5 Evaluation of the Face Detection System 39

3.1.3 Adaptive Skin Detection . 39

3.1.3.1 Face Detection . 40

3.1.3.2 Histogram Back Projection and Thresholding 40

3.1.4 Background Subtraction Using Gaussian Mixture Models 41

3.1.5 Hand Detection Using Hierarchical Chamfer Matching 43

3.1.5.1 Computation of the Chamfer Distance Transform 43

3.1.5.2 Chamfer Distance for Template Matching 44

3.1.5.3 Hierarchical Template Matching 45

3.1.6 Connected Component Analysis 46

3.1.7 CAMShift . 47

3.2 Machine Learning Techniques . 48

3.2.1 Support Vector Machines . 49

3.2.1.1 Support Vector Machine Classification 49

3.2.1.2 Kernel Functions . 54

3.2.1.3 Multi-class SVM Techniques 54

One-Against-All . 55

One-Against-One . 55

Directed Acyclic Graph Support Vector Machine 55

3.2.2 Artificial Neural Networks . 56

3.2.2.1 The Perceptron . 57

3.2.2.2 Activation Functions . 58

3.2.2.3 Multilayer Perceptron . 59

3.2.3 Random Forests . 62

3.2.3.1 The Decision Tree . 63

3.2.3.2 Random Forest Algorithm 65

3.2.4 Summary . 66

4 Design and Implementation of the Hand Shape Recognition System 67

4.1 Feature Extraction . 68

4.1.1 Skin Image . 69

4.1.2 Motion Image . 70

4.1.3 Combination of the Skin and Motion Images 70

4.1.4 Locating the Hand . 71

4.1.5 Using CAMShift for Hand Tracking 72

4.1.6 Feature Extraction and Normalization 72

Contents viii

4.2 Classification . 73

4.2.1 Classification Using the Support Vector Machine 74

4.2.2 Classification Using the Artificial Neural Network 75

4.2.3 Classification Using the Random Forest 77

4.3 Summary . 77

5 Experimental Results and Analysis 78

5.1 Training and Testing Datasets . 79

5.2 Optimization Experimentation . 79

5.2.1 k-fold Cross Validation . 80

5.2.2 Optimization of the Support Vector Machine 81

5.2.3 Optimization of the Artificial Neural Network 82

5.2.4 Optimization of the Random Forest 84

5.2.5 Comparison in Optimization and Training Procedures 85

5.3 Classification Experimentation . 86

5.3.1 Experimental Procedure . 87

5.3.2 Results and Analysis – Overview and Comparison 88

5.3.3 Results and Analysis – Accuracy Per Hand Shape 90

5.3.4 Results and Analysis – Accuracy Per Subject 95

5.4 Summary of Comparisons and Selection of the Optimal Technique 99

5.5 The Hand Shape Recognition System results and Nitze et al’s experimen-
tal results. 103

5.6 Summary and Conclusion . 104

6 Conclusion 105

6.1 Future Work . 106

6.2 Concluding Remarks . 107

A Additional Optimization Results 108

B Additional Test Results 110

Bibliography 113

List of Figures

2.1 The 28 JSL finger spelling hand shapes recognized by Tabata et al. [61]. . 11

2.2 The isolated hand depth images used for classification [34]. 11

2.3 An example of the Li’s hand shape estimation system [36]. 14

2.4 The skin colour filter used by Nyugen et al. [46]. 14

2.5 The result of selecting the largest object in Nyugen et al.’s system [46]. . 14

2.6 Segmentation of the hand from the arm [46]. 15

2.7 The ten ASL hand shapes to be recognized by Nyugen et al. [46]. 15

2.8 An overview of Kulkarni and Lokhande’s image processing procedure [33]. 16

2.9 Sample ASL finger spelling images recognized by Kulkarni and Lokhande’s
system [33]. 17

2.10 The Nintendo PowerGlove: The instrumented glove chosen for feature
extraction by Kadous [29]. 18

2.11 The effects of the lexicon size and the number of samples of each sign on
the accuracy of Kadous’ system [29]. 20

2.12 Samples from the dataset consisting of 24 Korean Sign Language letters
[35]. 21

2.13 The proposed data glove of Lee et al. and its components [35]. 21

2.14 Estimation of the torso and hand positions of the person by Avilés et al.
[6]. 22

2.15 The 10 gestures recognized by Avilés et al.’s system [6]. 22

2.16 Overview of the study area of Nitze et al. showing the field boundaries
with crop types [47]. 25

3.1 Canny edge detection: (a) The original image. (b) Application of the
Canny edge detection algorithm [13]. 34

3.2 Three types of Haar-like wavelet features used by the Viola-Jones face
detector [66]. 35

3.3 Computation of the Integral Image: The value of the Integral Image at
(x, y) is the sum of all pixels to the top-left of the pixel, in the shaded
region [66]. 36

3.4 An example of the computation of the integral image [66]. 37

3.5 The typical structure of a rejection cascade [66]. 38

3.6 Example of the testing data from the MIT+CMU dataset [55]. 39

3.7 a) Original image and b) Skin-detected image. 41

3.8 The application of Gaussian Mixture Models (GMMs) to achieve back-
ground subtraction: a) Original image and b) Background-subtracted
image. 43

3.9 Flowchart of the Hierarchical Chamfer Matching Algorithm 45

3.10 An example of the 8-connectivity labeling operator [16] 46

ix

List of Figures x

3.11 A two-class classification problem and the various hyperplanes that can
be used to separate the two classes [48]. 50

3.12 The optimal hyperplane for separating two classes [48]. 50

3.13 A Directed Acyclic Graph (DAG) of a 4-class problem. 56

3.14 An example of a Perceptron. 57

3.15 A Multilayer Perceptron example. 59

3.16 (a) The structure of a typical decision tree and (b) An example decision
tree to predict whether an input image was taken indoors or outdoors[15]. 64

4.1 An overview of the hand shape recognition system. 68

4.2 Locating the signer’s nose. 69

4.4 The result of applying Gaussian Mixture Models to highlight moving
pixels—the motion image. 71

4.5 The skin image and motion image combined to form a moving skin image. 71

4.6 The hand of the signer tracked by the CAMShift tracking window. 72

4.7 The process of extraction and normalization of the hand contour: (a) The
original tilted hand contour with a minimum bounding box drawn around
it (b) The minimum bounding box aligned with the vertical axis (c) The
normalized and resized hand contour. 73

4.8 The ten SASL hand shapes. 74

4.9 Illustration of the data file format used by LibSVM. 75

4.10 The data file of the Artificial Neural Network 76

5.1 The 12 subjects used for training and testing. 80

5.2 A visual representation of k-fold cross validation [9] 81

5.3 Optimization of the SVM: A graph depicting the grid-search optimization
results. 82

5.4 Optimization of the ANN: A graph of the cross-validation accuracy for
each number of hidden neurons m used. 83

5.5 Optimization of the RF: The cross-validation accuracy for each increment
in the number of trees B for various depths Dmin. 85

5.6 The ten SASL hand shapes. 87

5.7 Average accuracy per hand shape class across all test subjects. 90

5.8 Average recognition accuracy of each machine learning technique per test
subject. 96

5.9 The recognition accuracy obtained for each hand shape by each machine
learning technique for Subject 9. 100

5.10 Subject 9 performing (a) Hand Shape 3 in an incorrect manner that is
very similar to Hand shape 10 and (b) Hand Shape 10 performed correctly.101

List of Tables

2.1 The mean recognition accuracy for each JSL hand shape by Tabata and
Kuroda. 10

2.2 Recognition accuracy and training time using datasets 1 and 2 by Trigueiros
et al. [62]. 24

2.3 Cultivated crops recognized by Nitze et al. and the number of fields in
the study area with each type of crop. 26

2.4 The classification accuracy, training time and classification time of each
machine learning technique by Nitze et al. 26

2.5 Phishing email error rate (lower is better) using various classifiers by
Nimeh et al. 27

5.1 Classification accuracy of the each machine learning technique per hand
shape. 91

5.2 Confusion summary of the SVM for Hand shape 10. 92

5.3 Confusion summary of Hand shape 10 for all three machine learning tech-
niques. 94

5.4 Confusion summary of the Random Forest for Hand shape 2. 94

5.5 Confusion summary of Hand shape 2 for all three machine learning tech-
niques. 95

5.6 Classification accuracy of each machine learning technique per test subject. 96

5.7 Classification accuracy of the Support Vector Machine per hand shape for
Subject 9. 98

5.8 Classification accuracy of the Support Vector Machine per hand shape for
Subject 9. 98

5.9 Summary of results and analysis for all three machine learning techniques. 102

5.10 Timing and accuracy results of the hand shape recognition (HSR) and
Nitze et al (Nitze). 103

A.1 The hidden neurons and their corresponding cross-validation accuracies . 108

A.2 The cross-validation accuracies for Random Forests 109

B.1 Classification accuracy per subject of the Support Vector Machine. 110

B.2 Classification accuracy per subject of the Artificial Neural Network. . . . 110

B.3 Classification accuracy per subject of the Random Forest. 111

B.4 Confusion matrix for the recognition accuracy of the Support Vector Ma-
chine. 111

B.5 Confusion matrix for the recognition accuracy of the Artificial Neural
Network. 111

B.6 Confusion matrix for the recognition accuracy of the Random Forest. . . . 112

xi

Abbreviations

ANN Artificial Neural Networks

ASL American Sign Language

BART Bayesian Additive Regression Trees

CAMShift Continously Adaptive Mean Shift

CART Classification and Regression Trees

CCA Connected Components Analysis

CPU Central Processing Unit

DAG Directed Acyclic Graph

DNBC Dynamic Naive Bayesian Classifiers

DSP Digital Signal Processor

FPS Frames Per Second

GB Gigabyte

GHz Giga hertz

GMM Gaussian Mixture Models

HMM Hidden Markov Models

H-S Hue Saturation

HSV Hue Saturation Value

JSL Japanese Sign Language

k-NNs k-Nearest Neighnbours

KFPS Korean Fingerspelling Practice System

KSL Korean Sign Language

LibSVM Library of Support Vector Machines

LR Logistic Regression

MCU Micro-Controller Unit

ML Maximum Likelihood

MLP Multi-Layer Perceptron

xii

Abbreviations xiii

MLRF Multi-Layered Random Forest

NB Naive Bayes

PC Personal Computer

RAM Random Access Memory

RBF Radial Basis Function

RF Random Forests

RGB Red Green Blue

SASL South African Sign Language

SIFT Scale Invariant Feature Transform

SVM Support Vector Machines

SVM-RBF Support Vector Machine - Radial Basis Function

SVM-POLY Support Vector Machine - Polynomial Kernel

Chapter 1

Introduction

1.1 Background and Motivation

Communication is a key part of the everyday life of a human being. We, as human beings,

communicate in order to interact with one another, to express our feelings and to share

our experiences and knowledge with one another. More importantly, we communicate

in order to access various public services and seek help when required. The ability to

communicate is a necessity, as we use it to share ideas with colleagues in the workplace,

to learn with and from our classmates at school, to interact with doctors and nurses in

hospitals, and interact with our families in our homes. Numerous other similar contexts

of use also exist.

About 600,000 Deaf people in South Africa use South African Sign Language as their

first and only language [39]. At this point, it is important to point out two common

misconceptions that exist in popular belief. The first misconception is that there is a

single sign language used by all Deaf people worldwide. The second misconception, that

appears to lead on from the first misconception, is that this (single) sign language is a

signed-gestural equivalent of a specific spoken language, perhaps English. This in turn

leads to the belief that the Deaf all understand a spoken language, perhaps English, and

can, at the very least, read and write.

Stokoe—a prominent sign language linguist—showed, first of all, that each country ap-

pears to have a sign language that is unique to that country [59]. A few examples are

Chinese Sign Language, Australian Sign Language, German Sign Language and South

African Sign Language (SASL). Similar to spoken languages, these sign languages may

have some overlap, but are completely distinct and unique, similar to how English and

German, for instance, are distinct and unique. Stokoe also showed that sign languages

1

Chapter 1. Introduction 2

are fully-fledged natural languages that are completely independent of spoken languages

[59].

The implication of these facts is that a language barrier exists between hearing people

and Deaf people, whose first and only language is a sign language. This gives rise to a

distinction between two groups of deaf people: the deaf with a small d, which are deaf

people educated and able to communicate in spoken languages in some form; and the

Deaf with a capital D, which are deaf people whose first and only language is a sign

language, and are mostly or completely illiterate in spoken languages [31].

The inability to communicate in spoken languages means that the South African Deaf

have limited access to public services such as education and health-care [5]. The ma-

jority of the South African Deaf are completely illiterate in spoken languages [58]. This

means that, similar to hearing people who are illiterate in spoken languages, employment

opportunities for such people are scarce. As such, it is found that Deafness in South

Africa is characterized by poverty and unemployment. Unlike hearing people who are

illiterate, however, the South African deaf have been marginalized and have very little to

no easy access to many essential basic services in a language that they can understand

[32]. Given a choice between a hearing person that is illiterate in spoken language, but

can speak and understand spoken language, and a Deaf person that can’t read, write,

speak or understand spoken language, it is clear that employers may prefer the former.

Sign language interpreters can be employed to translate between spoken and sign lan-

guage in certain contexts. The cost of SASL interpreters, however, is limiting to a

largely poor Deaf community [22]. SASL interpreters are also very scarce and cannot

service a large population, regardless of the cost [22, 64]. In many instances, the pres-

ence of an interpreter is inappropriate such as in medical or psychological consultations.

While SASL interpreters can and have assisted in alleviating communication problems,

a technological translation system that can complement and supplement their services

is desired.

The South African Sign Language (SASL) group at the University of the Western Cape is

currently developing a machine translation system for the automatic translation between

South African Sign Language and English [21]. The main goal of the system is to be able

to translate a recorded SASL video into English audio and vice versa. This allows for

communication between Deaf users and English speaking users. The project aims to use

commodity hardware such as simple web cameras to ensure low cost and simplicity of

the final system. The eventual aim of the project is to realize a mobile-based translation

system that can be used in any context or place.

Chapter 1. Introduction 3

Such a system is expected to have a significant impact on the lives of Deaf people in a

variety of contexts. It can be used, for instance, in an academic environment to enable

Deaf students to study at universities. A Deaf university student can use such a system

to make use of spoken lectures. The system can automatically translate lectures in

English to SASL and translate SASL questions or comments into English for the Deaf

student. The previously mentioned health-care context is another instance in which the

eventual SASL system can significantly impact the life of the Deaf.

One significant aspect of the process involved in the SASL machine translation system

is the ability to recognize SASL gestures from a video stream captured by a commodity

web camera. There are five fundamental parameters that characterize any sign language

gesture [59]. These are: hand location, hand motion, hand orientation, hand shape and

facial expressions. The recognition of SASL gestures necessarily involves the recognition

of each of these parameters in a video stream. This has been one major focus of the

research at the SASL group thus far.

The SASL group has produced systems to recognize the hand shape [36], hand location

[2, 12], hand motion [3, 20, 45] and facial expressions [44, 69] of a signer in a video

stream. The hand shape recognition system of the SASL project, proposed by Li [36],

extracts features pertaining to the hand shape from a web camera, making very few

assumptions about the input images and providing freedom to the user, as required by

the SASL project. It has also been shown to be robust to variations in users such as

skin colour, body dimensions and gender.

Li’s system, as well as the majority of the other SASL parameter recognition systems

mentioned, make use of Support Vector Machines (SVMs) to achieve accurate recog-

nition. SVMs have proven to be very accurate in all of these cases. Li achieved an

accuracy of 83.3% in recognizing 10 key SASL hand shapes. However, it is unknown

how well other machine learning techniques compare to SVMs in the context of sign

language parameter recognition. It is known that specific machine learning techniques

may be better suited to specific classification problems than others. While SVMs may

be accurate, they may not be optimal in this context.

This research proposes to compare SVMs to two other promising machine learning

techniques in classifying the features derived from Li’s hand shape feature extraction

methodology. While a variety of machine learning techniques exist, two machine learn-

ing techniques—Random Forests (RFs) and Artificial Neural Networks (ANNs)—have

shown promise in a variety of classification contexts [1, 33, 34, 46, 47, 62].

This research aims to explore the use of SVMs, RFs and ANNs, and compare these

machine learning techniques to determine which is best suited for use in the specific

Chapter 1. Introduction 4

context of SASL hand shape recognition. The comparison between the machine learning

techniques focuses on four key comparative factors: time-to-optimize, time-to-train,

computational speed and accuracy.

Each machine learning technique has one or more parameters that can be optimized to

achieve an optimal classification model. The time taken to achieve this optimization

differs from technique to technique. Once the optimal parameters are determined, the

classification model is trained using the parameters. The time taken to obtain this model

also varies between techniques. Once optimization and training is carried out, the final

model is characterized by a specific classification accuracy and classification speed, given

a new arbitrary image that needs to be classified, called an “unseen image”. Both of

these factors, once again, differ from technique to technique. All of these factors will be

considered in this research.

Ultimately, the comparison of machine learning techniques has to be carried out for all

of the systems of the SASL project that recognize each of the SASL parameters. This

research lays the foundation for this process by starting with the hand shape recognition

system. It can then be extended, in future, to find the best machine learning techniques

for the recognition of the other four parameters which recognize SASL gestures.

1.2 Research Question

The following research question can be specified based on the previous section: “How

do Support Vector Machines, Artificial Neural Networks and Random Forests compare

in the context of SASL hand shape recognition?”.

The main research question can be broken down into the following research sub-questions:

1. How do the techniques compare in terms of the time taken for optimization and

training?

2. How do the techniques compare in terms of the final classification accuracy on

unseen images once they have been optimized and trained?

3. How do the techniques compare in terms of the time taken to achieve a classification

result on a single input once they have been optimized and trained?

Chapter 1. Introduction 5

1.3 Research Objectives

The following objectives will be met in this research in order to arrive at answers to the

research question and sub-questions specified in the previous section:

1. Implement Li’s complete hand shape feature extraction procedure. The process

of locating, tracking and extracting features from the hand will be implemented

using Li’s methodology.

2. Train and optimize a SVM, RF and ANN, and time these procedures. Each of the

machine learning techniques will be trained on a set of hand shapes. The optimal

parameters will be found for each machine learning technique and these procedures

will be timed and compared.

3. Determine the classification accuracy and classification speed on the testing data.

Once optimized and trained models are obtained for each technique, they will be

compared in terms of how accurately they classify hand shapes and the computa-

tional speed at which they perform the classification.

1.4 Premises

The following assumptions are made in this research:

• It is assumed that the user of the system sits or stands in view of a web camera,

without any extra hardware such as sensory gloves or special markers attached

to his/her hands or body. The skin colour of the user and the background of

the environment in which the user is sitting or standing are also assumed to be

arbitrary. Doing so creates a system which provides the most natural experience

to the signer, which is a requirement of the SASL project.

• It is assumed that only one signer is present in view of the web camera at any time

when performing the SASL hand shapes. This assumption is justified because the

user of the eventual system can easily isolate himself/herself into a quiet area when

using the system. This is also typical of spoken conversations in which busy and

loud environments are avoided.

• It is assumed that the signer will hold up their hand with an open palm until the

tracking component of the system is initialized. This is done in order to be able to

easily and automatically locate the user’s hand initially. From there on, the signer

can move his/her hand freely and perform the various SASL hand shapes.

Chapter 1. Introduction 6

1.5 Thesis Outline

The remainder of the thesis is arranged as follows:

Chapter 2: Related Work : This chapter reviews existing literature in order to build

a base of understanding of machine learning in the context of existing sign language

hand shape, gesture and general recognition systems. It demonstrates that SVMs, RFs

and ANNs have been used extensively to achieve high-accuracy classification. It also

demonstrates the need to compare machine learning techniques in a specific classification

context by showing that specific machine learning techniques may perform well in specific

contexts, but poorly in other contexts. It also explains Li’s feature extraction procedure

and demonstrates that the system is best suited to this research, demonstrating other

systems as making stringent assumptions about the input data or using complex and

expensive hardware.

Chapter 3: Techniques for Hand Shape Recognition: This chapter is split into two

main sections. The first section details key image processing techniques required to

implement the hand shape feature extraction procedure, as a pre-cursor to classification

by the machine learning techniques, and as a base of understanding for the chapters that

follow. The second section gives a theoretical discussion of the classification mechanism

of the three machine learning techniques—Support Vector Machines, Artificial Neural

Networks and Random Forests—which are compared in the context of SASL hand shape

recognition in this research, is provided in this chapter as a base of understanding.

Chapter 4: Design and Implementation of the Hand Shape Recognition System: This

chapter details the implementation of the hand shape recognition system. It discusses

and illustrates the feature extraction procedure implemented in order to achieve Objec-

tive 1 set out in this chapter. It further explains the process involved in training the

three machine learning techniques and using the trained models to obtain a classification

label for a given unseen image, as a basis for the experiments detailed in the chapter

that follows.

Chapter 5: Experimental Results and Analysis : This chapter describes the experiments

carried out to optimize each of the machine learning techniques, and subsequently pro-

duce optimal trained classification models of each technique, thereby achieving Objective

2 set out in this chapter. It further details the experiments carried out to assess the com-

putational accuracy and speed of each of the machine learning techniques and compare

the results of the three techniques, in order to meet Objective 3 set out in this chapter.

An analysis of these results culminates in an answer to the main research question and

the sub-research questions posed in this chapter.

Chapter 1. Introduction 7

Chapter 6: Conclusion: A summary of the findings of this research and the conclusions

drawn is presented, and the thesis is concluded, in this chapter. A discussion of possible

directions for future work are also provided.

Chapter 2

Related Work

This chapter looks at related studies in the contexts of recognition and machine learning.

The purpose of this chapter is to demonstrate from the literature that:

1. Support Vector Machines (SVMs), Random Forests (RFs) and Artificial Neural

Networks (ANNs) can be (and have been) used to achieve high-accuracy recogni-

tion in a variety of contexts, hence their selection in this research.

2. The accuracy of different classification techniques varies, and depends greatly on

the features used. It is therefore important to compare various classification tech-

niques with a given set of features and select an optimum classifier, which is the

basis of this research.

3. Li’s feature extraction procedure is robust, flexible and is the most suitable pro-

cedure for this research. It is low-cost, provides freedom to the user and is robust

to variations in skin colour and body dimensions. Other solutions either use spe-

cialized, expensive and/or cumbersome hardware or make stringent assumptions

about the nature of the input which puts limitations on the use of such systems.

The chapter is organized into four sections: hand shape recognition using machine learn-

ing techniques, gesture recognition using machine learning techniques, comparisons of

machine learning techniques and a summary and discussion of these systems.

Hand shape recognition involves an extraction of features pertaining to the shape of

the hand from an input source and a subsequent classification of those features into

pre-defined category classes using a classification technique. The first section discusses

studies that have used various feature extraction and classification techniques to achieve

hand shape recognition. Where possible, studies that have used SVMs, ANNs and RFs

8

Chapter 2. Related Work 9

will be focused on in order to demonstrate that these techniques can be used to achieve

high-accuracy classification. Also, Li’s feature extraction procedure is discussed and

shown to be a robust and suitable feature extraction method as a precursor to the

comparison of machine learning techniques carried out.

Gesture recognition is similar to hand shape recognition in that features are extracted

and classification is carried out, but it involves the extraction of features that pertain to

an entire gesture, such as hand location, orientation etc. Therefore, the second section

provides a discussion into gesture recognition systems, detailing the feature extraction

and classification techniques used in this regard. Once again, a focus on SVMs, ANNs

and RFs aims to demonstrate that these techniques are suitable candidates in the com-

parison carried out in this research.

The third section discusses selected studies which have compared the use of various

machine learning techniques for the purpose of classification in computer vision as well

as general classification problems. The section demonstrates the fact that, depending on

the specific context and the features used, a specific classifier may perform better than

all others, hence the need to carry out a comparison as is the case in this research.

A summary and conclusions section concludes the chapter.

2.1 Hand Shape Recognition Using Machine Learning Tech-

niques

Hand shape recognition systems in the literature can broadly be sub-divided into two

categories: hardware-based systems and vision-based systems.

Hardware-based systems are systems that make use of special hardware such as a colour-

coded clothing, Data Gloves and depth sensing, stereo or 3D cameras for the extraction of

hand shape features. Using such equipment, both, increases the accuracy of the features

extracted, and simplifies the extraction procedure. Using such hardware, however, places

constraints on the system and the user, and can greatly increase the cost of the system

and reduce the freedom of the user of the system.

Vision-based systems are systems that use only an inexpensive web camera to capture

input in the form of a video stream. The systems then either rely heavily on a variety

of image processing techniques to reduce noise in, and extract clear features from, the

input images, or they make stringent assumptions on the nature of the input in order to

simplify the process. Making use of a vision-based setup with few stringent assumptions

Chapter 2. Related Work 10

can be very challenging and requires a robust set of algorithms to achieve high-accuracy

recognition. However, it ensures a low cost and natural feel to the system.

The following subsections describe the hardware-based and vision-based hand shape

recognition systems, respectively, in the literature.

2.1.1 Hardware-Based Systems

Tabata and Kuroda [60] proposed a system to recognize hand shapes for finger spelling in

Japanese Sign Language (JSL) which they call “Stringlove”. The system uses a custom-

made glove fitted with sensors to capture features of the fingers. The glove consists of 24

inductcoders and nine contact sensors which jointly help determine several parameters

such as: the joint flexion/extension of the fingers, adduction/abduction angles of fingers,

thumb and wrist rotations and the contact position between the fingertips of the fingers.

The system encodes finger parameters and shapes into sign notation code using a Digital

Signal Processor (DSP) embedded in the glove. The notation codes acquired are then

used to recognize hand shapes on the basis of the distinctive features of each finger-

spelling hand posture. A matching procedure is carried out between the notation code

of the hand shape obtained from the glove and notation codes of various hand shapes

stored in a hand shape database. The closest matching hand shape is determined as

the correct recognition result. The system could recognize six JSL finger spelling hand

shapes, namely: “A”, “U”, “TE”, “FU”, “RO” and “WA”.

JSL Hand Shape Accuracy (%)

A 66
U 100
TE 94
FU 100
RO 84
WA 100

Table 2.1: The mean recognition accuracy for each JSL hand shape by Tabata and
Kuroda.

A preliminarily experiment was carried out using two subjects to determine the recog-

nition accuracy of the system. Each subject performed each of the six JSL hand shapes

three times. For each time, the system would attempt to recognize the hand shape

multiple times over a period of time, although exactly how many times and how long

are not clear from the literature. The proposed method showed the notation codes of a

hand shape from the measured data. Table 2.1 illustrates the average accuracy of the

system for each JSL finger spelling hand shape across both subjects and all classification

attempts.

Chapter 2. Related Work 11

The results demonstrate that the use of custom hardware can provide very high recog-

nition accuracies, even as high as 100% for many of the hand shapes, with the exception

of the JSL hand shape for ‘A’ which achieves a 66% accuracy.

In a subsequent study, the same researchers worked to improve the Stringlove prototype

data glove to use only six sensors, as opposed to the 24 sensors used previously [61]. The

newer system follows the same finger categorization method as mentioned previously.

The system was also trained to recognize a much larger number of JSL hand shapes–28

hand shapes as shown in Figure 2.1. In testing the system, the newer prototype achieved

an 82% accuracy for the 28 JSL hand shapes.

Figure 2.1: The 28 JSL finger spelling hand shapes recognized by Tabata et al. [61].

Kuznetsova et al. proposed a system for real-time recognition of American Sign Lan-

guage (ASL) using a depth camera [34]. The system’s feature extraction procedure

involves depth processing on a depth image of an isolated hand, as shown in Figure 2.2.

The input hand image is captured and a depth threshold is used to segment the hand

in the image, that is, the hand is assumed to consist of all pixels that are closer than a

specific distance/threshold to the camera. This depth processing forms a depth image

which is converted into a point cloud by means of inverse perspective transformation.

Figure 2.2: The isolated hand depth images used for classification [34].

A series of concatenated histograms of the resulting image form the feature vector needed

to train a Random Forest-variant called a Multi-Layered Random Forest (MLRF). Data

clustering of the feature vectors is first performed before training the MLRF. Once data

clustering is complete, the first level of the random forest is trained on the aggregated

feature vectors. A cluster label is assigned to each incoming vector of the forest. After

Chapter 2. Related Work 12

the first level training, for each of the clusters, a separate random forest is trained on

the full feature vectors to distinguish between similar signs.

For testing, each sample passes through the first-level forest to determine the cluster

label of the sample. The sample is then passed to the corresponding forest on the

second level to determine its class label.

A public dataset of 24 ASL finger spelling signs consisting of 65000 images from 5

subjects was used to evaluate the accuracy of the MLRF. The data of four of the five

subjects was used to train the MLRF and the system was tested using the data of the

fifth subject. The system was shown to yield a recognition accuracy of 97.4% across all

finger spelling signs. Another test was carried out in which half of the data was used in

training and the other half in testing. The system accuracy deteriorated to 84.7%.

Another system for finger spelling recognition of ASL signs was proposed by Otiniano-

Rodŕıguez et al. [53]. The proposed system uses a Microsoft Kinect sensor to collect

RGB-D information from images.

The system is comprised of four stages. In stage one, a depth map is used to segment

the hand area from the background. The Kinect provides both depth and colour data

which are used to extract the exact hand shape. Stage two entails the extraction of

features from the depth map and intensity images using Gradient descriptors and the

Scale Invariant Feature Transform (SIFT) descriptors respectively. During stage three,

the Bag-of-Visual-Words model is applied to obtain semantic information about the

RGB-D images.

For the use of the Bag-of-Visual-Words model in the research, an image is considered to

be the document and the “words” are the visual entities found in the image. A Support

Vector Machine (SVM) was used for classification of the ASL signs.

The ASL Finger Spelling Dataset [51] was used to train and test the system. Three

types of experiments were performed in order to test the classification accuracy of the

SVM. The first experiment used only RGB images with colour data for testing and

training, and the SVM accuracy achieved was 62.70%. The second experiment made

use of depth images for testing and training and the SVM achieved an accuracy 85.18%.

The third experiment made use of the RGB-D images for testing and training and the

SVM achieved the highest accuracy of 91.26%.

It can be observed that the above systems all use specialized hardware for hand shape

recognition. It is noted in each case that the accuracies obtained are very high, but each

proposed setup is complex, costly and cumbersome.

Chapter 2. Related Work 13

2.1.2 Vision-Based Systems

Li, a former student of the SASL group at the University of the Western Cape, developed

a state-of-the-art system to recognize ten SASL hand shapes in real-time [36]. The

system takes in live video frames of a signer’s upper or entire body from a consumer

web camera and continuously recognizes SASL hand shapes performed by the signer in

real-time.

The system detects the face of the signer in the initial video frame using Haar-like

features. Once the face has been detected, the position of the nose is determined by

isolating the centre of the facial frame. The skin colour distribution of the detected nose

is computed and used to highlight the skin pixels of the signer in every frame of the video

sequence thereafter. In order to achieve skin highlighting, histogram back projection is

applied using the skin colour distribution determined from the nose region. Gaussian

Mixture Models (GMM) are used to achieve background subtraction to separate the

background and foreground of the image. Doing this ensures that only the moving

parts, in this case the signer’s hands, are present in the image.

The hand is located in the resulting image using Hierarchical Chamfer matching only

once on the initial frame. This is used to initialize the CAMShift tracking algorithm,

which continuously tracks the located hand. Rotations of the hand are normalized by

aligning the hand region to the vertical axis. Connected Components Analysis (CCA) is

used to highlight the contour of the hand region in every frame and the contour image is

resized to a resolution of 20× 30 pixels. The resulting image is used as a feature vector

for the hand shape recognition process.

A SVM was used to classify SASL hand shapes. The SVM was trained to recognize ten

SASL hand shapes. The system was demonstrated as being very accurate, achieving

an accuracy of 83.3% across all hand shapes on even complex backgrounds. It was also

demonstrated to be highly robust to variations in test subjects such as skin colour and

hand dimensions. Figure 2.3 depicts Li’s system in action.

Li’s feature extraction procedure is seen as very suitable for the purposes of this research

as it only uses an inexpensive web camera, but is still highly accurate and robust to

complex backgrounds and variations in users. It also provides freedom to the user and

makes no assumptions about the position of the hand in the frame.

Nyugen et al. proposed a system for the recognition of ten American Sign language

(ASL) hand shapes with the use of a consumer web camera to capture input [46].

Extraction of features by the system first involves hand detection using a static skin

colour filter proposed by [18]. The result of applying the skin colour filter is shown in

Chapter 2. Related Work 14

Figure 2.3: An example of the Li’s hand shape estimation system [36].

Figure 2.4. A median filter is then used to reduce noise in the image. The largest object

in the input frame is assumed to be the hand and all smaller objects are the removed

from the frame as seen in Figure 2.5.

Figure 2.4: The skin colour filter used by Nyugen et al. [46].

Figure 2.5: The result of selecting the largest object in Nyugen et al.’s system [46].

A flood fill operation is used to fill the noisy hand contour in the input frame. A wrist

detection algorithm is used to find the position of the wrist in order separate the hand

from the arm as shown in Figure 2.6. The feature vector used is composed of three main

Chapter 2. Related Work 15

features: the change of the horizontal/vertical object pixels, the shape of the boundary

of the hand and the scalar description of the hand.

Figure 2.6: Segmentation of the hand from the arm [46].

Artificial Neural Networks (ANNs) were selected as the machine learning technique for

hand shape classification. A Multi-Layer Perceptron (MLP) network was the type of

ANN used. It consists of three layers: an input layer, which in this case had 48 neurons

corresponding to the size of the feature vector, a hidden layer which consists of neurons,

the quantity of which was decided using a process of trial-and-error, and an output layer

with ten neurons corresponding to the ten ASL hand shapes to be recognized.

Figure 2.7: The ten ASL hand shapes to be recognized by Nyugen et al. [46].

The data used to train the ANN was collected from an American Sign Language hand

posture dataset [38]. Figure 2.7 depicts some of the images of the dataset. A custom

dataset collected using a Logitech 9000 web camera on a simple background with stable

lighting conditions was used to test the system. The videos were taken only of the hand

of the user for easier segmentation. Five people were used to collect this video data,

with each person performing each of the ten ASL hand shapes once.

The training data consisted of a total of 450 samples across all hand shapes, and the

testing data consisted of a total of 445 samples across all hand shapes. Four different

vector sizes were used in testing the system. Feature vector 1 had a vector size of 24

elements and achieved an accuracy of 97.1%. Feature vector 2 achieved an accuracy

of 97.3% with a vector size of 32 elements. Feature vectors 3 and 4 both achieved an

accuracy of 98.0% with vector sizes of 40 and 48 elements, respectively.

Chapter 2. Related Work 16

While the accuracies achieved are very high, stringent assumptions are made about the

nature of the input data in order to simplify the feature extraction procedure and achieve

these accuracies. Specifically, it is assumed that the input frames consist mostly or only

of a single vertically aligned hand on a simple background. This severely limits the

freedom of the user in interacting with the system.

Kulkarni and Lokhande [33] also created a system for the automatic translation of 26

ASL finger spelling hand shapes. The system uses three image processing techniques

for feature extraction and an ANN for recognition of hand shapes. An overview of the

proposed system is shown in Figure 2.8 which is taken from their work. Figure 2.9

depicts sample images of the 26 ASL hand shapes recognized by the system. As seen in

the figure, the system uses images containing only a single hand on a simple background

in a vertical position, similar to Nyugen et al..

Figure 2.8: An overview of Kulkarni and Lokhande’s image processing procedure [33].

In extracting features, the input image is first resized to a resolution of 80×64 pixels and

this image, which is in the default Red-Green-Blue (RGB) colour space, is converted to

grayscale. Canny edge detection [13] is used to highlight the edges in the image which

Chapter 2. Related Work 17

Figure 2.9: Sample ASL finger spelling images recognized by Kulkarni and Lokhande’s
system [33].

collectively form the contour of the hand in the grayscale image. These edges form the

features used to train the ANN.

A Multi-Layer Perceptron (MLP) Neural Network is used to classify input images as one

of the 26 ASL hand shapes. Testing was carried out by making use of both training and

testing data to test the accuracy of the system. The dataset consisted of eight volunteers

performing each of the 26 ASL letters. Hence, there were 8 samples per ASL letter, with

5 of the 8 samples used to train the ANN and the remaining 3 samples used for testing.

For 12 of the 26 ASL letters, all 3 samples were correctly recognized. For an additional

12 letters, 2 out of 3 samples were correctly recognized. For the remaining 3 letters,

only 1 of the 3 samples were correctly recognized.

Once again, while a simple hardware setup is used, specific stringent assumptions are

made about the input data in order to simplify the feature extraction procedure. While

the accuracies achieved are high, the assumptions limit the freedom of the user which

contravenes the requirements of the SASL project. It is also noted from both of the

previous studies that the use ANNs can yield very promising results given a robust set

of hand shape features.

2.2 Gesture Recognition Using Machine Learning Tech-

niques

Similar to hand shape recognition systems, gesture recognition systems in the literature

can also broadly be sub-divided into the two distinct categories previously described:

hardware-based systems and vision-based systems. The following subsections describe

Chapter 2. Related Work 18

the hardware-based and vision-based gesture recognition systems, respectively, in the

literature.

2.2.1 Hardware-Based Systems

Kadous compared two machine learning techniques in the recognition of Australian

Sign Language gestures [29]. Australian Sign Language is also known as Auslan by the

Australian deaf community. There are four thousand well defined signs in this language.

Instrumented gloves are used by the system in order to track the user’s hand and extract

features for recognition. The justification given for the use of data gloves is that they

have been used extensively for direct manipulation in virtual environments and can

therefore also be used in gesture and sign language recognition [29]. The instrumented

glove chosen for this task was the Nintendo PowerGlove.

The PowerGlove was originally designed for use with the Nintendo gaming system. It is

a gaming accessory which provides a set of three attributes in order for feature extraction

to take place. The first set of attributes is the x, y and z positions of the glove relative

to a point of synchronization. The second set of attributes is the degree of rotation of

the wrist given in 30 degree increments. Finally, the degree to which each of the first

four fingers is bent on a scale of 1 to 4 is also provided for each finger.

Figure 2.10: The Nintendo PowerGlove: The instrumented glove chosen for feature
extraction by Kadous [29].

Two machine learning techniques were used for gesture recognition and compared in this

regard. They were instance-based learning and decision tree building. Instance-based

learning stores all training instances in “attribute space”. Given an unseen instance, it

finds the nearest instance in the attribute space and classifies the test instance according

to this nearest neighbour. Decision tree building builds a hierarchy of decisions based on

attribute values. The attribute values of an unseen instance can then be used to retrace

a series of decisions to a specific class.

A set of 95 Auslan signs performed by 3 signers were selected to train and test the

system. These signs were one-handed signs collected using a PowerGlove worn on the

right hand of test subjects. The glove was attached to an SGI Iris 4D workstation for

processing. Each of the signers contributed between 8 and 20 samples for each of the

Chapter 2. Related Work 19

95 signs. To avoid the effects of fatigue on the results of individual signs, the order of

the signs was randomly changed between signers. A total of 6650 signs were collected

and these were used to compare the recognition accuracy of the two machine learning

techniques.

Five-fold cross validation was used to ensure a good measure of recognition accuracy.

n-fold cross validation involves dividing the collected data into n sets and in each set,

n− 1 parts of the data are used to train the classifier and the remaining part is used for

testing. The average accuracy over all n parts provides a good measure of the recognition

accuracy of the classifier. The Instance-based learning technique achieved an accuracy

of 80% and the C4.5 implementation of a decision tree builder achieved a significantly

lower accuracy of 55%.

Kadous analysed the behaviour of each of the machine learning techniques. Figure 2.11a

depicts the error rate of the system with respect to the number of samples per sign used

to train each classifier. Figure 2.11b summarizes the error rate with respect to the size

of the lexicon recognized. He analysed the effect of the number of samples per sign on

the error rate, and it was expected that a larger number of samples would reduce the

rate of error. Figure 2.11a confirms the expectation that an increase in the number of

samples per sign lowers the error rate, thus improving recognition accuracy. As regards

the influence of the lexicon size on the error rate, it was expected that a larger lexicon

would make it harder for each the classifiers to discern between signs, hence, a higher

error rate. Figure 2.11b once again confirms this expectation.

Lee et al. proposed a Korean Fingerspelling Practice System (KFPS) which uses a data

glove [35]. The KFPS is comprised of three modules: letter, word and short sentence

recognition of Korean Sign Language (KSL), as well as a gesture-based game. There

are a total of twenty-four hand shapes for KSL letters which are composed of fourteen

consonants and ten vowels. The twenty-four KSL letters are shown in Figure 2.12.

Combinations of these letters form words and short sentences.

The custom-made data glove used by the system to capture gestures consists of 10

sensors: 5 flex-sensors, 3 pressure-sensors and 2 tilt-sensors. These sensors measure the

gesture postures of the palm and fingers for the extraction of features. The glove is

shown in Figure 2.13.

As can be seen from Figure 2.13, there is a flex sensor placed on each of the five fingers,

a pressure sensor between the fingers and tilt sensors are located on the back and the

palm of the hand. A Micro-controller Unit (MCU) is used to capture the data from each

sensor. The data is then transmitted via the Slave Bluetooth to the Master Bluetooth

device, both depicted in Figure 2.13, which is connected to a computer for processing and

Chapter 2. Related Work 20

(a)

(b)

Figure 2.11: The effects of the lexicon size and the number of samples of each sign
on the accuracy of Kadous’ system [29].

recognition. The twenty-four letters of KSL are subdivided into four groups according

to their tilt orientation. To obtain the finger posture measurement, the flex and pressure

sensors of the glove are used. The values gathered from these sensors are stored in a

database.

The classification of the gestures is performed using a k-means algorithm. Five subjects

of mixed gender were used to test the KFPS system. Each subject had to perform

a series of tasks which involved performing various KSL letters, words and sentences.

Each task was carried out three times by each of the five subjects. The KFPS system

achieved a gesture recognition rate of 80.27%.

Chapter 2. Related Work 21

Figure 2.12: Samples from the dataset consisting of 24 Korean Sign Language letters
[35].

Figure 2.13: The proposed data glove of Lee et al. and its components [35].

The previous studies once again demonstrate that the use of specialized hardware can

yield very high accuracy recognition at the expense of simplicity, cost and user freedom.

It is also noted that different machine learning techniques can yield very different accu-

racies and it is, hence, crucial to compare techniques to determine an optimal classifier.

2.2.2 Vision-Based Systems

Avilés et al. presented a study to assess the performance of Dynamic Naive Bayesian

Classifiers (DNBCs) and Hidden Markov Models (HMMs) [6] for gesture recognition.

An adaptive skin detection scheme was used to handle users of different ethnicities. The

adaptive skin detection scheme first finds the user’s face using the Viola-Jones Face

detection algorithm [66]. Once the face has been detected, the dimensions of the facial

frame and known average proportions of the body are used to estimate the positions of

the user’s torso and right hand as shown in Figure 2.14.

Chapter 2. Related Work 22

Figure 2.14: Estimation of the torso and hand positions of the person by Avilés et
al. [6].

A Bayes classifier is used according to [28] to label pixels in the colour image as skin

or non-skin pixels. A small skin-colour search window is applied to the hand detected

in order to track it. Tracking of the hand is achieved using the CAMShift tracking

algorithm [10]. This algorithm accurately tracks hand motion over a sequence of image

frames under their experimental conditions. A manually collected dataset composed of

10 gestures, shown in Figure 2.15, performed by 10 men and 5 women using the right arm

was collected and used to train and test the system. Each gesture was also performed at

varying distances to the camera and at varying rotations for an experiment mentioned

below. Each of the participants supplied a different number of gesture samples but no

less than 50 samples of each gesture. In total, the dataset contains 7308 gesture samples.

Figure 2.15: The 10 gestures recognized by Avilés et al.’s system [6].

The hardware used for the experiments included an IBM Intel Pentium 1.6 GHz com-

puter with 512Mb RAM, a Sony EVI-D30 camera and a WinTV frame grabber. Two

Chapter 2. Related Work 23

experiments were conducted in order to compare the classification and learning perfor-

mances of the DNBCs and HMMs. In both experiments, two sets of features were used

to train and test the classifiers to compare their effectiveness as feature representation

methods. The first set of features included only information about the motion of the

right hand (“motion data”) while the second set included both right-hand motion in-

formation and information about the posture of the left hand (“posture and motion

data”).

For each machine learning technique, 15 trained classifiers were created corresponding

to each of the 15 subjects. In other words, each classifier was trained to recognize the

gestures of one of the 15 subjects, yielding 15 HMM classifiers and 15 DNBC classifiers.

The classifiers constructed for each person were used to classify gestures from the other

14 subjects. This method provides a very good indication of the ability of each technique

to generalise to other signers. Two samples per gesture were randomly selected from the

images of each subject for this test, yielding a total of 48 samples per gesture. In this test,

DNBCs achieved an average recognition rate of 73.85% with posture and motion data

and 52.80% with motion data. HMMs achieved an average recognition rate of 74.80%

with posture and motion data and 51.60% with motion data. It is clear that both

techniques provide comparable results in this case, but HMMs perform slightly better

with features that include both motion and posture, while DNBCs perform slightly

better with motion data only.

The second experiment focused on assessing the robustness of the classifiers to variations

in rotation of the gestures and the distance of the subjects to the camera. To assess the

robustness to the distance from the camera, 15 samples of each gesture, as performed

at 2m and 4m, were randomly chosen, resulting in a test set of 30 samples per gesture.

In this case, DNBCs outperform HMMs for both posture and motion data features and

motion data features. To assess the robustness to rotations, once again 30 samples

of each type of gesture performed at an angle of ±45 ◦ were randomly selected. In this

case, HMMs outperformed DNBCs for posture and motion data features with an average

difference of 4.61%, while the use of motion data features yields poor results for both

classification techniques.

It is clear that a specific machine learning technique can yield a high accuracy with a

specific set of features, but a low accuracy with a slightly different set of features. As

such, it is crucial to compare a variety of machine learning techniques with a specific set

of features to select an optimum technique, as is the objective of this research.

Chapter 2. Related Work 24

2.3 Comparisons of Machine Learning Techniques

This section discusses studies which compare machine learning techniques in the context

of various classification problems.

Trigueiros et al. compared k-Nearest Neighbours (k-NNs) classifiers, Naive Bayes (NB)

classifiers, Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) in

the recognition of 10 generic hand gestures [62]. The study used the Microsoft Kinect

camera and Rapid Miner for the development of the experiments performed on the

machine learning techniques. Two datasets consisting of different hand features were

created. The first dataset comprised of the following features: the angle of the hand,

the mean and variance in the grey values, the area and perimeter and the number of

convexity defects of the segmented hand. The second dataset comprised of the following

features: the angle of the hand, the mean and variance in the grey values, an orientation

histogram and the radial signature of the segmented hand. However, the number of

samples and test subjects of each dataset is unclear from the literature.

An application using the Kinect camera collected the grey image values and the depth

image values and stored these into a database. A 10-fold cross-validation technique was

used to determine the recognition accuracy of the machine learning techniques on both

datasets. The Rapid Miner application was used to analyse the results and compare

the performance of the four machine learning techniques. An Intel i7 with a 2.8GHz

processor and 4GB RAM was used with the RapidMiner 5.2 application to carry out

the experiments.

Classifier k-NNs Naive Bayes ANNs SVMs

Dataset 1 Accuracy(%) 92.45 25.87 96.99 91.66
Time(s) 8 1 2793 190

Dataset 2 Accuracy(%) 88.52 66.50 85.18 80.02
Time(s) 1 1 32 68

Table 2.2: Recognition accuracy and training time using datasets 1 and 2 by Trigueiros
et al. [62].

Table 2.2 shows the recognition accuracies and the training time of each classifier for

the two tested datasets. For dataset 1, ANNs achieve the highest recognition accuracy

of 96.99%. This accuracy, however, comes at the expense of training time which is

orders of magnitude larger than the other classifiers. k-NNs and SVMs also achieve very

high accuracies of 95.45% and 91.66% respectively. The lowest recognition accuracy of

25.87% was achieved by the Naive Bayes classifier, which also takes the least time to

train. Overall, k-NNs provide the best combination of accuracy and time in this case.

Chapter 2. Related Work 25

The results for dataset 2 in Table 2.2 show that k-NNs once again achieve the highest

accuracy of 88.52% and smallest training time, with ANNs and SVMs closely following

with accuracies of 85.18% and 80.02%, respectively. The training times of the ANN and

SVM were significantly reduced on this dataset, attributed to the smaller dimension-

ality of the features used. Once again, the Naive Bayes classifier achieves the lowest

recognition accuracy of 66.50%.

Nitze et al. compared four machine learning techniques in the classification and recog-

nition of agricultural crop types [47]. Random Forests (RFs), Support Vector Ma-

chines (SVMs), Artificial Neural Networks (ANNs) and Maximum Likelihood (ML) were

the four machine learning techniques chosen for classification. A multi-temporal set of

RapidEye images were used for classification. These images cover the optical electro-

magnetic spectrum in five bands: blue, green, red, red-edge and near-infrared, and have

a ground sampling distance of five meters.

Figure 2.16: Overview of the study area of Nitze et al. showing the field boundaries
with crop types [47].

The study area, shown in Figure 2.16, is located in Indian Head in Canada and spans an

area of 20×25 km. A total of 512 agricultural fields of known crop and cultivation types

grew in the study area during the summer months of 2009. Ten distinct crop types,

summarized in Table 2.3, were selected for classification after excluding the very small

and semantically similar classes.

The following implementations of the classifiers previously mentioned were compared:

Naive Bayes in the form of Maximum Likelihood (ML); Random Forests (RF); Artificial

Neural Networks (ANN) in the form of a Multi-Layer Perceptron; and the LibSVM im-

plementation of the radial-basis-function kernel (SVM-RBF) and the polynomial kernel

(SVM-POLY). For each run, the training and testing datasets were randomly selected.

Data was split as follows: 80% was used as testing data and 20% as training data.

Chapter 2. Related Work 26

Crop type # of fields

Wheat 161
Rapeseed 136
Grassland 79
Field Peas 52
Barley 40
Lentils 38
Flax 37
Oats 30
Fallow 19
Canary Seed 18

Table 2.3: Cultivated crops recognized by Nitze et al. and the number of fields in the
study area with each type of crop.

Classifier Recognition Accuracy (%) Training Time (s) Classification Time (s)

ANN 87.1 15.145 0.003
ML 78.9 0.005 0.017
RF 87.4 6.205 0.083
SVM-POLY 87.8 0.296 0.020
SVM-RBF 88.1 0.292 0.039

Table 2.4: The classification accuracy, training time and classification time of each
machine learning technique by Nitze et al.

Table 2.4 summarizes the results of the experiment. Although all the methods achieved

a generally high recognition accuracy, the highest accuracy for the classification of crop

types was 88.1% with the SVM-RBF and the second highest was the SVM-POLY im-

plementation which achieved 87.8%. In this case, ML had the lowest, but not low,

recognition accuracy.

In terms of training time, ANNs took the longest to train, followed by RFs. Both SVM

implementations and ML took less than a second to train. On the other hand, the ANN

had the fastest classification time of 3 milliseconds. All other methods were at least one

order of magnitude slower, with the slowest method being RFs. The classification time

across all methods was, however, generally fast.

Nimeh et al. compared the recognition accuracy of several machine learning methods in-

cluding Logistic Regression (LR), Classification and Regression Trees(CART), Bayesian

Additive Regression Trees (BART), Support Vector Machines (SVM), Random Forests

(RF), and Artificial Neural Networks (ANNs) to detect phishing emails [1]. The dataset

comprised of 1718 legitimate emails and 1171 raw phishing emails. A total of 43 features

were extracted from emails and used for the training and testing of the afore-mentioned

machine learning techniques. A detailed account of the features used can be found in

[1].

Chapter 2. Related Work 27

A 10-fold cross-validation technique was used to determine the classification accuracy

of the machine learning techniques. Table 2.5 summarizes the mean error rate achieved

by each of the machine learning techniques. It should be noted that a lower error rate

is desirable as it indicates a higher success rate, and a higher accuracy.

Classifier Error Rate (%)

RF 7.72
CART 8.13
LR 8.85

BART 9.69
SVM 9.90
ANN 10.73

Table 2.5: Phishing email error rate (lower is better) using various classifiers by Nimeh
et al.

Although all the classifiers had a generally comparable detection accuracy, in this ap-

plication, RFs performed slightly better than all other classifiers. ANNs and SVMs

performed the worst, albeit only by a small margin.

All of the above studies clearly demonstrate that each machine learning technique may

yield a very high accuracy in a specific context and given a specific set of features, but

perform poorly in a different context or with a different set of features. It is therefore

crucial to compare a variety of machine learning techniques for a specific classification

problem and set of features to determine the optimal technique in that context. It is also

demonstrated that ANNs and RFs can potentially yield excellent classification results.

ANNs, however, may be costly (in terms of time) to train, depending on the specific

ANN configuration used.

2.4 Summary and Conclusion

This chapter presented a comprehensive literature survey in the fields of sign lan-

guage recognition, gesture recognition and general recognition. Where possible, the

pre-processing and feature extraction procedure, the hardware and the machine learn-

ing technique used in each case was described. Several important conclusions can be

drawn from the studies detailed in the chapter.

The first conclusion to be drawn is that the real-time hand shape recognition system cre-

ated by Li [36] is highly accurate and robust, and makes very few assumptions about the

scene and the type of hardware used. The input frame contains the entire signer which

allows for the system to be extended for the recognition of two handed sign language

Chapter 2. Related Work 28

gestures. It also does away with cumbersome and expensive hardware requirements by

making use of an inexpensive web camera.

Several other studies make use of various types of complex hardware such as data gloves,

Kinect cameras and other 3D depth sensing camera configurations for the extraction of

features, which in most cases result in high accuracy classification. Unfortunately, such

configurations are usually seen as cumbersome and expensive and are not suitable for

the purposes of the SASL project which aims to use inexpensive and simple commodity

hardware.

A number of studies do make use of only a web camera for the feature extraction pro-

cedure. However, many of these make stringent assumptions about the type of input

data, in many cases isolating the input image to only the manually segmented hand

region of the signer. This limits the freedom of the user and is not suitable for the

eventual goal of the SASL project which is to capture whole-body gestures, including

the hand shapes, to infer the meaning of the gestures spoken. Other studies make less

stringent assumptions but still do not provide the freedom and robustness of Li’s feature

extraction procedure. As such, Li’s method is seen as the most suitable solution for the

feature extraction procedure of this project.

The chapter also clearly demonstrated the potential of Artificial Neural Networks (ANNs)

and Random Forests (RFs) as accurate alternatives to Support Vector Machines (SVMs).

Both techniques were shown to achieve high accuracies when applied to various classifi-

cation problems such as hand shape recognition and gesture recognition.

ANNs were demonstrated to be excellent classifiers, achieving accuracies of over 90% in

all but one of the studies discussed [47] where it achieved an accuracy of 87% which is

still clearly a very high accuracy. Random Forests were also demonstrated to be excellent

classifiers, achieving high accuracies of 97.4% in [34] and 87.4% in [47] and a low error

rate of 7.72% in [1]. Thus, their selection for a comparison with the SVMs in the context

of hand shape recognition using Li’s feature extraction procedure is justified.

It was also made clear that various classifiers may be better or worse-suited to classifi-

cation using specific features. As such, it is crucial to carry out a comparison in order

to determine the optimum classifier in each context separately, as is the case in this

research.

Finally, it was demonstrated in studies [33] and [1] that the selection and optimization

of the hidden layers of ANNs is a process of trial and error. This approach is used in

this research to train a ANN in a subsequent chapter.

Chapter 2. Related Work 29

The next chapter discusses the image processing techniques required for the extraction

of features and the machine learning techniques used for hand shape recognition.

Chapter 3

Techniques for Hand Shape

Recognition

This chapter consists of two sections Image Processing Techniques for Hand Shape

Recognition 3.1 and Machine Learning Techniques 3.2. Section 3.1 provides a theo-

retical background on the key image processing techniques which are integral to the

extraction of features necessary for hand shape recognition. Section 3.2 gives back-

ground knowledge on the three machine learning techniques and discusses how they are

used for classification.

3.1 Image Processing Techniques for Hand Shape Recog-

nition

Image Processing is the analysis and/or manipulation of images or video frames in digital

format to extract useful information from them. In the case of this research, images are

processed to extract features for hand shape recognition.

The following image processing techniques discussed are: Canny edge detection, face

detection, adaptive skin detection, background subtraction using Gaussian Mixture

Models, hierarchical Chamfer matching, connected components analysis and CAMShift

tracking. Each of these techniques is discussed in a separate subsection below.

3.1.1 Canny Edge Detection

Edge detection is the process of finding the edges within an image. An edge is defined as

a point in an image with a discontinuity in brightness, or, in simple terms, a sharp change

30

Chapter 3. Techniques for Hand Shape Recognition 31

in brightness [4]. Edge detection simplifies an image representation to that of only its

structural appearance-based information. Canny developed the Canny Edge detection

technique [13] in 1986 and it is one of the most popular and robust edge detection

techniques [56]. The Canny algorithm strives to meet the following three criteria:

1. A low error rate: The detection of edges should be as accurate as possible. The

edges found in an image should not be falsely overlooked because omission of these

edges could affect a system’s performance.

2. Good localization: The distance between detected edge pixels and the actual edge

pixels must be minimized.

3. Minimal response: Multiple responses to an edge should be avoided by limiting

detection to only a single response per edge.

The Canny edge detection algorithm involves four steps [37]. These are: smoothing the

image using a Gaussian filter; computation of the gradients in the image to highlight

potential edges; applying non-maximum suppression to achieve thin edges; and double

thresholding to suppress edge streaks. These steps are explained in the subsections

below .

3.1.1.1 Smoothing the Image Using a Gaussian Filter

The initial step of Canny edge detection involves mitigating any excess noise in an image.

Images generally contain some amount of noise. These sources of noise can easily, but

mistakenly, be detected as edges–sharp changes in brightness–within the image.

As such, the image is smoothed by means of a Gaussian filter [67]. This involves con-

volving a Gaussian kernel K with the image I. Below is an example of a Gaussian kernel

of size 5× 5 using a standard deviation of σ = 1.4 which can be used, but larger kernels

can be used as well.

K =
1

159

2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2

Chapter 3. Techniques for Hand Shape Recognition 32

3.1.1.2 Computation of the Image Gradients

Once the image has been smoothed and excess noise has been filtered out from it, the

next step is to determine the intensity gradients of the image. These gradients are

computed because they give an indication of the strength of edges in the image. At each

pixel in the smoothed image, the gradients are determined using the Sobel operator as

follows.

The gradients are approximated using a pair of 3× 3 convolution masks, Sx and Sy. Sx

highlights the edges in the x-direction while Sy highlights the edges in the y-direction.

These convolution masks are given as:

Sx =

−1 0 +1

−2 0 +2

−1 0 +1

(3.1a)

Sy =

−1 −2 −1

0 0 0

+1 +2 +1

(3.1b)

Convolving the two masks with the original image results in two gradient images Gx and

Gy. The Equation 3.2 below is then computed at each pixel (i, j) to find the gradient

strength at that pixel using the law of Pythagoras:

|G(i, j)| =
√

Gx(i, j)2 +Gy(i, j)2 (3.2)

A simpler measure can also be used to approximate the gradient at pixel (i, j) in the

form of the Manhattan distance measure given by:

|G(i, j)| = |Gx(i, j)|+ |Gy(i, j)| (3.3)

The direction of the edge θ is also computed at each pixel (i, j). The exact direction of

the edge is determined using the following equation:

θ(i, j) = arctan

(

|Gx(i, j)|

|Gy(i, j)|

)

(3.4)

Chapter 3. Techniques for Hand Shape Recognition 33

The calculated direction θ of the edge is then rounded off to the nearest 45 ◦ angle

representing the directions of the horizontal and vertical neighbours and those of the

two diagonal neighbours. As such, it is rounded of to one of four possible angles: 0 ◦,

45 ◦, 90 ◦ or 135 ◦.

3.1.1.3 Applying a Non-maximum Suppression

Once the direction and magnitude of the edges have been determined, a non-maximum

suppression is applied to thin out edges by discarding non-maximum pixels in each edge.

This results in accurate thin edges in the image, as required.

This is achieved by examining the gradient values of the neighbours on either side of each

pixel (i, j) in the direction perpendicular to the direction of the pixel. If the gradient

value of the pixel is greater than that of both neighbours, it is marked as being an edge

pixel. If it is not, it is discarded i.e. set to 0.

For example, if the gradient direction for a pixel θ(i, j) is 0, meaning that it is North-

South aligned, it is compared to the two neighbours on either side in the East-West

direction. If its gradient value is greater than that of these neighbours, it is marked as

an edge pixel. If not, it is set to 0.

3.1.1.4 Double Thresholding

After the non-maximum suppression has been applied, a double threshold is used to

eliminate false edges which can cause features such as edge streaks. The double threshold

consists of an upper and lower threshold. The steps below are followed to complete the

edge detection process:

1. The upper threshold is applied to identify all ‘strong’ edges. A pixel is considered

a ‘strong’ or confirmed edge pixel if the gradient value of that edge exceeds the

upper threshold.

2. The lower threshold is applied to identify all ‘weak’ edges. A pixel is considered

a ‘weak’ or rejected edge pixel if the pixel gradient is below the lower threshold.

Such edges are discarded.

3. All pixels that have a gradient value between the upper and lower threshold are

considered as edge pixels if they are connected to a strong edge pixel in a 3 × 3

neighbourhood area.

Chapter 3. Techniques for Hand Shape Recognition 34

4. If pixels with a gradient value between the upper and lower threshold are not

connected to a strong edge pixel in a 3 × 3 neighbourhood, but are connected to

at least one other pixel that has a gradient value between the upper and lower

threshold in the same neighbourhood area, the previous step is repeated with a

5×5 neighbourhood. If no strong edges are found in this expanded area, the edge

is discarded.

Canny recommended a double threshold ratio (upper:lower) of between (2:1) and (3:1)

[13]. Figure 3.1 provides an example of an image to which the Canny edge detection

algorithm has been applied.

(a) (b)

Figure 3.1: Canny edge detection: (a) The original image. (b) Application of the
Canny edge detection algorithm [13].

3.1.2 Face Detection

The Viola-Jones [65] framework is a very popular framework for object detection. The

framework has been applied to face detection and it has proven to be highly accurate

and computationally efficient [66, 68, 70].

The Viola-Jones object detection framework classifies objects in images using simple

fundamental features called Haar-like wavelets. It additionally uses a novel data struc-

ture called an Intergral Image to significantly speed up the detection of these features.

Finally, a modified Adaboost classifier is used to arrange a series of weak classifiers

trained to detect various Haar-like features into a rejection cascade. This setup results

in a strong and highly efficient object detector.

The following subsections describe each of these steps, namely: the nature and compu-

tation of haar-like features; the use of an integral image to speed up the computation of

Chapter 3. Techniques for Hand Shape Recognition 35

haar-like features; the use of Adaboost to select appropriate features for face detection;

and the use of a final rejection cascade as a face detector.

3.1.2.1 Haar-Like Wavelet Feature Detection

The object detection approach of the Viola-Jones algorithm makes use of features that

are based on the principle of Haar wavelets called Haar-like wavelet features. Haar-like

wavelets consist of a set of alternating rectangles of the same size and shape that are

either “light” or “dark”, and are either vertically or horizontally adjacent. Figure 3.2

illustrates two-rectangle, three-rectangle and four-rectangle features.

(a) (b)

(c) (d)

Figure 3.2: Three types of Haar-like wavelet features used by the Viola-Jones face
detector [66].

Each type of feature is passed over a target image at various scales and positions. At

each scale and position, the sum of the pixels corresponding to the dark region are

subtracted from the sum of the pixels corresponding to the light region. If the result

of this computation exceeds a threshold value, this specific feature is determined to be

present at this location and scale.

Two-rectangle features are calculated by computing the sum of all the pixels in the

dark region and subtracting these from the sum of all pixels in the light region and

applying an acceptance threshold to the result. Three-rectangle features are computed

by applying an acceptance threshold to the difference between the combined sum of the

Chapter 3. Techniques for Hand Shape Recognition 36

pixels in the two light rectangles and the dark rectangle. Four-rectangle features are

calculated by applying an acceptance threshold to the difference between the combined

sum of the pixels in the diagonal pairs of rectangles.

3.1.2.2 The Use of An Integral Image to Compute Haar-Like Features

Computing the values of various features at every scale and position in an image is a

very computationally expensive operation. Viola and Jones proposed an intermediate

representation of an image called an Integral Image which enables the rapid computation

of the sums of various features at any scale and position in the image.

Figure 3.3: Computation of the Integral Image: The value of the Integral Image at
(x, y) is the sum of all pixels to the top-left of the pixel, in the shaded region [66].

Given an image I, the integral image representation G at any position (x, y) is the sum

of the pixels to the top-left of (x, y), as shown in Figure 3.3, given by:

G(x, y) =
∑

i≤x,j≤y

I(i, j) (3.5)

An alternative definition of the Integral Image is given in terms of the cumulative row

sum S(x, y) at (x, y) as the following pair of recurrence relations which can be used to

Chapter 3. Techniques for Hand Shape Recognition 37

compute the image in a single pass:

G(x, y) = G(x− 1, y) + S(x, y) (3.6a)

S(x, y) = S(x, y − 1) + I(x, y) (3.6b)

where

S(x,−1) = 0 (3.6c)

and

G(−1, y) = 0 (3.6d)

Using the Integral Image, it is possible to compute any Haar-like feature using only a

few lookups in the image by easily computing the sum of any rectangle in the original

image, as required. Referring to Figure 3.4, it is possible to compute the sum of the

pixels inside the rectangle labeled D by subtracting the Integral Image value at point

4 from the sum of the Integral Image values at points 2 and 3, and adding back the

Integral Image value at point 1 to counteract the excess caused by the intersection of

rectangles (A+B) represented by point 2 and rectangles (A+ C) represented by point

3.

The ability to compute the sum of pixels in any rectangle implies the ability to compute

any Haar-like feature at any scale or location.

Figure 3.4: An example of the computation of the integral image [66].

3.1.2.3 The Use of AdaBoost to Select Haar-Like Features

AdaBoost is a learning algorithm which improves the classification performance of weak

classifiers. A modified version of the algorithm is used by the Viola-Jones face detection

Chapter 3. Techniques for Hand Shape Recognition 38

system to choose an optimal subset of the potentially large number of features and train

a classifier based on these features [65].

Even though each feature can be computed at a high speed, the computation of the set of

features can be very slow since there are a large number of rectangular features associated

with each image sub-window. Only those features are selected which best distinguish

between positive and negative examples, thus limiting the number of features that are

required to achieve a strong classifier.

3.1.2.4 A Rejection Cascade of Weak Feature Classifiers

A rejection cascade of classifiers is constructed in such a manner as to achieve a high

accuracy while significantly lowering the computational cost for negative examples. The

principle behind this idea is that simpler, and thus faster, boosted classifiers can be

created to reject most of the negative sub-windows while still being able to detect almost

all of the positive instances.

Figure 3.5: The typical structure of a rejection cascade [66].

The rejection cascade has the structure of a degenerate decision tree and it is depicted

in Figure 3.5. With reference to Figure 3.5, when the first classifier obtains a positive

result, it triggers the evaluation of the second classifier, and a positive result from the

second classifier triggers the third classifier. As long as every classifier returns a positive

result, this process continues on to the final classifier, after which a face is determined

to have been detected in the sub-window in question.

Chapter 3. Techniques for Hand Shape Recognition 39

On the other hand, if the result is negative at any classifier, the sub-window is immedi-

ately rejected. This significantly reduces the computational overhead of the algorithm

for sub-windows in which no face exists.

3.1.2.5 Evaluation of the Face Detection System

The Viola-Jones face detection system was evaluated on the MIT+CMU frontal face

dataset [55]. Some examples of the dataset with face detection performed on them are

shown in Figure 3.6. The evaluation aimed to measure the speed as well as the accuracy

of the technique. The system was shown to achieve a real-time detection speed of 15

frames per second (fps) on images with a resolution of 384× 288 pixels when operating

on a 700 MHz Intel Pentium III computer. The system achieved an accuracy of 93.9%

with only 167 false detections.

Figure 3.6: Example of the testing data from the MIT+CMU dataset [55].

3.1.3 Adaptive Skin Detection

Skin detection is an image processing technique which segments skin pixels from non-skin

pixels. It eliminates all non-skin pixels in an image and highlights only the skin pixels in

the image. Applications of skin detection include human-computer interaction, human

detection, hand tracking, face detection and face recognition [17, 27, 36]. Skin detection

in this research assists in initializing and maintaining the hand tracking algorithm to

track the hands of the user. The adaptive skin detection algorithm used was initially

proposed by Achmed [2] and used in the feature extraction procedure of Li [36].

The procedure works as follows: the face is detected; the skin colour distribution of the

user is extracted from the face; it is back projected onto the original image to obtain a

skin probability distribution; finally, the skin probability distribution is thresholded to

obtain a binary skin map of the original image. Each step of this procedure is explained

in further detail in the following subsections.

Chapter 3. Techniques for Hand Shape Recognition 40

3.1.3.1 Face Detection

The Viola-Jones face detection algorithm is used to determine the position of the face.

A 10× 10 pixel area at the centre of the detected facial frame is extracted and used as

a representative skin colour distribution in the form of a histogram. Achmed showed

that this region represents the skin colour very well as it is usually void of non-skin

obstructions such as shadows, hair, eyes and spectacles [2]. The 10 × 10 pixel area

of the nose is converted from the default Red, Green and Blue (RGB) colour space

to the Hue, Saturation and Value (HSV) colour space. A histogram of the Hue and

Saturation channels of the region is computed and taken as the representative skin

colour distribution of the user.

3.1.3.2 Histogram Back Projection and Thresholding

The skin colour histogram is back-projected onto the original input frame resulting in

a skin probability distribution of the input frame. The back-projection is achieved as

follows. Given C represents the colour of a pixel in the image, and F is the probability

that the pixel is skin, P (C|F) is the probability of drawing that colour when the pixel

is actually skin. Then P (F |C) is the probability that the pixel is skin given its colour.

This yields the following equation:

P (F |C) =
P (F)

P (C)
P (C|F) (3.7)

The resulting back-projected skin probability image is converted into a binary image

in which skin pixels have a value of 255 (white) and non-skin pixels have a value of 0

(black). This is achieved by thresholding the image using a threshold value of 60. This

static threshold value was determined as being optimum by Brown [12] An example of

a back-projected image is illustrated in Figure 3.7.

As seen in the figure, this technique effectively segments skin pixels from non-skin pixels.

There are, however, factors such as background noise or colours in the background which

are similar to that of skin colour which can cause noise in the image. To this effect,

background subtraction in the form of Gaussian Mixture Models, described in the next

section, are used to mitigate such sources of noise.

Chapter 3. Techniques for Hand Shape Recognition 41

(a) Original image (b) Skin-detected image

Figure 3.7: a) Original image and b) Skin-detected image.

3.1.4 Background Subtraction Using Gaussian Mixture Models

Background subtraction is the segmentation of objects/regions in an image or a sequence

of video frames that are of interest to an application, referred to as the foreground, from

those that are not of interest, referred to as the background [57]. In the current case,

the foreground consists of the hand of the user, while all other objects in the frame

constitute the background.

Gaussian Mixture Models (GMMs) are a probabilistic method that can be used for

effective background subtraction. They can be used to highlight moving pixels in a

frame with a history indicator over a set number of frames such that the brightness of

a pixel indicates the recency of its motion, and regions with no motion over a number

of frames appear as completely black.

Given an image sequence I, the history of a pixel at (i, j) at a specific time t can be

represented as follows:

{I1, . . . , It} = {I(i, j, x) : 1 ≤ x ≤ t} (3.8)

Each pixel can be modeled as a mixture of k Gaussian distributions. Letting Wx,t

represent the weight estimate of the x-th Gaussian, the probability of a pixel possessing

the value It at time t can be expressed using the equation below:

P (It) =
k

∑

x=1

Wx,t × η(It, µx,t,Σx,t) (3.9)

where η(It, µx,t,Σx,t) is the normal distribution of the x-th Gaussian component with a

mean of µx,t and expressed as:

Chapter 3. Techniques for Hand Shape Recognition 42

η(It, µx,t,Σx,t) =
1

(2π)
n
2 | Σx,t |

1

2

e
−1

2
(It−µx,t)TΣ−1

x,t(It−µx,t) (3.10)

where Σk,t = σ2
k,tI is the covariance of the k-th Gaussian component given I is the

identity matrix.

A fitness value
Wx,t

σx,t
is used as a reference when ordering the number of distributions

k and the first M distributions are used for modeling the background scene, where the

estimate of M is given by:

M = argminm(
m
∑

x

Wx,t > Th) (3.11)

where Th is the threshold that represents the minimum portion of the background model.

Given an updated background, foreground detection is then achieved by labeling all

pixels which are determined to be more than a standard deviation of 2.5 away from any

of the M distributions as foreground pixels. If there is a match between the test value

and the x-th Gaussian component Wx,t, it is updated as shown below:

Wx,t = Wx,t−1 (3.12a)

µx,t = (1− ρ)µx,t−1 + ρIt (3.12b)

σ2
x,t = (1− ρ)σ2

x,t−1 + ρ(It − µx,t)
T (It − µx,t) (3.12c)

ρ = αη(It | µk,Σk) (3.12d)

where 1
α
is defined as the time constant which determines change. If there is no match

between the Gaussian component and the test value, then it is updated as follows:

Wx,t = (1− α)Wx,t−1 (3.13a)

µx,t = µx,t−1 (3.13b)

σ2
x,t = σ2

x,t−1 (3.13c)

If the test value does not match any of the Gaussian components, a new Gaussian

component with a high variance, low weight parameter, and the test value as its mean

replaces the Gaussian component with the lowest probability. An example of GMMs

applied to highlight the moving foreground of an image is illustrated in Figure 3.8.

Chapter 3. Techniques for Hand Shape Recognition 43

(a) Original image (b) Background-subtracted image

Figure 3.8: The application of Gaussian Mixture Models (GMMs) to achieve back-
ground subtraction: a) Original image and b) Background-subtracted image.

3.1.5 Hand Detection Using Hierarchical Chamfer Matching

The hierarchical chamfer matching technique is explained in this section [8]. It is a

matching algorithm used to detect a template object in an image. In the case of this

research, it is used to detect the location and size of the signer’s hand and initialize the

hand tracking algorithm. A template silhouette of the hand is used to find a match in

the input image.

Chamfer matching involves three stages: computation of an edge image on the image

in which the search is carried out; computation of a Chamfer distance transform on

the image in which the search is carried out; and edge matching of the template edge

image with the search image distance transform. Subsections 3.1.5.1 and 3.1.5.2 describe

the computation of the Chamfer distance transform and the edge matching process,

respectively.

A hierarchical approach can be used to significantly speed up the edge matching process.

This is described in Subsection 3.1.5.3.

3.1.5.1 Computation of the Chamfer Distance Transform

A distance transform is an algorithm which converts an edge image into a distance

image. Each non-edge pixel of the hand template silhouette image is given an intensity

value ranging from 0 to 255. The intensity value is a measurement of the distance of

the pixel to the closest edge pixel.

Various distance masks can be used to effectively calculate the distance image. Li showed

that a 3× 3 mask with a (3, 4) distance transform produced excellent matching results.

Chapter 3. Techniques for Hand Shape Recognition 44

The process of computing a distance transform involves two passes which are made over

an image by propagating the computed distance values across the image like a wave.

First a “forward” pass from left to right and from top to bottom is carried out, followed

by a “backward” pass from right to left and from bottom to top. For an image V of size

W ×H pixels, a computation of the forward pass is given by:

Vi,j = minimum(Vi−1, Vj−1 + 4, Vi−1,j + 3, Vi−1,j+1 + 4, Vj−1 + 3, Vi,j) (3.14a)

∀ i = {2, . . . , H} and j = {2, . . . ,W} (3.14b)

The backward pass is given by:

Vi,j = minimum(Vi,j , Vi,j+1 + 3, Vi+1,j−1 + 4, Vi+1,j + 3, Vi+1,j+1 + 4) (3.15a)

∀ i = {H − 1, . . . , 1} and j = {W − 1, . . . , 1} (3.15b)

The computation of the distance transform from an edge image provides a basis for

template-based shape matching, even in conditions where the foreground image is un-

clear/noisy.

3.1.5.2 Chamfer Distance for Template Matching

Chamfer distance matching is the process of determining the position in the search image

distance transform of greatest similarity to the template silhouette image. In the case

of this research the template is a hand silhouette image which is created by combining

skin and motion cues.

Template matching is achieved by passing the template silhouette over the search image

distance transform column-wise and row-wise. At each position of the template over the

search image, the sum of all distances corresponding to pixels in the search image that

overlap with edges in the template is computed.

The summed value is known as the distance measure and the region with the smallest

sum value is considered the closest matching position.

Chapter 3. Techniques for Hand Shape Recognition 45

Figure 3.9: Flowchart of the Hierarchical Chamfer Matching Algorithm

3.1.5.3 Hierarchical Template Matching

Chamfer matching does a good job of detecting a target object if the size of the object

in the search image is exactly the same as that of the target image. If the target object

changes size in the search image, such as if the hand moves closer to or further away

from the camera, or as is observed with variations in users, matching needs to be done at

several different scales. Scanning the image at various scales can be very computationally

expensive.

Hierarchical Chamfer matching offers a solution to this problem. It provides a coarse-

to-fine resolution search using a pyramid of images at various resolutions to boost the

chamfer matching process. This pyramid of images, also known as a resolution hierarchy,

consists of multiple duplicates of the original search image at various resolutions.

Figure 3.9 depicts a flowchart of the Hierarchical Chamfer matching algorithm. Chamfer

distance matching is initially executed on the lowest resolution image to obtain an ap-

proximation for the general region of the target object in the search image. The process

is repeated on a higher-resolution image down the next level of the hierarchy, limiting

the search in the new image only to the area determined in the previous level. This

process is repeated until the search is performed on the original image to locate the

target object.

Chapter 3. Techniques for Hand Shape Recognition 46

The main advantage of using this approach is the reduction in computational cost, as

the number of scans is strategically reduced.

3.1.6 Connected Component Analysis

Connected Component Analysis (CCA) is an algorithm for the detection and extraction

of the contours of objects in an image [19]. The technique, also known as Connected

Components labeling, passes over an image at a pixel-by-pixel level to search for all

connected pixel regions. It can be performed on binary images, as well as grayscale

images. Regions are said to be connected when adjacent pixels share the same set of

intensity values V . In the case of a binary image, V = {255}. The 4-connectivity and

8-connectivity labeling operators are shown in Figure 3.10.

Figure 3.10: An example of the 8-connectivity labeling operator [16]

In order to compute the connected components of a binary image using the 8-connectivity

operator, each pixel p that has an intensity value V = 255 is scanned and labeled. If

V = 255 for the current p, the 8 neighbours of p which have been encountered before in

the scan are examined and p is labeled using the following criteria:

1. If all the neighbours of p are of the intensity value 0, then assign a label q.

2. If all of the neighbours of p possess the value 255, then assign a label p.

3. If more than one of the neighbours have the intensity value of 255, assign the label

of one of the neighbours to p and keep track of the equivalences.

Once the scan has been completed, a secondary pass is carried out to replace each

label resulting from the first pass with its equivalent class label. Pixels labeled p are

considered as foreground. Connected foreground blobs are then labeled as separate

foreground objects, each with a unique index.

Chapter 3. Techniques for Hand Shape Recognition 47

3.1.7 CAMShift

CAMShift stands for Continuously Adaptive Mean Shift and it is a modified version of

the Mean-shift algorithm [10]. It is a colour-based tracking technique that is accurate,

yet simple and computationally efficient. The algorithm is capable of tracking colour

objects in real-time and does so efficiently.

CAMShift is a robust non-parametric technique which climbs the density gradients in

order to find the mode/peak of the probability distribution. In this case the object to be

found is the skin colour of the user’s hand which is to be tracked in the video sequence.

The algorithm performs well in noisy environments since it has the ability to find and

track the mode of a dynamically changing probability distribution. It is also very ef-

fective in overcoming transient occlusions such as when the hand passes over the face.

This is attributed to the fact that the search window usually first absorbs the occlusion

but then reverts to the dominant distribution when the occlusion passes.

A probability distribution is used to represent the pixel data of a video sequence. Each

pixel I(u, v) at location (u, v) in a frame is assigned a probability value P (u, v) which

represents the likelihood that the pixel belongs to the target.

The object to be tracked has to explicitly specified once to initialize the algorithm. Li

used hierarchical Chamfer matching to find the hand and initialize the algorithm. A 1D

histogram is computed and used as the model of the desired object to be tracked. The

Hue channel of the HSV colour space is used in this computation. Depending on the

range of the hue in the histogram, the probability value P (u, v) is assigned a value in

the range [0, 1].

The probability distribution for the algorithm is computed within a search window,

rather than on the entire image, to improve performance. Ideally, the search window

is small enough to realize greater computational efficiency, but large enough to capture

the motion of the object in any direction.

The histogram is used as a lookup-table. After determining the probability distribution

P (u, v), the maximum of the distribution is located. The location of the maximum

represents the focal point of the target object in the actual frame. To calculate the

maximum probability within the search window, statistical moments of the zeroth- and

first-order are used.

Letting the probability distribution be σ, a statistical moment of order p and q can

generally be formulated as [10]:

Chapter 3. Techniques for Hand Shape Recognition 48

mpq =
∑

(u,v)∈σ

P (u, v) · up · vq (3.16)

The zeroth moment m00 is therefore given by:

m00 =
∑

(u,v)∈σ

P (u, v) (3.17)

This corresponds to the integral over the distribution . Similarly, the moments of first

order are given by:

m10 =
∑

(u,v)∈σ

P (u, v) · u (3.18a)

m01 =
∑

(u,v)∈σ

P (u, v) · v (3.18b)

The position of the centre of the target object L = (Lx, Ly) is then calculated as:

Lx =
m10

m00
(3.19a)

Ly =
m01

m00
(3.19b)

Once the location of the target object has been found and the location of the search

window has been updated, the new size (ws, hs) of the search window is determined for

the next frame. To achieve this, the moments of the zeroth-order and the maximum

value of the distribution Pmax are used as follows:

ws = s ·

√

m00

Pmax
(3.20a)

hs = 1.2 · ws (3.20b)

3.2 Machine Learning Techniques

This section discusses the three machine learning techniques which are compared in the

context of SASL hand shape recognition. The three machine learning techniques which

Chapter 3. Techniques for Hand Shape Recognition 49

are used are Support Vector Machines (SVMs), Artificial Neural Networks (ANNs) and

Random Forests (RFs). This section provides a base of understanding on each of these

machine learning techniques, focusing on the mechanism of classification of data used

in each case. The section is organized into four subsections. Subsection 3.2.1 discusses

Support Vector Machines, Subsection 3.2.2 discusses Artificial Neural Networks and

Subsection 3.2.3 discusses Random Forests.

3.2.1 Support Vector Machines

A Support Vector Machine (SVM) is a supervised machine learning technique which

is comprised of a group of statistical learning models. Vapnik [14] initially introduced

the SVM as a binary classification technique and it was later adapted for multi-class

classification problems. SVMs have been used extensively within the SASL research

group to recognize various SASL parameters including: hand shape in [36], hand location

in [2], hand motion in [3], hand orientation in [36] and facial expressions in [44, 69].

These parameters are necessary for the recognition of SASL and each of the systems

mentioned achieve very encouraging accuracies. In this regard, SVMs have been shown

to be accurate, robust and easy to use.

This discussion on SVMs is divided into three parts: Subsection 3.2.1.1 discusses the

underlying principle behind classification by SVMs; Subsection 3.2.1.2 mentions a variety

of kernels that can be used with SVMs; and Subsection 3.2.1.3 describes prominent

techniques used to achieve multi-class classification using SVMs.

3.2.1.1 Support Vector Machine Classification

Consider a Cartesian plane with a set of points shown in Figure 3.11. The figure depicts

a two-class classification problem. The red and blue points on the graph belong to two

separate classes. The general goal of classification is to find a hyperplane that separates

the two classes of points. Thus, the classification problem entails drawing a hyperplane

between the points of the two classes. It can be seen in the figure that many different

separating hyperplanes can be placed between the two classes to separate them. The

key idea of SVM classification is to find a hyperplane that ensures the biggest gap or

“maximum margin” between the classes. This hyperplane is referred to as the “optimal

hyperplane” and is depicted in Figure 3.12.

A decision rule is formulated below to conform to the decision boundary which deter-

mines where a class lies in feature space. Let the set of N points in Figure 3.12 be

X = {xi|i = 1, . . . , N}. The points in X can be assigned to one of two classes, a positive

Chapter 3. Techniques for Hand Shape Recognition 50

Figure 3.11: A two-class classification problem and the various hyperplanes that can
be used to separate the two classes [48].

Figure 3.12: The optimal hyperplane for separating two classes [48].

class C+ and a negative class C−, respectively corresponding to the blue and the red

classes in the figure. In the simplest terms, given an arbitrary point x that forms a vec-

tor ū from the origin and lies anywhere in the cartesian plane, the problem of assigning

a class to x amounts to determining on which side of the hyperplane the point lies. Let

w̄ be a vector perpendicular to the hyperplane, then for some constant C that depends

on the specific optimal hyperplane [14]:

w̄ · ū ≥ C if x ∈ C+ (3.21a)

w̄ · ū < C if x ∈ C− (3.21b)

Restructuring Equation 3.21 and introducing b such that b = −C for convenience yields:

Chapter 3. Techniques for Hand Shape Recognition 51

w̄ · ū+ b ≥ 0 if x ∈ C+ (3.22a)

and

w̄ · ū+ b < 0 if x ∈ C− (3.22b)

Assuming x̄+ and x̄− to be arbitrary positive and negative samples, respectively, in X,

a simple rescaling of w̄ yields:

w̄ · x̄+ + b ≥ 1 (3.23a)

and

w̄ · x̄− + b ≤ −1 (3.23b)

A variable yi is introduced to simplify Equations 3.23a and 3.23b and arrive at a single

generic equation for the positive and negative classes. The variable defines a set of labels

{yi|i = 1, . . . , N, yi ∈ {1,−1}} assigned to each point xi, such that the point xi ∈ C+ if

yi = 1 and xi ∈ C− if yi = −1 for any i ∈ {1, . . . , N}. Multiplying yi by either Equation

3.23a or Equation 3.23b yields exactly the same outcome as follows:

yi(x̄i · w̄ + b) ≥ 1 ∀ xi (3.24)

For the specific points xi that lie on the boundary of the margin on either side, referred

to as support vectors, Equation 3.24 is expressed as:

yi(x̄i · w̄ + b) = 1 (3.25)

The goal is to separate the positive and negative samples by the widest hyperplane pos-

sible. This requires for a formulation of the size of the margin D which can be expressed

by determining a vector formed by taking the difference between a support vector of the

positive class x̄+ and a support vector of the negative class x̄− and projecting it onto a

unit vector perpendicular to the separating hyperplane. This can be formulated as:

Chapter 3. Techniques for Hand Shape Recognition 52

D = (x̄+ − x̄−) ·
w̄

||w||

=
w̄ · x̄+ − w̄ · x̄−

||w||
(3.26)

Substituting for w̄ · x̄+ and w̄ · x̄− in Equation 3.26 using Equation 3.25 results in:

D =
1− b+ 1 + b

||w||

=
2

||w||
(3.27)

As such, a maximization of the margin amounts to maximizing Equation 3.27 which

amounts to minimizing the inverse of that equation subject to Equation 3.25 as follows:

max
2

||w||
=⇒ min

||w||

2

=⇒ min||w||

=⇒ min
1

2
||w||2 (3.28a)

subject to:

yi(x̄i · w̄ + b) = 1 (3.28b)

Lagrange multipliers are used to maximize Equation 3.28a. Let L be the boundary to

be maximized by subtracting Equation 3.28a from a summation of all the constraints

found in Equation 3.25 as shown below:

L =
1

2
||w̄||2 −

N
∑

i

αi[yi(w̄ · x̄i + b)− 1] (3.29)

Differentiating L with respect to w̄ yields the minimization expression:

Chapter 3. Techniques for Hand Shape Recognition 53

∂L

∂w̄
= w̄ −

N
∑

i

αiyix̄i = 0

w̄ =
N
∑

i

αiyix̄i (3.30)

This indicates that w̄ is the linear sum of all of the samples in X along with their

corresponding class labels. Differentiating L with respect to b yields the minimization

expression:

∂L

∂b
= −

N
∑

i

αiyi = 0

N
∑

i

αiyi = 0 (3.31)

The expression for w̄ in Equation 3.30 can now be substituted back into equation 3.29

to obtain the following:

L =
1

2

(N
∑

i

αiyix̄i

)

·

(N
∑

j

αjyj x̄j

)

−

(N
∑

i

αiyix̄i

)

·

(N
∑

j

αjyj x̄j

)

− b

N
∑

i

αiyi +
N
∑

i

αi

(3.32)

Substituting the expression in Equation 3.31 into Equation 3.32 allows for the La-

grangian to be rewritten as follows:

L =
N
∑

i

αi −
1

2

N
∑

i

N
∑

j

αiαjyiyj x̄i · x̄j (3.33)

The formulation for the discriminant of the optimal hyperplane is therefore:

f(x̄) =
∑

i∈V

αiyix̄i · x̄+ b (3.34)

Chapter 3. Techniques for Hand Shape Recognition 54

where V is a set containing the indices of the support vectors in X and:

x ∈ C+ if f(x) ≥ 0, (3.35a)

x ∈ C− if f(x) < 0 (3.35b)

3.2.1.2 Kernel Functions

In cases where the data of the two classes are not linearly separable, the so-called “kernel

trick” [14] can be used to successfully map data from the current space onto a higher-

dimensional space in which the data is linearly separable. In this case, a kernel is used

to achieve this mapping. There are many different kernel functions that can be used.

Four common kernel functions which are based on Mercer’s theorem [25] are as follows:

1. Linear Kernel: K(x̄, x̄′) = (x̄)T · (x̄′)

2. Polynomial Kernel: K(x̄, x̄′) = (γ(x̄)T · (x̄′) + b)d

3. Radial Basis Function (RBF) Kernel: K(x̄, x̄′) = exp(−γ(||x̄− x̄′||22))

4. Sigmoid Kernel: K(x̄, x̄′) = tanh(γ(x̄)T · x̄′ + b)

where γ, b and d are kernel parameters. The choice of kernel can affect the classification

accuracy of a SVM. The choice of a specific kernel depends on the specific classification

problem. However, several studies have concluded that the RBF kernel is the best-suited

kernel to most classification problems [3, 36, 44, 47, 53]. As such, the RBF kernel is

selected for use in this research. A comparison of other kernels may yield interesting

results, but is outside the scope of this research and is left for future work.

3.2.1.3 Multi-class SVM Techniques

Support Vector Machines are, by definition, designed to handle binary classification

problems. Binary classifiers are limited to solving only two-class problems. A compara-

tive study in [26] describes three techniques that have been proposed to modify SVMs

to handle multi-class classification. Most of these multi-class classification techniques

involve the combination of several binary classifiers along with a strategic decision to

choose a single class. The following subsections describe three of these techniques.

Chapter 3. Techniques for Hand Shape Recognition 55

One-Against-All

Given an M -class problem, the problem is to separate the data points belonging to each

class i from the data points of the remaining classes, where i ∈ {1, 2, . . .M}.

In this approach, the data points of all the classes besides class i are combined to form

a single class and a binary classifier with a label representation for the class i and a

different label representation for the combination of the remaining classes is trained.

This procedure is repeated for each of the classes i ∈ {1, 2, . . .M} and results in a total

M binary classifiers.

Given an unknown pattern that requires classification into one of the M classes, the

pattern is presented to each of the M classifiers. The class of the pattern is then taken

to be the class that receives the maximum number of votes across all classifiers.

This technique is seen as inefficient because of the lengthy training and testing times as

a result of possibly large datasets of points in each combination pair of classes.

One-Against-One

This technique is similar to the previous technique in that a series of binary classifiers

are created. However, in this case, each classifier is trained to distinguish between two

specific classes u and v, where u 6= v, for every distinct pair (u, v) using the data points

associated with those classes.

The samples of class u are used as positive examples and those of class v, as negative

examples. Each classifier is able to distinguish between these specific classes. This

results in a total of M(M−1)
2 binary classifiers.

As with the previous technique, an unknown test pattern is presented to all the classifiers.

The class that receives the largest number of votes across all the classifiers is resolved

to be the class of the input pattern.

Directed Acyclic Graph Support Vector Machine

The Directed Acyclic Graph Support Vector Machine was first proposed by Platt et al.

[50]. The training phase of the Directed Acyclic Graph (DAG) Support Vector Machine

(SVM) is carried out according to the one-against-one technique and results in a total

of M(M−1)
2 binary SVMs.

Chapter 3. Techniques for Hand Shape Recognition 56

Figure 3.13: A Directed Acyclic Graph (DAG) of a 4-class problem.

Thereafter, a rooted binary directed acyclic graph consisting of M(M−1)
2 internal nodes

and M leaves is used in the testing phase to classify an unknown test pattern. Each

node in the graph is a binary SVM of the classes u and v.

Figure 3.13 illustrates a 4-class problem with the class i ∈ {1, 2, 3, 4}. Beginning at

the root node, classes 1 and 4 are compared. If class 1 is determined to be the correct

class, it is also important to note that class 4 was rejected and it is then resolved that

classifiers involving class 4 will no longer be invoked.

This concept is propagated down into all the remaining nodes and at each stage one

class is rejected, and the other, accepted. At the end of the process after M − 1 steps

and at the bottom of the graph, only a single class remains which is taken to be the

predicted class.

This technique combines the efficiency in training of the one-against-one technique and

provides a better classification efficiency than the one-against-all technique.

3.2.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is a group of interconnecting artificial neurons

which mimic the biological neurons of the human brain. The ANN concept was first

introduced by McCulloch and Pitts [40] who created a computational model of the

concept in 1943. Rosenblatt then went on to create the first Perceptron in 1958 [54].

Chapter 3. Techniques for Hand Shape Recognition 57

In 1969 Minsky and Papert [42, Pages 105–110] introduced an advanced version of the

Perceptron called the Multi-Layer Perceptron (MLP).

The following subsections describe: the basic Perceptron in Subsection 3.2.2.1; various

activation functions that are used in ANNs in Subsection 3.2.2.2; and the Multi-Layer

Perceptron which is used in this research in Subsection 3.2.2.3.

3.2.2.1 The Perceptron

The Neural Network model is based on an over-simplified mathematical model of the

biological neuron called a Perceptron. The basic computational unit of a Perceptron is

a neuron [41, Pages 7–10]. A Perceptron consists of one or more neurons arranged in

a specific pattern, hence the name artificial neural network, i.e. a network of neurons.

The neurons can be organized into several layers, as explained in a subsequent section.

xn

x3

x2

x1 = 1

∑

wn

w3

w2

w1 Summation
Box S

Activation
function σ

...

...

Inputs

Weights

Figure 3.14: An example of a Perceptron.

A basic Perceptron structure consisting of a single neuron is illustrated in Figure 3.14.

This Perceptron can be described as having a set of n input nodes {x1, . . . , xn}, each of

which link to a summation box S. A weighted sum S of the input nodes is calculated

at the summation box, where a set of weights {w1, . . . , wn}, each corresponding to each

input node, are used to calculate this sum. The weighted sum is then used as input to

a function σ, called an activation function, the output of which is taken as the output

Chapter 3. Techniques for Hand Shape Recognition 58

value of the neuron. In this case, the output of this neuron is also the output of the

Perceptron.

The weighted sum S is given by:

S =
n
∑

i=1

wixi (3.36)

There are a variety of activation functions that can be used. The classical Perceptron

uses a basic step activation function σ which produces a binary output as follows [41,

Pages 11–13]:

σ(S) =

1 ifS ≥ 0

0 ifS < 0
(3.37)

3.2.2.2 Activation Functions

The choice in activation function is crucial to achieving a high-accuracy ANN. It depends

on the specific classification problem at hand. The following are examples of activation

functions σ besides the step activation function described previously:

• Linear Activation Function: The value of this activation function grows propor-

tional to the value of the input. It is given by:

σ(S) = S (3.38)

• Logistic/Sigmoid Activation Function: This activation function limits the value of

the output to the specific range [0, 1]. As such, the output can be thought of as a

probability measure. It is expressed as:

σ(S) =
1

1 + e−S
(3.39)

There is no known method of selecting one or other activation function. Selection of

an appropriate function is a matter or trial and error. However, the Sigmoid activation

function has been used extensively to solve a variety of classification problems with a

high accuracy [30, 49, 52]. In this respect, it shows excellent promise for the hand shape

classification problem in this research. As such, it is selected as the activation function

for the ANN in this research.

Chapter 3. Techniques for Hand Shape Recognition 59

3.2.2.3 Multilayer Perceptron

Practically speaking, the Perceptron is only capable of solving simple problems that are

linearly separable. An example of a non-linear function that the Perceptron is unable

to solve is the XOR function [43].

Adding extra layers to the Perceptron structure results in a Multilayer Perceptron (MLP)

structure [7] which is able to solve non-linearly separable problems. A typical MLP

consists of three layers, although a larger number of layers can also be used. It has

an input and output layer like the basic single-layer Perceptron, but also has a hidden

layer as shown in Figure 3.15. Note that the symbol x
(L)
i in the figure represents the

value of the i-th node in the L-th layer and w
(L)
i,j represents the weight corresponding to

the connection that flows from the i-th node in the L-th layer to the j-th node in the

(L+ 1)-th layer.

Inputs

w
(1)
1,2

w
(1)
n,m

Hidden Layer

w
(2)
1,1

w
(2)
m,p

Outputs

...
...

...

x
(1)
1 = 1

x
(1)
2

x
(1)
3

x
(1)
n

x
(2)
1 = 1

x
(2)
2

x
(2)
3

x
(2)
m

x
(3)
1

x
(3)
2

x
(3)
3

x
(3)
p

Figure 3.15: A Multilayer Perceptron example.

The MLP in the figure consists of n input nodes {x
(1)
i |i = 1, . . . , n}, m hidden nodes

{x
(2)
i |i = 1, . . . ,m} and p output nodes {x

(3)
i |i = 1, . . . , p}. It is important to note

that some nodes and connector arrows have been omitted from the figure due to space

constraints, but every node in a layer is connected to every node in the next layer, with

the exception of the first node in the input and hidden layer which have a fixed value as

follows:

x
(1)
1 = 1 (3.40a)

x
(2)
1 = 1 (3.40b)

Chapter 3. Techniques for Hand Shape Recognition 60

The value of each node in the input layer is taken as the input value to that node. The

value of each node x
(L)
i in every other layer L is computed by means of applying the

activation function σ to the weighted sum S
(L)
i of all inputs to that node given by:

x
(L)
i = σ(S

(L)
i), L ∈ {2, 3} (3.41)

where the weighted sum S
(L)
i is given by:

S
(L)
i =

C
∑

j=1

x
(L−1)
j w

(L−1)
j,i (3.42)

where C is the number of nodes in layer L− 1. The activation function σ considered is

the sigmoid function given by:

σ(S) =
1

1 + e−S
(3.43)

Assuming that all the weights of the MLP are known i.e. a trained MLP model is

available, propagating the input values of an unseen input sample through the MLP and

receiving a prediction value at the output nodes requires a set of simple computations

using the above equations. The problem, however, is to determine the weights given

a training set—a set of input samples labeled with known output values. A technique

called Backpropagation is the training method used to achieve this outcome [24].

Backpropagation is the application of gradient descent to ANNs. Given an input vector

ū = {u1, . . . , un}, the ANN can be generally thought of as a function F that takes in

a vector of weights w̄ and the input vector ū to produce a computed output vector z̄

which consists of the outputs of the MLP {x
(3)
1 , . . . , x

(3)
p } as follows:

z̄ = F (ū, w̄) (3.44)

Note that F may be a good or bad approximator of the actual function G that produces

the vector of actual or required outputs d̄ = {d1, . . . , dp} given the same input vector ū

as follows:

d̄ = G(ū) (3.45)

Chapter 3. Techniques for Hand Shape Recognition 61

The problem is to determine the weight vector w̄ such that the actual and computed

outputs are very close, according some metric. In this case, the mean squared error

(MSE) is used to provide the error P as follows:

P = MSE =
1

p

p
∑

i=1

(di − x
(3)
i)2 (3.46)

Minimizing the difference between d̄ and z̄ amounts to minimizing P . Applying gradient

descent to this function allows for the formulation of a generic update rule for any weight

w
(L)
i,j , starting with some random value for that weight:

w
(L)
i,j ← w

(L)
i,j − α

∂P

∂w
(L)
i,j

(3.47)

where α is the learning rate, the optimum value of which is determined by trial and

error. Consider a weight w
(2)
i,j that connects the hidden layer to the output layer. A

computation of the weight update rule requires the partial derivative of the function P

with respect to this weight. The chain rule can be used to derive this partial derivative

as follows:

∂P

∂w
(2)
i,j

=
∂P

∂x
(3)
j

∂x
(3)
j

∂S
(3)
j

∂S
(3)
j

∂w
(2)
i,j

(3.48)

=
∂P

∂x
(3)
j

∂x
(3)
j

∂S
(3)
j

x
(2)
i

Noting from Equation 3.41 that x
(3)
j = σ(S

(3)
j), the unknown partial derivative in Equa-

tion 3.48 is in fact the derivative of the activation function σ(S) given by:

σ′(S) =
d

dS
(σ(S)) = σ(S)(1− σ(S)) (3.49)

As such, Equation 3.48 becomes:

∂P

∂w
(2)
i,j

=
x
(3)
j − dj

x
(3)
j (1− x

(3)
j)

x
(3)
j (1− x

(3)
j)x

(2)
i

= (x
(3)
j − dj)x

(2)
i (3.50)

Chapter 3. Techniques for Hand Shape Recognition 62

The weight update rule for w
(2)
i,j is then:

w
(2)
i,j ← w

(2)
i,j − α(x

(3)
j − dj)x

(2)
i (3.51)

The same approach can be used to obtain a weight update expression for any weight w
(1)
i,j

that connects the input layer to the hidden layer. The partial derivative of the function

P with respect to this weight can also be obtained using the chain rule, expanded and

simplified as in the previous equations as follows:

∂P

∂w
(1)
i,j

=
∂P

∂x
(2)
j

∂x
(2)
j

∂S
(2)
j

∂S
(2)
j

∂w
(1)
i,j

(3.52a)

= (x
(3)
l − dl)w

(2)
j,l u

(2)
j (1− u

(2)
j)u

(1)
i (3.52b)

Using this expression, the update rule for w
(1)
i,j is expressed as:

w
(1)
i,j ← w

(1)
i,j − α

p
∑

l=0

[

(x
(3)
l − dl)w

(2)
j,l

]

x
(2)
j (1− x

(2)
j)x

(1)
i (3.53)

In practice, the values of all weights are initially chosen randomly and the backpropa-

gation procedure is repeated either until the error in the predicted result of the ANN is

smaller than a threshold, or until a maximum number of iterations is reached.

3.2.3 Random Forests

Random Forests (RFs) are an ensemble of decision trees which collectively form a forest

[11]. Each group of decision trees votes for a class of some sample data and the class

which receives the most votes from all groups of trees is said to be the predicted result.

The underlying strategy behind this method is a technique called bagging which is the

process of constructing a group of classifiers on different random subsets of an overall

training dataset.

In the case of RFs, the classifiers used are decision trees. Decision trees, on their own,

are very simple and poor-accuracy predictors and yield a high prediction variance [11].

Combining multiple decision trees, however, increases the prediction accuracy. In this

respect, RFs are powerful classification techniques since the underlying classification

principle used is simple, but a high prediction accuracy can be obtained.

Chapter 3. Techniques for Hand Shape Recognition 63

A formal definition of RFs is given as follows [11]: a Random Forest R is a collection of

B individual decision tree classifiers given by:

R = {Tb(X,Θb), b = 1, . . . , B} (3.54a)

where Θk is a set of independently distributed samples used to construct a unique

decision tree, Tb refers to the b-th tree in the forest, and each decision tree votes for

the most popular class given input X. The prediction of the forest is the class that

achieves a plurality across all decision trees. It is important to note that the prediction

of decision trees is unweighted, meaning that the prediction of no individual decision

tree is treated as any better than that of any other. This discussion on RFs is divided

into two parts: Subsection 3.2.3.1 describes the underlying principle behind classification

using a decision tree and Subsection 3.2.3.2 provides the algorithm used to construct a

random forest given a set of training data.

3.2.3.1 The Decision Tree

It is important to understand what decision trees are before RFs can be discussed. A

decision tree is a very simple classifier that consists of a set of classification questions

about a given input organized into a hierarchy [15, 63]. When classifying a given input,

the input is passed down the hierarchy of the decision tree, which amounts to asking a

pre-defined set of classification questions about the known characteristics of the input in

order to predict the nature of some unknown characteristic of the input. Each successive

question depends on the answer of all previous questions asked in the hierarchy.

Figure 3.16a is a visualization of an abstracted decision tree and Figure 3.16b is an

example of a decision tree that attempts to predict whether or not a given input image

was taken outdoors or indoors.

Referring to Figure 3.16a, a decision tree consists of a set of nodes and edges which are

organized into a hierarchy [15]. The tree structure is comprised of internal nodes, also

called split nodes, and terminal nodes, also called leaf nodes. The internal nodes are

represented by circles and terminal nodes appear as squares in Figure 3.16a. A split

function is used at each internal node to determine the next node to which a given input

should be redirected. The terminal node of a decision tree provides a predicted class

output.

Chapter 3. Techniques for Hand Shape Recognition 64

(a)

(b)

Figure 3.16: (a) The structure of a typical decision tree and (b) An example decision
tree to predict whether an input image was taken indoors or outdoors[15].

Referring to the path highlighted in orange in Figure 3.16b, a photograph is received

as input and undergoes a series of checks to determine an eventual class—indoor or

outdoor. The first node performs a check to determine whether the top half of the input

image is blue. This could possibly indicate that the sky is present in the top background.

If the result of this check is true, the right sub-tree of the node is activated. The check

Chapter 3. Techniques for Hand Shape Recognition 65

at the next internal node deals with whether or not the bottom half of the photograph

is (also) blue. If the result of this check is false, the decision tree produces the predicted

result “outdoor scene”.

On their own, decision trees are very simple and poor classifiers [11]. However, grouped

into a forest of a large number of decision trees, all querying and voting on various

aspects of an input sample, they develop a strong classification characteristic.

3.2.3.2 Random Forest Algorithm

Consider a dataset consisting of N labeled points {(xi, yi)|i = 1, . . . , N} in which xi

refers to a single training example and yi is the label corresponding to that example.

Each xi consists of p features that can be used in classification. A total of B decision

trees are created using this training set.

For each tree, a random but uniform dataset of n samples with replacement from the

original dataset of N samples is extracted using bootstrapping. Bootstrapping is the

process of selecting unique random subset datasets from a main dataset and using these

unique datasets to train different classifiers. ps variables are selected from the total set

of p variables available as candidates for splitting. At each node in the tree, ps variables

are selected at random from p and the best split positions in the tree on these variables

are selected. Those nodes are split into two child nodes. This is repeated until the depth

of the tree Db is equal to a threshold Dmin. This entire procedure is repeated for each

of the B trees, resulting in a RF {Tb|b = 1, . . . , B}.

With all these symbols defined, this procedure can be summarized in algorithmic form

as follows [23]:

Algorithm 1 Random Forest algorithm

1: for b = 1 to B do
2: Draw a bootstrap sample Z∗ of size n from the training data to create tree Tb

3: while Number of nodes in the current tree Db < Dmin do
4: Select ps variables at random from the p variables available
5: Pick the best variable/split-point among the ps variables
6: Split the node into two daughter nodes
7: end while
8: end for
9: Output the ensemble of trees {Tb|b = 1, . . . , B}

While the value of ps can be optimized, in practice, using a value of ps = log2 p+ 1 has

been shown to produce sufficiently accurate results [11]. Once the RF has been trained,

classification takes place by determining the class with the largest number of votes from

Chapter 3. Techniques for Hand Shape Recognition 66

all the decision trees in the forest. Letting Ĉb(x) be the chosen class of the b-th tree in

the RF on input x, the chosen class of the RF Ĉrf(x) is given by:

Ĉrf(x) =
{

Ĉb(x)
}B

1
(3.55a)

3.2.4 Summary

Section 3.1 discussed fundamental image processing techniques that are implemented in

the proposed system to extract hand shape features from an image sequence, as a basis

for subsequent chapters.

The image processing techniques discussed in this section of the chapter were edge

detection, face detection, skin detection, background subtraction, hierarchical Chamfer

matching, Connected Components Analysis and CAMShift tracking. These techniques

are referred to in a subsequent chapter that details the feature extraction procedure.

Section 3.2 discussed the three machine learning techniques which are compared in the

context of SASL hand shape recognition. The three techniques discussed were Support

Vector Machines, Artificial Neural Networks and Random Forests. In each case, the

underlying principle behind the classification strategy of each technique was discussed

in detail.

The next chapter describes the proposed system implementation used to carry out the

comparison in SASL hand shape accuracy between the three techniques.

Chapter 4

Design and Implementation of the

Hand Shape Recognition System

This chapter discusses the design and implementation of the hand shape recognition

system. Figure 4.1 illustrates the process flow, as well as the various image processing

techniques and machine learning techniques used within the hand shape recognition

system. The operation of the system can be broken down into two main components,

namely, the feature extraction and the classification.

In the feature extraction component, image processing techniques are used to locate and

track the hand of the signer, and extract the features relating to the shape of the hand.

The classification component has two phases: a training phase and a testing phase. In

the training phase, a set of labeled training images are used to produce a classification

model of each machine learning technique. In the testing phase, the classification model

is used to classify a previously unseen image into one of the pre-defined hand shape

classes.

This chapter is organized into three sections. The first section—Section 4.1—discusses

the feature extraction component used to extract hand shape features from an input

video stream in detail, in order to successfully achieve Objective 1 set out in Chapter

1. Section 4.2 details the classification component which involves the training and use

of the three machine learning techniques—SVMs, RFs and ANNs—towards recognizing

SASL hand shapes, which is used in the next chapter to achieve Objectives 2 and 3 set

out in Chapter 1. The chapter is then concluded.

67

Chapter 4. Design and Implementation of the Hand Shape Recognition System 68

Figure 4.1: An overview of the hand shape recognition system.

4.1 Feature Extraction

This section explains the procedure carried out to locate and track the hand of the signer

and subsequently extract features related to the hand shape of the signer. Referring to

Figure 4.1, the feature extraction component involves concurrently computing a skin

image, described in Subsection 4.1.1 below, and a motion image, detailed in Subsection

4.1.2 below, and subsequently combining these images to obtain a combined image,

explained in Subsection 4.1.3. This procedure happens on every frame of the input

video stream.

Hierarchical Chamfer matching is applied to the combined image only once in the initial

stage of the procedure to locate the signer’s hand, described in Subsection 4.1.4. This

location is then used to initialize the CAMShift tracking algorithm which continuously

tracks the signer’s hand thereafter. This is described in Subsection 4.1.5. Finally, the

Chapter 4. Design and Implementation of the Hand Shape Recognition System 69

contours of the hand are normalized and extracted from the isolated hand region. This

is described in Subsection 4.1.6 below.

4.1.1 Skin Image

An adaptive skin detection algorithm created by [2] is implemented to locate the skin

pixels of the signer. The algorithm is able to detect skin pixels within an image. It is

also robust to various skin tones and illumination conditions.

In order to determine the skin colour distribution of the signer, the face of the signer

is detected. This is achieved using the Viola-Jones face detection algorithm [66]. The

detected face of the signer is depicted in Figure 4.2a.

(a) Face detection applied to the image (b) The center of the facial frame locates the tip of
the nose

Figure 4.2: Locating the signer’s nose.

Once the face has been detected, the next step is for the position of nose of the signer

to be detected. The tip of the nose is located by extracting a 10 × 10 pixel region of

the center of the detected face of the signer, as shown in Figure 4.2b. This specific

region is used as it is a region that is void of any non-skin obstructions such as hair,

discolouration, etc. It provides a robust indication of the skin colour distribution of the

signer. This region is converted from the RGB (Red-Green-Blue) colour space to the

HSV (Hue-Saturation-Value) colour space.

A 1-dimensional H-S histogram is computed from hue component of the HSV colour

representation of the extracted nose region. The hue component is used because it has

been shown to be robust to illumination variations. The computed histogram is then

backprojected onto the original frame of the signer, which produces a skin probability

image i.e. brighter pixels have a high probability of being skin. Brown found that

applying a threshold value of 60 to the resulting probability image provided an optimal

skin binarization result [12]. The resulting binary image highlights only skin pixels in

Chapter 4. Design and Implementation of the Hand Shape Recognition System 70

the image. Skin pixels are represented with an intensity value of 255 and non-skin pixels

are represented by 0, as shown in Figure 4.3a.

(a) The skin image (b) Application of Gaussian blur to reduce noise

Figure 4.3: The skin image: a) before and b) after applying Gaussian blur to smoothen
the image and reduce noise.

A Gaussian blur operation is applied to smooth the image in order to reduce sources of

noise in the image, the result of which can be seen in Figure 4.3b. The contours of skin

regions are smoothened and small regions of noise, such as the contours of the blinds in

the top-right region of the image, are eliminated.

4.1.2 Motion Image

The skin image is not sufficient to locate the hand on its own, as there could be other

large skin-coloured objects, especially the face, in the frame that should constitute the

background but would be highlighted. As such, background subtraction is used to seg-

ment the moving foreground from the stationary background of the image and eliminate

such sources of noise.

This is achieved using the Gaussian Mixture Models (GMMs) background subtraction

technique described in Section 3.1 of Chapter 3. GMMs are applied to the original input

image, resulting in an image—the motion image—in which only the moving pixels are

highlighted. The motion image is depicted in Figure 4.4.

4.1.3 Combination of the Skin and Motion Images

The skin image provides an accurate mapping of the skin pixels in an input image,

but may highlight non-skin areas that are skin-coloured. The motion image effectively

highlights all moving parts of an image, but these parts include objects besides the hand

of the signer. Combining the skin image shown in Figure 4.3b and the motion image

shown in Figure 4.4 effectively eliminates most sources of noise and objects that are not

Chapter 4. Design and Implementation of the Hand Shape Recognition System 71

Figure 4.4: The result of applying Gaussian Mixture Models to highlight moving
pixels—the motion image.

of interest in either image. This image contains only the moving skin pixels present in

the input frame. Figure 4.5 depicts the moving skin pixel image produced by combining

Figures 4.3b and 4.4.

Figure 4.5: The skin image and motion image combined to form a moving skin image.

4.1.4 Locating the Hand

Hierarchical Chamfer Matching is used to locate the signer’s hand only once during the

initial stage of the entire procedure. This is used to initialize the CAMShift tracking

algorithm tracking window. The system assumes that, only initially, the signer holds up

Chapter 4. Design and Implementation of the Hand Shape Recognition System 72

an open palm until tracking is initialized. A pre-computed template silhouette of the

open palm is used to locate the signer’s open palm in the moving skin image.

The matching is performed at various scales to find the best match. The most probable

match location is determined. Searching for the hand silhouette in the moving skin

image virtually eliminates the chance of determining an incorrect matching location.

4.1.5 Using CAMShift for Hand Tracking

The location of the search window of the CAMShift algorithm is set to the location of

the hand. CAMShift then continuously tracks the signer’s hand as it moves, and it does

so in real time. Figure 4.6 shows the CAMShift tracking algorithm in action, tracking

the signer’s hand.

Figure 4.6: The hand of the signer tracked by the CAMShift tracking window.

4.1.6 Feature Extraction and Normalization

The hand of the signer is now consistently tracked across each frame of the video stream

using CAMShift. Connected Components Analysis (CCA) is used to compute the con-

tours of the objects in the region in the CAMShift tracking window, which mostly

consists of the signer’s hand. It is assumed that the largest connected component in the

region is the hand contour. As such, all connected components that are not connected

to or part of the largest connected component are eliminated. This results in an image

of the isolated hand.

In some situations the hand could be tilted in-plane slightly which can cause incorrect

classification of a hand shape. One solution is to train the machine learning techniques

on a large number of hand rotation and orientations. A much more cost-effective and

Chapter 4. Design and Implementation of the Hand Shape Recognition System 73

efficient solution is to normalize the hand by aligning it to one of the principal axes.

The latter method is used.

A minimum bounding box is drawn around the hand as depicted in Figure 4.7a. Assum-

ing a small rotation of the hand in-plane (< 45◦), the principal axis of the box is rotated

and aligned with the vertical image axis, as shown in Figure 4.7b. After rotation, the

hand contour is scaled down to a resolution of 30× 40 pixels, depicted in Figure 4.7c.

(a) (b) (c)

Figure 4.7: The process of extraction and normalization of the hand contour: (a) The
original tilted hand contour with a minimum bounding box drawn around it (b) The
minimum bounding box aligned with the vertical axis (c) The normalized and resized

hand contour.

This normalized binary contour image is the feature representation of the hand shape.

Assuming that the value of a pixel at position (i, j) in the normalized binary contour

image I is given by I(i, j), a final feature vector V is computed by concatenating the

pixels of the image, row-by-row and column-by-column into a single linear feature vector

as follows:

V = {R1, . . . , R40} (4.1)

where

Rj = {I(1, j), . . . , I(30, j)}

where Rj represents the j-th row in the image I.

4.2 Classification

With the extracted hand contour feature vector available, it is now possible to train

and test the three machine learning techniques. The ten SASL hand shapes, shown in

Figure 4.8, are used to train and test the machine learning techniques. Overall, the

classification procedure for any of the machine learning techniques used takes place in

two phases.

Chapter 4. Design and Implementation of the Hand Shape Recognition System 74

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

(f) 6 (g) 7 (h) 8 (i) 9 (j) 10

Figure 4.8: The ten SASL hand shapes.

The first phase called the “training phase” involves optimizing and training the machine

learning technique using a set of labeled images, referred to as the “training set”, to

obtain a classification model. Optimization involves determining the optimal values

of specific parameters, specific to each machine learning technique, that achieve the

optimum classification accuracy on the training set. Training then involves using the

optimal parameters to produce a final optimal classification model. The experiments

carried out to optimize and train the SVM, ANN and RF are detailed in the next

chapter.

The second phase called the “testing phase” involves classifying an unknown or unseen

image into one of the classes using the trained and optimized models on a continuous

basis. Given a set of labeled images different to those of the training set called a “test-

ing set”, it is possible to determine the classification accuracy of the machine learning

technique. The next chapter also discusses the experiments carried to determine and

compare the accuracy of each machine learning technique using a testing set.

This section describes the process involved in training each machine learning technique

in the training phase given a training set, and classifying a set of unseen images in the

testing phase using a testing set. The following subsections describe these procedures for

Support Vector Machines in Subsection 4.2.1, Artificial Neural Networks in Subsection

4.2.2 and Random Forests in Subsection 4.2.3.

4.2.1 Classification Using the Support Vector Machine

The very popular LibSVM [25] implementation of Support Vector Machines is used in

this research. The library provides a set of tools to create Support Vector Machine

classification models and classify a given input using an existing or pre-created model.

Chapter 4. Design and Implementation of the Hand Shape Recognition System 75

Figure 4.9: Illustration of the data file format used by LibSVM.

Given the feature vectors of a set of training images in the training phase produced as

previously explained, a data file is produced in a specific format. The format of the

data file consists of label and feature pairs as shown in Figure 4.9. Each row of data

represents the label and feature vector of a specific hand shape image. Each row in

the figure has a class label, and the rest of the data consists of “index:feature” pairs of

binary values of the normalized hand shape contour image of that row.

As previously noted, a feature vector consisting of 30 × 40 pixels for the hand shape

contour image implies a total of 1200 pixels and, therefore, 1200 features per row. Due

to space constraints, the figure omits features 18 to 1200 which are implied to exist in

the data file. Also note that each feature value is a binary value in which a ‘1’ indicates

a contour pixel and a ‘0’ indicates a non-contour pixel. The result of training on this

data file is a SVM classification model.

In the testing phase, given the feature vectors of a set of testing images whose labels

are not known, a data file in the same format mentioned previously is produced, except

that the label of each row is set to a default value of −1, since the true class is not

known. The output of the SVM prediction, given the trained model, is a file consisting

of predicted labels of each row in the original data file.

4.2.2 Classification Using the Artificial Neural Network

The OpenCV implementation of ANNs was used. A Feed Forward 3-Layer Perceptron

ANN was used in the recognition of the ten SASL hand shapes. The network consists of

an input layer, one hidden layer and an output layer. The input layer consists of 1200

Chapter 4. Design and Implementation of the Hand Shape Recognition System 76

Figure 4.10: The data file of the Artificial Neural Network

neurons corresponding to each of the 1200 features in the hand shape feature vector.

The output layer consists of 10 neurons, each corresponding to one of the 10 hand shape

classes to be recognized. While the number of input and output neurons is known, the

number of hidden neurons m that can yield an optimal classification accuracy is not

known. The optimization of the number of neurons in the hidden layer is carried out in

the next chapter.

In the training phase, similar to the case of SVMs, given the feature vectors of a set of

training images, a data file is produced. The format in this case is quite similar to that

of SVMs, but consists of only the values of the set of binary digits of the 1200 features of

the hand shape separated by spaces, followed by a corresponding class label, illustrated

in Figure 4.10. Each row corresponds to a single hand shape image in the training set.

Given this data file, backpropagation is used to determine the optimal weights for the

ANN used to produce a classification model.

In the testing phase, given the feature vectors of a set of testing images, a data file in

the same format as the training phase is produced, but the labels of all the images are,

similar to SVMs, set to a default value of −1. Given the trained classification model

and the data file, a output file is produced containing the predicted labels of the images

represented in each row of the file.

Since the sigmoid activation function is used at each neuron, including the output neu-

rons, the eventual output at each output neuron is a value in the range [0,1]. Given the

inputs of a single image to be classified, the class represented by the output neuron with

the highest value is taken as the correctly predicted class.

Chapter 4. Design and Implementation of the Hand Shape Recognition System 77

4.2.3 Classification Using the Random Forest

Similar to ANNs, the OpenCV implementation of RFs was used. As such, the format of

the data file to be constructed for either training or testing sets was very similar to the

one described in the previous subsection, with the exception that the features in the file

are comma-delimited, and the last value in every row represents the label of the image

represented by the features in that row. Once again, every row represents a single hand

shape image.

In the training phase, the training data file is used to produce a forest of decision trees

using the optimal parameters. As explained in the previous chapter, RFs have three

possible parameters that can be optimized to achieve optimal classification accuracy on

a training set. These are: the total number of trees in the forest B, the depth of the

individual decision trees in the forest Dmin and the number of split variables per node

ps. The next chapter describes the experiment carried out to optimize the parameters

of the RF used.

In the testing phase, the feature vectors of a set of testing images are placed into the

same format as in the training phase, with the exception that the labels of all the images

are set to the default place-holder −1 value, indicating that the class of these images

is unknown. The output of the forest is a file in which each row contains a label that

the majority of decision trees in the forest determined as being the class of the image in

that row in the input data file.

4.3 Summary

This chapter detailed the implementation of the feature extraction and classification

components of the system. It described, in detail, the image processing procedure used

to locate and track the hand, and subsequently extract and represent the features of the

hand shape. As such, it is concluded at this stage that Objective 1 set out in Chapter

1 has succesfully been achieved. The chapter also described the process used to train

each machine learning technique, as well as use the trained classification models of each

technique to produce a predicted class for a previously unseen hand image.

The next chapter describes the experiments carried out to optimize the parameters of

each of the machine learning techniques and subsequently train them, as well as the

experiments carried out to assess and compare the accuracy and computational speed

of each technique in order to meet Objectives 2 and 3 set out in Chapter 1, and answer

the research questions.

Chapter 5

Experimental Results and

Analysis

This chapter discusses the experimentation carried out to optimize and train the three

machine learning techniques, and evaluate the classification accuracy and speed of the

three techniques. These experiments ultimately lead to an answer to the main research

question and all three research sub-questions set out in Chapter 1. The results culminate

in the selection of the best technique out of the three techniques compared in the context

of SASL hand shape recognition.

All experiments were carried out on a Lenovo ThinkPad Edge PC with a 2.2GHz i3

CPU and 4 GB of RAM. For ease of reference in this chapter, a reference to a specific

hand shape will be denoted as “HS x”, where x is the hand shape number. For example,

Hand shape 10 will be denoted HS 10.

The discussion in the chapter is sub-divided into the following sections. Section 5.1

explains the dataset collected and used in the optimization, training and testing of the

machine learning techniques.

Section 5.2 details the experiments carried out to optimize each machine learning tech-

nique in order to meet Objective 2 set out in Chapter 1. A detailed analysis of the

results culminates in a response to Research Sub-question 1 set out in Chapter 1.

Section 5.3 discusses the experiments carried out to determine the classification accuracy

and time of each technique in order to meet the final objective, Objective 3 set out in

Chapter 1.

Section 5.4 then provides a summary of the comparisons in previous sections in order

to obtain a response to the two remaining Research Sub-questions 2 and 3 set out in

78

Chapter 5. Experimental Results and Analysis 79

Chapter 1, as well as motivate for the selection of the best technique, out of the three

techniques compared, for SASL hand shape recognition.

5.1 Training and Testing Datasets

For the collection of SASL hand shape images, twelve subjects of varying skin colour

shown in Figure 5.1 were asked to perform each of the ten SASL hand shapes. It is clear

from the figure that the subjects chosen were of varied skin tones in order to demonstrate

the robustness of the system to variations in skin tone.

A video of no less than 30 seconds was recorded per subject for each of the ten SASL

hand shapes. This resulted in ten videos collected from each of the twelve subjects, one

for each SASL hand shape. Equivalently, this resulted in twelve videos per SASL hand

shape, and 120 videos in total. These videos were recorded at 24 frames per second and,

in total, the entire dataset consisted of over 80000 images.

The dataset was divided into two equal parts. The images of Subjects 1 to 6 were used

as a training set for the optimization experiments in Section 5.2. A total of 50 images of

each hand shape for each subject were randomly chosen and combined to form a training

set. The resulting set consisted of a total of 3000 images; 300 images per hand shape

and 500 images per subject. This set is henceforth referred to as the “training set” and

is used in the optimization experiments and training procedures detailed in Section 5.2.

The images of Subjects 7 to 12 were used as a testing set for the classification experiments

in Section 5.3. Like the training set, a total of 50 images of each hand shape for each

subject were randomly chosen and combined to form a testing set. The resulting set

also consisted of a total of 3000 images; 300 images per hand shape and 500 images per

subject. This set is henceforth referred to as the “testing set”.

The training and testing sets were so devised as to include subjects of a variety of skin

tones in both sets, as observed in Figure 5.1.

5.2 Optimization Experimentation

This section describes the experiments carried out to determine the optimal parameters

of each machine learning technique, and subsequently produce an optimal classification

model for each technique, in accordance with Objective 2 set out in Chapter 1. A

comparison in the results in order to answer Research Sub-question 1 is also provided.

Chapter 5. Experimental Results and Analysis 80

(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

(g) Subject 7 (h) Subject 8 (i) Subject 9

(j) Subject 10 (k) Subject 11 (l) Subject 12

Figure 5.1: The 12 subjects used for training and testing.

Section 5.2.1 below first explains the k-fold cross-validation technique that is used as an

accuracy measure when optimizing each technique. Since the optimization procedure is

completely different for each technique, the discussion of these procedures is provided

separately in Sections 5.2.2, 5.2.3 and 5.2.4 for the SVM, ANN and RF, respectively,

with Section 5.2.5 finally comparing these results and answering Research Sub-question

1.

5.2.1 k-fold Cross Validation

For optimization and training, the k-fold cross-validation technique was used. The

technique is a method of validating the accuracy of a machine learning technique to aid

Chapter 5. Experimental Results and Analysis 81

with parameter selection. It involves first splitting up the training set into k equally-

sized subsets. Thereafter, the machine learning technique is trained on k−1 subsets and

tested on the remaining set in a revolving fashion, to make a total of k trials or “turns”.

Figure 5.2: A visual representation of k-fold cross validation [9]

This process is illustrated in Figure 5.2. It is seen that in turn 1, the first subset or

“fold” which is shaded is used as a testing set, and folds 2 to k are used as a combined

training set. In turn 2, the second fold is used as a testing set, and a combination of

folds 1 and 2 to k are used a training set. Repeating this procedure, represented by a

downward projection through the figure, results in k unique turns. Finally, the average

accuracy across all k folds is computed. This accuracy is referred to as the k-fold cross

validation accuracy or cross validation accuracy for short. It is a very good measure of

the overall classification accuracy of the model and its ability to generalize to a variety

of unseen images and subjects [9].

In this research, the size of k was chosen as 6. This was chosen in order to be able to

divide the training set such that each fold contains all the images of 1 of the 6 subjects

in the set. This ensures that each cross-validation turn makes use of a different set of

subjects for training and testing, giving a strong indication of the ability of the system to

generalize to a variety of test subjects. As such, in each cross-validation turn, the testing

fold consists of the images of 1 of the training subjects, and the combined training fold

consists of the images of the remaining subjects.

5.2.2 Optimization of the Support Vector Machine

As mentioned in Subsection 3.2.1 in Chapter 3 , the Radial Basis Function (RBF) kernel

is used with the SVM in this research. This kernel has two parameters—C and γ—that

can be optimized to yield an optimum SVM classification model. The optimization of

these parameters is carried out by a process of trial-and-error involving investigating the

classification accuracy of various (C, γ) pairs as follows.

Chapter 5. Experimental Results and Analysis 82

Figure 5.3: Optimization of the SVM: A graph depicting the grid-search optimization
results.

In each trial, a (C, γ) pair is selected. 6-fold cross-validation is then used to determine

the classification accuracy of this specific (C, γ) pair. The pair that produces the highest

cross-validation accuracy is selected as the optimum parameter setting. LibSVM pro-

vides a grid-search tool that carries out this procedure and returns the (C, γ) pair that

yields the highest cross-validation accuracy, and this tool was used in this research.

The graphical output of the grid-search is illustrated in Figure 5.3. It can be seen that

the pair (C = 8, γ = 0.0078125) produced the optimum cross-validation accuracy of

99.8%. The entire grid-search optimization procedure was timed, and took 109 seconds

to complete. The optimal parameter values were then used to train the SVM on all of

the samples of the training set, and this was timed, and took 21 seconds to complete.

5.2.3 Optimization of the Artificial Neural Network

As mentioned in the previous chapter, a 3-Layer Perceptron consisting of an input layer

with 1200 neurons and an output layer with 10 neurons was used. The number of

neurons in the hidden layer m is unknown and is optimized.

Chapter 5. Experimental Results and Analysis 83

As demonstrated in Chapter 2, a process of trial and error can be used to determine

the optimal number of hidden neurons [1, 33]. Typically, the use of between 5 and 100

hidden neurons is investigated [23]. To be consistent with the optimization of the SVM,

the same 6-fold cross-validation technique previously explained was used to determine

the optimal number of hidden neurons m. The number of hidden neurons m was varied

from 2 to 50. For each m, the 6-fold cross-validation accuracy was determined and

recorded.

Figure 5.4: Optimization of the ANN: A graph of the cross-validation accuracy for
each number of hidden neurons m used.

Table A.1 in Appendix A contains the complete optimization results, and Figure 5.4

summarizes these results graphically. Referring to Figure 5.4, it can be seen that the

cross-validation accuracy of the graph initially increases sharply with each added neu-

ron, but eventually converges. In the region of the graph between 2 and 11 neurons,

the accuracy increases very rapidly from 18.33% to 70.73%. Thereafter, the accuracy

stabilizes and converges to the range between 72% and 76%.

The optimal number of neurons chosen is 16, since this is the best trade-off between

cross-validation accuracy and processing speed. A larger number of hidden neurons, in

this case, may yield a slight increase in cross-validation accuracy of about 1% or 2%, but

greatly increases the training and processing time due to a significantly larger number

of computations required in the latter case.

Chapter 5. Experimental Results and Analysis 84

The total time taken to carry out the optimization procedure for all m ∈ {2, . . . , 50}

was 3589 seconds. The time taken to train the final model using the optimal number of

hidden neurons was 39 seconds.

5.2.4 Optimization of the Random Forest

As explained in the previous chapter, RFs have three possible parameters that can be

optimized to achieve optimal classification accuracy on a training set. These are: the

total number of trees in the forest B, the depth of the individual decision trees in the

forest Dmin and the number of split variables per node ps. As mentioned in Chapter 3.2,

it is common practice to set ps = log2 p + 1. Given the number of features p = 1200,

the value of ps is computed as ps = 11. This produces sufficiently accurate results and

significantly limits the parameter optimization search problem to two variables. This

substantially simplifies and speeds up the otherwise expensive optimization process.

This approach is used.

For consistency, the same 6-fold cross-validation accuracy used to optimize the previous

two machine learning techniques was used as a measure of classification optimality of

each (B,Dmin) combination. The value of Dmin was increased in steps of 2 from 2

upwards. For each Dmin value, values of B from 5 upwards in steps of 5 were used and

the cross-validation accuracy of each combination was computed.

Table A.2 in Appendix A contains the complete optimization results, and Figure 5.5

summarizes these results graphically. Each curve in the graph represents the cross-

validation accuracy of a specific depth value Dmin. Two trends are noted from Figure

5.5.

First, by observing each individual curve in the graph, it is noted that as the number of

trees B increases, the cross-validation accuracy initially also increases rapidly, but the

accuracy eventually converges, at which point increasing the number of trees does not

generally appear to yield any significant increase in accuracy. This trend is consistent

for all of the curves i.e. for all the different depth values Dmin. It also appears that for

higher values of Dmin, the accuracy appears to converge at approximately B = 40 or

B = 45.

Second, by comparing the accuracy level of the curves, it is noted that increasing the

depth also initially yields a rapid increase in cross-validation accuracy, embodied by the

upward shift in the curves, but the accuracy once again converges starting at a depth

value of Dmin = 8, and no significant increase in accuracy is realized by increasing

Chapter 5. Experimental Results and Analysis 85

the depth after this point, represented by the general overlap between the curves of

Dmin > 8.

A tree depth Dmin = 12 is observed to yield a slightly higher cross-validation accuracy of

70.03% compared to other depth values. Considering the curve of this depth value, it is

seen that no change in the cross-validation accuracy is observed from 50 trees onwards.

Therefore, the number of trees is taken as B = 50. The optimal parameter pair is then

(B = 50, Dmin = 12)

Figure 5.5: Optimization of the RF: The cross-validation accuracy for each increment
in the number of trees B for various depths Dmin.

The total time taken to carry out the entire optimization procedure was 14916 seconds.

The time taken to train the final RF model using the optimal parameter pair (B =

50, Dmin = 12) was 101 seconds.

5.2.5 Comparison in Optimization and Training Procedures

It is stated that, at this stage, Objective 2 set out in Chapter 1 has successfully been

achieved.

It is very clear, at this point, that the SVM is by far the quickest technique to optimize

and train. The optimization time of this technique is, respectively, 1 and 2 orders of

magnitude smaller than those of the ANN and RF. The training time is also considerably

Chapter 5. Experimental Results and Analysis 86

smaller than that of both techniques, being about half that of the ANN and about 5

times smaller than that of the RF.

As such, it is very clear that, in this respect, the SVM is superior to both other tech-

niques.

The ANN is also clearly faster to optimize and train than the RF. The ANN considered

in this case only requires one parameter to be optimized—the number of neurons in

the hidden layer. In comparison, the RF requires a minimum of two parameters to be

optimized—the number of trees in the forest and the minimum tree depth.

The increase in optimization complexity for the RF is very apparent in the timings of

the two procedures. The time required to optimize the ANN is about 4 times smaller

than the time required to optimize the RF. The time required to train the ANN is about

2.5 times less than that of the RF.

It is interesting to note that, despite the severe difference in optimization and training

times, the eventual cross-validation accuracies of the two techniques were comparable.

As such, in response to Research Sub-question 1 which asks “How do the techniques

compare in terms of the time taken for optimization and training?”, it is stated that the

SVM takes considerably less time to optimize and train than the ANN and the RF, and

the ANN takes considerably less time to optimize and train than the RF.

5.3 Classification Experimentation

This section describes the experiments performed to determine the recognition accuracy

and computational speed of each machine learning technique on the testing set using

the optimized and trained models in accordance with Objective 3 set out in Chapter

1. A detailed analysis and discussion of the results is carried out, and the discussion

for all three techniques is combined and compared in this case, since the testing pro-

cedures were all the same. The comparison of the results between the three machine

learning techniques in order to answer Research Sub-questions 2 and 3 is carried out in

a subsequent section.

Section 5.3.1 describes the experimental procedure used to obtain the classification ac-

curacy and time results. Section 5.3.2 analyses, compares and discusses the overall

classification accuracy and time of the techniques. Sections 5.3.3 and 5.3.4 then analyse,

compare and discuss the classification accuracy of each technique in terms of varia-

tions across hand shapes and test subjects, respectively, to obtain an indication of the

robustness of each technique to such variations.

Chapter 5. Experimental Results and Analysis 87

For ease of reference in this section, Figure 4.8, provided in the previous chapter which

depicts the 10 hand shapes recognized, is provided here again in Figure 5.6.

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

(f) 6 (g) 7 (h) 8 (i) 9 (j) 10

Figure 5.6: The ten SASL hand shapes.

5.3.1 Experimental Procedure

The feature vector of each image of the testing set was used as input into the trained

classification model of each machine learning technique. As mentioned in the previous

chapter, given an input feature vector, each of the models predicts a label between 1

and 10, corresponding to the hand shape class that most accurately matches the input

according to that classification model.

As such, for each image in the testing set, the result of the predicted hand shape label

was compared with the actual hand shape label of the image to produce a dichotomous

outcome as follows: if the two labels matched, the result was recorded as correctly recog-

nized; if the two labels did not match, the result was recorded as incorrectly recognized.

These results were then used to determine an overall per-sign and per-subject accuracy

for each technique.

In addition to recording the outcome of recognition for each image, the time taken

by the classification model to produce an output was also determined. It was found,

experimentally, that the time taken to classify a single image was negligibly small since

the processing speed of the ANN and RF on a single image was exceptionally high.

Therefore, rather than timing the classification procedure on each image, the procedure

was timed on all 3000 images. However, in order to obtain a measure of the standard

deviation in the total time, the process of classifying all 3000 images was repeated 3000

times for each technique. For each iteration, the total time taken to classify all 3000

Chapter 5. Experimental Results and Analysis 88

images was recorded. This was used to compute the average total time and the standard

deviation in this value.

Before an analysis of the results is carried out, it is very important to take note of the

success rate of random guessing in place of each of the classifiers as a base comparison.

For each image of each hand shape, a classification into one of 10 hand shape classes is

under taken. A random guess for each image is successful 1
10 of the time, which is an

accuracy of 10%. Taking the average success rate across all the images then also results

in an average overall success rate of 10% when using random guessing in place of the

classifiers.

An accuracy any higher than this success rate, henceforth referred to as the “guess

accuracy”, is considered to be superior to random guessing.

5.3.2 Results and Analysis – Overview and Comparison

It is stated at this point that the final Objective 3 set out in Chapter 1 has been

successfully achieved.

A comprehensive set of results per subject and hand shape for the SVM, ANN and RF

are provided in Tables B.1, B.2 and B.3 in Appendix B. Also, confusion matrices of the

hand shape recognition outcome of each classifier are provided in Tables B.4, B.5 and

B.6 of the same appendix. For convenience, this and all subsequent sections draw and

provide relevant summarized excerpts of the results as required by the discussion and

analysis.

Overall, the SVM achieved a classification accuracy of 84.3%, correctly classifying 2529

of the 3000 images in the testing set. It is also very important to note that, in spite of the

fact that a dataset that was completely different to Li’s dataset was used in this research

(since Li’s dataset was not available), the hand shape recognition accuracy obtained is

very close to Li’s hand shape recognition accuracy of 83.3%. This result leads to the

following conclusions:

1. It confirms that Li’s feature extraction procedure was correctly re-implemented in

this research.

2. It clearly demonstrates the robustness of Li’s feature extraction procedure.

3. In reverse, it also confirms that the accuracy arrived at by Li was an accurate

result.

Chapter 5. Experimental Results and Analysis 89

The ANN, overall, obtained a classification accuracy of 85.9% on the testing set. This

is a marginally larger average accuracy than the SVM—1.6% higher. Out of the 3000

images, 2578 were correctly classified.

The Random Forest achieved the lowest, but very comparable, accuracy of 81.3%. It

correctly recognized 2440 of the 3000 SASL hand shape testing images.

It is noted that the average accuracies of all three techniques are very comparable, but

the ANN achieves a marginally larger accuracy than the SVM and RF. Also, comparing

all of these accuracies to the guess accuracy of 10% leads to the realization that all three

classifiers perform exceptionally well.

Before analysing the classification time, it should be noted that the classification time

and the classification speed are inversely related. As such, a low classification time

directly implies a high or fast classification speed. Conversely, a large classification time

directly implies a low or slow classification speed. Therefore, this discussion may use

these terms interchangeably to reference the classification time which is the subject of

analysis.

In terms of classification time, it is observed that the ANN and RF achieve very compa-

rable and exceptionally small classification times indicating very high processing speeds,

whereas the SVM is significantly slower than the previous two techniques.

The classification process for the RF was observed to be exceptionally fast, and the

fastest of the three techniques. The time to classify all 3000 images in the testing

set using this technique was 0.033 seconds with a standard deviation of 0.005 seconds.

The classification process for the ANN was also observed to be exceptionally fast. On

average, the time to classify all 3000 images in the testing set was only 0.061 seconds

with a standard deviation of 0.003 seconds. The SVM was significantly slower than the

ANN and RF and took an average of 20.974 seconds with a standard deviation of 0.071

seconds to classify all 3000 images in the testing set.

The average classification speed of the SVM may, at first glance, be considered slow

when compared to the speeds achieved by the ANN and RF. However, it should be

noted that a time of 20.974 seconds for 3000 images equates to approximately 0.007

seconds per image. Comparing this to the minimum real-time processing speed of 15

frames per second which equates to 0.067 seconds per frame reveals that the time of

0.007 seconds per frame achieved by the SVM is actually approximately 10 times faster

than real-time. Therefore, it cannot be said that the SVM is slow. Rather, it should be

concluded that the ANN and RF are exceptionally fast.

Chapter 5. Experimental Results and Analysis 90

Overall, although both the RF and ANN achieve exceptionally fast and comparable

classification speeds, the RF achieves a faster classification time, which, when compared

to the classification time of the ANN, is approximately 2 times faster. In this respect,

the RF is the most suitable classifier.

5.3.3 Results and Analysis – Accuracy Per Hand Shape

Table 5.1 summarizes the average accuracy per hand shape class across all test subjects

for each machine learning technique and these results are depicted graphically in Figure

5.7.

The table indicates the percentage of images that were correctly classified out of a total

of 300 images per hand shape for each machine learning technique. In each row of the

table, the accuracy of the highest performing technique for the hand shape corresponding

to that row has also been highlighted.

Figure 5.7: Average accuracy per hand shape class across all test subjects.

Chapter 5. Experimental Results and Analysis 91

Hand Shape
Accuracy (%)

SVM ANN RF

1 98.6 96.3 93.3
2 87.6 81.3 59.3
3 81.6 80.0 76.0
4 75.6 72.6 81.6
5 82.0 81.0 76.6
6 92.0 91.6 91.6
7 97.3 96.3 95.3
8 99.6 98.3 97.0
9 72.6 82.6 78.3
10 55.6 79.0 64.0

Overall 84.30 85.93 81.33

Table 5.1: Classification accuracy of the each machine learning technique per hand
shape.

Referring to Table 5.1 and Figure 5.7, it is seen that HS 8 consistently achieves the

highest accuracy for every technique. The hand shape achieves near-perfect accuracies

of 99.6%, 98.3% and 97.0% for the SVM, ANN and RF, respectively.

This consistently high accuracy can be attributed to the unique visual appearance of

the hand shape, depicted in Figure 5.6. It is not easily confused with other hand shapes.

Only HS 2 may be considered to have some similarity with the hand shape. Both HS

8 and HS 2 have the index and middle fingers raised, but with a major difference in

the position of the ring and index fingers which are lowered in the former and raised

in the latter. As such, even these two shapes are not very similar. Therefore, it is not

surprising that HS 8 obtains the highest accuracy.

The hand shape and value of the lowest accuracy, however, is very different for each

machine learning technique. The lowest accuracy obtained by the SVM is for HS 10

with an accuracy of 55.6%. The RF obtains a marginally higher minimum accuracy of

59.3% attributed to HS 2. The ANN obtains the highest minimum accuracy of 72.67%

corresponding to HS 4. As such, the ANN has a much smaller range in accuracy across

hand shapes and it may be deduced that the ANN is more robust to a large number of

hand shape classes.

However, the SVM and RF are also robust to hand shapes. It should be considered that

the minimum accuracies of the SVM and the RF are outliers amongst the accuracies of

the other 9 hand shapes. Aside from HS 10 of the SVM, it is observed that all other

hand shapes achieve very high accuracies of higher than 70%, with 4 hand shapes above

90%, 3 hand shapes above 80% and 2 hand shapes above 70%. A similar observation

is made for the RF whereby, apart from HS 2, the RF generally yields high accuracies

Chapter 5. Experimental Results and Analysis 92

of higher than 60%, with 4 hand shapes above 90%, 1 hand shape above 80%, 3 hand

shapes above 70% and 1 hand shape above 60%.

Furthermore, comparing the accuracies in Table 5.1 on a row-by-row basis and consid-

ering the highest value per row highlighted in bold font reveals that the SVM achieves

slightly higher accuracies in the majority of individual hand shape classes, with the ANN

achieving higher accuracies for HS 9 and HS 10 and the RF achieving a higher accuracy

for HS 4.

Also, regarding the lowest accuracies of 55.6% by HS 10 for the SVM and 59.3% by HS

2 for the RF, while these accuracies may, at first glance, be considered low accuracies

and will be analysed further in this section, it is important to note that they are still

several times larger than the guess accuracy of 10% and should be considered, at the

very least, satisfactory or good, if not very good accuracies.

As such, it is clear that the SVM and RF, while less consistent than the ANN in accuracy

across hand shapes, still clearly perform exceptionally well.

In conclusion, although the SVM achieves slightly higher accuracies for most individual

hands shapes, the ANN is the preferable classifier since the individual hand shape ac-

curacies are only very slightly lower than those of the SVM, but it achieves a greater

consistency in high accuracy recognition across all hand shapes than the SVM and RF

and a considerably lower range in hand shape accuracy, demonstrating greater consis-

tency and robustness than both other classifiers.

Predicted Class Image Count

1 130
2 0
3 0
4 0
5 0
6 0
7 0
8 3
9 0
10 167

Total 300

Table 5.2: Confusion summary of the SVM for Hand shape 10.

An analysis of the results was carried out to obtain an indication of the cause of the

relatively lower accuracies obtained by HS 10 for the SVM and HS 2 for the RF.

Table 5.2 is an excerpt of the confusion matrix of the SVM provided in Appendix B and

summarizes the confusion result of only HS 10.

Chapter 5. Experimental Results and Analysis 93

The matrix summarizes the number of images of HS 10 that were classified either cor-

rectly or incorrectly as each indicated label by the SVM. For example, the first row of the

table after the title row indicates that 130 of the 300 images of HS 10 were misclassified

as HS 1. The second last row of the table indicates that 167 of the 300 images of HS 10

were correctly classified as HS 10.

Analysing the table reveals that, with the exception of a very small number of images

that were incorrectly classified as HS 8, HS 10 was consistently confused with HS 1, in

a total of 130 images—43.4% of the images of HS 10. The fact that the hand shape

is consistently confused with one other hand shape indicates, first, that the model is

not generally inaccurate since, if this was the case, the 167 incorrect classification cases

would have been scattered more evenly across several or all other hand shape classes.

Second, it indicates that the cause of confusion can not be attributed to random vari-

ations in the dataset, since the number of incorrect classifications is both high and

consistent. Errors attributed to random variations in the data would have, once again,

been scattered more evenly across several or all other hand shape classes.

As such, the cause of this confusion is primarily attributed to the underlying classifica-

tion model, the manner in which the classes are separated in the model, and a strong

similarity between the feature vectors of the two classes in feature space.

Comparing the two hand shapes HS 1 and HS 10 in Figure 5.6 reveals that the two hand

shapes are visually similar when viewed in a two-dimensional perspective and when

considering only the outer contours of the shapes. The two hand shapes have similar

positions and poses for the thumb, pinky, ring and middle fingers. It is only the position

of the index finger that is different in the two hand shapes. Slight variations in the hand

contours of images can easily confuse the classification model in this respect.

Interestingly, this confusion trend is similarly observed for the ANN and RF. Table 5.3

provides the confusion results for HS 10 for all three machine learning techniques.

In the ideal case, the table should contain a total image count of 300 in the row corre-

sponding to the predicted class of 10 for every technique, since this would indicate that

all 300 images of HS 10 for each technique were correctly predicted to be HS 10. While

a large number of images are predicted as such for all three techniques, it is seen that a

number of images are mostly incorrectly predicted as HS 1 for all three techniques. It

is very evident that HS 10 is confused with HS 1 in the majority of cases, although this

is more pronounced for the SVM than for the ANN or RF.

This observation further strengthens the belief that the hand shapes are intrinsically

similar in feature space. In any case, as noted in [23], an analysis of the classification

Chapter 5. Experimental Results and Analysis 94

Predicted Class
Image Count

SVM ANN RF

1 130 23 76
2 0 2 0
3 0 0 7
4 0 6 0
5 0 0 0
6 0 3 8
7 0 0 3
8 3 6 5
9 0 23 9
10 167 237 192

Total 300 300 300

Table 5.3: Confusion summary of Hand shape 10 for all three machine learning tech-
niques.

result by a classifier can yield an indication of the cause of the classification decision,

but it is difficult to determine the exact cause of the decision. What is important is

that, overall, the classifier should achieve a high recognition accuracy, which is observed

in this case.

Predicted Class Image Count

1 0
2 178
3 108
4 0
5 0
6 9
7 0
8 5
9 0
10 0

Total 300

Table 5.4: Confusion summary of the Random Forest for Hand shape 2.

A similar analysis is carried out for the RF for HS 2 which achieves the lowest accuracy

for this technique. Table 5.4 is an excerpt of the confusion matrix of the RF provided

in Appendix B and summarizes the confusion result of only HS 2.

Once again, the table should ideally have all 300 images classified correctly as HS 2, but

it is observed that 178 images are classified correctly. In a large number of cases—108

cases, 36% of the cases—the hand shape is consistently misclassified as HS 3, and in a

very small number of random cases, as HS 6 and HS 8.

As seen in Figure 5.6, HS 2 and HS 3 also appear to be visually similar in a two-

dimensional perspective and when considering only the outer contours of the shapes.

Chapter 5. Experimental Results and Analysis 95

Both shapes have the pinky, ring and middle fingers in exactly the same configuration.

Although the thumb is differently placed in the two hand shapes, the hand contours of

the two shapes are not affected by this difference. In fact, the two hand shapes only

significantly differ in the configuration of the index finger, which is raised in HS 2 and

lowered in HS 3.

Similar to HS 10, it is interesting to note that the confusion trend of HS 2 is also

manifested in the results of the ANN and SVM. Table 5.5 provides the confusion results

for HS 2 for all three machine learning techniques.

Predicted Class
Image Count

SVM ANN RF

1 0 0 0
2 263 244 178
3 35 49 108
4 0 0 0
5 0 0 0
6 2 7 9
7 0 0 0
8 0 0 5
9 0 0 0
10 0 0 0

Total 300 300 300

Table 5.5: Confusion summary of Hand shape 2 for all three machine learning tech-
niques.

The table should ideally contain a total image count of 300 in the row corresponding to

the predicted class of HS 2 for every technique, since this would indicate that all 300

images of HS 2 for each technique were correctly predicted to be HS 2.

While a large number of images are predicted as such for all three techniques, it is seen

that the majority of incorrectly predicted images of HS 2 are misclassified as HS 3 for

all three techniques. It is very evident that HS 2 is confused with HS 3 in the majority

of cases, although this is more pronounced for the RF than for the SVM or ANN.

This further strengthens the belief that the incorrect predictions for this hand shape are

primarily attributed to the intrinsic similarity between the two hand shapes.

5.3.4 Results and Analysis – Accuracy Per Subject

An analysis of the accuracy per subject was carried out to determine the level of robust-

ness of each technique to variations in test subjects. Table 5.6 summarizes the average

recognition accuracy of each machine learning technique per test subject, expressed as a

Chapter 5. Experimental Results and Analysis 96

percentage of 500 images of each test subject for each technique. In each row of the ta-

ble, the accuracy of the highest performing technique for the test subject corresponding

to that row has also been highlighted. Figure 5.8 depicts these results graphically.

Figure 5.8: Average recognition accuracy of each machine learning technique per test
subject.

Subject
Accuracy (%)

SVM ANN RF

7 90.4 91.6 86.2
8 82.6 91.4 86.8
9 59.6 71.2 64.2
10 88.8 80.6 72.6
11 90.4 90.8 88.8
12 94.0 90.0 89.4

Overall 84.30 85.93 81.33

Table 5.6: Classification accuracy of each machine learning technique per test subject.

Referring to the table and graph, it is observed, first, that Subject 9 consistently achieves

the lowest accuracy for all three techniques and is clearly an outlier amongst the subjects

Chapter 5. Experimental Results and Analysis 97

for all three techniques. This is analysed in greater detail shortly. With the exception of

this subject, it is clear that the majority of other accuracies are consistent, comparable

and very high, mostly no less than 80%, but many on or around the 90% mark.

Of the cases, 39% of the cases in the table are above 90% accuracy and a total of 78%

of the cases are above 80% accuracy. Comparing these results to the guess accuracy of

10% allows for an appreciation of the robust and exceptionally high accuracies obtained

across all test subjects and techniques.

Subject 12 obtains the highest recognition accuracy of 94.0% for the SVM, which means

that 94% of 500 images of that subject were correctly classified by the SVM. The RF also

appears to have the highest accuracy for Subject 12, but it is noted that this accuracy

of 89.4% is very close to the accuracies of other subjects such as Subject 11 for the same

technique. For the ANN, the subject that achieves the highest accuracy is Subject 7,

the accuracy of which is again only marginally higher than that of other subjects for the

same technique.

Even the lowest accuracy of 59.6% for Subject 9 by the SVM translates to very close to

300 of 500 images correctly classified, which is a very encouraging classification perfor-

mance. It is also encouraging to observe that no subject caused the system to completely

fail. Considering 59.6% is very close to 60% and can be considered as such, it can be

said that no subject achieved an accuracy below 60%.

This is indicative of a very effective and appropriate feature extraction procedure that

yields classification results that are highly robust to variations in test subjects.

Referring to Subject 9, the SVM obtained the lowest accuracy for this subject, closely

followed by the RF with an accuracy of 64.2%. While still the lowest value amongst other

subjects for the ANN, the accuracy for the same subject for the ANN was considerably

higher at 71.2%.

Thus, similar to the accuracy in hand shapes, this implies a considerably smaller range in

accuracy across test subjects for the ANN, compared to the SVM and RF. Furthermore,

in addition to achieving the highest overall accuracy, it also achieves better accuracies

for more individual subjects in this case.

It is clearly concluded that, although all of the classifiers achieve high accuracies across

all subjects and are very robust to variations in test subjects, the ANN outperforms the

SVM and RF by achieving a higher overall accuracy, better individual accuracies, and

a smaller range in accuracies. Therefore, it can be considered more robust to variations

in test subjects than the RF and SVM.

Chapter 5. Experimental Results and Analysis 98

Hand Shape Accuracy (%)

1 100
2 100
3 2
4 34
5 2
6 98
7 86
8 100
9 10
10 64

Overall 59.6

Table 5.7: Classification accuracy of the Support Vector Machine per hand shape for
Subject 9.

An analysis was carried out to determine possible causes for the accuracy achieved by

Subject 9. Table 5.7 summarizes the recognition accuracies obtained by Subject 9 for

each hand shape class as percentages of the total of 50 images of this subject for each

hand shape. The table demonstrates that the subject achieves a very low accuracy in

only 4 of the 10 hand shapes that have been highlighted in bold font: HS 3, 4, 5 and 9.

For the other hand shapes, however, the subject achieves exceptionally high accuracies,

3 of which are as high as 100%. Therefore, it is clear that the relatively lower average

accuracy for this subject is only attributed to a few specific hand shapes, rather than

a general intolerance to this subject. The fact that the subject achieves 100% accuracy

for HS 1, HS 2 and HS 8 makes it clear that the system is robust to the subject.

In order to obtain an indication of whether these low accuracies are attributed to the clas-

sification model, to the intrinsic similarity between the poorly performing hand shapes,

or to the data of the specific subject and the manner in which the subject performed

these hand shapes in the dataset videos, it is necessary to determine whether other

subjects also generally performed poorly for these hand shapes.

Hand Shape
Accuracy (%)

Subject 9 Subject 7 Subject 10 Subject 12

3 2 100 88 100
4 34 86 80 100
5 2 100 98 100
9 10 100 100 100

Table 5.8: Classification accuracy of the Support Vector Machine per hand shape for
Subject 9.

Table 5.8 summarizes the accuracies, as percentages of 50 images of each hand shape for

each subject, obtained by Subjects 7, 10 and 12, with Subject 9 included for comparison,

for HS 3, HS 4, HS 5 and HS 9. The accuracies obtained by Subjects 7, 10 and 12 for

Chapter 5. Experimental Results and Analysis 99

these hand shapes are perfect examples of the exceptionally high accuracies, many as

high as 100%, that the classification model achieves for other subjects for these hand

shapes.

Noting that the accuracies in the table are percentages of 50 images, an accuracy of

100% indicates that every one of the 50 images of the specific hand shape for the specific

subject were correctly recognized, which is a very impressive classification performance.

Therefore, this clearly demonstrates that the low accuracies observed for the same hand

shapes by Subject 9 can not be attributed to the classification model or to a possible

intrinsic similarity between these hand shapes, since if either of these cases were true,

the same low-accuracy trend would have been manifested for other subjects as well.

As such, the low accuracy observed for these hand shapes by only Subject 9 can only be

attributed to the manner in which these specific hand shapes, and not other hand shapes,

were performed by the subject. This statement is further confirmed by the fact that the

same subject also achieved very low accuracies for exactly the same hand shapes for the

ANN and RF, as demonstrated in Figure 5.9. Figure 5.9 graphically summarizes the

recognition accuracy obtained for each hand shape by each machine learning technique

for Subject 9.

The figure demonstrates that hand shapes HS 3, 4, 5 and 9 are the lowest performing

hand shapes for Subject 9 for all three techniques. It should also be noted that the

Subject achieves very high accuracies for all other hand shapes. This further confirms

that the low accuracies observed for these specific hand shapes for this specific subject

are attributed to the actual data of this subject for only these specific hand shapes, and

not to the classification model.

One example of an incorrectly performed hand shape by Subject 9 is provided in Figures

5.10a and 5.10b. Figure 5.10a depicts an example of the subject performing HS 3 in a

manner that looks very similar to HS 10 depicted in Figure 5.10b.

5.4 Summary of Comparisons and Selection of the Optimal

Technique

This section discusses and compares the recognition accuracies of the three machine

learning techniques.

Before comparing the results of the different machine learning techniques, it is necessary

to determine the priority of each of the four comparative factors referenced in Research

Sub-Questions 1, 2 and 3.

Chapter 5. Experimental Results and Analysis 100

Figure 5.9: The recognition accuracy obtained for each hand shape by each machine
learning technique for Subject 9.

For the eventual SASL machine translation system, the first and most important factor

to consider is the classification accuracy. The classifier must be reliable and, therefore,

must achieve high accuracies. Without a high classification accuracy, a classifier may not

be considered a classifier at all, depending on the accuracy that it achieves. Therefore,

classification accuracy is the most important factor to consider when comparing the

techniques.

All other factors equal, the technique with a higher classification accuracy will be con-

sidered the better technique.

Accuracy includes the overall average classification accuracy of a classifier and the ro-

bustness of the classifier to variations in test subjects and various hand shape classes.

The second-most important factor to consider is the classification speed. A classifier

must perform its predictions in the shortest time possible while it runs in a real-time

Chapter 5. Experimental Results and Analysis 101

(a) Hand Shape 3

(b) Hand Shape 10

Figure 5.10: Subject 9 performing (a) Hand Shape 3 in an incorrect manner that is
very similar to Hand shape 10 and (b) Hand Shape 10 performed correctly.

system.

Training and optimization time are important factors and are equally important, but less

important than the previous two factors. This is because they are only ever performed

once before the system is deployed and can be thought of as a once-off cost. A high

resulting accuracy and a fast processing speed can justify a lengthy once-off optimization

and training procedure.

Table 5.9 summarizes all the experimental results of all three machine learning tech-

niques. The rows of the table have been divided into three distinct groups. The first

group contains factors pertaining to classification accuracy. The second group contains

the classification time factor. The third group combines the optimization and training

time that are of equal importance and take place together.

It should first be noted that the classification times are presented correct to 3 decimal

places, whereas the optimization and training times are presented correct to the nearest

Chapter 5. Experimental Results and Analysis 102

Factor SVM ANN RF

Overall Accuracy (%) 84.3 85.93 81.33
Robust to Subjects High Best High

Robust to Hand shapes High Best High

Classification Time (s) 20.974 0.061 0.033

Optimization Time (s) 109 3589 14916
Training Time (s) 21 39 101

Table 5.9: Summary of results and analysis for all three machine learning techniques.

second. This is because the training and optimization procedures were once-off proce-

dures and were timed only once. The measured time is presented. On the other hand,

the classification times were measured over multiple images and iterations, and can be

presented at a higher precision.

Referring to the table, it is observed that the ANN performs the best in terms of ac-

curacy: it achieves the highest overall accuracy, although the accuracy of the SVM and

RF are comparable to this accuracy. In terms of robustness, however, the ANN is sub-

stantially more robust to variations in test subjects and hand shape classes than the

SVM and RF, with a substantially smaller range in accuracy, as explained in a previous

section. Therefore, it can generally be said that the ANN has the best classification

accuracy.

The RF performs the best in terms of classification time/speed: it achieves the shortest

classification time of 0.033 seconds for classifying a total of 3000 images. The SVM speed

is orders of magnitude slower than this speed, but the ANN speed is very comparable to

this speed. It has a comparable classification time of 0.061 seconds for all 3000 images.

The SVM performs the best in terms of optimization and training time: the optimization

and training times of the SVM are the shortest at 109 seconds and 21 seconds, respec-

tively. This optimization time is one order of magnitude smaller (and hence faster) than

that of the ANN which, in turn, is one order of magnitude smaller than that of the RF.

To conclude, it should first be stated that all the classifiers perform very well in the

context of SASL hand shape recognition. However, given the ANN achieves the best

accuracy, is the most robust to variations in subjects and hand shapes, and has a classi-

fication time that is very comparable to that of the RF, it is concluded that this is the

best classifier out of the three techniques for SASL hand shape recognition.

Chapter 5. Experimental Results and Analysis 103

Finally, in response to Research Sub-question 2 which asks “How do the techniques

compare in terms of the final classification accuracy on unseen images once they have

been optimized and trained?”, it is stated that all three techniques are very accurate

and comparable in terms of accuracy, but the ANN can be considered more accurate

than the SVM and RF, and the SVM can be considered more accurate than the RF.

In response to Research Sub-question 2 which asks “How do the techniques compare in

terms of the time taken to achieve a classification result on a single input once they have

been optimized and trained?”, it is stated that the ANN and RF both take an excep-

tionally small amount of time in this respect, and are both many orders of magnitude

faster than the SVM but the RF takes considerably less time to classify a single image

than the ANN.

5.5 The Hand Shape Recognition System results and Nitze

et al’s experimental results.

Table 5.10 compares the accuracy, training and classification times achieved by the hand

shape recognition system on the ten hand shapes and the results achieved by Nitze et al

from Table 2.4. The results of Nitze et al’s work is denoted by “(Nitze)” and the results

of the hand shape recognition system are denoted by “(HSR)” in Table 5.10. From

Table 2.4 only the results of the relevant machine learning techniques such as ANN,

SVM and RF data were put in the Table 5.10. Both the experiments make use of ten

unique classes to be classified. The hand shape recognition system does preprocessing

before the recognition can take place and Nitze’s system uses a multi-temporal set of

RapidEyes images for classification. As shown in Table 5.10 the SVM implementation of

Nitze achieves the highest accuracy of 88.1%. The SVM-RBF implementation of Nitze

achieves the fastest training time at 0.292 seconds and the ANN of Nitze achieves the

fastest classification time of 0.003 seconds.

Machine Learning Recognition Training Classification
Technique Accuracy (%) Time (s) Time (s)

ANN (Nitze) 87.1 15.145 0.003
ANN (HSR) 85.9 39 0.061

RF (Nitze) 87.4 6.205 0.083
RF(HSR) 81.33 101 0.033

SVM-RBF (Nitze) 88.1 0.292 0.039
SVM (HSR) 84.3 21 20.974

Table 5.10: Timing and accuracy results of the hand shape recognition (HSR) and
Nitze et al (Nitze).

Chapter 5. Experimental Results and Analysis 104

5.6 Summary and Conclusion

This chapter discussed the experimentation carried out to optimize and train the three

machine learning techniques and the experimentation carried out to evaluate the clas-

sification accuracy and speed of the three techniques. These experiments ultimately

yielded clear answers to the three research sub-questions set out in Chapter 1.

At this stage, it is possible to provide an answer to the main research question which

was posed as follows: “How do Support Vector Machines, Artificial Neural Networks

and Random Forests compare in the context of SASL hand shape recognition?”.

In response to this question, it is stated that the SVM is considerably quicker to optimize

and train that the ANN and RF, the ANN is more accurate and consistent than the SVM

and RF, given a trained and optimized classification model, and the RF is considerably

faster when it comes to classifying a single input image, given a trained and optimized

classification model, than the ANN and SVM.

A detailed analysis and discussion of the results culminated in the selection of the ANN

machine learning technique as the best technique for SASL hand shape recognition,

as compared to the SVM and RF. The motivation for this choice was the fact that it

achieves a higher and more consistent accuracy than both other techniques and has a

classification time that is comparable to that of the RF. While the optimization and

training time was considerably higher than that of the SVM, this is a once-off cost that

can definitely be worth it, given the final classifier is more accurate and much faster.

It was also found that the classification accuracy result obtained by Li using a completely

different dataset to the one used in this research was very close to the classification

accuracy achieved by the SVM in this research. This demonstrates the robustness and

accuracy of the framework, and demonstrates that the feature extraction procedure was

re-implemented correctly in this research.

The next chapter concludes the thesis.

Chapter 6

Conclusion

This research aimed to compare the use of Support Vector Machines (SVMs), used

extensively in the SASL research group [2, 12, 44, 45, 69], with other promising machine

learning techniques, in this case Artificial Neural Networks (ANNs) and Random Forests

(RFs) in the context of SASL hand shape recognition. Four factors were considered in

this comparison, namely: classification accuracy which is the most important factor,

classification speed which is the second-most important factor, and the time required to

optimize and train the technique, which are both very important, but not as important

as the two previous factors.

In response to the first research sub-question posed as “How do the techniques compare

in terms of the time taken for optimization and training?”, it was concluded that the

SVM takes considerably less time to optimize and train than the ANN and the RF, and

the ANN takes considerably less time to optimize and train than the RF.

In response to the second research sub-question posed which asked “How do the tech-

niques compare in terms of the final classification accuracy on unseen images once they

have been optimized and trained?”, it was concluded that while all three techniques

are very accurate and comparable in terms of classification accuracy, all three achieving

exceptionally high overall accuracies of over 80%, the ANN can be considered more ac-

curate than the SVM and RF, and the SVM can be considered more accurate than the

RF.

In response to the third and final research sub-question posed as “How do the techniques

compare in terms of the time taken to achieve a classification result on a single input

once they have been optimized and trained?”, it was concluded that the ANN and RF

both take an exceptionally small amount of time to classify a single image, and are both

105

Chapter 6. Conclusion 106

many orders of magnitude faster than the SVM, but the RF takes considerably less time

to classify a single image than the ANN.

Therefore, and finally, in response to the main research question which was phrased

as “How do Support Vector Machines, Artificial Neural Networks and Random Forests

compare in the context of SASL hand shape recognition?”, it was concluded that the

ANN is more accurate and consistent than the SVM and RF, the SVM is considerably

quicker to optimize and train than the ANN and RF given a trained and optimized

classification model, and the RF is considerably faster than the ANN and SVM when

it comes to classifying a single input image given a trained and optimized classification

model.

Overall, it was concluded that the ANN is the most suitable classifier, given it is the

most accurate and consistent classifier, and has an exceptionally high classification speed

that is comparable to that of the RF, and both of these factors justify the optimization

and training time which is more than the SVM but less than the RF.

These finding have made a significant contribution to the field of hand shape recognition,

and to the research of the SASL project. They have clearly demonstrated that the

basis of this research—carrying out a comparison of machine learning techniques in

the context of a specific classification problem—is crucial. This is because, while an

arbitrary machine learning technique such as SVMs can serve as a good classifier, as

was used originally by Li [36], this research has shown that it may not be, and in the

context of SASL hand shape recognition, is not the optimal choice.

This research has also significantly contributed to the SASL group, first, by producing an

improved SASL hand shape classifier. More importantly, it has produced a methodology

that can be used in future to determine optimal machine learning techniques for other

classification problems such as facial expression, hand location, hand orientation and

hand motion recognition.

6.1 Future Work

The ANN technique has proven to be the better technique amongst the three chosen

machine learning techniques in the context of SASL hand shape recognition. In future,

the ANN-based system can, therefore, be incorporated into the SASL gesture recognition

system to achieve an improved accuracy, and exceptional computational speed.

Chapter 6. Conclusion 107

This research provides a basis and methodology for comparing machine learning tech-

niques in a specific context. In future, this approach can be used to determine optimal

classifiers for each of the SASL systems that recognize various SASL parameters.

Finally, while this research has determined that ANNs are better than SVMs and RFs,

the investigation may be extended to other machine learning techniques such as Naive

Bayes classifiers and Hidden Markov Models, which may prove to be better than ANNs

for SASL hand shape recognition.

6.2 Concluding Remarks

The researcher has found the research and experiments conducted throughout this course

to have been an excellent growth experience. It is hoped that this research can serve

as a basis and methodology for the selection of optimal machine learning techniques for

other sign language parameters by the SASL group, and for classification problems in

general.

Appendix A

Additional Optimization Results

Number of Accuracy Number of Accuracy
Hidden Neurons m (%) Hidden Neurons m (%)

2 18.33 27 74.80
3 29.53 28 74.96
4 36.36 29 73.40
5 44.50 30 75.03
6 50.40 31 75.73
7 63.73 32 74.76
8 67.63 33 74.46
9 68.43 34 74.73
10 63.26 35 74.13
11 70.73 36 75.23
12 71.96 37 75.00
13 73.93 38 73.70
14 71.40 39 75.40
15 69.30 40 76.23
16 74.70 41 74.93
17 73.37 42 75.97
18 74.30 43 73.57
19 72.37 44 74.13
20 74.73 45 75.33
21 73.60 46 76.70
22 74.13 47 76.26
23 74.70 48 76.53
24 73.66 49 74.43
25 74.03 50 76.77
26 71.67
(cont. right)

Table A.1: The hidden neurons and their corresponding cross-validation accuracies

108

A
p
p
en
d
ix

A
.
A
d
d
itio

n
a
l
O
p
tim

iza
tio

n
R
esu

lts
109

No. of Trees Depth Dmin

B 2 4 6 8 10 12 14 16 18 20

5 19.50 29.43 36.30 40.33 42.07 43.10 49.20 43.87 46.40 45.47
10 20.30 35.20 45.73 48.40 52.57 53.63 57.27 55.50 54.03 53.53
15 25.00 40.80 48.03 53.60 59.57 59.53 59.80 62.33 59.73 60.33
20 30.67 41.36 53.30 56.60 61.60 65.30 64.07 63.67 63.73 65.20
25 30.23 41.93 52.93 59.90 62.83 67.03 65.90 65.50 64.93 67.30
30 31.30 44.83 54.30 60.10 65.30 68.20 66.90 65.67 65.23 68.20
35 33.20 45.10 54.33 61.67 64.97 68.80 67.13 65.63 65.23 68.37
40 33.57 46.20 54.67 64.67 65.90 69.57 67.13 65.63 65.23 68.37
45 34.73 47.07 56.20 65.03 66.90 69.97 67.13 65.63 65.23 68.37
50 35.97 47.77 56.40 66.40 66.80 70.03 67.13 65.63 65.20 68.37
55 38.93 47.73 56.53 66.60 66.93 70.03 67.13 65.63 65.23 68.37
60 37.90 48.93 58.27 67.33 66.90 70.03 67.13 65.63 65.23 68.37
65 38.23 49.83 59.27 67.23 67.27 70.03 67.13 65.63 65.23 68.37
70 38.23 49.83 59.27 67.23 67.27 70.03 67.13 65.63 65.23 68.37
75 39.07 49.73 59.50 67.57 67.27 70.03 67.13 65.63 65.23 68.37
80 38.83 51.43 61.13 67.83 67.63 70.03 67.13 65.63 65.23 68.37
85 39.70 50.93 60.67 67.83 67.63 70.03 67.13 65.63 65.23 68.37
90 40.13 50.77 60.50 67.80 67.63 70.03 67.13 65.63 65.23 68.37

Table A.2: The cross-validation accuracies for Random Forests

Appendix B

Additional Test Results

Subject
Hand Shape

1 2 3 4 5 6 7 8 9 10

7 50 46 50 43 50 50 49 50 50 14
8 50 49 50 50 49 50 50 50 13 2
9 50 50 1 17 1 49 43 50 5 32
10 46 48 44 40 49 49 50 49 50 19
11 50 48 50 27 47 30 50 50 50 50
12 50 22 50 50 50 48 50 50 50 50

Total 296 263 245 227 246 276 292 299 218 167

Table B.1: Classification accuracy per subject of the Support Vector Machine.

Subject
Hand Shape

1 2 3 4 5 6 7 8 9 10

7 50 45 50 41 50 49 48 48 50 27
8 50 49 50 49 48 50 50 49 14 48
9 50 50 1 21 17 48 43 49 34 43
10 44 50 39 24 31 49 48 49 50 19
11 50 44 50 33 47 30 50 50 50 50
22 45 6 50 50 50 49 50 50 50 50

Total 289 244 240 218 243 275 289 295 248 237

Table B.2: Classification accuracy per subject of the Artificial Neural Network.

110

Appendix B. Additional Test Results 111

Subject
Hand Shape

1 2 3 4 5 6 7 8 9 10

7 49 20 50 48 48 49 50 47 50 20
8 44 47 50 50 47 50 50 50 30 16
9 50 48 3 31 5 47 43 46 5 43
10 38 17 25 41 35 50 43 48 50 16
11 49 44 50 25 45 31 50 50 50 50
12 50 2 50 50 50 48 50 50 50 47

Total 280 178 228 245 230 275 286 291 235 192

Table B.3: Classification accuracy per subject of the Random Forest.

Actual
Predicted

1 2 3 4 5 6 7 8 9 10

1 296 0 0 3 0 0 0 0 1 0
2 0 263 35 0 0 2 0 0 0 0
3 0 4 245 0 0 0 6 2 0 43
4 66 0 0 227 7 0 0 0 0 0
5 46 1 0 3 246 0 0 4 0 0
6 0 24 0 0 0 276 0 0 0 0
7 1 0 2 0 2 0 292 1 2 0
8 0 0 1 0 0 0 0 299 0 0
9 0 0 0 41 0 0 35 6 218 0
10 130 0 0 0 0 0 0 3 0 167

Table B.4: Confusion matrix for the recognition accuracy of the Support Vector
Machine.

Actual
Predicted

1 2 3 4 5 6 7 8 9 10

1 289 0 0 1 0 0 3 1 1 5
2 0 244 49 0 0 7 0 0 0 0
3 0 4 240 1 0 0 1 5 1 48
4 13 4 0 218 53 0 9 0 1 2
5 19 0 0 17 243 0 1 10 0 10
6 0 25 0 0 0 275 0 0 0 0
7 5 0 2 1 2 0 289 0 0 1
8 0 1 0 1 2 0 0 295 1 0
9 0 0 0 10 0 0 36 6 248 0
10 23 2 0 6 0 3 0 6 23 237

Table B.5: Confusion matrix for the recognition accuracy of the Artificial Neural
Network.

Appendix B. Additional Test Results 112

Actual
Predicted

1 2 3 4 5 6 7 8 9 10

1 280 1 2 0 4 0 6 1 4 2
2 0 178 108 0 0 9 0 5 0 0
3 7 15 228 0 0 0 0 1 0 49
4 31 0 0 245 9 0 8 0 0 7
5 6 2 0 1 230 0 1 55 0 5
6 0 24 1 0 0 275 0 0 0 0
7 1 1 2 0 1 0 286 2 2 5
8 0 1 2 2 0 4 0 291 0 0
9 0 14 0 12 0 14 23 2 235 0
10 76 0 7 0 0 8 3 5 9 192

Table B.6: Confusion matrix for the recognition accuracy of the Random Forest.

Bibliography

[1] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of machine learning

techniques for phishing detection,” in Proceedings of the Anti-phishing Working

Groups 2nd Annual eCrime Researchers Summit. ACM, 2007, pp. 60–69.

[2] I. Achmed, “Upper body pose recognition and estimation towards the translation

of South African Sign Language,” Master’s thesis, University of the Western Cape,

Computer Science, 2010.

[3] I. Achmed, I. M. Venter, and P. Eisert, “A framework for independent hand tracking

in unconstrained environments,” in Proceedings of the Southern Africa Telecommu-

nication Networks and Applications Conference 2012, George, South Africa, 2012.

[4] M. Ali and D. Clausi, “Using the Canny edge detector for feature extraction and

enhancement of remote sensing images,” in Geoscience and Remote Sensing Sym-

posium, 2001. IGARSS’01, vol. 5, 2001, pp. 2298–2300.

[5] K. Asmal and W. James, “Education and democracy in South Africa today,”

Daedalus, pp. 185–204, 2001.

[6] H. Avilés-Arriaga, L. Sucar-Succar, C. Mendoza-Durán, and L. Pineda-Cortés, “A

comparison of dynamic naive Bayesian classifiers and Hidden Markov Models for

gesture recognition,” Journal of Applied Research and Technology, vol. 9, no. 1, pp.

81–100, 2011.

[7] G. Bebis and M. Georgiopoulos, “Feed-forward neural networks,” Potentials, IEEE,

vol. 13, no. 4, pp. 27–31, 1994.

[8] G. Borgefors, “An improved version of the chamfer matching algorithm,” in Proceed-

ings of the 7th International Conference on Pattern Recognition, vol. 2, Montreal,

Canada, 1984, pp. 1175–1177.

[9] T. Borovicka, M. Jirina Jr, P. Kordik, and M. Jirina, “Selecting representative data

sets,” Advances in Data Mining Knowledge Discovery and Applications. Intech,

2012.

113

Bibliography 114

[10] G. Bradski, “Real time face and object tracking as a component of perceptual

user interface,” in Proceedings of the Fourth IEEE Workshop on Applications of

Computer Vision, 1998, pp. 214–219.

[11] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[12] D. Brown, “Upper body pose recognition and estimation towards the translation

of South African Sign Language,” Master’s thesis, University of the Western Cape,

Computer Science, 2013.

[13] J. Canny, “A computational approach to edge detection,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, no. 6, pp. 679–698, 1986.

[14] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,

no. 3, pp. 273–297, 1995.

[15] A. Criminisi and J. Shotton, Decision forests for computer vision and medical image

analysis. Springer, 2013.

[16] M. Dewar, “Characterization and evaluation of aged 20Cr32Ni1Nb stainless steels,”

Master’s thesis, Department of Chemical and Materials Engineering, University of

Alberta, Canada, 2013.

[17] A. Elgammal, C. Muang, and D. Hu, Skin detection—A short tutorial. Springer,

2009.

[18] M. M. Fleck, D. A. Forsyth, and C. Bregler, “Finding naked people,” in Computer

VisionECCV’96. Springer, 1996, pp. 593–602.

[19] H. Freeman, “Computer processing of line-drawing images,” ACM Computing Sur-

veys, vol. 6, no. 1, pp. 57–97, 1974.

[20] I. Frieslaar, “Robust south african sign language gesture recognition using hand

motion and shape,” Master’s thesis, University of the Western Cape, Computer

Science, 2014.

[21] M. Ghaziasgar, “The use of mobile phones as service-delivery devices in a sign

language machine translation system,” Master’s thesis, University of the Western

Cape, Computer Science, 2010.

[22] M. Glaser and W. D. Tucker, “Telecommunications bridging between deaf and

hearing users in South Africa,” in Proceedings of the Conference and Workshop on

Assistive Technologies for People with Vision and Hearing Impairments, Granada,

Spain, 2004.

Bibliography 115

[23] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.

Springer, 2009.

[24] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in International

Joint Conference on Neural Networks, IJCNNA’89, 1989, pp. 593–605.

[25] C. Hsu, C. Chang, and C. Lin, “A practical guide to support vector classification,”

National Taiwan University, Tech. Rep., 2003.

[26] C. Hsu and C. Lin, “A comparison of methods for multiclass support vector ma-

chines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002.

[27] R. Hsu, M. Abdel-Mottaleb, and A. Jain, “Face detection in color images,” in IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2002, pp. 696–706.

[28] M. Jones and J.M.Rehg, “Statistical color models with application to skin detec-

tion,” Cambridge Research Laboratory, Tech. Rep., 1996.

[29] M. Kadous, “Machine recognition of Auslan signs using Powergloves:towards large-

lexicon recognition of sign language,” Master’s thesis, University of New South

Wales, Computer Science and Engineering, 1995.

[30] B. Karlik and A. V. Olgac, “Performance analysis of various activation functions

in generalized MLP architectures of neural networks,” International Journal of

Artificial Intelligence and Expert Systems, vol. 1, no. 4, pp. 111–122, 2011.

[31] E. Keating and G. Mirus, “American sign language in virtual space: Interactions

between deaf users of computer-mediated video communication and the impact of

technology on language practices,” Language in Society, vol. 32, no. 5, pp. 693–714,

2003.

[32] N. B. Kiyaga and D. F. Moores, “Deafness in sub-Saharan Africa,” American Annals

of the Deaf, vol. 148, no. 1, pp. 18–24, 2003.

[33] V. S. Kulkarni and S. Lokhande, “Appearance based recognition of American Sign

Language using gesture segmentation,” International Journal on Computer Science

and Engineering, vol. 2, no. 03, pp. 560–565, 2010.

[34] A. Kuznetsova, L. Leal-Taixé, and B. Rosenhahns, “Real-time sign language recog-

nition using a depth camera,” in IEEE International Conference on Computer Vi-

sion Workshops, 2013, pp. 83–90.

[35] Y. Lee, S. Min, H. Yang, and K. Jung, “Motion sensitive glove-based Korean finger-

spelling tutor,” in Proceedings of the 2007 International Conference on Convergence

Information Technology, ser. ICCIT ’07. Washington, DC, USA: IEEE Computer

Society, 2007, pp. 1674–1677.

Bibliography 116

[36] P. Li, “Hand shape estimation for South African Sign Language,” Master’s thesis,

University of the Western Cape, Computer Science, 2010.

[37] R. Maini and H. Aggarwal, “Study and comparison of various image edge detection

techniques,” International Journal of Image Processing (IJIP), vol. 3, no. 1, pp.

1–11, 2009.

[38] S. Marcel, “Hand posture and gesture datasets,” [Online] Available at

http://www.idiap.ch/resource/gestures.

[39] A. Maruch, “Talking with the hearing-impaired,” January 2010, [Online] Available

at http://www.deafsa.co.za/index-2.html.

[40] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[41] K. Mehrotra, C. K. Mohan, and S. Ranka, Elements of Artificial Neural Networks.

MIT Press, 1997.

[42] M. Minsky and S. Papert, Perceptrons. MIT Press, 1969.

[43] M. Minsky and S. Papert, Perceptrons: An introduction to computational geometry,

Expanded Editon. MIT Press, 1988.

[44] D. Mushfieldt, “Robust facial expression recognition in the presence of rotation

and partial occlusion,” Master’s thesis, University of the Western Cape, Computer

Science, 2014.

[45] W. Nel, “An integrated sign language recognition system,” Master’s thesis, Univer-

sity of the Western Cape, Computer Science, 2014.

[46] T.-N. Nguyen, H.-H. Huynh, and J. Meunier, “Static hand gesture recognition using

artificial neural network,” Journal of Image and Graphics, 2013.

[47] I. Nitze, U. Schulthess, and H. Asche, “Comparison of machine learning algorithms

random forest, artificial neural network and support vector machine to maximum

likelihood for supervised crop type classification,” in Proceedings of the 4th Geobia,

Rio de Janeiro—Brazil, 2012.

[48] OpenCV documentation, “Introduction to support vector machines,” 2014.

[Online]. Available: http://docs.opencv.org/doc/tutorials/ml/introduction to

svm/introduction to svm.html

[49] V. Patil and S. Shimpi, “Handwritten English character recognition using neural

network,” Elixir Computi. Sci. Eng., vol. 41, pp. 5587–5591, 2011.

http://www.idiap.ch/resource/gestures
http://www.deafsa.co.za/index-2.html
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

Bibliography 117

[50] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin dags for multiclass

classification.” in Advances in Neural Information Processing Systems 12, 1999, pp.

547–553.

[51] N. Pugeault, “The ASL finger spelling dataset,” [Online] Available at http://person-

al.ee.surrey.ac.uk/Personal/N.Pugeault/index.php?section=FingerSpellingDataset.

[52] A. Réda and B. Aoued, “Artificial neural network-based face recognition,” in

First International Symposium on Control, Communications and Signal Process-

ing, 2004., 2004, pp. 439–442.

[53] K. O. Rodŕıguez and G. C. Chávez, “Finger spelling recognition from RGB-D in-

formation using kernel descriptor,” in Proceedings of the 2013 XXVI Conference

on Graphics, Patterns and Images, ser. SIBGRAPI ’13. Washington, DC, USA:

IEEE Computer Society, 2013, pp. 1–7.

[54] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain.” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

[55] H. Rowley, “Frontal face images,” [Online] Available at http://vasc.ri.cmuedu/ idb/

html/ face/frontal images/.

[56] M. Sharifi, M. Fathy, and M. Tayefeh Mahmoudi, “A classified and comparative

study of edge detection algorithms,” in Proceedings of the International Conference

on Information Technology: Coding and Computing, 2002, 2002, pp. 117–120.

[57] C. Stauffer and W. Grimson, “Adaptive background mixture models for real-time

tracking,” Proceedings of the IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition, vol. 2, pp. 246–252, Jun. 1999.

[58] C. Stobbart and E. Alant, “Home-based literacy experiences of severely to pro-

foundly deaf preschoolers and their hearing parents,” Journal of Developmental

and Physical Disabilities, vol. 20, no. 2, pp. 139–153, 2008.

[59] W. C. Stokoe, “Sign language structure: An outline of the visual communication

systems of the american deaf. studies in linguistics: Occasional papers,” Buffalo:

Dept. of Anthropology and Linguistics, University of Buffalo, Tech. Rep. 8, 1960.

[60] Y. Tabata and T. Kuroda, “Finger spelling recognition using distinctive features of

hand shape,” in International Confernece on Disability, Virtual Reality and Asso-

ciated Technologies with Art Abilitation, no. 7, 2008, pp. 287–292.

[61] Y. Tabata, T. Kuroda, and K. Okamoto, “Development of a glove-type input device

with the minimum number of sensors for Japanese finger spelling,” in Proceedings of

Bibliography 118

International Conference on Disability, Virtual Reality and Associated Technologies,

no. 9, 2012, pp. 305–310.

[62] P. Trigueiros, F. Ribeiro, and L. P. Reis, “A comparison of machine learning al-

gorithms applied to hand gesture recognition,” in Proceedings of the 7th Iberian

Conference on Information Systems and Technologies (CISTI). IEEE, 2012, pp.

1–6.

[63] P. E. Utgoff, “Incremental induction of decision trees,” Machine learning, vol. 4,

no. 2, pp. 161–186, 1989.

[64] D. van Wyk, “Virtual human modelling and animation for sign language visualisa-

tion,” Master’s thesis, University of the Western Cape, Computer Science, 2008.

[65] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple

features,” in Proceedings of the IEEE Computer Society International Conference

on Computer Vision and Pattern Recognition, 2001, pp. 511–518.

[66] P. Viola and M. Jones, “Robust real-time object detection,” International Journal

of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[67] L. Wang, Y. Hang, S. Luo, X. Luo, and X. Jiang, “Deblurring Gaussian-blur images:

A preprocessing for rail head surface defect detection,” in Proceedings of IEEE

International Conference on Service Operations, Logistics, and Informatics (SOLI),

2011, pp. 451–456.

[68] Y. Wang, H. Ai, B. Wu, and C. Huang, “Real time facial expression recognition

with adaboost,” in Proceedings of the 17th International Conference on Pattern

Recognition (ICPR), vol. 3. IEEE, 2004, pp. 926–929.

[69] J. Whitehill, “Automatic real-time facial expression recognition for signed language

translation,” Master’s thesis, University of the Western Cape, Computer Science,

2006.

[70] J. Whitehill and C. W. Omlin, “Haar features for FACS AU recognition,” in 7th

International Conference on Automatic Face and Gesture Recognition, 2006. IEEE,

2006, pp. 97–101.

	Title page
	Abstract
	Keywords
	Acknowledgements
	Publications
	List of figures
	List of tables
	Abbreviations
	Chapter one: Introduction
	1.1 Background and Motivation
	1.2 Research Question
	1.3 Research Objectives
	1.4 Premises
	1.5 Thesis Outline

	Chapter two: Related work
	2.1 Hand Shape Recognition Using Machine Learning Techniques
	2.1.1 Hardware-Based Systems
	2.1.2 Vision-Based Systems

	2.2 Gesture Recognition Using Machine Learning Techniques
	2.2.1 Hardware-Based Systems
	2.2.2 Vision-Based Systems

	2.3 Comparisons of Machine Learning Techniques
	2.4 Summary and Conclusion

	Chapter three: Techniques for hand shape recognition
	3.1 Image Processing Techniques for Hand Shape Recognition
	3.1.1 Canny Edge Detection
	3.1.1.1 Smoothing the Image Using a Gaussian Filter
	3.1.1.2 Computation of the Image Gradients
	3.1.1.3 Applying a Non-maximum Suppression
	3.1.1.4 Double Thresholding

	3.1.2 Face Detection
	3.1.2.1 Haar-Like Wavelet Feature Detection
	3.1.2.2 The Use of An Integral Image to Compute Haar-Like Features
	3.1.2.3 The Use of AdaBoost to Select Haar-Like Features
	3.1.2.4 A Rejection Cascade of Weak Feature Classifiers
	3.1.2.5 Evaluation of the Face Detection System

	3.1.3 Adaptive Skin Detection
	3.1.3.1 Face Detection
	3.1.3.2 Histogram Back Projection and Thresholding

	3.1.4 Background Subtraction Using Gaussian Mixture Models
	3.1.5 Hand Detection Using Hierarchical Chamfer Matching
	3.1.5.1 Computation of the Chamfer Distance Transform
	3.1.5.2 Chamfer Distance for Template Matching
	3.1.5.3 Hierarchical Template Matching

	3.1.6 Connected Component Analysis
	3.1.7 CAMShift

	3.2 Machine Learning Techniques
	3.2.1 Support Vector Machines
	3.2.1.1 Support Vector Machine Classification
	3.2.1.2 Kernel Functions
	3.2.1.3 Multi-class SVM Techniques
	One-Against-All
	One-Against-One
	Directed Acyclic Graph Support Vector Machine

	3.2.2 Artificial Neural Networks
	3.2.2.1 The Perceptron
	3.2.2.2 Activation Functions
	3.2.2.3 Multilayer Perceptron

	3.2.3 Random Forests
	3.2.3.1 The Decision Tree
	3.2.3.2 Random Forest Algorithm

	3.2.4 Summary

	Chapter four: Design and implementation of the hand shape recognition system
	4.1 Feature Extraction
	4.1.1 Skin Image
	4.1.2 Motion Image
	4.1.3 Combination of the Skin and Motion Images
	4.1.4 Locating the Hand
	4.1.5 Using CAMShift for Hand Tracking
	4.1.6 Feature Extraction and Normalization

	4.2 Classification
	4.2.1 Classification Using the Support Vector Machine
	4.2.2 Classification Using the Artificial Neural Network
	4.2.3 Classification Using the Random Forest

	4.3 Summary

	Chapter five: Experimental results and analysis
	5.1 Training and testing datasets
	5.2 Optimization experimentation
	5.2.1 k-fold Cross Validation
	5.2.2 Optimization of the Support Vector Machine
	5.2.3 Optimization of the Artificial Neural Network
	5.2.4 Optimization of the Random Forest
	5.2.5 Comparison in Optimization and Training Procedures

	5.3 Classification experimentation
	5.3.1 Experimental Procedure
	5.3.2 Results and Analysis – Overview and Comparison
	5.3.3 Results and Analysis – Accuracy Per Hand Shape
	5.3.4 Results and Analysis – Accuracy Per Subject

	5.4 Summary of comparisons and selection of the optimal technique
	5.5 The hand shape recognition system results and Nitze et al's experimental results.
	5.6 Summary and conclusion

	6 Conclusion
	6.1 Future Work
	6.2 Concluding Remarks

	Appendix A: Additional optimization results
	Appendix B: Additional test Results
	Bibliography

