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Date : 31st of October 2014

There have been a number of attempts to measure the expansion rate of the

Universe using age-dating of Luminous Red Galaxies (LRGs). Assuming that

stars in LRGs form at the same time, age-dating of two populations of LRGs

at different redshifts can provide an estimate of the time difference associated

with the corresponding redshift interval (dz/dt). This gives a direct estimate of

the Hubble parameter H(z) at the average redshift of the two populations. In

this thesis, we explore the validity of this method by using two different sets

of data. Firstly, we select a homogeneous sample of passively evolving galaxies

over 0.10 < z < 0.40 from the Sloan Digital Sky Survey Data Release Seven

(SDSS-DR7) catalogue by applying a refined criteria, which is based on absolute

magnitude. Secondly, we carry out series of observations on the Southern African

Large Telescope (SALT) to obtain spectra of LRGs at two narrow redshift ranges

z ' 0.40 and z ' 0.55 in order to calculate the Hubble parameterH(z) at z ' 0.47.

We utilise two distinct methods of age-dating including the use of absorption Lick

index lines and full spectral fitting on high signal-to-noise galaxy spectra from our

sample.

By establishing the age-redshift relation of the quiescent, passively evolving galax-

ies from SDSS, we obtain three improved new observational H(z) data points

which are H(z) = 76.8 ± 5.3 km s−1Mpc−1 at z ' 0.28, H(z) = 78.5 ± 6.8 km

s−1Mpc−1 at z ' 0.30 and H(z) = 86.3 ± 7.6 km s−1Mpc−1 at z ' 0.32 respec-

tively. We also find another H(z) value of 105 ± 39 km s−1Mpc−1 at z ' 0.47

when age-dating LRGs observed with SALT. Combining all 4 data points with

another 25 data points in the literature, we place better constraints on cosmo-

logical models and find the matter density parameter to be constrained by Ωm =

0.32+0.05
−0.06 and the Hubble constant to be H0 =68.5±2.4. These results are very

consistent with other studies. Through this work, we are able to demonstrate



that the cosmic chronometers approach can potentially be used to explore the

evolution of the Universe.
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in erg cm−2 s−1 Å−1. S/N ratios per resolution element of the observed spec-

tra are also given. The right-hand panel illustrates the results from the 500

Monte-Carlo simulations. Ages and metallicities values from the simulations

indicated by the red points are compared with the those provided by single

fits (written in the legend). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.9 continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.9 continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.9 continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.9 continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xvi



List of Figures LIST OF FIGURES

4.10 Examples of the χ2 and convergence maps of 2SLAQ J092740.75+003634.1.

The results of the 500 Monte-Carlo simulations are also plotted with the best

fit results in the legend (bottom panel). The global minimum is indicated with

a green symbol in the χ2 maps (top panel in the left). The top panel in the

right displays the corresponding convergence maps. All results converge to the

best fit results (Agefit and [Fe/H]fit). . . . . . . . . . . . . . . . . . . . . . . . 131

4.11 This shows different ages and [Fe/H] obtained from the full spectral fitting

using PE model. Red filled squares are galaxies at z ' 0.40, green open

diamonds are galaxies at z ' 0.55. The mean age and metallicity at z ' 0.40

is 3.64± 0.23 Gyr, 0.21± 0.02 dex respectively. The mean age and metallicity

at z ' 0.55 is 2.72± 0.25 Gyr, 0.30± 0.03 dex respectively. . . . . . . . . . . 132

4.12 SSP ages from best fits plotted with velocity dispersion. Red filled squares are

galaxies at z =0.40, green open diamonds are galaxies at z =0.55. . . . . . . . 132

4.13 Our estimate H(z ' 0.47) measured using SALT LRG spectra is represented

by the red filled rectangle. It has a value of H(z) = 105± 39 km s−1 Mpc−1.

Our result is plotted with all available H(z) in the literature. The dashed line

is the theoretical H(z) of a flat ΛCDM model with Ωm = 0.27, ΩΛ = 0.73 and

H0 = 71 km s−1 Mpc−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1 All available observational H(z) data points. The green points are our mea-

surements using SDSS-LRGs and red point while using SALT-LRGs . . . . . 140

5.2 Observational H(z) data points constraining results of the non-flat ΛCDM

model. This plot shows the 1D and the 2D marginalised posterior probability

distributions. The inner and outer contours show the 1σ error and 2σ error

respectively. The red lines show the old version of Zhang et al. (2012), the

green lines show the new version which includes the datasets used by Zhang

et al. (2012) in addition to the H(z) measured using LRGs with SALT and

LRGs with SDSS. The dotted lines show the best fit parameter values. . . . . 143

5.3 Observational H(z) data points constraining results of the flat ΛCDM model.

This plot shows the 1D and the 2D marginalised posterior probability distri-

butions. The inner and outer contours show the 1σ error and 2σ error respec-

tively. The red lines show the old version of Zhang et al. (2012), the green

lines show the new version which includes the datasets used by Zhang et al.

(2012) in addition to the H(z) measured using LRGs with SALT and LRGs

with SDSS. The dotted lines show the best fit parameter values. The black

symbols represent the parameter values from the WMAP9 for a comparison. . 144

xvii



List of Figures LIST OF FIGURES

5.4 Observational H(z) data points constraining results of the flat ΛCDM model.

This plot show the 1D and the 2D marginalised posterior probability distri-

butions. The inner and outer contours show the 1σ error and 2σ error respec-

tively. The black lines show the combination of WMAP9+BAO datasets, the

blue lines show the combination of WMAP9+BAO+Hz datasets. . . . . . . . 147

A.1 Comparison of our values of the central velocity dispersion and those listed

from the MPA-JHU catalogue for objects at 0.24 < z < 0.26. The dashed line

shows the one-to-one line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.2 Comparison of our values of emission line EWs and those from the MPA-JHU

catalogue for objects at 0.24 < z < 0.26. The dashed lines show the one-to-one

lines.The straight lines found at zero represent our quiescent galaxies sample.

The outliers values from that lines were excluded in our final sample since they

might be the objects with higher velocity dispersion. . . . . . . . . . . . . . . 176

B.1 Fitting stacked spectra with PE (red), VM (green), BC03 (blue) and M11

(yellow) models. All upper panels of each subfigure display the stacked spectra

at 0.10 < z < 0.12 (black lines) and the best fit models (coloured spectra).

All bottom panels show the residual from the fits, the solid green lines are

the 1σ deviation and the dashed green lines represent zero residuals. Red and

yellow (in the first plot) regions were rejected from the fits. They were masked

due to the telluric lines, the interstellar absorption line (NaD), and automatic

rejection of outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.2 Fitting stacked spectra at 0.12 < z < 0.14 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.3 Fitting stacked spectra at 0.14 < z < 0.16 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 180

B.4 Fitting stacked spectra at 0.16 < z < 0.18 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.5 Fitting stacked spectra at 0.18 < z < 0.20 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.6 Fitting stacked spectra at 0.20 < z < 0.22 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.7 Fitting stacked spectra at 0.22 < z < 0.24 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.8 Fitting stacked spectra at 0.26 < z < 0.28 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.9 Fitting stacked spectra at 0.28 < z < 0.30 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 186

xviii



List of Figures LIST OF FIGURES

B.10 Fitting stacked spectra at 0.30 < z < 0.32 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.11 Fitting stacked spectra at 0.32 < z < 0.34 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.12 Fitting stacked spectra at 0.34 < z < 0.36 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.13 Fitting stacked spectra at 0.36 < z < 0.38 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.14 Fitting stacked spectra at 0.38 < z < 0.40 with PE (red), VM (green), BC03

(blue) and M11 (yellow) models. . . . . . . . . . . . . . . . . . . . . . . . . . 191

xix



List of Tables

1.1 The cosmological parameters deduced from different type of data where a flat

cosmological model Ωm + ΩΛ = 1 is assumed. All ΛCDM model parameters

are given with 68% confidence intervals. . . . . . . . . . . . . . . . . . . . . . 10

2.1 Solar fractional element abundance. Credit from Moore (2001). . . . . . . . . 18

2.2 List of popular and widely used isochrones in the literature . . . . . . . . . . 22

2.3 List of the most up-to-date empirical stellar libraries . . . . . . . . . . . . . . 24

2.4 List of some theoretical stellar libraries. . . . . . . . . . . . . . . . . . . . . . 25

3.1 Description of each table queried from the SDSS sky server. . . . . . . . . . . 34

3.2 SDSS velocity dispersion pipeline parameters . . . . . . . . . . . . . . . . . . 35

3.3 Emission lines measured with GANDALF . . . . . . . . . . . . . . . . . . . . 37

3.4 List of objects before and after selection. . . . . . . . . . . . . . . . . . . . . . 42

3.5 Lick/IDS index definitions. Line-strengths of the atomic indices are expressed
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Chapter 1

Introduction

1.1 The theoretical background

Cosmology is the study of the Universe as a whole particularly its contents, formation, evo-

lution, and eventual fate. In the last three decades scientists have developed a simple model

which describes the Universe. It is named the Lambda Cold Dark Matter (ΛCDM) model

and is frequently referred to as the “standard model”. This model is the simplest and the

best model that is able to provide a reasonable explanation of all properties of the cosmos

(e.g. the Cosmic Microwave Background (CMB), the large scale structure, the chemical

abundances, the expansion and acceleration of the Universe, etc.). The ΛCDM (Λ Cold Dark

Matter) model assumes that General Relativity (GR) is the correct theory of gravity. Despite

the rapid improvement in observational technology and computational simulations, there are

still some big challenges awaiting an attempt to match the theoretical to the observational

cosmology.

This chapter deals with the introduction of the modern cosmology model, the general

concept of galaxy formation and evolution, and the extragalactic objects used for this study.

1.1.1 Galaxy formation and evolution in a ΛCDM Universe

1.1.1.1 Short overview of theoretical cosmology

All modern cosmological models are based on Einstein’s general theory of relativity (1915).

The spacetime of the Universe can be described by solving Einstein’s general relativistic field

equation defined as

Gµν =
8πG

c4
Tµν (1.1)

where Gµν the left-hand side of the equation 1.1 describes the geometry of the space

time, and it is presented in a form of the metric of the space-time gµν . The right-hand side

of the equation 1.1 expresses the matter content of the Universe, specified by Tµν which is
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the sum of the stress-energy tensors for the various components of energy, baryons, radiation,

neutrinos, dark matter and possibly others.

Since on the largest scales (>100 Mpc) the universe appears homogeneous and there

are no observations that seem to pick out preferred directions, we can model the Universe

as homogeneous (constant density) and expanding isotropically (the same in all directions).

This is called the Cosmological Principle. Under these assumptions and with the Universe

filled with one or more perfect fluids, the geometry of the Universe is greatly simplified and

described by the Friedmann-Robertson-Walker metric (FRW):

ds2 = (cdt)2 − R2(t)

[
dr2

1− kr2
+ (rdθ)2 + (rsinθdφ)2

]
(1.2)

where k describes the curvature of the space which can be closed (k > 0), flat (k = 0) or

open (k < 0); R(t) is the dimensionless scale factor in function of the cosmic time; and the

coordinates (r, θ, φ) are comoving coordinates.

The above equation can be written in tensor notation as

ds2 = gµνdxµdxν (1.3)

where the non-vanishing components are

g00 = 1, g11 = − R2

1− kr2
, g22 = −R2r2, g33 = −R2r2sin2θ (1.4)

Values of gµν and their derivatives give the 16 components of Gµν on the left hand side

of Einstein’s field equations. We obtain:

G00 = 3(cR)−2(Ṙ + kc2), G11 = −c−2(2RR̈ + Ṙ2 + kc2)(1− kr2)−1 (1.5)

On the right hand side of Einstein’s field equations, the stress-energy tensor is given by

Tµν = (p + ρc2)
vµ vν

c2
− pgµν (1.6)

We note that ρc2 is the energy density. After substituting equations 1.5 and 1.6 into

Einstein’s equations 1.1, we obtain Friedmann’s equations:

Ṙ2 + kc2

R2
=

8πG

3
ρ, (1.7)

2
R̈

R
+

Ṙ2 + kc2

R2
= −8πG

c2
p (1.8)

The first equation (equation 1.7) describes a direct connection between the mass densities

in the Universe and the expansion rate; the second equation (equation 1.8) shows that it may
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accelerate. From equations 1.7 and 1.8, we obtain:

2
Ṙ

R
= −8πG

3c2
(ρc2 + 3p) (1.9)

which demonstrates that the acceleration decreases with increasing pressure and energy

density. ρ is the mass density of all components present in the Universe (dust, radiation etc.)

and p the total pressure. In that equation, G represents Newton’s gravitational constant and

c the speed of light. Since the Universe is approximated to be an ideal perfect fluid, the

equation of state is given by:

p = ωρc2 (1.10)

where the parameter ω is called the equation of state parameter. Given the equation of

state 1.10, the total mass density of all components in the Universe is given by

ρ =
∑

i

ρ0
i (R/R0)−3(1+ωi) (1.11)

where ρ0
i is the mass density of each component at the current time, ωi its equation of

state and R0 is the scale factor at the current time. The value of the ωi will depend upon

the component of the Universe. There are three main cases:

• ωm = 0→ p = 0 dust Universe, matter dominated

• ωr = 1
3 → p = 1

3ρc2 radiative Universe, radiation dominated

• ω = −1→ p = −ρc2 De Sitter Universe, vacuum dominated behaving like cosmological

constant

For ω = −1, the equation 1.11 becomes

ρ =
∑

i

ρ0
i (1.12)

We note that the Hubble parameter is defined as H ≡ Ṙ/R. It shows how fast the Universe

is expanding. H0 is its current value and it is called Hubble constant and often parametrized

in terms of the dimensionless number h, where:

h =
H

100 km s−1Mpc−1
(1.13)

Equation 1.2 gives the cosmological redshift when we plug ds2 = 0 (null geodesic for a

light ray)

z =
R0

R
− 1 (1.14)
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From equation 1.7, it can be shown that if

ρ = ρcri ≡
3H2

8πG
(1.15)

the curvature is zero (k = 0). This time-dependent energy density that makes the Universe

spatially flat is known as the critical density. Current energy densities of matter components

are often expressed in terms of dimensionless density parameter, Ω0
i ≡ ρ0

i /ρ
0
cri.

The simplest solutions to the Einstein equations (from equation 1.7) which are known as

Friedmann cosmology models, are now explicitly expressed as

H = H0

√
Ωr(R/R0)−4 + Ωm(R/R0)−3 + ΩΛ − Ωk(R/R0)−2 (1.16)

where the different types of Ω: Ωr, Ωm, ΩΛ, and Ωk are respectively the density parameters

of radiation, non-relativistic matter, cosmological constant, and curvature. The equation 1.16

is one of the most important equations in cosmology since it provides the relation between

comoving distance to redshift in terms of the key cosmological parameters such as the Hubble

constant and the current energy density of the constituents of the Universe.

1.1.1.2 Concordance Cosmology

In 1922, Alexander Friedmann found the solution of the Einstein’s field equations that sug-

gests the expanding Universe. At almost the same time, Georges Lemâıtre proposed the

first model that later known as the “Big Bang model” and the distance-redshift relation that

could explain the expansion of the cosmos. Both studies along with the metric given by

Howard P. Robertson and Arthur G. Walker yield to the well-known Friedmann-Lemâıtre-

Robertson-Walker (FLRW) solution of the gravity equations, and which fits better the ob-

servable Universe. It is then in 1929, that the observational confirmation of the expanding

Universe was discovered by E. Hubble by showing the linear relation between the recession

velocity of galaxies and their distance (Hubble’s law1). He applied the technique of redshift

introduced by Vesto Slipher one decade before, using galaxies spectra. Then a more advance

measurement of the expansion was made in 1998 when the Hubble Space Telescope (HST)

observed distant supernovae type Ia (SN Ia). The type Ia supernovae are all consistent in

term of their absolute luminosity profiles allowing their use as standard candles across cos-

mological distances. The goal of the SN Ia surveys was therefore to establish the Hubble

relationship by determining their distances and redshifts. In the early 1990’s, it was believed

that the expansion rate would decrease as time went on. However, recent observations of

high redshift SN Ia showed that the expansion of the Universe was actually accelerating and

it has not been slowing (Perlmutter et al., 1999; Riess et al., 1998; Schmidt et al., 1998).

1The Hubble’s law is given by ~v = H0~r, where H0 is the constant of proportionality and is known as the
Hubble constant. This relation is valid to a distance up to some 100 of Mpc but it has to be corrected at
larger scales
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The observed supernovae were about 25% fainter than expected, suggesting that they were

further away than they should be.

So from the expanding Universe, everything appears moving away from each other which

leads to the conclusion that in the past everything comes together. This is a strong support

of the initial explosion known as the Big Bang scenario and the model proposed by Lemâıtre.

Therefore, the concordance model is based on the fact that the Universe has expanded from a

primordial hot and dense initial condition in the past and continues to expand to the present

time. After the Big Bang, as the Universe was growing, the plasma and the radiation within

became cooler (matter-radiation decoupling), and the CMB radiation was emitted at that

time. The CMB was first discovered by Penzias & Wilson (1965). It is the most powerful

pieces of evidence for supporting the Big Bang theory as it shows the radiation left over from

that early stage.

Current observational data strongly indicate that the Universe is highly isotropic and

homogeneous at sufficiently large scale, implying that no specific center or special directions

exists in the Universe. Yet there was no evidence which can validate the cosmological prin-

ciple at the time when Friedmann and Lemâıtre investigated the simplest possible matter

distribution while finding solutions to Einstein’s field equations. The observational evidences

of isotropy in the Universe came from the distribution of radio sources (Blake & Wall, 2002),

the Cosmic X-ray background (Fabian & Barcons, 1992), and the CMB. However, the study

of the large scale matter distribution by Hogg et al. (2005), which was used to test the

homogeneity of the Universe, favours the idea that the Universe is homogeneous.

The most acceptable model which provides the best descriptions of the Universe is the

ΛCDM model since it is able to reasonably explain the observable Universe. The Greek

letter Λ means the cosmological constant, which is the dark energy. The most important

cosmological observations that this model could fit are: the existence and structure of the

CMB, the accelerating expansion of the Universe using distant galaxies and SN Ia, the large

scale structure and the abundance of light elements in the early Universe. In the ΛCDM

model, the Universe is spatially flat and dominated by a cosmological constant Λ associated

with dark energy with ΩΛ ∼ 0.7, a non-relativistic cold dark matter with Ωm ∼ 0.25 and a

non-relativistic baryonic matter with Ωb ∼ 0.05. The determination of the exact values of

these components which constitute the total energy density of the Universe predicts its past

and future behaviour. The cosmological constant has a value of ωΛ = -1. There are other

important parameters such as the Hubble constant H0, the amplitude of the linear power

spectrum on the scale of 8h−1Mpc, σ8 and many more (some of them are listed in table 1.1),

which all describe the ΛCDM cosmology.

Although the cosmological observations support the Hot Big Bang model, this model

suffers from some problems such as

• the horizon problem which deals with questions about the causal connection between

far away sides of the Universe,
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• the spatial geometry of the Universe (flatness problem). The Big Bang model does

not seem to predict a flat Universe however the strongest constraint on the flatness

comes from fluctuations in the CMB. The Cosmic inflation model Guth (1981) seemed

to resolve these problems, when it is combined with the Hot Big Bang model to form

the accepted theory which used to adequately describe the observable Universe.

Besides the problems cited above, there are other observations which appear to disagree

with the predictions of the ΛCDM model, at about 2σ confidence level, few examples are

given below:

• High redshift SNe Ia appear brighter than what we would expect in the ΛCDM model

(Kowalski et al., 2008). The persistence of the discrepancy using even more data would

lead to the conclusion that the Universe in the past was decelerating faster than the

ΛCDM model predicts it to be.

• The amplitude of the large-scale velocity flows (400 km s−1) may be larger than what

is expected in the ΛCDM (Abate & Erdoǧdu, 2009; Watkins et al., 2009). The possible

explanations for that are the statistical fluctuation, or serious physical reasons such as

presence of the non-inflationary perturbations, a time-dependant Newton’s constant,

or a presence of a giant void at a distance of few Gpc.

• There are missing dwarf galaxies in the observed local group. Based on the prediction

from the ΛCDM, one would expect to observe on average more dwarf galaxies (Peebles,

2007). This could be due to astrophysical effects where, for example, a detectable star

population has not formed in some small dark matter haloes or incorrect prediction of

the model.

Nonetheless, the ΛCDM model is still the best fit to the observational data despite the

discrepancies between the observations and predictions.

Dark energy: The existence of an exotic component called “dark energy”, besides ordi-

nary matter and radiation, is the most popular way to explain the accelerating Universe. The

nature of the “dark energy” component remains unclear, but it is known to be very homoge-

neous, not very dense and it is not known to interact through any of the fundamental forces

other than gravity. Many suggestions of its nature have been proposed. It could be the same

property as the energy density of the vacuum (cosmological constant Λ) with ω = −1 (Carroll

et al., 1992), or a new type of dynamical energy fluid “quintessence” with −1 < ω < −1/3

(González-Dı́az, 2000), or a phantom energy with ω < −1 (Dvali et al., 2000). Current sur-

veys like the Dark Energy Survey (DES, The Dark Energy Survey Collaboration, 2005) are

also aiming to uncover the nature of the dark energy, by measuring the brightness of about

3000 supernovae including distant ones.
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In a standard Λ model (where a constant is added to the right hand side of the equation

1.1), it is unclustered on all scales and is constant with time (although this is not the case

in other models of dark energy). Independent of its precise nature, dark energy would need

a strong negative pressure in order to explain the actual acceleration in the expansion rate

of the Universe. It can be demonstrated in the FRW metric, described in previous section,

that the cosmic factor R̈ is positive if the equation state of the Universe is ω < −1/3.

Some observational evidence of the presence of the dark energy comes from:

• the accelerating expansion provided by the absolute magnitude–redshift of SNe Ia or

the Hubble diagram (Perlmutter et al., 1999; Riess et al., 1998).

• the positions and amplitudes of acoustic peaks in the CMB anisotropy, which show

that the Universe is very close to spatially flat if the mass/energy density of the Uni-

verse equals to the critical density. More precisely, the position of the first peak of

the angular power spectrum constrains the spatial curvature of the Universe to be

Ωk = 0.015+0.020
−0.016 (Spergel et al., 2003) and that the baryon contribution exactly agrees

with that predicted from the Big Bang Nucleosynthesis (BBN). Combining the CMB

anisotropy results from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite

with an independent measurement of the Hubble constant provides some indication

that non-relativistic matter makes up only a quarter of the critical density, however the

energy density of radiation is negligible. This leads to the conclusion that the energy

which constitutes the Universe is dominated (by three quarters) by an extra component

above the ordinary or dark matter and radiation. It should be uniform on cosmological

scales in order not to conflict with the formation of the large-scale structure and the

BBN.

• the cross-correlation between CMB anisotropies and low redshift matter distribution

such as galaxies and radio-sources through the detection of the integrated Sachs-Wolf

effect 1 (ISW Afshordi et al., 2004; Boughn & Crittenden, 2005; Fosalba et al., 2003).

This means that the presence of the dark energy affects CMB anisotropies directly

through the ISW effect. In a Universe dominated by dark energy, gravitational wells

decay on large distance scales. This affects the large-angle CMB spectrum since photons

that travel through the large gravitational well gain energy. A positive correlation at

z < 1 has been detected by several groups.

• the large-scale structure. The recent large-scale galaxy survey like WiggleZ Dark Energy

survey (Glazebrook et al., 2007) which aimed to analyse the galaxy distribution in order

to check further evidence of dark energy. Through this analysis, the survey was able to

1The Integrated Sachs-Wolfe effect is caused by gravitational red/blueshifts affecting CMB photons prop-
agating from the last scattering surface and encountering gravitational potentials (i.e. large matter concen-
trations)
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measure the cosmic distance using the Baryon Acoustic Oscillations (BAO) 1 standard

ruler technique and the growth of the structure using the redshift-space distortions.

Results from this survey are consistent with the prediction of the ΛCDM model in term

of the growth rate of the structure (Blake et al., 2011a) and confirm a cosmic acceleration

(ω < −1/3) independent from the supernovae surveys (Blake et al., 2011b).

• observational H(z) data. Details on H(z) measurement method are given in section

1.2. It has been widely used to examine the accelerated cosmic expansion and constrain

properties of dark energy.

Dark matter: The remaining components of the energy density are dominated by hypo-

thetical matter (Zwicky, 1933) in non-relativistic form of an unknown nature, called “dark

matter”. It is invisible but can still be detected through its gravitational effects. In the

current scenario of structure formation, it is believed to consist of particles which interact

only through the force of gravity. Observations of light elements in the Universe and the

theory of BBN dictate that it is not composed of baryons. It may be composed of particles

that interact through weak interaction. The particle candidates that have been considered

include neutralinos (the lightest supersymmetric particle), exotic neutrinos, axions, jupiters

and black holes of mass < 100 M�. These coincide with the common definition of “cold dark

matter” (Peebles, 1980). At early times these particles are non-relativistic, with mean veloc-

ities that are small relative to the mean expansion of the Universe (neutrinos with masses

<30 eV are excluded). For both the dark matter (ΩDM ' 0.23) and the baryons (ΩB ' 0.04),

the equation of state is ω = 0, and the density is diluted like ρ ∝ a−3 ∝ (1+z)3. Dark matter

plays an important role in structure formation because of its gravitational interaction. The

gravitational Jeans instability which allows compact structures to form, is not balanced by

any force such as radiation pressure. As a result, dark matter begins to collapse into a com-

plex network of dark matter haloes well before ordinary matter, which is impeded by pressure

forces. Without dark matter, the epoch of galaxy formation would occur substantially later

in the Universe than is observed.

Evidence that dark matter exists comes from:

• observations of the dynamics of galaxies (galaxy rotation curves). It was found that

velocities of stars towards the edge of a spiral galaxy remain nearly constant with

increasing distance from the galactic center, not as expected them to be (Rubin et al.,

1985). If there is a visible matter dominated, these velocities would increase with the

radial distance from the core of the galaxy. This implies that the galaxy must contain

dark matter in the form of a halo and about five to ten times the mass of the visible

matter.
1Technically, BAO is some sort of periodic fluctuations in the matter power spectrum or equivalently a

characteristic scale in the galaxy distribution. The scale of the acoustic oscillations provides a standard ruler
which can be used to determine distances to galaxies and constrain the nature of dark energy
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• observations of the dynamics of clusters. Galaxy clusters are an ensemble of galaxies

held together by their mutual gravitational attraction. However, their velocities are

found to be too large for galaxies to remain gravitationally bound by their mutual

attractions, implying the existence of other matter than the visible one. Zwicky, with his

pioneering study of the Coma cluster, showed that if the entire attractive gravitational

force came only from the luminous, visible matter, the cluster would disperse.

• the temperature distribution of hot gas in galaxies and clusters of galaxies (Markevitch

et al., 2004). From the X-ray studies, galaxy clusters exhibit very hot intergalactic gas.

The total mass of this gas is two times greater than that of the galaxies. This mass is

still not enough to keep the galaxies in the cluster, implying the presence of different

mass.

• gravitational lensing. This technique can be used to predict the amount of material in

the cluster in order to create its gravitational field. From this measurement, the total

mass of the cluster is much larger than the ordinary matter of the stars and the gas

combined, which typically consists of 5% from the visible matter, 10% from the hot gas

and the rest from the dark matter.

Constraints on cosmological parameters have been established so far using data from

different type of observations. The latest basic set of cosmology parameters are from the

PLANCK (Planck Collaboration et al., 2013) and WMAP 9-year release data (Hinshaw

et al., 2013) listed in table 1.1. The different columns of table 1.1 list the best fit-parameters

obtained by using different joints measurements: WMAP means WMAP9 data alone. The

PLANCK column gives results of the PLANCK temperature power spectrum data alone.

The WMAP9+BAO+H0 column gives measurements when combining WMAP9, BAO and

applying priors on H0. PLANCK+WMAP is the combinatiion of PLANCK with the addi-

tional inclusion of WMAP polarization at low multipoles. The cosmological model defined

by the current set of cosmological parameters is defined as standard model. It aims mainly

to provide a more accurate description of the actual and high-redshift Universe, as indicated

by various observational data.

1.2 Cosmic Chronometers

In recent times, there have been numerous observations and several methods used to place

tighter constraints on cosmological parameters. As discussed above, these include the CMB,

BAO (Eisenstein et al., 2005; Percival et al., 2010), Supernovae type Ia (Riess et al., 1998),

as well as probes of the growth of structure via weak (Refregier, 2003) and strong lensing

(Cao et al., 2012) and cluster of galaxies abundance (Haiman et al., 2001) plus several others.

All of these constrain the expansion history using geometric measurements: e.g. the BAO

9



1. Introduction

Table 1.1: The cosmological parameters deduced from different type of data where a flat
cosmological model Ωm + ΩΛ = 1 is assumed. All ΛCDM model parameters are given with
68% confidence intervals.

Parameter WMAP WMAP+BAO+H0 PLANCK PLANCK+WMAP

Ωbh
2 0.02264±0.00050 0.0226±0.00043 0.02207±0.00033 0.02205±0.00028

Ωch
2 0.1138±0.0045 0.1157±0.0023 0.1196±0.0031 0.1199±0.0027

ΩΛ 0.721±0.025 0.712±0.010 0.686±0.020 0.685+0.018
−0.016

ns 0.972 ±0.013 0.971±0.010 0.9616±0.0094 0.9603±0.0073
τ 0.089 ±0.014 0.088±0.013 0.097±0.038 0.089+0.012

−0.014

109∆2
R

or ln(1010As) 2.41±0.10 2.427+0.078
−0.079 3.103±0.072 3.089+0.024

−0.027

t0 13.74±0.11 13.750±0.085 13.813±0.058 13.817±0.048
H0 70.0±2.2 69.33±0.88 67.4±1.4 67.3±1.2
σ8 0.821±0.023 0.830±0.018 0.834±0.027 0.829±0.012
zreion 10.6 ± 1.1 10.5 ± 1.1 11.4+4.0

−2.8 11.1±1.1

Notes:
Ωbh

2 : Physical baryon density
Ωch

2 : Physical cold dark matter density
ΩΛ : Dark energy density (ω = -1)
ns : Scalar spectral index
τ : Reionization optical depth
109∆2

R : Curvature perturbations at k0 = 0.002 Mpc−1, ln(1010As) : Log power of the curvature perturbations
at k0 = 0.005 Mpc−1,which is the notation used by PLANCK
t0 : Age of the Universe (Gyr)
H0 : Hubble expansion factor, H0 = 100 h km s−1 Mpc −1

σ8 : Density fluctuations on 8 h−1Mpc scales
zreion : Redshift of reionization

use standard rulers and SNe are used as standard candles. Each one of these methods

presents its own pros and cons, for instance a dependence on integrated quantities such as

the luminosity distance. A complementary technique known as Cosmic Chronometers (CC),

originally proposed by Jimenez & Loeb (2002), consists of directly tracking the expansion

history of the Universe by using massive and passively evolving early-type galaxies.

The basic idea of this method is measurement of the differential age evolution between

two ensembles of LRGs as a function of their redshifts, which provides a direct estimate of

the Hubble parameter and hence the expansion rate over cosmic time H(z) (Jimenez & Loeb,

2002):

H(z) = − 1

(1 + z)

dz

dt
(1.17)

The most important part of this equation is the derivative quantity dz/dt that can be ap-

proximated as a differential quantity ∆z/∆t, potentially reducing systematics from absolute

age determination. With this method, only the galaxy evolution that takes place between

the redshifts where the difference is taken, is the most important. All the advantages of this

method have been discussed in Crawford et al. (2010a); Jimenez & Loeb (2002); Jimenez

et al. (2003); Liu et al. (2012); Moresco et al. (2011, 2012a); Simon et al. (2005); Stern et al.
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1. Introduction

(2010a); Zhang et al. (2012). The overall approach is valid when assuming that most stars in

these galaxies formed near the beginning of the universe at a similar time (as supported by

observations cited in Jimenez & Loeb (2002)), then measuring the age difference between en-

sembles of LRGs at two different redshifts provides the differential quantity ∆z/∆t required

to estimate H(z). The accurately estimated ages can then be taken as a cosmic chronometer.

Some systematic errors in the absolute age measurements have been a subject of discussion,

but such errors could be cancelled by using the relative age of these galaxies at different

redshifts. Our focus is then to determine the relative ages of galaxies.

There are a number of potential extragalactic objects that can be used to determine the

age of the Universe, such as the metal-poor globular clusters (Carretta et al., 2000; Chaboyer

et al., 1996), white dwarfs (Hansen et al., 2004), the radioactive decay of nuclear elements in

meteorites (Fowler, 1987) and in the spectra of the metal poor stars (Dauphas, 2005). All of

these are capable of estimating the age of the Universe at the present day, but not the age

at different redshifts. In the case of meteorites, it is impossible to obtain a sample from high

redshift, while globular clusters are too faint at high redshifts to be used effectively.

1.2.1 Previous work on CC

The CC method has been used in some ways to measure the observed Hubble parameter

up to redshift z ∼ 1.8, to set constraints on the nature of dark energy, and to recover the

local Hubble constant (Capozziello et al., 2004; Dantas et al., 2007; Ferreras et al., 2001,

2003; Jimenez & Loeb, 2002; Jimenez et al., 2003; Liu et al., 2012; Moresco et al., 2012a;

Samushia et al., 2010; Simon et al., 2005; Stern et al., 2010a; Verkhodanov et al., 2005;

Zhang et al., 2012, etc.). In each measurement, the authors assumed that LRGs are massive,

passively-evolving elliptical galaxies and homogeneous populations which form their stars at

high redshift, and fit a single burst equivalent age to galaxies. A number of scientists (Carson

& Nichol, 2010; Crawford et al., 2010a; Simon et al., 2005; Stern et al., 2010a) have attempted

to improve this method by pointing out the need for better stellar population models fitting,

better selection targets, larger samples and better quality data to precisely determine H(z).

The original idea was suggested by Jimenez and collaborators (Jimenez & Loeb, 2002).

They improved their H(z) measurement from year to year. In 2003, their first test used the

upper envelope of the age-redshift relation of the ages of SDSS-LRGs (Jimenez et al., 2003)

in order to constrain the equation of the state of dark energy. In 2005, they used another

data set from the SDSS-LRGs in the range of 0.1 < z < 1.8 to obtain 8 H(z) values (Simon

et al., 2005). They improved their H(z) measurements by combining samples of rich galaxy

clusters observed with Keck/LRIS instruments with other samples from SDSS-LRGs, SPICES

and VVDS (Stern et al., 2010a). When they applied the same approach using low redshift

spectroscopic data of passively ETGs, they obtained a Hubble constant of H0=72.6±2.9(stat)

±2.3 (syst) km Mpc−1 s−1 which is consistent with other results (Moresco et al., 2011). They
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1. Introduction

then applied the CC method to a larger spectroscopic sample of ETGs (MGS, SDSS-LRGs,

zCOSMOS, K20 etc.) in the redshift range of 0.15 < z < 1.4 and obtained an independent

H(z) measurements at 5-12% accuracy, providing the proof of the accelerating expansion of

the Universe (Moresco et al., 2012a). In Moresco et al. (2012b) the cosmological applications

from the H(z) measurements including the properties of the neutrinos were reported.

In a different way, Melia & Maier (2013) have explored the feasibility and reliability of the

CC method in the Rh = ct Universe. This model was recently proposed by Melia & Shevchuk

(2012), where the Hubble scale Rh = c/H is at all time equal to the distance ct that light has

travelled since the Big Bang. In this model, the scale factor is proportional to cosmic time

and there is neither acceleration nor deceleration of the expansion of the Universe. Basically,

they compared the available H(z) measurements with the ΛCDM and the Rh = ct models.

According to them, the fitting of the observational H(z) data with both models revealed that

the Rh = ct Universe is more likely than ΛCDM to account for the observed H(z) profile.

1.3 LRGs in the literature

Luminous Red Galaxies (LRGs) are intrinsically luminous (L > 3L∗, where L∗ refers to the

“knee” in the galaxy luminosity function and corresponds approximately to the luminosity

of the Milky Way) early-type galaxies (Eisenstein et al., 2005; Wake et al., 2006). They can

be selected via their red colours (Eisenstein et al., 2001). They have photometric properties

consistent with an old, passively evolving stellar population (Bernardi et al., 2006; Faber,

1973; Visvanathan & Sandage, 1977). They are shown to have relatively homogeneous spec-

tral properties (Eisenstein et al., 2003; Faber, 1973), and are identified with little recent star

formation activity (Roseboom et al., 2006). All of these characteristics make them ideal

tracers of large scale structure at intermediate redshifts (0.3 < z < 1).

Some characteristics of LRGs found in the literature include:

• LRGs are found in and around the cores of clusters. One can say that these objects are

very similar to brightest cluster galaxies (BCG), implying that they are good candidates

to detect and study clusters at optical wavelengths. They are the most massive and

bright galaxies which provide us with high signal-to-noise ratio spectra. In the semi-

analytical models of galaxy evolution, the stellar mass of LRGs can be tracked and they

predict that seventy-five per cent of the stellar mass of these galaxies are already in

place by z ∼ 1 (e.g. Bauer et al., 2005; De Lucia & Blaizot, 2007; Wake et al., 2006).

They dominate the stellar mass density of the Universe (Fukugita et al., 1996; Hogg

et al., 2002). The uniformly red and old stellar populations of LRGs have traditionally

been interpreted as evidence for a formation scenario in which these galaxies form in

a single intense burst of star formation at high redshift and are passively evolving to

the present day (Barber et al., 2007; De Lucia et al., 2006; Gallazzi et al., 2005). This
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indicates that the more massive a galaxy is, the earlier most of its stars were formed.

The passive evolution is defined here as the fact that stars in LRGs formed exclusively

at very early epochs and at the same time, then these galaxies evolved passively since

their initial burst of star formation, which represents the general assumption of this

study.

• They are strongly biased objects, having a value of b ∼ 2 where b is the linear bias

and relates in the linear regime, the underlying mass density distribution being to that

of the luminous tracers via δg = bδm (Padmanabhan et al., 2007). Using the 2SLAQ

LRG survey, Ross et al. (2008) have obtained the clustering amplitude of the LRGs.

This has been exploited to constrain cosmological parameters (e.g Cabré & Gaztañaga,

2009; Eisenstein et al., 2005; Gaztañaga et al., 2009a; Sánchez-Blázquez et al., 2009)

on different scales, to constrain the mass of the dark matter haloes which host these

galaxies and to probe their merger history (Masjedi et al., 2006; Ross et al., 2007; Zehavi

et al., 2005).

• Demonstrated by previous observational studies, LRGs found in high-density environ-

ments have older stellar populations than in low-density (e.g. Bower et al., 1990; Trager

et al., 2008) as predicted by the hierarchical galaxy formation models. And ages of

the stellar populations in the larger galaxies are older than those in smaller galaxies

located in both environments, this is known as “downsizing”. In hierarchical growth

of structure, larger structures like rich clusters have been assembled with collapses and

mergers of smaller structures.

• Barber et al. (2007) have used the population synthesis models to estimate the mass,

metallicities and star formation histories of LRGs by fitting measured spectral indices

using a large library of high resolution spectra. They found that majority of stars

in LRGs formed at redshift around z ' 1.1-1.9 with 80% of their stellar masses have

already been assembled around z ' 0.7-1.1.

• Conroy et al. (2007) used N-body simulation to study the merger histories of the dark

matter haloes which they assumed hosted LRGs. They also suggested that LRGs are

tidally disrupted.

• Numerous amount of LRGs are radio quiet Active Galactic Nuclei (AGN). They are far

away below the detection limit of different radio surveys like Faint Image of the Radio

Survey at Twenty-cm (FIRST). Therefore, the median-stacking technique is needed

to achieve the required sensitivity. Hodge et al. (2009) have detected and studied

properties of faint radio AGNs in LRG populations. They found that the lower the

luminosity of LRGs the stronger the evolution of their radio power over the redshift

range of z = 0.45 and z = 0.75, which possibly is a signature of AGN downsizing. They
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also showed strong cosmic evolution of AGN activity over the redshift range of z = 0.2

and z = 0.7 for overall LRGs dominated by low-luminosity AGNs. This implies that the

total AGN heating in these massive galaxies would considerably increase with redshift.

• The semi-analytical model of De Lucia et al. (2006) has also successfully matched the

luminosity, colour and morphology of local elliptical galaxies, where the more massive

ones would be LRGs. Almeida et al. (2008) have studied properties of LRGs in hier-

archical cosmology using two different models from Durham : the Bower and Baugh

models. They have shown that the luminosity function and the clustering of LRGs are

closely matched to the observed properties of LRGs, as well as many observables which

are well produced. Note that these two models have different mechanisms to suppress

the formation of massive galaxies: the Bower et al. (2006) model uses the AGN-feedback

to prevent gas from cooling in massive haloes; while the Baugh (2006) model involves

superwinds to eject gas before it is turned into stars.

1.4 Thesis outline

1.4.1 The goal of this thesis

Measuring the Hubble parameter today, H0, continues to be a major goal of observational

cosmology. This parameter plays an important role, not only for studying different astro-

nomical events in a wide range of the cosmic scales, from the large scale structure to the

local galaxies, but it is also a key parameter for various cosmological calculations such as

the physical distance to objects, their ages, their sizes and the matter-energy contents of the

Universe. There are many observational techniques to probe this parameter. One of those

techniques comes from the use of expansion rate over cosmic time H(z), obtained from the

differential ages or CC which has been discussed in section 1.2.

The principal aim of this project is to measure the expansion rate of the Universe H(z)

over the redshift range of 0.1 < z < 1.0, by age-dating LRGs, thereby providing an interesting

constraint on the nature of dark energy. In this work, we will investigate the CC approach

by using a large sample of homogeneous passively evolving galaxies from the archival data

SDSS-DR7 over a redshift range of 0.10 < z < 0.40. In addition, some massive selected LRGs

observed with the SALT telescope in two narrow redshift ranges centred on z ' 0.40 and

z ' 0.55 will be used to measure H(z) at z ' 0.47. Finally, the H(z) measurements from

both samples (SDSS-LRGs and SALT-LRGs) will be combined with recent and available

H(z) in the literature to investigate their constraints on the determination of cosmological

parameters.
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1.4.2 Contents

The structure of this thesis has been organised to follow the three aims of this project, with

an additional chapter about the stellar population synthesis.

Chapter 2 highlights the important key ingredients of the stellar populations synthesis

models. Some basic introduction to a simple stellar population model is given as well as the

stellar population of early type galaxies.

Chapter 3 outlines the technique of age-dating and the selection criteria used for retrieving

galaxies from SDSS archive data. The galaxies ages are used to reconstruct the age-redshift

relation t(z), and to measure the Hubble parameter H(z).

Chapter 4 focuses mainly on the measurement of the Hubble parameter H(z) at z ' 0.47

using LRGs observed with SALT. Prior to the measurement, the process of reducing long-

slit spectra from SALT and the method adopted to estimate the ages of these galaxies are

explained. Furthermore, we discuss some issues about the estimated errors. Finally, the

Hubble parameter H(z = 0.47) measurement is provided.

Chapter 5 presents the method used to constrain the cosmological parameters when com-

bining our H(z) measurements with external datasets.

Chapter 6 summarizes and discusses our results. The outlook to the future work in this

research is also given.
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Chapter 2

Stellar populations synthesis

models

2.1 Introduction

In this chapter, the basics of the Stellar Populations Synthesis (SPS) models are introduced,

including the necessary ingredients, and problems each model faces as each SPS model has its

own particularities. Stellar population studies are necessary to constrain the galaxy formation

and evolution, because different formation/event scenarios can possibly leave certain imprints

in the stellar content of galaxies. SPS models are important tools in the interpretation

of the integrated light contents of a stellar population of galaxies, for instance their mean

age, colours, line indices, chemical composition, stellar formation histories, mass-to-light

ratios, stellar mass, stellar kinematics and their overall evolutionary history. In addition, the

formation of a galaxy can be explained as different pieces of stellar type/systems put together

in different ways, yielding a different parameter space of ages and chemical compositions of

its overall stellar populations. The derivation of these stellar population parameters can

be accomplished by using either photometry or spectroscopy data fitting. Each method of

fitting has its pros and cons. The great advantage of the spectral fitting (full, absorption line

indices) is high accuracy on the derived parameters and the possibility of studying chemical

abundance. This is not possible through photometric fitting where results usually suffer from

the age-metallicity degeneracy, although obtaining photometry data does not require the long

observational integration times required for spectroscopy.

Apart from the widely used model of stellar evolutionary population synthesis of Worthey

et al. (1994), it is not yet sure which model is the most accepted model despite important

progress in the last two decades, with regard to the best way of handling the Thermally

Pulsating-Asymptotic Giant Branch (TP-AGB), Blue straggler, differential effect of stellar

rotation and evolution (binary stars), coverage of the parameter space in the stellar libraries,

resolution of the population models etc. The modelling of the stellar evolution becomes more
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2. Stellar populations synthesis models

and more precise especially in the red Giant Branch and AGB phases (e.g. Lançon et al.,

2007). However, the creation of SPS models is still limited by certain physical issues. One

of those issues is the evolution of binary stars. No popular SPS model includes the effects of

binary star evolution. The collision and mass exchange between the binary stars affect the

integrated spectrum of the stellar populations leading to younger ages for Galactic globular

clusters and galaxies. This means that a big effort has to be made in order to match correctly

stellar population theory with observations.

The basic idea of this project is the consideration of the fact that LRGs have formed

their stars in one single burst at the same time in the past. Thus we particularly focus on

so-called single-age and single metallicity models known as the Simple Stellar population

(SSP) models. In reality, a galaxy should not be considered known as a SSP because of

the existence of different stellar metallicity, age and system, not like star clusters which are

usually considered as a SSP. A composite stellar population which is a combination of different

SSPs can, however, be a solution for a complex population. Therefore, understanding SSPs

is crucial while studying any type of stellar population of galaxies.

2.2 Stellar population model parameters

Prior to the analysis of the stellar populations, it is necessary to introduce all the basic

parameters produced by the models. The following three parameters represent the stellar

population characteristics of a galaxy.

Age depends on the star formation activity in the galaxy. Young age means recent star

formation activity whereas old age indicates no sign of ongoing star formation.

The metallicity is defined as:

metallicity,Z =
mass of heavy elements

mass of (H + He)
(2.1)

where mass of heavy elements refers to the overall content of all elements other than hydrogen

or helium, and mass of (H+He) refers to the mass of the hydrogen and helium. Note that

the metallicity is also known as the metallicity of the gas from which the stars were born and

does not reflect further mixing. However, when we observe stars, we observe the composition

at this moment at the photosphere. Therefore there can be some consistency. The metallicity

is often converted to [Fe/H] which tracks the metallicity relative to solar:

[Fe/H] = log10

(
Z

Z�

)
log10 ((1−Y − Z) / (1−Y� − Z�)) (2.2)

and given in units of decimal exponent or dex (dex(x) = 10x). Z� is the solar ratio equal

to 0.02 dex. The use of this nomination decreases the discrepancies in models due to stellar
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lifetime differences in the sets of isochrones (Worthey et al., 1994). Some models often use

the notation [Z/H] which is the total metallicity instead of [Fe/H]. These two notations are

related and can be written as (Tantalo et al., 1998; Thomas et al., 2003; Trager et al., 2000):

[Z/H] = [Fe/H] + A[α/H] (2.3)

where A is the ratio between enhanced and suppressed elements in the spectrum of the

galaxy A = −∆[Fe/H]

∆[α/Fe]
. Its value is not universal, it depends on the mixture in the models.

For example, Thomas et al. (2003) found a value of 0.94.

Element abundances provide the direct evidence of the nucleosynthetic processes which

took place along the evolutionary path of a star: from main-sequence all the way to supernovae

(SN). For example, different elements such as Mg, C, O are formed in the explosion of type-

II SN1, and Fe-peak elements are formed in the explosion of type-Ia SN2 . The chemical

abundances are referred to by their fractional abundances by weight and can be specified as

just (X,Y,Z), depending on the type of models, where:

X = fractional abundance by weight of hydrogen

Y = fractional abundance by weight of helium

Z = fractional abundance by weight of everything else.

and X+Y+Z = 1. Table 2.1 shows the solar fractional abundance.

The α−element abundance ratio [α/Fe] is found to decrease with increasing duration of

star formation activity (Thomas et al., 2005), therefore it commonly reveals the enrichment

efficiency and the star formation efficiency. This comes from the fact that the first stars to

explode in type-Ia SN take about a Gyr (Tolstoy et al., 2009).

[α/Fe] ≈ 1

5
− 1

6
log t (2.4)

Table 2.1: Solar fractional element abundance. Credit from Moore (2001).

Element Fractional abundance by weight References

hydrogen X� 0.709
helium Y� 0.274 Anders & Grevesse (1989)

everything else Z� 0.0169 Vandenberg (1985)

1The type II supernovae are results of a rapid (a few Myr after a star birth) explosion of a massive star
(8M� < Mstar < 40M�)

2The type Ia supernovae ’s explosion occurs at least 1Gyr behind the SN II
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2.3 The simple stellar population

In these models, all stars are formed at the same time (with age t), with a distribution in

mass given by a chosen initial mass function (IMF), and with identical chemical composi-

tion. All models are not limited by these three important points, some advanced models

have implemented the evolutionary processes such as enrichment of the interstellar medium,

differential loss of various elements by galactic winds, time-dependent IMF, etc. At the mo-

ment, these processes are not fully understood and no agreement has yet been reached about

these problems.

The SPS models provide the expected Spectral Energy Distribution (SED) of a stellar

population as function of the key parameters which will be discussed below. In general, all

models rely on:

• the theoretical stellar isochrones

• the stellar spectral libraries

• and the IMF.

The above components can be combined in another way as follows:

fSSP(t,Z) =

∫ mhigh(t)

mlow

fstar[Teff(M), log g(M)|t,Z] Φ(M)dM (2.5)

where M is the initial stellar mass (when stars are at zero age and still on the main

sequence phase), Φ(M) is the IMF, fstar is a stellar spectrum, and fSSP is the SSP spectrum

which depends on the metallicity Z and time t. mlow represents the lower mass limit generally

taken as the hydrogen burning limit i.e. 0.1M� or 0.08M�, while mhigh is higher mass limit

and is prescribed by the stellar evolution. From the isochrones, one can determine the

relation between the effective temperature Teff , log g (g is the stellar surface gravity) and

M as a function of t and Z. Equation 2.5 can be explicitly explained as the following: an

empirical or theoretical library of individual stellar spectra is used to assign spectra of stars

in various stage of the isochrones, after which the spectral energy distribution of SSP model

is the integration of spectra of individual stars along the isochrone according to a chosen

stellar IMF. This typical determination of SSP models is not universal, each model builder

has his/her own ingredients on top of the common approach. For example, the inclusion of

the treatment of TP-AGB stars (e.g. Le Borgne et al., 2004; Maraston, 2005). Normally, all

SPS models are found to be working as a black-box, since users do not fully understand how

the SPSs are built up. Here we will go through the details of the most important ingredients.

An example of the spectral evolution of a fixed metallicity (solar) SSP model computed

from BC03 (Bruzual & Charlot, 2003) synthesis code is shown in figure 2.1. The spectra of

young age and hot stars are dominated by the blue light, however those of older populations

peak in the red part of the spectrum.
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2. Stellar populations synthesis models

Figure 2.1: The evolution of spectra of a Simple Stellar Population of solar metallicity
computed from the BC03 population synthesis code. From top to the bottom is young star
spectrum to old star spectrum (from 1 to 15Gyr). The colour lines are the SDSS filter
bandpasses: u−band in mangeta, g−band in blue, r−band in red, i−band in yellow and
z−band in black. This illustrates the dominance of the blue light in the spectra of young
stars. Credit from Paudel (2011).

2.3.1 The Initial Mass Function

The stellar IMF is defined as the initial distribution of stellar masses along the main sequence.

This fundamental parameter along with the efficiency of the star formation quantifies the

conversion of the gas into stars. Despite its fundamental role, a question is still remained

whether it is “universal” or environment-dependent. The universality means that the ratio

of low-mass stars to high-mass stars in a newborn stellar population is the same throughout

the Universe. Originally, Salpeter (1955) showed that the IMF has a power-law form with

an index x = 2.35 for 0.4 < M < 10 M�. Kroupa (2002) claimed that the IMF is universal

where only at M < 1M�, x deviates from the Salpeter IMF. This becomes a challenge to

the evolutionary theory of stars, because without this deviation the amount of mass in a

stellar population model can become very large, implying some confusion with dynamical

measurements of mass in galaxies since those should be at least as large as the mass in stars

and stellar remnants. According to the review of Bastian et al. (2010), there is no clear

evidence for variation of the IMF with the initial conditions and/or environment after the

first generations of stars.

From the galaxy formation and evolution studies point of view, the stellar IMF is assumed

to be an universal function, which is supported by various direct measurements (counting the

individual stars (Kroupa, 2002)). Such measurements are somehow limited to the Milky

Way and its satellites, and cover a limited range in properties such as total and specific

star formation rate, density/pressure, and galaxy environment. However, studies of several

samples of galaxies suggest that there is a possible variation of the stellar IMF depending

on the properties of a galaxy, even after accounting for variations in star formation history,
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extinction and metallicity. These studies are based on the integrated light from galaxies and

providing only an indirect technique of measurement.

The IMF is the first ingredient that modellers tune to reproduce the observable parameters

of a galaxy. The choice of the IMF has a direct impact on all the calculated models and

hence influences the observational properties of the stellar populations in galaxies. The

majority of all the SSP models are computed with an IMF as a power-law of Salpeter index

above a few solar masses (Salpeter, 1955) and a log-normal (Chabrier, 2003) or shallower

power-law (Kroupa, 2001) for masses < 1M�. In addition, an IMF that evolves with time

cannot be excluded and a stepper (i.e increasingly bottom-heavy) IMF should be used while

studying massive elliptical galaxies (Spiniello et al., 2011; van Dokkum & Conroy, 2010,

2011). Furthermore, recent studies also have suggested that the stellar IMF becomes stepper

in low luminosity (Hoversten & Glazebrook, 2008) and low surface brightness (Meurer et al.,

2009), and may evolve with the cosmic time becoming top-heavy (i.e. flatter) in high redshift

galaxies (Wilkins et al., 2008).

In a recent review, Conroy (2013) discusses the important roles of the IMF in SPS mod-

elling:

• it determines the overall normalization of the stellar mass-to-light ratio, a shift (up to

a factor 2) in the mass-to-light ratio found in some bands is due to the uncertainty in

the IMF, yielding a possible change in the colour evolution of a galaxy by 0.1 mag in

V-K at intermediate ages (Conroy et al., 2009).

• it determines the rate of luminosity evolution for a passively evolving population (e.g.

Conroy et al., 2009; Tinsley, 1980; van Dokkum, 2008)

• it affects the SED of composite stellar populations, since composite populations have a

range of turnoff masses that contribute to the integrated light (e.g. Pforr et al., 2012)

• it has a small affect on the shape of the SED of single stellar populations, since the

integrated light of these populations is largely dominated by stars at approximately the

same mass i.e., the turnoff mass.

2.3.2 The isochrone

The isochrones are time dependent evolutionary tracks of stars in the theoretical H-R diagram

with same initial composition and various initial masses. The construction of isochrones is

done by the stellar evolution calculations for stars from the hydrogen burning limit (≈ 0.1

M�) to the maximum stellar mass (≈ 100 M�). It is usually based on different approach of

modelling and by choosing various initial chemical compositions, time, mass. Apart from age

and chemical composition, opacities and convection need to be specified during the calculation

of an isochrone. Nevertheless, there are some processes that need to be considered properly

in constructing the isochrones, such as mass loss, rotation effects, close binary interactions,
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and TP-AGB or AGB evolutions etc. On the one hand, there is a poor understanding of the

supergiant and AGB phases. Stars in these phases are bright and have a short time-scale,

they make a major contribution to the light in the infrared, but their numbers in the H-R

diagram are not very large. On the other hand, the mass loss is very difficult to model,

although it is important for calculating the evolutionary tracks of these stars. All of these

issues lead to important and major uncertainties in the isochrones that closely affect the

predictions resulting from the SPS calculations (e.g. Charlot et al., 1996; Conroy et al., 2009;

Lee et al., 2007; Yi, 2003).

Table 2.2 summarises the possible and most popular existing isochrone tables which cover

a wide range in ages, chemical compositions, and variety of evolutionary phases. SPS mod-

ellers often use the Padova models for the different ranges of age and metallicity, but with

the combination of Geneva models at young ages.

Table 2.2: List of popular and widely used isochrones in the literature

Name of models Comments References
Padova including TP-AGB Bertelli et al. (1994); Girardi et al. (2000)

BaSTI including TP-AGB Cordier et al. (2007); Pietrinferni et al. (2004)

Geneva including Wolf-Rayet phase, no low mass stars Meynet & Maeder (2000); Schaller et al. (1992)

Y 2 including RGB, HB evolutions Yi et al. (2001); Yi (2003)

Darthmouth including RGB, HB evolutions Dotter et al. (2008)

Victoria Regina including RGB, HB evolutions Vandenberg (1985); VandenBerg et al. (2006)

Lyon including very low mass stars, brown dwarfs Baraffe et al. (1998); Chabrier & Baraffe (1997)

including post-AGB Schoenberner (1983); Vassiliadis & Wood (1994)

2.3.3 Stellar libraries

The stellar libraries are one of the most important ingredients used in constructing SPS

models. That is because stellar spectral libraries, in combination with theoretical isochrones,

are used to convert the outputs of stellar evolutionary calculations (Teff , g) as a function

of metallicity Z into observational parameters and SEDs (equation 2.5). The set of stellar

spectra must cover a homogeneous range of effective temperature Teff , gravity g and metal-

licity for either theoretical or empirical libraries. During the last decade, the spectral range,

spectral resolution and homogeneity in the parameter ranges of the stellar libraries have been

improved significantly (see Tables 2.3 and 2.4). Changing stellar libraries has an impact

on the determination of the age and chemical composition of the models (Cid Fernandes &

González Delgado, 2010). In addition, there are also significant observational obstacles while
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constructing the SSP integrated spectra and parameters with empirical libraries, such as

lack of stellar spectra covering a wide range of parameter space, limited wavelength coverage

and spectral resolution, flux calibration and correction for atmospheric absorption. However,

with theoretical libraries, problems with lines lists, treatment of convection etc. can arise.

Theoretical stellar libraries are usually computed with solar-scaled abundance ratios, whereas

empirical stellar libraries are composed of stars in the solar neighbourhood, which are basi-

cally stars with low metallicity and α−enhanced ([α/Fe] ∼ 0.3). This has an impact when

fitting observable galaxy spectra (e.g. massive elliptical galaxies, Worthey et al. (1992)).

It is necessary to take into consideration the non-solar abundance ratios when creating the

evolutionary synthesis models.

The SSP models used in this study were computed using different libraries. Some high-

lights of these stellar libraries are given below. The SSP model description itself is given later

in chapter 3 section 3.7.7.

MILES The MILES library 1 (Sánchez-Blázquez et al., 2006) contains 985 stars providing

one of the most complete libraries. Spectra were obtained at the Isaac Newton Telescope in La

Palma. They cover a wavelength range from 3500 to 7500 Å with a spectral resolution of 2.3 Å

FWHM. The individual spectrum is well flux calibrated. This library represents a significant

improvement in term of stellar parameters coverage compared to the other libraries especially

the Lick/IDS library. Nevertheless, this library has a small number of hot stars (over 15000

K). Originally all atmospheric parameter values are taken from the literature, meaning they

are not homogeneous. Cenarro et al. (2007) have made them as homogeneous as possible to

span a large range in atmospheric parameters (2748 < Teff < 36000 K, 0.0 < log g < 5.50

dex, −2.93 < [Fe/H] < +1.65 dex). Milone et al. (2011) measured [Mg/Fe] abundance ratio

of the ∼ 76% of stars in the MILES library which makes the creation of new SSP models

with empirical α-enhancements possible (for example: PEGASE.HR models with MILES

(Prugniel et al., 2011)).

ELODIE 3.1 This new version of the library 2 (Prugniel & Soubiran, 2001; Prugniel et al.,

2007) contains 1388 high resolution stellar spectra with a sampling of 0.55 Å FWHM (or

R = ∆λ/λ=10 000 at λ = 5500 Å) covering the wavelength range 3900 - 6800 Å. The

spectra were obtained with the echelle spectrograph ELODIE at the 193 cm telescope at the

Observatoire de Haute-Provence. It covers a wide range of atmospheric parameters. The

library is flux calibrated with a broad-band photometric precision of 2.5% and narrow band

precision of 0.5%. Details on the spectra as well as the determination of the atmospheric

parameters are found in Prugniel & Soubiran (2001). The number of template spectra in its

current version is 1962 and was obtained from 1388 stars. Its coverage in terms of stellar

1http://www.iac.es/proyecto/miles/pages/stellar-libraries/miles-library.php
2http : //www.obs.u − bordeaux1.fr/m2a/soubiran/elodielibrary.html
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parameters is one of the best among the currently available libraries. However, the number

of cooler stars and lower metallicity are still lacking. The high resolution and the extensive

coverage (for an empirical library) of the parameter space of this version makes this library

suitable for stellar population studies.

STELIB STELIB libary 1 (Le Borgne et al., 2003) contains 249 spectra with a resolution

of ≈ 3 Å FWHM in the wavelength range of 3200 - 9500 Å. Spectra were obtained with

the 1m Jacobus Kaptein Telescope in La Palma. This library includes stars in different

spectral types and luminosity classes covering a wide range of metallicity. Its coverage in the

parameters space, however is very limited compared to the other libraries, for instance, the

lack of stars with [Fe/H] < −1.0. Many of the stars do not complete the full spectroscopic

observation along the wavelength range cited above, and mostly all spectra suffer from telluric

contamination. A large range of atmospheric parameters in this library was taken from the

literature, including parameters of some stars which are part of the ELODIE library (Prugniel

& Soubiran, 2001).

Martins & Coelho (2007) carried out a comparative study of these three libraries, and

concluded that hot stars are missing in most of them. All three libraries tend to have the

majority of their stars having temperatures between 5000 and 7000 K and miss a certain

amount of stars in lower temperatures (< 4000 K). MILES has the best coverage for lower

temperatures, while ELODIE has it at higher temperatures. STELIB has only an O star

and only one dwarf below 4000 K. Linking the study done by Cenarro et al. (2007) about

the attempt to homogenize the MILES library, stars whose temperatures are outside the

above range (near the system reference temperature i.e. 4000 - 6300 K) might not be as

homogeneous as they wanted it to be (Maraston & Strömbäck, 2011).

Table 2.3: List of the most up-to-date empirical stellar libraries

Name FWHM (Å) Spectral range (Å) No stars Comments References
PICKLES 1150 - 25000 131 flux calibrated Pickles (1998)
ELODIE 0.55 4100 - 8800 1388 echelle Prugniel et al. (2007)
STELIB 3.0 3200 - 9500 249 flux calibrated Le Borgne et al. (2003)
INDO-US 1.0 3480 - 9464 1273 poor flux calibrated Valdes et al. (2004)
MILES 2.3 3500 - 7500 985 flux calibrated Sánchez-Blázquez et al. (2006)
NGSL 1700 - 10200 ∼100 flux calibrated Heap & Lindler (2011)
IRTF 8000 - 25000 210 flux calibrated Rayner et al. (2009)
XSL 3200 - 24800 240 flux calibrated Chen et al. (2011)
UVES-POP 3070 - 10300 300 Bagnulo et al. (2003)
LW2000 5000 - 25000 100 Lançon & Wood (2000)

1http://webast.ast.obs-mip.fr/stelib
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Table 2.4: List of some theoretical stellar libraries.

Name Resolution Spectral range (Å) Teff (K) log(g) metallicity
Rodŕıguez-Merino et al. (2005) 50000 850 - 4700 3000 - 50000 0 -5 -2.0< [M/H] <0.5
Munari et al. (2005) 20000 2500 - 10500 3500 - 47500 0 -5 -2.0< [M/H] <0.5

2000 [α/Fe] = 0.0,0.4
Coelho et al. (2005) high 3000 - 18000 3500 - 7000 0 -5 -2.0< [M/H] <0.5

[α/Fe] = 0.0,0.4
Martins et al. (2005) 0.3 Å 3000 - 7000 3000 - 55000 -0.5 - 5 0.04 < Z < 0.001
(Granada)

Note: [M/H] is another notation of metallicity, often described as metallicity ratio or total metal abundance,
where M refers to as the metal or elements heavier than Helium.

2.4 Age-metallicity degeneracy

Spectra of early type galaxies suffer form the age-metallicity degeneracy issues. Both param-

eters vary with the spectra and colours of the elliptical galaxies in a similar way. Therefore

it is difficult to determine age and metallicity independently for those galaxies. In particu-

lar, increasing either metallicties or ages will make the galaxy appear redder. Precisely, an

age change about +30% on the isochrones has the same effect on the spectra as a +20%

change on the metallicity. This was introduced by Worthey (1999) and is widely known as

the “3/2 rule” (see figure 2.2). He also realized that individual spectral indices (Lick indices,

see chapter 3) are more sensitive to age (Balmer lines) as well as to metallicity (e.g. Fe4668

and Fe5270). He suggested that it is possible to break the degeneracy on condition that such

spectral indices are properly calibrated and carefully chosen. The most common and success-

ful combinations of spectral indices are joining Hydrogen Balmer lines as an indicator of age

and metallic features which are sensitive to the different elements such as Fe lines or Mg. In

addition, these spectral line indices are known to be almost insensitive to the reddening of

the continuum due to dust absorption.

It seems that the degeneracy gets worse when using spectral indices at low S/N and in

the presence of dust in the galaxy. The latter problem will cause reddening, which acts in

the same way as increasing metallicity or age. However, a distinct separation of age and

metallicity can be obtained by using spectral indices at very high S/N (& 100 Carson &

Nichol, 2010; Kuntschner, 2000; Trager et al., 2000). In addition, full spectral fitting at

moderate to high S/N is also a robust way to disentangle the degeneracy since more spectral

information is available on the overall spectrum than those obtained with few spectral indices

(Koleva et al., 2009; Sánchez-Blázquez et al., 2011).

2.5 Stellar population in ETGs and LRGs

2.5.1 Early-type galaxies

Studying the evolution of luminous red galaxies will also improve the understanding of the

evolution of ETGs, since LRGs are a subset of the overall ETGs with extreme luminosities and
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Figure 2.2: The age-metallicity degeneracy. The isochrones of 3 times the age or twice the
metallicity have nearly the same spectra. Credit from Worthey (1999)

colours. Galaxies are found to occupy two distinct regions in colour-magnitude space known

as the red sequence and the blue cloud (Blanton et al., 2003; Strateva et al., 2001). There is

also an underpopulated space known as the green valley between the two distributions, which

is made up with red late type galaxies. The blue cloud is made up mostly of star-forming late

type galaxies, and is a broad distribution with large scatter in colour at all magnitudes. The

red sequence is made up mostly of early type galaxies with little continuing star formation.

From the results of the relation between mass and metallicity, ETGs lie along a tight colour-

magnitude relation (Bower et al., 1992; Gallazzi et al., 2006) in the sense that the most

massive are the most metal rich and consequently redder. From these observations, one can

consequently deduce that all the stars in ETGs are formed at one epoch when the Universe

was less than half of its current age and their ages are asymptotic to the age of the Universe

at the present epoch (Renzini, 2006). In the ΛCDM model, ETGs should be assembling over

a range of epochs, not only at one epoch in the past, but when smaller galaxies containing

little gas merge, very little star formation occurs, hence large systems can be built up via

“dry mergers”. The amount of stellar mass contained in the red galaxies population has

approximately doubled since z = 1 (Faber et al., 2007). This increasing mass is mostly due

to stellar mergers.

The denser environment of galaxies like galaxy clusters, where interactions and merging

are very common in the past, offer a valuable laboratory for studying and understanding the

evolution of ETGs. However, only observations at high redshift can help with the under-

standing of their formation. Some efforts have been made in that direction by building more

sensitive and powerful telescopes.

The structural/dynamical parameters of ETGs, such as the luminosity L, effective radius

Re, effective surface brightness µe, colour, line-strength indices, and central velocity dispersion
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σc, are all known to follow certain scaling relations which is very important in understanding

their formation and evolution. Therefore, theoretical studies of ETGs (simulations) must

reproduce these relations in order to understand the origin and evolution of these galaxies.

2.5.1.1 The fundamental plane

From observations, ETGs were found to cluster close to a plane known as Fundamental Plane

(FP). This is a plane in the three dimensional space relating the central velocity dispersion

σc, effective radius Re and < Ie > the average effective surface brightness within Re, precisely

expressed as:

Re ∝ σα < Ie >
β (2.6)

where the exponents α and β vary according to the specific band used for measuring the

luminosity (Djorgovski & Davis, 1987; Dressler et al., 1987). The projection of the FP over the

(Re,Ie) coordinate plane provides the Kormendy relation (Kormendy, 1977), a projection over

the (σ,L = 2πR2
eIe) plane however generates the Faber-Jackson relation (Faber & Jackson,

1976). The FP is poorly affected by the problem of the age-metallicity degeneracy, since it

is tightly dependent on the mass-to-light ratio (M/L) which in its turn sensitive to the age

(interpreted as differences in stellar populations or the dark matter content). Therefore, the

FP is an important tool in understanding the ETGs evolution over cosmic time by converting

it into a mass–M/L relation.

2.5.1.2 Colour-magnitude, colour-σ and other relations

Baum (1959) was the first to discover that there is a tight relation between colour and

magnitude (CM) of ETGs, following the work by Visvanathan & Sandage (1977). From the

relation, ETGs are found to have uniform stellar populations, and evolved passively since at

least ∼1 Gyr ago. ETGs also follow a tight colour−σ relation where σ is the central velocity

dispersion. Its small intrinsic scatter in colour was interpreted as an age dispersion by Bower

et al. (1992) and was used to set tight age constraints on the corresponding age formations of

galaxies. Several studies also obtained the age− σ relation (e.g. Caldwell et al., 2003; Nelan

et al., 2005; Thomas et al., 2005). The slopes from the CM and the colour-σ can be used

to study the amount of the merging process that constituted the observed galaxies today.

The merging process is interpreted as being responsible for increasing the luminosity and the

central velocity dispersion while keeping the colour the same, hence the observed relations

stay flat and wide. Another relation found when studying ETGs is between the absorption

index Mg2 and the central velocity dispersion. This relation however depends on the different

ranges of the galaxy mass. Therefore, the Mg2 − σ relation implies that more massive ETGs

have more heavy elements (steeper slope) for galaxies with masses below ∼ 1011M�. Whereas

the opposite behaviour (flatter slope and the scatter increases) is observed for more massive
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galaxies (Spolaor et al., 2010). The remaining question, however is what drives those relations

the age or metallicity?

2.6 Different SSP models used

Since two different age-dating techniques were used in this analysis, namely full spectral

fitting and Lick indices analysis, two types of SSPs were then employed. The details of the

population models are described in chapter 3 in section 3.7.7 but lists of them are provided

here.

• Lick index fitting the updated stellar population models of Lick absorption-line in-

dices with variable element abundance ratios of Thomas et al. (2011, hereafter TMJ)

were used. These models are based on the evolutionary stellar population synthesis

code of Maraston (1998, 2005)

• Full spectral fitting four SSP models were used: Pegase-HR SSPs computed with

the ELODIE 3.1 library (Le Borgne et al., 2004), VAZDEKIS models computed with

the MILES library (Vazdekis et al., 2010), GALAXEV models computed with STELIB

library (Bruzual & Charlot, 2003), and the new high spectral resolution stellar popu-

lation models of Maraston & Strömbäck (2011) computed with MILES library.
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Chapter 3

H(z) measurement with

SDSS-LRGs

3.1 Introduction

The age-dating of galaxies is an important topic in galaxy evolution and an active area of

research. During the last few decades it has been widely exploited by the creation of synthetic

stellar population tools. There are a number of stellar population synthesis codes available

(e.g. Bruzual & Charlot, 2003; Conroy et al., 2009; Maraston, 2005; Vazdekis et al., 2010)

which can be used to generate synthetic spectra. These synthetic spectra are used to estimate

different parameters such as age, metallicity, chemical abundance and star formation history

of a galaxy. Basic details on the synthetic spectra models have been discussed in chapter 2.

There are different ways to determine the galaxy age, such as the SED fitting, the Lick indices

fitting and the full spectral fitting. In this work, we estimate the age of LRGs using both

full spectral and Lick indices fitting. The full spectral fitting method takes into account all

the information of the spectrum, it can include the continuum, all lines and specific spectral

features. The advantage of this method over the Lick indices fitting is that the full spectral

fitting is less sensitive to extinction, quality of the flux calibration, or elements ratio effects.

The full spectral fitting gives more precise result (Koleva et al., 2008) because it uses relatively

higher total (integrated over all pixels) S/N. Moreover, this method is also not limited by

the physical broadening of lines, since the internal kinematics is determined simultaneously

with the population parameters (Koleva et al., 2008). It is more sensitive to changes in the

spectral resolution. However, the Lick indices fitting focuses on the importance of using the

strength or equivalent width of lines and specific spectral features. The line-strength study

also helps us to measure more straightforwardly the relative change in the individual element

abundances. It requires a high signal-to-noise (S/N) spectrum and very reasonable spectral

resolution (Thomas et al., 2005, 2011). The accuracy of the age determination depends on

the fact that all lines are well defined and well resolved, not forgetting also the different
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calibration applied during the measurement.

In order to overcome this problem, Carson & Nichol (2010) performed a stacking method

in order to increase the S/N of LRG spectra. They co-added spectra with similar properties

in each redshift bin before estimating the mean ages of the galaxies by using the standard

Lick absorption line indices. They reported the age-redshift relation but did not go further to

address the H(z) measurement and constrain on cosmological parameters. Liu et al. (2012)

also applied the stacking method and used the full spectral fitting method on the combined

spectra in order to derive the age-redshift relation from which they measured the local Hubble

constant H0.

In this chapter, we discuss the selection criteria applied in order to form a homogeneous,

quiescent and passively evolving galaxy sample. We also compare the performance of the dif-

ferent fitting techniques and models while providing an estimation of the systematics errors.

This includes comparing the full spectra fitting and the use of the standard Lick absorp-

tion indices. The derived parameters from each method as well as the detailed procedure

to estimate H(z) will be discussed. We then compare our H(z) with all available H(z)

measurements in the literature.

3.2 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (Abazajian et al., 2003, 2004, 2005, 2009; Adelman-McCarthy

et al., 2006, 2007, 2008; Ahn et al., 2012, 2014; Aihara et al., 2011; Stoughton et al., 2002;

York et al., 2000) includes both photometric and spectroscopic surveys mapping Π steradi-

ans of the extragalactic sky (Figure 3.1 and 3.2). All observations are carried out using a

2.5 m telescope (Gunn et al., 2006) at Apache Point Observatory, which equipped with the

large format mosaic CCD camera to produce near-simultaneous photometry and with two

double fiber-fed spectrographs to obtain extragalactic spectra. The survey has imaged more

than 200 million objects using five optical bands u, g, r, i, z (Fukugita et al., 1996) and has

taken spectra of 40 - 60% of them, including 560 000 galaxies. The imaging data is reduced

by an automatic pipeline called PHOTO (Lupton et al., 2001). They all are processed and

calibrated (Hogg et al., 2001), allowing selection of galaxies, quasars and stars for follow-up

spectroscopy observations with the same telescope. Not all photometric objects are simul-

taneously observed spectroscopically (see the difference between the two coverages in figures

3.1 and 3.2). Nevertheless, there is notably a big improvement in terms of the number of

spectroscopic observed objects compared to the previous data release. Galaxies classified as

the main galaxy sample are galaxies with Petrosian r -band magnitude 14.5 < mr,Petro < 17.7

and a mean surface brightness limit µ < 24.5 mag arcsec−2 (Strauss et al., 2002). The SDSS

LRG selection is based on their colour and magnitude yielding a sample of intrinsically red

galaxies different from the main galaxy sample in terms of their faintness and distance (Eisen-

stein et al., 2001). Richards et al. (2002) defined the selection criteria for Quasar candidates
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and is technically based on the stellar locus outlier (established by 2-3 photometric colours)

and matching unresolved sources to the FIRST radio catalogues.

Each spectroscopic plate, which has a circular field of view with a radius of 1◦, can collect

592 objects plus 48 spectrophotometric standards and night sky with the aid of fibers. Each

fiber must be separated from its center at least 55” apart because of its finite size (Blanton

et al., 2003). The tiling algorithm is used to perform the fiber allocation by maximizing the

number of objects that can be observed. Not all the spectra are necessary for the general

survey. Some specific studies require special observations outside the normal program and

they are executed using special plates. After completing its two phases of operation (SDSS-I,

2000-2005; SDSS-II, 2005-2008), the SDSS survey is now (2008 -2014) continuing through the

third Sloan Digital Sky Survey phase (SDSS-III). SDSS-III consists of four surveys executed

simultaneously using different sets of spectrographs, including the Baryon Oscillation Spec-

troscopic survey (BOSS) which maps the Universe on large scale and measures the scale of

the BAO in the clustering of the matter.

This study is based on the seventh data release (DR7) of SDSS (Abazajian et al., 2009)

which covers 11,663 square degrees images in the five band filters and 9,380 square degrees of

spectroscopic area providing spectra of 929,555 galaxies, 121,373 quasars and 464,261 stars.

The total SDSS LRG sample in that release covers about 19% of the sky.

Figure 3.1: The photometric sky coverage of the SDSS DR7 data. The coverage area is the
red shaded region on the celestial sphere as a projection of equatorial coordinates.
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Figure 3.2: The spectroscopic sky coverage of the SDSS DR7 data. The coverage area is
the green shaded region on the celestial sphere as a projection of equatorial coordinates.

3.3 SDSS spectroscopic data

The SDSS spectra were used as well as the photometric catalogue from Catalogue Archive

Server (CAS1). The detailed information on the SDSS photometric data will be described

in the next section. The different processing steps applied to the spectroscopic data and

details on their format are described here as in Stoughton et al. (2002). As mentioned above,

all SDSS spectra are obtained using the two fiber-fed spectrographs covering the rest-frame

wavelength range of 3800 − 9200 Å at a resolution of λ/∆λ ' 2000 Å (FWHM ∼ 2.4 Å at

5000 Å ) using 3” diameter fibers. Each spectrograph has two cameras (red and blue), hence

four CCD detectors in total, and produces 320 spectra. The circular plate must be drilled

in order to hold the fibers in the focal plane of the telescope. The nominal exposure time

for each plate is typically 45 minutes followed by an additional calibration time for arcs, flat

fields, spectrophotometric standards. The target coordinates have been already generated

based on their photometric properties.

The two-dimensional pipeline spectro2d also called idlspec2d (IDL code) is used to

reduce the raw data, calibrate images, extract the one-dimensional spectra from the two-

dimensional exposures, stack multiple exposures into combined spectra, and produce corre-

sponding masks and noise estimates. The output format of this pipeline is spPlate which

contains the final reduced spectra for all 640 fibers on a given plate in one single FITS file.

The spPlate spectra are then analysed by the one-dimensional pipeline spectro1d (also

an IDL code) in order to measure absorption and emission lines, determine redshifts and

classify spectra by object type. Details on all of these processes can be found in Stoughton

et al. (2002) and SubbaRao et al. (2002).The format spSpec is generated by this process

1http://cas.sdss.org/dr7/en/
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which is also a FITS image with six binary extensions. The primary HDU image contains

the flux calibrated spectrum, the spectrum with continuum subtracted , the estimate of the

one sigma error per pixel, and the mask array. The output wavelengths are in Angstroms

but in vacuum wavelengths while all spectra are expressed in 10−17ergs cm−2s−1Å−1. The

HDU 1 and 2 contain the list of the measured properties of the individual emission and ab-

sorption lines in the spectrum. The HDU 3 contains the redshift determinations based on

set of emission lines. The redshift determinations from cross-correlations are listed in the

HDU 4, however the list of calculated Lick indices are stored in HDU 5. Finally, the HDU 6

has an additional mask information and the spectral resolution as a function of wavelength.

Additional and important informations are stored in the primary header such as velocity

dispersion, final redshift value, S/N etc. The typical S/N of a galaxy near the main sample

flux limit is 10 per pixel. The accuracy of the spectrophotometric calibration is about 4%

rms for point sources (Adelman-McCarthy et al., 2008), while for the wavelength calibration

is about 2 km s−1. Note that the telluric NaD feature is left out and not corrected by the

sky-subtraction/telluric procedure in the SDSS reduction pipeline.

3.4 SDSS photometric parameters

The catalogue archive server contains the measured parameters of all objects observed photo-

metrically and spectroscopically. However the data archive server (DAS1) gives the detailed

data of the object from the CAS such as corrected frames, binned images, mask images, atlas

images, colour images, spectra, spectral plots etc. Both formats spPlate and spSpec are

obtained from the DAS server. The SDSS/ Skyserver is known as the CAS server too. All

the data processed by the SDSS pipeline are stored and arranged in different tables in the

database, so everyone can retrieve it easily by applying a SQL2 query. The explanation of

each table and each available parameter are provided by the SDSS Schema Browser3. Thus it

is necessary to consult this before querying something from the database and check in which

table is stored the needed parameter and under which name. The catalogue data includes ob-

ject IDs, positions, magnitudes, and many other measured quantities along with their units.

For the work carried out here, the PhotoObjAll, SpecObjall and sppParams tables as

well as the function fGetUrlFitsSpectrum have been used, these are described in table

3.1. The function is like a predefined sequence of commands used to extract spectrum of each

object. In total, there are 95 tables and 224 functions listed in the Schema Browser. Some

tables are linked by a specific parameter, for example the photometric database PhotoOb-

jAll and the spectroscopic database SpecObjall are linked by the parameter ObjID or

bestObjID.

1http://das.sdss.org/www/html/
2Structured Query Language
3http://cas.sdss.org/astrodr7/en/help/browser/browser.asp
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Table 3.1: Description of each table queried from the SDSS sky server.

Name of table Description

PhotoObjAll contains the measured parameters of each photometric target
Photoz contains photometric redshifts as well as the absolute magnitudes and k-corrections

for all objects in the PhotoObjAll table
SpecObjall contains the measured spectral parameters for each spectroscopic target
sppParams contains outputs from the Spectro Parameter Pipeline (spp)

Name of function Description

fGetUrlFitsSpectrum produces the URL link (with the help from DAS) to the spectrum
(in FITS file) of an object spectrum given its spectroscopy ID

The parameters needed from the photometric database are concerning the r -band de

Vaucouleurs radii (deVRad r), the r -band de Vaucouleurs profile axis ratio (deVAB r).

These two parameters are used to perform the aperture correction on the measured Lick

absorption indices. Details about the aperture correction is discussed in section 3.7.3.5

3.4.1 SDSS redshift and velocity dispersion

The velocity dispersion, magnitudes and redshifts can be obtained from the sppParams

database (See table 3.1 for its description). The spectroscopic pipeline spectro1d deter-

mines the redshift and radial velocity of the SDSS spectra with their associated uncertainties.

These parameters are determined from cross correlation of stellar, emission line galaxy and

quasar template spectra obtained during the SDSS commissioning (Stoughton et al., 2002).

The redshift is derived from absorption features only by masking emission lines during the

cross-correlation procedure with the stellar templates (Tonry & Davis, 1979). The corre-

sponding redshift errors are given by the widths of the cross-correlation function peaks. It

has been found that the cross-correlation technique tends to increase the statistical error

and contribute a systematic error depending on the spectral type. Abazajian et al. (2004)

determined a systematic error of order 10 km s−1 for A to K stars at SNR > 10. The typical

redshift errors determined from repeat observations are about 30 km s−1 (Stoughton et al.,

2002). However Yanny et al. (2004) found an error of 20 km s−1 from repeating observations

of F stars and 25 km s−1 for A stars. For verification and validation of the redshift results,

the SDSS pipeline has also used another method of redshift measurement called emission-line

redshift in which the redshift is determined by matching detected emission lines to a list of

common galaxy and quasar emission lines. At the end, the pipeline assigns a final redshift

value to each object spectrum by choosing either the emission line redshift or cross-correlation

redshift with the highest confidence level (zConf).

To check the accuracy and the quality of the redshift determination, the SDSS pipeline

produces different number of flags assigned to the measured redshift. For instance the pa-

rameter zConf reports the redshift confidence, it has to have a value of 1.0 to insure a high

confidence in the redshift. zStatus gives the redshift status which helps to determine if
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the cross-correlation and emission line redshifts are consistent. The best quality spectra are

expected to have zStatus = 3 which means both redshifts are consistent, or zStatus = 4

which means a high confidence in the cross-correlation redshift. zWarning shows the red-

shift warning flags, the ideal is to have a value of zWarning = 0 which indicates that no

warning flags have been set.

The SDSS velocity dispersion pipeline is made to estimate the velocity dispersion only

for specific objects (not objects with strong emission lines, but objects whose spectra are

dominated by the light of red giant stars). It selects objects which satisfy the spectroscopic

parameters shown in table 3.2 (Bernardi et al., 2003). This pipeline also requires that the

average SNR in the restframe wavelength range 4200 Å < λ < 5800 Å is greater than 10

per pixel. Bernardi (2007) investigated the accuracy of the SDSS velocity dispersions and

found an overestimated value about σ < 150 km s−1 for using DR5 spectra. Due to this bias,

they have changed the method of Fourrier fitting to the direct fitting and have made some

improvements. The velocity dispersion measurements smaller than about σ < 70 km s−1

(instrumental resolution of the SDSS spectra) and greater than σ < 420 km s−1 (maximum

velocity dispersion in the template spectra) should not be used. Actually, the SDSS velocity

dispersion is not used in this analysis unless for comparison with our own measurement.

Details on the step used for our velocity measurement are given in section 3.5.2.

Table 3.2: SDSS velocity dispersion pipeline parameters

Parameter Value Description

specClass = 2 spectra classified as galaxy
zStat = 4 redshift with high confidence from the cross-correlation
zWarning = 0 no warnings flags from the spectroscopic pipeline
eClass < 0 PCA classification, typical of early-type galaxy spectra
redshift < 0.4 redshift less than 0.4

3.5 Emission lines measurements

3.5.1 The MPA-JHU and SDSS DR7 Emission lines

The SDSS spectroscopic pipeline produces measurements that are not fully completed because

of its simplicity. The emission and absorption line-strength measurements are included.

The pipeline is not set to perform a correction for the nebular emission line contamination

on the absorption features. The emission contamination implies an underestimation of the

true values of the absorption line-strengths. Therefore this correction is very important for

some objects with strong emission lines (AGN or star-bursting systems). In addition, when

measuring the emission lines the SDSS pipeline does not take into account the inclusion of the
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reddening by dust and the consideration of the prior on the relative strength of recombination

lines (Oh et al., 2011). The MPA-JHU group have tried to solve those problems. They have

reprocessed the SDSS galaxy spectra by creating a code of fitting stellar population models

of Bruzual & Charlot (2003) (BC03) and the updated of BC03 to a continuum to prioritise

the need of more treatment of the stellar continuum and emission lines. They made the

measured emission lines available to the public1. There is some complexity found when

extracting measurements from these catalogues and the quality of the measurements has not

been addressed properly. There is also an improved value-added catalogue available in the

SDSS database only for the DR9. This new catalogue was produced by the Portsmouth

Stellar Kinematics and Emission Line Fluxes group (Thomas et al., 2013), by using the

adapted version of the software Gas AND Absorption Line Fitting (GANDALF), an IDL

code developed by Sarzi et al. (2006). Our own emission line measurement will thus be

performed with the same software GANDALF. The emission line correction is needed for

further analysis.

3.5.2 Correction for Emission lines with GANDALF

To measure the strength of the nebular emission observed in the SDSS spectra, a combination

of the penalized Pixel Fitting (pPXF) (Cappellari & Emsellem, 2004) and GANDALF (Sarzi

et al., 2006) routines was used. Not only the strength of the nebular emission lines were

measured, but the velocity dispersions of each galaxy were also obtained. This will enable

us to obtain the missing value of velocity dispersion for object filtered by the SDSS pipeline

as described in section 3.4.1 paragraph 3. For the stellar population study, this process is

very necessary before measuring stellar line-strength indices separately as it can correct for

any nebular emission contribution. The pPXF code fits the stellar kinematics (velocity and

dispersion) using a maximuum penalized likelihood approach, and parametrizes the line-of-

sight velocity distribution (LOSVD). GANDALF fits the best combination of stellar spectral

templates and Gaussian emission line templates to a given galaxy spectrum simultaneously

to separate stellar continuum and absorption lines from the ionised gas. GANDALF makes

use of multiplicative polynomials to adjust the shape of the continuum and correct uncer-

tainties from dust extinction and flux calibration. The stellar population models of Bruzual

& Charlot (2003) used in Tremonti et al. (2004), which consist of 38 different sets of spectra,

were adopted as stellar templates. Although there are other libraries which can cover larger

parameter such as the MILES library (985 stellar templates), we decided to use the BC03

models which have only 38 different sets of the spectra. We chose the smaller number of

stellar templates to speed up the fitting procedure since the original sample is too big. In

addition to the cleaned emission line spectrum along with the best fit stellar population tem-

plate, this code also outputs the kinematics of the gas, the emission line fluxes and equivalent

1The data and catalogues are available from http://www.mpa-garching.mpg.de/SDSS/
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widths on the resulting Gaussian emission line template.

Table 3.3: Emission lines measured with GANDALF

Index Name Wavelength (Å) Relative strength to (line) free/tied
(1) (2) (3) (4) (5)

0 HeII 3203.15 tied to 25
1 [NeV] 3345.81 tied to 25
2 [NeV] 3425.81 tied to 25
3 [OII] 3726.03 tied to 25
4 [OII] 3728.73 tied to 25
5 [NeIII] 3868.69 tied to 25
6 [NeIII] 3967.40 tied to 25
7 H5 3889.05 0.037 (Hα) tied to 24
8 Hε 3970.07 0.056 (Hα) tied to 24
9 Hδ 4101.73 0.091 (Hα) tied to 24
10 Hγ 4340.46 0.164 (Hα) tied to 24
11 [OIII] 4363.15 tied to 25
12 HeII 4685.74 tied to 25
13 [ArIV] 4711.30 tied to 25
14 [ArIV] 4740.10 tied to 25
15 Hβ 4861.32 0.350 (Hα) tied to 24
16 [OIII] 4958.83 0.350 ([OIII]λ5007) tied to 25
17 [OIII] 5006.77 tied to 25
18 [NI] 5197.90 tied to 25
19 [NI] 5200.39 tied to 25
20 HeI 5875.60 tied to 25
21 [OI] 6300.20 tied to 25
22 [OI] 6363.67 0.333 ([OI]λ6300) tied to 25
23 [NII] 6547.96 0.340 ([NII]λ6584) tied to 25
24 Hα 6562.80 free
25 [NII] 6583.34 free
26 [SII] 6716.31 tied to 25
27 [SII] 6730.68 tied to 25
28 [ArIII] 7135.67 tied to 25

GANDALF allows users to set the range of wavelength of the fit, and the way they want

the fit in terms of the emission line constraints. Following the general setting (Sarzi et al.,

2006; Tremonti et al., 2004), we imposed the kinematics of [NII]λ6583 on all forbidden lines,

whereas all recombination lines were tied to Hα (See table 3.3). This strategy was set in

order to recover very weak nebular features (Tremonti et al., 2004). In addition, the long

wavelength range of SDSS spectra allows one to obtain a decrement on the strength of the

Balmer lines by recombination theory (see the relative strength of the Balmer lines to Hα in

column 4 of table 3.3). However, if either [NII]λ6584 or Hα lines are weak or undetectable,
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the kinematics of all lines were tied to [OIII]λ5007. This line is easy to detect in that case.

The skylines and NaD were masked during the procedure. Table 3.3 summarizes the list of

the emission lines fitted and their relative strengths.

In general, the requirement for a line to be detected is A/N > 3 (the amplitude-to-noise

ratio) according to Sarzi et al. (2006), where A is the amplitude of the Gaussian fit to the

line and N is the median spectrum noise within the narrow wavelength region centred on the

line. We applied this line detection criterion for our galaxies with further constraints on EW

values of Hβ, Hα and [OIII]λ5007 to be nearly zero (See next section 3.6.2). Figure 3.3 and

3.4 give examples of fits with GANDALF showing spectra with and without emission lines

respectively.

In order to see the performance of the software, a comparison of the measured velocity

dispersion and the nebular emission line values with those in MPA-JHU is given in appendix

A. From the subsample that we used for the comparison, the estimated central velocity dis-

persions agree with the MPA-JHU measurements as expected since the same stellar template

(Tremonti et al., 2004) and the procedure are considerably the same.

3.6 Selection

3.6.1 Sample Selection

To estimate the Hubble parameter H(z) by using the age-redshift relation, it is necessary to

pay attention to the selection criteria in order to create a homogeneous and large sample of

oldest populations. In Crawford et al. (2010b), we established a new criteria based on the

rest-frame luminosity of galaxies. We found that using rest-frame colour-cut of B−V > 0.81

and an absolute magnitude cut by MV < −23 yields a far more homogeneous sample than

using the apparent magnitude cuts by Eisenstein et al. (2001). As a test, we have applied

this criteria to the Millennium Simulation database, and obtained an improved homogeneous

sample of objects with similar star formation histories and formation redshifts. We applied

this new criteria to select a sample of galaxies from SDSS DR7 catalogue (Abazajian et al.,

2009). Our sample contains galaxies restricted to a redshift range of 0.10 < z < 0.40.

The SDSS spectra of the selected galaxies are mostly at the wavelength range of 3800 <

λ < 9200 Å with a median resolution of λ/∆λ ∼ 2000 Å (approximately 2.4 Å) which is quite

similar to the resolution of the SEDs models. For the analysis presented here, we do not use

the Lick indices measurements from the standard SDSS pipeline, as they were not calibrated

onto the Lick/IDS system (see section 3.7.2). Instead we measure our own line-strengths after

matching the instrumental resolution. However, we do use the other derived parameters such

as redshift, velocity dispersion, magnitudes, the r -band de Vaucouleurs radii (deVRad r),

the r -band de Vaucouleurs profile axis ratio (deVAB r) which are available through the CAS.

38



3. H(z) measurement with SDSS-LRGs

Figure 3.3: Example of the GANDALF fitting procedure showing a spectrum at rest-frame
with detected emission lines ([OII], [NII] and Hα ). The observed spectra are showing in
black lines. The best fit spectra (in red) are composed of the stellar population and emission
lines templates. Residuals from the fit are also shown. The three bottom panels are zoomed
regions showing the different emission lines. Doted vertical lines are masked from the fits
(Skylines and NaD)

3.6.2 Quiescent selection

LRGs sometimes show a little evidence of recent or ongoing star formation which manifests in

their spectra as emission lines, and some fraction of LRGs exhibit AGN activity (Roseboom

et al., 2006). These emission lines are associated with HII regions which are produced by

strong UV light from O and B stars ionizing the surrounding HI. Our study involves some

galaxies at low redshift, where the contamination from the bulges in late type galaxies is

important. The presence of the emission lines also affects the absorption lines analysis. For

example, the absorption indices Hβ, Hγ, Hδ are often affected by emission lines, their line-

strengths then become weak which lead to older ages. Fe5015 is affected by [OIII]λ5007

emission. Mgb is affected by [NI]λ5199 emission.
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Figure 3.4: Example of the GANDALF fitting procedure showing a spectrum at rest-frame
without detected emission lines. Legends are the same as in figure 3.3

Furthermore, emission lines are popularly used as indicators for the ionization of the

interstellar gas in galaxies, and can be used to classify galaxies into either star forming

galaxies (emission line ratios like HII region) or AGN-ionized galaxies. This classification

was proposed by Baldwin, Phillips and Terlevich (Baldwin et al., 1981) known widely as

BPT diagram, which is commonly based on [NII]λ6584/Hα vs [OIII]λ5007/Hβ ratios. Hα

and Hβ are typically the two strongest optical emission lines in star forming galaxies and

the luminosity of [OIII]λ5007 emission line is the tracer of the strength of activity in AGN

galaxies (Kauffmann et al., 2003).

To overcome these problems, we further selected galaxies without star formation and AGN

activities, meaning that the sample selection is based on the objects consistent with nearly

zero emission lines in Hβ, Hα and [OIII]λ5007 (Carson & Nichol, 2010; Roseboom et al.,

2006). We also used the stellar kinematics form GANDALF to make further selection based

on the velocity dispersion. We only used a massive sample with a velocity dispersion cut 200

< σ < 400 km s−1. The output nebular emission line models from GANDALF have also been
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subtracted from the galaxy spectra in order to get an emission-free spectra which we used

for the rest of the analysis. The emission-free spectra were used to get rid of the possible

remaining emission lines (for example [OII], [SII], [NII]). We performed the age-dating on

both emission-free spectra and original spectra, and found that the final results were not

affected by the choice.

Figure 3.5 illustrates the cuts applied to the original sample. The quiescent galaxies in

Hβ, and [OIII]λ5007 equivalent widths (EWs) distributions are those that lie near the peak

of the distribution around zero emission line in Hβ, Hα and [OIII]λ5007.

Figure 3.5: Distributions of the EWs of the emission lines of all galaxies in the initial
sample. From left to right: distributions of the EWs of Hβ, [OIII] and Hα. The dashed lines
show the cut applied to the original sample in order to create a quiescent galaxy sample.

After applying all of these criteria, our final sample contains 4 428 galaxies. Figure 3.6

represents its redshift distribution and shows clearly that there are few objects at z < 0.2. The

numbers of galaxies selected initially are very large compared to the final numbers (∼ 10% of

the initial sample, see table 3.4). This implies that the rest-frame based selection criteria gives

less quiescent and non-quiescent luminous and very red galaxies than the original selection

by Eisenstein et al. (2001). We note that the original selection gives 71 971 LRGs (in DR7)

and 23 883 quiescent LRGs (Liu et al., 2012) at 0.0 < z < 0.40. Carson & Nichol (2010);

Liu et al. (2012) usually relaxed the definition of the quiescent galaxies while our criteria are

stricter.

3.6.3 High signal-to-noise spectra

Another way to estimate the SSP parameters of a sample based on the line-strength distri-

bution is to combine the individual spectra into a high S/N average spectrum. By co-adding

spectra in the same different redshift bin, the effect of the sky subtraction residual on the

line-strength measurement will be greatly reduced. This gives more accurate result in terms

of the line-strength fitting than the low S/N individual spectra, which gives large errors on
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Figure 3.6: The redshift distribution of our final sample. At z < 0.20, the number of
galaxies is less than 100.

Table 3.4: List of objects before and after selection.

Redshift Initial number Final number

0.10 < z < 0.12 853 27
0.12 < z < 0.14 1025 16
0.14 < z < 0.16 1243 40
0.16 < z < 0.18 1646 68
0.18 < z < 0.20 2061 105
0.20 < z < 0.22 2377 133
0.22 < z < 0.24 2830 224
0.24 < z < 0.26 2990 255
0.26 < z < 0.28 3449 361
0.28 < z < 0.30 4156 385
0.30 < z < 0.32 5470 554
0.32 < z < 0.34 7102 701
0.34 < z < 0.36 6897 682
0.36 < z < 0.38 6145 581
0.38 < z < 0.40 2399 296
Total 50 425 4 428

the Lick index EWs. The stacking method also helps for the full spectral fitting to accurately

derive the SSP parameters, especially when the sample contains a low number of objects.

We followed more or less the technique of stacking in Carson & Nichol (2010). We divided

galaxies into redshift bins and chose a redshift bin of δz = 0.02. For each bin, we co-added the

42



3. H(z) measurement with SDSS-LRGs

spectra of the individual galaxies within the bin to obtain a very high S/N stacked spectrum.

The individual spectra are normalized by the average flux in the 4000-5500 Å wavelength

region. After de-redshifting all spectra (using redshift in pixel given by ∆logλ/0.0001 where

0.0001 is the dispersion per pixel in log10 wavelength), they were cropped to a common

wavelength range. The individual spectra were then combined on a pixel-by-pixel basis using

a weighted mean, where the weights are determined from the errors associated with the flux

in each pixel and bad pixels have their weights set to zero. The uncertainty of the weighted

mean flux was calculated using the weighted standard deviation technique. The total S/N

varies according to the number of galaxies that contribute to each bin; it increases as ≈
√
N

where N is the number of galaxies within a bin. The weights were also used to produce the

instrumental response function (IRF) for the co-added spectra using individual IRF for each

galaxy. The IRF for the stacked spectra is used to match the SDSS instrumental resolution

to the Lick/IDS resolution.

While de-redshifting individual spectrum, the uncertainty is insignificantly small since

the redshift in pixel was used and it yields an error of < 0.5 pixels which corresponds to

1Å over the wavelength range 4000-5000 Å for objects in the redshift range 0.10 < z < 0.4.

This uncertainty was added in quadrature to the error on the redshift of the object produced

by the SDSS pipeline. The final error on the redshift was then used for the Lick index

measurements in order to determine the impact of the radial velocity on the errors of the

measured line-strengths (see section 3.7.3.2).

The spectroscopic parameters estimated by SDSS pipeline such as velocity dispersion and

redshift did not follow the same procedure as the spectra, however the parameter mean of

the sample within a bin was taken with its error estimated from the standard propagation

technique. The error on the redshift (as well as the velocity dispersion ) decreases as N

increases, hence it can become negligible for large N. The mean of the sample was also used

for the photometric parameters such as deVRad r and deVAB r. These two parameters will

be used later for making aperture corrections. The error on these parameters also become

negligible when the number of galaxies is very large.

From here on, we continue our analysis with the stacked spectra at each redshift bin.

However for comparison, individual spectra are eventually used. Figure 3.7 illustrates the

evolution of the stacked spectra from z = 0.11 (the top spectrum) to z = 0.35 (the bottom

spectrum). The difference in the age of the Universe for ΛCDM cosmology model between

the two redshifts is around 2.43 Gyr. Clearly, the difference between the strength of the ab-

sorption lines are noticeable between each spectrum, hence with such variation the difference

in age between redshift is obtained. With redshift step of δz = 0.02 we obtained 15 combined

spectra in the range of 0.10 < z < 0.40.

43



3. H(z) measurement with SDSS-LRGs

Figure 3.7: Evolution of the stacked spectra with the centered redshift at the rest-frame
wavelength 3500 - 7000 Å. This evolution is from z = 0.11 (top) to z = 0.35 (bottom) with
an interval of δ = 0.04. The Lick indices used for the age-dating are also shown in this plot.
The vertical scale is magnified by a factor of 10.

3.7 Spectral fitting techniques

3.7.1 Lick indices analysis

As an outcome of the long time project, Faber et al. (1985), Worthey et al. (1994) and

Worthey & Ottaviani (1997) have created a library of stellar spectra and defined ranges of

the spectral index system known as the Lick indices system. They used the Imaging Dissecting

Scanner (IDS) on the Shane 3m telescope at the Lick Observatory to observe and analyse these

stars. The system is used to derive stellar population characteristics through the evolutionary

synthesis of the integrated spectra. It can be applied to any type of galaxies and star clusters.

Twenty five absorption Lick indices have been defined in the wavelength range 4000 < λ <

6000 Å at ∼ 9 Å resolution. These different indices include atomic absorption lines (narrow
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features) and six molecular bands (broad features). The line-strength of the atomic features

are conventionally expressed in Å whereas the molecular indices have their line-strength given

in magnitudes. The wings of an absorption feature might vary depending on different factors,

such as the instrumental resolution, element abundances or velocity dispersion of the stellar

population, even though the definitions of the bandpasses are fixed. Thus the value of the

equivalent width (EW) is not a true EW. Following the standard definitions (Cardiel et al.,

1998; González, 1993), the atomic (Ia) and molecular (Im) indices are defined as follows

Ia =

∫ λ2

λ1

(
1− FIλ

FCλ

)
dλ Im = −2.5log10

[(
1

λ2 − λ1

)∫ λ2

λ1

FIλ

FCλ
dλ

]
(3.1)

where FIλ and FCλ are the fluxes per unit wavelength in the index passband and contin-

uum respectively. The wavelengths λ1 and λ2 are the wavelengths definitions of the central

passband. Table 3.5 shows the wavelength definitions of the different Lick indices system

which consist of a central index band, and blue and red continuum bands. Figure 3.8 illus-

trates one example of the index measurement by showing the definition of each passband.

The index is defined by the central feature passband which is shown in green, while the two

adjacent pseudocontinuum passbands are given in blue and red.

The flux in the pseudocontinuum could usually be obtained by interpolating the flux of

the observed spectrum between two adjacent spectral regions and is determined as follows:

FCλ ≡ Fb
λr − λ
λr − λb

+ Fr
λ− λb

λr − λb
(3.2)

where

Fb ≡
∫ λb2

λb1

Fλ
λb2 − λb1

dλ, Fr =

∫ λr2

λr1

Fλ
λr2 − λr1

dλ (3.3)

and

λb =
λb2 + λb1

2
, λb =

λr2 + λr1

2
(3.4)

and λb2, λb1, λr2 and λr1 are the wavelength definitions of the blue and red bandpasses.

Worthey et al. (1994) used polynomial fitting functions to model the behaviour of the 20

metallic absorption features along with one Balmer line Hβ, whilst there were originally 11

of them proposed (Faber et al., 1985). The four indices of the two Balmer lines HδA, HδF ,

HγA and HγF were later introduced by Worthey & Ottaviani (1997). All 25 indices are very

sensitive to the effective temperature (Teff), surface gravity (g) and metallicity (Z[Fe/H]) of

a star. Worthey and his collaborators built the stellar population models (single age, single

metallicity) of Lick indices out of the polynomial fits which were used to predict index values

for stars along the evolutionary isochrones. An additional extension was later included to

the models and that is the effect of variable α−element enhancements on the predicted line-

strengths (e.g. Thomas et al. (2003)). Meanwhile, González (1993) (among others) came up
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Figure 3.8: Example of the line-strength of the atomic index Mgb which is used for age-
dating LRGs. The different passbands employed during the measurement are shown: the
central passband which represents the index passband is shown in green, the two adjacent
pseudocontinuum passbands are given in blue and red. This example was run with the
program indexf using the stacked spectra of all galaxies within redshift bin 0.24 < z <
0.26.

with the idea of combining indices in order to define a good mean metallicity indicator. The

mean metallicity <Fe> replaces the two iron indices Fe5270 and Fe5335 and is given by the

equation 3.5. The [MgFe] index is introduced as the geometric mean of Mgb and <Fe>, given

by equation 3.6

< Fe >=
Fe5270 + Fe5335

2
(3.5)

[MgFe] =
√

Mgb× < Fe > (3.6)

By adopting the fixed wavelength definitions, the use of the Lick indices faces other

problems such as nebular emission lines, dust and telluric features. Gas emission lines are

the most important since they will contaminate the absorption line spectra. For example

the line-strength of the Hα index is directly affected by Balmer emission from ionised gas.

However, some of the indices are indirectly affected by nebular emission line contamination.

Section 3.5.2 discusses the possible correction to overcome the emission line contamination.
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Table 3.5: Lick/IDS index definitions. Line-strengths of the atomic indices are expressed
in Å, while line-strengths of the molecular indices are in magnitudes.

name index bandpass blue bandpass red bandpass unit

HδA 4083.500 4122.250 4041.600 4079.750 4128.500 4161.000 Å
HδF 4091.000 4112.250 4057.250 4088.500 4114.750 4137.250 Å
CN1 4142.125 4177.125 4080.125 4117.625 4244.125 4284.125 mag
CN2 4142.125 4177.125 4083.875 4096.375 4244.125 4284.125 mag

Ca4227 4222.250 4234.750 4211.000 4219.750 4241.000 4251.000 Å
G4300 4281.375 4316.375 4266.375 4282.625 4318.875 4335.125 Å
HγA 4319.750 4363.500 4283.500 4319.750 4367.250 4419.750 Å
HγF 4331.250 4352.250 4283.500 4319.750 4354.750 4384.750 Å

Fe4383 4369.125 4420.375 4359.125 4370.375 4442.875 4455.375 Å
Ca4455 4452.125 4474.625 4445.875 4454.625 4477.125 4492.125 Å
Fe4531 4514.250 4559.250 4504.250 4514.250 4560.500 4579.250 Å
Fe4668 4634.000 4720.250 4611.500 4630.250 4742.750 4756.500 Å

Hβ 4847.875 4876.625 4827.875 4847.875 4876.625 4891.625 Å
Fe5015 4977.750 5054.000 4946.500 4977.750 5054.000 5065.250 Å

Mg1 5069.125 5134.125 4895.125 4957.625 5301.125 5366.125 mag
Mg2 5154.125 5196.625 4895.125 4957.625 5301.125 5366.125 mag
Mgb 5160.125 5192.625 5142.625 5161.375 5191.375 5206.375 Å

Fe5270 5245.650 5285.650 5233.150 5248.150 5285.650 5318.150 Å
Fe5335 5312.125 5352.125 5304.625 5315.875 5353.375 5363.375 Å
Fe5406 5387.500 5415.000 5376.250 5387.500 5415.000 5425.000 Å
Fe5709 5696.625 5720.375 5672.875 5696.625 5722.875 5736.625 Å
Fe5782 5776.625 5796.625 5765.375 5775.375 5797.875 5811.625 Å
NaD 5876.875 5909.375 5860.625 5875.625 5922.125 5948.125 Å
TiO1 5936.625 5994.125 5816.625 5849.125 6038.625 6103.625 mag
TiO2 6189.625 6272.125 6066.625 6141.625 6372.625 6415.125 mag

3.7.2 SDSS Lick indices

The SDSS pipeline underestimates the Lick indices as no calibration to the Lick system has

been applied to them. In addition, the absorption line-strength values are not corrected

for the impact of nebular emission leading, to an underestimation of the true strength of

the absorption line features. The MPA-JHU group (e.g. Tremonti et al. (2004)) has also

attempted to re-process the SDSS galaxy data in order to calculate new absorption line-

strengths. According to Oh et al. (2011), it is not yet clear what systematic problem may

have affected the extraction of the physical parameters listed in the MPA-JHU catalogues,

and it is not possible to verify the quality of their measurements. For all of these reasons, we

measured our own absorption line-strength after calibrating to the Lick/IDS system.
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3.7.3 Transforming Spectra to Lick/IDS system

In order to compare the measured indices to those of the SSP models, it is necessary to

transform the measured line-strengths onto the Lick/IDS system. It is important to note

that the spectra obtained by Lick group which are used to define the Lick indices were not

flux calibrated, therefore the shape of the continuum of Lick/IDS spectra are different from

any calibrated spectra. The usual and necessary steps to transform a spectrum not observed

with the IDS instrument are as follows:

• Matching the spectral resolution of the observed spectrum to that of the Lick/IDS

system.

• Measuring the line-strengths using the Lick index definitions displayed in table 3.8

following steps in section 3.7.3.2

• Correcting line-strengths for the effect of LOSVD.

• Applying the Lick offsets which requires observation of a number of Lick library stan-

dard stars.

• Applying the aperture corrections.

Details of these steps are given in the next sections.

3.7.3.1 Matching spectral resolution

Transforming SDSS spectra to the Lick system means degrading the high resolution of SDSS

spectra to adapt to the lower resolution of the IDS spectrograph. The reason for this is that

the Lick/IDS calibrated SSP models predict the measured line index strengths for a stellar

population in the rest frame at the resolution of the Lick/IDS system, meaning all observed

absorption features must be at the same instrumental resolution as the Lick/IDS system and

at the rest frame before comparing them with a SSP model of line-strengths. IDS spectro-

graph has an instrumental resolution which varies with wavelength between ∼ 8.4 − 11Å

FWHM. However, SDSS spectra have slightly different wavelength dependent instrumental

resolution. To match the instrument resolution, we strictly followed the approach of Worthey

& Ottaviani (1997) by convolving the SDSS spectra with a wavelength dependent Gaussian

Kernel with the width:

σsmooth(λ) =

√
FWHM(λ)2

Lick − FWHM(λ)2
SDSS

8ln2
(3.7)
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3.7.3.2 Measuring Lick indices with indexf

The broadened and emission line cleaned spectra were then analysed with indexf1 (Cardiel,

2010). It is a program written in C++ in order to measure the line-strength indices rep-

resented in table 3.5 according to equation 3.1. Cardiel (2010) computed the line-strength

errors by adopting the same methodology as in Cardiel et al. (1998) resulting from the prop-

agation of random errors (e.g. photon statistics, read-out noise). In general, the expected

errors in the atomic (Ia) and molecular (Im) indices are expressed as a function of the mean

S/N per Å and can be written as follows:

σ(Ia) ' c1 − c2 Ia

S/N(Å)
(3.8)

σ(Im) ' c3

S/N(Å)
(3.9)

where Ia is the line-strength of the atomic index and c1, c2 and c3 are the coefficients

for typical line-strength features. These coefficients are calculated by the program using the

formulae below and already given in table 1 in Cardiel et al. (1998).

c1 ≡ ∆λcc2 (3.10)

c2 ≡

√
1

∆λc
+

(
λr − λc

λr − λb

)2 1

∆λb
+

(
λc − λb

λr − λb

)2 1

∆λr
(3.11)

c3 ≡ 2.5 c2 log10e (3.12)

where ∆λb, ∆λc and ∆λr are the passband widths in blue, central and red respectively.

This program also estimates the effects of errors on radial velocity by performing a Monte

Carlo simulation on the measured index using the error on the galaxies radial velocity. We

take into consideration the contribution of this uncertainty (σrad) in the line-strength index

due to the radial velocity error as in Carson & Nichol (2010). This is added in quadrature to

the random error in the line-strength index associated with the photon statistics and read-out

noise σphoton+ccd (expressed as σ(Ia) and σ(Im) in equations 3.8 and 3.9 respectively) in order

to obtain the error on the measured line-strength.

σ2
I = σ2

photon+ccd + σ2
rad (3.13)

1http://pendientedemigracion.ucm.es/info/Astrof/software/indexf/indexf.html
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3.7.3.3 Correcting line-strengths for the effect of LOSVD

In general, the absorption features observed in the galaxy spectra symbolize a convolution of

the luminosity weighted integrated spectrum of the stellar population present in the instru-

mental broadening and the LOSVD of the stellar populations. The measured line-strengths

thus depend on the LOSVD of the spectrum, specifically on the velocity dispersion of the

stellar population which is a victim of the effect of smearing the absorption feature out of

the Lick/IDS index band and into the side bands, hence depressing the measured index.

In order to compare the indices to stellar population models, which are obviously based

on stellar spectra, a correction for the broadening induced by the velocity dispersions of the

galaxies must be done to the measured indices. To achieve this, we followed the technique in

Oh et al. (2011). GANDALF fit provides as outputs the optimal combination of the stellar

templates and the best stellar model files. The latter is the optimal template convolved by

the LOSVD obtained during the GANDALF/pPXF fit procedure and adjusted for dust red-

dening. We analysed the difference between the values of the indices measured on both of

them. If the LS is the index measurement on the broadened and emission cleaned spectra,

LSoptimal is the index measurement on the optimal spectra, and LSmodel is the index mea-

surement on the best stellar model spectra. The corresponding index value corrected for the

effect of LOSVD can be determined as follows:

LScorr = LS×
LSoptimal

LSmodel
(3.14)

3.7.3.4 Lick offsets

The next step in transforming observations onto the Lick/IDS system is to correct for sys-

tematic offsets between the measured line-strengths and the objects already on the Lick/IDS

system. These variations are mainly due to the imperfection of the Lick /IDS spectra regard-

ing the non-flux calibration, hence different spectral shapes. It is then necessary to observe

a number of Lick library standard stars which were already observed by the Lick/IDS sys-

tem with the same instrumental set-up as the actual observed galaxy in order to correct for

offsets. In addition, these offsets help to remove the final systematic differences introduced

by the different instrumentations used. Carson & Nichol (2010) have already extracted and

analysed 13 Lick stellar library from the SDSS archive. After matching the SDSS resolution

to the Lick/IDS system, they determined the offsets from the true Lick system for each index.

Not only the mean offset of each index is negligible (≤ 2σ) but the stellar population models

of Lick indices used in this study (models by Thomas et al., 2011) are also not tied to the

non-flux-calibrated Lick/IDS system anymore. Therefore, we did not apply any offsets to the

measured line-strengths. It is important to note that Lick index offsets are crucial when using

stellar population models based on non-flux-calibrated stellar libraries as Lick/IDS library

(e.g. Thomas et al., 2003; Worthey & Ottaviani, 1997).
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3.7.3.5 Aperture correction

The size and shape of the spectrograph aperture and the distance to the galaxy are other

factors which affect the measured velocity dispersion and the absorption line-strengths in a

galaxy. Moreover, elliptical galaxies are found to display radial gradients in their velocity

dispersions and in their absorption line indices (Mehlert et al., 2003). It is crucial to correct

for these gradients when comparing the measured indices to other results in the literature.

The current correction also is necessary when comparing data over a large redshift range in

redshift since the fixed spectrograph aperture will collect different physical scales of objects

depending on their distances.

Jorgensen et al. (1995) established a method of converting the rectangular apertures into

the equivalent circular apertures of a diameter 2rap. With this method, values of the velocity

dispersion observed through both apertures should be similar to within 4%. The conversion

is approximately given by:

2rap ≈ 1.025× 2(xy/π)1/2 (3.15)

where x and y are the width and length of the rectangular aperture. They also demonstrated

that the measured velocity dispersion, on the circular aperture, relies upon the aperture

radius. It has been normalized and measured through an aperture with a radius of re/8,

where re is the effective radius. The velocity dispersion profile normalized to σe8, which is

the velocity dispersion measured through an aperture of re/8, is presented by a power law in

the form:
σap

σe8
=

(
rap

re/8

)α
(3.16)

where α is the velocity dispersion gradient.

One can name the velocity dispersion corrected as σcorr which is equivalent to the σe8,

and it can be measured through an aperture with a radius re/8. The effective radius can

be determined from re ≡ (b/a)1/2rdeV, where rdeV is the deVaucouleurs radius, b and a are

respectively the semi-minor and semi-major axis of the galaxy. Values of (b/a) are the inverse

values of the SDSS r-band photometry parameter deVAB r, whereas rdeV is the parameter

deVRad r which is the deVaucouleurs fit scale radius. For the stacked spectra in each redshift

bin, those two parameter values were the mean values of the sample.

The aperture correction for the measured line-strengths can also be deducted from equa-

tion 3.16 and given by:

log(Icorr) = log(Irap)− αIlog

(
rap

re/8

)
(3.17)

for atomic indices, and

Icorr = Irap − αIlog

(
rap

re/8

)
(3.18)
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for molecular indices, where Irap is the measured index for the circular aperture, and αI is the

radial gradient for the given index. We adopted the velocity and index gradients measured

by Mehlert et al. (2003). Note that the uncertainties on the measured logarithmic index

gradients were not taking into account since they are not provided and might contribute

more on the uncertainty of the final calibrated indices.

3.7.4 TMJ model description

In this work, we make use of the flux calibrated stellar population models of Lick absorption

line indices and variable element abundance ratios of Thomas et al. (2011). These models

are the extension versions of the Thomas et al. (2003) models and are based on the flux

calibrated Medium-resolution Isaac Newton Telescope library of empirical spectra MILES

(Sánchez-Blázquez et al., 2006). Thomas et al. (2003) created their stellar population models

of Lick indices and elements abundance ratios based on the evolutionary stellar population

synthesis code of Maraston (1998, 2005) with inputs: the stellar evolutionary track from

Cassisi et al. (1997) and Bono et al. (1997) and a Salpeter stellar initial mass function.

The models cover ages from 1 to 15 Gyr, metallicities from 1/200 to 3.5× solar abundance

and α−abundance [α/Fe] from 0.0 to 0.5 dex, where α constitutes the sum of the following

different elements: O, Ne, Mg, Si, S, Ar, Ca, Ti, Na and N. Some improvements were made

in Thomas et al. (2004) by including higher Balmer absorption-line indices. They also found

that these Balmer indices are very sensitive to the changes in the [α/Fe] ratio for supersolar

metallicities. In Thomas et al. (2011), they updated their models by creating flux calibrated

models, hence models are no longer tied to the non-flux-calibrated Lick/IDS system. In

addition, the models used the MILES library which has a resolution comparable to the SDSS

resolution (Beifiori et al., 2011), therefore we do not need to correct for instrumental spectral

resolution. The new models cover the same ages as the previous ones (0.1 to 15 Gyr), but

metallicities from -2.25 to 0.67 dex and [α/Fe] from -0.3 to 0.5 dex. The key novelty of the

new model predictions is also the inclusion of errors estimates which were found to be very

small and well below the errors from the observational indices around solar metallicity, but

rising toward the highest and lowest metallicities. They provided two different models for

the public, one based on the stellar evolutionary tracks in Cassisi et al. (1997) as used for

the previous models, and the other one based on Padova (Girardi et al., 2000) evolutionary

tracks.

3.7.5 Method of fitting

After applying all appropriate corrections, we used the χ2-minimization method to fit the

measured Lick absorption line indices with the TMJ models. It has been proved that using

this method is more reliable for extracting stellar population parameters than using the two

line index diagram method (Caldwell et al., 2009). Thomas et al. (2011) provide only 25 ages,
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6 [Fe/H] and 4 [α/Fe] values. For statistical study, it is necessary to broaden the original

grid of the model predictions by interpolating the initial values of parameters to a higher

resolution. The cubic spline interpolation was performed using equal step lengths to obtain

150 age values from 0.1 to 15 Gyr, 31 [Fe/H] values from -1.25 to 0.67 dex and 51 [α/Fe]

values from -0.3 to 0.5 dex. The computed χ2 between model predictions and our observed

index values over n indices considered is:

χ2 =
n∑

i=1

(
Iobs
i − Imodel

i

σi

)2

(3.19)

where Imodel
i is the ith Lick line index of the model predictions for a given age, metallicity

and α−abundance ratio, and Iobs
i is the observed Lick line index measured from the stacked

spectra. We did not consider using the error estimates associated with the models. Errors on

the best-fit parameters are computed using 500 Monte-Carlo simulations by perturbing the

uncertainty of the observed indices with some random numbers.

Choosing index Using many diagnostic lines yields more reliable and accurate results.

Furthermore, using multiple index fitting allows all available indices to be fitted as each one

of them contains important information about the individual derived parameters. However,

the use of all indices is still a subject of debate since the model predictions have problems

reproducing some of the measured indices of Galactic Globular Clusters and elliptical galaxies

(Thomas et al., 2003). In addition, the derived SSP parameters depend on the type of indices

used (Carson & Nichol, 2010; Sánchez-Blázquez et al., 2006). Using a certain number of

indices gives more scatter on the derived SSP ages than using only four usual indices: Hβ,

Mgb, Fe5270, Fe5335 (Loubser et al., 2009). Some indices are also affected by interstellar

absorption lines, like NaD index. The inclusion of the non solar α−element abundance ratios

seems to partially solve the problem but the overall problem still remains unsolved. Thomas

et al. (2011) and Johansson et al. (2012) developed a χ2 fitting technique using most of the

indices but split them into different set of indices in each step of the fitting. This procedure

helps to overcome the problem that certain indices are sensitive to certain elements and

chemical species.

The Balmer line Hβ is mostly used as an age indicator, and Mgb, Fe5270, Fe5335 are good

tracers of metallicity. We therefore chose these four indices. We also used the HγF to test the

age-redshift relation as it was found to generate a well defined age-redshift relation (Carson

& Nichol, 2010). All the calibrated line-strength indices and the measured S/N per resolution

element in Hβ are listed in table 3.6. Figure 3.9 illustrates the evolution of each index over

the redshift range of 0.10 < z < 0.40. It is clear that these evolutions are consistent with

that of a passively evolving galaxy where Hβ and HγF indices increase with redshift, and

the metallicity indices Mgb and <Fe> decrease with redshift. The Mgb index shows more

scatter and variability than the other indices. The line-strength indices at high redshift might
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be contaminated by telluric emission/absorption lines which could affect the Mgb, Fe5270,

Fe5335 indices. The full spectrum fitting will highlight the contamination. However, the

iron lines do not seem to be significantly affected, as well as HγF or Hβ index . The latter

will not be affected until z ∼ 0.48 where it is redshifted into the telluric line. Therefore,

the age estimate would be safe in this work as most information comes from HγF or Hβ

index. Large error bars at low redshift are from the low S/N spectra. The errors associated

with the calibrated line-strength indices are only the random error in the line-strength index

associated with the photon statistics and read-out noise, since the errors in the line-strength

indices due to the radial velocity errors were very tiny and did not contribute much to the

final errors.

Table 3.6: Calibrated line-strength indices of the stacked spectra.

Redshift HγF Hβ Mgb Fe5270 Fe5335 SNRa

0.10 < z < 0.12 -1.707 ±0.045 1.760 ± 0.044 4.736 ± 0.051 2.815 ± 0.058 2.471 ± 0.059 155
0.12 < z < 0.14 -1.729 ±0.080 1.675 ± 0.078 4.590 ± 0.093 2.866 ± 0.084 2.621 ± 0.088 88
0.14 < z < 0.16 -1.515 ± 0.050 1.722 ± 0.054 4.586 ± 0.055 2.775 ± 0.053 2.468 ± 0.060 127
0.16 < z < 0.18 -1.577 ± 0.045 1.837 ± 0.048 4.425 ± 0.043 2.845 ± 0.046 2.536 ± 0.052 143
0.18 < z < 0.20 -1.435 ± 0.039 1.770 ± 0.046 4.520 ± 0.037 2.787 ± 0.040 2.491 ± 0.043 150
0.20 < z < 0.22 -1.397 ± 0.039 1.851 ± 0.049 4.619 ± 0.039 2.748 ± 0.038 2.589 ± 0.041 141
0.22 < z < 0.24 -1.472 ± 0.033 1.751 ± 0.033 4.252 ± 0.030 2.785 ± 0.030 2.449 ± 0.035 205
0.24 < z < 0.26 -1.302 ± 0.033 1.777 ± 0.031 4.434 ± 0.028 2.732 ± 0.031 2.536 ± 0.033 218
0.26 < z < 0.28 -1.406 ± 0.032 1.815 ± 0.029 4.447 ± 0.026 2.770 ± 0.026 2.468 ± 0.029 235
0.28 < z < 0.30 -1.218 ± 0.035 1.801 ± 0.029 4.293 ± 0.025 2.747 ± 0.027 2.496 ± 0.034 235
0.30 < z < 0.32 -1.125 ± 0.034 1.846 ± 0.024 4.389 ± 0.023 2.848 ± 0.028 2.468 ± 0.030 278
0.32 < z < 0.34 -1.097 ± 0.034 1.837 ± 0.022 4.402 ± 0.025 2.703 ± 0.025 2.467 ± 0.027 314
0.34 < z < 0.36 -1.070 ± 0.040 1.872 ± 0.024 4.109 ± 0.026 2.696 ± 0.026 2.434 ± 0.032 281
0.36 < z < 0.38 -1.035 ± 0.040 1.932 ± 0.025 4.265 ± 0.028 2.810 ± 0.032 2.441 ± 0.045 277
0.38 < z < 0.40 -0.929 ± 0.050 1.984 ± 0.035 4.217 ± 0.044 2.588 ± 0.061 2.348 ± 0.060 195

(a): S/N per Å−1 in Hβ

3.7.6 SSP parameter results

Table 3.7 lists the fitting results of the line-strength indices extracted from the stacked spectra

with the TMJ models. Two different sets of indices were used: a combination of Hβ, Mgb,

Fe5270, Fe5335 indices and a combination of HγF , Mgb , Fe5270, Fe5335 indices. All derived

parameter results are also displayed in figure 3.10 and 3.11. From both plots - panels (a), the

derived ages decrease with redshifts. It is more apparent when using the combination of HγF ,

Mgb, Fe5270, Fe5335 indices. Galaxy ages tend to be older and less scattered when using the

combination of Hβ, Mgb, Fe5270, Fe5335 indices than using the combination of metallicity

lines with HγF , approximately 2 Gyr difference in average. This confirms what Carson &

Nichol (2010) found in their analysis. The variability of the ages depends on the variability

of the both indices: Hβ and HγF . The trend of the age-redshift relation when using HγF is
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Figure 3.9: Plots of the line-strengths Hβ, HγF , Mgb, <Fe> as a function of redshift. The
dash lines represent the expected variation in the line-strengths for an object with [Z/H] =
0.37 and [α/Fe] = 0.27 with an age formation of 4.5 Gyr in the ΛCDM cosmology. All the
line-strength indices show a clear evolution with the redshift which are consistent with the
evolution of a passively evolving galaxy.

much steeper than that using Hβ. In addition, it does not follow the expectations of the age

evolution in the ΛCDM Universe.

The overall [Z/H] and [α/Fe] should be flat for a passively evolving galaxy sample. How-

ever, using Hβ index provides less variability in metallicity and α-element than that of using

HγF index. The [Z/H] also increases by a value >0.02 dex when using HγF index, while

[α/Fe] increases by 0.05 dex. This leads to the remark that even though the evolution of

Hβ and HγF tend to follow the evolution of the passively evolving objects, they provide

inconsistent parameter estimates.

The index-index plots are also given in order to check the robustness of the SSP results

and the reliability of the fits. Figure 3.12 shows the [MgFe]-Hβ (panel (a) ), [MgFe]-HγF

(panel (b)) space grids and the calibrated indices. The composite index [MgFe] was used as a

metallicity indicator and calculated using the definition introduced by Thomas et al. (2003),

different from equation 3.6:

[MgFe] ≡
√

Mgb(0.72.Fe5270 + 0.28.Fe5335) (3.20)
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This definition is much better than the definition given by González (1993) (equation 3.6) in

order to eliminate the residual of [α/Fe] dependence of the index [MgFe]. The dotted and

solid lines in the plots are the TMJ models with [α/Fe] = 0.3 and [α/Fe] = 0 respectively.

The metallicity and age are efficiently separated. It has been proved by this plot that the

derived metallicities are in the range of 0 <[Z/H]< 0.35 with an [α/Fe] of approximately 0.3

by using either Hβ or HγF , exactly as listed in table 3.7. The derived ages show clearer evo-

lution, meaning more scatter, when using HγF than using Hβ. However, the age-metallicity

degeneracy is considerably worse when HγF is used with [MgFe] than when Hβ is used. The

HγF line becomes weaker while [MgFe] line becomes stronger as the age and metallicity of

these populations increase. Subsequently, this degeneracy affects the interpretation of the

age and chemical evolutions of these galaxies over our redshift range studied herein.

Table 3.7: SSP parameter results using line-strength of Hβ, Mgb, Fe5270, Fe5335 indices,
and using line-strength of HγF , Mgb, Fe5270, Fe5335 indices

using Hβ,Mgb,Fe5270,Fe5335 using HγF,Mgb,Fe5270,Fe5335
Redshift Age [Z/H] [α/Fe] Age [Z/H] [α/Fe]

(Gyr) (dex) (dex) (Gyr) (dex) (dex)
0.10 < z < 0.12 10.103 ± 1.356 0.237 ± 0.061 0.355 ± 0.018 11.282 ± 0.515 0.189 ± 0.025 0.345 ± 0.012
0.12 < z < 0.14 11.294 ± 1.046 0.197 ± 0.040 0.278 ± 0.021 10.246 ± 1.197 0.228 ± 0.059 0.291 ± 0.018
0.14 < z < 0.16 11.005 ± 1.088 0.166 ± 0.044 0.326 ± 0.017 9.564 ± 1.016 0.208 ± 0.049 0.347 ± 0.013
0.16 < z < 0.18 9.352 ± 1.183 0.204 ± 0.045 0.292 ± 0.018 9.809 ± 0.315 0.185 ± 0.012 0.288 ± 0.009
0.18 < z < 0.20 10.234 ± 0.155 0.183 ± 0.001 0.313 ± 0.008 8.246 ± 1.281 0.246 ± 0.061 0.343 ± 0.012
0.20 < z < 0.22 10.628 ± 0.389 0.185 ± 0.013 0.316 ± 0.010 7.321 ± 0.165 0.305 ± 0.001 0.363 ± 0.010
0.22 < z < 0.24 11.242 ± 0.652 0.067 ± 0.026 0.261 ± 0.007 8.706 ± 0.793 0.171 ± 0.037 0.287 ± 0.005
0.24 < z < 0.26 10.537 ± 1.329 0.145 ± 0.057 0.298 ± 0.014 6.834 ± 1.078 0.272 ± 0.054 0.340 ± 0.009
0.26 < z < 0.28 9.465 ± 0.150 0.183 ± 0.001 0.314 ± 0.005 9.010 ± 0.184 0.184 ± 0.005 0.329 ± 0.013
0.28 < z < 0.30 10.202 ± 1.418 0.111 ± 0.060 0.284 ± 0.018 7.402 ± 0.873 0.203 ± 0.045 0.321 ± 0.012
0.30 < z < 0.32 9.209 ± 0.551 0.187 ± 0.020 0.297 ± 0.014 5.750 ± 0.198 0.306 ± 0.012 0.344 ± 0.009
0.32 < z < 0.34 8.875 ± 0.200 0.183 ± 0.001 0.321 ± 0.012 5.415 ± 0.077 0.305 ± 0.001 0.367 ± 0.002
0.34 < z < 0.36 8.899 ± 1.423 0.101 ± 0.057 0.276 ± 0.019 6.190 ± 0.138 0.184 ± 0.009 0.313 ± 0.003
0.36 < z < 0.38 6.706 ± 1.220 0.240 ± 0.061 0.324 ± 0.014 5.020 ± 0.087 0.305 ± 0.001 0.352 ± 0.013
0.38 < z < 0.40 6.144 ± 0.796 0.219 ± 0.055 0.354 ± 0.015 4.628 ± 0.111 0.305 ± 0.005 0.373 ± 0.012

3.7.7 Full spectral fitting with ULySS

It has been proved that the full spectral fitting gives good and efficient precision on the fitting

results since it uses relatively high S/N ratio (Koleva et al., 2008). The full spectrum fitting

treats the shape of the flux in the pixel-pixel basis and does not account the continuum, unlike

the SED fitting procedures which use only the observed spectra as a mix of stellar populations

at different ages and metallicities. Nevertheless the latter gives general information about

the star formation history of the observed galaxies. In the last decades, many codes of full

spectrum fitting have been made available to the public, such as STARLIGHT (Cid Fernandes

et al., 2005), STECKMAP (Ocvirk et al., 2006a,b), MOPED (Heavens et al., 2000), ULySS

(Koleva et al., 2009), VESPA (Tojeiro et al., 2007), NBURSTS (Chilingarian et al., 2007)
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Figure 3.10: The evolution of the derived parameters with redshift when using Hβ, Mgb,
Fe5270, Fe5335 of the stacked spectra. Panel (a) shows the age evolution with redshift, low
redshift objects are older than the high redshift objects, the dashed line represents the age of
the Universe for a flat ΛCDM cosmology, the dot dashed line shows a tU(z) - 3.5 Gyr showing
the age scatter. Panel (b) and (c): show the evolution of metallicity [Z/H] and [α/Fe] with
redshift, the straight dashed line shows if these objects follow no chemical evolution since we
have selected quiescent objects. However few objects lie on this line due to the significant
scatter on the line-strength of Mgb.

etc. Their improvements are basically due to the recently arrival of large and complete stellar

libraries. Different codes can give very comparable results (e.g Dias et al., 2010; Koleva et al.,

2008; Liu et al., 2013).

3.7.7.1 ULySS

The University of Lyon Spectroscopic analysis Software (ULySS) is a package of full spectral

fitting for the study of the stellar populations of galaxies and star clusters. It is written in

IDL. The basic idea is to compare an observed spectrum with sets of model spectra in order to

derive the characteristics of the stellar population (age, star formation and chemical history)

and the internal kinematics of galaxies and star clusters; and to estimate stellar atmospheric
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Figure 3.11: The evolution of the derived parameters with redshift when using HγF , Mgb,
Fe5270, Fe5335 of the stacked spectra. Panel (a) shows the age evolution with redshift, low
redshift objects are older than the high redshift objects, the dashed line represents the age of
the Universe for a flat ΛCDM cosmology, the dot dashed line shows a tU(z) - 5 Gyr showing
the age scatter. Panel (b) and (c): show the evolution of metallicity [Z/H] and [α/Fe] with
redshift, the straight dashed line shows if these objects follow no chemical evolution since we
have selected quiescent objects. However few objects lie on this line due to the significant
scatter on the line-strength of Mgb.

parameters (effective temperature, surface gravity, metallicity and radial velocity) of stars. It

fits not only the strongest absorption features but also all the individual line in the spectrum.

ULySS minimizes the χ2 between the observations and a combination of SSP models, to fit

the characteristics of the population and the LOSVD at the same time. Precisely, an observed

spectrum is fitted with a model expressed as a linear combination of non linear components

convolved with a LOSVD and multiplied by a polynomial at the same time. A component is

a non linear function of, for example, age, [Fe/H] and wavelength.

In the case of SSP fit, we represent the observable spectrum as:

Obs(λ) = Pn(λ)× LOSVD(vsys, σ)⊗
i=m∑
i=0

WiSSPi(Age, [Fe/H], λ) (3.21)
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Figure 3.12: Index-index plots. Panel (a) [MgFe]-Hβ index plot, panel (b) [MgFe]-HγF
index plot. The grid correspond to the TMJ models with [α/Fe] = 0 (solid lines), and
[α/Fe] = 0.3 (dotted lines). From the bottom age lines are 15, 12, 10, 8, 5, 3 Gyr. From
right to left, [Z/H]=0.67, 0.35, 0.00, -0.33, -1.35, -2.25. The composite index [MgFe] was
calculated as defined in Thomas et al. (2003) and the associated errors were calculated using
the propagation of error technique. The galaxy indices are plotted in black points. All index
measurements are given in Å. All galaxies lie between 0 <[Z/H] < 0.35 space with an [α/Fe]
= 0.3, ages show clear evolution (∼5 Gyr) when using HγF index, as confirmed by the χ2

fitting results.

where Wi are the weights of each of the SSPs. The LOSVD is parametrized by the

systemic velocity vsys and the velocity dispersion, σ. The use of multiplicative polynomial

Pn of order n makes this method insensitive to the effects of the flux calibration uncertainties

and the galactic extinction. From the previous equation, one can see that the multiplicative

polynomial is trying to match the SSP models to the observed spectrum. If the spectra

are flux calibrated, the shape of the polynomial allows us to evaluate the accuracy of the

calibration and also reveals the systematic reddening caused by dust in galaxy, if present.

The order of the polynomial was carefully chosen. It does not need to be very low or high

to avoid an unsuitable match between the investigated observed spectra and model spectra.

The stability of the SSP fitting results as a function of the multiplicative polynomial order

was investigated, see section 3.7.7.3. More details of this technique of fitting are found in

Koleva et al. (2009).

Besides the simple SSP fit, ULySS provides the possibility of exploring and visualizing

the parameter space with χ2 maps, convergence maps and Monte-Carlo simulations. These

options help us to study the complex problem of the SSP fitting which is the degeneracy

between parameters and the multiple minima in the parameter space. The process of the

Monte-Carlo simulations consists of repeating the fit several times by adding a random Gaus-

sian noise to the spectrum defined by the users estimated noise either by the S/N or by an
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error spectrum.

χ2 maps allow to visualize the location of eventual local minima and provide a view of

the topology of the parameters space. Maps are generated by choosing a 2D projection of

the parameters space (e.g. age and metallicity) and performing an optimization over all the

other parameters for each node of these parameters. Any local minimum and degeneracy can

be identified on such map.

Convergence maps provide another tool used to explore the parameter space, i.e. to

evaluate the convergence region where the solution (the absolute minimum of the χ2) lies in

a grid of guesses. Ideally, the convergence paths should lead to only one point, meaning the

solution is stable and independent of the guesses but this is not necessarily the case because

of the local minima and degeneracies.

Apart from the above, ULySS has many advantages compared to other full spectral fitting

packages. For instance, it uses all the good pixels which are weighted, and minimizes all the

parameters at the same time, providing the most significant and almost accurate parameter

outputs despite the degeneracies between parameters. Koleva et al. (2008) compared the

routine STECKMAP (STEllar Content and Kinematics via Maximum a Posteriori) (Ocvirk

et al., 2006a,b) with ULySS. STECKAMP is optimized to deliver star-formation history

reconstruction and it performs slightly worse when analyzing SSPs. ULySS, on the other

side, uses a simple parametrisation method with which it is easy to visualize and understand

the parameter space topography. Liu et al. (2013) compared fit results from using ULySS

and the STARLIGHT codes (Cid Fernandes et al., 2005). The later uses the Simulated

Annealing Algorithm and the Metropolis Algorithm of the MCMC method which search for

the optimized parametric results in the whole space to minimize the χ2 value. Despite the fact

that both codes can give consistent results, ULySS provides older ages and richer metallicities

for LRGs. In addition, stellar population studies of Galactic clusters using ULySS gave similar

results to those obtained from the color-magnitude diagrams (Koleva et al., 2008). Analysis

of Lick/IDS index system along with full spectral fitting led by Michielsen et al. (2007) proved

the reliability of this technique as well.

3.7.7.2 Spectral synthesis models used

The ULySS package has incorporated a number of models with different libraries. Additional

models are also available on the official website. It is also possible to bring other models with

the appropriate format of ULySS. Koleva et al. (2008) conducted a study using various models

included in the package and found that the Pegase.HR/Elodie 3.1 (PE) and Vazdekis/MILES

(VM) models are the most reliable and trustworthy of all models. By fitting the observed

galaxies with different SSP models, the goals are to see whether the results are model de-

pendent, and to study the uncertainties on the derived parameters, particularly on ages, and

also, if those uncertainties will able us to obtain errors on H(z) within <3 % precision.
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A brief description of each SSP models used in this study is described here and summarised

in table 3.8.

Pegase/Elodie 3.1 - PE The Pegase-HR code1 is developed by Le Borgne et al. (2004).

They compute the synthetic spectral models using the high resolution stellar library ELODIE

v3.1 (Prugniel et al., 2007), which has a spectral resolution of 0.55Å (FWHM) and a wave-

length coverage of 3900 - 6800Å. The evolutionary tracks of the isochrones are taken from the

Padova group Padova 1994 (Bertelli et al., 1994). They computed SSP models with Salpeter

IMF (Salpeter, 1955) with mass from 0.1 to 120 M� and a slope of −1.35. The PE models

cover age from 0.01 to 20 Gyr and [Fe/H] from -2.30 to 0.70 dex, consisting of 68 number

of ages and 7 metallicities which is 476 SSPs in total. These models include a treatment of

TP-AGB stars different from the Maraston (2005). They were generated entirely in a differ-

ent fashion that Maraston’s models. In particular, a global interpolator was used to generate

spectra at the gaps of the parameter space. Note that the stellar library used in PEGASE

models is a product of an echelle spectrograph, meaning that the connections of the different

multiplicative polynomial orders can never be perfect .

Vazdekis/Miles - VM Vazdekis models are based on the models developed by Vazdekis

et al. (2010) (advanced version of the previous models from Vazdekis (1999) and Vazdekis

et al. (2003)) and the MILES library Sánchez-Blázquez et al. (2006), which has a resolution of

2.3Å (FWHM) and 3525 - 7500 Å wavelength range. The stellar library is believed to be the

best existing flux calibrated library up-to-date. These models use the Padova 2000 isochrones

(Girardi et al., 2000) which has hotter red giant branch stars. The SSP models are computed

with Salpeter IMF (Salpeter, 1955) with mass from 0.1 to 100 M� and a slope of -1.35. VM

models cover age from 0.1 to 17.7 Gyr and [Fe/H] from -2.32 to 0.22 dex, consisting of 343

SSPs in total (49 number of ages and 7 metallicities). These models take into account the

TP-AGB coverage and envelope ejection, but no corrections have been made on the latest

phases of the stellar evolution.

Galaxev/STELIB - BC03 These synthesis population models are the most widely used

models. The Galaxev models (Bruzual & Charlot, 2003) are built using the STELIB library

(Le Borgne et al., 2003), which has a resolution about 3Å FWHM across the whole spectral

range 3200 - 9500 Å, and Padova 1994 isochrones. Actually, three sets of isochrones have

been used to recover all phases between zero age main sequence and the beginning of the TP-

AGB: Padova 1994, Padova 2000 and Geneva (Charbonnel et al., 1996, 1999; Schaller et al.,

1992) evolutionary tracks. This is because the Padova 1994 recovers well the low metallicities

from 0.0001 to 0.10 while the Padova 2000 library represents the low and intermediate mass

stars and the third library is only for computing the solar metallicity. The overshooting was

1http://www2.iap.fr/pegase/pegasehr/
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taken into account to better predict the observations of galactic stars, RGB and the HB of

globular clusters. However, the post-AGB and the TP-AGB phases for low and intermediate

mass stars were replaced with those by Vassiliadis & Wood (1994). The authors of the models

found that the Padova 2000 would overpredict old ages for elliptical galaxies, due to the fact

that red giant branch is 50-200 K warmer in Padova 2000, hence they officially chose the

Padova 1994 as their standard model of isochrones.

The STELIB library contains 249 stellar spectra, but only 187 of them have associated

measured metallicity and only these can be used to compute the predicted SSPs. The SSP

models are computed with Chabrier IMF (Chabrier, 2003) with a mass of 0.1 to 100 M� and

have a slope of -1.35. BC03 models cover age from 0.1 to 20 Gyr and [Fe/H] from -2.3 to 0.4

dex, consisting of 696 SSPs (116 number of ages and 6 metallicities).

Maraston & Strömbäck/MILES - M11 Maraston & Strömbäck (2011) have recently

updated their stellar population models into higher spectral resolution ones. They computed

models based on four different stellar libraries: Pickles, ELODIE, STELIB and MILES. Apart

from the resolution, these new models are pretty much the same as the previous version

(Maraston, 2005). They kept the same ingredients as the stellar energetics, the atmospheric

parameters and the treatment of the TP-AGB and the horizontal branch morphology.

On the one hand, it would be good to compare SSP estimate results from both techniques

of age-dating even though Maraston & Strömbäck (2011) have compared the Lick indices

calculated on their MILES based integrated model SEDs and those from Thomas et al.

(2011). On the other hand, TMJ models of Thomas et al. (2011) are based on the majority

of the ingredients of the M11 models, in particular the use of the stellar evolutionary tracks

from Cassisi et al. (1997). We also chose the SSP models based on MILES library and

computed using Salpeter isochrone for comparison. In these models, they added few high-

resolution of cool stars from MARCS library (Gustafsson et al., 2008) for completeness.

Note that this library contains theoretical stars with a wide range of cool stars (2500 - 8000

K) at very high resolution (R = 20 000) over a wavelength range 1300 - 200 000Å. In

addition, the chemical composition of these spectra follow the general trend of the Milky way

stars as any empirical libraries (i.e. having the α-elements [α/Fe] = 0.1-0.3 and metallicity

−0.25 < [Fe/H] < −1.0). Moreover, optical colours of stars in MARCS library also match

those based on empirical stars. According to Maraston & Strömbäck (2011), the inclusion of

these cool stars did not affect the shape of the empirical spectral more precisely around the

V band. They also mentioned that there is fairly poor sampling of stellar parameter space at

the lowest metallicity. Therefore, we were forced to further reduce the range of parameters

to conform with ULySS format. The flux units were changed to be 10−7 L�/M�/Å (where

L� = 3.8261033erg/s and M� = 1.9891033g). At the subsolar metallicity, the intermediate-

red was chosen to be the horizontal branch morphology. The final template grids have a

wavelength range of 3525 - 7500 Å with a resolution of 2.5Å (FWHM). The M11 models
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cover age from only 2 to 15 Gyr and [Fe/H] from -1.30 to 0.30 dex (14 number of ages and 4

metallicities).

In order to test the new grids of M11 models, the SSP parameters of the open cluster M67

were derived and compared with results from the other models in the package. The M67 long

slit spectrum (Schiavon et al., 2004) is already included in the package. This spectrum is

assembled from spectra of individual stars in the clusters. Schiavon et al. (2004) obtained a

spectroscopic age of 3.5±0.5 Gyr (at solar metallicity [Fe/H] = 0.00 dex) for this cluster using

spectrophotometric indices, which is consistent with the age derived from fitting isochrones to

the colour-magnitude diagram of the cluster. However, Leaman (2012) derived the intrinsic

metallicity spreads of this cluster, which is about [Fe/H] = -0.19.

After matching the instrumental resolution of the observed spectrum and the model, we

obtain the SSP equivalent characteristics: age and metallicity from each model fit of M67

which are listed in table 3.9. Age and metallicity values estimated by each model, including

M11, are fairly consistent with the age and metallicity predicted by Schiavon et al. (2004)

and Leaman (2012) respectively. However, BC03 models overestimate the age by almost a

factor of 2 although it is still in the range of ages found in the literature for M67. This implies

that our new SSP grids built from the SSP spectra of Maraston & Strömbäck (2011) can be

used to age-date our LRG sample.

Table 3.8: List of models used with UlySS

Models Library FWHM Wavelength Age [Fe/H] IMF Isochrones
(Å) (Å (Gyr) (dex)

PE Elodie 0.55 3900 - 6800 0.01 - 20 -2.30 - 0.70 Salpeter Padova 1994
VM Miles 2.3 3525 - 7500 0.1 - 17.7 -2.32 - 0.22 Salpeter Padova 2000
BC03 Stelib 3 3200 - 9500 0.1 - 20 -2.30 - 0.40 Chabrier Padova 1994
M11 Miles 2.5 3525 - 7500 2 - 15 -1.30 - 0.30 Salpeter Cassisi

Note that all models used in this analysis have not included the α-enhancements into

the algorithm used to build them. In case [α/Fe] was taken into account, and in return it is

estimated together with all parameters (age and [Fe/H]), [α/Fe] would not dramatically affect

the outputs values of age and metallicity too much. Prugniel and collaborators (2011) have

released few stellar population models with variable chemical composition. They measured

[α/Fe] of the spectra in the library and compared to the theoretical grid. The library was then

corrected to some given values of [α/Fe] using differential effects computed in the theoretical

library. After creating interpolators for these corrected libraries which are in the form of

functions generating a spectrum for a given Teff , log g and [Fe/H], model predictions at the

chosen [α/Fe] were then built. These new models will be necessary later on, for the purpose

of comparing SSP results derived from using Lick absorption indices with those from using
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full spectrum fitting .

Table 3.9: SSP parameters of M67

Models Age Metallicity χ2

(Gyr) (dex)

PE 3.90±0.06 -0.108±0.004 0.97
VM 3.20±0.03 -0.063±0.005 0.65
BC03 5.57±0.09 -0.232±0.005 2.39
M11 4.13±0.07 -0.105±0.003 0.71

3.7.7.3 Methods of fitting

As mentioned in section 3.5.2, the co-added spectra are made from the clean absorption line

spectra free from emission line contamination. The cleaned spectra were obtained during

the process of subtraction of emission line spectra from the observed ones with GANDALF

routine. The latter can also perform foreground galactic extinction correction which is very

important before the fitting. It simply requires the Schlegel et al. (1998) E(B−V) reddening

value. For each galaxy, E(B − V) parameter is calculated as in chapter 4 section 4.4.4 in

order to perform the correction.

Briefly, the following corrections were applied to the individual galaxy spectrum within

each redshift bin prior to the stacking process:

• de-reddening for Galactic extinction following the model of Calzetti et al. (2000) and

using the E(B−V) reddening value of Schlegel et al. (1998)

• emission line correction

• all spectra were brought to the rest-frame wavelength and to a common wavelength

range.

The co-added spectra were then fitted by ULySS using the different models listed above.

For comparison between the physical properties derived from fitting the co-added spectra

and from fitting all spectra of the galaxies, we also performed individual fitting of all galaxies

within the redshift bin. After the appropriate corrections were applied, individual galaxy

spectrum was fitted with the four models.

LSF matching The first step on the fitting procedure is to match the resolutions between

the observed spectra and models. The spectral resolution is characterized by the instrumental

broadening or the Line Spread Function (LSF). The LSF for spectra is equivalent to the Point

Spread Function (PSF) for images. The LSF varies with wavelength (Koleva et al., 2009),
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depending on the spectrograph, on the slit and on the position in the field for 2 or 3D spectra.

In addition, the LSF is not necessary a gaussian. Most importantly, the models which are

used to analyse the observed spectra have a finite resolution, i.e. frequently have a specific

LSF finer than the one of the observation. Therefore to analyse an observed spectrum we

have to take into account the relative LSF of the observation with respect to the models.

The LSF is very important and necessary when studying the internal kinematics or precisely

the physical broadening of the lines. Matching spectral resolution by ULySS consists of

determining the relative LSF between the model and the observation and then injecting this

relative LSF into the model. It could be determined using calibration observations such as

arc lamp, standard star, twilight spectrum and a spectrum of a star of known atmospheric

parameters. In case it is unknown these parameters can firstly be determined with ULySS.

Alternatively, if no stellar spectrum is available, a galaxy spectrum can be used to analyse

the LSF, therefore the internal kinematics of all objects in the sample can be determined

relative to this reference.

As in Koleva et al. (2009), we used the SDSS template stars from M67 which is already

part of the package. It was determined using wavelength intervals of 600 Å spaced by 300 Å

by fitting it with each model, then injected to each one of them to generate the resolution-

matched models by a certain convolution function. From now on, the resolution-matched

models were always used for SSP fitting.

Fitting conditions The fitting was performed in the whole wavelength coverage of the

co-added and individual spectra for VM, BC03 and M11 models, whereas it was restricted to

be in the range of 4000 - 5500 Å for PE models since it is the only model whose wavelength

range are less than SDSS wavelength range. Many prominent absorption features are still

included in the chosen wavelength range. Even though some important spectral features are

missing to accurately determine the age and [Fe/H], they are still useful to constrain the

best fit parameters. The choice of this wavelength range was determined by investigating

the quality of the fit of the observed spectra with models while changing the limit of the

wavelength. It is important to note the problem with the flux calibration of the ELODIE

library used by the PE models at the blue end of the spectra. Therefore, the extreme blue

end was also not used during the spectral fitting. When we used that blue end of the spectra,

including H & K lines, the quality of the fit decreased and the results were biased by ∼4 Gyr

toward older ages. In addition, both models and observations (especially when the number

of spectra to be stacked is small, it is also valid for the individual spectra) have low S/N in

this region of the spectrum. Moreover, the exclusion of the H & K lines is also due to the

general lack of cold dwarf stars in the models as it has been excluded by a number of studies

(e.g Koleva et al., 2008). When the blue end was fixed and the red end varied, the same bias

was found until the wavelength limit of 5500 Å was set where the parameter values became

stable. Furthermore, the region bluewards of 6800 Å is the region where a lot of telluric lines
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are found in both of the observed and model spectra.

We set some priors on the allowed ages and metallicities of the model spectra. The upper

age limit was set to be the age of the Universe at each redshift. However we relaxed the lower

limit to be at 1 Gyr for PE, VM, and BC03 models, and 2 Gyr for M11 models because of

the lack of model grids beyond this value for these specific models. The initial guess was

set to be 8 Gyr since LRGs are expected to be old. Regarding the metallicity, the initial

guess was set to be 0.1 dex consistent with the metallicity of LRGs found in many literatures

(e.g. Liu et al., 2012, 2013; Zhang et al., 2012). The metallicity of LRGs were found to be

similar, meaning no evolution with redshift, and its values are found between 0.1 dex and 0.2

dex (Carson & Nichol, 2010; Jimenez et al., 2003; Liu et al., 2012; Zhang et al., 2012). We

also set a limit on the allowed metallicity from 0.0 dex to 0.2 dex. These priors and initial

guesses on ages and metallicities were set to be the same for either co-added spectra fitting

or individual fitting.

The order of the multiplicative polynomial Pn which is used to adjust the shape of the

continuum, can be set freely by the user of ULySS. In order to achieve reasonable and stable

output parameter values, we carried out a study of the variation of the fit results, literally

looking closely at the χ2 variation with increasing the order n. A very high S/N spectrum

was chosen from the sample of galaxies in the redshift bin of 0.24 < z < 0.26 and fitted with

all the models. Figure 3.13 represents the variation of the χ2 values resulting from each fit

while increasing the order of the multiplicative polynomial. The χ2 values are normalized

to the χ2 value for n = 30 for each model. The plot shows that the χ2 values do not really

increase for n greater than ∼12 and almost stay flat after this value. Therefore, there is no

need to go greater than the order 12 and lesser than the default order of ULySS package

which is 10. An order around ∼12 was chosen for all galaxy fits in this analysis.

The outliers, telluric lines and possible spikes or undesirables features (e.g. residuals from

the sky lines removal) in the galaxy spectrum were rejected from the fit by specifying the

cleaning algorithm.

3.7.7.4 Comparing the different fits

Figure 3.14 illustrates the PE, VM, BC03 and M11 fits of the stacked spectrum at 0.24 < z <

0.26. This is only an example of the fits, but all fits using the four models are presented in

appendix B. A detailed comparison is shown in figure 3.15. Again the metallicity range of the

comparisons was at the solar metallicity to super-solar metallicity i.e 0.0 < [Fe/H] < 0.20,

while the age range for comparison was restricted to ages between 2 Gyr and the age of the

Universe depending on the redshift. The regions of the strong telluric lines, the CN band,

NaD band, any possible spikes and the outliers were masked. The main wavelength range

and the residuals are plotted together.

Looking only at the general fits, one can notice some inconsistencies between observed

spectra and models although both the fit is fairly good. The rms residuals in the whole
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Figure 3.13: The χ2 value as a function of the order of the multiplicative polynomial used
for adjusting the shape of the spectra. The χ2 values are normalized to the χ2 value using
an order 30. The χ2 values are from fitting a high S/N spectrum at 0.24 < z < 0.26 with
PE models (red squares), VM models (green triangles), BC models (blue circles), and M11
models (yellow stars). The normalized χ2 values become stable at an order of polynomial
around ∼ 12.

wavelength range are between 0.02 - 0.04. PE models give the lowest rms residuals. The

wavelength restriction of the fitting with such models might explain this situation.

At first glance, all models, with exception of PE models, fail to fit perfectly the regions

around 6300 - 7000 Å and around the sky absorption line 5100 Å which is the region of Mg

triplet (but BC03 is the worst in that region), at CN band near 4160 Å and at 6900Å. The

Mg triplet are found to be deeper in the observations than in the best-fit models for high

metallicity objects (the case of the LRGs). The different α- enhancement of the ellipticals

with respect to the abundance pattern of the library provides an explanation for that. At

high metallicity, almost all stellar libraries are scaled-solar. It seems that using a semi-

empirical library can improve the fit and determine the enhancement as shown in Prugniel

et al. (2007), but with M11 models which used a semi-empirical library, the mismatch is still

visible. This is not surprising, since they added low metallicity theoretical library on their

library. Furthermore, the flux of the MILES library is also found to drop around ∼6000 Å

(Maraston & Strömbäck, 2011). In all the fits, the listed regions were masked automatically

from the fits and considered as some outliers.

More examination of the residuals leads to the mismatch around the Fe4668 band, using

all models. The origin of this is either in the models or in the observations. A possible

explanation could be from the process of stacking or from the model ingredients such as
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evolutionary tracks, IMF etc.

Comparing BC03 with PE and VM models, Koleva et al. (2008) found systematics biases

between BC03 and the other two models. The reasons for the above discrepancies might also

be due to the poor metallicity coverage of the stellar library STELIB used by the models.

They overestimate the metallicity of their models for [Fe/H] > 0 dex and underestimate the

metallicity of their models for -1 < [Fe/H] < 0. The stellar library is strongly concentrated

at solar metallicity, therefore they are not reliable for galaxies whose metallicities are outside

the solar metallicity. For the purpose of this study, however, we believe they are adequate.

In addition, some systematics were also found in the wavelength calibration of STELIB

library with respect to ELODIE and MILES libraries (Koleva et al., 2008). However, PE

and VM were found to have consistent results since ELODIE and MILES libraries which are

respectively used by the models, have comparable coverage in the parameter spaces. The

MILES library is also used by M11 models, providing no large inconsistencies compared to

the other models in the fitting. In the next section, we compare in detail the derived SSP

parameters from each model.

3.7.7.5 SSP parameter results

In this section, we present the SSP parameter results from the spectral fitting of the stacked

spectra using PE, VM, BC03 and M11 models. Furthermore, the average parameters from

the individual fits are also given.

The results of the combined and individual fits are presented in table 3.10, 3.11, 3.22

and 3.13 from using PE, VM, BC03 and M11 models respectively. The average parameters

from the individual fits were calculated using the weighted mean; and the weights were

calculated from the errors on the parameters. The corresponding errors are the uncertainties

of the weighted mean. Parameters with zero errors had their weights set to zero. In general,

parameter values from both fits are reasonably consistent (some details on that are discussed

later in the next paragraph) without considering the strength of the error bars. When it is

taken into account, these error bars on the averaged parameters indicate a large spread in

the derived parameters from individual spectra. This is not surprising since the final sample

includes galaxies with velocity dispersions ranging from 200 km s−1 to 400 km s−1 in the

same redshift bin. Even though they are in the same redshift bin, the line measurements and

the derived parameters (ages and metallicities) should be different as seen in different figures

of section 3.8.3.

The error on each parameter from the stacked spectra fitting is supposed to be the 1-

σ errors computed from the covariance matrix in the MPFIT1 function used by ULySS.

These errors are very tiny since many galaxy spectra were combined to produce the stacked

spectra and the errors on the spectra became smaller. Therefore the “perror” (parameter

1http://cow.physics.wisc.edu/ craigm/idl/idl.html
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Figure 3.14: Fitting stacked spectra with PE (red), VM (green), BC03 (blue) and M11
(yellow) models. All upper panels of each subfigure display the stacked spectra at 0.24 < z <
0.26 (black lines) and the best fit models (coloured spectra). All bottom panels show the
residual from the fits, the solid green lines are the 1σ deviation and the dashed green lines
represent zero residuals. Red and yellow (in the first plot) regions were rejected from the
fits. They were masked due to the telluric lines, the interstellar absorption line (NaD), and
automatic rejection of outliers.

errors returned by MPFIT) were no longer presented as the true parameter errors. Instead

of “perror” , the “pcerror” was rather used in order to increase the uncertainties on each

parameter. The “pcerror” was calculated as the product of the χ2 value to the “perror”, i.e

the estimated parameter uncertainties were computed by scaling “perror” by the measured

χ2 value. We assumed that all fits were good quality assuming large χ2 values (> 1), meaning

small spectral errors, and that gives validity to this approach.

Figure 3.13 presents the χ2 values of the stacked spectra fitting at each redshift. The χ2

values depend on the number of combined galaxies. At low redshift z < 0.20 the number

is small and the χ2 values from each fit using the four models are fairly similar, while at

high redshift z > 0.20 the number of galaxies is increasing, meaning small spectral error.

The χ2 values are dramatically increasing with the number of spectra at each redshift bin.

Basically the χ2 should be normalized to the error in the spectra, thus it should be constant

independent of the number of spectra. But the more spectra we combine the smaller the
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Figure 3.15: Comparison of the each fitting of a stacked spectrum at 0.24 < z < 0.26 using
PE models (Red), VM models (green), BC03 models (blue) and M11 models (yellow). The
vertical scale is magnified by a factor of 20.

Figure 3.16: The χ2 value of each stacked spectra fitting at each redshift. The fits were
performed using PE models (red squares), VM models (green triangles), BC03 models (blue
circles) and M11 models (yellow stars).

error becomes, therefore it varies with the level of spectral error.

BC03 models were always found here to give large χ2 values compared to the other models,

but not so large that the difference is not reflected on the distribution of the χ2 values (figure
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Figure 3.17: The χ2 histogram from the individual fits. The fits were performed using PE
models (red), VM models (green), BC03 models (blue) and M11 models (yellow).

3.17). This is also proved while fitting the cluster M67, see results in table 3.9. It is then

difficult to identify which model fits better the sample. Normally, the models that can give

the minimum χ2 value should be the ideal. However, in our situation, each model has its

pros and cons. M11 and VM models give us the lowest values of χ2, meaning that models

which used MILES library fit better the passively evolving galaxy. One would say the M11

models represent the best models since they provide the lowest χ2 values of both models.

However not only are SSP equivalent ages from these models reasonably flat with redshift,

but they also do not fit properly the whole sample: a small fraction was fitted compared

to the other models. Our main concern in this analysis is to find models which can give us

a good age-redshift relation in order to calculate H(z) accurately. Therefore, the χ2 values

from the fits are not the only consideration.

When performing individual fitting, almost all χ2 values from each fit are found to be less

than 1, as shown in figure 3.17. The tail found in the χ2 histogram represents the χ2 values

of the galaxies whose ages hit the upper limits (age of the Universe as a function of their

redshift). Their age values can be seen in the age-redshift plots in figure 3.28, 3.29, 3.30 and

3.31. Several reasons cause this situation: for instance low S/N, spectral resolution, quality

of the observed spectra and the models, and the accuracy of the models etc.

When looking at each SSP parameter closely, the age and metallicity values extracted

from the stacked spectra and the mean values from the individual fitting are quite similar

in general. The metallicity values are found to spread between 0.08 < [Fe/H] < 0.20 dex

and have an overall average of 0.13 dex. This justifies that LRGs are found to have similar

metallicity and their values are found to be above solar as in many studies (Jimenez et al.,

2003; Liu et al., 2012; Zhang et al., 2012). They do not show any chemical evolution with
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Table 3.10: SSP parameter results using stacked spectra and mean parameters using indi-
vidual fitting. Spectral fitting using PE models

Stacked spectra Individual spectra
Redshift Age [Fe/H] σ < Age > < [Fe/H] > < σ >

(Gyr) (dex) (km s−1) (Gyr) (dex) (km s−1)
0.10 < z < 0.12 6.34 ± 0.10 0.12 ± 0.01 291.95 ± 2.93 6.27 ± 0.46 0.12 ± 0.06 289.29 ± 37.44
0.12 < z < 0.14 6.56 ± 0.12 0.10 ± 0.00 279.15 ± 3.29 6.23 ± 0.75 0.13 ± 0.06 272.10 ± 38.41
0.14 < z < 0.16 5.99 ± 0.11 0.10 ± 0.00 275.00 ± 2.80 5.70 ± 1.43 0.09 ± 0.06 266.66 ± 28.20
0.16 < z < 0.18 6.18 ± 0.09 0.10 ± 0.00 279.86 ± 2.52 6.43 ± 1.34 0.09 ± 0.05 272.31 ± 27.73
0.18 < z < 0.20 5.93 ± 0.12 0.10 ± 0.00 282.14 ± 2.61 5.54 ± 1.69 0.09 ± 0.06 269.92 ± 31.66
0.20 < z < 0.22 5.74 ± 0.22 0.06 ± 0.01 279.03 ± 3.00 5.75 ± 1.53 0.09 ± 0.06 270.16 ± 36.00
0.22 < z < 0.24 5.93 ± 0.11 0.10 ± 0.00 287.53 ± 2.41 6.19 ± 1.70 0.08 ± 0.05 272.65 ± 31.72
0.24 < z < 0.26 5.17 ± 0.19 0.10 ± 0.00 291.40 ± 2.68 5.85 ± 1.50 0.08 ± 0.06 279.27 ± 34.70
0.26 < z < 0.28 5.51 ± 0.17 0.10 ± 0.00 290.24 ± 2.50 4.68 ± 2.06 0.08 ± 0.06 275.32 ± 33.73
0.28 < z < 0.30 4.97 ± 0.14 0.10 ± 0.00 285.22 ± 2.52 5.50 ± 1.62 0.08 ± 0.06 272.38 ± 32.67
0.30 < z < 0.32 4.92 ± 0.16 0.10 ± 0.00 287.49 ± 2.48 4.75 ± 1.68 0.09 ± 0.06 273.29 ± 36.37
0.32 < z < 0.34 4.71 ± 0.14 0.10 ± 0.00 292.45 ± 2.46 4.20 ± 1.63 0.10 ± 0.06 275.97 ± 39.38
0.34 < z < 0.36 4.84 ± 0.14 0.10 ± 0.00 291.56 ± 2.60 3.94 ± 1.57 0.09 ± 0.06 271.13 ± 40.92
0.36 < z < 0.38 4.69 ± 0.14 0.10 ± 0.00 291.73 ± 2.56 3.70 ± 1.42 0.09 ± 0.06 271.63 ± 40.63
0.38 < z < 0.40 4.28 ± 0.21 0.10 ± 0.00 294.22 ± 2.89 3.45 ± 1.20 0.11 ± 0.06 275.97 ± 44.04

Table 3.11: SSP parameter results using stacked spectra and mean parameters using indi-
vidual fitting. Spectral fitting using VM models

Stacked spectra Individual spectra
Redshift Age [Fe/H] σ < Age > < [Fe/H] > < σ >

(Gyr) (dex) (km s−1) (Gyr) (dex) (km s−1)
0.10 < z < 0.12 7.05 ± 0.24 0.15 ± 0.01 301.36 ± 2.49 7.66 ± 1.97 0.17 ± 0.03 293.86 ± 38.77
0.12 < z < 0.14 6.89 ± 0.29 0.14 ± 0.01 284.62 ± 3.08 7.19 ± 2.08 0.18 ± 0.04 275.65 ± 42.61
0.14 < z < 0.16 6.02 ± 0.15 0.15 ± 0.01 280.34 ± 2.43 6.33 ± 2.75 0.15 ± 0.05 268.92 ± 30.23
0.16 < z < 0.18 6.78 ± 0.43 0.10 ± 0.01 282.78 ± 2.21 8.09 ± 2.09 0.15 ± 0.05 276.79 ± 29.08
0.18 < z < 0.20 6.29 ± 0.36 0.10 ± 0.01 289.36 ± 2.28 7.28 ± 1.88 0.16 ± 0.05 276.88 ± 31.59
0.20 < z < 0.22 5.77 ± 0.13 0.15 ± 0.01 283.74 ± 2.33 5.06 ± 2.42 0.16 ± 0.04 276.28 ± 33.66
0.22 < z < 0.24 5.91 ± 0.13 0.14 ± 0.01 287.44 ± 2.08 6.21 ± 1.98 0.15 ± 0.05 278.96 ± 32.24
0.24 < z < 0.26 5.77 ± 0.12 0.14 ± 0.01 288.18 ± 2.02 5.70 ± 1.68 0.16 ± 0.05 284.27 ± 35.54
0.26 < z < 0.28 5.59 ± 0.10 0.15 ± 0.01 289.54 ± 2.01 4.83 ± 2.01 0.16 ± 0.04 281.26 ± 35.59
0.28 < z < 0.30 5.45 ± 0.09 0.14 ± 0.01 286.29 ± 1.95 5.20 ± 1.56 0.15 ± 0.05 276.23 ± 32.91
0.30 < z < 0.32 5.19 ± 0.11 0.18 ± 0.01 293.58 ± 2.01 4.65 ± 1.52 0.15 ± 0.05 277.89 ± 37.05
0.32 < z < 0.34 4.99 ± 0.18 0.18 ± 0.01 293.18 ± 1.92 4.39 ± 1.59 0.15 ± 0.06 280.66 ± 39.70
0.34 < z < 0.36 4.02 ± 0.09 0.19 ± 0.01 296.99 ± 2.07 4.15 ± 1.48 0.13 ± 0.06 274.22 ± 42.02
0.36 < z < 0.38 3.91 ± 0.09 0.18 ± 0.01 304.42 ± 2.18 3.80 ± 1.31 0.14 ± 0.06 276.20 ± 39.18
0.38 < z < 0.40 3.79 ± 0.10 0.19 ± 0.01 305.52 ± 2.47 3.69 ± 1.24 0.15 ± 0.06 279.81 ± 41.96

redshift, and are very flat in mostly all the models used in this analysis, unless few objects

are used for the stacking or for fitting in the given redshift bin. The SSP equivalent ages

from both fittings clearly show the age evolution with redshift or age-redshift relationship.

Low redshift objects are older than high redshift objects.

The mean velocity dispersions from the individual fits are less than velocity dispersions

from the stacked spectra, and are valid for all models. The possible systematic differences

between the two values are from the different methods used for their derivation. Apparently,

it is fairly noticeable, especially using the stacked fitting, that only VM and M11 models
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Table 3.12: SSP parameter results using stacked spectra and mean parameters using indi-
vidual fitting. Spectral fitting using BC03 models

Stacked spectra Individual spectra
Redshift Age [Fe/H] σ < Age > < [Fe/H] > < σ >

(Gyr) (dex) (km s−1) (Gyr) (dex) (km s−1)
0.10 < z < 0.12 6.12 ± 0.20 0.17 ± 0.00 284.46 ± 2.53 8.23 ± 1.65 0.15 ± 0.03 281.66 ± 37.17
0.12 < z < 0.14 6.75 ± 0.28 0.15 ± 0.01 269.99 ± 3.68 6.57 ± 1.68 0.11 ± 0.03 260.88 ± 42.12
0.14 < z < 0.16 5.68 ± 0.14 0.15 ± 0.00 262.65 ± 2.53 6.14 ± 2.30 0.15 ± 0.04 254.32 ± 29.78
0.16 < z < 0.18 6.70 ± 0.19 0.15 ± 0.01 264.07 ± 2.40 6.49 ± 2.37 0.17 ± 0.03 262.80 ± 29.70
0.18 < z < 0.20 7.22 ± 0.25 0.14 ± 0.01 271.51 ± 2.48 6.73 ± 1.96 0.16 ± 0.03 264.57 ± 31.75
0.20 < z < 0.22 5.25 ± 0.14 0.15 ± 0.01 262.39 ± 2.71 4.81 ± 2.65 0.18 ± 0.03 260.94 ± 32.41
0.22 < z < 0.24 5.30 ± 0.12 0.15 ± 0.01 268.37 ± 2.40 5.64 ± 1.93 0.17 ± 0.03 265.16 ± 32.52
0.24 < z < 0.26 4.94 ± 0.10 0.16 ± 0.01 272.19 ± 2.42 5.56 ± 1.79 0.17 ± 0.03 270.78 ± 35.25
0.26 < z < 0.28 4.92 ± 0.09 0.16 ± 0.01 269.52 ± 2.37 5.10 ± 2.20 0.18 ± 0.03 266.73 ± 35.03
0.28 < z < 0.30 4.84 ± 0.08 0.14 ± 0.01 263.88 ± 2.36 5.03 ± 1.72 0.18 ± 0.04 262.77 ± 32.61
0.30 < z < 0.32 4.47 ± 0.08 0.16 ± 0.01 271.23 ± 2.33 4.35 ± 1.82 0.17 ± 0.04 265.05 ± 36.53
0.32 < z < 0.34 4.38 ± 0.07 0.16 ± 0.01 272.04 ± 2.41 4.39 ± 1.59 0.17 ± 0.04 266.58 ± 38.92
0.34 < z < 0.36 4.09 ± 0.08 0.18 ± 0.01 268.23 ± 2.47 3.97 ± 1.34 0.17 ± 0.04 260.35 ± 40.53
0.36 < z < 0.38 3.87 ± 0.14 0.18 ± 0.01 274.51 ± 2.70 3.56 ± 1.25 0.17 ± 0.05 260.20 ± 38.67
0.38 < z < 0.40 3.73 ± 0.07 0.20 ± 0.00 277.87 ± 3.07 3.58 ± 1.14 0.16 ± 0.06 263.37 ± 42.27

Table 3.13: SSP parameter results using stacked spectra and mean parameters using indi-
vidual fitting. Spectral fitting using M11 models

Stacked spectra Individual spectra
Redshift Age [Fe/H] σ < Age > < [Fe/H] > < σ >

(Gyr) (dex) (km s−1) (Gyr) (dex) (km s−1)
0.10 < z < 0.12 5.08 ± 0.06 0.21 ± 0.00 295.27 ± 2.45 5.84 ± 1.75 0.15 ± 0.05 291.89 ± 37.24
0.12 < z < 0.14 5.06 ± 0.10 0.21 ± 0.00 282.98 ± 3.20 5.56 ± 1.63 0.17 ± 0.02 272.68 ± 42.28
0.14 < z < 0.16 4.89 ± 0.07 0.21 ± 0.00 280.86 ± 2.44 5.53 ± 1.59 0.19 ± 0.03 266.77 ± 31.88
0.16 < z < 0.18 5.04 ± 0.07 0.21 ± 0.00 280.35 ± 2.30 6.00 ± 2.34 0.17 ± 0.03 272.65 ± 27.98
0.18 < z < 0.20 5.07 ± 0.07 0.21 ± 0.00 288.66 ± 2.34 6.26 ± 2.21 0.16 ± 0.08 273.50 ± 30.92
0.20 < z < 0.22 4.73 ± 0.07 0.21 ± 0.00 283.36 ± 2.37 5.54 ± 2.24 0.13 ± 0.07 273.90 ± 31.10
0.22 < z < 0.24 4.71 ± 0.06 0.21 ± 0.00 285.12 ± 2.03 5.79 ± 2.22 0.12 ± 0.07 275.55 ± 33.48
0.24 < z < 0.26 4.65 ± 0.06 0.21 ± 0.00 288.13 ± 2.00 5.35 ± 1.51 0.12 ± 0.07 283.07 ± 36.00
0.26 < z < 0.28 4.57 ± 0.05 0.21 ± 0.00 289.86 ± 1.98 4.95 ± 1.44 0.14 ± 0.07 281.57 ± 35.49
0.28 < z < 0.30 4.47 ± 0.15 0.21 ± 0.01 282.56 ± 1.89 5.05 ± 1.26 0.12 ± 0.07 277.19 ± 33.54
0.30 < z < 0.32 4.46 ± 0.05 0.21 ± 0.00 298.70 ± 1.93 4.68 ± 1.45 0.11 ± 0.07 280.62 ± 37.35
0.32 < z < 0.34 4.34 ± 0.05 0.21 ± 0.00 296.08 ± 1.89 4.74 ± 1.53 0.12 ± 0.08 284.88 ± 41.50
0.34 < z < 0.36 4.18 ± 0.05 0.21 ± 0.00 299.70 ± 2.03 4.66 ± 1.50 0.10 ± 0.07 280.18 ± 44.27
0.36 < z < 0.38 4.11 ± 0.05 0.21 ± 0.00 307.65 ± 2.18 4.59 ± 1.44 0.10 ± 0.07 282.80 ± 41.35
0.38 < z < 0.40 4.00 ± 0.19 0.21 ± 0.02 305.50 ± 2.48 4.37 ± 1.30 0.09 ± 0.07 287.90 ± 47.42

provide very consistent velocity dispersions, which are due to the same stellar library (MILES)

used by both models. In addition, the age − σv of ETGs were found to follow a power-law

relationship with a slope which varies from 0.4 to 1.2 (e.g Caldwell et al., 2003; Liu et al.,

2012; Nelan et al., 2005; Smith et al., 2009; Thomas et al., 2005). The difference in the

age− σv scaling relation (slope) might be due to the differences in the sample selection and

the numerous calibrations before determining luminosity weighted ages (Nelan et al., 2005).

When performing a power-law fitting for each redshift bin, the mean values of the slope for

all redshift bins are found to fall in that range values. However the errors on the slope values
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which are the standard deviations are found to be higher since there are significant scatter

in the slope values. Each mean slope value from each model is given below.

The comparison between both ages using four models are shown in all panels (a) of

figures 3.18, 3.11, 3.20 and 3.13. In the same plots but panels (b), the comparison between

metallicities is presented, whereas the comparison of both velocity dispersions is shown in

panels (c). Those comparisons are with the error bars, not very noticeable for the results of

stacked spectra. The typical errors bars on the mean parameter values are 20 times bigger

than the typical error bars on the parameter values extracted from the stacked spectra fitting.

In the case of PE models, both ages agree with an rms difference of 1 Gyr. The obvious

discrepancies between the two age results are at z > 0.32. However, the metallicity values

from the stacked spectra fitting are almost stagnated at the value of 0.10 dex. Since the

metallicity is held fixed in the range of 0 < [Fe/H] < 0.2 dex and the initial guess at 0.10

dex, the error on this parameter is reported by the mpfit function as zero. The latter is

also available for the individual fits whose parameters hit the boundary limits. The fact of

limiting both parameters (age, metallicity) and the wavelength range probably explain the

constant value of metallicity. However, almost similar values with a little offset of ∼0.02 dex

are found with the individual fits but with errors. The rms difference between two values of

σv is 1.5 km s−1 in log value. The mean slope of the power-law relationship between age− σ
value for all redshift bins is 0.51 ± 0.34.

The SSP-equivalent ages extracted from the stacked spectra using VM models agree with

those from the individual fits with an rms difference of ∼0.08 Gyr without considering the

mean age at z = 0.17 where only few objects were fitted. The metallicities from the stacked

fits lie around 0.15 dex for almost 50 % of all values which agree with the estimated mean

values from the individual fits. The rms difference between two values of σv is roughly 1.5

km s−1 in log value, and the mean slope of the age − σ relationship is found to be 0.66 ±
0.57.

In the case of M11 models, there is a significant difference between all parameter values

from both fits. The age-redshift relation from the stacked spectra fitting is almost flat with

only 1 Gyr difference between age at z ' 0.11 and age at z ' 0.39. It is supposed to be

2.6 Gyr difference if the models follow the ΛCDM cosmology. These models are found to

underestimate the metallicity and age values. The limits of the grid in metallicity has been

reached therefore the fit fails and the returned error is zero. However, the case is different

on the mean ages and metallicities from the individual fitting apart from the low redshift

ones where few objects were fitted. The calculated rms difference between both ages is 1.5

Gyr. The estimated metallicities from the stacked spectra fitting are found to have the same

problem as those using PE models even though no wavelength range limits were set. The

poor sampling and coverage of stellar parameter space may explain this situation. The rms

difference between two values of σv is roughly 1.5 km s−1 in log value, and the mean slope of

the age− σ relationship is found to be 0.44 ± 0.30.
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Out of the four models used in this analysis, only BC03 models give reasonable agreement

in all parameters: ages, metallicities and velocity dispersions. Estimated parameters from

the stacked spectra agree with the mean parameters from the individual fitting, with an rms

difference of ∼0.7 Gyr in age (without considering ages at z = 0.10 where almost 2 Gyr of

difference was found, and few objects were co-added to form the stacked spectrum and to be

fitted individually) and 0.05 dex in metallicity and 1.2 km s−1 in logσv. Figure 3.22 shows

the comparison between estimated parameters from both fittings using BC03 models. The

mean slope value of the age-σv relationship is 0.80 ± 0.49 which is comparable to the value

found in Liu et al. (2012) while using the same models on LRG sample. They found a value

of 0.77 ± 0.25. Note that stellar templates from the BC03 models assembled by Tremonti

et al. (2004) were used to measure the original velocity dispersions of the sample used in this

analysis, which was performed by pPXF in GANDALF. These velocity dispersions were used

to select the final sample (see section 3.6.2). They are plotted in panel (b) of figure 3.22

in blue diamonds as a reference. This explains the consistency between the three values of

velocity dispersions. All results also yield to the remark that ELODIE and MILES libraries

provide higher velocity dispersions than STELIB library used in BC03 models.

3.7.7.6 Comparison between models

From the previous section, only BC03 models are able to give fairly consistent values in

all parameters using combined and individual spectra. But how are they compared to the

parameter values using the other models? The velocity dispersion values have been compared

in the previous section, therefore SSP-equivalent age and metallicity are used for comparison

in this section. Some metallicities stay constant for some models when using the stacked

spectra fitting. Thus the model comparison focuses on SSP mean results from the individual

fitting.

Figure 3.23 shows the comparison between the mean SSP-equivalent ages extracted from

the individual fitting using PE, VM, BC03 and M11 models. Figure 3.24 represents the

comparison between the mean metallicities results from fitting individual galaxy with VM,

BC03 and M11. Out of the four models, PE models give the lowest metallicities (see table

3.10). Therefore, it is not worth comparing these metallicities with the other results. In all

plots, the upper panels represent either age or metallicity comparison between two models,

whereas all residuals are plotted in lower panels.

The PE-VM comparison between ages (panel (a)) reveals a consistency more specifically

at high redshift z & 0.20 with an rms less than 0.5 Gyr. When performing a comparison

between these two models, Koleva et al. (2008) also found a relative consistency between

both results in high metallicity. The differences in values at low redshift z . 0.20, which are

valid in all models, come from the fact of using a smaller number of galaxies within redshift

bins and from the models themselves. Each model was generated using its own ingredient

(please refer to the section 3.7.7.2 for more details). PE-BC03 comparison between ages
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Figure 3.18: Comparison of the SSP properties extracted from the stacked spectra (black
squares) and the average parameters of the individual fitting (red diamonds) by using PE
models. Panel (a), (b) and (c) shows the SSP equivalent ages, metallicities and velocity
dispersions in each redshift bin from both fitting. For the reconstruction of the age-redshift
relation, the dot-dashed line indicates age of the Universe tU(z) - 5.4 Gyr in the ΛCDM
cosmology and it is only for reference. Panel (b) illustrates the chemical evolution of the
population. Both fittings show flat metallicities, meaning there is no evolution. A little offset
of 0.002 was applied to the redshift for clarity.

(panel (b)) shows an rms of 1 Gyr over all redshift. It shows a reasonable consistency as

claimed by Koleva et al. (2008) and confirmed here, whereas PE-M11 (panel (c)) comparison

shows a 1 Gyr difference in age at high redshift. All comparisons with PE models yield to

the conclusion that restricting the wavelength of the fits with these models do not provide

any significant biases.

The comparisons of all models with M11 (panels (c), (e), (f) of figure 3.23 and panels

(b), (c) of figure 3.24) remarkably show a significant rms about 2 Gyr in age and 0.07 dex in

metallicity. However, a precise agreement is found between BC03 and VM models in almost

all ages (rms < 0.5 Gyr) at the same metallicities (rms < 0.05 dex). These two models

give the best consistency between age and metallicity in overall comparisons. Despite the

inaccuracy of the wavelength calibration and poor metallicity coverage of BC03, our results
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Figure 3.19: Comparison of the SSP properties extracted from the stacked spectra (black
squares) and the average parameters of the individual fitting (green diamonds) by using VM
models. Panel (a), (b) and (c) shows the SSP equivalent ages, metallicities and velocity
dispersions in each redshift bin from both fitting. For the reconstruction of the age-redshift
relation, the dot-dashed line indicates age of the Universe tU(z) - 5.4 Gyr in the ΛCDM
cosmology and it is only for reference. Panel (b) illustrates the chemical evolution of the
population. Both fittings show flat metallicities, meaning there is no evolution. A little offset
of 0.002 was applied to the redshift for clarity.

indicate that BC03 and VM models can better fit older galaxies with high metallicity such

as LRGs, followed by the PE models and lastly the M11 models. The failure of M11 models

is most probably due to the lack of the parameter coverage and sampling. Dias et al. (2010)

performed extensive comparisons between different models using full spectral fitting with

ULySS and STARLIGHT packages on star clusters. Models used are PE, BC03 and VM.

They found that the choice of codes has more impact on the results than the choice of the

models. Nonetheless, PE vs BC03 comparison showed the best agreement between age and

metallicity using both packages. Both models can better fit intermediate age objects with

subsolar metallicity.

Since the model of Lick absorption indices of TMJ uses the same evolutionary population

code as M11, it is more reasonable to compare SSP results from both models with same
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Figure 3.20: Comparison of the SSP properties extracted from the stacked spectra (black
squares) and the average parameters of the individual fitting (blue diamonds) by using BC03
models. Panel (a), (b) and (c) shows the SSP equivalent ages, metallicities and velocity
dispersions in each redshift bin from both fitting. For the reconstruction of the age-redshift
relation, the dot-dashed line indicates age of the Universe tU(z) - 5.4 Gyr in the ΛCDM
cosmology and it is only for reference. Panel (b) illustrates the chemical evolution of the
population. Both fittings show flat metallicities, meaning there is no evolution. A little offset
of 0.002 was applied to the redshift for clarity.

ingredients than those from other models like PE, or BC03 or VM. As seen in section 3.7.6,

age estimates using the Lick index fitting are very old. Compared with the M11 models, there

are more than 4 Gyr difference between both SSP-equivalent ages. However, the metallicity

from both models seems to agree with an rms difference of about 0.07 dex. Note that the

metallicity expressed as [Z/H] in the Lick index models was transformed into [Fe/H] notation

by using the definition in equation 2.3 in chapter 2 for consistency. The reason for this

significant difference in ages comes from the lack of sampling of M11, or the use of only few

indices with TMJ compared with all informations (features) used in full spectrum fitting.
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Figure 3.21: Comparison of the SSP properties extracted from the stacked spectra (black
squares) and the average parameters of the individual fitting (yellow diamonds) by using
M11 models. Panel (a), (b) and (c) shows the SSP equivalent ages, metallicities and velocity
dispersions in each redshift bin from both fitting. For the reconstruction of the age-redshift
relation, the dot-dashed line indicates age of the Universe tU(z) - 5.4 Gyr in the ΛCDM
cosmology and it is only for reference. Panel (b) illustrates the chemical evolution of the
population. Both fittings show flat metallicities, meaning there is no evolution. A little offset
of 0.002 was applied to the redshift for clarity.

3.7.7.7 Reliability of the fits on the combined spectra

Since SSP fitting always involves the problem of degeneracy between parameters and multiple

local minima in the parameter spaces, it is important to check the reliability of the fitting and

validate all SSP results. Firstly, it has been shown in the previous section that using different

models gives consistent results despite the numerous differences in the model ingredients.

Moreover, ULySS provides some good ways to validate the results of the fitting, such as the

Monte Carlo simulations, χ2 maps and convergence maps. In addition, a comparison with

previous works is also another technique to test the results.

Monte Carlo (MC) simulations and convergence maps were performed to visualise the

degeneracies and multiple minima in order to validate the SSP results. A series of 500 MC
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Figure 3.22: Comparison between the SSP properties extracted from the stacked spectra
and the average parameters of the individual fitting (black circles) by using BC03 models.
The dashed lines represent the one-to-one relations. All lower panels illustrate the residuals
between the two values. The blue diamonds represent the original values of velocity disper-
sions calculated through pPXF/GANDALF routines, which used to select the final sample.

simulations were performed. In each step, MC simulations repeat a fit by adding a random

Gaussian noise to the spectrum. The amplitude of the added noise was based on the estimated

noise associated with the observed spectrum. The same S/N determined for the Lick index

measurement on the co-added spectra was applied. The same setting as in section 3.7.7.3
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was applied to the fits: same wavelength ranges, same prior on metallicity and age. The SSP

estimated values were then the mean values of the distributions of the simulations, while the

corresponding errors were calculated from the standard deviation of the distributions.

Table 3.14: Monte Carlo simulation results on the stacked spectra. “Age-fit” is the age
from the best fit, while“Age-mc” is the age from the simulations. Errors on the age-fit are
the 1-σ computed from the covariance matrix by mpfit function.

PE models VM models BC03 models M11 models
Redshift Age − fit Age − mc Age − fit Age − mc Age − fit Age − mc Age − fit Age − mc

(Gyr) (Gyr) (Gyr) (Gyr) (Gyr) (Gyr) (Gyr) (Gyr)
0.10 < z < 0.12 6.34 ± 0.05 6.21 ± 0.06 7.05 ± 0.13 7.70 ± 0.99 6.11 ± 0.11 7.76 ± 0.13 5.08 ± 0.03 5.29 ± 0.51
0.12 < z < 0.14 6.55 ± 0.08 6.48 ± 0.09 6.88 ± 0.19 5.63 ± 0.76 6.74 ± 0.15 6.43 ± 0.28 5.05 ± 0.06 5.19 ± 1.12
0.14 < z < 0.16 5.99 ± 0.06 6.11 ± 0.08 6.02 ± 0.08 6.03 ± 0.09 5.68 ± 0.07 6.61 ± 0.49 4.88 ± 0.03 5.47 ± 1.57
0.16 < z < 0.18 6.17 ± 0.05 6.31 ± 0.07 6.77 ± 0.22 6.77 ± 0.42 6.70 ± 0.09 6.92 ± 0.39 5.03 ± 0.03 5.50 ± 1.39
0.18 < z < 0.20 5.93 ± 0.05 6.04 ± 0.08 6.28 ± 0.16 6.28 ± 0.35 7.21 ± 0.10 6.91 ± 0.24 5.06 ± 0.03 6.18 ± 2.29
0.20 < z < 0.22 5.74 ± 0.09 5.73 ± 0.14 5.76 ± 0.05 5.72 ± 0.28 5.25 ± 0.05 5.52 ± 0.11 4.73 ± 0.03 5.43 ± 1.54
0.22 < z < 0.24 5.92 ± 0.04 6.10 ± 0.07 5.90 ± 0.05 5.85 ± 0.05 5.29 ± 0.04 5.66 ± 0.19 4.70 ± 0.02 9.37 ± 2.70
0.24 < z < 0.26 5.16 ± 0.07 5.73 ± 0.12 5.76 ± 0.05 4.13 ± 0.02 4.94 ± 0.03 5.36 ± 0.04 4.64 ± 0.02 7.70 ± 3.03
0.26 < z < 0.28 5.51 ± 0.06 5.67 ± 0.17 5.59 ± 0.04 4.66 ± 0.74 4.91 ± 0.03 5.36 ± 0.05 4.57 ± 0.02 4.62 ± 0.01
0.28 < z < 0.30 4.96 ± 0.05 5.48 ± 0.10 5.45 ± 0.03 5.50 ± 0.02 4.83 ± 0.03 5.33 ± 0.04 4.47 ± 0.06 4.47 ± 0.01
0.30 < z < 0.32 4.92 ± 0.06 5.16 ± 0.15 5.18 ± 0.04 4.74 ± 0.32 4.46 ± 0.02 4.45 ± 0.01 4.46 ± 0.02 4.37 ± 0.01
0.32 < z < 0.34 4.71 ± 0.04 4.86 ± 0.11 4.98 ± 0.06 4.10 ± 0.33 4.38 ± 0.02 4.41 ± 0.02 4.33 ± 0.01 4.29 ± 0.01
0.34 < z < 0.36 4.83 ± 0.05 4.67 ± 0.17 4.02 ± 0.03 4.03 ± 0.29 4.08 ± 0.02 3.89 ± 0.03 4.18 ± 0.02 4.15 ± 0.02
0.36 < z < 0.38 4.69 ± 0.05 4.46 ± 0.23 3.91 ± 0.04 3.76 ± 0.03 3.87 ± 0.05 3.75 ± 0.02 4.11 ± 0.02 4.01 ± 0.01
0.38 < z < 0.40 4.28 ± 0.11 4.20 ± 0.19 3.79 ± 0.05 3.70 ± 0.05 3.72 ± 0.03 3.67 ± 0.05 3.99 ± 0.10 4.01 ± 0.02

Convergence maps were performed to visualise the local minima in the parameter space.

These show the convergence paths from a grid of guesses to the individual SSP results. The

results are supposed to be independent regardless of the number of initial guesses. In all

cases, the adopted convergence maps led to the original best fit solutions, meaning consistent

results. All of these indicate the robustness of the full spectral fitting with ULySS package.

Table 3.14 presents the age results of the MC simulations applied to the combined spectra.

Both techniques give consistent results even though some deviations are found in some redshift

which may be caused by the limitation on the parameters and the effect of the estimated noise.

In addition, uncertainties from the MC simulations are larger because these simulations take

into account the age-metallicity degeneracy while uncertainties estimated from the normal fit

do not. The effect of the limits on metallicity is also apparent when using both techniques,

precisely when performing fits with PE and M11 models. Although, there is a large difference

between both derived ages for the BC03 models in the lowest redshift bin. This is might due

to the estimated noise because when the convergence and χ2 maps were performed, both

results converge to the best fit results.

3.8 Age-redshift relationship

The important part of measuring the H(z) is through the age-redshift relationship of passive

elliptical galaxies. The accuracy of the H(z) measurement comes from well constructed

evolution of the mean luminosity weighted age. Different age-redshift relationships from each
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fitting are presented in this section.

3.8.1 Stacked spectra - Lick indices fitting

As mentioned in section 3.7.6, the use of the Hβ index as an age indicator with the combina-

tion of metallicty indices Mgb, <Fe> does not provide a very accurate age-redshift relation.

Apparently, the HγF index instead of the Hβ does not provide one either, but gives a steeper

slope on the age-redshift relation. Further fitting analysis was made to constrain the age-

redshift relation. We set some priors on [Z/H] and [α/Fe]. The limit of [Z/H] was set to be

in the range of 0.20 < [Z/H] < 0.30 dex, while the [α/Fe] limits were 0.20 < [Z/H] < 0.4 dex

as the metallicity and the α-element of LRGs are found to be in those ranges. This time,

however, the combination of HγF , Mgb, and <Fe> was used.

The reconstruction of the age-redshift relation is plotted in figure 3.25, showing the impact

of putting some priors on [Z/H] and [α/Fe] parameters. There is a little change especially

with a slope of the age-redshift relation, following ΛCDM with exception at high redshift.

However the SSP equivalent ages stay older as in figure 3.11 panel (a). The evolution in

[α/Fe] with redshift is somewhat the same as in 3.11 panel (c). [Z/H] are mostly constant,

unlike those in figure 3.11 panel (b). However the uncertainty on each parameter decreases .

The scatter of the age estimates over the redshift range is about 5 Gyr as expected from the

ΛCDM model and consistent with previous work by Carson & Nichol (2010).

3.8.2 Stacked spectra - full spectrum fitting

Figure 3.26 presents the age-redshift relationship from the full spectral fitting of the combined

spectra using PE, VM, BC03 and M11 models. The overall SSP equivalent ages are fairly

consistent with each other, with the exception of the M11 models. Details on the comparison

is found in section 3.7.7.6. Each model is able to estimate a well defined and expected

age evolution with redshift: galaxies become younger with redshift , and follow the ΛCDM

cosmology, apart from the M11 models where it is almost flat (1 Gyr difference). This leads

to the confirmation that these objects were approximately formed at the same time, a age

formation around 5.4 Gyr. When using BC03 models, the age-redshift result found in this

analysis is quite similar to the age-redshift relation found in Liu et al. (2012). It is important

to note that all derived ages as well as the results found in Liu et al. (2012) are relative ages.

As stated before, the error bars on the ages were obtained by scaling the parameter errors

by the measured χ2 values. Large error bars are noticeable at low redshift z < 0.20, where

few objects (see figure 3.6) were stacked to form the combined spectra, and where ages are

evolving differently: they exhibit more scatter. At high redshift z > 0.20, the evolution of

age is more stable. For the number of objects at low redshift, only ages above the redshift

0.20 were considered for the H(z) measurements.

82



3. H(z) measurement with SDSS-LRGs

3.8.3 Individual spectra - full spectrum fitting

It is necessary to know if the physical properties of galaxies extracted from the combined

spectra in each redshift bin represent the mean properties of all galaxies. As described in

section 3.7.7.5 the mean ages and metallicities, with the exception of the velocity dispersions

obtained from individual fitting are still consistent with that obtained from the combined

spectra fitting, when appropriate calculation of the mean was used. In this section, we also

present the difference in the output results when using mean, median and weighted mean.

Figure 3.27 shows the weighted mean of the ages which have already been presented in

section 3.7.7.5. Here they are plotted with their associated errors which are obtained from

the weighted standard deviation. For clarity only, estimate ages from the same redshift bin

with different SSP models are plotted with small offsets. The reason for this is to clearly

distinguish each age. As when using combined spectra, the evolution in age with redshift

shows the expected behaviour, following a ΛCDM cosmology models, although, the significant

scatter is still present at low redshift z < 0.20. The estimate ages in that redshift are also

not used for H(z) measurements.

To overcome the problem at low redshift, the median, and the mean of ages were also

calculated. Figures 3.28, 3.29, 3.30 and 3.29 illustrate the comparison between the three

values of ages with different models. The open squares on each plot are weighted mean ages

with associated errors obtained from the weighted standard deviation. All filled squares are

mean ages and filled diamonds are median ages. Mean and median ages are plotted without

associated error bars. The mean ages would be associated with the standard deviation of

the sample. However the median ages would be associated with the error on the mean. The

scatter in age values at low redshift is still present either using median or normal mean,

whereas they are very stable and follow the same trend as the weighted mean ages at high

redshift. The normal mean age values are greater than the weighted mean and the median

values. The median and normal mean values depend on the distribution of the individual age

of galaxy.

The individual fits (grey points in all plots) are different from model to model. In each

individual fitting with models, few ages touch the boundary limitation, which is the age of the

Universe. These ages have contributed less in the measured weighted mean ages since their

errors were automatically returned as zero by the MPFIT function, hence high confidence

in the weighted mean age values. These are due to the reasons as stated before (low S/N,

spectral quality of models and the observed, etc.). The number of galaxies that fall into this

situation changes with models. With M11 models, the number is very high. The estimate

ages are almost scattered around young ages (4 - 5 Gyr) over the entire redshift. However,

with the other models, the spread of the estimated ages are mostly from 4 Gyr to 9 Gyr

without considering the ages near the edge.
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3.9 H(z) estimates

By using the age-redshift relation at z > 0.20, the Hubble parameter H(z) can now be

determined. The point is to use all available ages in that redshift. We therefore adopted

the linear fitting procedure to fit ages in a specific redshift bin. If the straight line is given

by t = Az + B and the error on ages are σti, the best fit parameters were returned by the

mpfit function. The advantage of the MPFIT function is that by giving the name of the

function it iterates multiple times toward the best solution and returns the 1-σ errors on the

parameters. Recalling the definition of H(z) in chapter 1 equation 1.17, the slope A of the

fit will be the value of dt/dz. Hence, the Hubble parameter at the effective redshift is given

by the following equation:

H(zeff) = − 1

(1 + zeff)

(
dt

dz

)−1

(3.22)

where zeff = (zmax + zmin)/2. The difference ∆z in zmin and zmax should not be great and not

be small. After testing different ∆z (from lowest 0.8 to highest 0.16), the optimized ∆z was

0.14 with which all ages have been used and the number of ages were the same. This implies

8 age datapoints were used in each subsample, leading to 3 values of H(z) at z ' 0.32, z '
0.30 and z ' 0.28. The corresponding error on the H(z) was obtained by using the error

propagation technique, and it is given by:

σH =
1

(1 + zeff)

σslope

slope2
(3.23)

where the σslope is the error on the slope A and which is the 1-σ error returned by the

MPFIT function. Table 3.15 lists the results of the parameter fits and the estimated H(z)

using PE, VM, BC03, M11 and TMJ models. We also present H(z) values when fitting all

ages (10 datapoints) over the redshift range 0.20 < z < 0.40. Columns named (1) lists H(z)

estimates calculated over 0.24 < z < 0.40, columns named (2) over 0.22 < z < 0.38, columns

named (3) over 0.20 < z < 0.36, whereas columns named (all) lists H(z) estimates over the

entire redshift 0.20 < z < 0.40. All parameter fits expressed with the footnote “ a” are results

from ages extracted from the stacked spectra fitting, whereas the footnote “b” represents all

parameter fits when using mean ages from individual fits.

Figure 3.33, 3.34, 3.35 and 3.36 show the estimates H(z) using the different models using

age-redshift relations at z > 0.20. The ages extracted from the stacked spectra, and mean

ages (weighted mean) were used to determine three different H(z) values. Again, the errors

associated with the ages from the stacked spectra fitting are the scaling errors; while the errors

associated with the mean ages from the individual fits are the weighted standard deviation.

Looking at each measurement, BC03 models are the only models which can give reasonable

values in both fittings. The H(z) results match the ΛCDM cosmology. The use of the mean

ages does provide significant uncertainties on the H(z) estimates. We will consider the H(z)
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measurements by using the ages extracted from the full spectral fitting of the stacked spectra

for further analysis. The use of the BC03 models to age-date passively evolving ellipticals

allows us to measure the H(z) using the cosmic chronometers method. These models are very

efficient in constructing accurate age-redshift relationship, hence reliable H(z) measurement.

This study confirms the use of BC03 models by many scientists who have worked on the

cosmic chronometers technique (e.g. Jimenez et al., 2003; Liu et al., 2012; Simon et al., 2005;

Stern et al., 2010a; Zhang et al., 2012). It does not mean that the other models do not

fit the passively evolving ellipticals. They fit but the sensitivity of the models leads to the

inaccuracy of the age-redshift relationship hence failure of the H(z) measurement.

Table 3.15: Results of the linear fitting using ages extracted from the stacked spectra (a)
and using the mean ages from the individual fitting (b). Columns named (1), (2), (3) show
results from fitting the three subsamples of ages, where H(z) measurements are at z ' 0.32,
z ' 0.30 and z ' 0.28 respectively. Columns named “all” show results from fitting all the
ages in 0.20 < z < 0.40, where all H(z) measurements are at z ' 0.30. H(z) is in units of
km s−1Mpc−1.

PE models VM models BC03 models

1 2 3 all 1 2 3 all 1 2 3 all

slopea -6.10 -8.60 -9.26 -8.47 -16.5 -16.17 -13.1 -13.97 -9.64 -9.58 -8.85 -9.33
σaslope 1.3 1.04 1.16 0.88 0.78 0.82 0.88 0.60 0.66 0.82 0.78 0.54
Ha 121.3 87.5 82.5 88.7 44.8 46.5 58.3 53.8 76.7 78.4 86.2 80.5
σaH 26.8 10.6 10.4 9.3 2.1 2.3 3.9 2.3 5.3 6.7 7.6 4.6

slopeb -16.75 -17.96 -14.86 -15.23 -13.78 -15.82 -12.48 -12.92 -14.47 -15.47 -11.72 -12.53

σbslope 11.29 12.20 12.25 8.01 11.62 12.56 13.98 9.15 11.8 12.43 13.93 9.12

Hb 44.2 41.9 51.4 49.3 53.7 47.5 61.2 58.2 51.1 48.6 65.2 60

σbH 29.7 28.4 42.3 25.9 45.3 37.7 68.5 41.2 41.7 39.1 77.5 43

Table 3.15: continued.

M11 models TMJ models

1 2 3 all 1 2 3 all

slopea -4.61 -4.37 -3.90 -4.14 -24.34 -23.94 -24.51 -23.34
σaslope 0.50 0.42 0.44 0.36 1.01 1.08 0.86 0.61
Ha 160.5 172.1 195.6 181.3 30.4 31.4 31.1 32.2
σaH 17.7 16.7 22.0 15.9 1.0 1.0 0.8 0.8

slopeb -5.83 -6.82 -7.50 -6.62

σbslope 10.89 12.56 13.65 9.05

Hb 126.9 110.2 101.7 113.5

σbH 237.2 202.9 185.0 155.1
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3.10 Effect of systematic errors

There are different sources of error in the H(z) estimate such as a statistical error and a

systematic error. The statistical error is related to the age measurement itself. It is related

to the weighted standard deviation for the individual fitting whereas to the covariance matrix

for the stacked spectra. A full description about possible sources of the systematic errors is

given below. There are many sources of systematic errors as discussed by various scientists

who have worked on Cosmic Chronometers technique (Jimenez et al., 2003; Moresco et al.,

2012a).

Firstly, the dependence of the stellar population models adopted is one factor. Each

model has its own ingredients and settings to build the parameter grids (IMF, stellar library,

wavelength range, sampling and coverage of stellar parameter space etc.). All four models

are probably different among each other over the whole wavelength range. Therefore there

are always some discrepancies in the parameter outputs of these models. In the case of the

stacked spectra, the systematics errors between the different age-redshift relations (figure

3.26) seem to dominate the statistical ones (output errors from the fitting procedure). But

they are less dominant for the age-redshift relation from the full spectral fitting. This model

dependence obviously provides some changes onH(z) estimates (figures 3.33, 3.34, 3.35, 3.36).

The dispersion between these H(z) measurements would then quantify the systematic errors

σsystH and will be assumed as the final errors. Each H(z) measurement at each effective

redshift is thus estimated as the weighted mean of the H(z) values. M11 models provided a

very different age-redshift relation among the others models due to the limited sampling and

parameters coverage, we excluded these models for the analysis of systematic error effects on

H(z) measurements.

For the stacked spectra, the expected final values of H(z) at z ' 0.28, z ' 0.30 and

z ' 0.32 are 65.9 ± 19.2 km s−1 Mpc−1, 51.3 ± 32.0 km s−1 Mpc−1 and 49.5 ± 54.3 km

s−1 Mpc−1 respectively. For the individual spectra, the expected final values of H(z) at

z ' 0.28, z ' 0.30 and z ' 0.32 are 56 ± 8 km s−1 Mpc−1, 45.1 ± 3.7 km s−1 Mpc−1 and

48.1 ± 5.2 km s−1 Mpc−1 respectively. Despite using different ingredients, the systematic

errors among the three models were at < 14% level for the individual fitting, but could be

reduced if models with similar ingredients are carefully chosen. We also notice that the H(z)

measurements are less independent of the spectra used whether they are stacked or single for

the fits. Both fits usually gave consistent relative ages. The individual spectra should have

at least at medium S/N and resolution to avoid surpassing or hitting the age of the universe.

Most of the galaxies in our sample have S/N slightly higher than 10.

The relative ages of LRGs were obtained by assuming a single-burst and single metallicity

stellar population model. We also tested whether there are some contributions from the

possible younger stellar populations in the derived ages. We run the test on the stacked

spectra by applying the full spectral fitting. We fitted two stellar components of one young
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(from 0.1 Gyr to 2 Gyr) and one old (from 2 Gyr - age of the Universe) stellar populations and

found that the fraction of the young population is negligible. These galaxies do show passively

evolving populations and not experience any significant recent star formation activity even

at low redshift. In case there are young populations, their ages do not surpass 1.2 Gyr. All

of these tests suggest that our new selection/identification criteria along with the quiescent

galaxy selection provide a very homogeneous passively evolving galaxy sample.

Many studies have proved that massive ellipticals are enhanced in α elements with respect

to solar neighbourhood (e.g. Thomas et al., 2003; Worthey et al., 1992). The effect of the

α-abundance inclusion is remained a subject of discussion. We have shown the effect of

putting some priors on the [α/Fe] parameter while extracting SSP equivalent ages using

Thomas et al. (2011) models. In order to study the detailed effect of α-abundance inclusion

on measurements of H(z), the use of SSP models with variable chemical composition is

necessary, especially for the full spectral fitting method.

There are many systematic errors in the line-strength indices such as flux calibration

effects; spectral resolution and velocity dispersion corrections; telluric effects; sky subtraction

uncertainties; wavelength calibration and radial velocity errors; scattered light effects; seeing

and focus corrections; deviation from linear response of the detectors and contamination by

nebular emission lines (Cardiel et al., 1998). The study of the effect of all systematics are

beyond of the current study. However, we have taken into account the effect of the radial

velocity errors, velocity corrections and the contamination by nebular emission lines. Errors

on the radial velocity and velocity dispersion when co-adding a big number of spectra became

negligible. The uncertainty in the calibration to the Lick/IDS system affects objects at all

redshift. However, the telluric sky-line contamination affects different indices for objects

at different redshifts. This is avoidable by determining the right redshift range that is not

affected by telluric features, and the level of the contamination which is acceptable.

3.11 Comparison with other studies

The key novelty of this study is the use of an alternative LRG selection/identification criteria.

Previous selection criteria are based on apparent magnitudes and well defined by Eisenstein

et al. (2001), whereas absolute magnitudes were used in this study. These new selection

criteria led to a more homogeneous sample of galaxies (Crawford et al., 2010a). The similarity

of this study to the work of Carson & Nichol (2010); Liu et al. (2012); Zhang et al. (2012) is

the use of the archive data from SDSS DR7. Our selection criteria identified 50 425 galaxies

in SDSS DR7 whereas 77 000 and 71 971 galaxies were selected by Carson & Nichol (2010)

and Liu et al. (2012) respectively, by using the previous selection criteria. Zhang et al. (2012)

used the same original sample as in Carson & Nichol (2010). In term of selecting quiescent

galaxies, all of them used the same criteria as in Carson & Nichol (2010) which are based on

zero Hα, Hβ and [OIII]λ5007 emission lines with the definition of the line-strengths of the
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MPA-JHU catalogues (with small zero offsets) (Tremonti et al., 2004). However, our emission

line measurements were performed by GANDALF software, and they do not show any zero

offsets. With our strict selection, we obtained a 10% of our original sample that we referred

to as a sample of quiescent galaxies. However, the others studies obtained more than 30% of

their original samples.

Another specification of this study is also the thorough comparison of different techniques

of age-dating, from the use of the so-called Lick index method to the full spectral fitting.

Carson & Nichol (2010) calibrated, for the first time, the SDSS spectra onto Lick/IDS system.

They also co-added LRG spectra in each redshift bin in order to increase the S/N. They

estimated ages of the combined spectra by using the Lick absorption line indices, compared

with the SSP models of Korn et al. (2005) (older version of the TMJ models). They stopped

at the age-redshift relation determination at redshift z ∼ 0.03 − 0.40 of four different sub-

samples according to their velocity dispersions. No further constrains on neither the Hubble

parameter nor the cosmological parameters were carried out. However, Liu et al. (2012)

followed the same steps as Carson & Nichol (2010), but instead of the Lick index method

they used the full spectral fitting with ULySS software adopting the Galaxev or BC03 models.

From the age-redshift relation fitting, they estimated four different Hubble parameters at the

present time H0 for the four sub-samples. They did compare different models other than

BC03 models and found that there is some model dependence which we have concluded in

this study as well. They also did not include the effect of systematics from this. They

concentrated on the derivation of the parameter H0 but did not pay to much attention on

the expansion rate over cosmic time H(z). Meanwhile, Zhang et al. (2012) used the same

sample as in Carson & Nichol (2010), but did not combine spectra. They extracted fairly

high S/N spectra instead. They fitted each galaxy with BC03 models, and established an age-

redshift relation from which a four new H(z) values were measured. They also constrained

on cosmological parameters using their values combined with other available datasets.

Our method is not far from what these three studies have accomplished. By comparing

our results with Carson & Nichol (2010), we confirmed that putting some priors on [Z/H]

and [α/Fe] and using a combination of HγF with Fe lines provided a well defined age-redshift

relation even though different sets of SSP models were used. Therefore no improvement was

made in this regard.

The age-redshift relation, when the stacked spectra was used for the full spectral fitting

with BC03 models, was in good agreement with what Liu et al. (2012) obtained in their

second subsample with redshift step different from ours (δz = 0.03). The amount of less

massive galaxies (i.e. in the same velocity dispersion range as their second subsample) in

our sample is very high, hence similar ages. Our big improvement over Liu and collaborators

work was the establishment of the expansion rate over cosmic time and the cosmological

constraints. In addition, their H0 values (without considering any systematics) obtained

from the sub-sample with high velocity dispersions, by assuming a flat ΛCDM, were not as
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good as what we obtained in this study (see Chapter 5 for our values). This means that the

more datasets used the more accurate the results on cosmological parameters were.

The full spectral fitting with BC03 models was also applied to each of our galaxies as

in Zhang et al. (2012). We measured H(z) by using the mean relative ages of galaxies in

each redshift bin. Our H(z) value at z '0.28 was not as good as their value. They found a

value of H(z ' 0.28) = 88.8 ± 36.6 km s−1 Mpc−1 (no systematic error added) whereas we

found a value of 55.1 ± 41.72 km s−1 Mpc−1 . This difference might be due to the different

ways of dealing with galaxy ages in each bin and number of galaxies per bin. However, a big

improvement was found when using the relative ages of galaxies extracted from the stacked

spectra with a value of H(z ' 0.28)= 76.8 ± 5.3 km s−1 Mpc−1. Simon et al. (2005) found a

value of H(z)= 77 ± 14 km s−1 Mpc−1 at z ' 0.27 which is not far from our redshift. They

used a combination of passively evolving galaxy samples from different surveys. We found

a remarkable agreement between both measurements with an improvement in terms of the

error bar without considering any systematics. It is also important to note that Simon and

collaborators did not include any effect of the systematics on their measurements.

By applying the same technique of Cosmic Chronometers, there is no available H(z) value

in the literature at z ' 0.30 and z ' 0.32 to be compared with our measurements, making our

two values new measurements to complete the observational Hubble parameter H(z) data.

The comparison plot between our dataset and the other H(z) estimates is shown later in

Chapter 5. Datasets from Moresco et al. (2012a); Simon et al. (2005); Stern et al. (2010a);

Zhang et al. (2012) are included to check the H(z) evolution up to z ∼ 1.8.

3.12 Conclusion

In this chapter, we have used 4 428 passively evolving elliptical galaxies extracted from SDSS-

DR7 by using different selection criteria which are based on the rest-frame magnitude and

colour. The original sample is in the redshift range 0.10 < z < 0.40. Further selection

has been applied to the original sample to create a quiescent sample free from any emission

lines and a sample which contains massive galaxies. We have divided the redshift range

into 15 redshift bins with a step of δz=0.02. Two different fitting techniques have been

used in order to obtain SSP equivalent ages of the galaxies: the use of Lick indices and full

spectral fitting. In order to improve the fits, all galaxy spectra within redshift bin have been

combined to obtain a high S/N spectrum. On the one hand, the SSP equivalent luminosity

weighted ages, metallicities and α-elements of those galaxies were obtained, using the Lick

absorption indices models of Thomas et al. (2011). One the other hand, the SSP equivalent

ages, metallicities and velocity dispersions of the same galaxies have been extracted from the

combined spectra, and their mean values by performing individual fitting in each spectrum

for comparison. PEGASE-HR, VAZDEKIS, GALAXEV and Maraston (2011) models have

been adopted during the full spectral fitting. Detailed comparisons between the models have
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been carried out in this analysis.

We find that SSP models of Maraston (2011) do not give a perfect age-redshift relationship

either using combined spectra or individual fitting. However, the other three models can

give reasonable results and they are comparable to each other. The consistency between

parameters results are due to the ingredients from which the modellers computed their SSP

models. M11 models have a lack of sampling and parameter coverage. BC03 and VM models

agree with ages at metallicities with an rms difference less than 0.5 Gyr in age and less than

0.05 dex in metallicity respectively. The little difference between BC03 and VM models with

PE models might probably be due to the limitation on the parameters and the wavelength

range applied to the fitting with PE models. Some scatter is found in the ages at low redshift

z < 0.20 due to the lack of the number of galaxies to be combined to form the high S/N

spectra, and to be fitted individually in order to calculate the mean parameters. From this,

only ages at high redshift z > 0.20 were used to measure the Hubble parameters H(z). We

also find that the physical properties derived from the combined spectra fitting represent the

mean properties of all galaxies in the redshift bin, since both derived parameters are very

consistent.

Even though we are confident with our sample selection, particularly when considering

the emission lines corrected spectra, the Lick indices fitting shows a significant difference in

the derived SSP ages. We have applied a normal calibration correction onto the measured

line-strength indices. The different type of correction has potentially introduced some errors

into the measured line-strength, hence affecting the accuracy of the estimate results. We find

that our SSP parameter results depend on the choice of the set of indices. We confirm that

the use of the combination of HγF , Mgb and <Fe> indices provides a well defined age-redshift

relationship but still old ages.

The Hubble parameter H(z) has been estimated using the differential technique on the

age-redshift relation produced by SSP ages extracted from each model. The values of H(z) at

z ' 0.28, z ' 0.30 and z ' 0.32 were measured. Table 3.15 summarizes all values. We have

demonstrated that the age-redshift relation of the quiescent passively evolving galaxies fitted

with BC03 models can reliably be used to measure the Hubble parameters H(z) at z ' 0.28,

z ' 0.30 and z ' 0.32, and their values are 76.8 ± 5.3 km s−1 Mpc−1, 78.5 ± 6.8 km s−1

Mpc−1 and 86.3 ± 7.6 km s−1 Mpc−1 respectively. These values were obtained by fitting high

S/N spectra, and are within 9% precision, which show a good improvement when compared

with the values found in the literature at these redshifts. Those estimated values of H(z)

will be combined with H(z) available in literature to constrain the cosmological parameters.

Further investigation must be done on the systematic uncertainty between the different

age-redshift relations given by the different models. A bayesian model averaging across the

models would be the best solution and which is classified as a future work.
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Figure 3.23: Comparison between the mean SSP-equivalent ages extracted from the indi-
vidual fitting using PE, VM, BC03 and M11 models. The upper panels represent the age
comparison between two models, whereas all residuals are plotted in lower panels. The dashed
lines are the one-to-one relations.
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Figure 3.24: Comparison between the mean SSP-equivalent metallicities extracted from
the individual fitting using PE, VM, BC03 and M11 models. The upper panels represent the
metallicity comparison between two models, whereas all residuals are plotted in lower panels.
The dashed lines are the one-one relations.
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Figure 3.25: Age-redshift relation from the Lick index fitting of the stacked spectra using
HγF , Mgb, and < Fe > indices. The dashed line indicates the age of the Universe tU(z)
for a flat ΛCDM cosmology model assuming H0 = 71 km s−1 Mpc−1 and Ωm = 0.27. The
doted-dashed line indicates tU(z)−2 Gyr and it is only for reference. This plot is the same as
panel (a) in 3.11 but applying a prior on [Z/H] and [α/Fe] parameters. The equivalent ages
are the only one plotted here. The slope of the age-redshift relation do follow more or less
the ΛCDM with exception at high redshift. [Z/H] are mostly constant unlike those in figure
3.11 , [α/Fe] stay approximately the same.

Figure 3.26: Age-redshift relation from the full spectral fitting of the stacked spectra using
four different models: PE models (red squares), VM models (green triangles), BC03 models
(blue circles) and M11 models (yellow stars). The dashed line indicates the age of the Universe
tU(z) for a flat ΛCDM cosmology models assuming H0 = 71 km s−1 Mpc−1 and Ωm = 0.27.
The doted-dashed line indicates tU(z)−5.4 Gyr and it is only for reference. For clarity, all
symbols which represent the measured ages from the same redshift bin with different SSP
models are plotted with small offsets δ z = -0.004, 0.002, 0, +0.002 along the horizontal axis
from PE, VM, BC03 to M11 models respectively.
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Figure 3.27: Age-redshift relation from the full spectral fitting of the individual spectra
using four different models: PE models (red squares), VM models (green triangles), BC03
models (blue circles) and M11 models (yellow stars). The dashed line indicates the age of
the Universe tU(z) for a flat ΛCDM cosmology model assuming H0 = 71 km s−1 Mpc−1

and Ωm = 0.27. The doted-dashed line indicates tU(z)−5.4 Gyr and it is only for reference.
For clarity, all symbols which represent the measured ages from the same redshift bin with
different SSP models are plotted with small offsets δz = -0.004, 0.002, 0, +0.002 along the
horizontal axis from PE, VM, BC03 to M11 models respectively.

Figure 3.28: Individual fits using PE models (each grey symbols). Open square symbols
are weighted mean ages with their associated errors (weighted standard deviation). Filled
square symbols are mean ages, however filled diamond symbols are median ages.

94



3. H(z) measurement with SDSS-LRGs

Figure 3.29: Individual fits using VM models (each grey symbols). Open square symbols
are weighted mean ages with their associated errors (weighted standard deviation). Filled
square symbols are mean ages, however filled diamond symbols are median ages.

Figure 3.30: Individual fits using BC03 models (each grey symbols). Open square symbols
are weighted mean ages with their associated errors (weighted standard deviation). Filled
square symbols are mean ages, however filled diamond symbols are median ages.
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Figure 3.31: Individual fits using M11 models (each grey symbols). Open square symbols
are weighted mean ages with their associated errors (weighted standard deviation). Filled
square symbols are mean ages, however filled diamond symbols are median ages.

Figure 3.32: H(z) measurements using SSP ages when fitting galaxies with TMJ models.
The H(z) estimates while using the SSP equivalent ages extracted from Lick indices fitting
by assuming a prior on metallicity and α-element (black circles) and combining HγF , Mgb,
Fe5270 and Fe5335 indices. The dashed line is the theoretical H(z) of a flat ΛCDM cosmology
model assuming H0 = 71 km s−1 Mpc−1 and Ωm = 0.27. H(z ' 0.32), H(z ' 0.30) and
H(z ' 0.28) were estimated when fitting a straight line on the ages over 0.24 < z < 0.40,
0.22 < z < 0.38, and 0.20 < z < 0.36 respectively.
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Figure 3.33: H(z) measurements using SSP ages when fitting galaxies with PE models.
The H(z) estimates while using the mean ages (black diamonds), the ages extracted from
the stacked spectra fitting (red circles). The dashed line is the theoretical H(z) of a flat
ΛCDM cosmology model assuming H0 = 71 km s−1 Mpc−1 and Ωm = 0.27. H(z ' 0.32),
H(z ' 0.30) and H(z ' 0.28) were estimated when fitting a straight line on the ages over
0.24 < z < 0.40, 0.22 < z < 0.38, and 0.20 < z < 0.36 respectively.

Figure 3.34: H(z) measurements using SSP ages when fitting galaxies with VM models.
The H(z) estimates while using the mean ages (black diamonds), the ages extracted from
the stacked spectra fitting (green circles). The dashed line is the theoretical H(z) of a flat
ΛCDM cosmology model assuming H0 = 71 km s−1 Mpc−1 and Ωm = 0.27. H(z ' 0.32),
H(z ' 0.30) and H(z ' 0.28) were estimated when fitting a straight line on the ages over
0.24 < z < 0.40, 0.22 < z < 0.38, and 0.20 < z < 0.36 respectively.
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Figure 3.35: H(z) measurements using SSP ages when fitting galaxies with BC03 models.
The H(z) estimates while using the mean ages (black diamonds), the ages extracted from
the stacked spectra fitting (blue circles). The dashed line is the theoretical H(z) of a flat
ΛCDM cosmology model assuming H0 = 71 km s−1 Mpc−1 and Ωm = 0.27. H(z ' 0.32),
H(z ' 0.30) and H(z ' 0.28) were estimated when fitting a straight line on the ages over
0.24 < z < 0.40, 0.22 < z < 0.38, and 0.20 < z < 0.36 respectively.

Figure 3.36: H(z) measurements using SSP ages when fitting galaxies with M11 models.
The H(z) estimates while using the mean ages (black diamonds), the ages extracted from
the stacked spectra fitting (yellow circles). The dashed line is the theoretical H(z) of a flat
ΛCDM cosmology model assuming H0 = 71 km s−1 Mpc−1 and Ωm = 0.27. H(z ' 0.32),
H(z ' 0.30) and H(z ' 0.28) were estimated when fitting a straight line on the ages over
0.24 < z < 0.40, 0.22 < z < 0.38, and 0.20 < z < 0.36 respectively.
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Chapter 4

H(z) measurement with

SALT-LRGs

4.1 Introduction

In this chapter, we discuss another CC experiment. It was carried out using LRGs observed

with SALT. The availability of the SALT telescope for the South African Astronomical com-

munity allows us to focus on planning and conducting observations. This chapter highlights

results of several observations with SALT telescope to obtain spectra of massive selected

LRGs at z ' 0.40 and z ' 0.55 and demonstrates the H(z ' 0.47) measurement.

Crawford et al. (2010a) found that a 3% measurement would be viable from a large redshift

program, and have optimized an observation of using this experiment with SALT telescope.

Therefore, observations with SALT in two narrow redshift ranges z ' 0.40 and z ' 0.55

were proposed in order to accurately measure H(z) at z ' 0.47, providing constraints on the

nature of the dark energy. In Crawford et al. (2010a), not only the total time required to

complete this experiment using Robert Stobie Spectrograph (RSS) at SALT was estimated,

but the estimation of the uncertainties in the mean age as function of galaxies that could

possibly be observed was also studied. As underlined by several authors (Moresco et al.,

2012a; Simon et al., 2005; Stern et al., 2010b), this experiment requires the most massive

early-type galaxies and it should be note that such galaxies have formed at highest redshifts.

The possibility of having a wide optical wavelength coverage, and high resolution spectra

from a 10-meter telescope like SALT helps us to explore the availability of the CC method.

These data are obtained as a starting point of a future survey named SCALPEL (SALT

Cosmic Ages of Luminous Passive ELlipticals survey).
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4.2 SALT telescope

Located at the site of the South African Astronomical Observatory (SAAO) in Sutherland

-South Africa, SALT is the largest single optical telescope in the southern hemisphere and

among the largest in the world. This 10-meter class optical telescope consists of 91 individual

1.2 m hexagonal mirrors (see figure 4.1) resulting in a total of a hexagonal primary mirror

array of 11.1 m by 9.8 m. The design was based upon the Hobby-Eberly Telescope (HET)

in Texas. The optical system was redesigned, resulting in a larger field of view and effective

collecting area. SALT has a fixed elevation angle (53◦) and can rotate only about its azimuth

axis (540◦) to acquire objects, hence a significant cost saving compared to a complex telescope.

The optical payload and the tracker are positioned above the primary mirror. The tracker

moves across the mirror on a virtual spherical surface, allowing objects to be followed as the

earth rotates, without adjusting the azimuth angle for a period of up to two hours. From

this the observation area in the sky is more or less an annulus shaped area (between zenith

distances from 48◦ to 59◦), it can reach objects in the declination range from δ = −75◦ to

δ = +10◦.

Figure 4.1: SALT primary mirror.

Similar to the HET, SALT specializes mainly in spectroscopic observations using different

modes, although a facility CCD imaging camera (SALTICAM) is also available, and most

recently a high-resolution spectrograph (SALTHRS) which is still being commissioned . The

SALTICAM is used not only for imaging and photometry, but it also serves as the telescope

acquisition camera. The Robert Stobie Spectrograph (RSS) operates in UV-Visible regime

(310 − 900nm), and is available in three modes: long-slit and multi-object low to medium

resolution spectroscopy, Fabry-Perot imaging spectroscopy and polarimetry.
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SALT operates as a queue-scheduled telescope, where observations are planned in advance

before the semester starts. The PIPT program was provided in order to propose (phase I)

and plan (phase II) an observing time.

4.3 Sample selection

4.3.1 2dF-SDSS LRG survey

2dF-SDSS LRG and QSO (hereafter 2SLAQ) was a survey conducted by a collaboration be-

tween the UK, Australia and the US, and it was completed in August 2005. The 2SLAQ

survey was a spectroscopy follow-up on LRG targets based on SDSS Data Release 4 photo-

metric survey, focusing on targets beyond z ≥ 0.4. The aim was to extend the SDSS-LRG

survey which sampled LRGs in the redshift range 0.15 < z < 0.5 (Eisenstein et al., 2001) to

higher redshifts z ∼ 0.8. All LRGs and QSOs spectra were taken with the 2 degree Field

(2dF) instrument on the 3.9 m Anglo-Australian Telescope (AAT). Over 10 000 high redshift

QSOs and ∼ 14 000 LRGs were observed and their redshift was measured. The sky region

of the survey is about 2◦ wide equatorial stripes. A wedge diagram of the sky is plotted in

figure 4.3. The total area of the survey was approximately 180 degrees2.

A brief technical review of the survey is given here. More details about the survey is given

by Cannon et al. (2006). The SDSS survey used the selection criteria described by Eisenstein

et al. (2001), which is based on their colours (g − r and r − i) and apparent magnitudes, to

select LRGs from the SDSS photometry for spectroscopy follow-up. Eisenstein et al. (2001)

defined two different cuts: cut I helps to sample LRGs at redshifts z < 0.40 where the 4000

Å break features are noticeable in the g band, whereas cut II was used for higher redshifts

where the 4000 Å break features are located in the r band. The 2SLAQ survey used the

same colour criteria as cut II to extract LRG targets from the SDSS imaging. The colour

selection (specially in g − r colour) was refined in order to provide enough targets to fill the

2dF field. Thus the 2SLAQ selection allowed additional range of star forming LRGs over

the SDSS selection which provided only LRGs close to the red and dead passively-evolving

galaxies. In addition to the colour selection, a magnitude limit of ideV < 19.8 (de-reddened)

was imposed to acquire a reasonable S/N within 4 hours of observing time.

LRGs were observed using 2dF spectrograph 2 (Lewis & Simnett, 2002) with a 600 lines

mm−1 V grating, yielding a dispersion of 2.2 Å pix−1 and an effective resolution of about

5Å (R ∼ 1000). The detector used was a Tek1024 CCD with 1024 × 1024 pixels. Almost all

LRG spectra were taken with a central wavelength of 6150Å setting, covering a wavelength

range of 5050 - 7250 Å. This coverage was chosen to assure the determination of redshifts

of all target objects in the survey using the common lines Ca II H& K, and the detection of

[OII]λ3727 emission line down to z = 0.35. All LRG redshifts were derived using ZCODE (a

fortran code), a derivative of the code used to determine redshifts for 2dFGRS survey. There
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was a quality flag “Qop” assigned to each derived redshift based on the visual inspection

of the galaxy spectrum and the redshift cross-correlation function. A quality flag of “Qop”

≥ 3 indicates high level of confidence (95− 99%) in the calculated redshift meaning that the

redshift obtained from the spectrum is valid (Cannon et al., 2006). Over 18,500 LRGs spectra

were obtained, resulting in 13 121 spectroscopically confirmed LRGs and 663 foreground M

type stars.

4.3.2 MegaZ-LRG catalogue

MegaZ-LRG catalogue (Collister et al., 2007) was a photometric redshift catalogue of over

a million LRGs in the redshift range 0.4 < z < 0.7 with limiting magnitude 17.5 < i < 20.

The catalogue was based on SDSS DR4 five band (u, g, r, i, z ; Fukugita et al. (1996); Smith

et al. (2002)) imaging data using the same selection criteria for the 2SLAQ LRG survey.

The photometric redshift of each one of the galaxies in this catalogue was obtained using a

neural network ANNz photometric-redshift estimator code (Collister & Lahav, 2004; Firth

et al., 2003), tested in prior with the 2SLAQ catalogue (Cannon et al., 2006), and based

on the de-reddened griz model magnitudes. The rms photometric redshift error was about

δz ' 0.03(1 + z). LRGs in this catalogue cover almost 6000 degrees2. The MegaZ-LRG

catalogue could be obtained from http://www.2slaq.info.

Figure 4.2: One patch of the sky in the Northern Galactic strip showing the distribution
of the 2SLAQ LRGs (blue points). Redshifts of all galaxies are plotted in this diagram as
function of RA. Grey and red points are all type of galaxies at z < 0.3 from SDSS-DR3
and 2dFGRS respectively. Green points are LRGs from SDSS-DR3 LRGs survey at the
intermediate redshifts. Credit from the 2SLAQ website http://www.2slaq.info
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Figure 4.3: Map of 50 000 randomly selected galaxies from MegaZ-LRG catalogue which is
represented by the grey points, and 2SLAQ fields are shown by the black points. This map
covers the entire SDSS DR4 area. Taken from Collister et al. (2007)

Table 4.1: WISE conversion factors to the AB system.

Band AB mag zero mag
Jy

W1 2.699 309.540
W2 3.339 171.787
W3 5.174 31.674
W4 6.620 8.363

4.3.3 Matching 2dF-SDSS with WISE catalogue

The Wide-field Infrared Survey Explorer WISE satellite was launched in 2009 December into

a Sun-synchronous polar orbit, to survey the entire sky in four mid-infrared bands centred

at 3.4, 4.6, 12 and 22 µm (hereafter W1, W2, W3, W4)(Wright et al., 2010). It has detected

hundreds of millions of objects, hence its data archive became an important tool to study the

evolution of the stellar mass and star formation of local and distant Universe in its wavelength

ranges. Optical and Infrared surveys have been already cross-matched in order to conduct

multiwavelength studies of any extragalactic sources. For instance Donoso et al. (2012) and

Yan et al. (2013) combined WISE and SDSS to investigate closely the properties of any type

of galaxies in the mid-IR regime. A few authors (e.g. Jarrett et al., 2011) have proved that

WISE colours is an excellent AGN selection tool. Meanwhile, the BigBOSS (a continuation

of the Baryon Oscillation Spectroscopic Survey) team is investigating a new technique to

target LRGs at high redshift (z > 0.6) using WISE data. WISE is very sensitive at W1

(minimum 5σ sensitivity = 0.05 mJy) and least sensitive at W4 (minimum 5σ sensitivity = 6

mJy). WISE photometric data was calibrated relative to standard stars measurements using

VEGA magnitude system. All WISE magnitudes were converted to the AB system as given

by the formula mAB ≡ mVega +∆m. The conversion factors to the AB system ∆m were given

in Jarrett et al. (2011) as shown in table 4.1.

The use of WISE data helped us to achieve our goal of selecting most massive early-

type galaxies which have typically formed at highest redshifts. Prior to the selection of the

observed LRGs, we calculated their masses by performing a SED fitting. In order to achieve
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Figure 4.4: WISE colour-colour diagram of the matched sources with our sample (red
points). This diagram is plotted using observed colours.

Figure 4.5: WISE colour-colour diagram with SDSS DR7 spectroscopy galaxy catalogue.
LRGs at z < 0.55 are plotted in green contours, bright QSOs in cyan. The blue, red and
yellow contours indicate sources classified as star forming (SF), seyfert AGNs and composite
systems (COMP) respectively. Credit from Yan et al. (2013)

this fitting, more photometry datasets of each galaxy in 2SLAQ sample is needed to have a

better fit. With the 2SLAQ catalogue, there are 5 different (u, g, r, i, z ) magnitudes as in

SDSS photometric survey. However only the model magnitudes were used during the SED

fitting. The availability of the WISE catalogue helped us to add 4 photometric datasets in
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the Infrared regime to our SED fitting. We cross-correlated the 2SLAQ LRGs catalogue with

the WISE data and detected 13518 sources in four mid-infrared bands centred at 3.4, 4.6, 12

and 22µm. We then combined the optical photometry provided by 2SLAQ with mid-infrared

flux densities to build a SED of these detected sources.

The combination of W1, W2 and W3 bands of WISE is used to produce the colour-

colour diagram and to locate the various classes of astrophysical objects (Jarrett et al.,

2011). This diagram is then useful for separating galaxy population, in particular old stellar

population, star forming and galaxies dominated by AGN activity. The W1 and W2 bands are

very sensitive to the evolved stellar population and hot dust, meaning the more their colour

increases, the more the object is very active, such as in AGN or starbust. However, W3 band

is very sensitive to star formation activity and dominated by both the 11.3 µm polycyclic

aromatic hydrocarbon (PAH) emission and the 10 µm amorphous silicate absorption. Yan

et al. (2013) has reproduced the WISE colour diagram of SDSS-LRGs (DR7) and QSOs

along with sources classified as star forming galaxies, seyfert AGNs and composite systems

(See figure 4.5). In figure 4.4, the observed colours of all matched sample with our selected

galaxies are shown. The location of our matched sample falls inside the location of LRGs

plotted by Yan et al. (2013) in figure 4.5, but inclined towards the star forming sources. This

is not surprising since a significant number of LRGs in the 2SLAQ catalogue have been found

to undergo a recent star formation activity (Roseboom et al., 2006).

4.3.4 Stellar masses

4.3.4.1 Spectral Energy Distribution fitting

In order to calculate the physical parameters such as galaxy mass, stellar mass and star

formation history from the observations, SED fitting method is the most popular and efficient

method. We performed a simple SED fitting using the 2dF-SDSS and WISE photometry data

to obtain the stellar mass of the selected galaxies. The fitting procedure including the input

and output parameters will be discussed.

CIGALE The SED fitting was performed with Code Investigating GALaxy Evolution

(CIGALE1, Burgarella et al. (2005), Noll et al. (2009)). This code calculates a grid of

theoretical SEDs and fits observed photometric fluxes from ultraviolet to infrared. It consists

of reproducing the dust-attenuated stellar population models, IR dust emission models and

spectral lines templates. A Bayesian analysis is then used to derive the optimal physical

parameters, the associated uncertainties of the observed galaxy as well as the best computed

model. More details of the mechanism of CIGALE can be found in Noll et al. (2009) and

Giovannoli et al. (2011). Figure 4.6 shows a summary on how CIGALE works. Green boxes

represent the input parameters provided by the user such as: observed fluxes and redshift of

1http://cigale.oamp.fr/
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each galaxy, star formation history (τ and ages t of old and young stellar populations, mass

fraction of young populations fySP), dust attenuation (V-band attenuation AV, reduction

factor of AV for old stellar populations given by fatt) and dust emission (IR power-law slope

α, AGN related fraction of Ldust). Blue boxes correspond to the models and templates used

such as: dust attenuation law of Calzetti et al. (2000), IR libraries of Dale & Helou (2002),

SSP models of Maraston (2005) or PEGASE (Fioc & Rocca-Volmerange, 1997) etc. Pink

boxes constitute the computational steps incorporated in CIGALE whereas yellow boxes are

the outputs and final results.

Input and Output parameters The choice of the input parameter is critical depending

on the aim of the study. Among the two stellar population synthesis models provided by

CIGALE, Maraston (2005) were used to generate the models of the SED of galaxies. We

assumed a solar metallicity and a Salpeter IMF. The star formation history implemented

in CIGALE is a combination of two bursts representing an old more passively evolving and

young populations. It has been proved that including the two populations improved results of

the SED fitting rather than using a single star formation rate (Buat et al., 2011; Giovannoli

et al., 2011). This was just a simple approximation as the real scenario is more complex, as in

the case of LRGs. These galaxies are composed of old passively evolving stellar populations,

nevertheless we chose a model of two stellar components, old and young stellar populations,

to improve our results. The old stellar population is produced by an exponentially decreasing

star formation rate over t1 = 6 Gyr, adopting an e-folding time τ1 ranging from 1 Gyr to

10 Gyr with 2 Gyr steps. However, the young stellar population is created not constantly

but also exponentially over t2 = 0.2 Gyr. Somehow the two star formation components in

the code are linked by their mass fraction. The fraction of the young stellar population fySP

corresponds to the fraction of the young stellar population mass over the total mass and we

set this fraction as in the interval [0.001;0.999].

The attenuation curve based on the law of Calzetti et al. (2000) is a baseline of the

CIGALE code. It also allows user to vary the attenuation law and to add a UV bump.

The modification of the slope is controlled by the factor (λ/λV )δ where λV = 5500 Å is the

reference wavelength of the V filter, and δ is the slope of the attenuation curve. We decided

not to modify the slope of the attenuation (i.e. no modification was added to the original

Calzetti attenuation curve, δ = 0) and not to add any UV bump. The UV bump is usually

detected around 2175 Å. Our observed fluxes are in the optical and mid-IR wavelength

regimes, therefore the UV bump may not affect our fits only in the NUV band. In addition

its strength varies strongly from galaxy to galaxy and depends on the inclination of the galaxy.

Its strength could be investigated with CIGALE by detecting the bump in the attenuation

law (Buat et al., 2011), but it requires a fine sampling of the SED in the rest-frame UV in

order to accurately determine its amplitude. Such investigation is also beyond the objective

of this study. We considered the effect of attenuation for old stellar population by adding the
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Figure 4.6: CIGALE operation workflow. This illustrates how CIGALE works. Credit from
Roehlly et al. (2012).

reduction factor fatt = 0.5. The semi-empirical model templates of Dale & Helou (2002) was

chosen to fit IR observations which are parametrized by the power law slope α in the interval

[1; 2.5]. The normal galaxies are found to have this range of α where α ∼ 2.5 for quiescent

(Dale & Helou, 2002). The input parameters values used for the SED fitting are listed in

table 4.2. The WISE relative spectral response curves are from Wright et al. (2010) and

are available as part of the Explanatory Supplement to the WISE preliminary data release

products.
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The output derived parameter - stellar mass - of each galaxy is given in table 4.5. The

best fit models superposed on the observed fluxes are shown in figure 4.7. We can clearly

see that few observed fluxes are not fitted well. For instance the observed u-band flux for

most of the SED-fitting is not well reproduced by the code, which might be due to the fact

that u-band flux for some galaxies is often swamped by the photon noise of the sky (Blanton

et al., 2003). This can be identified by the size of errors on the flux and the value of the flux

itself (very faint) for some galaxies. Although the code is able to give a low value of minimal

χ2 for the fit, for example in the case of 2SLAQ J134058.83-003633.6 the minimal χ2 is 1,

it fails to reproduce the observed data as seen in figure 4.7. Note that the accuracy of the

output relies on the input parameters. For our sample selection, we only require an estimate

of the stellar mass, therefore we did not carry out exhaustive testing of input parameters.

Table 4.2: List of the input parameters of the code CIGALE and their selected range

Parameters Symbol Range

Star formation history
metallicities (solar metallicity) Z 0.02
τ of old stellar population models in Gyr τ1 1.0; 3.0; 5.0; 7.0; 10.0
ages of old stellar population models in Gyr t1 6.0
ages of young stellar population models in Gyr t2 0.025; 0.05; 0.1; 0.2
fraction of young stellar population fySP 0.001; 0.01; 0.1; 0.999
IMF S Salpeter

Dust attenuation
slope correction of the Calzetti law δ 0.0
V-band attenuation for the young stellar population AV,ySP 0.15; 0.45; 0.60; 0.90; 1.20; 1.5;

1.8; 2.1
reduction of AV basic for old stellar population fatt 0.5

IR SED
IR power-law slope α 1.0; 1.5; 2.0; 2.5

4.3.5 Selection criteria

The selection was based on both the stellar mass and brightness of the galaxy. We further

constrained the selection criteria by requiring objects without signature of any star formation

or AGN-like activity. This is identified using the equivalent widths of Hδ absorption line and

[OII]λ3727 emission line as in Roseboom et al. (2006). For the Hδ, they used the same

definition of passband and sidebands as the standard Lick index HδA (Worthey & Ottaviani,

1997), however for the [OII] emission line they used the definition from Balogh et al. (1999).

The passbands and sidebands used are found in table 4.3. A negative equivalent width value

is defined as emission line and a positive value as absorption line. We also calculated the

equivalent widths of those two lines for those galaxies which are not included in the catalogue

used by Roseboom et al. (2006). We followed their definitions of Hδ and [OII]. The publicly
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4. H(z) measurement with SALT-LRGs

Figure 4.7: Examples of best fit models. The observed data are plotted with red points
and the best fit model with a solid line. The stellar mass and redshift of each galaxy are also
shown.

available code LECTOR1 by Vazdekis was used to measure the equivalent widths of the

two spectral features. This code also returns values of different line-strengths (e.g. Lick

indices (Worthey & Ottaviani, 1997; Worthey et al., 1994), indices of Rose (Rose, 1994),

indices of Vazdekis (Vazdekis et al., 2001), etc.) and allows users to define and measure

additional indices as the case of [OII] used here. The errors on the equivalent widths were

calculated on the basis of photon statistics following the formulae given in Cardiel et al.

(1998); Cenarro et al. (2001); Vazdekis & Arimoto (1999). These errors are quite different

from the ones calculated in Roseboom et al. (2006) where a formula defined by Bohlin et al.

(1983) was used. Although both calculations did not take into account the contribution from

the systematic errors in the spectra such as poor sky-subtraction or flat fielding. It should

be noted that 2SLAQ spectra are not flux calibrated.

Table 4.4 shows the equivalent widths measured on Hδ and [OII] lines from both this

study and the catalogue of Roseboom et al. (2006), and the spectral classification for each

galaxy. Roseboom et al. (2006) classified LRGs according to their position in the EWHδ -

EW[OII] space as the following:

1http://www.iac.es/galeria/vazdekis/vazdekis software.html
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Figure 4.7: continued.

• Passive (old passively evolving stellar population): LRGs with no significant [OII] emis-

sion line or Hδ absorption line i.e. EW[OII] > −8Å and EWHδ < 2Å.

• k+a : LRGs with significant Hδ absorption line but no [OII] emission line i.e. EW[OII] >

−8Å and EWHδ > 2Å.

• em: LRGs with significant [OII] emission line but no Hδ absorption line i.e. EW[OII] <

−8Å and EWHδ < 2Å.

• em+a: LRGs with significant Hδ absorption line and significant [OII] emission line i.e.

EW[OII] > 2Å and EWHδ > 2Å.

Basically, we selected LRGs considered as passive, including five galaxies without [OII]

detection that we still considered as passive for their insignificant Hδ absorption line (See

table 4.4). We accidentally included two k+a LRGs in our sample that we thought would not

affect our results. In addition, all the galaxies analysed in this chapter have redshift quality

flags greater than or equal to 3, i.e. high level of confidence in the calculated redshift. This

is very important for the accuracy of the full spectral fitting since this redshift will be used

as the redshift guess. The stellar mass of these galaxies must be higher than 1011M� and

their magnitude V > 21. We also included an extra object SDSS J013403.82+004358.8 in
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Figure 4.7: continued.

our sample. This target was selected from the MegaZ-LRG photometric redshift catalogue

(Collister et al., 2007). This galaxy has been confirmed as a central cluster galaxy of a very

rich cluster in Szabo et al. (2011) and Wen et al. (2012) cluster catalogues where we obtained

the spectroscopic redshift. The mass of this object was derived by fitting only its model

u, g, r, i, z fluxes. Since LRGs are often found sitting in groups or clusters, we have verified

the other galaxies whether any of them is a member of any cluster. 2SLAQ J134023.93-

003126.8 has also been classified as a central cluster galaxy by Wen et al. (2012). The names,

coordinates and the characteristics of the LRGs candidates being studied are summarized in

table 4.5.

Table 4.3: Passbands and side continuum bands used to measure Hδ and [OII] equivalent
widths.

Index Line passband Blue continuum sideband Red continuum sideband
(Å) (Å) (Å)

Hδ 4083.5 - 4122.25 4041.6 - 4079.75 4128.5 - 4161.0
[OII] 3713 - 3741 3653 - 3713 3741 -3801
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Figure 4.7: continued.

Table 4.4: The equivalent widths measured on Hδ and [OII] lines from Roseboom et al.
(2006) and from this study.

Name EW[OII] EWHδ classification comments
(Å) (Å)

2SLAQ J081258.12−000213.8 NAN -0.38±0.44 Passive? this study
2SLAQ J081332.20−004255.1 NAN -3.15±0.47 Passive? this study
2SLAQ J100315.23−001519.2 -2.57±0.53 -1.09±0.46 Passive this study
2SLAQ J100825.72−002443.3 NAN -0.24±0.42 Passive? this study
2SLAQ J134023.93−003126.8 NAN 0.57± 0.32 Passive? this study
2SLAQ J134058.83−003633.6 NAN 1.29± 0.36 Passive? this study
2SLAQ J092612.79+000455.8 2.77±0.65 -1.69±0.70 Passive this study
2SLAQ J092740.75+003634.1 1.28±0.21 -5.38±0.15 Passive Roseboom et al. (2006)
2SLAQ J100121.88+002636.4 1.35±0.36 1.37±0.46 Passive this study
2SLAQ J100131.77−000548.0 0.63±0.30 2.77±0.15 k+a Roseboom et al. (2006)
2SLAQ J104118.06+001922.3 -1.61±0.55 -6.42±0.31 Passive Roseboom et al. (2006)
2SLAQ J144110.62−002754.5 -2.06±0.85 -3.73±0.76 Passive this study
2SLAQ J010427.15+001921.5 -1.90±0.51 0.71±0.477 Passive this study
2SLAQ J022112.71+001240.3 -4.85 4.29±0.74 k+a this study
2SLAQ J225540.39−001810.7 -3.23±0.50 0.68±0.29 Passive Roseboom et al. (2006)
SDSS J013403.82+004358.8 -1.14 -0.47 Passive this study
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Table 4.5: Characteristics of the galaxies observed with SALT telescope. All galaxies
were selected from the 2dF-SDSS LRG catalogue (Cannon et al., 2006), except for SDSS
J013403.82+004358.8 which was extracted from the photo-z catalogue known as MegaZ-
LRG (Collister et al., 2007). Its spectroscopic redshift was taken by matching it with the
cluster catalogue of Wen et al. (2012); and its magnitude in g−band was from NED database
(http://ned.ipac.caltech.edu/, however all remained magnitudes i.e. in V −band are from
SIMBAD database (http://simbad.u-strasbg.fr/simbad/).

Name RA DEC V Redshift logMstar E(B − V )galactic
(2000.0) (2000.0) mag M� mag

2SLAQ J081258.12−000213.8 08 12 58.1 −00 02 14 19.65 0.4063 11.66±0.03 0.039
2SLAQ J081332.20−004255.1 08 13 32.2 −00 42 55 19.62 0.3924 11.66±0.02 0.031
2SLAQ J100315.23−001519.2 10 03 15.2 −00 15 19 19.62 0.3980 11.27±0.01 0.039
2SLAQ J100825.72−002443.3 10 08 25.7 −00 24 43 19.44 0.3984 11.46±0.02 0.033
2SLAQ J134023.93−003126.8 13 40 23.9 −00 31 27 18.89 0.3997 11.54±0.01 0.032
2SLAQ J134058.83−003633.6 13 40 58.8 −00 36 34 19.29 0.4097 11.43±0.05 0.026
2SLAQ J092612.79+000455.8 09 26 12.8 +00 04 56 20.52 0.5411 11.43±0.02 0.032
2SLAQ J092740.75+003634.1 09 27 40.7 +00 36 34 20.25 0.5480 11.39±0.01 0.038
2SLAQ J100121.88+002636.4 10 01 21.9 +00 26 36 19.48 0.5549 11.05±0.04 0.025
2SLAQ J100131.77−000548.0 10 01 31.8 −00 05 48 20.03 0.5464 11.41±0.01 0.035
2SLAQ J104118.06+001922.3 10 41 18.0 +00 19 22 20.02 0.5465 11.46±0.01 0.055
2SLAQ J144110.62−002754.5 14 41 10.6 −00 27 54 20.55 0.4003 11.90±0.01 0.038
2SLAQ J010427.15+001921.5 01 04 27.1 +00 19 21 19.71 0.4071 11.59±0.02 0.035
2SLAQ J022112.71+001240.3 02 21 12.7 +00 12 40 20.80 0.3975 11.27±0.04 0.036
2SLAQ J225540.39−001810.7 22 55 40.4 −00 18 11 20.10 0.5512 11.59±0.01 0.086
SDSS J013403.82+004358.8 01 34 03.8 +00 43 59 20.3g 0.4092 11.84±0.01 0.024

4.4 Data reduction

4.4.1 Spectroscopic Observations

The spectroscopic observations of this sample was carried out with the Robert Stobie Spec-

trograph (RSS, Burgh et al., 2003; Kobulnicky et al., 2003) at SALT. The observations were

done in long-slit mode. Originally, this project was proposed to use the Multi-Object spec-

troscopy (MOS) mode in order to target more LRGs in each observation time. But due to

the unavailability of the MOS during our proposals, we adjusted this project to use the long-

slit mode. Long-slit optical spectra of the sample were obtained during the special semester

of 2011 and the first semester of 2012 under proposal codes 2011-3-RSA OTH-026 (PI: A.

Ratsimbazafy) and 2012-1-RSA OTH-013 (PI: A. Ratsimbazafy) respectively. We have used

two different settings of PG0900 grating to cover the wavelength range ∼ 4000−6000Å (rest-

frame wavelength) at both redshift. For the 2011 observations, we used a slit width of 1”

giving a spectral resolution of about ∼ 4-6 Å (R ∼ 1900). However, the 2012 observations

were obtained with a slit width of 1.5” yielding a spectral resolution of R ∼ 1300. The log of

observations is given in table 4.6.

For all of our observation we used the setting FAINT and SLOW for gain setting and

readout speed respectively.

In order to perform a standard reduction of two-dimensional long-slit spectra, spectra
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4. H(z) measurement with SALT-LRGs

of a Neon arc lamp were taken after each observation to correct for wavelength calibration.

Five flat-field images were also obtained in order to correct for pixel to pixel variations. The

spectrophotometric standard stars were observed either during evening or morning twilight

for flux calibration.
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4.4.2 Spectroscopic Data Reduction

4.4.2.1 Longslit data reduction

For each observation, a tar file containing the raw data, the semi-reduced products and

the documentation describing the observation log was provided to the principal investigator.

The product subdirectory contains the semi-reduced data processed with the semi-automated

code SALT PyRAF pipeline called PySALT 1 Crawford et al. (2010b). This includes fidelity

checking, overscan subtraction, gain and cross-talk correction, and mosaicking the 6 amplifiers

of the 3 CCDs. It is important to read through the observation log to identify each type of file

(science, flat, arc, standard star). Additional information is also available in the document

such as the seeing or the exposure time.

The standard long-slit reduction procedures such as wavelength calibration, background

subtraction, extracting one-dimensional spectra and flux calibration were then carried out on

the pre-processed data. All of these were performed with the IRAF 2 TWODSPEC package. A

detailed description of each of these steps are given below.

A - CCD reduction

Fidelity checking The first step was performed by the task saltprepare. This task

prepared the raw FITS files for the reduction pipeline processing. It verified and added the

missing but required keywords in the headers such as NSCIEXT, EXTNAME, EXTVER in order

to be consistent with the IRAF-based tools. It could also create variance frames for the data

based on the pixel variance and the read noise.

Gains This step was performed by the task saltgain. It corrected for the gain of

the different CCDs by multiplying images by a constant factor appropriate for the gain

correction. Each amplifier had its own specific gain factor which is assumed constant across

the amplifiers. The program reads the values of the gain and readout noise from an ASCII file

provided by users through the “gaindb” argument and updates the values of the keywords

GAIN and RDNOISE. If no ASCII file was provided, the program will extract the default

values form the data header GAIN. The gain correction is based on the following equation:

electrons = (gain + GAIN1× 10−6 × data)× data (4.1)

where data is in ADU and gain is in electrons/ADU. The parameter GAIN1 is a keyword in

the header. GAIN1 is equal to 0 unless the user set this keyword to a non zero value meaning

non-linear gain. The SALT CCDs have shown evidence of non-linearity3 and this correction

1pysalt.salt.ac.za
2Image Reduction and Analysis Facility, a software system distributed by the National Optical Astronomy

Observatories (NOAO). http://iraf.noao.edu/
3https://sciencewiki.salt.ac.za/index.php/Gain measurements made on 20110622
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takes account of that.

Table 4.7 represents the values of the gain that we have used.

Table 4.7: Gain database of CCD amplifiers used during 2011 and 2012 observation runs.
Rdn means read-out-noise.

Amplifier 1 Amplifier 2 Amplifier 3 Amplifier 4 Amplifier 5 Amplifier 6
Gain Rdn Gain Rdn Gain Rdn Gain Rdn Gain Rdn Gain Rdn

2011 1.48 2.56 1.55 2.55 1.58 2.38 1.50 2.36 1.49 2.53 1.42 2.48
2012 2.14 2.47 2.27 2.51 1.68 2.40 1.59 2.44 1.52 2.45 1.47 2.39

Cross talk The cross talk process was performed by the task saltxtalk. Each SALTI-

CAM and RSS CCD has two readout amplifiers. The task corrected images for the cross talk

between these amplifiers occurring during the readout of the chips and creating faint ghost

sources across them. The ghost sources are in the form of faint mirror images across amplifier

boundaries of bright sources. The cross talk could be corrected by subtracting a scaled image

of one amplifier from its neighbour, assuming that images are not saturated or non-linear.

The scaling factors were provided as an ASCII file through the XTALKFILE argument or

extracted from the header keyword XTALK.

Bias subtraction The task saltbias was performed to correct for the CCD overscan

and bias. This task extracts the CCD overscan region from the headers and will then fit and

subtract it. After that it will trim the image and update its headers. Finally it will subtract

the master bias if required. At the moment, the master bias subtraction is not recommended

for SALT data, therefore only the overscan and trimming option are used.

A master bias frame can be created by stacking several bias images with the same gain

setting and readout noise as the science data.

Mosaicking The amplifier images obtained during the same exposure time could be

mosaicked into a single frame and stored in a single extension of the output FITS file. Mo-

saicking the 6 amplifiers of the 3 CCD was performed by the task saltmosaic. The program

will read the CCD geometry definition file (ASCII format) provided by the users through the

“geomfile” argument. Then, it will combine each of the individual amplifiers into a single

frame and apply the geometric CCD transformation to the image.

B - long-slit reduction
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Trimming and Cosmic ray removal The first step was to change the extension

format of the output data from the CCD primary reduction. The goal was to prepare FITS

files for the standard IRAF reduction tasks. The two dimensional science spectrum, the flat

field images and the arc spectrum were trimmed to exclude non useful areas before performing

the rest of the reduction. Cosmic ray hits were then removed from the two dimensional spectra

using the LAplacian COSMIC (LACOSMIC) ray identification software (van Dokkum, 2001).

This is an algorithm for robust cosmic ray identification and rejection using Laplacian edge

detection. The procedure works robustly by detecting cosmic rays of arbitrary shapes and

sizes by the sharpness of their edges and distinguishes between poorly sampled point sources

and comic rays with high confidence. The effectiveness of the cosmic ray removal depended

on the maximum number of iterations chosen. Any remaining signature was removed by hand

using splot. The two ccd gaps were filled with interpolated pixel values.

Flat fielding The five flat-field images were combined into a master flat by the IRAF

task scombine. The median combine was used to remove any existing cosmic rays. This

had to be normalized by its mean to preserve the mean level of the input image and was

then applied to the science data. We used the task mkillumflat to create the illumination

corrected master flat. This process helped to correct for the differences in sensitivity across

the field and between detector pixels.

Wavelength Calibration The twodspec.longslit package from IRAF was used

for the purposes of the wavelength calibration, more precisely the following tasks identify,

reidentify, fitcoords and transform were performed. Firstly, the task identify

identified arc lines in a spectra and calculated the wavelength solution. For the redshift of

the objects studied here, Neon arc lamp was always observed. The Ne.salt table was added

to the default linelist of IRAF. The task first plotted the center of the arc image and few

features were identified manually. The remaining lines were then identified automatically

and fitted by the function Chebyshev with 5th order for the wavelength solution. The poorly

fitted points were removed until a reliable RMS was obtained.

The wavelength solution was then used to reidentify the identified lines in all the other

rows of the 2D spectra, which could be done using the task reidentify. This task also

traced the curvature of the lines in the spatial direction. The task fitcoords created

the transformation function that would be applied to the image in order to estimate the

wavelength solution and rectify. To transform a spectroscopic image based on the wavelength

solution from the arc lamp, the task transform was needed, and it used the transformation

function previously calculated by fitcoords.

Background subtraction The night sky background and emission lines were then sub-

tracted from the data. The task used was background. It estimated background emission
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from each wavelength by fitting a 5th order Chebyshev polynomial to each wavelength column

and subtracts it from the science spectra.

Extraction standard star spectra All of the above tasks were also applied to the

standard star spectra. The spectra of the spectrophotometric standard stars were taken at

the same instrumental configuration as the corresponding science target. The 1D spectra was

extracted from the 2D image using the apall task from the APEXTRACT package.

Flux calibration Due to the nature of the SALT telescope, the unfilled entrance pupil

of the telescope moves during the observation, therefore an absolute flux calibration is not

possible. However, a relative flux correction can be feasible to recover the spectral shape using

the observed spectrophotometric standard stars. We used the spectra of the spectrophoto-

metric standard stars extracted above to create the sensitivity curve of the CCD. They were

used to flux calibrate the science frames. The effective airmass for each individual target had

already been calculated by the SALT pipeline PySALT and was mostly stored in the header.

However, if it is missing or has a negative value, it could be calculated using the following

formula:
1

cos(0.017453292× (90− TELALT))
(4.2)

where TELALT is the telescope elevation at readout which is available in the header. The

task standard was used to integrate the spectrophotometric standard star spectra over

the bandpasses in the associated calibration fluxes. To derive the sensitivity curve, the task

sensfunc was run, fitting observed spectral energy distribution of the standard star with a

20th order polynomial. The sensitivity curve was then applied to the science spectra using

task calibrate. All spectra were corrected for the atmospheric extension using the table of

atmospheric extinction of Sutherland versus airmass, provided as a complementary document

on SALT webpage.

Extraction science spectra As for the spectrophotometric standard, we used the task

apall to extract the one dimensional spectrum. The extracted 1D spectra were then median

combined by using the task scombine. The extraction aperture and background windows

were defined interactively. The sky background was fitted by a low order polynomial.

The red ends of the spectra suffer from significant fringing effects. Due to these effects,

there are numerous remaining sky emission lines. Removing fringes was a little bit of a

challenge, but we tried our best to remove them using flat fielding method. Recently it

seems that taking some dithering could help to remove the fringe patterns. Unfortunately,

this option was not fully operated during our observation runs. In addition to the sky

emission lines contamination, the red regions of the spectra were also contaminated by the

absorption features that originate in the Earth’s atmosphere, referred to as telluric features.

The strongest telluric features occur in A band λλ7600− 7630Å, in B band λλ6860− 6890Å
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and in the following wavelength range λλ7170− 7350Å. The 1D spectra were not corrected

for the effects of the telluric contamination.

4.4.3 Estimate signal-to-noise ratio

To verify how good the reduced spectra are we measured the S/N ratio per pixel. The task

splot was run to review the 1D spectra. With this program we were able to measure the

S/N for different regions in the spectrum. Each region has about 100 pixels wide. The

final S/N ratio was the mean of all measured S/N within each region. The splot does not

know about the gain and readnoise of the detector. It only assumes that the bumps and

wiggles in the spectrum represent the noise, and compares the size of the “noise” to the level

of signal in the continuum. The value of S/N per pixel was then converted to a S/N per

resolution element by multiplying by the square root of the number of pixels per resolution

element. Since multiple exposures were used to make up the total exposure time, then the

single exposure S/N was multiplied by the square root of the number of exposures.

4.4.4 Galactic extinction

Even though there was a small effect on the correction in our observed wavelength ranges,

all spectra were corrected for foreground Galactic extinction using the reddening maps of

Schlegel et al. (1998) and the extinction curve of the Fitzpatrick (1999) with R=3.1. The

E(B− V) parameter at galactic for each galaxy is given in table 4.5. The description of the

process is as follows: RA & DEC coordinates of the observed galaxy were converted to the

required galactic coordinates, l, b. via EULER an IDL code. The DUST GETVAL routine was

then run to get the reddening value E(B−V) for a given position on the sky. It returned an

extinction correction in magnitudes. Values of E(B−V) calculated here are quite similar to

the values found in the NED database. The derived values were then used to deredden a flux

vector using the Fitzpatrick (1999) parametrization.

4.5 Fitting LRG spectra

Modern techniques of full spectral fitting allow comparison of observations and models on

a pixel by pixel basis, for example: GANDALF, Sarzi et al. (2006)), pPXF, Cappellari &

Emsellem (2004)), ULySS (Koleva et al., 2009) etc. ULySS is the package we used to fit

our observed spectra. As mentioned before in chapter 3 section 3.7.7, ULySS is not strictly

for an absolute flux calibrated spectra, as it is not sensitive to galactic extinction or any

other cause affecting the shape of the spectrum. Besides, it gives options to visualize the

degeneracies and validate the errors on the parameters. We fitted each LRG spectrum to

single-age, single-metallicity population synthesis models. LRGs are believed to form most of

their stars very early in the Universe, and as such, SSP models are generally found to be good
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descriptions for their spectra (Jimenez et al., 2003; Liu et al., 2012; Moresco et al., 2012a;

Simon et al., 2005; Stern et al., 2010a; Zhang et al., 2012, , etc.). Although in our previous

work (Crawford et al., 2010a) we did find that LRGs may better be described by slightly

extended star formation histories, we have only fit the LRGs to SSPs in order to compare

this work to previous studies.

4.5.1 LSF study

Prior to fitting our science spectra, we needed to match the resolution between the observed

spectra and models. The spectral resolution matching is described by the LSF (more details

about LSF in chapter 3 section 3.7.7.3). In this study, we used the spectrum of a standard

star HD 14802 observed with SALT during the night of 2012/10/11 along with the target

SDSS J013403.82+004358.8. The atmospheric parameters (Teff , log (g) and [Fe/H]) of this

star are already known in SIMBAD database. They have been measured by several scientists

but we chose the recent ones by Ramı́rez et al. (2013). If those parameters are unknown,

they also can be determined by fitting the star spectrum with ULySS and used to calculate

the relative LSF. Measuring the LSF means determining the broadening function (cz, σ and

possibly h3, h4) in a sequence of small wavelength ranges. Here we used an overlapping

windows of 200 Å separated with 100 Å steps. After comparing different relative LSF using

different spectral object, the decrease instrumental velocity dispersion, σinstr is typically from

150 km s−1 (blue) to 110 km s−1 (red) which is the characteristic of the spectrograph and

grating. While the radial velocity, vrad changes from 0 to 31 km s−1, due to the uncertainty in

the wavelength calibration. The LSF relative to the Elodie.3.1 library obtained with ULySS

is shown in figure 4.8. This relative LSF was then injected to the models to generate the

resolution-matched models by the convolution function in ULySS. The injection of the LSF

to the models is necessary in order to take into consideration the variation of the resolution

with wavelength and to remove possible small uncertainties in the wavelength calibration. We

used the resolution-matched models to perform the fitting process of the observed spectra.

4.5.2 SSP fitting

The SSP models that we used are based on the Pegase-HR (PE) models (Le Borgne et al.,

2004). These models were introduced in chapter 3 section 3.7.7.2. The PE models were chosen

among the other models because their empirical libraries have a wide range and number of

age and metallicity with high spectral resolution. After testing different fits using four models

described in chapter 3, these models provided the most stable SSP results. Since LRG are

supposed to be old, sometimes the oldest ages of these galaxies hit the upper limits of the

models. To avoid this problem during the fitting, we used an age limit, which is the age of

the Universe at each redshift. We take this into account especially during the Monte-Carlo

simulation runs.
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Figure 4.8: Relative LSF between the observed spectrum and the models as a function of
wavelength. Radial velocity is at the top panel, the instrumental velocity dispersion is at the
bottom panel. Blue points are the measured LSF, and red points are the smoothed version
which are used to inject to the model spectra.

We derived ages and metallicities as well as the kinametics of the LRGs by fitting our

observations to the SSP models. The full wavelength range of each galaxy spectrum was

mostly used during the fitting process. The red end of some of the spectra was significantly

affected by the fringing. Due to the presence of the fringes, removal of the sky emission

lines became very difficult. Thus the residuals from the bright sky emission lines are very

significant. For those spectra where the residuals of the sky emission lines removal are very

significant, we set the maximum wavelength range to be 5500Å.

The errors on the parameters are the 1 sigma errors. These errors are computed from

the covariance matrix by the ULySS calling function MPFIT (a fitting function) algorithm.

MPFIT provides the optimal parameters from the best fit and the 1 sigma errors on each one of

them. In addition, ULySS provides the possibility of exploring and visualising the parameter

space with χ2 maps, convergence maps and Monte-Carlo simulations to validate the errors on

the parameters. We performed Monte-Carlo simulations and χ2 maps experiments to carefully

test the reliability of the fitting. A series of 500 Monte-Carlo simulations was performed. At

each step of the simulation, a random noise equivalent to the observed noise was added.

The outputs from this simulation are the mean values of the resulting distributions of all

parameters: age, metallicity, velocity dispersion and their corresponding standard deviations.

To help assess the quality of the fits, χ2 maps and convergence maps were examined. We

could also improve the fit by changing initial guesses according to their outputs.
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4.6 SSP paramaters

We report results of the SSP fits using PE model in table 4.8, including ages, metallicities

and kinematics. Individual fit is shown in figure 4.9. The wavelength range used for the fit is

also given in the plots. The results of the SSP best fits and the Monte-Carlo simulations are

also shown in figure 4.9. The Monte-Carlo simulations help us to verify our SSP results by

visualizing the degeneracies. The mean values of the simulations are consistent with the best

fit results which are valid in most cases. Nonetheless there is some discrepancy between the

two results (Koleva et al., 2009) which is mostly due to the degeneracy between parameters

and the level of noise in the the spectra. The estimated noises obviously influence the results of

the Monte-Carlo simulations in term of the errors in the parameters. High S/N spectra show

well defined point distributions as in figure 4.9, and hence lead to more precise measurements

of the age and metallicity of the galaxies. However, there are a few galaxies as exceptions,

for instance SDSS J013403.82+004358.8 and 2SLAQ J134023.93-003126.8 (both of them at

z ' 0.40). Only these two behave differently during the MC fitting. Note that both of them

are defined as central cluster galaxies by Wen et al. (2012). These two galaxies might have

some complex star formation history as in those central galaxies at the focus of a cooling flow

(Crawford et al., 1999; Loubser, 2014; Loubser et al., 2009). They also have higher velocity

dispersion in the sample of galaxies at z ' 0.40. Note that it is clear that older galaxies have

higher velocity dispersions than those younger galaxies. Results of velocity dispersions are

shown in the table 4.8 and plotted in figure 4.12.

Examples of χ2 and convergence maps of 2SLAQ J092740.75+003634.1 are presented in

figure 4.10. We present both of them in the age-metallicity plane with the results of the

Monte-Carlo simulations. Either the χ2 or the convergence maps gives similar output results

compared to the best fits (Age is about 2.85±0.31 Gyr and metallicity around 0.38±0.08

dex).

Figure 4.11 shows ages and metallicities obtained during the fits of galaxies at z ' 0.40

and z ' 0.55. 2SLAQ J092612.79+000455.8 seems to have an older age, and higher velocity

dispersion than the other galaxies at z ' 0.55. This galaxy has the lowest S/N spectrum in

that redshift. Its S/N is high enough (a minimum S/N = 10 per resolution element) to be

used in our analysis (see table 4.8). Despite the number of galaxies at z ' 0.55, it is clear

that there is an age-redshift relation, that is, the mean age at z ' 0.40 is older than that at

z ' 0.55. The galaxies at z ' 0.40 have an average age of 3.64±0.23 Gyr, 2.72±0.25 Gyr for

galaxies at z ' 0.55. However the overall metallicity spreads from [Fe/H] ≈ 0.0 dex to [Fe/H]

≈ 0.4 dex and has an average of [Fe/H] ≈ 0.2 dex which is consistent with the metallicity of a

typical LRG found in the literature. It is important to note that these galaxies are assumed

to have similar metallicities (Jimenez et al., 2003; Liu et al., 2012; Zhang et al., 2012) i.e. no

evolution, and the value should be scattered between about 0.1 dex and 0.2 dex. The errors

on the mean age and metallicity were obtained by applying the standard propagation of error
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2SLAQ J010427.15+001921.5, S/N=57
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Figure 4.9: All the fits performed with ULyss. The left-hand panel shows individual spectral
fitting, galaxy spectra are in black and best fit in blue line. The red regions were excluded
and masked in the fit: outliers. The green lines in the residuals from the fit are the estimated
1 − σ deviation. Each spectrum is plotted in the wavelength range adopted during the fits.
Fluxes are expressed in erg cm−2 s−1 Å−1. S/N ratios per resolution element of the observed
spectra are also given. The right-hand panel illustrates the results from the 500 Monte-Carlo
simulations. Ages and metallicities values from the simulations indicated by the red points
are compared with the those provided by single fits (written in the legend).

technique.

In this work, we find higher metallicity values, and younger ages than the total sample

of red galaxies in Stern et al. (2010a) at both redshifts but we note that we have a small
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2SLAQ J081332.20-004255.1, S/N=33
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Figure 4.9: continued.

number of galaxies in our sample. In their results using the SPICES and VVDS samples,

they found mostly younger ages. Basically, the number of galaxies in our sample is very few

to be compared with the whole sample of Stern et al. (2010a).

4.7 H(z) estimates

If the ages of the SSP represent the ages of the galaxies, we can use the estimated ages to cal-

culate the Hubble parameter H(z) via the difference in ages associated with the corresponded
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2SLAQ J100121.88+002636.4, S/N=22
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Figure 4.9: continued.

difference in redshifts (∆z/∆t). The mean of the age distribution in each redshift was used

to measure the differential ages. We considered galaxies with sufficient S/N which are all

shown here. The two k+a LRGs were also included in the average results. For the statistic

purpose, a number of galaxies is needed. Unfortunately, we could not reach the number of

galaxies in order to obtain a H(z) measurement within 20% precision. Therefore we used all

the spectra that we could obtain from the observations which all presented here.

Applying the equation 1.17 for the intermediate redshift between z ' 0.40 and z ' 0.55,

we obtained a new observational Hubble parameter H(z ' 0.47) = 105± 39 km s−1 Mpc−1
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2SLAQ J100825.72-002443.3, S/N=34
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Figure 4.9: continued.

using SSP equivalent ages. The error in H(z) depends only on the age at each redshift since

the error on the redshift is negligible, and was calculated from:

σ2
H

H(z)2
=

(σ2
t1

+ σ2
t2

)

(t1 − t2)2
(4.3)

details are demonstrated in Crawford et al. (2010a).

We plot our result with all available observational H(z) values up to in figure z ∼ 1 derived

using the cosmic chronometer methodology in figure 4.13. The most comparable measurement
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Table 4.8: Results of SSP fit with PE model including the SSP equivalent ages, metallicities
and central velocity dispersions. Errors of each parameter are from the covariance matrix.

Name Redshift Age [Fe/H] σ χ2 S/N MD
(Gyr) (dex) (km s−1) (Å−1)

2SLAQ J081258.12−000213.8 0.4063 3.34±0.45 0.18±0.08 242±18 0.43 36 7
2SLAQ J081332.20−004255.1 0.3924 3.78±0.70 0.17±0.06 336±26 0.41 33 7
2SLAQ J100315.23−001519.2 0.3980 4.19±1.46 -0.02±0.13 234±32 0.38 23 9
2SLAQ J100825.72−002443.3 0.3984 3.33±0.19 0.47±0.06 266±17 0.50 34 2 or 6
2SLAQ J134023.93−003126.8 0.3997 5.15±1.41 0.19±0.06 342±17 0.46 57 9
2SLAQ J134058.83−003633.6 0.4097 2.08±0.16 0.26±0.04 172±11 0.51 21 7
2SLAQ J144110.62−002754.5 0.4003 5.19±0.50 -0.06±0.03 327±11 0.81 86 9 or 5
2SLAQ J010427.15+001921.5 0.4071 3.42±0.25 0.18±0.04 255±9.6 1.46 57 7
2SLAQ J022112.71+001240.3 0.3975 1.35±0.23 0.41±0.12 314±32 0.44 28 10 or 13
SDSS J013403.82+004358.8 0.4092 4.75±0.38 0.45±0.04 442±16 0.50 60 5
2SLAQ J092612.79+000455.8 0.5411 6.65±1.47 0.09±0.10 357±35 0.59 17 6
2SLAQ J092740.75+003634.1 0.5480 2.85±0.31 0.38±0.08 287±19 0.75 27 7
2SLAQ J100121.88+002636.4 0.5549 1.01±0.10 0.27±0.06 223±32 0.53 22 10
2SLAQ J100131.77−000548.0 0.5464 1.03±0.06 0.14±0.08 191±17 0.53 40 10
2SLAQ J104118.06+001922.3 0.5465 1.72±0.08 0.51±0.04 259±13 0.48 39 9
2SLAQ J225540.39−001810.7 0.5512 3.07±0.12 0.43±0.04 227±11 0.51 39 8

at the same redshift is by Stern et al. (2010a) who measured a value of H(z) = 97 ± 60 km

s−1 Mpc−1 at z = 0.48. Nonetheless, our value is consistent with the standard cosmology

model with parametrization of Ωm = 0.27, ΩΛ = 0.73 and H0 = 71 km s−1 Mpc−1.

As described by Crawford et al. (2010a) and also evident in works at lower redshift, further

improvements in the value of H(z) can be made by increasing the sample size. The relatively

small sample presented here was part of an initial pilot study and further observations will

be required to improve on the measurement presented here.

We have addressed the estimated number of galaxies required to obtain the desired preci-

sion in Crawford et al. (2010a). In reality, we could not reach the estimated accuracy because

of the observation constraints such as the quality of the observed spectra in terms of S/N, or

the fact that the number of observed objects could not complete our original estimation. A

larger and better quality sample would help us to reach our main goal for the future. The rel-

atively small sample presented here was part of an initial pilot study and further observations

will be required to improve on the measurement.

4.8 Conclusion

We have obtained, reduced and analysed 16 long-slit spectra of LRGs recently observed

with the SALT telescope. These galaxies are selected from the 2SLAQ and MegaZ-LRGs

catalogues at redshift z ' 0.40 and z ' 0.55. Our selection is based on stellar mass, brightness

and emission lines of the galaxy in order to have a sample of old and massive passively-

evolving galaxies. In this chapter, we derive their ages, metallicities and velocity dispersions

by applying the full spectral fitting method. The Pegase-HR model with the ELODIE stellar
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library is used to extract those SSP parameters. We have also verified any possible emission

lines in our galaxy sample, focusing in particular on the signature of Hβ and [OIII]λ5007

lines. Any emission lines could not been detected in our wavelength range meaning that we

have used mostly a sample of passively-evolving galaxies.

The mean age at each redshift bin is used to measure the Hubble parameter H(z) at

z ' 0.47 by adopting the method of Cosmic Chronometers. We find an improved H(z)

measurement over the Stern et al. (2010a).

This sample constitutes a test of this method using observed LRGs with SALT and will

contribute to completing the long term goal of our future survey. We aim to observe more

galaxies in order to improve our H(z) measurement and to build the evolution of the Hubble

parameter as a function of redshift over 0.1 < z < 1. Furthermore, the current estimate H(z)

at z ' 0.47 is comparable to the existed value in literature which is reassuring for the future

survey. This value will be combined with the available H(z) in the literature in order to

constrain cosmological parameters. The datasets used here will also be useful for studying in

detail the stellar population and properties of the central cluster galaxies since two of them

are included in our sample.
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Figure 4.9: continued.
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Figure 4.10: Examples of the χ2 and convergence maps of 2SLAQ J092740.75+003634.1.
The results of the 500 Monte-Carlo simulations are also plotted with the best fit results in the
legend (bottom panel). The global minimum is indicated with a green symbol in the χ2 maps
(top panel in the left). The top panel in the right displays the corresponding convergence
maps. All results converge to the best fit results (Agefit and [Fe/H]fit).
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Figure 4.11: This shows different ages and [Fe/H] obtained from the full spectral fitting
using PE model. Red filled squares are galaxies at z ' 0.40, green open diamonds are galaxies
at z ' 0.55. The mean age and metallicity at z ' 0.40 is 3.64 ± 0.23 Gyr, 0.21 ± 0.02 dex
respectively. The mean age and metallicity at z ' 0.55 is 2.72 ± 0.25 Gyr, 0.30 ± 0.03 dex
respectively.

Figure 4.12: SSP ages from best fits plotted with velocity dispersion. Red filled squares
are galaxies at z =0.40, green open diamonds are galaxies at z =0.55.
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Figure 4.13: Our estimate H(z ' 0.47) measured using SALT LRG spectra is represented
by the red filled rectangle. It has a value of H(z) = 105 ± 39 km s−1 Mpc−1. Our result is
plotted with all available H(z) in the literature. The dashed line is the theoretical H(z) of a
flat ΛCDM model with Ωm = 0.27, ΩΛ = 0.73 and H0 = 71 km s−1 Mpc−1.

133



Chapter 5

Cosmological constraints

5.1 Introduction

As mentioned earlier in the general introduction, cosmological measurements such as the

CMB, SNIa, BAO as well as the large scale structure (LSS) all play major roles in under-

standing the Universe as well as in constraining the cosmological parameters. There are many

factors that prevent us obtaining very good constraints on some important cosmological pa-

rameters. One example of those factors is degeneracies among the cosmological parameters.

In this chapter, we make use of our H(z) measurements combined with the recent and avail-

able H(z) in the literature to investigate their constraining power on the determination of

cosmological parameters. We also explore the availability of combining those H(z) data with

other cosmological measurements: BAO, WMAP and HST to better determine the constrain

on the parameter calculations. The first calculation was done with our own code, the second

one was performed by using the publicly available code cosmoMC. Both calculations were

based on the Markov Chain Monte Carlo (MCMC) techniques to determine the cosmological

parameters in the standard ΛCDM models, such as the density of matter parameter today

Ωm, the cosmological constant ΩΛ, the spatial curvature parameter today Ωk and the Hubble

constant today H0.

5.2 Methodology

5.2.1 Markov Chain Monte Carlo

The MCMC is a commonly used statistical technique for constraining parameters from ob-

served data. This technique is adapted for high dimensional parameter space, often called

“a chain”, which is well suited for cosmology with a large number of parameters. A most

basic MCMC algorithm is to construct a sequence of points or “samples” in that parameter

space from an arbitrary distribution, with a relaxing requirement that the samples should be

independent.
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A Markov Chain is defined as a sequence of random variables X1,X2, ...,Xn of some set

where the probability of the (n+ 1)th element in the chain only depends on the nth element

but not on (n− 1)th, i.e p(Xn+1|X1,X2, ...,Xn) = p(Xn+1|Xn). The set in which the Xi take

place is called the “state space” of the Markov Chain.

The important property of the Markov Chains is that they can be shown to converge

to a stationary state where successive elements of the chain are samples from the target

distribution, in our case the posterior probability density p(Θ|D). The goal of the MCMC

implementation is then to ensure that the sequence of random variables is drawn from the

stationary distribution.

The generation of the elements of the chain is probabilistic in nature, and is described by a

transition probability, often called the “transition kernel” T(Θn,Θn+1), giving the probability

of going from the point Θn to the point Θn+1 in parameter space. A sufficient condition

to obtain a Markov Chain is that the transition probability satisfies the detailed balance

condition

p(Θn|D)T(Θn,Θn+1) = p(Θn+1|D)T(Θn+1,Θn) (5.1)

It can be explained as the ratio of the probabilities for jumping from Θn to Θn+1, and

is inversely proportional to the ratio of the posterior probabilities at the two points. The

above equation also means that the chain would look the same whether you run it forwards

in time or backwards (reversible). This kind of chain behaviour is the desirable property for

any MCMC transition kernel to have, since any transition kernel in such equation will have

stationary distribution (here, p(Θ|D)). It is then important to find the appropriate transition

kernels which are associated with the different algorithms to construct a Markov chain which

performs well.

There are some issues while working with MCMC methods. For instance, MCMC is a

local algorithm, and it can be trapped at the vicinity of the local maxima of the posterior

density, instead of exploring the regions of higher posterior. It is therefore necessary to find

an implementation of the MCMC algorithm that is able to explore the parameter space of

interest well (One of MCMC algorithms: Metropolis-Hastings algorithm is discussed below).

Despite these problems, MCMC can also offer a significant advantage. Compared to other

approaches like the grid based approach, this approach is very cheap in term of the length

of computer time required to complete the task, especially with high dimensional parameter

space.

5.2.1.1 Bayesian Inference

The goal of the Bayesian Inference is to maximise the un-normalized joint posterior distri-

bution and collect samples of the target distributions, which are marginal posterior distri-

butions. The MCMC process produces a random sequence of dependent variables that are
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drawn directly from the posterior distribution. This is achieved using Bayes’ Theorem:

p(Θ|D) =
p(D|Θ)p(Θ)∫
p(D|Θ)p(Θ)dΘ

(5.2)

where p(Θ|D) is the posterior probability density for Θ or often called “posterior” for

short. It assigns a probability to the model given the data D and any prior knowledge

concerning the model. p(D|Θ) is the probability density associated with obtaining the data,

D, given a certain value of the model parameters, Θ, and is well known as the “likelihood ”

(p(D|Θ) = L(Θ)). The quantity p(Θ) is the prior probability distribution, often called “prior”

for short (or the marginal probability density). It describes the degree of the belief in the

value of Θ before seeing the data, and allows to put constraints on the model parameters. This

represents the essential ingredient of Bayesian statistics. The denominator in the equation

5.2 is a normalization factor, often called the “evidence”, and ensures that the posterior is

normalized to unity. This term is often ignored as it is not essential to evaluate the integral

in order to determine the posterior probability density. In our case, it is ignored. We also

adopted “flat prior” (also called “uniform ” prior).

MCMC is a technique that can offer an easy computation of the marginalised distribution

of the parameters from the posterior distribution by determining the appropriate density

function (histogram) of the desired parameters, even in the high dimensional parameter

space.

5.2.1.2 Metropolis-Hastings Algorithm

There are different types of the MCMC algorithms, such as the Metropolis algorithm (Metropo-

lis et al., 1953), Metropolis-Hastings algorithm (Hastings, 1970), the Gibbs sampling (Geman

and Geman, 1984), the Metropolis-Hastings-Green algorithm (Green, 1995) etc. The sim-

plest of all algorithms is the Metropolis Algorithm. The Metropolis-Hastings algorithm is the

most popularly used variety of MCMC as it is simple, intuitive, and very effective to solving

a wide variety of problems. The principle of this algorithm is to produce a “random walk” in

likelihood space that preferentially samples from the high probability regions while exploring

the wide range of possibilities. This algorithm utilizes some prior information in order to put

constraints on model parameters; more precisely it employs a likelihood ratio test in order to

accept or not a candidate position in parameter space.

To define the algorithm, let π(.) denote the starting point of the MCMC which is often

chosen randomly. The goal of the MCMC is to draw random samples from this starting point,

the stationary or posterior distribution, and then to allow inference of model parameters. Any

MCMC algorithm is designed to explore a target distribution, therefore any results calculated

from a sufficiently large set of samples should be independent of this staring point. As stated

before, a transition probability T(Θn,Θn+1) is required to generate the Markov chain from

π(.), such that after the nth iteration of the chain, π is the stationary distribution, i.e π = πT .
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The aim of any MCMC implementation is to employ a proper transition probability.

The key roles of the Metropolis-Hastings algorithm are to ensure that π is the only sta-

tionary distribution of T and that the chain generates samples from the posterior distribution

p(Θ|D) (in other term π(.) → p(Θ|D) as n → ∞). The transition kernel in the Metropolis-

Hastings algorithm is defined as the following:

T(Θn+1,Θn) = α(Θn+1,Θn)q(Θn+1,Θn) (5.3)

where α(Θn+1,Θn) describes the probability of accepting a transition from Θn to Θn+ 1,

referring to the “probability of move” and it is given by:

α(Θn+1,Θn) =

min

{
π(Θn+1)q(Θn+1,Θn)

π(Θn)q(Θn,Θn + 1)
, 1

}
if π(Θn)q(Θn,Θn+1) > 0

1 if π(Θn)q(Θn,Θn+1) = 0

(5.4)

and q(Θn+1,Θn) is the candidate-generating distribution (also known as the “proposal

distribution” ), which generates or proposes a new candidate location in the parameter space

Θn+1 given the current location Θn.

In Short, the Metropolis-Hastings algorithm is defined by two steps:

• the first step is where a proposal value is drawn from the candidate-generating distri-

bution q(Θn+1,Θn), and

• the second step is where the proposal value is accepted as the next iterate in the Markov

chain according to the probability α(Θn+1,Θn).

If the proposal value is rejected, then the next sampled value is taken to be the current value.

It appears that equation 5.4 is a ratio in the probability α(Θn+1,Θn) and therefore the

algorithm can be implemented without knowledge of the normalizing constant of π(.) since it

appears both in the numerator and denominator. In addition, if the candidate distribution

is symmetric, i.e. q(Θn,Θn+1) = q(Θn+1,Θn), the acceptance probability α(Θn+1,Θn) of

moving from Θn to Θn+1 only contains the ratio π(Θn+1)/π(Θn). When considering flat

priors in equation 5.2, the expression of the probability of the move is reduced as follows:

α(Θn+1,Θn) =

min

{
L(Θn+1)

L(Θn)
, 1

}
if L(Θn)q(Θn,Θn+1) > 0

1 if L(Θn)q(Θn,Θn+1) = 0

(5.5)

All of these mean that if L(Θn+1) ≥ L(Θn), the chain will always take the step. If

L(Θn+1) < L(Θn) the chain will move to Θn+1 with probability L(Θn+1)/L(Θn). In this case

a number u is drawn from a uniform distribution U(0, 1) and if u ≤ L(Θn+1)/L(Θn) then

the step is taken as above. In another way, the next step is rejected then the current step is

re-saved as part of the chain.
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Here is the summary of the Metropolis-Hastings algorithm in algorithmic way:

Specify an initial value Θ(0) with associated posterior probability p(Θ(0)|D)

• Repeat for j = 1, 2, 3...N

• Propose a candidate point Θn+1 ∼ q(Θ(j), .) and u from U(0, 1).

• if u ≤ α(Θ(j),Θn+1)

-set Θ(j+1) = Θn+1

• Else

-set Θ(j+1) = Θ(j)

• Return values Θ(1),Θ(2), ...,Θ(N)

5.2.2 MCMC code description

Recalling the theoretical equation of the non-flat ΛCDM model:

Hth(z) = H0

√
Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2 (5.6)

where Ωm + ΩΛ + Ωk = 1;

and the theoretical equation of the flat ΛCDM model (Ωk = 0):

Hth(z) = H0

√
Ωm(1 + z)3 + ΩΛ (5.7)

the general aim is to fit a model with N adjustable parameters, a vector Θ = (Θ1,Θ2,Θ3, ...Θn),

to a set of M observational data points D = (Hi, zi, σi), i = 1, 2...,M where Hi is the measured

Hubble parameter at a given redshift zi.

In our case, Hth(z) for a non-flat model is represented by three parameters (N = 3)

Θnon−flat = (H0,Ωm,ΩΛ). However, Hth(z) for a flat model is described by two parameters

(N = 2) Θflat = (H0,Ωm).

From the Bayes’ Theorem, the likelihood L ≡ L(D|Θ) was introduced into MCMC

method. It can be obtained by assuming that the observed data Di is a set of M inde-

pendent normally distributed random variables (Gaussian) (Cowan, 1998). Each Di has a

different unknown mean, µi, but known variance, σ2
i . The likelihood of the data is then the

product of the probability of each data point:

L =

M∏
i=1

exp

(
−1

2
χ2

)
(5.8)

Maximizing the equation 5.8 is equivalent to maximizing its logarithm, or minimizing

the negative of its logarithm. Thus, the maximum likelihood estimate of the parameters is
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minimizing χ2 function:

χ2(Θ) =
M∑

i=1

(Hi(zi)−Hth(zi))
2

σ2
i

(5.9)

The general algorithm presented here is following the Donar & Muller (2004) definition.

After choosing a starting point Θ0, the likelihood L(D|Θ0) of observing the experimental data

D given parameter vector Θ0 was computed. We obtained a new parameter vector ∆Θ by

sampling the jump from a Gaussian distribution with mean 0 and standard deviation vector

σ, i.e. the jump of each parameter is controlled by this new parameter vector. A vector

equation, parameter dependent Ui = Θi−1 + ∆Θi−1, was constructed. The maximisation

of the likelihood was then used iteratively as in general MCMC approach, meaning at each

jump on the evolution of the chain, the likelihood, Li = L(D|Ui) was calculated at the

new candidate position in parameter space, Θi and compared with the likelihood, Li−1 =

L(D|Ui−1) at the previous location, Θi−1. The Metropolis-Hastings algorithm was then used

in order to accept or reject the new candidate position. If it gets accepted, then Ui was saved

as a new position Θi in the chain. Contrarily, if it gets rejected, a random variable U from

[0,1] was generated and retested again. If it gets rejected again, the previous position was

saved as a new point in the chain.

The chain then performed a random walk in the parameter space and generated the

sequence of parameter samples. It will approach regions of higher likelihood after a certain

amount of time, and converge to a stationary position as well. Normally, the value of each

parameter from the fit would be the mean of the distribution of parameter samples and the

associated error is obtained by the variance of that distribution. However, since the chain

file is already produced by our own MCMC code, the getdist program implemented in

cosmoMC can be used for statistical analyses and plotting. This is very independent of the

main cosmoMC program.

We implemented some prior distributions on each parameter. Table 5.1 lists the prior of

model parameters, They are set to be uniform distributions

Table 5.1: List of prior distributions on each parameter

Parameter Prior distribution

Ωm [0.0 , 1.5]
ΩΛ [0.0 , 2.5]
H0 [50 , 100]

139



5. Cosmological constraints

5.2.3 The Observational Datasets

Since 2002, after Jimenez & Loeb established the method of the direct measurement of H(z),

many scientists have explored the availability of this method to constrain the cosmological

parameters. All available direct measurements on the Hubble parameter up to z ∼ 1.8 were

used widely as in Moresco et al. (2012b) and in Zhang et al. (2012); Zheng et al. (2014)

including their new measurements. They also used the datapoints obtained by Gaztañaga

et al. (2009b). Note that these data points are from the BAO measurements, not from a direct

H(z) measurement. These data points are included in our analysis in order to compare our

results with the literature Zhang et al. (2012); Zheng et al. (2014). Table 5.1 summarizes all

the available observational H(z) data points including our four measurements, and displayed

in figure 5.2. We built a sample of 29 observational H(z) measurements including our new

4 data points in the range of 0.1 < z <1.8, which is equivalent to 10 Gyr of cosmic time.

The 25 observational H(z) measurements represent the the widest up-to-date sample. To

set constraints on cosmological parameters, the H(z) estimates using the SDSS passively

evolving galaxies and the LRGs observed with SALT were combined.

Figure 5.1: All available observational H(z) data points. The green points are our mea-
surements using SDSS-LRGs and red point while using SALT-LRGs
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Table 5.2: All available observational H(z) data points with their errors, including
our measurements using SDSS-LRGs and SALT-LRGs. H(z) measurements are in units
of km s−1Mpc−1. Some of these data points are available at http://www.physics-
astronomy.unibo.it/en/research/areas/astrophysics/cosmology-with-cosmic-
chronometers

z H(z) σH(z) Reference

0.07 69.0 19.6 Zhang et al. (2012)
0.090 69 12 Simon et al. (2005)
0.12 68.6 26.2 Zhang et al. (2012)
0.170 83 8 Simon et al. (2005)
0.179 75 4 Moresco et al. (2012a)
0.199 75 5 Moresco et al. (2012a)
0.20 72.9 29.6 Zhang et al. (2012)
0.24 79.69 3.32 Gaztañaga et al. (2009b)
0.27 77 14 Simon et al. (2005)
0.28 88.8 36.6 Zhang et al. (2012)
0.352 83 14 Moresco et al. (2012a)
0.40 95 17 Simon et al. (2005)
0.43 86.45 3.27 Gaztañaga et al. (2009b)
0.48 97 62 Stern et al. (2010a)
0.593 104 13 Moresco et al. (2012a)
0.680 92 8 Moresco et al. (2012a)
0.781 105 12 Moresco et al. (2012a)
0.875 125 17 Moresco et al. (2012a)
0.88 90 40 Stern et al. (2010a)
0.90 117 23 Simon et al. (2005)
1.037 154 20 Moresco et al. (2012a)
1.30 168 17 Simon et al. (2005)
1.43 177 18 Simon et al. (2005)
1.53 140 14 Simon et al. (2005)
1.75 202 40 Simon et al. (2005)
0.475 105 39 SALT-LRGs
0.28 76.8 5.3 SDSS-LRGs
0.30 78.5 6.8 SDSS-LRGs
0.32 86.3 7.6 SDSS-LRGs

5.3 Constraints on cosmological parameters from LRG mea-

surements of H(z)

Figures 5.2, 5.3 show the one-dimensional (1D) marginalised probability distribution of each

parameter and the two dimensional (2D) marginalised confidence regions of the non-flat and

flat ΛCDM models respectively when using all 29 data points and the previous dataset used

by Zhang et al. (2012) (25 data points). The inner and outer contours show the 1σ error

(68%) and 2σ (95%) error respectively. The best fit parameters are also pointed in the plots
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as long cross lines, and given in table 5.3 for non-flat ΛCDM model and in table 5.4 for flat

ΛCDM model. The H0, Ωm and ΩΛ parameter values from the WMAP9 alone are also plotted

as a black cross symbol in the flat ΛCDM model for comparison. The CMB data alone are

found to tightly constrain the parameters in that model, however they show consistency with

the observational H(z) data Moresco et al. (2012b).

The two plots illustrate the comparison of the constraint results of the old dataset (25

data points) shown in red and the new dataset (29 data points) shown in green, in both

ΛCDM models. The missing parts on the 2D marginalised confidence regions with a non-flat

ΛCDM model are due to the priors applied to the parameters. Our new measurements have

an impact on the constraints results in H0, Ωm and ΩΛ parameters even though only 4 data

points were added on top of the old ones. The 1D marginalised probability distribution of

using 29 data points show a more reduced distribution than using the old dataset, while they

tighten each parameter contour of the confidence level in the 2D marginalization plots.

Table 5.3: Marginalised constraints on H0, Ωm, and ΩΛ at 1-σ for a non-flat ΛCDM model

Model Parameter 25 data points 29 data points

H0 69.2+3.9
−5.2 68.8+4.0

−4.7

Ωm 0.335+0.180
−0.187 0.336+0.171

−0.181

ΩΛ 0.696+0.367
−0.380 0.690+0.350

−0.361

Ωk -0.032+0.555
−0.536 -0.027+0.541

−0.505

Table 5.4: Marginalised constraints on H0, Ωm, and ΩΛ at 1-σ for a flat ΛCDM model

Model Parameter 25 data points 29 data points

H0 68.7+2.8
−2.5 68.5±2.4

Ωm 0.323+0.050
−0.066 0.324+0.050

−0.065

ΩΛ 0.676+0.066
−0.050 0.675+0.065

−0.050

5.4 Combining LRG results from H(z) with other measure-

ments

We further combined the above observational H(z) measurements datasets with the other

major datasets such as WMAP9, BAO and HST to investigate their constraints on the

determination of the cosmological parameters. The latest results of the CMB temperature

and polarization power spectra from WMAP9 (Hinshaw et al., 2013) were used. In this

analysis, we also used the BAO measurement from:

• 6dF Galaxy Redshift Survey (6dFGRS) at z =0.106 (Beutler et al., 2011)
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Figure 5.2: Observational H(z) data points constraining results of the non-flat ΛCDM
model. This plot shows the 1D and the 2D marginalised posterior probability distributions.
The inner and outer contours show the 1σ error and 2σ error respectively. The red lines show
the old version of Zhang et al. (2012), the green lines show the new version which includes
the datasets used by Zhang et al. (2012) in addition to the H(z) measured using LRGs with
SALT and LRGs with SDSS. The dotted lines show the best fit parameter values.

• SDSS-LRGs DR7 sample at z = 0.35 (Padmanabhan et al., 2012)

• SDSS-LRGs DR9 sample at z = 0.57 (Anderson et al., 2014)

• WiggleZ survey at z = 0.44 , z = 0.60 and z = 0.73 (Busca et al., 2013)
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Figure 5.3: Observational H(z) data points constraining results of the flat ΛCDM model.
This plot shows the 1D and the 2D marginalised posterior probability distributions. The
inner and outer contours show the 1σ error and 2σ error respectively. The red lines show
the old version of Zhang et al. (2012), the green lines show the new version which includes
the datasets used by Zhang et al. (2012) in addition to the H(z) measured using LRGs with
SALT and LRGs with SDSS. The dotted lines show the best fit parameter values. The black
symbols represent the parameter values from the WMAP9 for a comparison.

The last dataset used is the Hubble Space Telescope (HST) measurement of the Hubble

parameter today H0 = 73.8± 2.3 km s−1Mpc−1. This value was obtained from the magnitude-

redshift relation of 235 SN Ia observed with HST. The best fit parameter from the H(z)
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dataset was obtained in the same manner as using H(z) alone by the χ2 minimization.

We made use of the publicly available MCMC package named cosmoMC1. This package

is written with Fortran code in order to explore the cosmological parameter space, plus some

codes for analysing the Monte-Carlo samples and importance sampling.

By assuming different sets of initial conditions, and with the current cosmological ob-

servations, we constrain the different cosmological parameters of the ΛCDM model which

are listed in table 5.5 . The first block of the table represents the choice of the primary

parameters and parameters in the second block are the derived parameters. The choice of

the primary parameters in cosmoMC depends on the derived parameters. All the primary

parameters here represent the cosmology for Θ parametrization (the default parameters).

The use of this parametrization is found to be more efficient than the H0 parametrization

as it is less correlated with other parameters. We derived the Hubble constant H0, the ratio

of the critical density in the form of the dark energy ΩΛ and the total matter density, Ωm

(from the constraint Ωm + ΩΛ + Ωk = 1). The numerical calculations were performed with

an equation of state ω = -1 and a flat curvature Ωk = 0.

Table 5.5: List of the cosmological parameters in the ΛCDM model.

Parameter Description

Primary parameters
Ωbh

2 Physical baryon density today
Ωch

2 Physical cold dark matter density today
Θ 100 times angular size of sound horizon
τ Re-ionisation optical depth
Ωk Spatial curvature parameter today
Σmν The sum of the neutrino mass (eV)
Neff The effective density parameter for neutrinos
ω The equation of state of the dark energy
ns Scalar spectral index of the initial power spectrum
nt The tensor spectral index
nrun The running of the scalar spectral index
ln(1010As) Amplitude of the primordial curvature perturbations
r The tensor to scalar ratio of the primordial spectrum

Secondary parameters
H0 The Hubble constant
Ωm The density of the matter
ΩΛ Cosmological constant

1http://cosmologist.info/cosmomc/
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5.5 Results - joint analysis

For a flat ΛCDM, we obtained the constraints shown in table 5.6. It shows the constraints

when using WMAP9 combined with the H(z) measurements (WMAP9+Hz), WMAP9+Hz

combined with BAO, WMAP9+Hz combined with BAO and H0 measurement from HST. The

last three dataset combinations were used to study the constraints due to the contribution

of H(z) and H0 measurements. Through this analysis, we can see that the overall joint

constraints are consistent with the standard cosmological model. We find that adding the

H(z) datasets and H0 shows a noticeable constraints on H0, Ωm parameters. This is also

due to the better constraint on the measured Hubble constant. WMAP9+Hz joint analysis

does not provide any improvement over the WMAP9 alone since the WMAP9 constraint is

much more precise than H(z) constraint.

A combination of WMAP9+BAO with the H(z) data significantly improves the 1-σ error.

Figure 5.4 illustrates the 1 and 2−σ of these joints constraints in H0, Ωm and ΩΛ planes and

their marginalised probability distribution. The parameter values of H0 = 69.6+1.4
−1.5 and Ωm

= 0.295±0.011 are consistent with results of Zheng et al. (2014).

Table 5.6: Marginalised constraints at 1-σ on H0, Ωm parameters obtained for a flat ΛCDM
model. Hz means including H(z) datasets.

H0 Ωm

WMAP9+Hz 68.8±2.4 0.320+0.047
−0.059

WMAP9+HST+Hz 71.4 +1.9
−1.7 0.274+0.035

−0.045

WMAP9+BAO 68.1+3.8
−4.7 0.299+0.016

−0.022

WMAP9+BAO+Hz 69.6+1.4
−1.5 0.295±0.011

WMAP9+BAO+HST 72.5+0.7
−0.6 0.284±0.003

WMAP9+BAO+HST+Hz 70.7±1.2 0.289 +0.010
−0.011

5.6 Conclusion

In this chapter, we have used our four H(z) measurements combined with other H(z) in

literature plus other cosmological measurements to better constrain the cosmological param-

eters. In this study, we have only focused on H0, Ωm, ΩΛ and Ωk parameters. We have our

own MCMC code to fit the observational H(z) data. The new set of data which includes our

H(z) estimates shows tighter constraints than the old set of data in both flat and non-flat

ΛCDM models. The degree of the constraint on the cosmological parameters is fairly weak

because the number of the added data points is small.

We have also added some external datasets from WMAP9, BAO and HST to further

146



5. Cosmological constraints

0.64 0.68 0.72 0.76

ΩΛ

0.24

0.28

0.32

0.36

Ω
m

64 72 80

H0

0.64

0.68

0.72

0.76

Ω
Λ

0.24 0.28 0.32 0.36

Ωm

WMAP9 + BAO

WMAP9 + BAO + Hz

Figure 5.4: Observational H(z) data points constraining results of the flat ΛCDM model.
This plot show the 1D and the 2D marginalised posterior probability distributions. The
inner and outer contours show the 1σ error and 2σ error respectively. The black lines
show the combination of WMAP9+BAO datasets, the blue lines show the combination of
WMAP9+BAO+Hz datasets.

constrain the power of measurements of H(z). We find a significant improvement on the 1-σ

constraint when combining observational H(z) data with WMAP9+BAO. The inclusion of

the H(z) measurement tends to break the degeneracies among the other parameters, since

the H(z) data can provide information about the expansion rate at the late time. Therefore,

the H(z) and H0 datasets are necessary for other observations for cosmological study.
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Chapter 6

Conclusions and Future Work

6.1 Summary

The differential age or cosmic chronometers technique is an interesting way to measure the

expansion rate of the Universe, since it gives a direct measurement between two distinct

redshifts. This approach uses passively evolving quiescent galaxies in order to accurately

reconstruct the expansion rate of the Universe over cosmic time. The work presented in this

thesis highlights the exploration of this technique by using two different samples of passively

evolving galaxies.

A better selection criteria has been used to form a very homogeneous sample of passively

evolving galaxies from the SDSS-DR7 over the redshift range 0.10 < z < 0.40. A further

selection based on their emission lines has been applied to establish a sample free from any

star formation or AGN activity. All galaxies have been corrected from any possible remaining

nebular emission lines which can be found to affect the stellar absorption line-strengths,

causing inaccurate age determination. Furthermore, all spectra within redshift bins of δz =

0.02 have been combined to form a high signal-to-noise spectrum to estimate reliable SSP

equivalent parameters.

Two different age-dating techniques have been used to determine the stellar parameters

of those galaxies. On the one hand, we have used the Lick indices analysis where the SSP

models with variable element abundance ratios of TMJ have been used. On the other hand,

four different SSP spectral models including models from M11, BC03, VM and PE have been

adopted to extract the SSP equivalent parameters. For the full spectral fitting, the package

ULySS has been employed, whereas simple Monte Carlo simulations has been used to fit the

calibrated Lick indices measured from the stacked spectra. The Lick indices fitting shows

a significant difference in the derived SSP ages. Moreover, the derived SSP parameters are

found to be dependent on the set of Lick indices used.

We have extensively compared the parameter results derived from each model, in partic-

ular from the full spectral fitting. With the exception of the models by Maraston (2011), all

models do not show a very significant inconsistency. We have provided different age-redshift
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relations depending on 5 different SSP models: including one Lick indices model and four

SED models. The general trends are consistent with expectations from the ΛCDM, and can

be used for cosmology constraints. A few models could not reproduce the age-redshift rela-

tionship properly, such as the TMJ model of Lick indices and the M11 models. It has been

proved in this analysis that the full spectral fitting provides more accurate SSP parameters

than using Lick indices. With the latter, a necessary calibration to the Lick/IDS system has

to be applied to the measured line-strengths, leading to the inclusion of different errors into

the calibrated indices. For each model, the expansion rate of the Universe H(z) has been

measured at z ' 0.28, z ' 0.30 and z ' 0.32 using ages over the redshift range of 0.20 < z <

0.40. Galaxies at <0.20 have not been used because the number of galaxies is fewer. We have

obtained <9% accuracy measurements of H(z) when using BC03. These H(z) values have

been employed to constrain the cosmological parameters.

We have carried out another cosmic chronometers study using 16 long-slit spectra of LRGs

observed with SALT telescope. A massive and passively evolving sample of LRGs at redshift

' 0.40 and ' 0.55 has been selected. We have reduced and analysed those spectra. The

PE models have been used to extracted the SSP equivalent parameters of these LRGs. The

mean age of galaxies in each redshift has been used to estimate the Hubble parameter H(z)

value at ' 0.47.

In constraining the cosmological parameters, we have combined our H(z) estimates from

using SDSS passively evolving galaxies and LRGs observed with SALT with the external

datasets. We have implemented an MCMC approach that provides the best fit parameters of

H0, Ωm and ΩΛ for a flat ΛCDM model and H0, Ωm, ΩΛ and Ωk for a non-flat ΛCDM. We

have obtained parameter values which are consistent with the standard cosmological model.

We have also combined all observational H(z) data with data from WMAP9, BAO and

HST to further constrain the cosmological parameters. For a flat ΛCDM model, significant

improvements on the 1-σ constraints for Ωm and H0 are found when combining observational

H(z) data with WMAP9+BAO which are very consistent with previous results.

6.2 Future work

With the recent release of the BOSS spectra and α-enhanced spectral models, the full spectral

fitting of the LRGs will improve and will provide more accurate SSP parameters than models

which used solar-scaled parameters. Therefore, the use of the Lick indices or the Lick system

will not be very essential for age-dating galaxies over a high redshift range. We will apply the

cosmic chronometers technique to the BOSS spectra and other surveys like the Sandage-Loeb

test (Corasaniti et al., 2007) which can allow us to go deeper in redshift. Our measurement

will then contribute to the extension of the number of the observational H(z) data. Currently,

this number is still tiny compared with the SN Ia data sets, but in the next few decades with

the availability of high redshift surveys, it will be extended.
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The systematic errors between SSP models used remain a subject of discussion. Further

analysis on this must be done by performing a Bayesian model averaging across the models.

Therefore average values of the age-redshift relation will be used to measure H(z) and con-

strain cosmological parameters. With the release of the new PLANCK data, a joint analysis

with the measurements of the H(z) datasets will help to further investigate on cosmological

parameters.

Some multi-object spectra (MOS) of LRGs at z ' 0.40 and z ' 0.55 were available

during the 2012 and 2013 observation runs. After reducing these data, SSP parameters of

these galaxies will be determined by performing a full spectral fitting. This sample will be

added into the current one (long-slit spectra) in order to improve the measurement of the

Hubble parameter H(z) at z '0.47 as well as the cosmological constraints. We are also

planning more SALT observations to study the evolution and the environment of the most

massive galaxies at intermediate redshift.
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Chen, Y., Trager, S., Peletier, R. & Lançon, A. (2011). XSL: The X-Shooter Spectral

Library. Journal of Physics Conference Series, 328, 012023. 24

Chilingarian, I., Prugniel, P., Sil’Chenko, O. & Koleva, M. (2007). NBursts: Simul-

taneous Extraction of Internal Kinematics and Parametrized SFH from Integrated Light

Spectra. 241, 175–176. 56

156



References REFERENCES
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Appendix A

Comparisons of σv and emission
lines with MPA-JHU catalogue

As we did not used either the measured velocity dispersion or the emission lines values from

the SDSS or the MPA-JHU catalogues, it is necessary to compare the results from the pPXF

and GANDALF routines in order to see its performance. We used the sample of galaxies

within redshift bin 0.24 < z < 0.26 without any selection have been applied to it. Figure A.1

shows the agreement between both velocity dispersion measurements. This is not surprising

since the MPA-JHU group have used the same stellar templates by Tremonti et al. (2004) to

determine the stellar kinematics. We found that pPXF can recover the velocity dispersion

values of the MPA-JHU.

We also used the same sample to select the corresponded equivalent widths (EWs) of Hβ,

[OIII]λ5007 and Hα emission lines from the MPA-JHU catalogue. Without considering any

exception about the strength of the emission lines (strong or weak), figure A.2 represents the

comparison between our emission lines values (EWs) and those from the catalogue. The Hα

line widths agree fairly with the MPA-JHU measurements as proved by other studies (Oh

et al., 2011). However, [OIII]λ5007 and Hβ EWs show little biases, our values are lower than

the MPA-JHU estimates. The cause of these small deviations are very difficult to understand,

it might become negligible when comparing a larger sample. The straight lines found at zero

on our measurements would be our quiescent galaxies sample, which fall into the definition

of the passively evolving galaxies introduced by Tremonti et al. (2004). The outliers values

on that zero lines are probably those objects with higher velocity dispersion and which were

excluded in our final sample.
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A. Comparisons of σv and emission lines with MPA-JHU catalogue

Figure A.1: Comparison of our values of the central velocity dispersion and those listed
from the MPA-JHU catalogue for objects at 0.24 < z < 0.26. The dashed line shows the
one-to-one line.

Figure A.2: Comparison of our values of emission line EWs and those from the MPA-JHU
catalogue for objects at 0.24 < z < 0.26. The dashed lines show the one-to-one lines.The
straight lines found at zero represent our quiescent galaxies sample. The outliers values from
that lines were excluded in our final sample since they might be the objects with higher
velocity dispersion.
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Appendix B

Fits of all stacked spectra

In this appendix, we present all fits of the other 14 stacked spectra with PE, VM, BC03 and

M11 models. The fits were done in the whole wavelength ranges when using the last three

models, whereas set as 4000 - 5500 Å for PE model. After applying the LSF injection in order

to match the resolution of both model and observed spectra, and a degree of multiplicative

polynomial of ∼12, plots of the SSP fitting of all stacked spectra are given in figure B.1 to

B.14. The fitting plots of the stacked spectra at 0.24 < z < 0.26 have already shown in

chapter 3. The corresponded SSP parameter results are found in tables 3.10, 3.11, 3.22, and

3.13 of chapter 3. The telluric lines and all possible undesirable spikes were masked.
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Figure B.1: Fitting stacked spectra with PE (red), VM (green), BC03 (blue) and M11
(yellow) models. All upper panels of each subfigure display the stacked spectra at 0.10 < z
< 0.12 (black lines) and the best fit models (coloured spectra). All bottom panels show the
residual from the fits, the solid green lines are the 1σ deviation and the dashed green lines
represent zero residuals. Red and yellow (in the first plot) regions were rejected from the
fits. They were masked due to the telluric lines, the interstellar absorption line (NaD), and
automatic rejection of outliers.
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Figure B.2: Fitting stacked spectra at 0.12 < z < 0.14 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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Figure B.3: Fitting stacked spectra at 0.14 < z < 0.16 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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Figure B.4: Fitting stacked spectra at 0.16 < z < 0.18 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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Figure B.5: Fitting stacked spectra at 0.18 < z < 0.20 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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Figure B.6: Fitting stacked spectra at 0.20 < z < 0.22 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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Figure B.7: Fitting stacked spectra at 0.22 < z < 0.24 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.

184



B. Fits of all stacked spectra

        

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e 
fl

u
x

4000 4200 4400 4600 4800 5000 5200 5400
Wavelength (Angstrom)

-0.04

-0.02

0.00

0.02

0.04

R
es

id
u

al

    

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
fl

u
x

4000 5000 6000 7000
Wavelength (Angstrom)

-0.04

-0.02

0.00

0.02

0.04

R
es

id
u

al

    

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
fl

u
x

4000 5000 6000 7000
Wavelength (Angstrom)

-0.04

-0.02

0.00

0.02

0.04

R
es

id
u

al

    

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
fl

u
x

4000 5000 6000 7000
Wavelength (Angstrom)

-0.04

-0.02

0.00

0.02

0.04

R
es

id
u

al

Figure B.8: Fitting stacked spectra at 0.26 < z < 0.28 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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Figure B.9: Fitting stacked spectra at 0.28 < z < 0.30 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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Figure B.10: Fitting stacked spectra at 0.30 < z < 0.32 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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Figure B.11: Fitting stacked spectra at 0.32 < z < 0.34 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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Figure B.12: Fitting stacked spectra at 0.34 < z < 0.36 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.

189



B. Fits of all stacked spectra

        

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
fl

u
x

4000 4200 4400 4600 4800 5000 5200 5400
Wavelength (Angstrom)

-0.04

-0.02

0.00

0.02

0.04

R
es

id
u

al

      

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
fl

u
x

4000 4500 5000 5500 6000 6500
Wavelength (Angstrom)

-0.04

-0.02

0.00

0.02

0.04

R
es

id
u

al

       

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
fl

u
x

3500 4000 4500 5000 5500 6000 6500
Wavelength (Angstrom)

-0.04

-0.02

0.00

0.02

0.04

R
es

id
u

al

      

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
fl

u
x

4000 4500 5000 5500 6000 6500
Wavelength (Angstrom)

-0.04

-0.02

0.00

0.02

0.04

R
es

id
u

al

Figure B.13: Fitting stacked spectra at 0.36 < z < 0.38 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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Figure B.14: Fitting stacked spectra at 0.38 < z < 0.40 with PE (red), VM (green), BC03
(blue) and M11 (yellow) models.
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