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Abstract 

Type 2 diabetes mellitus (T2DM), a metabolic disease characterized by chronic 

hyperglycemia, is the most prevalent form of diabetes globally, affecting 

approximately 95 % of the total number of people with diabetes i.e. approximately 

366 million. Furthermore, it is also the most prevalent form in South Africa (SA), 

affecting approximately 3.5 million individuals. This disease and its adverse 

complications can be delayed or prevented if detected early. Standardized 

diagnostic tests for T2DM have a few limitations which include the inability to 

predict the future risk of normal glucose tolerance individuals developing T2DM, 

they are dependent on blood glucose concentration, its invasiveness, and they 

cannot specify between T1DM and T2DM. Therefore, there is a need for 

biomarkers which could be used as a tool for the early and specific detection of 

T2DM. 

MicroRNAs are small non-coding RNA molecules which play a key role in 

controlling gene expression and certain biological processes. Studies show that 

dysregulation of microRNAs may lead to various diseases including T2DM, and 

thus, may be useful biomarkers for disease detection. Therefore, identifying 

biomarkers like microRNAs as a tool for the early and specific detection of T2DM, 

have great potential for diagnostic purposes.  

The main focus of this investigation, therefore, is the early detection of T2DM by 

the identification and validation of novel biomarkers. Furthermore, based on 

previous studies, the aim of the investigation was to identify differentially 

expressed miRNAs as well as identify their potential target genes associated with 

the onset and progression of T2DM. 
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An in silico approach was used to identify miRNAs found to be differentially 

expressed in the serum/plasma of T2DM individuals. Three publically available 

target prediction software were used for target gene prediction of the identified 

miRNA. The target genes were subjected to functional analysis using a web-based 

software, namely DAVID. Functions which were clustered with an enrichment 

score > 1.3 were considered significant. The ranked target genes mostly had gene 

ontologies linked with “transcription regulation”, “neuron signalling, and “metal 

ion binding”. The ranked target genes were then split into two lists – an up-regulated 

(ur) miRNA targeted gene list and a down-regulated (dr) miRNA targeted gene list. 

The in silico method used in this investigation produced a final total of 4 miRNAs: 

miR-dr-1, miR-ur-1, miR-ur-2, and miR-ur-3. Based on the bioinformatics results, 

miR-dr-1 and its target genes LDLR, PPARA and CAMTA1, seemed the most 

promising miRNA for biomarker validation, due to the function of the target genes 

being associated with T2DM onset and progression.  

The expression levels of the miRNAs were then profiled in kidney tissue of male 

Wistar rats that were on a high fat diet (HFD), streptozotocin (STZ)-induced 

T1DM, and non-diabetic control rats via qRT-PCR analysis. The hypothesis was 

that similar miRNA expression would be found in the HFD kidney samples 

compared to serum expression levels of the miRNA obtained from the two 

databases, since kidneys are involved in cleansing the blood from impurities. This 

hypothesis proved to be true for all miRNAs except for miR-ur-2. Additionally, 

miR-ur-1 seemed the most significant miRNA due to it having different expression 

ratios for T1DM and T2DM (i.e. -7.65 and 4.2 fold, respectively).  
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Future work, therefore, include validation of the predicted target genes to the 

miRNAs of interest i.e. miR-dr-1: PPARA and LDLR and miR-ur-1: CACNB2, 

using molecular approaches such as the luciferase assays and western blots. 

Keywords: T2DM, pre-diabetes, early diagnosis, novel biomarkers, in silico, 

biomarker validation, miRNA expression profiling 
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Chapter 1: Literature Review 

 

1. Introduction 

1.1. Diabetes mellitus: A clinical definition 

Diabetes mellitus is a complex metabolic disease, characterised by chronic high 

blood glucose levels (Lin and Sun, 2010). Over time, diabetes has rapidly become 

a worldwide epidemic (Stumvoll et al, 2005; IDF, 2014) – the annual increasing 

incidence of this disease is predicted to make it the leading cause of global 

morbidity and mortality (Sebastiani, 2011).  There are several types of diabetes, 

caused by the interplay between environmental and genetic factors and is 

characterised according to its aetiology (Sebastiani, 2011).  The most common 

forms of diabetes are Type 1 Diabetes Mellitus (T1DM), Type 2 Diabetes Mellitus 

(T2DM) (Lin and Sun, 2010) and Gestational Diabetes Mellitus (GDM) (IDF, 

2014). Other less common forms of diabetes include maturity-onset diabetes of the 

young (MODY) and late-onset autoimmune diabetes of the adult (LADA) 

(Stumvoll et al, 2005). Table 1.1 gives a brief description of each form of diabetes. 

This thesis will focus solely on T2DM, as it is the most common form of diabetes 

worldwide – affecting, approximately, 95 % of the world’s population (IDF, 2014). 
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Table 1.1: An overview of the different forms of diabetes 

TYPE DESCRIPTION 

T1DM An autoimmune disease whereby the immune system attacks the 

β-cells within the pancreas, therefore, lowering/stops the secretion 

of insulin. It mainly occurs in children and young adults (Gilespie, 

2006) 

T2DM A heterogenous disorder which is characterised by the poor action 

and/or secretion of insulin. This mainly affects people between 20 

– 70 years of age (Ahmad and Crandall, 2010). 

GDM Occurs in pregnant women due to hormonal changes. Women 

who had GDM have a greater chance of developing T2DM later 

in life (IDF, 2014). 

MODY A monogenetic and autosomal-domininant form of diabetes. The 

action of the gene mutations involved results in the dysfunctioning 

of β-cells in the pancreas and is often mistaken for T2DM. It 

mainly occurs in young individuals (Nyunt et al, 2009) 

LADA Type 1 diabetes develops in individuals over the age of 30 years. 

These individuals are said to produce autoantibodies against β-

cells, therefore, affecting the secretion of insulin (as seen in 

T2DM) (Malecki and Skupien, 2008) 
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1.2. Epidemiology of T2DM 

Diabetes mellitus is considered a global epidemic, estimated to have affected 

approximately 382 million people in 2013 (IDF, 2014). Furthermore, of that 

number, 90 to 95 % were estimated to have type 2 diabetes (T2DM) (IDF, 2014). 

The remaining 5 to 10 % is accounted for by monogenic forms (Stumvoll et al, 

2005) i.e. T1DM, MODY and LADA. The epidemic is on the constant rise due to 

rapid urbanisation, nutrition transition, and an increase in sedentary lifestyle (Hu, 

2011). Furthermore, it was found that T2DM is particularly common in low- to 

middle-income communities in all countries (Hu, 2011; IDF, 2014). High 

development and wealth is correlated with lower early mortality rates caused by 

diabetes, thus, clarifying why socially disadvantaged communities are more 

vulnerable to T2DM (IDF, 2014). Pilkington et al (2011) states that due to the lack 

of money and nearby healthcare facilities, managing diabetic complications is more 

challenging for individuals from low- to middle-income communities, hence the 

higher mortality rates within those communities. 

1.2.1. The prevalence of T2DM in Africa and South Africa 

Africa is said to have 20 million people living with diabetes – however, the number 

could be higher as it was further estimated that approximately 62 % of the 

population is undiagnosed (IDF, 2014). In South Africa (SA), the prevalence of 

T2DM is unknown (Jacovides et al, 2014) as epidemiological data for this disease 

is scarce (Motala et al, 2003). However, it is estimated that approximately 3.5 

million South Africans are affected (Ottermann, 2013). The South African 

government has to pay a large amount of money for the management of short- and 

long-term complications associated with diabetes (Distiller, 2004). In 2013 it was 

estimated that the African region paid 4 billion US dollars (USD) on diabetes health 
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care (IDF, 2014). The IDF does not specify how much money SA spent in 2013, 

but an epidemiological study done by Zhang et al (2010) estimated that SA spent 

between 865,000 and 1.54 million USD for treating diabetic adults between the 

ages of 20 to 70 in 2010. They further predicted that in the year 2030, SA diabetic 

health expenditure will increase between 1.08 million and 1.97 million USD (Zhang 

et al, 2010). Most of the money is thought to be spent on treating the complications 

linked with T2DM complications (Ottermann, 2012). 

The prevalence of diabetes varies according to population and ethnic groups. Pima 

Indians from North America is an example which further proves that the influence 

of environmental factors plays an equally important role in the development of 

T2DM as genetic susceptibility does (Soita, 2009). This group is reported to have 

the world’s highest prevalence of T2DM. It is said that urbanization could be the 

main cause of this i.e. ethnic groups from rural communities, accustomed to labour 

intensive activities and high fibre diets, adapt to the western lifestyle and eat diets 

rich in fat accompanied by a sedentary lifestyle (Soita, 2009). Population based 

studies conducted in SA in 2005 have reported varying diabetes prevalence rates 

amongst different racial groups, with the highest prevalence being observed in the 

Indian community with 8.5 % and 11.5 % for men and women, respectively (Soita, 

2009). This is closely followed by the coloured community with the diabetes 

prevalence percentage of 3.1 % and 5.8 % for men and women, respectively (Soita, 

2009). 

The high percentage of South Africans undiagnosed with T2DM and the amount of 

money that is being spent on healthcare for diabetes-linked complications is 

worrying and unnecessary. Especially since this disease, as well as its associated 

short- and long-term complications, can be prevented (or delayed) if diagnosed 
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early and if certain lifestyle changes and eating habits are implemented (OECD, 

2013).  

 

1.3. Type 2 diabetes mellitus 

Type 2 diabetes mellitus (T2DM) is a heterogenous metabolic disorder, 

characterised by three metabolic defects: (i) impaired insulin secretion from the 

pancreas, (ii) cells that are resistant to insulin action (Ahmad and Crandall, 2010), 

and (iii) abnormal glucose uptake in the splanchnic area (DeFronzo, 2004). These 

defects ultimately result in metabolic malfunctions which include: hyperglycaemia, 

hyperinsulinaemia – due to the cells being less sensitive to insulin, causing a build-

up of insulin in the blood (Nicolaides and Jones, 2002), and hyperlipidaemia 

(Novosyadly et al, 2010). This disease is usually preceded by impaired fasting 

glucose (IFG) and/or impaired glucose tolerance (IGT) – also referred to as pre-

diabetes. Pre-diabetes is defined as the state where blood glucose levels are higher 

than the normal, but not yet high enough for the diagnosis of T2DM (Soita, 2009). 

The symptoms associated with hyperglycaemia include: excessive urination, 

increased hunger, increased thirst, tiredness, and weight loss (Soita, 2009). Over 

time, the symptoms may include blurry vision, reoccurring infections, and slow 

wound healing (Clark et al, 2007). However, these symptoms are not specific for 

only type 2 diabetes (Clark et al, 2007). Additionally, individuals may be 

asymptomatic i.e. they do not experience any of the abovementioned symptoms, 

therefore, impairing the early diagnosis of diabetes (Levitt, 2009; Rao et al, 2009; 

Soita, 2009; Valdez, 2009) and these individuals are usually diagnosed with T2DM 

when irreversible complications linked with T2DM presents itself (ADA, 2014). 
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1.4. Glucose metabolism and regulation 

Glucose is the primary source for energy production in cells and is maintained 

within a narrow and well-balanced range (Aronoff et al, 2004; Soita, 2009; Triplitt, 

2012) i.e. between 70 to 110 mg/dL (Grayson et al, 2012). Glucose in the 

circulatory system is acquired in the following ways: (1) absorption through the 

gastrointestinal tract after ingestion, (2) breakdown of glycogen in the liver 

(glycogenolysis), (3) breakdown of fat and protein during fasting (gluconeogenesis) 

(Aronoff et al, 2004, Giugliano et al, 2008, Triplitt, 2012), and (4) renal 

reabsorption in the kidney (Gerich, 2009; Triplitt, 2012). Most glucose 

consumption (approximately 50 %) takes place in the brain (which is not dependent 

on insulin), 25 % gets consumed by insulin-dependent tissues (i.e. adipose tissue 

and skeletal muscle) and the remaining 25 % gets used by the splanchnic area (liver 

and gastrointestinal tissue) (DeFronzo, 2004; Triplitt, 2012). However, Gerich 

(2009) describes that the kidney utilizes approximately 10 % of ingested glucose 

while approximately 45 % of glucose gets converted to glycogen in the liver, ~ 30 

% is taken up by the skeletal muscle (whereby excess is later converted to 

glycogen), ~ 15 % is taken up by the brain, and the remaining 5 % is taken up by 

adipose tissue.  

Glucose regulation and homeostasis is driven mainly by insulin and glucagon 

hormones (Aronoff et al, 2004; Triplitt, 2012). The role that these two hormones 

play in the homeostasis and regulation of blood glucose will be briefly explained in 

the following section. 
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1.4.1. Normal glucose regulation 

After ingestion, carbohydrates are broken down to simple sugars such as glucose 

and fructose in the intestinal tract (Schaefer et al, 2009). This results in a spike in 

blood glucose levels, stimulating the beta cells (β-cells) within the pancreatic islets 

of Langerhans to secrete insulin (Soita, 2009). The main metabolic role of insulin 

is to increase the rate at which glucose is transported into the skeletal muscle and 

adipose tissue (Maitra, 2012), thus aiding in decreasing blood glucose levels. 

Additionally, insulin aids in converting excess glucose to glycogen in the liver. 

Simultaneously, due to the presence of insulin, endogenous glucose production 

(gluconeogenesis and glycogenolysis) is inhibited due to glucagon being 

suppressed due to the paracrine effect (Aronoff et al, 2004). 

Alternatively, during the first 8 to 12 hours of fasting, the primary mechanism of 

glucose appearance is made available by glycogenolysis. Hence, low blood glucose 

levels stimulates the alpha cells (α-cells) within the pancreas to secrete glucagon. 

Glucagon converts glycogen in the liver back to glucose (Aronoff et al, 2004). This 

process, therefore, raises blood glucose levels back within the normal range, as 

illustrated in Figure 1.1. The liver is the main site of gluconeogenesis and only 

occurs under extreme starvation periods (Aronoff et al, 2004). It should be noted 

that may also occur within the kidneys (Triplitt, 2012). Gluconeogenesis is the 

metabolic process where glucose gets produced from non-carbohydrate substrates 

such as pyruvate, lactate, glycerol, and glucogenic amino acids (Soita, 2009) 
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Figure 1.1: The bi-hormonal model of glucose homeostasis by insulin and 

glucagon hormones in normal individuals. Insulin is involved in glucose 

disappearance, whereas glucagon is involved in glucose appearance (Aronoff et al, 

2004). (Adopted from Soita, 2009) 

 

Despite insulin and glucagon being the main glucoregulatory hormones involved in 

glucose homeostasis, there are other hormones involved such as: amylin, glucagon-

like peptide 1 (GLP-1), and glucose-dependent insulinotropic peptide (GIP) 

(Aronoff et al, 2004). Both GLP-1 and GIP are incretin hormones, which are 

secreted from the small intestine to the pancreas for the production of insulin after 

eating a meal (Knop et al, 2009). Furthermore, Amylin, is a neuroendocrine 
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hormone which is secreted simultaneously with insulin from the β-cells in the 

pancreas. Its functions include inhibiting glucagon secretion after eating a meal, 

slowing down the emptying of the stomach, and increasing satiety (Aronoff et al, 

2012). 

 

1.5. Pathogenesis and pathophysiology of T2DM 

The pathogenesis of T2DM is multifactorial; it involves the combination of both 

genetic and environmental risk factors such as obesity, sedentary lifestyle, smoking, 

and age (Kaku, 2010). There are three main defects which play a role in the 

development of hyperglycaemia in T2DM: increased hepatic glucose production, 

diminished insulin secretion, and impaired insulin action (Lin and Sun, 2010). 

Hence, the two main metabolic defects which plays a central role in the 

pathophysiology of T2DM are insulin resistance and β-cell dysfunction (D’Adamo 

and Caprio, 2011; Guay et al, 2011; Maitra, 2012), which will be briefly discussed 

in the sections below.  

1.5.1. Insulin resistance  

Insulin resistance refers to the condition where insulin-sensitive tissues fail to 

respond to physiological concentrations of insulin, resulting in poor glucose uptake, 

reduced glycolysis and fatty acid oxidation in the liver, and the inability to suppress 

gluconeogenesis (Gastaldelli, 2011; Maitra, 2012). Evidence has demonstrated that 

insulin resistance occurs approximately 10 to 20 years before the onset of the 

disease and is the best predictor of whether or not the individual would eventually 

develop T2DM (D’Adamo and Caprio, 2011). There are many defects linked with 

insulin resistance, with obesity being one of the major factors involved in the 
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development of insulin resistance (Soita, 2009; D’Adamo and Caprio, 2011; Day 

and Bailey, 2011; Maitra, 2012) – this usually precedes the presence of 

hyperglycaemia in obese individuals (Kasuga, 2006; Maitra, 2012). An individual 

is classified as obese if their body mass index (BMI) exceeds 30 kg/m2 (Soita, 

2009). BMI is calculated as weight in kilograms divided by the individual’s height 

in metres squared (Flegal et al, 2013). Further evidence has shown that the 

important contributing factor of insulin resistance is fat partitioning (D’Adamo and 

Caprio, 2011), particularly visceral fat accumulation (which is reflected as 

increased abdominal girth) has been shown to be linked with insulin resistance and 

T2DM (D’Adamo and Caprio, 2011; Eckel et al, 2011).  

There are three main metabolic stresses that link obesity to T2DM: (i) increased 

levels of adipokines/cytokines (e.g. tumor necrosis factor-α, resistin, retinol binding 

protein 4) and decreased levels of adiponectin, (ii) ectopic fat deposition in the liver, 

muscles and dysmetabolic sequelae, and (iii) mitochondrial dysfunction, which was 

shown to not only decrease insulin sensitivity, but also compromises β-cell function 

(Kim et al, 2011; Eckel et al, 2011). 

1.5.2. β-cell dysfunction 

β-cell dysfunction and the reduction of β-cell mass was shown to play important 

roles in the transition from normal glucose tolerance (NGT) to hyperglycaemia and 

the pathogenesis of T2DM (Gastaldelli, 2011; Meier and Bonadonna, 2013). The 

progression of NGT to T2DM usually involves increased insulin secretion rates due 

to the body trying to compensate for the insulin-dependent tissues becoming 

increasingly more insulin resistant (D’Adamo and Caprio, 2011; Gastaldelli, 2011; 

Eckel et al, 2011). Furthermore, studies have shown that increased insulin secretion 

rates are dependent on increased insulin resistance i.e. secretion rates are 
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approximately two times higher in obese individuals compared to healthy 

individuals (Gastaldelli, 2011). It should be noted, however, that approximately 20 

% of obese individuals do not develop T2DM (Meier and Bonadonna, 2013). Their 

blood sugar levels are within the normal range due to increased β-cell mass and 

function (Eckel et al, 2011). T2DM eventually develops due to the inability of the 

β-cells’ secretory capacity to overcome the insulin resistance of tissues (Gastaldelli, 

2011).  

There are many additional factors besides insulin resistance which influence the 

function of pancreatic β-cells, which include hyperglycaemia/glucotoxicity, 

autoimmunity, inflammation, adipokines, islet amyloid, incretins (Cernea and 

Dobreanu, 2013), and lipotoxicity (D’Adamo and Caprio, 2011; Cernea and 

Dobreanu, 2013). Other factors that may be involved in the deterioration of β-cell 

mass and function could be due to genetic/epigenetic (Eckel et al, 2011) and 

environmental factors (D’Adamo and Caprio, 2011). 

Despite all the current findings that link β-cell dysfunction to the eventual 

development of T2DM, it is still unclear whether the root cause lies in β-cell 

dysfunction as an initiator of β-cell loss, or whether increasing secretory demand 

causes ongoing loss of β-cells (Gastaldelli, 2011).  

 

1.6. Complications linked to T2DM 

Diabetes mellitus has the potential to increase the prevalence of already 

burdensome diseases (Piotie, 2013). It is, therefore, vitally important that diabetic 

patients maintain their blood sugar levels within the normal range. The long-term 

effects of hyperglycaemia, if not properly managed, is damaging to both small and 
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large blood vessels (Forbes and Cooper, 2013), hence the complications is 

characterised by macro- and microvascular complications (Fowler, 2008; Soita, 

2009; Piotie, 2013). Macrovascular complications include coronary artery disease 

and strokes. Whereas microvascular complications include diabetic nephropathy 

(kidney diseases), neuropathy (nerve damage), and retinopathy (eye damage) 

(Fowler, 2008; Forbes and Cooper, 2013), with a high probability of vision loss 

(ADA, 2012a).  

In Africa, the leading cause of death due to T2DM is cardiovascular diseases 

(CVDs) (Piotie, 2013). Diabetic patients are three to four times more likely to 

present with a stroke than a non-diabetic individual. Furthermore, diabetic patients 

are two to three times more likely to die of CVDs such as strokes or heart attacks 

(Piotie, 2013). 

According to previous studies, the major risk factor for the development of CVDs 

(and other macrovascular diseases) in T2DM patients is impaired kidney function 

(Forbes and Cooper, 2013; Wang et al, 2014). A study done by Rodriguez-Poncelas 

et al (2014) found that the decrease in estimated glomerular filtration rate (eGFR) 

and the increase in urine albumin creatinine ratio (UACR), independently, are risk 

factors that increases the risk of CVDs in T2DM patients. Therefore, it is 

recommended that greater attention be paid to the development of nephropathy 

during the early stage of disease in order to manage it correctly (Forbes and Cooper, 

2013).  

Foot amputations, caused by peripheral neuropathy, are also a common occurrence 

amongst diabetics (Clayton and Elasy, 2009). It is estimated that approximately 80 

% of all amputations occur after the occurrence of foot injuries or ulcerations 
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(Fowler, 2008). Neuropathy is defined as damage of the nerves and, in T2DM 

patients, is caused by prolonged exposure of the nerves to high blood glucose levels 

(Clayton and Elasy, 2009). With regard to peripheral neuropathy, individuals 

usually lose sense of feeling in their lower and upper extremities (Fecko, 2012). 

T2DM patients are recommended to frequently check for foot wounds (such as 

ulcerations under the foot) that do not heal fast enough. Foot ulcerations that are 

not properly cared for would eventually lead to the amputation of that limb (Ibbald 

et al, 2012). Other types of neuropathy includes autonomic neuropathy (which 

could cause problems such as erectile dysfunction, incontinence, gastroparesis), 

radiculoplexus neuropathy (affects nerves in the thighs, hips, and legs), and 

mononeuropathy (this causes damage to one specific nerve) (Tanenberg, 2009). 

 

1.7. Current methods used for diagnosing T2DM 

In order to prevent the continuously increasing morbidity and mortality rates 

associated with the abovementioned complications caused by T2DM, it is very 

important for the disease to be diagnosed early. T2DM (and its irreversible 

complications) can be prevented, or delayed, if detected early (Maynard et al, 

2007). Current screening methods used depends solely on glucose levels in the 

blood, and are invasive as they all require blood samples. The American Diabetes 

Association (ADA) recommends that asymptomatic individuals be screened for 

T2DM by one of the following tests: the oral glucose tolerance test (OGTT), fasting 

plasma glucose (FPG) test, and the Haemoglobin A1c (HbA1c) test (ADA, 2012b; 

ADA, 2014), which was recently approved by the American Diabetes Association 

(ADA) in 2010 and The World Health Organisation (WHO) in 2011. Another test 

includes the random plasma blood test, however, this is not as reliable as the 
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aforementioned diagnostic methods. A brief summary for each diagnostic test is 

briefly explained in the subsequent sections. 

1.7.1.  Random plasma glucose (RPG) test 

Random plasma glucose tests can be done at any time of the day, without regard of 

the time since the last meal (SEMDSA, 2012). Patients with a blood glucose levels 

of ≥ 11.1 mmol/L and displaying classic symptoms of diabetes are diagnosed as 

diabetic (Patel and Macerollo, 2010). However, this test is not as sensitive as other 

tests due to more definitive tests being required when blood glucose levels are 

between 7.8 to 10.0 mmol/L (Patel and Macerollo, 2010).  

1.7.2.  Fasting plasma glucose (FPG) test 

The FPG test is one of the preferred methods for the diagnosing diabetes due to its 

convenience, ease of use, and reduced costs compared to other tests according to 

the American Diabetes Association (SEMDSA, 2012). The process involves the 

patients having to fast 8 hours before blood is drawn. A positive diagnosis is given 

when the patient has a blood glucose levels of ≥ 7.0 mmol/L (Patel and Macerollo, 

2010) (Table 1.2).  

1.7.3. The oral glucose tolerance test 

This test is considered as a first-line diagnostic test (Patel and Macerollo, 2010) and 

involves the determination of how efficiently glucose is removed from the blood. 

The individual is asked to fast overnight for ten to 14 hours. Thereafter, a 75 g 

glucose solution must be orally ingested. Blood samples are drawn before and two 

hours after glucose intake. These two samples then give the physician fasting 

glucose and two-hour post glucose intake results, respectively (ADA, 2012b).  
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Normal fasting glucose levels usually lies in the range between 4.0 to 5.5 mmol/L, 

whereas blood glucose levels higher than 11.1 mmol/L will classify the individual 

as being diabetic (Table 1.2). 

1.7.4. The haemoglobin A1c (HbA1c) test 

HbA1c refers to glycated haemoglobin i.e. glucose in the system which naturally 

binds to haemoglobin. Measuring HbA1c levels allow clinicians to get an overall 

picture of an individual’s average glucose intake over a period of one week to three 

months (Goldenberg et al, 2011; Diabetes.co.uk, 2015). This is possible because 

red blood cells in the human body can survive for up to eight to 12 weeks before 

renewal (Diabetes.co.uk, 2015). In healthy individuals HbA1c levels range from 

approximately 4 to 5.9 %. Alternatively, an individual is diagnosed as a diabetic if 

HbA1c levels are ≥ 6.5 % (ADA, 2012b; Diabetes.co.uk, 2015). HbA1c levels 

between 5.7 to 6.4 % signifies that the individual is pre-diabetic and has an 

increased risk for developing diabetes (ADA, 2012b) (Table 1.2).  

In contrast to the OGTT test, the HbA1c test is more practical due to it not requiring 

the individual to fast before having a blood sample taken, and can thus be done at 

any time of the day (Goldenberg et al, 2011). Furthermore, no glucose solution has 

to be taken and it reflects the average blood glucose levels over a two to three month 

period (Goldenberg et al, 2011).  

There are situations where the HbA1c test is not appropriate and would give 

unreliable results (falsely high or falsely low) for the diagnosis of diabetes. This 

includes individuals with rapid red cell turnover as found in patients suffering from 

sickle cell anaemia or other haemoglobinopathies, some medications may affect the 

HbA1c readings, inconsistencies of average HbA1c readings in certain ethnicities 
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(Patel and Macerello, 2010; WHO, 2011; ADA, 2012b) and its high costs, which 

limits this screening method to developed countries only (ADA, 2012b; Patel and 

Macerollo, 2010; Goldenberg et al, 2011). Age is another factor that has to be taken 

into consideration, due to older individuals tending to have higher HbA1c levels 

(International Expert Committee, 2009). Lastly, patients suspected to have T1DM, 

patients who are newly diagnosed with T2DM (less than two months), women who 

are pregnant, and patients who are very sick (Diabetes.org.uk, 2015a) cannot be 

diagnosed using the HbA1c test.  

Table 1.2: Diagnostic criteria for T2DM 

 

1.7.5.  Classification of diabetes 

Distinguishing between the types of diabetes after being diagnosed is important for 

the management of the disease (Goldenberg and Punthakee, 2013). The C-peptide 

test is one such test which can specify whether an individual has either T1DM, 

T2DM, or insulin resistance (Diabetes.org.uk, 2015b). This test is also useful for 

the management of diabetes, specifically those individuals who are using insulin 

(Jones and Hattersly, 2013) C-peptide is made in equal amounts to insulin and is 

considered the best method to measure endogenous insulin secretion (Jones and 

Hattersly, 2013). The C-peptide assay can be measured in blood samples from 

individuals who are either in a fasting or non-fasting state as well as in a formal 

stimulation test (which requires glucagon to be injected into the blood stream to 
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stimulate insulin secretion) (Diabetes.org.uk, 2015b, Goldenberg and Punthakee, 

2013; Jones and Hattersly, 2013).   

The presence of autoimmune markers such as anti-glutamic acid decarboxylase and 

anti-islet cell antibody, is another method which could be used to distinguish 

between the various types of diabetes (Goldenberg and Punthakee, 2013).  

1.7.6.  Current treatment for T2DM 

Once an individual has been diagnosed with overt T2DM, it is important that their 

glycaemic levels are properly managed. Diabetic patients are first recommended to 

begin treatment by incorporating a healthier lifestyle, by eating healthily and 

exercising regularly (Fowler, 2007), in order to keep blood glucose levels as close 

to normal as possible (Sena et al, 2010). However, if glycaemic levels do not 

decrease after exercising, diabetics would then be advised to use anti-

hyperglycaemic drugs simultaneously (Sena et al, 2010). T2DM patients have a 

wide variety of anti-diabetic drugs to choose from; these drugs are categorized into 

five major classes i.e. insulin secretagogues, insulin sensitizers, alpha glucosidase 

inhibitors, insulin (Sena et al, 2010; Skugor, 2014), and sodium-glucose co-

transporter 2 (SGLT2) inhibitors (Thynne and Doongue, 2014; Skugor, 2014) as 

shown in Table 1.3. Drugs used for treating T2DM aims to either control blood 

glucose levels in the fasting state or postpandrially, and can therefore be used either 

on their own or in combination with each other (Sena et al, 2010). However, over 

time, current drug therapies become less effective due to the progressive loss of β-

cell function and mass (Sena et al, 2014). Hence, detecting diabetes early is 

important so that the appropriate treatment can be administered in order to bypass 

a variety of complications linked with this disease. 
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Table 1.3: Target drugs available for the management of T2DM  

Drug type Mechanism of action Example/s 

Insulin secretagogues Agents which increases the 

amount of insulin secreted 

by the pancreas (Bösenberg 

and van Zyl, 2008) 

Sulfonylureas (e.g. 

glimepiride) 

 

Incretin mimetics 

Insulin sensitizers Agents which increase the 

sensitivity of target

 organs - e.g. 

muscles or adipose tissue 

(Bösenberg and van Zyl, 

2008) 

Metformin 

 

Thiazolidinediones 

(e.g. Rosiglitazone) 

Alpha glucosidase 

inhibitors 

Agents which decrease the 

rate at which glucose is 

absorbed from the 

gastrointestinal tract 

(Bösenberg and van Zyl, 

2008) 

 

 Acarbose 

Sodium-glucose co-

transporter 2 (SGLT2) 

inhibitors  

Lowers plasma glucose 

concentrations by 

increasing renal excretion 

of glucose (Thynne and 

Doongue, 2014) 

Canagliflozin  

Insulin Stimulates peripheral 

glucose uptake and inhibits 

glucose production and 

release by the liver 
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1.8. Limitations with current T2DM diagnostic methods 

Diagnosis of diabetes is usually too late due to some individuals being 

asymptomatic for up to four to seven years (Rao et al, 2009; Levitt, 2009) and in 

some cases symptoms are not that obvious (Levitt, 2009). Additionally, late 

presentation is also due to individuals having limited access to health facilities 

(Kengne, 2005). Thus, resulting in the patient ending up with irreversible 

complications and being dependent on anti-diabetic medications for the rest of their 

lives, since diabetes is considered a chronic disease. If detected earlier, in the pre-

diabetic, asymptomatic phase the individual can take precautions from developing 

overt diabetes i.e. by adopting a healthier and active lifestyle (Soita, 2009). 

Additionally, tests like the HbA1c test, is costly and has specific criteria (as 

explained in section 1.7.4) that an individual has to meet to achieve accurate results 

(International Expert Committee, 2009). The tests are also time-consuming for both 

the health-care professionals and patients, as is the case of the FPG and OGTT tests, 

requiring patients to fast for up to ten to 14 hours before blood samples can be 

collected (Vora and Evans, 2012). Furthermore, there are instances where the 

diagnosis for T1DM and T2DM is uncertain, requiring further tests (e.g. auto-

immune antibodies) for classification purposes (Vora and Evans, 2012). 

Finally, all the above-mentioned diagnostic methods are invasive as they require 

blood samples. This could be a major problem with individuals who have a fear of 

needles and who cannot stand the sight of blood or the pain after being pricked 

(Zhang et al, 2009; Soita, 2009) and find the diagnostic tests a daunting process 

(Rao et al, 2009).  
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1.9. The need for novel biomarkers for the detection of diseases 

Based on the aforementioned limitations, there is an urgent need for novel 

biomarkers which could aid in the early and specific detection for T2DM which 

could possibly act as a supplementary test to current diagnostic methods. 

Biomarkers are biological molecules (e.g. genes, proteins, and metabolites) in 

biological fluids (e.g. serum, urine, saliva) or tissue, which could aid in indicating 

normal or abnormal processes in the body, or the condition of a specific disease 

(Yousef et al, 2014). Furthermore, they are also important for the early detection of 

diseases (Yousef et al, 2014). Despite various research identifying a large amount 

of biomarkers, a large fraction of them have not gone beyond clinical trials due to 

lack of sensitivity, specificity, and reproducibility (Ngcoza, 2013). Therefore, it is 

important that biomarkers to be properly validated first before sending it for clinical 

trials. 

There are three types of biomarkers used in a clinical setting: (i) diagnostic (for 

disease identification), (ii) prognostic (for predicted outcome or progression of a 

disease), and (iii) theranostic (for the identification of appropriate treatment) 

(McCeough and Bjourson, 2012). Examples of current biomarkers clinically 

approved include human chorionic gonadotropin (hCG), which is an important 

biomarker found in urine for the detection of pregnancy (Butler et al, 2001) and 

prostate-specific antigen (PSA), which aids in the diagnosis of prostate cancer 

(Prensner et al, 2012). Despite the various biomarker breakthroughs, there is still  a 

limited availability of theranostic biomarkers (McGeough and Bjourson, 2012). It 

is suggested that these types of biomarkers could be very useful for indicating the 

correct dosage, predict response to a particular treatment, could maximise drug 
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efficacy, and minimise drug toxicity for each individual (McGeough and Bjourson, 

2012). 

The discovery of biomarkers is a lengthy and challenging process. Good biomarkers 

has to be sensitive, specific, and it must be standardised and reproducible (Yousef 

et al, 2014). Many strategies have been used over the years for the identification of 

new biomarkers (Rodrigues and Kluskens, 2011). Computational biology (or 

bioinformatics) has played an instrumental role in the discovery of new biomarkers 

as well as the validation of potential biomarkers (Rodrigues and Kluskens, 2011; 

Yousef et al, 2014). 

 

1.10. MicroRNAs as a biomarker for diagnosing pre-diabetes and 

T2DM 

1.10.1. MicroRNAs – Overview 

MicroRNAs (miRNAs) are non-coding, short single-stranded RNA molecules, 

approximately 18 to 24 nucleotides in length (Saikumar et al, 2012). The mode of 

function of miRNAs relies on their binding to the 3’-untranslated region (3’-UTR) 

of their specific mRNA target genes. Once bound, they inhibit the expression of 

their target gene products by blocking initiation and elongation of translation 

(Saikumar et al, 2012; Molitoris and Molitoris, 2011) or through deadenylation of 

the mRNA transcript (Molitoris and Molitoris, 2011). It was found that miRNAs 

are highly conserved across all species (Molitoris and Molitoris, 2011). However, 

unlike plants, miRNAs in humans and most animals do not have to be entirely 

complimentary to their target mRNA (Chen and Zeller, 2014), as the seed region 

(the anti-sense strand of the miRNA duplex, which is two to eight nucleotides long 
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(Yilmazel et al, 2014) is the most important part for binding to and regulating their 

mRNA target (Kume et al, 2014). Hence, one miRNA can target many mRNA 

transcripts and one mRNA transcript can be repressed by many miRNAs (Molitoris 

and Molitoris, 2011).  

MiRNAs have been identified to play a substantial role in many regulatory 

pathways i.e. modulating signals by participating in negative or positive feedback 

loops (Tomasetti et al, 2014). Moreover, they have been found to be involved in a 

number of normal physiological and developmental processes (Molitoris and 

Molitoris, 2011; Tomasetti et al, 2014) such as the cell cycle, cell growth, apoptosis, 

cell differentiation and stress response, and in fine-tuning regulation of gene 

expression by targeting multiple molecules (Tomasetti et al, 2014). Therefore, 

dysregulation of miRNAs within either tissues or body fluids in response to intrinsic 

or extrinsic factors could be linked to abnormal gene expression (Tomasetti et al, 

2014) and as a result be linked to several diseases, which include T2DM (Karolina 

et al, 2011; Molitoris and Molitoris, 2011; Saikumar et al, 2012). 

1.10.2. Biogenesis of miRNAs and their use as biomarkers for diseases 

Biogenesis of miRNAs is tightly regulated at the transcriptional and 

posttranscriptional levels, as shown in Figure 2. MiRNAs are encoded in the 

genome and undergo transcription in a similar process to protein coding genes i.e. 

by both RNA polymerase II or RNA polymerase III (Molitoris and Molitoris, 2011; 

Velu et al, 2012), forming a stem-looped molecule known as the primary miRNA 

(pri-miRNA) transcript within the nucleus. The pri-miRNA is then cleaved by 

Drosha (an RNase III enzyme) and the DGCR8/Pasha protein complex, resulting in 

a ~70 nucleotide hairpin miRNA precursor (pre-miRNA) structure (Bushati and 

Cohen, 2007; Guay et al, 2011), which is transported into the cytoplasm by 
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Exportin-5 (Krol et al, 2004; Bushati and Cohen, 2007). The pre-miRNA is cleaved 

a second time by another RNase III enzyme, Dicer, to yield a miRNA duplex 

structure (Guay et al, 2011; Molitoris and Molitoris, 2011), approximately 22 

nucleotides in length (Guay et al, 2004). The duplex then separates into two single 

miRNA strands which binds to an Argonaute-2 (Ago2) protein and is incorporated 

into the RNA-induced silencing complex (RISC) structure; this helps the miRNA 

to identify and bind to the complementary sites of its target mRNA (Guay et al, 

2011) where it will inhibit gene expression.  

 

Figure 1.2: The biogenesis of miRNAs (Adopted from Velu et al, 2012) 

 

 

 

 

 



24 

 

The regulation of miRNAs has been linked to many important physiological and 

pathological processes (Fendler, 2011). In cancer research, studies have shown that 

the application of specific differentially expressed miRNAs could clearly 

differentiate between cancerous tissues and healthy tissue, could identify tumours 

from an unknown origin, could discriminate various tumour subtypes, and could 

characterise poorly differentiated tumours (Carlsson et al, 2011; Fendler, 2011; Zhu 

et al, 2014).   Therefore, miRNAs have shown promise as ideal tools for diagnostic, 

prognostic, or monitoring therapeutic success of diseases (Fendler, 2011; Saikumar 

et al, 2012). 

The advantage of using miRNAs over other biological markers (e.g. proteins or 

mRNA), is that they are stable and can be expressed in degraded RNA samples 

from human tissues (Jung et al, 2010; Fendler, 2012). Furthermore, circulatory 

miRNAs, which have been detected in body fluids such as blood, urine and saliva 

(Karolina et al, 2011), are found to be extremely stable under harsh conditions such 

as boiling temperatures, low or high pH, long-time storage at room temperature and 

even multiple freeze-thaw cycles (Creemers et al, 2012). Circulatory miRNAs is of 

particular interest for highly-sensitive non-invasive diagnostic purposes for the 

early detection of many diseases (Fendler, 2011; Ali Sheikh et al, 2015). 

Research has found that circulatory miRNAs are released through “secretory 

machinery”, such as microvesicles and exosomes, which contains cellular gene 

products i.e. miRNA, mRNA, and proteins which can be transferred to recipient 

cells to carry out a specific function (Karolina et al, 2011). MiRNAs are also present 

in body fluids due to circulating tumour cells or Ago2 proteins (Fendler, 2011). 

Studies have shown that there is a distinct dysregulation of circulatory miRNAs 

after myocardial and liver injuries (Molitoris and Molitoris, 2011; Saikumar et al, 
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2012). Additionally, other studies have found that miR-21 and miR-141 may be 

used as non-invasive biomarkers in prostate cancer (Fendler, 2011). Lastly, several 

miRNAs have been linked to both glucose metabolism, metabolic disorders, and 

T2DM (Karolina et al, 2011). 

1.10.3. The link between microRNAs and T2DM 

Several reports have identified the critical role of specific miRNAs in the regulation 

of insulin production and secretion. Furthermore, multiple miRNAs are able to 

control, or are involved in, glucose metabolism by regulating a network of genes in 

the liver, the peripheral tissues (Fernandez-Hernando et al, 2013) and kidneys 

(Tang et al, 2008). The specific miRNA involved will be determined by the tissue 

and its metabolic state (Fernandez-Hernando et al, 2013). 

Previous studies have found that miR-375 is one of the most abundant miRNAs 

located in the pancreas and it plays a role in negatively regulating insulin secretion 

(Karolina et al, 2011; Fernandez-Hernando, 2013) when bound to its myotrophin 

(Mtpn) target (Karolina et al, 2011), a gene involved in the depolymerisation of 

actin and transport of vesicles (Fernandez-Hernando et al, 2013).  Whilst in a 

knockout study, mice that had the miR-375 gene deleted, displayed normal levels 

of insulin secretion, however, they were also hyperglycaemic and glucose intolerant 

(Fernandez-Hernando et al, 2013). Furthermore, these miR-375 null mice, showed 

a significant increase in the number of α-cells and glucagon levels (during both 

fasting and fed states) (Fernandez-Hernando et al, 2013). Therefore, a lack of miR-

375 would result in reducing insulin exocytosis (Fernandez-Hernando et al, 2013). 

Table 1.4 gives a brief summary of several additional miRNAs and their validated 

gene targets. 
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Table 1.4: MiRNAs, their validated target genes and their function in 

regulating glucose homeostasis (Adapted from Tang et al, 2008; Farr et al, 

2013) 

MiRNA Target tissue Function Target gene/s 

miR-375 Pancreas Insulin secretion, 

pancreatic islet 

development 

Mtpn, Usp1, Jak2, 

Adipor2 

miR-124a Pancreas Pancreatic islet 

development 

FoxA2, Rab27 

miR-9 Pancreas Insulin secretion Onecut2 

miR-29a, b Muscle, 

adipose, liver 

Glucose transport Insig1, Cav2 

miR-143 Adipose Adipocyte 

differentiation 

ERK5/BMK1/MAPK7 

miR-145 Colon Cell proliferation IRS1 

miR-133 Heart Long QT 

syndrome, cardiac 

hypertrophy 

HERG, RhoA, Cdc42, 

Nelf-A/WHSC2 

miR-133a Skeletal muscle Glucose 

homeostasis 

KLF15 

miR-1 Heart Heart 

development and 

physiology 

KCNJ2, GJA1 

miR-192 Kidney Kidney and 

diabetic 

nephropathy 

development  

SIP1 

 

Even though miRNA research in T2DM is very recent, research has proven that 

there are clear links with them playing a role in both the regulation of glucose and 

a pathogenic role in T2DM (shown in Figure 1.3 below). Other miRNAs that 

influence insulin secretion and signalling include miR-124a, miR-9 and miR-33 
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(Farr et al, 2013). Due to miRNAs displaying differential expression in blood and 

in various tissues involved in glucose homeostasis of T2DM patients, makes them 

ideal candidates for potential biomarkers. 

 

Figure 1.3: Schematic overview of miRNAs involved in the regulation of 

pancreatic β-cells function and insulin target tissues in the context of T2DM 

(Adopted from Guay et al, 2011) 

1.10.4. Bioinformatics as a tool for the detection of novel biomarkers 

Over the past years, major advances has been accomplished in the field of molecular 

biology linked with advances in high throughput technologies such as genomics, 

transcriptomics, proteomics (Emmett et al, 2014) and metabolomics (Bartel et al, 

2013). Moreover, these technologies have brought forward an explosive amount of 

biological information which has led to the need for computerised databases to 
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store, organise, and analyse the data (Martone et al, 2004; Kemkar and Dahikar, 

2012).  

Hence, the field of bioinformatics, or systems biology, which is the merging of the 

computational and biological science disciplines, has been an important tool for the 

organisation and analysis of the vast amount of biological data (Lewis, 2008). The 

main aim of bioinformatics is to find key biological information hidden amongst a 

mass of raw data to identify important trends and patterns which would eventually 

lead to novel biomarker discovery for both diagnostic and therapeutic purposes 

(Ngcoza, 2013). Additionally, bioinformatics allows for in silico simulations of 

complex disease physiologies, such as interactions between components, on their 

molecular level (Calvert-Joshua, 2013). Bioinformatics has presented ways in 

which data mining approaches can be used to filter valuable targets (miRNA, genes, 

or proteins) for the discovery of possible novel biomarkers for diseases (Sommer et 

al, 2010). 

1.10.5. Role of bioinformatics in miRNA research 

Identifying miRNAs, their target genes, and their respective regulatory function are 

important for understanding normal biological processes as well as understanding 

their various roles in disease development (Zhang and Verbeek, 2010; Liu et al, 

2012; Fujiwara and Yada, 2013). Bioinformatics facilitates experimental validation 

of miRNAs and their target genes by producing statistically significant hypotheses 

from biological data that has been stored in databases, based on other biological 

experimental data (Liu et al, 2012). Potential target identification is based on the 

software’s algorithm. There are several miRNA-target prediction software that is 

publically available (Fujiwara and Yada, 2013) which include TargetScan, PITA 

and Diana Micro-T (Witkos et al, 2011). Possible targets are predicted based on the 
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software’s prediction algorithm, which is categorized into three groups: (i) 

sequence-based, (ii) energy-based, and (iii) machine learning-based (Zhang and 

Verbeek, 2010).  Target prediction and the various software used in this study will 

be elaborated on in Chapter 2, section 2.2.2. 

 

1.11. The purpose of this study 

Non-invasive diagnostic methods have been shown a lot of interest. Specifically, 

diagnostic methods which are quick, painless, cost-effective, and sensitive as well 

as being specific for a particular disease. Most of the current diagnostic tests for 

most diseases usually involve painful or uncomfortable methods for retrieving 

samples e.g. tissue samples from biopsies (Vlastos and Verkooijen, 2007). 

Particular interest is also focussed on diagnostic methods which can detect diseases 

in its early stages. 

If diabetes were to be diagnosed in its early stages (i.e. pre-diabetes), the 

development of overt T2DM, and its long-term complications, can be avoided. 

MiRNAs have shown remarkable promise as potential biomarkers for the early (and 

specific) detection for T2DM, as well as for other diseases, due to its stability 

compared to other biomolecules such as mRNA and proteins. The aim of this 

project, therefore, was to identify and validate differentially expressed miRNAs in 

T2DM as well as to identify their potential target genes. The objectives of this thesis 

included: 

 Identifying differentially expressed miRNA in serum and plasma 

involved in the pathogenesis of T2D using in silico methods 
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 Generating a target gene list for the identified miRNA and 

understand the mechanism of action of these target genes as it relates 

to T2DM 

 Correlating the target genes involved in T2DM back to those 

regulating miRNAs 

 Generating a final list of miRNAs for molecular validation 

 Expression analysis of miRNAs shown through in silico work, to be 

linked with T2DM using rat kidney tissue 
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Chapter 2: In silico analysis to generate a list of 

priority miRNA for T2DM diagnoses 

 

MiRNAs inhibit gene expression by binding to the 3’-UTR site of its target mRNA, 

resulting in the inhibition or degradation of that particular mRNA. Furthermore, 

while one miRNA can have many mRNA targets, similarly, one mRNA can be 

targeted by multiple miRNAs (Fendler, 2011). Despite the increased number of 

identified miRNAs using experimental approaches, the identification process has 

its limitations since all current methods are time-consuming, laborious, and 

expensive (Radfar, 2014). Experimental target prediction approaches are also 

unable to provide a genome-wide prediction of miRNA targeting (Radfar, 2014). 

 Target prediction using bioinformatics tools has become very important for 

identifying potential (and novel) binding targets of specific miRNAs and other 

types of biomarkers as it allows for fast, less laborious, and cheaper means of 

creating a priority list of potential biomarkers. Many target prediction algorithms 

exist for this exact reason; each having their own criteria for binding predictions 

which include: perfect complementarity of the seed sequence, evolutionary 

conservation, free energy of the miRNA:mRNA duplex, and proximity of different 

binding sites of the same miRNA (Lekprasert, 2012; Schmitz et al, 2014).  

However, despite the availability of many target prediction programs, there are 

currently challenges regarding standardized methodologies for miRNA target 

recognition. Therefore, the predicted target genes of specific miRNAs can only be 
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validated using molecular methods such as qRT-PCR, luciferase assays or western 

blots (Kuhn et al, 2008). 

 

2.1.  Aims of this chapter 

The purpose of the work described in this chapter was to identify miRNAs 

associated with T2DM and their target genes. The identified target genes will be 

further evaluated using several bioinformatics tools to determine their role in 

T2DM onset or progression. Those target genes shown to play a vital role in T2DM 

will be correlated back to their miRNAs to generate a priority list of miRNAs for 

molecular validation. 

This chapter will, therefore, focus on the following: (i) miRNA dataset selection, 

(ii) target gene prediction, and (iii) functional analysis – for generating a priority 

list of miRNAs for molecular validation. 
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2.2. Bioinformatics methodology 

Table 2.1: List of Databases used for the bioinformatics methodology 

Procedure Database Website 

miRNA 

selection 

miR2Disease http://www.mir2disease.org/ 

HMDD v2.0 
http://202.38.126.151/hmdd/tools/

hmdd2.html 

Target 

prediction 

TargetScan 

Human 6.2 

http://www.targetscan.org/vert_61

/ 

PITA 
http://genie.weizmann.ac.il/pubs/

mir07/mir07_prediction.html 

Diana Micro-T 

v.3.0 

http://diana.cslab.ece.ntua.gr/micr

oT/ 

miRNA 

sequences 
miRBase http://www.mirbase.org/ 

Alignment of 

sequences 
ClustalW2 

http://www.ebi.ac.uk/Tools/msa/cl

ustalw2/ 

Functional 

annotation of 

target genes 

DAVID v6.7 http://david.abcc.ncifcrf.gov/ 

Functional 

annotation of 

miRNAs 

Diana mir-Path 

v.2.0 

http://diana.imis.athena-

innovation.gr/DianaTools/index.p

hp?r=mirpath/index 

Network and 

pathway 

enrichment 

STRING 10 http://string-db.org/ 
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Figure 2.1: Schematic overview of bioinformatics workflow followed to obtain a reduced list of both miRNAs and target genes
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2.2.1. MiRNA dataset selection 

Experimentally validated microRNAs (miRNAs), which were shown to be 

differentially expressed in type 2 diabetes (T2DM), particularly in the 

blood/plasma/serum, was selected from publically available databases i.e. the 

Human MicroRNA Disease Database v.2.0 (HMDD) 

(http://202.38.126.151/hmdd/tools/hmdd2.html) (Li et al, 2013) and miR2disease 

(http://www.mir2disease.org/) (Jiang et al, 2009).  

The miR2Disease database is manually curated and provides a comprehensive 

repository of differentially expressed miRNA in various human diseases (Jiang et 

al, 2009). The input queries used to obtain the miRNA list for this database was 

<diabetes mellitus> and <pre-diabetes>, respectively.  

The HMDD is a collection of experimentally validated human miRNAs and disease 

associations (da Silva Santos, 2014). A list of miRNAs were obtained from the 

database by running a “fuzzy search” using <diabetes mellitus> as the input query 

(Li et al, 2013).  

Thereafter, the two miRNA lists obtained were combined and duplicates were 

eliminated in MicroSoft (MS) Excel 2013 by selecting the column containing the 

list and then using the elimination shortcut “Alt+A+M”. The miRNA list was saved 

in Excel 2013 for further analysis. 

2.2.1.1. miRNA prioritisation 

A shortened list of miRNAs were obtained (i) after target prediction and (ii) if 

human miRNAs were not 100 % homologous to rats. In the case of elimination of 

miRNAs after target prediction, miRNAs were eliminated if it did not generate a 
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predicted target gene list, or if the target prediction software did not generate a 

statistically significant gene list using the cut-off criteria of the three algorithms 

(see section 2.2.2). Lastly, 100 % homology of the mature human miRNA 

sequences to rats were only considered since molecular validation (see Chapter 3) 

was carried out using rat kidney tissue to compare differential expression levels of 

the putative T2DM miRNAs to those already validated in serum/plasma obtained 

from the two databases (see Figure 2.1).  

Mature miRNA sequences of interest were obtained for both humans and rats from 

miRBase 20 (http://www.mirbase.org/) (Kozomara and Griffiths-Jones, 2011). The 

sequences of each specific miRNA from rats and humans were pairwisely aligned 

using the ClustalW tool (Larkin et al, 2007). ClustalW is a global sequence 

alignment tool (Holland et al, 2013) used for aligning nucleotide sequences of 

interest (Larkin et al, 2007). Only sequences with a score of 100 % was considered 

for further analysis in this investigation. A list of miRNAs were generated after 

applying the above-mentioned criteria. 

2.2.2. Target prediction  

Target prediction was performed for each of the miRNAs obtained, as described in 

the previous section. The target prediction programs used were (i) TargetScan 

Human, (ii) PITA, and (iii) Diana Micro-T. A brief description is given for each of 

the target prediction program is given below. 

2.2.2.1. TargetScan Human 

The algorithm in TargetScan Human 6.2 bases its scoring of the miRNA target gene 

depending on the level of conserved 8-mer and 7-mer sites that match the seed 
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region of each miRNA (Li et al, 2014). The specificity of the target site when using 

TargetScan is based on the following seven determinants: 

i. Type site contribution, which determines the score for both 7- and 8-

mer motifs. 8-mer motifs are allotted a higher score as they are more 

down-regulated than those with 7-mer motifs  (Radfar, 2014) 

ii. Conserved complementary sites at the 3’ end (Fendler, 2011; Radfar, 

2014), as it improves down-regulation (Radfar, 2014) 

iii. AU content 30 nucleotides up- and downstream of the predicted site, 

flanking the seed region (Fendler, 2011; Witkos et al, 2011; 

Reyes~Herrera and Ficarra, 2012; Radfar, 2014) 

iv. Target site position contribution i.e. the further away the target site is 

positioned away from the centre of the 3’-UTR, the more favourable the 

score (Radfar, 2014) 

v. Target-site abundance: miRNAs with target sites enriched in many 

mRNA target genes are considered as weak regulators and would 

weaken the effect of its proposed target gene (Reyes~Herrera and 

Ficarra, 2012; Radfar, 2014) 

vi. Seed pairing stability (Reyes~Herrera and Ficarra, 2012; Radfar, 2014) 

vii. Conservation branch length for each site (Radfar, 2014) 

 

All determinants, except for conservation score, are scored individually and then 

tallied up to achieve the final context score (Radfar, 2014). It should be noted that 

a more negative context score is associated with a more favourable binding target 

site (Garcia et al, 2011). TargetScan also ranks the target genes according to their 

probability of conserved targeting (PCT). PCT values with a lower probabilistic value 
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would decrease the integrity of conservation for the predicted binding target site 

across multiple species (Carroll et al, 2012).  

2.2.2.2. Diana Micro-T 

Diana Micro-T makes use of an algorithm based on several parameters calculated 

individually for each miRNA (Migliore, 2010). It combines conserved and non-

conserved miRNA recognition elements into a final prediction score (Migliore, 

2010). A minimum of seven nucleotides is required by this prediction program to 

select a potential target (Vejnar, 2012). The significance of a predicted target gene 

is based on the conservation score which is attributed to every possible target site 

if found at the same position across multiple species following sequence alignment 

(Vejnar, 2012), a signal-to-noise ratio (SNR) (Migliore, 2010; Vejnar, 2012), which 

determines the ratio between the conservation score and the score of randomized 

miRNA (Vejnar, 2012), and the final gene list output is ranked according to its 

minimum energy of potential (mitG) (Witkos et al, 2011). Lastly, this software 

program also allows for the identification of putative miRNAs for specific target 

genes (Abdullayev, 2010).  

2.2.2.3. PITA 

The algorithm used in PITA, focuses primarily on the target accessibility that is 

connected to the secondary RNA structure of the transcript (Hinske, 2009; Witkos 

et al, 2011). It is assumed that the mRNA structure plays a role in target recognition 

by thermodynamically promoting or disfavouring binding interaction (Witkos et al, 

2011). Therefore, the algorithm first identifies potential matches by aligning the 

seed region to the 3’-UTR of its potential target gene. Thereafter, it calculates and 

combines thermodynamic scores for each potential binding site of the miRNA in 

order to obtain a unique score for a miRNA target interaction (Hinske, 2009; Witkos 
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et al, 2011). Unlike TargetScan and Diana Micro-T, it does not require cross-species 

conservation scores (Hinske, 2009). 

2.2.2.4. Target Prediction procedure 

Target prediction was based on a modified methodology described by Masotti and 

Alisi (2013). Target sites of miRNAs were predicted using the three 

abovementioned, publically available miRNA target prediction software: (1) 

TargetScanHuman 6.2 (http://www.targetscan.org/vert_61/) (Grimson et al, 2007; 

Friedman et al, 2009), (2) Diana Micro-T v3.0 

(http://diana.cslab.ece.ntua.gr/microT/) (Maragkakis et al, 2009a; Maragkakis et al, 

2009b), and (3) PITA 

(http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html) (Kertesz et al, 

2007). Thus, for each miRNA, three gene lists were obtained. Furthermore, separate 

gene lists were obtained i.e. for miRNAs that were up-regulated and down-

regulated, respectively (Masotti and Alisi, 2013). Highly reliable target genes for 

each miRNA were selected based on the following criteria: 

i. Genes were only considered from each respective prediction 

programme if they fell above a certain recommended cut-off 

(see Table 2.2 below) 

ii. Genes were considered only if predicted by all three 

algorithms 
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Table 2.2: An overview of the recommended cut-offs for the target gene selection 

from the three target prediction algorithms used in this study (Adapted from Witkos 

et al, 2011) 

Program Brief description Data selection criteria 

TargetScan 

Human v. 6.2 

Seed match, 3’-UTR 

complementarity local AU 

content and position 

contribution (Witkos et al, 

2011; Van Rooij, 2011) 

Predictions with a context 

score* ≤ 0.4 and percentile 

> 85 or an aggregate PCT** 

value of 0.8 (Lu and Clark, 

2012) 

PITA Target site accessibility 

energy (Witkos et al, 2011) 

Predictions with a score < -

10 (Meunier et al, 2013)  

Diana micro-T 

v. 3.0 

Free energy binding and 

complimentarity (Witkos et 

al, 2011) 

Predictions with mitG score 

> 20 (Raghavan and 

Manasa, 2012) 

*Grimson et al, 2007; **Friedman et al, 2009 

 

Thereafter, the genes obtained were combined and checked for duplicates and 

eliminated (Shinde et al, 2013) in MS Excel 2013 by selecting the column 

containing the list and then using the elimination shortcut “Alt+A+M”. The 

remaining list of ranked genes were saved in an .xls format. Thereafter, the gene 

list was sorted into two lists i.e. up-regulated miRNA target genes and down-

regulated miRNA target genes (Masotti and Alisi, 2013).  

Before functional annotation, the ranked genes were compared against 532 known 

genes involved in T2DM, obtained from the Type 2 Diabetes genetic association 

database (T2DGAD) (http://t2db.khu.ac.kr:8080/) (last updated in 2010) (Lim et al, 

2010) to investigate whether the predicted target genes were previously linked to 

T2DM. The VENNY tool v. 2.0 (http://bioinfogp.cnb.csic.es/tools/venny/) 
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(Oliveros, 2007) was used to create Venn diagrams. The full 532 gene list for the 

T2DM susceptibility genes can be found in Appendix A.  

2.3.3. Functional annotation of predicted target genes and miRNAs 

Functional annotation was done separately for each gene list using the clustering 

tool available on DAVID (The Database for Annotation, Visualization and 

Integrated Discovery) (http://david.abcc.ncifcrf.gov/) (Huang et al, 2009a; Huang 

et al, 2009b). The clustering tool grouped genes that may be linked biologically i.e. 

similar, redundant and heterogeneous genes will be grouped in the same cluster 

(Huang et al, 2014). Default parameters were used for functional annotation i.e. 

classification parameters were set to “Medium” and raw p-values were used (Huang 

et al, 2014). Moreover, gene clusters with an enrichment score of > 1.3 (Huang et 

al, 2014) for biological processes (“GO-TERM-BP”) and molecular functions 

(“GO-TERM-MF”) were chosen. This process prioritised the target gene lists even 

further. The shortened gene lists were once again subjected to the VENNY tool 

(Oliveros, 2007) and compared to the list of 532 T2DM susceptible genes. The 

genes that overlapped were especially considered as significant and will be 

validated for future studies. 

In a parallel approach, Diana-mirPath v.2.0 (http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=mirpath/index) (Vlachos et al, 2012) was 

used to determine putative functions of the final up-regulated and down-regulated 

miRNAs, respectively. The possible functions for the one down-regulated miRNA 

(miR-dr-1) and the three up-regulated miRNAs (miR-ur-1, miR-ur-2, and miR-ur-

3), were queried separately using default settings. Predicted functions were 

considered significant if p > 0.001 (Hu et al, 2011). Functions annotated for the 

miRNAs obtained from Diana-mirPath was then compared to functions annotated 
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to the predicted target genes using DAVID (Hu et al, 2011) to observe if there were 

any overlaps. 

2.3.4. Network analysis and pathway enrichment analysis 

The STRING version 10 (Search Tool for the Retrieval of Interacting Genes) 

(http://string-db.org/) database (Szklarczyk et al, 2014) was used to identify 

possible protein interactions between the predicted target genes. This database 

provides both experimental and predicted interaction information (Liu et al, 2012) 

collected from high-throughput experiments, co-expression analyses, genomics, 

and published literature (Calvert-Joshua, 2013). Separate queries of the 

differentially expressed target gene lists were mapped to STRING for KEGG 

pathway and gene network enrichment, respectively. The genes were cut from 

Excel and pasted into the query window, under the “multiple names” tab in 

STRING. For pathway analyses p < 0.05 were considered as significant. All 

interaction analyses were carried out using default settings i.e. interactions with a 

confidence score > 0.4.  

 

2.4. Results and Discussion 

2.4.1. MiRNA dataset selection 

Lists of 11 and ten miRNAs from HMDD and miR2disease, respectively, were 

obtained (Table 2.3). The two lists were combined and duplicate miRNAs were 

eliminated, which resulted in a final list of 20 miRNAs in total. Thereafter, 13 

miRNAs were eliminated because the three target prediction programs used in this 

study failed to predict targets, producing a list of seven miRNAs. This list was 

shortened even further if the mature miRNA sequences were not 100 % 
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homologous to those in rats (see section 2.2.1.1), thus, resulting in the elimination 

of three miRNAs. A total of four miRNAs was identified as significant for further 

analysis in this investigation i.e. one down-regulated (dr) miRNA i.e. miR-dr-1 and 

three up-regulated (ur) i.e. miR-ur-1, miR-ur-2, and miR-ur-3. The nomenclature 

for each of the four miRNAs used throughout this thesis will be referred to as miR-

dr-1, miR-ur-1, miR-ur-2, and miR-ur-3.  

 

Table 2.3: Summary of miRNA prioritisation  

Procedure 
Number of miRNAs 

eliminated 
Total miRNAs 

miRNA collection from databases 0 
21 

 

Elimination of duplicates 1 
20 

 

Target prediction 13 7 

Homology 3 4* 

*MicroRNAs of interest 

2.4.2. Target gene prediction 

A total of 10, 312 genes were obtained after integrating the three aforementioned 

target prediction software programs, shown in Table 2.4 below. Furthermore, 

duplicates were removed and the remaining genes were only retained if they 

appeared in all three prediction algorithms, bringing the putative target gene list to 

104 genes in total. It should be noted that target prediction was done separately for 

up- and down-regulated miRNAs. Hence, 46 and 58 genes for the down- and up-

regulated miRNAs, respectively, were obtained after gene ranking. Three genes 

(PPARA, LDLR, CAMTA1) and two genes (IGF2BP2 and ANK2) were found to 

 

 

 

 



58 

 

overlap with known genes linked to T2DM, obtained from T2DGAD (Lim et al, 

2010), for the down-regulated miRNA and up-regulated miRNAs, respectively (see 

Figure 2.2). A brief description is given for each of these genes below. 

 

Table 2.4: Raw total of target genes obtained after target prediction before 

elimination of duplicates and functional analysis 

Database Number of genes 

Target Scan 6036 

PITA 3336 

Diana Micro-T 940 

 

 

Figure 2.2: Comparison of known susceptible genes linked with T2DM (blue) 

to the predicted up- (green) and down-regulated (yellow) gene lists before 

functional annotation. There are three genes (PPARA, LDLR, CAMTA1) and two 

genes (IGF2BP2 and ANK2) overlapping from down- and up-regulated, 

respectively. 
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2.4.2.1. LDLR 

Insulin resistance and T2DM are linked with clustering of interrelated plasma and 

lipoprotein abnormalities (Krauss, 2004). This includes reduced levels in high-

density lipoproteins (HDL) (“good cholesterol”) and elevated levels of low-density 

lipoproteins (LDL) (“unhealthy cholesterol”) and triglyceride levels (Krauss, 

2004). 

Low-density lipoprotein receptor (LDLR) play a key role in regulating cholesterol 

metabolism by removing excess LDL cholesterol from the blood (Ye et al, 2014). 

Mutations of genes involved in lipoprotein and lipid metabolism, plays a crucial 

role in the susceptibility of developing many cardiovascular diseases (Krauss, 2004; 

Ye et al, 2014) such as coronary heart disease (Ye et al, 2014). This is due to the 

LDLR playing a pathogenic role in familial hypercholesterolemia, and therefore 

high levels of LDLR in the blood can cause abnormal cholesterol metabolism (Ye 

et al, 2014). Moreover, past research has found that polymorphisms of LDLR were 

linked with T2DM and hypertension (Ye et al, 2014). 

2.4.2.2. PPARA 

The peroxisome proliferator-activated receptor (PPAR) subfamily was shown to be 

valuable pharmacological targets, whereby its activation can normalize metabolic 

dysfunctions and somewhat reduce the risk of the development of cardiovascular 

diseases linked with T2DM (Gross and Staels, 2007). PPAR-alpha (PPARA) 

agonists, if used as a therapeutic target, has shown to correct dyslipidaemia (Gross 

and Staels, 2007). In humans, if this gene is activated, it causes a decrease of 

triglycerides in plasma as well as an enhancement of HDL cholesterol (Gross and 

Staels, 2007). 
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PPARA is mainly expressed in tissues with high levels of fatty acid catabolism, 

such as the liver, heart, kidney and skeletal muscle (Gross and Staels, 2007). Its 

main role is to regulate the expression of genes involved in lipid and lipoprotein 

metabolism (Gross and Staels, 2007). Moreover, PPARA plays an important role 

in glucose metabolism, the inflammatory response, and energy homeostasis 

(Lacquemant et al, 2007). 

A study by Lacqemant et al (2007) failed to show a link between PPARA variants 

and diabetes, suggesting that it does not have a major role in the eventual 

development of diabetes. Despite their findings, they stated that PPARA could not 

be totally excluded, as they could play a minor role in the risk of diabetes 

development through the variation of atherogenic plasma lipids (Lacquemant et al, 

2007). 

Alternatively, a study by Bernal-Mizrachi et al (2003) identified hepatic activation 

of PPARA as a mechanism involved in glucocorticoid-induced insulin resistance. 

The study was performed by treating mice deficient in LDLR (Ldlr -/-) and with 

Ppara +/+, or without Ppara (-/-), with dexamethasone (glucocorticoid treatment). 

Only Ppara +/+ developed hyperglycaemia, hyperinsulinaemia, and hypertension – 

which are common side effects of glucocorticoid treatment (Bernal-Mizrachi, 

2003). Furthermore, it was found that that hepatic gluconeogenic expression was 

increased, thus, causing the suppression of insulin-mediated endogenous glucose 

production to be less effective in Ppara +/+ mice (Bernal-Mizrachi, 2003). 

2.4.2.3. CAMTA1 

Calmodulin-binding transcription activator 1 (CAMTA1) has been examined as a 

risk factor for the development for T2DM (Miller et al, 2011). A study by Cauchi 
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et al (2008) was conducted on the French population in which a risk analysis was 

done on the loci susceptible for the development of T2DM. CAMTA1 was one of 

the genes mentioned in this study, however, the results obtained were not significant 

enough. It was explained that this was possibly due to the minor role that the gene 

could play in the development of diabetes (Cauchi et al, 2008). Currently, not much 

research has been done on this gene with regards to its role in T2DM pathogenesis. 

2.4.2.4. IGF2BP2 

The insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) gene is 

involved in insulin secretion, and is especially important for glucose metabolism 

(Kommoju et al, 2013). Moreover, IGF2BP2 found in pancreatic and adipose 

tissues can down-regulate IGF2 (insulin-like growth factor 2), a growth factor 

which plays an important role in controlling adipogenesis and pancreatic 

development (Wu et al, 2014). Therefore, the formulation of the hypothesis that 

IGF2BP2 may contribute to the pathogenesis of T2DM through impaired β-cell 

function or alterations in adipose tissue was made (Wu et al, 2014).  

Wu et al (2014) conducted a study where they analysed the interaction of obesity 

and IGF2BP2 variant (rs4402960) in T2DM susceptibility. It was found that obese 

individuals had an elevated risk for the development of T2DM. Therefore, it was 

speculated that there is some interaction between obesity and IGF2BP2. The exact 

method for this interaction is not yet elucidated (Wu et al, 2014). Statistically, 

however, the link between obesity and IGF2BP2 was not significant due to the 

small sample size (Wu et al, 2014). 

Other studies have been done on this gene and T2DM, and all studies reported 

conflicting results regarding the nature of how the gene links up to T2DM 
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susceptibility (Kommoju et al, 2013). Kommoju et al (2013) explains that the 

possible reasons for the inconsistencies in these studies, could be due to sample size 

and ethnic variability. 

2.4.2.5. ANK2 

It was found that ankyrin 2 (ANK2) is needed for cholinergic augmentation of 

insulin release and acts through stabilization of Inositol 1,4,5-trisphosphate (IP3) 

receptors within pancreatic β-cells (Bennett, 2010). A study by Healy et al (2010) 

found that ANK2-deficient islets resulted in impaired insulin secretion. 

Additionally, it was found that the mutation of R1788W of ANK2 is a potential risk 

factor for developing T2DM in 1 % of Caucasian and Hispanic adults (Bennett, 

2010).  

2.4.3. Functional annotation of predicted target genes and miRNAs  

2.4.3.1. Target genes 

With the aid of the clustering tool in DAVID, clusters with an enrichment score > 

1.3 for biological processes and molecular functions (done separately for each gene 

list) were only considered. The results in Table 2.5 and Table 2.6, respectively, 

shows that the down- and up-regulated miRNA gene lists had two enriched clusters 

after the characterisation of biological processes. Most of the down-regulated genes 

were involved in biological processes such as regulation of transcription and 

neuromuscular processes. Whereas, the up-regulated genes were involved in 

camera eye-type development and nerve transmission, which was considered 

significant as it is well known that nerve damage and retinopathy are two of the 

irreversible complications linked with T2DM as mentioned in Chapter 1. The 

results for molecular function categorization (Table 2.7) in the down-regulated list 

was consistent with the biological process assigned for the predicted targets, as 
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cluster 2 was predicted to participate in transcription. Moreover, it was enriched in 

the metal/cation binding group.  
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Table 2.5: Functional annotation clustering of down-regulated miRNA predicted target genes for biological process characterisation 
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Table 2.6: Functional annotation clustering of up-regulated miRNA target genes for biological process characterisation 
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2.4.3.2. MicroRNA functional analysis 

Similarly, based on the Diana-mirPath algorithm, miR-dr-1 was significantly 

enriched in pathways that are related to “neurotrophin signalling” and “ubiquitin 

mediated proteolysis”, “hepatitis C”, and “chronic myeloid leukemia” (Figure 2.3 

B). Alternatively, the up-regulated gene list was not able to calculate molecular 

function clusters that were > 1.3. However, based on the functional analysis of miR-

ur-1, miR-ur-2 and miR-ur-3, using Diana mirPath, possible molecular pathways 

which links it to T2DM were identified, which included: PI3K-Akt signalling 

pathway, MAPK signalling pathway, and the neurotrophin signalling pathway.  

This study further justified that there is a link between the functions of the four 

miRNAs to the functions of their target genes (see section 2.4.3.2) i.e. the target 

genes identified are also involved in nerve signalling and transcription. Previous 

studies have shown that there is a link between transcription and the ubiquitin 

proteasome system (UPS) (Geng et al, 2012).  

2.4.3.3. The ubiquitin proteasome system 

The UPS is involved in many gene regulation mechanisms (Geng et al, 2012; Gao 

et al, 2014) and serves as a mechanism to modify cellular and protein functions 

such as cell signalling, DNA repair, cell cycle progression and apoptosis (Gao et al, 

2014). Furthermore, both proteolytic and nonproteolytic activities of UPS impacts 

the transcriptional process (Geng et al, 2012). Ubiquitin and ubiquitin-like 

modifications has been recognised as one of the important regulatory events in the 

development of several diseases (Balasubramanyam et al, 2005; Gao et al, 2014). 

Since the UPS is linked with protein degradation, dysregulation of this system 

would lead to inappropriate degradation of specific proteins, resulting in the 

development of various diseases (Balasubramanyam et al, 2005). For example, 
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studies have identified that inappropriate degradation of insulin signalling 

molecules i.e. insulin receptor substrate (IRS) -1 and -2, in the presence of up-

regulated cytokine signalling suppressors, has been observed in diabetic 

experiments (Balasubramanyam et al, 2005). Therefore, it is assumed that UPS may 

be linked to insulin resistance (Balasubramanyam et al, 2014). 

Other studies have shown members associated with the UPS i.e. cullin-1, cullin-3, 

and the 11S proteasome regulators – PA28-β and PA28-γ – are up-regulated in the 

renal capillaries of mice with diabetic nephropathy. Diabetic nephropathy is one of 

the common irreversible microvascular complications linked with T2DM (see 

section 1.5) (Gao et al, 2014).  

The lists obtained from the molecular function and biological process 

categorization (in the case of the down-regulated gene list) was combined in 

DAVID and saved for further analysis in an .xls format. Whereas, only the 

biological processes target gene list for the up-regulated miRNA, were saved in an 

.xls format (due to it not retrieving a statistically significant molecular functions in 

DAVID). 

The final gene list for both up- and down-regulated genes is provided in Table 2.8. 

More specifically, miR-ur-1 is predicted to target FOXP2, SIX5 and CACNB2; 

miR-ur-2 is predicted to target COL2A1, ATXN1 and KLF4; and miR-ur-3 is 

predicted to target PVRL1, SCN2B and SYT1. The three genes from the down-

regulated gene list were still present after functional annotation, whereas, no up-

regulated genes were found to overlap with the known genes involved in T2DM 

(Figure 2.4).  
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Table 2.7: Functional annotation clustering of down-regulated genes for molecular function characterisation 
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Figure 2.3: Functional annotation of A) up-regulated miRNAs and B) down-regulated miRNAs using Diana-mirPath. Functions with p < 0.001 

were considered as significant 
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Table 2.8: Final target gene lists after functional annotation 
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Figure 2.4: Comparison of known susceptible genes linked with T2DM (blue) 

to the predicted up- (green) and down-regulated (yellow) gene lists after 

functional annotation. The three genes (PPARA, LDLR, CAMTA1) were 

observed to still overlap the known genes associated with T2DM. No genes were 

from the up-regulated gene list overlapped.  

2.4.4. Network analysis and pathway enrichment analysis 

STRING is a web-based tool to explore gene ontology (GO) annotations, protein-

protein interactions (PPI) and KEGG pathway. Therefore, using STRING, KEGG 

pathway enrichment analysis was performed separately on the up- and down-

regulated target gene lists. Based on the results, most of the down-regulated gene 

variants were projected to be involved in the cell cycle, transforming growth factor 

(TGF)-β signalling, and salivary secretion pathways (Figure 2.5). Previous studies 

has identified that TGF-β/Smad3 signalling is involved in insulin gene transcription 

in the pancreatic β-cells, with Smad3 mediating the expression of TGF-β  and that 

they are involved in the pathogenesis of both obesity and T2DM (Tan et al, 2012).  
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No significant pathways were identified for the up-regulated gene list, as all the 

pathways produced p > 0.05. Moreover, STRING analysis of PPI interactions 

revealed five interactions observed for down-regulated miRNA target genes (Figure 

2.6 A). Interestingly, the proteins of the two genes shown for T2DM susceptibility 

(LDLR and PPARA) are shown to interact with each other. In contrast, only one 

interaction was observed for the up-regulated miRNA targeted genes (Figure 2.6 

B). However, SIX5 and ATXN1 does not seem to play a pathogenic role in T2DM. 

 

 

Figure 2.5: Graphical display of signalling pathways predicted by STRING for 

the down-regulated predicted target genes. Analysis of KEGG pathway 

enrichment of the predicted genes was performed by STRING analysis. Pathways 

with a p-value of < 0.05 were selected.  
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Figure 2.6: STRING analysis of pathway enrichment and interaction in the A) 

down-regulated and B) up-regulated predicted miRNA target genes. Five 

protein interactions were observed for the down-regulated target genes, whereas, 

only one interaction was observed for the up-regulated target genes. 

 

2.5. Summary 

In this study, a list of miRNAs found to have differential expression in the 

serum/plasma of T2DM were obtained, as well as determining their functional 

relevance by performing in silico target analysis.  

To date, there have been many publications based on miRNA target prediction. 

However, there is still uncertainty about which method gives the best results with 

the least amount of false-positive target genes (Leitner, 2009). It has been suggested 

that the main cause of this uncertainty is due to the small size and binding behaviour 

of the mature miRNA in animal genomes (Williamson, 2012). Despite this 

disadvantage, the main reason for target prediction is to determine the possible 

functions and pathways of miRNA (Fendler, 2010; Keller et al, 2014). 
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2.5.1. MiRNA identification and target prediction 

Masotti and Alisi (2014) incorporated stringent parameters in order for the 

researcher to obtain both a shorter miRNA list and target gene list. Moreover, 

compared to most methods for miRNA and target gene prioritization, this method 

was more simplified. Using a modified methodology for this investigation, a 

number of four miRNAs i.e. miR-dr-1, miR-ur-1, miR-ur-2, and miR-ur-3 was 

identified. All four of these miRNAs were found to be involved in the insulin 

signalling pathway. Furthermore, the target gene list obtained from Diana Micro-

T, PITA, and TargetScan was shortened from ~ 10, 000 genes to 46 genes and 58 

genes for the down-regulated miRNA and up-regulated miRNAs, respectively. The 

down-regulated miRNA target gene list had three known genes found to play a role 

in T2DM: PPARA, LDLR and CAMTA1. Whereas, the up-regulated miRNA target 

gene list had two known genes: IGF2BP2 and ANK2.  

The miRNA of particular interest was miR-dr-1, due it being the only one linking 

the predicted target genes, obtained in this section, to possible molecular functions 

and biological processes that might be involved in the pathogenesis of T2DM. 

Furthermore, the target genes LDLR and PPARA seems to be promising targets for 

miR-dr-1, as they seem to be somehow linked to each other, based on the study 

done by Bernal-Mizrachi (see section 2.4.2.2) and based on STRING analysis in 

section 2.4.1.  
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Chapter 3: Molecular analysis - validation of the 

miRNAs of interest 

 

3.1. Introduction 

MiRNAs are approximately 18 – 24 nucleotides long (Wu et al, 2007), thus, making 

them too short for standard and quantitative PCR methods, which require a template 

that is at least double the size of the forward or reverse primers (i.e. approximately 

20 nucleotides long) (Kramer, 2011). Hence, the shortest length the target strand 

could be is approximately ≥ 40 nucleotides (Kramer, 2011).  

Efficient and reliable profile expression methods of miRNAs are an important step 

in order to understand their roles in specific tissues and cells (Wu et al, 2007). 

Currently, there are three commonly used high-throughput methods for identifying 

expression levels of miRNA: (i) microarrays, (ii) next-generation sequencing 

(NGS) technologies, and (iii) real-time quantitative PCR (qRT-PCR) (Rooij, 2011; 

Martinez-Sanchez and Murphy, 2013; Dedeoğlu, 2014). A brief description for 

each of these methods is given below. 

i. Microarrays (Hybridzation-based) 

Microarrays is a popular method for the identification of biomarkers and 

therapeutic targets (Dedeoğlu, 2014). Data obtained using this method also aids in 

the identification of predicting function(s) of specific miRNA targets by comparing 

the miRNA expression to known mRNA targets and protein profiles (Dedeoğlu, 

2014). The steps required for miRNA microarray analysis involve: (i) purification 

of mature miRNAs from cells or tissues, (ii) enrichment and labelling with a dye 
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using T4 RNA ligase to attach two flourophore-labelled nucleotides to the 3’-end 

of the miRNA, and (iii) hybridization to arrays with the appropriate probes 

(produced from synthetic oligonucleotides or cDNA fragments) specific for the 

mature miRNA of interest, resulting in the easy detection of the double-stranded 

fragments (van Rooij, 2011).  

It should be noted, however, that this method is not used to obtain quantitative 

results, but rather to determine the relative change in expression between two states 

e.g. diseased compared to non-diseased or used to detect the presence of a miRNA 

of interest (van Rooij, 2011). This is mainly due to the differing binding affinities 

among miRNAs to their targets (van Rooij, 2011). For this reason, data obtained 

using this tool for miRNA profiling should be used as a guide and should be 

validated using other detection methods (e.g. qRT-PCR) (van Rooij, 2011). 

ii. Next generation sequencing (NGS) 

NGS platforms are available for sequencing small RNA molecules, including 

miRNAs. Unlike microarray analysis, this tool for miRNA expression profiling 

uses vast parallel sequencing, resulting in the generation of millions of miRNA 

sequence reads i.e. approximately 3 Gbp of sequence data, from given samples. 

Furthermore, NGS is more sensitive than microarray analysis and can, thus, 

measure absolute abundance and allows for the discovery of novel miRNA (van 

Rooij, 2011; Dedeoğlu, 2014). There are specified criteria involved for defining 

whether the miRNA sequence of interest is a putative novel miRNA. This includes 

for the miRNA sequence: (i) to be 22 nucleotides in length that maps precisely to 

the genome of interest, (ii) to be phylogenetically conserved, and (iii) to form a 

hairpin structure without large internal loops or bulges (van Rooij, 2011). The main 

limitation of using this method for miRNA expression profiling is mainly due to a 
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vast amount of bioinformatics challenges when trying to analyse the 3 Gbp of 

sequence data appropriately (van Rooij, 2011).  

iii. qRT-PCR 

Quantitative real-time PCR is considered the gold standard for miRNA expression 

profiling as it serves as a platform for single reverse PCR amplification studies and 

for a large number of miRNAs in parallel (van Rooij, 2011; Dedeoğlu, 2014; 

Stokowy et al, 2014; Usó et al, 2014), by multiplexing and plate-based arrays 

(Dedeoğlu, 2014). Some of the main advantages using this method includes its high 

sensitivity, its speed, and it does not require a large volume of RNA (Usó et al., 

2014). Additionally, this method is less time-consuming compared to microarrays 

and NGS and analysis of results do not require to be analysed/processed by 

biostaticians (Usó et al, 2014). 

The principle of qRT-PCR is based on the real-time detection of a reporter molecule 

where fluorescence intensity exactly correlates to the amount of DNA present in 

each amplification cycle (Benes and Castoldi, 2010; Usó et al, 2014). TaqMan 

probes and SYBR Green I is the only fluorescent technologies suitable for miRNA 

detection when performing qRT-PCR (Benes and Castoldi, 2010; Usó et al., 2014).  

Dual-labelled hydrolysis probes (e.g. Taqman probes) are designed to hybridize to 

an internal stretch of the amplicon. Taqman probes consist of a fluorescent reporter 

on the 5’-end and a quencher molecule on the 3’-end (Benes and Castoldi, 2010; 

Usó et al, 2014) (see Figure 3.1 A). If the reporter and quencher are in close 

proximity to each other, no fluorescence would be emitted (Benes and Castoldi, 

2010; Usó et al, 2014). During PCR, the probe and the primers anneal to the target 

sequence, allowing the Taq polymerase to extend the primer upstream of the probe 
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(Usó et al, 2014). If the probe is bound to the appropriate target, the Taq polymerase 

hydrolyses the probe, causing an increase in fluorescence being emitted, which is 

proportional to the amount of product generated during the PCR process (Usó et al, 

2014). The main limitation of using this technology is that Taqman probes are 

costly, especially when screening for a large number of miRNAs (Wu et al, 2007). 

Alternatively, the SYBR Green I assay is more cost-effective. SYBR Green is an 

intercalating fluorescent dye that binds to all double-stranded DNAs (dsDNAs) (see 

Figure 3.1 B), as well as to non-specific products such as primer dimers (Usó et al, 

2014). Non-specific binding limits the accuracy of this detection method, thus, 

performing a melting point analysis (or dissociation curve analysis) is very 

important when using SYBR Green (Benes and Castoldi, 2010; Usó et al, 2014). 

The purpose for melting point analysis, is to monitor the homogeneity of the PCR 

products (Benes and Castoldi, 2010). This procedure involves the recording of 

fluorescence intensity, which is emitted by the SYBR Green intercalated into the 

PCR products, at different temperatures i.e. from 65 ˚C to 95 ˚C (Benes and 

Castoldi, 2010).  

The increasing temperature eventually denatures the dsDNA, resulting in a 

reduction of the fluorescent signal. When the strands separate completely, it appears 

as a sharp drop in signal intensity (Benes and Castoldi, 2010). The number of points 

of inflection in the melting points indicates the number of PCR products, including 

primer dimers, produced (Benes and Castoldi, 2010). An acceptable dissociation 

curve has a single peak, whereas, multiple peaks indicates the presence of primer-

dimers or non-specific amplification products (Benes and Castoldi, 2010). 

Furthermore, stem-loop qRT-PCR enhances sensitivity and specificity of qRT-PCR 

array methods and enables researchers to analyse and detect a larger number of 
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mature, processed miRNAs in a single experiment (Czimmerer et al, 2013; Usó et 

al, 2014). 

Stem-loop qRT-PCR assay involves two steps (Figure 3.1 A and B): (i) miRNA-

specific stem-loop primer-based reverse transcription (RT) and (ii) quantification 

of RT products using the SYBR Green I assay or probe assay (Czimmerer et al, 

2013). Designing stem-loop primers is more complex and the following 

components are required (Benes and Castoldi, 2010; Kramer, 2011): 

i. A reverse transcription (RT) stem-loop primer, which contains the highly 

stable stem-loop structure that lengthens the target cDNA from ~22 to > 60 

nucleotides. 

ii. A forward primer gives the target cDNA extra nucleotide length and 

increases the melting temperature (Tm) and, thus, enhances the specificity 

of the assay. 

iii. A universal reverse primer, which eventually disrupts the stem-loop as it is 

complimentary to a sequence within the RT stem-loop primer. 

This investigation makes use of the SYBR green assay for profiling miRNA 

differential expression. An example of how to design the RT stem-loop primer, 

forward and reverse primers is given in Appendix B. 
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Figure 3.1: Schematic representation of stem-loop qRT-PCR for profiling miRNA 

differential expression using A) the hydrolysis probe assay and B) SYBR Green I 

assay (Adopted from Wu et al, 2007) 

 

3.2. Aims  

In Chapter 2, four miRNAs of interest, shown to be differentially expressed in 

serum/plasma of T2DM individuals, were identified using in silico methods. In this 

chapter, the miRNAs of interest identified in the previous chapter were analysed 

using qRT-PCR to determine its expression in the kidney tissue of male Wistar rats. 

The hypothesis was that due to the kidneys playing an important role in cleansing 

the blood from impurities, it would exhibit similar miRNA expression patterns as 

found in serum/plasma. The aim for this section, therefore, is to identify and 

validate differential miRNA expression in rat kidney tissue. 
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3.3. Molecular materials and methods 

3.3.1 Materials and suppliers: 

SeaKem® LE Agarose    Lasec 

Boric acid      Merck 

Dimethyl percarbonate (DEPC)   Sigma    

EDTA       Saarchem 

Gel Loading Dye (6X)    Fermentas 

GelRed      Biotium 

High-Pure miRNA Isolation Kit   Roche 

KAPA SYBR FAST qPCR Kit,  

Optimised for LightCycler 480   KAPA Biosystems  

KAPATaq EXtra HotStart ReadyMix and dye KAPA Biosystems 

Transcriptor First Strand Synthesis Kit  Roche 

Tris [Hydroxymethyl] aminoethane (Tris)  Merck 

Nuclease-free water     Fermentas 

O’GeneRuler™ 50 bp DNA Ladder, 

Ready-to-use      Thermo Scientific 

PCR plates for LightCycler®    Lasec 

Platemax sealing film      Lasec 

Primers      Inqaba Biotech 
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Qubit® RNA Broad Range Assay Kit  Life Technologies 

 

3.3.2. General Stocks and Solutions 

10X TBE:   1.2 M Tris, 1.2 M Boric, 2 mM EDTA 

DEPC treated water: 1 ml DEPC dissolved in 1 L of distilled water, 

incubated at 37 ˚C overnight and autoclaved 

3.3.3. List of equipment  

LightCycler® 480     Roche 

BioSpectrum® Imaging System   UVP 

Eppendorf Centrifuge 5417R, F45-30-11 rotor Sigma-Aldrich 

GeneAmp® PCR System 2700   Applied Biosystems 

Thermo Scientific NanoDrop ND-1000  

Spectrophotometer     Thermo Fisher 

Qubit® 2.0 Fluorometer    Life Technologies 

 

3.3.4. Decontamination of glass- and plastic-ware 

All glass bottles used were treated with 1 % DEPC-treated water overnight and 

autoclaved at 120 ˚C for 20 minutes. Mortar and pestles were first washed with 

dish-washing liquid, then allowed to soak in 0.5 M EDTA overnight, and finally 

rinsed with water (DEPC-treated (1:100) and autoclaved). The 0.6 ml, 1.5 ml, and 
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2 ml tubes were designated for RNA only and used straight from the bag. Lastly, 

pre-packed 10 μl, 20 μl, 200 μl and 1 ml filter tips were used to avoid contamination. 

3.3.5. Sample collection  

Rat kidney tissue from male Wistar rats was donated from Professor Daneel 

Dietrich from the Medical Bioscience Department, University of the Western Cape. 

For this investigation healthy, streptozotocin-induced type 1 diabetic, and high fat 

diet (HFD) rats’ kidney tissue were used. It should be noted that the HFD diet rats 

served as the T2DM sample. Wistar rats are rendered hypertensive if left on a HFD 

over a period of time (Huisamen et al, 2013). Furthermore, studies have suggested 

that there is a link between T2DM and hypertension (Lago et al, 2007). 

At the time of tissue harvesting, tissues were flash-frozen in liquid nitrogen and 

then stored in – 80 ˚C for later usage. 

3.3.6. Sample processing and miRNA extraction 

Tissue disruption and homogenization was done according to the High Pure 

miRNA Isolation Kit (Roche). Approximately 30 mg of kidney tissue was first 

disrupted using a sterilized mortar and pestle by grinding each of the samples in 

liquid nitrogen to a fine powder. The sample was then transferred into a sterile, 

RNase-free tube which contained 400 μl of 20 % Binding Buffer (i.e. for one sample 

80 μl of Binding Buffer and 320 μl nuclease free water, or Elution Buffer, was 

mixed together in a  sterile, RNase-free tube). The lysate was homogenized by 

passing it through a sterile syringe and 20-gauge (ø 0.9 mm) needle until a 

homogenous lysate was achieved. The lysate was centrifuged for two minutes at 

maximum speed, thereafter the supernatant was collected into a new sterile tube for 

miRNA isolation. 
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For miRNA extraction from tissue, the two-column protocol for small RNA 

isolation was used. All centrifugation steps were done at 4˚ C. A volume of 150 μl 

lysate was added into a sterile tube along with 312 μl Binding Buffer. The lysate 

was then vortexed for five seconds three times. Thereafter, the mixed lysate was 

transferred into the upper reservoir of a High Pure filter tube combined to a 

collection tube then centrifuged for 30 seconds at 13,000 g for one minute and the 

flow-through was discarded thereafter. 

Thereafter, 500 μl Wash Buffer was added to the column and centrifuged at 13,000 

g for 30 seconds, and the flow-through discarded. An additional 300 μl of Wash 

buffer was added to the column and centrifuged for 30 seconds at 13, 000 g and the 

the flow-through discarded. The column’s filter was then dried by centrifuging for 

an additional one minute at 13, 000 g.  

The filter tube was then placed into a sterile 1.5 ml Eppendorf tube into which 50 

μl of Elution Buffer was added and allowed to incubate for one minute at room 

temperature (i.e. 15˚ C to 25˚C). Thereafter, the tube was centrifuged at 13, 000 g 

for one minute and the eluted sample was stored at -80˚ C. The filter was placed 

into a second sterile 1.5 ml Eppendorf tube for a second elution i.e. 50 μl of Elution 

Buffer was added to the filter tube and then centrifuged for one minute at 13, 000 

g. The concentration of each elute was quantified using the Qubit® 2.0 

Fluorometer, according to the manufacturers’ protocol (Life Technologies, South 

Africa), and was stored at -80˚ C.  

3.3.6.1. Qubit® quantitation  

The Qubit® RNA Broad Range (BR) Assay Kit was used for the determination of 

miRNA concentration. This assay is fluorescence-based and is highly selective for 
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RNA and will not quantitate DNA, protein, or free nucleotides. Moreover, it 

provides an assay range from 20 – 1000 ng, and the RNA starting concentration can 

be 1 ng/μl – 1 μg/μl.  

Quantitation using this assay was performed at room temperature. The Working 

Solution was prepared in a sterile 2 ml Eppendorf tube containing BR reagent 

diluted 1:200 in BR buffer and briefly mixed by vortexing. The 2 Qubit® standards 

were prepared by adding 190 μl of working solution into 0.6 ml clear-walled, sterile 

tubes followed by 10 μl of the standard solutions. The standards were vortexed 

briefly and left to incubate at room temperature for two minutes. 

The miRNA samples were prepared by diluting 2 μl of the sample with 198 μl of 

working solution (i.e. 1:100 dilution) in 0.6 ml clear-walled, sterile tubes. The 

sample was briefly vortexed and left to incubate at room temperature for two 

minutes. 

Thereafter, the concentration of the standards were first read in order to calibrate 

the Qubit® 2.0 Fluorometer. Thereafter, the concentrations of the miRNA samples 

were determined. The Qubit® 2.0 Fluorometer has the option were it calculates the 

concentration using the following equation: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑘𝑤𝑜𝑤𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑄𝐹 𝑥 
200

𝑥
 

Where QF = the value given by the Qubit® 2.0 Fluorometer, and x = volume (μl) 

of sample. 

3.3.7. Primer synthesis 

Mature miRNA sequences for each of the four miRNAs of interest and reference 

miRNAs were obtained from miRBase (http://www.mirbase.org/), as described in 
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section 2.2.1.1. Reference miRNAs used in this investigation shown to be stably 

expressed in kidney tissue was miR-17 and miRNA-191a (Eskildsen et al, 2013). 

Moreover, these reference miRNAs were found to be 100 % homologous to rats 

using the ClustalW sequence alignment tool (see description in section 2.2.1.1). 

GAPDH was used as a third reference gene, due to it displaying stable expression 

within kidney tissues as well (Ji et al, 2013). 

The miRNA primers used for stem-loop RT-PCR was designed according to 

Kramer (2011). An example for miRNA primer design is given in Appendix B. 

Firstly, once the mature miRNA sequence of interest was obtained from miRBase, 

the RT stem-loop primer was designed. Designing the RT stem-loop primer 

combined the 44 nucleotide stem-loop sequence designed by Chen et al (2005) i.e. 

5′- GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG 

AC -3′ region to an additional six nucleotides, complimentary to the 3’ nucleotide 

from the mature miRNA sequence. Secondly, designing the forward primer 

involved taking the first 12 to 17 nucleotides of the 5’ end of the mature miRNA 

sequence and adding another three to seven random nucleotides to the 5’ end in 

order to increase the melting temperature (Tm) to aproximately 60 ˚C (± 1 ˚C) 

(Kramer, 2011). The OligoAnalyzer 3.1 tool (https://eu.idtdna.com/calc/analyzer) 

(Owczarzy et al, 2008) was used to calculate the estimated melting temperature for 

each forward primer. The reverse primer is universal since all RT stem-loop primers 

uses the same 44 nucleotide sequence. The sequence of the universal primer as 

recommended by Kramer (2011) is: 5′-CCA GTG CAG GGT CCG AGG TA-3′. 

Reference genes used for normalization in kidney tissue was miR-191a, miR-17 

(Eskildsen et al, 2013) and GAPDH (Ji et al, 2013). Primer sequences for reference 

miRNAs are given in Table 3.1. Primer sequences for GAPDH are as follows: 
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forward primer – TGATGACATCAAGAAGGTGGTGAAG; reverse primer: 

TCCTTGGAGGCCATGTGGGCCAT. 

  

Table 3.1: Designed primer sequences for reference genes miR-191a and miR-17 

 

All primer oligonucleotide sequences were synthesised by Inqaba biotech 

(http://www.inqababiotec.co.za/). A 100 μM of stock solution of each primer was 

prepared in 1X TE buffer (10 mM Tris, pH 7.5 to 8.0, 1 mM EDTA). The 

concentrated stock oligonucleotide solutions and working stock solutions were 

stored at -20 ˚C.  

3.3.8. cDNA synthesis  

The Transcriptor First Strand cDNA Synthesis Kit protocol was slightly modified 

for cDNA synthesis from miRNA. A cocktail of miRNA-specific stem-loop (SL) 

primers was prepared (10 μM/primer, six primers in total). In sterile, nuclease-free 

PCR tubes, 3 μl template miRNA (~200 ng of miRNA), 2 μl SL cocktail primer, 

and PCR-grade water was added to make up a final volume of 13 μl. The primer 

mix was briefly centrifuged and then incubated in the GeneAmp® PCR System 

2700 thermal block cycler at 65˚ C for five minutes, then placed on ice for two 

minutes, thereafter (Varkonyi-Gasic et al, 2007). After incubation, 4 μl Transcriptor 

Reverse Transcriptase Reaction Buffer (1X), 0.5 μl Protector RNase Inhibitor (20 
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U), 2 μl Deoxynucleotide mix (1 mM each), and 0.5 μl Transcriptor Reverse 

Transcriptase (10 U) was added to the primer mixture and gently mixed by finger 

tapping. The tubes were briefly centrifuged to bring all the contents down to the 

bottom of the tube and then placed in the thermal block cycler to perform pulse RT-

PCR at the following parameters according to Varkonyi-Gasic (2007): 30˚ C for 30 

seconds, 42˚ C for 30 seconds, and 50˚ C for one second for 60 cycles. The 

synthesised cDNA was stored at -20˚ C until needed for further analysis by 

conventional PCR and qRT-PCR. 

3.3.9. Conventional PCR 

The quality of miRNAs after extraction and cDNA synthesis was checked by 

performing conventional PCR, to observe if the primers do in fact bind to, and 

amplified, the cDNA template.  

In sterile, nuclease-free PCR tubes, 12.5 μl KAPATaq EXtra HotStart ReadyMix 

and dye (1X), 1 μl of RT product (~ 100 ng), 1 μl forward primer (10 μM), 1 μl 

reverse primer (10 μM) was added and nuclease-free PCR-grade water to make up 

the reaction to a final volume of 25 μl. The reactions were placed on the thermal 

heating block and amplified according to the parameters shown in Table 3.2:  
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Table 3.2: Parameters used for conventional PCR reactions 

Step Temperature (˚C) Time Cycle/s 

Initial 

denaturation 
94 2 minutes 1 

Denaturation 94 15 seconds 

40 Annealing* 65 – 66.6 30 seconds 

Elongation 60 1 minute 

Final elongation 75 5 minutes 1 

Cooling 4 ∞ 1 

*Annealing temperature is primer dependent 

Thereafter, 10 μl of the amplified products was electrophoresed on 4 % agarose gel, 

stained with GelRed (stock 10, 000 X, diluted to 0.3 X when added to the molten 

agarose), at 90 V for 80 minutes, in 1X TBE running buffer (10X TBE stock: 1.2 

M Tris, 1.2 M Boric acid, and 2 mM EDTA). Visualization was done with the 

BioSpectrum® Imaging System. 

3.3.10. Quantitative real-time PCR 

Real-time PCR (qRT-PCR) was performed using the SYBR Green miRNA assay 

according to the KAPA SYBR ® FAST qPCR kit protocol Optimized for 

LightCycler® 480. Reactions including the standards were carried out in 96-well, 

clear plates. 

Each reaction was made up to a final volume of 10 μl with the following 

components: ~200 ng cDNA, 5 μl of 2X SYBR qPCR master mix, 1 μl of both 

forward and reverse primers at a concentration of 10 μM each, and nuclease-free, 

PCR-grade water. The LightCycler®480 was used to quantify differential 

expression according to the parameters shown in Table 3.3. 
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Table 3.3: Parameters used for qRT-PCR reactions 

Program Step Temperature 

(˚C) 

Hold Cycle Fluorescence 

Acquisition 

Pre-incubation  95 5 minutes 1 None 

PCR Denaturation 95 10 seconds 45 None 

Annealing* 64 20 seconds None 

Extension 72 1 second Single 

Melting Curve Denaturation 95 5 seconds 1 None 

Annealing 65 1 minute None 

Extension 97 5 – 10 

acquisitions/˚C 

Continuous 

Cooling   30 seconds 1 None 

*Annealing temperature is primer dependent 

Thereafter, data on expression levels of the reference genes were determined in the 

form of crossing points/cycle threshold (Cp/Ct). And the PCR efficiencies were 

calculated using the Relative Expression Software Tool (REST®) (Pfaffl, 2002). All 

Ct values were taken into consideration using the following equation: 

𝐸 = 10
[−

1
𝑆𝑙𝑜𝑝𝑒

]
 

Lastly, the expression levels of all four miRNAs were determined relative to the 

reference genes, using the following equation (Pfaffl, 2001):  

𝑅 =
(𝐸 𝑡𝑎𝑟𝑔𝑒𝑡)∆𝐶𝑝. 𝑡𝑎𝑟𝑔𝑒𝑡(𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒)

(𝐸 𝑟𝑒𝑓)∆𝐶𝑝. 𝑟𝑒𝑓(𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒)
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3.4. Results 

3.4.1. MiRNA extraction 

Tissue from four HFD (T2DM), three T1DM, and three normal (control) were 

extracted from male Wistar rats as described in section 3.3.6. Due to the small size 

of miRNAs, agarose gel electrophoresis was not carried out. However, all isolated 

miRNA samples were quantified using the Qubit® Fluorometer 2.0 as described in 

section 3.3.6.1.  

3.4.2. CDNA synthesis 

The stem-loop reverse transcription method was used to synthesise cDNA for all 

the miRNA samples as described in section 3.3.8. The resulting cDNA samples 

were then quantified using the Thermo Scientific NanoDrop ND-1000 

Spectrophotometer. 

3.4.3. Conventional PCR 

A conventional PCR was performed using cDNA from the four miRNAs of interest 

(mir-dr-1, miR-ur-1, miR-ur-2, and miR-ur-3) and the reference miRNAs: miR-

191a and miR-17, as described in section 3.3.9. This was done to observe if the 

primers bound and aided in amplifying the targets of interest. It should be noted 

that a cDNA sample from a normal kidney tissue was used to test whether miRNAs 

of interest amplified. 

From the results shown in Figure 3.2, expected bands of approximately 70 bp was 

observed for all miRNAs after agarose electrophoresis. Moreover, some bands were 

more intense than others, this could be due to these miRNAs having different 

expression levels within the control sample.  
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Figure 3.2: PCR amplification of the control and test miRNAs. A) LANE 1: 50 

bp DNA ladder, LANE 2: empty, LANE 3 and LANE 4: control containing no 

template, LANE 5: normalisation miRNA mir-17, LANE 6: miR-dr-1, LANE 7: 

miR-ur-2, LANE 8: mir-ur-3, and LANE 9: normalization miRNA mir-191. B) 

LANE 1: 50 bp DNA ladder, LANE 3 and LANE 5: control containing no template, 

and LANE 8: miR-ur-1. 

3.4.2. qRT-PCR analysis 

3.4.2.1. Standardisation of qRT-PCR 

 The sets of crossing points for the reference genes were imported into REST® 

(Relative Expression Software Tool) in order to normalize the relative 

quantification of the microRNAs (miRNAs) to the reference genes. A 

randomization test was performed to determine the factor of regulation and level of 

significance of each miRNA expression across the different tissue tested. The 

amplification plot for the reference gene GAPDH is shown in Figure 3.3 A. 

GAPDH is a suitable housekeeping gene and has been found to be stable in the 

different tissues tested. Figure 3.3 B shows the amplification plot for the miR-dr-1. 

In both Figure 3.3 A and B, evenly spread out slopes were observed. During the 
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qRT-PCR assays performed amplification efficiencies between 3.35 and 3.4 were 

obtained for the respective miRNAs, indicating that optimized qRT-PCR reactions 

were performed. The amplification curves for the rest of the test and other control 

miRNAs are given in Appendix C. 

 

 

Figure 3.3 (A): Amplification plot for the reference gene, GAPDH, and miR-

dr-1. The red, green, and blue slopes indicate the amplification of GAPDH at the 

1:10, 1:100, and 1:1000 dilutions, respectively. (B) The red, green, and blue slopes 

indicate the amplification of miR-dr-1 at the 1:10, 1:100, and 1:1000 dilutions, 

respectively. 

3.4.2.2. Melting curve analysis 

A melting curve ranging from 60°C to 95°C was constructed for every reference 

and target gene/miRNA. The obtained melting curves were used to determine 

whether any contamination, mis-priming (referring to the annealing of primers to 

complementary sequences on non-target DNA), primer-dimers (primers annealing 

 

 

 

 



102 

 

to themselves), or other problems occurred. The melting curve for the reference 

gene GAPDH and miR-dr-1 are shown in Figure 3.4 A and B.  

As the peaks in both figures are similar, it suggests that no contamination, mis-

priming or primer-dimers are present. Only one peak is observed (one Tm) per gene, 

indicating that only one amplicon was amplified. Therefore, no non-specific 

amplification occurred and it is evident that accurate quantification of the genes of 

interest has been achieved through optimized qRT-PCR. The melting curve plots 

for the rest of the test and control miRNAs are given in Appendix C. 

      

 

Figure 3.4: Melting curve analysis ranging from 65 ̊ C to 95 ̊ C for A) the reference 

gene, GAPDH, and B) miR-dr-1. 

3.4.2.3. Reference genes: statistical analysis 

The accuracy of qRT-PCR is heavily dependent on the proper normalization of 

expression data, therefore, inappropriate normalization of qRT-PCR data can lead 

to incorrect conclusions (Peltier and Latham, 2008, Roberts et al, 2014). Thus, the 

main aim of reference genes is to remove variations between groups – the variations 

in this instance is caused by the disease (Peltier and Latham, 2008) or by 

experimental error. Ideally, a reference gene is a single nucleic acid that exhibits 
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constant expression across all samples, is expressed along with the target of interest 

within cells, and shows equivalent storage, stability, extraction, and quantification 

efficiency as the specific target of interest (Pfaffl, 2001; Peltier and Latham, 2008). 

However, a reference gene such as this does not exist in reality (Peltier and Latham, 

2008). 

MiRNAs, particularly, poses a significant challenge for normalization. This is 

thought to be due to miRNAs only representing 0.01 % of the mass amount of total 

RNA and this fraction can have significant variation across different samples 

(Peltier and Latham, 2008). Despite these challenges, however, there are three 

normalization strategies which aid in expression profiling of miRNAs which 

include (i) average of all the quantification cycles values (Cq) from the experiments, 

(ii) stably expressed endogenous reference miRNAs, and (iii) external spike-in 

synthetic oligonucleotides. In this investigation, miR-17 (Eskildsen et al, 2013), 

miR-191a (Eskildsen et al, 2013) and GADPH (Ji et al, 2013) were used as 

reference genes for normalization, based on previous studies which identified them 

to be stably expressed in kidney tissue. The expression of these reference genes 

were profiled in the different kidney tissue samples to test whether they had the 

same expression i.e. in the normal, HFD (T2DM), and T1DM kidney tissue 

samples. In this investigation, miR-17 was used for normalization due it exhibiting 

the same expression in all sample types (shown in Figure 3.5). 
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Figure 3.5: Expression levels of the reference genes in control tissue sample 

compared to HFD (T2DM) and T1DM samples 

 

3.4.2.4. Expression analysis of the 4 miRNAs of interest in HFD (T2DM) and TIDM 

tissues. 

For the expression analysis performed for the 4 miRNAs of interest in normal, 

T1DM, and HFD (T2DM) kidney tissue samples, ~ 200 ng of miRNA was extracted 

from the tissues, as described in section 3.3.6,  and reverse transcribed to cDNA as 

described in section 3.3.8. A serial dilution ranging from 1:10 to 1:10 000 was 

performed using the cDNA obtained after reverse transcription. The cDNA was 

used in qRT-PCR reactions as described in section 3.3.10. The expression levels of 

the target miRNA were normalized against the expression of the reference gene 

(GADPH) and the two control miRNAs (miR-17). Furthermore, the expression 

ratios were determined using the REST® software package. The values obtained 

from the software package were exported to an Excel spreadsheet and a table was 

created containing all the descriptive statistics as indicated in Table 3.4. 
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From the results obtained for Table 3.4 it is shown that three of the miRNAs, miR-

ur-1, miR-dr-1 and miR-ur-2, showed differential expression in the HFD (T2DM) 

samples when compared to the control samples. MiR-ur-1 was up-regulated in the 

HFD (T2DM) samples with a factor of 4.2 and a p-value of 0.05. MiR-dr-1 and 

miR-ur-2 were down-regulated in the HFD (T2DM) samples with a factor of 2.96 

and 3.6 respectively, with p-values of 0.02 and 0.001. MiR-ur-3 was slightly up-

regulated with a factor of 1.2 but this was not statistically significant, due to it 

having a p-value of 0.55. 

In Figure 3.6, the expression ratios of all 4 miRNAs of interest are shown relative 

to the expression level in the control samples, where the control samples are given 

as an arbitrary value of one which indicates no variation of regulation of the four 

miRNAs.  
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Table 3.4: Relative expression ratio of the four miRNAs of interest in HFD 

(T2DM) kidney tissue samples compared to normal (control) kidney samples. 

Gene Sample Mean CT Std. error Fold change p-value 

miR-ur-1 

Control 34.93 0.07 

4.2 0.05 

HFD 32.70 0.11 

      

miR-dr-1 

Control 34.90 0.10 

-2.96 0.02 

HFD 36.33 0.16 

      

miR-ur-2 

Control 34.17 0.15 

-3.6 0.001 

HFD 35.87 0.13 

      

miR-ur-3 

Control 32.20 0.13 

1.2 0.55 

HFD 31.82 0.12 

    
  

*HKG 

Control 28.19 0.04 

1.098 0.209 

HFD 28.05 0.11 

            

*HKG = Housekeeping gene 
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Figure 3.6: Relative expression ratio plot of the four miRNAs in normal kidney 

tissue compared to HFD (T2DM) kidney tissue.  

Table 3.5 represents the descriptive statistics for the expression of the 4 miRNAs 

in T1DM samples.  From the results obtained in Table 3.5 it is shown that all of the 

miRNAs showed differential expression in T1DM when compared to the control 

samples. Three miRNAs, i.e. miR-ur-1, mir-dr-1, and miR-dr-2, were found to be 

down-regulated in T1DM with a factor of 7.65, 3.25 and 2.77 respectively, with p-

values of 0.001. However, miR-ur-3 was slightly up-regulated with a factor of 1.86 

with a p-value of 0.05 

In Figure 3.7, the expression ratios of all 4 miRNAs in T1DM are shown relative 

to the expression level in the control samples, where the control samples are a given 

an arbitrary value of one which indicates no variation of regulation of the miRNAs 

of interest.  
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Table 3.5: Relative expression ratio of the four miRNAs of interest in T1DM 

kidney tissue samples compared to normal (control) kidney samples. 

Gene Sample Mean CT Std. error Fold change p-value 

 

miR-ur-1 

 

Control 

 

34.36 

 

0.08 

 

 

-7.65 

 

 

0.001 TID 

 

37.17 0.11 

miR-dr-1 Control 32.53 0.21  

-3.25 

 

0.001 TID 

 

34.10 0.10 

miR-ur-2 Control 34.87 0.13  

-2.77 

 

0.001 

 

TID 

 

36.2 0.12 

miR-ur-3 

 

 

*HKG 

 

 

Control 32.13 0.07  

1.864 

 

 

1.098 

 

0.05 

 

 

0.209 

TID 

 

Control 

TID 

31.06 

 

28.19 

28.05 

0.15 

 

0.04 

0.11 

*HKG = Housekeeping gene 
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Figure 3.7: Relative expression ratio plot of the four miRNAs in normal kidney 

tissue compared to T1DM kidney tissue.  

3.4.2.5. Summary 

Validation of biomarkers is an important step in biomarker discovery, as discussed 

in Chapter 1. Additionally, qRT-PCR is the golden standard for validation studies, 

and was, therefore, used in this investigation. 

In this study, we evaluated the expression of four of miRNAs found to have 

differential expression in the serum/plasma of T2DM, as shown from the data 

obtained from various databases in section 2.2.1, and compared it to the expression 

in HFD (T2DM), T1DM and normal rat kidney tissues using qRT-PCR. The results 

indicate that three of these miRNA, i.e. miR-ur-1, miR-dr-1 and miR-ur-2, show 

significant differential expression in HFD (T2DM) rat kidney tissue, as shown in 

Table 3.2 and Figure 3.3. Whereas, all four miRNAs have significant differential 

expression in T1DM. The results obtained, therefore, indicates that these miRNA 

could potentially be used as predictive biomarkers in HFD (T2DM) and TIDM.
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The miRNA which showed the most significant expression between T1DM and 

the HFD (T2DM) tissue samples, is miR-ur-1. This would be an ideal biomarker 

because it would clearly differentiate between T1DM and T2DM due to it being 

significantly up-regulated in HFD (T2DM) tissue samples, have a fold expression 

ratio of 4.2, and significantly down-regulated in T1DM tissue samples, as it had 

a fold expression ratio of -7.65 (see Table 3.6 below). The target genes that were 

predicted for miR-ur-1 in Chapter 2 were FOXP2, SIX5, and CACNB2.  

Of these three genes, CACNB2 (calcium channel, voltage-dependent, beta 2) 

would be a target gene of interest. A study done by Lin et al (2011) found that 

variations of this gene is linked with hypertension. Furthermore, diabetic 

nephropathy (kidney failure) is the most common cause of hypertension (Lago et 

al, 2007). Furthermore, hypertension is also commonly linked with central 

obesity; which is one of the risk factors for T2DM (Lago et al, 2007). 

 

Table 3.6: Summary of fold expression ratios of the 4 miRNAs of interest in 

HFD (T2DM) and T1DM rat kidney tissue samples 

Sample Type miR-dr-1 miR-ur-1 miR-ur-2 miR-ur-3 

HFD -2.96* 4.2* -3.6* 1.2 

T1DM -3.25* -7.65* -2.77* 1.864 

*Significant fold expression ratios are in red, bold font. 

Furthermore, in the beginning of this chapter, a hypothesis was made that similar 

expression would be found in HFD (T2DM) rat kidney tissues as compared to 
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serum/plasma of T2DM, due to kidneys playing an important role in cleansing 

the blood from impurities.  

Based on the results only three miRNAs i.e. miR-dr-1, miR-ur-1 and miR-ur-3 

showed similar expression in rat kidneys as found in serum/plasma (which was 

obtained from the two databases as described in section 2.2.1) after qRT-PCR 

analysis (Table 3.5). However, miR-ur-2 was the only one which never showed 

similarity in expression compared to serum/plasma samples, and displayed 

significantly down-regulated expression in the HFD (T2DM) kidney tissue 

sample. A possible explanation for the contrasting expression in tissue and blood 

could be due to the alterations in the degradation of the miRNAs in circulation 

because more RNA degrading enzymes are present in circulation (Saikumar et 

al, 2012). 
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Chapter 4: General discussion and Future work 

 

Diabetes mellitus has made a significant impact on the non-communicable 

disease burden in South Africa (Volmink et al, 2014). Additionally, it has 

contributed considerably to mortality rates, causing 3.3 % of total deaths 

recorded in 2008 (Volmink et al, 2014). This mortality percentage has most likely 

increased since then. 

The amount of individuals with T2DM, in particular, has increased rapidly over 

the years, as discussed in Chapter 1. However, unlike the other forms of diabetes, 

T2DM is the only type which can be prevented if diagnosed in its early stages 

i.e. pre-diabetes, by incorporating proper lifestyle habits, such as eating healthily 

and exercising regularly. Alternatively, it could also prevent the irreversible 

micro- and macrovascular complications linked with T2DM from developing. 

However, early diagnosis of T2DM rarely occurs and there are quite a number of 

individuals who are not even aware that they have the disease. 

Despite current methods such as the OGTT and FPG tests being the most 

commonly used methods for screening diabetes in a clinical setting, there are 

limitations linked with them such as it being invasive as all tests require a blood 

sample, patients are required to fast beforehand, some tests are time-consuming 

for both the patient and health professional, and tests like the HbA1c tests are 

expensive. Lastly, these tests can not differentiate between the types of diabetes 
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the individual may have. There is, therefore, a need for biomarkers which can 

detect pre-diabetes and T2DM without having the aforementioned limitations. 

MiRNAs has shown promise as ideal biomarkers for diagnostic, prognostic and 

therapeutic purposes for many diseases, as well as T2DM. Thus, the main 

purpose of this study was to identify potential miRNAs as new biomarkers for 

the early detection of T2DM. This study was split into two methodologies i.e. in 

silico and molecular identification.  

The objectives for the in silico study involved identifying miRNAs found to be 

differentially expressed in the serum/plasma of T2DM individuals, identifying 

their target genes and their mechanism of action using several web-based in silico 

tools. This study successfully identified four miRNAs (miR-dr-1, miR-ur-1, 

miR-ur-2, and miR-ur-3) as well as their target genes, and thus may be used as 

biomarkers for the early detection of T2DM. All the miRNAs of interest play a 

role in the insulin signalling pathway. Furthermore, due to the fact that the in 

silico methodology by Masotti and Alisi (2013) identified known genes linked 

with T2DM (LDLR, PPARA, CAMTA1, IGF2BP2, and ANK2) suggests that 

using this methodology, can be considered credible. However, one should bear 

in mind that in silico prediction of biomarkers should be validated using 

appropriate in vitro laboratory techniques (Ngcoza, 2013). 

In this study, miR-dr-1 and its two target genes, LDLR and PPARA, was found 

to be of particular interest, seeing as STRING analysis found an interaction 

between the two genes. Additionally, as described in section 2.4.2.2, the study 

conducted by Bernal-Mizrachi et al (2003) found that LDLR deficient mice, with 
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PPARA (+/+), eventually developed insulin resistance when continuously treated 

with glucocorticoids. Therefore, it would be worth validating miR-dr-1 to these 

target genes. 

Furthermore, miR-dr-1 was predicted to target APP (amyloid precursor protein); 

a protein playing a main role in the pathology of Alzheimer’s disease (AD) (Zhao 

and Townsend, 2009). Evidence showing a link between AD and T2DM has 

grown (Janson et al, 2004; Dandona et al, 2011). Recent studies have shown that 

glucose metabolism is severely impaired in the cerebral cortex of AD patients. 

More specifically, disruptions of the APP gene was shown to affect glucose 

metabolism and tolerance (Zhao and Townsend, 2009). Therefore, despite it not 

being discussed in Chapter 2, APP could be another target gene of interest that 

could be validated in future studies. 

It should be noted that the identification of putative biomarkers using high-

throughput in silico methods instead of traditional laboratory techniques could 

lead to the identification of a large number of novel biomarkers in a shorter period 

of time. Therefore, a molecular approach was employed to compare the 

differential expression of the 4 miRNAs found to be differentially expressed in 

serum/plasma of T2DM individuals (obtained from the databases in Chapter 2) 

to analyse expression levels in kidney tissue from HFD (T2DM), T1DM and 

normal male Wistar rats. The hypothesis was made that similar miRNA 

expression was expected for the HFD (T2DM) kidney tissue samples compared 

to serum miRNA expression levels found in T2DM (as shown in the databases), 
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due to the fact that kidneys play an important role in purifying the blood from 

impurities.  

All expression profiles for the miRNAs were similar to expression in 

serum/plasma of T2DM, except for miR-ur-2. As discussed in the summary of 

Chapter 3, the possible reason for this inconsistency could be due to the 

alterations in degradation of miRNAs in circulation because there is a higher 

level of RNA degrading enzymes in circulation (Saikumar et al, 2012). 

Based on the molecular analysis, miR-dr-1 had significant differential 

expression, thus, suggesting that this miRNA should be validated in future as a 

potential biomarker for T2DM. Interestingly, miR-ur-1 showed vast differences 

in expression between T1DM and T2DM samples, see section 3.4.2.4; it was 

significantly up-regulated in the HFD (T2DM) samples and significantly down-

regulated in T1DM samples. Thus, this miRNA could possibly differentiate 

between the two types of diabetes. Due to the results obtained, it should be 

validated in the future. 

 

4.1. Future work 

Future work would include testing expression levels of the miRNAs of interest 

in T2DM induced rats, using the same methodology as described in sections 3.3.5 

to 3.3.10. One of the shortcomings of this thesis was that there was not a large 

enough sample population. Therefore, more rat kidney samples i.e. normal, HFD, 

T1DM and T2DM, will be included for future studies. Once a miRNA which can 
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specifically and consistently discriminate between the normal, T1DM and T2DM 

rat kidney samples, comparison studies would be done in human blood and urine 

samples to determine if similar expression levels will be obtained as compared 

to the results achieved from this study. 

Furthermore, urine and blood samples would be used in place of kidney samples 

when doing human studies as it would be invasive. 

Furthermore, binding studies will be done for miR-dr-1 and its predicted target 

genes i.e. LDLR and PPARA, and miR-ur-1 and its predicted target gene 

CACNB2. A common method used for binding studies is the luciferase reporter 

gene assay; which is used to test the effect of miRNA-mediated, post-

transcriptional regulation on the target genes (Jin et al, 2013). This is made 

possible by engineering a luciferase gene construct which contains the predicted 

miRNA target gene (Jin et al, 2013). 

Lastly, if the target gene is predicted to be the true target of the miRNA of 

interest, an experiment will be done to test the effect of the miRNA on the 

specific target gene (Kuhn et al, 2008). A typical approach for this would be to 

transiently over-express the miRNA/s of interest (miRNA mimics would be used) 

within a cell type which is known to express the predicted target protein. The 

effect of the miRNA/s on the target gene would then be analysed either by 

Western blotting or ELISA (Kuhn et al, 2008). It is expected that if the miRNA 

of interest is overexpressed, the target gene will decrease in expression (Kuhn et 

al, 2008).   
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This study may greatly contribute to current research to identify biomarkers for 

alternative, non-invasive diagnostic methods for T2DM. 
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Chapter 5: Appendix - List of susceptibility genes from T2DGAD 

 

TCF7L2 GCK CASQ1 GCGR KLF16 FAM129A UTS2R SHBG NKX6-1 

PPARG APOE PDE3B NAMPT MCF2L2 GSTT1 10q21.1 SULF2 PHLDB1 

KCNJ11 KCNQ1 PTEN VEGFA NR1H3 GSTM1 1p31.1 WAC PTPN22 

IGF2BP2 HNF1B STX1A CDKN2A PLAGL1 IL1RN 5p14.3 11p15.1 SLC15A4 

HHEX SOD2 FOXO1 HHEX RBM18 KLF6 ADCY10 20p12.1 TGIF2 

CDKAL1 IAPP HIF1A IDE SLC5A7 MMP12 ARHGEF12 5q35.3 XRCC1 

SLC30A8 JAZF1 ANXA1 INSR 12q24.22 NUCB2 DDIT3 AVPR1A 11q22.3 

FTO ADAMTS9 CCL2 PPARGC1B 2q32.2 SLC9A9 FHIT DLGAP4 6q14.1 

HNF4A PPP1R3A MC3R RPL21P7 8p12 TRPS1 IMMT HMBOX1 C11ORF41 

ADIPOQ PON1 AHSG SORBS1 AKT1 14q12 KRT4 MTHFSD EGR2 

CAPN10 GNB3 PLIN APOC3 CSE1L 3p26.1 MT1B PAX4 GC 

ENPP1 BTC 13q21.1 GSTT1 ESRRG 9q34.13 OPRM1 PPP3CA MYL9 

CDKN2A APOA5 CSN3 POMC ICAM1 CX3CR1 RNLS SAMD12 PCK2 

CDKN2B RBP4 PYY NPY KL EYA2 UBR1 SPDEF SF1 

ACE TSPAN18 AGT CAMTA1 LTA IFT52 16q21 18q12.1 STAT4 

PPARGC1A LGR5 LDLR 11q14.2 PIGT KLF12 4p14 4q24 10q21.3 

RETN THADA KLF7 20p13 PTPRT NQO1 CD47 ACTN2 1p34.3 

HNF1A 11p12 MMP26 6p25.2 SLC25A27 PKLR CYP27B1 APOM 5q21.3 

EXT2 SLC2A10 A2BP1 ADRA2B THBS2 RALGPS2 FABP3 CDK11A ADCY3 

MTHFR LEPR MC4R BCL11A 11q23.2 ANGPTL1 GSTK1 DBC1 ARNT 

TNF MTTP CRP CHI3L1 20q13.12 12q21.2 KLF2 FAM60A CDKN1C 

LOC387761 PBX1 ESR1 G6PC2 7p12.3 2q14.3 MGEA5 GYPC DIO2 

ABCC8 UCP3 GFPT1 ISL1 AGER 7q31.1 NR3C1 IL4 FOXA2 

WFS1 CDC123 KCTD12 PRKAB2 C20orf24 CPNE4 RBM19 NUDT12 L3MBTL 

ADIPOR2 CAMK1D 20q12 SDF2L1 CNTN1 EPHX2 SLC6A2 PON2 MT1E 

IL6 SLC2A2 CLPS SPRY1 HPSE2 GFM1 TRPA1 RICH2 OR13D1 

UCP2 ABCA1 LIPC ANKRD50 KCNJ10 HTR4 2q36.1 SMAD7 RORA 

PDX1 IL10 PRKCZ 10q11.21 LMX1A ADRB2 8q11.23 TSC22D1 SOD3 

NOS3 IDE VDR 1p21.1 NAP5 LRGUK ANGPT4 14q21.1 17p12 

PCK1 NOTCH2 UCP1 5p14.1 SGK2 NKX2-2 CAT 3q13.13 4p15.33 

HFE C4orf32 GSTM1 CDK5 VWF PECAM1 EXOC4 AP2M1 APOB 

IRS1 GCKR NRF1 DCD 11p14.3 SLC13A1 GHSR CCR5 CD96 

INS USF1 13q21.33 HADH 1q43 WRN KLF1 CXCL5 CYP3A4 

ADRB3 PKN2 AGTR1 KLF9 5q34 11q21 MAPK8 F3 FABP4 

UTS2 ADRB2 CACNA1E MT1A ATP5O 20q11.23 PIK3C2G GPC5 IL1B 

GHRL RAGE BCHE RNF34 DLGAP2 6q13 SLC27A5 IGF1 KLF3 

PTPN1 MTNR1B CETP SOD1 INSRR ADRB1 TLR4 KLF13 MIF 

SREBF1 LMNA LEP UBQLNL/OR52H1 NTRK1 CHRM3 11q24.1 NR0B2 PNPLA2 
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ADIPOR1 KLF11 PRKAA2 15q24.1 LCORL DYRK2 20q13.13 RAPGEF1 SLC8A1 

CDKN2B LPL SPINK1 3q26.31 NCAPG IFNG 7p13 TNFRSF4 TRPM6 

NEUROD1 DUSP12 DBI AACS PARL GAL3ST1 COL13A1 12q21.31 3p12.3 

IRS2 ARHGEF11 3q26.1 APOA2 RUNX2 ITGB3 ENSA 2q21.2 8q21.3 

PPARA FFAR1 CD14 CD36 SOS1 LINGO2 HSD11B1 7q31.33 ANK2 

NEUROG3 OGG1 CXCR4 CYP11B2 18p11.31 MYBL2 NDRG3 AKAP10 CCDC138 

IL6R PPARD AKR1B1 GRIK1 4q13.3 PRKCB PDE4B CARTPT CTLA4 
 

 

IDE APOA1 PANK4 

HHEX F7 17q24.3 

KIF11 GRB10 4q13.1 

KLF10 KLF14 ABCC9 

MC2R MC5R CDC123 

NPPB NR1H2 CYP3A5 

PIK3CB PLA2G4A FABP6 

SLC2A1 RASGEF1A IL1RAP 

TMCO7 SLC44A3 KLF5 

12q13.11 TOP1 MMP1 

21q21.3 12q22 NRP1 

7p21.3 2q22.1 REG1A 

COX7A1 7q32.3 SLC9A8 

EPB41L3 CASP9 TRPM7 

GDAP1L1 CRTC2 13q31.1 

HSPA1B ESRRA 3p24.3 

KCNJ9 GFPT2 8q23.3 

LPIN2 ICA1 ANKRD50 

PDK4 NXPH1 CCDC60 

PTGIS KIAA0319L CWC22 

SIDT1 LRP6 EXT2 

TAS2R16 PHLPP ALX4 

11p15.4 PTPRS GLP1R 

20p12.3 SLC24A3 IFNG 

6p12.3 ZPBP MC2R 

DNAJC19 11q23.1 MC5R 

FXN 20q13.11 PIK3R1 

HMOX1 6q24.1 RALGPS2 

PAX6 C12orf75 TMEFF2 

SCD CLVS1 12q15 

UTRN CHD7 2p13.2 

18q21.2 EIF2AK4 7q21.11 

4q28.3 HNRPUL1 AHI1 

   

   

   

   

   

   

   

   

   

   

   

   

   

ADAM30 KCND2 CPLX2 

NOTCH2 PCLO EPHB3 

ARFGEF2 PRKG2 GDNF 

CDK4 SGK1 EGFLAM 

FBXL17 STK11 HTR2C 

GYS1 1q24.2 KCNMB1 

KLF8 5q23.2 PTGS2 

MSH6 ADCYAP1 SLA2 

ODZ2 ATF6 TCEB1 

RIMS1 DKFZp686O24166 WNT5B 

SMC3 FOXC2 A2M 

14q31.1 LARS2 MT2A 
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Appendix B: Primer design example (adopted 

from Kramer, 2011) 
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Appendix C: Melting and amplification plots for 

all miRNAs 

 

MiRNA 17A – Amplification curve 

 

 

MiRNA 191A – Amplification curve 
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Mir-ur-1 Amplification curve 

 

 

 

 

 

 

Mir-ur-2 amplification curve 
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 Mir-ur-3 amplification curve 
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Melting Curves: 

 

 

MiRNA17A – melting curve 

 

 

MiRNA 191A- melting curve 
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Mir-ur-1 melting curve 

 

 

Mir-ur-2 melting curve 
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Mir-ur-3 melting curve 
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