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ABSTRACT 
 

 

 

The aim of the thesis is to research the difficulties that first year mainstream mathematics 

students at UWC experience when solving Related Rates problems in calculus. In chapter 2, 

an in-depth study was made of the nature of Related Rates problems by studying a number of 

examples. The findings of this study are summarized in section 2.12. The study adopted the 

same model of the solution of all types of Related Rates that was used by Martin (2000) for 

the solution of geometric Related Rates problems.  

In chapter 3 of this thesis, many examples were used to illustrate how the seven step solution 

procedure of the Standard Solution model is applied. 

 In the literature review in chapter 4, the underlying concepts which underpin Related Rates 

problems are identified and specific examples of research on each of these concepts are 

given. For example, the review of the literature on word problems is done comprehensively 

and covers extensively the range of issues involved in this topic. Drawing on the work in 

chapter 2 on the nature of Related Rates problems, it is explained in chapter 5 why this study 

is underpinned by Constructivism as a theoretical basis. 

Chapter 6 of the thesis is devoted to answering the 3 research questions posed in chapter 1. 

The thesis contains many worked examples of Related Rates problems which can be used by 

the lecturers assigned to the MAT105 course. 
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CHAPTER 1 

PREAMBLE 

 

1.1 INTRODUCTION 

 

In the present climate of globalisation, a country‘s economic success is dependent on its 

ability to create, attract and deploy human capital more efficiently than what its competitor 

nations can do. It is believed that skills and knowledge can help build this competiveness as 

well as increase employment. It is argued that South Africa does not have a skills crisis at 

present, because there is not enough economic growth to produce such pressure for skilled 

artisans. However, South Africa is showing signs of under-skilled artisans as well as specific 

short-term shortages, which was evident prior to and leading up to the 2010 FIFA Soccer 

World Cup. Currently, South Africa does not have the capacity to expand economically 

without foreign scientific and technological expertise (Pratzer, 1994). 

 

South Africa needs to produce qualified professionals such as doctors, engineers and other 

scientifically orientated professionals and retain them. There is a current emphasis to produce 

graduates in scare skills areas such as engineering. Engineering programmes are considered 

cognitively demanding and require at least two years of university mathematics (Collier-Reed 

& Smit, 2010).  Mathematics forms the core for engineering and science studies at 

institutions of higher learning. Calculus is often viewed as the gatekeeper for high-level 

Mathematics, Science and Engineering courses (Moreno & Muller, 1999).  
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However, students have problems grasping many of the concepts in calculus courses. The 

difficulty faced by first-year engineering students in a first year Mathematics course is not 

unique to South Africa. It is well documented that first year students do not do well in their 

first year mathematics (Weiss,1997; Wieschenberg, 1994; Budny, LeBold, & Bjedov, 1997). 

A calculus course includes differential calculus topics such as Limits, Rates of change, Rules 

of Differentiation and Related Rates. Research regarding the first three topics is well 

documented but the topic of Related Rates is not well researched.  

 

The factors influencing poor performance in first year mathematics courses can range from 

issues related to teaching strategies, content knowledge, motivation, laboratory use, and non-

completion of the syllabus in a year, to social factors such as the role played by parents in 

their children's education, and general language usage (Mji & Makgato, 2006). This study 

will focus mainly on factors relating to content knowledge and teaching strategies. 

 

1.2 PROBLEM STATEMENT  

The poor performance of students in the undergraduate mainstream mathematics module 

(MAT105) at the University of the Western Cape (UWC) has been a concern for a number of 

years. Students do not perform at an acceptable level to complete the course. Acceptable level 

in this context, means that students obtain 50% and above for the course. Below is a table of 

the through-puts of the Mathematics 105 (MAT105) course for 2010 and 2011. A pass mark 

is 50% and above. 
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TABLE 1 

Module Code MODULE DESCRIPTION  ENROLLED PASS % PASS 

 

MAT105 MATHEMATICS 105 (2010) 251 48 19% 

 

Source: University of the Western Cape 

 

 

TABLE 2 

Module Code MODULE DESCRIPTION  ENROLLED PASS % PASS 

 

MAT105 MATHEMATICS 105 (2011) 

 

282 60 21%  

Source: University of the Western Cape 

 

This is ironic, since the entrance requirement for the mainstream mathematics (MAT105) 

module at the UWC is above 50% in their previous final examination for mathematics.  

 

The National Curriculum Statement for Grades R-12 (NCS) is a policy on curriculum and 

assessment in the schooling sector. This document was amended as changes were brought in 

and was called the Revised Curriculum Statement for Grades R – 12 (Department of 

Education, 2002). The document was then split into two sections to accommodate for grades 

R-9 and grades 10 – 12 separately.  Learning Outcome 1 of the Revised Curriculum 

Statement for Grades R – 9 states that ―The learner will be able to recognise, describe and 

represent numbers and their relationships, and to count, estimate, calculate and check with 

competence and confidence in solving problems”(Department of Education, 2002, p21). This 

is the outcome that is consistent throughout the primary school. Below are three of the 

assessment standards that are required for a grade R learner, the grade just before a learner 

enters grade 1 of their primary school:  
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 Solves and explains solutions to practical problems that involve equal sharing and 

grouping with whole numbers of at least 10 and with solutions that include 

remainders.  

 

 Solves verbally-stated additions and subtraction problems with single-digit 

numbers and with solutions to at least 10.   

 

 Explains own solutions to problems.  

 

These three assessment standards are consistent throughout Grades R to Grade 9 except that 

the numbers that the learner must be able to count are increased as the grades increase. The 

assessment standards are also expanded to include other learning areas as the grades progress.  

Learning Outcome 1 of the Revised National Curriculum Statement for Grade10-12 states 

that ―When solving problems, the learner is able to describe, represent and work confidently 

with numbers and their relationship to estimate, calculate and check answers‖ (Department 

of Education, 2002, p12). According to the above, problem solving, including word 

problems, are taught in grades R through 12. It can be argued that learners had a thorough 

treatment and assessment of problem solving before they enter university. To test this 

assumption, students who were registered for the Mathematics 115 (MAM115) course in 

2011 were given a revision test on solving word problems during the first week of the 

university academic year. MAM115 is a service course to all students who study in the field 

of pharmacy, nursing and education at UWC. The five questions given to the students were 

based on the work of grades 9 to 12. This was verified by a panel of three secondary school 

mathematics teachers. The five questions can be found in addendum A. The results of this 

test were not part of the initial analysis of this thesis, but it was interesting to note the 
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outcome. Each question had a total mark of five. The results of this test are summarized in 

the table below: 

TABLE 3 

SCORE  QUESTION 1 QUESTION 2 QUESTION 3 QUESTION 4 QUESTION 5 

0 57.8% 19.3% 90.4% 29.5% 97.6% 

1 15.1% 3.0% 0.6% 11.4% 0.0% 

2 15.1% 11.4% 1.2% 5.4% 1.2% 

3 4.8% 6.6% 0.6% 6.0% 0.0% 

4 0.0% 8.4% 0.6% 6.0% 0.0% 

5 7.2% 50.6% 6.6% 41.6% 1.2% 

  

For the first question, the results showed that only 12% of the students who answered this 

question obtained a score of more than three. A massive 58% of students either did not 

attempt this question or answered this question incorrectly. Only six students attempted 

question 5, while only 13 students made an attempt to answer question 3. According to the 

panel who verified the five questions, the fifth question was a popular question that was 

frequently used in the final examination of the National Certificate exam since 2008. 

Question 2 and question 4 were the two questions that students answered the best (66% of 

students obtained a mark of more than 3 out of 5 for question 2 and 54% of students scored 

three or more for question 4.   

The above results, which were not used in the final analysis of this thesis, gave some 

indication of the students‘ deficiencies or lack of preparation when solving word problems. 

This is in contrast to what is stated in Learning Outcome 1 of the Revised National 

Curriculum Statement for Grades R-9 and Grades 10-12.  
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1.3 MOTIVATION TO CONDUCT THIS STUDY 

The author works in the department of Mathematics and Applied Mathematics at UWC 

where the poor performance has been identified. The author assisted a colleague to assess a 

class test involving the topic ―Related Rates‖ during 2011. The results were so poor that it 

could not be considered for the students‘ continuous assessment mark.  According to the 

author, despite numerous interventions by the department of Mathematics, no improvements 

were evident.  This prompted the need to investigate the reasons for the students‘ poor 

performance in related rates problems. 

 

1.4 AIM OF THE STUDY 

This study aims to investigate the difficulties that first year mainstream mathematics students 

at UWC have with related rates problems. 

 

1.5 RESEARCH QUESTIONS 

By studying worked examples of Related Rates problems in various textbooks (Concepts and 

Contexts by James Stewart 4th edition, Metric Version ; Calculus With Analytical Geometry 

by Earl W. Swokowski, 2nd edition, Wadsworth International Student Edition and Calculus 

With Analytical Geometry by Joe Repka, 1st edition) it is evident that, although not explicitly 

stated by the authors of these textbooks, a stepwise procedure can be identified. These can 

range from three to five steps. In her study of geometric related rates problems, Martin (2000) 

referred to this stepwise procedure as the Standard Solution Model for geometric related rates 

problems. Several authors (National Assessment of Educational Progress [NAEP], 1988; 

Cooney et.al., 1975; Hiebert & Lefevre, 1986) have made a distinction between procedural 
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knowledge and conceptual understanding. In Martin‘s Standard Solution Model for geometric 

related rates problems, the model consists of six steps which can be classified as either 

relying on students‘ conceptual understanding or their procedural knowledge. The seventh 

step is referred to as an auxiliary step. This step can require either conceptual understanding 

or procedural knowledge depending on the context of the problem. The following table shows 

these seven steps as well as the conceptual understanding or procedural knowledge it is 

associated with. 

TABLE 4: Martin‘s Standard Solution Model for geometric related rates problems 

STEP DESCRIPTION CLASSIFICATION 

1 Sketch the situation and label the sketch with variables or 

constants 

Conceptual 

2 Summarize the problem statement by defining the variables 

and rates involved in the problem (words to symbols 

translation) and identifying the given and requested 

information. 

Conceptual 

3 Identifying the relevant equation 

 

Procedural 

4 Implicitly differentiate the equation to transform a statement 

relating measurements to a statement relating rates 

Procedural 

5 Substituting specific values of the variables into the related-

rates equation and solve the desired rate 

Procedural 

6 Interpret and report results 

 

Conceptual 

7 Solve an auxiliary problem 

 

Either Conceptual or 

Procedural 

Source: Martin (2000) 

This study adopts this Standard Solution model for the solution of all types of related rates 

problems. The aim is to investigate how effective this model is in improving students‘ ability 

to solve related rates problems in general. This will be done by attempting to answer the 

following research questions: 

(i) How do students perform on the conceptual steps no. 1, 2 and 6 of the standard 

solution module for solving related rates problems? 
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(ii) How do students perform on the procedural steps no. 3, 4 and 5 of the standard 

solution module for solving related rates problems? 

(iii) How do students perform on the auxiliary step no. 7 of the standard solution 

module for solving related rates problems? 

To clarify the word ―perform‖, the author means that there is an improvement in the students‘ 

ability to solve Related Rates problems. 

 

1.6 SIGNIFICANCE TO THE FIELD 

The findings of this study could shed light on how to improve students‘ ability to solve 

Related Rates problems. This study offers a different approach to teaching the topic Related 

Rates in the first year calculus course which will be elaborated on in Addendum G of this 

thesis.  

 

1.7 DEFINITIONS  

For the purpose of this study, the following definitions will apply to terms deemed as 

important to this study. 

(a) Related Rates:  

A Related Rates problem refers to the type of calculus problem that requires the 

determination of the rate of change with respect to time of some variables based on 

their relationship to other variables whose rate of change are known (Dick & Patton, 

1992, p. 270). 
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(b) Procedural Knowledge: 

Procedural knowledge is characterised by the ability to note, select, and apply the 

appropriate concrete, numerical, or symbolic procedures required to solve a 

problem; and to verify and justify the correctness of these procedures (National 

Assessment of Educational Progress [NAEP], 1988). 

(c) Conceptual Understanding 

Conceptual understanding is characterised by the ability to identify examples and 

non-examples of a concept; to use, connect, and interpret various conceptual 

representations; to know, apply, distinguish, and integrate facts, definitions, and 

principles; and to interpret assumptions and relations in a mathematical setting 

(National Assessment of Educational Progress [NAEP], 1988). 

 

(d) Poor Performance 

Poor performances in this study refer to scores below 50%, which is the pass mark for 

the module. 

 

1.8 DELIMITATIONS 

This study is limited to the first year mainstream mathematics students at UWC. Students 

enrolled in this course achieved a minimum of 50% in the National Senior Certificate 

mathematics exams of the previous year or earlier up to 2008. Students who wrote the 

National Senior Certificate exam (2007 or earlier) had to achieve a minimum of 40% if 

mathematics was taken on the higher grade, while a student had to achieve a minimum of 

60% if mathematics was taken on the standard grade. 
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1.9 ETHICAL CONSIDERATIONS 

The students who participated in this study agreed on condition that they remain anonymous. 

To protect the rights, dignity, safety and privacy of research subjects and the integrity of the 

environment, UWC developed a Research Ethics Policy that aims to govern the ethics of 

research across the university. This research policy was put in place to prevent harm upon 

subjects, where the impact of the research may be emotionally damaging to humans. The full 

document of the Research Policy is available from the university research committee on 

request.  

 

 

 

 
 

 

 

 

 

 

 

 



11 
 

CHAPTER 2 
 

THE NATURE OF RELATED RATES PROBLEMS 

 

2.1 INTRODUCTION 

 

In this chapter, an attempt is made to find some of the reasons why students do not perform at 

an acceptable level when answering Related Rates problems as was mentioned in section 1.3. 

The reasons appear to be tied up with the nature of these types of problems. It is precisely 

because of this that textbook authors are able to list a stepwise procedure to solve these 

problems. This strategy to teach Related Rates is also useful in the assessment process 

whereby a checklist can be used by the lecturer for the application of the different steps. It is 

widely used in many universities. However judging from our own experience at UWC, the 

topic of related rates is very difficult for most students. In studying the nature of these 

problems, it is hoped that some light will be shed on the reasons for students‘ low 

performance in solving such problems and that remedial steps can be taken. In the next 

section, we discuss the approach of a few selected textbooks. 

 

2.2 TEXTBOOKS 

 

The prescribed textbook for a course is the one most important resource in the learning 

process. Lecturers often provide a list of additional books that students can consult as well as 

course notes and other reading material. In what follows, the approach to the teaching of 

Related Rates in different textbooks will be examined. 
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In 2012, the prescribed textbook for MAT105 was Calculus – Concepts and Contexts by 

James Stewart (4th edition, Metric Version). Stewart summarises a strategy to solve related 

rates problems. Here follows his 7 step strategy: 

1. Read the problem carefully. 

2. Draw a diagram if possible. 

3. Introduce notation. Assign symbols to all quantities that are functions of time. 

4. Express the given information and the required rate in terms of derivatives. 

5. Write an equation that relates the various quantities of the problem. If necessary, use 

the geometry of the situation to eliminate one of the variables by substitution . 

6. Use the Chain Rule to differentiate both sides of the equation with respect to time. 

7. Substitute the given information into the resulting equation and solve for the 

     unknown rate. 

Stewart then gives forty four exercises after explaining his five worked out examples. The 

exercises can be found in Calculus – Concepts and Contexts by James Stewart (4th edition, 

Metric Version). From the forty four exercises, only five are accompanied with a sketch 

giving a realistic picture of the problem situation or diagram. It is required of students to 

draw their own sketch, which can lead to an incorrect diagram, depending on how students 

interpret the problem, and hence an incorrect solution.  

The approach used by another textbook that is available to students, Calculus With Analytical 

Geometry by Earl W. Swokowski (2nd edition, Wadsworth International Student Edition), 

follows a similar introduction as that of Stewart, but Swokowski introduces a diagram called 

a schematic diagram, which by definition is a drawing showing all significant components, 

parts, or tasks, and their interconnections, of a circuit, device, flow, process or project by 

means of standard symbols. This diagram represents a geometric figure whereby an algebraic 
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equation can be obtained. No realistic visualization of the situation exists in any of his 

examples. The worked examples in Swokoswski‘s book all have schematic diagrams 

accompanying the solutions. Nothing is mentioned of a strategy or summary to solve Related 

Rates problems.  

Calculus With Analytical Geometry by Joe Repka (1st edition) has more detail when 

discussing related rates. Repka states that there are no definite rules when solving Related 

Rates problems, but the general idea is the same. In his examples, Repka‘s problems are 

accompanied by the real life picture, followed by a schematic diagram of the problem. The 

solution then follows the same procedure as the previous two textbooks.  

The last textbook that will be discussed is called Calculus by Larson et al. (4th edition).  The 

approach used by Larson et al. is similar to that of Stewart except that the diagram that they 

use combine the real-life situation with the schematic diagram. They use a four step 

procedure to solve Related Rates problems that is similar to Stewart‘s procedure, except that 

two steps in Stewart‘s procedure are combined to make one step in the procedure of Larson et 

al.          

                                                                    

2.3 CONCEPTUAL UNDERSTANDING AND PROCEDURAL KNOWLEDGE 

As mentioned in chapter 1 (p. 6-7), each step in the Standard Solution Model for Related 

Rates problems are classified as either relying on students‘ conceptual understanding or their 

procedural knowledge. Based on previous results of Related Rates assessments, it is evident 

that students do not possess the required conceptual understanding or procedural knowledge 

to answer related rates problems confidently and correctly. By definition, conceptual 

understanding is characterised by the ability to identify examples and non-examples of a 
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concept; to use, connect, and interpret various conceptual representations; to know, apply, 

distinguish, and integrate facts, definitions, and principles; and to interpret assumptions and 

relations in a mathematical setting (National Assessment of Educational Progress [NAEP], 

1988). According to Hiebert & Lefevre (1986), conceptual knowledge is achieved in two 

ways: by ―the construction of relationships between pieces of information‖ or by the 

―creation of relationships between existing knowledge and new information that is just 

entering the system‖. Hiebert and Lefevre make a secondary distinction between what they 

call primary level relationships and what they call the reflective level. The primary level 

refers to pieces of knowledge that are at the same level of abstraction. The reflective level 

refers to a higher level of abstraction from two pieces of knowledge that are initially 

conceived as separate pieces of knowledge. If students do not posses conceptual knowledge, 

students cannot construct relationships between pieces of information given in the problem 

situation. In Related Rates problems, students need to relate given information and construct 

a drawing or diagram to visualize the situation. From the diagram, the student has to 

construct a mathematical relation (equation) which relates the required and given rates. 

Students lack the ability to set up this equation. Hiebert & Lefevre (1986) identify procedural 

knowledge as having a sequential nature, which includes among others: 

 knowing the formal language, or the ―symbol representation system‖,  

 knowing algorithms and rules for completing tasks and procedures, and  

 knowing strategies for solving problems.  

 Procedural knowledge is characterised by the ability to note, select, and apply the 

appropriate concrete, numerical, or symbolic procedures required to solve a 

problem; and to verify and justify the correctness of these procedures (National Assessment 

of Educational Progress [NAEP], 1988). 
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Based on previous results, students have little knowledge of algorithms needed to complete 

procedures and strategies required for problem solving. Furthermore, from the work of Polya 

(1963), Mason et al, (1982) as well as from the textbook series Discovering Advanced 

Algebra (2004), it is becoming clear that conceptual knowledge is intricately linked with 

procedural knowledge and algorithms. In fact, knowledge of procedures is nested in 

conceptual knowledge (Hiebert & Lefevre, 1986). They concluded that it is the relationship 

between conceptual and procedural knowledge that holds the key to improved mathematical 

understanding. Students should not separate conceptual understanding from procedural 

knowledge but rather link the two to get a better understanding of Related Rates. In the 

following section, the way Related Rates problems are stated, is examined because this might 

have an important bearing on the reasons for students‘ low performance in solving Related 

Rates problems.  

 

2.4 THE STATEMENT OF RELATED RATES PROBLEMS 

 

The first step in trying to solve a related rates problem is to represent the given information in 

a realistic picture. A student reading the problem creates a mental picture that is associated 

with the given information. In the literature, this mental picture is referred to as a concept 

image (Tall & Vinner, 1981). It is important that the problem is stated in such a way that 

students can create such a mental picture that should facilitate a correct solution. 

 

Consider the following example: 

1. A kite 50m above the ground moves horizontally at a speed of 2m/s. At what rate is 

the angle between the string and the horizontal decreasing when 100m of string has 
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been let out? (This is an exercise as it appears in Calculus – Concepts and Contexts by 

James Stewart, 4th edition, Metric Version, p.219).  

This statement is problematic. For example, how is the kite controlled? A student might 

interpret the first line in the problem by drawing the following picture. 

                                              Ground level 

 

Another student might interpret the first line by drawing the two pictures: 

 

                       ground level 

Picture 1: stationary person 

                                                                                                                                                                                                                                                

                                                                     50m                         

Direction in which kite flies 

 50m 
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Picture 2: person moving 

In the first picture, the kite is controlled by some mechanism fixed to the ground, while in the 

second picture, the kite is controlled by a person (either moving or stationary). The next step 

in solving Related Rates problems is to represent the given information in what some authors 

like Swokowski (Calculus With Analytical Geometry by Earl W. Swokowski ,2nd edition, 

Wadsworth International Student Edition) refer to as a schematic diagram. As a notion 

borrowed from Physics, a schematic diagram is a drawing showing all significant 

components, parts, or tasks (and their interconnections) of a circuit, device, flow, process, or 

project by means of standard symbols. In mathematics, a schematic diagram is most often a 

geometric figure such as a triangle, a circle or cone. In the first picture above, a schematic 

diagram would be a triangle with vertices A, B and C, with A representing the mechanism 

controlling the kite, C representing the position of the kite at a distance s meters from A, and 

50m above B, a point on the ground, a distance x meters from A. A schematic diagram which 

represents the first picture is given below:  

                                                                              

                                              s                               50m 

         Ground level 

                    A                          x  B 

  

 

 

 

 

C 
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Let Ɵ be the angle between the string and the horizontal. In picture one above, a schematic 

diagram would be a diagram ADBC, where A represents the position of the person‘s hand 

controlling the kite, a height of y metres above the ground from D.    

The schematic diagram which represents picture 1 is given below:  

                                                                      C 

                                                   s 

                                                50m 

                  A            Ɵ      B   

                  y 

        D   x  B     Ground Level 

It can therefore be seen that that the schematic diagram differs according to the way the 

problem is interpreted by the student. Of course this will also impact on the solution of the 

problem. 

The problem must therefore be clearly stated to avoid any ambiguities. Hudson (1983) and 

Vicente et al (2007) have shown in their research that re-phrasing of the problem context has 

a positive impact on solving word problems by students. 

Seifi et al (2012) suggested that rephrasing a word problem context impact positively on 

solving word problems. They also suggest that textbooks should use appropriate content since 

unfamiliar contents and language complexities in the problem statement make students 

unable to recognize the problem. Textbooks should use content that is familiar to the student. 

Visual representation, both real-life and schematic should accompany Related Rates 

problems. 
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2.5 REFERENCE POINT 

We have seen that the first step in solving Related Rates problem is to draw, if it is not given, 

a realistic picture (a mental picture) of the problem. From this realistic picture, a schematic 

diagram of the problem must be produced on which all major components of the problem are 

depicted as dots or lines and distances are marked with symbols (called variables) which 

could be known or unknown according to the information provided in the problem. All 

distances are measured to and/or from a single point on the schematic diagram. This point is 

referred to as the reference point for the particular problem. A student trying to solve the 

problem must identify such a point on the schematic diagram. Here are a few examples: (the 

examples are from Calculus – Concepts and Contexts by James Stewart, 4th edition, Metric 

Version). 

1. A street light is mounted at the top of a 6-meter-tall pole. A man 2m tall walks away 

from the pole with a speed of 1.5m/s along a straight path. How fast is the tip of his 

shadow moving when he is 10m from the pole? 

 A realistic picture of the above problem is given below:  
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A schematic diagram of this picture is given below with the point of reference indicated: 

                                     

 

B                                               2m     

 

                                   x    l 

point of reference 

where  B indicate the length of the pole, 

2m indicates the height of the man, 

x indicates the distance the man walks from the light pole, 

l is the length of the man‘s shadow on the ground in front of the man and  

R indicates the position of the point of reference, the base of the pole. 

 

2. Two carts, A and B, are connected by a rope 12m long that passes over a pulley P. the 

point Q is on the floor 4m directly beneath P and between the carts. Cart A is being 

pulled away from Q at a speed of 0.5m/s. How fast is cart B moving toward Q at the 

instant when cart A is 3m from Q. 

      R 
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A realistic picture of the above problem is given below 

 

A schematic diagram of this picture is given below with the point of reference indicated: 

                                                     P 

 

                                  u                       4m                        12-u 

 

                      A           x                   Q  y           B 

Point of reference 

Where A indicates the position of cart A, 

       B indicates the position of cart B, 

       P is the position of the pulley, 

      u is the length of the rope from A to the P, 

      12 - u is the length of the rope from P to the B, 

      x is the distance from Q to A, 

      y is the distance from B to Q and 

      Q is the point of reference. 

4m 
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It is clear from these two examples that a student‘s realistic picture of the problem situation, 

which might not be given, plays an important role in identifying a reference point, which in 

turn is central to drawing a schematic diagram, an important aid in the mathematical 

modelling of the problem situation. Without the correct identification of a reference point, the 

problem difficulty is increased significantly. 

 

2.6 VISUALIZATION IN RELATED RATES PROBLEMS 

Many Related Rates problems describe the position of one object in relation to another 

object. For example when two cars approach an intersection from two different directions, 

two aircraft flying horizontally over an airport; one flying west and the other flying north. Let 

us consider the following example:  

Example 1: At noon, ship A is 150km east of ship B. Ship A is sailing west at a constant 

speed of 35km/h and ship B is sailing north at a constant speed of 25km/h. How fast is the 

distance between the ships changing at 16h00? 

When an observer views the two ships say from a harbour or sea shore, the scenario 

described in the problem may look like the picture below. 

                                                                   

This is the position of the two ships at noon. 

SHIP A SHIP B 
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When ship A sails west and ship B sails north, the observer sees that ship A sails in the 

direction where ship B was at noon. Ship B sails away from the observer in a straight line. 

Imagine the sea being a flat horizontal surface and the two ships are moving (sailing) on the 

surface. Ship A is sailing towards the position of ship B at noon and ship B is sailing away 

from this position. We can consider the position of ship B at noon as our reference point. 

 

         Movement of ship B 

Location of ship A at noon               Location of ship B at noon

       

      Movement of ship A 

 

We can now draw a schematic diagram indicating the movement of the ships.  

Position of the ship 

B after t hours 

 

Position of the ship A after t hours 

 

Position of ship A at noon                                                                             position of ship B                                                                                                                           

          at  noon                                                    

                        150km 

 

         point of reference 
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Indicating all the relevant information and symbols, the schematic diagram looks as follows: 

B  

 

 

                                      

                                                D                       A                                        C                                                                                                                        

where D is the position of ship A at noon,  

A is the position of ship A after t hours, 

C is the position of ship B at noon and  

B is the position of ship B after t hours.           

 

Note that C is the reference point in this case. If we let the distance of ship A sailed after t 

hours be x, the distance of ship B from the reference point C after t hours be y, and the 

distance between the two ships be z after t hours, the schematic diagram looks as follows:  

B  

 

                                                                                            z                         y 

                                      

                                                D           x         A                  150-x             C 

 

Note that the distance of DC is 150km and AC is 150 – x, since DA = x.  
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From the information above, we can obtain an algebraic relation between x, y and z. In 

triangle ABC,   222 150 yxz  . To obtain the desired rate, we need to differentiate 

implicitly with respect to time t. If we differentiate   222 150 yxz  with respect to time t, 

we obtain  
dt

dy
y

dt

dx
x

dt

dz
z 215022  . The rate at which the distance between the two 

ships is changing is denoted by 
dt

dz
. To solve 

dt

dz
, we need to substitute the values of x, y, z, 

dt

dx
 and 

dt

dy
. It should be noted that hkm

dt

dx
/35 and hkm

dt

dy
/25 . The values of x and y 

can be calculated after 4 hours using 
time

cedis
speed

tan
 or distance = speed times time. For x, 

we have    kmhhkmx 1404/35  . Similarly,    kmhhkmy 1004/25  .The value of z 

can be determined by using the theorem of Pythagoras: 22)150( yxz  . By substituting 

kmx 140  and kmy 100 , we have 10110z .  Substituting these values into the equation 

 
dt

dy
y

dt

dx
x

dt

dz
z 215022  , we obtain that 

dt

dz
= 21.39km/h.  

 

Let us consider another example.   

Example 2: An aircraft flying horizontally at an altitude of 2km and a speed of 800km/h 

passes directly over a radar station. Find the rate at which the distance from the plane to the 

station is increasing when it is 3km away from the station (This is one of the exercises in 

Calculus – Concepts and Contexts by James Stewart, 4th edition, Metric Version). 

A realistic picture of the information in example 2 is the following: 
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Distance between the radar station and the 

aircraft 

                                           

In order to construct a schematic diagram in example 2, first imagine a point at a height 2km 

directly above the radar station. We will call this a reference point for the given problem. The 

aircraft and the radar station lie in the same vertical plane. A schematic diagram is a right 

angled triangle in the vertical plane with vertices R (reference point), S (Radar station) and P 

(aircraft). 

                                     R                                                   P 

 

                                 2km 

 

                                      S 

If x is the distance the aircraft flies after t hours and z is the distance between the radar station 

and the aircraft after t hours, the information on the schematic diagram looks like the 

following: 

Flight direction of the aircraft   
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                                     R                       x                         P 

 

                                 2km                             z 

 

                                      S 

From the above information, we can find a mathematical relation between the unknown and 

the constant values. In this case, the mathematical relation is: 222 2 xz . To obtain the 

desired rate, we need to differentiate implicitly with respect to time t. If we differentiate 

222 2 xz with respect to time t, we obtain 
dt

dx
x

dt

dz
z 22  . The rate at which the distance 

from the plane to the station is increasing is denoted by
dt

dz
. To find 

dt

dz
, we need to 

substitute the values of x, z and 
dt

dx
 into the equation 

dt

dx
x

dt

dz
z 22    . It should be noted that 

hkm
dt

dx
/800 . We can find the value of x using the equation 22 2 zx , when z = 3.   

Therefore kmx 523 22  . By substituting kmx 5 , z = 3and hkm
dt

dx
/800

 
into 

the equation 
dt

dx
x

dt

dz
z 22  , we obtain that ./28.596 hkm

dt

dz
  
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 Example 3: At a certain instant an aircraft flying due east at 400km/h passes directly over a 

car travelling due southeast at 100km/h on a straight road, level road. If the aircraft is flying 

at an altitude of 1km, how fast is the distance between the aircraft and the car increasing 36 

seconds after the aircraft passes directly over the car? (This is an example from the textbook 

―Single Variable Calculus Revised‖ by Robert A. Adams, Addison Wesley Publisher 1986) 

A realistic picture describing the situation in example 3 is given below: 

 

 

 

 

 

 

 

Distance between 

the car and the 

aircraft  

           

 

         Direction of the car travelling  

 

 

 

The schematic diagram that we obtain from the above realistic picture will look as follows: 

Flight of the aircraft 
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(reference point)  R                    x in km, hkm
dt

dx
/400

                                      P (position  

                                                                                                                           of aircraft  

                                                                                                                           after t hours) 

                      

                   1km                                                                                 z (Distance between the  

                                                                                                                          car and the aircraft  

          after t hours) 

                               C     

                           (car) 

                                                    y 

                                               (in km/h) 

                                     hkm
dt

dy
/100                T (new position of car after t hours) 

 

At a glance, the situation described in example 3 seems similar to that which is described in 

example 2. However the difference becomes apparent when we try to find an algebraic 

equation which gives a relationship between the position of the car and the aircraft. We 

describe how this can be done. The car is in a vertical plane formed by R, C and T. The 

aircraft is in a different plane formed by R, T and P, which is an inclined plane. Because the 

car and the aircraft are in two different planes, it will be very difficult to describe the 

movement relative to one another. To make it easier, we make a construction as follows: 

Draw a vertical line through T to form the rectangle RCTS as in the sketch below. The 

aircraft is now in the horizontal plane formed by R, S and P. It is now easy to find an 

algebraic relationship describing the movement of the car relative to the aircraft.  
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                                               R                              x                                            P 

                                                           45˚ 

                                         1km               y                            u          

                                             C                           

                                                                      S 

                                                       y                 1km          z 

                                                                                  

 

Since CT = y, RS = y also, since RCTS forms a rectangle. Also if RC = 1km, then ST = 1. We 

let SP = u and TP = z. Note that angle PRS = 45˚, since the car travels due south east. 

According to the research done by Cankoy and Özder (2011), visual representations in word 

problems can reduce problem difficulty. To complete the solution of this problem, we start in 

triangle STP. In ΔSTP, z
2
=1

2
+u

2
. In ΔRSP, u

2
= x

2
+y

2
-2xycos45˚. Substituting this u

2
 into the 

previous equation, we obtain  

z
2
=1

2
+ x

2
+y

2
-2xycos45˚, which simplifies to z

2
=1

2
+ x

2
+y

2
- 2 xy. When we differentiate this 

equation with respect to time(t), we obtain 









dt

dy
x

dt

dx
y

dt

dy
y

dt

dx
x

dt

dz
z 2222 . 

Making 
dt

dz
the subject of the formula, we obtain 

z

dt

dy
x

dt

dx
y

dt

dy
y

dt

dx
x

dt

dz











2

2

. 

Since hkm
dt

dx
/400 and  hkm

dt

dy
/100  is given, we only need to find the values of x, y 

and z. The problem requires us to find how fast the distance between the aircraft and the car 

is increasing 36 seconds after the aircraft passes directly over the car. Now 36 seconds 

converts to 0.01 hours. So if the aircraft flies at a speed of hkm
dt

dx
/400 , the aircraft flies 

400km in 1hour. So in 0.01 hours, the aircraft covers x = (0.01)(400) = 4km. Also, the car 

T 
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travels at speed of hkm
dt

dy
/100  , the car travels 100km in 1 hour. So in 0.01 hours, the car 

covers y = (0.01)(100) = 1km. To find z, we know that z
2
=1

2
+ x

2
+y

2
- 2 ; therefore 

xyyxz 21 222  . We know that x = 4km and y = 1km. Substituting these values into 

xyyxz 21 222   , we obtain kmz 513.3)1)(4(2)1()4(1 222  . We now 

substitute  x = 4km, y = 1km,                 z = 3.513km, hkm
dt

dx
/400 and hkm

dt

dy
/100  in 

the equation 
z

dt

dy
x

dt

dx
y

dt

dy
y

dt

dx
x

dt

dz











2

2

 to solve how fast is the distance between 

the aircraft and the car increasing 36seconds after the aircraft passes directly over the car. 

Therefore  

            

 





513.3

10044001
2

2
10014004

dt

dz
322.89km/h. Therefore the distance 

between the aircraft and the car is increasing at a speed of 322.89km/h. 

Obviously this problem is not easy since it requires the ability to visualize the problem 

situation. This is sadly lacking in most of our first year students and might easily be one of 

the most important reasons why students have difficulty with Related Rates problems. 

The recommendation of Cankoy and Özder (2011) in their study was that textbooks and other 

instructional and assessment materials should be enriched by visual representations to reduce 

the level of cognitive load associated with the problem solving task. 

 

 

 

 

 

 

 



32 
 

2.7 THE CONTEXT OF RELATED RATES PROBLEMS 

 

In South Africa, the three popular national or recreational sports are football, rugby and 

cricket. Students who were registered for the MAT105 module had diverse backgrounds. 

Below is a table indicating the demographics of the students in terms of  the South African 

provinces they came from: 

TABLE 5 

PROVINCE EASTERN 

CAPE 

GAUTENG KWAZULU 

NATAL 

MPUMALANGA NORTH 

WEST 

NORTHERN 

PROVINCE 

WESTERN 

CAPE 

TOTAL 32 18 9 6 2 10 142 
Source: University of the Western Cape 

Students who were not South African citizens are classified according to their nationality. 

Below is a table according different nationalities outside South Africa: 

TABLE 6 

COUNTRY TOTAL 

ANGOLA 2 
CAMEROON 2 
CHINA 1 
DEMOCRATIC REPUBLIC OF CONGO 2 
ETHIOPIA 1 
GABON 1 
MOZAMBIQUE 1 
NAMIBIA 1 
NIGERIA 1 
SWAZILAND 1 
TURKEY 1 
UGANDA 1 
ZAMBIA 1 
ZIMBABWE 3 
Source: University of the Western Cape 

 

Let us examine the following example: 
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1. A baseball diamond is a square with side 90feet. A batter hits the ball and run towards 

first base with a speed of 24ft/s. At what rate is his distance from second base decreasing 

when he is halfway to first base?  

 

(This example is taken from Calculus – Concepts and Contexts by James Stewart, 4th 

edition, Metric Version). 

In the above example, the terms ―baseball diamond‖, ―first base‖ and ―second base‖ are used. 

Students from South Africa as well as students from the rest of Africa, more so, students who 

do the MAT105 course are not familiar with the terms ―baseball diamond‖ and ―first and 

second base‖. Even with a realistic picture, this problem will be difficult for most students. 

The next problem might also be difficult for similar reasons.  

2. Gravel is being dumped from a conveyor belt at a rate of min/3 3m and its coarseness is 

such that it forms a pile in the shape of a cone whose base diameter and height are always 

equal. How fast is the height of the pile increasing when the pile is 3m high? 
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The familiarity with the concepts in a word problem might reduce problem difficulty and can 

enhance problem solving. Hembree (1992) in his research concluded that familiar context 

strongly influences students‘ problem solving in a positive way. Cordova and Lepper (1996), 

López and Sullivan (1992) as well as Ku and Sullivan (2002) all concluded in their studies 

that familiar contexts enhance word problem solving by increasing the meaningfulness of the 

contexts and thus motivating the students to solve the problem.  

Cankoy and Özder (2011) suggested that familiar problem contexts, especially related to 

students‘ life, should be considered when the cognitive load associated with the problem 

solving task is high. 

 

2.8 LANGUAGE COMPLEXITY OF RELATED RATES PROBLEM 

 

Some Related Rates problems are difficult due to the complexity of the language used in the 

statement of the problem. This could include unfamiliar words and phrases which hamper 

students in visualizing the situation sketched in the problem. For example: 

1. A boat is pulled into a dock by a rope attached to the bow of a boat and passing 

through a pulley on the dock that is 1 meter higher than the bow of the boat. If the 

rope is pulled in at a rate of 1m/s, how fast is the boat approaching the dock when it is 

8 meters from the dock? 
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Difficulty with the language in which the problem is presented has been proposed as an 

obstacle to students' successful mathematical problem solving. Davidson (1977) found that 

low verbal ability or lack of familiarity with the language used in problems did hamper 

students' understanding of word problems. 

 

2.9 TRANSLATING VERBAL EXPRESSIONS INTO MATHEMATICAL 

SYMBOLS IN RELATED RATES PROBLEMS 

 

Consider the following example:  

3. A spherical drop of water loses moisture by evaporation at a rate proportional to its 

surface. What can you say about its radius?  

 

When we examine the sentence ―A spherical drop of water loses moisture by evaporation at a 

rate proportional to its surface‖, it is expected of a student to obtain an equation relating the 

water loss, which is a decrease in volume (denoted by 
dt

dV
) to the surface of the spherical 

drop, which in this case is the area (denoted by A). When we examine the National 

Curriculum statement for Grades R-12 (NCS), the topic proportionality is not properly dealt 

with in any of the grades R to 12. The level at which it is treated in these grades are limited to 

ratios or fractions. In the above example, if a spherical drop of water loses moisture by 

evaporation at a rate proportional to its surface, the relation in mathematical symbols is:    

dt

dV
~A. The proportion symbol (~) is not discussed in any part of the curriculum of the 

National Curriculum statement for Grades R-12 (NCS). Therefore students will not be 

familiar with the notion that if 
dt

dV
~ A, then 

dt

dV
=-kA, where k is a positive constant value. 
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The negative sign indicates that the water is lost through evaporation and hence the volume 

decreases with time. Therefore it can be assumed that if students do not have the proper 

treatment of proportionality, then they will not answer the above question correctly. A similar 

example was also found in another textbook by Larson et. al (1979).  

4. A lump of modeling clay is being rolled out so that it maintains the shape of a circular 

cylinder. If the length is increasing at a rate proportional to itself, show that the radius is 

decreasing at a rate proportional to itself. 

Since the clay is rolled out in the shape of a circular cylinder and the length is increasing at a 

rate proportional to itself, the equation that relates V its volume, L its length and r  its radius, 

is V = πr
2
L. If the shape remains the same, then V remains unchanged. Now if the length is 

increasing at a rate proportional to itself, then 
dt

dV
=kL, where k is any positive constant 

value. As discussed above, students will find problems dealing with proportionality difficult.  

 

2.10 RECOGNIZING SIMILAR PROBLEMS IN DIFFERENT CONTEXTS 

 

When we examine the solution of Related Rates problems, most of the solutions follow a 

similar pattern. The question that arises is: Can students recognize similar problems but in a 

different context? Can students transfer their skills gained by solving a particular problem to 

a ―new‖ problem?  Let us consider the following two examples: 

1. A boat is being pulled toward a pier by a rope attached to its bow. A person on the 

pier is pulling in the rope at a rate of 6m/min. If the person‘s hand is 5 meters higher 

than the bow of the boat, how fast is the boat moving toward the pier when there are 

still 13 meters of rope out. 

 

 

 

 



37 
 

This problem is identical to problem 1 in section 2.8 but students might not recognize this as 

the problems are phrased differently. A second example is the following problem. 

 

2. Two crates, A and B, are on the floor of a warehouse. The crates are joined by a rope 

33 feet long, each crate being hooked at floor level to an end of the rope. The rope is 

stretched tight and passes over a pulley P that is attached to a rafter 12 feet above a 

point Q on the floor directly between the two crates. If crate A is 5 feet from Q and is 

being pulled directly away from Q at a rate of 0.5ft/sec, how fast is crate B moving 

toward Q? 

This problem is identical to problem 2 in section 2.5. Again students might fail to recognise 

this because of the difference in context.  

Krutetskii(1976) found that good problem solvers have the ability to see quickly and 

accurately the mathematical structure of a problem as well as the ability to generalise across a 

wide range of similar problems. He also concluded in his study that good problem solvers 

have the ability to remember a problem‘s formal structure for a long time. Foong (1990) in 

her study found that successful problem solvers translate the problem statement more 

correctly and more exactly than unsuccessful problem solvers do. 

 

2.11 CURRICULUM TOPICS THAT WERE EXCLUDED FROM THE NATIONAL 

CURRICULUM STATEMENT FOR GRADES R-12 (NCS) 

 

Another reason for students‘ difficulty with Related Rates problems is the mathematical 

background of incoming students. Many topics including Euclidean Geometry and some 

topics in trigonometry were excluded from the National Curriculum Statement of the senior 
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phase of the high school. The next example shows that this knowledge is crucial for the 

solution of certain Related Rates problems. 

A man walks along a straight path at a speed of 1,5m/sec. A searchlight is located on the  

ground 6m from the path and is kept focused on the man. At what rate is the searchlight  

rotating when the man is 8m from the point on the path closest to the searchlight? 

Solution 

Let x be the distance the man walks from the point on the path closest to the 

searchlight. Then sec/5,1 m
dt

dx
 . Let  Ɵ  be the angle through which the searchlight 

rotates. Let s be the length of the beam.     (Step 2) 

 

 

 

                                   x                The point where man walking 

                Point on  

          path closest                 6m   

 to the                   s      (Step 1) 

            searchlight                       

 

6
tan

x


          
(Step 3) 

 

dt

dx

dt

d

dt

dx

dt

d

dt

dx

dt

d

6

cos

sec.6

1

6

1
sec

2

2

2
















         

(Step 4)
 

Also from the diagram, we also have 

222 6 xs
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Since x = 8m, we have
 

.10

68

6

6

22

22

222









s

s

xs

xs

         

(Step 7) 

So 

100

36
cos

10

6
cos

2 







         

(Step 7) 

Therefore, from 

dt

dx

dt

d

6

cos 2 
  ,  

we have  

.sec/09,0
100

9

5,1
6

100

36
2

rad
dt

d

dt

d


















        

(Step 5)

  

 

Therefore the searchlight is rotating at 0,09 rad/sec.     (Step 6) 

From the information given in the sketch, the solution of this problem requires the student to 

recognise that
6

tan
x

 . This does not seem too much of an issue to the student. Finding the 

derivative of this equation implicitly with respect to time (t), we obtained 
dt

dx

dt

d

6

1
sec2 


  . 

The ratios  eccos,sec and cot are unfamiliar, since these ratios were not part of the 

curriculum of the National Curriculum Statement for Grades R-12 (NCS) which were 

implemented in grade 12 from 2008, in grade 11 from 2007 and grade 10 from 2006. These 

ratios did however form part of the national senior certificate exam prior to 2008. Hence the 
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students who wrote their final mathematics from 2008 were not taught these ratios as well as 

the trigonometric identities  22 sec1tan  and  22 cos1cot ec . As we can see, the 

first identity is also used in the solution of this problem. It must be noted that only 26 

students registered for MAT105 in 2012 wrote their final mathematics exam in grade 12 prior 

to 2008. Therefore it can be argued that the majority of students from the sample used were 

not taught the definitions of the ratios  eccos,sec and cot as well as the trigonometric 

identities  22 sec1tan  and  22 cos1cot ec . Therefore the majority of students will 

not be able to solve this problem as certain topics required in this problem, were not part of 

their curriculum at school level. Let us look at another example. 

A water tank is in the shape of a right circular cone that has a radius of 5 feet and a 

height of 10 feet. It is positioned so that the cone points straight down. Water is being 

drained out of the tank at the rate of 2 cubic feet per minute. At what rate is the 

height of the water in the tank changing when there are 18π cubic feet of water in the 

tank? 

Le V be the volume of the water in the tank at any time t , where the tank has the shape of a 

right circular cone. Let h be the height of the water in the tank at any time t and let r be the 

radius of the water in r.  Then .sec/2 3ft
dt

dV
      (Step 2) 

 

            

            

            

            

                                              (Step 1) 

         10ft    h 

5 ft 

r 
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105

hr


          (Step 7)
 

210

5 hh
r 

 

hrV 2

3

1
           (Step 3) 

3

3

2

12

43

1

23

1

hV

h
V

h
h

V





















         (Step 4)

 

dt

dh
h

dt

dV 2

4


  

Also since  
2

h
r  , we obtained 

dt

dh

dt

dr

2

1
  

So from hrV 2

3

1
 , we have 

dt

dh
h

dt

dV

dt

dhh

dt

dV

dt

dhh

dt

dh
h

dt

dV

dt

dhh

dt

dr
h

dt

dV

dt

dhh
h

dt

drh

dt

dV

dt

dh
rh

dt

dr
r

dt

dV

2

2

2
2

2
2

2

2

4

4

3

3

1

42

1

3

1

43

1

22
2

3

1

2
3

1















































































       (Step 4)

 

 

 

 

 



42 
 

Also from hrV 2

3

1
  and 

2

h
r  we obtained 

3

12
hV


  

But since 18V , we obtain 

6

216

216

12
18

3

3

3









h

h

h

h




          (Step 5)

 

So from 
dt

dh
h

dt

dV 2

4


 , we have that  

sec/42,0

3

4

)2(
)6(

4

4

2

2

ft
dt

dh

dt

dh

dt

dh

dt

dV

hdt

dh















         

(Step 5)

 

Therefore the height of the water in the tank is decreasing at a rate of 0.42ft/sec. (Step 6) 

To obtain 
105

hr
  in the first line of the solution, the students needed to understand the 

concept of similar triangles.  The National Curriculum Statement for Grades R-12 (NCS) 

excluded this topic from the curriculum and hence learners were not taught this section. This 

topic as well as Euclidean geometry for grades 11 and 12 involving circles were excluded 

from the curriculum prior to 2008 in grade 12. Thus the majority of students who wrote their 

final mathematics exam from 2008 were thus not prepared to deal with topics that were 

excluded from their curriculum to answer Related Rates problems confidently. 
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2.12 CONCLUSION 

 

In this chapter, we examined some examples of Related Rates problems in order to 

understand the nature of these problems. Several issues emerged from this exercise that could 

potentially contribute to the students‘ weak performance in solving Related Rates problems. 

Our experiences of working with students in tutorial sessions on Related Rates problems 

confirm that students might have difficulty with: 

(i) The approach in different textbooks. 

(ii) The way Related Rates problems are stated. 

(iii) Identifying a reference point in a particular problem. 

(iv) Visualizing a problem situation. 

(v) Understanding the context in which the problem is stated. 

(vi) Language complexity of related rates problems. 

(vii) Translating verbal expressions into mathematical symbols. 

(viii) Recognizing similar problems in different contexts. 

(ix) Related Rates problems due to the ill-preparedness for university 

mathematics as a result of certain topics being excluded from the 

school curriculum. 
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CHAPTER 3 
 

THE STANDARD SOLUTION MODEL FOR RELATED 

RATES PROBLEMS 

 

3.1 INTRODUCTION 

 

The term ―Related Rates problem‖ refers to the type of word problem that requires the 

determination of ―the rate of change with respect to time of some variables based on their 

relationship to other variables whose rates of change are known‖ (Dick & Patton, 1992, 

p.270). Students‘ difficulty with geometric Related Rates problems has been noted by several 

authors (Balomenos et. al., 1987; White & Mitchelmore, 1996). Balomenos, Ferrini-Mundy 

& Dick (1987) suggested that one way to improve student performance on geometric Related 

Rates problems would be to have them gain more experience doing the geometry problems 

that are often embedded in them.  In addition, the multi-step, multi-faceted nature of these 

problems have provided fertile ground to examine students‘ procedural knowledge and 

conceptual understanding of several important mathematical concepts that appear throughout 

the calculus course (Martin, 2000). By studying worked examples of Related Rates problems 

in various textbooks (Concepts and Contexts by James Stewart 4th edition, Metric Version ; 

Calculus With Analytical Geometry by Earl W. Swokowski, 2nd edition, Wadsworth 

International Student Edition and Calculus With Analytical Geometry by Joe Repka, 1st 

edition) it is evident that, although not explicitly stated by the authors of these textbooks, a 

stepwise procedure can be identified. These can range from three to five steps. In her study of 

geometric related rates problems, Martin (2000) referred to this stepwise procedure as the 
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Standard Solution Model for geometric related rates problems. Several authors (National 

Assessment of Educational Progress [NAEP], 1988; Cooney et al., 1975; Hiebert & Lefevre, 

1986) have made a distinction between procedural knowledge and conceptual understanding. 

Procedural knowledge is characterized by the ability to note, select and apply the appropriate 

concrete, numerical or symbolic procedures required to solve a problem and to verify and 

justify the correctness of these procedures. Conceptual understanding is characterized by the 

ability to identify examples and non-examples of a concept; to use, connect, and interpret 

various conceptual representations; to know, apply, distinguish, and integrate facts, 

definitions, and principles; and to interpret assumptions and relations in a mathematical 

setting (NAEP, 1998). White and Mitchelmore (1996) claimed that procedural knowledge 

and conceptual understanding involve different types of concepts.  

Abstract-general concepts are formed by a generalising → synthesising → abstracting 

sequence (Dreyfus, 1991) or an interiorisation → condensation → reification process 

(Sfard,1991). Such concepts are linked to one another to form conceptual understanding. By 

contrast, abstract-apart concepts are formed by learning symbolic manipulations without 

reference to their meaning. Students whose concepts are abstract-apart can only acquire 

procedural knowledge. In Martin‘s Standard Solution Model for geometric related rates 

problems, the model consists of six steps which can be classified as either relying on 

students‘ conceptual understanding or their procedural knowledge. The seventh step is 

referred to as an auxiliary step. This step can require either conceptual understanding or 

procedural knowledge, depending on the context of the problem. The following table shows 

these seven steps as well as the conceptual understanding or procedural knowledge it is 

associated with. 
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TABLE 7: Martin‘s Standard Solution Model for geometric related rates problems 

STEP DESCRIPTION CLASSIFICATION 

1 Sketch the situation and label the sketch with variables or 

constants 

Conceptual 

2 Summarize the problem statement by defining the variables 

and rates involved in the problem (words to symbols 

translation) and identifying the given and requested 

information. 

Conceptual 

3 Identifying the relevant equation 

 

Procedural 

4 Implicitly differentiate the equation to transform a statement 

relating measurements to a statement relating rates 

Procedural 

5 Substituting specific values of the variables into the related-

rates equation and solve the desired rate 

Procedural 

6 Interpret and report results 

 

Conceptual 

7 Solve an auxiliary problem 

 

Either Conceptual or 

Procedural 

Source: Martin (2000) 

 

3.2 EXAMPLES OF RELATED RATES PROBLEMS 

 

In what follows, we show by a few worked examples how Martin‘s Standard Solution Model 

can be applied to all Related Rates problems, not just to geometric Related Rates problems, 

which was the focus of her study. We identify at various stages of the solution the steps in the 

above table.  
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Example 1. Two sides of a triangle are 4m and 5m in length and the angle between 

them is increasing at a rate of srad /06,0 . Find the rate at which the 

area of the triangle is increasing when the angle between the sides of 

fixed length is 
3


. 

 

Solution 

We let  be the angle between the two sides. We name the triangle ΔEBC with 4EB  

and 5BC . We also let A be the area of the triangle at time t.    (Step 2) 

                        E 

 

                                                                 

                                    4                       

                                                                                  

                                         B                       5                                 C   (Step 1) 

 

 





sin10

sin.5.4.
2

1





A

A

         

(Step 3) 

cos10
dt

dA
 

dt

d

         
(Step 4)

 

But since srad
dt

d
/06,0


and 

3


  , we have 

 

sm
dt

dA

dt

dA

/3,0

)06,0.(
3

cos.10

2













        

(Step 5) 

Thus the area is increasing at a rate of sm /3,0 2 .     (Step 6) 
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Example 2: A kite, controlled by a stationary person, 50m above the ground moves 

horizontally at a speed of 2m/s. At what rate is the angle between the string 

and the horizontal decreasing when 100m of string has been let out? 

 

Solution 

Let x be the horizontal movement of the kite, let y be the height of the kite from the ground. 

Let s be the length of the string that is let out and let  be the angle between the string and the 

horizontal ground. Then 50y and sm
dt

dx
/2 .      (Step 2) 

 

 

 

 

           (Step 1) 

 

 

From the diagram,  50sin.
50

sin   s
s       

(Step 3) 

 

0cos.sin 
dt

d
s

dt

ds 


 




 sincos
dt

ds

dt

d
s  .         (Step 4) 






cos

sin

s

dt

ds

dt

d
  

 

Also 
222 50 xs  

                               s  

                                                            y=50 

                

                                x 

                             

                               x 
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dt

dx

s

x

dt

ds

dt

dx
x

dt

ds
s

dt

dx
x

dt

ds
s

.

22







         (Step 7) 

 

 

To find x when s = 100, we use the equation 
222 50 xs . 

22 50 sx  

22 50)100( x  

3507500 x          
(Step 7)

 

sm
dt

ds
/32.

100

350
  

Now 
2

1

100

50
sin  , when s = 100. 

Since 
62

1
sin


 

        (Step 7)
 

Since 
6


  , 

2

3

6
cos 


 

From 





cos

sin

s

dt

ds

dt

d
 we substitute 3

dt

ds
, 

2

1
sin  ,

2

3
cos  and s= 100, we then have 

 
 






cos100

sin
dt

ds

dt

d
  

2

3
100

2

1
3


dt

d

      

(Step 5)
 

srad
dt

d
/01.0



 

The angle between the string and the horizontal is decreasing at a rate of -0.001 rad/s at the 

moment the length of the string let out is 100m.      
(Step 6) 
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Example 3: A plane flying with a constant speed 300km/h passes over a ground radar 

station at an altitude of 1km and climbs at an angle of .30 At what rate is the 

distance from the plane to the radar station increasing a minute later? 

Solution 

We let x be the distance from the plane to a point P immediately above the radar 

station. Then hkm
dt

dx
/300 . Let s be the distance from the radar station to the plane. 

          (Step 2) 

 

 

 

                                     x                                         

               

       

             P         30˚     

 

  

 

      1 km                   s 

          (Step 1) 

 

 















2

1
21

120cos21

)3090cos())(1(21

22

22

222

xxs

xxs

xxs

      

(Step 3) 

Hence 22 1 xxs   
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.)21(2

.22

dt

dx
x

dt

ds
s

dt

dx
x

dt

dx

dt

ds
s





       

(Step 4) 

Therefore 
s

dt

dx
x

dt

ds

2

)21( 


 

So after 1 minute ( hours
60

1
), .5

60

1
.300 kmxkmx 

   
(Step 7) 

From  22 1 xxs  we get that  

.31

551

1

2

2







s

s

xxs

        

(Step 7) 

So 
s

dt

dx
x

dt

ds

2

)21( 


 

hkm
dt

ds

dt

ds

/296
31

1650

)31(2

300))5(21(






.        (Step 5) 

 

Therefore the distance from the plane to the radar station is increasing at a rate of hkm/296 . 

         (Step 6) 
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Example 4: The altitude of a triangle is increasing at a rate of min/1cm while the area of 

the triangle is increasing at a rate of .min/2 2cm At what rate is the base of the 

triangle changing when the altitude is 10cm and the area is 2100cm .  

Solution 

We let h be the altitude of triangle ΔEBC. We also let A be the area of the triangle and   

 let x be the base of the triangle.
 

min/1cm
dt

dh
 and .min/2 2cm

dt

dA


 (Step 2)
 

           E 

 

 

           h 

 

 

 

 

                                  

                               B                       x                                C   (Step 1) 

 

xhA

hbA

2

1

.
2

1





         

(Step 3) 











dt

dh
xh

dt

dx

dt

dA
..

2

1

       

(Step 4)

 

Also since 

xhA
2

1
  , 

we have that  

.20

10

)100(2

2

cmx

x

h

A
x







         

(Step 7) 

 

 









 )1(20)10.(

2

1
min/2 2

dt

dx
cm
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min/6,1

2010min/4 2

cm
dt

dx

dt

dx
cm





       

(Step 5) 

So the base is decreasing at a rate of .min/6,1 cm     (Step 6) 

 

Example 5: A television camera is positioned 1 200m from the base of a rocket launching 

pad. The angle of elevation of the camera has to change at the correct rate in 

order to keep the rocket in sight. Also, the mechanism for focusing the camera 

has to take into account the increasing distance from the camera to the rising 

rocket. Let‘s assume the rocket rises vertically and its speed is 200m.s
-1

 when 

it has risen 900m. 

(a) How fast is the distance from the television camera to the rocket changing at that 

moment? 

(b) If the television camera is always kept aimed at the rocket, how fast is the 

camera‘s angle of elevation changing at that same moment? 

Solution 

Let y be the distance the rocket rises. Then 1.200  sm
dt

dy
when my 900 . 

Let s be the distance from the camera to the rocket. We let   be the angle of elevation of the 

camera.           (Step 2) 

 

 

 

 

           s                              y         (Step 1) 

                                                   

    1 200m 
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(a) 
222 )1200( ys         (Step 3) 

 

dt

dy

s

y

dt

ds

dt

dy
y

dt

ds
s

.

22





        (Step 4)

 

 Also since  
222 )1200( ys  

       
22 )1200( ys          (Step 7) 

But y = 900, 

                  
.1500

)1200()900( 22

ms

s





        (Step 7)
 

Substituting my 900  and ms 1500 as well as 1.200  sm
dt

dy
in the expression 

dt

dy

s

y

dt

ds
. ,  

we have 200.
1500

900


dt

ds

       (Step 5) 

                    

1.120  sm  . 

 

 Hence the distance from the television camera to the rocket is increasing at a rate of  
1.120 sm .          (Step 6) 

(b) 1200
tan

y


         (Step 3)
 

 dt

dy

dt

d

1200

1
sec2 




 

 


dt

dy

dt

d




2sec.1200

1


       (Step 4) 

             Since  

 22 tan1sec   and 900y , we have that     (Step 7) 
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16

25
sec

1200

900
1sec

1200
1sec

2

2

2

2

2




























y

 

Substituting 
16

25
sec2   well as 1.200  sm

dt

dy
in the expression 

dt

dy

dt

d




2sec.1200

1


 

we have  

..1067,0
75

8

1

200
.

16

25
.1200

1

1











srad
dt

d

dt

d





       

 (Step 5) 

Therefore the camera‘s angle of elevation is increasing at a rate of ..1067,0 1srad   (Step 6) 

 

Example 6: A runner sprints around a circular track of radius 100m at a constant speed of 

./7 sm  The runner‘s friend is standing at a distance 200m from the centre of 

the track. How fast is the distance between friends changing when the distance 

between them is 200m? 
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Solution 

Let x be the distance that the runner sprints around the track. Then ./7 sm
dt

dx
   

Also let s be the distance between the runner and the friend.   (Step 2) 

                                                                                                              x 

                                                                                                                             P 

                                                s                                                                        

                                                 

                                                                                                   

                                                                

 

 

        100                                                                              

 

 

                                                100      (Step 1) 

 

 





cos4000050000

cos)100)(200(2100200

2

222





s

s

     

(Step 3) 

dt

d

dt

ds
s


 ).sin(400002 

      
(Step 4) 

s

dt

d

dt

ds


 .sin20000


 

Now 

.100







x

rx

         
(Step 7) 

dt

d

dt

d

dt

dx





.1007

100





, since 
./7 sm

dt

dx


 

100 

 

 

 

 

  

100 
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07,0
dt

d

 

Since s = 200, we have 

4

1
cos

cos4000010000

cos)100)(200(2100200200 222













     

(Step 7) 

since  2cos1sin  ,  

we get that 

 

16

15
sin

4

1
1sin
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Using cos40000500002 s ,  

we obtain  
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Therefore 
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 .sin20000

 becomes      (Step 5) 
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Therefore the distance between the two friends is changing at a rate of 6,78m/s. (Step 6) 
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Example 7: A plane flying horizontally at an altitude of 2km and a speed of 800km/h 

passes directly over a radar station. Find the rate at which the distance from 

the plane to the station is increasing when it is 3km away from the station. 

Solution 

Let x be the distance travelled by the plane from P, where P is a point directly above 

the radar station which the plane passes. Let s be the distance from the plane to the 

radar station. Then ./800 hkm
dt

dx


      
(Step 2) 

                      P                          x 

 

 

             2 km                                         

                                  s                        (Step 1) 

 

                     Radar station 

 

.2222  xs          (Step 3) 
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(Step 4) 

Also from ,2222  xs we obtain  

44 222  sxsx .  

Since s = 3km, we obtain       (Step 7) 
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Thus the distance from the plane to the radar station is increasing at a rate of 596,3km/h. 

         (Step 6) 

 

 

 

Example 8: Car A is travelling west at 90km/h and car B is travelling north at 100km/h. 

Both are headed for the intersection of the two roads. At what rate are the cars 

approaching each other when car A is 60m and car B is 80m from the 

intersection?  

 

Solution 

 

Let x be the distance of car A to the intersection at any time t and let y be the distance 

of car B to the intersection at any time t. Then hkm
dt

dx
/90

 
 , since x is decreasing 

and hkm
dt

dy
/100

 
, since y is decreasing. Let s be the distance between the two 

cars.
 
                           

 (Step 2) 

                                                           x 

                             A 

 

  y        (Step 1) 

      s 

 

                  B 

.222 yxs           (Step 3) 
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Also from 222 yxs  we obtain  
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.        (Step 7) 

(Note that 60m = 0.06km and 80m = 0.08km) 

Therefore 
s

dt

dy
y

dt

dx
x

dt
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
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Therefore the cars are approaching each other at 134km/h.(the distance is decreasing 

at a rate of 134km/h.)        (Step 6) 

 

 

Example 9: A man walks along a straight path at a speed of 1,5m/sec. A searchlight is 

located on the ground 6m from the path and is kept focused on the man. At 

what rate is the searchlight rotating when the man is 8m from the point on the 

path closest to the searchlight? 

Solution 

Let x be the distance the man walks from the point on the path closest to the 

searchlight. Then sec/5,1 m
dt

dx
 . Let   be the angle through which the searchlight 

rotates. Let s be the length of the beam.     (Step 2) 

 

 

 

                                   x                The point where man walking 

             Point on  

          path closest                 6m   

 to the                   s      (Step 1) 

            searchlight                       
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Also 

Since x = 8m, 
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So 
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Therefore from 
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Therefore the searchlight is rotating at 0,09rad/sec.     (Step 6) 
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Example 10: A man starts walking north at 1,2m/s from a point P. Five minutes later a 

woman starts walking south at 1,6m/s from a point 200m due east of P. At 

what rate are the people moving apart 15minutes after the woman starts 

walking? 

 

Solution 

Let x be the distance that the man walks from point P and let y be the distance the woman 

walks from P‘ (where P‘ is a point 200m due east of P). Let s be the distance between the two 

people 15 minutes after the woman starts walking.     (Step 2) 

                 Man 

 

                 

                 x                           s        (Step 1) 

 

                P                    200m                                     P‘ 

 

 

              y                                                                     y                                                                  

 

200m                               Woman 
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After 20 minutes which equals (20)(60)=1200 seconds, mx 1440)1200)(2,1(    and  

after 15 minutes which equals (15)(60)=900 seconds, my 1440)900)(6,1(  . (Step 7) 

Also from 222 )(200 yxs   
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(Step 5) 

Thus the people are moving apart at a rate of 2,79m/s , 15 minutes after the woman started 

walking.           (Step 6) 

 

 

Example 11: Gravel is being dumped from a conveyor belt at a rate of min/3 3m and its 

coarseness is such that it forms a pile in the shape of a cone whose base 

diameter and height are always equal. How fast is the height of the pile 

increasing when the pile is 3m high? 

 

Solution 

Let V be the amount of gravel dumped at any time t. Let h be the height of the cone at any 

time t. Let r be the radius of the cone.      (Step 2) 

                                             

 

 

 

                                          h        (Step 1) 
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Therefore the height of the pile is increasing at a rate of 0,42m/min.   (Step 6)
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CHAPTER 4 
 

LITERATURE REVIEW 

 

4.1 INTRODUCTION 

Little research has been done on the reasons for students‘ poor performance on Related Rates 

problems in the first year calculus course at university. Research has mainly focused on 

topics such as functions (Carlson, 1998), derivatives of functions as limits (Cornu,1981; Tall 

& Vinner,1981; Dubinsky & Harel, 1992), rates of change, including average and 

instantaneous rate of change (Orton,1983) and differentiation rules, including the chain rule 

(Cottrill,1999). These topics form the basis for studying Related Rates. Research also 

distinguished between procedural knowledge and conceptual understanding (Mahir, 2009) in 

the solution process of Related Rates problems. Below follows the literature review of 

articles related to this study.  

 

4.2 RATES OF CHANGE 

The aim of the study conducted by Bezuidenhout (1998) was to determine first year 

university students‘ understanding of the concept of rate of change. The researcher developed 

his theoretical framework according to the principles of the theory of constructivism, in 

particular the idea of concept image, since the researcher believes that the understanding of 

mathematical content is determined by cognitive factors. The researcher used a three phased 

method, where the first two phases involved administering tests to students studying calculus 

and the third phase involved interviews with individual students. A total of 107 engineering 

students participated, 52 students wrote a preliminary test separate from the other 55 students.  
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The test was conducted during a tutorial session in the second semester of 1994. The second 

test was compiled from the analysis of the results that were obtained from the first test. A 

total of 523 first year university students from three South African universities participated in 

this second test. A random sample was taken from three different groups that participated, 

which included students doing calculus courses in engineering, physical sciences and service 

calculus courses for students in the commercial and management sciences. The third phase 

involved interviews with 15 students who had written both tests. The researcher emphasized 

that to gain any significant insight into students‘ concept images, one has to identify 

misconceptions regarding students‘ mathematical thinking concerning rate of change. He 

noted that the method of interviews played a decisive role in detecting students‘ principles 

and their reasoning for applying them.           

The results from his study suggest that students have some fundamental misconceptions 

regarding the relationship between the concepts average rate of change, average value of a 

continuous function and the arithmetic mean.  The researcher also stated that a conscious 

effort should be made to help students relate mathematical concepts to prior experiences and 

existing knowledge structure.                                                                                                          

The study of Herbert and Pierce (2009) was designed to present eight conceptions of rate of 

change revealed by phenomenographic analysis of interviews with pre-calculus students, with 

the focus on the appropriateness of the methodology that was employed to reveal those 

conceptions. The study was done with video recorded interviews with 23 year 10 students at a 

diversity of Victorian secondary schools. Herbert and Pierce (2009) thought it appropriate to 

use a qualitative methodology, in this case the methodology of ―phenomenography‖, to 

establish the categories for conceptions of rate of change held by pre-calculus students, in 

order to better understand the prior knowledge such students bring to a study of calculus. 

Herbert and Pierce felt that exploring the conceptions of rate of change held by pre-calculus 
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students will help explain some difficulties experienced by these students. The results of the 

study were presented in the form of an outcome space structure and the conceptions which 

emerged from the phenomenographic analysis are summarised below:  

      

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Herbert and Pierce (2009) 

A: Rate experienced as rating of a quality 

B: Rate experienced as a word associated with 

something numeric 

C: Rate experienced as a formula calculation 

D: Rate experienced as a single quantity 

E: Rate experienced as a relationship between   

two changing quantities 

F: Rate experienced as constant numeric 

relationship between two changing quantities 

 

G: Rate experienced as speed 

H: Rate experienced as numeric relationship 

between any two changing quantities 
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Herbert and Pierce (2009) felt that their information may assist future design of calculus 

material which will take the possible state of students‘ initial conceptions of rate of change 

into account. 

The study of Hassen and Mitchelmore (2006) was to investigate which of two models of 

abstraction can help understand how students learn the concept of rate of change. The first 

model is the empirical abstraction model while the second is the so-called nested 

Recognition, Building-with and Construction (RBC) model. The sample Hassen and 

Mitchelmore used were fourteen volunteer year 11 students from five high schools in Sydney, 

New South Wales, of whom all were exposed to an introduction to calculus prior to their 

participation in the study.   The procedure of the study was designed to allow the 

identification of the abstraction process either according to the empirical or the so-called 

nested RBC model that sought to answer the following research questions: 

a) How well does each of the two models of abstraction describe the process of learning   

about rates of change?  

b) What can we infer about learning of rate of change concepts?  

Each student in the sample was interviewed twice by Hassen. The first interview lasted an 

hour and the second interview, which was conducted a week later, lasted only half an hour. 

Both interviews were audio recorded and transcribed.    

There were four items used in the first interview, which were titled A, B, C and D. Only one 

item was used as a follow-up in the second interview, which was titled E. All the items, 

except item D, were designed to assess the students‘ understanding of the three aspects of rate 

of change, which Hauger (1995) identified as macro qualitative, macro quantitative and micro 

qualitative. Item A was designed to test students‘ understanding of the concept of speed and 
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their ability to relate that understanding to the concepts of rate of change. Item B was based 

on the concept of population growth. The students were given two scenarios and the students‘ 

understanding of rate of change was tested in both situations separately before being asked to 

compare the two different situations. Item C was about a cooling experiment.  Item E was 

about the growth in a student‘s height over several years. Item D differed from the other 

items in the sense that it comprised several questions that was intended to summarize what 

students had learned from working through items A, B and C. One question involved the 

recognition of anything similar in the three items, while the rest of the questions that were 

asked were how to find an average rate of change and instantaneous rate of change and to 

explain the difference between the two concepts.  

Students were taught that average rate of change was defined as the ratio of the total change 

in the dependent variable to the total change in the independent variable over a fixed period. 

In symbol form, if x represents the independent variable and y represents the dependant 

variable, then   average rate of change = 
x

y




, where x represents the total change in the 

independent variable and y represents the total change in the dependent variable The 

significance of the end points of the interval was emphasised to the students. Instantaneous 

rate of change was taught to students using what is known as the zooming-in approach. The 

students were shown a series of graphs of the given relationship where the domain and range 

of each variable were successively reduced. Students were asked to examine the behaviour of 

the graph around the given point and led to see that the initial non-linear graph appeared to 

become gradually linear. The students were then asked to predict where the line would be 

after zooming out back to the original graph if this straight line was extended over a greater 

domain. The study found that the nested RBC model of abstraction may help educators 

understand the process of learning the quantitative aspects of rate of change. The use of the 
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empirical abstraction model is not recommended from the results obtained from the study. 

Hassen and Mitchelmore (2006) felt that students already gained a fairly global concept of 

rate of change.  

4.3 THE CONCEPT OF VARIABLE 

The purpose of the study by White and Mitchelmore (1996) was to investigate the 

performances on some calculus application problems of students who had previously 

experienced a traditional introductory calculus course. To accomplish this, White and 

Mitchelmore (2006) used a sample of 40 first year full time university mathematics students 

which had a satisfactory result in their final high school examination for a mathematics 

course that contained a large component of calculus. The calculus was taught to the students 

by White for four hours per week over a six week period as half of a semester course. White 

followed the approach of Barnes (1992), in which the topic rates of change were investigated 

using graphs of physical situations. The test items involved four constructed items that dealt 

with rates of change and optimization. The first two items required students to find a specific 

rate of change whereas the last two items involved using a derivative to maximize or 

minimize a given quantity. Each of the four items were constructed in four versions so that 

the manipulation required to solve each version was the same with the only difference being 

that each version had successively less translation. The four items can be found in Addendum 

B. The students were tested before, during and immediately after the course was completed as 

well as six weeks after the course was completed. The forty students were divided into four 

parallel groups of ten. Four tests were constructed, each of which included four questions. 

The tests were administered in a cyclic fashion to each of the four groups over the four data 

collections. In addition, four students per group were interviewed within three days of each of 

the four data collections which served to clarify and expand on their written responses.                                                                     

From the responses, White and Mitchelmore (1996) suggested that one major reason why 
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students find it difficult to apply calculus lies in their underdevelopment of the concept of a 

variable.  Moreover, students treated variables as symbols to be manipulated rather than 

quantities to be related. This tie in with the results of Martin (2000) with her research of 

students‘ difficulty of geometric related rates problems. They further stressed that students 

have learned to operate with symbols without any regard to their possible contextual 

meaning, which they termed ―abstract-apart knowledge‖ (Mitchelmore,1994). White and 

Mitchelmore (1996) concluded that most students have an ―abstract-apart‖ concept of a 

variable and that they require an ―abstract-general‖ concept of a variable as a prerequisite to a 

successful study of calculus.                                                                                                                       

 

4.4 THE CONCEPT OF FUNCTION 

The study by Carlson (1998) investigated students‘ development of the function concept. The 

sample was students from three different levels of mathematical preparation. The first group 

comprised of 30 students who have just completed college algebra with a class average of 

over 95%. The second group consisted of 16 students who have just completed second 

semester calculus and they achieved a class average of more than 80%. The third group also 

achieved a class average of more than 80% and they were graduate students who completed a 

semester course in either complex analysis or real analysis. The college algebra curriculum 

involved an early introduction of functions. The calculus curriculum was taught using a 

traditional text with lectures, while the graduate students were products of the undergraduate 

and graduate traditional mathematics curriculum. A written exam was administered upon 

completion of their respective courses. Examinations were scored using a five point rubric for 

each question. After scoring each examination, group means and standard deviation for each 

group were computed. Follow-up interviews were conducted on selected students. Final 

results were obtained by analysing both the quantitative and qualitative results relative to 
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each group. The findings of Carlson‘s study range from students having misconceptions 

about a concept (in this case functions), to concept development that takes longer to evolve. 

The implication of this study identified that the essential aspects of the function concept 

needs more attention. These essential aspects that Carlson (1998) tested in her study that 

needed more attention were the following: 

 Characterize ―real world‖ functional relationships using function notation; 

 Operate with a particular type of function representation, such as a formula, a table, or 

a graph; 

 

 Move between different representations of the same function; 

 Represent and interpret covariant aspects of the function situation (i.e. recognize and 

characterize how change in one variable affects change in another); 

 

 Interpret ―static‖ and ―dynamic‖ functional information (i.e. interpret graphs 

representing position and rate of change); 

 

 Interpret and describe local and global function properties: slope, continuity, and 

differentiability; 

 

 Construct functions using formulas and other functions; 

 Recognize functions, non-functions and function types; 

 Conceptualize a function both as a process and as an object; 

 Interpret and understand the language of functions; and 

 Characterize the relationship between a function and an equation. 

 

4.5 CONCEPTUAL UNDERSTANDING & PROCEDURAL KNOWLEDGE 

The purpose of the study by Mahir (2009) was to investigate the conceptual and procedural 

performances of a group of students on the theory of integration. In line with the definition of 

Herbert and Leifevre (1986), the main concepts of integral theory are the following: 1) the 

definite integral of a function as the limit of Riemann sums, 2) the integral–area relation and 

3) the fundamental theorem of calculus. Mahir used 62 students that successfully completed 
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the first year course at the mathematics department of Anadola University in Eskisehir, 

Turkey. Functions, limits and continuity, differentiation, transcendental functions and 

sketching graphs of functions were among the topics that these students were exposed to in 

their first year. They also completed the topics involving techniques and applications of 

integration, sequences, series and power series. The students wrote an hour long exam of 5 

questions. According to Mahir (2009), the first two questions were to test the student‘s 

procedural skills, while the next two questions could be solved by either depending on the 

student‘s procedural skills or their conceptual understanding. The last question depended 

chiefly on the students‘ conceptual understanding to solve the problem. According to the 

definition that Mahir (2009) uses in his study, procedural skills refer also to procedural 

knowledge. The first question of the test was correctly solved by 92% of the students while 

74% solved the second question correctly. Mahir (2009) concluded from these results that the 

students possess procedural knowledge of integration. He noted that only 5 students 

attempted the second question by using their conceptual understanding, while 45 students 

depended on their procedural skills to solve the question. Twelve students did not attempt 

question 3. Five students who used their conceptual understanding to answer the third 

question all got it correct, while only 11% of the 45 students who depended on their 

procedural skills got it correct.  Again Mahir (2009) noted that the number of students who 

attempted question 4 by using their conceptual understanding were much higher than the 

number of students who depended on their procedural skills. Regarding the final question, 

which chiefly depended on the students‘ conceptual understanding, 40% of the sample did 

not attempt the question while a further 36% answered the question incorrectly. Mahir (2009) 

concluded from his study that students do not possess satisfactory conceptual understanding 

to solve integration problems. He also deduced from his study that the students who solved 

the questions using their conceptual knowledge also possessed procedural skills. Mahir 
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(2009) believes that deficiencies in student‘s conceptual understanding should first be 

determined which will help in future teaching.                                                                 

The purpose of the study by Engelbrecht et al (2005) was to determine whether there was any 

relation between students‘ conceptual understanding and/or procedural skills in mathematics 

and whether there is any relation between their confidence levels when handling procedural 

and conceptual problems. Engelbrecht et al (2005) also investigated the relationship between 

the students‘ confidence and their actual performances in procedural and conceptual 

mathematical problems. The sample consisted of 235 first year life science students at the 

University of Pretoria, South Africa, who all registered in an introductory course in applied 

calculus in the mathematics department. The assessment instrument consisted of 10 multiple 

choice items of which 50% was considered by Engelbrecht et al (2005) to be of a procedural 

nature and the rest conceptual. The test was thoroughly and independently scrutinised for 

unbiased view towards the procedural and conceptual division. In addition to the test, the 

students had to rate their confidence when they answered each question. Each student‘s 

Procedural Performance Index (PPI) and their Conceptual Performance Index (CPI) were 

calculated as a percentage by using a formula constructed by Engelbrecht et al (2005). The 

students‘ Procedural Confidence Index (PCI) and their Conceptual Confidence Index (CCI) 

were also constructed using a similar formula. Engelbrecht et al (2005) firstly compared the 

performances of each student in the conceptual with their performances in the procedural 

items, and disregarding the students who indicated that they guessed an answer. The next 

comparison was between each student‘s procedural and conceptual confidence indices, while 

the last two comparisons was between each student‘s procedural confidence index with their 

procedural performances and then finally between each student‘s conceptual confidence 

index with their conceptual performance index. A scatter plot for the data was constructed in 

all comparisons. From the results, Engelbrecht et al (2005) concluded that students do not do 
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better in procedural problems than in their conceptual problems. The students are however 

more confident about their ability to answer conceptual problems than for procedural 

problems. Engelbrecht et al (2005) also noted that their teaching methodology followed the 

more reformed calculus approach, which was different to how their mainstream calculus 

courses are presented. Engelbrecht et al (2005) recommended that  their study be extended to 

other courses as well as other disciplines at the University of Pretoria. 

 

4.6  RELATED RATES 

The study conducted by Martin (2000) was to assess the ability of university students 

registered in an introductory calculus course to solve geometric Related Rates problems. The 

research questions of the study were guided by the multi-step, multi-faceted nature of the 

solution of Related Rates problems. After much consultation with examiners, graduate 

students and several textbooks, Martin (2000) confirmed that the solution to the majority of 

Related Rates problems consists of the same six steps, with an additional step depending on 

the context of the problem. In the case of Martin‘s study (2000), the Related Rates problems 

that were used come from a geometric context. Martin (2000) referred to the solution of these 

seven steps as the ―Standard Solution model‖ for geometric related Rates problems, where 

step 1, step 2 and step 6 were identified as requiring a student to use their conceptual 

understanding. Step 3, 4 and 5 required students to use their procedural knowledge. 

Regarding the seventh step, Martin (2000) named this step an auxiliary step, which is 

additional and may not be used in certain Related Rates problems, and this step Martin (2000) 

classified as relying either on conceptual understanding or procedural knowledge. Based on 

these classifications of the different steps, Martin (2000) identified the research questions 

which were as follows:    
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a) How do university students, enrolled in an introductory calculus course perform on 

geometric Related Rates problems? 

b) How such students performed on the conceptual steps, the procedural steps and the 

additional auxiliary step of the ―standard solution model‖ of geometric Related Rates 

problems?                                                                                                                                              

c) How were performances on the various steps of the ―standard solution model‖ related to 

each other and to their overall performances?   

Martin (2000) designed a non-randomised performance study, using two written instruments. 

The first instrument consisted of three open-ended geometric Related Rates problems while 

the second instrument was used to assess students‘ ability to perform each of the steps of the 

―standard solution model‖ independently. The sample for the study were selected from 

students who were enrolled in two introductory calculus courses at an urban, private 

university situated in the northeast of the United States of America. Two courses were 

traditionally taught to the students and the textbook that was used was the textbook by 

Berkey (1988). There were 120 students from the first course who enrolled at the College of 

Liberal Arts or the College of Engineering. There were 40 students in the second course, 

which were designed for the College of Engineering students who performed poorly on the 

mathematical placement tests administered by the said university. 34 students from the first 

course and 24 students from the second course wrote both tests and these students were used 

as the sample of the study. 

The first test was administered a month after the course began and was given immediately 

after the instruction of Related Rates was completed. This first test consisted of 3 problems 

and was designed to measure the students‘ ability to solve standard geometric Related Rates 

problems that were selected from textbooks of Dick and Patton (1992) as well as problems 
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from Feroe and Steinhorn (1991). The second test, which was fairly long, was given to 52 

students within two days after completing the first test. This second test was designed to 

measure the student‘s ability to perform the 7 steps which Martin (2000) referred to as the 

―Standard Solution model‖ to solve geometric Related Rates problems. The scoring of the 

first test was done using a rubric that was based on the solutions generated by a panel of 

experts in the field. Points were awarded for each step of step 3 to step 6 for the first problem, 

while points were awarded for each of the steps 3 to 7 for the other two problems. Martin 

(2000) awarded full points for each step even when a mistake was made in a previous step, 

but the student performed the appropriate procedure. However for the second test, the 

answers were either correct or incorrect and no partial marks were awarded.            

The results showed that the mean score as a whole for the first test was about 43% with a 

standard deviation of 22%. In the second test, the mean score of the conceptual steps were 

lower than that of the procedural steps. The overall performance of the first test achieved an 

average below 60%, even though the students had recently studied the material. Martin 

(2000) raised the question whether the degree of thinking which was required to analyse the 

geometric context was a factor for the poor performance of the students. A second factor 

which Martin (2000) felt that contributed to the poor performances, was the number of steps 

that was needed to solve the problem. The students performed poorly regarding the 

conceptual step 1 and 2. Martin‘s (2000) results agree with Dreyfus‘ (1991) argument that 

students‘ visualization is rare or disconnected from algebraic representation when students try 

to solve calculus problems. To complete step 2 of the ―Standard Solution module‖, the 

students needed to have an abstract-general concept of variable {See White and Mitchelmore 

(1996) for definition of abstract-general concept of a variable}. Based on the low mean score 

of 22%, Martin (2000) concluded that few students in her study had an abstract-general 

understanding of variable. The students also had the inability to distinguish variables and 
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constants and this was one of the prominent error patterns that were noted by White and 

Mitchelmore (1996). Martin (2000) also highlighted the students‘ lack of understanding of 

the mathematical and physical relationship of the problem. They failed to evaluate their 

solutions to see if it makes sense. Martin‘s (2000) finding regarding step 6 of the ―standard 

solution model‖ indicated that students find it easier to decode symbols rather than encoding 

symbols. The performances on the procedural steps 3, 4 and 5 were stronger than that of the 

conceptual steps, but it still raised concern for Martin (2000), since the average score on the 3 

procedural steps were only just above 50%. The conclusion of Martin‘s (2000) study was that 

students have a greater difficulty with the conceptual steps of solving Related Rates problems 

than they have with the procedural steps. Martin (2000) suggested that it is critical for 

students to be confident, competent users of symbolic representation, as well as being able to 

make connections among verbal, symbolic and graphical representations. Martin (2000) also 

suggested that students engage in both processes of encoding as well as decoding symbolic 

representations, since these two skills represent different levels of conceptual understanding. 

Martin (2000) found a lower correlation between the conceptual understanding and problem 

solving performances. Martin‘s (2000) recommendation was that further research should be 

undertaken into the matter and ended her study with the assertion that the aim of calculus 

success need to be identified before designing a curriculum and assessment that match their 

aim.                                                                                                                                            

 

The study conducted by Engelke (2006) was a teaching experiment using a computer 

program which was designed to foster students‘ exploration of Related Rates problems. 

Engelke used 3 students from a group of volunteers of her calculus class of 2005, who met 

outside the regular lectures when Related Rates were taught. The session consisted of 6 

teaching sessions and the students were paid for each session, if they attended. All the 
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teaching sessions of the study were videotaped and transcribed for analysis purposes.                  

The students used a custom computer program to investigate the average rate of change and 

instantaneous rate of change for some geometric Related Rates problems. The programme 

allowed the students to a visual representation of the problem at hand, which could be 

manipulated so that the students can observe what could happen next. A different version of 

the same problem could be opened via the computer programme to observe what happened to 

each variable given in the problem and the results could be tabulated.                                               

One student could relate two or more variables with respect to time, but that same student 

could not relate those variables, with respect to time, to each other. The second session dealt 

with the concerns of students which were identified in the first session. After Engelke 

explained the chain rule, they could relate rates in other situations, with time being the 

common variable. Engelke concluded from her data that the possible use of a computer 

programme to visualize problems situations could assist students‘ mental model of future 

problem situations as well as their understanding of the concept of rate.                           

 

4.7 PROBLEM SOLVING 

Based on the literature, some writers believe that solving problems forms the heart of 

mathematics learning, while other writers consider mathematics as a collection of knowledge 

which provides the tools for the process of solving mathematical problems. After the 1980‘s, 

research concentrated on problem solving as an entity. Garofalo and Lester (1985) claimed 

that problem solving has come to be viewed as a process involving visualisation, association, 

abstraction, comprehension, manipulation, masoning, analysis, synthesis and generalisation. 

Lesh (1981) believes that students should establish relationships and make connections 

between concepts associated with mathematical content and not separate them. The literature 

also distinguishes mainly between what they termed ―successful‖ and ―unsuccessful‖ 
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problem solvers. Dobson (1972) found seven categories which distinguish the differences 

between ―successful‖ and ―unsuccessful‖ problem solvers. They are: 

 

(1) overall mathematics achievement 

(2) verbal and general reasoning ability 

(3) spatial ability, 

(4) positive attitudes, 

(5) resistance to distraction, 

(6) level of field independence, and 

(7) divergent thinking. 

 

Krutetskii et al (1976) found that students‘ perception of the important elements of a problem 

may be the root of the problem between what he termed a ―good‖ and ―poor‖ problem solver. 

He, as well as Silver (1979), observed that ―good‖ problem solvers tend to recall the 

structural characteristics of the problem and to forget its details, whereas ―poor‖ problem 

solvers tend to recall specific details of the problem, with the difference that in the study of 

Silver, the ―good‖ problem solvers tend to have reasonably accurate recall of contextual 

details of the problems. Schoenfeld's (1985, 1987) research suggested that ―good‖ problem 

solvers can be distinguished from ―poor‖ problem solvers in at least five important ways. 

These ways are: 

(1) The knowledge of good problem solvers is well connected and composed of rich 

schemata while that of poor problem solvers is not.  
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(2) Good problem solvers tend to focus their attention on structural features of problems 

while poor problem solvers focus on surface features. 

(3) Good problem solvers are more aware than poor problem solvers of their strengths 

and weaknesses as problem solvers. 

(4) Good problem solvers are better than poor problem solvers at monitoring and 

regulating their problem-solving efforts. 

(5) Good problem solvers tend to be more concerned than poor problem solvers about 

obtaining "elegant" solutions to problems. 

 Foong (1990, 1994) in her research found six differences that distinguishes between 

―successful‖ and ―unsuccessful‖ problem solvers. They are: 

(1)  Successful problem solvers translated the problem statement more correctly and more 

exactly than did unsuccessful problem solvers. 

(2)  Unsuccessful problem solvers tended to attend to obvious details, translating 

statement by statement without having a global representation of the problem 

situation. 

(3)  Successful problem solvers planned their solutions in more detail before carrying 

them out than unsuccessful solvers, who tended to be impulsive in executing a 

solution without a complete understanding of the problem. 

(4)  Unsuccessful problem solvers tended towards impulsive solutions and when in 

difficulty they often returned to the same incorrect method, sometimes repeatedly. 

(5) Successful problem solvers used more metacognitive processes which were task 

directed showing greater awareness of how things were in the solution path and where 

they should be going in the process. 
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(6) Negative emotional expressions such as frustration and confusion were found to be 

more frequent amongst the unsuccessful problem solvers. 

 

Heller and Hungate‘s (1985) review of several empirical and theoretical analyses found that 

―poor‖ problem solvers cannot, or do not, construct problem representations that are helpful 

in achieving solutions. They also noted that experts solve problems using a process of 

successive refinements. The strategy used by experts is to perform high-level planning and 

qualitative analysis before beginning to generate equations. Novices, on the other hand do not 

have the knowledge required to approach problems in this way, and tend to go directly from 

the problem text to equations. Experts also have knowledge about when concepts and 

principles are applicable and useful and procedures for interpreting and applying their factual 

knowledge, whereas novices lack in much of this knowledge. According to Lester (1994), 

spatial visualisation, ability to attend to structural features of problems, dispositions such as 

beliefs and attitudes,  and experiential background such as instructional history and 

familiarity with types of problems, are all causes why students have difficulty in problem 

solving.  

There are also cognitive and affective factors that influence students' difficulties in 

mathematical problem solving. Mayer (1982) suggested that linguistic and factual 

knowledge, schema knowledge, algorithmic knowledge and strategic knowledge may be 

relevant for a psychological basis for understanding mathematical problem solving. Lester 

(1982) argued that successful problem solving in mathematics consist of at least five 

components. They are:  

a) mathematical knowledge and experience,  

b) skill in the use of a variety of generic "tool" skills,  
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c) the ability to use a variety of heuristics known to be useful in mathematical problem 

solving,  

d) knowledge about one's own cognitions before, during, and after a problem-solving episode 

and 

  e) the ability to maintain executive control. 

Schoenfeld (1983a, 1983b) distinguished resources, control and belief systems as the three 

types of knowledge needed in problem solving. Heller and Hungate (1985) summarised the 

nature of the knowledge required for solving problems in complex subject-matter domains as 

firstly ―knowledge for understanding and representing problems‖, secondly ―strategic 

knowledge which governs the approach problem solvers take to the task‖, thirdly                               

― knowledge of basic concepts and principles‖, and finally ―repertoires of familiar patterns 

and known procedures‖. Groves and Stacey (1988) claimed that successful problem solving 

depends on many things, among other, emotional aspects. They also claim that good habits 

such as not erasing work which may be needed later, as well as awareness and facility with 

mathematical processes such as generalising, looking at special cases and making 

conjectures, may influence successful problem solving. Carlson and Bloom (2005) identified 

four phases of problem solving that were repeated in a cyclic fashion, that is, Orienting, 

Planning, Executing, and Checking. They also identified a sub-cycle in the planning phase, 

that of conjecture-imagine-evaluate. Lithner‘s (2003) proposed a framework to evaluate how 

students are reasoning about their textbook exercises. Students engage in a reasoning 

structure that has the following four components, that is: 1) problematic situation, 2) a 

strategy choice, 3) a strategy implementation, and 4) conclusion. He also identified three 

reasoning types that play a role in strategy choices and strategy implementation. These are 

plausible reasoning, reasoning based on established experiences and reasoning based on 
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identification of similarities. He concluded that students spend more time on reasoning based 

on established experiences and identification of similarities rather than on plausible 

reasoning. This caused students to focus on superficial features of the problem and does not 

lead them to construct meaningful knowledge. In their study of the problem-solving research 

literature, Kroll and Miller (1993) identified three major cognitive and affective factors that 

contributed to students' difficulties in problem solving. They are ―knowledge‖, ―control‖ and 

―beliefs and affects‖ factors. Under the first cognitive and affective factor, which is 

knowledge, Kroll and Miller identified five kinds of knowledge. 

(a)  Algorithmic Knowledge: Computational skills are a necessary but not sufficient 

component of problem solving. Surveys like the British Assessment of Performance 

Unit [APU] (Eggleston, 1983) and the National Assessment of Educational Progress 

[NAEP] (Carpenter et al., 1980) show that the children who are able to solve a 

problem requiring a particular computation, are much less than the children who can 

perform the very same computation correctly when not part of a problem.  

(b) Linguistic Knowledge: Davidson (1977) found that low verbal ability or lack of 

familiarity with the language used in problems did hamper children's understanding of 

word problems. Research by Muth (1984) and Muth and Glynn(1985)  concluded that 

both reading ability and computational ability play important roles in children's 

successful solution of word problems. 

(c) Conceptual Knowledge: Zweng (1979) argued that students had difficulty in deciding 

which mathematical operation to perform when solving problems. Lester (1985) also 

found that students‘ choice of operation was determined by the key words in the 

problem. Such a situation arises when students are taught to rely on key words to 

decide which operations to use rather than their knowledge of concepts (Nesher & 

Teubal, 1975). 
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(d) Schematic Knowledge: According to Silver (1981), good problem solvers are more 

likely to remember information about the structure of the problems they have solved 

previously, to learn from their mistakes and to relate work they have done on previous 

problems to the task at hand. Schoenfeld and Herrmann (1982) found that novices 

attended to surface features of problems, whereas experts categorised problems on the 

basis of the fundamental principles involved. Span and Overtoom-Corsmit (1986) 

found that good problem solvers took more time to analyse the situation to produce an 

appropriate schema and clear representation of the problem. 

(e) Strategic Knowledge: According to Polya (1945), students need techniques that will 

help them develop plans for a solution. Heller and Hungate (1985) found that experts 

perform high-level planning and qualitative analysis before beginning to generate 

equations, while novices tend to go directly from the problem text to equations. Span 

and Overtoom-Corsmit (1986) found that good problem solvers tried to schematise to 

work systematically with more than one strategy. 

 

The second major cognitive and affective factors identified by Kroll and Miller (1993) were 

Control factors. Lester (1985) stated that successful problem solving also depends upon 

knowing when and how to utilise such knowledge and upon having the ability to monitor and 

evaluate the application of this knowledge, both during and after implementation, even if the 

student has having sufficient domain-general and domain-specific knowledge. 

"Metacognition" was first used by Flavell(1976). He used this term to refer to the ability to 

control one's own thinking processes in problem solving. Silver (1982a) suggested that 

metacognition should be central in children's mathematical problem solving and is important 

to success in problem solving. The problem solver must make decisions about which strategy 

to apply and how long to keep on trying it before stopping and selecting a new strategy 
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(Silver, 1982b; Schoenfeld, 1983a). Kilpatrick (1985b) also felt that an increase in the 

awareness of one‘s emotional influences should give problem solvers greater control over 

their cognitive processes. In her study, Siemon (1986) found that reflection amongst problem 

solvers promotes understanding, provides motivation and increases confidence thereby 

leading to improved problem-solving performance and more efficient learning. In Foong‘s 

(1990) study, the successful problem solvers' metacognitive behaviours were task-directed, 

exhibiting a situational awareness of how things were and where they should be going in the 

process. In the same study of Foong, she found that the unsuccessful problem solvers‘ 

metacognitive behaviours were directionless. Taplin (1994) found that those students who 

persevere and who don‘t give up, exhibited more control over their actions during problem 

solving.  

Beliefs and Affective Factors were the third cognitive and affective factors identified by 

Kroll and Miller (1993). Beliefs and affective factors can either assist or interfere with 

problem solving. Students' behaviours may be influenced by their feelings of self-esteem, 

their perceived control over the situation with which they are faced, or their sense of 

satisfaction in engaging in mathematical tasks (Silver, 1985). Silver (1982a) speculated that 

affective factors like confidence and willingness to persist may have a substantial effect on 

the metacognitive processes of problem solvers. Schoenfeld (1983a) suggested that attitudes 

toward mathematics and confidence about mathematics may be aspects of student belief 

systems that have an important effect on how students manage their cognitive resources. 

Research by Lesh (1983) suggested that many students do not believe that mathematics is 

applicable to solving real-world problems. High school students believe that there was always 

one correct way to solve any mathematical problem, and that mathematics is mostly 

memorization (Carpenter et al., 1983). Trimmer (1974) found that confidence, lack of 
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anxiety, flexibility, lack of rigidity, and an ability to cope with uncertainty were traits 

associated with successful problem solving.  

Hence there are many factors that influence the students‘ ability to solve mathematical 

problems successfully. These are not unique and are also applicable to solving related rates 

problems.  

 

4.8 WORD PROBLEM 

 

Real-world word problems that require mathematics for their solutions do not usually come 

as equations ready to be solved, but rather as verbal or pictorial representations that must be 

interpreted symbolically, manipulated and then solved. Mathematical word problems mostly 

deal with relating the real world situation to mathematical concepts. The mathematical word 

problems are known as instruments which develop the students‘ ability and talent in solving 

mathematical problems (De Corte et.al., 1989). However, word problems are defined in terms 

of a problem classification framework. Verschafel et al. (2000) defined word problems as a 

verbal description of problem situations wherein one or more questions are raised, the answer 

to which can be obtained by the application of mathematical operations to numerical data 

available in the problem statement.  

Students find word problems difficult to solve. Many researchers have confirmed this, for 

example the work of Gerofsky (1996) as well as that of Craig & Winter (1991). By 

researching the existing literature, Gooding (2009) summarized five different categories of 

difficulties that students may experience while trying to solve mathematical word problems. 

The five categories of difficulties that students may experience while trying to solve 

mathematical word problems are: 
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(i) Reading and understanding the language used within a word problem; 

(ii) Recognising and imagining the context in which a word problem is set; 

(iii) Forming a number sentence to represent the mathematics involved in the word 

problem; 

(iv) Carrying out the mathematical calculation; 

(v) Interpreting the answer in the context of the question. 

 

When students are not able to decode the words used in a word problem, they cannot 

comprehend a sentence, they cannot understand specific vocabulary and do not have the 

confidence or the ability to concentrate when reading (Ballew & Cunningham, 1982; Shuard 

& Rothery, 1984; Cummins et al, 1988; Bernardo, 1999). Research done by Caldwell and 

Goldin (1979) as well as Nunes et al. (1993) concluded that students cannot imagine the 

context in which a word problem is set or their approach is altered by the context in which the 

word problem is given. The research done by Carey (1991) and English (1998) concluded 

that students find it harder to form a number sentence for some word problems structures than 

others. Category 4, as described by Gooding (2009), also gives more meaning as to why 

students find it difficult to substitute specific values of variables. This was based on the 

research by Verschaffel et al. (1999), Nunes et al. (1993) and Anghileri (2001). The size of 

numbers involved can impact on student‘s choice of a calculation strategy. Even if the values 

to be substituted are correct, if it does not seem correct for the student, the student will not 

complete the calculation. Students do not consider real-life factors and constraints when 

giving an answer to word problems which can result in giving an answer that is impossible in 
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the context and therefore incorrect. (Verschaffel et al.,1994; Wyndham & Säljö, 1997; 

Cooper & Dunne ,2000). The existing literature noted the problems that students encounter 

when attempting to answer word problems, but there are also findings which were very 

encouraging. The research done by Cankoy and Özder (2011) revealed that visual 

representations in word problems can reduce problem difficulty. 

 Gooding‘s (2009) recommendations in her study include the following:  

(i)   Encourage students to read the word-problems thoroughly; 

(ii) Encourage students to check if an answer is possible in the context of the question. 

In the study by Craig (2001), she divided the problems in question into two categories, 

algorithmic and interpretive. Algorithmic problems are defined as problems that require the 

student to carry out some calculation, with the aim of obtaining a numerical solution. 

Interpretive problems, on the other hand, require little or no calculation and require the 

student to draw a conclusion from some given information using his/her knowledge of 

mathematics. Galbraith and Haines (2000) made a similar category division in their study, but 

instead of referring to the one set of problems as algorithmic, they termed it mechanical. The 

results of Galbraith and Haines (2000) showed clearly that mechanical problems are easier to 

solve than interpretive problems. Related rates problems can be categorised as a combination 

of the two. Caldwell and Goldin (1987, 1979), as part of their study, categorised their word 

problems as concrete or abstract, and hypothetical or factual. Concrete and abstract problems 

are defined in terms of the realism of their context, that is, concrete problems are set in a 

realistic context and abstract problems have no immediate real world meaning. Hypothetical 

and factual problems differ in that factual problems simply describe a situation, while 

hypothetical problems suggest a possible change in the situation. Caldwell and Goldin (1987, 

1979) concluded that abstract problems were more difficult than concrete problems. 
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According to De Corte and Verschaffel (1985) as well as Davies-Dorsey et al. (1991), word 

problems become easier when they are embedded in a familiar context. The familiar contexts 

may cause students to pay more attention and it is easier to remember a familiar situation than 

an unfamiliar one (Stern & Lehrndorfer, 1992). Smith et al. (1994) in their study measured 

the readability of problems on a university statistics examination paper according to number 

of words, number of clauses, and two measures of lexical density. Lexical density is 

measured as the ratio of lexical words to grammatical words. Unfortunately, they found no 

correlation between the readability and difficulty level of the problems. Threadgill-Sowder 

and Sowder (1982) compared the difficulty level of problems presented in verbal format 

(sentences) versus those presented with detailed diagrams and minimal wording. Their results 

showed that students found the problems presented almost in diagrammatic form significantly 

easier than those presented in verbal form only.  

Therefore, the existing literature confirm that word problems which include Related Rates 

problems are not easy to solve, but there are ways and methods to attempt these problems 

without going to the extremes and give up solving these problems. 

So what type of knowledge is required to solve word problems? According to Riley et al 

(1983) and Riley & Greeno (1988), solution success of simple arithmetic word problems 

depends crucially on understanding the semantic relations. By semantic relations, Riley et al 

(1983) refer to the conceptual knowledge about increases, decreases, combinations and 

comparisons involving sets of objects. This is not surprising as Martin (2000) also required 

students to depend on their conceptual understanding when attempting the first 2 steps when 

solving Related Rates problems using the Standard Solution Model for geometric related 

rates problem. So if we know what knowledge is required to solve word problems, how do 

students acquire this knowledge?  Riley et al. (1983) argued that the crucial process that 

drives development of problem-solving skill is the acquisition of knowledge concerning what 
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they termed part-whole relations. A competent problem solver, including word problem 

solvers, understands and represents word problems as relations among parts and wholes. 

They do not see this as two separate entities. A students‘s logical and mathematical 

knowledge is presumed to drive understanding of the semantics of the problem text (Riley & 

Greeno, 1988). According to them, poor performance on certain word problems reflects a 

lack of sufficient knowledge concerning part-whole set relations. From existing literature, a 

student must possess the relevant knowledge in order to solve mathematical problems. Mayer 

(1982) suggested that some of the types of knowledge that may be relevant for a 

psychological basis for understanding mathematical problem solving are: 

a) linguistic and factual knowledge,  

b) schema knowledge,  

c) algorithmic knowledge,  

d) strategic knowledge. 

 

4.9 CONCLUSION 

The studies of Bezuidenhout (1998), Herbert et al.(2009), Mahir (2009) and Engelbrecht et 

al. (2005) tested the students procedural and conceptual knowledge of a particular calculus 

topic. It gave insight of how students perceive a certain concept, and relate directly to my 

study of Related Rates. The studies of White and Mitchelmore (1996) as well as Hassan and 

Mitchelmore (2006) deal with rates of change which partially lead to Related Rates, but their 

studies do not give insight as to why students struggle with the topic Related Rates.  

The study of Carlson (1998) addresses the issue of the concept of function. Since Related 

Rates is a rate of a function, it stands to reason that if students do not have a proper 
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understanding of functions, then they will certainly struggle to understand Related Rates 

problems. The studies of Martin (2000) as well as Engelke (2006) address the issue of 

Related Rates. Engelke (2006) uses a computer program to foster students‘ exploration of 

Related Rates, but it does not answer the question why students perform badly in answering 

these types of questions. Martin‘s (2000) study is restricted to geometric Related Rates 

questions. In the South African context, geometry questions are badly answered or are given 

little attention when assessed. Therefore there is a need to study students‘ ability to answer 

Related Rates questions in general and not restricted to the geometric context. 
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CHAPTER 5 
 

THEORETICAL FRAMEWORK 

 

5.1 INTRODUCTION 

 

 

From the literature review in chapter 4, the reasons for students‘ poor performance on 

Related Rates problems may lie in their weak knowledge and understanding of certain topics 

associated with related rates. The focus of this study is related rates problems in the first year 

university calculus course at UWC. Specifically, a certain solution model is investigated as 

an appropriate teaching strategy to guide students to solve such problems. According to this 

model, certain thinking processes guide students in arriving at a solution. As a word problem, 

the first step is to understand the problem. That is, to identify both the known (given) 

information as well as the required information by reading the problem carefully, perhaps 

more than once, in order to fully grasp the meaning of words and phrases used in the 

statement of the problem. This is required to answer questions such as: ―Is the context 

familiar?‖ or ―Is the statement unambiguous?‖. The second step is to draw a realistic picture 

(mental image) of how the student interprets the problem. This could be a drawing of a man 

of a given height walking away from a streetlight at a certain speed, or two aircraft flying 

over an airport in different directions and at different speeds, or water flowing into a 

cylindrical tank at a certain speed. Following on this, students produce a schematic diagram 

in the form of a triangle, a circle or a cone showing the objects as points or lines. A reference 

point is identified on the schematic diagram from and to which all distances are measured. It 

is on this schematic diagram that all distances, speed, etc. are displayed and indicated by 
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symbols (called variables) such as x, y and z for distances and  ,  etc. for angles of triangles 

and finally symbols such as A for area, V for volume and t for time, etc. From this schematic 

diagram, it should become clear which relationships (in the form of equations) exist between 

the variables. Once this relationship has been identified, the rates of change of all variables 

with respect to the time are calculated using implicit differentiation. This is followed by a 

process of substituting all known information and finally the interpretation of the results 

follows. It is clear from the above discussions that the solution of related rates problems 

involves three processes. The first part is a process in which conceptual understanding play a 

major role, while the second process involves mainly procedural knowledge (implicit 

differentiation, algebraic substitution and manipulation). Finally, a process of interpreting the 

results involving conceptual understanding provides the solution of the problem. It should 

now be clear why this study is underpinned by Constructivism as a theoretical basis. In the 

next section, we therefore first present a brief explanation of the theory of constructivism 

followed by a discussion of more specific learning theories.  

 

 

5.2 CONSTRUCTIVISM 

 

Constructivism is a theory, based on observation and scientific study, about how people learn. 

Many definitions of constructivism have been proposed by several authors and researchers 

such as Henson (2004), Schwandt (2003), Shapiro (2002) and Von Glaserfeld (1996). No 

single definition has been accepted, but they all adhere to the following characteristics: 
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 People of all ages construct knowledge, they do not discover it. 

 People create knowledge by relating or connecting it to their previous knowledge. 

 Knowledge is an autonomous and subjective construction. 

 Learning involves active restructuring of how one thinks. 

 One‘s learning and ability to learn is influenced by previous experiences. 

 Cognitive growth is stimulated when people are confronted with practical, contextual 

problems or personal problems that present situations that require a new way of 

thinking. 

 

Constructivism is thus a philosophy that views knowledge as a subjective process that is 

shaped and structured by one‘s experiences (Pelech & Pieper, 2010). As a person encounter 

new experiences, then that person connects these new experiences to previous knowledge. 

These connections restructure the pre-existing knowledge base and also add to the original 

knowledge base. According to Von Glaserfeld (1989), constructivism is a theory of 

knowledge with roots in philosophy, psychology and cybernetics.  

 

5.2.1 EARLY HISTORY OF CONSTRUCTIVIST WRITERS 

The term ―constructivism‖ was only officially used from the 1970‘s, although evidence exist 

that the principle of constructivism appeared as far back as the ancient philosophers (Cooney 

et al. 1993). Although they do not consider themselves true constructivists, their writing 

contain evidence that people use prior knowledge and senses to construct new knowledge. 

According to Noddings (1990), one of the four principles that encapsulate the theory of 

constructivism is that ―all knowledge is constructed.‖ One of the ancient writers, Confucius, 

presented some views of constructivism in his writings, although his writing focuses more on 

interrelationships between learners and morality (Cooney et al., 1993). Another ancient 

philosopher, Plato, also used constructivist thought in his writings. He acknowledged that 
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people construct their own knowledge through their senses (Stevenson & Haberman, 1998). 

Aristotle believed that there is an absolute truth, but he allows for human construction of 

knowledge, a constructivist characteristic. Aristotle hence expressed the constructivist 

premise that one organizes experiences with the environment (Taylor, 1955). 

 

Medieval writers also contributed towards the constructivist philosophy although they were 

not explicitly recognised as such. Saint Augustine and Saint Thomas Aquinas, two Catholic 

theologians, both present experience as a central component of learning. According to Reed 

and Johnson (2000), St. Augustine not only envisioned the role of the teacher as one who 

creates the learning environment, but also views the creation of new knowledge as a process 

of using previous knowledge. St. Augustine voices the constructivist philosophy when he 

views knowledge not as simply being transmitted but rather as the result of connecting the 

world to experience. St. Thomas Aquinas acknowledged the role of one‘s senses in the 

construction of knowledge, although he was better known for his writing on theology 

(Baggini & Strangroom, 2004). Another medieval writer, Vico, presented the subjective 

construction and context-orientated view of knowledge (Baggini & Stangroom, 2004).  Vico 

described context as a necessary element of learning. This belief supports Vico as a 

constructivist. Reed and Johnson (2000) described John Locke as someone who claimed that 

knowledge comes through the senses. Locke advocated the premise that reflection and the 

senses are the sources of ideas (Bentley, 1958). Bentley cited that Locke believed that ideas 

are not innate. One of his categories is made by an act of mind, namely complex ideas. The 

act of mind was broken down into three actions, namely (i) combining simple ideas,            

(ii) relating two ideas, and (iii) abstracting from them real existence. Locke‘s belief that the 

senses are important to learning, and that the act of the mind involved the combining of ideas, 

all flow into the constructivist characteristics. Another medieval writer, Kant, believed in 
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knowledge as it appears in our senses (Bentley, 1958). Kant maintained that people construct 

their own ways of knowing the physical universe. 

Below is a list of the most notable writers who are considered as modern constructivists: 

 John Dewey (1859 -1952) 

 Maria Montessori (1870 – 1952) 

 Wladyslaw Strzeminski (1893 – 1952) 

 Lev Vygotsky (1896 – 1934) 

 Jean Piaget (1896 – 1980) 

 George Kelly (1905 – 1967)  

 Heinz von Foerster (1911 – 2002) 

 Jerome Bruner (born 1915) 

 Ernst von Glaserfeld (1917 – 2010) 

 Paul Watzlawick (1921 – 2007) 

 Edgar Morin (born 1921) 

 Humberto Maturana (born 1928) 

 Laszlo Garai (born 1935) 

 David A. Kolb. (born 1940) 

 

The modern constructivists view knowledge as the result of connecting previous experiences 

together and the importance of societal and contextual parameters. While some modern 

writers agree with the concept that knowledge is a process of subjectively constructing from 

previous knowledge, there are other writers that stipulate that truth is constantly evolving as it 

reacts to a changing environment. Dewey (1991) believed that knowledge is created by 

connecting to prior knowledge. Dewey views knowledge as the product of recursive actions, 
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that is, knowledge grows from what is already known. James (1991) extended the premise of 

using personal previous knowledge for knowledge construction, to include the role of society. 

James viewed knowledge as an entity that is created by events. This idea supported 

constructivists‘ principle that truth or knowledge is context-based and is created as a result of 

interacting with the environment. Rorty (1991) claimed that truth is reliant on context and is 

ever-changing. He maintained that truth or knowledge is an ever-changing entity that adapts 

to events. Both Rorty and James‘ notion that man created knowledge as a response to new 

situations, aligns with the constructivists philosophy of learning through experiences and 

restructuring prior knowledge. Piaget‘s theory is based on the premise that students learn by 

interpreting the results of their interactions with the environment (Fogarty,1999), which 

aligns with the constructivists‘ philosophy of constructing knowledge by restructuring 

previous knowledge. Piaget (1952) viewed the modification of existing knowledge structures 

as the key element to knowledge creation. William James (1991) went further by stating that 

the role of society should be included when using personal knowledge for knowledge 

construction (James, 1991). His view that knowledge is an entity that is created by events 

supports the constructivists‘ principle that knowledge is context-related and is created as a 

result of interacting with the environment. Lev Vygotsky also incorporated the concept of 

connecting personal knowledge with that of the importance of contextual or societal 

situations. Vygotsky‘s (1962) belief that knowledge is a continual personal construction is 

evidenced in his theory of spontaneous knowledge and scientific knowledge. Spontaneous 

knowledge is knowledge that students construct from their everyday experience, while 

scientific knowledge is knowledge that students construct through direct, formal instruction. 

Vygotsky‘s view of spontaneous knowledge is representative of the Constructivists 

philosophy.  
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5.2.2 THE PRINCIPLES OF CONSTRUCTIVISM 

 

According to Noddings (1990), there are four principles that encapsulate the theory of 

constructivism. They are: 

(i) All knowledge is constructed; 

(ii) There exist cognitive structures that are activated in the process of construction; 

(iii) Cognitive structures are under continual development, and; 

(iv) Acknowledgement of constructivism as a cognitive position leads to the adoption 

of methodological constructivism. 

 

The first principle of constructivism contrasts to a more traditional belief, that knowledge 

consists of a collection of facts that may be transferred from one person to another by direct 

instruction (Confrey, 1990). In the constructivist classroom, learning is interactive whereas 

the learning in a traditionalist classroom is based on repetition. Constructivists believe that 

knowledge can only be constructed in the mind of the learner and not just passed between 

individuals. 

The second principle describes the nature of the constructions. Constructivists believe that 

individuals develop mental structures based on their experience, and these structures 

comprise an individual‘s knowledge.  

The third principle describes cognitive structures as malleable. Knowledge is seen as 

dynamic, ever changing with our experiences. Traditionalists see knowledge as inert. Silver 

and Marshall (1990) suggested that learners connect new information to pre-existing 

knowledge structures rather than adding new information to their already existing store of 

knowledge.  
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The fourth principle of constructivism identifies the implication of constructivism. When 

conducting research, constructivists must use techniques that are best suited to ignite the 

person‘s cognitive structures. When teaching, constructivists must use techniques that will 

challenge and promote modification of students‘ existing cognitive structures (Noddings, 

1990).  

 

5.3 TYPES OF CONSTRUCTIVISTS 

Not all constructivists are in agreement about the nature of truth which people construct. 

There is thus a distinction between Radical and Moderate constructivists. Radical 

constructivists believe that knowledge is constructed in the minds of the learner and not based 

on a set of objective realities. On the other hand, Moderate constructivists believe that 

knowledge is constructed in the mind of the learner but contrary to the radical constructivists, 

they believe there exist objective realities by which the validity of this knowledge can be 

measured. Von Glaserfeld (1991) cited three principles when he describes radical 

constructivism: They are: 

 Knowledge is built by the cognizing subjects 

 The function of cognition is adaptive in the biological sense  

 Cognition serves the subject‘s organization of the experimental world, not the 

discovery of an objective ontological reality. 

Radical constructivists differ from Moderate constructivists in terms of the third principle that 

Von Glaserfeld cited above. Radical constructivists believe that the content of a person‘s 

knowledge can never be judged as true or false. They believe that individuals are protected 

from constructing false realities because a cognitive image of a false reality would not be 

viable and would never be incorporated by the cognizing subject in the process of adaptation. 
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Moderate constructivists reject the Radical constructivists‘ claim that no external realities 

exist. Goldin (1990) argues that if one believes that no external realities exist, then one 

cannot believe that structures exist in mathematics. Moderate constructivists prefer not to 

think of each individual‘s constructions as unique. An assessment of the validity of learner 

constructions is necessitated by the fact that the goal of mathematics education is to help 

students develop a store of shared knowledge about mathematics.  

 

Noddings (1990) also distinguishes between Strong and Weak constructions. He defined 

strong acts of construction as those that would be recognized by mathematicians as 

mathematical. If a student can give an adequate account of why the information, answer or 

procedure makes sense, the construction would be considered strong. In the same vein, 

Confrey (1990) defined powerful constructions as those which students believe. Some of the 

characteristics that Confrey listed as a strong (powerful) construction include the following: 

 A structure with a measure of internal consistency 

 A convergence among multiple forms and context of representations 

 An agreement with experts 

 A potential to act as a tool for further constructions 

 An ability to be justified and defended. 

Strong or powerful constructions are those which can stand up to be the same standard used 

to evaluate knowledge in the mathematical society.  

 

Noddings (1990) defined weak acts of construction as those that would be evaluated by 

mathematicians as having limited mathematical value. A student who relies on weak 
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construction as a tool for solving a problem would have to rely on an external authority for 

validation of the result, because that student would not be able to justify the chosen technique 

as appropriate. Similarly, Confrey (1990) defined weak constructions as those which are held 

up to only one standard. A strong construction can include information to be considered true 

or false, as long as it can be justified by the student. Similarly, a weak construction can 

include either true or false information. 

 

Constructivism does not tell us how knowledge is constructed. Piaget (1952) and Vygotsky 

(1978) describe the processes of how knowledge is constructed. Piaget (1952) claimed that 

the processes are similar to a biological evolution, with new ideas modifying mental 

structures so that the cognitive structures will better fit the information being taken in from 

the environment. Similarly, Vygotsky (1978) describes the construction of knowledge as a 

process of internalization of ideas and abilities. From interaction with more experienced 

students, abilities develop and concepts become more refined. The process-object model was 

one way of conceiving of the maturation process or the evolution of cognitive structures. 

According to Sfard (1991), this model conceives a subject‘s understanding of a new 

mathematical notion as a process. The subject eventually thinks of it as an object as soon as 

the notion is refined, usually with experience. A more detailed account of Piaget‘s theory of 

knowledge construction can be found in Piaget (1947,1952). Similarly, detailed account of 

Vygotsky‘s theory of knowledge acquisition can be found in Vygotsky (1978). To 

summarize, both Piaget and Vygotsky‘s theories require that subjects be observed in their 

natural settings in order to obtain and appreciate a full picture of how understanding is 

evolving in the subjects.   
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CHAPTER 6 
 

RESEARCH METHODOLOGY AND RESULTS 

 

6.1 INTRODUCTION 

 

The aim of this study was to investigate the difficulties of first year mainstream mathematics 

students at the UWC with related rates problems. The mainstream mathematics course is 

Mathematics105 (MAT105), hence the subjects of the study were selected from this group. 

MAT105 is a one year course that introduced students to first year mathematics with a 

curriculum that includes differential calculus as well as integral calculus. The university also 

offers what is called an extended curriculum programme (ECP) for mathematics. This is also 

an extensive calculus course, but is offered over two years. No students that followed the 

ECP mathematics stream were selected for the purpose of this study.  

6.2 RESEARCH QUESTIONS 

 

This study is aimed at investigating the effectiveness of the seven steps model as mentioned 

in chapter 1 (p. 6-7) as a teaching strategy by attempting to answer the following research 

questions: 

(i) How do students perform on the conceptual steps no. 1, 2 and 6 of the standard 

solution module for solving related rates problems? 

(ii) How do students perform on the procedural steps no. 3, 4 and 5 of the standard 

solution module for solving related rates problems? 

(iii) How do students perform on the auxiliary step no. 7 of the standard solution 

module for solving related rates problems? 
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6.3 RESEARCH DESIGN 

Due to the nature of the study, a qualitative approach was used. Qualitative research includes 

any type of research that produces findings that are not arrived at by means of statistical 

procedures or other means of quantification. A qualitative approach investigates the quality 

of relationships, activities, situations or materials. There is a greater emphasis on describing 

in detail what happens in a specific situation (Fraenkel & Wallen, 1990). Thus students‘ 

responses to the related rates problems will be used to examine how students fare in 

answering the steps in the Standard Solution Model in a class test on related rates.   

6.4 PROFILE OF STUDENTS REGISTERED FOR MAT105 

There were 238 students registered for the Mathematics105 (MAT105) course of 2012. To 

protect the right, dignity, safety and privacy of the students, I obtained permission from the 

university‘s Faculty Board Research and Ethics Committee and from the UWC Senate 

Research Committee to conduct this study. I provided reasons for using the MAT105 students 

as my subjects. Permission was granted after I submitted a research project registration and 

ethics clearance application form.  

Mainstream mathematics students who were registered for the MAT105 course in 2012, 

obtained The National Senior Certificate for Bachelor‘s Degree study plus a score of no less 

than 27 as calculated according to the university‘s approved points system. This was 

applicable to students who matriculated from 2008. In addition to this, students also had to 

adhere to the following specific requirement: 

Achieve a level 4 (50-59%) in English (Home or first additional language);                               

Achieve a level 3 (40-49%) in Another Language (Home or first additional language);              

Achieve a level 4 (50-59%) in Mathematics;                                                                                 
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Achieve a level 4 (50-59%) in Physical Science.                                                                                              

Students were also required to write the National Benchmark Test (NBT). 

Students who matriculated prior to 2008, had to obtain a full matriculation or age exemption 

and obtained a pass in Mathematics and either Physical Science or Biology on Higher grade 

with at least a D symbol (50-59%) or on Standard grade with at least a C symbol (60-69%). 

These students were also required to write the National Benchmark Test (NBT). 

Students who were registered for the MAT105 module had diverse backgrounds. Below is a 

table of the students‘ background according to their South African provinces of origin: 

TABLE 8  

PROVINCE EASTERN 

CAPE 

GAUTENG KWAZULU 

NATAL 

MPUMALANGA NORTH 

WEST 

NORTHERN 

PROVINCE 

WESTERN 

CAPE 

TOTAL 32 18 9 6 2 10 142 

Source: University of the Western Cape 

Students who were not South African citizens are classified according to their nationality. 

Below is a table according different nationalities outside South Africa: 

TABLE 9 

COUNTRY TOTAL 

ANGOLA 2 

CAMEROON 2 

CHINA 1 

DEMOCRATIC REPUBLIC OF CONGO 2 

ETHIOPIA 1 

GABON 1 

MOZAMBIQUE 1 

NAMIBIA 1 

NIGERIA 1 

SWAZILAND 1 

TURKEY 1 

UGANDA 1 

ZAMBIA 1 

ZIMBABWE 3 

Source: University of the Western Cape 
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Below is a table of the students‘ level of Mathematics competence at National Senior 

Certificate level from 2008.  

TABLE 10 

CODE 4    (50-59%) 5    (60-69%) 6    (70-79%) 7    (80-100%) 

TOTAL 74 64 35 22 

Source: University of the Western Cape 

Below is a table of the students‘ level of Mathematics competence at National Senior 

Certificate level prior to 2008.  

TABLE 11 

HG 50-59%  (D) 60-69%  (C) 70-79%  (B) 80-100%  (A) 

TOTAL 4 6 1 2 

SG 50-59%  (D) 60-69%  (C) 70-79%  (B) 80-100%  (A) 

TOTAL 1 4 2 4 

Source: University of the Western Cape 

 

As the above information indicates, the students come from different parts of South Africa as 

well as other countries on the African continent. Their high school mathematics results 

suggest that the majority of the students are competent to further their studies in tertiary 

mathematics. There were two parallel classes for the MAT105 course according to the 

university timetable. Both groups had 4 lectures of 1hour duration per week, lectured at the 

same time. My supervisor of this study, with over 36 years of teaching experience at U.W.C, 

lectured the one group, while a senior colleague lectured the second group. In addition to the 

lectures, 1 two hour tutorial session per week took place where students work out exercises 

from the prescribed textbook (Calculus – Concepts and Contexts by James Stewart ,4th 

edition, Metric Version). The two lecturers held weekly meetings regarding progress in the 

course. The study took place during the latter part of the third quarter of 2012. One week 

consisting of 3 lectures and 1 two hour tutorial session were used to teach the topic of Related 
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Rates. Initially, only two lectures were allocated to lecture Related Rates. However, three 

lecture slots were allocated to accommodate a proper treatment of Related Rates.  Prior to and 

leading up to the teaching of Related Rates, students were taught in a systematic and 

comprehensive manner all background topics such as limits, continuity, differentiation rules, 

implicit differentiation and optimization. The students were thus properly prepared to deal 

with the concepts needed in Related Rates. Three problems were used from the textbook of 

Stewart to explain the concepts and understanding of Related Rates. The group used for this 

study was taught using the Standard Solution Model. It was explained what was required at 

each step, what needs to be written down and how to obtain the final answer. Specific 

reference was made to step 7 of the Standard Solution Model. The three problems discussed 

in class were the following: 

1.  Two sides of a triangle are 4m and 5 m in length and the angle between them is 

increasing at a rate of srad /06.0 . Find the rate at which the area of the triangle is 

increasing when the angle between the sides of fixed length is .
3


 

2. A kite, controlled by a stationary person, 50m above the ground moves 

horizontally at a speed of 2m/s. At what rate is the angle between the string and 

the horizontal decreasing when 100m of string has been let out? 

3. Car A is travelling west at 90km/h and car B is travelling north at 100km/h. Both 

are headed for the intersection of the two roads. At what rate are the cars 

approaching each other when car A is 60m and car B is 80m from the 

intersection?  

Detailed solutions of these problems can be found in Addendum B. After the topic of Related 

Rates was discussed in the lecture environment, the students were given 8 problems as an 

exercise in the tutorial session. The tutorial session followed one day after the lectures of 
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Related Rates were completed. The eight problems with solutions can be found in addendum 

C. The problems in the tutorial session were done in a collaborative fashion (Barkley et al., 

2004) under supervision of the lecturer, a teaching assistant, the researcher as well as tutors. 

The students were assessed four days after completing the lectures. 

  

6.5 SAMPLING  

There were two parallel classes for the MAT105 course according to the university timetable 

as mentioned before. Since I only had access to one group, I only used this group of 127 

students for my research. I used this group as my sample because I had access to their tests 

results and scripts. This method of sampling is called convenience sampling. It is a type of 

nonprobability sampling which is readily available and convenient (Wilson, 2009). This 

method of sampling is used to select what is easily accessible to research. The sample drawn 

by this method does not claim to be representative of the larger population, nor can it claim 

generalizability. Although this type of sample makes it easier to conduct the research, there is 

no precise way of generalizing from the sample to any type of population (McMillan & 

Schumacher, 2010). 

 

6.6 INSTRUMENTATION 

Only one written test was used in this study. The test was of thirty minutes duration 

consisting of two questions on Related Rates. This test was written as part of the students‘ 

weekly test and contributed to their Continuous Assessment Mark for MAT105. The test was 

written four days after completing the topic on Related Rates. The questions for this test were 

set up in order to answer the research questions of my study. I worked closely with my 

supervisor. The two questions that were selected for this test were the following: 
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1. A plane flying with a constant speed 300km/h passes over a ground radar station at an 

altitude of 1km and climbs at an angle of .30 At what rate is the distance from the 

plane to the radar station increasing a minute later? 

2. At noon, ship A is 150km west of ship B. Ship A is sailing east at 35km/h and ship B 

is sailing north at 25km/h. How fast is the distance between the ships changing at 

16h00? 

A detailed solution of these two questions can be found in addendum D. In the outlined 

solution, the different steps of the Standard Solution Model are indicated.  

 

6.7 RESEARCH METHOD 

6.7.1 Introduction 

The test referred to in the previous section was assessed by the lecturers according to the 

memorandum as found in Addendum E. The marks scored by the students were recorded. A 

score out of 10 was allocated per question for the assessment. The scripts of the students who 

participated in the research were collected from the lecturer in order to analyse students‘ 

performance in the different steps of the Standard Solution Model of related rates problems.  

 

6.7.2 Document Analysis 

This study will adopt the document analysis method. According to Bowen (2009), this 

method is a systematic procedure for reviewing or evaluating documents, in this case, the 

scripts of students. 

 Below is a list of advantages, as stated by Yin (1994), of document analysis: 

• Efficient method: Document analysis is less time-consuming and therefore more efficient 
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      than other research methods. It requires data selection, instead of data       

      collection. 

 

• Availability:  Many documents are in the public domain, especially since the advent of 

the Internet, and are obtainable without the authors‘ permission. This makes 

document analysis an attractive option for qualitative researchers. As Merriam 

(1988) argued, locating public records is limited only by one‘s imagination 

and industriousness. An important maxim to keep in mind is that if a public 

event happened, some official record of it most likely exists. 

 

 

• Cost-effectiveness:  Document analysis is less costly than other research methods and is 

often the method of choice when the collection of new data is not 

feasible. The data (contained in documents) have already been 

gathered; what remains is for the content and quality of the documents 

to be evaluated. 

 

• Lack of obtrusiveness and reactivity:  Documents are ‗unobtrusive‘ and ‗non-

reactive‘— that is, they are unaffected by 

the research process. (Previous studies 

found in documents are not being 

considered here.) Therefore, document 
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analysis counters the concerns related to 

reflexivity (or the lack of it) inherent in 

other qualitative research methods. With 

regard to observation, for instance, an 

event may proceed differently because it 

is being observed. 

Reflexivity—which requires an 

awareness of the researcher‘s 

contribution to the construction of 

meanings attached to social interactions 

and acknowledgment of the possibility 

of the investigator‘s influence on the 

research—is usually not an issue in using 

documents for research purposes. 

 

• Stability:  As a corollary to being non-reactive, documents are stable. The investigator‘s 

presence does not alter what is being studied. Documents, then, are 

suitable for repeated reviews. 

• Exactness:  The inclusion of exact names, references, and details of events makes 

documents advantageous in the research process (Yin, 1994). 

 

 

 

 



112 
 

 

• Coverage:  Documents provide broad coverage; they cover a long span of time, many 

events, and many settings (Yin, 1994). 

6.7.3 Validity and Reliability 

Validity and reliability are important in any research. Validity and reliability ensure that the 

research is considered genuine, that it is believable and convincing. In research, data are 

considered to the point that they describe or deal at once with the topic under consideration 

(Mertler & Charles, 2005). 

Reliability is the quality concept in qualitative research which is to be solved in order to state 

a study as part of proper research (Stenbacka, 2001). McMillan & Schumacher (2010) argue 

that validity, on the other hand, is the degree of the agreement between the explanations of 

the phenomena and the realities of the world. Golafshani (2003) viewed reliability and 

validity as the idea of trustworthiness, rigor and the quality in qualitative research.  

Inter-rater agreement is the degree to which two or more raters using the same rating scale 

give the same rating to an identical observable situation (Graham, Milanowski & Miller, 

2012). This is to suggest that inter-rater agreement is a measurement of the consistency 

between the absolute value of the evaluators‘ ratings (Graham, Milanowski & Miller, 2012). 

To validate the assessment process, twenty scripts were randomly selected from the 127 

scripts marked by the researcher. These scripts were then moderated by a senior lecturer in 

the Mathematics department at UWC. As part of the inter-rater agreement, the assessment 

process was explained to this lecturer and marked accordingly. If there were discrepancies 

between the marks of the researcher and that of the moderator, it was discussed and an 

agreement was reached on the final result. 

Since the test scripts were used for this research and it formed part of the students‘ 

continuous assessment, all scripts had to be copied and the original scripts were handed back 
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to the students. The copied scripts were kept in the Mathematics Department‘s filing system 

for safe keeping. The students‘ identity was also hidden in the copied scripts to protect the 

identity of the participants. As mentioned before, the students agreed to participate in the 

project on condition of anonymity.  

6.7.4 Scoring 

For the purpose of this study, the scoring was different to the scoring of the lecturers. I was 

interested if students could identify and answer the different steps of the Standard Solution 

Model. This scoring will help me in answering my research questions. I examined all the 

scripts of these students and identified steps 1, 2 and 6 in the students‘ solution. The scoring 

for steps 1, 2 and 6 was as follows: Students obtain a score of 0 if they answered steps 1, 2 

and 6 incorrectly. If a student answers step 1 and 2 correctly, a score of 1 was allocated. It 

was felt that steps 1 and 2 should be scored as a single step, since the two steps are dependent 

on each other. Information of what is given and what should be calculated can only be used if 

it is extracted from a sketch or diagram or vice versa. A student obtains a score of 2 if they 

answered steps 1 and 2 as well as step 6 correctly. For the purpose of analysis, the scores of 

steps 1, 2 and 6 were taken as a total to answer the first research question. The first research 

question is: How do students perform on the conceptual steps numbers 1, 2 and 6 of the 

standard solution module for solving related rates problems. Thereafter steps 3, 4 and 5 in the 

student‘s solution were identified. If the student answered steps 3, 4 and 5 incorrectly, that 

student obtained a score of 0. If the student answered one step correctly and the two 

remaining steps incorrectly, then that student obtains a score of 1. If the student answers any 

two steps correctly and a third step incorrectly, then that student obtains a score of 2. If all 

steps are answered correctly, then that student obtains a score of 3. The scores of steps 3, 4 

and 5 were taken as a total to answer the second research question. The second research 

question is: How do students perform on the procedural steps number 3, 4 and 5 of the 
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standard solution module for solving related rates problems. Finally step 7 in the student‘s 

answer was identified. The score of step 7 was used to answer the third research question. 

The third research question is: How do students perform on the auxiliary step number 7 of the 

standard solution module for solving related rates problems. A student obtained 0 if he/she 

answered step 7 incorrectly and 1 mark if it is correct. 

In the next section, the results are summarised.  

 

6.8 RESULTS  

Below is a histogram showing the results of steps 1, 2 and 6 of the sample group. 

TABLE 12 
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Close to 45.6% of students answered steps 1, 2 and 6 incorrectly. More or less 29.1% 

could only answer step 1 and 2 or step 6 correctly while only a quarter of students in the 

sample group could answer all steps correctly.  

 

 

Below is a histogram showing the results of steps 3, 4 and 5 of the sample group. 

TABLE 13 

 

From the above graph, 40.1% students could not answer any of steps 3, 4 and 5 correctly. 

Only 25.2% of student in the sample group could answer all of steps 3, 4 and 5 correctly.  
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Below is the histogram of step 7 of the sample group. 

TABLE 14 

 

The number of students who answered this step correctly is just one percentage point more 

than the number of students who answered it incorrectly (50.4% to 49.6%). 

6.9 CONCLUSION 

From the above results, it is evident that only between 25 and 30% of students could answer 

the conceptual understanding (29.1%) and procedural knowledge (25.2%) steps of the 

Standard Solution Model correctly. From the above results, it can be concluded that students 

in the MAT105 class do not perform well in both the conceptual understanding (Steps 1, 2 

and 6) and the procedural knowledge (Steps 3, 4 and5) of the Standard Solution Model. There 

was little difference in the number of students who answered step 7 correctly. So students 
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perform averagely in this step. The reasons why students perform so poorly in both the 

conceptual understanding (Steps 1, 2 and 6) and the procedural knowledge (Steps 3, 4 and 5) 

of the Standard Solution Model may vary. The results obtained call into question the use of 

the Standard Solution Model as an appropriate methodology to teach Related Rates, at least 

to the students enrolled in the MAT105 course at UWC. It is therefore proposed that the 

textbook material should be supplemented by additional study material that will address the 

issues discussed in section 2.12. 
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CHAPTER 7 
 

CONCLUSION AND RECOMMENDATIONS 

 

7.1 INTRODUCTION 

 

The aim of the thesis is to research the difficulties that first year mainstream mathematics 

students at UWC experience when solving Related Rates problems in calculus. In chapter 2, 

an in-depth study was made of the nature of Related Rates problems by studying a number of 

examples. The findings of this study are summarized in section 2.12. The study adopted the 

same model of the solution of all types of Related Rates that was used by Martin (2000) for 

the solution of geometric Related Rates problems.  

In chapter 3 of this thesis, many examples were used to illustrate how the seven step solution 

procedure of the Standard Solution model is applied. 

 In the literature review in chapter 4, the underlying concepts which underpin Related Rates 

problems are identified and specific examples of research on each of these concepts are 

given. For example, the review of the literature on word problems is done comprehensively 

and covers extensively the range of issues involved in this topic. Drawing on the work in 

chapter 2 on the nature of Related Rates problems, it is explained in chapter 5 why this study 

is underpinned by Constructivism as a theoretical basis. 

Chapter 6 of the thesis is devoted to answering the 3 research questions posed in chapter 1. 

The thesis contains many worked examples of Related Rates problems which can be used by 

the lecturers assigned to the MAT105 course. 
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7.2 RECOMMENDATIONS 

 

7.2.1 A follow-up study will focus on the detail of students‘ difficulties when solving 

Related Rates problems. This will be done by analysing the scripts of students, the 

actual student performances. 

7.2.2 The analysis of student performances on the Related Rates questions in the test shows 

that there is a need to design additional instructional materials. Some work has 

already been done on this as can be seen in Addendum G of the thesis. This should be 

continued and improved. 

7.2.3 In a follow-up study, the use of the Standard Solution model can be critiqued against 

the actual student performances.  

7.2.4 In a follow-up study, the design of instructional material can be contrasted against 

existing material in relation to student performances. 
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ADDENDUM A 
1. A husband is 7 years older than his wife. Ten years ago, he was twice her age. How 

old is he? 

 

2. The average weight (W) of the antlers of deer is approximately related to the age (A) 

of the deer by the equation: cmAW  . For a particular species, it is found that 

when A = 30 months,  W = 0.15 kg, whereas when A = 54 months, W = 0.36 kg. Find 

m and c and calculate the age at which W reaches 0.5 kg. 

 

 

3. An individual on a strict diet plans to breakfast on cornflakes, milk and a boiled egg. 

After allowing for the egg, his diet allows for a further 300 calories for this meal. One 

ounce of milk contains 20 calories and 1 ounce (about one cupful) of cornflakes (plus 

sugar) contains 160 calories. What is the relation between the number of ounces of 

milk and of cornflakes that can be consumed? 

 

4. Sue is 7 years older than Bobby. If the product of their ages is 60, how old is Bobby? 

 

 

5. A box with no top is to be formed from a rectangular sheet of tin by cutting out 4-inch 

squares from each corner and folded up by the sides. If the width of the box is 3 

inches less than the length and the box is to hold 280 cubic inches, find the 

dimensions of the sheet of tin. 
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ADDENDUM B 
 

1. Two sides of a triangle are 4m and 5 m in length and the angle between them is 

increasing at a rate of srad /06,0 . Find the rate at which the area of the triangle is 

increasing when the angle between the sides of fixed length is 
3


. 

 

Solution 

We let  be the angle between the two sides. We name the triangle ΔEBC with  4EB and 

5BC . We also let A the area of the triangle at time t. (Step 2) 

                        E 

 

                                                                5 

                                 4                          A 

                                                                                   

                                         B                       5                                 C  (Step 1) 





sin10

sin.5.4.
2

1





A

A

 

(Step 3) 

cos10
dt

dA
 

dt

d

 
(Step 4)

 

But since srad
dt

d
/06,0


and 

3


  , we have 

 

sm
dt

dA

dt

dA

/3,0

)06,0.(
3

cos.10

2













  

(Step 5) 

Thus the area is increasing at a rate of sm /3,0 2 . (Step 6) 
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2. A kite, controlled by a stationary person, 50m above the ground moves horizontally at a speed 

of 2m/s. At what rate is the angle between the string and the horizontal decreasing when 

100m of string has been let out? 

 

Solution 

Let x be the horizontal movement of the kite, let y be the height of the kite from the ground. 

Let s be the length of the string that is let out and let  be the angle between the string and the 

horizontal ground. Then 50y and sm
dt

dx
/2 . (Step 2) 

 

 

 

 

        (Step 1) 

 

 

From the diagram,  50sin.
50

sin   s
s   

(Step 3) 

 

0cos.sin 
dt

d
s

dt

ds 


 




 sincos
dt

ds

dt

d
s  .     (Step 4) 






cos

sin

s

dt

ds

dt

d
  

 

 

 

 

 

                               s  

                                                            y=50 

                  

                             x 
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Also 
222 50 xs  

dt

dx

s

x

dt

ds

dt

dx
x

dt

ds
s

dt

dx
x

dt

ds
s

.

22







  (Step 7) 

To find x when s = 100, we use the equation 
222 50 xs . 

22 50 sx  

22 50)100( x  

3507500 x   
(Step 7)

 

sm
dt

ds
/32.

100

350
  

Now 
2

1

100

50
sin  , when s = 100. 

Since 
62

1
sin


 

  (Step 7)
 

Since 
6


  , 

2

3

6
cos 


 

From 





cos

sin

s

dt

ds

dt

d
 we substitute 3

dt

ds
, 

2

1
sin  ,

2

3
cos  and s= 100, we then have 

 
 






cos100

sin
dt

ds

dt

d
  

2

3
100

2

1
3


dt

d

  

(Step 5)
 

srad
dt

d
/01.0


 

The angle between the string and the horizontal is decreasing at a rate of -0.001 rad/s at the 

moment the length of the string let out is 100m.  
(Step 6) 
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3. A plane flying with a constant speed 300km/h passes over a ground radar station at an 

altitude of 1km and climbs at an angle of .30 At what rate is the distance from the 

plane to the radar station increasing a minute later? 

Solution 

We let x be the distance from the plane to a point P immediately above the radar 

station. Then hkm
dt

dx
/300 . Let s be the distance from the radar station to the plane. 

(Step 2)  

 

 

                                x 

                             

            P      30˚ 

             

 

       1 km               s 

    (Step 1) 

 















2

1
21

120cos21

)3090cos())(1(21

22

22

222

xxs

xxs

xxs

  

(Step 3) 

Hence 22 1 xxs   

.)21(2

.22

dt

dx
x

dt

ds
s

dt

dx
x

dt

dx

dt

ds
s





   

(Step 4) 

Therefore 
s

dt

dx
x

dt

ds

2

)21( 


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So after 1 minute ( hours
60

1
), .5

60

1
.300 kmxkmx 

 
(Step 7) 

From  22 1 xxs  we get that  

.31

551

1

2

2







s

s

xxs

      

(Step 7) 

So 
s

dt

dx
x

dt

ds

2

)21( 


 

hkm
dt

ds

dt

ds

/296
31

1650

)31(2

300))5(21(






.      (Step 5) 

 

Therefore the distance from the plane to the radar station is increasing at a rate of 

hkm/296 . (Step 6) 
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ADDENDUM C 

1. The altitude of a triangle is increasing at a rate of min/1cm while the area of the 

triangle is increasing at a rate of .min/2 2cm At what rate is the base of the triangle 

changing when the altitude is 10cm and the area is 2100cm .  

Solution 

We let h be the altitude of  triangle ΔEBC. We also let A the area of the triangle and 

let    

  x be the base of the triangle.
 

min/1cm
dt

dh
 and .min/2 2cm

dt

dA


 (Step 2)
 

           E 

 

 

           h 

 

 

 

 

                                  

                               B                       x                                C  (Step 1) 

 

 

xhA

hbA

2

1

.
2

1





   

(Step 3) 











dt

dh
xh

dt

dx

dt

dA
..

2

1

 

(Step 4)

 

Also since 

xhA
2

1
   

we have that  
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.20

10

)100(2

2

cmx

x

h

A
x







   

(Step 7) 

 









 )1(20)10.(

2

1
min/2 2

dt

dx
cm

 

6,1

2010min/4 2





dt

dx

dt

dx
cm

   

(Step 5) 

 

So the base is decreasing at a rate of .min.6,1 cm  (Step 6) 

 

2. A television camera is positioned 1 200m from the base of a rocket launching pad. 

The angle of elevation of the camera has to change at the correct rate in order to keep 

the rocket in sight. Also, the mechanism for focusing the camera has to take into 

account the increasing distance from the camera to the rising rocket. Let‘s assume the 

rocket rises vertically and its speed is 
1.200 sm  when it has risen 900m. 

(a) How fast is the distance from the television camera to the rocket changing at that 

moment? 

(b) If the television camera is always kept aimed at the rocket, how fast is the 

camera‘s angle of elevation changing at that same moment? 

Solution 

Let y be the distance the rocket rises. Then 1.200  sm
dt

dy
when my 900 . 

Let s be the distance from the camera to the rocket. We let   be the angle of elevation of the 

camera. (Step 2) 

 

      s      y       (Step 1) 

 

                                                    1 200m 
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(a) 
222 )1200( ys   (Step 3) 

 

dt

dy

s

y

dt

ds

dt

dy
y

dt

ds
s

.

22





  (Step 4)

 

 Also since  
222 )1200( ys  

       
22 )1200( ys    (Step 7) 

But y = 900, 

                  
.1500

)1200()900( 22

ms

s





  (Step 7)
 

Substituting my 900  and ms 1500 as well as 1.200  sm
dt

dy
in the expression 

dt

dy

s

y

dt

ds
. ,  

we have 200.
1500

900


dt

ds

 (Step 5) 

                    

1.120  sm  . 

 Hence the distance from the television camera to the rocket is increasing at a rate of  
1.120 sm . (Step 6) 

(b) 1200
tan

y


   (Step 3)
 

 dt

dy

dt

d

1200

1
sec2 




 

 


dt

dy

dt

d




2sec.1200

1


 (Step 4) 

             Since  

 22 tan1sec   and 900y , we have that  (Step 7) 

 

 

 

 



140 
 

16

25
sec

1200

900
1sec

1200
1sec

2

2

2

2

2




























y

 

Substituting 
16

25
sec2   well as 1.200  sm

dt

dy
in the expression 

dt

dy

dt

d




2sec.1200

1


 

we have  

..1067,0
75

8

1

200
.

16

25
.1200

1

1



sm
dt

d

dt

d





 (Step 5) 

Therefore the camera‘s angle of elevation is increasing at a rate of ..1067,0 1sm  (Step 6) 

 

3. A runner sprints around a circular track of radius 100m at a constant speed of ./7 sm  

The runners friend is standing at a distance 200m from the centre of the tract. How 

fast is the distance between friends changing when the distance between them is 

200m? 
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Solution 

Let x be the distance that the runner sprints around the track. Then ./7 sm
dt

dx
   

Also let s be the distance between the runner and the friend.  (Step 2) 

                                                                                                              x 

                                                                                                                             P 

                                                s                                                                        

                                                 

                                                                                                   

                                                                

 

 

        100                                                                              

 

                                                100     (Step 1) 

 





cos4000050000

cos)100)(200(2100200

2

222





s

s

  

(Step 3) 

dt

d

dt

ds
s


 ).sin(400002 

   
(Step 4) 

s

dt

d

dt

ds


 .sin20000


 

Now 

.100







x

rx

    
(Step 7) 

dt

d

dt

d

dt

dx





.1007

100





, since 
./7 sm

dt

dx


 

100 

 

 

 

 

  

100 
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07,0
dt

d

 

Since s = 200, we have 

4

1
cos

cos4000010000

cos)100)(200(2100200200 222













  

(Step 7) 

since  2cos1sin  ,  

we get that 

 

16

15
sin

4

1
1sin

2

















.  

Using cos40000500002 s ,  

we obtain  

20040000

4

1
4000050000

22

2













ss

s
. 

 

 Therefore 
s

dt

d

dt

ds


 .sin20000

 becomes  (Step 5) 

 

./78,6

16

15
.7

200

07,0.
16

15
20000

sm

dt

ds

dt

ds





















 

Therefore the distance between the two friends is changing at a rate of 6,78m/s. (Step 6) 
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4. A plane flying horizontally at an altitude of 2km and a speed of 800km/h passes 

directly over a radar station. Find the rate at which the distance from the plane to the 

station is increasing when it is 3km away from the station. 

Solution 

Let x be the distance travelled by the plane from P, where P is a point directly above 

the radar station which the plane passes. Let s be the distance from the plane to the 

radar station. Then ./800 hkm
dt

dx
 (Step 2) 

                      P                          x 

 

 

             2 km                                          

                                  s                   (Step 1) 

 

                     Radar station 

 

.2222  xs     (Step 3) 

..

22

dt

dx

s

x

dt

ds

dt

dx
x

dt

ds
s





   

(Step 4) 

 

Also from ,2222  xs we obtain  

44 222  sxsx .  

Since s = 3km, we obtain  (Step 7) 

 

5

4)3( 2





x

x
 

Therefore  
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hkm
dt

ds

dt

dx

s

x

dt

ds

/3,596)800.(
3

5

.





.  (Step 5) 

 

Thus the distance from the plane to the radar station is increasing at a rate of 

596,3km/h. (Step 6) 

 

 

 

5. Car A is travelling west at 90km/h and car B is travelling north at 100km/h. Both are 

headed for the intersection of the two roads. At what rate are the cars approaching each 

other when car A is 60m and car B is 80m from the intersection?  

 

 

Solution 

 

Let x be the distance of car A to the intersection at any time t and let y be the distance 

of car B to the intersection at any time t. Then hkm
dt

dx
/90

 
since x is decreasing, 

and hkm
dt

dy
/100

, 
since y is decreasing. Let s be the distance between the two 

cars.  

(Step 2) 

                                                           x 

                             A 

 

   y    (Step 1) 

       s 

 

      B 
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.222 yxs        (Step 3) 

.

222

s

dt

dy
y

dt

dx
x

dt

ds

dt

dy

s

y

dt

dx

s

x

dt

ds

dt

dy
y

dt

dx
x

dt

ds
s









    

(Step 4)
 

Also from 222 yxs  we obtain  

kms

s

yxs

1,0

)08,0()06,0( 22

22







.     (Step 7) 

 

Therefore 
s

dt

dy
y

dt

dx
x

dt

ds


 becomes  

hkm
dt

ds

dt

ds

yx

dt

dy
y

dt

dx
x

dt

ds

/134

1,0

)100(08,0)90(06,0

22












.    (Step 5) 

Therefore the cars are approaching each other at 134km/h.(the distance is decreasing 

at a rate of 134km/h. (Step 6) 

 

 

6. A man walks along a straight path at a speed of 1,5m/sec. A searchlight is located on 

the ground 6m from the path and is kept focused on the man. At what rate is the 

searchlight rotating when the man is 8m from the point on the path closest to the 

searchlight? 
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Solution 

Let x be the distance the man walks from the point on the path closest to the 

searchlight. Then sec/5,1 m
dt

dx
 . Let   be the angle through which the searchlight 

rotates. Let s be the length of the beam. (Step 2) 

 

 

 

                                   x                The point where man walking 

               Point on  

          path closest                 6m   

 to the                   s   (Step 1) 

            searchlight                       

 

 

 

6
tan

x


     
(Step 3) 

 

dt

dx

dt

d

dt

dx

dt

d

dt

dx

dt

d

6

cos

sec.6

1

6

1
sec

2

2

2
















    

(Step 4)

  

 

Also 

Since x = 8m, 

 

.10

68

6

22

222







s

s

xs

    

(Step 7) 
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So 

100

36
cos

10

6
cos

2 







    

(Step 7) 

Therefore from 

dt

dx

dt

d

6

cos 2 
  ,  

.sec/09,0
100

9

5,1
6

100

36
2

rad
dt

d

dt

d


















    

(Step 5)

  

 

 

Therefore the searchlight is rotating at 0,09rad/sec. (Step 6) 

 

 

 

7. A man starts walking north at 1,2m/s from a point P. Five minutes later a woman starts 

walking south at 1,6m/s from a point 200m due east of P. At what rate are the people 

moving apart 15minutes after the woman starts walking? 
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Solution 

Let x be the distance that the man walks from point P and let y be the distance the woman 

walks from P‘ (where P‘ is a point 200m due east of P). Let s be the distance between the two 

people 15 minutes after the woman starts walking. (Step 2) 

                 Man 

 

                  x 

                                               s 

(Step 1) 

                    P                200m                                     P‘ 

 

                  y                                                                 y 

 

200m                                     Woman 

222 )(200 yxs       (Step 3) 
























dt

dy

dt

dx

s

yx

dt

ds

dt

dy

dt

dx
yx

dt

ds
s

)(

.)(22

   

(Step 4)

 

After 20 minutes which equals (20)(60)=1200 seconds, mx 1440)1200)(2,1(    and  

after 15 minutes which equals (15)(60)=900 seconds, my 1440)900)(6,1(  . (Step 7) 

Also from 222 )(200 yxs   

 

ms

s

s

yxs

94,2886

8334400

)14401440(200

)(200

22

22









.       (Step 7) 

 So from 












dt

dy

dt

dx

s

yx

dt

ds )(
, 
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 

sm
dt

ds

dt

ds

/79,2

6,12,1
94,2886

)14401440(








       

(Step 5) 

Thus the people are moving apart at a rate of 2,79m/s , 15 minutes after the woman started 

walking.  (Step 6) 

 

8. Gravel is being dumped from a conveyor belt at a rate of min/3 3m and its coarseness 

is such that it forms a pile in the shape of a cone whose base diameter and height are 

always equal. How fast is the height of the pile increasing when the pile is 3m high? 

Solution 

Let V be the amount of gravel dumped at any time t. Let h be the height of the cone at any 

time t. Let r be the radius of the cone. (Step 2) 

 

 

 

 

 

 

                                          h    (Step 1) 

 

                                                     

                                                       r 

min/3 3m
dt

dV


  

2

2

h
r

drh





      

(Step 2) 

Now 

hrV 2

3

1


      
(Step 3)
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3

2

2

12

1

43

1

23

1

hV

h
h

V

h
h

V





























     

 

dt

dV

hdt

dh

dt

dh
h

dt

dV

.
1

.
4

12

2

2









     

(Step 4)
 

min/42,0
3

4

3.
3

1
.

4
2

m
dt

dh

dt

dh









.    

(Step 5)

 

Therefore the height of the pile is increasing at a rate of 0,42m/min. (Step 6) 
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ADDENDUM D 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. A plane flying with a constant speed 300km/h passes over a ground radar station at an 

altitude of 1km and climbs at an angle of .30 At what rate is the distance from the 

plane to the radar station increasing a minute later? 

Solution 

We let x be the distance from the plane to a point P immediately above the radar 

station. Then hkm
dt

dx
/300 . Let s be the distance from the radar station to the plane. 

(Step 2) 

 

 

                                x 

                             

            P      30˚ 

             

 

       1 km               s 

    (Step 1) 

 















2

1
21

120cos21

)3090cos())(1(21

22

22

222

xxs

xxs

xxs

  

(Step 3) 

Hence 22 1 xxs   

.)21(2

.22

dt

dx
x

dt

ds
s

dt

dx
x

dt

dx

dt

ds
s





   

(Step 4) 

Therefore 
s

dt

dx
x

dt

ds

2

)21( 


 

So after 1 minute ( hours
60

1
), .5

60

1
.300 kmxkmx 

 
(Step 7) 
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From  22 1 xxs  we get that  

.31

551

1

2

2







s

s

xxs

      

(Step 7) 

So 
s

dt

dx
x

dt

ds

2

)21( 


 

hkm
dt

ds

dt

ds

/296
31

1650

)31(2

300))5(21(






.      (Step 5) 

 

Therefore the distance from the plane to the radar station is increasing at a rate of 

hkm/296 . (Step 6) 
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1. At noon, ship A is 150km west of ship B. Ship A is sailing east at 35km/h and ship B 

is sailing north at 25km/h. How fast is the distance between the ships changing at 

16h00? 

 

 

Solution 

 

Let x be the distance sailed by ship A after noon and let y be the distanced sailed by 

ship B after noon. Let s be the distance from the ship A to ship B. Then hkm
dt

dx
/35

and ./25 hkm
dt

dy
 (Step 2) 

          B 

(Step 1) 

 

       s      y 

 

          x         A 

       150 – x 

222 )150( xys     (Step 3) 

dt

dx

s

x

dt

dy

s

y

dt

ds

dt

dx
x

dt

dy
y

dt

ds
s

)150(

))(150(222






 

(Step 4) 

 

After 4 hours, kmx 140)4)(35(  and .100)4)(25( kmy  . (Step 7) 

So from 222 )150( xys   we obtain that  

.10100

)140150()100(

)150(

22

22







s

s

xys

     

(Step 7) 

 

From 
dt

dx

s

x

dt

dy

s

y

dt

ds )150( 
 we obtain  

2. 
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hkm
dt

ds

dt

ds

dt

ds

/39,21
10100

2150

10100

3502500

)35(
10100

)140150(
)25(

10100

100









.    (Step 5) 

 

The distance between the ships is changing at 21,39km/h. (Step 6) 
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ADDENDUM E 
1. A plane flying with a constant speed 300km/h passes over a ground radar station at an 

altitude of 1km and climbs at an angle of .30 At what rate is the distance from the 

plane to the radar station increasing a minute later? 

Solution 

We let x be the distance from the plane to a point P immediately above the radar 

station. Then hkm
dt

dx
/300 . (Mark is allocated for recognizing hkm

dt

dx
/300 )  

Let s be the distance from the radar station to the plane.  

 

 

                                x 

                             

P      30˚                                                                (1 mark for the sketch and 1       

                                                                              Mark for  correct information on sketch) 

             

 

       1 km               s 

     

 

xxs

xxs

xxs

xxs

















22

22

22

222

1

2

1
21

120cos21

)3090cos())(1(21

  

 (1 Mark is allocated for using the cosine-rule and 1 mark is allocated for simplifying and 

obtaining 
22 1 xxs   )
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Hence 22 1 xxs   

.)21(2

.22

dt

dx
x

dt

ds
s

dt

dx
x

dt

dx

dt

ds
s





   

 

Therefore 
s

dt

dx
x

dt

ds

2

)21( 

  (Mark is allocated for using 
22 1 xxs  and deriving implicitly.)

 

So after 1 minute ( hours
60

1
), .5

60

1
.300 kmxkmx  

  (Mark is allocated for  

                                                                                                  finding x)                                                                        

 
 

From  22 1 xxs  we get that  

.31

551

1

2

2







s

s

xxs

 

(mark is allocated for finding s)

    

 

So 
s

dt

dx
x

dt

ds

2

)21( 


 

hkm
dt

ds

dt

ds

/296
31

1650

)31(2

300))5(21(






.   (Mark is allocated for the correct substitution)  

   

 

Therefore the distance from the plane to the radar station is increasing at a rate of 

hkm/296 .   (Mark is allocated for the interpretation) 
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2. At noon, ship A is 150km west of ship B. Ship A is sailing east at 35km/h and ship B 

is sailing north at 25km/h. How fast is the distance between the ships changing at 

16h00? 

 

 

Solution 

 

Let x be the distance sailed by ship A, after noon and let y be the distanced sailed by 

ship B after noon. Let s be the distance from the ship A to ship B. Then hkm
dt

dx
/35

and ./25 hkm
dt

dy
  (Mark is allocated for recognizing hkm

dt

dx
/35  and 

hkm
dt

dy
/25 ) 

 

                                       (1 mark for the sketch and 1 Mark for correct information on sketch) 

 

          B 

 

 

       s      y 

          x         A 

       150 – x 

222 )150( xys    (Mark is allocated for using the theorem of Pythagoras.)

 

 

  

dt

dx

s

x

dt

dy

s

y

dt

ds

dt

dx
x

dt

dy
y

dt

ds
s

)150(

))(150(222






  
 (mark is allocated for correct implicit differentiation) 

 

After 4 hours, kmx 140)4)(35(  and .100)4)(25( kmy  

 (1 Mark is allocated 

for finding x and  

1 mark for finding 

y.)    
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So from 222 )150( xys   we obtain that  

.10100

)140150()100(

)150(

22

22







s

s

xys

  

(mark is allocated for finding s)

 

  

 

 

From 
dt

dx

s

x

dt

dy

s

y

dt

ds )150( 
 we obtain  

hkm
dt

ds

dt

ds

dt

ds

/39,21
10100

2150

10100

3502500

)35(
10100

)140150(
)25(

10100

100









. (Mark is allocated for the correct substitution) 

     

 

The distance between the ships is changing at 21,39km/h.  (Mark is allocated for the 

interpretation) 
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ADDENDUM F 
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ADDENDUM G 
 

DESIGNING INSTRUCTIONAL MATERIAL 

 

 

G.1 INTRODUCTION 

 

All the difficulties that students have in solving related rates problems are summarized in 

section 2.12.  To be successful, any teaching strategy must address these difficulties that the 

students have. One way this can be achieved is by using scaffolding in the solution process. 

This is a well-known concept but we briefly discuss its characteristics. 

 

Wood et al (1976) identified six key elements when introducing the term scaffolding. They 

are:  

• recruitment – enlisting the learner‘s interest and adherence to the 

                         requirements of the task; 

 

• reduction in degrees of freedom – simplifying the task so that feedback 

                                                          is regulated to a level that could be used for correction; 

 

• direction maintenance – (verbal prodder and corrector) keeping the 

                                          learner in pursuit of a particular objective; 

 

• marking critical features – (confirming and checking) accentuating 

                                              some and interpreting discrepancies; 

 

• frustration control – responding to the learner‘s emotional state; 

 

• demonstration – or modelling solution to a task. 

Tharpe and Gallimore (1988) use the term ‗assisted learning‘ to develop 
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the classification of adult interactions and identify six interdependent 

strategies: 

 

• modelling – offering behaviour for imitation; 

 

• contingency management – rewards and punishment arranged to follow 

                                               on behaviour; 

 

• feeding back – information resulting from experiences; 

 

• instructing – calling for specific action; 

 

• questioning – calling for linguistic response; 

• cognitive structuring – providing explanations and belief structures 

        that organise and justify. 

 

 

When implementing scaffolding, and taking the social dimension in consideration, Wood 

(1994) proposes two distinct patterns of interaction observed in mathematics lessons. In what 

Woods termed ―the funnel pattern of interactions‖, students are provided with leading 

questions in an attempt to guide them to a predetermined solution procedure. This results in 

students needing only to generate superficial procedures rather than meaningful mathematical 

strategies. The other pattern called ‗focus pattern of interaction‘ draws students‘ attention to 

the critical aspects of a problem with the teacher posing questions to turn the discussion back 

to the student, leaving responsibility for resolving the situation with the students.  
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G.2 SCAFFOLDING IN SOLVING RELATED RATES PROBLEMS 

 

In order to illustrate how scaffolding is applied to solve related rates problems, six problems 

were selected from the prescribed textbook for MAT105 (Concepts and Contexts by James 

Stewart 4th edition, Metric Version). Appropriate questions were formulated to guide or 

scaffold the students‘ solutions in a strategic manner to answer the required rates at different 

levels or steps of the problem. For easy reference, the problems were named the kite problem, 

the spotlight problem, the lamp post problem, the runner problem, the radar problem and the 

triangle problem, respectively.  

 

G.2.1 A kite, controlled by a stationary person, flies horizontally at a height  

  of 50m above the person‘s hand. The wind speed is 2m/s. At what rate  

  is the angle between the string and the horizontal decreasing when  

  100m of string has been let out? (Kite problem) 

Solution steps 

Step A 

(a) Draw a picture of the kite in two different positions indicating clearly the angles 

between the string and the horizontal as it is blown by the wind. 

Answer 

 

 

 

                  

(a) What do you notice about the two angles? 

2  1
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Answer: 

The angle in position 2 is smaller than the angle in position 1 (that is 21   .) 

 

(b) What do you think will happen to the angle between the string and the horizontal as 

the kite moves further on the horizontal path? 

Answer: 

 

The angle gets smaller (the size of the angle decreases). 

 

Draw a picture of the kite at a height of 50m and making an angle of Ɵ with the horizontal. 

 

 

                  

Represent the height of the kite by a vertical line to the horizontal l.  

 

                 

Note: it is assumed that the height makes an angle of 90˚ with the horizontal (l), but it is not 

stated explicitly.  

 

 

 

   

50m 

   

50m 

l 
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Step B 

(a) Draw a schematic diagram in the form of  ΔABK indicating the variables sx,, and 

y where 

 is the angle between the horizontal and the string, 

x is the horizontal distance moved by the kite,  

s is the length of the string, and  

y is the height  of the kite above the ground. 

Answer:                            

       K 

 

 

 

 

 

 

 

 

(b) Which of the variable(s) in (a) of step B are constant? 

 

Answer: 

 y , since my 50  

 

(c) For each of the non-constant variables, give a symbolic (mathematical) expression for 

the rate of change of the variable with respect to time. 

Answer: 

 
dt

d

dt

ds 
,  and 

dt

dx
. 

(d) Which rates are known from the information given in the problem and which rates are 

to be found? ( that is, the required rates) 

 

 

 

                               s  

                                                             y 

                  

                           x                           B       A 

x 
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Answer: 

 
dt

dx
 is given. 








 sm

dt

dx
/2  

 
dt

ds
and 

dt

d
 must be found. 

 

(e) (i)   What is the horizontal distance the kite flies after 2 seconds? 

 

 

Answer: 

 vts
t

s
v   

 Therefore after 2 seconds, ms 4)2)(2(  . 

 

What is the horizontal distance the kite flies after 3 seconds? 

 Solution: 

 ms 6)3)(2(  . 

(e)(ii) What is the length of the string let out after 2 seconds? 

Answer: 

ms 16,502516504 22   (Remember after 2seconds, ms 4)2)(2(  ). 

What is the length of the string let out after 3 seconds? 

Answer: 

ms 36,502536506 22   (Remember after 3seconds, ms 6)3)(2(  ). 

(e)(iii) What is the angle between the string and the horizontal after 2 seconds? 

Answer: 

 

.491.1

4

50
tan

rad






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(e)(iii) What is the angle between the string and the horizontal after 3 seconds? 

Answer: 

 

.45.1

6

50
tan

rad






 

(e)(iv) What do you notice about the angle between the string and the horizontal as the kite 

moves further on its horizontal path? 

Answer: 

  is decreasing. 

Step C 

(a)(i) Write down an equation giving the relationship between the variables s and . 

:                            

       K 

 

 

 

 

Answer 

50sin.
50

sin   s
s  

 

 

(a)(ii) Write down an equation giving the relationship between the variables s  and x . 

 

Answer 

 222222 50 xsyxs  

 

(a)(iii) Use implicit differentiation to find a relationship between 
dt

ds
 and 

dt

d
. 

 

                               s  

                                                             y=50 

                  

                           x                           B       A 
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Answer  

 0cos.sin 
dt

d
s

dt

ds 


 

 

(a)(iv) Use implicit differentiation to find a relationship between  
dt

ds
 and 

dt

dx
. 

Answer 

 
dt

dx

s

x

dt

ds

dt

dx
x

dt

ds
s

dt

dx
x

dt

ds
s .22 

 

 

(a)(v) Use your answer in (a)(iv) to find 
dt

ds
 in terms of x when .100ms   

Answer 

From (a)(iv), 
dt

dx

s

x

dt

ds
. . So when ,100ms  and given that ,/2 sm

dt

dx
 we have that 

50
2.

100

x

dt

dsx

dt

ds
 . 

 

(a)(vi) Use your answer in (a)(ii) to find x and use this answer and your answer in (a)(v) to 

find the value of 
dt

ds

 

Answer 

To find x , we use the equation 222 50 xs . 

22 50 sx  

22 50)100( x  

3507500 x  

sm
dt

ds
/3

50

350
  

Note: the step to find x we call the auxiliary step. 
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(a)(vii) Use your answer in (a)(iii)  to find 
dt

d
 in terms of sin and cos when .100ms   

Answer 

From (a)(iii), 0cossin 
dt

d
s

dt

ds 
  

    


 sincos
dt

ds

dt

d
s  .  






cos

sin

s

dt

ds

dt

d
  

So when ,100ms  we have that 





cos100

sin
dt

ds

dt

d
 . 

 

(a)(viii) Use your answer in (a)(ii) to find sin and hence  and use this answer to find 

the value of cos .  

Answer 

From (a)(i), 
2

1
sin

100

50
sin    since ms 100  . Since 

62

1
sin


   

Since 
6


  , 

2

3

6
cos 



 

 

(a)(ix) Now use your answers from (a)(viii) and (a)(vi) to find the value of 
dt

d
. 

Answer 

From 





cos100

sin
dt

ds

dt

d
 we have 

2

3
100

2

1
3 










dt

d
 

srad
dt

d
/01.0


 

Note: again the step to find sin and cos we call the auxiliary step. 
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(a)(x) Express your answer in (a)(ix) without the use of symbols (that is, not in symbolic 

notation) 

Answer 

The angle between the string and the horizontal is decreasing at a rate of -0.001 

radians/s at the moment the length of the string let out is 100m.  

 

 

 

G.2.2 A spotlight on the ground shines on the wall of a building 12m away.  

  If a man, 2m tall, walks from the spotlight towards the building at a  

  speed of 1.6m/s, how fast is the length of his shadow against the wall  

  decreasing when he is 4m from the building? (Spotlight problem) 

Solution steps: 

Step A 

(a) Draw a sketch showing the position of the man after he walked 1m, then 2m and then 

3m from the spotlight.  

 

 

                                                                                        

                                 1m 

 

                                               2m 

 

 

                                                             3m           
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(b) Also let 21 , ll  and 3l be the corresponding lengths of the man‘s shadow against the 

wall of the building. What do you notice about the length of the man‘s shadow as he 

walks further from the spotlight towards the building? 

 

 

 

 

                                                                                        

                                1m 

  

                                               2m 

 

 

                                                              3m 

 

(c) Draw a sketch showing the position of the man after he walked x meters from the 

spotlight.  

 

 

                                                                                        

                                      

                             x meters 

 

 

l1 

l2  l3 
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Step B 

(a) Draw a schematic diagram of your sketch in step A(c).  

 

 

 

Answer 

 

 

 

 

 

 

         S                                 

 

 

                         12 

 

The variables x and l  represent the distance the man walks from the spotlight and the 

length of the man‘s shadow against the wall of the building, respectively. 

 

(b) Can you identify the two right angled triangles in this diagram? 

 

Answer  MNS  and  PQS  

(c)(i) What is the meaning of the symbol 
dt

dx
? 

Answer 

 It represents the rate at which the distance the man walks from the spotlight is 

changing with time 

 

                                                                                                                                                P 

 

                                                                        

                                                                        M 

                                                                                2m                                              l                                          

                                                                           

                                                                    

                                                     N                                               Q 

 

 

 

 

                                                           

                                                          12m 

 

   x 
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(c)(ii) From the information given, what can you say about 
dt

dx
? 

Answer 

 
dt

dx
 is constant 

(c)(iii) What is the numerical value of 
dt

dx
? 

Answer 

 sm /6.1 . 

(c)(iv) What is the meaning of the symbol 
dt

dl
? 

Answer  

The rate at which the length of the man‘s shadow against the wall is changing with 

time. 

(c)(v)  Is 
dt

dl
positive or negative? Give a reason for your answer. 

 Answer  

 Negative, the length is decreasing with time 

(c)(vi) Is the numerical value of 
dt

dl
known or unknown? 

Answer  We are required to find this 

 

Step C 

(a) Find an equation which gives a relationship between all variables and constants in the 

schematic diagram? 

Answer  

 
12

2 x

l
  or 24lx  )120(  x  

(b) Use the equation in (a) to answer the question in the problem, that is find the value of 

dt

dl
. 
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From 24lx , we have .0
dt

dl
x

dt

dx
l   

    
dt

dx

x

l

dt

dl
  

 When 8x , that is, when he is 4m from the building, ml 3
8

24
 . 

 sm
dt

dl
/6.0)6.1(

8

3
  

(c)(i) Can you interpret your answer in (b) verbally ( in words), that is, without the use of 

symbols. 

 

Answer  

The length of the man‘s shadow is decreasing at a rate of 0.6m/s when he is 4m from 

the building. 

(c)(ii) Calculate 
dt

dl
when 9x , 10x , 11x  and 12x . 

Answer  When 9x , sm
dt

dl
/470.0  

  When 10x , sm
dt

dl
/384.0  

  When 11x , sm
dt

dl
/317.0  

  When 12x , sm
dt

dl
/266.0

 

(c)(iii) Can you interpret the meaning of the last answer when x = 12? 

 

Answer The instant just before the man is at the wall, the length of the man‘s shadow 

is decreasing at a rate of 0.266m/s. 
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G.2.3 A girl, who is 5 feet tall, is approaching a post that holds a lamp 15 feet  

  above the ground. If she is walking at a speed of 4ft/s, how fast is the  

  end of her shadow moving when she is 17ft away from the base of the  

  lamp post? (Lamppost problem) 

 

Solution steps 

Step A 

(a) Draw a sketch to explain your understanding of the information given in the first 

sentence of the problem, indicating clearly the position of the girl‘s shadow. 

Answer 

                                                                                                                                                                                      

 

                       Girls‘ shadow 
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Step B 

A schematic diagram of the sketch in Step A looks as follows: 

 

 

 

 

 

 

 

 

where the line CD represents the girl whose height is x  feet, AB represents the lamp 

post of height y  feet, l  is the length of the girl‘s shadow and m  is the distance from 

the girl to the base of the lamp post. 

 

(a)(i) Which of the variables lyx ,,  and m are constants? 

Answer 

     x and y 

 

(a)(ii) For those variables that are not constants, write an expression for the rate of change 

with respect to time for that variable. 

Answer     
dt

dl
 and 

dt

dm
    

  

(a)(iii) Which rates of change are given in the statement of the problem? 

Answer     sft
dt

dm
/4

 

 

 

 

                                                                                                               A 

                                                                                                                  

 

                                                        C                                                      y 

                                                          x 

                                                     

           E                       l                   D                            m                      B 
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(a)(iv) Explain your answer in (a)(iii) 

 Answer 

The rate is decreasing 

 

(a)(v) Can you identify two similar triangles, in the schematic diagram in step B? 

Answer     ECD  and EBA  

 

(a)(vi) Can you now write down an equation which gives a relationship between the 

variables. 

Answer    
mllml

y

l

x







155
  

 

(a)(vii) Use this equation to write l  in terms of .m  

Answer 

       lml 1555   

 lm 105   

 ml
10

5
  or ml

2

1


 

 

(a)(viii) Calculate the length of the girl‘s shadow when she is 28ft, 24ft, 20ft and 18f t 

from the lamppost. 

Answer  

For 28m : ftl 14)28(
2

1
 . 

For 24m : ftl 12)24(
2

1
 . 

For 20m : ftl 10)20(
2

1
 . 

For 18m : ftl 9)18(
2

1
 . 
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(a)(xi)   Calculate the length of the tip of the girl‘s shadow when she is 28ft, 24ft, 20ft and 

18f t from the lamppost. 

 

Answer 

For 28m : ftlm 421428  . 

For 24m : ftlm 361224  . 

For 20m : ftlm 301020  . 

For 18m : ftlm 27918  . 

 

(a)(x) What do you notice about the length of the girl‘s shadow as she approaches the lamp 

post? 

Answer    It increases 

 

(a)(xi) What do you notice about the distance from the base of the lamp post to the tip of the 

girl‘s shadow? 

Answer    It remains the same 

 

Step C 

(a)(i) At what rate is the length of the girl‘s shadow decreasing when she is 17ft from the 

base of the lamp post?  

Answer  

                    ml
2

1
  

  

sft
dt

dl

dt

dl

dt

dm

dt

dl

/2

4
2

1

2

1







 

Therefore the length of her shadow is decreasing at a rate of sft /2 . 
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(a)(ii) How fast is the end of her shadow moving when she is 17ft away from the base of the 

lamp post? 

 

Answer  

        ml   

 

 

m
dt

d
l

dt

d

ml
dt

d





 

 
sft /6

)4()2(




 

Therefore the end of her shadow is approaching the lamp post at a rate of 6ft/s, which 

is faster than the girl is walking.  
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G.2.4 A runner sprints around a circular track of radius 100m at a constant speed of  

 ./7 sm  The runner‘s friend is standing at a distance 200m from the centre of  

 the track. How fast is the distance between the friends changing when the  

 distance between them is 200m? (Runner problem) 

 

Solution steps 

Step A 

(a) Use a sketch to explain your understanding of the first sentence of the problems. 

Answer  

 

 

 

 

 

 

 

 

  

Runner sprinting at 7m/s 

 

 

 

 

 

 

 

 

O 

                 100m 
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Suppose P and P‘ are two points on the track and the distance between them are 

denoted by  

x . Let   be the angle subtended at the centre by the arc PP‘. Note that it is important 

to  

know that both variables x  and  are functions of t . 

 

 

 

 

 

 

 

     

                                                                                                                                                                                                                                                                                      

                  

                                                                                                   

                                   P‘                                                   P   

                                                                              x 

 

(a)(i) Write down a formula giving x in terms of  . 

Answer  

 100x  

(a)(ii) Find 
d

dx
 

Answer  100
d

dx

 

 

 

      O 

                 

                             100m 
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(a)(iii) What is 
dt

dx
 in terms of  ?  

Answer  
dt

d

dt

d

d

dx

dt

dx 


100. 

 

 

(a)(iv) Let V be the speed of the runner sprinting around the track. Write V in terms of x. 

Answer  
dt

dx
V   

 

(a)(v) What is the numerical value of V? 

Answer   smV /7 . 

 

(a)(vi) What is 
dt

d
? 

Answer  

srad
dt

d

dt

d

/07.0

1007








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Step B 

(a) Draw a picture of what you read in the second sentence. 

 

 

 

                                                                                              200m               F 

 

                                            100m                                     

                                                                 

              R 

 

 

 

 

For convenience, choose F to be on the horizontal line through O. 

 

 

                                                                                     

 

                                          O                                                                                 F 
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Step C 

We now work out the distance between the runner and his friend at different positions as the 

runner runs around the track. 

                                              R2 

                                                           R5 

                  R4 

                                                           60˚ 

          R1                                       135˚                                                                                                                                        

                                               O                            R3                                         F 

 

                                             

                        R                             

                                                           

(a)(i) What is the distance between the runner and his friend when the runner is at position 

R1 on the circular track? 

                                               

                                                           

                      

                                                            

                                                                                                                                                                                      

             R1                                 O                                                                     F 

 

         

                                                     

                                                 

Answer  

 300m 
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(a)(ii) What is the distance between the runner and his friend when the runner is at position 

R2 on the circular track? 

 

                                              R2 

                                                           

                      

                                                            

                                                                                                                                                                                     

                                               O                                                                           F 

 

                                         

                                                     

                                                           

 

Answer  let l2 represent the distance between the runner and the friend. Then  

  

 

 

5100

50000

50000

200100

2

2

2

2

222

2









l

l

l

l

 

(a)(iii) What is the distance between the runner and his friend when the runner is at position 

R3 on the circular track? 

 

Answer  100m 
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(a)(iv) What is the distance between the runner and his friend when the runner is at position 

R4 on the circular track? 

 

                                               

                                                           

                  R4 

                                                            

                                                 135˚                                                                                                                                        

                                                    O                                                                            F 

 

                                         

                                                     

                                                           

Answer  let l4 represent the distance between the runner and the friend. Then 

   

ml

l

l

79.279

2

1
4000050000

135cos)200)(100(2200100

4

2

4

222

4















 

 

 (a)(v) What is the position of the runner on the track when the distance between the runner 

and his friend is 210m?  

Answer  

 











52.81

1475.0cos

40000

5900
cos

cos4000050000210

cos)200)(100(2200100210

2

222








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(a)(vi) Give a symbolic description (in terms of l and t) of the phrase ―how fast is the 

distance between the friends changing‖ 

Answer  

 
dt

dl

 

 

(a)(vii) Write down an equation in terms of l and t which will enable you to find 
dt

dl
  

when l = 200m? 

 

Answer  

ldt

dl

ldt

dl

l

dt

d

dt

dl

dt

d

dt

dl
l

l













sin1400

)07.0(sin20000

sin20000

sin)200)(100(22

cos)200)(100(2200100 222











 

(a)(viii) If l = 200m can you find a value for sin ? 

Answer  

 

4

1

40000

10000
cos

10000cos40000

cos)200)(100(2200100200 222













 

 Now  2cos1sin   

 Therefore  

2

2

1
1sin 








  

  968.0sin     
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(a)(ix) Find 
dt

dl
 if l = 200 and the value of sin  which you calculated above. 

Answer  

 From 
ldt

dl sin1400
 , we have sm

dt

dl
/776.6

200

)968.0(1400


 

 

 

After working through the first four problems in which scaffolding was used, it is expected 

that the students will now have a greater understanding how related rates problems should be 

solved. It is for this reason that the final two problems have limited scaffolding introduced in 

order to arrive at a solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



189 
 

                                                         

P                                                                                                    

                                       x 

 

          O 

 

 

 

 

           R 

G.2.5 A plane flying with a constant speed of 300km/h, passes over a ground radar  

station at an altitude of 1km and climbs at an angle of 30˚. At what rate is the  

distance from the plane to the radar station increasing a minute later? (Radar  

problem) 

 

Solution Steps 

Step A  

 At the instant the plane is directly above the radar station, picture (imagine) a vertical 

line from the radar station to the plane that is perpendicular to the horizontal line 

representing the path of the plane. At the point of the intersection of these two lines, 

the plane climbs at an angle of 30˚. Let y be the distance between the plane (P) and 

the radar station (R). A schematic diagram of the situation is as follows. 

 

 

 

                                       

                                   30˚ 

      y 

 

                       1km 

 

 

  

Given: hkm
dt

dx
/300  

Required: 
dt

dy
 when hourst

60

1
 (1 minute) 

Equation relating the variables x and y and the constants: 

O 
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22

22

222

1

2

1
21

120cos))(1(21

xxy

xxy

xxy















 

 








 






y

x

dt

dx

dt

dy

x
dt

dx

dt

dy
y

dt

dx
x

dt

dx

dt

dy
y

2

21

212

22

 

So when kmx 5
60

1
300 
















  and 31551 2 y , 

 

hkm
dt

dy

dt

dy

/35.296

312

)5(21
300















 

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G.2.6 Two sides of a triangle are 4m and 5 m in length and the angle between  

  them is increasing at a rate of srad /06,0 . Find the rate at which the  

  area of the triangle is increasing when the angle between the sides of  

  fixed length is 
3


.(Triangle problem) 

 

Solution Steps 

We let  be the angle between the two sides. We name the triangle ΔEBC with  4EB and 

5BC . We also let A the area of the triangle at time t.  

 

                        E 

 

                                                                 

                                 4                          Area 

                                                                                   

                                         B                       5                                    C   





sin10

sin.5.4.
2

1





A

A
 

cos10
dt

dA
 

dt

d

  

But since srad
dt

d
/06,0


and 

3


  , we have 

 

sm
dt

dA

dt

dA

/3,0

)06,0.(
3

cos.10

2













  

 

Thus the area is increasing at a rate of sm /3,0 2 .  
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G.3 DYNAMIC VERSION OF THE PROBLEMS 

According to Zimmerman and Cunningham (1991), visualization describes the process of 

producing or using geometrical or graphical representations of mathematical concepts, 

principles or problems, whether hand drawn or computer generated. Computer graphics has 

expanded the scope of and power of visualization in basically every field, including 

mathematics. According to a report to the National Science Foundation: Visualization in 

Scientific Computing (VISC), McCormick et. al. (1987) asserted that visualization transforms 

the symbolic into the geometric, enabling researchers to observe their simulations and 

computations. Visualization offers a method of seeing the unseen. From the perspective of 

mathematical visualization, the constraint that images must be manipulated mentally, without 

the aid of pencil and paper, seems artificial. In fact, in mathematical visualization, what we 

are interested in is precisely the student's ability to draw an appropriate diagram (with pencil 

and paper, or in some cases, with a computer) to represent a mathematical concept or 

problem and to use the diagram to achieve understanding, and as an aid in problem solving. 

In mathematics, we are more concerned about visualizing a concept or problem. To visualize 

a diagram means simply to form a mental image of the diagram, but to visualize a problem 

means to understand the problem in terms of a diagram or visual image. Mathematical 

visualization is the process of forming images whether it is mentally, or with pencil and 

paper, or with the aid of technology and using such images effectively for mathematical 

discovery and understanding. In related rates problems, we need to visualize the problem to 

solve the situation. The role of computers in mathematics has shaped our concept of the 

nature of the mathematics. Computers have a direct role in the visualization of mathematics. 

The images it generates do not have to be static but can be dynamic or interactive or user 

controlled. It can be a graphic simulation of a process, such as a plane flying over a radar 

station. Other technologies can also be considered such as film or software designed to 
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illustrate its process. To design specific software for mathematics can be very expensive and 

sometimes not user friendly. In this section we use GeoGebra to design a dynamic version of 

the problems G.2.1 – G.2.6 which is interactive. Students can experiment by changing the 

variables in the problem, resulting in a corresponding change in related variables. This is 

immediately visible to the students; thus giving a visual image which can enhance 

understanding.  

The reader can open the designed examples with the software GeoGebra. This can be 

downloaded for free by visiting www.geogebra.org. The reader can also use the following 

link for easier download: http://www.geogebra.org/cms/en/download/. If GeoGebra is loaded 

on the reader‘s personal computer (PC), the accompanying CD contains the six problems I 

designed as well as an explanation of how to use it.  

  

 

 
 

G.4 CONCLUSION 

 

 

In this addendum, we designed instructional material for the teaching of Related Rates. This 

approach met with very positive responses from colleagues and students. It is especially the 

dynamic presentation which students enjoyed. More work will be done on developing this 

aspect of our proposed teaching strategy. 

 

 

 

 

http://www.geogebra.org/
http://www.geogebra.org/cms/en/download/
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