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ABSTRACT 

Mine water poses a serious environmental challenge and contains elements such as Fe, Al, 

and Mn in potentially toxic concentrations. The major anion in mine water is sulphate. 

The complexity and diversity of mine water composition makes its treatment very 

expensive, and there is no “one-fits-all” treatment option available for mine water. Active 

treatment of mine water produces water with good quality but the processes are not 

sustainable because of the costs. Previous studies have shown that acid mine drainage 

can be treated with coal FA to produce better quality water. The use of coal FA, a waste 

material from coal fired power station and mine water would go a long way in 

achievement of sustainable treatment of mine water as per previous studies. In this study 

mine water and coal FA were characterized to determine their physiochemical properties. 

This study linked the modelling results obtained by using the Geochemist’s workbench 

(GWB) software to the results obtained during the actual treatment of Matla mine water 

and Rand Uranium mine water using coal FA and lime. The chemistry involved when Matla 

mine water and Rand Uranium mine water were treated with flocculants was also 

investigated. Lastly the chemistry and kinetics involved was investigated when mine water 

was treated with various ameliorants such as Matla coal FA, lime and/or Al(OH)3 using jet 

loop mixing or overhead stirring. 

 

Mine water from Matla coal mine had a pH of 8 and therefore was classified as neutral mine 

drainage (NMD). Rand Uranium mine water had a pH of less than 3 and therefore was 

classified as acid mine drainage (AMD). The concentration of sulphate, Na, Ca, Mg, B, Hg, Se 

and Cd ions in Matla mine water was 1475, 956, 70, 40, 15, 2.43, 1.12 and 0.005 mg/L 

respectively. The concentration of sulphate, Fe, Ca, Mn, Mg, Al, B, Cr, Pb, U, Cd, Se and As 

ions in Rand Uranium mine water was 4126, 896, 376, 282, 155, 27, 5.43, 3.15, 0.51, 0.29, 

0.007, 0.06 and 0.006 mg/L respectively . These concentrations were above the target water 

quality range (TWQR) for potable water set by the Department of Water Affairs (DWA) and 

World Health Organization (WHO). The gross alpha radioactivity was 6.01 Bq/L and gross 

beta radioactivity was 6.05 Bq/L in Rand Uranium mine water. This was 12 and 6 times more 
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than the required limit for potable water respectively. Radioisotopes analysis of Rand 

Uranium mine water showed that 234U was 4.71 Bq/L which was above the TWQR for 

potable water of 0-1 Bq/L.  Species distribution was calculated by SpecE8 program of the 

Geochemist’s workbench (GWB) software. It was found by the SpecE8 program that major 

ions such as Mg, Mn, Na, K and sulphate mainly existed as free ions in both Rand Uranium 

and Matla mine waters. This means these elements would be highly mobile in the 

environment, which increases their bioavailability and toxicity. Aqueous speciation of Fe and 

Al were found to occur in association with hydroxyl ions. Therefore, these species were less 

mobile hence Fe and Al had reduced bioavailability and toxicity. 

Matla coal FA that was used to treat the mine water was made up of mullite, quartz, lime, 

hematite and gypsum minerals. Gross alpha radioactivity was 3440 mg/L and beta 

radioactivity was 1200 Bq/L in Matla coal FA. The radioactive isotopes detected in Matla 

coal FA were 186 Bq/L of 238U, 5.58 Bq/L of 235U, 188 Bq/L of 234U, 156 Bq/L of 232Th, 

184 Bq/L of 228Th, 182 Bq/L of 228Ra, 182 Bq/L of 226Ra, 320 Bq/L of 210Pb and 330 Bq/L of 40K. 

The analysis showed that the radioactivity of Matla coal FA was in the range of most of the 

coal FA worldwide, but was much higher than that of normal soil. This indicated that any 

process using Matla coal FA would need to be evaluated for the ultimate fate of radioactive 

elements. Analysis of Matla coal FA indicated that it contained various rare earth elements 

(REEs). The REEs that were detected in Matla coal FA were, Ce (189.78 mg/kg), La 

(81.66 mg/kg), Nd (63.50 mg/kg), Y (52.30 mg/kg), Sc (24.94 mg/kg), Pr (18.35 mg/kg), Sm 

(11.95 mg/kg), Gd (10.40 mg/kg), Dy (9.50 mg/kg), Er (5.38 mg/kg), Yb (5.27 mg/kg), Ho 

(1.97 mg/kg), Tb (1.60 mg/kg), Tm (0.77mg/kg), and Lu  (0.72 mg/kg). Rare earth elements 

have wide applications in catalysis, magnetic resonance imaging and other applications in 

industry. Since the concentration of REEs in Matla coal FA was much higher than that in soil, 

it is worthwhile to find cheap technologies to recover these elements from coal FA. This 

would minimize the release of these elements into the environment in addition of finding a 

cheap source of these valuable minerals. 

 

It was predicted by the Act2 program of the GWB software that mine water could be 

treated with Matla coal FA to remove Mg, Al, Mn, U and Th by almost 100 % by increasing 
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the pH of the mine water to greater than 10. Also the Act2 program predicted that sulphate, 

Na and K ions would not be removed from Matla mine water if it was to be treated with coal 

FA. The Act2 program predicted that sulphate ions could be removed as alunite or gypsum 

when Rand Uranium mine water was to be treated with coal FA, but Na and K would remain 

in solution.   

The modelling results were then experimentally verified in terms of the removal of major 

contaminants (Fe, Al, Mn, Mg and sulphate ions). Treatment of Matla mine water with coal 

FA resulted in the removal of Mg to within TWQR for potable water. This was noticed when 

the pH was increased to greater than 10. However, it was observed that sulphate, K and Na 

could not be removed during this treatment. Treatment of Rand Uranium mine water with 

coal FA resulted in the removal of major ions such as Fe, Al, Mn, Mg and sulphate ions from 

mine water. Iron, Al, Mn and Mg were removed to within the TWQR for potable water, 

while the sulphate ions were reduced from 2562 mg/L to about 1500 mg/L, which was still 

above the TWQR for potable water. These results agreed well with the modelling results 

obtained using Act2 program of the GWB software. When both Rand Uranium mine water 

or Matla mine water was treated with coal FA it was found that most of the potentially toxic 

elements (Zn, Ni, Cu, As, Pb, Be, Cr, V and Cd) and naturally radioactive elements (NORMs) 

(U and Th) were removed to below the required limit for potable water. These results were 

obtained by mixing mine water with various amounts of Matla coal FA and/or lime using an 

overhead stirrer or a jet loop reactor. The experimental results obtained when Rand 

Uranium mine water and Matla mine water were treated with Matla coal FA confirmed the 

results obtained by the Act2 program of the GWB software. This meant that GWB software 

is a powerful tool that can be used to predict what can be expected when treating mine 

water. This would help water scientists to plan the best treatment protocol because they 

could predict what to expect. 

The product water after treatment of Matla mine water or Rand Uranium mine water with 

coal FA and/or lime contained a high concentration of sulphate and Ca ions (and Na ions in 

case of Matla mine water). It was found that the sulphate concentration could be removed 

to within the TWQR for potable water by using aluminium chlorohydrate (ACH) or Al(OH)3. 

When Rand mine water or Matla mine water was treated with ACH using an overhead 
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stirrer it was found that sulphate ions could be removed to below 500 mg/L at pH 4 and 

Al:SO4
2- molar ratio of 4:1. The main disadvantages of using ACH to remove sulphate ions 

from mine water was the amount of Cl- ions that were added into the mine water from ACH 

and the high viscosity of the mixture. The high viscosity of the mixture of mine water with 

ACH made the recovery of product almost impossible. The product water from ACH 

treatment contained more than 1000 mg/L of Cl ions when the sulphate concentration was 

less than 500 mg/L. Treatment of Rand Uranium mine water or Matla mine water with 

Al(OH)3 could not remove the sulphate ions to the acceptable level at pH less than 10. When 

mine water was treated with coal FA, lime and Al(OH)3 for 120 min in jet loop reactor, the 

sulphate concentration was reduced to less than 500 mg/L at pH greater than 11. According 

to the XRD results, the sulphate ions were removed through the precipitation of ettringite 

and gypsum.  

It was evident from the studies that the kinetics of sulphate removal from mine water was 

improved by hydrodynamic mixing of mine water and coal FA in a jet loop reactor. The 

treatment of mine water with Matla coal FA, lime and Al(OH)3 in a jet loop reactor was 

carried out at 80 L capacity. This means that the process can be up scaled. 

This research has proved that mine water of different qualities can be treated successfully 

with coal FA, lime and Al(OH)3 to obtain product water that meet TWQR guidelines for most 

of the elements. However, the product water may require polishing to regulate the pH and 

remove the remaining potentially toxic elements such as Na, Ca, As, Mo and Cr. This means 

that coal FA treatment of mine water can substitute the lime and limestone mine water 

treatment which could reduce the costs associated with treatment of mine water 

significantly. Moreover, coal FA is a waste material that occurs close to the source of 

contaminated mine water and therefore transport costs can be minimized. The use a jet 

loop reactor enhanced the kinetics of the treatment of mine water with coal FA, lime and 

Al(OH)3. The residues from the treatment of mine water with coal FA, lime and Al(OH)3 are 

suitable for mine backfill to seal mine voids and prevent mine water formation based on 

previous studies. Therefore this process does not produce any waste material that would 

require disposal problems and offers an AMD prevention option. 
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CHAPTER 1: INTRODUCTION 

1 
 

CHAPTER 1: INTRODUCTION 

1.1. BACKGROUND 

Mine water and coal fly ash (FA) are waste materials produced by mines and coal power 

stations respectively. Mine water can be acidic, neutral or alkaline depending on the 

geological location of the mine (Lottermoser, 2007). Acid mine water, often termed acid 

mine drainage (AMD) is produced when the rock that was disturbed during mining 

contains more acid producing minerals such as pyrite (FeS2) than acid neutralizing 

minerals such as dolomite (CaMg(CO3)2) or calcite (CaCO3). Mining exposes the FeS2 to 

oxidation by oxygen in the presence of water according to Equation 1.1, resulting in the 

formation of sulphuric acid and Fe3+. The reaction is catalysed by bacteria called 

Acidobacillus sp. 
   2

4
3

222
7

2 22 SOHFeOHOFeS bacteria  …………………………………………….1.1 

 

 Sulphuric acid generated from the above reaction causes chemical weathering of the 

surrounding rocks, thereby causing the leaching of potentially toxic metals and radioactive 

elements into the water. Mine water from gold and uranium mines is usually acidic and 

may contain radioactive elements such as U (Winde, 2010). 
 

Neutral mine drainage (NMD) is produced when the rock disturbed during mining contains 

stoichiometrically equal proportion of acid producing minerals and acid neutralizing 

minerals such as dolomite. Therefore the acidity produced from the oxidation of FeS2 is 

neutralized by the acid neutralizing minerals as shown in Equation 1.2.  
 

   ……1.2 

 

Acid mine drainage is mainly composed of Fe, Al and Mn cations and sulphate ions. 

Neutral mine drainage contains Na, Ca, Mg, sulphate and carbonate ions.  

 

2
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4
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In South Africa mining has been taking place for over 100 years. It has left empty spaces 

underground called mine voids. The mine voids in the Witwatersrand Gold Fields are 

filling up at a rate of 0.59 m/day. As at November 2010 the level of AMD was 510 m below 

the surface. At this rate, if decant prevention and management is not put into place, the 

water will reach the surface in March 2013 resulting in AMD flowing in the streets of 

Johannesburg central business district and the popular tourist attraction Gold Reef City 

(Coetzee et al., 2010). The problem of mine water in South Africa is not only confined to 

Witwatersrand Gold Field. It is also a huge problem in Mpumalanga Coal Fields. Mine 

water containing high concentrations of Fe, Al, Mn and sulphate ions, from the 

Mpumalanga coal fields is threatening the freshwater resources of the Vaal and Olifants 

River ecosystems. Due to the aforementioned problems, mine water in South Africa needs 

proper management. Some of the mine water management schemes proposed by the 

Acid Mine Drainage Inter-Ministerial Committee under the Coordination of the Council for 

Geoscience of South Africa includes (Coetzee et al., 2010): 

 Decant prevention and management 

 Controlling ingress of clean water (rainfall) into mine voids  

 Water quality management 

 

Decant prevention can be achieved by pumping the water out of the mine voids. Pumped 

water needs to be treated to remove potential toxic elements and sulphate ions before 

the water can be discharged into the freshwater resources. Many treatment options are 

available to treat the contaminated mine water to the required standards for potable, 

industrial and agricultural purposes, but are too costly and unsustainable. Cheap 

treatment technologies are continually being investigated. 

1.2. PROBLEM STATEMENT 

Mine water is an environmental liability produced during mining activities. Mine water 

usually results from pumping underground water in order for miners to access the 

minerals, or leaches from mine tailings. The composition of mine water differs from mine 
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to mine depending on the exploited geology. Types of mine water are classified according 

to their chemical composition. Mine water composition depends on the mined ore and 

the chemical additives used in the mineral processing and hydrometallurgical processing. 

This means that there is no typical composition of mine waters and as a result, the 

classification of mine water based on its composition is very complex. A number of 

classification schemes of mine water have been proposed using one or several water 

parameters (Lottermoser, 2007; Morin and Hutt, 1997). These include the classification: 

 based on the major cations and anions;  

 or the classification based on pH;  

 or the classification based on alkalinity vs acidity. 

1.2.1. TECHNIQUES FOR MINE WATER TREATMENT 

Mine water is mainly composed of Fe, Al, and Mn (for AMD) or Ca and Mg (for NMD) 

cations together with other potential toxic elements depending on the geology that is 

mined. Sulphate is the major anion found in mine water and ranges from around 1 000 to 

30 000 mg/L. Due to vast differences in the chemistry of mine waters and the variety of 

physical, chemical and biological methods to separate metals from mine water, there is a 

wide range of treatment technologies for mine water treatment. Treatment of mine 

drainage can be achieved through passive or active processes (Neculita et al., 2007).  

 

Passive treatment schemes take advantage of naturally occurring geochemical and 

biological processes in order to improve the quality of the influent waters with minimal 

operation and maintenance requirements. Passive treatment can be broadly classified as 

chemical or biological systems depending on the processes that are occurring to 

ameliorate the mine water (Neculita et al., 2007).   Although passive treatment of mine 

water is cheaper, it is limited by the unavailability of enough space to set up the proper 

facility. Also the quality of the product water is not guaranteed. 

 

Active treatment technologies improve the water quality by processes which require 

continuous input of artificial energy, biochemical or chemical reagents. Active treatment 
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methods are recognized by the presence of a water treatment plant that is being 

monitored regularly by a skilled workforce to operate and maintain the equipment. Active 

treatment technologies are broadly classified as biological, chemical and membrane 

methods. Biological methods involve the use of sulphate reducing bacteria (Johnson, 

2000). Chemical treatment include the precipitation of contaminants from the mine water 

using chemicals such as lime/limestone, BaCO3, BaS, Ba(OH)2, Mg(OH)2, MgCO3 and 

Al(OH)3 (Geldenhuys et al., 2001; Bosman, 1983, Smit, 1999; Adelm, 1997; Bosman et 

al., 1990). Membrane methods for the treatment of mine water are nano filtration, 

reverse osmosis and electro dialysis (Kentish and Stevens, 2001; Del Pino and Durham, 

1999; Matsuura, 2001; Valerdi-Perez et al., 2001; Schoeman and Steyn, 2001). Mine water 

treatment can also be done using ion exchange (Kitchener, 1957).  

 

The major advantage of active treatment is the capability to handle any changes in mine 

water quality and quantity. This is because of the precise process control in response to 

these changes. Also active treatment is a preferred technique to passive treatment if the 

land availability is a limiting factor. The major disadvantage of the active treatment 

method is the brines and sludge that are produced as wastes, which are more expensive 

to handle and dispose than the water purification process itself. Also the continuous input 

of energy, reagents and the need of manpower to run and maintain the treatment plant 

makes the technique expensive. 

 

The choice of a suitable treatment technology depends on; the mine water quality, the mine 

water quantity, the treated water quality, the storage options for any sludge produced and 

the cost of the treatment technique. In reality, there is no technical limit to the quality of 

the water which can be achieved using current existing techniques, but the cost is the 

limiting factor. Therefore the selection of treatment technique comes down to economic 

and environment benefit analysis. New methods to remove contaminants from mine water, 

which are cheaper, are constantly sought. One of those methods is the use of coal fly ash 

(FA) from coal power stations (Gitari et al., 2008). The advantage of that method is that FA is 

a waste material from coal combustion found close to coal mines. This means that the use 

of FA treatment of mine water can be sustainable since coal FA is a waste material. South 
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African electricity produces about 80 % of its electricity from coal and generates large 

amounts of coal FA. Disposing FA has proved to be an environmental concern, and therefore 

recycling of coal FA for mine drainage treatment is important to achieve zero effluent 

discharge. 

1.2.2. COAL FLY ASH 

Coal FA is the mineral matter that remains after coal has been thermally altered through the 

combustion process to produce electricity and is collected from flue gas using electrostatic 

precipitators or filter bags (Adriano, 1980). The major constituents of coal are C, O, H, N and 

S, which are thermally oxidized during coal combustion to produce electricity. Coal also 

contains inorganic components such as As, Hg, B, Pb, Ni, Se, Sr, V and Zn in association with 

different types of inorganic minerals such as aluminosilicates (clay minerals), carbonates 

(calcite and dolomite), sulphides (pyrites), and silica (quartz). The inorganic minerals make 

up 5 to 40 % of coal. South African power stations burn low quality coal with very high 

inorganic content containing up to 40 % inorganic material (Pinetown et al., 2007).  

 

It is these incombustible materials that form the ash that remains after combustion of coal. 

The chemical composition of coal FA is made up of Si, Ca, Al, Fe, Mg and S oxides along with 

unburnt C and various trace elements. The silica in the form of mineral quartz passes 

through the combustion process and remains as quartz in the coal FA. The clay minerals 

transform into crystalline and non-crystalline (amorphous) aluminosilicates materials. 

Elements such as Fe, Ca, and Mg are oxidized to form oxide minerals such as magnetite 

(Fe3O4), hematite (Fe2O3), lime (CaO) and periclase (MgO) (Mattigod et al., 1990). The 

constituents and mineralogy of FA mainly depend on the chemical composition of the coal 

burnt and the combustion technology employed (Roy et. al., 1985). The amount of 

crystalline material and glass phase material depends largely on the combustion and 

gasification (cooling of the ash) process used at a particular power plant.  

 

Coal fly ash contains elevated amounts of radioactive elements and rare earth elements 

compared to the coal burnt during the combustion process (Senior et al., 2000; Depoi et 
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al., 2008; Zielinski and Budahn, 1998). This is because these minerals are concentrated as 

the carbon component of coal is burnt off during the combustion process to produce 

electricity. Therefore products from reuse of coal FA need to be evaluated for radioactivity 

before they can be channelled to the market. 

1.3. MOTIVATION OF THE STUDY 

Treatment of AMD and NMD with coal FA was found to remove Fe, Al and Mn at pH 9. 

Sulphate ions were found to be removed to between 2000-3000 mg/L when AMD was 

treated with coal FA to pH 9 (Gitari et al., 2008, Surender, 2009).  On the other hand 

treatment of NMD with FA was found to remove an insignificant amount sulphate when the 

pH was raised to 9. When the pH of NMD was raised to greater than 11, about 100 % of 

Mg2+ as Mg(OH)2 was found to be removed and significant amounts of sulphate ions were 

found to precipitate out as gypsum (Madzivire, 2010). Addition of amorphous Al(OH)3 to the 

mixture of FA and NMD at pH greater than 11 resulted in sulphate concentration decreasing 

from 1500-2000 mg/L to 400-500 mg/L through ettringite precipitation 

(Madzivire et al., 2010).  

 

Upscale of the treatment of mine water with coal FA is hindered by the fact that large 

amounts of FA are required (2:1 and 3:1 using an overhead stirrer). Also the time required 

to take up the pH of 200 L of mine water to greater than 11 using about 67 kg of coal FA in 

tabulator aerator was about 44 hours (Surender, 2009). This makes the treatment process 

industrially not feasible as; 

1. Large silos would be required to store the coal FA.  

2. Long stirring times are required to neutralize the mine water. 

 

The possible ways that can reduce the mixing time and the amount of coal FA that can be 

used to treat mine water are: 
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1. The use of superior mixing of the mine water and coal FA to enhance the 

dissolution of lime from FA and speed up the reactions responsible for the removal 

of the impurities from the mine water. 

2. The use of flocculants in conjunction with the coal FA treatment process to 

precipitate out the sulphate from mine water. 

1.4. TREATMENT OF MINE WATER USING FLOCCULANTS 

Recently, Al and Fe coagulants have received considerable attention in water treatment. 

These coagulants include; polyaluminium chloride (PACl), aluminium chlorohydrate (ACH) 

and alum or Al2(SO4)3, Fe2(SO4)3, AlCl3, FeCl3, polyaluminium sulphate (PAS). These 

coagulants are mainly used to remove colloids (Duan and Gregory, 2003; Yang et al., 2010; 

Liu and Chin, 2009). Colloids are usually negatively charged and are stabilized in solution due 

to the repulsive force of like charges and hence will stay as separate entities in solution. The 

removal of these colloids by coagulants involves charge destabilization or incorporation of 

the impurities in an amorphous hydroxide precipitate (sweep flocculation). Charge 

destabilization occurs through charge neutralization when negatively charged colloids 

interact with positively charged hydrolysis products from Fe and Al coagulants. Addition of 

Al3+ and Fe3+ salts in water results in the formation of different kinds of Al and Fe hydrolysis 

products depending on the pH and ionic potential of the water as depicted in the scheme 

below (Duan and Gregory, 2003; Bratby, 2006). 

 

 


422332242
2

52
3

62 )()()()()()()()( OHOHXOHOHXOHOHXOHOHXOHX HHHH  

 

The use of coagulants mainly focuses on the removal of anionic colloidal particles and 

does not focus on the removal of inorganic anions such as sulphate ions. Recently the 

removal of sulphate ions was explored using AlCl3 and polyaluminium chloride (PACl) from 

mine water. It was discovered that the PACI and AlCl3 were capable of removing sulphate 

ions below 200 mg/L (Silva et al., 2010). Also the use of Al(OH)3 at pH greater than 10 has 

proved to reduce the sulphate ions to less than 400 mg/L through the precipitation of 
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ettringite (Madzivire et al., 2010). The chemistry of the removal of sulphate ions using 

Al(OH)3 at pH below 10 has not been evaluated previously. 

1.5. RESEARCH FOCUS 

This research focuses on the following areas; 

1. Studying the effect of treatment of mine water with FA and flocculants at pH less than 

10. The two flocculants that are investigated are aluminium chlorohydrate (ACH) and 

Al(OH)3. This part of research aims to understand the chemistry of the removal of 

sulphate ions from mine water using ACH or Al(OH)3 at pH less than 10. 

2. Application of the jet loop reactor for the treatment of mine water. The aim of this 

research was to reduce the amount of FA that is required to treat mine water using 

the fly ash/ettringite treatment method. 

3. Studying the effect of the treatment of mine water using FA, lime and Al(OH)3 on the 

removal of potentially toxic and radioactive elements from mine water. 

4. Modelling as a predictive tool for mine water treatment options. 

1.6. AIMS AND OBJECTIVES 

The aims of this research are to: 

1. Understand the physiochemical and radioactivity properties of mine water and coal 

FA. 

2. Understand the form in which different ions exist in the mine water using 

Geochemist’s workbench (GWB) geochemical modelling software. 

3. Prediction of the probable stable mineral phases that form at various pH end points 

during treatment of mine water with coal FA using GWB geochemical modelling. 

4. To understand the chemistry during treatment of mine water using the combination 

of coal FA and ACH or Al(OH)3 to remove both the toxic metals and sulphate ions from 

mine water. 
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5. To understand the chemistry during treatment of mine water with a jet loop reactor 

using a combination of coal FA, lime and Al(OH)3. 

6. Determine the radioactivity of the water produced during treatment of mine water with 

coal FA. 

1.7. RESEARCH QUESTIONS 

1. What are the physiochemical properties of mine water, fly ash, ACH, Al(OH)3 and lime 

used in this research? 

2. Are Al(OH)3 or ACH flocculants capable of removing sulphate ions from mine water? 

3. What is the radioactivity of FA used in this research? 

4. What is the radioactivity of mine water? 

5. What are the kinetics of the removal of sulphate ions from mine water using an 

overhead stirrer versus using a jet loop reactor? 

6. What is the radioactivity of the solid residues after the treatment of mine water using 

FA, lime and Al(OH)3? 

7. What is the radioactivity of the product water from the treatment of mine water with 

FA, lime and Al(OH)3? 

1.8. HYPOTHESES 

This study has three hypotheses:  

1. Flocculants are capable of removing sulphate ions from mine water. 

2. Jet loop mixing enhance the kinetics of removal of sulphate ions compared to overhead 

mixing.  

3. Potentially toxic and radioactive elements are removed from mine water during 

treatment of mine water with coal FA, lime and aluminium hydroxide. 
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1.9. DELIMITATION OF THE STUDY 

The radioactivity of the Rand Uranium mine water after the treatment of the mine water 

was not determined because of the cost of the analysis. Otherwise the analysis was only 

done for the total concentration of the natural occurring radioactive materials (NORM) that 

were determined in the mine water and FA using ICP-OES, which are Th and U. The alpha 

and beta radioactivity of the treated water needs to be evaluated before the water can be 

reused. 

1.10. THESIS OUTLINE 

The outline of the thesis is composed of the following chapters apart from the 

Chapter 1: Introduction; 

Chapter 2: Literature Review 

This chapter covers the background literature related to this study. The literature reviewed 

includes the mine water formation and composition; different mine water treatment 

technologies, fly ash formation and composition, different uses of FA, disposal methods of 

fly ash and the radioactivity of mine water and fly ash. 

 
Chapter 3: Methodology 

Chapter 3 describes how the sampling of mine water and FA was conducted. It also details 

how the different experimental methods were conducted to obtain the data used to answer 

the research questions. It also describes the various analytical techniques employed in this 

research. 

 

Chapter 4: Characterization of the mine water and fly ash 

In this section the results from the characterization of the FA, lime, Al(OH)3, aluminium 

chlorohydrate (ACH) and mine waters used in this study are presented. Characterization of 

the mine water included the physiochemical properties and also the distribution of the 

major elements in the aqueous media. The radioactivity of the FA and Rand Uranium mine 
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water is also discussed in this section. The distribution of the potentially toxic elements in 

Matla and Rand Uranium mine water was elucidated using the SpecE8 program of the 

Geochemist’s workbench (GWB) software. 

 

Chapter 5: Prediction of the stable mineral phases 

In this chapter the results from the characterization were used to predict the possible stable 

mineral phases that form when the mine water sampled was treated with FA to various pH 

end points. The prediction was conducted using Act2 program of the GWB software. 

 

Chapter 6: Treatment of mine water with flocculants 

Chapter 6 involves the understanding of the chemistry of the removal of sulphate ions and 

other major contaminants when mine water was treated with FA and polished using Al(OH)3 

or ACH. 

 

Chapter 7: Application of the jet loop reactor 

The effect of the jet loop on the kinetics of the removal of potentially toxic elements was 

evaluated in this section. This was also compared to the kinetics of the removal of the same 

contaminants using an overhead stirrer. In this section the treatment of mine water using 

FA, lime and Al(OH)3 in a jet loop reactor was optimized. Different combinations of FA, lime 

and Al(OH)3 was evaluated for the treatment of mine water in a jet loop reactor. 

 
Chapter 8: Conclusions and Recommendations 

This Chapter presents the conclusions obtained in this research, which are deduced based 

on the results obtained in Chapter 3, 4, 5, 6 and 7. This presents the answers to the research 

questions that were initially highlighted in Chapter 1. Chapter 8 also presents the 

recommendations and future work that can emanate from the findings undertaken in this 

study. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter provides a literature review that covers the formation of mine water and 

composition of mine water. It also explains the different methods for treatment of mine 

water. The advantages and disadvantages of each mine water treatment technology will be 

highlighted in this chapter. 

2.1. MINE WATER 

Mine water has become a major hydrological and geochemical problem arising from human 

exploitation of the geosphere. Mine water composition depends on the mined ore and the 

chemical additives used in the mineral and hydrometallurgical processing. This means that 

there is no typical composition of mine waters and as a result, the classification of mine 

water based on its composition is difficult to achieve. A number of classification schemes of 

mine water have been proposed using one or several water parameters such as major 

cations and anions, pH and alkalinity/acidity of the mine water (Lottermoser, 2007). 

Major cations and anions 

The classification of mine waters in terms of their major cations and anions involves plotting 

the major cation (Ca2+, Mg2+, Na+, K+) and anions (Cl-, SO4
2-, CO3

2-, HCO3
-) on Piper or trilinear 

diagrams. The plots are then applied in classifying the waters according to their cation and 

anion abundances. 

pH 

Another way of classification is by the pH of the water which classifies mine water based 

based on pH as acidic, alkaline or circumneutral (Morin and Hutt, 1997). 

Alkalinity vs acidity 

A further method to classify mine water is to distinguish mine waters according to their 

ability to be treated using either anaerobic or aerobic passive treatment. Acidic mine 

drainage (AMD) requires anaerobic treatment while alkaline mine water require aerobic 

treatment (Younger et al., 2002). Acidic mine drainage is characterized by low pH (usually 

 

 

 

 



LITERATURE REVIEW 

13 
 

less than 3), being heavy-metal-laden and containing high sulphate ions. Neutral mine 

drainage is characterized by neutral pH, transition metal-poor with moderate concentration 

of ions. 

2.1.1. ACID MINE DRAINAGE 

Mining exposes geology that is being mined to oxygen and water, therefore allowing the 

oxidation of minerals that are in the reduced state. The oxidation can occur either 

underground or on the surface. The most common types of these minerals are the metal 

sulphides (Table 2.1.1). 

Table 2.1.1: Important metal sulphides that occur in mining regions (Lottermoser, 2007). 

Name of compound Chemical formula 
Pyrite FeS2 
Marcosite FeS2 
Pyrrhotite FexSx 
Chalcocite Cu2S 
Covellite CuS 
Chalcopyrite CuFeS2 
Molybdenite MoS2 
Millerite NiS 
Galena PbS 
Sphalerite ZnS 
Arsenopyrite FeAsS 
 

Pyrite and marcosite are the most common metal sulphides found in coal deposits and 

other mineral deposits. The oxidation of pyrite in the presence of water produces sulphuric 

acid that in turn causes chemical weathering of the bedrock. This leads to the leaching and 

dissolution of the toxic metals into the water. The sulphuric acid acidifies the water, 

introducing sulphate ions and heavy metals into the water, thereby creating AMD which in 

turn pollutes groundwater and surface water.  
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Figure 2.1.1: Mine water released into the environment in the West Rand basin of the 

Witwatersrand Goldfields. 

 

Upon exposure of sulphide bearing minerals such FeS2, to O2 and water during mining 

operations, the minerals are oxidized to form AMD according to the following set of 

reactions (Stumm and Morgan, 1996): 

  HSOFeOHOFeS 442272 2
4

2
222 …………………………………………………………..2.1 

OHFeHOFe 2
3

2
2 2444   ……………..……....……………………………………………………2.2 

  HOHFeOHFe 12)(4124 32
3  …………………………………………………………………………2.3 

  HSOFeOHFeFeS 16215814 2
4

2
2

3
2  …………………………………………………..2.4 

In the initial step, FeS2 reacts with O2 and water to produce Fe2+, SO4
2- and acidity 

(Equation 2.1). The conversion of Fe2+ to Fe3+ in Equation 2.2 has been termed the rate 
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determining step for the overall sequence, because at pH values below 5 under abiotic 

conditions the rate of this reaction is very slow (Stumm and Morgan, 1996). However, 

Fe-oxidizing bacteria, principally Acidothiobacillus sp, accelerate the reaction rate by orders 

of magnitude, so the activities of the bacteria enhance the generation of AMD (Johnson and 

Hallberg, 2003). The third step involves the hydrolysis of Fe3+ to form the Fe(OH)3 

precipitates and releases additional acidity (Equation 2.3). This third reaction is pH 

dependent. Under very acid conditions (pH < 3.5), the solid hydroxide does not form and 

Fe3+ remains in solution, and at high pH values, Fe(OH)3 precipitate forms. The fourth step 

involves the autocatalysis oxidation of additional FeS2 by Fe3+ (Equation 2.4). More of Fe3+ is 

generated by the initial oxidation reactions in steps one and two. This cyclic propagation of 

acid generation takes place rapidly and continues until the supply of Fe3+ or FeS2 is 

exhausted. Oxygen is not required for the fourth reaction to occur. The overall pyrite 

reaction series is among the most acid-producing of all weathering processes in nature. 

AMD is produced if acid producing minerals are far more abundant than acid neutralizing 

minerals. Acid base accounting (ABA) for acid producing minerals and acid neutralizing 

minerals can be used as an initial step to predict if a certain geology can produce AMD, 

neutral or alkaline mine water during and after mining (Skousen et al., 1990). 

The oxidation of sulphide minerals produces acidity and this enhances the leaching of heavy 

metals (Fe, Cu, Pb, Zn, Cd, Co, Cr, Ni, and Hg), metalloids (As and Sb), other elements (Al, 

Mn, Si, Ca, Na, K, Mg and Ba) and SO4
2- from other minerals associated with the FeS2 

containing rock. Acid mine drainage is characterized by low pH, high concentration of Fe and 

Al (greater than 100 mg/L), elevated amounts of Cu, Cr, Ni, Pb, and Zn (greater than 10 

mg/L) and SO4
2- (greater than 1000 mg/L) (Lottermoser, 2007). 

The products of AMD formation, acidity and Fe, can devastate water resources by lowering 

the pH and coating stream bottoms with Fe(OH)3, forming the orange coloured "yellow boy" 

common in areas with abandoned mines. As acidity increases, very few living things can 

tolerate the harsh conditions. The corrosive acid water also attacks culverts and bridge 

abutments, resulting in a shorter than normal life span for exposed infrastructure. 
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Small amounts of AMD can harm the life in streams because the metals, SO4
2- and/or other 

suspended solids precipitate out of the water and coat the rocks and gravel on the stream 

bottom. When this happens, the flora and fauna that live on and under the rocks literally are 

smothered because they cannot get oxygen out of the water. High levels of Na make the 

water unsuitable for irrigation while hardness influences the toxicity of heavy metals such as 

Zn (Lottermoser, 2007). 

2.1.2. NEUTRAL MINE DRAINAGE 

A low pH is not a universal characteristic of all the mine waters. In AMD, SO4
2- is the 

principal anion and Fe, Mn and Al are major cations. In contrast NMD, SO4
2- and HCO3

- are 

principal anions and the concentrations of Ca, Mg and Na are generally elevated compared 

to Fe and Al (Cravotta et al., 1990). Depending on the geology that is being exploited by 

mining the resultant water that comes from the mine water or from the mine tailings can be 

acidic, neutral or alkaline. Naturally occurring carbonates and silicates are capable of 

neutralizing the acidity that is produced during sulphide mineral oxidation. Carbonate 

minerals include calcite (CaCO3), dolomite (CaMg(CO3)2), magnesite (MgCO3) and ankerite 

(Ca2MgFe(CO3)4) deposits, which neutralize acidity (Equation 2.5) that is produced during 

pyrite oxidation. 

2
2
4322

3
24

152
32 22)(2 COSOOHFeOHOCOFeS   ……………………………………………..2.5 

The most common and fast reacting carbonate is CaCO3 and its solubility depends on the 

proton concentration as shown in the following equation. 

  3
2

3 HCOCaHCaCO ……………………………………………………………………………………………2.6 

This reaction will buffer pH at near neutral (6.5-7), while in more acidic environments the 

carbonate is completely neutralized to CO2 and H2O. 

OHCOCaHCaCO 22
2

3 2   …………..………………………………………………………………………2.7 
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Silicate minerals also consume H+ protons and leach base cations (Ca, Mg, and Fe), alkali 

elements (Na, K) and dissolved Si and Al into the tailing water (Blowes and Ptacek, 1994). 

The dissolution of aluminosilicate minerals is slower than that of metal hydroxides and 

much slower than that of carbonates. Feldspar (KAlSiO3O8) weathering is mainly controlled 

by pH, silica, Na, K, and Ca concentrations. The reaction path is feldspar to kaolinite 

(Al2Si2O5(OH)4) and then gibbsite (Al(OH)3) as shown in Equations 2.8 and 2.9. 

  OHKOHOSiAlHOHOKAlSiO 142)(162 4522283 …………………………………………………2.8 

44324522 2)(25)( SiOHOHAlOHOHOSiAl  ……………………………………………………………………2.9 

The formation of kaolinite from feldspar consumes acidity and generates alkalinity 

(Equation 2.8). Hydrolysis of kaolinite to gibbsite does not consume or produce alkalinity 

(Equation 2.9). 

Neutral mine drainage is produced when the acid producing capacity and the neutralizing 

capacity of the geology to be exploited during mining is almost equal. The NMD is 

characterised by pH 6-7, moderate amounts of SO4
2- and low concentration of metals, 

especially Fe and Al. This is due to the precipitation of the metals as hydroxides and SO4
2- as 

gypsum due to the neutralization by the carbonates that are found associated with the FeS2. 

Although the generic term AMD (or acid rock drainage) is used frequently to describe mine 

water discharges, the pH of these waters may be above 6, particularly at the point of 

discharge (where dissolved O2 concentrations are frequently very low). In the case of Fe and 

Mn, these metals are generally present in their reduced (Fe2+ and Mn2+) ionic states in 

anoxic AMD, and these forms of the metals are much more stable at higher pH than the fully 

oxidized (Fe3+ and Mn4+) ions. 

Some AMD streams remain neutral-to-alkaline, although others show a marked decline in 

pH as they oxygenate. This is because the total (or net) acidity derived both from proton 

acidity (H+ concentration) and mineral acidity (the combined concentration of soluble 

metals, notably Fe, Al, and Mn, which produce protons when they are hydrolysed) is greater 

than acid neutralizing capacity (Lottermoser, 2007). The net acidity in AMD needs to be 

offset against any alkalinity present; this is chiefly in the form of bicarbonate (HCO3
-) 
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deriving from the dissolution of basic minerals (calcium carbonate), although biological 

processes may also generate alkalinity in AMD streams (Johnson and Hallberg, 2005). 

2.1.3. PREDICTION OF MINE WATER TYPE 

Knowing the type of mine water that can be produced from a particular geology to be 

exploited during mining is vital in order to decide on the strategies for treating the effluent. 

In predicting the type of mine water that can be produced the following information is 

required: 

 The amount of acid producing minerals 

 The amount of acid neutralizing minerals 

 The kinetics of acid producing processes 

 The kinetics of acid neutralizing processes 

Determining the amount of acid producing and acid neutralizing minerals is the first step in 

predicting the type of mine water to be produced. The amount of acid producing minerals 

gives the value of acid producing potential (APP) and the amount of acid neutralizing 

minerals give the acid neutralizing potential (ANP). This is achieved by acid base accounting 

(ABA) technique, which involves the determination of APP and ANP values 

(Skousen et al., 1990). The difference between ANP and APP gives the net neutralizing 

potential (NNP): 

퐴푁푃 − 퐴푃푃 = 푁푁푃 

Acid producing potential values are obtained based on the following stoichiometric 

equations (Cravotta et al., 1990): 

2
2

3
2
422

3
24

15
32 22)(22 COCaOHFeSOOHOCaCOFeS   ………………………………………2.10 

  3
2

3
2
422

7
24

15
32 44)(24 HCOCaOHFeSOOHOCaCOFeS ………………………………………2.11 

In an open system (under oxic conditions), FeS2 oxidation and neutralization allows CO2 gas 

produced to escape into the atmosphere as shown in Equation 2.10. Under anoxic 
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conditions (in a closed system), HCO3
- is produced in the system (Equation 2.11). This is 

because the CO2 produced reacts with H2O in situ thereby producing HCO3
-. 

Acid producing potential is the potential of the sample containing reduced minerals such as 

sulphide minerals to produce acidity after oxidation. Sulphide minerals include iron minerals 

pyrite (FeS2) and pyrrhotite (Fe1-XSx), and metallic sulphides such as chalcopyrite (CuFeS2), 

sphalerite (ZnS), galena (PbS), etc. The sulphide sulphur can be determined 

stoichiometrically from Equations 2.10 and 2.11 depending on the system, hence acid 

generation potential in % w/w CaCO3 can be determined. However some SO4
2- containing 

minerals such as FeSO4.7H2O, brochantite (Cu4(SO4)(OH)6), jarosite (KFe3(SO4)2(OH)6), and 

alunite (KAl3(SO4)2(OH)6) produce acidity on hydrolysis. If these minerals occur in substantial 

amounts there is a need to include their contribution (Sobek et al., 1978); otherwise 

sulphide S may be assumed as the acid producing parameter for calculation of the APP 

value. 

Translating mineralogical data into ANP values proved to be a complex process that is prone 

to errors; chemical procedures have therefore been developed as a substitute for 

mineralogical procedures (Lawrence and Wang, 1997). However, to maximise the 

information obtained from chemical procedures in mine water prediction, mineralogical 

data should be complemented with chemical data for ANP determination. 

A number of chemical procedures for the determination of ANP exist (Lapakko, 1994; 

Lawrence and Wang, 1997; Skousen et al., 1997). These are: 

 Lapakko Neutralisation Potential Test 

 BC Research Inc. Initial Test 

 Modified Acid Base Accounting Procedure for Neutralization Potential 

 Peroxide Siderite Correction for Sobek Method 

These methods all involve the following steps in the determination of ANP: 

 reaction of a sample with a mineral acid of measured quantity 

 determination of the base equivalency of the acid consumed 

 conversion of the measured values to % w/w CaCO3 
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2.1.4. RADIOACTIVITY OF MINE WATER 

The geology that contains pyrite (FeS2) together with radioactive containing elements such 

as U and Th, could form mine drainage with radioactive materials. This is because when FeS2 

is oxidized in the presence of H2O and O2, it forms acidic water that in turn dissolves the 

radioactive containing minerals. Gold ores in the Witwatersrand basin contains about 3 % 

FeS2, U, Th, Ra and Pb (Scott, 1995; Durand, 2012). Mining of Au in the Witwatersrand basin 

leaves FeS2 exposed to H2O and O2 in mine tailing and mine voids. Therefore the mine water 

from the mine voids and mine tailings in the basin is acidic and contains elevated 

concentration of radioactive elements such as U, Th, Ra and Pb in addition to heavy metals 

such as Fe, Al, Mn, Ca and Mg. 

Radioactivity is the disintegration of the nucleus of an unstable atom by emitting particles 

containing ionization energy. Three type of radiation particles are alpha, beta and gamma. 

 

Figure 2.1.2: Schematic representation of different types of radioactive decay of an unstable 

atom (http://chemistry.tutorvista.com/nuclear-chemistry/radioactivity.htmL). 
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Alpha particles are produced when the nucleus of an unstable atom loses two protons and 

two neutrons (He-nucleus), while beta radiation occurs when a nucleus of an unstable atom 

loses either a positron or an electron. Gamma radiation is produced when the nucleus that 

was left in an excited state after alpha or beta decay loses excess energy to attain a stable 

state. An alpha particle is positively charged, the beta particle is neutral while the gamma 

particle can be negative (electron) or positive (positron). Different radioactive particle have 

different penetrating potential. An alpha particle can be stopped by a sheet of paper, while 

a beta particle can penetrate a sheet of paper but cannot pass through an aluminium foil. 

The gamma particle can pass through an aluminium foil but can be reduced significantly by a 

thick block of lead. 

Mine water from Au and U mines is usually contaminated with radioactive elements such as 

U and its decay products such as Ra and Th. Naturally, the most abundant isotope is 238U 

(99.27 %) with a half-life of 4.5 X 109 years. Other isotopes that exist in nature are 235U 

(0.72 %) and 234U (0.006 %). The half-life of 235U and 234U are 7.04 x 108 and 2.46 x 105 years 

respectively (Bonotto et al., 2009). Uranium exists in various oxidation states of +2, +3, +4, 

+5 or +6). The most stable oxidation states are +4 and +6. The uranium (IV) state mainly 

exists as species which are highly insoluble in the natural environment and therefore are 

generally far less mobile than U(VI). In nature Th exists mainly as 232Th with half-lives of 

1.4 x 1010 years (Paschoa and Steinhäusler, 2010). The radioactive decay series of U and Th 

form various nuclides and the end product is a stable 206Pb isotope as shown in Figure 2.1.3. 
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Figure 2.1.3: The radioactive decay series of 238U, 235U and 232Th (Arrows pointing 

downwards represent an alpha decay and the arrows pointing upwards represent beta 

decay) (http://www.world-nuclear.org/info/inf30.htmL). 
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The varied decay intermediates have different geochemical properties and therefore are 

fractionated into different geological environments. In acidic aqueous media, the chemistry 

of U and Th generally exist as free cations. Each isotope in the 238U, 235U and 232Th decay 

series has a unique fingerprint of alpha and gamma decay energies that can be used to 

identify and quantify each radioisotope as shown in Table 2.1.2 and Table 2.1.3. 

Table 2.1.2: Alpha energy particle (MeV) in the 238U, 235U and 232Th with absolute intensity 

greater than 5 % (Bonotto et al., 2009). 
238U decay series 235U decay series 

nuclide energy   intensity  nuclide energy intensity 
238U 4.15 20.9 235U 4.21 5.7 
  4.2 79   4.37 17 
234U 4.72 28.4   4.4 55 
  4.77 71.4   4.41 2.1 
230Th 4.62 23.4 231Pa 4.74 8.4 
  4.69 76.3   4.95 22.8 
226Ra 4.6 5.6   5.01 25.4 
  4.78 94.4  5.03 20 
222Rn 5.49 99.9   5.06 11 
218Po 6 100 227Th 5.76 20.4 
214Po 7.69 100   5.98 23.5 
210Po 5.3 100   6.04 24.2 

232Th decay series  223Ra 5.61 25.7 
nuclide energy   intensity    5.72 52.6 
232Th 3.95 21.7   5.75 9.2 
  4.01 78.2 219Rn 6.42 7.5 
228Th 5.34 27.2   6.55 12.9 
  5.42 72.2   6.82 79.4 
224Ra 5.45 5.1 215Po 7.39 100 
  5.68 94.9 211Bi 6.28 16.2 
220Rn 6.29 99.9  6.62 83.8 
216Po 6.78 100    
212Bi 6.01 7.5    
  6.05 69.9    
  6.09 27.1    
  6.3 38.8    
  6.34 52.2     
212Po 8.78 100    
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Table 2.1.3: Gamma emissions (MeV) related to negative beta emitting radioisotopes in the 
238U, 235U and 232Th decay series with absolute intensity greater than 1 % 

(Bonotto et al., 2009). 
238U decay series 232Th decay series 235U decay series 

nuclide energy intensity  nuclide energy  intensity nuclide energy  Intensity  
234Th 0.063 4.8 228Ra 0.014 1.6 231Th 0.026 14.5 
  0.092 2.8 228Ac 0.099 1.3   0.084 6.6 
  0.093 2.8   0.129 2.4 211Pb 0.405 3.8 
214Pb 0.053 1.2   0.209 3.9   0.427 1.8 
  0.242 7.4   0.27 3.5   0.837 3.5 
  0.295 19.3   0.328 3       
  0.352 37.6   0.338 11.3       
  0.786 1.1   0.409 1.9       
214Bi 0.609 46.1   0.463 4.4       
  0.665 1.5   0.772 1.5       
  0.768 4.9   0.794 4.2       
  0.806 1.2   0.836 1.6       
  0.934 3   0.911 25.8       
  1.12 15.1   0.965 5       
  1.155 1.6   0.969 15.8       
  1.238 5.8   1.588 3.2       
  1.281 1.4   1.631 1.5       
  1.378 4 212Pb 0.239 43.3       
  1.402 1.3   0.3 3.3       
  1.408 2.2 212Bi 0.04 1.1       
  1.509 2.1   0.727 6.6       
  1.661 1.2   0.785 1.1       
  1.73 2.9   1.62 1.5       
  1.764 15.4 208Tl 0.277 6.3       
  1.847 2.1   0.511 22.6       
  2.118 1.1   0.583 84.5       
  2.204 5.1   0.763 1.8       
  2.448 1.6   0.86 12.4       
210Pb 0.046 4.2   2.614 99       
 

The energies shown in Table 2.1.2 and Table 2.1.3 can be used to identify the respective 

radionuclides using alpha or gamma spectrometry respectively. The height of a peak with 

particular energy can be used to quantify the radionuclides in the samples based on the 

calibration with known concentration of specific radionuclides. 
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2.1.4.1. Guidance levels for radioactive nuclides in drinking water 

Radioactivity species identification in drinking water is a very expensive and sophisticated 

process. The screening steps used to identify if the water is suitable for drinking purposes in 

terms of radioactivity is as shown in Figure 2.1.4 below. 

 

Figure 2.1.4: The outline of the screening process for the suitability of drinking water in 

terms of radioactivity (WHO, 2011). 

 

The first step before determining the concentration of individual radionuclides in water is to 

determine the gross alpha and gross beta activity of the water. If the gross alpha and beta 

are less than 0.5 Bq/L and 1 Bq/L respectively, the water will be suitable for drinking in 

terms of radioactivity (WHO, 2011). On the other hand if the gross alpha and beta activities 

are greater than 0.5 and 1 Bq/L respectively then the concentration of the individual 

radionuclide should be measured and compared to the World Health Organization (WHO) 

guidelines. If the dose is at most 0.1 mSv, the water is suitable for drinking. If the dose is 
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greater than 0.1 mSv then remedial action should be undertaken. A dose of at most 0.1 mSv 

is achieved if the following formula is satisfied: 

1
i

GL
C

i

i  

Where, Ci= measured activity of radionuclide i, and GLi is the guideline concentration of 

radionuclide at an intake of 2 litres per day for one year. This will result in an effective dose 

of 0.1 mSv per year (WHO, 2011). 

2.2. TREATMENT OF MINE WATER 

Mine water treatment is complex and very expensive. The complexity of mine water 

treatment is because of the diversity of mine water composition. High costs associated with 

mine water treatment are due to the complexity and diversity of mine water composition, 

which means there is no “one-fits-all” treatment option for mine water treatment. Mine 

water treatment options can be broadly classified as passive or active methods. Active 

treatment of mine water requires frequent monitoring of the system, while passive mine 

water treatment does not require continuous monitoring of the treatment systems. 

2.2.1. PASSIVE MINE WATER TREATMENT 

Passive mine water amelioration is the use of natural occurring resources to promote 

chemical and biological processes to remove contaminants from mine water in systems 

designed in such a way that they require infrequent monitoring. Passive mine water 

treatment can be broadly classified as biological and chemical methods (Younger et 

al., 2002). 
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Figure 2.2.1: Typical passive biological (a) and chemical (b) treatment of mine water systems 

(INAP, 2012). 

Biological passive treatment involves directing contaminated mine water through an 

environment containing sulphate reducing bacteria or plants (Hedin et al., 1994; Wieder and 

Lang, 1982; Neculita et al., 2007; Steed et al., 2000). The wetlands remediate mine water 

through adsorption, reduction and oxidation of the pollutants. Passive chemical methods 

involve passing contaminated mine water through drains filled with limestone gravel where 

mine water is neutralized and contaminants are removed mainly through precipitation. The 

other two types of passive mine water treatment systems can be classified as chemical, 

biological or both, depending on the inputs for the systems. These systems are successive 

alkalinity producing systems and reactive barriers.  

The advantages of passive treatment methods for mine water are: 

 Inexpensive 

 Does not require frequent monitoring 

 More pleasant in appearance than active treatment systems 

 No use of chemicals that produce sludge that can be a liability. 

 Can be integrated into the surrounding ecosystem. 

The disadvantages of passive treatment of mine water are: 

 Recovery of treated water is very minimum 

(a) (b) 
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 Require extensive land area to accommodate high flow and/or highly contaminated 

discharges of mine water 

 The quality of process water is not guaranteed since the process is not monitored 

frequently. 

2.2.1.1. Wetlands 

Wetlands are a complex ecosystem where wastewater is channelled, and remediation 

occurs through physical, chemical and biological processes (Wieder and Lang, 1982). 

Wetlands are usually applied to coal mine drainage. This is because coal mine water 

contains relatively low concentration of metals and is mildly acidic or alkaline compared to 

AMD from metal mines (Younger et al., 2002). Constructed wetlands fall into two 

categories; aerobic and anaerobic wetlands. Aerobic wetlands are suitable for treatment of 

net alkaline mine waters. Anaerobic wetlands are suited for passive remediation of net 

acidic mine waters (Johnson and Hallberg, 2004).  

 

Aerobic wetlands  

Aerobic wetlands are designed to allow metal oxidation and precipitation and are normally 

shallow, vegetated and have surface flow predominating (Robb and Robinson, 1995; 

Mayes et al., 2009).  
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Figure 2.2.2: Schematic representation showing the movement of mine water through an 

aerobic wetland (http://wiki.biomine.skelleftea.se/biomine/srb/index_08.htm). 

 

Oxidation and hydrolysis reactions commonly cause concentrations of Fe2+, Fe3+, Mn2+, and 

Al3+ to decrease when mine water flows through an aerobic environment. Whether these 

reactions occur quickly enough to lower metal concentrations to an acceptable level 

depends on the availability of oxygen for oxidation reactions, the pH of the water,  the 

activity of microbial and/or other catalysts and inhibitors, and the retention time of water in 

the treatment system (Neculita et al., 2007; Gazea et al., 1996).  

 

The pH is an especially important parameter because it influences both the solubility of 

metal hydroxide precipitates and the kinetics of the oxidation and hydrolysis processes. The 

relationship between pH and metal-removal processes in passive treatment systems is 

complex because it differs among metals and also between abiotic and biotic processes. The 

stoichiometries of the major metal removing reactions in passive treatment systems are: 

  HOHFeOHFe 3)(3 32
3 ..…………………………………………………………………………………2.12 

  HOHAlOHAl 3)(3 32
3 …………………………………………………………………………….…….2.13 

  HOHFeOHOFe 2)( 322
5

24
12 …………………………………………………………………….…….2.14 

  HMnOOHOHOMn 222
3

24
12 …………………………………………………………………..2.15 
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The first two Equations (2.12 and 2.13) are simple hydrolysis reactions. They require only 

the presence of water and enough alkalinity to neutralize the H+ produced. The 

neutralization of acidity produced in Equations 2.12 and 2.13 shifts the equilibrium reactions 

to the right by removing the H+ protons from the product side and adding more H2O to the 

reactants side by Le Chatelier’s principle. Equations 2.14 and 2.15 require the presence of O2 

to oxidize the metal prior to hydrolysis. All of the reactions produce acidity. The goal of 

passive treatment systems is to drive these reactions to completion and collect the resulting 

solids before the water enters a receiving stream and hence the prerequisite that the input 

water should be net alkaline for aerobic wetlands to be effective (Hedin et al., 1994). 

 

Anaerobic wetlands 

In anaerobic wetlands the mine water flows through an organic layer containing sulphate 

reducing bacteria (SRB).  

 
Figure 2.2.3: Schematic diagram showing movement of mine water through an anaerobic 

wetland (http://wiki.biomine.skelleftea.se/biomine/srb/index_08.htm) 

 

The organic layer traps the O2 from the mine water. The water chemistry is affected by 

bacterial sulphate reduction. Bacteria oxidize organic compounds using SO4
2- as the terminal 

electron acceptor and release H2S and HCO3
2-. 

  2
32

2
42 22 HCOSHSOOCH ..………..………………………………………………………….………2.16 
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CH2O represents organic matter (Postgate, 1984). Bacterial sulphate reduction not only 

improves water quality by the addition of bicarbonate alkalinity, it can also lower the 

concentrations of dissolved metals, M2+ (Fe2+, Mn2+, Zn2+, Ni2+, Cu2+, Cd2+, Pb2+) by 

precipitating them as metal sulphide (MS) solids: 

 

2232
2 222 COOHMSHCOSHM   ………………………………………………………………...2.17 

 

This means that the toxic H2S gas should in theory not be released into the environment as 

it is converted to MS (Equation 2.17). In the case of Fe, the formation of FeS and even pyrite 

(FeS2) is possible. 

 

  HFeSSSHFe 222
2 …………………………………………………………….…………………….2.18 

 

The removal of dissolved metals as sulphide compounds depends on pH, the solubility 

product of the specific metal sulphide, and the concentrations of the reactants 

(Hammack et al., 1993). The first metal sulphide that forms is CuS, followed by PbS, ZnS, and 

CdS. FeS is one of the last metal sulphides to form. MnS is the most soluble metal sulphide 

known, and is not expected to form. Due to the low solubility of some of these metal 

sulphides relative to their solubilities as oxides or hydroxides, SO4
2- reduction can be an 

important process in lowering some metal concentrations to acceptable levels, particularly 

heavily metal laden AMD (Gazea et al., 1996; Neculita et al., 2007). 

 

Sulphate reducing bacteria require the presence of sulphate ions, suitable concentrations of 

low molecular weight carbon compounds as an energy source, and the absence of oxidizing 

agents, such as O2, Fe3+ and Mn4+. These conditions are commonly satisfied in treatment 

systems that receive AMD and are constructed with an organic substrate, such as a compost 

material. High concentrations of sulphate ions are characteristic of contaminated AMD. The 

O2 demand of organic substrates causes the development of anoxic conditions and an 

absence of oxidized forms of Fe or Mn. The low molecular-weight compounds that SRB 

utilise (lactate, acetate) are common end-products of microbial fermentation processes in 
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anoxic environments. These sulphate reducing and fermentative bacteria are more active 

above pH 5. However, they can be very active in drainages with lower pH levels, due to the 

presence of near-neutral pH microenvironments. These microenvironments allow the SRB 

to become established, and because they generate alkalinity, these microenvironments are 

increased. 

2.2.1.2. Open limestone drains 

Limestone drains are one of the passive chemical methods to remediate mine water. To 

make up open limestone drains (OLD), open ditches are filled with crushed limestone. Mine 

water flows over the limestone resulting in the dissolution of calcite (CaCO3), which is the 

major mineral in limestone. The dissolution of CaCO3 produces alkalinity thereby 

neutralizing the pH. This results in the increase in pH, HCO3
-, OH- and Ca2+ according to the 

following reactions (Stumm and Morgan, 1996; Cravotta and Trahan, 1999): 

OHCOCaHCaCO 22
2

3   ………………………………….………………..……………………2.19 

  3
2

223 2HCOCaCOOHCaCO …………………………………………………….…………..2.20 

  OHHCOCaOHCaCO 3
2

23 ………………………………………………..…………….2.21 

Increase in pH of the mine water results in the removal of soluble Al, Fe and Mn due to 

precipitation as hydroxides. Sulphate ions react with Ca2+ that dissolves from limestone to 

form gypsum (Mukhopadhyay et al., 2007; Ziemkiewicz et al., 1997; Nairn et al., 1991). 

)(3)()()(3)( 233
3 gCOsOHFeaqHCOaqFe   …………………………….……….……..2.22 

)(3)()()(3)( 233
3 gCOsOHAlaqHCOaqAl   ……………………………..…………………….…2.23 

)(2.)()( 24
2
4

2 sOHCaSOaqSOaqCa   …………………………………..…………………….……2.24 

Open limestone systems work effectively when mine water flows over a long distance 

before exiting the treatment system. This is because as Fe and Al precipitate from the AMD, 
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the limestone gets coated or armoured by the metal hydroxides and thereby the solubility 

of limestone is reduced and the system becomes ineffective over time and needs 

replacement. 

2.2.1.3. Anoxic limestone drains 

Anoxic limestone drains (ALD) are made up of limestone that is buried in trenches using clay 

soil or plastic to prevent oxygen from coming in contact with the mine water. As the AMD 

flows through, the limestone dissolves and alkalinity is added to the mine water resulting in 

pH being increased (Equations 2.19, 2.20 and 2.21). To prevent the limestone from 

becoming coated or armoured with precipitated metal hydroxides, the AMD must not come 

into contact with oxygen throughout the ALD channel (Cravotta and Trahan, 1999; Hedin et 

al., 1994). 

Deep mine discharges often have no oxygen, so the water can be channelled directly into 

the drain, which is covered with clay and/or plastic liners to avoid oxygen ingression. If the 

AMD is already oxygenated, the water must be put through an anaerobic wetland in which 

organic material removes the oxygen, after which the water is channelled into the ALD. A 

major source of HCO3
- in many anoxic environments is the dissolution of carbonate 

minerals, such as CaCO3. Sulphate ions are removed during ALD treatment of mine water 

through the precipitation of gypsum (Equation 2.24). After the net alkaline waters pass 

through the ALD, then the water is exposed to atmospheric conditions and Fe3+ is produced 

by the oxidation of Fe2+. Hydroxide mineral of Fe3+ is then produced as shown in 

Equation 2.22 (Nairn et al., 1991). 

Higher concentrations of HCO3
- occur in anoxic mine water environments than oxic 

environments. This is because of the absence of precipitated Fe(OH)3 in most anoxic 

environments that may armour carbonate surfaces and inhibit further CaCO3 dissolution in 

oxic environments. The solubility of carbonate compounds are directly affected by the 

partial pressure of dissolved CO2 as shown in Equation 2.23 (Cravotta and Trahan, 1999; 

Stumm and Morgan, 1996). Anoxic mine water environments commonly contain high CO2 

partial pressures due to the decomposition of organic matter and the neutralization of 
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proton acidity. This results in the dissolution of more CaCO3, thereby producing more 

alkalinity and Ca2+ ions, therefore enhancing the removal of heavy metal as hydroxides and 

sulphate ions as gypsum. 

Although ALD produce alkalinity at a lower cost than constructed compost wetlands, they 

are not suitable for treating all AMD waters. In situations where the AMD contains 

significant concentrations of Fe3+ or Al3+, the short-term performance of ALDs may be good, 

but the build-up of hydroxide precipitates gradually decreases drain permeability, which 

may cause failure of the drain within six months of construction (Johnson and 

Hallberg, 2005). This means that ALD systems are more efficient in handling mine water 

with Fe2+. 

2.2.1.4. Successive alkalinity producing systems 

Successive alkalinity producing systems (SAPS) are composed of a compost layer above a 

bed of limestone layer.  

 

Figure 2.2.4: The schematic representation of a typical SAPS for mine water treatment 

(Jagea et al., 2001). 

 

Mine water drains past through the compost layer where dissolved O2 is removed from the 

water. This creates a suitable environment for sulphate reducing bacteria (SRB) in the 
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middle of the compost layer. The SRB reduces sulphate according to Equation 2.16 

producing bicarbonate alkalinity and H2S. The alkalinity neutralizes the acidity in the mine 

water and the H2S reacts with metal contaminants to produce metal sulphide precipitates. 

The anoxic conditions created by the compost layer cause the reduction of Fe3+ to Fe2+ 

thereby reducing the armouring potential of the water (Keplar and McCleary, 1994; Nairn 

and Mercer, 2000). When the water enters the limestone layer more alkalinity is produced 

through limestone dissolution. 

After the water has passed through two successive alkaline producing systems (organic and 

limestone layers) the water drains into a settling tank where it is oxygenated and the metals 

precipitate out. Enough residence time is required in the settling tank to allow the 

precipitation of the metals. The alkalinity produced by SRB or limestone dissolution should 

be enough to buffer the acidity that is produced in the aerobic ponds in order to produce 

effluent water with a suitable pH that can be discharged into the environment (Nairn and 

Mercer, 2000). 

2.2.1.5. Reactive barriers 

Permeable reactive barriers (PRBs) can be classified as chemical or biological passive 

treatment depending on the reactive material used. Construction of PRBs involves digging of 

a trench in the flow path of contaminated groundwater. The void is filled with reactive 

materials (a mixture of organic solids or limestone gravel or zero valent iron) that are 

sufficiently permeable to allow unimpeded flow of the groundwater, and landscaping of the 

disturbed surface as shown in Figure 2.2.5. 
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Figure 2.2.5: The schematic diagram of permeable reactive barrier (Gavaskar, 1999) 

 

Alkalinity is generated due to dissolution of limestone (Equations 2.19, 2.20 and 2.21) or 

microbiological processes (Equation 2.16) or the oxidation of zero valent iron 

(Equations 2.25 and 2.26) within the PRB. Metals are removed as sulphides, hydroxides, and 

carbonates (Younger et al., 2002; Gavaskar, 1999).  

  OHFeOHOFe 4222 2
22 …………………………………………………………………..………2.25 

  OHHFeOHFe 22 2
2

2 ………………………………………………………………………………2.26 

2.2.1.6. Selection of a passive mine water treatment system 

Choosing the best passive mine water system depends on the flow rate and the chemical 

composition of the mine water. The following steps in Figure 2.4.6 are used to select the 

most ideal passive treatment method. 
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Figure 2.2.6: The flow diagram for selecting the most ideal passive mine water treatment 

system based on the water chemistry and flow (Hedin et al., 1994; INAP, 2012). 

 

As highlighted earlier, passive systems cannot properly remediate high flow rates of highly 

contaminated mine water. Also if there is no enough space to set up a passive treatment 
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facility, active mine water treatment plant should be set up to produce a particular quality 

of product water. 

2.2.2. ACTIVE TREATMENT OF MINE WATER 

Active treatments of mine water are technologies that improve the water quality of mine 

water through processes that require continuous inputs of artificial energy, biochemical or 

chemical reagents (Young et al., 2002). Active treatment methods are recognized by the 

presence of a water treatment plant that is monitored regularly by a skilled workforce. The 

major advantage of active treatment is the capability to handle any changes in mine water 

quality and quantity, because of the precise process control in response to these changes. 

Active treatment is also a preferred technique to passive treatment if the land availability is 

a limiting factor. The major disadvantage of active treatment method is that the brines and 

sludge that are produced as wastes are expensive to handle and dispose. The continuous 

input of energy, reagents and the need of skilled manpower to run and maintain the 

treatment plant makes these techniques expensive. Due to vast differences in the chemistry 

of mine waters and the variety of physical, chemical and biological methods for separating 

metals from mine water, there is a wide range of treatment technologies that can be 

applied for active mine water treatment. The choice of a suitable treatment technology 

depends on: 

 The mine water quality 

  The mine water quantity 

 The treated water quality required 

 Cost of the treatment technique 

In reality, there is no technical limit to the quality of the water which can be achieved using 

current existing techniques, but the cost is the limiting factor. Therefore the selection of a 

treatment technique comes down to economic and environment cost benefit analysis. 
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2.2.2.1. Sulphate reducing bioreactors 

Bioreactors represent an active treatment approach for remediating AMD (Johnson, 2000). 

These engineered systems have potential advantages over passive biological remediation in 

that their performance is more predictable and readily controlled. The concentrations of 

sulphate and heavy metals in processed waters may be significantly lowered to potable 

standards depending on the process control of the system. On the negative side, the 

construction and operational costs of these systems are considerable.  

Bioreactors utilize the biogenic production of H2S (Equation 2.16) to generate alkalinity and 

to remove metals as insoluble sulphides (Equation 2.17 and 2.18). The SRB used in the 

bioreactors are sensitive to even moderate acidity. Therefore the treatment systems should 

be engineered such that the microorganisms are not exposed to the inflowing AMD 

(Rowley et al., 1997; Johnson and Hallberg, 2005). This is done by mixing AMD with H2S 

generated in the biological sulphate reduction so that the metals are precipitated out as 

metal sulphide. If the process is controlled carefully in terms of pH and H2S, selective 

separation of metal sulphide can be achieved.  

The water that has been treated using H2S is then subjected to biological reduction where 

sulphate ions are reduced to H2S. The energy sources for SRB include alcohols, sugars, 

sewage sludge, H2, etc. If the total acidity is greater than the alkalinity produced by SRB, 

additional alkali will be added chemically. The use of H2 as an energy source is advantageous 

because it is more economical to use for high sulphate ions loadings and results in lesser 

production of bacterial biomass. Hydrogen may conveniently be formed by cracking CH3OH 

or from natural gas. In both cases, CO2 is also produced, and some SRB are able to fix this as 

their source of carbon (Johnson and Hallberg, 2005). 

2.2.2.2. Membrane technologies of mine water treatment 

Membrane systems remove contaminants by selectively allowing only certain ions to pass 

through the pores of the membranes by size exclusion (reverse osmosis, nano-filtration, 

ultrafiltration and microfiltration). Membrane systems that use a combination of size 

exclusion and electric charge to remove contaminants from water are called electro dialysis. 
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Membrane treatment can be classified as secondary processes for treatment of mine water. 

This is because these systems require pre-treatment of mine water to remove suspended 

solids to reduce fouling of membranes. 

 Microfiltration  

Microfiltration is the purification of water by passing it through membranes with pore size 

≥0.1 μm and < 0.45 μm. Removal of bacteria is achieved but viruses, colloids, colour and 

solutes remain in the water.  

 

Ultrafiltration  

Ultrafiltration involves passing contaminated water through membranes with pore sizes 

between 0.01 μm and 0.1 μm. The treated water is free from colloids and microorganisms, 

but still contains solutes. Ultrafiltration and microfiltration can be used as pre-treatment 

options for nano-filtration and reverse osmosis (RO) treatment of mine water to produce 

drinking water. 

 

Nano-filtration 

 Nano filtration uses a pressure gradient to separate ions through a porous membrane. The 

pores on nano-filtration membranes are greater than 0.001 μm and less than 0.01 μm. 

Nano-filtration is capable of separating bigger divalent anions, such as sulphate and organic 

molecules, from water and monovalent small cations (Kentish and Stevens, 2001).  

 

Reverse osmosis  

Reverse osmosis is a pressure driven membrane process in which the solution is transferred 

through a semi-permeable membrane (pore size < 0.001 μm). During this process a 

substantially high pressure difference across the membrane is necessary to overcome the 

osmotic pressure difference between the salt free permeate and the saline reject solution 

(brine). The smaller water molecules are literally pushed through the semi-permeable 

membrane, while the larger solute species are retained. This process is the “reverse” of 
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natural osmosis, which involves water diffusion from a dilute to concentrated region 

through a semipermeable membrane.  

The principle by which these membranes choose or reject ions, are based on size and 

electrical charge (Kentish and Stevens, 2001; Matsuura, 2001). Although RO and UF are 

perceived as an economically feasible desalination process for specialized applications, 

these techniques are yet to overcome certain drawbacks which include the following 

(Del Pino and Durham, 1999): 

 Extremely high operating pressures are required to overcome osmotic pressure 

gradients leading to substantial increase in energy consumption, and the fact that such 

plant installations and operation are relatively costly, makes this an exceedingly 

expensive treatment option. 

 Another major problem is the membrane susceptibility to fouling by suspended solids, 

colloidal material, or certain dissolved ions such as Fe3+, Al3+, Mn2+, Ca2+ and sulphate 

ions in the feed water. The implications of fouling are irreversible membrane damage, 

reduced flux rates and increased capital and operating costs. 

 One critical issue for the successful application of RO is pre-treatment. Pre-treatment 

has to ensure that the quality of the effluent fed to the RO membranes is consistent to 

avoid variability in the feed water quality. Pre-treatment on its own has high costs 

attached to it. 

 The basic principle on which RO operates is size exclusion, therefore selectivity for 

specific metal ions is restricted and as such limits the scope of the process. 

 

Nano filtration operating costs are lower compared to RO. This is because of increased 

permeability of nano-filtration membrane due to bigger pore size than RO membranes.  

One of the technologies that have been tested for RO technology is the slurry precipitation 

and recycling reverse osmosis (SPARRO). This technology is applied after the mine water has 

been pre-treated by neutralization using an alkali, followed by clarification to remove 

colloids and suspended solids. The pre-treated water is then fed to tubular RO membranes 
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where the pure water is separated from dissolved salts called reject, as shown in Figure 

2.2.7 (Pulles et al., 1992; Juby et al., 1996).  

 

Figure 2.2.7: Flow diagram of the SPARRO water treatment technology (Pulles et al., 1992). 
 

The pre-treated water is mixed with slurry containing gypsum crystals from the cyclone 

before reaching the RO membrane. This initiates gypsum precipitation from the water which 

is saturated with respect to gypsum. The precipitated gypsum crystals are removed from the 

water through blow downs before the water is passed through tubular RO membranes. The 

cyclone receives the reject from RO membrane, where gypsum crystals are separated from 

the brine. The advantages of the SPARRO over the normal RO include (Juby et al., 1996): 

 reduced power consumption 

 reduced pump wear and scaling problems 

 

Electro dialysis  

Electro dialysis (ED) is an electrochemical separation process which involves the selective 

movement of aqueous ions through ion selective membranes as a result of an applied 

electrical potential difference (Valerdi-Perez et al., 2001). An ED system consists of two 

oppositely charged electrodes, a cathode and anode, with a number of compartments in-
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between. These compartments are separated by alternative cation and anion exchange 

membranes, filled with polluted water as shown Figure 2.2.8.  

 

 

Figure 2.2.8: Schematic diagram of the electro dialysis cell (A-anion resin and C-cation resin) 
(Tongwen, 2002). 
 

When the electrical potential difference is introduced in an ED cell (Figure 2.2.8), 

electrochemical reactions such as the reduction of water at the cathode and oxidation at 

the anode propel the ions through the selective membranes (Valerdi-Perez et al., 2001, Tran 

et al., 2012). The rate and direction of movement of ions depend on: 

 its charge, 

 solution conductivity,  

 relative concentrations and  

 applied voltage.  

The anions migrate through the anion exchange membrane into the adjacent compartment 

toward the anode. Cations move through a cation resin towards the cathode. Two main 

streams flow in parallel. One stream is progressively desalted and is referred to as the 

product water. The other stream is dewatered and is referred to as the salt rich stream or 

brine.  

Electro dialysis systems are prone to fouling. To reduce membrane fouling in ED systems, 

the polarity reversal process was developed. This process involves periodic charge reversal 
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(anode is changed to cathode and vice-versa) and is referred to as electro dialysis reversal 

(EDR). This results in the reversal of the direction of ion movement within the membrane 

configuration. The dilute stream then becomes the concentrate stream and vice versa. 

Reversing the polarity of electrodes will flush out scale and other deposits on the membrane 

walls. This increases the life span of the membrane (Del Pino and Durham, 1999). 

Consequently the EDR treatment system has reduced sensitivity to scaling and fouling 

compared to normal ED treatment systems.  

The ED/EDR plant operation efficiency increases with an increase in feed water temperature 

and consequently at a typical plant, a preheating stage, which raises the temperature of the 

feed water to approximately 35°C immediately prior to the ED/EDR is included (Schoeman 

and Steyn, 2001). The increased energy input arising from the heating process evidently 

adds to the capital and process costs (Schoeman and Steyn, 2001).  

The presence of contaminants including suspended solids, high molecular weight dissolved 

solids, organic compounds and colloids in the feed water may give rise to membrane fouling 

resulting in irreversible membrane damage. Therefore feed water pre-treatment also exerts 

a pivotal role in ED/EDR process treatment performance, by trying to ensure that the water 

fed to the ED/EDR membranes is of a consistently quality. In order to maintain optimum 

performance of ED/EDR systems, membrane stacks need to be cleaned intermittently to 

remove scale and other surface foulants (Del Pino and Durham, 1999). Normal cleaning is 

usually done by a cleaning-in-place (CIP) system, which utilizes special cleaning solutions 

that are circulated through the membrane stack; however, the membrane stack needs to be 

periodically disassembled, cleaned and reassembled at regular intervals for effective 

removal of scalants and other potential surface foulants (Schoeman and Steyn, 2001).  

The major disadvantage of ED/EDR systems, as is the case in all other membrane systems, is 

that membranes have a limited lifetime before fouling or failure of adhesive bonds 

necessitates replacement. The costs of periodic replacement are an expensive expedient 

and need to be included in any analysis of their economic viability (Kentish and 

Stevens, 2001). The water to the ED/EDR needs to adhere to specific guidelines pertaining 

to pH, organic constituents, turbidity and other characteristics. The system is equipped with 
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pH adjustment chemicals (normally acid, e.g. H2SO4), as well as imbedded cartridge filters to 

alleviate source water contamination and as such, adds to the operating costs. 

2.2.2.3. Ion exchange 

The process of ion exchange can be defined as the reversible interchange of a charged ion 

(cation or anion) for a similarly charged ion, between a solid material (the ion exchanger) 

and the surrounding liquid, in which there is no permanent change in the structure of the 

solid (Kitchener, 1957). Ion exchange resembles sorption, in that in both cases, a dissolved 

species is taken up by a solid; however, the characteristic difference between the two 

phenomena is that ion exchange, unlike sorption, is a stoichiometric process where every 

ion which is removed from the solution is replaced by an equivalent amount of another 

species of the same sign as shown in Figure 2.2.9. In sorption, on the other hand, a solute is 

taken up without being replaced by another species.  

 

Figure 2.2.9: The diagram depicting an ion exchange phenomenon (Strathmann, 2010). 
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The characteristic properties of ion exchangers can be attributed to a distinctive feature in 

their structure. They consist of a framework, held together by chemical bonds or lattice 

energy and the framework carries a positive or negative electric surplus charge, which is 

compensated by ions of opposite sign, also referred to as counter-ions (Kitchener, 1957). 

The counter-ions are mobile thus able to move within the framework and can be replaced 

by other ions of the same sign (counter ions). However, electro-neutrality must be 

preserved, i.e., the electric surplus charge of the ion exchanger must be compensated at any 

time by a stoichiometrically equivalent number of counter-ions within the pores. A counter 

ion can subsequently leave the framework, only when, simultaneously, another ion enters 

and takes over the task of contributing its share to the compensation of the framework 

charge (Kitchener, 1957).  

Ion exchange technologies are usually used as the polishing of the pre-treated water. 

Examples of the ion exchange technologies developed to polish and produce good quality 

water together with valuable products that can be used in industry are the GYPCIX and 

Environmental and Remedial Technology Holdings (EARTH) technologies. 

a. GYPCIX process 

This process involves the polishing of the treated water in two stages to produce water of 

potable standards as shown in Figure 2.2.10. Acid mine drainage is pre-treated by 

neutralization with alkalis, thereby removing the metals such as Fe, Al and Mn.  

 

 

 

 



CHAPTER 2: LITERATURE REVIEW 
 

47 
 

 

Figure 2.2.10: Process flow diagram of the GYPCIX process. 
 

Pre-treated water is then passed through a cation resin to remove cations such as Ca, Na 

and K by exchanging with H+ protons in the resin.  

  nHXRXHR n
n ……………………………………………………………………………………..2.27 

The recovered water from the cation resin still contains an elevated concentration of 

sulphate ions and low pH. The water is then passed through an anion resin where the 

sulphate ions are exchanged with OH- ion, thereby correcting the pH. The final product 

water is suitable for domestic use. 

  OHSORSOOHR 242
2
4 …………………………………………………………………………..2.28 

After the ion exchange active sites have been exhausted, they are regenerated. Anions resin 

are regenerated using lime solution (Equation 2.29) and the cation resins are generated 

adding sulphuric acid (Equations 2.30 and 2.31) to produce good quality gypsum that can be 

used in construction. 

OHCaSOOHROHOHCaSOR 242242 2.22)(  ..…………………………………..2.29 

OHCaSOHROHSOHCaR 242422 2.22  ………………….…………………………..2.30 
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  2
442 222 SONaHRSOHNaR ……………………………….…………………………..2.31 

2.2.2.4. Chemical treatment of mine water 

Chemical treatment of mine waters involves the use of alkalis such as lime, limestone, 

ammonia and sodium hydroxide to neutralize acid mine water. Alkali treatment plants 

prefer to use limestone because it is cheaper than the other chemicals. The alkali raises the 

pH of the water with subsequent precipitation of metals as hydroxides. Different metal 

hydroxides precipitate at different pH values. Fe3+, Al3+, Mn2+ and Mg2+ precipitate at pH 

values 3, 6, 9 and 11 respectively. Barium salts such as Ba(OH)2, BaS and BaCO3 are also used 

to treat mine water specifically for sulphate precipitation. 

 

Barium salts 

Barite (BaSO4) is a highly insoluble mineral (Ksp ≈ 1 x 10-10). Introducing sufficient amounts 

of Ba2+ into SO4
2- rich waters will result in removal of SO4

2- to below 200 mg/L. The common 

sources of Ba2+ are BaCO3, Ba(OH)2 and BaS. Sulphates are removed according to equations 

(Bosman et al., 1990; Hlabela et al., 2007, Bologo et al., 2012): 

)()()()(2)( 324
2
43 aqCOHsBaSOaqSOaqHsBaCO   ………………………..…………2.32 

OHsBaSOaqSOaqHsOHBa 24
2
42 2)()()(2)()(   …………………..…………………2.33 

)()()()(2)( 24
2
4 gSHsBaSOaqSOaqHsBaS   ………………...……………………….2.34 

BaCO3 treatment will not remove SO4
2- that are associated with Mg2+ in aqueous solution. 

This means Mg2+ ions should be removed from the water before Ba2+ can be added. This is 

achieved by addition of an alkali to increase the pH to 11 for Mg(OH)2 precipitation before 

Ba2+ treatment. Addition of BaS results in neutralization of acidity and generation of H2S as 

shown in Equation 2.34. The H2S will react with heavy metals that might be in the mine 

water to metal sulphide precipitate (Equation 2.17). This means that the mine water should 
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have enough heavy metals to react with H2S that is produced by the addition of BaS; 

otherwise the product water will contain toxic H2S. 

The presence of Ca2+ increases the dissolution of BaCO3 (Equation 2.35) by precipitation of 

CaCO3 according to Equation 2.36 (Hlabela et al., 2007). 

)()()( 2
3

2
3 aqCOaqBasBaCO    ………………….….………………..………………………………..2.35 

)(3
2
3

2 sCaCOCOCa   ……………………………………………………………..…………….……………….2.36 

This means that presence of Ca2+ will enhance SO4
2- removal since more Ba2+ will come into 

solution. The dissolution of BaCO3 is negatively affected by carbonate alkalinity thereby 

reducing the efficiency of using BaCO3 to remove SO4
2- (Hlabela et al., 2007). This is because 

the addition of CO3
2- when alkalinity is increased will cause the dissolution reaction to shift 

to the left according to the Le-Chatelier’s principle. 

BaS and Ba(OH)2 treatment is capable of increasing the pH to above 11, since the treatment 

generates alkalinity according to Equations 2.33 and 2.34 thereby precipitating Mg(OH)2. 

Treatment of mine water using BaS and Ba(OH)2 does not require alkali treatment prior to 

addition of Ba salts. Metals in the mine water will react with H2S produced in reaction 2.34 

to produce metal sulphides precipitates. (Adlem, 1997; Maree et al., 1989). If the metal 

cations present in the raw water are not stoichiometrically equivalent to the H2S produced, 

then the H2S needs to be removed before discharging the water (Hlabela et al., 2007) to 

avoid H2S release into atmosphere since it is poisonous. 

The major disadvantage of Ba2+ treatment of mine water is the cost of the salts. In addition 

H2S produced by BaS is a toxic gas that needs to be removed and any failure to remove all of 

the gas will be fatal. The product water should have Ba concentration of less than 0.7 mg/L 

because Ba is a toxic element (WHO, 2011). While the chemical treatment works well to 

raise pH and to precipitate the metals, the treatment plants are very expensive to operate 

and maintain. Also the disposal of the toxic metal-laden sludge is a very big environmental 

problem. 
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Some of the major technologies that use Ba salts have been developed by Council of 

Scientific and Industrial Research (CSIR) of South Africa and Tswane University of 

Technology. These include Alkali-Barium-Calcium (ABC) and Magnesium-Barium-Alkali 

(MBA) technologies (Bologo et al., 2012, Beer et al., 2010). 

 

Figure 2.2.11: Process flow diagram for the MBA technology for mine water treatment 

(Bologo et al., 2012). 

 

Magnesium-Barium-Alkali process involves mixing mine water with Mg(OH)2. This will result 

in the neutralization of the mine water (Equation 2.37) and the precipitation of Fe, Al and 

Mn as their respective hydroxides.  

OHMgHOHMg 2
2

2 22)(   …..…………………………………..………………………………....2.37 

The sludge 1 is then separated from the water and then the water is mixed with Ba(OH)2 to 

precipitate out sulphate  and Mg ions according to Equation 2.33 and Equation 2.38 

respectively. According to Madzivire et al (2011), Mg(OH)2 forms at pH greater than 11. 

2
2 )(2 OHMgOHMg   ……………………………………………………………………………………....2.38 

The mixture is then separated to produce water with pH which greater than 11 and 

sludge 2. Sludge 2 is composed of BaSO4 and Mg(OH)2. The pH of the water is adjusted by 

bubbling CO2 and the sludge is mixed with coal and then subjected to heat to produce ash, 
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S, Ba(OH)2 and Mg(OH)2. The Ba(OH)2 and Mg(OH)2 are recycled, while S can be sold to 

offset the costs of the treatment process. 

 
Lime/limestone 

Treatment of mine water using limestone removes acidity of the mine water by the 

alkalinity generated by the dissolution of limestone (Equation 2.19, 2.20 and 2.21). The 

sulphate concentration in mine water is decreased due to the reaction with Ca2+ ions from 

lime or limestone to form gypsum (Equation 2.24) and due to co precipitation with or 

adsorption on metal hydroxides.  

All the metals are removed to below the allowed effluent limit (Equation 2.22 and 2.23) but 

sulphate concentration usually remains above the required WHO and DWA limit for potable 

water of less than 400 mg/L because gypsum is partially soluble in water. Solubility of 

gypsum ranges from 1500 mg/L to 2000 mg/L depending on the composition and ionic 

strength of the solution. Gypsum precipitation is reduced in the presence of Mg2+, Na+ and 

K+ ions. 

An integrated limestone/lime process was developed for reducing sulphate concentration to 

less than 1200 mg/L (Geldenhuys et al., 2001). This process involves the addition of 

limestone to pH 9. The pH is then taken up to greater than 11 using lime to precipitate out 

Mg(OH)2 thereby enhancing the formation of gypsum. Integrated lime/limestone is cheaper 

than the use of only limestone to treat mine water. 

The process reduces the concentration of potentially toxic elements such Fe, Al and Mn to 

below the effluent limit and sulphate concentration to below the saturation point of 

gypsum, therefore reducing the scaling potential of the water. This process is most suitable 

as pre-treatment for further purification using costly processes such as membrane methods. 

This process produces a voluminous sludge (95 % water content) that is left after the 

treatment. The sludge is laden with metals that were in the mine water making it extremely 

expensive to handle. If the low density sludge is recycled and mixed with incoming raw 

AMD, high density sludge is produced with 80 % water content (Bosman, 1983). Recycled 
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low density sludge provides nuclei for metal hydroxide precipitation and growth as shown in 

Figure 2.2.12. 

 

Figure 2.2.12: Flow diagram of the high density sludge treatment technology (INAP, 2012). 
 

Lime treatment of mine water is the current emergency option that is being employed to 

treat decanting water in the West Rand Basin of the Witwatersrand Goldfields, South Africa. 

High density sludge pre-treatment of 25 ML per day of AMD from four coal mines in 

Mpumalanga is being carried out at Emahlahleni water treatment plant. The three mines 

involved are Navigation, Greenside and Kleinkopje owned by Anglo Coal and one mine 

owned by BHP Billiton. Water from the HDS is then treated to potable standards using High 

Pressure Reverse Osmosis (HiPRO).  

Although the potable water is sold to the Witbank municipality to offset some of the costs 

of the treatment process, the income generated is not enough to make this plant 

sustainable. Also the process produces brine that is accumulating and very expensive to 

store or dispose. Research has advanced to recover valuable products such as sulphur and 

lime from gypsum by the process called GypSLim process (Gunter and Naidu, 2008).  
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SAVMIN process 

The SAVMIN process involves a number of precipitation stages to remove the contaminants 

in AMD to produce treated water as shown in Figure 2.2.13. This process was developed by 

Smit (Smit, 1999; Smit and Sibilski, 2003). Mine water is mixed with lime to take up the pH 

to greater than 11 and in the process precipitating most metals including Mg. The metal 

hydroxide precipitates are separated from the water. Gypsum seeds are added to the water 

which is supersaturated with respect to gypsum. This further precipitates gypsum from mine 

water thereby further removing sulphate ions. The water, which is under saturated with 

respect to gypsum is then mixed with amorphous Al(OH)3 where sulphate ions are further 

precipitated out in the form of ettringite (Equation 2.39). 

OHOHOAlCaSOCaOOHOHAlSOCa 2232423
2
4

2 631..3.331)(236   ……..……2.39 

After precipitating out the sulphate as ettringite to within the potable limit of WHO and 

DWA, the pH of the water is still greater than 11. The pH of the water is then adjusted to 6-9 

by bubbling CO2 to form CaCO3 producing water of potable standard.  

 

Figure 2.2.13: Flow diagram of the SAVMIN process (INAP, 2012). 
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 Ettringite is decomposed to form Al(OH)3 by adding H2SO4 to the ettringite containing slurry 

to pH between 6 and 9. The Al(OH)3 recovered from the ettringite slurry is then recycled to 

precipitate more sulphate ions. The water obtained from the decomposition of ettringite 

during the recovery of Al(OH)3 is supersaturated with respect to gypsum. This water is 

seeded with gypsum crystals to initiate precipitation of gypsum. The gypsum is separated 

and the water is then returned to the ettringite stage for further clean up. 

 

Treatment of mine water has proved to be very costly. The Inter-ministerial Committee on 

acid mine drainage of South Africa has summarized the current and possible treatment 

methods that can be used as a solution for active remediation of mine water. The summary 

in Table 2.2.1 showed that all the treatment methods are not sustainable except the MBA 

technology that is still at pilot scale. This is because the difference of the running costs and 

the income that can be generated from the products from the treatment process is negative 

as shown in Table 2.2.1. 

Table 2.2.1: The running costs and possible income that can be generated from the products 

of the various technology proposed by the Inter-ministerial Committee on acid mine 

drainage (Coetzee et al., 2010). 

Technology Running costs (R.m-3) Income (R.m-3) Difference (R.m-3) 
Alkali Barium Calcium 4.04 3.56 -0.49 
HDS HiPRO 9.12 3.35 -5.78 
SPARRO 12.79 4.29 -8.51 
SAVMIN 11.30 3.84 -7.46 
EARTH ion exchange 12.95 10.70 -2.25 
Paques Thiopaq 8.73 5.70 -3.03 
CSIRosure 8.73 6.12 -2.61 
BioSURE 3.80 0.00 -3.80 
MBA 2.22 5.58 3.36 
Lime treatment 5.50 0.70 -4.80 
 

 

 

 

 



CHAPTER 2: LITERATURE REVIEW 
 

55 
 

Since most of the methods are not sustainable to treat mine water, research is still on going 

to come up with a sustainable treatment technology. Sustainability in mine water treatment 

can be achieved if: 

1. Suitable waste materials can be used as part of the treatment of mine water or, 

2. Valuable materials can be recovered from the waste materials from the treatment 

process. 

Use of waste materials will reduce the cost of the treatment process as well as the disposal 

of the waste material used. 

2.2.3. TREATMENT OF MINE WATER WITH COAL FLY ASH 

One of the waste materials that can be used for mine water treatment is coal FA. Coal FA is 

found close to the most coal mines in South Africa. This will reduce the transportation costs 

of the FA to the treatment facility. Coal FA is an aluminosilicate waste trapped from the flue 

gas of the coal fired power stations to avoid atmospheric contamination. Fly ash is alkaline, 

containing mainly residual inorganic species that survived the combustion process to 

generate steam.  The lime in the FA is the species that is mainly exploited for the 

neutralization and treatment of mine water.  

Treatment of acid mine drainage (AMD) and neutral mine drainage (NMD) with coal FA was 

found to remove Fe and Al at pH values 4-6 and Mn was found to be removed at pH 9. 

Sulphate ions were found to be removed from high levels of about 18000 mg/L to between 

2000 and 2500 mg/L when AMD was treated with coal FA to pH 9 (Gitari et al., 2008; Gitari 

et al., 2006; Surender, 2009).  Treatment of NMD with FA was found to remove an 

insignificant amount of sulphate ions when pH was raised to 9. When pH of NMD was raised 

to greater than 11, about 100 % of Mg2+ was found to be removed and a significant amount 

of sulphate was found to precipitate out as gypsum (Madzivire, 2010). Addition of 

amorphous Al(OH)3 to the mixture of FA and NMD at pH greater than 11 resulted in sulphate 

concentration decreasing from 4500 mg/L to approximately 400 mg/L through ettringite 

precipitation (Madzivire et al., 2010).  
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The benefits of using coal FA treatment of mine water over using lime include; the costs, 

produce high slurry and the solid residue have shown suitable properties for backfilling of 

mine voids with capacity to continuously remediate mine water (Vadapalli et al., 2008; 

Gitari et al., 2008, Surender, 2009). Treatment of mine water with coal FA is cheaper 

compared to limestone because FA is found close to the coal mines since most coal power 

station are built close to the coal mines. This means low transport costs of FA to the 

treatment facility. Since coal FA is a waste material; using FA for water treatment will go a 

long way to achieve zero effluent discharge in coal mines and coal fired power stations. 

Upscale of the treatment of mine water with coal FA is hindered by the fact that large 

amounts of coal FA (2:1 and 3:1 of liquid to solid ratio) were used. This makes the treatment 

process industrially problematic. The amount of coal FA to treat mine water could be 

reduced if superior mixing techniques can be employed such as a cavitation mixing.  Also if 

another processes could be developed and used in conjunction with coal FA treatment such 

as using flocculants to polish the water from coal FA treatment. Previous studies on coal FA 

treatment of mine water did not consider the chemistry of the radionuclides in the coal FA 

and/or in the mine water during treatment of mine water with coal FA. 

2.2.4. RADIOACTIVITY IN COAL FLY ASH 

The growing population coupled with the exponential depletion of natural resources has 

resulted in most research and development focusing on recycling to promote sustainability 

of the industrial processes. The use of coal FA in construction, agriculture and acid mine 

drainage treatment is some of the opportunities for the recycling of waste materials (Kovler, 

2012, Madzivire et al., 2010; Gitari et al., 2008).  

Fly ash is known to accumulate the incombustible constituents of coal in the combustion 

cycle during production of electricity. About 550 MT per year of FA is produced by coal fired 

powered stations worldwide. After China, USA and India, South Africa is the fourth largest 

producer of FA. The radioactivity of most FA all over the world was found to be orders of 

magnitude higher as compared to the parent coal. The concentration of U and Th in coal in 

American FA ranges between 1-4 mg/L (USGS, 1997; Turhan et al., 2010; Papasternou, 2010; 
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Baykala and Saygılı, 2011; Peppas et al., 2010). As such, there is a great need to evaluate the 

radioactivity of South African FA and products produced from use of coal FA. 

During coal combustion to produce electricity in power stations, most of the U, Th and their 

decay products are released from the coal and are partitioned between the gas phase and 

solid phase of the combustion products. The partitioning between the gas and solid phase is 

controlled by the volatility and chemistry of the individual elements. Virtually 100 % of the 

radon gas present in the feed coal is transferred to the gas phase and is lost in stack 

emissions. In contrast, less volatile elements such as Th, U, and the majority of their decay 

products are almost entirely retained in the solid combustion wastes (USGS, 1997). The 

concentration of most radioactive elements in solid combustion wastes is approximately 10 

times the concentration in the original coal (USGS, 1997).  

The reuse of FA from South African coal power stations for water treatment or construction 

depends on its radioactivity. The leachability of radionuclides in FA needs to be evaluated to 

find out if the radioactivity will not be transferred into the product water. Also the use of FA 

in construction needs to be managed in such a way that the final structure is not a 

radioactive emitting entity. 

2.2.5. FLOCCULANTS FOR TREATMENT OF MINE WATER 

Wastewater impurities occur as suspended and dissolved particles. Dissolved particles are 

approximately 0.1 nm, while colloids are suspended particles which are greater than 0.1 nm 

but smaller than 1 nm (Bratby, 2006). Treatment of waste water using Al and Fe salts has 

been widely used to remove colloidal particles. Colloids are usually negatively charged 

particles which are uniformly dispersed in an aqueous media. Colloids remain as separate 

entities in solution because they repel each other (like charges). Removal of colloids from 

waste water occurs through charge neutralization and encapsulation of the impurities when 

hydroxide precipitates forms (sweep flocculation).  

Flocculants when added into wastewater occur either as cationic or anionic forms 

depending on the pH of the solution. Salts of Fe and Al when added into solution dissociate 
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forming octahedrally bonded cations to water ligands. Depending on the properties, such as 

pH and ionic potential, Fe and Al ions exist as products of the following reactions; 
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Polynuclear  products such as; Al2(OH)2
4+, Al3(OH)4

5+, Al8(OH)20
4+ and Al13O4(OH)24(H2O)12

7+ 

exists through the interaction of the mononuclear species as depicted in the scheme 2 

below (Bratby, 2006). The waste water pH therefore has to be adjusted in order to improve 

the performance of the flocculants. Most flocculants have been used in the removal of 

colloidal particles. Recently polyaluminium chloride and AlCl3 have been studied for the 

removal of sulphate ions from mine water (Silva et al., 2010). That study has proved that 

sulphate ions could be removed from mine water but the chemistry of other anions such as 

chlorides were not investigated. The removal of sulphate ions from mine water was found 

to depend on pH and the amount of polyaluminium chloride or AlCl3 added. The optimum 

pH for sulphate removal was found to be 4.5. 
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Scheme 2: The schematic diagram of the hydrolysis reaction of Al3+ ions in water 

(Bratby, 2006). 
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Also the removal of phosphates from water using Al(OH)3 and alum was studied at different 

pH end points (Figure 2.2.14) and various aluminium to phosphate ratio (Georgantas and 

Grigoropoulou, 2007). They concluded that alum was more efficient in the removal of 

phosphates compared to Al(OH)3 and the best removal was observed at pH 4-6 as shown in 

Figure 2.2.14 below. Alum is a chemical with the general formula AB(SO4)2·12H2O. An 

example of alum is hydrated potassium aluminium sulphate (KAl(SO4)2·12H2O). 

 

Figure 2.2.14: Comparison between metaphosphate and orthophosphate in the case of 

alum (a) and aluminium hydroxide (b) regarding their efficiency to remove phosphates from 

water at various pH end points at 25 oC (Georgantas and Grigoropoulou, 2007). 

 

The removal was of phosphates was found to correspond to the pH when the positively 

polynuclear aluminium species are predominant (Al2(OH)2
4+, Al3(OH)4

5+, and Al13O4(OH)24
7+) 

as shown in Figure 2.2.15.  

 

 

 

 

 



CHAPTER 2: LITERATURE REVIEW 
 

60 
 

 
Figure 2.2.15: Al species distribution vs pH at 25 oC (Georgantas and Grigoropoulou, 2007). 
 

These high molecular weight positively charged aluminium species interact with negatively 

charged phosphates to form flocs that can easily settle and be removed from the solution. 

When pH exceeds 5 solid amorphous aluminium hydroxide is produced. After the pH value 

of 11 the solid aluminium hydroxide is dissolved and the predominant species are Al(OH)4
− 

ions. 

2.3. MIXING TECHNIQUES THAT COULD ENHANCE FLY ASH TREATMENT 
OF MINE WATER 

Treatment of mine water with coal requires large amount of coal FA. This makes the process 

industrially problematic. Cavitation mixing of coal FA and mine water could enhance this 

treatment process. Cavitation is the generation, growth and collapse of cavities creating 

energy densities of 1-1018 kW/m3.  There are two main types of cavitation, acoustic and 

hydrodynamic cavitation. 

2.3.1. ACOUSTIC CAVITATION 

Acoustic cavitation is produced in a reactor by the use of sound waves with frequency of 

16-100 MHz. Passing sound waves through a solution causes molecular motion by a series of 
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compression and relaxation as shown in Figure 2.3.1. The succeeding compression cycles 

continue to make the bubbles grow in size until they become unstable and collapse 

violently. At the point when the bubbles collapse, extreme temperatures and pressures are 

generated. The temperature and pressure generated depends on the frequency exerted in 

the solution (Cobley and Mason, 2010).  

 

Figure 2.3.1: The process of acoustic cavitation (Cobley and Mason, 2010). 
 

The sound waves are usually produced using an ultrasound machine. Sonochemistry is the 

term used to define the chemical changes that occur due to cavitation produced by the 

passage of sound waves into the reaction mixture. 

2.3.2. HYDRODYNAMIC CAVITATION 

Hydrodynamic cavitation is produced by pressure variations. The pressure variations are 

obtained due to the changes in the geometry of the system in which the solution is flowing. 

When the geometry of the system is changed, the pressure and kinetic energy also changes. 
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The turbulence produces an area of greatly reduced fluid pressure. The fluid vaporizes due 

to the low pressure, forming a cavity. This can happen when a solution is forced to flow 

through an orifice, venture, etc (Jyoti and Pandit, 2001; Mason, 2007). 

 

Figure 2.3.2: Schematic representation of hydrodynamic cavitation (Mason, 2007). 
 

Hydrodynamic cavitation can be controlled easily by only adjusting the process parameters 

such as the flow rate, pressure and orifice size. The high Reynolds flow conditions allow for 

intense micro mixing of the reactants, which can be an advantage in the synthesis of 

metastable support phases. A very important aspect of this type of processing is that it can 

be scaled up easily to allow commercial processing. 

Cavitation is an enormously powerful process. The collapsing cavity can reach 5000 °C and 

1000 atm. The implosion takes place during the cavitation process in milliseconds, releasing 

tremendous energy in the form of shockwaves. The power of these waves generated by the 

cavitation process disrupts anything in their path. 

2.3.3. APPLICATION OF CAVITATION 

Cavitation has found wide application in the field of medicine and science. One of the 

applications of cavitation is in water treatment (Mason, 2007; Entezari et al., 2006; Jyoti and 
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Pandit, 2001) also discovered that hydrodynamic cavitation was an economical physical 

technique for water disinfection, while ultrasound cavitation was more efficient in killing the 

microorganisms.  

Bacteria usually occur as clusters or entrapped inside flocs of clays minerals in wastewater. 

Application of biocides will only kill the bacteria on the surface leaving the core of bacteria 

intact. Therefore application of cavitation was found to disrupt colonies of bacteria, 

deactivate bacteria or enhance the susceptibility of bacteria to biocides. 

The use of a combination of sonication and horse radish peroxidase enzyme was found to 

enhance the removal of 2-chlorophenol from wastewater compared to the use horse radish 

peroxidase or sonication separately (Entezari et al. 2006). The kinetics of the removal of 

2-chlorophenol wastewater improved when the wastewater was sonicated but the addition 

of horse radish enzyme was found to remove more 2-chlorophenol over a prolonged time. 

The combination of sonication and enzyme achieved 100 % removal of the contaminant 

from wastewater. This was due to; enhancement of the diffusion process, structural 

changes of the enzyme and hydroxyl radical production through cavitation. Enhancement of 

the diffusion process improved action of the enzymatic action on 2-chorophenol. Structural 

changes of the enzyme made the enzyme active centre more available to the substrate and 

hydroxyl, while radicals produced through cavitation further degraded the intermediates 

from enzymatic action.  

Hydrodynamic and acoustic cavitation has also proved to enhance the kinetics of many 

reactions in aqueous media (Senthil et al., 2000; Wei et al., 2007). Senthil et al., (2000) have 

shown that the dissolution of KI in aqueous media is enhanced by hydrodynamic cavitation. 

At the same power output hydrodynamic cavitation was found to be three times more 

efficient than acoustic cavitation in the liberation of I2 from KI. In another case, Wei et 

al., (2007) proved that the jet loop anaerobic fluidized bed reactor was more efficient in the 

treatment of the high sulphate wastewater than the normal fluidized bed anaerobic reactor.  

Cavitation enhanced the production of I2 and the removal of sulphate from the aqueous 

media. This is because high temperature and pressure causes the formation of OH- radicals 

as a result of the cleavage of the water. These radicals oxidises I- ions to I2. In the case of 
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removal of sulphate from wastewater, the OH- radicals reduce the accumulation of S2- and 

H2S in water. The presence of S2- and H2S inhibit the efficiency of the sulphate reducing 

bacteria. 

Based on these findings by other researchers, cavitation could enhance the performance of 

the coal FA treatment process of mine water. This could reduce the amount of coal FA 

needed and time of the treatment, therefore making the treatment process industrially 

feasible. 

2.4. CONCLUSION 

Previous research has shown that coal FA could be used to treat mine water to produce 

good quality water. The problem of this treatment process is that; it requires a lot of coal FA 

making the up scaling of the treatment not feasible. Literature has also shown that sulphate 

ions could be removed from water by the use of flocculants such as polyaluminium 

chlorohydrate or AlCl3 salt. Flocculants could be used to polish the mine water from the coal 

FA system to remove the residual sulphate ions in the product water. In addition coal from 

other countries such as Turkey, Greece and America has been reported to contain 

radioactive nuclides. The radioactivity of coal FA in South Africa is not extensively studied. 

On the other hand the fate of radioactive nuclides in coal FA and mine water is not known 

during treatment of mine water with coal FA. 

Based on these gaps in the literature, this thesis describes the experimental investigations 

and modelling approaches used as well as presenting findings and conclusions of the current 

work. This study used hydrodynamic cavitation to enhance the performance of the coal FA 

treatment of mine water. Hydrodynamic cavitation was used in order to reduce the amount 

of coal FA and to enhance the performance of the treatment process such that the process 

could be up scaled. The fate of radionuclides in coal FA and mine water during treatment of 

mine water with coal FA was also studied. The chemistry of the removal of sulphate ion 

from mine water or product water from the coal FA treatment process using aluminium 

chlorohydrate or Al(OH)3 was also investigated. This was done in order to find out if ACH or 

Al(OH)3 could produce water that is fit for reuse. 
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CHAPTER 3: METHODOLOGY 

South Africa produces different types of mine water depending on the geological 

environment being disturbed during mining. The different conditions that are required to 

treat mine waters of varying composition using a combination of coal FA and Al(OH)3 or 

aluminium chlorohydrate (ACH) flocculant were investigated in this study. 

3.1. STUDY AREA 

The water used for this study was collected from Matla coal mine in Mpumalanga province 

and Rand Uranium gold mine in the Western basin of Witwatersrand Goldfields in 

Krugersdorp (Figure 3.1.1).  

 

Figure 3.1.1: Map showing the mine water and FA sampling sites. 

Matla 

 

 

 

 



CHAPTER 3: METHODOLOGY 

66 
 

The Matla coal mine where the water was sampled is still active. Rand Uranium mine is semi 

abandoned since there is no longer any underground mining taking place and only mining of 

tailings is still on going. There is no active pumping of underground mine water and the 

water has started decanting since 2002, threatening the Cradle of Humankind and the 

Hippopotamus dam in the vicinity. 

3.2. SAMPLING AND CHARACTERIZATION OF FLY ASH 

Fresh FA was collected directly from the hoppers of Matla coal power station. Samples of FA 

were sealed in plastic bags devoid of air to avoid the reaction of CaO in the FA with 

atmospheric CO2 which would cause the formation of calcite therefore reducing the CaO 

content. The FA samples were analysed using x-ray diffraction (XRD) spectroscopy and x-ray 

fluorescence (XRF) spectroscopy for mineralogy and elemental composition respectively. 

Trace elements was analysed with XRF and Laser Ablation ICP-MS. Scanning electron 

microscopy was used to understand the morphology of FA. Gross alpha and gamma 

radioactivity of FA was determined to estimate the total radioactivity. Neutron activation 

analysis (NAA) was used to determine the 238U and 232Th radioisotopes. Low energy gamma 

spectrometry was used to measure the activity of 210Pb, 235U, and other products in the 232Th 

and 235U decay series. High energy gamma spectrometry was used to measure the activity of 
228Ra, 226Ra, 228Th and 40K. Radium-226 was determined by measuring its decay products of 

which a three week waiting period was allowed for the equilibrium between Ra and its 

decay products. 

3.2.1. SCANNING ELECTRON MICROSCOPE 

Matla FA was analysed using a HITACHI X-650 Scanning Electron Microanalyzer. The samples 

were prepared by fixing the samples on aluminium stubs using carbon adhesive. The carbon 

adhesive was attached to the top part of an aluminium stub and then the sample was 

sprinkled on the carbon adhesive with great precaution to avoid forming a thick layer that 

would absorb the incident light. Since the samples that were analysed were poor 
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electromagnetic conductors, they were gold coated using argon gas on Sputter Coater 

S150B. The gold coating was done under vacuum. 

3.2.2.  X-RAY DIFFRACTION SPECTROSCOPY 

Qualitative XRD was performed to evaluate any mineralogical changes between the fresh 

coal FA and the solid residues recovered after mixing FA with mine water. This was 

performed using a Philips X-ray diffractometer and Cu-Kα radiation with a PW3011 

(Miniprop) detector. The instrument settings are as shown in Table 3.2.1. 

Table 3.2.1: The XRD settings during analysis of coal FA and the solid residues. 

Radiation source Cu-K 
Radiation wavelength (λ) 1.541 
Voltage 40 kV 
Current 25 mA 
2θ 4o<2θ <65o 
Step size 0.02 
Anti-scatter slit 1o 
 

The mineral phases were identified by search and match technique with the powder 

diffraction file data. This identification was complemented with Joint Committee of Powder 

Diffraction Standards (JCPDS) files for inorganic compounds. 

3.2.3. X-RAY FLUORESCENCE SPECTROSCOPY 

Matla FA samples were crushed into a fine powder (particle size < 100 µm) with a jaw 

crusher and milled in a tungsten zib mill (to prevent from trace and REE contamination) 

prior to the preparation of a fused disc for major element and trace analysis. The jaw 

crusher and mill are cleaned with uncontaminated quartz after analysing each sample to 

avoid cross contamination. Pressed powder pellets were prepared for XRF analysis using 8 g 

of the sample and few drops of MOVIOL was added for binding.  
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The composition was then determined by XRF spectrometry on a Philips 1404 Wavelength 

Dispersive spectrometer. The spectrometer was fitted with an Rh tube and with the 

following analysing crystals: LIF200, LIF220, LIF420, PE, TLAP and PX1. The instrument is 

fitted with a gas-flow proportional counter and a scintillation detector. The gas-flow 

proportional counter uses 90 % argon and 10 % methane gas mixture. Trace elements were 

analysed on a pressed powder pellet at various kV and mA tube operating conditions, 

depending on the analysed element. Matrix effects in the samples were corrected for by 

applying theoretical alpha factors and measured line overlap factors to the raw intensities 

measured with the SuperQ Philips software. Control standards that were used in the 

calibration procedures were NIM-G (Granite from the Council for Mineral Technology, South 

Africa) and BHVO-1 (Basalt from the United States Geological Survey, Reston).  

3.2.4. LASER ABLATION INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY 

The instrument was set by connecting a 213 nm laser ablation system connected to an 

Agilent 7500ce ICP-MS. The FA sample was coarsely crushed and fusion disks were made by 

an automatic Claisse M4 Gas Fusion instrument and ultrapure Claisse Flux. A chip of sample 

was mounted in a 2.4cm round resin disk. The mounted sample was then polished for 

analysis. The sample was ablated using He gas and then mixed with Ar after coming out of 

the ablation cell. The sample was then passed through a mixing chamber before being 

introduced into the ICP-MS. 

Trace elements were quantified using NIST 612 for calibration method and 29Si as internal 

standard. Three replicate measurements were made on each sample. The calibration 

standard was run after every 12 samples. A quality control standard was run in the 

beginning of the sequence as well as with the calibration standards throughout. Both 

basaltic glass, BCR-2 or BHVO 2G were certified reference standards produced by USGS (Dr 

Steve Wilson, Denver, CO 80225) that were used for this purpose. A fusion control standard 

from certified basaltic reference material (BCR-2, also from USGS) was also analysed in the 

beginning of a sequence to verify ablation on fused material. Data was processed using 

Glitter software. 
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3.2.5. RADIOACTIVE ANALYSIS OF MATLA FLY ASH 

Matla fly ash samples were dried overnight in an oven at 105 oC. The samples were then 

milled to obtain a homogeneous powder so that representative portions could be sampled 

for the various analyses. The homogenized sample (500 g) was placed in Marinelli beakers 

and analysed for gross alpha and beta to obtain a first order estimate of the total activity of 

the sample. After determination of the gross alpha and beta the samples were analysed for 

various radioisotopes using low energy gamma analysis and high energy gamma analysis 

according to a method used by Newman et al. (2008) and Radium-226 was determined by 

measuring its decay products. A three week waiting period was allowed to establish 

radioactive equilibrium between radium and its decay products. 

3.2.5.1. Radioactive analysis of fly ash using gamma spectrometry 

Two high-resolution ERL gamma ray spectrometers with p-type coaxial hyper-pure 

germanium (HPGe) detectors were used for the determination of 210Pb, 238U, 235U, 234U, 
228Ra, 226Ra, 232Th, 228Th, 40K and other products in the thorium-232 and uranium-235 decay 

series in Matla fly ash. One of the HPGe detectors has a relative efficiency of 45 % and an 

energy resolution of 2 keV at 1.33 MeV. The other detector has a relative efficiency of 110 % 

and an energy resolution of 2.1 keV. To avoid background radiation both detectors were 

shielded from background radiation. Gamma reference materials were used to determine 

the absolute efficiency of the gamma spectrometers. Measurement of the sample was done 

at the same conditions with background measurements and subtracted from the sample 

measurement. Several gamma ray peaks at various energies obtained in Table 2.1.3 were 

averaged assuming secular equilibrium in 238U and 232Th decay series as follows: 

 Uranium-238 activity concentration was determined by using the gamma-ray peaks 

of the 351.9 keV from 214Pb and the 609.3 keV from 214Bi. 

 Radium-226 was determined using the gamma ray with energy of 186 keV.  

 To determine the activity concentration of 232Th, the gamma-ray peaks of the 

911.2 keV from 228Ac and the 583.2 keV from 208Tl were used.  
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 Activity concentration of 40K was determined from its own gamma-ray peak at 

1460.8 keV. 

3.3. CHARACTERIZATION OF ALUMINIUM CHLOROHYDRATE 

Aluminium chlorohydrate (ACH) was obtained from Veolia Chemicals in South Africa with a 

purity of 23 %. It was gel like in appearance. Aluminium chlorohydrate was diluted 25000 

times with ultra-pure water. The diluted sample was than analysed using inductively 

coupled plasma-optical emission spectroscopy (ICP-OES) and ion chromatography (IC). 

3.3.1. ION CHROMATOGRAPHY 

Ion chromatography (IC) was used to determine the concentration of anions in mine 

water. The samples were filtered through 0.45 μm nucleopore membrane filter paper and 

preserved at 4 oC until analysis was conducted. A Dionex DX-120 Ion Chromatograph with 

an AS40 automated sampler, ASRS- 300 suppresser, AS14 analytical column, AG14 guard 

column and a conductivity detector was used for the analysis. The eluent used was a 

mixture of 3.5 mM NaHCO3 and 1.0 mM Na2CO3. 

 

A Dionex SEVEN ANION certified standard was used to check the efficiency of the IC 

machine. The SEVEN ANION was made up of the composition as shown in Table 3.3.1 below. 

Table 3.3.1: Composition of the Dionex SEVEN ANION certified standard. 

anion Concentration (mg/L) 
F- 20 
Cl- 30 
NO2

- 100 
Br- 100 
NO3

- 100 
PO4

3- 150 
SO4

2- 150 
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3.3.2. INDUCTIVELY-COUPLED PLASMA-OPTICAL EMISSION SPECTROSCOPY 

The cation concentration was analysed using Varian 710-ES ICP Optical Emission 

Spectrometry to follow the changes in the composition of mine water during treatment. 

The sample was introduced through a high sensitivity glass, single-pass cyclone spray 

chamber and conical nebulizer using argon gas. It was then passed through axially 

oriented plasma. The wavelength released by different analytes was detected with a CCD 

detector and auto integrated using ICP Expert II software. The ICP-OES instrument was 

calibrated before analysis. The accuracy of the instrument was checked using certified 

standards. Three replicates were run for each sample in order to check the reproducibility 

of the analysis. 

3.4. CHARACTERIZATION OF ALUMINIUM HYDROXIDE AND LIME 

The aluminium hydroxide and lime used in this research were obtained from KIMIX 

chemicals in South Africa. Aluminium hydroxide had a purity of 96 % and lime was 95 % 

pure. Lime and aluminium hydroxide were characterized using SEM (as outlined in 

section 3.2.1), XRD (as outlined in 3.2.2) and XRF (as outline in 3.2.3) to determine the 

morphology, mineralogy and its chemical composition. 

3.5. SAMPLING AND CHARACTERIZATION OF MINE WATER 

The mine water used in this study was collected from the Matla coal mine in Mpumalanga 

province and the Rand Uranium Gold mine in the West Rand Basin in Gauteng Province. The 

water was filtered through a 0.45 µm pore membrane filter paper using manual pumping 

device. The filtered samples were divided into two portions of 100 mL each for cation and 

anion analysis. The cation samples were preserved with 2-3 drops of concentrated HNO3 for 

approximately 100 mL of sample. Both cation and anion samples were preserved at 4 oC 

until analysis for anions using IC (as outlined in section 3.2.1) and cations use ICP-OES (as 

outlined in section 3.3.2). The mine water was also filtered through a 0.45 µm filter paper 

and the acidity or the alkalinity was determined using Metrohm Autotitrator. Mine water 
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samples that were supposed to be analysed for radioactivity were first filtered through 8 µm 

and 0.45 µm to remove coarse materials and suspended solids. The samples were then 

acidified to ensure radionuclides are not adsorbed on the container walls. 

3.5.1. DETERMINATION OF ACIDITY OR ALKANINITY 

The alkalinity of mine water used in the experiments was determined to gain an 

understanding of the acid neutralising potential. This parameter is very important for 

cation/anion balance in Geochemist’s workbench geochemical modelling. The alkalinity was 

determined by titrating mine water (20 mL) with 0.1 M HCl to an end point of pH 4 (Eaton et 

al., 1995). The alkalinity was calculated as follows: 

 

)(
][)(02.611000)( 3

1

sampleV
HClacidVHCOLmg    ; where V = mL and [ ] = mol/L. 

Acidity was determined by titrating AMD (20 mL) sample with 0.1 M NaOH to an end point 

of 8.3. The acidity was calculated as follows: 

)(
1000][)()( 3

1

sampleV
NaOHNaOHVCaCOLmg   ; where V = mL and [ ] = mol/L. 

3.5.2. RADIOACTIVITY ANALYSIS OF RAND URANIUM MINE WATER 

Rand Uranium mine water samples were filtered, acidified and then stored at 4 oC before 

analysis. Before the samples were analysed using alpha spectrometry, they were first pre-

treated and prepared specifically for analysis of a specific element. The following steps 

cover how the samples were prepared and analysed using alpha spectrometry. 

 

Sample preparation for uranium determination by alpha spectrometry 

The method was based on solid phase extraction of uranium from water samples, with 

detection of the uranium isotopes by alpha spectrometry.  An aliquot (200 mL) of the 

sample was measured into a beaker and uranium-232 internal tracer was added for 
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recovery determination.  The sample was evaporated to a volume of 10 mL, and acidified 

using 2 drops of 2 M HNO3.   The sample was loaded on a TruSpec (Eichrom resins) column 

to absorb uranium.  A mixture of HCl and HF acid was added to the column to elute 

uranium.  The separated uranium was loaded on a cation exchange column to further purify 

uranium.   Uranium was eluted with concentrated 2 M HCl and collected on a filter paper by 

lanthanum fluoride micro co-precipitation.   

Sample preparation for thorium determination by alpha spectrometry 

The method was based on solid phase extraction of thorium from water samples with 

detection of the different thorium isotopes by alpha spectrometry.   Thorium-229 was 

added as an internal tracer to a 200 mL aliquot of the sample.  Sample volume was reduced 

to a volume of 10 mL by evaporation and acidified using 2 M HNO3.  The sample was loaded 

on a TruSpec column (Eichrom resins) to absorb thorium and other nuclides.  Thorium is 

eluted with a mixture of HCl and HF.   The collected eluent was loaded on a cation column 

for further purification.  Thorium was finally eluted with 2 M H2SO4 solution and collected 

on a filter paper by   lanthanum fluoride micro co-precipitation.   

Sample preparation for radium determination by alpha spectrometry 

Barium-131 was added as an internal tracer to the sample. Radium was separated from the 

bulk of the sample material by adding Pb and Ba carriers to the sample followed by 

precipitating these elements and radium present as sulphates.  The precipitate is purified 

from other ions by washing, and then dissolved again by adding a complexing agent.  Barium 

(and radium) was again precipitated and filtered as sulphate while Pb was kept in solution 

by careful adjustment of the pH.   Barium-131 in the separated fraction is measured for on a 

radiation detector for yield determination. 

Sample preparation for lead and polonium determination by alpha spectrometry 

Polonium-209 was added as internal tracer for recovery determination.  The sample was 

acidified with 2 M HCl and heated to a temperature of 90 oC. A silver disk was added to the 

sample and the solution was stirred for several hours to induce spontaneous deposition of 

polonium-210.  A reducing agent was added at the start of the process to prevent iron from 
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plating on the silver disk. The disk was removed, washed and air-dried to prepare it for 

measurement on the alpha spectrometer. 

Alpha spectrometry analysis of the prepared samples 

Prepared samples were counted on Canberra Alpha Analyst or Alpha Apex systems. These 

systems consists of 12 vacuum chambers hosting each an alpha PIPS detector. Samples were 

counted for a period of 24 hours to reach the required detection limits. The acquired 

spectra were analysed for counts collected in the respective alpha peak positions shown in 

Table 3.5.1.  

Table 3.5.1: Peaks position used for identification of nuclides using alpha spectrometry. 

Nuclide Peaks position energy (MeV) 
238U 4.72 
235U 4.40 
234U 4.77 
232Th 4.01 
230Th 4.69 
227Th 5.76, 5.93 and 6.04 
228Th 5.42 
226Ra 4.78 
224Ra 5.68 
210Po 5.30 
 

The peaks positions were chosen based on the highest intensities of the alpha energy of the 

respective decay of the nuclide (Bonotto et al., 2009). These counts were entered into data 

reduction programs to calculate nuclide activities, associated uncertainties and minimum 

detectable activity concentrations. A control sample containing known amounts of the 

analyte nuclides were used to calibrate the machine for each batch of samples.  Measured 

activities must lie within prescribed limits for the results of the batch to be accepted.  The 

yield for a sample must also be within a range.  Background, energy, peak-width and 

efficiency checks were performed on a weekly basis to ensure correct operation of 

detectors. 
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3.6. GEOCHEMIST’S WORKBENCH MODELLING 

The Geochemist’s Workbench (GWB) is a software that is comprised of different programs 

to manipulate chemical reactions, calculate stability diagrams and the equilibrium states of 

natural waters, trace reaction processes, model reactive transport, plot the results of these 

calculations, and store the related data (Bethke and Yeakel, 2010). The software is 

constantly upgraded. In this study SpecE8 and Act2 programs of the GWB 8.0 essential 

software were used. 

SpecE8 is capable of calculating the species distributions in aqueous solutions, mineral 

saturation indices and gas fugacities. SpecE8 can also account for sorption of species onto 

mineral surfaces according to a variety of methods, including surface complexation and ion 

exchange. Act2 program calculates and plots activity-activity diagrams. These diagrams 

show the stability of minerals and predominance of aqueous species in chemical systems. 

Variables of the axes of the stability diagrams include; species activity, gas fugacity, activity 

or fugacity ratio, pH, or redox potential (Bethke and Yeakel, 2010). 

3.6.1. SPECIES DISTRIBUTION 

The Act2 program of the GWB software was used to calculate the species distribution and 

the saturation indices of the different minerals in Rand Uranium mine water and Matla mine 

water. This was done using the pH, electrical conductivity (EC), alkalinity and acidity of the 

mine waters and the concentration of individual ions. The pH and electrical conductivity (EC) 

of the mine water was measured in the field. Alkalinity was determined using a Metrohm 

Autotitrator.  The elemental composition of Rand Uranium and Matla mine water was 

obtained using ICP-OES and IC. 

3.6.2. PREDICTION OF THE MINERAL PHASES 

During treatment of mine water with alkaline chemical, potentially toxic constituents are 

mainly removed through precipitation. The Act2 program of the GWB software was used to 
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predict the stable mineral phases of potentially toxic elements/ions from Rand Uranium and 

Matla mine water. The prediction was done using the analytical and physical results 

measured using the IC, ICP-OES, pH/EC/TDS meter and the autotitrator. The independent 

variable was chosen as logaCa2+ and the dependent variable was the pH. These values were 

chosen based on the fact that treatment of mine water with coal is based on the 

neutralization of pH due to the dissolution of the lime fraction in coal FA. 

3.7. TREATMENT OF MINE WATER WITH A COMBINATION OF COAL FA 
AND FLOCCULANTS 

Before the flocculants were used for the treatment of mine water the aluminium 

chlorohydrate (ACH) and Al(OH)3 were characterized using IC and ICP-OES analytical 

techniques and the Geochemist’s workbench software. The composition of ACH was studied 

using ICP-OES and IC as explained in Section 3.3.1 and 3.3.2 to determine the concentration 

of Al and Cl ions that make up the ACH. The ACH was first diluted 2500 times using 

deionized water before being analysed for elemental composition. Using the results from IC 

and ICP-OES, the species that make up ACH were elucidated using the Geochemist’s 

workbench SPEC 8 to determine the species distribution in ACH as explained in section 3.6. 

The mineral composition of Al(OH)3 was elucidated using XRD as explained in Section 3.2.2, 

while the morphology was studied using SEM as explained in section 3.2.1 

3.7.1. TREATMENT OF MATLA MINE WATER WITH FLOCCULANTS 

The chemistry of the treatment of Matla mine water with Al(OH)3 or ACH was done to 

understand; 

1. The effect of pH on the removal of sulphate ions from Matla mine water and 

2. The effect of the Al:SO4
2- mol ratio on the removal of sulphate ions from Matla 

mine water. 
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3.7.1.1. Effect of pH on the removal of sulphate ions 

A. Matla mine water was treated with Al(OH)3 at different pH end points between 2 to 

8. The initial pH of Matla mine water was 8. The pH was adjusted to an acidic pH using 1 M 

HCl.  After the pH of Matla mine water had been taken to the required end point, 500 mL of 

the water was mixed with 2.3942 g of Al(OH)3. This amount of Al(OH)3 added represented a 

mol ratio of 4:1 of the Al ions to the sulphate ions in Matla mine water. The mixture was 

stirred using a magnetic stirrer at 250 rpm for 20 min. After 20 min the mixture was allowed 

to settle for 30 min and then filtered through a 0.45 µm filter paper and analysed using an IC 

as explained in section 3.3.1. The conditions 4:1 mol ratio and 20 min stirring time were 

selected as optimum in accordance to the study by Silva et al., (2010) on sulphate removal 

from mine water using AlCl3. 

 

B. Matla mine water was treated with ACH at different pH end points between 2 to 8. 

The pH of Matla mine water was 8. The pH of the mixture was maintained at the required 

pH using 0.1 M of NaOH or 0.1 M HCl. Matla mine water (50 mL) was mixed with 0.61 mL of 

ACH. This volume represented a ratio of 4:1 of the Al ions to the sulphate ions in Matla mine 

water. The mixture was stirred using a magnetic stirrer at 250 rpm for 20 min. After 20 min 

the mixture was allowed to settle for 30 min and then filtered through a 0.45 µm filter 

paper and analysed using an IC as explained in section 3.3.1. 

3.7.1.2. Effect of the Al:SO42- mol ratio on the removal of sulphate ions 

A. Matla mine water pH was first adjusted to the optimum pH obtained in 

experimental section 3.7.1.1a above using 1 M HCl. After the pH of Matla mine water was 

adjusted to the optimum pH it was mixed with different proportions of Al(OH)3 as shown in 

Table 3.7.1. The mixture was stirred using a magnetic stirrer for 20 min at 250 rpm 

maintaining the pH of the mixture between 4-6 using 0.1 M HCl. The mixture was then 

allowed to settle for 30 min and then filtered through a 0.45 µm filter paper and analysed 

using IC and ICP-OES as outlined in section 3.2.1 and 3.2.2. 

 

 

 

 

 

 



CHAPTER 3: METHODOLOGY 

78 
 

Table 3.7.1: The amount of Al(OH)3 added for different molar ratios. 

Mol ratio (Al3+:SO4
2-) Matla mine water (mL) Al(OH)

3
(g) 

1:1 50 0.0624 
2:1 50 0.1247 
3:1 50 0.1871 
4:1 50 0.2494 
5:1 50 0.3118 
6:1 50 0.3742 
7:1 50 0.4366 
 8:1 50 0.4990 
 

B. After the optimum pH of the removal of sulphate ions from Matla mine water was 

determined as explained in section 3.7.1b, Matla mine water was mixed with different 

proportions of ACH as shown in Table 3.7.2. 

 

Table 3.7.2: The amount of ACH added for different molar ratios. 

Mol ratio (Al3+:SO4
2-) Matla mine water (mL) ACH (mL) 

1:1 50 0.16 
2:1 50 0.31 
3:1 50 0.47 
4:1 50 0.61 
5:1 50 0.78 
6:1 50 0.91 
7:1 50 1.09 
8:1 50 1.25 
 

After addition of the required proportion of ACH the mixture was stirred using a magnetic 

stirrer for 20 min at 250 rpm maintaining the pH of the mixture at the optimum pH value 

obtained in section 3.7.1b using 0.1 M NaOH. The mixture was then allowed to settle for 30 

min and then filtered through a 0.45 µm filter paper and analysed using IC as explained in 

section 3.3.1 and 3.3.2. 
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3.7.2. TREATMENT OF THE RAND URANIUM MINE WATER WITH FLOCCULANTS 

Rand Uranium mine water was reacted with coal FA to different final pH end points using 

a solid to liquid ratio of 6:1. The water was filtered through a 0.45 µm filter paper and 

analysed using IC and ICP-OES. After the amount of sulphate ions was determined using IC 

in the recovered water from FA treatment was further treated using different amounts of 

aluminium chlorohydrate (ACH) or Al(OH)3 as explained in section 3.7.1.2. Different 

amounts of Al(OH)3 or ACH added during the polishing of the water from FA treatment are 

as shown in Table 3.7.3. 

 

Table 3.7.3: The proportions of Al(OH)3 or ACH added during further treatment of the 

product water from FA treatment of Rand Uranium mine water. 

mol ratio recovered water (mL) Al(OH)3 added (g) ACH added (mL) 
1:2 50  - 0.15 
1:1 50 0.1404 0.34 
2:1 50 0.2808 0.70 
3:1 50 0.4212 1.00 
4:1 50 0.5412 1.30 
5:1 50 0.6102   
6:1 50 0.7816   
7:1 50 0.9156   
8:1 50 1.0156   
9:1 50 1.157   
10:1 50 1.2597   

3.8. APPLICATION OF A JET LOOP REACTOR 

Matla mine water collected from Mpumalanga province in South Africa was treated in an 

80 L pilot plant as shown in Figure 3.8.1. The pilot plant was composed of an 80 L tank, a 

centrifugal pump, a motor and a jet loop reactor. The pilot plant was designed by Org 

Nieuwoudt of Biofuelson. 
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Figure 3.8.1: The setup of the 80 L pilot plant. 
 

The water was pumped into the reactor and distributed into two sets of jets as shown in 

Figure 3.8.2.  In each jet the water was forced through small adjustable orifices, which had 

diameters ranging from 6 to 12 mm. The jet sizes can be replaced by unscrewing off one set 

of adjustable orifice and replacing it with one of the required size. 
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Figure 3.8.2: Schematic representation of the movement of the water in the jet loop 

reactor. 

 

By forcing the water through small orifices the kinetic energy of the mixture of mine water 

and FA decreased. When the mixture comes out of the small orifice the pressure decreased 

and the kinetic energy increased. This caused hydrodynamic cavitation in the mixture of FA 

and mine water as the low pressure caused the bubble to form, grow and collapse as shown 

in Figure 3.8.3. 
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Figure 3.8.3: Schematic representation of hydrodynamic cavitation (Mason, 2007). 

The water from two orifices in opposite direction, with high kinetic energy collided with 

each other inside the jet loop reactor as shown in Figure 3.8.4. The collision of two water 

streams with high kinetic energy is called impingement. 

 

Figure 3.8.4: The schematic representation of impingement phenomenon inside a jet loop 

reactor (Gavi et al., 2007; Chung and Luo, 2002). 
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3.8.1. TREATMENT OF MATLA MINE WATER WITH FLY ASH 

A number of experiments were carried out using Matla mine water at 80 L capacity. The 

experiments can be broadly classified as; the optimization of the amount of Matla FA and 

lime required and the optimization of the jet loop reactor settings. 

3.8.1.1. Optimization of the amount fly ash and lime required 

The following experiments were conducted in order to find the optimum conditions (jet 

sizes, amount of FA and minimum amount of lime) required to increase the pH of the mine 

water to pH greater than 11 in order to precipitate sulphate in the form of ettringite. 

 

A. Matla mine water (80 L) and Matla coal FA (13 kg) were mixed together using a jet loop 

reactor with jet nozzle sizes set at 8 mm. The mine water and coal FA were mixed by a 

combination of impingement and cavitation in the reactor. Temperature, pH and EC 

were measured after every 15 min and samples were collected after every 30 min. The 

samples were filtered using a 0.45 µm and analysed using ICP-OES and IC. 

 

B. Matla mine water (80 L) was mixed with 16 kg of Matla coal FA using a jet loop reactor 

with jet nozzle sizes set at 8 mm. The mixture was mixed by a combination of 

impingement and cavitation in the jet loop reactor. Temperature, pH and EC were 

measured after every 15 min. Aliquot samples were collected after 30 min, filtered 

using a 0.45 µm and analysed using ICP-OES and IC.  

 

C. The jet nozzle sizes were changed from 8 mm to 6 mm by unscrewing one jet and 

replacing it with the right orifice diameter.  Then Matla mine water (80 L) and 16 kg 

Matla coal FA were mixed by a combination of impingement and cavitation in a jet loop 

reactor; measuring pH and EC after every 15 min. Aliquot samples  were collected for 

analysis using ICP-OES and IC after every 30 min.  
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D.  Matla mine water (500 mL) was mixed with Matla coal FA (83 g) using an overhead 

stirrer. This volume of mine water and mass of Matla coal FA was chosen to represent a 

liquid to solid ratio of 6:1 which was the same as 80 L of mine water and 13 kg of Matla 

coal FA used in the pilot plant. Various amounts of lime (0.125 g, 0.250 g, 0.375 g or 

0.620 g) were together with 13 kg of Matla coal FA. For each mixture, 0.52 g of Al(OH)3 

was added after 30 min. The reaction was carried on after adding Al(OH)3 measuring pH 

and EC after 15 min and collecting samples after every 30 min for 150 min. The samples 

were filtered through 0.45 µm micro pores and analysed using ICP-OES and IC. 

3.8.1.2. Optimizing the settings of jet loop reactor 

Experiments were further carried out to treat Matla mine water using a combination of 

Matla coal FA and 0.25 % of lime (w/v) at liquid to solid ratio of 6:1 in a jet loop reactor. The 

first set of three experiments was done to investigate the effect of jet size on sulphate 

removal from Matla mine water. The jet nozzle sizes were varied from 8, 10 and 12 mm. 

Matla mine water (80 L) was reacted with Matla coal FA (13 kg) and 0.25 % lime (w/v %). 

After 15 min 83.2 g of Al(OH)3 was added. The reaction was allowed to proceed for 150 min 

measuring pH and EC after every 15 min. Samples were collected after every 30 min, filtered 

through a 0.45 µm and analysed using ICP-OES and IC. The solids residues after 150 min 

were dried and analysed using XRD and XRF as outlined in section 3.2.2 and 3.2.3 

respectively. The results were compared to the XRD and XRF analysis obtained on the Matla 

coal FA, lime and Al(OH)3. 

 

The last set of experiments was conducted in order to compare the effect of cavitation only 

to that of cavitation and impingement. The jet nozzle sizes were maintained at 12 mm and 

mine water (80 L) was mixed with coal FA (13 kg) and one pair of jets on one side was 

closed. This meant that there is one jet flowing such that it would not collide with another 

jet, thereby avoiding impingement mixing. So the mixing of mine water and FA was due to 

cavitation only as shown in Figure 3.8.5. 
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Figure 3.8.5: Schematic diagram showing one orifice closed so that impingement cannot 

take place. 

 

After 15 min 83.2 g of Al(OH)3 was added. The temperature, pH and EC were measured after 

every 15 min. Aliquot samples were collected after every 30 min, filtered through a 0.45 µm 

filter paper and analysed using ICP-OES and IC. 

3.8.1.3. Effect of temperature on the removal of sulphate ions 

Matla mine water (500 mL) was mixed with Matla coal FA (83 g) and lime (1.25 g) using a 

magnetic stirrer at 20 oC. This volume of mine water and mass of FA was chosen to 

represent a liquid to solid ratio of 6:1 which was the same as 80 L of mine water and 13 kg 

of FA used in the pilot plant. The amount of lime added represented 0.25 % lime (w/v) 

which was the same as used in one of the pilot plant experiments. After 30 min of mixing, 

0.52 g of Al(OH)3 was added. The reaction was carried on after adding Al(OH)3 measuring pH 

and EC after 15 min. The reaction was stopped after 150 min maintaining the temperature 

at 20 oC by conducting the reaction in a water bath in order to regulate the temperature. 

The temperature was maintained at 20 oC by adding ice cold water when the temperature 

went up. The samples were filtered through 0.45 µm and analysed using ICP-OES and IC. The 

above reaction was repeated at 30, 40, 50, 60, 70 and 80 oC using a temperature regulated 

heating mantle attached to a magnetic stirring mechanism. 
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3.8.2. TREATMENT OF RAND URANIUM MINE WATER USING JET LOOP REACTOR 

Rand Uranium mine water was treated in an 80 L pilot plant (Figure 3.8.1) using the 

optimum reactor settings obtained during treatment of Matla mine water as explained in 

section 3.8.1.2. Different combinations of Matla coal FA, lime and/or Al(OH)3 were used to 

understand the optimum conditions required to remove the sulphate ions and potentially 

toxic elements from Rand Uranium mine water to the required limit for potable water. 

3.8.2.1. Effect of Al(OH)3 

Rand Uranium mine water (80 L) was mixed with 86.58 g of Al(OH)3 in a jet loop reactor with 

jet sizes set at 12 mm. The pH, EC and temperature were measured after 15 min and aliquot 

samples were collected after every 30 min. The samples were filtered through a 0.45 µm 

filter paper and analysed using IC and ICP-OES. 

3.8.2.2. Effect of different amounts of fly ash 

Rand Uranium mine water (80 L) was mixed with either 8 or 13 kg of Matla coal FA in a jet 

loop reactor with jet sizes set at 12 mm. The pH, EC and temperature were measured after 

15 min and aliquot samples were collected after every 30 min. The samples were filtered 

through a 0.45 µm filter paper and analysed using IC and ICP-OES. 

3.8.2.3. Effect of the amount of fly ash and Al(OH)3 

Rand Uranium mine water was mixed with either 8 kg or 13 kg Matla coal FA in a jet loop 

reactor with jet sizes set at 12mm. After 30 min, 86.58 g of Al(OH)3 was added to the 

mixture. The pH, EC and temperature were measured after 15 min and aliquot samples 

were collected after every 30 min. The samples were filtered through a 0.45 µm filter paper 

and analysed using IC and ICP OES. 
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3.8.2.4. Effect of different amounts of lime and Al(OH)3 

Rand Uranium mine water (80 L) was mixed with different amounts of lime (100, 150 and 

100 g) in a jet loop reactor with jet sizes set at 12 mm. To each mixture 86.58 g of Al(OH)3 

was added after 30 min. The pH, EC and temperature were measured after every 15 min 

and aliquot samples were collected after every 30 min. The samples were filtered through a 

0.45 µm filter paper and analysed using IC and ICP-OES. 

3.8.2.5. Effect of different amounts of fly ash, lime and Al(OH)3 

Rand Uranium mine water (80 L) was mixed with 200 g of lime and different amounts of 

Matla coal FA (8 and 13 kg) in a jet loop reactor with jet sizes set at 12 mm. To each mixture 

86.58 g of Al(OH)3 was added after 30 min. The pH, EC and temperature were measured 

after 15 min and aliquot samples were collected after every 30 min. The samples were 

filtered through a 0.45 µm filter paper and analysed using IC and ICP-OES. 

3.8.2.6. Effect of jet reactor mixing followed by overhead stirring 

Rand Uranium mine water (80 L) was mixed with 100 g of lime and 13 kg of Matla coal FA in 

a jet loop reactor with jet sizes set at 12 mm. After 30 min, 86.58 g Al(OH)3 was added to the 

mixture of Rand Uranium mine water and Matla coal FA. About 1 L of the mixture was 

collected and mixed with using an overhead stirrer. The pH, EC and temperature were 

measured after 15 min and aliquot samples were collected after every 30 min. The samples 

were filtered through a 0.45 µm filter paper and analysed using IC and ICP-OES. 
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CHAPTER 4: CHARACTERIZATION 

In this chapter the physical and chemical characteristics of the raw materials; fly ash (FA), 

Al(OH)3 and aluminium chlorohydrate (ACH) and mine water are presented and explained 

based on the data obtained from the analytical protocols explained in Chapter 3. 

4.1. CHARACTERIZATION OF MATLA COAL FLY ASH 

The FA used in this study was collected from Matla coal fired power station in Mpumalanga 

province of South Africa. Morphological characteristics of FA were visualized on a scanning 

electron microscope (SEM) as outlined in section 3.2.1. The results in Figure 4.1.1a show 

that FA is made up of mainly smooth spherical particles of less than 40 µm. Energy 

dispersive spectroscopy (EDS) showed that FA particles were composed of mainly Si and Al. 

Other elements such as O, Ca, K, Fe and Cu were present in small proportions as shown in 

Figure 4.1.1b. 

  

 
Figure 4.1.1: The morphology of Matla FA using scanning electron microscopy at 

magnification x1000 (a) and the EDS spot analysis on the areas marked in green (b). 

 

a b 
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Matla FA was further characterized using XRD for the mineralogical composition as 

explained in section 3.2.2 and the results are as shown in Figure 4.1.2 below. 

 

Figure 4.1.2: The XRD spectrum showing the mineralogical composition of Matla coal FA 

(M-mullite; Q-quartz; G-gypsum; L-lime; H-hematite). 

 

From the XRD spectrum above the crystalline phases that make up Matla coal FA are mullite 

(Al2Si2O13), quartz (SiO2), hematite (Fe2O3), gypsum (CaSO4.2H2O) and lime (CaO). The XRD 

results correlated well with the EDS results. 

Matla coal FA was also analysed using quantitative XRD to determine the percentage 

composition of the minerals determined by qualitative XRD in Figure 4.1.2. The percentage 

quantitative XRD results obtained are shown in Figure 4.1.3. 
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Figure 4.1.3: Quantitative XRD of fresh Matla coal FA. 
 
The results of quantitative XRD for Matla coal FA show that, it was mainly composed of the 

amorphous phase which made up about 60 % of the Matla coal FA. Mullite, quartz, 

hematite, lime and gypsum constituted about 25 %, 13 %, 2 %, 1 % and 0.2 % respectively of 

Matla coal FA. 

 The quantitative elemental composition was analysed using XRF as outlined in section 3.2.3 

and the results are as shown in the Table 4.1.1 below. The composition of FA shows that it 

was Class F since the sum of SiO2, Fe2O3 and Al2O3 was greater than 70 % (ASTM, 1994; 

McCarthy, 1988). Class F is produced from the burning of bituminous coal and anthracites. 

Also Class F FA has pozzolanic properties, that is it hardens when reacted with Ca(OH)2 and 

water (Vassilev and Vassileva, 2007). Matla FA was found to contain CaO (6.71 %). The lime 

imparts alkalinity to FA. It is this alkaline property that was exploited during the treatment 

of mine water with FA in this study. Loss on ignition is the carbon content that passed 

through the combustion process of the feed coal. 

 

mullite, 24.84

hematite, 1.57
quartz, 12.88

amorphous, 
59.76

gypsum, 0.21
lime, 0.68
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Table 4.1.1: The elemental composition of Matla coal fly ash obtained using XRF. 

Majors  Minors  
oxide % RSD % w/w element % RSD (mg/kg) 
SiO2 0.09 48.27 ± 0.044 Sr  -65 3495.55 ± 5.63 
Al2O3 -0.52 30.89 ± 0.22 Ba  -11.67 2079.31 ± 12.80 
CaO -0.32 6.71 ± 0.08 Zr  9.00 787.73 ± 3.35 
Fe2O3 -1.61 2.81 ± 0.03 Ce  1.79 226.02 ± 30.00 
MgO 25 2.12 ± 0.04 Cu  -112.5 117.26 ± 3.38 
TiO2 -2.78 1.26 ± 0.02 La 2.75 111.45  ± 6.51 
P2O5 0.53 0.89 ± 0.01 Y  2.80 103.71 ± 1.46 
K2O 0.15 0.84 ± 0.01 Nd 39.62 100.32 ± 2.45 
Na2O -4.32 0.55 ± 0.01 Pb  2.50 100.25 ± 4.02 
SO3 NC 0.19 ± 0.002 Cr  NC 89.36 ± 2.29 
MnO 12.50 0.02 ± 0.0004 Ni  18.5 88.97 ± 6.41 
Loss on ignition NC 5.24 ± 0 Rb  0.63 72.48 ± 0.89 

Sum 99.79 ± 0.07 V  -75 64.91 ± 6.24 
   Zn  -14 64.61 ± 4.41 
   U  43.33 63.28 ± 2.43 
   Ga 1.85 61.87 ± 1.89 
   Nb  31.94 51.50 ± 1.80 
   Th  3.92 46.60 ± 3.33 
   As 26.67 20.07 ± 2.68 
   Co  -100 16.08 ± 6.89 
   Mo  NC 2.28 ± 0.02 
NC and % RSD stand for not calculated and % relative standard deviation respectively. 
 
Matla FA was found to contain potentially toxic elements such as Cr, Pb, Ba, Cu, Zn, V, etc 

and radioactive elements such as U and Th that could leach into surface or ground water if 

the FA is subjected to conditions that may mobilize these elements. Mobilization of these 

potentially toxic elements would enhance the bioavailability of these elements, thereby 

posing a health risk to the surrounding ecosystem. The trace elements detected in Matla 

coal FA were limited to the standards that were available. Elements that are not shown in 

Table 4.1.1 do not necessarily mean that they are not available in coal FA. 

 

The minor and trace elements in Matla FA were also analysed using Laser Ablation 

Inductively coupled plasma-mass spectrometry (LA ICP-MS) as outlined in section 3.2.4. The 

results obtained are as depicted in Table 4.1.2 below. The results obtained using LA ICP-MS 

correlates well with the values obtained using XRF (for the minor elements analysed), 
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although the values are not the same. The highest minor elements in Matla FA were found 

to be Ba and Sr which were in g/kg values as shown in Table 4.1.1 and 4.1.2. Concentration 

of other elements determined by LA ICP-MS did not agree with XRF results, but generally 

the abundances of these elements seemed to correlate well. 

 

Table 4.1.2: Concentration of trace elements in Matla FA obtained using LA ICP-MS. 

 element % RSD mg/kg element % RSD mg/kg 
Ba 8.25 2372.11 ± 32.01 Pr 6.32 18.35 ± 0.60 
Sr 5.29 2137.02 ± 81.70 Co 2.35 17.30 ± 0.49 
Zr 1.30 313.94 ± 19.57 Cs 1.55 13.64 ± 0.11 
Ce 4.76 189.78 ± 4.13 U 7.64 13.38 ± 0.38 
Cr 4.48 183.01 ± 2.41 Sm 8.95 11.95 ± 0.56 
V 1.41 154.31 ± 3.49 Mo 8.26 10.45 ± 0.33 
La 9.46 81.66 ± 4.31 Gd 6.36 10.40 ± 0.82 
Pb 5.68 69.00 ± 1.78 Dy 5.42 9.50 ± 0.56 
Nd 8.21 63.50 ± 1.78 Hf 7.03 8.63 ± 0.57 
Cu 0.25 61.84 ± 0.96 Er 3.12 5.38 ± 0.28 
Rb 3.87 55.46 ± 2.20 Yb 8.83 5.27 ± 0.47 
Y 3.72 52.30 ± 3.47 Ta 4.34 2.69 ± 0.11 
Ni 3.86 49.54 ± 1.80 Eu 9.48 2.35 ± 0.13 
Zn 8.57 45.25 ± 2.67 Ho 4.81 1.97 ± 0.19 
Nb 4.69 42.97 ± 1.35 Tb 7.23 1.60 ± 0.12 
Th 10.56 35.44 ± 1.53 Tm 1.51 0.77 ± 0.06 
Sc 1.71 24.94 ± 1.46 Lu 2.22 0.72 ± 0.04 
% RSD stands for percentage relative standard deviation. 

 

Minor and trace element analysis of Matla FA has shown that it contained about 34 

elements. These elements included 16 ( Ce, La, Nd, Y, Sc, Pr, Sm, Gd, Dy, Er, Eu, Ho, Tb, Tm 

and Lu) of the rare earth elements (REE) excluding promethium (Pm). The concentration of 

REE was found to be much higher than the normal concentration in the soil 

(Long et al., 2010). Rare earth elements have found wide applications in catalysis, magnetic 

resonance imaging and other applications in industry. It is worthwhile to study cheap 

technologies to recover these elements from FA. This would minimize the release of these 

elements into the environment in addition to finding a readily available source of these 

valuable minerals.  
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Radioactivity of Matla FA was undertaken using gamma spectrometric analysis as explained 

in Chapter 3, section 3.2.5 and the results are as shown in Table 4.1.3.  There were no 

anthropogenic (man-made) radionuclides found in Matla coal FA. Only naturally occurring 

radionuclides materials (NORM) were detected, which were U, Th, Ra, Pb and K. The 

activities (Bq.kg-1) were converted to mg/L using the relationship (Debertin, 1996): 

 

1Bq =
푚
퐴푟

×푁 ×
ln 2
푡
	 

	푤ℎ푒푟푒	푚 = 푚푎푠푠	푖푛	푔,퐴푟 = 푎푡표푚푖푐	푚푎푠푠	푖푛	푔.푚표푙 , 

	푁 = 퐴푣표푔푎푑푟표 푠	푛푢푚푏푒푟	푎푛푑	푡 = ℎ푎푙푓	푙푖푓푒	푖푛	푠푒푐 

 

Table 4.1.3: Gross alpha and beta radioactivity and the activity of the different radioisotope 

in Matla coal FA. 

Nuclide Activity (Bq.kg-1) Concentration (mg/kg) 
238U 186 ± 2 14.95 ± 0.0002 
234U 188 ± 2 8.14 x 10-4 ± 8.68 x 10-9 

235U 8.58 ± 0.009 0.11 ± 1.12 x 10-7 

232Th 156 ± 3 1.13 x 10-6 ± 1.07 x 10-10 

228Th 184 ± 10 38.42 ± 7.4 x 10-4 

228Ra 182 ± 13 1.82 x 10-8 ± 2.46 x 10-12 

226Ra 161 ± 9 4.4 x 10-6 ± 1.3 x 10-10 

210Pb 320 ± 32 1.07 x 10-6 ± 1.07 x 10-10 

40K 330 ± 39 1.24 ± 1.47 x 10-4 

Gross alpha 3440 ± 210  
Gross beta 1200 ± 20  
 

The results in Table 4.1.3 showed that Matla coal FA was much more radioactive than 

average radioactivity in the soil. The radioactivity was found to be attributed to mainly 238U, 
234U, 235U, 232Th, 228Th, 228Ra, 226Ra, 210Pb, and 40K. The Th concentration in Matla coal FA was 

almost ten times greater than the concentration of 232Th in soil samples collected from a 

gold mine dump in Witwatersrand Goldfields, South Africa. The 238U and 40K concentration 

was comparable to the same soil sample collected from a gold mine dump 

(Newman et al., 2008). The 232Th activity of Matla coal FA was slightly greater than the 

average activity concentration of 232Th in Greece. The activity concentration of 238U and 40K 
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in Matla FA was within the range of the activity concentration found in Greece FA 

(Papastefanou, 2010; Baykal and Saygili, 2011; Turhan et al., 2010; USGS, 1997). Exposing of 

the FA to aqueous conditions such as in the remediation of the AMD might cause the 

mobilization of these radioisotopes thereby contaminating the treated water. So it is 

necessary to find out if these radioisotopes are mobilized when Matla coal FA is mixed with 

AMD. 

 

The total concentrations of Th obtained using XRF, LA ICP-MS and NAA and gamma analysis 

were close to each other. Thorium concentration obtained using LA ICP-MS (35.44 mg/kg) 

was closer to that obtained using gamma spectrometry analysis (38.42 mg/kg) than that 

obtained using XRF (46.60 mg/kg). Scheid et al (2009) have found that gamma spectrometry 

analysis and LA ICP-MS gave Th results that were in agreement to each other when the brick 

clay was analysed using the two techniques. On the other hand it was not possible to detect 

Th in brick clay of concentration less than 14 mg/kg of Th.  

 

Uranium concentration obtained using XRF (63 mg/kg) was well above the values obtained 

using LA ICP-MS (13.38 mg/kg) and that of gamma spectrometry (14.95 mg/L). This shows 

that XRF analysis of the radioactive elements such as U and Th was not that accurate. Thus 

XRF produced values that were higher than the more sensitive techniques such as gamma 

spectrometry and LA ICP-MS. The accuracy of XRF analysis of U and other trace elements 

was not reliable because of the higher percentage relative standard deviation of most trace 

elements as shown in Table 4.1.1. Percentage relative standard deviation was calculated as 

follows: 

 

퐸푥푝푒푐푡푒푑	푣푎푙푢푒 − 퐴푛푎푙푦푡푖푐푎푙	푉푎푙푢푒
퐸푥푝푒푐푡푒푑	푣푎푙푢푒

× 100	 

푤ℎ푒푟푒	푒푥푝푒푐푡푒푑	푣푎푙푢푒	푖푠	푡ℎ푒	푣푎푙푢푒	표푛	푡ℎ푒	푐푒푟푡푖푓푖푒푑	푠푡푎푛푑푎푟푑	푎푛푑	 

푎푛푎푙푦푡푖푐푎푙	푣푎푙푢푒	푖푠	푡ℎ푒	푣푎푙푢푒	표푏푡푎푖푛푒푑	푤ℎ푒푛	푡ℎ푒	푐푒푟푡푖푓푖푒푑	푤푎푠	푎푛푎푙푦푠푒푑 

 

The total concentration of Pb in Matla coal FA obtained using XRF and LA ICP-MS was 

100 mg/kg and 69 mg/kg respectively. Gamma spectrometry analysis of Pb showed that 
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1.07 x 10-6 mg/kg was the radioactive 210Pb. Also the gamma spectrometry analysis showed 

that 1.24 mg/kg of K was 40K out of 6973 mg/L detected by XRF in Matla FA. 

4.2. CHARACTERIZATION OF ALUMINIUM CHLOROHYDRATE 

The composition of aluminium chlorohydrate gel (ACH) was determined using ICP-OES and 

IC as outlined in section 3.4. The results are as shown in Table 4.2.1 below. From Table 4.2.1, 

ACH gel was acidic and comprised of Al and Cl ions in its structure. 

Table 4.2.1: The composition of aluminium chlorohydrate gel. 

Element Concentration (mg/L) 
pH 3.38 
Al 135769 
Cl 170578 
 
The speciation of ACH gel was elucidated using Geochemist’s workbench (GWB) software, to 

determine how the Al and Cl are associated in the ACH gel. It was shown that Al existed as 

Al3+, Al13O4(OH)24
7+, Al3(OH)4

5+, Al2(OH)2
4+, AlOH2+, Al(OH)2

+, Al(OH)3 and Al(OH)4
- as shown in 

Figure 4.2.1 below.  

 

Figure 4.2.1: The Al species in aluminium chlorohydrate gel. 
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Free Al3+ ions make up about 61 % of the total Al concentration in ACH. Oligomeric Al 

species such as Al13O4(OH)24
7+, Al3(OH)4

5+and Al2(OH)2
4+ make up about 30, 6 and 2 % of the 

total Al concentration in ACH. Mononuclear species such as AlOH2+, Al(OH)2
+, Al(OH)3 and 

Al(OH)4
- were in very low abundances in ACH. The results obtained using GWB software 

agreed with those obtained by other researchers who used sophisticated analytical 

protocols such Al-Ferron kinetics method and 27Al-nuclear magnetic resonance 

spectrometry (27Al-NMR). They found that most Al based flocculants are made of mainly 

hydrated Al3+ and Al13O4(OH)24
7+  species (Zhou et al., 2006; Chen et al., 2009). 

The Cl species in ACH gel was determined using the Geochemist’s workbench and are as 

shown in Figure 4.2.2 below. It was found that the Cl mainly existed as free Cl- ions, with 

very low amounts of HCl species in ACH gel. 

 

Figure 4.2.2: The Cl species in aluminium chlorohydrate gel. 

4.3. CHARACTERIZATION OF ALUMINIUM HYDROXIDE 

Aluminium hydroxide was analysed using SEM to establish the morphological make up. It 

was established that Al(OH)3 was made up of spherical particles with rough surfaces. The 

energy dispersive X-ray spectroscopy (EDS) spot analysis on selected areas in the microgram 
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revealed that Al(OH)3 was made up of mainly Al and O. The C element that was present in 

the spectrum was due to the C-coating of the sample before analysis. 

 

 

Figure 4.3.1: The SEM microgram (a) and the EDS spot analysis (b) of Al(OH)3 (green squares 

indicate the spots were EDS analysis was carried out on the microgram). 

The mineral phases of Al(OH3 were determined using XRD and the spectrum is as shown in 

Figure 4.3.2 below.  

 

Figure 4.3.2: XRD spectrum of Al(OH)3 (Bo stands for boehmite and Ba stand for bayerite). 

Al(OH)3 was made of bayerite (Al2O3.3H2O) and boehmite (AlOOH) mineral phases. 

a b 
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These results correlated well with the EDS results obtained, which showed that Al(OH)3 was 

made of almost exclusively Al and O (Figure 4.3.1b). 

The aluminium hydroxide was analysed using XRF to determine the elemental composition 

and the results obtained are shown in Table 4.3.1. 

Table 4.3.1: Elemental composition of aluminium hydroxide. 

Oxide % composition ± standard deviation 
Al2O3 65.13 ± 0.86 
Fe2O3 11.67 ± 0.54 
SO3 4.24 ± 0.45 
SiO2 1.75 ± 0.24 
CaO 0.48 ± 0.05 
Na2O 0.38 ± 0.004 
K2O 0.05 ± 0.01 
Loss on ignition 16.25 ± 0.13 
Sum 99.93 ± 0.29 
 

From the XRF results obtained aluminium hydroxide was made up of mainly Al with 

contaminants of Fe, S, Si, Ca and Na. The loss of ignition of about 16.25 % was determined. 

This can be attributed to the moisture that was in the aluminium hydroxide. 

4.4. CHARACTERIZATION OF LIME 

Lime was analysed using SEM to determine its structure as shown in Figure 4.4.1a. 

Figure 4.4.1b show the EDS spot analysis results of lime. It was observed that lime was made 

of agglomerated irregular particles which were made up of mainly Ca and O. 
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Figure 4.4.1: The SEM (a) and the EDS (b) analysis of lime (green squares indicate the spots 
were EDS analysis was carried out on the microgram). 
 

Characterization of lime obtained from KIMIX chemicals was conducted using XRD and XRF. 

According to the XRF results the lime was found to be composed of mainly CaO which made 

up about 72 % of the lime as shown in Table 4.4.1. The other major composition of the lime 

was loss on ignition (LOI), which made up of about 27 %. The LOI in this case can be 

attributed to moisture content. This correlates well with the EDS results. 

Table 4.4.1: Elemental composition of lime. 
oxide % (w/w) composition ±  standard deviation 
CaO 72.19 ± 1.27 
MgO 0.72 ± 0.24 
Na2O 0.23 ± 0.05 
SiO2 0.12 ± 0.02 
Al2O3 0.09 ± 0.04 
Fe2O3 0.06 ± 0.01 
K2O 0.02 ± 0.003 
MnO 0.02 ± 0.001 
P2O5 0.01 ± 0.002 
TiO2 0.01 ± 0.001 
Loss on ignition 26.65 ± 1.34 
total 100.12 ± 0.98 
 

a b 
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Mineralogy analysis of lime using XRD showed that it was indeed made of mainly lime (CaO) 

and calcite (CaCO3) minerals as shown in Figure 4.4.2. Calcite could have resulted from the 

interaction of CaO with CO2 from the atmosphere. 

 

Figure 4.4.2: XRD spectrum of lime (L-lime and C-calcite). 

4.5. CHARACTERIZATION OF MATLA MINE WATER 

Matla mine water was collected from a coal mine in Mpumalanga province. The 

composition and alkalinity of mine water was determined using the inductively coupled 

plasma-optical emission spectroscopy (ICP-OES), ion chromatography (IC) and Metrohm 

Autotitrator as explained in section 3.5. The results obtained are as shown in Table 4.5.1. 

From Table 4.5.1 the pH of Matla mine water was 8. This means that Matla mine water was 

neutral mine drainage (NMD) because the pH was between 6 and 8 (Morin and Hutt, 1997; 

Younger et al., 2002).  
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Table 4.5.1: The physicochemical parameters of Matla mine water. 
Parameter units value TWQR for potable water 
pH  - 8.00 ± 1.07 6-9 
Electrical conductivity µS/cm 3371 ± 24 0-700 
Alkalinity  mg/L of CaCO3 561.6 0± 7.16 NA 
TDS mg/L 1955 ± 14.28 0-600 (450) 
Hardness  mg/L of CaCO3 333.33 ± 9.76 0-200 (100) 
Sulphate mg/L 1475 ± 2 200-500 
Na mg/L 956.05 ± 19.26 0-200 (100) 
Ca mg/L 70.35 ± 3.05 (0-32) 
Mg mg/L 39.54 ± 1.12 (0-30) 
Cl mg/L 24.00 ± 1.84 0-250 (100) 
B mg/L 14.93 ± 1.07 0-2.4 
K mg/L 10.08 ± 0.92 (0-50) 
Hg mg/L 2.43 ± 0.13 0-0.006 (0.001) 
Sr mg/L 2.05 ± 0.06 NA 
Se mg/L 1.12 ± 0.09 0-0.04 (0.02) 
Zn mg/L 0.41 ± 0.012 0-0.5 (3) 
Ba mg/L 0.2 ± 0.0009 0-0.7 
Cu mg/L 0.19 ± 0.0073 0-2 (1) 
Fe mg/L 0.06 ± 0.0017 0-0.3 (0.1) 
Al mg/L 0.056 ± 0.0013 0-0.2 (0.15) 
Ni mg/L 0.023 ± 0.0012 0-0.07 
Be mg/L 0.017 ± 0.0035 0-0.012 
Mn mg/L 0.0094 ± 1.12 x 10-4 0-0.1 (0.05) 
V mg/L 0.0081 ± 1.98 x 10-4 0-0.01 
Cd mg/L 0.005 ± 1.79 x 10-5 0-0.003 (0-0.005) 
As mg/L 0.0027 ± 2.01 x 10-5 0-0.01 
Cr mg/L nd 0-0.05 
Pb mg/L nd 0-0.01 
Mo mg/L nd NA 
Co mg/L nd NA 
Th mg/L nd NA 
U mg/L nd 0-0.03 (0.07) 
    
    
    
Note: values in brackets obtained from Department of Water Affairs of South Africa if the values are 
different from those indicated by World Health Organization (WHO, 2011; DWAF, 1996). NA and nd 
stand for “not applicable” and “not detected” respectively. TWQR stands for target water quality 
target. 

Matla mine water was formed from the oxidation of pyrite followed by in situ neutralization 

by acid neutralizing minerals such as Na2CO3 as shown in Equation 4.1. This resulted in water 
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with pH of 8, which was near neutral and contained elevated concentration of Na and 

sulphate ions.  

  2
42322322 8816)(415684 SOCONaOHFeOOHCONaFeS ………………..…………4.1 

The water contained low concentration of Fe, Al and Mn. This was because at pH greater 

than 6, Fe and Al precipitate out as hydroxides, while Mn is known to precipitate out at pH 

greater than 9 (Gitari et al., 2008, Madzivire, 2010). Elevated concentration of sulphate ions 

causes water to have a taste. Taste varies with the cation associated with the sulphate ion. 

For water containing sulphate ions associated with Na ions such as Matla mine water the 

taste threshold is 250 mg/L. If the sulphate ions are associated with Ca the taste threshold is 

about 1000 mg/L (WHO, 2011). On the hand water containing sulphate concentration of 

greater than 1000 mg/L can cause laxative effects to individual who have not adapted to the 

water (WHO, 2011). This means that Matla mine water can have noticeable taste and can 

also cause laxative effects to individuals who are not used to the water.  

Other than Na and sulphate ions, Matla mine water contained elevated concentration of 

potentially toxic elements such as B, Hg and Se. These elements were above the TWQR for 

potable water set by World Health Organization (WHO, 2011) and Department of Water 

Affairs (DWA, 1996). The concentration of Mg and Ca ions was also above the TWQR for 

potable water. These elements contributed to the high total hardness of Matla water since 

hardness is proportional to the concentration of Ca and Mg as shown by the following 

equation (DWA, 1996). 

푡표푡푎푙	ℎ푎푟푑푛푒푠푠 = 2.497[퐶푎] + 4.118[푀푔],푤ℎ푒푟푒	[푋]푖푠	푡ℎ푒	푐표푛푐푒푛푡푟푎푡푖표푛	푖푛	푚푔/퐿	 

4.6. CHARACTERIZATION OF RAND URANIUM MINE WATER 

Rand Uranium mine water was collected from the Western Rand basin in Witwatersrand 

Goldfields, South Africa. The mine is a semi abandoned mine since the mine tailings are 

being reworked and no underground mining is taking place anymore. The pH, EC and total 

dissolved solids (TDS) were measured onsite. The chemical composition of the samples were 
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analysed using IC and ICP-OES as outlined in Chapter 3, section 3.5. The results obtained are 

shown in Table 4.6.1.  

Table 4.6.1: The physicochemical parameters of Rand Uranium mine water. 

Parameter  mine water 1 mine water 2 Potable water limit 
pH 3.48 ± 0.58 2.65 ± 0.81 6-9 
EC 3292 ± 36 2000 ± 27 0-700 
acidity 752 ± 3 266 ± 7 NA 
TDS 1685 ± 52 1076 ± 34 0-600 (0-450) 
hardness 1549 ± 33 1529 ± 28 0-200 (0-100) 
Sulphate 4126 ± 44 2562 ± 5 0-500 
Fe 895.62 ± 0.45 201.10 ± 0.55 0-0.3 (0-0.1) 
Ca 376.33 ± 0.78 360.10 ± 4.25 0-32 
Mn 282.21 ± 38 60.16 ± 0.17 0-0.1 (0-0.05) 
Mg 155.46 ± 0.34 153.00 ± 0.70 0-30 
Na 81.08 ± 0.55 89.44 ± 0.085 0-200 (0-100) 
Cl 10.24 ± 1.04 26.89 ±0.67 250 (0-100) 
B 5.43 ± 0.22 0.231 ± 0.004 0-2.4 
Al 4.06 ± 0.89 26.63 ± 0.29 0-0.2 (0-0.15) 
Cr 3.15 ± 4.16 x 10-3 0.023 ± 2.9 x 10-4 0-0.05 
Sr 0.56 ± 0.15 0.45 ± 3.39 x 10-3 NA 
Pb 0.51 ± 0.013 7.5 x 10-3 ± 1.7 x 10-5 0-0.01 
K 0.46 ± 0.02 6.47 ± 0.013 0-50 
Cu 0.21 ± 0.052 0.28 ± 3.26 x 10-3 0-2 (0-0-1) 
U 0.29 ± 0.083 0.27 ± 1.01 x 10-3 0.07 (0-0.03) 
Zn 0.25 ± 0.19 1.93 ± 0.013 0-3 (0-0.5) 
Th 0.013 ± 0.18 0.018 ± 3.06 x 10-5 NA 
P 0.11 ± 1.72 x 10-3 0.024 ± 1.14 x 10-5 NA 
Se 0.058 ± 0.42 0.061 ± 2.30 x 10-3 0-0.02 (0-0.04) 
Ba 0.06 ± 6.46 x 10-3 0.026 ± 4.31 x 10-4 0-0.7 
Li 0.003 ± 0.01 0.069 ± 4.18 x 10-5 NA 
Be 5.7 x 10-3 ± 8.6 x 10-4 3.9 x 10-3 ± 4.2 x 10-5 0-0.012 
Cd 7.1 x 10-3 ± 1.27 x 10-3 6.8 x 10-3 ± 1.2 x 10-5 0-0.003 (0-0.005) 
As 4.1 x 10-3 ± 3.46 x 10-3 5.8 x 10-3 ± 2.5 x 10-5 0-0.001 
V 1.7 x 10-3 ± 1.41 x 10-3 1.2 x 10-3 ± 7.7 x 10-6 (0-0.01) 
Ni 7.1 x 10-4 ± 7.25 x 10-6 5.3 x 10-4 ± 4.3 x 10-3 NA 
Mo 4.81 x 10-4 ± 2.08 x 10-4 5.3 x 10-5 ± 2.4 x 10-5 0-0.07 
Hg 1.2 X 10-6 ± 4.3 x 10-7 3.9 x 10-6 ± 1.2 x 10-6 0-0.006 (0-0.001) 
Note: values in brackets obtained from Department of Water Affairs of South Africa 1996 if the values 
are different from those indicated by World Health Organization (WHO, 2011; DWAF, 1996). NA 
stands for not applicable. TWQR stands for target water quality range. The units for parameters are 
mg/L except pH which is unitless, EC (mS/cm) and TDS and hardness (mg/L of CaCO3) 
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In Table 4.6.1, there are two different analyses of Rand Uranium mine water given because 

the waters were sampled during different seasons. Rand Uranium mine water 1 (RU1) was 

sampled in May 2011, which was the beginning of winter in Johannesburg, South Africa. 

Rand Uranium mine water 2 (RU2) was sampled in January 2012, which was mid-summer 

season. RU2 looks like a diluted sample of RU1 because the concentration of most of the 

elements was less than that of RU1. 

The pH of the two Rand Uranium mine waters were 3.48 and 2.68 which was not within the 

target water quality range (TWQR) as shown in Table 4.61. According to Morin and Hutt 

(1997), Rand Uranium mine water can be classified as acid mine drainage (AMD) because 

the pH was below 6.  Rand Uranium mine water has a high concentration of Fe and Al. 

Typically AMD contains more of the combined concentration of Fe, Al and Mn than the 

combined concentration of Ca, Mg and Na (Cravotta et al., 1990; Lottermosser, 2007 and 

Younger et al., 2002).  

In the Western Rand basin Au occurs in association with pyrite (FeS2). Pyrite makes up about 

3 % of the Au bearing minerals (Durand, 2012). Rand Uranium mine water was formed by 

oxidation of the acid producing mineral FeS2 by exposure to O2 and H2O as shown in 

Equation 4.2.  

  2
4

2
222

7
2 22 SOHFeOHOFeS ……………………………………………….………..……4.2 

The other associated minerals such as dolomite and limestone occurred in insufficient 

proportions to neutralize the acidity generated by the oxidation of acid producing minerals 

resulting in acidic water. The acidity generated from FeS2 caused the chemical weathering of 

surrounding rocks, therefore leaching potentially toxic elements into the water such as Ca, 

Mg, Na, Cl, Al, Mn, B, Cr, Pb, Th, Ba, Hg,  As and Se. Out of these elements, Rand Uranium 

mine water contained elevated concentration of Fe, Ca, Mn, Mg, B, Al, Cr, Pb, U and 

sulphate above the TQWR for domestic use as shown in Table 4.6.1 (DWAF, 1996; WHO, 

2011). The pH of Rand Uranium mine water makes it unsuitable for domestic, agricultural 

and industrial use (DWAF 1996; WHO, 2011). 
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4.6.1. RADIOACTIVITY CHARACTERIZATION OF RAND URANIUM MINE WATER 

The geology of the West Rand basin is made of more U minerals than Au bearing minerals 

(Cole, 1998). Analysis of the Rand Uranium mine water 2 for radioactivity was carried out 

using alpha and gamma spectrometry as outlined in section 3.5.2. The results obtained 

indicated that the gross alpha and beta radioactivity of the mine water was 12 and 6 times 

more than the required limit for potable water respectively, as shown in Table 4.6.2. The 

maximum gross alpha and beta radioactivity for potable water are 0.5 Bq.L-1 and 1 Bq.L-1 

respectively (WHO, 2011).  

Table 4.6.2: Alpha, beta and isotope activities of Rand Uranium mine water 2. 

isotope activity (Bq.L-1) Concentration (µg/L) WHO, 2011 (Bq.L-1) 
238U 3.16 ± 0.04 253.99 ± 3.22 10 
234U 4.71 ± 0.05 0.020 ± 2.17 x 10-4 1 
230Th 0.69 ± 0.11 9.59 x 10-4 ± 1.47 x 10-4 1 
226Ra 0.36 ± 0.01 9.87 x 10-6 ± 2.74 x 10-7 1 
210Po 0.02 ± 0.0037 4.47 x10-8 ± 8.10 x 10-9 0.1 
235U 0.145 ± 0.002 1.81 ± 0.025 1 
227Th 0.202 ± 0.016 1.77 x 10-10 ± 1.41 x 10-11 10 
229Ra 0.101 ± 0.01 1.33 x 10-14 ± 1.32 x 10-15 - 
232Th 0.0619 ± 0.071 15.24 ± 1.75 1 
228Th 0.124 ± 0.01 4.23 x 10-9 ± 3.41 x 10-10 1 
224Ra 0.0306 ± 0.045 5.11 x 10-12 ± 7.51 x 10-13 1 
gross alpha 6.01 ± 0.93  0.5 
gross beta 6.05 ± 0.41  1 
 

Radioisotopes that contributed to the radioactivity of Rand Uranium mine water were; 238U, 
234U, 230Th, 226Ra, 235U, 227Th, 229Ra, 232Th, 228Th, and 224Ra.  The activities of radioisotopes that 

were greater than the allowed limit for potable water were 234U, 235U and 228Th as shown in 

Table 4.6.2. If U is allowed to accumulate in the kidneys it causes kidney failure (WHO, 

2011). Total U concentration that was determined for U in Rand Uranium mine water was 

about 256 µg/L. This was well above the allowed limit for total U concentration set by WHO 

in 2011, which is 30 µg/L.  Analysis of Rand Uranium mine water with ICP-OES showed that 

the water contained 290 µg/L of U and 18 µg/L of Th as shown in Table 4.6.1. These results 

were close to those obtained using alpha and gamma spectrometry which found that the 
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concentration of U and Th were about 256 µg/L and 15 µg/L respectively. This showed that 

ICP-OES can be used to analyse radioactive elements such as Th and U (in aqueous 

solutions) instead of the sophisticated, rigorous and expensive analytical techniques such as 

alpha and gamma spectrometry. There were no radioactive isotopes for K and Pb detected 

in Rand Uranium mine water using alpha and gamma spectrometry. 

The radioactivity detected in the mine water is attributed to the fact that U is mined in 

addition to Au mining at Rand Uranium mine. The exposure of FeS2 to oxidizing conditions 

results in formation of AMD. The low acidity of the water enhances the dissolution of the 

associated U containing minerals, resulting in AMD which is radioactive. Since the 

radioactive of Rand Uranium mine water was much greater than the required limit for 

potable water, the treated water should be evaluated for radioactivity as well. 

4.7. CHEMICAL SPECIATION MODELLING OF THE MINE WATER 

Speciation as defined here is the chemical form in which ions exist in aqueous or natural 

waters. Speciation is very important because the bioavailability of an ion or element as a 

required nutrient or toxicant depends on its chemical form. The toxicology of some 

elements is very complex because some elements can be toxic in one form and also be an 

essential nutrient if they exist in another form (Jain and Ali 2000; Florence et al., 1992; 

Allen et al., 1980). Mostly hydrated metal ions are considered to be toxic, while complexed 

species are usually deemed less toxic (Russeva 1995). Different analytical protocols and 

models have been used to elucidate the different forms of ions in natural water. In this 

study Geochemist’s workbench (GWB) software was used to speciate the ions that were 

detected in Matla mine water and Rand Uranium mine water using ICP-OES and IC as 

explained in section 3.6. 

4.7.1. AQUEOUS DISTRIBUTION OF MAJOR ELEMENTS IN MATLA MINE WATER 

Matla mine water was speciated using the SpecE8 sub program of the GWB software as 

explained in section 3.6. Matla mine water was found to be a Na-SO4 type of water. This 
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means that the main cation for Matla mine water was Na and the water contained sulphate 

ions as the main anion.  

The predicted distribution of the Mg species in Matla mine water obtained using SpecE8 sub 

program of the GWB software is shown in Figure 4.7.1 below. From Figure 4.7.1, the Mg 

species in Matla mine water were found to be mainly free Mg2+ ions and MgSO4 which made 

up 65 % and 31 % respectively of the total Mg content in Matla mine water. MgHCO3
- 

species contributed about 4 % of the total Mg content in Matla mine water. 

 

Figure 4.7.1: Magnesium aqueous species distribution in Matla mine water. 
 

Other species such as MgCl+, MgCO3, MgB(OH)4
+, MgOH+, Mg2CO3

2+, Mg2OH3+ and 

Mg4(OH)4
4+ contributed less than 0.05 % of the total Mg content in Matla mine water. 

Sulphate species in Matla mine water that were predicted using SpecE8 program of the 

GWB software are depicted in Figure 4.7.2. The program predicted that sulphate existed 

mainly as free SO4
2-ions in Matla mine water and constituted about 86 %. About 7 %, 4 % 

and 3 % of the sulphate ions in Matla mine water comprised of NaSO4
-, CaSO4 and MgSO4 

species. Less than 0.1 % of the sulphate content in Matla mine water was comprised of 

KSO4
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Figure  4.7.2: Sulphate aqueous species distribution in Matla mine water. 
 

There was an appreciable amount of sulphate predicted to be associated with Na in Matla 

mine water (7 %). This was because the Na concentration in Matla mine water was very 

high. The amount of Mg and Ca associated with sulphate in Matla mine water were similar 

to each other because the molar concentration of Ca and Mg in Matla mine water were 

almost identical. The sulphate species associated with Fe was insignificant in Matla mine 

water. This was because the Fe concentration in Matla mine water was very low. 

The speciation of aluminium in Matla mine water is shown in Figure 4.7.3. Most of the Al 

species in Matla mine water (Figure 4.7.3) were mainly associated with hydroxyl ions, which 

make up about 99 % of the total Al concentration. These hydroxyl Al species were Al(OH)4
-, 

Al(OH)3, Al(OH)2
+ and AlOH2+. The Al species that were associated with sulphate ions; AlSO4

+ 

and Al(SO4)2
- made up less than 1 % of the total Al content in Matla mine water. Free Al3+ in 

Matla mine water was less than 0.5 %. The oligomeric species of Al; Al13O4(OH)24
7+, 

Al2(OH)2
4+ and Al3(OH)4

5+ in Matla mine water were negligible. 
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Figure 4.7.3: Aluminium aqueous species distribution in Matla mine water 
 

The speciation of Fe in Matla mine water is shown in Figure 4.7.4. It was shown by SpecE8 

program of the GWB software that Fe mainly existed in the form of hydroxyl species. The 

species were 64 % of Fe(OH)2
+ and  35 % of Fe(OH)3.  

 

Figure 4.7.4: Iron aqueous species distribution in Matla mine water. 
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The other Fe species predicted by GWB software comprised of less than 1 % of the total Fe 

content in Matla mine water. These species were FeOH2+, FeCO3
+, Fe(OH)4, FeSO4

+, 

Fe(B(OH)4)2
+, Fe(SO4)2

-, Fe3+, FeCl2+, FeCl2+, FeHSO4
2+, Fe3(OH)4

5+, FeCl3 and FeCl4-. 

In the case of Ca, the predicted species in Matla mine water were mainly free Ca2+ and 

CaSO4 species as shown in Figure 4.7.5. These species contributed about 61 % and 34 % of 

the total Ca content in Matla mine water. CaHCO3
+ species made up about 5 % of the total 

Ca content in Matla mine water. 

 

Figure 4.7.5: Calcium aqueous species distribution in Matla mine water. 
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Figure 4.7.6: Manganese aqueous species distribution in Matla mine water. 

 

Sodium species in Matla mine water were comprised of free Na+ ions which constituted 

about 96.2 % of the total Na content as shown in Figure 4.7.7. The other Na species were 

comprised of NaSO4
- which constituted about 3 % in Matla mine water. 

 

Figure 4.7.7: Sodium aqueous species distribution in Matla mine water. 
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Other Na species in Matla mine water predicted using the GWB software, were NaHCO3, 

NaCl, NaCO3
-, NaB(OH)4 and NaOH. These species contributed an insignificant percentage to 

the total Na content in Matla mine water. This shows that Na is a very conservative mineral 

that exists mainly as free ions in the aqueous media. 

In Matla mine water the K concentration was predicted to be mainly free K+ species which 

constituted about 96 % as shown in Figure 4.7.8. The KSO4
- species in Matla mine water 

contributed about 4 % of the total K content. 

 

Figure 4.7.8: Potassium aqueous species distribution in Matla mine water. 
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The predicted distribution of the Mg species in Rand Uranium mine water is shown in 

Figure 4.7.9a and b below. From Figure 4.7.9a, the Mg species in RU1 mine water existed 

mainly as free Mg2+ and MgSO4 species which constituted about 61 % and 39 % respectively 

of the total Mg species distribution. Other species; MgCl+, MgH2PO4
+, MgB(OH)4

+, Mg(OH)+, 

MgHPO4, Mg2OH3+, MgPO4
- and Mg(OH)44+ constituted less than 0.07 % of the total Mg 

species distribution in RU1 as shown in Figure 4.7.9a. 

 

Figure 4.7.9: Magnesium aqueous species distribution in Rand Uranium mine water (RU1 (a) 

and RU2 (b)). 
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The species distribution of Mg in RU2 was similar to that in RU1 except that there was no 

Mg associated with PO4
3- ions. This was because no PO4

3- ions were detected in RU1. The 

major species that were in RU2 were free Mg2+ and MgSO4 which contributed about 66 % 

and 34 % respectively as shown in Figure 4.7.9b. The other species such as MgCl+, MgOH+, 

MgB(OH)4
+, Mg2OH3+ and Mg4(OH)4

4+ were negligible in RU2. 

Sulphate species distribution in Rand Uranium mine water is as shown in Figure 4.7.10. The 

distribution of sulphate species was mainly comprised of free SO4
2- ions. 

 

Figure 4.7.10: Sulphate aqueous species distribution in Rand Uranium mine water (RU1 (a), 

RU2 (b)). 
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Figure 4.7.10a shows that free sulphate ions in RU1 amounted to about 57 % of the total 

sulphate species. About 19 %, 9 %, 4 %, 4 % and 3 % of the total sulphate species in RU1 was 

comprised of FeSO4
+, CaSO4, MgSO4, MnSO4, Fe(SO4)2

- respectively. Less than 0.1 % of the 

total sulphate species in RU1 was comprised of HSO4
-, NaSO4

-, AlSO4
+, Al(SO4)2

-, FeHSO4
2+, 

ZnSO4, SrSO4, KSO4
-, Th(SO4)2, U(SO4)2, BaSO4, Th(SO4)3

2-, ThSO4
2+, USO4

2+, H2SO4, CuSO4. In 

RU2, the distribution of sulphate ions followed a similar trend as in RU1. The free SO4
2- ions 

contributed about 55 % of the total sulphate species in RU2. The sulphate ions associated 

with Ca (12 %), Fe (11 %), Mg (8 %) were almost similar because the concentration of these 

elements in RU2 was very similar to each other. There were higher proportions of sulphate 

ions associated with H protons in RU2 compared to those in RU1, because the pH of RU2 

was slightly lower than that of RU1.  

Aluminium aqueous species in Rand Uranium mine water are as shown in Figure 4.7.11. 

Most of the Al species in RU1 (Figure 4.7.11a) were predicted to be mainly associated with 

sulphate, as Al(SO4)- and free Al3+ species, which make up about 66 %  and 33 % of the total 

species distribution of Al respectively. Less than 1 % of the total species predicted for Al in 

RU1 mine water were AlOH2+, Al(OH)2
+, AlHPO4

+, AlH2PO4
2+, Al2(OH)2

4+, Al(OH)3, Al(OH)4
- and 

Al3(OH)4
5+ species as shown in Figure 4.7.11a. 

In RU2 the Al species mainly existed in association with sulphate ions as AlSO4
+ (49 %) and 

Al(SO4)2
- (23 %). Free Al3+ species constituted about 28 % of the total Al concentration in 

RU2 as shown in Figure 4.7.11b. The difference observed in the species distribution in the 

two mine waters could be due to the slight difference in pH and the slight difference in the 

composition of the water. Since the water was found to differ according to the season, the 

bioavailability and the toxicity or even the treatment parameters of the water from the 

same source could vary. 

 

 

 

 

 



CHAPTER 4: CHARACTERIZATION 

116 
 

 

Figure 4.7.11: Aluminium aqueous species distribution in Rand Uranium mine water (RU1 

(a) and RU2 (b)). 
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species distribution in RU1 as shown in Figure 4.7.12a. Free Fe3+ ions constituted about 2 % 

of the total Fe species in Rand Uranium mine water. Other ions such as FeCl2+, FeHSO4
2+, 

Fe(OH)3, FeB(OH)4
2+, FeHPO4

+, FeH2PO4
2+, FeCl2+, Fe(B(OH)4)2

+, FeCl3, Fe(OH)4
- and FeCl4- 

constituted about 3.5 % of the total Fe species. 

 

Figure 4.7.12: Iron aqueous species distribution in Rand Uranium mine water (RU1 (a) and 

RU2 (b)). 
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The predicted distribution of Fe species in RU2 differed considerably from RU1 as shown in 

Figure 4.7.12b. The FeSO4
+ and Fe(SO4)2- made up about 81 % and 9 % respectively of the 

total Fe concentration in RU2. Other significant Fe species in RU2 were FeOH2+, free Fe3+, 

and Fe(OH)2
+, which made up about 5, 4 and 0.4 % respectively of the total Fe species 

predicted for RU2 as shown in Figure 4.7.12b 

The predicted aqueous calcium distribution in Rand Uranium mine waters are depicted in 

Figure 4.7.13.  
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Figure 4.7.13: Calcium aqueous species distribution in Rand Uranium mine water (RU1 (a) 

and RU2 (b)). 
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CaSO4 species as shown in Figure 4.7.13b. From Figure 4.7.13b Ca2+ and CaSO4 contributed 

almost 100 % of the total Ca species in RU2. 

The predicted species distribution of Mn in Rand Uranium mine water is depicted in 

Figure 4.7.14. The predicted Mn aqueous species distribution in RU1 and RU2 was mainly 

comprised of free Mn2+ ions and MnSO4. Free Mn2+ and MnSO4 species constituted about 

60 % and 40 % respectively of the total Mn species in RU1 as shown in Figure 4.7.14a. In 

RU2, free Mn2+ and MnSO4 constituted about 64 % and 36 % of the total Mn species as 

shown in Figure 4.7.14b. The distribution of Mn between other species such as MnCl+, 

MnCl2, MnH2PO4
+, MnOH+, MnHPO4, MnCl3-, Mn2OH+++, MnPO4

-, Mn(OH)2, Mn2(OH)3
+, 

Mn(OH)3
- and Mn(OH)4

2- was negligible in Rand Uranium mine water. 
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Figure 4.7.14: Manganese aqueous species distribution in Rand Uranium mine water (RU1 

(a) and RU2 (b)). 

 

The predicted Na species in Rand Uranium mine water are as shown Figure 4.7.15. Sodium 
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as Fe, Al and Mn. The other species predicted by the model were negligible such as NaCl, 

NaHPO4
- and NaOH-. 

 

Figure 4.7.15: Sodium aqueous species distribution in Rand Uranium mine water (RU1 (a) 

and RU2 (b)). 
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Figure 4.7.16: Potassium aqueous species distribution in Rand Uranium mine water (RU1 (a) 

and RU2 (b)). 
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program of the GWB as outlined in Chapter 3, section 3.6.1. The predicted distribution of U 

species in Rand Uranium mine water is shown in Figure 4.7.17.  

 

Figure 4.7.17: Uranium aqueous distribution in Rand Uranium mine water (RU1 (a) and RU2 

(b)). 
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other hand U species in RU2 were mainly those of U associated with sulphate ions, that is 

96 % of U(SO4)2 and 2 % of USO4
2+ as shown in Figure 4.7.147b. This showed that different 

samples of mine water from the same location differ significantly in their species 

distribution, depending on the season of sampling. This was because of seasonal variability 

in pH and the elemental composition of the mine water. 

The modelling results produced by GWB software of Th species in Rand Uranium mine water 

are shown in Figure 4.7.18.  

 

Figure 4.7.18: Thorium aqueous distribution in Rand Uranium mine water (RU1 (a) and RU2 

(b)). 
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According to SpecE8 program the main species of Th in RU1 were Th(SO4)2 and ThSO4
2+ 

which comprised about 98 % and 2 % respectively of the total Th species as shown in 

Figure 4.7.18a. In RU2, Th species comprised of 90 % of Th(SO4), 8 % of Th(SO4)3
2- and 2 % of 

ThSO4
2+ as shown in Figure 4.7.18b. 

4.8. CONCLUSION 

Matla coal FA could be classified as Class F coal FA. It was made up of mullite, quartz, 

hematite, gypsum and lime. The radioactive analysis of coal FA showed that the radioactivity 

was within the range of the radioactivity of some ashes in the world, but was well above the 

average radioactivity of soil.  Since coal FA has found wide application in construction as 

well as in mine water remediation, it is worthwhile to pay attention to the radioactivity of 

the products produced from these applications. The quality of the product water that will be 

produced from the use of Matla coal FA to treat Rand Uranium mine water needs be 

investigated to find out if the radionuclides will not leach into the treated water. 

Matla mine water can be classified as neutral mine drainage because the pH was 8. Rand 

Uranium mine water can be classified as acid mine drainage because the pH was less than 5 

and contained elevated concentration of Fe, Al and Mn. The sulphate concentration of Rand 

Uranium was much greater than that of Matla mine water showing that in situ natural 

buffering by minerals such as dolomite of the acidity produced from pyrite oxidation was 

lower in Rand Uranium mine water compared to that of Matla mine water. Analysis of Matla 

mine water using ICP-OES and IC showed that the concentration of Na and sulphate were 

very high such that the water was unsuitable for irrigation, domestic and industrial 

purposes. Rand Uranium mine water was unsuitable for any purpose (drinking, irrigation or 

industrial) because of the lower pH and the elevated concentration of Fe, Al, Mn, Pb and 

sulphate ions in the water. 

The radioactivity of the Rand Uranium mine water was found to be well above the required 

limit for potable water. The gross alpha and beta radio activities of the water were 12 and 6 

times above the potable limit respectively. The radioactivity was mainly due to U, Th, K and 
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Ra radioisotopes. Treatment of Rand Uranium mine water therefore requires evaluation of 

the radioactivity of the product water. 

The SpecE8 program of the GWB software have shown that major elements (or ions) in 

Matla mine water and Rand Uranium mine water such as Mg, sulphate, Mn, Na and K ions 

mainly existed in aqueous media as free ions. This means they existed mainly unassociated 

or not complexed with ligands or other ions. This increases their mobility in the ecosystem 

thereby enhancing bioavailability and toxicity. On the other hand Fe and Al were found to 

occur in association with hydroxyl ions. It is known that complexed species are less mobile, 

thereby have reduced bioavailability and toxicity. The NORMs such as Th and U were found 

to exist in association with sulphate ions in Rand Uranium mine water. This meant that 

these ions were less bioavailable as their mobility was reduced because of their nature. 

The two Rand Uranium mine waters that were characterized showed that they differ 

depending on the season of sampling. The difference ranged from the slight change in pH, 

the variability in the concentration of various elements and the distribution of the species in 

these waters. This implies that any treatment process of the Rand Uranium mine water 

requires rigorous process control in order to adjust the process parameters according to the 

quality of the water. 
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CHAPTER 5: PROBABLE MINERAL PHASES DURING TREATMENT 

OF MINE WATER WITH COAL FLY ASH 

5.1. INTRODUCTION 

The Act2 program of Geochemist’s workbench (GWB) software was used to predict the 

different mineral phases that could form if Matla mine water or Rand Uranium mine water 

was treated with Matla coal FA. The predicted minerals that were investigated are those of 

the major elements (Fe, Al, Mn, Na, K and sulphate ions) and radioactive elements (Th and 

U) in Matla mine water or Rand Uranium mine water. The following assumptions were made 

to obtain these modelling results: 

1. Treatment of mine water with Matla coal FA occurs due to the dissolution of the 

CaO fraction in coal FA resulting in the increase in the concentration of Ca2+ and the 

pH of the mine water. 

2. The % of CaO determined by XRF (Table 4.1.1) was assumed to be equivalent to the 

% of lime in Matla coal FA. 

During treatment of mine water with Matla coal FA the pH increase will be dependent on 

the amount of lime that dissolves into the water. Therefore the independent variable 

chosen in this modelling was the concentration of Ca2+ added to the mixture in terms of log 

activity of the Ca2+ (logaCa2+). The dependent variable was pH. 

5.1.1. PROBABLE MINERALS DURING MATLA MINE WATER TREATMENT 

Treatment of Matla mine water with Matla coal FA was modelled using Act2 program of the 

GWB software to predict the probable sulphate and Mg phases that could form at various 

logaCa2+ and pH points. The predicted sulphate and Mg phases that could form when Matla 

mine water was to be treated with Matla coal FA at various logaCa2+ and pH end values is 

shown in Figure 5.1.1.  
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Figure 5.1.1: Sulphate (a) and magnesium (b) phases that were predicted to form by Act2 

program of the GWB software when Matla mine water was treated with Matla coal FA to 

various logaCa2+ and pH values (yellow colour show mineral phases and blue colour 

represents aqueous phases). 
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From Figure 5.1.1a the sulphate ions existed mainly as free ions because the pH of Matla 

water was 8 (Table 4.5.1). As the logaCa2+ Ca ions was increased to greater than -2.4, the 

Act2 program showed that the sulphate ions in Matla mine water would form CaSO4 

aqueous species. Although the solution will be supersaturated with respect to gypsum at 

logaCa2+ of -2 and greater, there was no gypsum that was predicted to form by the Act2 

program. This can be attributed to the fact that the high concentration of Na+ in Matla mine 

water could inhibit the formation of gypsum growth by inhibiting the growth rate of gypsum 

crystals (Reznik et al., 2009; Zhang and Nancollas, 1992). 

The Act2 program showed that Mg ions existed mainly as free ions in Matla mine water as 

shown in Figure 5.1.1b. If Matla mine water was to be treated with Matla coal FA, the Act2 

program showed that the Mg ions in Matla mine water would start precipitating at pH 

greater than 10 as brucite (Mg(OH)2). The formation of brucite was shown by the Act2 

program to be pH dependent and independent of Ca concentration. Below pH 10, Mg was 

predicted to remain in Matla mine water as free Mg2+ ions regardless of the amount of Ca2+ 

added to the mixture. 

The modelled results for K and Na phases obtained using Act2 program for the treatment of 

Matla mine water with Matla coal FA are shown in Figure 5.1.2. From the results K and Na 

would remain as free ions in aqueous solution at various pH and logaCa2+ values 

(Figure 5.1.2). These results were confirmed when Matla mine water was treated with Matla 

coal FA as will be discussed in section 7.1. This means that if Matla coal FA was to be used to 

treat Matla mine water, no K or Na will be removed. 
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Figure 5.1.2: Potassium (a) and sodium (b) phases predicted to form by Act2 program of the 

GWB software when Matla mine water was treated with Matla coal FA to various logaCa2+ 

and pH values (yellow colour show mineral phases and blue colour represents aqueous 

phases). 
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The GWB has shown that if Matla mine water was to be treated with Matla coal FA only Mg 

ions can be removed if and only if the pH could be increased to greater than 10. No mineral 

phases were predicted by the Act2 program to precipitate out sulphate, Na and K from 

Matla mine water when treated with Matla coal FA. 

5.1.2. PROBABLE MINERALS OF RAND URANIUM MINE WATER TREATMENT 

The probable mineral phases that could form when Rand Uranium mine water was mixed 

with Matla coal FA were predicted using Act2 program of the GWB software. The two types 

of Rand Uranium mine waters that were modelled were RU1 and RU2 and their composition 

is shown in Table 4.6.1. These waters differ in composition because of the season they were 

sampled as explained in section 4.6. 

5.1.2.1. Probable minerals for major elements 

Act2 program of the GWB software was used to predict the phases of Fe, Al, Mn, Mg and 

sulphate ions that could form when Rand Uranium mine waters were to be treated with 

Matla coal FA. It was assumed that the addition of Matla coal FA will results in the 

dissolution of CaO causing the concentration of Ca2+ in the mine water to increase. The 

dissolution of lime was assumed to cause the pH of the mine water to increase. Therefore 

the increase in pH was dependent on the amount of CaO that dissolved into the mine water. 

Removal of sulphate ions from the two types of Rand Uranium mine waters when treated 

with Matla coal FA was modelled using Act2 program of the GWB software. Rand Uranium 

mine waters contained elevated concentration of sulphate, Fe, Al, Mn, Mg and Ca ions as 

shown in Table 4.6.1. The predicted sulphate phases at various logaCa2+ and pH values are 

shown in Figure 5.1.3.  
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Figure 5.1.3: Sulphate phases that were predicted to form by Act2 program of the GWB 

software when RU1 (a) or RU2 (b) mine water was treated with Matla coal FA to various pH 

end points (yellow colour show mineral phases and blue colour represents aqueous phases). 
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The Act2 program of the GWB software showed that similar sulphate phases would form if 

Rand Uranium mine waters were treated with Matla coal FA to specific pH end points. The 

GWB had shown that if RU1 or RU2 was to be treated with Matla coal FA, sulphate could 

precipitate as alunite (KAl3(SO4)2(OH)6) or gypsum (CaSO4.2H2O) as shown in Figure 5.1.3. 

Formation of gypsum in RU1 and RU2 was predicted by Act2 program to be mainly 

dependent upon the amount of Ca ions added to the mine water. Gypsum precipitation 

could occur when logaCa2+ was greater than -2.5. This was because at this concentration the 

mixture was supersaturated with respect to gypsum. Since the pH of RU1 and RU2 were 

greater than 2, the formation of gypsum was independent of the pH of the mixture. From 

Figure 5.1.3, the formation of gypsum is affected only when the pH is less than 2. 

The formation of alunite in Rand Uranium mine waters was found to be mainly dependent 

on pH. The concentration of Ca ions added to Rand Uranium mine waters would tend to 

affect the pH at which alunite is stable. When logaCa2+ was greater than -2, the formation of 

alunite tends to decrease in favour of the formation of gypsum a more stable mineral as 

shown in Figure 5.1.3. These results were proved by the decrease in the sulphate 

concentration when Rand Uranium mine water was treated with Matla coal FA in section 

7.2.1. Usually the sulphate ions are removed from mine water by gypsum precipitation to 

concentration between 1500 mg/L and 2000 mg/L (Madzivire, 2010; 

Geldenhuys et al., 2001). This amount of sulphate ions is still above the required limit for 

domestic purposes. Further treatment would still be required to remove the sulphate 

concentration to less than 500 mg/L. 

According to the Act2 program of the GWB software, the probable Al mineral phases that 

were predicted to form when RU1 and RU2 were treated using Matla coal FA are shown in 

Figure 5.1.4. Aluminium could be removed as gibbsite (Al(OH)3) in RU1 according to the Act2 

program as shown in Figure 5.1.4a. In RU2 the Act2 program predicted that Al could be 

removed as alunite (KAl3(SO4)2(OH)6) and gibbsite as shown in Figure 5.1.4b.  
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Figure 5.1.4: Aluminium phases that were predicted to form by Act2 program of the GWB 

software when RU1 (a) or RU2 (b) mine water was treated with Matla coal FA to various 

logaCa2+ and pH values (yellow colour show mineral phases and blue colour represents 

aqueous phases). 
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Precipitation of gibbsite was found to depend on pH and logaCa2+. Gibbsite formation occurs 

if the pH of the mixture was between 4.7 and 9 when logaCa2+ was less than -2.5 in RU1, as 

shown in Figure 5.1.4a. In the case of RU2, gibbsite was predicted to form if the pH was 

between 5 and 10 when logaCa2+ was less than -2.5 as shown in Figure 5.1.4b. When logaCa2+ 

was increased to -2.5 and greater the formation of gibbsite would start occurring at pH 4 in 

both RU1 and RU2 as shown in Figure 5.1.4. The Act2 program predicted that alunite would 

form in RU2 only. The precipitation of alunite was predicted to occur at pH 4 and 5 when 

logaCa2+ was less than -1. No alunite would form in RU2 when logaCa2+ was increased to 

greater than -1 (Figure 5.1.4b). Alunite mineral was not predicted to form in RU1 because 

the concentration of Al was very low. 

Increasing the pH of Rand Uranium mine water to greater than 10, Al(OH)4
- phase would be 

formed according to the Act2 program. This phase was expected to react with Ca2+ and 

sulphate ions to form ettringite mineral phase (Madzivire, 2010). The ettringite mineral 

phase was not predicted by the Act2 program of the GWB software because the databases 

contained in the GWB software did not have the thermodynamic parameters for ettringite. 

According to the Act2 program, the probable Fe mineral phases that were predicted to form 

when RU1 and RU2 were treated with Matla coal FA to various logaCa2+ and pH values are 

shown in Figure 5.1.5. The GWB software has shown that the mineral phases that could 

form were similar when Matla coal FA was to be added to both mine waters. The Fe 

minerals that were predicted using the GWB were jarosite-K (KFe3(SO4)2(OH)6) and Fe(OH)3. 
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Figure 5.1.5: Iron phases that were predicted to form by Act2 program of the GWB software 

when RU1 (a) or RU2 (b) mine water was treated with Matla coal FA to various logaCa2+ and 

pH values (yellow colour show mineral phases and blue colour represents aqueous phases). 
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The formation of these minerals was dependent on both pH and logaCa2+ according to the 

Act2 program. The formation of jarosite-K was predicted to occur at pH 3.5 to 4.5 when 

logaCa2+ was between -10 and -2.5 in RU1 (Figure 5.1.5a). In RU2, jarosite-K was predicted to 

form between pH 3 and 5 when logaCa2+ was less tha -2.5 (Figure 5.1.5b). At logaCa2+ greater 

than -2.5, pH range at which jarosite-K narrowed gradually. In RU1, the no jarosite-K will 

form at logaCa2+ greater than -2 as shown in Figure 5.1.5a. In RU2, no jarosite-K formation 

will form if logaCa2+ is greater than -1 as shown in Figure 5.1.5b. Precipitation of Fe(OH)3 

when logaCa2+ was between -10 to -2.5, Fe(OH)3 occurred at pH between 5 and 12 in both 

RU1 and RU2 when logaCa2+ was less than -2.5 as shown in Figure 5.1.5. If the logaCa2+ was to 

be increased to greater than -2.5, the lower limit pH for Fe(OH)3 decreased gradually to 4. 

The upper limit of Fe(OH)3 was not affected by logaCa2+ in both RU1 and RU2. 

The GWB model showed that if Rand Uranium mine water was to be treated with Matla coal 

FA, Mn ions could be removed from mine water as amorphous Mn(OH)2. The formation of 

Mn(OH)2 was found to be pH dependent and independent of the concentration of Ca ions 

added to the mine water as is shown in Figure 5.1.6. Keeping the pH of the mine water less 

than 9 would result in the Mn existing as free Mn2+ and MnSO4 species. If the pH of the mine 

water was to be increased to between 9 and 10, Mn would exist in aqueous solution as 

Mn2(OH)3
+.  
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Figure 5.1.6: Manganese phases that were predicted to form by Act2 program of the GWB 

software when RU1 (a) or RU2 (b) mine water was treated with Matla coal FA to various 

logaCa2+ and pH values (yellow colour show mineral phases and blue colour represents 

aqueous phases). 
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In RU1 amorphous Mn(OH)2 was predicted to start precipitating at pH 10 (Figure 5.1.6a), 

while in RU2, it was predicted to start precipitating at pH 10.5 (Figure 5.1.6b). This was 

because the concentration of Mn2+ in RU2 was less than that of RU1. Therefore more OH- 

would be required to start effecting the precipitation of Mn(OH)2. 

Magnesium was predicted to be removed from Rand Uranium mine as brucite (Mg(OH)2) 

when Rand Uranium mine water was to be treated with Matla coal FA as shown in 

Figure 5.1.7. According to the Act2 program the formation of brucite in Rand Uranium mine 

water was dependent on pH but independent of the amount of Ca ions added to the mine 

water. The formation of brucite was predicted to occur when the pH of Rand Uranium mine 

water was increased to greater than 9.5 with alkalinity generated by the dissolution of lime 

from Matla coal FA. 
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Figure 5.1.7: Magnesium phases that were predicted to form by Act2 program of the GWB 

software when RU1 (a) or RU2 (b) mine water was treated with Matla coal FA to various 

logaCa2+ and pH values (yellow colour show mineral phases and blue colour represents 

aqueous phases). 
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The potassium phases predicted by Act2 program of GWB software when Rand Uranium 

mine water was to be treated with Matla coal FA are shown in Figure 5.1.8.  

 

Figure 5.1.8: Potassium phases that were predicted to form by Act2 program of the GWB 

software when RU1 (a) and RU2 (b) mine water was treated with Matla coal FA various 

logaCa2+ and pH values (yellow colour show mineral phases and blue colour represents 

aqueous phases). 

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

log a Ca++

pH K+

Alunite

25°C

Di
ag

ra
m

 K+ , T
  =

  2
5 °

C ,
 P

  =
  1

 b
ar

s, 
a [

m
ain

]  
=  

10
–5

.07
6 , a

 [H
2O]

  =
  1

,

a [
Fe

++
+ ]  

=  
10

–4
.25

9  (s
pe

cia
te

s),
 a 

[A
l++

+ ]  
=  

10
–5

.20
4  (s

pe
cia

te
s o

ve
r Y

),

a [
M

g++
]  

=  
10

–2
.76

 (s
pe

cia
te

s),
 a 

[M
n++

]  
=  

10
–2

.9
05

 (s
pe

cia
te

s),

a [
SO

4-- ]  
=  

10
–2

.0
78

 (s
pe

cia
te

s),
 a 

[N
a+ ]  

=  
10

–2
.58

5 ; D
ec

ou
pl

ed
: F

e++
+

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

log a Ca++

pH K+

Alunite

25°C

Di
ag

ra
m

 K+ , T
  =

  2
5 °

C ,
 P

  =
  1

.01
3 b

ar
s, 

a [
ma

in
]  

=  
10

–3
.89

5 , a
 [H

2O]
  =

  1
,

a [
SO

4-- ]  =
  1

0–2
.21

2  (s
pe

cia
te

s),
 a 

[Fe
++

+ ]  
=  

10
–4

.52
5  (s

pe
cia

te
s),

a [
Al

++
+ ]  

=  
10

–4
.20

6  (s
pe

cia
te

s),
 a 

[M
g++

]  
=  

10
–2

.68
1  (s

pe
cia

te
s),

a [
M

n++
]  =

  1
0–3

.48
2  (s

pe
cia

te
s),

 a 
[N

a+ ]  
=  

10
–2

.51
3  (s

pe
cia

te
s),

De
co

up
led

: F
e++

+

b 

a 

 

 

 

 



CHAPTER 5: PROBABLE MINERAL PHASES 

143 
 

The Act2 program predicted that when Rand Uranium mine water was to be treated with 

Matla Coal FA, K can only precipitate in the form alunite (KAl3(SO4)2(OH)6) at a specific pH 

and Ca concentration. Alunite could only form at pH between 4.3 and 4.8 when logaCa2+ less 

than -2 in RU1 as shown in Figure 5.1.8a. At all other pH and logaCa2+ conditions K was 

predicted by Act2 program to exist as free K+ ions in RU1. In RU2 alunite could form at pH 

3.7 to 5 when logaCa2+ less than -1 as shown in Figure 5.1.8b. The Act2 program showed that 

at all other pH and logaCa2+, K would exist as free K+ free ions. The wider range of pH 

predicted for the formation of alunite in RU2 was because there was a higher concentration 

of K in RU2 than in RU1. This meant a lower concentration of hydroxyl ions would be 

required to push the equilibrium reaction for the formation of alunite in RU2 than RU1. 

According to the Act2 program of the GWB software, if Rand Uranium mine water was to be 

treated with Matla coal to various pH and logaCa2+ values, Na would remain in aqueous 

solution as free Na+ ions as shown in Figure 5.1.9.  

 

Figure 5.1.9: Sodium phases that were predicted to form by Act2 program of the GWB 

software when Rand Uranium mine water was treated with Matla coal FA to various logaCa2+ 

and pH values (yellow colour show mineral phases and blue colour represents aqueous 

phases). 
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So if Rand Uranium mine water was to be treated with FA it was predicted that no Na ions 

would be removed from mine water by precipitation in any mineral form.  

5.1.2.2. Probable mineral phases for natural radioactive elements 

Naturally occurring radioactive elements that were found to be above the required limit for 

potable water in Rand Uranium mine water were Th and U as shown in Table 4.6.2. The 

probable phases of Th and U that could form when Rand Uranium mine water was to be 

treated with Matla coal FA were modelled using Act2 program of GWB software. The 

probable phases of U that were predicted to form using Act2 program are shown in Figure 

5.1.10.  

 

Figure 5.1.10: Uranium phases that were predicted to form by Act2 program of the GWB 

software when Rand Uranium mine water was treated with Matla coal FA to various logaCa2+ 

and pH values (yellow colour show mineral phases and blue colour represents aqueous 

phases). 
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From the Act2 results, if Rand Uranium mine water was to be treated with Matla coal FA, it 

was predicted that U could precipitate in the form of uraninite (UO2). The formation of UO2 

was found to be pH dependent if the logaCa2+ was less than -2.7. When logaCa2+ was less 

than -2.7, precipitation of UO2 occurs when the pH of mine water was increased to greater 

than 3. If logaCa2+ of the mine water was to be increased from -2.7 to 0, the pH at which UO2 

could start precipitating would decrease from 3 to 2 as more Ca ions were added to the 

mixture. At pH less than 3 and logaCa2+ less than about -0.3, U will exist as U(SO4)2 in 

solution. If logaCa2+ was increased to greater than about -0.3 and the pH kept below 3, U will 

exist as USO4
2+, UOH3+ and U(OH)2

2+ as shown in Figure 5.1.10. 

The Act2 program predicted that if Rand Uranium mine water was to be treated with Matla 

coal FA, Th could be removed as thorianite (ThO2) as shown in Figure 5.1.11.  

 

Figure 5.1.11: Thorium phases that were predicted to form by Act2 program of the GWB 

software when Rand Uranium mine water was treated with Matla coal FA to various logaCa2+ 

and pH values (yellow colour show mineral phases and blue colour represents aqueous 

phases). 
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The formation of ThO2 was found to be pH dependent, when logaCa2+ was less than -2.3. 

When logaCa2+ was less than -2.3, ThO2 could form if the pH of the mine water was 

increased to greater than 5. Increasing logaCa2+ from -2.3 to 0 would result in the decrease in 

the pH at which ThO2 would precipitate from about 5 to about 4, as shown in Figure 5.1.11. 

At pH less than 5 and logaCa2+ less than about -0.2, Th would exist as Th(SO4)2. If the logaCa2+ 

was to be increased to greater than -0.2 and the pH kept less than 4, Th would exist as 

ThSO4
2+ and Th(OH)2

2+. 

5.2. CONCLUSION 

The Act2 sub program of the GWB model predicted that if Matla water mine water or Rand 

Uranium mine water was to be treated with coal FA, the removal of the potential toxic 

elements depended on pH end point of the treatment and the concentration of Ca ions 

added to the mine water. The results are very helpful especially to determine the amount of 

coal FA or alkaline chemicals that would be required to treat a particular composition of the 

mine water. 

 

It was predicted by the Act2 program that the removal of Mg ions from Matla mine was 

found to be pH dependent. It was found that increasing the pH of Matla mine water to 

greater than 10 would result in the precipitation of Mg as brucite. No removal of sulphate, K 

and Na ions from Matla mine water was predicted if the concentration of Ca ions in mine 

was increased such that logaCa2+ was to be increased from -10 to 0 and pH was increased to 

14.  

 

The Act2 program of the GWB predicted that treatment of Rand Uranium mine water with 

coal FA could remove sulphate ions as alunite or gypsum. Removal of alunite and gypsum 

from Rand Uranium mine water was found to be logaCa2+ and/or pH dependent. If sulphate 

ions were to be removed in the form of alunite, the pH of the mixture would need to be 

maintained between 3.5 and 5 and logaCa2+ less than -1. If the sulphate ions were to be 

removed in the form of gypsum the logaCa2+ of the mixture would have to be increased to 

greater than -2.5. Removal of Al ions from Rand Uranium mine water was predicted to take 
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place through alunite or gibssite precipitation according to Act2 program. Formation of 

alunite and gibbsite was found to be dependent upon pH and concentration of Ca ions of 

the mine water. The conditions for the removal of Al as alunite are the same as the 

conditions for the removal of sulphate ions as alunite. Removal of Al ions as gibssite would 

occur when the pH of the mine water was increased to between 4.5 and 10. The probable 

Fe containing mineral phases that were predicted to form when Rand Uranium water was to 

be treated with coal FA were, jarosite-K and Fe(OH)3. The formation of these minerals was 

found to be pH and logaCa2+ dependent. Jarosite-K was predicted to form at pH between 3.5 

and 5 if logaCa2+ was between -10 and -2.5. As logaCa2+ was increased from -2.5 to -1, the 

range of stability of jarosite-K decreased. As logaCa2+ was increased to greater than -1, no 

jarosite would form in Rand Uranium mine water. Formation of Fe(OH)3 could only form if 

the pH of the mine water was to between 5 and 12. Modelling results using the GWB model 

have shown that if Rand Uranium mine was to be treated with coal FA, Mn and Mg ions 

would be removed as Mn(OH)2 and Mg(OH)2 respectively. The formation of Mn(OH)2 and 

Mg(OH)2 will depend on the final pH attained during treatment and independent on the 

amount of Ca2+ ions added into the mixture. Mn(OH)2 and Mg(OH)2 were found to 

precipitate at pH 10 and 9.5 respectively. 

 

Removal of K ions from Rand Uranium mine water was found to be through the 

precipitation of alunite according to the GWB. On the other hand the GWB model showed 

that if Rand Uranium mine water was to be treated with FA, there is no expected 

Na-mineral phase that would form. Therefore if Rand Uranium is to be treated with FA, Na 

concentration would remain the same if there is no leaching of Na from FA or adsorption or 

absorption of Na ions by the FA particles. 

These results are very important in the planning stage of the treatment of mine water 

during exploration or mining. The information from the Act2 modelling results can be used 

for deciding the treatment technology and budgeting of the treatment process. It is 

advisable to try to use the software such as GWB so that scientists can reduce the amount 

of time and the number of experiments during research and development of the treatment 

technology of the remediation techniques at a particular mine. 
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CHAPTER 6: TREATMENT OF MINE WATER WITH FLOCCULANTS  

6.1. INTRODUCTION 

Flocculants such as polyaluminium chloride and AlCl3 have wide application in the removal 

of colloidal particles in water. Recently, sulphate removal from mine water using 

polyaluminium chloride and AlCl3 was investigated (Silva et al., 2010). The performance of 

these flocculants in the removal of colloids was found to be pH dependent. This chapter 

investigates the effect of pH and amount of aluminium chlorohydrate (ACH) or Al(OH)3 

added on the removal of sulphate ions from Matla mine water and Rand Uranium mine 

water as outlined in section 3.7. 

6.2. TREATMENT OF MATLA MINE WATER WITH FLOCCULANTS 

Matla mine water containing 1475 mg/L of sulphate ions as shown in Table 4.5.1 was 

treated with Al(OH)3 or aluminium chlorohydrate (ACH) with the aim of removing sulphate 

ions to the allowed effluent limits as outlined in section 3.7.1. The removal of sulphate ions 

using these options was optimized by studying the effect of variation in pH of mine water 

and the effect of the amount of Al ions added to Matla mine water (Al:SO4
2- mol ratio). This 

mol ratio was chosen based on the findings obtained by previous researchers when they 

used polyaluminium chloride and AlCl3 (Silva et al., 2010). 

6.2.1. EFFECT OF PH ON THE REMOVAL OF SULPHATE IONS 

The effect of pH was evaluated by mixing Matla mine water with Al(OH)3 or ACH at various 

pH values as outlined in section 3.7.1.1. In this section the chemistry that contributed to the 

findings is highlighted. This will enhances the knowledge on how the flocculants interact 

with sulphate ions at various pH values. 
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Effect pH of the removal of sulphate ions using Al(OH)3. 

Matla mine water pH was first adjusted to various pH values using 1 M HCl. After the pH was 

adjusted to the required value, the mine water (500 mL) was mixed with 2.3942 g of Al(OH)3 

for 20 min as outlined in section 3.7.1.1a. Addition of 2.3942 g of Al(OH)3 was equivalent to 

0.031 mols of Al ions added in 500 mL of Matla mine water containing 1475 mg/L of 

sulphate ions. This meant that the mixture contained 4:1 (Al:SO4
2-) mol ratio. The results of 

the analysis of the water treated at various pH values with Al(OH)3 is shown in Figure 6.2.1.  

 

Figure 6.2.1: Effect of pH on the sulphate and chloride concentration in Matla mine water 

during treatment using Al(OH)3 (Al3+:SO4
2- mol ratio 4:1). 

 

Treatment of Matla mine water with Al(OH)3 at various pH values demonstrated that 

sulphate ions removal was pH dependent as shown in Figure 6.2.1. The optimum pH for 

sulphate removal during treatment of Matla mine water with Al(OH)3 was 4. At pH 4 the 

sulphate concentration in the mine water decreased from 1475 mg/L to 1013 mg/L. 

Reducing the pH of Matla mine water further to less than 4, the removal of sulphate ions 

started to decrease as shown in Figure 6.2.1. 
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Effect of pH on the removal of sulphate ions using ACH 

Matla mine water (50 mL) was mixed with ACH (0.61 mL) for 20 min, whilst maintaining the 

pH of the mixture at various set values using 0.1 M HCl and 0.1 M NaOH as outlined in 

section 3.7.1.1b. The amount of ACH added results in the Al:SO4
2- mol ratio in the mixture of 

4:1. The sulphate concentration of the water produced by treating Matla mine water with 

ACH at various pH end points is shown in Figure 6.2.2. 

 

Figure 6.2.2: Effect pH on the sulphate and chloride concentration in Matla mine water 

during treatment using aluminium chlorohydrate (Al3+:SO4
2- mol ratio 4:1). 

 

As shown in Figure 6.2.2, treatment of Matla mine water with ACH proved that sulphate 

removal was pH dependent. The optimum pH for sulphate removal for the treatment of 

Matla mine water with ACH was found to be 5.07 as shown in Figure 6.2.2. The sulphate 

concentration was decreased from 1475 mg/L to 367.24 mg/L when Matla mine water 

(50 mL) was treated with 0.16 mL of ACH at pH 5.07. This sulphate concentration was less 

than the required limit for potable water of 500 mg/L (WHO, 2011; DWAF, 1996). Treatment 

of Matla mine water (50 mL) with 0.16 mL of ACH at pH greater or less than 5.07 was not 

efficient for sulphate removal. The sulphate concentration that remained when Matla mine 

water (50 mL) was treated with 0.16 mL of ACH at pH 1.98, 2.50 and 3.2 was 603.34 mg/L, 
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704.24 mg/L and 711.97 mg/L respectively. Treatment of Matla mine water (50 mL) with 

0.61 mL of ACH at pH 6.16, 7.09 and 8.20 resulted in the treated water containing 

431.97 mg/L, 625.76 mg/L and 984.54 mg/L of sulphate ions respectively. So treatment of 

Matla mine water (50 mL) with 0.61 mL of ACH at pH between 5 and 6 resulted in the 

sulphate concentration decreasing from 1475 mg/L to less than 500 mg/L. 

The pH was found to have a significant effect on the removal of sulphate ions from mine 

water using Al(OH)3 or ACH. This is because Al compounds are amphoteric and form positive 

or negative ionic species depending on the pH of the solution. Georgantas and 

Grigoropoulou in 2007 noted that Al compounds exist in different forms depending on pH. 

At pH less than 3, Al species mainly exist as mononuclear Al3+ ions, while at pH between 3 

and 5 the polynuclear positively charged species such as Al2(OH)2
4+, Al3(OH)4

5+, and 

Al13O4(OH)24
7+ are predominant. At pH from 6 to about 10, Al mainly exists as amorphous 

Al(OH)3. Increasing the pH to greater than 11 results in Al existing mainly as Al(OH)4
- 

(Georgantas and Grigoropoulou, 2007).  

At pH between 4 and 6 about 31 % and 75 % sulphate ions were removed when Matla mine 

water was treated with Al(OH)3 (Figure 6.2.1) and ACH (Figure 6.2.2) respectively. At pH 2 

Al(OH)3 or ACH removed about 13 %  (Figure 6.2.1) or 49 % (Figure 6.2.2) sulphate ions from 

Matla mine water respectively. More sulphate ions were removed at pH between 4 and 6 

because of the interaction of negatively charged sulphate ions with positively charged 

polynuclear Al species. The polynuclear species had higher positive charges (+4, +5 and +7) 

than +3 for mononuclear Al3+. This means that polynuclear species were able to form 

stronger complexes with negatively charged sulphate ion compared to the mononuclear Al 

species. Generally ACH showed a better removal of sulphate ions than Al(OH)3. This was 

because Al(OH)3 was a solid and ACH was a liquid. Therefore the kinetics of the in situ 

formation of the positively polynuclear species that were responsible for the charge 

destabilization of sulphate ions was greater in ACH than in Al(OH)3. 

The major setback of using ACH or Al(OH)3 was the amount of Cl ions that remained in the 

treated water that would need further polishing to remove. For the optimum pH, the Cl ions 

that remained in solution were 1012.58 mg/L and 1508.42 mg/L when Matla mine water 
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was treated with Al(OH)3 or ACH respectively. This was above the limit for potable water of 

200 mg/L (WHO, 2011 and DWA, 1996). The Cl ions came from the ACH structure since ACH 

contained about 171 000 mg/L of Cl ions as shown in Table 4.2.1. In the case of Al(OH)3 the 

Cl ions came from the acidification of the water using HCl.  

6.2.2. EFFECT OF THE AL:SO42- MOLAR RATIO 

The optimum pH for the treatment of Matla mine water containing 1475 mg/L of sulphate 

ions with Al(OH)3 or ACH (Al3+:SO4
2- molar ratio 4:1) was found to be 4 and 5.07 respectively. 

This section presents the results obtained when Matla mine water was treated with 

different amounts of Al(OH)3 or ACH at pH 4 and 5.07 respectively. The Al:SO4
2- was thus 

varied between 1:2 and 8:1 during treatment of Matla mine water with ACH or Al(OH)3 as 

outlined in section 3.7.1.2a. 

 

Effect Al:SO4
2- mol ratio on the removal of sulphate ions using Al(OH)3. 

Matla mine water was treated with different amounts of Al(OH)3 as outlined in 

section 3.7.1.2a. The amount of Al(OH)3 added to Matla mine water was such that the 

Al:SO4
2- mol ratio was varied between 1:1 and 8:1. The pH was maintained between 4 and 6 

by adding 0.1 M of HCl. Results of the treatment of Matla mine water with different 

amounts of Al(OH)3 are shown in Figure 6.2.3. 
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Figure 6.2.3: Effect of the Al:SO4
2- molar ratio on the removal of sulphate and chloride from 

Matla mine water using Al(OH)3 at pH between 4 and 6. 

Treatment of Matla mine water with Al(OH)3 at pH between 4 and 6 was dependent on the 

amount of Al(OH)3. The sulphate ion in the treated water decreased as more Al(OH)3 was 

added from 1:1 to 5:1. Increasing the Al:SO4
2- mol ratio above 5:1 did not result in 

enhancement of sulphate removal from Matla mine water as shown in Figure 6.2.3. When 

Matla mine water was treated with Al(OH)3 with Al:SO4
2- molar ratio set at 1:1, 2:1, 3:1, 4:1, 

5:1, 6:1, 7:1 or 8:1 and pH between 4 and 6, the sulphate concentration in the mine water 

decreased from 1475.02 mg/L to 1366.75 mg/L, 1324.12 mg/L, 1082.13 mg/L, 982.94 mg/L, 

1044.79 mg/L, 1000.16 mg/L or 1137.24 mg/L respectively. The optimum Al:SO4
2- for the 

treatment of Matla mine water with Al(OH)3 at pH between 4 and 6 was found to be 5:1. As 

more Al(OH)3 was added to Matla mine water, more HCl was needed to maintain the pH 

between 4 and 6 since Al(OH)3 addition at this pH range tends to act as base, causing the pH 

to increase beyond the optimum range of between 4 and 6. The pH was maintained 

between 4 and 6 (by 0.1 M HCl) since it was the optimum pH for the removal of sulphate 

ions from mine water using Al(OH)3 as found out in section 6.2.1. This resulted in the Cl 

concentration of between 490 mg/L to 699.59 mg/L in the treated water compared to 

untreated Matla mine water which had a concentration of 15.52 mg/L. 
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Effect of Al:SO4
2- mol ratio on the removal of sulphate ions using ACH 

Matla mine water was treated with various amounts of ACH at pH between 5 and 6. This 

was because the optimum pH was 5.07 when Matla mine water was treated with ACH at a 

Al:SO4
2- mol ratio of 4:1. The amount of ACH was varied such that Al:SO4

2- ratio varied from 

2:1 to 8:1 as outlined in section 3.7.1.2b. The IC analysis results of the water obtained after 

treating Matla mine water with various amounts of ACH at pH between 4 and 6 are shown 

in Figure 6.2.4.  

 

Figure 6.2.4: Effect of the Al:SO4
2- molar ratio on the removal of sulphate and chloride from 

Matla mine water using aluminium chlorohydrate at pH between 4 and 6. 

 

The results show that the removal of sulphate ions from Matla mine water using ACH 

depended on the amount of Al added to the Matla mine water at pH 5.07. More sulphate 

ions were removed from Matla mine water as more Al was added (from Al:SO4
2- molar ratio 

of 2:1 to 6:1). Addition of ACH such that the Al:SO4
2- molar ratio was greater than 6:1 

resulted in the removal of sulphate ions from mine water decreasing.  This can be attributed 

to the fact that when more Al was added such that the molar ratio was greater than 6:1, the 

ACH could not dissolve properly. The mixture was more of a viscous sludge rather than a 

mixture of solid material and liquid as was the case with other molar ratios of 6:1 and less. 
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This severely limited this treatment option because the treated water was difficult to 

separate from the sludge. The optimum Al:SO4
2- molar ratio for the removal of sulphate ions 

from Matla mine water was found to be 6:1. At a 4:1 mol ratio (Al:SO4
2-) the sulphate 

concentration in the treated water was 296 mg/L which was less than the limit set by the 

World Health Organization of 500 mg/L.  

Addition of ACH to Matla mine water in order to remove the sulphate ions resulted in the 

addition of Cl ions in the treated water. At mol ratio of 4:1, where the sulphate 

concentration was within the TWQR for domestic use, the Cl ion concentration was almost 

3000 mg/L in the treated water which was well above the TWQR for potable water of 

500 mg/L (WHO, 2011). This was because of the contamination of Cl from ACH. The high Cl 

concentration in the treated water and high viscosity of the mixture of treated mine water 

and sludge were the main setbacks of using ACH for the removal of sulphate ions from mine 

water. 

6.3. TREATMENT OF RAND URANIUM MINE WATER WITH MATLA COAL 
FLY ASH FOLLOWED BY FLOCCULANTS 

This section details results obtained from the experiments in which Rand Uranium mine 

water was treated with flocculants. Before applying the flocculant treatment, Rand Uranium 

mine water was first treated with Matla coal FA. This was done in order to remove heavy 

metals from the mine water. Matla mine water was not treated first with Matla coal FA 

because it did not contain heavy metals such as Fe, Al and Mn. The coal FA treated Rand 

Uranium mine water was then recovered and further treated with different amounts of 

Al(OH)3 or ACH to remove the remaining sulphate ions after adjusting the pH with 0.1 M of 

HCl to between  4 and 6. 

 

Treatment of Rand Uranium mine water with Matla coal FA 

Rand Uranium mine water (RU1) with pH of 2.23 was treated with Matla coal FA to pH 6.12 

and 9.48 using liquid to solid residue of 6:1, as outlined in section 3.7.2. The pH of Rand 
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Uranium mine water was increased from 2.23 to 6.12 and 9.48 after 10 and 15 min 

respectively. Results of the analysis of the product water using ICP-OES to determine the 

concentration of Ca, Fe, Mg, Na, Al and Mn after the initial treatment of RU1 with Matla 

coal FA only to pH 6.12 and 9.48 are shown in Figure 6.3.1. 

 

Figure 6.3.1: The concentration of Ca, Fe, Mg, Na, Al and Mn during treatment of 50 mL of 

Rand Uranium mine water with 8 g of Matla coal fly ash. 

 

The results in Figure 6.3.1 show that the Fe, Al and Mn were removed from Rand Uranium 

mine water by almost 100 % when treated with Matla coal FA. This was due to the 

formation of their respective hydroxides (Gitari et al., 2008). The concentration of Ca 

increased in the mine water due to the dissolution of CaO from Matla coal FA thereby 

causing the pH of Rand Uranium mine water to increase. The concentration of Na and Mg 

remained almost constant. Magnesium is known to form Mg(OH)2 at pH greater than 11 

(Madzivire et al., 2011), while an increase in pH has no known effect on Na. 

The concentrations of sulphate and chloride ions after the initial treatment of RU1 with FA 

to pH 6.12 and 9.48 are shown in Figure 6.3.2. 
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Figure 6.3.2: The concentration of sulphate and chloride ions during treatment of 50 mL of 

Rand Uranium mine water with 8 g of Matla fly ash. 

 

Treatment of Rand Uranium mine water (50 mL) with 8 kg of Matla FA resulted in the 

sulphate concentration decreasing from 4126 mg/L to 3928.85 mg/L and 3161.00 mg/L after 

the pH was increased to 6.12 and 9.48 respectively. So treatment of Rand Uranium mine 

water (50 mL) with Matla coal FA resulted in only 4.77 % and 23.39 % removal of sulphate 

ion when the pH was increased to 6.12 and 9.48 respectively. This can be attributed to the 

formation of gypsum and Fe and Al oxyhdroxosulphate mineral phases (Madzivire et al., 

2011). There was a slight increase of the chloride ions from 10.24 mg/L to 16.93 mg/L during 

treatment of Rand Uranium mine water (50 mL) with 8 kg of Matla coal FA to pH 9.48. This 

could have leached from the Matla coal FA. The concentration of Fe, Al and Mn in the 

treated Rand Uranium mine water was reduced by almost 100 % to TWQR for potable 

water. The concentration of sulphate ions was above the TWQR for potable water of 

500 mg/L. The following section explains how the product water from Matla coal FA 

treatment of Rand Uranium mine water was treated with ACH or Al(OH)3 in order to remove 

the remaining sulphate ions. 
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Effect Al:SO4
2- mol ratio on the removal of sulphate ions using flocculants. 

The treated Rand Uranium mine water which had a sulphate concentration of 3161 mg/L 

was then treated with various amounts of Al(OH)3 or ACH in order to remove the high 

sulphate ions as explained in section 3.7.2. 

 

i. Effect of Al(OH)3 

Product water from the treatment of Rand Uranium mine water with Matla coal FA was 

further treated with different amount of Al(OH)3 as outlined in section 3.7.2. The amount of 

Al(OH)3 was varied such that the Al:SO4
2- mol ratio was from 1:1 to 8:1. During treatment 

the pH of the mixture was maintained between 4 and 6 using 0.1 M HCl. The product water 

was analysed for the concentrations of sulphate and chloride using IC and the results are 

shown in Figure 6.3.3.  

 

Figure 6.3.3: The concentration of sulphate and chloride ions during treatment of product 

water from FA treatment with Al(OH)3 at pH between 4 and 6. 

 

The results in Figure 6.3.3 show a gradual decrease in sulphate concentration when more 

Al(OH)3 was added to the water from 1:1 to 5:1 Al:SO4
2- mol ratio. Addition of more Al(OH)3 
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(that is, Al:SO4
2- mol ratio 6:1 and greater) could not remove extra sulphate ions under these 

conditions. The sulphate concentration was decreased from 3161 mg/L to 1626 mg/L when 

Al(OH)3 was added to the mine water at pH between 4 and 6. The removal of sulphate ions 

using Al(OH)3 resulted in the gradual increase in chloride ions in the mine water as more 

Al(OH)3 was added. This was because as more Al(OH)3 was added more HCl was added to 

the mixture to maintain the pH in the optimum range of 4 to 6 which was shown to be 

necessary in section 6.2.1 for the removal of sulphate ions from mine water. 

 

ii. Effect of ACH 

Product water from the treatment of Rand Uranium mine water to pH 9.48 using Matla coal 

FA was further treated with various amounts of ACH. The product water containing 

3161 mg/L of sulphate ions was mixed with different amounts of ACH such that the Al:SO4
2- 

mol ratios (in the mixture) varied from 1:2 to 4:1 as outlined in section 3.7.2. The product 

water from the treatment of mine water with different amounts of ACH was analysed for 

the concentration of sulphate and chloride ions and the results are shown in Figure 6.3.4. 

 

Figure 6.3.4: The concentration of sulphate and chloride ions during treatment of product 

water from FA treatment with ACH at pH between 4 and 6. 
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Results in Figure 6.3.4 show that the sulphate removed from mine water depended on the 

amount of ACH added. A sharp decrease in sulphate concentration was observed as more 

ACH was added to the water from 1:2 to 3:1 Al:SO4
2- mol ratio. A further decrease in 

sulphate concentration was observed when more ACH was added (that is, Al:SO4
2- mol ratio 

3:1 to 4:1) at pH between 4 and 6. The sulphate concentration was decreased from 

3161 mg/L to 450 mg/L or 268 mg/L when the water was treated with 3:1 or 4:1 Al:SO4
2- mol 

ratios respectively. The 4:1 ratio resulted in the mixture becoming very viscous such that the 

recovery of the treated water through filtration was almost impossible. This prevented the 

use of higher amounts of ACH from being investigated.  

The major obstacle of using ACH or Al(OH)3 to remove sulphate ions from Rand Uranium 

mine water is the high concentration of chloride ions that remain. The chloride ions during 

treatment of Rand Uranium mine water with ACH came from the flocculants itself. It was 

also necessary to adjust the pH using HCl during treatment of mine water with Al(OH)3 to 

the optimum pH of 4. This caused the concentration of Cl in the treated water to increase. 

6.4. CONCLUSION 

Removal of sulphate ions from either Rand Uranium mine water or Matla mine water using 

Al(OH)3 or ACH depends on the pH of the mixture and the amount of Al ions added. The 

optimum pH for sulphate removal during treatment of mine water with Al(OH)3 or ACH was 

found to be between 4 and 6. The optimum Al3+:SO4
2- mol ratio for the removal of sulphate 

ions was 5:1 and 6:1 for Al(OH)3 and ACH respectively. Removal of sulphate ions using ACH 

resulted in better removal compared to using Al(OH)3. Addition of ACH to mine water (with 

Al3+:SO4
2- mol ratio of 5:1 and 6:1) resulted in the removal of sulphate concentration to less 

than the potable limit. 

The disadvantage of using Al(OH)3 or ACH to remove sulphate ions from mine water is the 

amount of Cl ions that remain in the treated water. The Cl ions comes from the ACH or HCl 

added to the mixture in the case of Al(OH)3 in order to maintain the pH at the optimum 

range. Since the product water contained a high concentration of Cl ions, it is not 

worthwhile to use flocculants to remove sulphate ions from water. The optimum pH at 
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which Al(OH)3 and ACH performs well in removing sulphate ions is in the acidic range. This 

means that most of the heavy metals need to be removed by other processes. This was 

because at pH 4, heavy metals such as Mn2+ and Mg2+ would not precipitate out as their 

respective hydroxides and would remain in the treated water. 
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CHAPTER 7: APPLICATION OF THE JET LOOP REACTOR 

This Chapter explains the chemistry and kinetics of the removal of potentially toxic and/or 

radioactive elements from Matla mine water and Rand Uranium mine water when treated 

with Matla coal FA, lime and/or Al(OH)3. The kinetics of the removal of potentially toxic 

elements was compared when mine water was treated using either an overhead stirrer or 

using a jet loop reactor. The first section covers the work done on Matla mine water and the 

second section of this Chapter covers the work done on Rand Uranium mine water. 

7.1. TREATMENT OF MATLA MINE WATER    

This section covers the chemistry involved when Matla mine water was treated in a jet loop 

reactor using Matla coal FA, lime and Al(OH)3. The parameters discussed in this chapter are; 

the effect of the jet size settings in the jet loop reactor and the effect of the different 

combination of Matla coal FA, lime and Al(OH)3 in the treatment of Matla mine water. A 

comparison of the effect of mixing Matla mine water with Matla coal FA, lime and Al(OH)3 

using a jet reactor was compared to the mixing using an overhead stirrer. The comparison 

was done to understand if the jet loop reactor enhances the kinetics of the removal of 

sulphate ions from Matla mine water. The last part of this section investigated the effect of 

temperature on the removal of sulphate ions from Matla mine water during treatment with 

Matla coal FA, lime and Al(OH)3. 

Matla mine water, Matla coal FA, lime and Al(OH)3 were characterized as outlined in 

Chapter 3 and the results were presented in Chapter 4. Matla mine water contained high 

concentration of Na and sulphate ions, with very low concentration of Fe, Al, Mn, Ca and Mg 

as shown in Table 4.5.1. Matla coal FA was made up of mullite (Al2Si2O13), quartz (SiO2), 

hematite (Fe2O3), lime (CaO) and gypsum (CaSO4.2H2O) as depicted in Figure 4.1.2. Lime 

contained calcite contaminants (Figure 4.3.2) and Al(OH)3 was made up of boehmite 

(AlOOH) and bayerite (Al2O3.3H2O)  (Figure 4.3.1). 
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7.1.1. OPTIMIZATION OF THE AMOUNT FLY ASH AND LIME REQUIRED 

Previous studies have shown that when Middleburg coal mine water was treated with 

Hendrina coal FA and Al(OH)3 at pH greater than 11, sulphate ions were removed to within 

the target water quality range (TWQR) set by the Department of Water Affairs (DWAF) and 

World Health Organization (WHO) for potable water (Madzivire, 2010). This section will 

present the results to optimize the minimum amounts of Matla coal FA and lime that could 

take up the pH to greater than 11, so that addition of Al(OH)3 would affect the removal of 

sulphate ions in the form of ettringite to within the TWQR for potable water. It was 

necessary to raise the pH of the mine water to greater than 11 before addition of Al(OH)3 

because ettringite is known to be stable within pH 11.5 to 12.5 (Mynemi et al., 1998).  

Matla coal FA and Matla mine water were reacted together using a liquid to solid ratio of 

6:1 (80 L of mine water and 13 kg of coal FA) and 5:1 (80 L of mine water and 16 kg of coal 

FA) in a jet loop reactor with jet sizes set at 8 mm as outlined in section 3.8.1.1a and 

3.8.1.1b. The trends of pH, EC and temperature during treatment of Matla mine water (80 L) 

with Matla coal FA (13 kg or 16 kg) are shown in Figure 7.1.1.  
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Figure 7.1.1: The pH, electrical conductivity (EC) and temperature profile during treatment 

of Matla mine water (80 L) with Matla coal FA in a jet loop reactor with 8 mm jet sizes (13 kg 

of coal FA (a) and 16 kg of coal FA (b)). 

Treatment of 80 L of Matla mine water with 13 kg or 16 kg of Matla coal FA in a jet loop 

reactor has shown that pH and EC remained almost constant up to 45 min (Figure 7.1.1). 

From 45 min to 90 min the pH of the mixtures increased gradually and then remained 

constant up to 120 min (Figure 7.1.1). Increase in pH during mixing of Matla mine water and 

Matla coal FA mixture was due to the dissolution of CaO in Matla coal FA as shown in 

Equation 7.1. The dissolution of CaO resulted in the increase in EC. This could be attributed 

to the release of Ca and OH- ions into the mine water. 
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  OHCaOHCaO 22
2 ………………………………….……………………………………………………7.1 

The pH increased from 8 to about 10.77 when 13 kg of Matla coal FA was mixed with 80 L of 

Matla mine water in a jet loop reactor for 105 min (Figure 7.1.1a). The pH was less than 

when Matla mine water (80 L) was mixed with 16 kg of Matla coal FA (Figure 7.1.1b).  The 

pH when Matla mine water (80 L) was mixed with 16 kg of Matla coal FA in a jet loop reactor 

for 105 min was 10.89. This was because as more coal FA was added to Matla mine water; it 

resulted in more CaO being available for dissolution and therefore causing the pH to 

increase. During treatment of Matla mine water with Matla coal FA in a jet loop reactor, 

there was a gradual increase in the temperature from 14 oC to 70 oC after 105 min. This was 

because of the hydrodynamic cavitation mixing that occurred in the jet loop reactor (Jyoti 

and Pandit, 2001; Mason, 2007). 

During treatment of 80 L of Matla mine water with 13 kg or 16 kg of Matla coal FA in the jet 

loop reactor, aliquot samples were collected after every 30 min. The aliquot samples were 

filtered using a 0.45 µm filter paper and analysed using ICP-OES and IC. The results obtained 

are shown in Figure 7.1.2.  
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Figure 7.1.2: Na, Ca, Mg and sulphate concentration during treatment of Matla mine water 

(80 L) with Matla coal FA in a jet loop reactor with 8 mm jet sizes (13 kg of FA (a) and 16 kg 

of FA (b)). 

 

Results in Figure 7.1.2 indicate that increasing the amount of Matla coal FA from 13 kg to 

16 kg did not show any increased performance in the clean-up of the mine water. The Na 

concentration remained constant during treatment of Matla mine water (80 L) with 13 kg or 

16 kg of Matla coal FA. The Ca concentration increased in the treated mine water due to the 
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dissolution of CaO from Matla coal FA into the mine water as shown in Equation 7.1. Also 

the concentration of sulphate ions increased from 1475 mg/L to 2430 mg/L or 2460 mg/L 

during the first 30 min of treating Matla mine water (80 L) with 13 kg or 16 kg of Matla coal 

FA respectively. The increase in the concentration of Ca and sulphate caused by the 

dissolution of CaO and gypsum from Matla coal FA resulted in the increase in EC 

(Figure 7.1.1). After 30 min, the sulphate concentration slightly decreased. This was because 

after 30 min the Ca and sulphate concentration in the mixture was higher, such that the 

ionic product (IP = 2.05 x 10-4 mol2.L-2) was greater than the solubility product constant 

(Ksp ≈ 3.2 x 10-5). This resulted in the precipitation of gypsum, because the IP was greater 

than the Ksp. Ionic product is the product of the concentration of ionic species added 

together, while Ksp is the product of ionic species at equilibrium. 

퐼푃 = [퐶푎 ][푆푂 ] 

 퐾 = [퐶푎 ] [푆푂 ] ;  

Where [] is the concentration of ionic species added into the solution in mol.L-1 and []eq is 

concentration of ionic species in solution at equilibrium 

The modelling results given in section 5.1.1 showed that no Ca containing mineral phase 

would form when Matla mine water was treated with Matla coal FA, by increasing the 

concentration of Ca from logaCa2+ of -10 to 0 as shown in Figure 5.1.1a. This was because the 

sulphate concentration was assumed to remain constant during modelling. The sulphate 

ions removed during treatment of Matla mine water with Matla coal FA after 30 min were 

less than the sulphate that leached into the mine water from Matla coal FA. In fact, there 

was no net sulphate removal from Matla mine water during treatment with Matla coal FA. 

This agrees well with the modelling results obtained using Act2 program of the GWB 

software in section 5.1.1. 

The concentration of Mg was decreased by almost 100 % when the pH of the mine water 

was increased to above 10 when Matla mine water (80 L) was mixed with 13 kg (after 

90 min) or 16 kg of Matla coal FA (after 60 min) as shown in Figure 7.1.2a and Figure 7.1.2b 

respectively. Magnesium is known to precipitate out as Mg(OH)2 at pH greater than 10 
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(Madzivire, 2010). This was also in agreement with the modelling results obtained by the 

Act2 program of the GWB model, which predicted that Mg will start precipitating at pH 10 

as shown in Figure 5.1.1b. 

Treatment of 80 L of Matla mine water with 13 kg or 16 kg of Matla coal FA added could not 

overcome the pH barrier to achieve a pH of 11.5 and above after mixing in a jet loop reactor 

for 105 min or longer, as shown in Figure 7.1.1. The pH of at least 11.5 was required so that 

Al(OH)3 could be added to precipitate out sulphate as ettringite. Since the pH of the mixture 

of 80 L of Matla mine water and 13 kg or 16 kg of Matla coal FA could not be taken up to 

greater than 11, the jet nozzle sizes on the jet reactor were reduced from 8 mm to 6 mm. 

This was carried out in an attempt to increase the mixing intensity of Matla coal FA and 

Matla mine water through the increase in cavitation in order to increase the dissolution of 

CaO from coal FA to effect a pH increase to greater than 11.5. After the jet sizes were 

reduced to 6 mm, Matla mine water (80 L) and 16 kg of Matla coal FA were mixed in the jet 

loop reactor with the jet sizes set at 6 mm as outlined in section 3.8.1.1c. The pH, EC and 

temperature were measured after every 15 min and the results obtained are as shown in 

Figure 7.1.2. 

 

Figure 7.1.3: The pH, electrical conductivity (EC) and temperature profile during treatment 

of Matla mine water (80 L) with 16 kg of Matla coal FA in a jet reactor with jet sizes set at 

6 mm. 
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Treatment of Matla mine water (80 L) with Matla coal FA (16 kg) in a jet loop rector with jet 

sizes set at 6 mm resulted in pH increasing from 8 to 11.19 after 105 min (Figure 7.1.3). 

Forcing the mixture of Matla coal FA and Matla mine water through smaller jet sizes of 

6 mm could not cause any significant increase in pH compared to when jet sizes of 8 mm 

were used. The pH attained by mixing 80 L of Matla mine water with 13 kg of Matla coal FA 

was still less than the required of 11.5 for addition of Al(OH)3 so that sulphate ions can 

precipitate as ettringite.  

During treatment of Matla mine water (80 L) with 16 kg of Matla coal FA in a jet loop reactor 

with jet sizes set at 6 mm, aliquot samples were collected after every 30 min. The samples 

were filtered through a 0.45 µm filter paper and analysed using ICP-OES and IC. The results 

obtained are shown in Figure 7.1.4.  

 

Figure 7.1.4: Na, Ca, Mg and sulphate concentration during treatment of Matla mine water 

(80 L) with 16 kg of Matla coal FA in a jet loop reactor with jet sizes set at 6 mm. 

 

Reducing the jet nozzle sizes to 6 mm and maintaining the amount of coal FA at 16 kg did 

not result in a significant difference from the results obtained using a jet size of 8 mm 

(Figure 7.1.2b and 7.1.4). The Na concentration remained almost the same, while Ca 

increased steadily from 10 mg/L to about 570 mg/L after 105 min. The sulphate 
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concentration increased from 1475 mg/L to 2420 mg/L in the first 30 min. After 30 min, the 

sulphate concentration decreased from 2420 mg/L to 2150 mg/L as shown in Figure 7.1.4. 

The Mg concentration initially leached into the mine water in the first 30 min and then 

decreased by almost 100 % after the pH increased to above 10 after 90 min. Al(OH)3 was not 

added to precipitate sulphate as ettringite; since the pH could not be taken up to 11.5 and 

above with Matla coal FA only. This prompted a series of bench scale experiments to 

evaluate the minimum amount of lime that could be added together with Matla coal FA to 

Matla mine water in order to increase the pH to greater than 11.5. Lime was added to assist 

Matla coal FA to increase the pH to greater than 11.5 so that Al(OH)3 could be added. 

Matla mine water (500 mL) was reacted with a combination of Matla coal FA (83 g) and 

various amounts of lime (0.125 g, 0.250 g, 0.375 g and 0.620 g). After 30 min, 0.52 g of 

Al(OH)3 was added to the mixture and the reaction was continued up to 150 min as outlined 

in section 3.8.1.1d. This amount was equivalent to 6.67 x 10-3 mols of Al(OH)3. This number 

of mols was enough to remove 1922 mg/L of sulphate ions from 500 mL of Matla mine 

water as ettringite according to Equation 7.2. 

   HOHOAlCaSOCaOOHOHAlSOCa 632..3.332)(236 232423
2
4

2 ……….7.2 

During treatment of Matla mine water (500 mL) with Matla coal FA (83 g), different 

amounts of lime (0.125 g, 0.250 g, 0.375 g and 0.620 g) and 0.52 g of Al(OH)3, the  pH, EC 

and temperature were measured after every 15 min and the results are shown in 

Figure 7.1.5.  
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Figure 7.1.5: pH and EC profile during treatment of Matla mine water (500 mL) with 83 g of Matla coal FA, different proportions of 

lime (0.125 g (a), 0.250 g (b), 0.375 g (c) and 0.620 g (d) of lime) and 0.52 g of Al(OH)3 using an overhead stirrer. 
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From the pH results shown in Figure 7.1.5, a pH greater than 11.5 for all the mixtures was 

attained after 15 min. After 30 min of mixing Matla mine water (500 mL) with 83 g of Matla 

coal FA and different amounts of lime (0.125 g, 0.250 g, 0.375 g or 0.620 g), 0.52 g of 

Al(OH)3 was then added to the mixtures. The pH of the mixture containing 0.125 g, 0.250 g, 

0.375 g or 0.620 g resulted in the pH increasing from 8 to 11.64, 11.63, 11.60 or 11.75 after 

30 min respectively. After the addition of Al(OH)3, the pH of all mixtures decreased to 10.66, 

10.87, 10.87 or 10.48 for mixture containing 0.125 g, 0.250 g, 0.375 g or 0.620 g 

respectively. This could be attributed to the formation of ettringite which produced protons 

according to Equation 7.2. The EC of the mixtures followed the same trend as the pH. 

During treatment of 500 mL of Matla mine water with Matla coal FA (83 g), different 

amounts of lime and 0.52 g of Al(OH)3 using an overhead stirrer, aliquot samples were 

collected after every 30 min as outlined in section 3.8.1.1d. The samples were filtered 

through a 0.45 µm filter paper and analysed using ICP-OES and IC. Results obtained from the 

analysis of the product water are shown in Figure 7.1.6.  
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Figure 7.1.6: Na, Ca Mg and sulphate concentrations during Matla mine water (500 mL) treatment with 83 g of Matla coal FA, 

different amounts of lime (0.125 g (a), 0.250 g (b), 0.375 g (c) and 0.620 g of lime (d)) and 0.52 g of Al(OH)3 using an overhead stirrer.
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The results in Figure 7.1.6 show that the Na concentration remained constant during 

treatment of Matla mine water with Matla coal FA and various amounts of lime. About 

100 % of Mg was removed in the first 30 min. The sulphate and Ca ions concentration 

initially increased in the mine water and then decreased slightly after addition of 0.52 g of 

Al(OH)3. This correlates well with the decrease in EC when Al(OH)3 was added in Figure 

7.1.5. The decrease in EC, sulphate and Ca concentration could be due to the formation of 

ettringite according to Equation 7.2. As more lime was added to the mixture, more sulphate 

ions were removed from Matla mine water. Mixtures containing 0.125 g, 0.250 g, 0.375 g 

and 0.620 g of lime in addition to 83 g of Matla coal FA and 0.52 g of Al(OH)3 resulted in the 

sulphate concentration decreasing to 1430 mg/L, 1220 mg/L, 1270 mg/L and 1110 mg/L 

respectively in the product water.  

The ettringite formation reaction can reach dynamic equilibrium. The position of the 

equilibrium depends on the concentrations of the reactants (Ca, sulphate ions, Al(OH)3 and 

water) and the products (ettringite and H+ protons). All other reactants were constant and 

the pH was maintained around 10.80 for all the mixtures. It implied that as more Ca was 

added (by adding more lime), it shifted the equilibrium reaction to the right according to Le 

Chatelier’s principle and resulted in more ettringite formation. Hence more sulphate ions 

were removed from Matla mine water when more lime was added.  

The expected amount of sulphate to be removed when 0.52 g of Al(OH)3 was added was 

1922 mg/L. After addition of 0.52 g of Al(OH)3, it was expected that the concentration of 

sulphate ions in the treated water should have been less than 100 mg/L. The sulphate 

concentration in the treated water was greater than expected. This can be attributed to the 

fact that ettringite formation reaction released protons and the final pH of all the mixtures 

was less than 11.5, which was below the optimum pH for sulphate removal as ettringite. 

Therefore the amount of ettringite that formed was not as expected after adding 0.52 g of 

Al(OH)3. 

Matla mine water was treated with 0.620 g of lime and 0.52 g of Al(OH)3 (without adding 

Matla coal FA) using an overhead stirrer as outlined in section 3.8.1.1d. The pH, EC and 

temperature were measured after 15 min and the results are shown in Figure 7.1.7. 
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Figure 7.1.7: pH and EC profile during treatment of Matla mine water (500 mL) with 0.620 g 

of lime and 0.52 g of Al(OH)3. 

Treatment of Matla mine water with 0.620 g of lime only showed that the pH of the mixture 

was greater than 11.5 after 15 min as shown in Figure 7.1.7. Al(OH)3 (0.52 g) was then 

added after 30 min. After addition of Al(OH)3 there was a slight decrease in pH. The EC 

slightly deceased for the first 15 after and increased sharply after the addition of Al(OH)3 

between 30 min and 60 min. The slight decrease in pH could be attributed to the formation 

of ettringite (Equation 7.2). 

During treatment of Matla mine water (500 mL) with 0.620 g of lime and 0.52 g of Al(OH)3 

only using an overhead stirrer, aliquot samples were collected, filtered and analysed using 

ICP-OES and IC. The results that were obtained are shown in Figure 7.1.8.  
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Fig 7.1.8: Na, Ca, Mg and sulphate concentrations during Matla mine water (500 mL) 

treatment with 0.620 g of lime and 0.52 g of lime. 

The results in Figure 7.1.8 show that Ca ions initially leached into the water. This was 

because of the dissolution of CaO from lime causing the pH increase that was observed in 

Figure 7.1.7. After the addition of Al(OH)3, the Ca concentration decreased slightly. This was 

because of the formation of ettringite (Equation 7.2). The concentration of Mg decreased by 

almost 100 % in first 30 min and this is attributed to the formation of Mg(OH)2 at pH greater 

than 11. Again the concentration of Na remained unchanged. The concentration of sulphate 

ions decreased from 1475 mg/L to 1010 mg/L after mixing mine water with lime and 

Al(OH)3. This concentration was still above the recommended limit for potable water.  

From the results of the bench scale experiments (Figure 7.1.7 and 7.1.8) the highest 

sulphate removal was noted in the case where 0.620 g of lime and 0.52 g of Al(OH)3 only 

was used to treat Matla mine water (500 mL) without Matla coal FA addition. This was 

because there were no sulphate ions that initially leached into the water from Matla coal 

FA. In experiments (Figure 7.1.6), where a combination of lime and Matla coal FA was used, 

sulphate ions initially leached into the water from Matla coal FA and then started 

precipitating after addition of Al(OH)3, through ettringite formation according to 

Equation 7.2.  
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During treatment of Matla mine water (500 mL) with 83 g of Matla coal FA, 0.52 g of Al(OH)3 

and different amounts of lime, the amount of sulphate ions removed was not as expected. 

An excess number of mols (6.67 x 10-3 mols) of Al(OH)3 was added to remove 1922 mg/L of 

sulphate ions from 500 mL of Matla mine water as ettringite according to Equation 7.2. The 

actual sulphate ion concentration in Matla mine water was 1475 mg/L. During treatment of 

500 mL of Matla mine water with 83 g of Matla coal FA and different amounts of lime, the 

sulphate concentration increased to about 2000 mg/L as shown in Figure 7.1.6. After 

addition of 0.52 g of Al(OH)3 the sulphate concentration was expected to decrease by 

1922 mg/L to 78 mg/L assuming all the Al(OH)3 added had reacted with sulphate ions to 

form ettringite according to Equation 7.2. The lower amount of sulphate ions actually 

removed than expected could be attributed to the fact that the overhead stirring technique 

could not speed up the reaction of the formation of ettringite. This could have resulted in 

some of the Al(OH)3 remaining unreacted. This prompted a repeat of the treatment of Matla 

mine water (500 mL) with 0.125 g of lime and 0.52 g of Al(OH)3 at 80 L pilot scale. This was 

done by optimizing the settings of the jet loop reactor to speed up the removal of sulphate 

ions as ettringite as explained in section 3.8.1.2 

7.1.2. OPTIMIZING THE SETTINGS OF JET LOOP REACTOR 

From the bench scale experiments it was discovered that a combination of 0.125 g of lime 

and 83 g of Matla coal FA could increase the pH of 500 mL of Matla mine water to greater 

than 11.5. The same experiments (using the same proportions of lime, coal FA and mine 

water) were repeated using a jet loop reactor at 80 L capacity. The mixing techniques inside 

the jet loop reactor were either a combination of cavitation and impingement or cavitation 

only as outlined in section 3.8. 

7.1.2.1. Optimization of cavitation and impingement mixing 

Matla mine water (80 L) was treated using 13 kg of Matla coal FA and 200 g of lime for 

30 min using a jet loop reactor, varying the jet orifice sizes from 8, 10 and 12 mm as 

outlined in section 3.8.1.2. After 30 min, 83.2 g of Al(OH)3 was added and the mixing 
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continued. The pH, EC and temperature were measured after every 15 min and the results 

obtained are shown in Figure 7.1.9.  

 

Figure 7.1.9: pH, EC and temperature profiles during treatment of 80 L of Matla mine water 

with 13 kg of Matla coal FA,  200 g of lime and 83.2 g of Al(OH)3 in a jet loop reactor with 

different jet sizes (8 mm (a), 10 mm (b) and 12 mm (c)). 
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The results obtained after mixing Matla mine water (80 L) with 13 kg of Matla coal FA and 

200 g lime for 30 min using a jet loop reactor with jet sizes 8, 10 or 12 mm showed that pH 

increased to 11.46, 11.53 and 12.27 respectively as shown in Figure 7.1.9. There was a slight 

increase in pH when the jet sizes were increased from 8 mm to 12 mm. The increase in pH 

was because of the dissolution of CaO in Matla coal FA and lime (Equation 7.1), so it means 

that the increase in jet sizes of the jet loop reactor did not result in a major increase in the 

amount of CaO that dissolved from Matla coal FA and lime. After addition of 83.2 g of 

Al(OH)3 to the mixture at 30 min, the pH started to decrease. This could be because of the 

precipitation of ettringite (Equation 7.2). The EC followed the same trend as the pH, that is; 

it increased sharply in first the 30 min of mixing Matla mine water with Matla coal FA and 

200 g lime and then decreased after addition of 83.2 g of Al(OH)3 as shown in Figure 7.1.9. 

The temperature of the mixture increased gradually in the jet loop reactor during treatment 

of Matla mine water with Matla coal FA, lime and Al(OH)3 from about 14 oC to about 70 oC 

as shown in Figure 7.1.9. This was due to the hydrodynamic cavitation mixing, which caused 

the temperature to increase (Cobley and Mason, 2010). 

During treatment of Matla mine water (80 L) with 13 kg of Matla coal FA and 200 g of lime 

and 83.2 g of Al(OH)3 using a jet reactor with various jet sizes (8, 10 and 12 mm), aliquot 

samples were collected, filtered and analysed using ICP-OES and IC as explained in section 

3.8.1.2. The results of the composition of the water recovered are shown in Figure 7.1.10.  
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Figure 7.1.10: Na, Ca and sulphate concentrations during treatment of Matla mine water 

(80 L) with 13 kg of Matla coal FA, 200 g of lime and 83.2 g of Al(OH)3 in a jet loop reactor 

with different jet sizes (8 mm (a), 10 mm (b) and 12 mm (c)). 
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As shown in Figure 7.1.10, there was no major difference in the jet reactor with different jet 

sizes. The Na concentration remained constant implying that there was no mineral phase 

that could precipitate and remove Na from the solution. This agreed well with modelling 

results obtained using Act2 program of the GWB software. The modelling results predicted 

that no Na containing mineral phase can form when FA was mixed with Matla mine water at 

any pH or Ca concentration (Figure 5.1.2a). Magnesium concentration decreased by almost 

100 % after the first 15 min. Magnesium is known to be precipitated in the form of brucite, 

Mg(OH)2 at pH greater than 10 (Madzivire, 2010). This also agreed well with modelling 

results obtained using Act2 program of the GWB software (Figure 5.1.1b). The model 

predicted that brucite would start forming at pH 10, when Matla mine water was mixed 

with FA. 

Results obtained from the analysis of the water using ICP-OES and IC of the treated water 

after 30 min of treating 80 L of Matla mine water with 13 kg of Matla coal FA and 200 g of 

lime have shown that the Ca and sulphate concentration initially increased in the treated 

water as shown in Figure 7.1.10. The sulphate concentration increased from 1475 mg/L to 

about 2000 mg/L, while that of Ca increased from 70 mg/L to about 1100 mg/L. More Ca 

ions leached into the mine water compared to when overhead stirring was used to mix 

similar combination of Matla mine water, Matla coal FA, lime and Al(OH)3 as shown in 

Figure 7.1.6a. This means that the Ca and sulphate ions leached from the Matla coal FA due 

to the dissolution of CaO and gypsum into the water. The dissolution of CaO resulted in the 

pH increase observed in Figure 7.1.9. The increase in the concentration of Ca and sulphate 

concentration resulted in the increase in EC in the first 30 min of treatment of mine water 

(Figure 7.1.9). After the addition of 83.2 g of Al(OH)3 to the mixture the sulphate 

concentration and the Ca concentration decreased as shown in Figure 7.1.10. This was 

because of the formation of ettringite (Equation 7.2). 

The sulphate concentration decreased from about 2000 mg/L to 400-500 mg/L after 

addition of 83.2 g of Al(OH)3 to the mixture containing 13 kg of Matla coal FA and 200 g lime 

and mixing for 120 min in a jet loop reactor. The sulphate concentration was now within 

target water quality range (TWQR) set for drinking water (DWAF, 1996, WHO, 2011). The Ca 
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concentration decreased from about 1100 mg/L to about 120 mg/L.  The decrease in the 

sulphate and Ca concentration correlated well with the decrease in the EC (Figure 7.1.9). 

After the addition of 83.2 g of Al(OH)3, the sulphate concentration decreased by about 

1500 mg/L. The sulphate concentration was expected to decrease by 1922 mg/L. This was 

because 83.2 g of Al(OH)3 was equivalent to 0.013 mol/L of Al ions added to the mixture. 

This amount of Al(OH)3 was expected to precipitate out about 0.02 mol/L of sulphate ions 

according to the ettringite formation reaction (Equation 7.2), which was equivalent to 

1922 mg/L of sulphate ions. After 120 min of mixing 13 kg of Matla coal FA, 200 g of lime 

and 83.2 g of Al(OH)3, the concentration of Ca2+, SO4
2-, Al3+ and OH- that remained in solution 

were such that the solution had reached equilibrium with respect to ettringite as shown in 

Table 7.1.1.  

Table 7.1.1: Ionic product (IP) of ettringite calculated for aliquot solutions collected after 

120 min of mixing 13 kg of Matla FA, 200 g of lime, 83.2 g of Al(OH)3 with 80 L of Matla mine 

water in a jet loop reactor with different jet sizes. 

  8 mm 10 mm 12 mm 
  mg/L mol/L mg/L mol/L mg/L mol/L 
Ca 50.11 1.25 x 10-3 124 3.10 x 10-3 137 3.43 x 10-3 
Al 2.28 8.44 x 10-5 1.74 6.44 x 10-5 1.38 5.11 x 10-5 
SO4

2- 510 5.31 x 10-3 420 4.37 x 10-3 430 4.47 x 10-3 

OH-   6.61 x 10-3   1.29 x10-3   1.07 x 10-2 

IP 
 

7.86 x 10-42 
 

8.52 x 10-43 
 

4.95 x10-39 
 

The equilibrium was attained because the ionic product (IP) of ettringite was equal to the 

solubility product (Ksp) of ettringite. The Ksp of ettringite is between 10-36 and 10-45 

(Hampson and Bailey, 1982; Warren and Reardon, 1994). Therefore, the amount of sulphate 

ions removed was not as expected. This can be attributed to the fact that when Matla mine 

water was mixed with mine water not enough CaO dissolved into the mine water.  

The kinetics of the removal of sulphate ions from mine water through the formation of 

ettringite was enhanced by mixing using a jet reactor (Figure 7.1.10) compared to using an 

overhead stirrer (Figure 7.1.6a). In the jet loop reactor the reaction occurred faster due to 
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the efficient mixing caused by hydrodynamic cavitation inside the reactor. Cavitation 

enhances the rate of reaction because of the intense micro mixing of the reactants 

(Mason 2007). This shows that kinetics of the removal of sulphate ions as ettringite played 

an important role in order to achieve the required removal.  

During treatment of Matla mine water with Matla coal FA, 200 g of lime and Al(OH)3, the 

solid residues produced were collected and separated from the product water after 150 min 

reaction time. The solid residues were dried and then analysed using XRD as explained in 

section 3.8.1.2. The XRD spectrum of the solid residues was compared to the spectrum of 

the reactants (Matla coal FA, lime and Al(OH)3) and the results are shown in Figure 7.1.11.  

 

Figure 7.1.11: The XRD spectra of Matla coal FA, Al(OH)3, lime and the solid residues 

collected after 120 min of treatment of Matla mine water (80 L) with 13 kg of Matla coal FA, 

200 g of lime and 83.2 g of Al(OH)3 in a jet loop rector (E-ettringite, L-CaO, M-mullite, 

G-gypsum, Bo-boehmite, Ba-bayarite, C-calcium carbonate, H-hematite and Q-quartz). 

 

The spectrum of the solid residues recovered after treating Matla mine water showed the 

disappearance of the CaO peaks in Matla coal FA and lime spectra as well as the boehmite 
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(AlOOH) and bayerite (Al2O3.3H2O) peaks in Al(OH)3 spectrum. New ettringite peaks 

appeared in the spectrum of the solid residue collected after 150 min as shown in Figure 

7.1.11. The appearance of ettringite peaks in the XRD spectrum of the solid residue 

collected after treatment of Matla mine water proved that indeed sulphate and Ca 

concentration decreased in the product water due to formation of ettringite crystals 

according to Equation 7.2. 

During treatment of Matla mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 

83.2 g of Al(OH)3 in jet reactor with jet sizes of 12 mm, the solid residues produced were 

collected after 150 min reaction time. The solid residues were then analysed using XRF as 

explained in section 3.8.1.2. The XRF results of the solid residues were compared to the XRF 

results of the Matla coal FA and the results are shown in Table 7.1.2.  

Table 7.1.2: Comparison of the elemental composition of Matla coal FA and the solid 

residues produced after treatment of Matla mine water (80 L) with 13 kg of Matla coal FA, 

200 g of lime and 83.2 g of Al(OH)3 in  a jet loop reactor for 150 min. 

% oxide Matla coal FA ± stdev 150 min solid residue ± stdev 
SiO2 48.27 ± 0.04 44.02 ± 0.04 
Al2O3 30.89 ± 0.22 31.39 ± 0.18 
CaO 6.71 ± 0.08 9.22 ± 0.06 
Fe2O3 2.81 ± 0.03 2.80 ± 0.01 
MgO 2.12 ± 0.04 2.52 ± 0.05 
TiO2 1.26 ± 0.02 1.24 ± 0.01 
P2O5 0.89 ± 0.01 1.02 ± 0.01 
K2O 0.84 ± 0.02 0.80 ± 0.01 
Na2O 0.55 ± 0.01 0.54 ± 0.01 
SO3 0.19 ± 0.002 0.35 ± 0.003 
MnO 0.02 ± 0.0004 0.02 ± 0.001 
Loss on ignition 5.24 ± 0 5.38 ± 0 
Sum 99.79 ± 0.07 99.23 ± 0.60 
stdev stands for standard deviation for 3 replicate analysis. 

From the XRF results obtained; the percentage of SiO2 in the solid residues decreased as 

compared to that in Matla coal FA.  The percentage of Al2O3, CaO, SO3, MnO and MgO in the 

solid residue was more than in Matla coal FA. Percentage oxides of Fe, Ti, K and Na 

remained the same as in Matla coal FA as shown in Table 7.1.2. The percentage of Al2O3 and 

CaO increased because of the addition of lime and Al(OH)3 to the reaction mixture. This 
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addition could have diluted the SiO2 content in Matla coal FA, thereby reducing the 

percentage of SiO2 detected in the solid residue. This was because there was no Si 

containing chemical added to the reaction mixture. Also the SiO2 content in the solid residue 

could have decreased due to the leaching of Si from Matla coal FA into the mine water. The 

amount of Fe2O3 and TiO2 remained constant because, there was little or no Fe, Ti and P 

detected in the mine water, while the content of Na2O and K2O in the solid residues 

remained almost constant because the K and Na concentration remained unchanged in 

Matla mine water during treatment with Matla coal FA, lime and Al(OH)3 in the jet reactor 

with jet sizes of diameter 12 mm. This correlated well with results shown in Figure 7.1.10d 

that showed that the concentration of Na remained unchanged. The content of MgO, MnO 

and SO3 increased in the solid residue because the Mg and sulphate concentration 

decreased in the mine water during treatment with Matla coal FA, lime and Al(OH)3 as 

shown in Figure 7.1.10d. 

All these experiments were done using cavitation and impingement mixing in a jet loop 

reactor. This resulted in  the sulphate concentration decreasing from 1475 mg/L to less than 

500 mg/L when Matla mine (80 L) was treated with 13 kg of Matla coal FA, 200 g of lime and 

83.2 g of Al(OH)3 using a combination of cavitation and impingement mixing inside the jet 

loop reactor. The following experiments were done in order to find out if cavitation or 

impingement mixing were responsible for the enhanced sulphate removal. 

7.1.2.2. Cavitation mixing only 

Matla mine water (80 L) was mixed with 13 kg of Matla coal FA, 200 g of lime and 83.2 g of 

Al(OH)3 using a jet loop reactor. The jet sizes were set at 12 mm, but one side of the jet was 

blocked to stop impingement mixing as explained in section 3.8.1.2. This set of experiments 

was done to find if impingement was important in enhancing the treatment of Matla mine 

water using a jet loop reactor or whether cavitation only will suffice. The pH, EC and 

temperature trends, obtained when mine water was mixed using cavitation only inside the 

jet reactor, are shown in Figure 7.1.12. 
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Figure 7.1.12: pH, EC and temperature profiles during treatment of 80 L of Matla mine 

water with 13 kg of FA,  200 g of lime and 83.2 g of Al(OH)3 in a jet loop reactor with 12 mm 

jet size (one side of the jet was closed so that cavitation only mixing occurs inside the 

reactor). 

The results obtained in Figure 7.1.12 show that the pH and EC increased to about 11.86 and 

10.89 respectively after 30 min of cavitation mixing Matla mine water (80 L) with 13 kg of 

Matla coal FA and 83.2 g of lime in a jet loop rector. This was also the case when the mixing 

was carried out using a combination of impingement and cavitation with jet sizes set at 

12 mm (Figure 7.1.9). It meant that cavitation only, without impingement can enhance the 

dissolution of CaO from coal FA and lime sufficiently and cause the pH to increase to the 

required value of about 11.5. Also from Figure 7.1.12, cavitation mixing of Matla mine water 

with Matla coal FA, lime and Al(OH)3 using a jet reactor resulted in a gradual increase in 

temperature from 14 oC to 74 oC after 150 min. This temperature trend was also observed 

when the same mixture was mixed with cavitation and impingement (Figure 7.1.10). This 

meant that cavitation mixing caused the temperature increase of the mixture. 

Matla mine water (80 L) was mixed with 13 kg of Matla coal FA, 200 g of lime and 83.2 g of 

Al(OH)3 was treated in a jet loop reactor with jet sizes set at 12 mm (one side of the jet 
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blocked),  as explained in section 3.8.1.2. Aliquot samples were collected after every 30 min, 

filtered and analysed suing ICP-OES and IC. The results obtained are shown in Figure 7.1.13. 

 

Figure 7.1.13: Na, Ca, Mg and sulphate concentrations during treatment of Matla mine 

water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 83.2 g of Al(OH)3 in a jet loop 

reactor with jet sizes 12 mm (one side of the jet was closed so that cavitation only mixing 

occurs inside the reactor). 

The results shown in Figure 7.1.13, indicate that cavitation mixing resulted in the decrease 

of the sulphate from about 2000 mg/L to 430 mg/L at 120 min after addition of Al(OH)3 at 

30 min. This was within the TWQR for potable water set by WHO or DWAF (WHO, 2011; 

DWAF, 1996). The Mg concentration was decreased by almost 100 % after 30 min of 

treating Matla mine water with Matla coal FA and lime using cavitation only. No Na was 

removed from Matla mine water during treatment with Matla coal FA, lime and Al(OH)3 

using cavitation only. These trends are the same as when Matla mine water (80 L) was 

treated with 13 g of Matla coal FA, 200 g of lime and 83.2 g of Al(OH)3 using a combination 

of cavitation and impingement. This means that cavitation only can achieve the same results 

obtained by a combination of cavitation and impingement (Figure 7.1.10c). 

Treatment of Matla mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 83.2 g 

of Al(OH)3 in jet reactor has resulted in the sulphate concentration decreasing to less than 
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500 mg/L. The jet loop reactor showed better kinetics compared to an overhead stirrer. The 

differences with between a jet reactor and an overhead stirrer were: 

i. mixing technique (impingement and/or hydrodynamic cavitation that occurred in 

the jet reactor) and; 

ii. the increase in temperature that occurred during mixing using a jet reactor.  

 

The following set of experiments aimed to determine if temperature enhanced or affected 

the kinetics of the removal of sulphate ions from Matla mine water when mixed with Matla 

coal, lime and Al(OH)3. 

7.1.2.3. Effect of temperature on the removal of sulphate ions 

Matla mine water (500 mL) was mixed with Matla coal FA (83 g) and lime (0.125 g) using a 

magnetic stirrer at 20 oC. After 30 min of mixing, 0.52 g of Al(OH)3 was added. These were 

the same proportions of Matla coal FA, lime and Al(OH)3 that were used to remove the 

sulphate ions to less than 500 mg/L using a jet reactor (section 7.1.2). The reaction was 

carried on after adding Al(OH)3 measuring pH and EC after every 15 min for 150 min as 

outlined in section 3.8.1.3. The above reaction was repeated at 30 oC, 40 oC, 50 oC, 60 oC, 

70 oC and 80 oC. The samples were filtered through 0.45 µm and analysed using ICP-OES and 

IC. The results obtained are shown in Figure 7.1.14. 
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Figure 7.1.14: Effect of temperature on sulphate removal from Matla mine water. 

 

The results in Figure 7.1.14 show that the sulphate ions were removed from 1475 mg/L to 

between 1100 mg/L to 1400 mg/L at various temperatures between 15 oC and 80 oC. 

Treatment of Matla mine water with Matla coal FA, lime and Al(OH)3 at lower temperatures 

generally recorded lower sulphate ions in the treated water than levels observed at higher 

temperatures. According to Perkins and Palmer (1999), the solubility product of ettringite 

increases with increase in temperature according to the following relationship; 

8673.810689log 



T

K sp ; where T is temperature in K. 

These results showed that the removal of sulphate ions was slightly affected by 

temperature because the sulphate concentration slightly increased in the product water 

produced at higher temperatures. The results indicated that removal of sulphate ions during 

mixing of Matla mine water with Matla coal FA, lime and Al(OH)3 in the jet reactor was 

mainly caused by hydrodynamic cavitation. Temperature did not enhance the sulphate 

removal achieved during cavitation. It is noteworthy that no significant amount of sulphate 

ions could be removed by overhead mixing of Matla mine water with Matla coal FA, lime 
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and Al(OH)3. Whereas when the mixing of Matla mine water, Matla coal FA, lime and 

Al(OH)3 was carried out using impingement and hydrodynamic cavitation or hydrodynamic 

cavitation only, the sulphate concentration in the treated water decreased significantly. This 

shows the importance of adequate mixing of mine water, coal FA, lime and Al(OH)3 to 

achieve the desired sulphate removal as ettringite. These results indicated that it may be 

necessary to redesign the jet loop reactor to incorporate heat exchanger in order to absorb 

the temperature and use the energy produced for other purposes. 

7.1.3. SUMMARY OF RESULTS 

The pH and percentage removal of Mg, Na, Ca and sulphate ions during treatment of Matla 

mine water with different combination of chemicals is shown in Figure 7.1.15. 

 

Figure 7.1.15: The pH and percentage removal of Mg, Ca, Na, sulphate ions during 

treatment of Matla mine water with various combinations of chemicals (* shows that 

cavitation mixing only occurred in the jet loop reactor). 

-100
-80
-60
-40
-20

0
20
40
60
80

100

 1
3 

kg
 F

A 
(8

m
m

 je
t)

16
kg

 F
A 

(8
m

m
 je

t)

13
 k

g 
FA

 +
20

0g
 li

m
e 

an
d 

83
.2

 g
Al

(O
H)

3 
(o

ve
rh

ea
d 

st
irr

in
g)

13
 k

g 
FA

 +
20

0g
 li

m
e 

an
d 

83
.2

 g
Al

(O
H)

3 
(8

m
m

 je
t s

ize
)

13
kg

 F
A+

 2
00

g 
lim

e 
an

d 
83

.2
 g

Al
(O

H)
3 

(1
0m

m
 je

t s
ize

)

13
kg

 F
A+

 2
00

g 
lim

e 
an

d 
83

.2
 g

Al
(O

H)
3 

(1
2m

m
 je

t s
ize

)

13
kg

 F
A+

 2
00

g 
lim

e 
an

d 
83

.2
 g

Al
(O

H
)3

 (*
12

m
m

 je
t s

ize
)

%
 re

m
ov

al
 a

nd
 p

H

pH
Mg
sulphate
Na
Ca

 

 

 

 



CHAPTER 7: APPLICATION OF A JET LOOP REACTOR 

191 
 

Results in Figure 7.1.15 show that treatment of Matla mine water with coal FA (8 or 13 kg), 

lime (100, 150 or 200 g) and/or 83.2 g of Al(OH)3 resulted in about 99 % removal of Mg ions 

only. The Act2 program of the GWB software (Figure 5.1.1b) showed that if the pH of Matla 

mine was increased to 10 and above Mg(OH)2 precipitation would occur. This means that 

the Mg ions in Matla mine water were removed as Mg(OH)2 when the pH was increased to 

greater than 10. Na remained almost constant during treatment of Matla mine water with 

Matla coal FA, lime and Al(OH)3. The Act2 program showed that no Na containing mineral 

can form when Matla mine water was treated with Matla coal FA (Figure 5.1.2b). Ions such 

as Ca and sulphates remained unchanged or leached (negative % removal) into the mine 

water treated with Matla coal FA only as shown in Figure 7.1.15. This agreed with the 

modelling results obtained using Act2 program of the GWB which predicted that sulphate 

ions would not be removed when it was treated with coal FA. 

Treatment of Matla mine water with coal FA (13 kg or 16 kg) has shown that pH of the 

mixture could be taken up to about 10.5 after 120 min of mixing in a jet reactor by 

cavitation and impingement. This was due to the dissolution of the CaO fraction in Matla 

coal FA. This was not in the pH range of 11.5 to 12.5 that was required for optimum 

sulphate precipitation as ettringite. Addition of 200 g of lime to the mixture of Matla mine 

water (80 L) and Matla coal FA (13 kg) was found to increase the pH to greater than 11.5.  

After mixing Matla mine water (80 L) with Matla coal FA (13 kg) and lime (200 g), the 

sulphate and Ca leached into the mine water from coal FA and lime. This was due to the 

dissolution of CaO (in coal FA and lime) and gypsum minerals (in coal FA).  Addition of 

Al(OH)3 to the mixture of Matla mine water, Matla coal FA and lime in a jet loop reactor 

resulted in the concentration of sulphate and Ca decreasing due to the precipitation of 

ettringite. The sulphate and Ca concentration decreased to about 450 mg/L and 40 mg/L 

respectively. This was about 70 % sulphate removal and 40 % Ca removal of the original 

concentration in Matla mine water. When the same mixtures were mixed using an overhead 

stirrer, the 19 % of sulphate ions were removed from mine water as shown in Figure 7.1.15. 

This showed that jet loop mixing enhanced the removal of sulphate ions compared to 

overhead stirring. The increased sulphate removal in a jet loop reactor was due to the 

increased rate of formation of ettringite caused by the hydrodynamic cavitation mixing 
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inside a jet loop reactor. Jet sizes of the jet reactor did not have a major effect on sulphate 

removal as shown in Figure 7.1.15. Treatment of Matla mine water with Matla coal FA, lime 

and Al(OH)3 in a jet reactor with jet sizes 8, 10 and 12 mm resulted in 65 %, 71 % and 59 % 

sulphate removal respectively as shown in Figure 7.1.15. 

Cavitation mixing technique on its own resulted in a slight increase in sulphate removal from 

Matla mine water. Treatment of Matla mine water with Matla coal FA, lime and Al(OH)3 

inside a jet reactor by a combination of cavitation and impingement (jet sizes set at 12 mm) 

resulted in about 59 % sulphate removal. The percentage sulphate removal when Matla 

mine water was treated with Matla coal FA and lime and Al(OH)3 inside a jet reactor by 

cavitation only (with jet sizes set at 12 mm) was about 71 %. 

Mixing Matla mine water with Matla coal FA, lime and Al(OH)3 in a jet reactor by a 

combination of cavitation and impingement or cavitation only resulted in a gradual increase 

in temperature of the mixture. The temperature increase was due to hydrodynamic 

cavitation that occurred inside the jet reactor. Temperature increase was shown to have no 

effect the removal of sulphate ions during treatment of Matla mine water with Matla coal 

FA, lime and Al(OH)3. These findings have shown that Matla mine water can be successfully 

cleaned up in terms of the removal of Mg and sulphate ions at 80 L capacity pilot plant. The 

product water still has high a pH and Na concentration that would require reduction and 

removal respectively. The water can be polished using ion exchange to remove Na and pH 

can be reduced by carbonation using CO2. 

The composition of Matla mine water before and after treatment with the best combination 

of chemicals in a jet loop was compared to the required target water quality range (TQWR) 

for individual elements for potable water. The comparison is shown in Table 7.1.3. 
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Table 7.1.3: Composition of Matla mine water and the product water from the treatment of 
Matla mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 83.2 g of Al(OH)3 in a 
jet loop reactor for 120 min. 
Parameter  Matla mine water Product water TWQR for potable water 
pH 8 .00 ± 1.07 11.08 ± 1.25 6-9 
EC (µS/cm) 3371 ± 24 6740 ± 17 0-700 
sulphate 1475.25 ± 2 420 ± 15 200-500 
Na  956.05 ± 19.26 945.62 ± 31.05 0-200 (100) 
Ca  70.35 ± 3.05 374.00 ± 7.61 (0-32) 
Mg 39.54 ± 1.12 2.13 ± 0.97 (0-30) 
Cl 24.00 ± 1.84 25.01 ± 2.07 0-250 (100) 
B  14.93 ± 1.07 0.66 ± 0.22 0-2.4 
K  10.08 ± 0.92 19.09 ± 3.45 (0-50) 
Hg  2.43 ± 0.13 1.78 ± 0.45 0-0.006 (0.001) 
Sr  2.05 ± 0.06 15.71 ± 1.46 NA 
Si 1.28 ± 0.33 7.02 ± 0.81 NA 
Se  1.12 ± 0.09 nd 0-0.04 (0.02) 
Zn  0.41 ± 0.12 nd 0-0.5 (3) 
Ba 0.20 ± 0.0009 0.45 ±0.09 0-0.7 
Cu  0.19 ± 0.0073 0.23 ± 0.0012 0-2 (1) 
Fe  0.059 ± 0.0017 nd 0-0.3 (0.1) 
Al  0.056 ± 0.0013 0.04 ± 0.0013 0-0.2 (0.15) 
Ni  0.023 ±0.0012 nd 0-0.07 
Be  0.017 ± 0.0035 0.0074 ± 0.0012 0.012 
Mn  0.0094 ±1.12 x 10-4 0.0013 ± 0.00014 0-0.1 (0.05) 
Cd  0.005 ± 1.98 x 10-4 nd 0-0.003 (0-0.005) 
As  0.0014 ± 3.01x 10-5 0.0016 ± 0.00037 0-0.01 
Mo  nd 0.065 ± 0.0071 0-0.07 
Cr nd 0.019 ± 0.0087 0-0.05 
V  nd 0.0081 ± 0.00045 0-0.01 
Co  nd 0.073 ± 0.0013 NA 
Pb  nd nd 0-0.01 
Note: values in brackets obtained from Department of Water Affairs of South Africa if the values are 
different from those indicated by World Health Organization (WHO, 2011; DWAF, 1996). NA and nd 
stand for “not applicable” and “not detected” respectively. TWQR stands for target water quality 
target. 

 

Results in Table 7.1.3 show that raw Matla mine water had nine parameters (EC, Na, Ca, Mg, 

B, Hg, Se, Cd and sulphate ions) that were not within the required TWQR range for potable 

water set by WHO and DWAF (DWAF, 1996; WHO, 2011). When Matla mine water was 

treated with 13 kg of Matla coal FA, 200 g of lime and 83.2 g of Al(OH)3, the product water 
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had six parameters (pH, EC, Na, Ca, Hg and Mo) that were above the TWQR for potable 

water. The product water requires polishing to regulate pH and remove Na, Ca, Hg and Mo 

from the water before it can be used for domestic purposes. This can be achieved by 

polishing the water using strong cation and weak anion resin to remove the cation and 

anions and in the process regulating the pH. 

7.1.4. CONCLUSION 

Treatment of Matla mine water that contained high concentration of Na and sulphate ions 

as well as B, Hg, Se and Cd with Matla coal FA only resulted in the product water containing 

more sulphate ions than that was originally in the mine water. This was because of leaching 

of sulphate ions from Matla coal FA. Good quality water was produced when Matla mine 

water was treated with Matla coal FA, lime and Al(OH)3. During treatment of Matla mine 

water with Matla coal FA, lime and Al(OH)3, sulphate ions were removed as ettringite. The 

removal of sulphate ions was dependent on the type of mixing technique used. 

Hydrodynamic cavitation and/or impingement mixing of Matla mine water, Matla coal FA, 

lime and Al(OH)3 has shown that sulphate ions were removed from 1475 mg/L to 420 mg/L, 

which was within the TWQR for potable water. On the other hand when Matla mine was 

mixed with Matla coal FA, lime and Al(OH)3 using normal stirring, the sulphate ions could 

not be removed to within the TWQR for potable water. More sulphate ions were removed 

when Matla mine water, Matla coal FA, lime and Al(OH)3 was treated in a jet loop reactor 

because hydrodynamic mixing that occurred in the jet loop reactor increased the kinetics of 

the removal of sulphate ions as ettringite. Although Matla coal FA contained radionuclides, 

they did not leach into Matla mine water during treatment of Matla mine water. Only small 

amount of Mo leached into the mine water from coal FA. 

Treatment of Matla mine water with Matla coal FA, lime and Al(OH)3 was carried out at 80 L 

capacity. This is a straightforward, one step process that requires only pH control. This 

meant that the process is capable of being up scaled to an industrial scale. If this process 

would be used to treat water at industrial scale, this would go a long way in achieving a 

cheap and sustainable solution to mine water treatment. This is because coal FA is a waste 
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material and usually produced close to coal mine. This reduces the costs of transporting the 

coal FA to the treatment facility. The cost evaluation of this treatment process fell outside 

the scope of the study. 
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7.2. TREATMENT OF RAND URANIUM MINE WATER   

The optimum conditions obtained during treatment of Matla mine water with Matla coal 

FA, lime and Al(OH)3 in a jet loop reactor were applied to treat Rand Uranium mine water. 

Rand Uranium mine water was acidic mine water and contained elevated concentration of 

Fe, Al, Mn, Mg, Ca and sulphate ions. It was also found to contain elevated concentration of 

radioactive elements. The full physicochemical characteristics are shown in Table 4.6.1 and 

Table 4.6.2. The jet orifice diameter sizes of the jet loop reactor were maintained at 12 mm. 

The mixing of the Rand Uranium mine water and the Matla coal FA (with or without addition 

of lime and Al(OH)3) in a jet reactor was done using cavitation only.  

Matla coal FA and lime contained about 6.71 % (Table 4.1.1) and 72.19 % (Table 4.4.1) of 

CaO respectively. The aluminium hydroxide used in the treatment of Rand Uranium mine 

water was 95 % pure and the elemental composition is shown in Table 4.3.1. During 

treatment of Rand Uranium mine water, various combinations of Matla coal FA, additional 

lime and Al(OH)3 were investigated. The parameters investigated during treatment of Rand 

Uranium mine water in a jet loop were; 

a. Effect of Al(OH)3 only 
b. Effect of the amount of Matla coal FA. 

c. Effect of the amount of Matla coal FA and Al(OH)3 

d. Effect of the amount of lime and Al(OH)3 

e. Effect of the combination of Matla coal FA, lime and Al(OH)3 

f. Effect of jet reactor mixing followed by overhead stirring 

 

It was observed that treatment of Matla mine water with Matla coal FA, lime and Al(OH)3 

resulted in the removal of sulphate ions to within the TWQR for potable water (WHO, 2011, 

DWAF, 1996). However it was not clear if Al(OH)3, lime or Matla coal FA, could be effective 

in the removal of sulphate from the mine water on their own. If so, this could reduce the 

amount of substances needed to treat Rand Uranium mine water. The following two 

sections (7.2.1 and 7.2.2) presents the results obtained when Rand Uranium mine water was 

treated with Al(OH)3 or Matla coal FA separately. This was done in order to find the effect of 
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these substances on the removal of potentially toxic and radioactive elements from Rand 

Uranium mine water. The composition of Rand Uranium mine water used in this study is 

shown in Table 4.6.1 and contained 2561 mg/L of sulphate ions. 

7.2.1. EFFECT OF ALUMINIUM HYDROXIDE 

Rand Uranium mine water (80 L) was treated with 86.58 g of Al(OH)3 only in a jet loop 

reactor as outlined in section 3.8.2.1. The amount of Al(OH)3 (86.58 g) was chosen based on 

the proportion added when Matla mine water was treated with Matla coal FA lime and 

Al(OH)3  to precipitate sulphate ions as ettringite in section 7.1. The pH, EC and temperature 

were measured after every 15 min and the results are shown in Figure 7.2.1.  

 

Figure 7.2.1: pH, EC (mS/cm) and temperature profile during treatment of 80 L of Rand 

Uranium mine water with 86.58 g of Al(OH)3 using a jet loop reactor. 

 

Results in Figure 7.2.1 showed that treatment of Rand Uranium mine water (80 L) with 

86.58 g of Al(OH)3 resulted in the pH increasing from 2.54 to only 3.88 after 30 min. The pH 

remained constant for about 75 min and then increased slightly to 4.40 at 150 min. The pH 

increased because Al(OH)3 is amphoteric and acts as a base in acidic medium therefore 
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neutralizing the acidity  of Rand Uranium mine water to some extent as shown in Equation 

7.3-7.5. 

OHOHAlHOHAl 223 )()(   ……………………………………………………………………….….7.3 

OHOHAlHOHAl 2
2

2 )()(   ……………………………………………………………………………7.4 

OHAlHOHAl 2
32)(   ……………………………………………………………………………………7.5 

The EC decreased from 2 to 1.48 mS/cm after 45 min of treatment of Rand Uranium mine 

water in a jet loop reactor. From 45 min to 150 min the EC remained constant.  

During treatment of Rand Uranium mine water (80 L) with 86.58 g of Al(OH)3, samples were 

collected after every 30 min. The samples were filtered through a 0.45 µm filter paper and 

analysed for their elemental and ionic content using ICP-OES and IC. The results obtained for 

the major ions such as Fe, Al, Mg, Mn, Ca and sulphate ions are shown in Figure 7.2.2.  

 

Figure 7.2.2: The Fe, Al, Mg, Mn, Ca and sulphate concentration during treatment of 80 L of 

Rand Uranium mine water with 86.58 g of Al(OH)3 using a jet loop reactor. 
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From the results in Figure 7.2.2, the concentration of Fe, Mn and Mg slightly decreased in 

the first 30 min and then remained constant from 30 min to 150 min. The Fe concentration 

was decreased from 201 mg/L to 75 mg/L, that of Mn was decreased from 60 mg/L to 

30 mg/L and that of Mg was decreased from 153 mg/L to 115 mg/L after 30 min of mixing of 

Rand Uranium mine water and Al(OH)3 in jet loop reactor. Iron concentration decreased the 

most compared to levels of Mn and Mg removed. This was because the pH of the mixture 

was increased to 3.88 after 30 min of mixing Rand Uranium mine water (80 L) with 86.58 g 

of Al(OH)3 in the jet reactor. According to the Act2 program of the GWB, Fe precipitates at 

pH 3.5 as jarosite-K (Figure 5.1.5) while Mn and Mg require the pH of the mixture to be 

increased to 10 and above to form Mn(OH)2 (Figure 5.1.6) and Mg(OH)2 (Figure 5.1.7) 

respectively. The concentration of Al slightly increased in the solution during the first 30 min 

and then remained the same for the duration of the treatment process. The slight increase 

in Al concentration was due to the added Al(OH)3. The sulphate concentration decreased 

from 2562 mg/L to 2142 mg/L after 150 min. The decrease in sulphate concentration could 

be ascribed to the interaction of the sulphate ions with the positively charged Al species. 

The slight decrease in the concentration of Fe, Mg, Mn and sulphate ions correlates well 

with the decrease in EC observed in Figure 7.2.1. 

The solid residue collected after 150 min of treating Rand Uranium mine water (80 L) with 

86.58 g of Al(OH)3  using a jet reactor was analysed using XRD. The spectrum of the solid 

residue was compared to that of Al(OH)3 as shown in Figure 7.2.3.  
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Figure 7.2.3: XRD spectra of Al(OH)3 and the solid residue after treatment of 80 L of Rand 

Uranium mine water with 86.58 g of Al(OH)3 using a jet loop reactor (Bo-boehmite; 

Ba-bayerite). 

 

The XRD results obtained in Figure 7.2.3 showed that the boehmite and bayerite peaks in 

Al(OH)3 disappeared and the 150 min solid residues were composed of mainly amorphous 

minerals (Figure 7.2.18). These amorphous materials could have been oligomeric Al species 

with adsorbed sulphate ions that were removed from Rand Uranium mine water. 

The solid residues collected after 150 min of treating Rand Uranium mine water (80 L) with 

Al(OH)3 was analysed using XRF. The results were compared to the XRF results of the 

aluminium hydroxide and the results are shown in Table 7.2.1. 
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Table 7.2.1: Composition of Al(OH)3 and the solid residues produced after treatment of 

Rand Uranium mine water (80 L) with 86.58 g of Al(OH)3 in a jet loop reactor for 150 min. 

 % mass oxide Al(OH)3 ± stdev 150 min solid residue ± stdev 

Al2O3 65.13 ± 0.86 63.71 ± 0.64 
Fe2O3 11.67 ± 0.54 13.82 ± 0.14 
SO3 4.24 ± 0.45 5.56 ± 0.11 
SiO2 1.75 ± 0.24 1.76 ± 0.01 
CaO 0.48 ± 0.05 0.43 ± 0.004 
Na2O 0.38 ± 0.004 0.37 ± 0.004 
K2O 0.05 ± 0.01 0.04 ± 0.0005 
P2O5 ND 0.10 ± 0.001 
TiO2 ND 0.04 ± 0.0005 
MnO ND 0.04 ± 0.0005 
Cr2O3 ND 0.01 ± 0.004 
MgO ND ND 
Loss on ignition 16.25 ± 0.13 14.16 ± 0.71 
Sum 99.93 ± 0.29 100.04 ± 0.018 
ND means not detected and stdev means standard deviation. 

The XRF results presented in Table 7.2.1 showed that the amount of Al2O3, SiO2, CaO, Na2O 

and K2O in the solid residues was the same as the amount in Al(OH)3. The concentration of 

Fe2O3, SO3, P2O5, TiO2, MnO and Cr2O3 increased in the solid residues. The increase in the 

amount of Fe2O3, SO3 and MnO in the 150 min solid residue correlated well with the 

decrease in the concentration of Fe, Mn and S in Rand Uranium mine water during 

treatment with Al(OH)3 (Figure 7.2.2).  

7.2.2. EFFECT OF AMOUNT OF FLY ASH 

In this second set of experiments, only Matla coal FA was used as an ameliorant. Rand 

Uranium mine water (80 L) was mixed with 8 kg or 13 kg of Matla FA in the jet loop reactor.  

The pH, EC and temperature were measured after every 15 min as explained in section 

3.8.2.1. The results obtained are shown in Figure 7.2.1.  
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Figure 7.2.4: pH, EC and temperature profile during treatment of 80 L of Rand Uranium 

mine water with 8 kg (a) or 13 kg (b) of Matla coal FA for 120 min in a jet reactor. 

 

From Figure 7.2.4, the pH of Rand Uranium mine water increased rapidly to pH greater than 

10.86 in the first 30 min, after which there was a gradual increase in pH to around 11.97 

after 60 min for the mixture containing 8 kg of Matla coal FA as shown in Figure 7.2.4a. 
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increasing rapidly to 10.94 in the first 30 min; it was buffered for the next 15 min and then 

increased to 13.50 as shown in Figure 7.2.4b.  

The increase in pH was caused by the dissolution of CaO from Matla coal FA according to 

Equation 7.1 in section 7.1.1. Treatment of Rand Uranium with 13 kg of Matla coal FA 

resulted in higher pH of the mixture than with 8 kg. This was because the addition of more 

Matla coal FA added meant that more CaO was available to dissolve out of Matla coal FA 

matrix to cause a higher pH increase.  

The buffering of the pH could be attributed to the Fe, Al, Mn and Mg 

precipitation/hydrolysis reactions that occurred during treatment Rand Uranium mine water 

with Matla coal FA as shown in Equations 7.6, 7.7, 7.8 and 7.9. These reactions produce 

acidity or consume alkalinity.  

  HOHFeOHOHFe 2)(2 32
3 ………………………………………………………………….7.6 

  HOHAlOHOHAl 2)(2 32
3 …………………………………………………………………….7.7 

  HOHMnOHMn 2)(2 22
2 ……………………………………………………….…………………….7.8 

  HOHMgOHMg 2)(2 22
2 ………………………....………………………………………………….7.9 

Electrical conductivity initially increased for the first 60 min and then started decreasing. 

The increase in EC could be because of the dissolution of CaO from Matla coal FA that added 

more Ca ions in the water. There was a gradual increase in the temperature of the mixture. 

This was caused by the hydrodynamic cavitation that occurred inside the jet loop reactor 

after 120 min to about 70 oC. 

During treatment of Rand Uranium mine water (80 L) with 8 kg or 13 kg of Matla coal FA, 

aliquot samples were collected after every 30 min. The treated mine water samples were, 

filtered and analysed using IC and ICP-OES. The results obtained are shown in Figure 7.2.5.  
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Figure 7.2.5: The Al, Ca, Fe, Mg, Mn and sulphate concentration during treatment of 80 L of 

Rand Uranium mine water with 8 kg (a) or 13 kg (b) of Matla coal FA for 120 min in jet loop 

reactor. 

 

The results in Figure 7.2.5a show that the sulphate concentration decreased from 
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of Matla coal FA in a jet reactor. The Ca concentration in the treated mine water initially 

increased from 360 mg/L to about 1577 mg/L in the first 30 min of treating Rand Uranium 
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CaO from Matla coal FA which also caused the pH and EC to increase (Figure 7.2.4). After 

30 min, the Ca concentration started decreasing gradually. This was attributed to the fact 

that the mixture was supersaturated with respect to gypsum and therefore it was assumed 

that precipitation of gypsum occurred at this stage, according to Act2 modelling results in 

section 5.1.2.1. 

Treatment of Rand Uranium mine water (80 L) with 13 kg of Matla coal FA resulted in the 

sulphate concentration decreasing from 2500 mg/L to 1496 mg/L after 120 min 

(Figure 7.2.5b). The Ca concentration during treatment of Rand Uranium mine water (80 L) 

with 13 kg of Matla coal FA increased from 360 mg/L to 1883 mg/L in the first 30 min. This 

Ca concentration was more than when Rand Uranium mine water was mixed with 8 kg of 

Matla coal FA for 30 min. This was because as more Matla coal FA was used, it resulted in 

more CaO dissolution thereby increasing the Ca concentration (Figure 7.2.5b) and pH 

(Figure 7.2.4b). The higher amount of Ca that was made available by the addition of 13 kg 

would result in more sulphate ions being removed in the form gypsum compared to the 

case when using 8 kg of Matla coal FA (Figure 7.2.5a). The kinetics of sulphate removal was 

increased by the addition of more Matla coal FA. This was because the minimum sulphate 

concentration was achieved after 60 min of mixing Rand Uranium mine water (80 L) with 

13 kg (Figure 7.2.5b). The sulphate concentration continued to decrease to 1621 mg/L after 

120 min of mixing Rand Uranium mine water (80 L) with 8 kg of coal FA (Figure 7.2.5b). 

Analysis of the water sampled during treatment of Rand Uranium mine water with Matla 

coal FA (8 kg or 13 kg) using ICP-OES has shown that the concentration of Al, Mn and Mg 

decreased to almost zero after 30 min, when the pH of the water had been increased to 

greater than 10, which corresponded to the decrease in EC observed in Figure 7.2.4. The Fe 

concentration decreased to almost zero after Rand Uranium mine water was mixed with 

13 kg and 8 kg for 30 min and 60 min respectively. Potentially toxic elements such as Al and 

Fe are known to precipitate out at pH greater than 3; while Mn and Mg are known to 

precipitate out at pH greater than 9 and 10 respectively due to the formation of their 

respective hydroxides according to Equation 7.6, 7.7, 7.8 and 7.9 (Madzivire, 2010, 

Gitari  et al., 2008).  
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The empirical data obtained for the removal of sulphate ions, Fe, Al, Mn and Mg from Rand 

Uranium mine water with Matla coal FA agreed well with the results obtained from 

modelling using the Act2 program of the GWB software in section 5.1.2.1. The GWB 

software predicted that sulphate ions removal as gypsum was dependent on the 

concentration of Ca ions added to the mixture (Figure 5.1.3). Removal of Al, Fe, Mn and Mg 

was predicted to be pH dependent by the GWB software as shown in Figures 5.1.4, 5.1.5, 

5.1.6 and 5.1.7. It was predicted by Act2 program that Al and Fe would precipitate at a pH 

greater than 4, while Mn and Mg would precipitate out from Rand Uranium mine water at a 

pH greater than 10. 

Solid residues that were collected after 120 min of treatment of Rand Uranium mine water 

(80 L) with 8 kg of Matla coal FA were analysed using XRD to determine the mineral phases 

that may have disappeared or new minerals that may have formed. Comparison of the XRD 

spectrum of the solid residues that remain after treatment of Rand Uranium mine water to 

that of Matla coal FA is shown in Figure 7.2.6.  
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Figure 7.2.6: XRD for fly ash and solid residue after treatment of Rand Uranium mine water 

(80 L) with Matla coal FA (8 kg or 13 kg) for 120 min using a jet loop reactor (G-gypsum; 

M-mullite; Q-quartz; M-mullite; L-CaO; H-hematite; E-ettringite). 

 

The XRD spectra (Figure 7.2.6) showed that CaO peak (at 2 θ of 37.36) became less distinct 

in the solid residue XRD spectrum, while gypsum (at 2 θ of 11.63) and ettringite (at θ of 

29.07) peaks appeared in the solid residue XRD spectrum. This confirmed that the decrease 

observed in sulphate and Ca ion concentration shown in Figure 7.2.5 was due to gypsum 

and ettringite precipitation. No Al, Fe or Mn mineral phases could be discerned by XRD 

because the minerals might be present in low abundance or as amorphous hydroxide 

mineral phases that cannot be detected by XRD.  

The XRF analysis of the solid residues that were recovered during the treatment of Rand 

Uranium mine water (80 L) at 60 min and 120 min with 13 kg of Matla coal FA in a jet loop 

reactor is shown in Table 7.2.2.  
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Table 7.2.2: The elemental composition of Matla coal FA and the solid residues collected 

after 60 min and 120 min of treatment of 80 L of Rand Uranium mine water with 13 kg of 

Matla coal FA. 

% Oxide Matla coal FA 60 min solid residue 120 min solid residue 

SiO2 48.27 ± 0.04 48.10 ± 0.08 48.35 ± 0.14 
Al2O3 30.89 ± 0.22 30.98 ± 1.02 31.57 ± 0.37 
CaO 6.71 ± 0.08 5.26 ± 0.12 5.72 ± 0.09 
Fe2O3 2.81 ± 0.03 2.89 ± 0.04 2.89 ± 0.01 
MgO 2.12 ± 0.04 2.91 ± 0.06 2.91 ± 0.02 
TiO2 1.26 ± 0.02 1.62 ± 0.08 1.58 ± 0.06 
P2O5 0.89 ± 0.01 1.05 ± 0.02 1.03 ± 0.01 
K2O 0.84 ± 0.01 0.73 ± 0.01 0.71 ± 0.02 
Na2O 0.55 ± 0.01 0.59 ± 0.04 0.58 ± 0.02 
SO3 0.19 ± 0.002 0.20 ± 0.01 0.38 ± 0.04 
MnO 0.02 ± 0.0004 0.10 ± 0.001 0.10 ± 0.004 
Loss on ignition 5.24 ± 0 4.18 ± 0.15 4.09 ± 0.09 
Sum 99.79 ± 0.07 98.61 ± 0.05 99.91 ± 0.14 
 

The XRF results in Table 7.2.2 showed that the CaO in Matla coal FA was more than in the in 

the solid residues collected after 60 min. This was because of the dissolution CaO in the 

Matla coal FA that caused the pH of the mine water (Figure 7.2.4a) and the concentration of 

Ca in the mine water (Figure 7.2.5a) to increase. The subsequent slight increase in CaO in 

120 min solid residue is attributed to the formation of gypsum and ettringite in the solid 

residues that was confirmed with XRD in Figure 7.2.6. This correlates well with the increase 

in the amount of SO3 in solid residues collected at 120 min compared to that collected after 

60 min. The increase in SO3 observed in the solid residues was due to the formation of 

gypsum and ettringite in solid residues noted by XRF which correlated well with the 

decrease in the sulphate concentration in the Rand Uranium mine water during treatment 

with 13 kg of Matla coal FA (Figure 7.2.5a). 

The XRF results in Table 7.2.2 showed that the Fe2O3, Al2O3, MgO and MnO increased in the 

solid residues compared to that in Matla coal FA. This was because the Fe, Mg and Mn 

concentration decreased in Rand Uranium mine water (Figure 7.2.5a) and formed part of 

the solid residue. According to Act2 program, Fe, Al, Mg and Mn precipitated as hydroxides 
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when Rand Uranium mine was treated with Matla coal FA. The amount of SiO2 and Na2O 

remained relatively the same, while that of P2O5 and K2O slightly decreased in the solid 

residues when compared to that in Matla coal FA. This was because Rand Uranium mine 

water contained low amounts of these elements and there was no dissolution of these 

elements from Matla coal FA into the mine water. 

Treatment of Rand Uranium mine water (80 L) with Matla coal FA (8 kg or 13 kg) has 

showed that the concentration of heavy metals such as Fe, Al, Mg and Mg can be removed 

by almost 100 %. The sulphate concentration that remained in the treated water was 

around 1500-1600 mg/L. This concentration was above the target water quality range 

(TWQR) for potable water, industrial use and livestock watering (DWAF, 1996 and 

WHO, 2011). The removal of sulphate ions during treatment of Rand Uranium mine water 

(80 L) with Matla coal FA (8 or 13 kg) was limited by the solubility of gypsum and the low 

concentration of Al in Rand Uranium  mine water to form ettringite. Therefore the addition 

of Al(OH)3 was applied to investigate the possibility to further precipitate out the remaining 

sulphate ions as ettringite since the pH of the water was above 11.5 (Smit, 1999, Smit and 

Sibilski, 2003 and Madzivire, 2010).  

7.2.3. EFFECT OF THE AMOUNT OF FLY ASH AND ALUMINIUM HYDROXIDE 

In the following experiments, the effect of adding Al(OH)3 to the treatment system involving 

Rand Uranium mine water and Matla coal FA was investigated. Rand Uranium mine water 

(80 L) was mixed with 8 kg or 13 kg of Matla coal FA in a jet loop reactor for 30 min. After 

30 min, 86.58 g of Al(OH)3 was added to each mixture and aliquot samples were collected 

after every 30 min as outlined in section 3.8.2.3. The aliquot samples were filtered and 

analysed using ICP-OES and IC. The pH, EC and temperature were measured after every 

15 min. Since treatment of Rand Uranium mine water with Matla coal FA in section 7.2.2 has 

resulted in the sulphate concentration decreasing to about 1600 mg/L, the Al(OH)3 added 

(86.58 g) was calculated to be theoretically equivalent to precipitate out about 2000 mg/L of 

sulphate ions as ettringite (3CaO.3CaSO4.Al2O3.26H2O). This means excess amount of 

Al(OH)3 was added to the reaction mixture assuming that the Al(OH)3 added would react 
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with sulphate ions in solution only, and not with sulphate ions that was already in the solid 

phase before the addition of Al(OH)3. 

The pH, EC and temperature results obtained during treatment of Rand Uranium mine (80 L) 

with Matla coal FA (8 kg or 13 kg) and 86.58 g of Al(OH)3 is shown in Figure 7.2.7.  

 

Figure 7.2.7: pH, EC and temperature profile during treatment of 80 L of Rand Uranium 

mine water with 8 kg (a) or 13 kg (b) of Matla FA and 86.58 g of Al(OH)3. 
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From Figure 7.2.7, the pH of Rand Uranium mine water was increased to 10.78 and 11.19 

when mixed with 8 kg and 13 kg of FA respectively in a jet loop reactor for 30 min. The EC of 

both mixtures followed the same trend as that of pH. The increase in pH and EC after mixing 

Rand Uranium mine water with Matla coal FA could be ascribed to the increase in Ca 

concentration caused by the dissolution of CaO in Matla coal FA.  

After 30 min, 86.58 g of Al(OH)3 was added to both mixtures. After the addition of Al(OH)3 

the pH decreased to about 9 and 10 for the mixtures containing 8 kg or 13 kg of Matla coal 

FA respectively. The decrease in pH was ascribed to the protons that were produced during 

the precipitation of ettringite (Equation 7.2). As shown in Figure 7.2.7 the pH gradually 

increased again to pH 10.20 and 10.70 for the mixture containing 8 kg and 13 kg 

respectively. The pH of the mixture containing 13 kg of Matla coal FA was higher than the 

mixture containing 8 kg of Matla coal FA because higher amount of  coal FA added meant 

that more CaO was made available to increase the pH. Addition of 86.58 g of Al(OH)3 to the 

mixture containing 13 kg of Matla coal FA after 30 min resulted in the decrease in EC to 

about 2 mS/cm. The EC was maintained around this value thereafter. This decrease could be 

ascribed to the precipitation of sulphate and Ca ions as ettringite. After addition of 86.58 g 

of Al(OH)3, the EC remained  at about 3 mS/cm up to 45 min and increased sharply to 

4.41 mS/cm the mixture containing 8 kg of Matla coal FA. This was because the pH of the 

mixture was well below the pH of stability of ettringite of 11.5-12.5 as shown in Figure7.2.7a 

(Myneni et al., 1998). It was expected for ettringite to re-dissolve as the pH decreased. 

Aliquot samples collected after every 30 min during treatment of Rand Uranium mine water 

(80 L) with Matla coal FA (13 kg or 8 kg) and 86.58 g of Al(OH)3 were filtered and analysed 

using ICP-OES and IC. The results obtained are shown in Figure 7.2.8.  
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Figure 7.2.8: The Al, Ca, Fe, Mg, Mn and sulphate concentration during treatment of 80 L of 

Rand Uranium mine water with 8 kg (a) or 13 kg (b) of Matla FA and 86.58 Al(OH)3. 

 
Figure 7.2.8 showed that during treatment of Rand Uranium mine water (80 L) with Matla 

coal FA (8 kg or 13 Kg) and 86.58 g of Al(OH)3, Fe, Mn and Mg were removed by almost 

100 % in the first 60 min. This was because these elements formed their respective 

hydroxides at the applied pH. This agrees with the modelling results obtained using Act2 

program of the GWB software in section 5.1.2. The Act2 program showed that removal of 

Fe, Mg and Mn from mine water with coal FA was pH dependent.  
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The results in Figure 7.2.8 showed that treatment of Rand Uranium mine water (80 L) with 

8 kg or 13 kg of Matla coal FA for 30 min resulted in the decrease in sulphate concentration 

to 2231 mg/L (Figure 7.2.8a) and 1922 mg/L (Figure 7.2.8b) respectively. After the addition 

of 86.58 g of Al(OH)3 to the mixture containing 8 kg of Matla coal FA, the sulphate 

concentration decreased further to 1678 mg/L at 120 min (Figure 7.2.8a). After 120 min the 

sulphate concentration in the mixture containing 8 kg started to increase again as shown in 

Figure 7.2.8a. This might be due to the dissolution of ettringite such that the sulphate 

concentration was 2052 mg/L after 300 min because the pH was well below 11.5, which is 

the optimum pH for ettringite stability.  

After addition of 86.58 g of Al(OH)3 at 30 min to the mixture containing 13 kg of Matla coal 

FA, the sulphate concentration continued to decrease to 1094 mg/L after 180 min due to 

ettringite precipitation. After 180 min, the sulphate concentration started increasing again 

to 1518 mg/L as shown in Figure 7.2.8b. In both cases (8 kg and 13 kg), the decrease in 

sulphate concentration was lagging behind the trend of pH. The sulphate concentration 

decreased after the pH had decreased and increased after the pH had increased. This 

showed that the removal of sulphate ions after addition of Al(OH)3 was pH dependent. The 

removal of sulphate ions from Rand Uranium mine water followed the same trend as the 

decrease in Ca concentration as shown in Figure 7.2.8. This was because both these ions 

precipitated out in the form of ettringite.  

During treatment of Rand Uranium mine water (80 L) with 13 kg of Matla coal FA and 

86.58 g of Al(OH)3, the solid residues were collected after 30 min and 300 min. The solid 

residues were analysed using XRD to determine the mineral phases and were compared to 

those of Matla coal FA and Al(OH)3 as shown in Figure 7.2.9.  
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Figure 7.2.9: The spectra of Matla coal FA and Al(OH)3 compared to the spectra of the solid 

residues collected after 30 min and 300 min of treating Rand Uranium mine water (80 L) 

with Matla coal FA (13 kg) and 86.58 g of Al(OH)3 (Bo-boehmite; Ba-bayerite; E-ettringite; 

M-mullite; Q-quartz;  C-CaO; L-lime; H-hematite). 

 

The appearance of ettringite peaks in the solid residues XRD spectrum (Figure 7.2.9) 

confirmed that indeed sulphate and Ca concentration decreased due to the formation of 

ettringite. The CaO peaks in Matla FA as well as the bayerite and boehmite peaks from the 

Al(OH)3 disappeared during treatment of Rand Uranium mine water. The disappearance of 

CaO in the solid residues was due to its dissolution, thereby causing the pH of the mixture to 

increase (Figure 7.2.7). The disappearance of bayerite and boehmite peaks was due to the 

reaction of these Al(OH)3 mineral phases with Ca and sulphate ions to form ettringite, 

shown to be present in the XRD spectrum of the solid residues. 

As noted, 86.58 g of Al(OH)3 was added after 30 min to the mixture of 80 L of Rand Uranium 

mine water and Matla coal FA (8 kg or 13 kg) containing between 1900 mg/L  and 2200 mg/L 
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of sulphate ions. The amount of Al(OH)3 that was added, was theoretically supposed to 

precipitate out about 2000 mg/L of sulphate ions as ettringite (3CaO.3CaSO4.Al2O3.32H2O). 

In this case only 179 mg/L and 400 mg/L of the sulphate ions were removed from the 

mixture containing 8 kg and 13 kg of Matla coal FA respectively. This was because; when the 

ettringite was being formed it released protons. This caused the pH of the mixture to 

decrease to below 11, which was below the optimum pH for ettringite stability of 11.5-12.5. 

This showed the need for careful pH control during treatment of Rand Uranium mine water 

with Matla coal FA and lime. More sulphate ions were removed in the mixture containing 

13 kg of coal FA than in the mixture with 8 kg of coal FA. This was because of a slightly 

higher pH in the mixture containing 13 kg of coal FA. 

Treatment of Rand Uranium mine water (80 L) with Matla coal FA (8 kg or 13 kg) and 86.58 g 

of Al(OH)3 in a jet reactor removed most of the heavy metals such as Fe, Mg and Mn to 

within the TQWR. The sulphate concentration was greater than 1500 mg/L. This was still 

above the TWQR for industrial and domestic applications. The following section investigates 

the effect of adding different amounts of lime and 86.58 g of Al(OH)3 on the removal of 

sulphate ions from Rand Uranium mine water. 

7.2.4. EFFECT OF THE AMOUNT LIME AND ALUMINIUM HYDROXIDE 

In the next set of experiments, no fly ash was added to the system. Rand Uranium mine 

water was treated with lime and Al(OH)3. In order to investigate the amount of lime 

required to achieve and maintain the correct pH to precipitate out sulphate ions as 

ettringite, Rand Uranium mine water (80 L) was treated with 100, 150 or 200 g of lime only 

for 30 min in a jet reactor with jet sizes of 12 mm diameter. After 30 min 86.58 g of Al(OH)3 

was added to each mixture as outlined in section 3.8.2.4. The pH, EC and temperature of 

each mixture were measured after every 15 min and the results are shown in Figure 7.2.10. 
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Figure 7.2.10: pH, EC and temperature profile during treatment of 80 L of Rand Uranium 

mine water with 100 g (a), 150 g (b) or 200 g (c) of lime and 86.58 g of Al(OH)3. 
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Results in Figure 7.2.10 showed that the increase in pH of the mixture was dependent on 

the amount of lime added. Treatment of 80 L of Rand Uranium mine water with 100 g, 150 g 

and 200 g of lime resulted in the pH increasing to 10.60 (Figure 7.2.10a), 11.82 (Figure 

7.2.10b) and 11.99 (Figure 7.2.10c) respectively. Addition of Al(OH)3 after 30 min to each 

mixture resulted in the decrease in pH.  When the Al(OH)3 was added to the mixture 

containing 100 g, the pH of the mixture decreased to around 9, while in the case of the 

mixtures containing 150 g and 200 g, the pH of the mixtures were slightly greater than 10. 

The decrease in pH could be attributed to the formation of ettringite, which produces 

protons during its formation (Equation 7.2). 

During treatment of Rand Uranium mine water with 100 g, 150 g or 200 g of lime and 

Al(OH)3 in a jet loop reactor, aliquot samples were collected after every 30 min. The samples 

were filtered using a 0.45 µm filter and analysed using ICP-OES and IC. The results obtained 

are shown in Figure 7.2.11.  
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Figure 7.2.11: The Fe, Al, Mg, Mn, Ca and sulphate concentration during treatment of 80 L 

of Rand Uranium mine water with 100 g (a), 150 g (b) or 200 g (c) of lime and 86.58g Al(OH)3 

in a jet loop reactor. 

0

500

1000

1500

2000

2500

3000

0

50

100

150

200

250

0 15 30 45 60 75 90 105 120 135 150

Ca
 a

nd
 su

lp
ha

te
 (m

g/
L)

Fe
, A

l, 
M

g 
an

d 
M

n 
(m

g/
L)

time (min)

Fe Al Mg
Mn Ca sulphate

0

500

1000

1500

2000

2500

3000

0

50

100

150

200

250

0 15 30 45 60 75 90 105 120 135 150

Ca
 a

nd
 su

lp
ha

te
 (m

g/
L)

Fe
, A

l, 
M

g 
an

d 
M

n 
(m

g/
L)

time (min)

Fe Al Mg
Mn Ca sulphate

0

500

1000

1500

2000

2500

3000

0

50

100

150

200

250

300

0 15 30 45 60 75 90 105 120 135 150

Ca
 a

nd
 su

lp
ha

te
 (m

g/
L)

Fe
, A

l, 
M

g 
an

d 
M

n 
(m

g/
L)

time (min)

Fe Al Mg
Mn Ca sulphate

a 

b 

c 

 

 

 

 



CHAPTER 7: APPLICATION OF A JET LOOP REACTOR 

219 
 

Treatment of Rand Uranium mine water with lime for 30 min in a jet reactor showed that 

Fe, Mn and Mg were removed by almost 100 % (Figure 7.2.11). This was due to the 

formation of Fe(OH)3, Mn(OH)2 and Mg(OH)2 at pH around 6, 9 and 10 respectively. In the 

case of treatment of Rand Uranium mine water with 100 g lime, the Mg concentration 

slightly increased after addition of Al(OH)3 as shown in Figure 7.2.11a. This was because of 

the decrease in pH to less than 9, which was below the optimum pH for the formation of 

Mg(OH)2. This agrees well with the modelling results obtained using Act2 model of the GWB 

software in section 5.1.2, which showed that the removal of Fe, Mn and Mg was pH 

dependent. 

The Al concentration during the treatment of Rand Uranium mine water with 150 g or 200 g 

of lime remained significantly high as show in Figure 7.2.11b and Figure 7.2.11c. This was 

because of the formation of Al(OH)4
- at pH greater than 10 after the addition of Al(OH)3. The 

Al(OH)4
- could not be incorporated into the ettringite structure since the pH was around 

10.2, which was far less than the optimum pH of 11.5. 

Treatment of Rand Uranium mine water with different amounts of lime has shown that Ca 

ions initially leached into the mine water during the first 30 min of treatment. As more lime 

was added more CaO ions dissolved into the water thereby causing the concentration of Ca 

ions and pH of the solution to increase. After adding Al(OH)3 to the mixture at 30 min, the 

Ca ions concentration decreased. The sulphate concentration decreased from about 

2500 mg/L to about 1700 mg/L in the first 30 min of treating Rand Uranium mine water 

(80 L) with 100 g of lime (Figure 7.2.11a). This could be ascribed to the formation of gypsum 

and/or ettringite. Addition of 86.58 g of Al(OH)3 to the mixture at 30 min resulted in no 

further sulphate removal from Rand Uranium mine water as shown in Figure 7.2.11a. In this 

case ettringite could not form because the pH was around 9, which was well below the 

optimum pH for ettringite formation. 

During treatment of Rand Uranium mine water (80 L) with 150 g of lime in jet reactor for 

30 min, the Ca concentration increased from 360 mg/L to 936 mg/L, while the sulphate 

concentration decreased from 2500 mg/L to about 1650 mg/L as shown in Figure 7.2.11b. 

The decrease in the sulphate concentration could be attributed to the formation of gypsum 
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and or ettringite. After addition of 86.58g of Al(OH)3, the concentration of Ca and sulphate 

slightly decreased as shown in Figure 7.2.11b. Increasing the amount of lime to 200 g has 

shown that sulphate concentration decreased from about 2500 mg/L to about 1500 g in the 

first 30 min (Figure 7.2.11c). Addition of 86.58 g of Al(OH)3 at 30 min resulted in the further 

decrease of sulphate concentration to about 850 mg/L (Figure 7.2.11c). Although the pH of 

the solution was almost the same as using 150 mg/L, the more lime added by adding 200 g 

of lime to the mixture resulted in the addition of more Ca ions.  This resulted in the shifting 

of the ettringite equilibrium reaction to the right thereby forming more products. 

Solid residues that were collected after 30 min treating of Rand Uranium mine water (80 L) 

with 200 g of lime and 150 min after addition of 86.58 g of Al(OH)3 were analysed using XRD. 

The XRD spectra of, lime and the solid residues collected after 150 min are shown in 

Figure 7.2.12. 

 

Figure 7.2.12: Comparison of the XRD spectra of lime and Al(OH)3 to that of the solid 

residues produced after treatment of Rand Uranium mine water with lime and Al(OH)3 using 

a jet loop reactor (L-CaO; C-calcite; Bo-boehmite; Ba-bayerite; G-gypsum; B-bassannite; 

E-ettringite, A-aragonite). 
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Comparing the XRD spectrum of the solid residues formed after 30 min of mixing lime and 

Rand Uranium mine water showed that the CaO peaks disappeared from lime spectrum and 

new peaks of gypsum (CaSO4.2H2O), bassanite (CaSO4.0.5H2O), calcite (CaCO3) and aragonite 

(CaCO3) appeared in the 30 min solid residue spectrum. This means that the decrease in the 

sulphate concentration (Figure 7.2.11) in the first 30 min of mixing Rand Uranium mine 

water and lime was due to gypsum and bassanite formation. 

OHCaSOOHSOCa 242
2
4

2 2.2   ……………………………………………………………………..7.10 

OHCaSOOHSOCa 242
2
4

2 5.0.5.0   ……………………….………………………………………7.11 

The characteristic peaks of CaO disappeared due to the dissolution of lime according to 

Equation 7.1, causing the pH of the mixture to increase (Figure 7.2.10). Calcite and aragonite 

were products of the carbonation of the mixture with atmospheric CO2 during mixing in a jet 

loop reactor. 

322
3

2
2 333 CaCOOCOCa  ……………………………………………………………………………….7.12 

The XRD spectrum of the solid residues that were formed after addition of Al(OH)3 (that is at 

150 min) as well as the spectra of Al(OH)3 and lime are shown in Figure 7.2.12. The spectra 

showed the disappearance of the characteristic CaO and calcite peaks in the lime spectrum 

and the bayerite (AlOOH) and boehmite (Al(OH)3) peaks in the Al(OH)3 spectrum and the 

appearance of ettringite peaks in addition to the gypsum, bassanite, calcite and aragonite 

peaks in the 150 min solid residue XRD spectrum. This proved that the removal of sulphate 

ions from mine water after addition of Al(OH)3 was due to the formation of ettringite and 

gypsum. 

The solid residues produced after 150 min of treating Rand Uranium mine water (80 L) with 

200 g of lime and 86.58 g of Al(OH)3 in a jet loop reactor were analysed using XRF and the 

results are presented in Table 7.2.3. 
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Table 7.2.3: Composition of lime and the solid residues collected after 150 min of treating 

Rand Uranium mine water (80 L) with 200 g of lime and 86.58 g of Al(OH)3 in a jet loop 

reactor. 

% oxide Lime   (mg/kg) 150 min solid residue (mg/kg) 
CaO 72.19 ± 1.54 25.88 ± 2.09 
MgO 0.72 ± 0.11 4.27 ± 0.55 
Na2O 0.23 ± 0.02 0.19 ± 0.08 
SiO2 0.12 ± 0.03 3.40 ± 0.18 
Al2O3 0.09 ± 0.01 9.83 ± 1.03 
Fe2O3 0.06 ± 0.005 2.18 ± 0.17 
SO3 0.05 ± 0.002 16.51 ± 0.98 
K2O 0.02 ± 0.007 0.06 ± 0.006 
MnO 0.02 ± 0.001 1.00 ± 0.01 
P2O5 0.01 ± 0.006 0.08 ± 0.004 
TiO2 0.01 ± 0.004 0.10 ± 0.02 
Loss on ignition 26.65 ± 0.97 35.52 ± 1.08 
Sum 100.17 ± 1.67 99.02 ± 1.57 
 

From Table 7.2.3, the Ca content in the solid residue collected after 150 min had 

significantly decreased. This was because the amount of Ca that went into solution during 

the dissolution of CaO and caused the pH to increase as shown in Figure 7.2.10c. The 

amount of Ca ions that precipitated as gypsum, bassanite and ettringite was not equal to 

the amount of Ca ions that was added to the water due to the dissolution of CaO. More Ca 

ions remained in solution as shown in Figure 7.2.11c. 

The solid residue collected after 150 min of treatment of Rand Uranium mine water (80 L) 

with 200 g and 86.58 g of Al(OH)3 showed an increase in MgO, SiO2, Al2O3, Fe2O3, K2O, MnO, 

SO3 and P2O5. The increased content of Mg, Fe and Mn in the solid residues was because of 

the removal of these ions from mine water as shown in Figure 7.2.11c. The increase in Al 

content in the solid residue was due to the added Al(OH)3. There was also a higher content 

of SO3 in the solid residue compared that found in lime.  This was because of the 

precipitation of sulphate ions in mine water as gypsum, bassannite and ettringite as shown 

in Figure 7.2.12.  
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Treatment of Rand Uranium mine water with various amount of lime and 86.58 g Al(OH)3 

has showed the removal of sulphate ion from mine water was dependent on the amount of 

lime added. Although the amount of lime was increased to 200 g per 80 L of Rand Uranium 

mine water, the sulphate concentration that remained in the mine was about 900 mg/L, 

which was above the TWQR for potable water of 500 mg/L. Treatment of mine water using 

lime is very expensive and not sustainable (Coetzee et al., 2000). Therefore the combination 

of coal FA, lime and Al(OH)3 was investigated. This was done in order to reduce the amount 

of lime to be added and also to reduce the sulphate concentration to within TWQR for 

potable water. 

7.2.5. EFFECT OF THE COMBINATION OF FLY ASH, LIME AND AL(OH)3 

In this section a combination of Matla coal FA, lime and Al(OH)3 was investigated in order to 

reduce the sulphate levels to within the TWQR for potable water. Rand Uranium mine water 

(80 L) was treated with 8 kg of Matla coal FA and 100 g or 200 g of lime for 30 min in the jet 

loop reactor. The jet reactor had the jet sizes set at 12 mm. After 30 min, 86.58 g of Al(OH)3 

was added to each mixture as outlined in section 3.8.2.5. The pH, EC and temperature were 

measured after every 15 min. The results obtained are shown in Figure 7.2.13.  
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Figure 7.2.13: pH and EC profile during treatment of 80 L of Rand Uranium mine water with 

8 kg of Matla coal FA, 86.58 g of Al(OH)3 and 100 g (a) or 200 g (b) of lime using a jet loop 

reactor. 

 

Results in Figure 7.2.13a showed that treatment of Rand Uranium mine water (80 L) with 

8 kg of Matla coal FA and 100 g of lime in the jet loop reactor for 30 min resulted in the pH 

increasing to 11.36. After adding Al(OH)3, the pH of the mixture decreased from 11.36 to 
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9.85 at 45 min. Then the pH started increasing gradually again as shown in Figure 7.2.13a. 

The EC followed the same trend as the pH. 

Mixing of Rand Uranium mine water (80 L) with 8 kg of Matla coal FA and 200 g of lime in a 

jet loop reactor for 30 min resulted in the pH increasing to 13.59. Addition of Al(OH)3 to the 

mixture after 30 min resulted in the pH of the mixture decreasing gradually to 12 as shown 

in Figure 7.2.13b. The decrease in pH after addition of Al(OH)3 could be due to the formation 

of ettringite, which releases protons. The EC followed the same trend as the pH of the 

mixture in both cases. There was a gradual increase in temperature due to the 

hydrodynamic cavitation which was also observed previously in sections 7.2.1, 7.2.2, 7.2.3 

and 7.2.4. 

During treatment of Rand Uranium mine water (80 L) with 8 kg of Matla coal FA, lime (100 g 

or 200 g) and 86.58 g of Al(OH)3 in a jet loop reactor, aliquot samples were collected after 

every 30 min. The samples were filtered through a 0.45 µm filter paper and analysed using 

ICP-OES and IC. The results obtained are shown in Figure 7.2.14.  
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Figure 7.2.14: The Fe, Al, Mg, Mn, Ca and sulphate concentration during treatment of 80 L 

of Rand Uranium mine water with 8 kg of Matla FA, 86.58 g of Al(OH)3 and 100 g (a) or 200 g 

(b) of lime using a jet loop reactor. 

 

Treatment of Rand Uranium mine water (80 L) with 8 kg Matla coal FA and 100 g of lime in 

the jet loop reactor for 30 min showed that the sulphate concentration decreased from 

about 2500 mg/L to 2057 mg/L as shown in Figure 7.2.14a. When 200 g of lime was added 

to 80 L of Rand Uranium and 8 kg of Matla coal FA and mixed in a jet loop reactor for 

0

500

1000

1500

2000

2500

3000

0

50

100

150

200

250

0 15 30 45 60 75 90 105 120 135 150

Ca
 a

nd
 su

lp
ha

te
 (m

g/
L)

Fe
, A

l, 
M

g 
an

d 
M

n 
(m

g/
L)

time (min)

Fe Al
Mg Mn
Ca sulphate

0

500

1000

1500

2000

2500

3000

0

50

100

150

200

250

0 15 30 45 60 75 90 105 120 135 150
Ca

 a
nd

 su
lp

ha
te

 (m
g/

L)

Fe
, A

l, 
M

g 
an

d 
M

n 
(m

g/
L)

time (min)

Fe Al
Mg Mn
Ca sulphate

a 

b 

 

 

 

 



CHAPTER 7: APPLICATION OF A JET LOOP REACTOR 

227 
 

30 min, the sulphate concentration decreased from about 2500 mg/L to 1729 mg/L as 

shown in Figure 7.2.14b. The sulphate concentration decreased because of gypsum 

precipitation. More sulphate was removed when 200 g of lime was added than when 100 g 

of lime was added because as more lime was added to the mixture, more Ca ions were 

added into the mixture resulting in the shifting of the gypsum precipitation reaction to the 

right according to Le Chatelier’s principle. This agrees well with modelling results obtained 

using Act2 program of the GWB software in section 5.1.2.1. The GWB software showed that 

if Rand Uranium mine water was mixed with Matla coal FA sulphate ions can be removed as 

gypsum, if the right amount of Ca ions has been added to the solution.  

After adding 86.58 g of Al(OH)3 the sulphate concentration decreased to 1057 mg/L in the 

mixture containing 8 kg of Matla coal FA and 100 g of lime (Figure 7.2.14a). The addition of 

86.58 g of Al(OH)3 to the mixture containing 8 kg of Matla coal FA and 200 g of lime resulted 

in the decrease in sulphate concentration to 700 mg/L (Figure 7.2.14b). Adding 86.58 g of 

Al(OH)3 to the mixture containing 8 kg of Matla coal FA and 200 g of lime showed that more 

sulphate ions were removed than in the mixture containing 8 kg of Matla coal FA and 100 g 

of lime. This was because the mixture containing 200 g of lime maintained the pH in the 

optimum range of ettringite stability, while the mixture containing 100 g of lime could not 

maintain the pH in the required range of 11.5 to 12.5 (Figure 7.2.13). 

Analysis of the water during treatment of Rand Uranium mine water (80 L) with 8 kg of 

Matla coal FA and either 100 g or 200 g of lime showed that the Ca concentration increased 

in both mixtures for the first 30 min of mixing as shown in Figure 7.2.14. The Ca 

concentration in the mixture containing 8 kg of Matla coal FA and 100 g of lime increased 

from 360 mg/L to 675 mg/L after 30 min (Figure 7.2.14a). In the mixture containing 8 kg of 

Matla coal FA and 200 g of lime, the Ca concentration increased to 1577 mg/L after 30 min. 

This was due to the dissolution of CaO in both the lime and Matla coal FA added to the mine 

water. More Ca was added into the water when 8 kg of Matla coal FA and 200 g of lime 

were used than when 8 kg of Matla coal FA and 100 of lime were used because more CaO 

was available to dissolve. This resulted in a higher pH increase of the mixture containing 8 kg 

of Matla coal FA and 200 g of lime than in the mixture containing 100 g of lime and 8 kg of 

Matla coal FA.  
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After adding 86.58 g of Al(OH)3, the Ca concentration decreased gradually in the mixture 

containing 100 g of lime and 8 kg of Matla coal to 362 mg/L after 120 min of mixing in a jet 

loop reactor. The Ca concentration in the mixture decreased sharply in the mixture 

containing 200 g of lime and 8 kg of Matla coal FA to 362 mg/L after 120 min of mixing in 

the jet loop reactor. The decrease in the Ca followed the same trend as the removal of 

sulphate ions from mine water after adding Al(OH)3. This was because Ca and sulphate ions 

were both precipitating as ettringite. 

Results depicted in Figure 7.2.14 showed that Fe, Al, Mg and Mn were removed by almost 

100 % when the pH of Rand Uranium mine water was increased to greater than 10 by 

mixing with 8 kg of Matla coal FA and either 100 g or 200 g of lime for 30 min in a jet 

reactor. This agreed well with the modelling results obtained using Act2 program of the 

GWB software which showed that removal of Fe, Al, Mg and Mn was pH dependent. The 

GWB showed that Al and Fe could be removed if the pH of the mixture was above 4 

(Figure 5.1.4 and 5.1.5) and Mn and Mg when the pH was above 10 (Figure 5.1.6 and 5.1.7). 

During treatment of Rand Uranium mine water (80 L) with Matla FA (8 kg) and lime (200 g) 

in a jet reactor, a sample of the solid residues was collected after 30 min. Then after 

addition of 86.58 g of Al(OH)3 to the mixture, another sample of the solid residues was 

collected after 150 min of mixing in a jet loop reactor. The two samples of the solid residues 

were analysed using XRD to determine the mineral composition. The spectra of the solid 

residues after 30 min and 150 min and the spectra of Matla coal FA, lime and Al(OH)3 are 

shown in Figure 7.2.15.  
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Figure 7.2.15: Comparison of the XRD spectra of lime, Al(OH)3 and Matla coal FA to that of 

the solid residues produced during treatment of Rand Uranium mine water with 8 kg of 

Matla coal FA, 200 g of lime and 86.58 g Al(OH)3 using a jet loop reactor (L-CaO; C-calcite; 

Bo-boehmite; Ba-bayerite; G-gypsum; B-bassannite; E-ettringite, A-aragonite; M-mullite; 

Q-quartz; H-hematite). 

 

The XRD results showed that neither the lime nor the bayerite and boehmite peaks were 

present in the spectra of the solid residues. New peaks of ettringite and gypsum appeared in 

the spectra of both solid residues. This means that the decrease in sulphate concentration 

observed when Rand Uranium mine water (80 L) was treated with 8 kg of Matla coal FA and 

200 g of lime before and after addition of 86.58 g of Al(OH)3 was due to ettringite and 

gypsum precipitation. The intensity of the ettringite peaks increased in the 150 min solid 

residues (after addition of Al(OH)3). This was because more Al was made available for 

formation of more ettringite by adding Al(OH)3 into the reaction mixture. The disappearance 

of the characteristic CaO peaks in the solid residues spectra correlates well with the increase 
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in pH of the mixture (Figure 7.2.13). This means that the dissolution of CaO from lime and 

coal FA was responsible for the pH increase. 

Solid residues collected at 30 min and 150 min of treatment of Rand Uranium mine water 

(80 L) with 8 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 were analysed using 

XRF. The results obtained are shown in Table 7.2.4. 

Table 7.2.4: Composition of Matla coal FA and the solid residues produced after treatment 

of Rand Uranium mine water (80 L) with 8 kg of Matla coal FA, 200 g of lime and 86.58 g of 

Al(OH)3 in a jet loop reactor for 30 min and 150 min. 

% oxide Matla coal FA 30 min solid residue 150 min solid residue 
SiO2 48.27 ± 0.04 48.20 ± 0.05 48.24 ± 0.04 
Al2O3 30.89 ± 0.22 31.12 ± 0.17 31.44 ± 0.25 
CaO 6.71 ± 0.08 6.83 ± 0.11 7.17 ± 0.07 
Fe2O3 2.81 ± 0.03 3.62 ± 0.01 3.49 ± 0.01 
MgO 2.12 ± 0.04 2.88 ± 0.02 2.80 ± 0.07 
TiO2 1.26 ± 0.02 1.60 ± 0.04 1.53 ± 0.03 
P2O5 0.89 ± 0.01 1.00 ± 0.2 0.95 ± 0.02 
K2O 0.84 ± 0.01 0.73 ± 0.0.3 0.70 ± 0.01 
Na2O 0.55 ± 0.01 0.58 ± 0.02 0.57 ± 0.02 
SO3 0.19 ± 0.002 0.32 ± 0.01 0.63 ±0.03 
MnO 0.02 ± 0.0004 0.99 ± 0.001 0.98 ± 0.003 
Loss on ignition 5.24 ± 0 1.09 ± 0.18 1.03 ± 0.05 
Sum 99.79 ± 0.07 98.96 ± 0.12 99.53 ± 0.27 
 

Results obtained on the analysis of Matla coal and solid residues collected after 30 min and 

150 min showed that major elements such as Al, Ca, Fe, Mg and Mn increased in the solid 

residues. The amount of Al and Ca increased because of the precipitation of Al and Ca from 

Rand Uranium mine water as ettringite. Also the amount of Al and Ca in the solid residues 

increased because of the addition of Al(OH)3 and lime to the mine water. The content of Fe, 

Mg and Mn increased in the solid residues compared to Matla coal FA because of the 

precipitation of these elements out of Rand Uranium mine water. This correlated well with 

the decrease in the concentration of Fe, Mg and Mn concentration during treatment of 

Rand Uranium mine water with Matla coal FA, lime and Al(OH)3 (Figure 7.2.14b).  
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The content of SO3 in the solid residue was higher than that of Matla coal FA. This correlated 

well with decrease in the sulphate concentration in the treated water during treatment of 

Rand Uranium mine water with Matla coal FA, lime and Al(OH)3 (Figure 7.2.14b). The 

content of Na2O and P2O5 in Matla coal FA was almost the same to that of the solid residues 

collected after 150 min. This was because Rand Uranium mine water contained small 

quantities of P and Na which did not change during treatment of Rand Uranium mine water. 

The SiO2 content in solid residues was the same as that of Matla coal FA.  

Treatment of mine water with 8 kg of Matla coal FA, lime (100 g or 200 g) and 86.58 g of 

Al(OH)3 in a jet loop reactor, have shown that most major elements such as Fe, Al, Mg and 

Mn were removed from mine water to within the TWQR for potable water. The sulphate 

concentration was reduced to 700 mg/L when Rand Uranium mine water (80 L) was treated 

with 8 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3.  This amount of sulphate 

ions was still above the TWQR for potable water. 

The following set of experiments were carried out in order to reduce the sulphate 

concentration to less than 500 mg/L. Rand Uranium mine water was treated with 13 kg of 

Matla coal FA, lime (100 g or 200 g) and 86.58 g of Al(OH)3 in a jet loop reactor. It was 

chosen to increase more coal FA and not lime in this case so as to avoid the costs associated 

with lime. The pH, EC and temperature profile during treatment of Rand Uranium mine 

water under these conditions is as shown in Figure 7.2.16.  
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Figure 7.2.16: pH and EC profile during treatment of 80 L of Rand Uranium mine water with 

13 kg of Matla coal FA, 86.58 g of Al(OH)3 and 100 g (a) or 200 g (b) of lime using a jet loop 

reactor. 

 

When Rand Uranium mine water (80 L) was mixed with 13 kg of Matla coal FA and 100 g or 

200 g of lime for 30 min, the pH increased to 11.64. After 30 min of mixing Rand Uranium 

mine water with Matla coal FA and lime, 86.58 g of Al(OH)3 was added to the mixture. 

Addition of Al(OH)3 resulted in the pH of the mixture decreasing slightly to 11.04 as shown 

in Figure 7.2.16a. The EC also followed the same trend. The EC of the solution containing 

100 g of lime decreased sharply from 5.12 mS/cm to 2.5 mS/cm after 15 min of addition of 
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Al(OH)3 to the mixture. The EC was maintained around 2.5 mS/cm for the duration of the 

experiment. 

 

Treatment of Rand Uranium mine water (80 L) with 13Kg of Matla coal FA and 200 g of lime 

for 30 min resulted in the pH increasing to 13.69. After addition of 86.58 g of Al(OH)3 the pH 

decreased gradually to 11.24 as shown in Figure 7.2.16b. The EC also followed the same 

trend. The EC initially increased to 7.5 mS/cm after mixing Rand Uranium mine water with 

Matla coal FA and 200 g of lime. The EC decreased gradually from about 7.5 mS/cm to about 

2 mS/cm after addition of 86.58 g of Al(OH)3. The decrease in EC can be attributed to the 

removal of Ca and sulphate ions from the mixture due the formation of ettringite as was 

observed before.  

 

The increase in pH and EC after addition of Matla coal FA and lime was due to the 

dissolution of lime. Addition of 200 g of lime resulted in pH increasing more compared to 

the mixture containing 100 g of lime. The EC increased because of the increase in the 

concentration of Ca ions in the water. After addition of Al(OH)3 the pH and EC decreased. 

The pH decreased because the formation of ettringite produced acidity, while the EC 

decreased because of the removal of sulphate and Ca ions during the formation of 

ettringite. In both mixtures the temperature increased from around 25 oC to about 80 oC. 

This was caused by hydrodynamic cavitation that occurred inside the jet loop reactor. 

During treatment of Rand Uranium mine water (80 L) with 13 kg of Matla coal FA and lime 

(100 g or 200 g) and 86.58 g of Al(OH)3, aliquot samples were collected after every 30 min. 

The samples were filtered through a 0.45 µm filter paper and analysed using ICP-OES and IC. 

The results obtained are shown in Figure 7.2.17.  
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Figure 7.2.17: The Fe, Al, Mg, Mn, Ca and sulphate concentration during treatment of 80 L 

of Rand Uranium mine water with 13 kg of Matla FA, 86.58 g of Al(OH)3 and 100 g (a) or 

200 g (b) of lime. 

 

As shown in Figure 7.2.17, treatment of Rand Uranium mine water (80 L) with 13 kg of Matla 

coal FA, lime (100 g or 200 g) has resulted in the removal of Fe, Al, Mn and Mg by almost 

100 %. These results agreed well with the modelling results obtained using Act2 program of 

the GWB software. It showed that removal of Fe, Al, Mn and Mg from Rand Uranium mine 
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water was pH dependent. The modelling results had showed that Al could be removed as 

alunite and gibbsite when the pH was increased to greater than 5, while Fe could be 

removed as, jarosite-K and Fe(OH)3 when the pH of Rand Uranium mine water was 

increased to greater than 4 (Figure 5.1.4 and 5.1.5). The GWB modelling results also showed 

that Mn and Mg could be removed if the pH of Rand Uranium mine water was increased to 

greater than 10 as Mn(OH)2 and Mg(OH)2 (Figure 5.1.6 and 5.1.7). 

During treatment of Rand Uranium mine water (80 L) with 13 kg of Matla coal FA and 100 g 

of lime in jet reactor for 30 min the sulphate concentration decreased from about 

2500 mg/L to about 1840 mg/L and the Ca concentration increased from 360 mg/L to 

1038 mg/L as shown in Figure 7.2.17a. The sharp increase in Ca concentration could have 

caused the increase in EC (Figure 7.2.16a). After 30 min, 86.58 g of Al(OH)3 was added to the 

mixture and the concentration of sulphate decreased further from 1038 mg/L to about 

600 mg/L and the Ca concentration decreased from 1038 mg/L to 300 mg/L after 90 min. 

The decrease in the sulphate and Ca concentration was ascribed to the formation of 

ettringite and correlates well with the decrease in the EC observed after addition of Al(OH)3 

(Figure 7.2.16a)  

Treatment of Rand Uranium mine water (80 L) with 13 kg and 200 g of lime in jet reactor for 

30 min resulted in the sulphate concentration decreasing from about 2500 mg/L to about 

1500 mg/L and the Ca concentration increasing from 360 mg/L to 1838 mg/L as shown in 

Figure 7.2.17b. Adding 86.58 g of Al(OH)3 resulted in the sulphate concentration decreasing 

further to 418 mg/L and the Ca concentration decreasing from 1838 mg/L to 300 mg/L after 

120 min. The decrease in sulphate and Ca concentration after addition of Al(OH)3 was 

ascribed to the formation of ettringite and correlates well with the decrease in EC 

(Figure 7.2.16b).  

There was more sulphate ions removed in the mixture containing 200 g of lime than the 

mixture containing 100 g of lime. This was because of the fact that as more Ca was added in 

the form of lime to the mixture, more Ca was available to participate in the removal of 

sulphate ions in the form of ettringite and/ or gypsum (Figure 7.2.17). The Ca concentration 

initially increased in both mixtures, due to the dissolution of CaO in Matla coal FA and the 
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extra lime added. After adding Al(OH)3 to both mixtures the Ca concentration decreased as 

it participated in the formation of ettringite. The decrease in Ca concentration after adding 

Al(OH)3 explains why the EC decreased in Figure 7.2.16. 

The solid residues that were produced from treating Rand Uranium mine water (80 L) with 

13 kg of Matla FA, 200 g of lime and 86.58 g of Al(OH)3 were analysed using XRD. The 

spectra of the solid residues were compared to the XRD spectra of Al(OH)3, lime and Matla 

FA as shown in Figure 7.2.18.  

 

Figure 7.2.18: Comparison of the XRD spectra of lime, Al(OH)3 and Matla fly ash to that of 

the solid residues produced during treatment of 80 L of Rand Uranium mine water with 

13 kg of fly ash, 200 g of lime and 86.58 g of Al(OH)3 using a jet loop reactor (L-CaO; 

C-calcite; Bo-boehmite; Ba-bayerite; G-gypsum; B-bassannite; E-ettringite, A-aragonite; 

M-mullite; Q-quartz; H-hematite). 

 

The results showed that the characteristic peaks of CaO (in fly ash and lime spectra), as well 

as the boehmite and bayerite peaks (in Al(OH)3 spectrum) disappeared and ettringite peaks 
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emerged in the solid residues spectra. The disappearance of the CaO peaks was due to its 

dissolution during mixing with Rand Uranium mine water in a jet loop reactor. This resulted 

in the observed pH increase of the mixture as shown in Figure 7.2.16b. The disappearance of 

the boehmite and bayerite peaks (Figure 7.2.18) and the concomitant decrease of the 

concentration of Ca and sulphate ions after addition of Al(OH)3 into the reaction mixture 

(Figure 7.2.17b) resulted in the appearance of the ettringite peaks (Figure 7.2.18). The XRD 

confirmed that sulphate removal was due to the formation of ettringite and gypsum. 

The solid residues that were sampled after 30 min and 150 min during treatment of Rand 

Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 

at 30 min were analysed using XRF. The results obtained were compared to the XRF results 

of Matla coal FA as shown in Table 7.2.5. 

Table 7.2.5: Composition of Matla coal FA and the solid residues produced after treatment 

of Rand Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of 

Al(OH)3 in a jet loop reactor for 30 min and 150 min. 

 % oxide Matla coal FA 30 min solid residue 150 min solid residue 
SiO2 48.27 ± 0.04 48.22 ± 0.07 48.16 ± 0.14 
Al2O3 30.89 ± 0.22 30.94 ± 0.16 31.51 ± 0.09 
CaO 6.71 ± 0.08 6.14 ± 0.07 6.72 ± 0.01 
Fe2O3 2.81 ± 0.03 3.50 ± 0.05 3.41 ± 0.05 
MgO 2.12 ± 0.04 2.77 ± 0.01 2.72 ± 0.09 
TiO2 1.26 ± 0.02 1.29 ± 0.03 1.25 ± 0.04 
P2O5 0.89 ± 0.01 0.98 ± 0.04 0.95 ± 0.01 
K2O 0.84 ± 0.01 0.76 ± 0.03 0.74 ± 0.01 
Na2O 0.55 ± 0.01 0.68 ± 0.05 0.57 ± 0.02 
SO3 0.19 ± 0.002 0.41 ± 0.01 0.71 ± 0.01 
MnO 0.02 ± 0.0004 0.06 ± 0.002 0.06 ± 0.001 
Loss on ignition 5.24 ± 0 3.99 ± 1.34 3.08 ± 1.02 
Sum  99.79 ± 0.07 99.74 ± 0.17 99.88 ± 0.05 
 

The results in Table 7.2.5 show that there was an increase in the content of Al, Fe, Mg, Mn 

and S in the solid residues. This was because of the precipitation of these elements out of 

the mine water and their incorporation into the solid residue. This correlated well with the 

observed decrease in the concentration of sulphate ions during the treatment of Rand 
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Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 

(Figure 7.2.17b). The Ca content initially increased in the first 30 min. This was due to the 

dissolution of CaO thereby causing the sharp increase in pH (Figure 7.2.16b) and Ca 

concentration (Figure 7.2.17b) noticed during the first 30 min. The solid residues collected 

after 150 min had more Ca content than the solid residue collected after 30 min. This was 

because of the decrease in the Ca concentration over time after addition of Al(OH)3 in the 

reaction mixture as shown in Figure 7.2.17b. 

From all the combination of chemicals used under the applied conditions; treatment of 

Rand Uranium mine water (80 L) with 13 kg of Matla FA, 200 g of lime and 86.58 g of Al(OH)3 

resulted in the removal of most major elements to within TWQR for potable water. This also 

resulted in the sulphate concentration decreasing to less than 500 mg/L, which was within 

the TWQR for potable water (WHO, 2011; DWAF, 1996). 

The effect of Al(OH)3, the effect of Matla coal FA, the effect of the combination of lime and 

Al(OH)3, the effect of the combination of Matla coal FA and Al(OH)3 and the effect of the 

combination of Matla coal FA, lime and Al(OH)3 on the removal of sulphate ions and heavy 

metals have been investigated systematically using a jet loop reactor. The following section 

explains the effect of treating mine water with a jet loop reactor first followed by overhead 

stirring. This was done to find out if the hydrodynamic cavitation can be initially used to 

dissolve the CaO in coal FA and lime, and then further reactions can take place under 

normal stirring. If the results prove to be positive, then the intense mixing in a jet loop 

reactor which caused the temperature to increase could be avoided and save energy. 

7.2.6. EFFECT OF JET REACTOR MIXING FOLLOWED BY OVERHEAD STRIRRING 

Treatment of Rand Uranium mine water using Matla coal FA, lime and Al(OH)3 in a jet 

reactor enhanced the removal of sulphate ions (section 7.2.5). The following set of 

experiments were carried out to determine if the formation of ettringite was enhanced by 

hydrodynamic mixing, or whether hydrodynamic mixing was important for the initiation of 

the reaction by releasing the Ca ions from Matla coal FA and lime. 
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Rand Uranium mine water (80 L) was mixed with 13 kg of Matla coal FA and 100 g of lime. 

Aluminium hydroxide (86.58 g) was added after 30 min of mixing with a jet loop reactor. 

About 1 L of the sample was collected and mixed using an overhead stirrer after 15 min of 

the addition of Al(OH)3 as outlined in section 3.8.2.6. Temperature, pH and EC were 

continuously measured after every 15 min and the results are shown in Figure 7.2.19.   

 

Figure 7.2.19: pH, EC and temperature profile during treatment of 80 L of Rand Uranium 

mine water with 13 kg of FA, 100 g of lime and 86.58 g of Al(OH)3 in a jet loop rector for 

45 min followed by normal mixing in an open tank. 

 
The results in Figure 7.2.19 show that the temperature of the mixture increased in first 

45 min when the mixing was done in a jet loop reactor due to hydrodynamic cavitation. 

Changing the mixing technique to the use of normal overhead stirrer resulted in a gradual 

decrease in temperature.  

The pH of the mixture increased sharply from 2.65 to 11.5 in first the 15 min during mixing 

of Rand Uranium mine water with FA and lime using a jet loop reactor. This was because of 

the dissolution of CaO from Matla coal FA and lime. A slight decrease in pH to 11.04 was 

noticed after the addition of Al(OH)3 at 30  min, which increased slightly again after 75 min 

due to the formation of ettringite which produces protons. The EC of the mixture followed 
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the trend of pH. The EC of the mixture increased rapidly in first 30 min of mixing of Rand 

Uranium mine water with lime and FA. After addition of Al(OH)3 the EC of mixture 

decreased sharply and then remained constant.  

During treatment of Rand Uranium mine (80 L) with 13 kg of Matla coal FA, 100 g of lime 

and 86.58 g of Al(OH)3, aliquot samples were collected after every 30 min. The first 45 min 

of mixing was done in a jet loop reactor followed by overhead stirring until the end of the 

treatment process. The samples were filtered through a 0.45 µm filter paper and then 

analysed using IC. The results of the sulphate concentration obtained from the IC analysis 

are shown in Figure 7.2.20. 

 

Figure 7.2.20: The sulphate concentration during treatment of 80 L of Rand Uranium mine 

water with 13 kg of FA, 100 g of lime and 86.58 g of Al(OH)3 in a jet loop rector for 45 min 

followed by normal mixing in an open tank. 

 

Results in Figure 7.2.20 showed that the sulphate concentration of the mixture decreased 

from 2188 mg/L to 1840 mg/L during mixing of Rand Uranium mine water with Matla coal 

FA and lime in the first 30 min. After addition of Al(OH)3 and changing the mixing technique, 

the sulphate concentration continued to decrease to 1270 mg/L after 60 min. After 90 and 
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120 min the sulphate concentration was 1009 and 893 mg/L respectively as shown in Figure 

7.2.20. 

These results showed that the mixing of Rand Uranium mine water (80 L), 13 kg of Matla 

coal FA, 100 g of lime and 86.58 g of Al(OH)3 using a jet loop reactor followed by overhead 

mixing decreased the rate of removal of sulphate ions compared to when the mixing was 

done in a jet loop reactor only (Figure 7.2.18). When the same mixture was mixed in a jet 

loop reactor the sulphate concentration was 606 mg/L, 678 mg/L and 587 mg/L after 90, 

120 and 150 min respectively. This showed that hydrodynamic mixing that occurred in the 

jet loop reactor increased the rate of formation of ettringite and thus enhanced the removal 

of sulphate ions. 

Treatment of Rand Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 

86.58 g of Al(OH)3 removed the major ions such as Fe, Al, Mn, Mg and sulphate ions to 

within the TWQR for potable water. The following section presents the composition of the 

product water in terms of the potentially toxic and radioactive elements during treatment of 

Rand Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of 

Al(OH)3. 

7.2.7. POTENTIALLY TOXIC AND RADIOACTIVE ELEMENTS 

During treatment of Rand Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g lime 

and 86.58 g of Al(OH)3 using a jet reactor as described in section 3.8.2.4, the  product water 

met the requirements for potable water in terms of Fe, Al, Mn, Mg and sulphate 

concentration. Aliquot samples that were collected during treatment of Rand Uranium mine 

water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 after every 

30 min, were filtered through a 0.45 µm filter paper and analysed using ICP-OES. This was 

done to establish the concentration of naturally occurring radioactive materials (NORM) 

such as Th and U as well as other potentially toxic trace elements. The results are presented 

in section 7.2.7.1 to section 7.2.7.6. 
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7.2.7.1. Uranium and thorium 

When Rand Uranium mine water was treated with 13 kg of Matla coal FA, 200 g lime and 

86.58 g of Al(OH)3, the ICP-OES analysis of the product water has shown that Th and U were 

removed by almost 100 %, as shown in Figure 7.2.21.  

 

Figure 7.2.21: The Th and U concentration in the product water during treatment of Rand 

Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g lime and 86.58 g of Al(OH)3. 

 

Results in Figure 7.2.21, show that most of the Th and U was removed before the addition of 

Al(OH)3 into the mixture (in the first 30 min). This means the removal of Th and U was due 

to the addition of Matla coal FA and lime. According to the GWB modelling results obtained 

using the Act2 sub program, the removal of Th and U was predicted to be pH dependent. Th 

and U were predicted to start precipitating at pH 5 and 3 as thorianite (ThO3) and uraninite 

(UO3) respectively (Figure 5.1.10 and 5.1.11). After 30 min of mixing Rand Uranium mine 

water (80 L) with 13 kg of Matla coal FA and 200 g of lime the pH was greater than 10, which 

means that Th and U could have been removed as ThO3 and UO3. The U concentration in 

Rand Uranium mine water was 267 µg/L. This was almost 10 times higher than the required 

limit for potable water. After treatment with Matla coal FA and lime for 30 min the U 

concentration decreased to 0.08 µg/L which was less than the limit for U in potable water of 

30 µg/L (WHO, 2011). The limit of total concentration of Th for potable water is not stated 
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in the WHO guidelines for drinking water. Only the radioactivity limits for 227Th (10 Bq/L), 
228Th (1 Bq/L), 230Th (1 Bq/L) and 232Th (1 Bq/L) are stated in WHO guidelines for drinking 

water. 

The solid residues collected after 30 min and 150 min of treatment of Rand Uranium mine 

water (80 L) with Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 were analysed using 

laser ablation-inductively coupled-mass spectrometer (LA-ICP-MS) to determine the 

concentration of Th and U. The results obtained are shown in Figure 7.2.22. 

 

Figure 7.2.22: The concentration of Th and U in Matla coal FA compared to the solid 

residues collected after 30 min and 150 min of treating Rand Uranium mine water (80 L) 

with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 in jet reactor. 

The results from the analysis of Matla coal FA and the solid residues using LA-ICP-MS 

showed that the concentration of U increased in the first 30 min of treating Rand Uranium 

mine water with 13 kg of Matla coal FA and 200 g of lime. The concentration of U in solid 

residues collected after 30 min and 150 min were almost the same. This correlates well with 

the results shown in Figure 7.2.21, which showed a sharp decrease of the concentration of U 

during the first 30 min of treatment. The concentration of Th in the solid residues collected 

after 30 min and 150 min was close to that in Matla coal FA. This was because the 

concentration of Th in Matla coal FA was orders of magnitude greater than that was in Rand 

Uranium mine water. So even after Th precipitated from Rand Uranium mine water as 
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shown in Figure 7.2.21 and form part of the solid residues, no significant change was noted 

in the solid residues. 

7.2.7.2. Zinc, nickel and copper 

Rand Uranium mine water (80 L) was treated with 13 kg of Matla coal FA, 200 g of lime and 

86.58 g of Al(OH)3for 150 min in a jet loop reactor. The product water was analysed using 

ICP-OES for Zn, Ni and Cu and the results obtained are shown in Figure 7.2.23.  

 

Figure 7.2.23: The Zn, Ni and Cu concentration in the product water during treatment of 

Rand Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g lime and 86.58 g of 

Al(OH)3. 

 

As Figure 7.2.23 shows, Rand Uranium mine water contained 284.86 µg/L, 2107.90 µg/L and 

1931µg/L of Cu, Ni and Zn respectively. These values for Cu and Zn were less than the 

potable limit of 3000 µg/L and 2000 µg/L respectively. There is no value set for Ni for 

potable water (WHO, 2011; DWAF, 1996).  The results in Figure 7.2.23 show that Zn, Ni and 

Cu were removed by almost 100 %. The removal occurred in the first 30 min of mixing mine 

water with Matla coal FA and lime. This shows that the removal of Zn, Ni and Cu from Rand 

Uranium mine water occurred because of the addition of Matla coal FA and lime. Removal 

of Zn, Ni and Cu from Rand Uranium mine water occurred due the increase in pH. It was 
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reported that Zn, Ni and Cu could be removed by 80-100 % when the pH was increased to 

between 8-9 by addition of limestone (Aziz et al., 2008). 

 

The solid residues collected after 30 min and 150 min of treatment of Rand Uranium mine 

water (80 L) with Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 were analysed using 

LA-ICP-MS to determine the concentration of Zn, Ni and Cu. The results obtained are shown 

in Figure 7.2.24. 

 

Figure 7.2.24: The concentration of Ni, Cu and Zn in Matla coal FA compared  to the solid 

residues collected after 30 min and 150 min of treating Rand Uranium mine water (80 L) 

with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 in jet reactor. 

 

The LA-ICP-MS analysis of the solid residues obtained after 30 min of treating Rand Uranium 

mine water (80 L) with 13 kg of Matla coal FA and 200 g of lime showed that the 

concentration of Ni and Zn was higher than that in Matla coal FA (Figure 7.2.24). The 

concentration of Ni and Zn in Matla coal FA was 49.54 and 45.25 mg/kg respectively. The 

solid residues collected after 30 min of treating Rand Uranium mine water (80 L) with 13 kg 

of Matla coal, 200 g of lime contained 72.60 mg/kg of Ni and 66.14 mg/kg of Zn. This 

correlates with the decrease in the concentration of Ni and Zn during treatment of Rand 

Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 

using a jet reactor (Figure 7.2.23). The concentration of Ni and Zn in the 150 min solid 
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residue was 68.99 mg/kg and 70 mg/kg respectively. The increase in the concentration of Ni 

and Zn observed in the solid residue was due the precipitation of these elements from Rand 

Uranium mine water. After 30 min the concentration of Ni and Zn in the treated water was 

almost zero. Therefore the concentration of these elements remained the same in the solid 

residues collected after that point; since there was nothing further to remove from Rand 

Uranium mine water after 30 min. 

The concentration of Cu in the solid residues collected after 30 min (61.19 mg/kg) and 

150 min (60.94 mg/kg) was almost the same as the concentration in the Matla coal FA 

(61.84 mg/kg). This was because the amount of Cu in the Rand Uranium mine was very low 

as shown in Figure 7.2.25. Although the Cu present in Rand Uranium mine water 

precipitated out at 30 min treatment time, the amount in the mine water was not high 

enough to cause a significant change in the amount of Cu that was already in Matla coal FA. 

7.2.7.3. Arsenic and lead 

Rand Uranium mine water (80 L) was treated with 13 kg of Matla coal FA, 200 g of lime and 

86.58 g of Al(OH)3 in a jet loop reactor for 150 min. Aliquot samples were collected after  

every 30 min to determine the concentration of As and Pb in the product water using 

ICP-OES and the results obtained are shown in Figure 7.2.25.  

 

 

 

 



CHAPTER 7: APPLICATION OF A JET LOOP REACTOR 

247 
 

 

Figure 7.2.25: The As and Pb concentration in the product water during treatment of Rand 

Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g lime and 86.58 g of Al(OH)3. 

 

Rand Uranium mine water contained 7.48 µg/L of Pb and 5.79 µg/L of As. The concentration 

of As was above the TWQR for potable water of 0-1 µg/L and the concentration of Pb was 

within the TWQR for potable water of 0-10 µg/L (WHO, 2011; DWAF, 1996). The ICP-OES 

results in Figure 7.2.25 show that about 75 % of As and Pb was removed from Rand Uranium 

mine water. Removal of Pb from mine water is known to be due to the precipitation as 

Pb(OH)2 which occurs when the pH of the mine water is increased to greater than 8 (Aziz et 

al., 2008). In this case the pH was greater than 10 after 30 min. This resulted in the decrease 

of the Pb concentration from 7.48 µg/L to 0.88 µg/L in 30 min.  

The As concentration in mine water decreased from 5.79 µg/L to 1.27 µg/L when Rand 

Uranium mine water (80 L) was treated with 13 kg of Matla coal FA and 200 g of lime in a jet 

loop reactor. Removal of As from mine water is known to be due to adsorption on to FeOOH 

through octahedral bidentate-binuclear coordination mechanism (Dong et al., 2011; 

Guan et al., 2009). Since Rand Uranium mine water contained about 200 mg/L Fe 

(Table 4.6.1), the removal of As from Rand Uranium mine water could be attributed to the 

adsorption to FeOOH precipitates. The FeOOH forms in situ during treatment of Rand 

Uranium mine water with Matla coal FA and lime. The hydroxide minerals of Fe were also 
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predicted to form in Rand Uranium mine water by the Act2 program of the GWB software 

(Figure 5.1.5) 

The solid residues collected after 30 min and 150 min of treatment of Rand Uranium mine 

water (80 L) with Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 were analysed using 

LA-ICP-MS to determine the concentration of Pb and As. The results obtained are shown in 

Figure 7.2.26. 

 

Figure 7.2.26: The concentration of Pb and As in Matla coal FA and solid residues collected 

after 30 min and 150 min of treating Rand Uranium mine water (80 L) with 13 kg of Matla 

coal FA, 200 g of lime and 86.58 g of Al(OH)3 in jet reactor. 

 
The results of the solid residue composition obtained using LA-ICP-MS showed that the 

concentration of As and Pb in Matla coal FA and the solid residues was almost the same. 

This was because the concentration of As and Pb in Rand Uranium mine water was orders of 

magnitude lower than in Matla coal FA. Therefore when As and Pb precipitated out or were 

adsorbed onto coal FA as shown in Figure 7.2.26, it was too little to cause a measurable 

change in the amount of these elements which were also present in Matla coal FA.  
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7.2.7.4. Beryllium, cadmium and selenium 

When Rand Uranium mine water was treated with Matla coal FA, lime and Al(OH)3 the 

ICP-OES analysis of the product water has shown that almost 100 % of Be and Cd and 78 % 

of Se was removed after 30 min as shown in Figure 7.2.27.  

 

 

Figure 7.2.27: The Be, Cd and Se concentration in the product water during treatment of 

Rand Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g lime and 86.58 g of 

Al(OH)3. 

 

Rand Uranium mine water contained about 3.9 µg/L, 6.76 µg/L and 60.57 µg/L of Be, Cd and 

Se respectively. The required limit for potable water is 12 µg/L of Be, 3 µg/L of Cd and 

20 µg/L of Se (WHO, 2011).  This means that the concentration of Cd and Se were above the 

allowable limit for potable water. Al(OH)3 was added after 30 min of treatment at which 

time all the Cd and Be had already been removed. Therefore removal of Cd and Be was due 

to the added Matla coal FA and lime. 

Treatment of Rand Uranium mine water with Matla coal FA and lime resulted in the 

decrease in Be concentration in the water from 3.9 µg/L to 0.01 µg/L as the pH was 
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increased to above 10. Beryllium is known to form Be(OH)2 when the pH is increased to 

above 7 (Lytle et al., 1992). The concentration of Cd in the water was decreased from 

6.76 µg/L to 0.03 µg/L within 30 min, which was lower than the allowable limit for potable 

water of 12 µg/L. Cadmium is known to form otavite (CdCO3) at pH 8.5 and Cd(OH)2 at pH 

greater than 10 (Rotting et al., 2005; INAP, 2012). The pH of Rand Uranium mine water was 

increased to greater than 10 in 30 min of treatment with Matla coal FA and lime. Therefore 

Cd could have been removed as CdCO3 and Cd(OH)2. 

7.2.7.5. Strontium and molybdenum 

During treatment of Rand Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g of 

lime and 86.58 g of Al(OH)3, the product water was analysed for the concentration of Sr and 

Mo after every 30 min using ICP-OES. The concentration of Sr and Mo during treatment of 

Rand Uranium mine water is shown in Figure 7.2.28.  

 

Figure 7.2.28: The Sr and Mo concentration in the product water during treatment of Rand 

Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g lime and 86.58 g of Al(OH)3. 

 
Rand Uranium mine water contained 448 µg/L and 0.51 µg/L of Sr and Mo respectively. 
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concentration of Sr increased gradually from  448 µg/L to 23748 µg/L after 120 min. The 

WHO guideline for Sr in potable water is set for the radioactive species of Sr (10 Bq/L). 

There was no radioactive species of Sr detected in the Matla coal FA (Table 4.1.3) and Rand 

Uranium mine water (Table 4.6.2). The increase in the Sr concentration in the product water 

can be attributed to the leaching of Sr from Matla coal FA into the water. Matla coal FA 

contained 2137 mg/kg of Sr. Other researchers have found that Sr leaches into the water 

from coal FA (Querol et al., 2001; Madzivire, 2010; Fatoba, 2010). Querol et al (2001) found 

that Sr leached into normal water through the dissolution of small solid particles in coal FA 

or from the coatings on the surface of the coal FA. 

The Mo concentration also increased in the treated water when Rand Uranium mine water 

was mixed with Matla coal FA and lime during the initial 30 min of mixing in a jet loop 

reactor from 0.51 µg/L to 254 µg/L which was above the limit for potable water of 70 µg/L 

set by WHO in 2011. This was due to the leaching of the Mo from Matla coal FA particles 

into the aqueous media (Neupane and Donahoe, 2012, Madzivire, 2010). After addition of 

Al(OH)3 at 30 min the Mo concentration remained constant up to 60 min after which it 

started to decrease to about 180 µg/L. It was found that treatment of Rand Uranium mine 

water with Matla coal FA, lime and Al(OH)3 results in the formation of ettringite 

(section 7.2.1 to 7.2.4). The slight decrease in the Mo concentration after 60 min could be 

ascribed to the incorporation of Mo into the ettringite structure during its formation. 

Kumarathasan et al (1990) has found that oxyanions of Mo (MoO4
2-) can be incorporated 

into the ettringite structure. These potential toxic elements (Mo and Sr) could be removed 

from the product water using zeolite adsorbents synthesized from coal FA (Moreno et al., 

2001). 

The solid residues collected after 30 min and 150 min of treatment of Rand Uranium mine 

water (80 L) with Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 were analysed using 

LA-ICP-MS to determine the concentration of Sr and Mo. The results obtained are shown in 

Figure 7.2.29. 
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Figure 7.2.29: The composition of Sr and Mo in Matla coal FA and solid residues collected 

after 30 min and 150 min of treating Rand Uranium mine water (80 L) with 13 kg of Matla 

coal FA, 200 g of lime and 86.58 g of Al(OH)3 in jet reactor. 

The LA-ICP-MS results in Figure 7.2.29 show that the concentration of Sr and Mo in Matla 

coal FA was higher than that in 30 min solid residues. The concentration of Sr and Mo in the 

150 min solid residues was almost the same as in 30 min solid residue. This showed that Sr 

and Mo leached into the product water during the first 30 min of treating Rand Uranium 

mine water with Matla coal FA and lime. This correlated with the results in Figure 7.2.28, 

which showed an increase in the concentration of Mo and Sr in the treated water, when 

Rand Uranium mine water was treated with Matla coal FA. 

7.2.7.6. Chromium, vanadium and barium 

When Rand Uranium mine water was treated with Matla coal FA, lime and Al(OH)3, the 

ICP-OES analysis of the product water showed that there was an increase in the 

concentration of Cr, V and Ba in the product water as shown in Figure 7.2.30.  
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Figure 7.2.30: The Cr, V and Ba concentration in the product water during treatment of 

Rand Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g lime and 86.58 g of 

Al(OH)3. 

 
Rand Uranium mine water contained 22.53, 1.21 and 25.50 µg/L of Cr, V and Ba 

(Figure 7.2.30) respectively. The concentration of Cr and Ba were above the allowable limits 

for potable water of 50 and 70 µg/L respectively (WHO, 2011). There is no value stated for V 

in the WHO guidelines for potable water. The concentration of Cr decreased when mine 

water was reacted with Matla coal FA and lime during the initial 30 min from 22.53 µg/L to 

7.36 µg/L. After adding Al(OH)3 at 30 min the Cr increased to 119.3 µg/L after 120 min 

thereafter it decreased to 68.80 µg/L at 150 min. Vanadium concentration deceased slightly 

when mine water was mixed with Matla coal FA and lime from 1.21 to 1.04 µg/L. After 

adding Al(OH)3 at 30 min the V concentration increased gradually to 24.37 µg/L. The 

addition of Al(OH)3 to the reaction mixture resulted in the increase of the V and Cr 

concentration in the aqueous media. This could be due to the fact that adsorbed anion 

species on the Matla FA particles could have been displaced by the Al(OH)4
- ions that form 

at very high pH of greater than 11. 

The Ba concentration increased when mine water was mixed with FA and lime for the first 

30 min. After adding Al(OH)3 at 30 min, the Ba concentration remained constant up to 
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90 min after which it increased again. Barium is known to leach out of FA into the aqueous 

media if mixed with mine water or normal water (Fatoba, 2010; Querol, 2001). Fatoba 

(2010) found that Ba salts leached into the water when FA was mixed with brine solutions. 

The solid residues collected after 30 min and 150 min of treatment of Rand Uranium mine 

water (80 L) with Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 were analysed using 

LA-ICP-MS to determine the concentration of V and Cr. The results obtained are shown in 

Figure 7.2.31. 

 

 

Figure 7.2.31: The concentration of Ba, V and Cr in Matla coal FA and solid residues 

collected after 30 min and 150 min of treating Rand Uranium mine water (80 L) with 13 kg 

of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 in jet reactor. 

 
The concentration of Ba and V in Matla coal FA was 2372.11 mg/kg and 154.31 mg/kg 

respectively. The solid residues collected after 30 min of treating Rand Uranium mine water 

(80 L) with 13 kg of Matla coal FA and 200 g of lime contained lower concentration of Ba 

(2357.73 mg/kg) and V (151.08 mg/kg). The solid residues collected after 150 min of treating 

Rand Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of 
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Al(OH)3 contained lower concentration of Ba (2308.07 mg/kg) and V (144.41 mg/kg) than 

Matla coal FA as well as the solid residues collected after 30 min. This correlates well with 

the results shown in Figure 7.2.30, which shows an increase in the concentration of Ba and V 

in the mine water. Therefore Ba and V leached from Matla coal FA into the water when 

Rand Uranium mine water mixed with Matla coal FA, lime and Al(OH)3. The concentration of 

Cr in the 30 min solid residue (188.61 mg/kg) was higher than that in Matla coal FA 

(183.01 mg/kg), but the concentration in the 150 min solid residue (170.37 mg/kg) was less 

than that in Matla coal FA. This correlates well with the results depicted in Figure 7.2.30. 

The flowing section summarises the finding for section 7.2 which involved the treatment of 

Rand Uranium mine water with different combination of Matla coal FA, lime and Al(OH)3. 

7.2.8. SUMMARY OF RESULTS 

This section gives a summary, compares and explains the results obtained when Rand 

Uranium mine water was treated with various combination of substances. The different 

mols that were mixed together when Rand Uranium mine water (80 L) was treated with 

various combinations of substances are calculated and the summary is shown in Table 7.2.6. 

Table 7.2.6: Number of mols of Ca, Al and sulphate ions and the mol ratios of Ca:SO4
2- and 

Al:SO4
2- during treatment of Rand Uranium mine water (80 L) with different combinations of 

substances. 

substances mixed with 80 L of RU n(SO4
2-)  n(Al) n(Ca) pH 

86.58g Al(OH)3 2.13 1.18 0.72 4.08 
100g lime+86.58g Al(OH)3 2.13 1.18 2.01 8.29 
150g lime+86.58g Al(OH)3 2.13 1.18 2.65 10.14 
200g lime+86.58g Al(OH)3 2.13 1.18 3.30 10.11 
8kg FA 2.13 0.079 3.44 12.15 
13kg FA 2.13 0.079 5.14 13.11 
8kg FA +86.58g Al(OH)3 2.13 1.18 3.44 10.20 
13kg FA +86.58g Al(OH)3 2.13 1.18 5.14 10.68 
8kg FA +100g lime+86.58g Al(OH)3 2.13 1.18 4.73 10.67 
8kg FA +200g lime+86.58g Al(OH)3 2.13 1.18 6.02 10.99 
13kg FA +100g lime+86.58g Al(OH)3 2.13 1.18 6.43 11.02 
13kg FA +200g lime+86.58g Al(OH)3 2.13 1.18 7.72 11.26 
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Treatment of Rand Uranium mine water with different combinations of chemicals in a jet 

loop reactor was compared. This was done in order to find out which combination produced 

best quality treated water. The pH and the percentage removal of Fe, Mg and sulphate 

during treatment of Rand Uranium mine water (80 L) with different combination of 

substances is shown in Figure 7.2.32.  

 

Figure 7.2.32: The pH and percentage removal of Fe, Mg, Mn, and sulphate ions from Rand 

Uranium mine water (80 L) during treatment with different combination of substances in a 

jet loop reactor for 120 min. 

 

From Figure 7.2.32, the concentration of Fe, Mn and Mg decreased by almost 100 % during 

treatment of Rand Uranium mine water (80 L) with most combination of substances. Lower 

percentage removal of Fe, Mn and Mg was observed when Rand Uranium mine water (80 L) 

was treated with 86.58 g of Al(OH)3 only as shown in Figure 7.2.32. This was because the pH 

of the mine water was increased to above 10 by most combination except when Al(OH)3 

only was used. It was observed by Act2 model that Fe and Al can be removed when pH of 

the mine water increased to greater than 4, while Mn and Mg can be removed when pH was 

greater than 10.  
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As shown in Figure 7.2.32, the most sulphate removal was removed (84 %) by mixing Rand 

Uranium mine water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3. 

Removal of sulphate ion from mine water depended on the; amount of Ca and Al added to 

the mixture as well as the final pH. The Matla coal FA and lime were important for the 

addition of Ca ions and increase the pH of the mine water thorough CaO dissolution. 

According to the XRD spectra of Matla coal FA and solid residues collected during treatment 

of Rand Uranium (80 L) with various amounts of substances, the removal of sulphate ions 

was due to precipitation of ettringite and gypsum.  

Removal of gypsum was limited by its solubility product (Ksp). The Ksp of gypsum is very 

high (3.2 x 10-5). This means that a lot of Ca ions (2.22 mols per 80 L of Rand Uranium mine 

water) would be required to precipitate out sulphate ions to within the TWQR of 500 mg/L. 

This happens if the product water contains at least 0.0063 mol/L (250 mg/L), such that that 

ionic product of gypsum is greater or equal to the Ksp to avoid the dissolution of gypsum. 

Ettringite could remove the sulphate ions to within the TWQR easily because of its very low 

Ksp. The Ksp of ettringite is approximately 10-45.  

퐾푠푝	표푓	푒푡푡푟푖푛푔푖푡푒 = [퐶푎 ] [푆푂 ] [퐴푙 ] [푂퐻 ] , where [] represents mol/L 

From the Ksp equation above the precipitation of ettringite depends on concentration of 

OH- (pH), Ca2+, SO4
2- and Al3+. All mixtures contained equal amounts of sulphate ions. The 

amount of Al ions added depended on the mass of Al(OH)3 added to the mixture. The 

amount of Ca2+ dependent on the amount of Matla coal FA and/or lime added. According 

the ettringite formation reaction (Equation 7.2), to remove sulphate ions to at most 

500 mg/L (that is to precipitate 1.72 mols of sulphate ions from 80 L of Rand Uranium mine 

water), it requires 3.43, 1.14 and 3.43 mols of Ca2+, SO4
2- and OH- respectively to be added 

to the mixture. Addition of 3.43 mols of OH- to 80 L is equivalent to pH of 13.09. 

According to Table 7.2.6, when Rand Uranium mine water was treated with 86.58 g of 

Al(OH)3 only, pH and the amount of Ca2+ was far less than the expected. This resulted in no 

ettringite formation as shown by the XRD spectrum of the solid residue collected after 

150 min (Figure 7.2.3). The sulphate ions removal could be attributed to the adsorption 

mechanism. According to Figures 7.2.6, 7.2.9, 7.2.12, 7.2.15 and 7.2.18, the sulphate 
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removal from Rand Uranium mine (80 L) during treatment with Matla coal FA (8 or 13 kg), 

lime (100, 150 or 200 g) and 86.58 g of Al(OH)3 was due to precipitation of ettringite and 

gypsum. The removal of sulphate ions from the mixture that contained Rand Uranium mine 

water (80 L) and Matla coal FA (8 and 13 kg) only was limited by the number of mols of Al3+ 

(to form ettringite) and the Ksp of gypsum. All other mixtures that contained Rand Uranium 

mine water (80 L), 86.58 g of Al(OH)3,  Matla coal and/or lime contained enough Al3+ and 

Ca2+ ions to precipitate out sulphate ions to within TWQR of less than 500 mg/L. The main 

variable was the final pH of the mixture which dependent of the amount of Matla coal FA 

and/or lime added to the mixture. As more Matla coal FA and/or lime was added to the 

mixture, the pH of the mixture also increased.  

The mixture that had the highest pH (11.26) was the one containing; Rand Uranium mine 

water (80 L), Matla coal FA (13 kg), lime (200 g) and 86.56 g of Al(OH)3. This mixture 

contained; 1.18 mols of Al3+ and 7.72 mols of Ca2+ in 80 L. So the limiting reactant in this 

mixture for the removal of sulphate ions as ettringite was the amount of Al3+ ions. Based on 

this limiting reactant, the expected sulphate ions to be removed as Ca6Al2O3(SO4)3.32H2O  

were 1.77 mols in 80 L. This was equivalent to 2126 mg/L. The actual sulphate ions that 

remained in the treated water after treatment of Rand Uranium mine water with Matla coal 

FA (13 g), lime (200 g) and 86.58 g of Al(OH)3 was 418 mg/L. This represented about 84 % of 

sulphate removal as shown in Figure 7.2.32. This meant that 2145 mg/L of sulphate ions 

were removed. This value was very close to the expected amount of sulphate ions that were 

supposed to be removed as ettringite. This confirmed that the sulphate ions were mainly 

removed as ettringite.  

This study has shown that treatment of Rand Uranium mine water (80 L) with 13 kg of Matla 

coal FA, 200 g and 86.58 g of Al(OH)3 produced the best quality water. The physicochemical 

parameters of Rand Uranium mine water and the product water produced were compared 

to the DWAF and WHO limits for potable water as shown in Table 7.2.7. 
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Table 7.2.7: Comparison of the physicochemical parameters of Rand Uranium mine water 

and the product water produced from the treatment of Rand Uranium mine water (80 L) 

with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3 to the DWAF and the WHO 

limits for potable water. 

parameter Rand Uranium mine water Product water Potable limit 
pH 2.65 ± 0.81 11.02 6-9 
EC  2000 ± 27 1900 700 
sulphate 2562.41 ± 6.85 417.58 ± 4.93 500 
Fe 201.05 ± 0.55 0.015 ± 0.001 0.3 (0.1) 
Al 26.63 ± 0.29 0.071 ± 0.0002 0.2 (0.15) 
Ca 360.15 ± 4.25 209.85 ± 0.75 32 
Mg 153 ± 0.7 0.02 ± 0.003 30 
Mn 60.16 ± 0.17 9.6 x 10-4 ± 1 x 10-4 0.1(0.05) 
Ni 2.11 ± 0.0043 3.96 x 10-3 ± 2.9 x 10-4 NV 
Zn 1.93 ± 0.013 4.99 x 10-4 ± 2.3 x 10-4 3(0.5) 
Sr 0.45 ± 0.0034 23.75 ± 0.45 NV 
Cu 0.28 ± 0.0033 6.63 x 10-5 ± 6.63 x 10-5 2(1) 
U 0.28 ± 0.001 2.4 x 10-4 ± 2.98 x 10-6 0.03(0.07) 
Li 0.069 ± 2.9 x 10-4 1.34 ± 0.006 NV 
Se 0.061 ± 0.0023 0.014 ± 0.001 0.02(0.04) 
Ba 0.026 ± 4.3 x 10-4 0.082 ± 0.001 0.7 
Cr 0.023 ± 2.9 x 10-4 0.12 ± 0.0062 0.05 
Pb 7.5 x 10-3 ± 1.73 x 10-5 2.6 x 10-4 ± 2.82 x 10-5 0.01 
Cd 6.76 x 10-3 ± 1.22 x 10-5 2.50 x 10-5 ± 5.09 x 10-6 0.003(0.005) 
As 5.6 x 10-3 ± 2.49 x 10-5 1.4 x 10-3 ± 5.64 x 10-5 0.001 
Be 3.90 x 10-3 ± 4.17 x 10-5 8.31 x 10-6 ± 2.56 x 10-6 0.012 
Th 1.8x 10-3 ± 3.06 x 10-5 2.17 x 10-6 ± 1.86 x 10-7 NV 
V 1.2 x 10-3 ± 7.6 x 10-6 0.024 ± 0.0011 (0.01) 
Mo 5.3 x 10-4 ± 2.4 x 10-5 0.16 ± 3.7 x 10-4 0.07 
B 2.3 x10-4 ± 4x 10-6 0.0018 ± 3 x 10-6 2.4 
Hg 3.93 x 10-6 ± 1.18 x 10-6 4.65 x 10-4 ± 1.79 x 10-6 0.006(0.001) 
All units are mg/L except that of EC (µS/cm) and pH. NV means no value mentioned in the WHO and 
DWAF guidelines for potable water. 

 

From Table 7.2.7, Rand Uranium mine water did not conform to drinking water 

requirements with respect to twelve parameters. These were pH, EC and the concentration 

of sulphate, Fe, Al, Ca, Mg, Mn, U, Se, Cd and As. After treatment of Rand Uranium mine 

water (80 L) with 13 kg of Matla coal FA, 200 g of lime and 86.58 g of Al(OH)3, the product 

water did not conform to the requirements with respect to six parameters. These 
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parameters were pH, EC and the concentration of Ca, Cr, As and Mo. The concentration of 

As was slightly above the TWQR for potable water. The pH, EC and the concentration of Ca 

can be adjusted to the required limits by bubbling CO2 into the product water (Madzivire, 

2010; Bologo et al., 2012). So the product water needs polishing to remove Cr, As and Mo 

using ion exchange resins or zeolites (Moreno et al., 2001). 

It was found that treatment of Rand Uranium mine water (80 L) with 13 kg of Matla coal FA, 

200 g of lime and 86.58 g of Al(OH)3 resulted in the removal of U, Th, Zn, Ni, Cu, As, Pb, Be 

and Cd. The concentration of U, Th, Zn, Ni, Cu, Pb, Be and Cd was within the limit for potable 

water set by the World Health Organization. On the hand Sr, Mo, Cr, V and Ba leached into 

the water when Matla coal FA was used to treat Rand Uranium mine water. The final 

concentration of Cr, V and Ba was less than the limit for potable water. The pH, EC and final 

concentration of Mo, As and Ca was above the limit for potable water. This means that the 

product water from Matla coal FA, lime and Al(OH)3 treatment need a bit of polishing to 

adjust the pH and the concentration of Mo, As and Ca using ion exchange resins before it 

can be used for domestic purposes. Otherwise, with adjustment of pH only by bubbling CO2, 

the water would be fit for agricultural and industrial uses. 

Removal of sulphate ions from Rand Uranium mine water as ettringite using Matla coal FA, 

lime and Al(OH)3 was found to be enhanced by the hydrodynamic cavitation that occurs in 

the jet loop reactor. This was confirmed when the mixture was first mixed in a jet loop 

reactor for 45 min and then the mixing technique was changed to normal stirring. This 

resulted in reduced sulphate removed compared to when the mixing was done in jet loop 

reactor throughout the duration of the mixing process. Hydrodynamic mixing of Rand 

Uranium mine water with Matla coal FA, lime and Al(OH)3 resulted in an increase in 

temperature of the mixture gradually to about 80 0C. 

This research has found a novel way of removing many potentially toxic elements such as 

Cd, Fe, Mn and sulphate ions and radioactive active elements such as U and Th from mine 

water using coal FA. Recycling waste mine water and FA will go a long way to attain zero 

effluent discharge in the mines and the coal fired power stations. Since coal FA contained 
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radionuclides initially, the added radionuclides from contaminated mine water did not cause 

a significant increase in the amount of these radioactive elements in the solid residues.  

7.2.9. CONCLUSION 

Treatment of Rand Uranium mine water with Matla coal FA  has resulted in the removal of 

potentially toxic elements such as Fe, Al, Mn, Mg, U, Th, Zn, Ni, Cu, As, Pb, Be and Cd by 

almost 100 %  to within the TWQR for potable water. The removal was achieved after 

mixing Rand Uranium mine water with Matla coal FA for 30 min using a jet loop reactor. 

During treatment of Rand Uranium mine water with Matla coal FA and/or lime, the sulphate 

concentration was removed by about 40-60% . The final concentration of the sulphate after 

treatment of Rand Uranium mine water was above the TQWR for potable water. The 

removal of Fe, Al, Mn, Mg, U, Th and sulphate confirmed the modelling results that were 

predicted by Act2 program of the GWB software.  

The sulphate ions in Rand Uranium mine water were removed to within the TWQR for 

potable water of 0-500 mg/L by treating Rand Uranium mine water in a one step and simple 

process using Matla coal FA, lime and Al(OH)3. Matla coal FA and lime were added such that 

the pH of the mixture was maintained around or above 11.5, which is the optimum pH for 

ettringite precipitation. Al(OH)3 was added to provide more Al3+ for the formation of 

ettringite. Formation of ettringite was effective to remove sulphate ions to within the TWQR 

because of its low solubility product of 1 x 10-45, if the pH was kept within 11.5 and 12.5. The 

kinetics of the removal of sulphate ions as ettringite was dependent on the type of mixing 

employed. It was found that hydrodynamic mixing of Rand Uranium mine water enhanced 

the kinetics of the removal of sulphate ions as ettringite. 
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 

This chapter covers the overall scientific conclusions reached based on the objectives that 

were set. It also highlights the recommendations and the future work that need to be 

undertaken. 

8.1. CONCLUSION FROM FINDINGS 

This research focused on the treatment of Matla mine water or Rand Uranium mine water 

with Matla coal FA, lime or Al(OH)3. The treatment was conducted using a jet reactor or an 

overhead stirrer. This research investigated the effect of the jet reactor on the removal of 

potentially toxic contaminants and proved that the jet reactor had impact on the kinetics of 

the removal of sulphate ions from mine water. The chemistry of the removal of sulphate 

ions using Al(OH)3 or aluminium chlorohydrate (ACH) was also studied. This part of research 

aimed to understand the effect of pH and effect of the ratio of Al:sulphate ions on the 

removal of sulphate ions from mine water using Al(OH)3 and ACH. 

Matla coal FA used in this research was Class F according to the American Standard of 

Testing and Measurement system. It was made up of amorphous material (59.76 %), mullite 

(24.84 %), quartz (18.88 %), hematite (1.57 %), lime (0.68 %) and gypsum (0.21 %). Matla 

coal FA contained naturally occurring radioactive materials (NORMs) such as 238U, 234U, 235U, 
232Th, 228Th, 228Ra, 226Ra, 210Pb, 40K. The radioactivity in Matla coal FA was within the range of 

most ashes all over the world. The radioactivity of Matla coal FA was significantly above the 

average radioactivity of soil. Matla mine water and Rand Uranium mine water were found 

to be neutral mine drainage and acid mine drainage respectively. This was because the pH 

of Matla mine was 8, which was close to the neutral pH and that of Rand Uranium mine 

water was acidic. Rand Uranium mine water contained elevated concentrations of sulphate, 

Fe, Al, Mn, Ca and Mg. Matla mine water contained high concentrations of Na and sulphate, 

such that the water was unsuitable for domestic and industrial purposes. Rand Uranium 

mine water was unsuitable for any purpose (drinking, irrigation or industrial) because the 

lower pH and the elevated concentration of Fe, Al, Mn, Pb, U and sulphate ions in the water. 
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The gross alpha and beta radioactivity of Rand Uranium mine water were 12 and 6 times 

above the potable limit respectively. This was caused by U, Th and Ra radioisotopes that 

were found in Rand Uranium mine water.  

Geochemist workbench (GWB) speciation using SpecE8  program of the major elements in 

Matla mine water and Rand Uranium mine water have shown that major elements (or ions), 

Mg, sulphate, Mn, Na and K ions mainly exist in aqueous media as free ions. This means they 

exist mainly as unassociated or uncomplexed with ligands or other ions. Free ions are very 

mobile and thus have increased bioavailability and toxicity. Cations such as Fe and Al were 

found to occur associated with hydroxyl ions in Rand Uranium mine water. This means that 

Al and Fe had reduced mobility and bioavailability. Reduced mobility and bioavailability 

reduced the toxicity of these ions.  

The Act2 sub program of the GWB model has shown that if Matla mine water or Rand 

Uranium mine water was to be treated with Matla coal FA, the removal of the potential 

toxic elements such as Fe, Al, Mn, Mg, U, Th and sulphate ions would depend on pH end 

point of the treatment and the concentration of Ca ions added to the mine water. The 

results are very helpful especially to predict the amount of FA or chemicals that would be 

required to treat a particular composition of the mine water. The removal of Mg ions from 

Matla mine was found to be mainly pH dependent. It was found that increasing the pH of 

Matla mine water to greater than 10 would result in the precipitation of Mg as brucite 

(MgOH)2. No removal of sulphate, K and Na ions from Matla mine water was predicted by 

Spec8 program if the concentration of Ca ions in mine was increased such that logaCa2+ was 

to be increased from -10 to 0 and pH was increased to 14.  

The Act2 program of the GWB predicted that treatment of Rand Uranium mine water with 

Matla coal FA could remove sulphate ions as alunite (KAl3(SO4)2(OH)6) or gypsum. Removal 

of alunite and gypsum from Rand Uranium mine water was found to depend on pH and 

logaCa2+. If sulphate ions were to be removed in the form of alunite, the pH of the mixture 

would have to be kept between 3.5 and 5 and logaCa2+ less than -1. If the sulphate ions were 

to be removed in the form of gypsum, logaCa2+ of the mixture would have to be increased to 

greater than -2.5. Removal of Al ions from Rand Uranium mine was through alunite or 
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gibbsite (Al(OH)3) precipitation according to the GWB model. The formation of alunite was 

dependent mainly on pH while the formation of gibbsite was found to be dependent upon 

the concentration of Ca ions added to the mine water. The conditions for the removal of Al 

as alunite are the same as the conditions for the removal of sulphate ions as alunite. 

Removal of Al ions as gibbsite would occur if the pH of the mine water was to be increased 

to between 4 and 10. The probable mineral phases that were predicted to form when Rand 

Uranium water was to be treated with FA were, jarosite-K (KFe3(SO4)2(OH)6) and Fe(OH)3. 

The formation of jarosite-K was found to be pH dependent and the concentration of Ca2+ 

added to the mine water. Jarosite-K was found to form at pH between 3 and 5. As logaCa2+ 

was increased to greater than -0.5, no jarosite would form in Rand Uranium mine water. 

Formation of Fe(OH)3 could only occur if the pH of the mine water was to be increased to 

between 4 and 12.  Modelling results using the GWB model have shown that if Rand 

Uranium mine was to be treated with FA, Mn and Mg ions will be removed as Mn(OH)2 and 

Mg(OH)2 respectively. The formation of Mn(OH)2 and Mg(OH)2 would depend on the final 

pH attained during treatment and would be independent of the amount of Ca2+ ions added 

into the mixture. Mn(OH)2 and Mg(OH)2 were found to precipitate at pH 10 and 9.5 

respectively. Removal of K ions from Rand Uranium mine water was found to be through 

the precipitation of alunite according to the GWB. On the hand the GWB model have shown 

that if Rand Uranium mine water was to be treated with FA, there is no expected 

Na-mineral phase that would form. Therefore if Rand Uranium is to be treated with FA, Na 

concentration would remain the same if there is no leaching of Na from FA or adsorption or 

absorption of Na ions by the FA particles.  

 

Removal of sulphate ions from mine water using Al(OH)3 or ACH depends on the pH of the 

mixture and the amount of Al ions added. The optimum pH for sulphate removal during 

treatment of mine water with Al(OH)3 and ACH was found to be between 4 and 6. The 

optimum Al3+:SO4
2- mol ratio for the removal of sulphate ions was 5:1 and 6:1 for Al(OH)3 

and ACH respectively. Removal of sulphate ions using ACH resulted in better removal as 

compared to using Al(OH)3. This was because ACH was jelly-like and Al(OH)3 was in solid 

form. Therefore the dissolution and rearrangement to form species that interact and 
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remove the sulphate ions in the mine water occurs faster when ACH was added to the 

mixture. Addition of ACH to mine water 5:1 and 6:1 of the Al3+:SO4
2- mol ratio resulted in the 

removal of sulphate concentration to less than the potable limit. The disadvantage of using 

Al(OH)3 or ACH to remove sulphate ions from mine water is the amount of Cl ions that 

remained in the treated water. The Cl ions come from the ACH or added to the mixture as 

HCl in the case of Al(OH)3 in order to maintain the pH at the optimum range. Aluminium 

chlorohydrate also produced a mixture of mine water and flocculants of high viscosity that 

made the recovery of treated water almost impossible. 

 

From the results obtained when coal FA only was used to treat Matla mine water, sulphate 

and Ca initially leached into the Matla mine water from FA. After addition of Al(OH)3 to the 

mixture the concentration of sulphate and Ca started to decrease due to the precipitation of 

ettringite. Na remained almost constant during treatment of mine water with fly ash, while 

the concentration of Mg decreased to approximately zero when pH was increased to greater 

than 12. Experiments conducted using an overhead stirrer has shown low sulphate removal 

compared to jet loop experiments. This was due to the increased rate of formation of 

ettringite caused by the superior mixing in a jet loop reactor compared to an overhead 

stirrer. Jet sizes did not have any effect on sulphate removal. Changing of the mixing 

technique from a combination of impingement and cavitation to cavitation only did not 

result in any noticeable difference on sulphate removal. Finally, cavitation and impingement 

mixing of Matla mine water and coal FA resulted in a gradual increase in temperature of the 

mixture. It was shown that the temperature did not affect the removal of sulphate ions. This 

proved that the removal of sulphate ions was enhanced by hydrodynamic cavitation that 

occurred inside the jet loop reactor. These findings proved that treatment of mine water 

with FA could be up scaled very easily to 80 L pilot plant capacity using a jet loop reactor. 

Treatment of Rand Uranium mine water using Matla FA, lime and Al(OH)3 has shown that 

major elements such as Fe, Al, Mn and Mg can be removed by almost 100 % with coal FA. 

This was achieved by mixing mine water with FA and lime for 30 min in jet loop reactor. On 

the other hand only a small amount of sulphate ions were removed when Rand Uranium 

mine water was mixed with coal FA for 30 min. The removal of Fe, Al, Mn and Mg was due 
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to the precipitation of their respective hydroxides. Fe and Al were found to be removed at 

pH greater than 4, while Mn and Mg were removed at pH greater than 10. The slight 

decrease in the sulphate concentration observed was due to the formation of ettringite and 

gypsum when Rand Uranium mine water was mixed with FA and lime. 

Addition of Al(OH)3 at 30 min (when the pH of the mixture was greater than 11) resulted in a 

further decrease of sulphate concentration in the product water to within the TWQR of 

500 mg/L. This was due to the formation of ettringite. The formation of ettringite was found 

to cause a pH decrease, which required more alkalinity from FA or lime in order to maintain 

the pH of the mixture in the range of 11.5 to 12.5. This pH range is where ettringite is stable. 

When there was less alkalinity that could buffer the pH drop due to the H+ ions released 

during the formation of ettringite, the percentage sulphate removal from the mixture was 

reduced due to the dissolution of ettringite.  

Removal of sulphate ions from Rand Uranium mine water as ettringite using coal FA, lime 

and Al(OH)3 was found to be enhanced by the hydrodynamic cavitation that occurs in the jet 

loop reactor. This was confirmed when the mixture was first mixed in a jet loop reactor for 

45 min and then the mixing technique was changed to normal stirring. This resulted in 

reduced sulphate removal compared to when the mixing was done in jet loop reactor 

throughout the duration of the mixing process. Hydrodynamic mixing of Rand Uranium mine 

water with FA, lime and Al(OH)3 resulted in an increase in temperature of the mixture 

gradually to about 80 0C. 

Treatment of Rand Uranium mine water with Matla coal FA, lime and Al(OH)3 has resulted in 

the removal of U, Th, Zn, Ni, Cu, As, Pb, Be and Cd to below the limit for potable water set 

by the World Health Organization. On the hand Sr, Mo, Cr, V and Ba leached into the water 

when FA was used to treat Rand Uranium mine water. The final concentration of Cr, V and 

Ba was less than the limit for potable water. The final concentration of Mo and Sr was above 

the limit for potable water. This means that the product from coal FA, lime and Al(OH)3 

treatment need only a bit of polishing to adjust the pH and reduce the concentration of Mo 

and Sr before it can be used for domestic purposes. Otherwise if only pH of the water is 

adjusted the water will be fit for agricultural and industrial uses. 
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8.2. SIGNIFICANCE OF THE FINDINGS 

Results obtained in this research are of importance to scientists and the water treatment 

and mining industry. The novel findings obtained by this research are as follows: 

1. Matla coal FA was found to be radioactive. Since coal FA has found application in 

construction (brick and cement making), the products from the reuse of coal FA need 

assessment for precautionary purposes. 

 

2. Geochemist’s workbench (GWB) software was used to calculate the species distribution 

of potentially toxic elements in mine water. The results can be used to predict how 

species are distributed and these results can be used to predict the mobility, 

bioavailability and hence toxicity of the potential toxic element. According to the 

literature, the free ions are more mobile and therefore have high probability of uptake 

by the flora and fauna, thereby increasing their toxicity.  

 
The GWB was also used to predict the probable mineral phases that could occur during 

treatment of mine water with coal FA. The results obtained correlated with the 

experimental results. This showed that GWB can be used to predict what can happen 

during treatment of mine water at specific conditions. This is important for planning of 

the treatment protocol of a particular mine water and would result in saving time 

during optimization. 

 
3. During treatment of Rand Uranium mine water with Matla coal FA, naturally occurring 

radioactive materials (NORM) such as Th and U were removed by almost 100 %. This 

means that coal FA (a radionuclide containing waste material) can be used to treat 

radionuclide containing mine water without adding NORMs into the treated water. 

Since coal FA had relatively high concentration of Th and U compared to mine water, 

the added radionuclides would not change the radioactivity of the solid residues. This 

means that the solid residues can be reused in the same way as the original coal FA 

without any significant enhancement of the radionuclide concentration.  
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4. Treatment of Matla mine water with coal FA in the jet loop reactor enhanced the 

kinetics of the removal of sulphate ions. During treatment of mine water with coal FA, 

lime and Al(OH)3 it was discovered that hydrodynamic cavitation increased the rate of 

removal of sulphate ions as ettringite. This was because hydrodynamic mixing 

increased the mixing intensity of mine water with coal FA, lime and Al(OH)3. The 

treatment of mine water in the jet loop reactor was conducted at 80 L capacity and 

after 120 min; the sulphate ions and many other contaminants were removed to within 

TWQR for potable water. This means that there is potential of up scaling the treatment 

of mine water with coal FA to an industrial scale. 

 

5. Removal of sulphate ions using only flocculants resulted in the product water 

containing elevated concentration of chloride ions. From the results obtained in this 

study, it is not recommended to use Al based flocculants such as ACH to remove 

sulphate ions from mine water. This was because the product water after precipitating 

sulphate ions (to within TWQR) from mine water contained elevated concentration of 

Cl ions (greater than 1000 mg/L) which was well above the TWQR for potable water. 

8.3. ADVANTAGES OF THE FLY ASH-LIME-AL(OH)3 PROCESS 

 This process does not require pre-treatment and can handle any quality of the raw 

water 

 The sludge produced dewaters easily and according to previous researchers can be 

used for mine backfilling so the waste material is not difficult to handle. This would 

result in the prevention of further formation of mine water at abandoned mines. 

 The process is a one step and simple process. The process control requires pH 

monitoring. 
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8.4. RECOMMENDATIONS AND FUTURE WORK 

Although the total concentration of U and Th was found be very low after treatment of Rand 

Uranium mine water with Matla coal FA, the gross alpha and beta radioactivity still need to 

be assessed. This is because Matla coal fly ash and Rand Uranium mine water have shown 

radioactivity values greater than the normal values. After the radioactivity of the product 

water has been confirmed to be low, the process would be up scaled to 1000 L pilot plant at 

one of the Eskom coal mines. It is suggested to study the effect of ACH on the removal of 

sulphate ions from mine water at pH greater than 11 at 1000 L pilot scale. 

 

 

 

 

 



REFERENCES 
 

270 
 

REFERENCES 

Adlem, C.J.L., 1997. Treatment of sulfate-rich effluents with the barium sulfide process, 

University of Pretoria, South Africa. 

Adriano, D.C., Page, A.L., Elseewi, A.A., Chang, A.C. and Straughan, I., 1980. Utilization and 

disposal of fly ash and other coal residues in terrestrial ecosystems: A review. Journal of 

Environmental Quality, 9, pp. 333-344. 

Allen, H.E., Hall, R.H. and Brisbin, T.D., 1980. Metal Speciation: Effects on Aquatic 

Toxicity. American Chemical Society, 14(4), pp. 441-443. 

ASTM, 1994. Standard specification for fly ash and raw or calcined natural pozzolan for use 

as mineral admixture in Portland cement concrete. Pennsylvania: American Society for 

Testing and Materials. 

Aziz, H.A., Adlan, M.N. and Ariffin, K.S., 2008. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) 

removal from water in Malaysia: Post treatment by high quality limestone. Bioresource 

Technology, 99(6), pp. 1578-1583. 

Baykal, G. and Saygili, A., 2011. A new technique to reduce the radioactivity of fly ash 

utilized in the construction industry. Fuel, 90(4), pp. 1612-1617. 

Beer, M., Maree, J., Wilsenach, J., Motaung, S., Bologo, L., Radebe, V., 2010. Acid Mine 

Water Reclamation using the ABC Process (Alkali Barium Calcium Process), Wolkersdorfer & 

Freund, Mine Water & Innovative Thinking, September 5-9 2010, Cape Brenton University, 

pp. 115. 

Bethke, C.M. and Yeakel, S., 2010. The Geochemist’s Workbench® Release 8.0: GWB 

Essentials Guide. Colorado, USA: Hydrogeology Program University of Illinois. 

 

 

 

 



REFERENCES 
 

271 
 

Blowes, D.W. and Ptacek, C.J., 1994. Acid-neutralization mechanisms in inactive mine 

tailings.  Short Course Handbook on Environmental Geochemistry of Sulfide Mine 

Waste. 22 edn. Canada: Mineralogical Association of Canada, Nepean, pp. 271-291. 

Bologo, V., Maree, J. and Carlsson, F., 2012. Application of magnesium hydroxide and 

barium hydroxide for the removal of metals and sulphate from mine water. Water SA, 38(1), 

pp. 23-28. 

Bonotto, D.M., Bueno, T.O., Tessari, B.W. and Silva, A., 2009. The natural radioactivity in 

water by gross alpha and beta measurements. Radiation Measurements, 44(1), pp. 92-101. 

Bosman, D.J., 1983. Lime treatment of acid mine water and associated solids/liquid 

separation. Wat. Sci. Tech., 15, pp. 71-84. 

Bosman, D.J., Clayton, J.A., Maree, J.P. and Adlem, C.J.L., 1990. Removal of sulphates from 

mine water with sulphide, Proceedings of the Lisbon 90 International Symposium: Acidic 

Mine Water in Pyritic Environments 1990, pp. 16. 

Bratby, J., 2006. Coagulation and flocculation in water and wastewater treatment. 2nd edn. 

London, UK: IWA Publishing. 

Chen, Z., Luan, Z., Jia, Z. and Li, X., 2009. Study on the hydrolysis/precipitation behaviour of 

Keggin Al13 and Al30 polymers in polyaluminium solutions. Journal of Environmental 

Management, 90(8), pp. 2831-2840. 

Chung, Y.M. and Luo, K.H., 2002. Unsteady Heat Transfer Analysis of an Impinging 

Jet. Journal of Heat Transfer, 124, pp. 1039-1048. 

Cobley, A.J. and Mason, T.J., 2010. Ultrasound is Not Just for Cleaning! 

http://www.pcbdesign007.com [10/11, 2012]. 

Coetzee, H., Hobbs, P.J., Burgess, J.E., Thomas, A. and Keet, M., 2010. Report to the 

Inter-ministerial committee on acid mine drainage: Mine water management in the 

 

 

 

 



REFERENCES 
 

272 
 

Witwatersrand gold fields with special emphasis on acid mine drainage. South Africa: 

Council for Geoscience. 

Cole, D.I., 1998. Handbook, Council for Geoscience. In: M.G.C. WILSON and C.R. 

ANHAUSSER, eds, Uranium In: The mineral resources of South Africa. 16 edn. South Africa: 

Council of Geosciences of South Africa, pp. 642-652. 

Cravotta, C.A., Brady, K.B.C., Smith, M.W. and Beam, R.L., 1990. Effectiveness of the addition 

of alkaline materials at surface coal mines in preventing or abating acid mine drainage- Part 

1, Geochemical considerations, Charleston, W.V., ed. In: Proceedings of the 1990 Mining and 

Reclamation Conference 1990, West Virginia University, pp. 221-223. 

Cravotta, C.A. and Trahan, M.K., 1999. Limestone drains to increase pH and remove 

dissolved metals from acidic mine drainage. Applied Geochemistry, 14, pp. 581-606. 

Debertin, K., 1996. The art of realizing the Becquerel. Applied Radiation and Isotopes, 47(4), 

pp. 423-431. 

Del Pino, M.P. and Durham, B.D., 1999. Wastewater reuse through dual-membrane 

processes: opportunities for sustainable water resources. Desalination, 124(1-3), pp. 271-

277. 

Department of Water Affairs and Forestry, 1996. South African Water Quality Guidelines 

(second edition), Volume 3: Industrial Use. Pretoria, South Africa: CSIR Environmental 

Services. 

Department of Water Affairs and Forestry, 1996. South African Water Quality, Guidelines 

(second edition). Volume 1: Domestic Use. Pretoria, South Africa: CSIR Environmental 

Services. 

Department of Water Affairs and Forestry, 1996. South African Water Quality, Guidelines 

(second edition). Volume 4: Agricultural Use: Irrigation. PRETORIA, Republic of South Africa: 

CSIR. 

 

 

 

 



REFERENCES 
 

273 
 

Depoi, F.S., Pozebon, D. and Kalkreuth, W.D., 2008. Chemical characterization of feed coals 

and combustion by products from Brazilian power plants. International Journal of Coal 

Geology, 76(3), pp. 227-236. 

Dong, H., Guan, X., Wang, D., Li, C., Yang, X. and Dou, X., 2011. A novel application of 

H2O2-Fe(II) process for arsenate removal from synthetic acid mine drainage (AMD) 

water. Chemosphere, 85(7), pp. 1115-1121. 

Duan, J. and Gregory, J., 2003. Coagulation by hydrolysing metal salts. Advances in Colloid 

and Interface Science, 100-102, pp. 475-502. 

Durand, J.F., 2012. The impact of gold mining on the Witwatersrand on the rivers and karst 

system of Gauteng and North West Province, South Africa. Journal of African Earth 

Sciences, 68(0), pp. 24-43. 

Eaton, A.D., Lenore, S.C. and Arnold, E.G., 1995. Standard methods for the examination 

of water and wastewater. Washington D.C.: American Public Health Association,. 

Entezari, M.H., Mostafai, M. and Sarafraz-Yazdi, A., 2006. A combination of ultrasound and a 

bio-catalyst: removal of 2-chlorophenol from aqueous solution. Ultrasonics 

Sonochemistry, 13(1), pp. 37-41. 

Fatoba, O.O., 2010. Chemical interactions and mobility of species in fly ash-brine co-disposal 

systems, University of the Western Cape, Cape Town, South Africa. 

Florence, T.M., Morrison, G.M. and Stauber, J.L., 1992. Determination of trace element 

speciation and the role of speciation in aquatic toxicity. Science of the Total 

Environment, 125(0), pp. 1-13. 

Gavaskar, A.R., 1999. Design and construction techniques for permeable reactive 

barriers. Journal of Hazardous Materials, 68(1–2), pp. 41-71. 

 

 

 

 



REFERENCES 
 

274 
 

Gavi, E., Marchiso, D.L. and Barresi, A.L., 2007. CFD modelling and scale-up of Confined 

Impinging Jet Reactors. Chemical Engineering Science 62 (2007) 2228 – 2241, 62, pp. 

2228-2241. 

Gazea, B., Adam, K. and Kontopoulos, A., 1996. A review of passive systems for the 

treatment of acid mine drainage Journal of Minerals Engineering, 9(1), pp. 23-42. 

Geldenhuys, A.J., Maree, J.P., De Berr, M. and Hlabela, P., 2001. An Integrated 

limestone/lime process for partial sulphate removal, 2001, CSIR. 

Georgantas, D.A. and Grigoropoulou, H.P., 2007. Orthophosphate and metaphosphate ion 

removal from aqueous solution using alum and aluminium hydroxide. Journal of colloid and 

interface science, 315(1), pp. 70-79. 

Gitari, M.W., Petrik, L.F., Etchebers, O., Key, D.L., Iwuoha, E. and Okujeni, C., 2006. 

Treatment of acid mine drainage with fly ash: removal of major contaminants and trace 

elements. Journal of Environmental Science Health A: Toxicological, Hazardous. 

Substances, 41, pp. 1729-1747. 

Gitari, W.M., Petrik, L.F., Etchebers, O., Key, D.L., Iwuoha, E. and Okujeni, C., 2008. 

Utilization of Fly Ash for Treatment of coal mines waste water: Solubility controls on major 

inorganic contaminants. Fuel, 87, pp. 2450-2462. 

Guan, X., Ma, J., Dong, H. and Jiang, L., 2009. Removal of arsenic from water: Effect of 

calcium ions on As(III) removal in the KMnO4–Fe(II) process. Water research, 43(20), pp. 

5119-5128. 

Gunter, P., Naidu, T., 2008. Mine water reclamation-towards zero disposal. WISA Biennial 

Conference, Johannesburg http://www.ewisa.co.za/misc/WISAConf/default2008.htm  

Hammack, R.W., Dvorak, D.H. and Edenborn, H.M., 1993. The Use of Biogenic Hydrogen 

Sulfide to Selectively Recover Metals from a Severely Contaminated Mine 

Drainage, Proceedings of the International Biohydrometallurgy Symposium. 

 

 

 

 



REFERENCES 
 

275 
 

Hampson, C.J. and Bailey, J.E., 1982. On the structure of some precipitated calcium 

alumino–sulphate hydrates. Journal of Material Science, 17, pp. 3341-3346. 

Hedin, R.S., Nairn, R.W. and Kleinmann, R.L.P., 1994. Passive Treatment of Coal Mine 

Drainage. Information Circular No. 9389. US Bureau of Mines. 

Hlabela, P., Maree, J. and Bruinsma, D., 2007. Barium Carbonate Process for Sulphate and 

Metal Removal from Mine Water. Mine Water and the Environment, 26, pp. 14-22. 

INAP (International network for acid prevention), The Global Acid Rock Drainage Guide, 

http://64.130.26.41/index.php/History_of_Passive_Treatment [07/2012, 2012]. 

Jagea, C.R., Zipper, C.E. and Noble, R., 2001. Factors Affecting Alkalinity Generation by 

Successive Alkalinity-Producing Systems: Regression Analysis. Journal of Environmental 

Quality, 30(3), pp. 1015-1022. 

Jain, C.K. and Ali, I., 2000. Arsenic: occurrence, toxicity and speciation techniques. Water 

Research, 34(17), pp. 4304-4312. 

Johnson, B.D. and Hallberg, K.B., 2005. Acid mine drainage remediation options: a 

review. Science of the Total Environment, 338, pp. 3-14. 

Johnson, D.B., 2000. Biological removal of sulfurous compounds from inorganic wastewaters 

In: Lens P, Hulshoff Pol L, Environmental Technologies to treat sulfur pollution: Principles 

and Engineering, ed. In: International Association on Water Quality 2000, pp. 175–-206. 

Johnson, D.B. and Hallberg, K.B., 2003. The microbiology of acidic mine waters. Res 

Microbiol, 154, pp. 466-473. 

Johnson, D.B. and Hallberg, K.B., 2004. Biogeochemistry of the compost bioreactor 

components of a composite acid mine drainage passive remediation system. Science Total 

Environmental, 338, pp. 81-93. 

 

 

 

 



REFERENCES 
 

276 
 

Juby, G.J.G., Shutte, C.F., Van Leeuwen, J.W., 1996. Desalination of calcium sulphate 

scaling: design and operation of the SPARRO process. Water SA, 22(2), pp. 166-172. 

Jyoti, K.K. and Pandit, A.B., 2001. Water disinfection by acoustic and hydrodynamic 

cavitation. Biochemical Engineering Journal, 7(3), pp. 201-212. 

Kaksonen, A., Sulfate-reduction based bioprocesses in mining biotechnology: Remediation 

of surface waters [Homepage of Tampere University of Technology, Environmental 

Engineering and Biotechnology, Finland], [Online]. 

Available: http://wiki.biomine.skelleftea.se/biomine/srb/index_19.htm [June 2012, 2012]. 

Kentish,S.E. and Stevens, G.W., 2001. Innovations in separations technology for the 

recycling and re-use of liquid waste streams. Chemical Engineering Journal, 84(2), pp. 

149-159. 

Keplar, D.A. and McCleary, E.C., 1994. Successive Alkalinity Producing Systems (SAPS) for the 

treatment of acidic mine drainage, Proceedings of the International Land Reclamation and 

Mine Drainage Conference and 3rd International Conference on the Abatement of Acidic 

Drainage 1994, pp. 195. 

Kitchener, J.A., 1957. Ion-exchange Resins. Great Brittan: Butler and Tanner Ltd. 

Kovler, K., 2012. Does the utilization of coal fly ash in concrete construction present a 

radiation hazard? Construction and Building Materials, 29(0), pp. 158-166. 

Kumarathasan, P., McCarthy, G.J., Hassett, D.J. and Pflughoeft-Hassett, D.F., 1990. Oxyanion 

substituted ettringites: synthesis and characterization, and their potential role in 

immobilization of As, B, Cr, Se, and V, Materials Research Society Symposia 1990, pp. 83. 

Lapakko, K.A., 1994. Determinations for Metal Mine Waste and a Proposed 

Alternative. Proc. International Land Reclamation and Mine Drainage Conference and 3rd 

International Conference on the Abatement of Acidic Drainage, Pittsburgh, 1, pp. 129-137. 

 

 

 

 



REFERENCES 
 

277 
 

Lawrence, R.W. and Wang, Y., 1997. Determination of Neutralization Potential in the 

Prediction of Acid Rock Drainage, Proc. 4th International Conference on Acid Rock 

Drainage 1997, pp. 449. 

Liu, T. and Chin, C.M., 2009. Improved coagulation performance using preformed polymeric 

iron chloride (PICl). Colloids and Surfaces A: Physicochemical and Engineering 

Aspects, 339(1-3), pp. 192-198. 

Long, K.R., Van Gosen, B.S., Foley, N.K. and Cordier, D., 2010-last update, The Geology of 

Rare Earth Elements: Rare Earth Elements Are Not "Rare" [Homepage of geology.com], 

[Online]. Available: http://geology.com/usgs/ree-geology/ [June, 6, 2012]. 

Lottermoser, B.G., 2007. Mine Wastes: Characterization, Treatment and Environmental 

Impacts. 2nd edn. Springer. 

Lytle, D.A., Summers, R.S. and Sorg, T.J., 1992. Removal of beryllium from drinking water by 

chemical coagulation and lime softening, Journal of Water Supply Research and 

Technology-AQUA, 41(5), pp. 330-339. 

Madzivire, G., 2010. Removal of sulphates from South African mine water using coal fly ash, 

MSc Thesis, University of the Western Cape. 

Madzivire, G., Petrik, L.F., Gitari, W.M., Ojumu, T.V. and Balfour, G., 2010. Application of 

coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and 

ettringite. Mineral Engineering, 23, pp. 252-257. 

Madzivire, G., Gitari, W.M., Vadapalli, V.R.K., Ojumu, T.V. and Petrik, L.F., 2011. Fate of 

sulphate removed during the treatment of circumneutral mine water and acid mine 

drainage with coal fly ash: Modelling and experimental approach. Mineral 

Engineering, 24(13), pp. 1467-1477. 

 

 

 

 



REFERENCES 
 

278 
 

Maree, J.P., Bosman, D.J. and Jenkins, G.R., 1989. Chemical removal of sulphate and calcium 

and heavy metals from mining and power station effluents. Water Sewage and Effluents, 9, 

pp. 10-25. 

Mason, T.J., 2007. Developments in ultrasound—Non-medical. Progress in biophysics and 

molecular biology, 93(1–3), pp. 166-175. 

Matsuura, T., 2001. Progress in membrane science and technology for seawater 

desalination-a review. Desalination, 134(1-3), pp. 47-54. 

Mattigod, S.V., Dhanpat, R., Eary, L.E. and Ainsworth, C.C., 1990. Geochemical factors 

controlling the mobilization of inorganic constituents from fossil fuel combustion residues: 

Review of the major elements. Journal of Environmental Quality, 19, pp. 188-201. 

Mayes, W.M., Batty, L.C., Younger, P.L., Jarvis, A.P., Koiv, M., Vohla, C. and Mander, U., 

2009. Wetland treatment at extremes of pH: A review. Science of the Total 

Environment, 407(13), pp. 3944-3957. 

McCarthy, G.J., 1988. X-ray powder diffraction for studying the mineralogy of fly ash, in Fly 

Ash and Coal Conversion By-Products: Characterization, Utilization and Disposal IV. Material 

Research Society Symposium Proceeding, pp. 75. 

Moreno, N., Querol, X., Ayora, C., Pereira, C.F. and Janssen-Jurkovicava, M., 2001. Utilization 

of zeolites synthesized from coal fly ash for the purification of 

acid mine waters. Environmental Science and Technology, 35, pp. 3526-3534. 

Morin, K.A. and Hutt, N.M., 1997. Environmental Geochemistry of Minesite Drainage: 

Practical, Theory and Case Studies. Vancouver, Canada: MDAG. 

Mukhopadhyay, B., Bastias, L. and Mukhopadhyay, A., 2007. Limestone drain design 

parameters for acid rock drainage mitigation. Mine Water and the Environment, 26, pp. 

29-45. 

 

 

 

 



REFERENCES 
 

279 
 

Myneni, S.C.B., Samuel J. Traina, S.J. and Logan, T.J., 1998. Ettringite solubility and 

geochemistry of the Ca(OH)2-Al2(SO4)3-H2O system at 1 atm pressure and 298 K. Chemical 

Geology, 148, pp. 1-19. 

Nairn, R.W., Hedin, R.S. and Watzlaf, G.R., 1991. A Preliminary Review of the Use of Anoxic 

Limestone Drains in the Passive Treatment of Acid Mine Drainage, Proceedings of the 12th 

Annual West Virginia Surface Mine Drainage Task Force Symposium 1991. 

Nairn, R.W. and Mercer, M.N., 2000. Alkaline generation and metals retention in a 

successive alkalinity producing system. Mine Water and the Environment, 19, pp. 124-133. 

Neculita, C.M., Zagury, G.J. and Brussie, B., 2007. Passive treatment of acid mine drainage in 

bioreactors using sulfate-reducing bacteria: critical review and research needs. Journal of 

Environmental Quality, 36, pp. 1-36. 

Neupane, G. and Donahoe, R.J., Leachability of elements in alkaline and acidic coal fly ash 

samples during batch and column leaching 

tests. Fuel, (http://dx.doi.org/10.1016/j.fuel.2012.06.013). 

Newman, R.T., Lindsay, R., Maphoto, K.P., Mlwilo, N.A., Mohanty, A.K., Roux, D.G., De 

Meijer, R.J. and Hlatshwayo, I.N., 2008. Determination of soil, sand and ore primordial 

radionuclide concentrations by full-spectrum analyses of high-purity germanium detector 

spectra. Applied Radiation and Isotopes, 66(6–7), pp. 855-859. 

Papastefanou, C., 2010. Escaping radioactivity from coal-fired power plants (CPPs) due to 

coal burning and the associated hazards: A review. Journal of Environmental 

Radioactivity, 101(3), pp. 191-200. 

Paschoa, A.S. and Steinhausler, F., (2010). CHAPTER 3: Terrestrial, Atmospheric, and Aquatic 

Natural Radioactivity. Radioactivity in the Environment. Elsevier, pp. 29-85. 

Peppas, T.K., Karfopoulos, K.L., Karangelos, D.J., Rouni, P.K., Anagnostakis, M.J. and 

Simopoulos, S.E., 2010. Radiological and instrumental neutron activation analysis 

 

 

 

 



REFERENCES 
 

280 
 

determined characteristics of size-fractionated fly ash. Journal of Hazardous 

Materials, 181(1–3), pp. 255-262. 

Perkins, R.B. and Palmer, C.D., 1999. Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3.26H2O) at 

5-75°C. Geochimica et Cosmochimica Acta, 63(13/14), pp. 1969-1980. 

Pinetown, K.L., Ward, C.R. and Van Der Westhuizen, W.A., 2007. Quantitative evaluation of 

minerals in coal deposits in the Witbank and Highveld Coalfields, and the potential impact 

on acid mine drainage. International Journal of Coal Geology, 70(1-3), pp. 166-183. 

Postgate, J.R., 1984. The Sulphate-Reducing Bacteria. 2 edn. New York: Cambridge 

University Press. 

Pulles, W., Juby, G.J.B., Busby, R.W., 1992. Development of the Slurry Precipitation and 

Recycle Reverse Osmosis (SPARRO) technology for the scaling mine waters. Water Science 

Technology, 25(10), pp. 177-192. 

Querol, X., Umana, J.C., Alastuey, A., Ayora, C., Lopez-Soler, A. and Plana, F., 2001. 

Extraction of soluble major and trace elements from fly ash in open and closed leaching 

systems. Fuel, 80(6), pp. 801-813. 

Reznik, I.J., Gavrieli, I. and Ganor, J., 2009. Kinetics of gypsum nucleation and crystal growth 

from Dead Sea brine. Geochimica et Cosmochimica Acta, 73(20), pp. 6218-6230. 

Robb, G. A., Robinson, J. D. F., 1995. Acid drainage from mines. The Geographical 

Journal, 161(1), pp. 47-55. 

Rotting, T., Cama, J., Ayora, C., Cortina, J.L. and De Pablo, J., 2005. The use of caustic 

magnesia to remove cadmium from Water, 9th International mine water congress, Oviedo, 

Spain, 5-7 September 2005, pp. 641-647. 

Rowley, M., Warkentin, D.D. and Sicotte, V., 1997. Site demonstration of the biosulfide 

processes at the former Britannia mine. Proceedings of the Fourth International 

Conference on Acid Rock Drainage 1997, pp. 1531. 

 

 

 

 



REFERENCES 
 

281 
 

Roy. D.M., Luke. K., Diamond. S., 1985. Characterization of fly ash and its reactions in 

concrete. Mater. Res.Soc. Symp. Proc., 43, pp. 3-20. 

Russeva, E., 1995. Speciation analysis-peculiarities and requirements. . Anal. Lab., 4(3), pp. 

143-148. 

Scheid, N., Becker, S., Ducking, M., Hampel, G., Volker Kratz, J., Watzke, P., Weis, P. and 

Zauner, S., 2009. Forensic investigation of brick stones using instrumental neutron activation 

analysis (INAA), laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) 

and X-ray fluorescence analysis (XRF). Applied Radiation and Isotopes, 67(12), pp. 2128-

2132. 

Schoeman, J.J and Steyn, A, 2001. Investigation into alternative Water Treatment 

Technologies for the treatment of underground mine water discharged by Grootvlei 

Proprietary Ltd Into the Blesbokspruit in South Africa. Desalination, 133, pp. 13-30. 

Scott, R., 1995. Flooding of Central and East Rand gold mines – an investigation into 

controls over the inflow rate, water quality and the predicted impacts of flooded 

mines. Report No. 486/1/95. Pretoria, South Africa: Water Research Commission. 

Senior, C.L., Zeng, T., Che, J., Ames, M.R., Sarofim, A.F., Olmez, I., Huggins, F.E., Shah, N., 

Huffman, G.P., Kolker, A., Mroczkowski, S., Palmer, C. and Finkelman., 2000. Distribution of 

trace elements in selected pulverized coals as a function of particle size and density. Fuel 

Processing Technology, 63(2–3), pp. 215-241. 

Senthil, K. P., Siva Kumar, M. and Pandit, A.B., 2000. Experimental quantification of chemical 

effects of hydrodynamic cavitation. Chemical Engineering Science, 55(9), pp. 1633-1639. 

Silva, R., Cadorin, L. and Rubio, J., 2010. Sulphate ions removal from an aqueous solution: 

I. Co-precipitation with hydrolysed aluminium-bearing salts. Mineral Engineering, 23(15), 

pp. 1220-1226. 

 

 

 

 



REFERENCES 
 

282 
 

Skousen, J., Renton, J., Brown, H., Evans, P., Leavitt, B., Brady, K., Cohen, L. and 

Ziemkiewicz, P., 1997. Neutralization Potential of Overburden Samples Containing 

Siderite. Journal of Environmental Quality, 6(3), pp. 673-681. 

Skousen, J.G., Smith, R.M., Sencindiver, J.C., 1990. The development of the acid base 

account. Green Lands. West Virginia Mining and Reclamation Association, 20(1), pp. 32-37. 

Smit, J. and Sibilski, U.E., 2003. Pilot Plant Study to Treat Typical Gold Mine Minewater Using 

the SAVMIN Process, Water in Mining Conference. 

Smit, J.P., 1999. The purification of polluted mine water. International symposium of Mine 

Water & Environment for the 21st Century. 

Sobek, A.A., Schuller, W.A., Freeman, J.R. and Smith, R.M., 1978. Field and laboratory 

methods applicable to overburden and minesoils. EPA 600/2-78-054. 

Steed, V.S., Suidan, M.T., Gupta, M., Miyahara, T., Acheson, C.M. and Sayles, G.D, 2000. 

Development of a sulfate-reducing biological process to remove heavy metals from acid 

mine drainage. Water Environment Research, 72, pp. 530-535. 

Strathmann, H., 2010. Chapter 6 Ion-Exchange Membrane Processes in Water 

Treatment. Sustainability Science and Engineering. Elsevier, pp. 141-199. 

Stumm, W. and Morgan, J., 1996. Aquatic Chemistry. New York: Wiley & Sons. 

Surender, D., 2009. Active neutralization and amerioration of acid mine drainage with fly 

ash, MSc thesis, University of the Western Cape. 

Tongwen, X., 2002. Electrodialysis processes with bipolar membranes (EDBM) in 

environmental protection—a review. Resources, Conservation and Recycling, 37(1), pp. 

1-22. 

 

 

 

 



REFERENCES 
 

283 
 

Tran, A.T.K., Zhang, Y., Jullok, N., Meesschaert, B., Pinoy, L. and Van Der Bruggen, B., 2012. 

Reverse osmosis concentrate treatment by a hybrid system consisting of a pellet reactor and 

electrodialysis. Chemical Engineering Science, 79(0), pp. 228-238. 

Turhan, Ş., Parmaksiz, A., Kose, A., Yuksel, A., Arikan, I.H. and Yucel, B., 2010. Radiological 

characteristics of pulverized fly ashes produced in Turkish coal-burning thermal power 

plants. Fuel, 89(12), pp. 3892-3900. 

TUTORVISTA.COM, 2010. Radioactivity. Available: http://chemistry.tutorvista.com/nuclear-

chemistry/radioactivity.html [October 9, 2012]. 

United States Geological Survey, October 1997, 1997-last update, Radioactive Elements in 

Coal and Fly Ash: Abundance, Forms, and Environmental Significance [Homepage of USGS], 

[Online]. Available:http://pubs.usgs.gov/fs/1997/fs163-97/FS-163-97.pdf [November, 2011]. 

Vadapalli, V.R.K., Klink, M.J., Etchebers, O., Petrik, L.F., Gitari, W., White, R.A., Key, D. and 

Iwuoha, E., 2008. Neutralization of acid mine drainage using fly ash, and strength 

development of the resulting solid residues. South African Journal of Science, 104(7/8), pp. 

317-322. 

Valerdi-Pérez, R., Lopez-Rodriguez, M. and Ibanez-Mengual, J.A., 2001. Characterizing an 

electrodialysis reversal pilot plant. Desalination, 137(1-3), pp. 199-206. 

Vassilev, S.V. and Vassileva, C.G., 2007. A new approach for the classification of coal fly 

ashes based on their origin, composition, properties, and behaviour. Fuel, 86(10–11), pp. 

1490-1512. 

Warren, C.J. and Reardon, E.J., 1994. The solubility of ettringite at 25°C. Cement and 

Concrete Research, 24(8), pp. 1515-1524. 

Wei, C., Wang, W., Deng, Z. and Wu, C., 2007. Characteristics of high-sulfate wastewater 

treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized 

bed. Journal of Environmental Sciences, 19(3), pp. 264-270. 

 

 

 

 



REFERENCES 
 

284 
 

Wieder, R.K. and Lang, G.E., 1982. Modification of acid mine drainage in a freshwater 

wetland, B.R. MCDONALD, ed. In: Proceedings of the Symposium on Wetlands of the 

Unglaciated Appalachian Region 1982, West Virginia University, pp. 43. 

Winde, F., 2010. Uranium pollution of the Wonderfonteinspruit, 1997-2008 Part 1: uranium 

toxicity, regional background and mining-related sources of uranium pollution. Water 

SA, 36(3), pp. 239-256. 

WNA, August, 2011, 2011-last update, Naturally-Occurring Radioactive Materials (NORM) 

[Homepage of World Nuclear Association], [Online]. Available: http://www.world-

nuclear.org/info/inf30.html[June, 2012, 2012]. 

World Health Organization, 2011. Guidelines for drinking-water quality, third edition, 

incorporating first and second addenda Volume 1 - Recommendations. Geneva: WHO Press. 

World Health Organization, 2011. Radiological aspects: Guidelines for Drinking water 

Quality. Third edn. Geneva: World Health Organization, pp. 197-209. 

Yang, Z., Gao, B. and Yue, Q., 2010. Coagulation performance and residual aluminium 

speciation of Al2(SO4)3 and polyaluminium chloride (PAC) in Yellow River water 

treatment. Chemical Engineering Journal, 165(1), pp. 122-132. 

Younger, P.L., Banwart, S.A. and Hedin, R.S., 2002. Mine Water: Hydrology, Pollution, 

Remediation. Dordrecht Kluwer Academic Publishers. 

Zhang, J. and Nancollas, G.H., 1992. Influence of calcium/sulfate molar ratio on the growth 

rate of calcium sulfate dihydrate at constant supersaturation. Journal of Crystal 

Growth, 118(3–4), pp. 287-294. 

Zhou, W., Gao, B., Yue, Q., Liu, L. and Wang, Y., 2006. Al-Ferron kinetics and quantitative 

calculation of Al(III) species in polyaluminium chloride coagulants. Colloids and Surfaces A: 

Physicochemical and Engineering Aspects, 278(1–3), pp. 235-240. 

 

 

 

 



REFERENCES 
 

285 
 

Zielinski, R.A. and Budahn, J.R., 1998. Radionuclides in fly ash and bottom ash: improved 

characterization based on radiography and low energy gamma-ray 

spectrometry. Fuel, 77(4), pp. 259-267. 

Ziemkiewicz, P.F., Skousen, J.G., Brandt, D.L., Sterner, P.L. and Lovett, R.J., 1997. Acid mine 

drainage treatment with armoured limestone in open limestone channels. Journal of 

Environmental Quality, 26, pp. 1017-1024. 

 

 

 

 



APPENDIX 
 

286 
 

APPENDIX 

Appendix A1: This shows the raw spectra obtained by the XRD machine. It also shows the 

process that was used to identify the mineral phases that were in the different spectra 

obtained. 

 

Figure A1.1: Identification of minerals responsible for the peaks in Matla coal FA (a) and 

aluminium hydroxide spectra (b) 
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Figure A1.2: Identification of minerals responsible for the peaks on lime spectrum. 

 

 
Figure A1.3: Identification of minerals responsible for the peaks on solid residues produced 

when Rand Uranium mine water was treated with Matla coal FA for 120 min using a jet loop 

reactor 
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Figure A1.4: Identification of minerals responsible for the peaks on the spectra of the solid 

residues produced when Rand Uranium mine water was treated with Matla coal FA and lime 

for 30 min (a) and Matla coal, lime and aluminium hydroxide spectra 120 min (b) using a jet 

loop reactor. 
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Figure A1.5: Identification of minerals responsible for the peaks on the spectrum of the solid 

residues produced when Rand Uranium mine water was treated with lime for 30 min (a) and 

lime and aluminium hydroxide spectra for 120 min (b) suing a jet loop reactor. 
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Appendix A2: This shows the speciation raw data from the Geochemist’s workbench using 

the Spec8 program. 
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Figure A2.1: The speciation results of Matla mine water obtained using the Spec8 program of the Geochemist’s workbench software. 
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Figure A2.2: The speciation results continued of Matla mine water obtained using the Spec8 program of the Geochemist’s workbench 

software. 
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Figure A2.3: The speciation results of Rand Uranium mine water obtained using the Spec8 program of the Geochemist’s workbench 

software. 
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Figure A2.4: The speciation results of Rand Uranium mine water obtained using the Spec8 program of the Geochemist’s workbench 

software. 
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Figure A2.5: The speciation results of Rand Uranium mine water obtained using the Spec8 program of the Geochemist’s workbench 

software. 

 

 

 

 



 
 

296 
 

APPENDIX A3: This show the analysis results of Matla mine water or Rand Uranium mine water during treatment with Matla coal FA, lime 

or Al(OH)3 using either a jet loop reactor or an overhead stirrer. 

 
Table A3.1: The composition of Matla mine water (80 L) before and after treatment with different amounts of Matla coal FA using a jet 

loop reactor with either jet sizes set at 8 mm or 6 mm by cavitation and impingement mixing. 

13 kg of coal FA, 8mm jet sizes impinging and cavitation 16 kg of coal FA, 8mm jet sizes impinging and cavitation 13 kg of coal FA 6mm jet sizes impinging and caviatation 
 min 0 30 60 90 120 min 0 30 60 90 min 0 30 60 90 105 
Si  1.27911 4.1133  3.7789  0.5635  0.5074  Si  1.27911 12.5380  2.2663  0.2354  Si  1.27911 12.6390  2.9313  2.2956  4.3872  
Mg  39.5356 35.7318  10.8427  0.1061  0.2915  Mg  39.5356 52.3373  0.8957  0.1040  Mg  39.5356 47.9971  45.7920  0.3830  0.5631  
Na  886.584 1043.09   1053.1 930.785 882.057 Na  886.584 898.300 932.858 945.795 Na  886.584 874.668 930.64 805.953 933.786 
Hg  2.43167         0       0         0  0 Hg 2.43167  0  0 0 Hg  2.43167 0 0.7154    0 
Ca  70.345 325.666 330.247 599.722 689.220 Ca  70.345 319.525 372.547 766.064 Ca  70.3450 320.119 240.082 352.706 570.634  
K  9.93963 8.3726  9.3487  9.4397  14.0696  K  9.93963 14.7989  8.0835  9.3463  K  9.93963 10.0466  14.2976  9.1888  14.1322  
Li  0.17954 0.0817  0.1351  0.0402  0.3137  Li  0.17954 0.2767  0.0638  0.0584  Li  0.17954 0.2302  1.0036  0.3406  0.6536  
Mn  0.00943 0 0 0 0 Mn  0.00948 0 0 0 Mn  0.00943 0 0.0201  0 0.0159  
Co  0 0 0 0 0 Co  0 0 0 0 Co  0 0 0.0728  0.1435  0.1410  
Cr 0 0.0548  0.0644  0.0897  0.3255  Cr  0 0.0837  0.0770  0.0595  Cr 0 0.4822  0 0.0943  0 
Cu  0.19393 0.1687  0.0981  0.2528  0 Cu  0.19393       0 0.1280  0.1937  Cu  0.19393  0 0.0113  0 0 
Mo  0 0 0.0822  0.0025  0.9180  Mo  0 0.4361  0 0.0222  Mo  0 1.5099  1.2609  0.6448  0 
Se  1.115 0 0 0 4.2932  Se  1.11569 2.9315  0 0.7024  Se  1.11569 3.8349   0 5.8163  0 
V  0 0.8457  0.4121  0 0.1256  V  0 1.4215  0.2972  0 V  0 0.7943  0.9188  0.2797  0 
Zn  0.408 0.0219  0.1155  0.0138  0.2840  Zn  0.40826 0.8314  0.1097  0 Zn  0.40826 0.1793  0.3826  0.2046  0.1090  
Pb  0 0 0 0 0 Pb  0 0.8879   0  0 Pb  0 0   0       0    0 
Ni  0.023 0 0.0074  0 0 Ni  0.02319 0.0407   0 0 Ni  0.02319 0.0784  0  0 0 
P 1.027 1.9156  0.8052  0.5939  9.8090  P  1.02689 5.6355  1.6456  0.8894  P 1.02689 6.4621  10.2319  3.0954  0 
As  0.0014 1.2762  1.6223  1.1258  1.2130  As  0.00141  0 1.3887  1.1693  As  0.00141 0 7.0585  0 3.2874  
B  2.606 0 0 0 5.1808  B  2.60608 7.0244  0 0 B  2.60608 3.7113  4.0558  2.0059  2.7530  
Be  0.017 0.0895  0.0913  0.0944  0 Be 0.01659 0.0109  0.0922  0.1027  Be  0.01659 0 0.0111  0.034 0.0086  
Cd  0.005 0.0226  0.0141  0 0 Cd  0.00498 0  0 0.0138  Cd  0.00498 0 0.0249  0 0 
Ba 0.201 0.2707  0.5687  0.1779  0.2080  Ba 0.20103 0.3478  0.3456  0.1031  Ba 0.20103 0.5946  0.6877  0.5356  0.2310  
Fe  0.059 0.1295  0.2780  0.2979  0.0163  Fe  0.05935 0.2062  0.1354  0.1183  Fe  0.05935 0.0739  0.2337  0.2924  0.2283  
Al  0.552 0.1804  3.3175  0 0.6290  Al 0.5522 0.7765  2.1155       0 Al  0.5522 1.0220  3.3431  1.5014        
Ti  0.017 0  0  0 0.1438  Ti  0.01686 0.0414  0.0083   0 Ti  0.01686 0.2498  0.1298  0.2075  0.1686  
Sr  2.048 4.3177  4.7088  6.7643  15.4623  Sr  2.04824 8.3297  4.6757  6.7102  Sr  2.04824 8.4157  7.1515  10.0079  14.1257  
SO4 1475 2430 2400 2200 2220 SO4 1475 2460 2240 2300 SO4 1475 2420 2350 2110 2150 
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Table A3.2: The composition of Matla mine water (80 L) before and after treatment with 13 kg of Matla coal FA, 200 g of lime and 83.2 g of 

Al(OH)3  using a jet loop reactor with jet sizes set at 8 mm, 10 mm or 12 mm by cavitation and impingement mixing. 

  Jet loop reactor with jet sizes set at 8mm Jet loop reactor with jet sizes set at 10 mm Jet loop reactor with jet sizes set at 12 mm 
min 0 30 60 90 120 150 120 30 60 90 120 150  30 60  90  120  150  
Si  1.28  0 1.78 5.29 1.80 3.61 12.0  0 1.03 7.29 7.02 1.79 17.1  8.83  17.2 7.86 13.9  
Mg  39.5 0.33 0.36 0.55 0.34 0.37 0.64 0.58 0.97 0.54 2.13 0.45 0.69 0.70  0.59 0.58 0.68 
Na  887 801 805 812 405 887 835 875 747  1065 956 933 808 833 824 796  902 
Hg  2.43 0 0  0 0  0 0 0 0  5.64 1.78 0.30  0 0 0 0 1.20 
Ca  70.3 1008 385 160 50.1 32.3  138 1279 451 284 124 50.4 1198  790 28.9 139 7.17 
K  9.94 9.95 10.4 11.8  9.41 13.8 13.0 17.6 11.7 15.4 19.1 28.0  22.1  11.6 19.9 11.1  15.9  
Li  0.18 0.47  0.21 0.47 0.03 0 0.41 0.22 0.37  1.31 0.48 0.14 0.84 0.25  0.51 0.41 0.50 
Mn  0.01 0 0 0 0 0.01 0.01 0 0.01 0.03  0 0 0.01 0.01 0.01 0.01 0.03 
Co  0 0.05  0 0 0 0 0 0 0 0 0.07 0.04  0 0 0 0.03 0 
Cr 0.28 0 0.1398  0.3445  0.0931  0 0.0651  0 0.0465  0 0.1887  0 0.1483  0.0205  0.4032  0.0280  0.1554  
Cu  0.19 0 0 0 0.0902  0 0.0809  0.2638  0.1800  0 0.2308  0 0.0632  0 0 0.0540  0.1064  
Mo  0.33 0.4400  0.7696  1.2889  0 0.6823  0.3216  2.8461  0.8819  0.5861  1.6501  2.6124  0.2141  0.1149  0 0.0744  0.2785  
Se  1.12 3.1501  3.9118  0 0 2.6191  0 0 3.8453  0.0462  0 0 1.2520  0.4357  0 0 1.5917  
V  0.14 0.1066  0 0.0132  0.0037  0 0.0512  0 0.2092  0.2026  0.0081  0 0.5181  0.1327  0.5829  0.3061  0.2609  
Zn  0.41 0.0140  0.2882  0.0802  0 0.2107  0.0141  0.4457  0.6958  0 0 0.0938  0.0037  0.0432  0.0350  0.1275  0 
Pb  0 0 0 0.09 0 0 0 3.57 0 0.56 0 0 0 0 0 0 0 
Ni  0.023 0.2648  0 0.1777  0 0 0.2623  0 0 0 00 0 0.5261  0.2982  0.2561  0.3142  0.1802  
P 1.03 3.2966  3.9586  3.1572  2.0256  0.9837  1.8427  21.196 5.6308  0 18.348 11.132 2.4352  2.7817  4.4746  3.1455  3.1324  
As  0.0014 0.0700  0 3.2084  2.7952  1.6187  1.3387  0 0 0 2.1606  0 0.8652  0.0297  0.2368  1.1002  0.0443  
B  2.6 0.3163  0.1608  0.5104  0 1.4129  0 0.2411  0.6284  5.0075  0.6646  6.4528  0 0 0 0 1.1748  
Be  0.0166 0 0 0 0.0976  0 0.0040  0 0 0.0091  0.0074  0 0.0090  0.0100  0.0073  0 0.0121  
Cd  0.0049 0 0 0 0 0 0 0 0 0 0 0.0609  0 0 0 0 0 
Ba 0.2010 0.2352  0.8434  0.9119  0.6885  0.3067  1.5273  2.3451  1.0951  1.2549  1.2531  0.7703  0.9252  1.2390  1.2716  0.9996  0.9761  
Fe  0.0593 0.3315  0.1237  0.0610  0.2134  0.0882  0.1186  0 0.4997  0 0 0 0.1254  0.1628  0.0121  0.2034  0.1552  
Al  0.5522 0.3122  0.4955  0 2.2826  0.8374  0.4082  0 0.8021  0.9516  1.7442  0.0212  0.1063  0.5486  0.1418  0.3647  0.4600  
Ti  0.0169 0.0271  0.2873  0.1753  0.0697  0.2018  0.0271  0 0.3278  0.0569  0.1072  0 0.0060  0.0112  0 0 0.0418  
Sr  2.0482 11.238 13.748 13.867 6.4295  13.499  14.514 26.569  13.102 21.398 15.715 28.542  5.5419  14.348 5.6893  12.702  13.112 
SO4 1475 1890 910 600 510 570 380 2060 950 620 420 770  2010 1320 910 610 620 
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Table A3.3: The composition of Matla mine water (80 L) before and after treatment with 

13 kg of Matla coal FA, 200 g of lime and 83.2 g of Al(OH)3 using a jet loop reactor with jet 

sizes set at 12 mm by cavitation mixing only. 

Time (min)   0  30 60  90   120 150  
Si  1.28  8.77  0.29  10.98 12.61 15.66  
Mg  39.54 0.74 0.62 0.59  0.68 0.66 
Na  886.58 864.12  1004.87 837.62  829.86  879.64  
Hg  2.43 0.92 0 0 0 0 
Ca  70.35 1149.35 789.53 247.85  120.05  37.43  
K  9.94 12.06 11.98 12.60 13.05  14.99  
Li  0.18 0.32 0.29 0.34  0.42  0.60  
Mn  0.0094 0.031 0.0017 0.0075 00.52 0.0087  
Co  0 0 0 0 0 0 
Cr 0 0.04 0.087 0.58 0.1425  0.12  
Cu  0.19 0.14 0.46 0.13 0.09 0.06  
Mo  0 0 0.06  0.21 0.39  0.17  
Se  1.12 3.53 0.75  0.55  2.53  0 
V  0 0.016  0.059 0.21  0.13  0.16  
Zn  0.41 0.095 0.078 0.071 0.055  0 
Pb  0 0 0 0 0 0 
Ni  0.023 0.30  0.027  0.27  0.28  0.37 
P 1.027 1.91 2.40  1.00 2.83 2.52  
As  0.0014 0.91 1.62 0.72 2.34  0 
B  2.61 0 0 0 0 0 
Be  0.017 0 0.0097 0.0092  0.0079  0.0045  
Cd  0.005 0.013 0.018 0.025 0 0 
Ba 0.20 1.02 0 1.41 1.55  1.33  
Fe  0.059 0.58  0.092 0.14  0.09 0.24  
Al  0.55 1.43  1.55 1.53 1.58  21.49  
Ti  0.017 0.0086  0.0057 0 0.0015  0 
Sr  2.05 13.55 14.24 16.50 14.18  11.18  
SO4 1475 1940 1 320 710   430 520  
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Table A3.4: The composition of Rand Uranium mine water (80 L) before and after treatment with 13 kg of Matla coal FA using a jet loop 

reactor with jet sizes set at 12 mm by cavitation mixing only. 

Time (min) 0 30 60 90 120 
 mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 26.75 27.03 26.89 25.31 28.15 26.73 28.14 29.57 28.85 23.39 27.69 25.54 29.52 27.51 28.52 
SO42- 2567.26 2557.56 2562.40 1199.08 1974.11 1586.60 1389.72 1195.73 1292.72 1340.83 1317.56 1329.20 1561.83 1431.12 1496.47 
Fe 200.50 201.60 201.05 0.0051 0.0049 0.0050 0.0032 0.0040 0.0036 0.0021 0.0033 0.0027 0.0032 0.0052 0.0042 
Al 26.34 26.91 26.63 0.015 0.0040 0.0097 0.015 0.0040 0.0097 0.015 0.0040 0.0097 0.015 0.0040 0.0097 
Ca 355.90 364.40 360.15 1885.11 1881.89 1883.50 1019.67 1079.10 1049.39 926.83 917.30 922.06 912.43 851.55 881.99 
Mg 152.30 153.70 153.00 1.88 4.96 3.42 0 0 0 0 0 0 0 0 0 
Mn 59.99 60.32 60.16 0 15.40 7.70 0.0012 0.0016 0.0014 0.0036 0.0028 0.0032 0.0064 0.0079 0.0072 
Na 89.36 89.53 89.45 85.70 84.97 85.33 95.23 108.75 101.99 89.88 88.08 88.98 97.28 99.64 98.46 
K 6.49 6.46 6.47 8.76 9.65 9.20 7.17 8.96 8.07 10.56 9.74 10.15 10.77 10.10 10.43 
As 0.0058 0.0058 0.0058 0.60 0 0.30 0.42 0.59 0.51 0.65 0.36 0.51 0.13 0.27 0.20 
B  0.24 0.23 0.23 7.61 7.25 7.43 6.96 7.27 7.12 5.79 5.71 5.75 5.89 6.49 6.19 
Ba 0.025 0.026 0.026 0.20 0.20 0.20 0.44 0.41 0.43 0.44 0.39 0.41 0.54 0.49 0.5 
Be  0.0039 0.0039 0.0039 0 0 0 0 0 0 0 0 0 0 0 0 
Cd 0.0068 0.0068 0.0068 0 0 0 0 0 0 0 0 0 0 0 0 
Ce  0 0.0013 0.00067 0.91 0.088 0.50 0.70 0.73 0.72 0 0.53 0.26 0.84 1.61 1.22 
Co  1.15 1.13 1.14 0 0 0 0 0 0 0.10 0 0.051 0 0 0 
Cr  0.023 0.022 0.023 0 0.24 0.12 0.089 0 0.044 0 0 0 0 0.043 0.021 
Cu  0.29 0.28 0.28 0 0 0 0.058 0.14 0.098 0.26 0.038 0.15 0 0.24 0.12 
Hg  2.7E-06 5.1E-06 3.9E-06 0 0.016 0.0082 0.029 0 0.014 0.015 0.032 0.023 0.091 0.11 0.098 
Mo  0.00056 0.00051 0.00053 0 0 0 0 0.11 0.057 0.035 0 0.018 0.36 0 0.18 
Nb 0 0 0 0.1297 0 0.065 0.057 0.172 0.11 0.095 0.093 0.094 0.083 0 0.041 
Ni  2.11 2.10 2.11 0.25 0.15 0.20 0.12 0.23 0.17 0.29 0.39 0.34 0.24 0.21 0.22 
P 1.2E-05 3.5E-05 2.4E-05 0.56 0.14 0.35 0 0.60 0.30 0.15 0.34 0.25 0 0 0 
Pb 0.0075 0.0075 0.0075 0.48 0.85 0.66 0.44 0.88 0.66 1.12 1.16 1.14 0.79 0.40 0.59 
Rb 0.018 0.018 0.018 0.0059 0 0.003 0 0.019 0.0094 0.093 0.062 0.078 0.024 0.062 0.043 
Se 0.058 0.063 0.061 0 0 0 0 0 0 0 0.69 0.35 0.20 0 0.10 
Sr  0.44 0.45 0.45 9.10 9.40 9.25 10.87 10.81 10.84 13.51 13.80 13.65 16.54 17.76 17.15 
Th  0.0018 0.0018 0.0018 0 1.27 0.63 2.63 1.14 1.88 0.28 3.44 1.86 0.98 3.02 2.00 
Ti  0.0014 0.0019 0.0016 0.0084 0.070 0.039 0 0 0 0.054 0 0.027 0 0.037 0.018 
U  0.27 0.27 0.27 0 0 0 0 0 0 0 0 0 0 0 0 
V  0.0012 0.0012 0.0012 0 0.048 0.024 0 0 0 0 0 0 0 0 0 
Y 9.7E-05 0.00014 0.00012 0.0056 0 0.0028 0 0.045 0.023 0 0.0049 0.0025 0.015 0 0.0013 
Zn  1.92 1.94 1.93 0 0.0066 0.0033 0.019 0.12 0.068 0.0038 0 0.0019 0 0.049 0.025 
Zr  8.5E-05 9.1E-05 8.9E-05 0.0074 0 0.0037 0 0.12 0.062 0 0.016 0.0082 0 0 0 
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Table A3.5: The composition of Rand Uranium mine water (80 L) before and after treatment with 8 kg of Matla coal FA, 200 g of lime and 

86.58 g of Al(OH)3 using a jet loop reactor with jet sizes set at 12 mm by cavitation mixing only. 

Time (min) 0 30 60 90 120 150 
mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 26.75 27.03 26.89 31.34 17.81 24.58 48.15 44.01 46.08 49.18 32.26 40.72 54.68 32.96 43.82 49.33 43.71 46.52 
SO4

2- 2567 2558 2562 1811 1647 1729 1518 1358 1438 805.3 594.6 699.9 856.3 636.5 746.4 815.0 737 776 
Fe 200.5 201.6 201.1 1.08 2.14 1.61 0.78 0.72 0.75 0.21 1.00 0.60 0.22 0.65 0.44 0.59 0.89 0.74 
Al 26.34 26.91 26.63 0.015 0.004 0.01 0.051 0.035 0.04 0.41 0.42 0.41 4.15 4.10 4.121 17.17 18.05 17.61 
Ca 355.9 364.4 360.1 1634 1521 1577 824.1 809.1 816.6 411.3 439.1 425.2 351.1 372.3 361.7 395.6 413.3 404.4 
Mg 152.3 153.7 153 0.069 0.098 0.08 0.16 0.23 0.20 0.17 0.13 0.15 0.23 0.45 0.34 0.18 0.32 0.25 
Mn 59.99 60.32 60.16 4.0E-5 3.0E-4 2.0E-4 0.02 2.0E-4 0.01 3.0E-4 1.5E-3 9.0E-4 2.0E-4 4.0E-5 1.0E-5 2.0E-4 1.0E-4 1.0E-4 
Na 89.36 89.53 60.16 95.93 98.65 97.29 110.6 101.4 105.9 98.95 105.2 102.1 102.4 89.24 95.83 94.03 105.3 99.65 
K 6.49 6.46 60.16 6.02 8.93 7.48 10.39 10.83 10.61 10.24 10.07 10.15 10.92 9.60 10.26 9.38 11.45 10.41 
As 0.006 0.006 0.006 0.79 0.36 0.57 0.052 0.66 0.35 0.89 0 0.44 0.57 0.35 0.46 0.36 0.44 0.40 
B  0.24 0.23 0.23 0.38 0.14 0.26 0.43 0.53 0.48 0.71 0.66 0.68 1.10 1.04 1.07 1.60 1.75 1.68 
Ba 0.025 0.026 0.026 0.36 0.25 0.30 2.88 0.91 1.90 1.28 0.61 0.95 0.25 0.23 0.24 0.20 0.19 0.20 
Be  0.004 0.004 0.004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Cd 0.007 0.007 0.007 0.016 0 0.002 0.006 0 0.003 0 0 0 0.005 0 0.002 0 0 0 
Ce  0 0.001 0.001 1.49 1.20 1.34 0.54 0.33 0.43 0.46 0 0.23 0.34 0.51 0.43 1.38 1.03 1.21 
Co  1.15 1.13 1.14 0 0 0 0 0 0 0 0 0 0.032 0 0.016 0 0 0 
Cr  0.023 0.022 0.023 0.21 0 0.10 0.15 0.08 0.12 0.21 0.097 0.15 0 0 0 0.09 0 0.045 
Cu  0.29 0.28 0.28 0 0.22 0.11 0 0.10 0.052 0 0 0 0.48 0.19 0.33 0.052 0.032 0.042 
Hg  2.4E-6 5.1E-6 3.9E-6 0.23 0.17 0.20 0.015 0.20 0.10 0.084 0.42 0.25 0.27 0.34 0.31 1.11 0.64 0.87 
Mo  0.001 0.001 0.001 0.11 0 0.055 0 0 0 0 0 0 0 0 0 0 0.071 0.035 
Nb 0 0 0 0.15 0.12 0.13 0.025 0.015 0.020 0.11 0.033 0.072 0 0 0 0 0 0 
Ni  2.11 2.10 2.11 0.029 0.27 0.15 0.19 0.28 0.24 0.55 0.33 0.44 0.20 0.088 0.14 0.34 0.36 0.35 
P 1.2E-5 3.5E-5 2.3E-5 0 0 0 0 0.21 0.10 0 0 0 0 0 0 0 0 0 
Pb 0.007 0.007 0.008 0.86 0.47 0.66 0.42 0.74 0.58 0 0.63 0.31 1.02 0.83 0.93 0.52 0.16 0.34 
Rb 0.018 0.018 0.018 0 0.040 0.020 0.023 0 0.012 0.056 0 0.028 0.15 0.001 0.077 0 0.050 0.025 
Se 0.058 0.063 0.061 0.412 0 0.21 0 0.57 0.28 0.58 0 0.29 0.77 0 0.39 1.06 0 0.531 
Sr  0.44 0.45 0.45 8.90 8.89 8.90 10.61 9.69 10.15 12.26 12.67 12.46 12.80 12.10 12.44 12.82 12.91 12.87 
Th  0.002 0.002 0.002 0 2.22 1.11 0.60 1.29 0.94 2.13 1.62 1.88 0.71 2.59 1.65 1.27 2.46 1.87 
Ti  0.001 0.002 0.002 0.036 0.004 0.02 0 0.05 0.025 0.012 0 0.006 0.071 0.043 0.057 0.039 0 0.019 
U  0.27 0.27 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
V  0.001 0.001 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y 9.7E-5 1E-4 1E-4 0.005 0 0.002 0.002 0 0.001 0 0 0 0 0 0 0.009 0 0.004 
Zn  1.92 1.94 1.93 0 0.051 0.026 0 0 0 0 0.011 0.005 0 0.015 0.008 0.004 0 0.002 
Zr  8.5E-5 9.1E-5 8.8E-5 0 0.072 0.036 0.042 0 0.021 0.083 0 0.041 0 0 0 0.096 0 0.048 
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Table A3.6: The composition of Rand Uranium mine water (80 L) before and after treatment with 13 kg of Matla coal FA, 200 g of lime and 

86.58 g of Al(OH)3 using a jet loop reactor with jet sizes set at 12 mm by cavitation mixing only. 

Time (min) 0 30 60 90 120 150 
mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 26.75 27.03 26.89 35.60 49.64 42.62 30.85 22.95 26.90 23.77 37.42 30.59 45.66 40.03 42.84 46.70 35.60 41.15 
SO4

2- 2567 2557 2562 1514 1505 1509 847 623 735 689 625 657 414 421 418 443 388 416 
Fe 200.5 201.6 201.1 0.008 0.00 0.004 0.01 0.005 0.008 0.004 0.006 0.005 0.014 0.016 0.015 0.008 0.007 0.007 
Al 26.34 26.91 26.62 0.015 0.004 0.01 0.051 0.036 0.043 0.51 0.52 0.52 0.071 0.071 0.071 0.028 0.028 0.028 
Ca 355.9 364.4 360.1 1862 1811 1837 671.5 680.5 676 355.3 364 359.7 210.6 209.1 209.9 312.7 296.4 304.6 
Mg 152.3 153.7 153 0.062 0.42 0.24 0.045 0.042 0.044 0.029 0.024 0.027 0.016 0.022 0.019 0.057 0.139 0.098 
Mn 59.99 60.32 60.16 0.002 2.0E-4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 
Na 89.36 89.53 89.45 100.9 93.72 97.31 113.8 113.4 113.6 108.9 115.2 112.1 113.1 111.9 112.5 155.7 148 151.9 
K 6.49 6.46 6.472 7.37 6.86 7.11 10.20 10.10 10.15 9.53 9.99 9.76 11.42 11.27 11.35 18.27 17.51 17.89 
As 0.006 0.006 0.006 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.002 
B 0.235 0.227 0.231 6.9E-4 7.4E-4 7.1E-4 6.7E-4 4.7E-4 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.003 
Ba 0.025 0.026 0.026 0.051 0.052 0.051 0.049 0.050 0.050 0.048 0.052 0.050 0.084 0.081 0.082 0.067 0.071 0.069 
Be 3.9E-3 3.9E-3 3.9E-3 1.5E-5 1.2E-5 1.4E-5 1.5E-5 8.6E-6 1.2E-5 1.4E-5 1.2E-5 1.3E-5 1.1E-5 5.8E-6 8.3E-6 1.2E-5 1.2E-5 1.2E-5 
Cd 6.8E-3 7.5E-3 6.7E-3 3.2E-5 1.8E-5 2.5E-5 5.1E-5 3.7E-5 4.4E-5 3.4E-5 2.9E-5 3.1E-5 2.0E-5 3E-05 2.5E-5 1.7E-5 2.7E-5 2.2E-5 
Ce 0 1.3E-3 6.7E-4 0 8.5E-4 4.2E-4 2.8E-4 0 1.4E-4 0 0 0 0 2.2E-4 1.1E-4 0 1.6E-4 8.1E-5 
Co 1.15 1.13 1.14 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 3.7E-4 5.1E-4 4.4E4 6.6E-4 6.2E-4 6.4E-4 
Cr 0.023 0.022 0.023 0.007 0.007 0.007 0.038 0.039 0.039 0.089 0.103 0.096 0.113 0.125 0.12 0.067 0.063 0.065 
Cu 0.29 0.28 0.28 0 0 0 2.7E-3 4.8E-4 1.5E-4 0 1.3E-4 1.3E-4 0 1.3E-4 1.3E-4 6.1E-4 4.5E-4 5.3E-4 
Hg 2.7E-6 5.1E-6 3.9E-6 6.0E-4 4.3E-4 5.2E-4 3.0E-4 2.1E-4 2.6E-4 3.8E-4 3.8E-4 3.8E-4 4.6E-4 4.7E-4 4.7E-4 6.0E-4 5.6E-4 5.8E-4 
Mo 5.4E-4 5.1E-4 5.4E-4 0.244 0.254 0.249 0.252 0.253 0.253 0.189 0.195 0.192 0.164 0.165 0.165 0.177 0.181 0.17 
Nb 0 0 0 1.7E-4 2.2E-5 9.5E-5 1.5E-4 1.0E-4 1.3E-4 6.1E-5 2.4E-4 1.5E-4 1.2E-4 1.2E-4 1.2E-4 5.9E-5 1.3E-4 9.4E-5 
Ni 2.11 2.10 2.11 3.0E-4 2.3E-4 2.8E-4 5.6E-3 4.6E-3 5.1E-3 4.1E-3 4.8E-3 4.5E-3 3.7E-3 4.3E-3 4.0E-3 3.8E-3 3.6E-3 3.7E-3 
P 1.2E-5 3.5E-5 2.4E-5 7.4E-5 9.9E-5 8.7E-5 2.2E-5 1.8E-5 1.9E-5 7.7E-6 1.3E-5 1.1E-5 1.8E-5 3.9E-5 2.9E-5 2.8E-5 6.8E-5 4.8E-5 
Pb 7.5E-3 7.4E-3 7.5E-3 7.5E-4 1.0E-3 8.8E-4 1.2E-3 7.0E-4 9.5E-4 3.2E-4 3.1E-4 3.2E-4 2.3E-4 2.8E-4 2.6E-4 4.7E-4 4.7E-4 4.7E-4 
Rb 0.018 0.018 0.018 0.040 0.041 0.041 0.056 0.056 0.056 0.065 0.068 0.066 0.084 0.085 0.084 0.101 0.107 0.104 
Se 0.058 0.063 0.061 0.013 0.014 0.013 0.016 0.013 0.014 0.014 0.013 0.013 0.015 0.013 0.014 0.016 0.017 0.017 
Sr 0.445 0.451 0.448 13.24 13.53 13.38 19.40 19.19 19.29 22.41 23.30 22.86 23.30 24.19 23.75 22.96 24.12 23.54 
Th 1.8E-3 1.8E-3 1.8E-3 2.3E-6 1.3E-6 1.8E-6 1.2E-5 9.9E-6 1.1E-5 4.3E-6 3.9E-6 4.1E-6 2.4E-6 1.9E-6 2.2E-6 2E-06 1.8E-6 1.9E-6 
Ti 1.3E-3 1.9E-3 1.6E-3 0 1.3E-4 6.4E-5 9.5E-4 9.6E-4 9.5E-4 2.6E-4 3.4E-4 3.0E-4 2.4E-4 5.2E-4 3.8E-4 1.3E-4 3.8E-4 2.5E-4 
U 0.27 0.27 0.27 1.6e-4 9.9E-6 8.2E-5 3.3E-4 3.3E-4 3.3E-4 2.2E-4 2.3E-4 2.2E-4 2.3E-4 2.4E-4 2.4E-4 3.4E-4 3.5E-4 3.0E-4 
V 0.001 0.001 0.001 0.001 0.001 0.001 0.009 0.009 0.009 0.016 0.018 0.017 0.023 0.023 0.024 0.025 0.024 0.024 
Y 9.7E-5 1.0E-4 1.0E-4 8.6E-5 4.7E-5 6.6E-5 5.0E-4 4.0E-4 4.4E-4 7.9E-4 8.3E-4 8.1E-4 2.8E-3 2.8E-3 2.8E-3 3.5E-3 3.6E-3 3.6E-3 
Zn 1.918 1.944 1.931 1.9E-3 1.8E-3 1.8E-3 3.8E-3 1.3E-3 2.5E-3 5.9E-4 1.2E-3 8.9E-4 2.7E-4 7.3E-4 5.0E-4 9.4E-4 5.0E-4 7.2E-4 
Zr 8.5E-5 9.1E-5 8.8E-5 2.6E-5 3.0E-5 2.8E-5 6.5E-5 3.7E-5 5.1E-5 2.6E-5 2.9E-5 2.7E-5 1.5E-5 3.2E-5 2.4E-5 9.7E-6 1.9E-5 1.4E-5 
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Table A3.7: The composition of Rand Uranium mine water (80 L) before and after treatment with 200 g of lime and 86.58 g of Al(OH)3 

using a jet loop reactor with jet sizes set at 12 mm by cavitation mixing only. 

Time (min) 0 30 60 90 120 150 
 mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 18.33 19.66 18.99 20.97 25.07 23.02 23.92 31.09 27.51 36.35 21.64 29.00 34.77 31.31 33.04 30.37 27.39 28.88 
SO4

2- 2567 2558 2562 1271 1557 1414 831 935 883 879 818 848 1200 1051 1125 943.6 882.9 913.2 
Fe 200.5 201.6 201.1 0.08 0.062 0.072 0.016 0.051 0.033 0.042 0.066 0.054 0.012 0.009 0.01 0.007 0.006 0.006 
Al 26.34 26.91 26.63 0.044 2.0E-4 0.022 0.064 0.002 0.033 0.002 0.008 0.005 0.001 0.001 0.001 0.003 0.002 0.003 
Ca 355.9 364.4 360.1 1161 1267 1214 542.6 579.6 561.1 562.2 597.3 579.8 545.6 550.7 548.2 639.2 576.0 607.6 
Mg 152.3 153.7 153 0.12 0.11 0.11 0.66 0.71 0.69 0.327 0.29 0.31 0.37 0.37 0.37 0.21 0.124 0.166 
Mn 59.99 60.32 60.16 0.001 1.9E-4 4.9E-4 1.1E-3 5.7E-3 3.4E-3 6.4E-3 1.2E-4 3.3E-3 1.6E-3 1.0E-3 1.3E-3 3.4E-3 4.5E-3 3.9E-3 
Na 89.36 89.53 89.45 86.72 83.89 85.30 91.19 90.50 90.84 86.14 95.76 90.95 92.41 89.53 90.97 96.34 95.11 95.73 
K 6.49 6.46 6.47 7.54 7.03 7.29 8.88 7.96 8.42 8.68 7.96 8.32 8.80 8.33 8.57 7.99 7.74 7.87 
As 5.8E-3 5.8E-3 5.8E-3 0.50 0.28 0.39 0.94 0.26 0.60 0.98 0 0.49 0.27 0.085 0.18 0 0.44 0.221 
B  0.235 0.23 0.231 0 0 0 0.017 0 0.009 0 0 0 0 0 0 0.13 0 0.064 
Ba 0.025 0.026 0.026 0.11 0.093 0.10 0.1 0.115 0.11 0.13 0.11 0.12 0.12 0.13 0.13 0.16 0.13 0.14 
Be  3.9E-3 3.9E-3 3.9E-3 7.6E-3 8.0E-4 4.2E-3 8.0E-4 0 4.0E-4 0 0 0 0 0 0 0 0.002 0.001 
Cd 0.007 0.007 0.007 0.031 0.025 0.028 0.019 0.025 0.022 0.039 0.088 0.064 0.039 0.048 0.044 0.053 0.049 0.05 
Ce  0 0.001 6.7E-4 0 0.70 0.35 0.11 0 0.056 0 1.73 0.86 0 0.27 0.13 0.44 0 0.22 
Co  1.15 1.13 1.14 0 0.12 0.06 0.061 0 0.031 0 0 0 0 0 0 0 0.052 0.026 
Cr  0.023 0.022 0.023 0.063 0 0.031 0 0.019 0.009 0.25 0.022 0.14 0 0.25 0.13 0.11 0.068 0.091 
Cu  0.29 0.29 0.29 0.27 0.35 0.31 0.043 0 0.021 0 0 0 0 0.093 0.047 0 0.51 0.255 
Hg  2.7E-6 5.1E-6 3.9E-6 0.11 0.11 0.11 0.23 0.17 0.20 0 0 0 0.063 0.28 0.17 0.19 0.16 0.18 
Mo  5.6E-4 5.1E-4 5.4E-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Nb 0 0 0 0.23 0 0.11 0.28 0.25 0.27 0.11 0.18 0.14 0.17 0.24 0.21 0.077 0.001 0.039 
Ni  2.11 2.10 2.11 0 0 0 0 0 0 0 0 0 0.042 0.043 0.042 0 0 0 
P 1.2E-5 3.5E-5 2.4E-5 0 0.78 0.39 0.16 0 0.077 0 0 0 0 0 0 0 0.12 0.058 
Pb 7.5E-3 7.5E-3 7.0E-3 0.007 0.54 0.27 0.32 0.26 0.29 0.69 0.94 0.81 0.38 0 0.19 0.71 0 0.356 
Rb 0.018 0.018 0.018 0 0 0 0.047 0.15 0.099 0.046 0.017 0.031 0 0 0 0 0.042 0.021 
Se 0.058 0.063 0.061 1.10 0 0.55 0 1.26 0.63 0 0.11 0.054 0 0.65 0.32 0.47 1.25 0.86 
Sr  0.445 0.45 0.448 1.48 1.50 1.491 1.25 1.34 1.30 1.20 1.25 1.23 1.32 1.29 1.30 1.35 1.25 1.30 
Th  1.7E-3 1.8E-3 1.8E-3 0.88 0.061 0.47 0 0 0 0.87 1.75 1.31 0 0.84 0.42 0.88 2.007 1.44 
Ti  1.4E-3 1.9E-3 1.6E-3 0 0.087 0.043 0.086 0.033 0.059 0.055 0 0.027 0.098 0.049 0.074 0.069 0.054 0.062 
U  0.266 0.27 0.267 0 0 0 0 0 0 0 2.06 1.03 2.67 0 1.34 1.25 0 0.62 
V  1.2E-3 1.2E-3 1.2E-3 0 0.11 0.054 0 0 0 0 0 0 0.039 0.09 0.066 0.10 0.30 0.20 
Y 9.8E-5 1.4E-4 1.2E-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Zn  1.92 1.94 1.93 0.033 0.11 0.069 0 0.045 0.022 0.011 0.021 0.016 0.019 0 0.010 0.23 0 0.11 
Zr  8.6E-5 9.1E-5 8.8E-5 0.023 0 0.011 0 0 0 0 0 0 0 0.054 0.027 0 0.062 0.03 
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Table A3.8: The composition of Rand Uranium mine water (80 L) before and after treatment with 100 g of lime and 86.58 g of Al(OH)3 

using a jet loop reactor with jet sizes set at 12 mm by cavitation mixing only. 

 Time (min) 0 30 60 90 120 150 
mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 18.33 19.66 18.99 21.43 19.00 20.22 30.05 30.05 30.05 24.86 25.74 25.30 21.25 34.91 28.08 33.31 25.43 29.37 
SO4 2567 2558 2562 1689 1720 1704 2067 2067 2067 1706 1727 1717 1605 2059 1832 2220 1633 1926 
Fe 200.5 201.6 201.1 2.052 1.218 1.635 1.294 1.199 1.246 1.256 0.066 0.669 0.002 0.002 0.002 0.008 0.009 0.008 
Al 26.34 26.91 26.62 0.003 0.005 0.004 0.004 0.004 0.004 0.001 0.001 0.001 0.008 0.003 0.006 0.008 0.001 0.005 
Ca 355.9 364.4 360.2 955.9 921.1 938.5 1060 905.0 983.0 792.4 755.9 774.2 775.2 776.6 775.9 807.5 778.9 793.2 
Mg 152.3 153.7 153 1.587 1.692 1.639 6.715 6.455 6.585 8.943 9.417 9.179 15.20 15.57 15.38 17.12 16.81 16.97 
Mn 59.99 60.32 60.16 0.002 0.007 0.004 0.051 0.040 0.046 0.160 0.132 0.146 0.433 0.436 0.434 0.529 0.501 0.515 
Na 89.36 89.53 89.45 81.78 88.55 85.16 128.6 95.80 112.2 97.21 97.55 97.38 98.36 97.83 98.10 97.20 98.67 97.93 
K 6.485 6.459 6.472 8.353 7.243 7.798 9.360 6.441 7.901 10.67 8.342 9.505 10.88 10.87 10.87 9.245 9.001 9.123 
As 0.006 0.006 0.006 0.436 0.475 0.455 0.233 0.283 0.258 0 0.630 0.315 0.409 0.735 0.572 0.616 0.708 0.662 
B  0.235 0.227 0.231 0.127 0.064 0.096 0.613 0.494 0.554 0 0 0 0 0 0 0 0 0 
Ba 0.025 0.026 0.026 0.034 0.043 0.039 0.060 0.043 0.052 0.049 0.063 0.056 0.079 0.077 0.074 0.087 0.092 0.089 
Be  0.004 0.004 0.004 0.002 0.001 0.001 0 0 0 0.001 0.006 0.003 0.003 0 0.001 0 0 0 
Cd 0.007 0.007 0.007 0.083 0.055 0.069 0.055 0.032 0.044 0.030 0.05 0.040 0.046 0 0.023 0.068 0.034 0.051 
Ce  0 0.001 0.001 0 0.676 0.338 0.743 0.871 0.807 0 0.169 0.085 0.396 0 0.198 0 0.934 0.467 
Co  1.150 1.131 1.140 0.148 0.074 0.111 0 0 0 0 0.070 0.035 0.047 0.069 0.058 0.189 0.147 0.168 
Cr  0.023 0.022 0.023 0 0.205 0.102 0.222 0.039 0.131 0 0 0 0 0 0 0 0 0 
Cu  0.288 0.282 0.285 0 0.182 0.091 0 0 0 0 0 0 0 0 0 0.173 0.134 0.154 
Hg  2.7E-6 5.1E-6 3.9E-6 0.350 0.234 0.292 0.899 0.599 0.750 0 0 0 0 0.010 0.005 0.146 0.149 0.148 
Mo  0.001 0.001 0.001 0.069 0 0.034 0 0 0 0 0 0 0 0 0 0 0 0 
Nb 0 0 0 0.146 0.223 0.184 0.087 0.159 0.123 0.243 0.128 0.186 0.098 0.186 0.142 0.213 0.042 0.128 
Ni  2.112 2.104 2.108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P 1.2E-5 3.5E-5 2.4E-5 1.268 0.623 0.946 0 0.114 0.057 0 0.241 0.121 1.709 1.130 1.419 0.874 0.206 0.540 
Pb 0.007 0.007 0.007 0 0 0 0 0 0 0.399 0.484 0.442 0.955 0.179 0.567 0 0.133 0.066 
Rb 0.018 0.018 0.018 0.056 0.007 0.032 0.021 0.001 0.011 0.045 0.034 0.040 0 0.002 0.001 0 0.026 0.013 
Se 0.058 0.063 0.061 1.225 0.647 0.936 0.909 1.401 1.155 0.007 1.389 0.698 0 0.387 0.193 0.149 0 0.074 
Sr  0.445 0.451 0.448 0.960 0.890 0.925 0.991 0.973 0.982 0.996 1.058 1.027 0.980 1.061 1.020 1.131 1.078 1.104 
Th  0.002 0.002 0.002 0.163 0.876 0.519 0 0.941 0.470 0 1.202 0.601 0 0.882 0.441 0 2.687 1.344 
Ti  0.001 0.002 0.002 0.071 0.080 0.076 0.059 0.058 0.058 0 0 0 0 0 0 0.048 0 0.024 
U  0.266 0.268 0.267 0 0 0 0 0 0 0.123 0 0.062 0 0 0 0 0 0 
V  0.00 0.001 0.001 0.040 0.141 0.090 0.245 0 0.122 0.094 0.056 0.075 0.131 0 0.065 0.312 0.170 0.241 
Y 9.8E-5 1.4E-4 1.2E-4 0 0 0 0 0 0 0 0 0 0.014 0.024 0.019 0.009 0.057 0.033 
Zn  1.918 1.944 1.931 0 0.059 0.030 0.055 0.089 0.072 0 0 0 0 0 0 0.075 0 0.037 
Zr  8.6E-5 9.1E-5 8.9E-5 0 0 0 0 0 0 0.113 0.084 0.098 0.011 0 0.005 0.055 0.061 0.058 
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Table A3.9: The composition of Rand Uranium mine water (80 L) before and after treatment with 150 g of lime and 86.58 g of Al(OH)3 

using a jet loop reactor with jet sizes set at 12 mm by cavitation mixing only. 

Time (min) 0 30 60 90 120 150 
 mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 18.33 19.66 18.99 30.46 15.23 22.85 24.74 23.12 23.93 29.32 81.53 55.42 48.54 42.77 45.65 43.28 30.71 36.99 
SO4

2- 2567 2558 2562 1787 1521 1654 1880 1333 1606 1478 1470 1474 1849 1295 1572 1114 1869 1492 
Fe 200.5 201.6 201.1 5.9E-4 7.1E-4 6.5E-4 4.6E-4 4.1E-4 4.3E-4 7.4E- 4.5E-4 5.9E-4 3.4E-4 6.5E-4 4.9E-4 5.0E-4 5.1E-4 5.0E-4 
Al 26.34 26.91 26.63 36.44 61.22 48.83 28.95 21.89 25.42 12.02 23.15 17.59 84.27 86.49 85.38 31.10 20.72 25.91 
Ca 355.9 364.4 360.2 975.1 897.7 936.4 720.1 704.2 712.1 763.6 772.3 767.9 728.3 732.7 730.5 839.2 826.0 832.6 
Mg 152.3 153.7 153 0.18 0.16 0.17 0.696 0.701 0.699 0.535 0.48 0.51 0.526 0.469 0.49 0.43 0.37 0.40 
Mn 59.99 60.32 60.16 0.024 0.022 0.023 1.1E-4 9.2E-3 4.7E-3 7.4E-4 2.1E-4 4.7E-4 1.7E-4 1.3E-4 1.5E-4 5.1E-3 1.4E-4 2.6E-3 
Na 89.36 89.53 89.45 90.97 97.93 94.45 93.16 96.64 94.90 94.53 90.91 92.72 98.00 95.43 96.72 97.46 97.61 97.53 
K 6.49 6.459 6.472 9.67 9.84 9.75 10.31 10.65 10.48 10.61 9.51 10.06 10.32 10.68 10.50 10.03 10.84 10.44 
As 0.006 0.006 0.006 0.55 0.07 0.31 0 0.61 0.31 0.93 0 0.47 0 0.30 0.15 0.29 0 0.15 
B  0.24 0.23 0.231 0 0 0 0 0 0 0 0 0 0 0 0 0.021 0 0.01 
Ba 0.025 0.026 0.026 0.037 0.019 0.028 0.053 0.041 0.047 0.035 0.04 0.038 0.065 0.04 0.052 0.044 0.085 0.065 
Be  0.004 0.004 0.003 0 0 0 0.002 0.009 0.005 0.007 0 0.003 0 0 0 0.005 0 0.002 
Cd 6.8E-3 6.8E-3 6.8E-3 0.048 0.059 0.053 0.039 0.029 0.034 0.025 0.018 0.022 0 0.038 0.019 0.024 0.029 0.027 
Ce  0 0.001 0.001 0.11 0 0.053 0.32 0 0.16 0 0 0 0 0.42 0.21 0.082 0.88 0.48 
Co  1.15 1.13 1.14 0.077 0 0.038 0.094 0.27 0.18 0.055 0 0.027 0 0.14 0.069 0.261 0.27 0.27 
Cr  0.023 0.022 0.023 0 0 0 0 0.04 0.02 0.022 0 0.011 0 0 0 0 0 0 
Cu  0.29 0.281 0.29 0.037 0.13 0.082 0.062 0.17 0.12 0 0 0 0 0.068 0.034 0.021 0.078 0.049 
Hg  2.7E-6 5.1E-6 3.9E-6 0.016 0 0.008 0 0.032 0.016 0.063 0 0.031 0.21 0.20 0.20 0.12 0.24 0.18 
Mo  5.6E-4 5.1E-4 5.4E-4 0.46 0 0.23 0 0 0 0 0.15 0.078 0 0 0 0 0 0 
Nb 0 0 0 0.13 0.17 0.15 0.13 0.26 0.19 0.23 0 0.12 0.097 0.6 0.23 0.12 0.20 0.16 
Ni  2.11 2.104 2.11 0 0 0 0 0 0 0 0 0 0 0.19 0.097 0 0 0 
P 1.2E-5 3.5E-5 2.4E-5 0.71 0.32 0.51 1.40 0.22 0.81 0.42 0.46 0.44 0.46 0.39 0.43 0.64 0.13 0.38 
Pb 7.5E-3 7.5E-3 7.4E-3 0.32 0.12 0.22 0 0 0 0 0.85 0.43 0.75 0 0.38 0 0 0 
Rb 0.018 0.018 0.018 0.039 0.10 0.071 0.13 0.066 0.097 0.081 0.065 0.073 0.044 0.052 0.048 0 0 0 
Se 0.058 0.063 0.060 0.77 0.29 0.53 0.59 0 0.30 1.24 0.37 0.81 1.11 1.65 1.38 0.21 2.42 1.31 
Sr  0.45 0.45 0.45 0.78 0.75 0.76 0.77 0.78 0.78 0.82 0.84 0.83 0.89 0.81 0.85 0.99 1.01 0.99 
Th  1.8E-3 1.8E-3 1.8E-3 0 0.71 0.35 0 0 0 0.40 1.52 0.96 0.11 0 0.054 0.92 0.021 0.47 
Ti  1.4E-3 1.9E-3 1.6E-3 2.6E-3 0 1.3E-3 0.056 0.069 0.062 0.031 0 0.016 0 4.3E-3 2.2E-3 0.068 0.053 0.06 
U  0.27 0.27 0.27 0 0.74 0.37 0 0 0 0 0 0 0.12 0.76 0.44 0 0 0 
V  1.2E-3 1.2E-3 1.2E-3 0.066 0.053 0.06 0 0.16 0.079 0.013 0 0.006 0.035 0.083 0.059 0.061 0.18 0.12 
Y 9.8E-5 1.4E-4 1.2E-4 0.013 0 6.7E-3 0 0.025 0.012 0 0 0 0.034 0 0.017 0.01 2.5E-3 6.3E-3 
Zn  1.92 1.94 1.931 0 0 0 0.063 0 0.032 0 0.006 0.003 0.005 0.031 0.018 0.024 0.002 0.013 
Zr  8.5E-5 9.1E-5 8.9E-5 0.043 0.062 0.052 0.047 0.04 0.043 0.071 0 0.036 0.029 0.01 0.019 0.16 0 0.079 
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Table A3.10: The composition of Rand Uranium mine water (80 L) before and after treatment with 86.58 g of Al(OH)3 using a jet loop 

reactor with jet sizes set at 12 mm by cavitation mixing only. 

Time (min) 0 30 60 90 120 150 
 mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 18.32 19.66 18.99 22.9 1 28.75 25.83 29.25 22.10 25.68 23.63 25.09 24.36 21.76 33.91 27.84 20.47 23.74 22.11 
SO4

2- 2567 2557 2562 2425 2321 2375 2362 2143 2252 2290 2101 2196 2106 2179 2143 2047 2026 2037 
Fe 200.5 201.6 201.1 66.67 83.74 75.20 56.10 71.63 63.87 60.76 69.93 65.35 65.35 63.09 64.22 66.78 60.69 63.74 
Al 26.34 26.91 26.62 63.12 68.12 65.62 42.54 41.28 41.91 43.25 45.69 44.47 48.79 43.29 46.04 26.95 17.17 22.06 
Ca 355.9 364.4 360.2 368.5 348.7 358.6 368.6 364.2 366.4 341.1 352.6 346.8 389.3 387.8 388.5 324.3 313.3 318.8 
Mg 152.3 153.7 153 118.1 112.4 115.2 113.6 121.1 117.4 111.4 109.8 110.6 122.1 121.9 122.0 114.1 109.5 111.8 
Mn 59.99 60.32 60.16 34.47 24.65 29.56 46.56 45.27 45.91 48.53 46.82 47.67 42.68 34.08 38.38 22.28 15.95 19.12 
Na 86.36 89.53 89.44 94.51 90.67 92.59 90.68 89.71 90.19 90.73 86.86 88.80 82.62 79.73 81.18 77.40 82.28 79.84 
K 6.49 6.46 6.47 8.34 8.41 8.88 8.71 11.60 9.65 9.99 8.629 10.81 10.09 10.43 10.76 10.93 8.19 9.561 
As 5.7E-3 5.8E-3 5.8E-3 0.35 0 0.18 0.62 0 0.31 0.32 0 0.16 0.83 0.27 0.55 0.08 0 0.04 
B  0.24 0.23 0.23 1.10 1.08 1.09 1.65 1.21 1.43 1.50 1.52 1.51 2.16 1.94 2.05 0 0 0 
Ba 0.025 0.026 0.026 0.06 0.041 0.05 0.052 0.054 0.053 0.053 0.049 0.051 0.063 0.074 0.068 0.078 0.059 0.068 
Be  3.9E-3 3.9E-3 3.9E-3 6.E-3 1E-2 9.0E-3 7E-3 9E-3 8E-3 1E-3 8E-3 4.6E-3 4E-3 2E-2 9E-3 9E-3 4E-3 7E-3 
Cd 6.8E-3 6.8E-3 6.8E-3 0.016 0.096 0.056 0.023 0.044 0.034 0.068 0.03 0.049 0.054 0.047 0.05 0.042 0.034 0.038 
Ce  0 1.3E-3 6.7E-4 0 0 0 0.32 0 0.16 0.39 0 0.19 0 0 0 0 0 0 
Co  1.15 1.13 1.14 1.45 1.58 1.51 1.52 1.63 1.57 1.36 1.12 1.24 1.59 1.53 1.56 1.23 1.25 1.24 
Cr  0.023 0.022 0.023 0 0 0 1E-3 0.12 0.059 0 0 0 0 0.13 0.062 0.13 0.22 0.17 
Cu  0.29 0.28 0.29 0.022 0.012 0.016 0 0 0 0.071 0 0.035 0 0.21 0.11 0.28 0 0.14 
Hg  2.7E-6 5.1E-6 3.9E-6 0.26 0.012 0.13 0.29 0.22 0.25 0.29 0.31 0.30 0.94 0.64 0.79 0.14 0.13 0.14 
Mo  5.5E-4 5.1E-4 5.4E-4 0.20 0 0.10 0 0 0 0 0 0 0 0 0 0 0.02 0.01 
Nb 0 0 0 0.17 0.26 0.22 0.10 0 0.052 0.17 0.15 0.16 0.05 0.12 0.083 0 0 0 
Ni  2.11 2.10 2.11 3.98 4.21 4.10 3.73 3.86 3.79 3.27 2.87 3.07 3.88 4.08 3.98 3.40 3.31 3.36 
P 1.2E-5 3.5E-5 2.4E-5 1.17 0.50 0.84 0.81 0.56 0.68 0.34 0.74 0.54 1.01 0.67 0.84 0 0 0 
Pb 7.4E-3 7.5E-3 7.5E-3 0 0 0 0 0 0 0 0.327 0.16 0 0 0 0.103 0.13 0.12 
Rb 0.018 0.018 0.018 0.051 0.057 0.054 0.087 0 0.044 0.063 0.036 0.049 0.12 0.12 0.12 0.067 0.11 0.09 
Se 0.058 0.063 0.061 0.76 0.89 0.82 0 0.51 0.25 1.16 2.29 1.73 1.34 0 0.67 0 0 0 
Sr  0.45 0.45 0.45 0.58 0.53 0.55 0.56 0.58 0.57 0.51 0.49 0.50 0.61 0.56 0.59 0.63 0.62 0.62 
Th  1.7E-3 1.8E-3 1.8E-3 1.37 1.69 1.53 1.93 2.262 2.094 1.72 1.74 1.73 2.06 2.93 2.49 2.30 1.84 2.07 
Ti  1.4E-3 1.9E-3 1.6E-3 0.059 0.014 0.037 0.026 0.069 0.048 0.03 0 0.015 0.06 0 0.03 0 0 0 
U  0.27 0.27 0.27 1.97 2.33 2.15 3.63 2.91 3.27 2.79 2.71 2.75 0 3.34 1.67 3.70 3.15 3.43 
V  1.2E-3 1.2E-3 1.2E-3 0.14 0.18 0.158 0 0.18 0.089 0 0 0 0 0.24 0.12 0 0 0 
Y 9.7E-5 1.4E-4 1.2E-4 0.29 0.30 0.29 0.35 0.29 0.33 0.28 0.24 0.26 0.29 0.31 0.30 0.073 0.12 0.097 
Zn  1.92 1.94 1.93 2.98 2.94 2.96 3.03 2.70 2.87 2.46 2.69 2.58 3.06 2.90 2.98 2.50 2.40 2.45 
Zr  8.6E-5 9.1E-5 8.9E-5 0.089 0 0.045 0 0 0 0.040 0.035 0.037 0 0.014 0.007 0 0 0 
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Table A3.11: The composition of Rand Uranium mine water (80 L) before and after treatment with 8 kg of Matla coal FA, 100 g of lime and 

86.58 g of Al(OH)3 using a jet loop reactor with jet sizes set at 12 mm by cavitation mixing only. 

Time (min) 0 30 60 90 120 150 
 mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 18.32 19.66 18.99 30.16 25.47 27.81 34.37 29.7 32.03 25.89 31.08 28.49 36.00 34.73 35.36 37.16 46.63 41.89 
SO4

2- 2567 2558 2562 2392 1721 2057 1962 1594 1778 1340 1355 1352 1093 1279 1186 1045 1069 1057 
Fe 200.5 201.6 201.0 4.183 8.63 6.41 0.80 0.86 0.83 0.66 0.14 0.40 0.98 0.72 0.85 0.38 0.67 0.52 
Al 26.34 26.91 26.63 25.97 30.21 28.09 37.29 75.46 56.37 85.18 28.73 56.96 46.58 33.15 39.86 57.38 14.45 35.92 
Ca 355.9 364.4 360.1 690.2 659.6 674.9 542.2 567.9 555.1 475.6 419.6 447.6 367.5 355.9 361.7 373.2 337.1 355.2 
Mg 152.3 153.7 153 0.21 0.26 0.24 0.652 0.752 0.70 0.323 0.84 0.58 0.19 0.29 0.24 0.15 0.26 0.21 
Mn 59.99 60.32 60.16 0.006 0.023 0.014 0.005 0.04 0.023 0.007 0.049 0.028 0.002 0.045 0.023 0.024 0.044 0.034 
Na 89.36 89.53 89.45 90.34 93.97 92.16 94.77 97.15 95.96 92.67 91.90 92.28 95.32 97.35 96.34 94.18 90.39 92.29 
K 6.49 6.46 6.47 8.62 8.36 8.49 11.48 8.965 10.22 9.92 10.11 10.02 11.21 10.54 10.87 11.91 11.02 11.47 
As 0.006 0.006 0.006 0 0 0 0 0 0 0 0 0 1.516 0 0.76 0 0 0 
B  0.24 0.23 0.23 0 0 0 0.032 0 0.016 0.89 0.19 0.54 1.81 1.53 1.67 2.79 2.13 2.46 
Ba 0.025 0.026 0.026 0.044 0.059 0.051 0.093 0.068 0.08 0.084 0.12 0.01 0.098 0.12 0.11 0.14 0.13 0.13 
Be  3.9E-3 3.9E-3 3.9E-3 2.2E-3 8.4E-3 5.3E-3 4.9E-3 0 2.4E-3 0.005 1.2E-3 3.2E-3 2.8E-3 5.1E-3 4.0E3 2.4E-3 8.9E-3 5.7E-3 
Cd 6.8E-3 6.8E-3 6.8E-3 0.039 0.045 0.042 9.6E-3 8.0E-4 5.2E-3 0 0.043 0.023 0.007 0 3.5E-3 0.039 0.011 0.025 
Ce  0 0.001 0.001 0.069 0.47 0.27 0.33 0.71 0.52 0.49 0.32 0.41 0 0.022 0.011 0.61 0 0.31 
Co  1.15 1.13 1.14 0.001 0.25 0.13 0 0 0 0.12 0.13 0.12 0.40 0.16 0.28 0.18 0.28 0.23 
Cr  0.023 0.022 0.022 0 0.25 0.13 0.086 0.055 0.07 0.089 0.47 0.28 0 0.37 0.19 0 0.08 0.04 
Cu  0.29 0.28 0.29 0 0.34 0.17 0.16 0.14 0.15 0.37 0.20 0.28 0.16 0.25 0.20 0.11 0.24 0.18 
Hg  2.7E-6 5.1E-6 3.9E-6 0 0 0 0.033 0 0.017 0 0.041 0.02 0.04 3.0E-4 0.02 0.037 0 0.019 
Mo  0.001 0.001 0.001 0.45 0.094 0.27 0.46 1.20 0.83 0 0 0 0.031 0.094 0.062 0.36 0.69 0.52 
Nb 0 0 0 0 0.075 0.038 0 0 0 0 0 0 0 0 0 0 0 0 
Ni  2.11 2.10 2.11 0.005 0.19 0.01 0.09 0.093 0.092 0.19 0.11 0.15 0.087 0.007 0.047 0 0.29 0.14 
P 1.2E-5 3.5E-5 2.3E-5 0 0.26 0.13 0 0 0 0 0.12 0.06 0.376 0.35 0.36 0 0.29 0.15 
Pb 0.007 0.007 0.007 0.34 0.38 0.36 0 0 0 0.97 0.33 0.65 0 0 0 0.44 0.75 0.60 
Rb 0.018 0.018 0.018 0.088 0.011 0.049 0.055 0 0.027 0 0.14 0.069 0.023 0 0.011 0 0.042 0.021 
Se 0.058 0.063 0.061 0 0 0 0 0 0 0 0.79 0.40 1.17 0.14 0.66 0.18 0 0.089 
Sr  0.44 0.45 0.45 6.69 6.536 6.62 7.90 7.94 7.92 8.49 9.41 8.95 8.88 9.24 9.06 9.50 8.93 9.21 
Th  1.8E-3 1.8E-3 1.8E-3 0.30 0 0.15 0.20 0 0.099 0.10 0 0.051 0.80 1.40 1.10 1.33 0 0.664 
Ti  1.4E-3 1.9E-3 1.6E-3 0 7.0E-4 3.5E-4 0.12 0.022 0.069 0.009 0.039 0.024 6.5E-3 0 2.5E-3 0 0.021 0.01 
U  0.27 0.27 0.27 0 0.25 0.13 0 0.58 0.29 0 0 0 0.024 0 0.012 0 0.23 0.11 
V  1.2E-3 1.2E-3 1.2E-3 0 0 0 0.035 0.076 0.055 0 0.14 0.067 0 0.088 0.044 0 0 0 
Y 9.7E-5 1.4E-4 1.2E-4 0.033 0.058 0.045 3.6E-3 0 1.8E-3 0.042 0 0.021 0 0.026 0.013 0 0 0 
Zn  1.918 1.94 1.93 0.072 0.077 0.074 0.10 0.056 0.078 0.085 0.054 0.07 0.058 0.10 0.08 0.064 0.031 0.047 
Zr  8.6E-5 9.1E-5 8.9E-5 0 0.12 0.058 0 0 0 0.096 0.076 0.086 0 0.055 0.027 0.081 0.012 0.046 
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Table A3.12: The composition of Rand Uranium mine water (80 L) before and after treatment with 13 kg of Matla coal FA, 200 g of lime 

and 86.58 g of Al(OH)3 using a jet loop reactor with jet sizes set at 12 mm by cavitation mixing only. 

Time(min) 0 30 60 90 120 150 
mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 18.32 19.6 18.9 31.99 24.22 28.11 35.91 27.2 31.56 27.48 21.00 24.24 23.39 32.40 27.90 27.29 30.46 28.88 
SO4

2- 2567 2558 2562 1878 1801 1840 875 860 868 641.1 570.7 605.9 591.7 764.4 678.1 487.7 686.6 587.2 
Fe 200 201 201 1.11 1.32 1.21 0.50 0.28 0.39 0.45 0.80 0.63 0.62 0.92 0.77 0.44 0.62 0.53 
Al 26.34 26.9 26.6 0.453 0.43 0.44 0.28 0.52 0.40 0.61 0.57 0.59 0.70 0.71 0.77 0.81 0.53 0.67 
Ca 356 364 360 1040 1036 1038 385.9 237 311.8 404.7 390.0 397.3 358.1 351.8 355.0 208.1 280.7 244.4 
Mg 152 154 153 0.16 0.17 0.17 0.14 0.11 0.13 0.15 0.10 0.13 0.27 0.18 0.22 0.15 0.28 0.22 
Mn 59.99 60.3 60.1 0.011 1E-5 0.006 0.023 0.01 0.019 1.8E-4 3.4E-3 1.7E-3 0.017 1.3E- 9.1E-3 0.012 1.1E-4 5.8E-3 
Na 89.36 89.5 89.4 89.32 87.56 88.44 86.21 87.4 86.83 8.41 89.68 49.05 82.21 89.66 85.93 88.21 86.49 87.35 
K 6.485 6.45 6.47 6.77 9.86 8.32 10.27 10.4 10.35 9.35 8.31 8.83 8.09 7.32 7.71 8.87 9.03 8.95 
As 0.006 0.00 0.00 0.012 0 0.006 0 0 0 0 0 0 0 0 0 0 0 0 
B  0.235 0.22 0.23 1.16 1.03 1.10 2.11 1.77 1.94 2.70 2.36 2.53 3.32 3.39 3.36 3.584 3.32 3.45 
Ba 0.025 0.02 0.02 0.072 0.085 0.078 0.079 0.08 0.08 0.13 0.14 0.13 0.12 0.13 0.13 0.095 0.11 0.10 
Be  4E-3 4E-3 4E-3 0.002 0.002 0.002 0.001 0.00 0.002 0.005 5.3E-3 5.2E-3 0 0 0 0 5.0E-4 2.5E-4 
Cd 7E-3 7E-3 7E-3 0 0.031 0.016 0.045 0.02 0.035 0.024 0.013 0.019 0.026 0.031 0.028 0 0.045 0.023 
Ce  0 0.00 0.00 0.088 0 0.044 0 0 0 0 0 0 0 0 0 0.088 0.22 0.15 
Co  1.150 1.13 1.14 0.33 0.053 0.19 0.14 0.13 0.14 0.20 0.21 0.20 0.15 0 0.076 0 0.29 0.14 
Cr  0.023 0.02 0.02 0 0.37 0.183 0.14 0.34 0.24 0.17 0.23 0.20 0 0 0 0 0.074 0.037 
Cu  0.288 0.28 0.28 0.26 0.049 0.16 0.064 0.20 0.13 0.21 0.053 0.13 0.14 0.26 0.20 0.26 0.11 0.18 
Hg  3E-6 5E-6 4E-6 0.044 0 0.022 0.76 0.30 0.53 0.32 0.34 0.33 0.09 0.098 0.094 0.10 0.130 0.12 
Mo  0.001 0.00 0.00 0.40 0.31 0.35 0 0 0 0.54 0.33 0.43 0 0.17 0.082 0 0.558 0.28 
Nb 0 0 0 0 0 0 0 0.04 0.025 0 0 0 0 0 0 0 0 0 
Ni  2.112 2.10 2.10 0 0 0 0.071 0.15 0.11 0.19 0.014 0.10 0.23 0.038 0.14 0.11 0.32 0.21 
P 1E-5 4E-5 2E-5 0.018 0 0.0091 0.23 0.24 0.23 0 0 0 0 0.58 0.29 0 0.062 0.031 
Pb 0.007 0.00 0.00 0.47 0.18 0.33 0.56 0.48 0.52 0.25 0.17 0.21 0.46 0.32 0.39 0.73 0.98 0.85 
Rb 0.018 0.01 0.01 0.05 0 0.026 0.075 0.05 0.063 0.048 0.019 0.033 0.006 0.057 0.0317 0.007 0 0.003
Se 0.058 0.06 0.06 1.03 0.53 0.78 0.39 0 0.19 0 0 0 0 0 0 0 0.043 0.021 
Sr  0.444 0.45 0.44 10.49 10.56 10.52 13.58 13.8 13.71 16.34 17.09 16.72 18.45 18.54 18.50 15.18 16.14 15.66 
Th  2E-3 2E-3 2E-3 0 0 0 0 0 0 0 0.814 0.41 0.19 0.11 0.15 0.20 0 0.099 
Ti  1E-3 3E-3 2E-3 0.003 0.005 0.0041 0.053 0.05 0.053 0.051 0 0.024 0 0.036 0.018 0.015 0.082 0.049 
U  0.266 0.26 0.26 0 0 0 0 0 0 0 0.301 0.15 0 0 0 0.028 0 0.014 
V  1E-3 1E-3 1E-3 0 0.063 0.032 0 0 0 0 0 0 0 0.059 0.03 0 0 0 
Y 1E-4 1E-4 1E-4 0 0 0 0.021 0.01 0.018 0.008 0 0.004 0 0 0 0.029 0.044 0.037 
Zn  1.918 1.94 1.93 0.044 0.098 0.071 0.017 0.06 0.041 0.015 0.067 0.042 0.11 0.11 0.11 0.084 0.15 0.12 
Zr  8.6E- 9E-5 9E-5 0 0 0 0.034 0.04 0.041 0 0 0 0.043 0 0.022 0 0 0 
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Table A3.13: The composition of Rand Uranium mine water (80 L) before and after treatment with 8 kg of Matla coal FA and 86.58 g of 

Al(OH)3 using a jet loop reactor with jet sizes set at 12 mm by cavitation mixing only. 

Time (min) 0 30 60 90 120 150 
mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 18.32 19.66 18.99 85.63 82.29 83.96 23.63 25.63 24.63 18.18 26.93 22.55 28.11 19.73 23.92 36.78 52.37 44.57 
SO4

2- 2567 2558 2562 2284 2178 2231 2084 2078 2081 1856 1896 1876 1939 1417 1678 1620 2106 1863 
Fe 200.5 201.6 201.1 0.096 0.042 0.069 0.026 0.075 0.05 0.062 0.020 0.041 0.060 0.078 0.069 0.097 0.085 0.091 
Al 26.34 26.91 26.63 19.08 17.92 18.50 0.008 0.004 0.006 0.025 0.091 0.058 0.046 0.89 0.47 8.50 6.53 7.51 
Ca 355.9 364.4 360.2 797.9 754.7 776.3 1276 1291 1284 1279 1240 1259 1231 1248 1240 1035 1045 1040 
Mg 152.3 153.7 153 96.99 90.37 93.68 11.25 12.60 11.92 0.009 9.7E-3 9.3E-3 8.8E-3 6.4E-3 7.6E-3 4.6E-3 9.8E-3 7.2E-3 
Mn 59.99 60.32 60.16 0.23 0.20 0.21 0.14 0.19 0.16 0.019 0.07 0.044 0.031 0.072 0.052 0.06 0.023 0.041 
Na 89.36 89.53 89.45 94.18 96.53 95.35 98.81 111.0 104.9 108.8 109.9 109.4 129.6 119.6 124.6 128.8 123.7 126.3 
K 6.49 6.46 6.47 8.96 7.41 8.18 9.20 6.85 8.02 8.32 6.62 7.47 7.18 7.39 7.28 9.51 7.99 8.75 
As 5.8E-3 5.8E-3 5.8E-3 0.55 0 0.27 0 0 0 0 0 0 0 0 0 0.14 0 0.068 
B  0.24 0.23 0.23 5.71 5.06 5.39 7.24 7.40 7.32 7.91 6.60 7.25 6.84 7.26 7.05 8.42 8.40 8.41 
Ba 0.025 0.026 0.026 0.089 0.07 0.079 0.06 0.063 0.061 0.05 0.062 0.056 0.044 0.049 0.047 0.047 0.040 0.044 
Be  3.9E-3 3.0E-3 3.9E-3 0 2.8E-3 1.4E-3 1.6E-3 0 8.0E-4 1.8E-3 9.0E-4 1.4E-3 0.011 4.0E-4 58E-3 0 3.2E-3 1.6E-3 
Cd 6.8E-3 6.8E-3 6.8E-3 0.032 0.017 0.024 0.032 0.051 0.041 9.3E-3 0.054 0.032 0.034 0 0.017 0.018 0.027 0.022 
Ce  0 1.3E-3 6.7E-4 0 0 0 0.53 0.33 0.43 1.74 0 0.87 0.15 0 0.073 0.65 0 0.33 
Co  1.15 1.13 1.14 0.083 0.66 0.37 0.24 0 0.12 0 0 0 0 0 0 0.021 0 0.011 
Cr  0.023 0.022 0.023 0.36 0.09 0.23 0 0 0 0 0 0 0 0 0 0 0 0 
Cu  0.29 0.28 0.29 0.40 0.24 0.32 0 0 0 0 0.28 0.14 0 0.11 0.053 0 0.094 0.047 
Hg  2.7E-6 5.1E-6 3.9E-6 0.12 0 0.058 0.065 0.047 0.056 0 0 0 0 0 0 0 0 0 
Mo  5.6E-4 5.1E-4 5.4E-4 0.14 0.70 0.42 0.83 0.012 0.42 0.08 0.37 0.22 0 0.006 0.003 0 0 0 
Nb 0 0 0 0 0 0 6.5E-3 0 3.2E-3 0.15 0.25 0.20 0.078 0.20 0.14 0 0.081 0.04 
Ni  2.11 2.10 2.11 0 0 0 0.23 0.14 0.19 0.25 0.35 0.30 0.31 0.35 0.33 0.19 0.48 0.33 
P 1.2E-5 3.5E-5 2.4E-5 0.25 0 0.13 0 0.17 0.086 1.09 1.25 1.17 0.58 0.80 0.69 0.076 0.20 0.14 
Pb 7.5E-3 7.5E-3 7.5E-3 0.17 0.40 0.29 0.16 0.33 0.24 0 0 0 0 0.29 0.15 0.58 0 0.29 
Rb 0.018 0.018 0.018 0 0.022 0.011 0 0.021 0.01 0 0 0 0 0 0 0 0 0 
Se 0.058 0.063 0.061 0.36 0 0.18 0 0 0 0.60 0.10 0.35 0 0 0 0 0 0 
Sr  0.45 0.45 0.45 7.29 7.05 7.17 8.69 8.08 8.38 8.77 9.29 9.03 8.99 9.60 9.29 10.16 9.68 9.92 
Th  1.8E-3 1.8E-3 1.8E-3 0.84 0 0.42 1.53 0.79 1.16 0.94 3.00 1.97 0.49 0 0.24 1.54 0 0.77 
Ti  1.4E-3 1.9E-3 1.6E-3 0.076 0 0.038 0 0.023 0.012 0 0 0 0 0 0 0 0 0 
U  0.27 0.27 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
V  1.2E-3 1.2E-3 1.3E-3 0.037 0.024 0.031 0.23 0.21 0.22 0.38 0.35 0.36 0.47 0.26 0.37 0.294 0.25 0.27 
Y 9.8E-5 1.4E-4 1.2E-4 0 0 0 0 0 0 0 0 0 0.011 0 5.3E-3 0 0 0 
Zn  1.92 1.94 1.93 0.073 0 0.036 0 0 0 0 0.011 5.3E-3 0 0.028 0.014 0 0.012 6.2E-3 
Zr  8.6E-5 9.1E-5 8.9E-5 8.6E-3 0 3.4E3 0.025 0 0.012 0 0 0 0 0 0 0.033 0 0.016 
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Table A3.14: The composition of Rand Uranium mine water (80 L) before and after treatment with 13 kg of Matla coal FA and 86.58 g of 

Al(OH)3 using a jet loop reactor with jet sizes set at 12 mm by cavitation mixing only. 

Time (min) 0 30 60 90 120 150 
 mg/L 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 1 2 ave 
Cl 18.33 19.66 18.99 38.70 35.54 37.12 36.82 51.49 44.16 33.59 42.06 37.82 38.32 35.55 36.93 53.60 45.18 49.39 
SO4

2- 2567 2558 2562 1851 1994 1923 1628 1905 1766 1751 1994 1873 1640 1533 1587 1741 1622 1681 
Fe 200.5 201.6 201.1 30.26 88.38 59.32 3.95 3.66 3.81 3.17 3.88 3.52 2.37 2.72 2.54 5.70 2.70 4.20 
Al 26.34 26.91 26.63 0.052 0.055 0.054 146.1 160.7 153.4 53.20 49.54 51.37 23.11 23.24 23.17 13.12 11.77 12.45 
Ca 355.9 364.4 360.2 1498 1492 1495 1014 954.8 984.4 650.4 645.8 648.1 448.9 445.1 447.0 420.4 389.1 404.8 
Mg 152.3 153.7 153 4.6E-3 8.7E-3 6.7E-3 1.98 2.068 2.03 0.69 0.85 0.77 0.78 0.91 0.84 0.81 0.51 0.66 
Mn 59.99 60.32 60.16 25.13 1.64 13.39 0.051 0.057 0.054 0.003 0.004 0.004 0.13 0.12 0.12 0.001 0.021 0.011 
Na 9.36 89.53 89.45 105.9 96.43 101.2 108.5 109.1 108.8 93.48 94.24 93.87 92.46 95.01 93.74 100.3 100.8 100.6 
K 6.49 6.46 6.47 13.67 9.24 11.45 9.46 8.72 9.09 9.98 8.85 9.41 9.30 9.73 9.51 3.18 8.10 5.64 
As 5.8E-3 5.8E-3 5.8E-3 0 0 0 0 0 0 0.051 0.20 0.13 0.034 0.16 0.097 0 0 0 
B  0.24 0.23 0.23 8.15 8.03 8.09 7.17 7.06 7.11 7.49 7.05 7.27 7.50 6.16 6.83 8.81 8.88 8.84 
Ba 0.025 0.026 0.026 0.076 0.058 0.067 0.063 0.074 0.068 0.095 0.083 0.089 0.064 0.053 0.058 0.10 0.097 0.099 
Be  3.9E-3 3.9E-3 3.9E-3 0.01 5.4E-3 7.9E-3 0 2.9E-3 1.5E-3 4.0E-4 6.0E-4 5.0E-4 0 0 0 4.0E-4 0 2.0E-4 
Cd 6.8E-3 6.8E-3 6.8E-3 0 0.019 9.3E-3 5.9E-3 0.031 0.018 0 0 0 0.038 0 0.019 0 0.001 3.5E-4 
Ce  0 1.3E-3 6.7E-4 0 1.22 0.61 0.47 0.42 0.44 0 0 0 0.85 0.72 0.79 0.41 0.42 0.42 
Co  1.15 1.13 1.14 0.023 0 0.011 0 0 0 0.13 3.7E-3 0.068 0 0 0 0 3.1E-3 1.6E-3 
Cr  0.023 0.022 0.023 0 0.18 0.09 0 0.091 0.046 0.21 0.051 0.13 0.24 0.11 0.17 0.62 0.015 0.32 
Cu  0.29 0.28 0.29 0 0 0 1.3E-3 0.13 0.067 0.60 0.23 0.41 0.44 0.19 0.32 0.26 0.41 0.34 
Hg  2.7E-6 5.1E-6 3.9E-6 0 0 0 0 0 0 0.54 0.21 0.38 0.30 0.21 0.25 0.13 0 0.064 
Mo  5.4E-4 5.1E-4 5.4E-4 0 0.37 0.19 0.015 0 7.5E-3 0.67 0.86 0.76 0.49 0.79 0.64 0 0.95 0.47 
Nb 0 0 0 0.084 0.067 0.076 0.041 0.091 0.066 0 0 0 0.11 0.18 0.15 8.7E-3 7.1E-3 7.9E-3 
Ni  2.11 2.10 2.11 0.49 0.34 0.41 0.31 0.28 0.29 0 0 0 0 0.11 0.056 0 0.062 0.031 
P 1.2E-5 3.5E-5 2.4E-5 0.55 0.94 0.75 0.27 0.84 0.56 0.30 0 0.15 0 0 0 0 0 0 
Pb 7.5E-3 7.5E-3 7.3E-3 0.32 0 0.16 0 0.21 0.10 0 0 0 0.023 0 0.012 0 0 0 
Rb 0.018 0.018 0.018 0 0 0 1.9E-3 0 9.5E-4 0 0 0 0 0 0 0 0 0 
Se 0.059 0.063 0.061 1.02 0 0.51 0 0 0 0 0 0 0.76 0 0.38 0.32 0.61 0.47 
Sr  0.45 0.45 0.45 10.70 10.12 10.41 11.08 10.58 10.83 11.65 12.44 12.04 13.50 13.45 13.48 15.72 16.45 16.09 
Th  1.8E-3 1.8E-3 1.8E-3 0 0.70 0.35 1.95 2.75 2.35 0 0 0 1.46 0 0.73 2.66 2.48 2.57 
Ti  1.4E-3 1.9E-3 1.6E-3 0 0 0 0 0 0 0.021 0 0.010 0.048 0.044 0.046 0.12 0.13 0.13 
U  0.27 0.27 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
V  1.2E-3 1.2E-3 1.2E-3 0.28 0.35 0.31 0.33 0.24 0.29 0.16 0.073 0.12 0.021 0.18 0.01 0.091 0.10 0.096 
Y 9.8E-5 1.4E-4 1.2E-4 0 0 0 0 0 0 0 2.2E-3 1.1E-3 0.018 0.04 0.029 0 6.2E-3 3.1E-3 
Zn  1.92 1.94 1.93 0.031 0.047 0.039 0.003 0 0.001 0 0 0 0 0 0 0 0 0 
Zr  8.6E-5 9.1E-5 8.9E-5 0 0.064 0.032 0.066 0 0.033 0.033 0.041 0.037 0 0.05 0.025 0.036 0.057 0.046 
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