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ABSTRACT 

The Bredasdorp Basin is one of the largest hydrocarbon producing blocks within Southern 

Africa. The E-M field is situated approximate 50 km west from the FA platform and was 

brought into commission due to the potential hydrocarbons it may hold. If this field is 

brought up to full producing capability it will extend the lifespan of the refining station in 

Mosselbay, situated on the south coast of South Africa, by approximately 8-10 years. This 

study is focused in block 9 off shore western part of the Bredasdorp Basin in the main 

Outeniqua Basin South Africa. Cretaceous Sandstone reservoirs are commonly 

heterogeneous consequently they may require special methods and techniques for 

description and evaluation. Reservoir characterization is the study of the reservoir rocks, 

their petrophysical properties, the fluids they contain or the manner in which they influence 

the movement of fluids in the subsurface. The main goal of the research is to assess the 

potentials of hydrocarbons in Cretaceous sediments in the Bredasdorp Basin through the 

integration and comparison of results from core analysis, production data and petrography 

studies for the evaluation and correction of key petrophysical parameters from wireline logs 

which could be used to generate an effective reservoir model for wells (E-BB1, E-BD2, E-

A01) in the Bredasdorp Basin.  

Porosity and permeability relationships, wire-line log data have been examined and 

analysed to determine how the porosity and permeability influence reservoir quality which 

further influences the potential of hydrocarbon accumulation in the reservoirs. The 

reservoir sandstone is composed mainly of fine to medium grained Sandstones with 

intercalation of finger stringers of Siltstone and Shale. In carrying out this research the 

samples are used to characterize reservoir zones through core observation, description and 

analyses and compare the findings with electronic data obtained from Petroleum Agency of 

South Africa (PASA). Secondary data obtained from (PASA) was analysed using softwares 

such as Interactive Petrophysics (IP), Ms Word, Ms excel and Surfer. Wireline logs of 

selected wells (E-BB1, E-BD2, E-A01) were generated, analysed and correlated. Surfer 

software also used to digitize maps of project area, porosity and permeability plotted using 

IP. Formation of the Bredasdorp Basin and it surrounding basins during the Gondwana 

breakup. The Bredasdorp Basin consists mainly of tilting half graben structures that formed 

through rifting with the break-up of Gondwanaland. The model also revealed that these 
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faults segregate the reservoir which explains the pressure loss within the block. The 

production well was drilled, confining pressure relieved and pressure dropped hence 

production decreases. The age, transportation, deposition and thermal history of sediment 

in the basin, all plays a vital role in the type of hydrocarbon formation. Structural features 

such as faults, pore spaces determines the presence of a hydrocarbon in the reservoir. Traps 

could be stratigraphic or structural which helps prevent the migration of hydrocarbons from 

the source rock to reservoir rock or from reservoir rock to the surface over a period of time. 

The textural aspects included the identification of grain sizes, sorting and grain shapes. The 

diagenetic history, constructed from the results of the reservoir quality study revealed that 

there were several stages involved in the diagenetic process.  

It illustrated several phases of cementation with quartz, carbonate and dolomite with 

dissolution of feldspar. A potentially good reservoir interval was identified from the data 

and was characterized by several heterogeneous zones. Identifying reservoir zones was 

highly beneficial during devising recovery techniques for production of hydrocarbons. 

Secondary recovery methods have thus been devised to enhance well performance. As 

recommendation, additional wells are required to appraise the E-M structure and determine 

to what extent the cement present in the basin has affected fluid flow as well as the degree 

of sedimentation that could impede fluid flow. There are areas still containing untapped 

resources thus the recommendation for extra wells. This research may well be reviewed 

with more data input from PetroSA (wells, seismic and production data) for additional 

studies, predominantly with respect to reservoir modelling and flow simulation. Based on 

the findings of this research, summary of calculated Net Pay shows that in well E-BB1, 

reservoir (1) is at depth 2841.5m – 2874.9m has a Gross Thickness of 33.40m, Net Pay of 

29.72 and Pay Summary of 29.57 and reservoir (2) has depth of 2888.1m – 2910.5m, Gross 

Thickness of 22.40m, Net Pay of 19.92m and Pay summary of 1.48m. Well E-AO1 has depth 

from 2669.5m – 2684.5m and Gross Thickness of 15.00m and has Net Pay of 10.37m and 

Pay Summary of 10.37m. Based on the values obtained from the data analysed the above 

two wells displays high potential of hydrocarbon present in the reservoirs. Meanwhile well 

E-BD2 has depth from 2576.2m – 2602.5m and has Gross Thickness of 350.00m, Net Pay of 

28.96m and Pay Summary of 4.57 hence from data analysis this reservoir displays poor 

values which is an indication of poor hydrocarbon potentials. 
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1 CHAPTER  
 

1.1 Introduction 

The Bredasdorp Basin and its environs, is located on the South Africa continental shelf 

between Cape Agulhas and Mossel Bay (fig:1.1). The basin, one of four delineated by the  

results from seismic surveys and the ~200 wells drilled during the course of exploration for 

hydrocarbons, extends for approximately 150 km E-W and 100 km N-S, having a total area 

of ~15 000km2. Prior to the start of hydrocarbon exploration in the South African offshore in 

the late 1960’s, there had been no geological studies of the continental shelf of the 

Bredasdorp Basin in particular therefore stems from this hydrocarbon exploration effort, 

which is still continuing. Indeed, it is only during the past 10 years, after many regional and 

local studies, that the geologic history has become well understood enough for exploration 

success rates to improve dramatically. However, few of these studies have been published 

apart from some general reviews e.g. Burden, (1992) and presentations at Geocongress, 

Cape Town (1990). In step with this advancement, comes an explosive growth in the 

understanding of the petroleum geochemistry of the basin.  

Many regional studies of this nature have also been undertaken in offshore areas, almost 

entirely by SOEKOR. Very little of this information has been published. Within the 

Bredasdorp Basin, many hydrocarbon reservoirs have been found in Creataceous 

sandstones. It is thought that the gas and oil they contain have been generated in one or 

more of the carbon-rich source rocks found within the limits of the basin or in the western 

part of the southern Outerniqua Basin. These hydrocarbons comprise liquid oils and traces 

of high molecular weight hydrocarbons, considered to be residues after earlier oil charges, 

and wet gas with condensate. Concentrations of these hydrocarbons are commercially 

significant and are actively explored. Two reservoirs are currently producing gas-condensate 

and oil. The commercial viability of these occurrences is primarily related to the high 

monetary value of the liquid fraction compared to that of gas. Therefore it is of paramount 

importance for exploration efforts to concentrate their search in those parts of the basin 

where such hydrocarbons are preferentially reserved. This is achieved if: 
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(a) The route(s) these hydrocarbons took when migrating from their source rock to the 

present reservoir rock are known, 

(b) Where the timing of the migration episodes is understood and 

(c) The volume available for migration through each route can be reliably estimated. 

These can only be evaluated once: 

- The source rock for the hydrocarbon is identified, 

- The fetch area is delineated, 

- The maturation history is known and 

- The relative quantities expellable from each source are calculated.  

Each of these is very difficult to determine and represents major challenges to the 

exploration geologist. Prior to the present study, the distribution, thickness and richness of 

source rocks in the Bredasdorp Basin wells were established from inter-well comparisons 

using pyrolysis analyses (>24000) and optical studies (>3500) carried out on core and 

sidewall core samples from 150 wells and 75 wells respectively. From these data it was 

determined that there were several different source rocks and that some were within the oil 

window, whereas some had passed through the oil window. No intersections of immature 

wet gas or oil-prone source rocks have been found. The search for inherited characteristics 

of source rocks has been actively pursued by petroleum geochemistry elsewhere for some 

time Philippi, (1956).  

These earliest efforts concentrated on the composition of the oil amenable to gas 

chromatographic analysis. Those early methods were quickly adopted by other companies 

and refined so that correlations between source rocks and oils were frequently attempted 

using more detailed comparisons of the chemical and physical properties of hydrocarbons, 

with similar properties of bituments in the supposed source rocks Dow, (1974) and Williams, 

(1974). Those comparisons were based on the fact that hydrocarbons derived from each 

source rock should be distinguishable because they inherit characteristic of the original 

biological source material. Since it is known that some hydrocarbons are left behind in the 

source rock as bitumens after migration Tissot and Welte, (1984), it is likely that chemical 

‘fossils’ in the bitumens should match those found in reservoired hydrocarbons Eglinton and 

Calvin, (1967). These early correlation studies largely addressed characteristic aspects of low 

maturity whole oil and bulk source rock extracts using medium resolution gas 
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chromatography. As the techniques became more widely used, the complexity of the 

hydrocarbons became apparent. The high molecular weight fractions of the oils were 

evidently comprised of mixtures of hundreds of components which could only be separated 

by high resolution gas chromatography and later by mass spectrometry analysis. However, 

these methods proved less successful when dealing with higher maturity condensate and 

their sources, because the proportions of bulk and chromatographically resolvable groups of 

hydrocarbons decreased with increasing maturity. As a result, various fractionation and 

concentration steps were employed. The added advantage of using high resolution analyses 

of specific fractions was that they were able to establish identities of characteristic groups 

of compounds which could differentiate oils and source rocks without recourse to the short 

to medium-chain alkanes previously employed. This was a step forward as those alkanes 

were often subject to severe in-reservoir alteration by biodegration (Rogers et al., 1974). 

The discovery (1986) of reservoir oil in the previously unexplored centre of the Bredasdorp 

Basin led to a concerted effort to discover further reserves of oil, which in turn led to a need 

to understand the sourcing and migration timing of oil in the basin. This could only be done 

using the techniques of biological marker (or biomarker) analysis and provide a new impetus 

for the use of these analyses.  

A few such analyses were carried out at the University of Stellenbosch but equipment 

problem, and the inability to correlate the peaks found with those of published biomarkers 

because of the lack of suitable standards, and led to a cessation of the attempt. However, 

after the easing of sanctions in the early 1990’s it became possible to have samples from 

South Africa analysed for their biomarker contents and to use those results as standards to 

calibrate the local equipment. The arrival of the first available biomarker results in 1992 

sparked a fresh start to oil, source correlation studies. The ability to carry out these analyses 

in-house led to a rapid growth in their utilisation and helped in the understanding of the 

hydrocarbon history of the basin. In addition, most of the work has been targeted at local 

studies which have immediate commercial benefits and not at the long-term aims of 

regional appraisal. This study, however, aims at redressing the imbalance and shows that 

studies outside the main hydrocarbon trend can also yield information which is of direct 

importance to more local oil and gas exploration projects. A second major advancement 

came with the adoption of a commercial burial history programme (Basin-mod) in the late 
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1980’s for use in basin modelling studies aimed at understanding the generation history of 

the basin. This capability was further enhanced by the acquisition of the OPTKIN programme 

for the Rock-Eval pyrolysis instrument which allowed for the determination of kinetic 

generation parameters from source rock samples. These two techniques together allowed a 

more rigorous assessment of the generation and expulsion of hydrocarbons from source 

rocks, which in turn led to the appreciation that the previously accepted gradualistic 

thermal history model of the basin, i.e. continuous cool-down after Late Jurassic rifting, did 

not take account of all the facts. Hence a new thermal model of the basin had to be 

formulated. 

It is anticipated that deep marine plays are likely to hold hydrocarbon resources which are 

presently in high demand. To ensure characterization of the sand-rich intervals in the 

Bredasdorp Basin deep marine play with respect to controls on their porosity and 

permeability distribution is required. Knowledge of porosity and permeability heterogeneity 

is essential to exploration geologist, production geologist and reservoir engineers for 

accurate evaluation of economic resources. A higher porosity and permeability coupled with 

other favourable conditions such as trap and seal for hydrocarbon accumulation within a 

reservoir zone implies greater probability of producing a commercially viable resource. 

Sandstone reservoirs are commonly heterogeneous consequently they may require special 

methods and techniques for description and evaluation.  

Reservoir characterization is the study of the reservoir rocks, their petrophysical properties, 

the fluids they contain or the manner in which they influence the movement of fluids in the 

subsurface. This study focuses on the description of core samples and the pore network of 

reservoir intervals of wells in the western part of the Bredasdorp Basin. Porosity and 

permeability relationships, wire-line log data (signals) have been examined and analysed to 

determine how the porosity and permeability influence reservoir quality which further 

influences the potential of hydrocarbon accumulation in the reservoirs. The reservoir 

sandstone is composed mainly of fine to coarse grained Sandstones with thin intercalation 

of Siltstone and Shale. In carrying out this research the samples are used to characterize 

reservoir zones through core observation, description and analyses and compare the 

findings with electronic data obtained from Petroleum Agency of South Africa (PASA).   
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1.1.1 Aim 

The aim of this study is to critically assess the characteristics of the reservoir zones and the 

different lithology associated with petrophysical characteristics such as porosity, 

permeability, grain size and shape by integrating basic core observation and descriptive 

analyses, wireline log analyses to understand the potential of hydrocarbon in the reservoirs. 

 

1.1.2 Objectives  

i. Characterisation of different sand units with the reservoir zones. 

ii. Assess the impact of clay and cement on porosity and permeability 

iii. Complete well log correlation of wells with the study area to identify clean sand  

 zone with favourable porosity and permeability. 

v. Critically determine the impact of petroleum systems that may be present within the 

reservoirs. 

vi. Determine the age of material transported, deposition and timing. 

 

1.1.3 Location of study area 

Bredasdorp Basin is a sub-basin in the greater Outeniqua Basin which lies between the 

Columbine-Agalhas and Infanta arches (fig1.1) is situated off the south coast of South Africa, 

South East of Cape Town and South West of Port Elizabeth. It is a ~200km long and 80km 

wide and occupying about 18,00km2
. The sub-basin was formed as a result of extensional 

episodes during the initial stages of rifting during the Jurassic period. There are intersections 

in offshore well basement consists of slates of the Bokkeveld group (Devonian) or quartzite 

of the Table Mountain Supergroup (Ordovician-Silurian). The Bredasdorp sub-basin is to the 

South and NW, SE shallow water fault trend. This research is focused on reservoir zones 

encountered by three selected wells in the Western Bredasdorp Basin; E-BD2, E-BB1, E-AO1, 

in block 9. 
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Figure 1.1 Location map of Bredasdorp Basin source; modified after Petroleum Agency SA, 
(2003). Transtention generation along the Agulhas-Falkland Zone initiated Right Lateral 
movement which separated the South American and African plates and effected tectonic 
development of the Bredasdorp Basin. 

 

1.1.4 Literature review  

According to Shanmugan and Moiola (1985), submarine fans constitute major hydrocarbon 

reservoirs on a world wide scale. There are three major controls on the nature of submarine 

fans; sediment type and their supply, tectonic settings and sea level changes Stow et 

al.,(1985) and Stow (1985). These controls aid in determining the potential of a reservoir. 

The most common sediment is terrigenous materials Stow et al., 1985. Grain sizes of 

sediments and distance of transport affects the geometry of the deposit, these along with 

the volume and the rate at which sediments reach the area for deposition also plays key 

roles Stow et al., (1985). The number of entry points of sediment supply determines 

whether single, multiple or overlapping fans will develop. Source rock types determine the 

composition, particle sizes, ability to be eroded and end products of submarine fans. The 

climate and vegetation in the source area determines the weathering processes and mode 

of transportation Stow et al., (1985). Relief and tectonic activity would influence the rate of 

sediments transport, for instance shown in (fig 1.02) sediments travelling down a submarine 

canyon would be faster than sediments travelling over a plain.  
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Figure 1.2 Diagram showing transportation of sediments faster down a submarine canyon. 
Source: http://blogs.denison.edu/geosciences/2012/04/27/the-erosive-and-depositional-
poperties-of-turbidty-currents/ 

 

Marine conditions would affect the biogenic and organic carbon supply depending on 

currents such as coriolis force, water temperature and upwelling Stow et al., (1985). Coriolis 

force is the deflection of a water body towards the left (in the Southern hemisphere) 

affected by the Earth’s rotation Kearey (1996). Deep water fans can develop as a result of 

major tectonic activity such as the rifting of margins Stow et al., (1985). These activities 

affect uplift and denudation rates, drainage patterns, and sediment supply and relative sea-

level changes. The rate of tectonic uplift and subsidence are secondary factors controlling 

submarine fan development.  
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Figure 1.3 Diagram showing deep-sea fans formed as a result of submarine canyon, 
(http://www.studyblue.com/notes/note/n/planet-earth-16-deep-ocean/deck/4681998). 

 

The nature and frequency of tectonic activity in the source and transitional areas 

determines the rate and volume of transport by gravity flows deeper into the basin. 

Sediment gravity flows will thus be greater in volume (in an area marked by less frequent 

but high magnitude tectonic events) than an area which experiences more frequent activity 

at a lesser magnitude Stow et al., (1985). As in the case of the Bredasdorp sub-basin, having 

greater magnitude of earthquakes during rifting (due to stress release), larger slumps during 

failure developed large debris flow and turbidity currents. According to Amy et al., (2005) 

physical experiment has shown that turbidite bed geometries are spatially extensive 

deposits with tapered margins. These high density (built up over a long period of time) 

turbidity currents carrying along with it different grained size particles were gradually 

particle begins settling out of the turbulent suspension Amy et al., (2005). Some turbidites 

may even contain debris flow deposits in large proportions which often occur in conjunction 

with forced removal from the transition zone during tectonic activity Amy et al., (2005). 

Changes in sea level have effects on near shore areas as well as deep sea regions with 

regard to sedimentation. Submarine fans are mostly active during periods of low sea level 

Stow et al., (1985). This is a result of the direct access of rivers (as a result of low sea level 

exposure) which feed deeper areas. These controlling factors merely contribute to the 

 

 

 

 



 

9 
 

development of reservoirs in deep marine conditions. Basic requisites for the accumulation 

of hydrocarbons in near shore and deep marine conditions are relatively similar Wilde et al., 

(1985). Source rocks should have an abundance of suitable thermal maturation levels for 

generation and be connected to reservoir beds Wilde et al., (1985). The reservoir rocks 

require adequate porosity and permeability in the form of a network for petroleum 

migration Karmaker et al., (2003). Matthews and Ridgway (1996) eloquently state that the 

void space within a porous solid can be regarded as a network of void volumes (pores) 

connected by a network of smaller void channels (throats). A study of the main controls on 

reservoir quality for sandstones Hamel and Thom (2001) would be porosity and 

permeability. Adequate trapping mechanisms are required for petroleum accumulation. 

Two types of traps are recognised; structural and stratigraphic traps. The Bredasdorp sub-

basin has a structural trap characteristic mirroring fault planes which trap hydrocarbons and 

seal them in. The sealing of accumulated hydrocarbons is vital in determining the extent of 

the reserves which also determines its commercial viability Wilde et al., (1985). 

 

1.1.5 Diagenesis  

The process of hydrocarbon generation to maturation occurs in conjunction with a vital 

process of sediment evolution known as diagenesis. Diagenesis involves all low temperature 

and low pressure changes to sediments including lithification and delithification Press et al., 

(2004), Kearey, (1996). These processes aid in transforming sediments into sedimentary 

rocks Karmaker et al., (2003). Temperature and pressure realms of diagenesis are between 

near surface weathering conditions and metamorphism Boggs, (2001). Taylor et al., (2004) 

stated that diagenetic processes are controlled by and dependant on spatial and temporal 

patterns of sedimentary successions. Thus stages of diagenesis exists which occur at 

different levels of depth and time. These stages are shallow burial (Eodiagenesis), deep 

burial (Mesodiagenesis) and late stages diagenesis (Telodiagenesis) Boggs, (2001). Shallow 

burial is characterised by bioturbation, compaction with grain repacking and mineralogical 

evolution Boggs, (2001). Compaction of sediments is minor at this stage due to the shallow 

burial depth. Compaction is a mechanical process causing volume reduction and promoting 

pore fluid expulsion thus decreasing the pore volume of the rock Kearey, (1996). 

Mineralogical changes are, minerals precipitated out of solution (pore fluids at this stage) 

 

 

 

 



 

10 
 

Boggs, (2001). In reducing conditions particularly in marine environments, the precipitation 

of pyrite occurs at this stage as a cement or replacement mineral through pyritization Keary, 

(1996). Many other minerals and cements are formed such as clays, carbonate cements, 

quartz and feldspar overgrowths and glauconite. Glauconite forms at the sediment water 

interface Rasmussen, (2005)., Pasqini et al., (2004), ideally under conditions of slow 

sedimentation, Weaver and Pollard, (1975), agitated saline water with reducing conditions 

thus forms quite early during burial. Glauconite occurs in two forms as minerals pellets 

containing iron-rich clays and as the authigenic recrystallized form Weaver and Pollard, 

(1975), Pasquini et al., (2004). Most cements are allogenic (precipitated during or shortly 

after deposition) at this stage. Quartz carbonates and calcites are precipitated during burial. 

The presence of clays would inhibit quartz cementation Storvoll et al., (2002) and enhance 

the dissolution of quartz Renard et al., (1997), when in contact with each other.  

Clay is precipitated from solutions containing potassium and silicates sourced from K-

feldspar. Chlorite, kaolinite and Smectite precipitate at relatively low temperatures of about 

25oC and thus form early in the diagenetic process. Illite requires a higher temperature of 

about 100oC threshold for precipitation McHardy et al., (1982). Deep burial involves 

mechanical and chemical compaction. Mechanical compaction is the physical aspect 

whereby the weight of the overlying deposited sediments causes load pressure forcing 

grains to become more tightly packed together. This would reduce the primary porosity of 

that layer. As grain boundaries move closer together, their contacts become soluble Boggs, 

(2001). Grains then become partially dissolved at the contacts by a process known as 

pressure solution Kearey, (1996), Boggs, (2001) or chemical compaction. This process 

further reduces porosity Boggs, (2001) and forms sutured contacts between grains with the 

principle stress being perpendicular to the length of the sutured grain Kuntcheva et al., 

(2006). Dissolution of minerals such as feldspar during pressure solution is as a result of 

contact with under saturated pore fluids Wilkinson et al., (2001).  

The sites of feldspar and carbonate dissolution are economically important as they generate 

secondary porosity. Gier and Johns, (2005). On the other hand, as more elements are 

dissolved from framework grains inevitable precipitation would form authigenic minerals by 

cementation. The cementation intern reduces the porosity available for hydrocarbon 

migration and accumulation. Haszeldine et al., (2003). This cycle of dissolution and 
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precipitation is aided by heat from brine solutions which flow into the basin Lee et al., 

(2005) and fill up the pores. Thus diagenesis forms the restructuring of pore networks by 

these processes Karmakar et al., (2003). These secondary pore networks can either remain 

intact to become a net contribution to total rock porosity Wilkinson et al., (2001) or they 

could be filled by authigenic clays and other cementing materials. As the sandstone 

becomes more deeply buried, the Illitization of shallow authigenic and detrital clays 

becomes prominent. These clays fill pores and aid in reducing porosity. Late stage 

diagenesis begins once deeply buried rocks experiences uplift Boggs, (2001). The rocks thus 

experience lower temperatures and pressures along with oxygen-rich meteoric water having 

low salinities. Thus the mineralogical framework is altered by continued dissolution of 

cements and framework minerals. Grain replacement reactions of feldspar by clays prevail. 

In certain cases kaolinite could replace feldspar after dissolution Gier and Johns, (2005). 

Precipitation of new cements occurs. These processes continue along with chemical 

weathering due to uplift Boggs, (2001). 

 

1.1.6 Methodology 

In this section, the lists of available data within the study area and outlines the various 

methods employed to characterize the reservoir zones. The flow chart (Fig 2.0) below 

illustrates the steps taken in carrying out this research. The method starts with the review of 

previous studies and literature search in analogous oil and gas fields. The data collection 

section has the list of data collected from the Petroleum Agency SA, which is used in this 

study. They are carefully arranged, and prepared for easy access (Data Development). Well 

log correlation and delineation of reservoir sand units together with reservoir studies using 

Interactive petrophysics (IP) software characterize the reservoir quality and possible pays 

and other softwares like Excel, Ms Word and Surfer for digitizing. 

 

1.1.7 Previous work  

Given the nature of this research, this section begins with an overview of several significant 

geological, stratigraphic and structural characteristics as well as the hydrocarbon potential 

of reservoir rocks studies conducted on the Bredasdorp Basin and associated formations 
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from surface exposures and through subsurface studies. The Bredasdorp Basin is 

characterized by deep marine sedimentation. Sedimentary processes such as bulk 

emplacement, debris flow, turbidity current and slumping have put together its sequence 

and reservoir geometry. Accumulation of terriginous materials (land derived) on the 

continental slope and continental rise are deposited into the deep sea by slumping 

(movement of sediment piles as a mass) or by turbidity currents which is the rapid 

movement of large slurries (mixture of sediment and water) down slope. Turbidity currents 

are driven by gravity and can move far into the sea. Sediment deposition is accelerated by 

sea-level falls during which the coast is at the shelf break causing rivers to empty sediment 

directly on the slope. According to Turner (2000), the sea-level fall during early Aptian and 

mid-Albian, resulted in material eroded from pre-existing highstand shelf sandstones and 

transported into the central basin by turbidity currents from the west-southwest flank. He 

also pointed out that sandstone reservoirs in the Bredasdorp Basin consist of stacked and 

amalgamated channels and lobes. Fan lobes have a coarsening-upward pattern, whereas 

channelised reservoirs are fining upward. By using core, well log and dip data, it is concluded 

that the massive, amalgamated deep-marine sandstones, which make up the larger part of 

the E-BD reservoir, represent extensive mass-flow deposits. Additionally, the distribution of 

these deposits has been controlled by a significant erosional feature on a regional 

unconformity, which basically represented a major easterly-trending valley on basin floor. It 

is analogous to a submarine canyon extending through the E-BD area and acting as a conduit 

for sand sourced from the shelf to the west. The Oribi and Oryx oil fields; both being 

reservoir accumulations within the same turbidite system in the Cretaceous drift succession 

of the Bredasdorp Basin. Based on the seismic recognition of multiple unconformities within 

the drift successions, stratigraphic naming reflects a sequence stratigraphic approach. 

According to Brown et al, (1996); sequences defined by significant unconformities 

recognized on seismic sections, were assigned numbers (1 to 22). Third and higher order 

sequences; composite sequences and sequence sets recognized subsequently were 

designated by letters (A, B, C etc). Unconformities are designated by the sequence overlying 

them (1A, 4B etc) and by their nature chart, (Petroleum Agency SA, brochure, 2004/05). 

Turner et al., (2000) focusing on sequences 13A and 14A addressed the fact that reservoirs 

in the Bredasdorp Basin principally within Block 9 generally consist of stacked, deep-marine 

channel/lobe sandstones of Aptian age. The work had the objective of predicting and 
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delineating additional hydrocarbon reservoirs, based on geological modelling of the Aptian 

and Albian sequences within Block 9. Generally, for an overview of natural gas resources 

and petroleum exploration offshore South Africa, the reader is directed to the Petroleum 

Agency SA brochure (2003/4/5), McLachlan, et al. (2000) and Wood (1995). These studies 

have helped to provide information for improved understanding of the stratigraphic 

architecture and geological development utilized for the present research. 

 

1.1.8 Equipment/material used 
The following tools/material were used to obtain and load data in to a computer; Canon 

digital camera, Measuring tape, Hand lens, Water, Note book, pen and pencil, Software (Ms 

word, Excel, Surfer, Interactive Petrophysics (IP). Below is the flow chat illustrating the rout 

taken for this research; 

 

 

 

 

 

 

 

 

 

 

 

 

Conduct literature search on work done in this area 

Review of previous study 

Data collection 

Location map, digital wireline log data, 

seismic an drilling data 

Geological well completion 

and engineering reports 

Data base development 
Load digital data into Ms.  Word, Excel 

and IP to display log data curves 

Data editing, depth shifting and 

environmental correction 

Curve splicing, De-

spiking, editing 

Lithology, Shale, 

Gamma ray baseline 

determination 

Determination of Rw, 

m, a, n 

Crossplots, pickett plots, histogram, 

cut-off and net pay zones 

Thesis writer up 

Final editing and corrections done FINAL SUBMISSION OF THESIS 

 

Figure 1.4 Flow chat diagram of methodology. 
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2 CHAPTER  
 

 REGIONAL GEOLOGY 
 

 Pre-rift geology  

Cape Supergroup sandstone and shales were deposited on the southern perimeter of the 

Kaapvaal Craton during the late Palaeozoic and were overlaid in the present day onshore 

regions by sedimentary rocks of the Karoo Supergroup (table: 2.1). These rocks were 

deposited in a retro-arc foreland basin (McLachlan and McMillan, 1979; Johnson, 1990). 

Deposits of the Cape Supergroup are Table Mountain series Metasandstones. There is no 

evidence that Witteberg series rock were present across the area. Their absence, and that of 

Karoo rocks, may reflect non-deposition (Biddle et al., 1986) or erosion (Rowsell and De 

Swardt, (1976); Cole, (1992). There is evidence that these rocks indeed extend further south 

at the Southern African continental shelf. Deposits of Devonian age, possibly equivalent to 

Bokkeveld Group rocks, comprises of the basement of the Falkland Island (Lawrence and 

Johnson, 1995). Banks et al. (1976) show that sediments equivalent to Lower Ecca beds of 

the Karoo Supergroup are present in the Falklands showing that at least some earliest Karoo 

rocks were present south of the Cape Fold Belt mountains. Indeed, Lawrence and Johnson 

(1995) show that some of these possess source potential.  

Rowsell and De Swardt (1976) shows that burial of pre-Karoo rocks to a depth of several 

thousand meters is necessary to account for the high maturity of the Bokkeveld series rocks 

both onshore and offshore. Indeed, Bokkeveld series slates, intersected in two offshore 

wells, have vitrinite reflectances commensurate of burial to 4000-6000 metres at moderate 

heat flow rate, whilst reflectance in the overlying Mesozoic deposits in those wells have 

maturity levels typical of ˂2000 metres of burial at similar heating rates. The maturation 

levels of the Bokkeveld rocks have been confirmed by fission tract analyses in the southern 

Cape (Brown et al., (1990); it may be that these Bokkeveld rocks represent the basal 

formations and that burial caused by the originally great thickness of Bokkeveld rocks about 

four kilometres (Theron, 1970) plus a small thickness of early Karoo rocks could have caused 

the evidence of deep burial. It is therefore considered that Karoo rocks, of at least early 

Karoo age, were originally present in southernmost South Africa and possibly even reached 
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as far as southern South Africa. During the Cape Orogeny (215-278Ma; Hälbich et al., 1983) 

which was largely coeval with Karoo sedimentation, Cape Supergroup (and possibly early 

Karoo Supergroup rocks) were folded and faulted to form the present-day WNW-ESE 

structural grain which now underlies all the offshore basins of Southern Africa (Hälbich et 

al., op cit., 1983). The orogeny is considered to have commenced when the Gondwana 

landmass started to override the Pacific plate producing oblique subduction (Dingle et al., 

1983). A recent plate reconstruction of Western Gondwana records this disposition just 

after this event (Lawver et al., 1992). 

 

 

Figure 2.1 Evolution of Cape Fold Belt source; (Petroleum Agency SA, 2003). 
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MEGA-SEQUENCES FORMATION 

NAME 

ENVIRONMENT  LITHOLOGY  PERIOD AGE 

KAROO SUPER 

GROUP 

Stormberg Series Continental -

shallow marine 

 

 

extrussive with 

some 

sandstone 

 

 

 

Late Triassic 

and Early 

Jurassic 

~180-230Ma 

Beaufort Series Fluvial-transitional 

marine 

 

 

Siltstone and 

occ. shales 

 

 

Late Permian 

and Triassi 

~230-255Ma 

Ecca Series Two upward-

coarsening deep-

marine megacycles 

 

 

 

Claystone with 

occ. coals 

 

 

Permian 255-270Ma 

Dwyka Tilite Glacio-marine  Tillites and 

claystones 

 

 

Carboniferous 278~290Ma 

CAPESUPERGROUP Witteberg Series Shallow marine and 

transitional 

 

 

Shoreface 

sandstone and 

siltstones 

 

 

 

Late Devonian-

Early 

Carboniferous 

~320-390Ma 

Bokkeveld Series Deep marine  Turbidity 

claystones and 

sandstones 

 

 

 

Devonian and 

late Silurian 

~390-410Ma 

Table mountain 

Series 

Continental and 

nearshore 

 

 

Sandstones and 

acc. Claystones 

 

 

 

Ordovician 410-500Ma 

BASEMENT Cape Granite & 

Metasediment 

continental  Sandstones and 

arkoses 

 

 

Cambrian and 

Pre-Cambrian 

˃500Ma 

 

Table 2.1 Generalised chronostratigraphic, environmental and lithologic description of 

basement, Cape and Karoo Supergroup rocks in the Western Cape (after Wickens, 1987).  
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Subsequent to this early deformation, Gondwana started to fragment resulting in the 

development of the subsequent syn-rift and post-rift basins (Fig. 2.02). Dingle et al. (1983) 

and Biddle et al. (1986) show that the Magellanes Basin of South Argentina, based on its 

present day position West of the Falklands Islands and Falklands Island, was located South 

of the Agulhas bank prior to continental separation. The Falklands Islands and Falklands 

Plateau Basin were probably South-east of Port Elizabeth. The present day South Africa 

offshore is considered to comprise the Outeniqua Basin (Du Toit, 1976; Dingle et al., 1983), 

which is subdivided into five basins, separated by ridges of Palaeozoic metasediments 

(Dingle et al., 1983). The four inboard basins (Bredasdorp, Pletmos, Gamtoos and Algoa) 

arbitrarily extend to the 200 metre isobaths. The outboard deep water basin is the Southern 

Outeniqua Basin (Fig.1.1). 

 

2.2.1 Syn-rift geology 

It has been suggested that regional igneous events is a major cause of the break-up of the 

continents as a result of the increasingly focussed heat flow along mantle trends (Condie, 

1989). There is support for this suggestion from the igneous events around Southern 

Africa/South America. An extensive igneous episode affected the eastern part of South 

Africa and adjacent plates and resulted in the extrusion of basaltic material forming the 

Drakensberg basalts and Lebombo igneous centres in Southern Africa and basaltic intrusions 

in the Trans Antarctic Mountains (Dingle et al., 1983; Dalziel et al., 1987) (Fig. 2.2). The age 

of this episode is reportedly between 162 Ma and 200 Ma (Dingle et as., 1983, although 

there is evidence that intermittent volcanism probably extended as late as 130 Ma. Indeed, 

Brown et al. (1990) record a period of uplift and unroofing episode formed the Etendeka 

formation volcanic of central Namibia and the Parana volcanic province of South America 

dated around 134±5 Ma (Milner, 1992). Igneous and extrusive basaltic material has also 

been found in Cretaceous sediments in several wells drilled in the Orange Basin (Gerrard 

and Smith, 1983; Erlank et al., 1990). 
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Figure 2.2 View of Gondwana plate reconstruction at 200Ma prior to the commencement of 

proto-pacific subduction (after Lawver et al., 1992). 

 

Figure 2.3 View of Gondwana plate reconstruction at 160Ma (after Lawver et al., 1992). 

Proto-Pacific plate subduction started at 180-190Ma.  
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The date of the earliest break-up of Gondwana, based on the volcanic evidence from 

eastern South Africa is therefore taken to be approximately 160±30 Ma, whilst in the 

Western part of South Africa it is approximately 150±15 Ma. Rifting appears to have started 

earlier in the east than in the West. This conclusion agrees well with the proposed time of 

the first rifting events in the southern part of Africa based on the presence of mid-late 

Jurassic (possibly Oxfordian) rock in DSDP 327 AND 511 IN THE South Atlantic (Gilbert, 

1977). It is considered that the Agulhas-Falkands fracture zone is characterised by ultramafic 

rocks which upwelled into the fracture zone (Talwani and Eldholm, 1973) and which cause 

the strong magnetic signature evident in the regional aeromagnetic survey (GETECH, 1992). 

 

2.2.2 Sedimentary deposits 

The earliest of the post-basement and pre-rift sediments were deposited in continental 

fluviatile, lacustrine and estuarine environments and comprise mainly red and green 

sandstones and shales. Rigassi and Dixon (1970) subdivided these rocks into three main 

units which they interpreted as Lower Cretaceous based on field evidence only: 

1. Sundays River beds (marine to estuarine grey shales and clastics) 

2. Marls and Wood beds (estuarine to lacustrine clastics and shales) 

3. Enon conglomerates (fluviatile coarse red beds). 

Du Toit (1976) also stated that both the Kirkwood Bridge Formation (previously called Marls 

and Wood Beds) and the Enon Formation were of Early Cretaceous age and both were 

overlain by the Sundays River Formation. The latter was subdivided into two units separated 

by a major unconformity, seismic horizon C. From microfaunal data, McLachlan and 

McMillan (1979) showed the Kirkwood Bridge and Enon Formations to be Late Jurassic in 

age and that Du Toit’s seismic horizon B was in fact the Jurassic-Cretaceous boundary (dated 

to 131Ma by Haq et al., 1987). Later work (McMillan et al., in press) has shown that Du 

Toit’s seismic horizon C (now named 1At1, Burden, 1992) is of Baleanginian age. During the 

earliest stages of the rifting, when the crust had just started to sag and prior to the 

development of the marine environment, lacustrine sediments might be expected to have 

developed due to ponding of rivers in the lowest areas. Where such sediments were 
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deposited in large lakes, source rocks could have formed. Such sediments have not only 

been encountered in a number of wells in the Algoa Basin (McLachlan and McMillan, 1979) 

 

 

Figure 2.4 Regional map of plate reconstruction at ~ 121 Ma (after De Wit et al., 1988) 

showing the location of Mesozoic basins along the proto-coastlines. 

 

also in the Bredasdorp Basin and in the onshore Haasvlakte Graben. In addition, since the 

Southern Outeniqua Basin contains great thicknesses of syn-rift sediments (Wenham et al., 

1991), it is possible that a similar lithology could be present there. The best known example 

of such lacustrine source rock is the Colchester member of the Infanta Formation. This is 

locally well developed in the onshore Algoa Basin in the form of pyritic black shales 

intercalated with fluviatile and deltaic sands and silts (McLachlan and McMillan, (1979). 
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Ostracode datings show it to be Kimmeridgian-Portlandian in age (Valicenti and Stephens, 

1984). As the separation of Gondwana continued, the marine transgression continued 

southwards along the eastern seaboard of Africa and into the more westerly basins, 

progressively overstepping the earlier continental sediments and heralded the drift onset 

unconformity. Late Jurassic marine source rocks deposited in a deep marine and match 

those in DSDP 511 and 330 on the Falkland Plateau (Barker et al., 1977a; Herbin et al., 1986; 

Davies et al., 1991). 

 

2.2.3 Post-rift geology  

More recent studies have addressed the post-rift geology because of the importance of that 

time interval to commercial exploration. As a result of these studies, the classification table 

of Du Toit (1976) has been found to be inadequate and a more correct chronostratigraphic 

table was constructed. This table is used exclusively hereafter. The drift onset unconformity 

has been determined from astracode, foram and palynologic data to be at ~126Ma in the 

Bredasdorp Basin (Valicenti and Broad, 1994). The oldest rocks overlying horizon 1At1 are 

deep marine shales of the Upper Sundays River Formation. These shales have occasional 

interbeds of basin floor turbiditic and fan sandstone, deposited following the major sea level 

rise during the Valanginian which was due in part to post-rift thermal subsidence.  

They overlap a basin-wide veneer of transgressive coastal sandstone considered equivalent 

to the lower part of sequence LZB 2.1 Haq et al., (1987). The base of the shales is marked by 

a characteristic angular unconformity mapped as seismic horizon 1At1. Seismically this is 

characterised by a surface of downlap onto impedance contrast. The regional extent of this 

seismic evidence suggests the shales have a basin-wide distribution. The location of this 

shale immediately above extensive shallow marine sandstones, where there is no evidence 

either lithologically or seismically of intervening transgressive sediments shows that the 

basin subsided rapidly (McMillan et al., 1997). 
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Figure 2.5 Map of wells drilled to date in the Western part of the Outeniqua Basin. This 

locates the Bradesdorp Basin, Southern Outeniqua Basin, Western Pletmos and Infanta 

embayment, the onshore Haasvlakte Graben and major onshore and offshore faults Broad 

and Turner (1982), and unpublished SOEKOR data. 
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Du Toit (1976) Van Wyk et al. (1994) 
Chrono 

Stratigraphy 
Formation Member Seismic 

Horizon 
Sequence Rift 

Drift 
Phase 

Sequence 
Boundaries 

Age 

Tertiary Alexandria    DRIFT  Tertiary 

Upper 
Cretaceous 

Agulhas Agulhas  Cretaceous 

Lower 
Cretaceous 

Sundays 
River 

SR-4.5  Upper 
Sundays 

River 

 

SR-3 

SR-2  Lower 
Sundays 

River 

RIFT  

SR-1 

Kirlowood   Pre-
Sundays 

River 

 Jurasic 

Infanta Colchester 

Swartkops 

Enon  

Palaeozoic 
and Older 

   SYN 
& 

PRE-
RIFT 

 Palaeozoic 
and Older 

 

Table 2.2 Classification of Mesozoic and Tertiary sediments (and their bounding horizons) 

after Du Toit (1976) compared to the recent biostratigraphically and seismically 

characterised sequence stratigraphic boundaries. Modern sequence stratigraphic and 

tectonic subdivisions are now used in preference to this less practical classification. 

 

 

22At1 

13At1 

D D 

B 

1At1 

B 

C 

A 
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Table 2.3 Chronostratigraphic column of the Mesozoic and Tertiary strata in the Bredasdorp 

Basin (after Dingle et al., 1983; Burden, 1992 and McMillan et al., in press). The sequence of 

events and the stratigraphy are generally applicable for the greater southern African region 

and the Mesozoic part of the succession in the DSDP wells in the Falklands Plateau Basin. 
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During the Hauterivian, a second major tectonic episode resulted in rejuvenation of many of 

the earlier horst and graben features (Jungslager, 1996). This episode probably resulted 

from transgression during early movement alone the Agulhas-Falklands fracture zone 

(AFFZ). Coevally, a tectonically-enhanced sea level fall resulted in a major regression in the 

Bredasdorp Basin, mapped as seismic horizon 5At1.  Deep marine rocks of the ensuing 5A 

sequence have not been intersected to data owing to their great depth of burial. They are 

only likely to be found in the centre of the basin and are largely infill. No evidence of 

progradation or aggradation is recorded from seismic or drilling data to date (Jungslager, 

1996). However remnant shelf rocks have been intersected in boreholes around the basin 

edge. Further regional sag occurred after Hauterivian times and the transgression brought 

the coastline close its present day location. Marine sedimentation dominated up to the 

present, but owing to the closeness of the Falkland Islands Plateau which was a positive 

feature, circulation was restricted during Early to Mid-Cretaceous. During this period, the 

seafloor (and probably much of the water column) was intermittently depleted of oxygen, 

perhaps because of short periods of restriction, resulting in the development of dysoxic 

conditions which promoted the better preservation of organic material.  

These organic-rich intervals have source potential for gas and oil. Oceanic circulation 

improved after the rift had opened further and open marine conditions extended around 

the southern tip of Africa joining the incipient North Atlantic rift during the Mid-Cretaceous 

(Zimmerman et al., 1987). Evidence for this is that Early Aptian marine conditions extend up 

the west coast of Africa, at least as far as the Kudu wells (Wickens and McLachlan, 1990; 

Benson 1990). The presences of thick Aptian salt deposits in Angola Basin formed by the 

occasional overtopping of the Walvis Ridge during the high stands, demonstrate that the 

transgression was regionally extensive. Four of these spill-over events are demonstrated to 

have occurred in the Angola Basin (Schlumberger, 1991a). Several sea level adjustments 

during the Cretaceous resulted in widespread erosive events mapped regionally (partly 

because of their down lapping relationship with underlying reflectors) as type 1 

unconformities (Vail et al., 1977). These occurred notably during the Aptian (13At1), Albian 

(14At1), Turonian (15At1) and at the Cretaceous-Tertiary boundary (22At1). Post-

Hauterivian, active progradation can be seen on seismic records to continue up to the 

Cretaceous-Tertiary boundary. Above this, the sedimentation appears largely aggradational 
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although seismic data near the sea-floor are badly affected by noise multiples. The 

biostratigraphic definition of several of these hiatuses has been discussed by McMillan, 

(1990). He addressed the susceptibility of the benthic and pelagic fauna to changes in water 

depth and commented on the environmental implications of the faunal changes across the 

boundary, pointing out that most of these unconformities are relatively short duration. 

Deep marine sediments deposited immediately after many of the hiatuses during periods of 

transgression and early high stand sedimentation, are associated with sediments with 

elevated contents of organic carbon. Many of these intervals have source potential. The 

most widespread of these is found in Upper Barremian to Lower Aptian transgressive to 

high stand sediments in the 13A sequence. Cretaceous rocks can be separated into four 

units based on the oxygen level in the water: 

(a) 1A-4A rocks tend to be dominated by relatively low levels of oxygen 

(b) 5A-12A rocks tend to be generally oxidising although in some areas oxygen levels are 

lower 

(c) 13A rocks which were deposited under low oxygen (dysoxic-anoxic) conditions and 

(d) Post-13A rocks which, with one exception in the Turanian, were deposited in oxygen-

rich water. 

The exception is found in the Turanian 15A sequence which is dominated by a sediment-

starved environment in which organic-rich claystones are found (McMillan, 1990). The 

clasystones are considered to be equivalent to the Turonian source rocks accumulated in 

the Tethyan region and thought to represent a regional oceanic anoxic event, possibly 

related to the final opening of the Atlantic (Schlanger et al., 1987).  Arthur et al (1987) show 

that this was a short-lived period of intense organic carbon burial coinciding with a 

maximum sea level high stand when strong upwelling enhanced the surface productivity. 

This high stand is believed to be due to higher global temperatures which reduced ice caps 

to a minimum and which led to greater precipitation and higher surface runoff. This would 

in turn lead to larger quantities of fresh water entering the marine environment resulting in 

density stratification in deep basins and an increase in deep marine salinity and anoxicity. 

These conditions have been noted in Angola and Nigeria as probably being responsible for 

the presence of source rocks and oils with dominant biomarkers which are characteristic of 

hypersaline conditions (Burwood et al., 1990; Ekweozor and Telnaes, 1990). More locally, 
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there is micro-faunal evidence of uplift of the western South African offshore and 

downwrap of the eastern area (McMillan, 1990; McMillan et al., 1997). Above these 

Turonian source rock, a thick package of Mid-Late Cretaceous claystones and siltstones 

prograded across the basin from the west. These argillites are devoid of source potential, 

mainly because the dominantly oxygenated environment precluded preservation of 

aliphatic organic matter (Comford et al., 1983). The persistent influx of cold, oxygen-rich 

Antarctic bottom water is given as the main reason for the largely oxygenated sedimentary 

environment (Zimmerman et al., 1987). 

 

2.2.4 Tertiary  

The Tertiary sediments were deposited in a strongly oxidising environment in higher water 

temperatures and have low organic carbon contents. The sediments are calcite-rich, largely 

biogenic and occasionally form calcite layers. These are thought to be associated with 

winnowing current action resulting from the occasional warm water eddies which separate 

from the Agulhas current and sweep the shelf. The core of the Agulhas current (Fig 2.6) is at 

a temperature of 25-290C, i.e. 10-150C warmer than the water on the Atlantic side of South 

Africa, and ˃200C warmer than the bottom water in the Outeniqua Basin (Derbyshire, 1964). 

The current is considered to have been active at least since the Early to Mid-Tertiary (Winter 

and Martin, 1990; McMillan, 1986; McMillan, 1989) and to have influenced the near shore 

land temperatures (Frakes and Kemp, 1972). The core of the current generally flows near 

the surface along the shelf break although it occasionally deflects southwards or northwards 

impinging on the bottom water of the shelf.  

Examples of this happening recently have been demonstrated from anchored current meter 

data (Gründlingh, 1984). During periods of northern hemisphere glaciation, though, it has 

been shown that the current swings southwards (Winter and Martin, 1990) so that the 

present day shelf and continental rise were no longer swept by the current. The Tertiary 

sedimentary history of the continental shelf of the south coast has been studied using 

shallow seismic profiles in conjunction with bottom dredged and gravity cored sample 

(Dingle, 1971) and occasional samples from offshore wells (McMillan, 1989). These data 

allowed for the subdivision of the Tertiary into three packages separated by major 
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unconformities during the Late Palaeocene, Eocene-Early Oligocene and Late Miocene-

Pliocene. Tertiary sediments commonly have a large biogenic component and include 

phosphatic muds, chalks and chalk marls. 

 

 

Figure 2.6 Oceanography of the Southern African region showing direction and temperature 

of Cape Agulhas currents modified from (Nasou, 1973). 

 

McMillan (1989) confirmed the latter two of these unconformities and pointed out that no 

boreholes on the South African offshore had ever intersected deposits of Late Oligocene. 

This supports the conclusions of Vail et al., (1977) who showed that the Mid to Late 

Oligocene was a period of major world-wide sea level fall during which sedimentation 

probably continued, but only in the deepest parts of the basin. Unfortunately, the Late 

Tertiary is consistently thin an all the basins, and seismic sea bottom noise multiple mask 

evidence of possible erosion at this horizon. Micro-faunal studies (McMillan, 1996, pers 

comm.) have shown evidence of reworked Mid-Oligocene fauna indicating that there had 

been at least some erosion.  
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No sediments of Late Oligocene age were reported from the DSDP 361 well, although they 

were expected because the well is in a more distal location than oil exploration well drilled 

in the South African offshore to date. The incompleteness of the core record in the well (less 

than 10% of the upper 1000 metres was sampled) may be responsible for this absence. 

Lower Oligocene sediments have also been eroded from the Bredasdorp Basin, most 

severely in the proximal portions. Locally this planation extends down to the latest Eocene 

(McMillan, 1993; pers comm.). McMillan (1989) demonstrated that Upper Miocene, line-

rich sediments have also been eroded leaving only the Lower Miocene. This surface forms a 

calcrete on which Late Pliocene, Early Pleistocene and Holocene fauna are preserved. 

 

 IGNEOUS BODIES, MANTLE SWELLS AND HOTSPOTS 

2.3.1 Post-rift igneous bodies 

Alkaline, locally under saturated, igneous bodies (Fig 2.7) have been found in two regions of 

the Bredasdorp Basin and in one region of the Orange Basin Gerrard and Smith, 1983 and 

unpublished SOEKOR data). In the Bredasdorp Basin, these areally extensive intrusives are 

readily detected from seismic data and a map of their distribution has been compiled.  

Similar igneous bodies are also found in a number of onshore locations (Duncan et al., 1978; 

Duncan, 1981). A number of samples of these igneous bodies, both onshore and offshore, 

have been subjected to isotopic age dating (K-Ar and Rb-Sr) as indicated. 

Nepheline-syenite and aegirine-trachyte dykes and sills intruded the western Bredasdorp 

Basin in the area around well three during the Early Tertiary, drawn after Broad and Turner, 

(1982) and unpublished SOEKOR data; fig 2.7). Isotopic dating of sea floor and borehole 

samples of these intrusives provides dates ranging from 52-59 Ma (Dingle and Gentle, 1972; 

Rowsell et al., 1979). Coevally, calc-alkaline lamprophyric and possible carbonatitic dykes 

and sills intruded the eastern end of the basin (Rowsell et al., 1979) especially in the vicinity 

of well 8. Isotopic dating of these revealed ages ranging from 53-57 Ma (Eglington et al., 

1990). Although from the descriptions they appear to differ chemically and petrologically, 

Rowsell et al., (1979) and Eglington et al., (1990) considered these intrusives to represent 

early and late fractions of the same magma which may be related  
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Figure 2.7 Map showing the distribution of igneous rocks in the Bredasdorp Basin (after 

Broad and Turner, (1982) modified using unpublished SOEKOR seismic and borehole data. 

 

 (Hatch et al., 1961, p. 373-379). Alternatively, the differences may result from biased 

sampling because the more basic intrusions are often severely altered, apparently by 

hydrothermal fluids. Examples of this were noted in well 8, (Marot, 1990, pers comm.). 

Some of the lamprophyre samples effervesce strongly in dilute acid and may represent 

carbonate intrusives, hydrothermally altered sediments or lamprophre (Rowsell et al., 

1979). Trace element analysis of some sidewall core samples from these rocks record locally 

high contents of Rb, Y and Zr suggesting non-sedimentary origin (McCarthy, 1978) but do 

not could not help confirm whether they are original carbonatites or altered lampropyres. 

Onshore, alkaline melitite-rich basalts plugs are reported from several locations in the 

south-western Cape and some of these have been dated as Latest Cretaceous and Early 

Tertiary  (table 2.04 and references therein). The mililite basalts at Saltpeter Kop, in the 

southern Cape, which Duncan (1981) considers to be part of this igneous trend, are indeed 
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chemically similar to the intrusions in the western Bredasdorp Basin (Mclver and Ferguson, 

1978; Duncan et al., 1978). 

2.3.2 Mantle swells and Cretaceous –Tertiary hotspot 

It has been suggested that these intrusions are associated with proposed mantle swells and 

the ensuing hotspot activity (Duncan, 1981; Hartnady and Le Roex, 1985). Mantle swells are 

considered to originate at the lower mantle boundary where periodic outbursts of excess 

heat initiate rising plumes from the mantle (white and McKenzie, 1989; Condie, 1989). 

These rising plumes of mantle material usually develop large heads up to 1000 km in 

diameter (Underhill and Partington, 1993) and can result in the transfer of large quantities 

of heat to the lithosphere where they form hotspots. Where these hotspots result in 

decompressive melting of localised buoyant up-wellings (De Paolo et al., 1996) they often 

take the form of regional lava extrusion.  

With time the head dissipates leaving persistent plumes, which may be only a few hundred 

kilometres across but which continue to give rise to repeated outbursts of igneous activity in 

a series of loosely associated intrusive events. Since hotspots tend to be fixed relative to 

crustal motion, they leave distinct linear tracks of volcanic emanations which are especially 

noticeable in oceanic crust as bathymetric highs (Wright, 1973; Duncan, 1981; Morgan, 

1983). Some hotspots leave a very narrow surface track because they have essentially no 

plume head. The hotspot considered to have formed the Hawaiian chain is of this type 

(Wright, 1973). It is also possible that the Bouvet/Shona hotspot is of this type. The African 

plate is unusual in being characterised by a large number of hotspots. Each has a surface 

expression of a volcanic centre.  

The separation of the African and South American continents after initiation of the Agulhas-

Falkland Fracture zone (AFFZ) transform motion resulted in the northward rotational 

movement of the African plate (Duncan, 1981; Lawver et al., 1992) about a pole located off 

north-west Africa, hence these hotspots racks are arcuate. Duncan (1981) suggested that 

one of these hotspots migrated pass the Bredasdorp Basin during the Late Cretaceous-Early 

Tertiary. There are also abrupt changes in the direction of the bathymetric tracks which may 

be a result of the impingement of the hotspot plume alternately on opposite sides of 

transform faults (Hartnady and Le Roex, 1985). In addition to this explanation, a change in 
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the pole of rotation also resulted in the tracks showing a matching change in direction at 

about 40 Ma, Duncan, (1981). The increments of motion of these hotspots indicate that the 

Bredasdorp Basin would have overlain the hotspot at ~70 Ma, i.e. there is a discrepancy 

between the date of transit of the hotspot and the dates of the intrusions. De Paolo et al., 

(1996) show that hotspot volcanoes tend to have an active lifetime of only about 1 Ma. It is 

considered likely that magma generated in the upper mantle could have taken 10-20 Ma to 

travel to the lithosphere (Condie, 1989; Underhill and Partington, 1993), hence ages of the 

near-surface bodies would be expected to have a range of 50 Ma. Many of the dated 

intrusives lie on a track from the Bouvet/Shona hotspot, which continues into the 

Bredasdorp Basin. This may extend to the kimberlite intrusions of the Norther Cape 

(Duncan, 1981; Hartnady and Le Roex, 1985).  

The footprint of this track is relatively narrow, apparently about 200 km wide, typical of an 

ascending plume without plumehead (Wright, 1973). The present day position of the 

hotspot is shown by Duncan (1981) to be near Bouvet Island, althouth Hartnady and Le Roex 

(1985) suggest it may be closer to the probable Shona hotspot several hundred kilometres 

noth-west of Bouvet Island. Fission track analyses of two Late Cretaceous samples from well 

96, located at least 50 km distant from the nearest intrusive either intersected or visualised 

seismically, are available for temperature study. These data record a heating event to 1000C 

or more during the period 60± 5 Ma (Eurotrack, 1996). This high Palaeocene temperature 

may be due to a more regional heat input such as might arise during the hotspot transit. 

This needs to be tested by study of fission track data from other wells in the basin. 
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3 CHAPTER  
 

 Geology of Bredasdorp Basin 

Among the 5 basins (Bredasdorp, Infanta, Pletmoos, Gamtos, Algoa) in the southern part of 

South Africa, Bredasdorp Basin is situated in the western part of the rift basins on the 

southern border of the African continent (fig 1.1). These basins together make up the 

greater Outeniqua basin. This basin is arbitrarily divided in two at the 200m isobaths. the 

inboard component is subdivided into four basins (Bredasdorp, Infanta, Pletmos, Gamtoos 

and Algoa) whilst the outboard component is the Southern Outeniqua Basin. The 

Bredasdorp Basin is underlain by metasedimentary rocks of the Palaeozoic Table Mountain 

and Bokkeveld Groups which also form the dividing highs e.g. the Agulhas and Infanta 

Arches. The geometry of the basin follows the grain of the underlying Cape Fold Belt 

(Fouché et al., 1992) raising the possibility that structural control is related to reactivation of 

earlier lines of weakness. To the east, the basin is separated from the western part of the 

Southern Outeniqua Basin by a moth-south lineation of early structural horsts (Roux, 1996). 

Much of the tectonism affecting the basin after formation is attributable to differential plate 

motion during the separation of Africa and South America, the transit of the Bouvet/Shona 

hotspot and the initiation of the African Super-swell. 

 

3.1.1 Periods of tectonic adjustment 

A phase of compression in the Mid-Jurassic, probably coincident with early separation of the 

Falklands Plate, affected all offshore basins (Van der Merwe and Fouché, 1992). It resulted 

in uplift and erosion of Palaeozoic metasediments, and extant Lower Mesozoic Karoo 

sedimentary rocks, (Rowsell and De Swardt, 1976). Later downwarp, associated with the 

initial southward propagation of the rift between East and West Gondwana along the East 

African seaboard, was initiated as early as Oxfordian based on palaeontological results 

(Barker et al., 1977a and 1977b). The second phase of compression, during the Hauterivian, 

possibly related to impact of the Falklands Plate on the south coast of Africa, coincided with 

a major uplift and erosive event resulting in an angular unconformity at horizon 5At1. The 

third phase of compression occurred shortly after deposition of the Albian 14A sequence 

(Van der Merwe and Fouché, 1992) and formed the central basin structural highs. This 
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phase of compression is probably related to the passage of the eastern end of the Falklands 

Plate past the Agulhas Arch. Subsequently the basin subsided again, probably when the 

Falkland Islands finally cleared the south tip of the Agulhas Arch (Honiball, 1995), and no 

further compressional events occurred. 

The last major uplift of the Agulhas Arch started in Late Maastrichtian (McMillan, 1986) 

reaching a maximum of ~300 metres during the period 66-64 Ma, although the arch only 

became exposed during the Early Palaeocene (McMillan, 1986). This uplift, and associated 

erosion, was probably due to heat flux during passage of the Bouvet/Shona hotspot. A more 

detailed appraisal of the tectonic development of the basin is provided in McMillan et al., 

(1997). A major uplift of the western end of the basin, evident from seismic data, reaches a 

maximum in the  D-block wells where Cenomanian deposits are at the sea floor (fig. 8 of 

Brink et all., 1991) indicating probable erosion of >1000 metres. This uplift is thought to 

have been the result of Mid-Oligocene tilting (McMillan, 1996, pers. comm.) but did not 

affect the central and eastern areas. Alternatively, the tilting may reflect initiation of the 

African Superswell (Hartnady and Partridge, 1995). 

 

3.1.2 Faulting 

Early rift-faulting during the period of formation of the Bredasdorp Basin resulted in a 

WNW-ESE parallel-sided graben with a number of marginal half-graben. This fault trend is 

most evident in the north and south flanks. At the same time, in the eastern part of the 

basin, on both north and south flanks, as well as in the eastern central basin, a series of 

structural highs developed (Fridinger, 1988; Roux, 1995; Pferdekämper, 1996, pers. comm.). 

These highs include all the eastern highs (wells 10,12,13,24 and 47) and the high 

immediately to the south-west (well 9,11, 14 and 17). The regional WNW-ESE fault trend is 

modified in the Bredasdorp Basin (and indeed in other south coast basins) by trending NW-

SE at the western and eastern ends. All these similar fault trends are considered to be due 

to drag along the Agulhas-Falklands Fracture Zone (Du Toit, 1976; Fouché et al., 1992) or to 

inherited Cape Fold Belt fault (Cartwright, 1989) or possibly to tension gash style faulting 

(Cartwright, 1989; Malan et al., 1990). 
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Some of these faults are thought to have rejuvenated at 5At1 times (Late Hauterivian, ~118 

Ma) as many extend to this surface. Details of these movements are given in (Jungslager, 

1996). Some of the faults have been rejuvenated much later and extend to 9At1 (Hodges, 

1996), probably representing a combination of compactional drape over the central high 

and Albian compression, and locally even into the Tertiary (Strauss and Noble, 1996). These 

faults have been suggested to be conduits for gas migration into those wells from deeper in 

the succession (Davies, 1996c). Indeed, in the western part of the basin, in the area of well 

16 and particularly near well 3, seafloor steps and ridges are evident on seismic lines which 

may be surface manifestations of very shallow faults. However, few faults smaller that 

~10metres are seismically mapped because they cannot be effectively imaged. Hence most 

of the faults which intersect the sea floor cannot be mapped at depth. On the north flank, a 

few faults extend shallower than 6At1 (Latest Hauterivian) but none appear to reach the 

Tertiary.  

The most readily mappable of these faults is in the area of well 78 due north of the E-M 

structure. The presence of apparently bacterially degraded oil in syn-rift sandstones down-

dip of the fault intersection may be evidence that the fault allowed the ingress of fresh, 

oxygenated water. There is, however, no evidence of a step in the sea floor although the 

movement may have been too small (˂2 metres). In general, although the basin has been 

extensively faulted during at least three episodes in the Late Jurassic, Early Hauterivian and 

Barremian, (syn-rift, 5At1 and post 9At1 times) and there are also faults which appear to be 

related to an inherited Cape Fold Belt trend, there are essentially only four main fault 

regions. These four regions all have similar trends i.e. W-E to NW-SE: 

1. south flank essentially between wells 19 and 9, down throwing north and north-

east 

2. north flank essentially between wells 46 and 1, down throwing to the south 

3. central basin near wells 96 and 163, forming a deep-seated horst block 

4. north of the central basin between wells 46 and 8, down throwing to the south 

(this fault acts as the main pressure boundary between high pressure 9A 

sandstones to the south and low pressure 1A-10 A sandstones to the north).  
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3.1.3 Sedimentation 

The pattern of sediment distribution in the Bredasdorp Basin has been broadly controlled by 

global sea level changes (Haq et al., 1987) superimposed on regional tectonism. Since some 

of these sediments are potential source rocks for hydrocarbons and others are possible 

reservoir rocks, the tectonic control on the sediment distribution is of importance. The 

developing Mid-Late Jurassic rift created accommodation space for fluvial sedimentation. 

Intersections of up to 900 metres of largely fluvial sandstones and claystones have been 

made in wells around the margins of the Bredasdorp Basin. There is only one intersection of 

these sediments in the basin centre as only that well (# 160) was targeted at the break-up 

unconformity (horizon 1At1)- elsewhere it is far below the temperature limit for oil 

preservation. Basement rocks too, have only been intersected by a few wells around the 

edges of the basin and in each case; seismic data suggest great thicknesses of pre-rift 

sedimentary rocks were eroded during this period (Du Toit, 1976). 

 

3.1.4 Syn-rift period, Jurassic-to-Earliest Cretaceous 

Early sedimentological studies subdivided Post-Palaeozoic metasediments into four main 

intervals of non-marine deposits separated by major erosive unconformities (Du Toit, 1976) 

(Table 2.1). The non-marine Kirkwood, Infanta and Enon Formations (collectively known as 

the Pre-Sundays River sequence) were stratigraphicallly defined in the onshore Algoa Basin 

and interpreted as Lower Cretaceous (Du Toit, 1979) or Upper Jurassic-Uppermost 

Cretaceous (McLachlan and McMillan, 1979). These intervals were deposited during the pre-

rift period. The Lower Sundays River Formation extended from the pre-rift sedimentary 

rocks up to the onset of drift, horizon C≡1At1 (Du Toit, 1976 and Burden, 1992). This 

formation comprises transitional-to-shallow marine sedimentary rocks.  

The distribution of the pre-Sundays River rocks has been tentatively extended into the 

offshore basins and time-equivalent intervals have been intersected in the Bredasdorp 

Basin. These formations separate the Devonian and old basement rocks from the 

Cretaceous marine sedimentary rocks. Continuation of the rift caused increased sag which 

resulted in the lowering of base level in the Bredasdorp Basin causing fluvial systems to 

locally pound, resulting in the formation of lakes. Shaly and silty intervals containing 
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freshwater fauna (e.g. carophytes) were found in a few wells and are considered to indicate 

a nearby lacustrine environment (Valicenti, 1995, pers. comm.). Thin (˂30m) Early Tithonian 

(Kimmeridgian) lacustrine shales with local oil source potential, are found in one well in a 

marginal half-graben in the Bredasdorp Basin and another well (DWK-1) in the coeval 

onshore Haasvlakte Graben (Davies et al., 1991). The source potential is variable but locally 

very high, as seen in the type intersection for Late Jurassic lacustrine source rocks, the 

Colchester shales of the onshore Algoa Basin (McLachlan and McMillan, 1979). However, 

well 89did not continue deep enough to establish the overall thickness of these sedimentary 

rocks. In addition, their presence elsewhere in the area has not been confirmed largely 

because most wells did not penetrate deep enough. It is likely that lacustrine shale 

development in the Bredasdorp Basin is not as sparing as these few intersections show and 

could be similar to the distribution of coeval sedimentary rocks in the Springhill Formation, 

Magellanes Basin, South America (Biddle et al., 1986; Maslanyi it al.,1992) i.e. in the basal 

parts of most marginal half-graben. 

 

3.1.5 Evaporites 

Well 16 drilled into a small sub-basin in the western part of the basin and intersected a 409 

metre thick interval of red siltstones and claystones thinly interbedded with halite-rich 

sediments. A total of 53 individual salt layers up to several metres thick in places were 

found, totalling ~209 metres, although more may be present as seismic data show that the 

interval continues below TD. Salt swells are evident on seismic line throughout this region. 

Evarporites are Earliest Cretaceous (Dingle et al., 1983; Lawver et al., 1992) and from the 

present day climatic regime (cool and moist) formations of evaporates is unlikely. However, 

warm water Ostracode species found in sediments of similar age in the onshore Algoa Basin, 

indicate that the water temperature was higher than today implying significantly warmer 

weather (Valicenti and Stephens, 1984).  

These warmer conditions may have been a consequence of the higher proportions of CO2   

interpreted to characterise the Mesozoic atmosphere and which resulted in the 

development of “greenhouse” conditions (Barron and Moore, 1993; Larsen, 1991). It is 

thought that this evaporate-bearing sub-basin was located close to the palaeo-coast-ling 
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and filled with sea-water each time the barrier between it and the sea was breached- most 

likely during periodic highstands. Log data show the thickness of the salt layers to vary 

between 1-8 metres with a mean of 3.5 metres. Evaporation of a 220 metres column of 

present-day sea-water is required to deposit this average thickness of salt, although the 

actual thicknesses of salt layers most probably reflect frequent fill and evaporation 

episodes-enhanced by intermittent tectonism. After each major tectonic deepening event, 

the basin gradually filled with both salt and sediments reducing the accommodation space. 

Hence salt layer thicknesses progressively decrease. These sediments are time-equivalents 

of 3rd order transgressive and highstand portions of the earliest Valanginian LZB 2.1 

sequence (Haq et al., 1987 and Valicenti, 1995, pers comm.) and represent some 60% of the 

sequence duration, i.e. ~1.9-2.1 Ma. Hence each average salt layer could equate to a period 

of ~40000 years. This time interval could differ if the salt layers resulted from partial or 

multiple fill and evaporation episodes as shown for Messinian salt layers in the 

Mediterranean (Butler et al., 1995). This figure is closed enough to the accepted average 

period of global orbital obliquity (Hays et al., 1976; Heckel, 1986; Smith, 1990) of 41000 

years to temperature comparison. Elsewhere in the basin, high gamma claystones are 

thought to characterise equivalents of these highstands, e.g. in wells 65/75 (Valicenti, 1995, 

pers comm.). 

 

3.1.6 Syn-rift period, Early Cretaceous  

Regional relative sea level rise in the Early Valanginian brought an extensive marine 

incursion into the Outeniqua Basin and with it a diachronous coastal environment which 

transgressed the region. Littoral, shallow marine and marine glauconitic sandstones up to 

100-200 metres thick, the latter originally interpreted to be lag sands, were deposited (Du 

Toit, 1976). Recent studies show that they represent the earliest phase of marine incursion 

during the final stages of rifting and sag (Valicenti and Broad, 1994 and McMillan et al., in 

press). Indeed, the most recent biostratigraphic interpretations place the 1A type 1 

unconformity (1At1) at the base of these transgressive coastal sandstones rather that the 

top (Valicenti, 1995). However, the top of these sandstones is still called 1At1 for purely 

descriptive reasons. As the transgression continued into the western Bredasdorp Basin, the 

coastal sands were in turn overlain by basin-wide deep marine infill sediments of the Upper 
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Sundays River Formation which encroached from the east. The contact is diachronous 

(Valicenti and Broad, 1994). 

 

3.1.7 Post-rift period, Mid-Cretaceous  

Subsequent sea level rise resulted in the establishment of open marine conditions in the 

basin which prevailed to the Albian. Sediments deposited during this episode were shelf and 

slope shales and silts but several persistent channelized sandstones have been identified. 

These sandstones are important petroleum migration conduits. The upper boundary of the 

Upper Sundays River Formation, Seismic horizon A≡E≡13At1 (Du Toit, 1976; McLachlan and 

McMillan, 1979; Burden, 1992) also marks the base of the Agulhas Formation. Dominantly 

argillaceous marine sedimentation continued in the Lower Agulhas Formation deposits until 

global lowering of sea level in Early Albian (14At1) resulted in a major erosive period when 

the shelf edge was dissected by submarine canyons. These canyons subsequently filled with 

further channelized sandstones which are important oil reservoirs. Sediments in the 1At1-

to-13At1 interval belong to the Upper Sundays River Formation. 

 

3.1.8 Cretaceous sequence stratigraphy 

Recent seismic studies of marine Cretaceous sediments (Van Wyk, 1990; Brown et al., 1995) 

saw the application of sequence stratigraphic concepts to the Bredasdorp Basin. A sequence 

is defined as ‘’a relatively conformable succession of genetically related strata bounded by 

unconformities and their correlative conformities’’ (Vail et al., 1977). Benefits of this 

interpretation method are the ability to predict lithology, particularly that of reservoir 

quality sandstone, and the basin-wide correlation of sedimentary units. After the sequences 

in the Cretaceous had been fully delineated, the success rate of the technique for 

lithological prediction was evaluated by (Brown and Doherty, 1992).  

They showed that the ability to predict the continuation of individual units across the basin 

was high by comparison with the results obtained from previous facies correlation methods. 

Results from drilling confirmed the predicted depositional system in 75% of all cases 

although only approximately 50% of predicted lithologies were found. The application of the 

method resulted in the basin-wide correlation of 22 Cretaceous third-order sequences; each 
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bounded by type 1 unconformity surfaces (Van Wyk, 1990). Such surfaces (labelled ‘t1’) are 

considered to reflect sea level fall below the shelf break (Vail, 1987) and so indicate 

episodes of shelf edge erosion. Individual sequences have been established from seismic 

and borehole data. Precise ages of sequences and their boundaries, based on 

biostratigraphic information (using palynological. Ostracode and foraminiferal dating), 

match the major sequence boundaries of (Haq et al., 1987). Their basin-wide definition has 

allowed the construction of detailed distribution and isopach maps for the 14A sequence 

(Benson et al., 1993 and Wickens, 1993), the 13A sequence (Brink et al., 1991), the 9A-12A 

sequences (Smith, 1992) and 1A-8A sequences (Burden and Gasson, 1992). The studies also 

confirmed that the stratigraphic subdivision of the Sundays River Formation of (Du Toit, 

1976) (Table 2.03) was essentially valid but too imprecise for current detailed exploration 

work. Therefore horizon correlations used in his report all reflect the sequence stratigraphic 

concept. Each sequence commenced with deposition of isolated or amalgamated lowstand 

fan deposits on the unconformity surface (Van Wyk, 1990).  

These deposits are inferred to be connected by channels to submarine canyons incised into 

the previous shelf. Seismic evidence of shelf-edge canyons and the channels themselves is 

largely lacking perhaps because of their small size and lack of lithologic contrast although 

recent developments in seismic continuity mapping show some features which could be 

channels (Barton and Grobbler, 1997). Many of the clastic sediments derived from onshore 

are polycyclic and where reworked, especially into lowstand deposits. They generally 

comprise fine sandstones and silts. Occasionally, however, coarse material was transported 

into the basin. Examples of these deposits are found in the basin floor sandstones of the 

14A sequence which form the reservoir facies for some of the oil reservoirs sampled for this 

study (Wickens, 1993). 

 In general, sandstones nearest the shelf are poorly sorted and characteristic of mass-flow 

deposits (Gilbert, 1990) but more distally they are well-sorted and channels and lobes 

dominate (Beamish, 1990). One important consequence of the continued and extensive 

transgression is that the central part of the basin became progressively sediment starved, 

typified by thinly bedded pelagic, organic-rich shales draped over the basin floor fans. At the 

time of greatest landward transgression (13A mfs), these shales are characterised by 

maximum sediment starvation i.e. greatest concentration of fauna (especially radiolarian), 
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maximum preservation of organic matter and lowest oxygen contents (McMillan et al., 

1997). Development of oil-prone source rocks in the 13A sequence is considered to be an 

example of this process (Demaison et al., 1988). Shelf progradation or aggradation, 

following the period of highstand sedimentation, accompanied a return to oxygenated 

conditions, and resulted in dilution of faunal concentrations and decreased preservation of 

organic matter in shales. Associated deltaic systems, rich in clastic debris, advanced into the 

basin and deposited extensive, mainly fine-grained, sandstones across the shelf edge. 

Eventually these systems advanced across the pre-existing shelf edge and onto the slop 

following discreet channels as in the present day Mississippi delta. Depending on distance 

from the sediment source, these resulting deposits can be fine-grained (as in the 9A-10A 

sandstones) or relatively coarse (as in the 14A channel sandstones). 

 

3.1.9 Post-rift period, Late Mid-to-Late Cretaceous  

Environments of deposition prevailing through the later part of the Cretaceous were 

dominated by gradual cooling from ‘greenhouse’ conditions (Veevers, 1990; Barron and 

Moore, 1993; Larsen, 1991) and a long period when temperate conditions dominated. 

Deposits during this period are dominated by relatively high energy sedimentary rocks 

(sandstones and siltstones) and only occasional shales indicative of erosion of pre-existing 

sediments. The greater rate of sediment input reflects the wetter climate and elevated 

hinterland topography. The remainder of the Cretaceous comprises the clastic-rich later 

parts of the Agulhas Formation and is separated from the overlying carbonate-rich Tertiary 

Alexandria Formation by the basal Palaeocene unconformity horizon L≡22At1 (Du Toit, 

1976; Burden, 1992). 

Completion of separation between Africa and South America in the Early Turonian allowed 

the establishment of open marine circulation between northern and southern hermisphere 

throughout the Atlantic. This resulted in changed global oceanic circulation (Arthur et al., 

1987; Schlanger et al., 1987; Zimmerman et al., 1987) which is inferred to have initiated the 

formation of locally anoxic bottom waters and caused the deposition of thin, but persistent, 

organic-rich shales in the 15A sequence. These constitute a regional source rock overlying 

the 15At1 unconformity. Matching sediments are found in wells in the offshore Gamtoos 
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and Pletmos Basins and in many wells on the west coast of South Africa, although without 

the rich source potential of the Bredasdorp Basin. Climatic changes culminated in cooler 

conditions in the Campanian and Maastrichtian (Huber and Watkins, 1992). These 

sedimentary rocks contain significant amounts of calcite, mostly in the form of abundant 

Inoceramus spines, reflection the change to cooler water. 

 

 FORMATION FLUIDS 
 

3.2.1 Hydrocarbons 

Reservoirs containing gas with condensate or oil have been found below horizon 13At1 

throughout the basin. Those gases reservoired below 9At1 tend to be condensate-rich 

whilst those below 1At1 generally have very little condensate. Oil reservoirs have been 

found mostly in Albian (14A) sandstones in the basin centre and occasionally in north flank 

area wells below horizon 1At1. The distribution of these oil and gas prone zone is shown in 

(fig 2.5). The results of drilling offshore have shown the Palaeozoic metasediments contain 

neither significant hydrocarbon source potential nor potential reservoir rocks (except where 

locally fractured) and they are currently considered to be the economic limit for 

hydrocarbon exploration. It is possible that locally the Bokkeveld Group slates could source 

non-hydrocarbon gases (e.g. CO2, H2S) as well as some methane gas.  

 

3.2.2 Water 

Where the Agulhas (and possible Infanta) Arch were subaerially exposed, they could have 

been sources of water influx to the basin, especially where highly faulted. Resent mapping 

has shown faults which extend to the basal Palaeocene on the Agulhas Arch (Strauss and 

Noble, 1996). Rain falling on such exposed highs percolated through these faults, entering 

juxtaposed sandstone bodies where through-flow of fluids was possible. Also, porosity 

resurrection prevails in syn-rift reservoir sandstones in the north flank of the basin, caused 

by dissolution of intergranular poikilotopic calcite cement (Hill, 1995a and b) probably by 

meteoric fluids. Even today, formation water salinities in these reservoirs are low (locally 

˂20000 ppm NaCl, Davies, 1995a) this dissolution must have occurred late, after the period 
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of Cretaceous rapid burial, otherwise the secondary pores would have been compacted. 

This could be at, or shortly after, the Cretaceous-Tertiary boundary because sedimentation 

rate decreased greatly during Late Cretaceous (McMillan et al., 1997) leading to a reduced 

likelihood of further compaction.  

In addition, recent studies have shown evidence of a possible bolide impact at the 

Cretaceous/Tertiary boundary (Alvarez et al., 1980; Hildebrand et al., 1991). One global 

consequence was markedly elevated rain-water acidity during the succeeding 0.01-0.1 Ma 

(Retallack, 1996). This rain-water would have been able to percolate from the exposed basin 

margins into the sandstones resulting in dissolution of calcite-rich pore-filling material. In 

support of this scenario, an apparently partly biodegraded oil, with depleted normal 

alkanes, was found in well 78 close to a major fault which extends close to the Early Tertiary 

palaeo-surface. Burial and thermal history modelling of the well data show the sandstone is 

presently at ~800C (at which temperature any bacteria are essentially inactive), but during 

the Early Tertiary, formation temperature was closer to 600C, when bacteria were active 

(Connan, 1984). In other areas, compaction resulted in expulsion of saline water from 

deeper sediments, and this connate water flowed up-dip, locally mingling with the incoming 

meteoric water and possibly resulting in the brackish water found in many sandstones in 

marginal highs (Davies, 1995a). 

Erosion during the Early Eocene mainly occurred on the north flank and reached a maximum 

at the eastern end of the basin but was still ˂50-100m. It was probably caused by thermal 

uplift due to the near-surface intrusion of the alkaline igneous bodies. Erosion during the 

latter part of the Mid-Oligocene is considered to be a result of the global sea-level lowstand 

(Haq et al., 1987; McMillan, 1989) rather than local tectonic uplift. Erosion of Early to Mid-

Oligocene (and presumably Late Eocene) sedimentary rocks may have reached 100m during 

this lowstand (McMillan, 1995, pers. comm.). The event has only been recognised very 

locally from biostratigraphic data, mainly because few samples of the interval were 

collected from the wells. Flushing by meteoric water of north flank pre 1A and central basin 

13B-14A (Albian) channel sandstones may also have happened during Plio-Pleistocene sea-

level falls caused by northern hemisphere glaciation. The resulting eustatic sea level falls 

could have reached 200m and probably averaged 150m for each glacial advance (Dingle et 

al., 1983; Malan, 1990; Ben-Avraham, 1994, pers comm.).  
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At that time, various topographic sub-sea highs around the margins of the basin and to 

some extent the centre of the basin would have been exposed to rainfall. In addition, annual 

rainfall rates are shown to have been at least twice as high as presently for periods of 

several tens of thousands of years within the Plio-Pleistocene (Butzer et al., 1973). Fresh-

water flushing might have occurred during this period but until samples of formation water 

have been dated (possibly using 14C isotope techniques) this will remain uncertain. 

 

3.2.3 Formation pressures 

Regional pressure studies, based almost wholly on data from Cretaceous reservoirs, show 

three pressure regimes to exist in the basin (Winter, 1981; Brink and Winters, 1989; 

McAloon et al., 1990; Larsen, 1995). These are: 

(i) a normally pressured zone, largely  down to ~3000m. in parts of this zone, fluids 

readily interchange with surface water causing low salinity trends and locally gas 

seeps (Davies, 1988b), 

(ii) a second zone, largely associated with thick source rocks (mainly 13A Aptian), in 

which the equivalent mud weight  (MWeqquiv) reaches values up to 1.15 ppg, 

(iii) a third zone in which very high overpressures are developed (up to >3000 psi 

above hydrostatic or MWequiv. >1.60). These pressures are estimated in many 

sandstones from the drilling and log parameters but are locally recorded from 

RFT and DST pressures (Verfaille, 1993). 

Very high formation pressures are also found in Valanginian sandstones in well 128 some 

80km east, in the highest pressured reservoirs, Hauterivian (5A) sandstones in wells 83 and 

88,  pressures approach ~0.73 psi/ft, similar to that found in North Sea reservoirs (Miles, 

1990) and possibly represent the local fracture gradient. Indeed, their matching pressure 

and close proximity suggest they are part of the same pressure cell although it is possible 

that the matching overpressures reflect matching seal efficiencies rather than connectivity. 

It is possible that thermally-induced hydrocarbon cracking during hotspot events or pulses 

of migration may have caused pressures to locally exceed this amount only to be almost 

instantly reduced by seal rupturing. In a few reservoirs, the regional pressure distribution 

shown above differs. For example, in well 123, overpressure is recorded in Lower Albian 
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(13B) sandstones just above ~2600m bKb. Associated oil-bearing fractures in apparently 

diagenetically calcitised sandstones attest to possible intermittent pressure build-up/release 

episodes (Brown, 1991; Davies, 1995c). In well 142, Barremian (9A-12A) sandstones are also 

overpressured and fractured (although not to the same extent as above) and contain gas 

shows and fluorescence traces (possibly residual condensate) below~2700m bKb. 

 

3.2.4 Late Tertiary slump 

Large volumes of Tertiary (and locally Upper Cretaceous) sediments were removed from the 

present day shelf edge by Late Tertiary slumping (or creep) along a composite glide plane 

resulting in the present day rugose sea floor topography (Dingle, 1977). Indeed De Swardt 

and McLachlan (1982) commented that up to 1000m of sediment was removed at this time 

(although they considered that erosion was the cause). Several prominent, regionally sub-

parallel slump scars are interpreted on the available seismic records from the area. These 

sediments were re-deposited further down dip in a partially consolidated state (Dingle, 

1977; Dingle et al., 1983, p. 307). The exact timing of the slump event is not known but is 

discussed in section 3.9.5. Dingle (1977) comments on a core sample from the slump which 

contains Upper Miocene sedimentary rocks suggesting a Pliocene age for the slump 

although this may only reflect the age of the last slump. Certainly the disposition of the 

apparent slump scars lends support to the suggestion of multiple slumps over period of 

time. 

 

3.2.5 Age 

Biostratigraphic data horizons in nearby SOEKOR wells can be extrapolated into the 

Southern Outeniqua Basin using seismic data and it is evident that the slumps do affect the 

latest correlatable sediments, which are Early Miocene in age. Available seismic data were 

recently re-interpreted to take into account recent stratigraphic data from distal wells 

drilled around the northern and western rum of the Southern Outerniqua Basin. Palaeocene 

rocks are shown to be consistently thick as far offshore as the main slump scar whilst the 

Eocene rocks appear to gradually thin. This supports the contention of Partidge and Maud 

(1987) that the Early Palaeogene sedimentation rate was high but gradually decreased into 
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the Neogene. All Tertiary and Latest Cretaceous sediment packages terminate at the glide 

place which suggests that the strata were originally continuous into the basin. If so, this 

indicates that large volumes of these sediments (up to ~20000km3, Dingle, 1977) must have 

existed further offshore prior to the slump.  

The timing of the slump event has been modelled using Basinmod 1D (Platte River 

Associates, 1995). The timing of the slumping has been assumed as between 10-9 Ma, 

midway between the latest microfaunal age dating in the nearest well (McMillan and 

Valicenti, 1986), the suggestion of an Early Pliocene date by Dingle, (1977). The model 

shows the subsequent build-up and dissipation of excess pressure to occur during the 

succeeding 9 Ma. The slumping may however have occurred later that this and it is possible 

that the event was Pliocene in age rather than Late Miocene. It is unlikely that the slumping 

took as long as 1 Ma, rather each of the several slump episodes would have been 

considerably more rapid. In geological terms, slumping is essentially instantaneous although 

some develop over periods of weeks or years (probably more likely creep) whilst other 

slumps occur within a day. In the marine environment, slumps could be much more rapid 

(Holmes, 1965, p. 482-486; Piper et al., 1985). However, where slumps are caused by slope-

steepening as a result of a regional tilting event, it is likely that each slump was separated 

from the next by a lengthy hiatus during which the expelled water migrated up-dip 

dissipating the excess pressure. Thus the period of slumping and hot-water flow could have 

spanned several millions years. 

 

3.2.6 Volumetric 

These large volumes of sediments removed from the shelf and re-deposited in the basin 

must have profoundly affected the compaction and fluid flow from the pre-existing 

sediments. Not only would the flow direction of water from the sediment pile due to normal 

compaction have been directed toward the Bredasdorp Basin by the relative uplift of the 

continental plate and down-warp of the oceanic plate, but water expressed from the 

sediment pile as a result of the slumping would also migrate into the Bredasdorp Basin, 

Dingle (1977) comments on a maximum estimated thickness of the slump debris of 324 m 

form the interpretation of a few seismic lines, whilst De Swardt and McLachlan (1982) 
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commented on thicknesses up to 700m. This study shows up to 750 milli-seconds (two-way 

line) thickness of slump sediments in the central part of the Southern Outeniqua Basin 

(Roux, 1997, pers. comm.). Since these sediments could have been re-deposited in a partly 

consolidated state (Dingle, 1977) and almost certainly were if they were affected by creep 

(Paull et al., 1996), they would be equivalent to at least 800m (possibly in excess of 900m) 

based on equivalent non-slumped sediments in surrounding wells. The area of the Southern 

Outeniqua Basin cover by the slump where expressed water could migrate into the 

Bredasdorp Basin, the area is essentially that of south of the southern Infanta Arch and its 

south-eastward projection. 

 

 Cause of slumping 

The reasons for the slope instability, and by extension the age of slumping, are not known 

for certain because of the lack of suitable rock samples, although several possibilities exist: 

(i) seismic shocks from fault movements (Dingle, 1977) although few faults extend 

shallower than the base of the Oligocene (Strauss et al., 1996), 

(ii) increased sediment load from rapid deposition (Dingle, 1977) although Partridge 

and Maud (1987) show this to be unlikely, 

(iii) slope undercutting by shelf edge erosion, 

(iv) dip steepening as the Southern Outeniqua Basin (and probably the Agulhas 

Fracture Ridge) foundered (Dingle et al., 1983), 

(v) Released of gas from hydrates during pressure reduction by low sea level action 

as a plane of decollement (Paull et al., 1996). 

 

3.3.1 Slope undercutting by shelf erosion.  

Sea-level oscillation was more intermittent during the Plio-Pleistocene than at present, but 

shelf edge erosion could not have happened then because the Agulhas Current was much 

further south as far as latitude 380S and only weekly developed (Winter and Martin, 1990). 

In addition, there is little likelihood of the wave-base erosion of sediments downdip because 

the maximum Late Tertiary sea-level lowstand was only ~150m (Partridge and Maud, 1987) 

yet the slumped area is now in >700m of water. Erosion due to the Agulhas Current has 
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been postulated (Winter and Martin, 1990). If erosion were the cause of the sediment 

planation, the current velocity would have to be higher than the minimum needed to 

remove claystone (i.e. ~0.2-0.4 m/s) in order to overcome the cohesion of the sediments 

and to remove partially compacted Upper Cretaceous sediments (Potter et al., 1980, pp. 10-

12). However, the Agulhas Current velocity decreases markedly with depth (Derbyshire, 

1964). For example, the high velocity part of the Agulhas Current, where velocities attain 

2m/s, is the warmest part where temperatures generally exceed 200C. This is called the high 

temperature Agulhas Current (HTAC) and it flows near surface. By contrast, the cool Agulhas 

Current barely reaches temperature of 17-200C and generally flows at much less than half 

the speed of the HTAC. In fact, at depths below ~140m, the temperature rapidly decreases 

to ˂˂150C (SOEKOR unpublished Sniffer survey data, Davies, 1988a) and the velocity drops 

substantially. Below 170m the mean velocity falls to ˂~0.2m/s (Derbyshire, 1964; 

Lutjeharms et al., 1981; Van Heerden, 1984) and it is this water which locally impinges on 

the sea floor. Indeed, silt and clay deposition dominates where the velocity drops below 

~0.2m/s (Birch et al., 1986). 

 

3.3.2 Dip steepening 

A strong possibility for the cause of slumping is dip oversteepening. The driving force behind 

this could be tilting of the continental plate and localised downwraping of the oceanic plate 

as a result of the physical and thermal doming during development of the a new mantle 

plume below south-eastern Africa, the ‘African Superswell’ (Hartnady and Partridge, 1995). 

The earliest evidence of formation of this swell is given as Late Miocene (Hartnady and 

Partridge, op cit.), i.e. coincident with the estimated age of slumping. Uplift during this 

event is thought to be ~900m on the east coast but only ~100m on the south-western coast. 

Accompanying the tilting, there would likely have been considerable seismic activity which 

could have added to the sediment instability as seen in other examples (Piper et al., 1985). 

 

3.3.3 Fluid flow 

The sudden addition for several hundred metres of partly compacted overburden would 

rapidly increase pore pressures in those sediments and since the pressure could not 
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dissipate rapidly because of the overburden, it would bleed off slowly (Deming, 1994). 

Basinmod 1D modelling of the pressure build-up in these sediments has been carried out. 

This type of modelling is, however, less than perfect as it takes no cognisance of the lack of 

well data in the area. Nevertheless, it indicates pore pressure increases of several hundred 

psi and a ‘bleed-off’ period of some Ma, both dependent on assumptions of the lithologic 

type based on data from the surrounding wells. Immediately after each slump, pressure 

would build up in the sediments deeper than ~2000m (bmsl), i.e. below the Turonian source 

rock claystones (but not above as those sediments are too porous and permeable to sustain 

overpressures). This claystone layer forms a regionally extensive seal to fluid flow and would 

channel fluids laterally up-dip rather than vertically. Modelled excess pressure does not 

build up in sediments in the top 200m, probably because their high permeability allows 

near-instantaneous expulsion of water. Below that depth the model shows a rapid rise in 

the excess pressure and a slow fall-off over the succeeding few million years. The top 1500-

2000meters of original (pre-Miocene) sediments presently retain high permeability and 

porosity. Partial compaction of these sediments by deposition of 800m (or more) of 

sediments, would result in the expulsion of large volumes of water which should be able to 

flow essentially unimpeded up-dip and out of the basin through the shallow overburden.  

The remainder of the Cretaceous and Jurassic rocks in the basin, locally in excess of 8km 

thick (Ben Avraham et al., 1993), were already partially compacted and slump-related 

compaction effects would be less but nevertheless likely. The volumes of water expelled 

during this slump event could be very large. Estimates can be made from modelled porosity 

changes. Based on compilations of porosity versus depth data (North, 1985), and the 

calculated depths to the seismic horizons (Van Wyk et al., 1992; Wenham et al., 1991), 

model of the porosity changes match those shown by North (1985). Evaluation of log 

porosities in sandstones in wells at the margins of the Southern Outeniqua Basin supports 

these estimates. The hydrothermal change due to this slumping significantly altered the 

thermal regime of the Bredasdorp Basin, influencing hydrocarbon generation in this region. 
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4 CHAPTER  
 

 Geophysical tools used for the study  

The following list of data was used to carry out this research and will be discoursed below: 

Core Samples, Productivity Test Data, Drill stem test (DST), Wireline formation testing, Well 

Logs, Porosity, Permeability, Resistivity, Gamma Ray (GR), Spontaneous potential (SP), 

Induction, Neutron, Electrode resistivity,  Density, Combination neutron-Density, Sonic.   

Data for this project was collected over the period of April 2013 to March 2014 obtaining 

well completion reports and other hard copied data as well as digital data from the 

Petroleum Agency of South Africa (PASA). In block 9 of the Bredasdorp Basin, three wells 

which situated in close proximity to each other were selected for this study. The selected 

cores were laid out within a core shed supplied by (PASA) and approximately 4-5 hours 

spent daily physically investigating the cores of each well. The extensive time where spent 

to describe, correlate and depth match different horizons. Logging was carried out to 

identify different geological features such as imbrications, minor faults, presence of fossils 

and folds to the corresponding depths. The cores used in this study are located at the 

Petroleum Agency of South Africa (PASA) core library. Petroleum Agency of South Africa 

provided all the data used for this study. 

 

4.1.1 Core Samples 

These are cylindrical samples of rock taken from a formation in situ for analysis purposes. 

This is done by substituting a conventional drill pipe core barrel and core bit for the drilling 

bit to obtain samples as it penetrates the formation. Usually cores are cut using a special 

coring bit and are retrieved in a long core barrel. The core barrel is a hollow cylindrical 

device 7.6m to 18m in length with a hollow drill bit which can be attached to the bottom of 

the drill pipe for the purpose of recovering continuous samples of the formation while the 

hole is being drilled. The samples recovered are cylindrical cores and can be as long as the 

core barrel, (Reifenstuhl 2002). Core samples provide a full sample of rocks penetrated.  

It is used both for qualitative (visual lithology) and quantitative analysis which is a laboratory 

analysis of recovered reservoir formation samples of the purpose of measuring porosity, 
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directional permeability, residual fluid saturation, grain size, density and other properties of 

the rock formation contained fluids. It is also used to calibrate wireline logs. Additional 

coring methods such as sidewall coring could be carried out when extra rock samples are 

necessary after the well has been drilled and before it has been cased. Sidewall cores are 

obtained with a wireline tool from which a hollow cylindrical bullet is fired into the 

formation and retrieved after each bullet has been fired into the formation was by a free 

pull by wires connection the barrel to the gun. Core barrels are accessible for piercing 

formation s of different hardness. The type of barrel and size of charge varies to optimize 

recovery in different formations. The problem with coring lies in the tendency of the 

formation samples to undergo physical changes on its way from the bottom of the well to 

the surface. More sophisticated coring mechanisms that can preserve the orientation, 

pressure and original fluid saturations of the core samples have been developed. The cores 

are held within core boxes delineating the location and the depth to which recovered core 

belong to. Parts of core where still encased within waxed cylinders to preserve the original 

environmental fluids as well as the original sediment from the subsurface.  

These waxed units are randomly selected on basis of how important certain units of core 

were to the study. Certain parts of the waxed units visually obscured the investigation of the 

core and obstructed conformation to contacts between sedimentological units and grain 

size distribution between different sections of the core and were left to proficient decision 

making as well as assumption on the continuum of the stratigraphic sequence. Random core 

plugs where selected within each well to further evaluation to grain size distribution and the 

porosity and permeability traits each core attained. 

 

4.1.2 Productivity Test Data 

A well test is the execution of a set of planned data acquisition activities to broaden the 

knowledge and understanding of hydrocarbons properties and characteristics of the 

underground reservoir where hydrocarbons are trapped. The test will also provide 

information about the state of the particular well used to collect data. The overall objective 

is identifying the reservoir's capacity to produce hydrocarbons, such as oil, natural gas and 

condensate. Data gathered during the test period includes volumetric flow rate and 
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pressure observed in the selected well. Outcomes of a well test, for instance flow rate data 

and gas oil ratio data, may support the well allocation process for an ongoing production 

phase, while other data about the reservoir capabilities will support reservoir management. 

Productivity Test Data include: Formation Tester and Drill Stem Test (DST). Obviously, not all 

of these measurements are made in any single well. A careful selection of a specific 

measurement is made in order to completely identify and evaluate the commercially 

productive hydrocarbon bearing zones. Formation testing presents collection of data on a 

formation to determine its potential productivity before installing casing in a well. If a well 

flow’s hydrocarbon during a drill stem test, no amount of log or core samples analyses can 

deny that a productive zone has been found. 

 

4.1.3 Drill stem test (DST) and wireline formation testing 

Drill Stem Test which is defined as a temporary completion of a well is a procedure for 

testing a formation through a drill pipe. Incorporated in the drill stem testing tool are 

packers, valves or ports that can be opened and closed from the surface and a pressure 

recording device. The formation fluid is recovered in the drill pipe through temporary relief 

of back pressure imposed on the formation. Hydrostatic flowing and shut in pressures are 

recorded against time. A (DST) do not only provides the proof that hydrocarbons exist in the 

formation and that it will flow but it also supplies very important data concerning both size 

of the reservoir and its capability to produce. Interpretation of pressure records from drill 

test adds greatly to the overall formation evaluation. Wireline Formation Testing 

complements drill stem test by their ability to sample several different zones encountered 

by the well. They provide fluid samples and detailed formation pressure data that is almost 

impossible to obtain from DST alone, (Reifenstuhl, 2002). 

 

4.1.4 Well Logs 

Well logs are a class of the most useful and important tools available to petroleum 

geologists. They are products of survey operations consisting of one or more set of digitized 

data or curves which display an array of permanent record of one or more physical 

measurement as a function of depth in a well bore. They are used to identify and correlate 
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underground rocks, determine their mineralogy, generate their physical properties and the 

nature of the fluids they contain. During drilling a well, relatively little can be learned about 

the potential of the penetrated formation. The analyses of the returned cuttings, sometimes 

referred to as Measurement While Drilling (MWD), reveal the general lithology. 

Geological sampling during drilling leaves a precise record of the formation encountered. 

Mechanical coring is slow and expensive. Even though geophysical logs need interpretation 

to bring it to the level of geological or petrophysical experience, the strong points are in the 

precision and ability to bridge the gap between well cutting and core samples, (Levorsen, 

1967). The geophysical wireline logs are the continuous records of geophysical parameters 

along a borehole. They are products of wireline logging which involves inserting a logging 

sensor or a combination of (Sonde) in the drill collar is lowered into the well bore by a 

survey cable and a continuous physical measurements (electrical, acoustical, nuclear, 

thermal and dimensional) are made. A sensor and its associated electronics are housed in a 

sonde, which is suspended in the hole by an armored electric cable. The sensor is separated 

from the virgin formation by the drilling mud, mud cake, and often by an invaded zone in 

the formation. Signals from the sensor are conditioned by down-hole electronics for 

transmission up the cable to the surface electronics, which in turn conditions the signals for 

output and recording. As the cable is raised or lowered, it activates a depth measuring 

device which provides depth information to the surface electronics and recording devices. 

The data is recorded on digital tape, film or paper, (Levorsen, 1967). Necessary geophysical 

measurements are obtained to allow a quantitative evaluation of hydrocarbon in place. It is 

very important to get accurate well calibrated and complete data. The cost of wireline 

logging generally amount to less than 6% of the total well budget. Some well logs are made 

of data collected at the surface; example are core logs, drilling time logs, mud sample logs, 

hydrocarbon well logs etc. Other types such as movable oil plots, computed logs, etc. Show 

quantities calculated from other measurements. 
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4.1.5 Porosity 

This is defined as the ratio of void space to the bulk volume of rock containing the void 

space. It can be expressed as a fraction on percentage of pore volume in a volume of rock 

and has a symbol (Φ). It is represented with the formula stated below: 

 

   Porosity (Ф) = Volume of Pores  

Total Volume of Rock 

The amount of internal space in a given rock volume is a measure of the amount of fluids 

the rock will hold. The amount of interconnected void spaces excluding isolated pores and 

pore volume occupied by adsorbed water available to free fluids is referred to as effective 

porosity. The effective porosity can also be defined as the fraction or percentage of 

interconnected pore or void space volume in a volume of rock. It excludes isolated pores 

and pore volumes occupied by the water adsorbed on clay minerals or other grains. The 

total porosity is all void space in a rock and matrix whether effective or non-effective. It 

includes porosity in isolated pores adsorbed water on grains or particle surface and 

associated with clay, (Levorsen, 1967). 

Porosity in sedimentary rocks can be primary or secondary; Primary porosity refers to the 

porosity remaining after the sediments have been compacted but without considering 

changes resulting from subsequent chemical action or flow of water through the sediments. 

Secondary porosity on the other hand is the additional porosity resulting from fractures, 

vugs, solution channels, diagenesis, and dolomitization. The three common types of 

secondary porosity are: fracture porosity, shrinkage porosity and dissolution porosity. 

 

4.1.6 Permeability 

This is the property a rock has to transmit fluids. It is related to the effective porosity but 

not always dependent on it. Permeability is controlled by the size of the connecting 

passages (pore throats or capillaries) between pores. It is measured in Darcies, more 

commonly in millidarcies and represented by the symbol Ka-. A measure of the ability of a 

rock to conduct a single fluid through its interconnected pores when it is 100% saturated 

 

 

 

 



 

55 
 

with that fluid is called absolute permeability while effective permeability refers to the 

ability of a rock to transmit a fluid in the presence of another fluid when the two fluids are 

immiscible. The ratio of the effective permeability of a fluid at partial saturation to its 

permeability at 100% saturation (absolute permeability) is the relative permeability. It is 

also defined as the ratio of the amount of a specific fluid that will flow at a given saturation 

in the presence of other fluids to the amount of the same fluid that will flow at a saturation 

of 100%, other factors remaining the same. It ranges in value from zero at low saturation to 

1.0 at 100% saturation of the specific fluid. Since different fluid phases inhibit the flow of 

each other, the sum of the relative permeability of all phases is always less than unity. 

 

4.1.7 Resistivity  

This is the rock property on which the entire science of logging was initially developed. The 

resistance of a material which is its ability to resist the flow of the electric current at a 

particular temperature is directly proportional to its length (ℓ) and decreases with 

increasing cross-sectional area (A).  The proportionality constant is resistivity (ρ) of the 

material. The resistivity of a material is its resistance (R) over a specified length and cross 

sectional area. It is defined by: 

   Resistivity (ρ) = RA  

            ℓ 

In log interpretation, the rock and fresh water all act as insulators and are therefore non-

conductive and highly resistive to electric flow. The resistivity recorded on a resistivity well 

log may differ from true resistivity because of the influence on the measured response 

caused by the presence of the mud column invaded zone adjacent beds and borehole 

cavities. This is referred to as apparent resistivity and may need correction prior to use in 

any computation. The measure units are ohm-meters (ohm-m). The figure below shows the 

flow of current in the resistivity tool during its measurement. 
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Figure 4.1 Principles of measuring resistivity in Ohm-meter. Example is 10 Ohm-meter 

modified from Wightman, W. E., Fluid Saturation. 

This is the fraction or percentage of the pore volume occupied by a specific fluid (oil, gas, 

water). It is generally defined by: 

Fluid Saturation (Sf) = Formation fluid occupying ores 

        Total pore space in the rock 

The fluid in the pore spaces of a rock may be wetting or non-wetting. In most reservoirs, 

water is in the wetting phase while few reservoirs are known to be wet oil. The wetting 

phase exists as an adhesive film on the solid surfaces. Water saturation is an important log 

interpretation concept because hydrocarbon saturation of a reservoir can be determined by 

subtracting water saturation value from a unit value (1), where a unit value (1) equals 100% 

water saturation. Water saturation Sw is measured in percentage. Irreducible water 

saturation Swirr is the term used to describe the water saturation at which the water is 

adsorbed on the grains in the rock or held in capillaries by capillary pressures. At irreducible 

water saturation, water (wetting phase) will not move implying a zero relative permeability 
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and the non-wetting phase is usually continuous and is producible under a pressure gradient 

of the well bore. The occupation of fluids in a pore may take different forms: 

i. Funicular saturation. A form of saturation in which the non-wetting phase exists 

as a continuous web throughout the interstices which make it to be mobile under 

the influence of the hydrodynamic pressure gradient. The wetting phase may or 

may not be at irreducible saturation. Figure (4.2 A) illustrates the oil (non-wetting 

phase). As funicular. 

ii. Pendular saturation. Here the wetting phase exists in a pendular form of 

saturation in which an adhesive fluid film of the wetting phase coasts solid 

surfaces, grain to grain contacts and bridges pore throats. The wetting phase 

may or may not be at irreducible saturation. In (Fig: 4.2 B), water (wetting phase) 

in A and B is pendular. 

iii. Insular saturation. A type of saturation in which the non-wetting phase exists as 

isolated insular globules within the continuous wetting phase. Here it is uncertain 

that a decrease in pressure may cause the insular globules to collect into a 

continuous phase. Illustration in B and C (figure 4.2) shows that the oil (non-

wetting phase) is insular, (Levorsen, 1967). 

 

Figure 4.2 None wetting oil (black) and water (clear) in a single water-wet pore modified 

from Levorsen, (1967). 

  

 Characteristics of Selected Wireline Logging Tools 

Wireline logging tools are numerous and new models designed to handle specific logging 

restrictions. Therefore for the purpose of this study, a few logging tools have been selected 

for short description of their distinctiveness: 
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4.2.1 Gamma Ray (GR) 

Gamma ray log are designed to measure the natural radioactivity in formations (fig: 4.3). 

The number of energy of the naturally occurring gamma ray in the formation is measured 

and distinguished between elements of parent and daughter products of the three main 

radioactive families Uranium, Thorium and Potassium. In sediments the log mainly reflects 

clay content because clay contains the radioisotopes of potassium, uranium and thorium. 

Potassium feldspars, volcanic ash, granite wash and some salt rich deposits containing 

potassium (e.g. potash) may also give significant gamma ray readings.  

Shale free sandstones and carbonates have low concentrations of radioactive materials and 

give low gamma ray readings. The standard unit of measurement is American Petroleum 

Institute (API). High gamma ray may often not imply shaliness but a reflection of radioactive 

sands such as potassium rich feldspathic, glauconitic or micaceous sandstones. Gamma ray 

log is usually preferred to spontaneous potential logs for correlation purposes in open holes 

nonconductive borehole fluids for thick carbonate intervals and to correlate cased-hole logs 

with open-hole logs.  

 

Figure 4.3 Schematic drawing of a gamma ray tool (redrawn from Serra, 1979). 
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4.2.2  Spontaneous Potential (SP) 

Also known as self-potential logs, it measures potential (DC voltage) difference between a 

movable electrode in the borehole and a distant reference usually at the surface (fig: 4.4, 

4.05). The SP results from the measurable voltage drop in the borehole produced by the 

flow of SP currents generated by electrochemical and electrokinetic potentials in the hole. 

The SP tends to follow a fairly constant shale base line in impermeable shales while in 

permeable formations; the deflection depends on the contrast between the ion content of 

the formation water and that of the following: 

i. Drilling mud filtrate 

ii. Clay content  

iii. Bed thickness and resistivity 

iv. Hole size 

v. Invasion 

vi. Bed boundary effect. 

In thick permeable, thick non-shale formations, the SP value approach the fairly constant 

value (static SP), which will change if the formation water salinity changes. It varies in dirty 

reservoir rocks and a set of pseudo-static SP value is recorded.  

SP is most useful when: 

i. Drilling mud is fresher than the formation water 

ii. A good contrast exists between mud filtrate and formation water resistivity 

iii. Formation resistivity is moderately low. 

The SP curve becomes featureless when the mud column becomes so conductive that it fails 

to display a demonstrable voltage drop which the tool can support SP response of  large 

negative deflection in permeable beds enhances easy sand-shale discrimination, correction 

and under favourable conditions estimation of formation water resistivity, (Rider, 1996). 

The SP measuring equipment consists of a lead or stainless steel electrode in the well 

connected through a millivolt meter or comparably sensitive recorder channel to a second 

electrode that is grounded at the surface. The SP electrode usually is incorporated in a 
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probe that makes other types of electric logs simultaneously so it is usually recorded at no 

additional cost. 

  Spontaneous potential is a function of the chemical activities of fluids in the borehole and 

adjacent rocks, the temperature, and the type and amount of clay present; it is not directly 

related to porosity and permeability.  The chief sources of spontaneous potential in a drill 

hole are electrochemical, electrokinetic, or streaming potentials and redox effects.  When 

the fluid column is fresher than the formation water, current flow and the SP log are as 

illustrated in Figure 1; if the fluid column is more saline than water in the aquifer, current 

flow and the log will be reversed.  Streaming potentials are caused by the movement of an 

electrolyte through permeable media.  In water wells, streaming potential may be 

significant at depth intervals where water is moving in or out of the hole.  These permeable 

intervals frequently are indicated by rapid oscillations on an otherwise smooth curve. 

Spontaneous potential logs are recorded in millivolts per unit of t paper or full scale on the 

recorder.  Any type of accurate millivolt source may be connected across the SP electrodes 

to provide calibration or standardization at the well.  The volume of investigation of an SP 

sonde is highly variable, because it depends on the resistivity and cross sectional area of 

beds intersected by the borehole.  Spontaneous potential logs are more affected by stray 

electrical currents and equipment problems than most other logs.  These extraneous effects 

produce both noise and anomalous deflections on the logs.  An increase in borehole 

diameter or depth of invasion decreases the magnitude of the SP recorded.  Obviously, 

changes in depth of invasion with time will cause changes in periodic SP logs.  Because the 

SP is largely a function of the relation between the salinity of the borehole fluid and the 

formation water, any changes in either will cause the log to change. 

Spontaneous potential logs have been used widely in the petroleum industry for 

determining lithology, bed thickness, and the salinity of formation water.  SP is one of the 

oldest types of logs, and is still a standard curve included in the left track of most electric 

logs.  The chief limitation that has reduced the application of SP logs to groundwater studies 

has been the wide range of response characteristics in freshwater environments. If the 

borehole fluid is fresher than the native interstitial water, a negative SP occurs opposite 

sand beds; this is the so‑called standard response typically found in oil wells.  If the salinities 
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are reversed, then the SP response also will be reversed, which will produce a positive SP 

opposite sand beds.  

 Thus, the range of response possibilities is very large and includes zero SP (straight line), 

when the salinity of the borehole and interstitial fluids are the same.  Lithologic contacts are 

located on SP logs at the point of curve inflection, where current density is maximum.  

When the response is typical, a line can be drawn through the positive SP curve values 

recorded in shale beds, and a parallel line may be drawn through negative values that 

represent intervals of clean sand. 

     

Figure 4.4 Spontaneous potential logging tool modified from Wightman, W. E., Jalinoos, F., 

Sirles, P., and Hanna, K. (2003).  
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Figure 4.5 Flow of current at typical bed contacts and the resulting spontaneous potential 

curve and static values. Modified from Wightman, W. E., Jalinoos, F., Sirles, P., and Hanna, K. 

(2003). http://www.cflhd.gov/resources/agm/ 

 

4.2.3 Induction tool 

Induction logs are a class of resistivity logs which are recorded in uncased boreholes and 

involve the application of electromagnetic induction principles for the measurement of 

formation resistivity or conductivity. It has an advantage of being used in nonconductive 

borehole fluids such as air, oil and gas in which other electrical resistivity logging tools 

cannot be easily used. It works well with electrically conductive drilling mud provided the 

mud is not too saline and the borehole diameter not too large (SPWLA Glossary, 1984-97). 

Practical induction tools include an array of several transmitter and receiver coils designed 

to provide focusing and deep investigation to minimize borehole and adjacent formation 

effect  
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Figure 4.6 Induction equipment modified from Wightman, W. E., Jalinoos, F., Sirles, P., and 

Hanna, K., (2003). http://www.cflhd.gov/resources/agm/ 

 

The transmitting coils emit a high frequency alternating current of constant intensity 

resulting in an alternating magnetic field which in turn induces secondary current in the 

formation. The multiple coils are used focusing so that the resistivity measurement is done 

to minimize the effect of materials in the borehole invaded zone and other nearby 

formations. The induced current flows in circular ground-loop paths coaxial with the sonde. 

These ground loop current also generate their one magnetic fields inducing signals in the 

receiver coils which at low conductivities are essentially proportional to formation 

conductivity. However at high conductivities, the magnetic fields of the ground-loop 

currents induce additional eddy currents in adjacent ground loops which are superimposed 

on those induced by the transmitter coil field. This is referred to as skin effects and affects 

the reading. Induction tools can be run separately or combined with other devices. 

Integrated tools such as the induction with a deep depth of investigation (ILD) with another 

induction device having shallower depth of investigation (ILM) and invaded zone 

investigative devices (short normal device, short laterolog or spherically focused logging 

device) are common examples.  
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4.2.4  Electrode Resistivity tool 

The second class of resistivity measuring device is the electrode log. Electrodes in the 

borehole are connected to a power source (generator) and the current flows from the 

electrodes through the borehole fluid into the formation and then to remote reference 

electrode. Examples of electrode resistivity tools include: Normal devices, Lateral logs, 

Laterolog, Macrolaterolog, Micro log, Proximity log, and Spherically Focused logs. 

 

Figure 4.7 Normal device with electrodes Boreholes filled with salt-saturated drilling muds 

require electrode logs such as Laterolog or Dual Laterolog to determine accurate true 

resistivity values of the uninvaded zones. (Society of Petroleum Engineer, 2013). 

 

4.2.5 Neutron tool 

Neutron logs are porosity logs that measure primarily the hydrogen ion concentration in a 

formation but also affected by mineralogy and borehole effects. In clean formations where 

the porosity is filled with water or oil, the neutron log measures liquid-filled porosity. 

Whenever pores are filled with gas rather than oil and water, neutron reads low values. This 

occurs as a result of less concentration of hydrogen in gas compared to oil or water. The 

lowering of neutron porosity by gas is called Gas Effect. The tool contains a continuously 

emitting source and either be a neutron (neutron-neutron tool) or a gamma ray detector 

(neutron- gamma tool). High energy neutrons from the source are slowed down by collisions 
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with atomic nuclei (fig: 4.8). The hydrogen atoms are by far the most effective in the 

neutron. Hence the distribution of the neutrons at the time of detection is primarily 

determined by the hydrogen concentration. 

 

 

Figure 4.8 Compensated neutron tool drawing. (Society of Petroleum Engineer, 2013). 

 

 

Neutron log responses vary depending on:  

i. Difference in detector types 

ii. Spacing between source and detectors 

iii. Lithology (i.e. sandstone, limestone and dolomite). 

 

4.2.6  Density tool 

This is a well log that records formation density. The logging tool consists of a gamma ray 

source (e.g. Cs137) and a detector shielded from the source so that it records backscattered 

gamma rays from the formation depending on the electron density of the formation (fig: 

4.9). The formation electron density is proportional to its bulk density. Like in neutron tool 
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the source and the detector are usually mounted on a skid which is pressed against the 

borehole wall. 

 

Figure 4.9 Density Log showing the configuration of the source and detectors of a 

compensated density logging tool. Courtesy of Schlumberger 

 

The compensated density logging tool includes a secondary detector which responds more 

to the mud cake and small borehole irregularities. The response of the second detector is 

used to correct the measurements of the primary detector. Density log is applied primarily 

to uncased holes. 

4.2.7  Combination Neutron-Density tool 

This is a combination porosity log, besides its use as a porosity device; it is also used to 

determine lithology and to detect gas bearing zones. Both the neutron and density curves 

are normally recorded in limestone porosity units with each division equal to either 2% or 

3% porosity. Limestone and dolomite porosity units can also be recorded. An increase in 

density porosity occurring with a decrease in neutron porosity indicates a gas bearing zone 

usually referred to as Gas Effect. Gas Effect is created by gas in the pore as it caused the 

density log to record too high a porosity (i.e. gas is lighter that oil or water) while the 
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neutron log record too low a porosity reflecting lower concentration of hydrogen atom than 

oil or water.  

 

Figure 4.10 A combination neutron/density tool. 

(http://iodp.ldeo.columbia.edu/TOOLS_LABS/LWD/lwd_adn.html) 

  

4.2.8  Sonic tool 

A sonic log measures interval transit time (∆t) of a compressional sound wave in feet per 

second and hence a reciprocal of the compressional wave velocity. The sonic log device 

consists of one or more transmitters and two or more receivers (fig: 4.11). The time for the 

acoustic energy to travel a distance through the formation equals to the distance spanned 

by the two receivers is the desired measurement and the unit expressed as microseconds 

per foot. The interval travel time can be integrated to give the total travel time over the 

logged interval. Borehole compensated sonic log consists of two transmitters located above 

and below the receiver which are pulsed alternately to produce an improved log. Errors due 

to sonde tilt or changes in the hole six are minimized by averaging the measurements. 
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Figure 4.11 Sonic logging tool modified from (http://terraplus.ca/products/borehole/sonic-

probe.aspx) 

 

The sonic log is used in combination with other logs (e.g. density and neutron logs) for 

porosity, shalyness, and lithology interpretation. Integrated transit time is also helpful in 

interpreting seismic records. A simpler but efficient approach is taken to evaluate the core 

using a measuring tape, a hand lens and a digital camera was used to be able to compile 

imperative information from the cores such as: 

i. Mineral inhibition 

ii. Grain size distribution  

iii. Changes in facies 

iv. Fining sequences 

v. Contacts between facies successions 

vi. Environments of deposition 

vii. Sequence alternation 

viii. Fluid alteration. 

Most importantly the structure implications of the granulation distribution as well as the 

facets of compartmentalization within the different core sections. The granulation had no 
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specific orientation within the cores and in some areas they were chaotic and occurred as 

areas which were highly fractured. During the investigation it was discovered that the 

granulated beds actually accompanied a distinct sequence, which in this case was shale unit 

ranging sizes which stretched straight through all the cores. This shale layer stepped up or 

down within a few meters within the cores. 
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5 CHAPTER  
 

 Petroleum geochemistry of the Bredasdorp Basin and adjacent Basins  

The Bredasdorp Basin and adjacent Southern Outeniqua Basin contain all the factors usually 

considered necessary for hydrocarbon prospective namely: 

(i) Source rocks that have demonstrated expelled hydrocarbons 

(ii) Conduits for hydrocarbons migration and reservoiring (i.e. continuous 

sandstones and fault-connected sandstones) exist several levels in the basin 

(iii) Sandstones retain enough original porosity (or have diagenetically-enhanced 

porosity) to  reservoir large volume of hydrocarbons 

(iv) Many of these sandstones are over and underlain by claystones which are locally 

over-pressured capillary seals preventing escape of hydrocarbons 

(v) Several families of hydrocarbons have been reservoired and can be correlated to 

nearby source rocks. 

Relevant aspects of each of these factors will be addressed in this section whilst the samples 

and analyses are discussed subsequently. 

 

5.1.1 Source rock 

Source rocks have been define as “a volume of rock that has generated, or is generating, 

and expelling hydrocarbons in sufficient quantities to form commercial oil and gas 

accumulation” (Brooks et al., 1987). A potential source rock is one which “could generate 

hydrocarbons given the right conditions” (Brooks et al., 1987). Other authors omit the 

commercial reference but comment on maturation, e.g., “rocks containing sufficient organic 

matter of a suitable chemical composition to generate and expel hydrocarbons at 

appropriate maturity levels” (Miles, 1989). In order to be a viable source rock, the  

quantities of hydrocarbons which can be (or have been) generated must exceed the amount 

necessary to fill a portion of the pore spaces in the source rock and satisfy the adsorbency of 

the maceral grains before expulsion can commenced. Indeed many source rock definitions 

include comment on the both the quantity of sedimentary organic matter and the amount 
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of hydrocarbons generated. Source rocks can form in both non-marine (fluvial and 

lacustrine) and marine detrital environments and can be clastic-dominated or carbonate-

rich and biogenic-dominated. 

 

5.1.2 Source potential of clastic lithologies 

Clastic rocks are fine-grained, clay-rich sediments combining larger than average quantities 

of organic matter. Clay-rich rocks are generally only considered to be potential source rocks 

if the total organic carbon (TOC) content exceeds 1% by weight (Tissot and Welte, 1984). 

Since the average organic carbon content of several of these fine-grained sediments is ˂1% 

by weight, they are considered potential source rocks (Ronov, 1958; Dow, 1977). This cut-off 

is an empirical one, based on data from various studies which show that sedimentary rock 

with TOC contents less than this, even though they may generate hydrocarbons, do not 

expel them in any significant quantity. This is largely because smaller amounts or organic 

matter are generally widely dispersed through the rock and not concentrated in one region. 

In practice, effective source rocks often contain >2% TOC and may even exceed 10%, e.g. 

Bakken Shale (Welliston Basin, Canada) and Kimmeridge Sahle (North Sea). It is also shown 

(Ronov, 1958; Dow, 1977; Demaison and Moore, 1980) that many non-source argillaceous 

sediments contain ˂˂1.0% TOC and that the difference between TOC contents in prolific 

source rocks and no-source rocks can be greater than an order of magnitude. Large amounts 

of organic matter, suitable to form source rocks, can be concentrated in clastic sedimentary 

rocks as a result of three processes: 

(i) Enhanced preservation 

(ii) High organic productivity 

(iii) Sediment starvation 

Considerable study has taken place during the past two decades in attempting to 

understand the relative importance of each TOC enhancement process. 
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5.1.3 Enhanced preservation of organic matter. 

Enhanced preservation is due mainly to the development of anoxia. In low oxygen 

environments, there are few organisms at the sea-floor or in the topmost sediments which 

can scavenge organic material (Demaison et al., 1988) hence; the organic matter content of 

sediments preserved under such conditions is higher than in oxidising environments. Anoxia 

can develop regionally for a number of reasons but dominates in one of two main 

depositional settings: 

(i) Restricted circulation due to the presence of a barrier (such as a landmass) to 

open ocean circulation. (Fig.5.1) 

(ii) Water stratification due either to the development of a halocline or separate 

water masses having different temperature (Fig. 5.2). 

 

5.1.4 Enhanced productivity of organic matter 

Pederson and Calvert (1990) showed that biogenic decomposition of organic matter 

occurred at the same rate whether the seafloor conditions were oxic or anoxic.  

 

Figure 5.1 Schematic sections through anoxic and ventilated silled basin (from Demaison et 

al., 1988). 
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The anoxic basin has a core in which oxygen levels are low. In such situations, organic 

matter generation is high in the surface waters and its presentation through the passage 

from sea level to sea floor is enhanced because of the limited scavenging of organisms. 

Hence high proportions of organic matter, in particular high hydrogen material are 

preserved. 

 

Figure 5.2 Schematic section through a basin in which open ocean circulation prevails but 

where high organic productivity occurs and bacterial decay is enhanced which results in 

development of an oxygen minimum layer (after Demainson et al., 1988). 

 

Where this impinges on the basin floor and margins, or even where it closely approaches 

these regions, scavenging destruction of the most lipid material is largely prevented. Large 

amounts of high hydrogen organic matter becomes deposited and incorporated in the 

sediments. In this situation, and mixed oil and gas prone zone is commonly found seaward 

of the main oil prone (oxygen minimum), zone. They favour a model which relies on an 

increased organic productivity to result in the formation of source rocks. In this model, the 

oxygen minimum is located in the mid-water column (rather than at the sea floor) and 

organic-rich sediments are deposited directly beneath it. One such location where this 

commonly occurs is in mid-latitudes (i.e. 30-400S and N) where a large temperature 
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difference exists between deep oxygen-poor bottom water and oxygen-rich surface water. 

This results in a relatively stable water column with essentially no mixing (Denainson et al., 

1988). At the contact between these two layers, a prolific food-chain develops and oxidation 

of the resulting large amounts of organic material uses up the free oxygen in the water 

resulting in a low oxygen layer (Fig. 5.2). This is occasionally enhanced where trade winds 

blow continuously on the south-western side of southern hemisphere continents. Warmer 

surface waters are forced westwards, cold water wells up from below and the waters mix, 

so that in the nutrient-rich water, an explosive organic growth results. Decay processes, 

operating with consumption of the organisms by bacteria and plankton, uses up oxygen in 

the water column and ‘blooms’ of phytoplankton occur. This effect is likely to result in high 

concentrations of organic matter entering the sediment cycle partly because the scavenging 

organisms are overwhelmed by the large amounts of organic matter and cannot reduce it. 

Demaison and Moore (1980), however suggested that periodic wholesale mixing of water 

column, thought to be responsible for much of the source rock deposition, is likely to occur 

where there is a stable warm upper-water surface column.  

Under those conditions, the high rate of input of organic matter to the bottom water is 

exacerbated during overturning events when high-oxygen, nutrient-rich, cold bottom-water 

upwells and biotic blooms occur. Assuming present climatic conditions prevailed, the early 

Cretaceous Palaeo-lacation of South Africa at `550S (McMillan, 1986) places the continent in 

a cool surface water environment where continuous mixing is likely, which would result in 

the development of a large scavenging community in the water column and at the sea floor 

so that periodic development of anoxia would not occur. Pederson and Calvert (1990) 

consider that these conditions may not have been operative in South African waters during 

the Late Jurassic and Early Cretaceous because open marine conditions had not developed.  

However, once the continents had separated enough to allow establishment of open marine 

condition, during the Mid-Late Cretaceous and even into the Tertiary (Frakes and Kemp, 

1972), such stability would occur. Under the greenhouse conditions prevailing in Mid-Late 

Cretaceous, stable warm water column extended further south (Barron, 1983; Pederson and 

Calvert, 1990) and water-column mixing was less regular, resulting in periodic development 

of biotic blooms which, where preserved resulted in source rock formation. Cornford et al., 

(1986) suggest that the Kimmeridge Shale may be an example of this type of source rock 
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and it is thought that the Hauterivian-Aptian sources in the Bredasdorp Basin also represent 

such an example. 

 

5.1.5 Sediment starvation 

Lautit et al., (1989) shows that organic carbon enrichment and source rock development 

usually occur during periods of highstands associated with sediment starvation episodes. 

Burden (1992) therefore suggested that the 13A source rock interval was deposited during a 

period of sediment starvation. However, the average sedimentation rate of this source 

sequence (SOEKOR unpublished biostratigraphic data) is ~47m/Ma (using the time scale of 

Haq et al., 1987) which does not indicate any significant sediment starvation. By way of 

contrast, in the northern part of the North Sea, the richest source shales are approximately 

200m thick (Bailey et al., 1990). They were deposited during the Brent and Early Heather 

periods, which Thomas et al, (1985) show to extend from Bajocian through Callovian (i.e.~18 

Ma). This indicates a sedimentation rate of about 11m/Ma, typical of that in periods of 

sediments starvation (Loutit et al., op cit.). In the Bredasdorp Basin, the Turonian source 

rock interval was deposited at an even lower sedimentation rate (~7m/Ma) suggesting 

sediment starvation as the prime cause. However, the existence of intervals of sediments 

starvation (typified by condensed sequences) without source rock development (Benson et 

al., 1993) demonstrates that starvation does not always ensure source rock development. 

 

5.1.6 Source potential of carbonate lithologies 

Carbonate sediments deposited in shallow, warm-water, low-oxygen environments are 

common world-wide and often prolific source rocks. Their kerogen is often comprised of 

finely disseminated amorphous material with a high oil potential. The Bredasdorp Basin has 

been a deep, cool-water mud-rich basin (McMillan et al., 1997) and contains little carbonate 

sediment except in the Tertiary. In those carbonates, source potential is uniformly low. 
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5.1.7 Other factors 

Whichever model of source rock development is more likely, if indeed is possible to select 

one or the other- the conditions responsible for their formation were enhanced by the 

following additional factors: 

(i) The period of major development of Mid-Cretaceous source rocks has been 

correlated with sea level fluctuations, Palaeo-surface temperature maxima and the ‘Long 

Cretaceous Normal’ magnetic non-reversal period. All of these can be related to periods of 

increased mantle activity and initiation of plume generation (Veevers, 1990; Larsen, 1991) 

and related increases in carbon recycling from the mantle. These result in a propensity of 

Mid-Upper Mesozoic sedimentary rocks to be organic-rich. 

(ii) Pederson and Calvert (1990) and Larson (1991) also demonstrate that with the high 

CO2 contents though to have dominated during the Mesozoic (Barron and Moore, 1993) a 

global ‘greenhouse’ could have prevailed. This would have resulted in higher water 

temperatures. Warmer water tends to have reduced oxygen levels resulting in sediments 

being deposited in a dominantly low oxygen environment with fewer bottom-living organic 

matter scavengers. 

(iii) Pederson and Calvert (1990) also suggest that globally, wind speeds would have 

been higher because of enhanced Hadley cells. This could result in increased influx of moist 

air from high latitudes to the tropics and hence globally, rainfall would have been higher. 

This generally moister climate would be enhanced in Southern Africa by the presence of the 

Cape Fold Belt Mountains which acted as an obstacle to the northward movement of these 

air masses. These conditions would result in greater plant growth and increased runoff 

resulting in larger inputs of terrigenous organic material to the marine environment, which 

would become more organic-rich. In offshore basins, all sediments contain some 

terrigenous material. Sediments deposited during the syn-rift period are generally coarse 

and oxidised so that remnant organic matter tends to be only the most refractory material.  

Indeed, many of the sediment intersections contain wood in the form of tree trunks or 

fragments of wood (Du Toit, 1954, p. 374-387; McLachlan and McMillan, 1979). Where 

recognised in the onshore Algoa and offshore Bredasdorp Basins, lacustrine rocks contain 

remnants such as reeds and limnological fauna. Sedimentary rocks preserved from post-rift 
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periods, especially Mid-Cretaceous, locally contain woody material (Du Toit, 1954, p. 393-

395) and thick coals are developed (wells 3 and Ga-D1, Davies, 1979). A significant 

proportion of organic material in the marine sediments is also shown optically or chemically 

to be terrigenous. Much of this material probably comes from a coastal vegetated belt, 

similar to the present, as Du Toit (1954, p. 408) shows that most the interior of the 

continent was relatively dry throughout the Late Mesozoic. 

 

 Types of organic matter and their products 

There are four main types of detrital organic matters found in source rocks: 

(i) Refractory (e.g. inrtinite or vitrinite) with low hydrogen 

(ii) Structured (lipid-rich, e.g. algal, exinite) fluorescent, high hydrogen 

(iii) Amorphous/sapropelic (e.g. lipid-rich), fluorescent, high hydrogen 

(iv) Amorphous (low hydrogen, non-fluorescent), low hydrogen. 

The relative proportions of these four types of organic matter determine the source 

potential. 

(i) Refractory organic matter is comprised largely of condensed, polycyclic aromatic 

rings with few alkyl groups and little hydrogen so they cannot be readily converted to 

hydrocarbons. They also require high activation energy to crack their condensed structures 

and tend to mature later than aliphatic material. Such material is generally terrigenous, 

being mainly comprised of cellulose-rich woody material rich in oxygen. Most woody 

material is deposited in near-shore estuarine and deltaic-continental environments where 

plant input is high and sediments reworking common both contributing to continual attack 

by scavengers. Woody material has a high preservation potential because it has few 

chemically reactive moieties hence the lipid fraction is generally removed from the material 

leaving the highly condensed core of the lignin. If this kerogen has any source potential, it is 

largely for gas although some forms of terrigenous material can generate waxy oil (Fleet and 

Scott, 1994). 
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(ii) Structured high-hydrogen material generally comprises exinite (e.g. spores, pollen) 

and has the potential to generate wet gas and oil. Algal material, which is also structured 

but often only in the form of flowed structures, has a very high oil potential. 

(iii) Amorphous organic material is usually assumed to be high-hydrogen forms such as 

bacterially altered marine organic matter. This is formed under low oxygen conditions 

where anaerobic bacteria reduce sulphates and oxygenated organic matter for oxygen and 

deposit the sulphur as H2S, pyrite or other metal sulphides. Thus these amorphous 

sapropelic claystones are often black partly from the finely disseminated organic matter and 

partly from the presence of sulphides. In the oil window, this material fluoresce which 

distinguishes it from low-hydrogen material. 

(iv) Low-hydrogen amorphous material is commonly found only where humid acids are 

incorporated into the sediment in large volumes. Even where matured into the oil window, 

this material does not fluoresce, by contrast with high-hydrogen material. Fluorescence is 

therefore only used to differentiate the two types in the oil window. In the absence of first 

cycle vitrinite, this maturity level can only be determined from chemical parameters, such as 

Tmax, production index and extracted hydrocarbon GC’s and other optical parameters such 

as TAI, spore fluorescence. 

 

 Distribution of organic-rich sediments in Bredasdorp Basin 

In the oxygen minimum model, the basin would be expected to have a band of source rock 

around the edge of the basin coinciding partly with the intersection of the oxygen minimum 

layer and its shadow with the sea floor. Hence, where source rocks are present mainly in the 

basin centre this provides support for the restricted anoxic basin model; it lends support to 

the oxygen minimum model. Where source rocks are only locally developed (and not 

restricted for tectonic reasons) it could indicate the local sediment starvation model. Each of 

these three types of source rocks are found developed in the marine drift sediments in the 

Bredasdorp Basin. Isolated half-graben infilled with clastic non-marine sediments 

characterised the pre-rift sedimentation. In some of them, lacustrine argillites are found, 

and in two wells, DWK-1 onshore (Davies et al., 1991) and well 89 offshore, these locally 

possess oil source potential. 
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Marine source rocks are associated with rapid sea-level rise and continental shelf flooding 

during which explosive colonisation of hitherto exposed (nutrient-rich) shelf occurred. Yet 

the rate of subsidence needed to generate each sequence boundary I far greater and far 

more rapid than could be accounted for by regional thermal decay and probably indicates a 

tectonic influence. In general, each post-rich transgression extended further landward 

culminating in the Turonian when sea-level advance reached a maximum. Under these 

conditions, increasing distance from the sediment input results in sediment starvation which 

in turn leads to increased proportions of organic matter incorporated into the sediment. 

The general trend of rising sea-level through the Early and Mid-Cretaceous may be related 

to post-rich thermal decay which gradually lowered level (Haq et al., 1987). Hence most 

source rocks are formed partly as a result of sediment starvation. After deposition, 

diagenetic alteration of the organic material in the first few hundred metres of burial 

reduces most of the oxygenated functional groups and converts most hydrolysable material 

to polycondensed macro-molecules, while micro-organisms recycle amino acids and sugars. 

Below these depths, the resulting organic material has a much higher preservation potential 

than detrital organic matter and is referred to as kerogen (Tissot and Welte, 1984). 

The type of hydrocarbons generated and expelled classify the source rocks as “oil-prone”, 

“wet gas-prone” and “dry gas-prone”. In general, all source rocks generate both oil and gas 

but in different proportions, e.g. oil represents 60-70% of the hydrocarbons generated by 

oil-prone (i.e. sapropelic) source rocks but only ~ 5% of the products of dry gas-prone (i.e. 

refractory) source rocks. 
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Figure 5.3 Two-way time control map to horizon 1At1 in the Bredasdorp Basin showing the 

graben in which syn-rift sediments exceed 1500ms in TWT thickness (from Burden, 1993). 

 

 Distribution of organic-rich sediments in Southern Outeniqua Basin 

As the western part of this basin lie immediately down-dip of the Bredasdorp Basin, mature 

organic-rich rocks could act as sources for hydrocarbons in the Bredasdorp Basin. 

Predictions of source rock development can be made based on the known distribution of 

source rocks in the surrounding basins, their regional synchronicity and their matching 

seismic signatures, namely a high impedance contrast with the super-and subjacent rocks. In 

addition, DSDP wells on the Maurice Ewing Bank, east of the Falkland Islands, which was 

conjugate with Outeniqua Basin, also contain matching Aptian and Upper Jurassic source 

rocks. There is no reason to suppose they were not deposited in the Southern Outeniqua 

Basin when the landmasses were in contact. However, as no wells have yet been drilled in 

this basin, discussion of source rocks there is speculative. 
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 Chemical and optical analyses 

The minimum amount generally regarded as necessary to constitute a source rock is TOC 1% 

(mass). For convenience, this is usually measured by combustion (e.g. using a LECO 

instrument) although a wet chemical process (Loring and Rantala, 1992) was used for some 

of the earliest analyses. An estimation of the quantity of kerogen can be made from the 

amount of material recovered during the kerogen separation process, but this depends 

largely on which processed fraction is used. Of equal importance to the study of quantity 

and quality are: (i) there type of organic material, as this must be able to generate 

hydrocarbons within the oil or gas windows and (ii) its thermal maturation, which 

determines the depth at which hydrocarbons are generated. Fine-grained sediments 

generally contain larger proportions of hydrogen-rich organic matter (e.g. sapropels) and 

constitute source rock for oil, in contrast with coarse-grained rocks (e.g. silts) in which the 

organic carbon is generally refractory, hydrogen-poor, (e.g. vitrinite) and largely gas-prone 

(Tissot and Walte, 1984).  

The character of the organic matter is often best determined from optical studies in which 

the kerogen is separated from the mineral matrix (by acid dissolution of the minerals) and 

studied under transmitted light. Structurally distinct hydrogen-rich material (e.g. spores, 

algal masses) or amorphous matter, usually fluoresces except where over-mature. As the 

material is matured, hydrogen-rich chemical compounds are generated and the organic 

matter becomes less hydrogen-rich hence any evaluation of the potential of source rocks 

should be carried out in conjunction with maturity analyses. The hydrogen proportion can 

also be estimated from chemical analyses using the Rock-Eval method. This is a method 

which requires minimal sample work-up and is carried out routinely on all samples. 

Chemically, hydrogen-rich macerals have high S2 (remaining hydrocarbon potential) and low 

S3 oxycarbon (≡ carbon dioxide and monoxide) potential at low maturity, whereas 

structured low-hydrogen high-oxygen macerals (e.g. vitrinite, inertinite) have low S2 and 

high S3 values. The ratio S2/TOC is the hydrogen index (OI) a measure of the oxygen content 

of the kerogen. Rich source rocks, including some coal kerongens (Espitalié et al., 1985; 

Fleet and Scott, 1994) have original HI values in excess of 400. This figure reduces with 

increasing maturation as hydrocarbons are generated and expelled but some are retained as 

increased S1.  
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A further analytical approach used with immature samples is that of kerogen kinetic 

analysis. The results of these analyses provide not only a detailed understanding of the 

chemical kinetic break-down rate of the organic material but also the maturation levels at 

which that occurs. A detailed description of the hydrocarbon characteristics of source rocks 

is summarised in Tissot and Welte (1984) and Brooks et al., (1987). During maturation, the 

kerogen breaks down at characteristic rates initiated above specific energy thresholds. 

These break-down characteristics have been measured on a number of samples using a 

Rock-Eval 2 instrument. The results of these analyses are used in the hydrocarbon 

generation modelling carried out for this study (table 5.1). 

 

 Log character 

Source rocks are often recognisable by their geophysical log characteristics. For example 

higher-than background log responses, i.e. gamma log (+10 API), slow sonic travel time 

(commonly accentuated by compaction disequilibrium and overpressure) (+15µsec/ft), high 

resistivity (+2-5Ω/m) and lower density are common in source rocks (Cornford, 1986; 

Davies, 1990; Van der Spuy, 1991; Creaney and Passey, 1993). The common paucity of 

accurately located samples in wells (e.g. sidewall cores and cores frequently leads to a 

reliance on log character to extrapolate between samples. 

 

 Seismic character 

Marine source rocks are usually found in sediments deposited in specific deep marine 

environments (e.g. overlying transgressive system tracts tracts and in basal highstand tracts) 

and these often have a characteristic and recognisable seismic signature (Loutit et al, 1989). 

As a result of their slower time and lower densities (because of the organic matter contents 

and the commonly high proportions of under compacted clays) they often show strong 

impedance contrasts with normally compacted and organic-poor beds above and below. 

This results in the characteristic “tramline” response i.e. high contrast parallel reflectors 

enclosing a low contrast interval (Brink et al., 1991). Indeed source rocks distributions in the 

distal Bredasdorp and Southern Outeniqua Basins are largely extrapolated from adjacent 

wells using this aspect. However, the distinction of source rocks near the edge of the basin is 
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made more difficult because sequences thin below seismic resolution, by onlap, offlap and 

erosion (Beamish, 1990). 

 

 Measurement of source potential 

Estimates of the proportions of different macerals, essentially proposed by Correia and 

Peniguel (1975) are used to evaluate the quality of the organic matter. The fourfold 

subdivision used, with certain diagnostic chemical parameters, is given in (Table 5.2) below. 

 

 Bredasdorp Basin source rocks 

Source rocks have been intersected in wells in the Bredasdorp Basin in each of the major 

sequences as shown in (Table 5.2). 

 

5.9.1 Syn-rift source rock (Late Jurassic) 

Syn-rift source rocks have been intersected in only one offshore well (# 89) in the 

Bredasdorp Basin and in one onshore well (DWK/1) in the Haasvlakte graben an onshore 

extension from the western end of the Bredasdorp Basin. In these wells, thin intervals of 

interbedded lacustrine source rocks and coaly silts were intersected in each case totalling 

˂20m. TOC contents vary from 1-3% and in many samples; a large proportion of the organic 

matter is amorphous although bottryococcus masses do occur (Davies it al., 1991). In well 

89, the WG-OIL prone lacustrine  shales have a total thickness of 13m spread over a 70m 

section, i.e. ~20% of the whole interval has source potential (Table 5.4). Potential ranges up 

to ~20 kg/tonne rock (HI=764) but averages 7 kg/tonne (HI=523). The few data points plot in 

the type 1 region of the HI vs Tmax plot. (This plot style, commonly called the Espitalié plot, 

was pioneered by Espitalié et al., 1977). The maturation level is recorded at R0~0.8%. 
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Figure 5.4 Schematic diagram showing Burial history graph for Bredasdorp Basin. Modified 

after Soekor (1994). 

 

 

Figure 5.5 Schematic diagram showing seismic section A-A and geological interpretation 

across the Bredasdorp Basin. Modified after McMillan et al. (1997). 
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STUDY AREA 

E-BB1, E-BD2, E-A01 

 

Figure 5.6 Schematic diagram showing the stratigraphic chart of the Bredasdorp Basin. 

(Modified from Burden, 1992). 
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Figure 5.7 Distribution of wet gas and oil prone source rocks in Outeniqua Basin, early 

Aptian 13A sequence. (Modified from Davies it al., 1991). 

 

Kerogen 

Type 

Optical description Hydrocarbon/ 

Oxycarbon ratio 

 S2/S3 

Hydrogen indexS2 

mg/gm TOC 

Oxygen index 

mg/gm TOC 

MOC Amorphous/ 

sapropelic 

>10 >400 ˂30 

MOV Structured terrigenous ~5 250-450 20-50 

algal >20 >600 10-30 

MOT Tracheid 1-3 150-300 40-100 

MOL lignitic ≤1 ˂150 >80 

     

Table 5.1 Chemical source potential of the four main types of organic matter distinguished 

by optical means (after Correia and Peniguel, 1975). 
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5.9.2 Measurement of source potential 

Estimates of the proportions of different macerals, essentially proposed by Correia and 

Peniguel (1975) are used to evaluate the quality of the organic matter. The fourfold 

subdivision used, with certain diagnostic chemical parameters, is given in (Table 5.2). 

 

AGE SEQUECNCE 

NAME 

OVERALL 

HYDROCARBON 

POTENTIAL 

OVERALL 

MATURIT 

(R0%) 

TURONIAN 15A Oil 0.5-0.7% 

EARLY APTIAN 13A Oil 0.7-1.2% 

BARREMIAN 9A-12A Wet gas-oil 0.8-1.3% 

EARLY BARREMIAN 6A-12A Wet gas-oil 0.8-1.3% 

LATE HARTERIVIAN 5A Gas 0.9-1.5% 

LATER VALANGINIAN- 

EARLY HAUTERIVIAN 

1A-4A Gas 1.0-1.5% 

LATE JURASSIC-EARLY 

VALANIGIAN 

Syn-rift Dry gas or Oil 1.0-1.5% 

DEVONIAN Bokkeveld Dry gas and non- 

hyrocarbons 

>3% 

 

Table 5.2 Overall maturity and gas/oil potential of source rocks in the Bredasdorp Basin, 

(from Davies et al., 1994). 
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RICHNESS TOC % HYDROCARBON POTENTIAL (S2kg/tone rock) 

EXCELLENT 10-20% >50 

VERY GOOD 5-10% 10-50 

GOOD 2-5% 5-10 

FAIR 1-2% 2-5 

POOR ˂1% ˂2 

Table 5.3 Generation potential of hydrocabon.(after Davies et al., 1994) 

 

 

TYPE 

(Organic matter 

types) 

HYDROGEN INDEX 

(original estimate) 

(100*S2/TOC) 

S2/S3 OPTICAL HALF HEIGHT 

(width in T0C of S2 

peak at half 

maximum height) 

OIL (I/II) >>400 >5(>10 where TOC 

>5%) 

>60% amorphous 

exinite or liptinite 

˂450C 

WG-OIL (II) 300->400    

WG (II/III) 250-350 2.5-5(>5 where 

resinous or woody 

OM) 

40-60% 

amorphous, exinitic 

or liptinite 

50-600C 

DG-WG (III/II) 200-300    

DG (III) 100-200 1-2.5 (>5 where 

resinous or woody 

OM) 

>60% structured 

exinite, vitrinite and 

inertinite 

>700C 

Table 5.4 Hydrocarbon potential and organic matter types showing values of each 

parameter used to describe source rocks of various types and potential (from Davies et al., 

1994). 
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Source potential in this interval is largely developed immediately above 6At1. In some cases, 

source rock have been assigned to the 7A or 8A sequences but there is some doubt  

regarding the correctness of those assignments. Indeed those horizons are no longer 

routinely picked because at the basin edge they become indistinguishable from other 

horizons. Biostratigraphic  data is not able to differentiate these individual sequences. 

Horizon 6At1 is relatevely easy to pick on seismic records as it is often an angular break and 

marks the base of basin-wide progradation. The present distribution of source rock in the 

interval, i.e. largely away from the south flank, may be a function of tectonism in post-6A 

times when the  south flank was uplifted relative to the north flank and eroded. It may also 

be that as with the 5A sequence, source rock are better developed in the depositional lows 

which are undrilled. The distribution of these source rocks cluster in two distinct zones, one 

in the south-east and the other in the north-western part of the basin. These two marginal 

zones shows that the location of better quality source rocks is not a funtion of  water depth, 

which was greatest near the basin centre, or of sediment starvation.  

The 6A-8A source rocks may be an example of the high productivity model in which the 

prevalence in the western end of the basin indicates an input point for organic carbon. 

There is however no evidence for sediment input from that direction (Burden and Gasson, 

1993). These source rocks have thickness of a few tens of metres with variable but generally 

modest TOC contents (1.8-2.5%). Overall  the source potential is shown in the HI vs Tmax 

plot as wet gas-oil prone. All the data locate within the Type 2 limits but are widely 

scattered. This wide variation is  mirrored by the chemical data which locally show the 

potential to range from oil-prone to dry gas-prone within just a few metres (e.g. well no. 93, 

core 1, 2850.85-2852.30m), where maturity  is high (R0=1.03%). HI varies between 275 and 

119). Notwithstanding  the location of many points to the left of the Espitalié et al., (1985) 

0.5% line, the samples are not of such low maturity. Other chamicals and optical maturity 

data place all of these samples in the main oil window at Requiv = >0.7%. As with the 5A 

sequence source rocks, the reduced Tmax is probably due to a large proportion of bitumen 

(Peters, 1986). Some of this bitumen is detrital as many of the lowest maturity samples have 

significant  free hydrocarbon contents (S1 > 0.2 and generaly >0.6kg/toone rock). Three 

representative samples from this interval are used the the detailed study. 
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Figure 5.8 Map of the distribution of source rock quality in the 6A sequence in the 

Bredasdorp Basin, (after Jungslager, 1996). 

 

5.9.3 Source rocks in sequences 9A-12A (Late Barremian) 

In most cases, the source rocks are located at the base of the 9A sequence. This makes the 

interval relatively easy to pick on seismic lines as it marks the start of widespread  

aggradation. In the central part of the basin, early lowstand channelisation of pre-existing 

sediments and later infill of the channel with relatively coarse clastic late lowstand sediment 

fill (Hodges, 1996). Result in the source rocks are found largely in the basal section fo the 

9A-12A sequences, but only along the south flank and in the western central parts of the 

basin. The maturation data show that these source rocks are buried through the base of the 

oil window and into the top of the gas window (R0~1.1%) in different locations. The HI vs 
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Tmax plot shows a wide maturity variation but the source quality data all locate  within the 

Type 2 region. Unusually , the best quality source potential is found associated with the 

southern flank highs (near wells 9, 35 and 42) and not with the onlap position on the 

Agulhas Arch. One possible explanation is that these highs are inverted lows although the 

distribution of onlaps of the preceding sequences do not support this interpretation 

(Burden, 1992). Alternatively  the distribution may indicate the development of a shallow 

oxygen minimum which impinged on the highs, yet where the oxygen minimum layer 

deepens, sediment starvation resulted in widespread oxidation. Source rocks are unlikely to 

have been present in this interval closer to the arch ( and consequently eroded during later 

lowstands) because there is no evisence of an angular break between these rocks and the 

later 13A sediments. These source rocks have TOC’s  ranging from 1.8-2.5% with  quite high 

original HI values (table 5.03).  

Areally, the distribution of oil-prone source rocks is very limited (~300lm2) but some of the 

intersections of we gas-prone shales may, based on the log character, actually be 

interlaminated oil and wet gas-prone shales. However, overlaying the source map with the 

maturity map shows that only the central area of wet gas-prone source rocks is buried 

deeper than R0=1.1% and therefore the source rocks are largely immature for gas yet the oil 

potential in 9A-12A source rocks although it is restricted to the areas as hown. 

 

5.9.4 Source rocks in sequence 13A (Early Aptian) 

Source rocks in the 13A sequence are developed across most of the basin (Davies, 1988b 

and Brink et al., 1991). The considerable thickness and extent of this source and its 

significantly higher richness than any of the other source rocks make it highly prospective. 

The Early Aptian source is considered to have been formed in an anoxic basin in which 

organic matter deposited in the core of the basin was dominated by oil-prone material and 

was rimmed by gas-prone sourec rocks. There is a small area near the basin centre where no 

source rocks have been found (between wells 124 and 160). This dows not negate the 

anoxic basin model as it is though that this was a high during deposition of Lower Aptian 

rocks, possibly a relict of an earlier inversion (perhaps during Hauterivian), when the sea 

floor may have been above the oxygen minimum.  
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Support for this comes from the thinly bedded nature of the sands in over and underlying 

sequences, evidence of a topographic high lasting a considerable time. Indeed, this  region is 

still a relative high in post-13A, based on the bifurcation of the 14A sandstone-rich trend 

around it (Hill, 1991). In well123 at the western end of this high there are thin intervals of 

source rock indication that potential existed at least intermittently for source rock 

deposition. This suggests that the 13A source rock was deposited in the “silled basin” model 

probably silled by the early eastern highs. The 13A sequence is seen to blanket all the highs 

in the eastern part of the basin and it is therefore likely that the source rock was deposited 

by hemi-pelagic sedimentation (Benson, J.M,. 1993, pers.comm.). 

In the northern flank of the basin, in spite of the considrable areal extent of wet gas-prone 

source rocks, the maturation level is generally too low to result in significant gas generation, 

except in the eastern region were sediments have been matured into the gas window by the 

instrusions. The buld of the oil-prone material is found to the south of the present day basin 

axis. As with other source rock intervals, HI vs Tmax shows all samples located in the Type 2 

region, but towards the upper side in contrast with all other intervals. This indicates a 

greater oil potential in this interval than in any other. Average TOC’s are significantly higher 

than in other intervals, ranging up to 4.0% with HI’s ranging up to >500. Generation 

potential exceed 12 kg/tonne at the present day. Extrapolation along the trend shown in 

Davies (1990) suggests that original potentials could have been in excess of 14 kg/tonne 

rock. 
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6 CHAPTER 
 

 CORE ANALYSIS AND INTERPRETATION OF BOREHOLE LOGS 

The core analysis is done to establish ground truth for other formation evaluation 

measurements and is essential for calibration of well logs. Core analysis is a tool in reservoir 

assessment that directly measures many important formation properties. The objective of 

performing this analysis is to bring a sample of the formation and its pore fluids to the 

surface in an unaltered state to preserve the sample and then transport it to the laboratory 

for analysis. The analysis may aim to determine porosity, permeability, fluid saturation, 

grain size distribution, mineral composition, grain density; etc. samples for this analysis may 

come from conventional core, sidewall cores or plugs, and cuttings (Bateman, 1985). The 

core analysis is usually carried out on core plugs, samples that are taken from the bulk core. 

In the core laboratory, core plugs are drilled from whole core that typically have a length of 

about 5cm in diameter of 2.5cm. The petrophysical properties are then measured on these 

core plugs. Laboratory core analysis can provide very accurate measurements and are 

regarded as the ground truth.  

Porosity determinations in the laboratory are accurate within ±0.5% of the porosity value 

and ±5% of permeability when the limits and procedures are properly observed. Samples of 

core taken with either water or oil base mud and are preserved and subsequently tested 

without cleaning and drying are referred to as fresh cores. Sample of cores cleaned and 

dried prior to testing are referred to as restored core. An advantage is that air permeability 

and porosity are available to assist in sample selection (Core laboratories, 1973). The special 

core analysis (SCAL) are measurements that are made on core plugs that complement the 

routine core analysis measurements which provides information on the electrical 

properties, relative permeability, capillary pressure, cation exchange capacity (CEC) and 

wettability. The results of electrical properties of rock measured from SCAL analysis include 

the resistivity formation factor, cementation exponent, resistivity index, and also the 

determination of saturation exponent. The results of the relative permeability 

measurements helps to make quantitative estimates of formation damage, quantifies 

effective permeabilities of water, oil and gas, and calculate cumulative permeabilities to 

each different fluid. 
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The common goal in the oil industry is to maximize the net revenue from the hydrocarbon-

bearing resources that we discover and develop. This can be summarized in the following 

equation: 

Profit=f(A*H*N/G*Ø*Sh*R) 

Where: A*H = Gross rock volume, 

 N/G = Net to gross ratio, 

 Ø      = Porosity, 

 Sh     = Hydrocarbon Saturation, 

 R      = Recovery factor. 

This equation illustrates that the economic result is a function of the volume of 

hydrocarbons in place in the reservoir at any time. Log analysis concentrates on quantifying 

the petrophysical parameters such as G/G, Ø, Sh and input to R. 

 

6.1.1    Lithology 

This is a geological description of a formation in terms of sedimentology, petrology, 

diagenesis and mineralogy. The source of such information are; cuttings, sidewall cores and 

whole cores. Whole cores are considered the best source for quantitative data. Logs can be 

calibrated to core data and be used for prediction of mineralogy using for example Natural 

Gamma Spectrometry (NGS) log or the Gamma Spectrometry tool (GST). In normal cases the 

combination of the porosity logs can be used to predict lithology from crossplots or from 

clustering techniques (electrofacies). When properly calibrated to core data, electrofacies 

can give a useful prediction of lithology and provide the foundation for an improved 

application of petrophysical models. Mineralogical information can affect the log analysis 

(Hurst 1986) as all the logs are functions of the physical and chemical composition of the 

formation. The capabilities to increase the understanding of log responses need accurate 

mineral data from core. The Element Mineral Catalogue (Schlumberger, 1990) constitutes a 
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reference to measured and theoretical properties of 125 minerals. Shaly or dirty formations 

have been and still are one of the major challenges to log analysis. Shale/clay can affect 

both porosity and resistivity logs because their properties are different from the clean 

lithologies, especially in terms of conductivity. The terms clay and shale have both mineral 

and grain size definitions and can mean different things to different analysis. One is 

calculating the shale volume (Vsh) from logs as described by Fert (1987). The other is the 

measurements of Cation Exchange Capacity (CEC) developed by Waxman and Smith (1986) 

which is measured on cores. The measurements of CEC can be quite uncertain (Drønen, 

1990) and systematic differences may exist between laboratories and measuring 

techniques. (Fig 6.1) shows typical occurrences and modes of shale/clay in sandstone. The 

petrophysical properties of the rock will be affected according to the type of shale and the 

way it is distributed.  

 

 

Figure 6.1 Occurrence of shale/clay in reservoired sandstone (from Hurst, 1987). 
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Clay 

mineral 

Density 

g/cm3 

Hydrogen 

index 

CEC 

(mEq/100g) 

Natural gamma radioactivity 

K(%) Th(ppm) U(ppm) 

Kaolinite 2.60-2.68 0.36 3-5 0.42 6-19 1.5-3.0 

Chlorite 2.60-2.96 0.34 10-40 0.1 3-8  

Smectite 2.20-2.70 0.13 80-150 0.16 14-24 2.0-5.0 

Illite 2.64-2.69 0.12 10-40 4.5 ˂2.0 1.5 

 

Table 6.1 (from Hurst, 1987); Schlumberger, 1990) describes the variation in properties of 

four clay minerals: 

 

6.1.2    Porosity  

Porosity (Ø) is defined as the ration of void volume filled with fluids to the bulk volume. (Fig 

6.2) after Juhasz, (1986) shows the unit volume of sandstone as a function of shaliness. This 

illustrates the difference between the total and effective porosity. Log porosity can be 

calculated from a tool response equation such as the one below by applying density, 

neutron, sonic or a combination of those logs. 

  

Figure 6.2 Shaly sand Ø, Sw definitions (after Juhasz, 1986). 
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Core measurements can be used to determine the matrix and shale parameters entering the 

response equations and total porosity can one measured on cores. The following equation is 

one response equation for porosity logs (Crain, 1986): 

X = (1 - Ø - Vsh)*Xma + Vsh*Xsh + Ø*Sw*Xw + Ø(1 - Sw)Xhc 

Where: Ø = Porosity  

  X = Log value 

  Xma = Matrix log reading  

  Vsh = Shale log reading 

  Xw = Formation water log reading 

  Xhc = Hydrocarbon log reading  

  Vsh = Shale volume 

  Sw = Water Saturation 

Sometimes porosity logs are calibrated to core data using a linear fit: 

Ø = A + B*X 

Where A and B are constants. This may be necessary in some formations where the log 

responses are not fully understood and core data can bot be used to verify log analysis. 

Verification is done by comparing average values of porosity over representative zones. 

 

6.1.3    Saturation  

Water saturation (Sw) is defined as that fraction of the pore volume which is filled with 

water such that the sum of water and hydrocarbon saturations are one (Sw + Sh = 1). Achie 

suggested the following relationship between the resistivity of the rock, formation factor, 

water saturation and the resistivity of the brine in the formation: Rt = a*Ø-m*Sw
-n*Rw 

(Archie, 1942); 
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Where: Ø  =  Porosity (fraction) 

  Rt = Resistivity of virgin zone (ohm m) 

  a = Lithology factor 

  m = Cementation exponent 

  Sw = Water saturation (decimal) 

  n = Saturation exponent 

  Rw = Formation water resistivity (ohm m) 

 

 

6.1.4    Well logs 

This is a continuous recording of a geophysical parameter along a borehole produces a 

geophysical well log. The value of the measurement is plotted continuously against depth in 

the well (fig 6.3). For example, the resistivity log is a continuous plot of a formation’s 

resistivity from the bottom of the well to the top and may represent over 4 kilometres (2.5 

miles) of readings. The most appropriate name for this continuous depth-related record is a 

wireline geophysical well log, conveniently shortened to well log or log. It has often been 

called an ‘electrical log’ because historically the first logs were electrical measurements of 

electrical properties. However the measurements are no longer simply electrical and 

modern methods of the data transmission do not necessarily need a wire line so name 

above is recommended.  
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Figure 6.3 Showing a geophysical well log in a borehole (from M. H. Rider, 2002). 

 

6.1.5    Caliper log 

Caliper tools measure hole size and shape. The simple mechanical Caliper measures a 

vertical profile of hole diameter. The more sophisticated borehole geometry tools record 

two simultaneous calipers and give an accurate borehole shape and orientation. The 

mechanical Caliper measures variations in borehole diameter with depth. The 

measurements are made by two articulated arms pushed against the borehole wall. The 

arms are linked to the cursor of a variable resistance. Lateral movement of the arms is 

translated into movements of the cursor along the resistance, and hence variations in 

electrical output. The variations in out are translated into diameter variations after a simple 

calibration. Frequently logging tools are automatically equipped with a caliper, such as the 

micrologs and the density-neutron tools where the caliper arm is used to apply the 

measuring head of the tool to the borehole wall. 

 

 

 

 



 

100 
 

 

Figure 6.4 Caliper log showing hole diameter: some typical responses, limestone, dolomite, 
sandstone, shale etc (from M. H. Rider, 2002). 

 

6.1.6    Resistivity log 

Of all the logging tools, those that measure resistivity are archetypical. The resistivity log is a 

measurement of a formation’s resistivity that is its resistance to the passage of an electric 

current. It is measured by resistivity tools. Conductivity tools measure a formation’s 

conductivity or its ability to conduct an electric current. It is measured by the induction 

tools. Conductivity is generally converted directly and plotted as resistivity on log plots. 

Most rock materials are essentially insulators, while their enclosed fluids are conductors. 

Hydrocarbons are exception to fluid conductivity, and on the contrary, they are infinitely 

resistive. A current is induced in the formation around the borehole and the capacity to 

carry the current is observed. This carrying capacity is the conductivity. The resistivity is 

simply the reciprocal of the conductivity. Thus the equation: 
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Resistivity (ohms m2/m)  =
1x1000

conductivity
 (millimhos/m) 

When a formation is porous and contains salty water the overall resistivity will be low, when 

this same formation contains hydrocarbons, its resistivity will be very high  

(Rider, 20020). It is the character that is exploited by the resistivity logs: high resistivity 

values may indicate a porous, hydrocarbon-bearing formation. 

 

Figure 6.5 Resistivity log: some typical responses, the resistivity log show the effects of the 
formation and its contained fluids on the passage of an electric current (from M. H. Rider, 
2002). 

 

6.1.7    Gamma ray log 

The gamma ray log is a record of a formation’s radioactivity. The radiation emanates from 

naturally-occurring uranium, thorium, and potassium. The simple gamma ray log gives the 

radioactivity of the three elements combined, while the spectral gamma ray log shows the 

amount of each individual element contributing to this radioactivity. The geological 
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significance of radioactivity lies in the distribution of these three elements. Most rocks are 

radioactive to some degree, igneous, and metamorphic rocks more so than sediments. 

However, amongst the sediments, shales have by far the strongest radiation. It is for this 

reason that the simple gamma ray log has been called the ‘shale log’. Although modern 

thinking shows that it is quite insufficient to equate gamma ray emission with shale 

occurrence. Not all shales are radioactive, and all that is radioactive is not necessarily shale 

(Adams and Weaver, 1958), (Rider, 2002). 

 

Figure 6.6 Gamma ray log and spectral gamma ray log showing typical responses of 

radioactivity of some elements modified from (Adams and Weaver, 1958), (Rider, 2002). 

 

6.1.8    Sonic log 

The sonic log provides a formation’s interval transit time, designated ∆t (delta-t, the 

reciprocal of the velocity). It is a measure of the formation’s capacity varies with lithology 

and rock texture, notably porosity. Quantitatively, the sonic log is used to evaluate porosity 
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in liquid-filled holes. As an aid to seismic interpretation it can be used to give interval 

velocity profiles, and can be calibrated with the seismic section. Cross-multiplied with the 

density, the sonic is used to produce the acoustic impendence log, the first step in making a 

synthetic seismic trace. Qualitatively, for the geologist, the sonic log is sensitive to subtle 

textural variations (of which porosity is only one) in both sands and shales. It can help to 

identified lithology and may help to indicate source rock, normal compaction and 

overpressure and to some extent fractures. It is frequently used in correlation to the typical 

seismic signal (sonic and seismic velocities are routinely compared).   

 

Figure 6.7 Sonic log showing some typical responses in a formation’s ability to transmit 

waves. It is expressed as Interval Transit Time, ∆t.*(1x106)/∆t = sonic velocity, ft/sec from 

(Adams and Weaver, 1958), (Rider, 2002). 

 

6.1.9    Density log 

Density log is a continuous record of a formation’s bulk density. This is the overall density of 

a rock including solid matrix and the fluid enclosed in the pores. Geologically bulk density is 
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a function of the density of the minerals forming a rock (i.e. matrix) and the volume of free 

fluids which it encloses (i.e. porosity). For example, sandstone with no porosity will have a 

bulk density of 2.65g/cm3, the density of pure quartz. At 10% porosity the bulk density is 

only 2.49g/cm3, being the sum of 90% quartz grains (density 2.65g/cm3) and 10% water 

(density 1.0g/cm3). Quantitatively, the density log is used to calculate porosity and 

indirectly, hydrocarbon density. It is also used to calculate acoustic impendence. 

Qualitatively, it is a useful lithology indicator, can be used to identify certain minerals and 

also help to assess source rock organic matter content (even quantitatively) and may help to 

identify overpressure and fracture porosity from (Rider, 2002). 

 

 

Figure 6.8 Showing density log with some typical responses of bulk density, density and 

porosity with fresh water formation 1.0g/cm3 (Adams and Weaver, 1958), (Rider, 2002). 
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Figure 6.9 Showing combination bulk density and neutron porosity responses by the gas 

effect. (Rider, 2002). 

 

6.1.10     Neutron log 

Neutron log provides a continuous record of a formation’s reaction to fast neutron 

bombardment. It is quoted in terms of neutron porosity units. Which are related to a 

formation’s hydrogen index, an indication of its richness in hydrogen. Formation modifies 

neutrons rapidly when they contain abundant hydrogen nuclei, which in the geological 

context are supplied by water (H20). The log is therefore principally a measure of a 

formation’s water content, be in bound water, water of crystallization or free pore-water. 
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The hydrogen richness is called hydrogen index (HI) which is defined as the weight % 

hydrogen in the formation/wt % hydrogen in water, where HI water= 1.  

 

 

Figure 6.10 Neutron log response in a clean formation, neutron shows a very low value in 

the gas zone.(Heslop, 1974). 

 

However the oilfield interest in water is as a pore fluid filler and porosity indicator so that 

the neutron log response is given directly in neutron porosity units. Neutron porosity is real 

porosity in clean limestones, but other lithologies require conversion factors. Since it is 

calibrated to limestones, the log is sometimes called the limestone Curve. 
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Figure 6.11 Showing the effect of gas on the neutron (and density) logs, neutron shows a 

very low value in the gas zone.(Heslop, 1974). 

 

   CONVENTIONAL CORE ANALYSIS 

The conventional or plug type core analysis is the logging, sampling, and analysis of cores 

where by a portion of each interval to be analysed is selected to represent the interval of 

interest. This analysis is performed on homogeneous formations such as sandstones, clay 

and shaly-sandstone formations at three to four inches of each foot of core. This analysis 

was performed in three randomly selected wells E-BB1, E-BD2 and E-AO1 of the study area 

by SOEKOR in order to determine the petrophysical properties of the reservoir formations. 

Below is the result obtained from the conventional core measurements of well E-BB1. The 
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tabulated result compiled by (Hill, 1991) courtesy of PASA is found in the appendix page 

below 

6.2.1    Summary of borehole (E-BB1) 

Borehole E-BB1 located 5,9km southwest of E-AD1 and 5,4km southwest of E-AY1. All 

together eight cores were cut (table 6.03 below). Correlation with geophysical logs indicates 

that logger’s depth is 2m deeper than driller’s depth over the cored interval and cores were 

cut and analysed but in the case of this research, much focus is placed in core 5 where the 

target zone is found at depth (2846-2864m). 

6.2.2    Core 5: 2846.0-2864.0m (Sequence 13A) 

Core 5 was cut within the massive sandstone unit immediately above 13At1. The sandstone 

is clean, moderately sorted and medium grained. It contains common to abundant 

metaquartzite and claystone clasts, is carbonaceous, slightly feldspathic and locally contains 

minor amounts of mica. Poroperm characteristics are generally good, with 8.4-14.4% 

porosity and 0.10-39mD permeability (average 11%, 13mD respectively), recorded. Porosity 

is secondary after dissolution of an early intergranular cement, probably calcite. Quartz 

overgrowths, vug filling kaolinite, and, below 2853.5m, fibrous Illite reduce porosity and 

permeability. Minor amounts of ferroan dolomite, pyrite, and, in places, siderite are also 

developed. Samples with poorer poroperms (2859.98m) have undergone pressure solution 

along carbonaceous streaks, resulting in more extension quartz and kaolinite cementation.  

 

6.2.3    Summary of borehole interval (Sequence 13A 2688-2877m) 

A predominantly claystone interval, with occasional thin (up to 3m) sandstones. Cores 4, 5 

and 6 were cut in this sequence. The sandstones above 2840m are clean, well sorted and 

very fine to fine grained. They are glauconitic, lithic (with claystone and metaquartzite 

clasts), and slightly micaceous, carbonaceous and feldspathic. Poroperm characteristics 

range from very poor to good. Secondary porosity is developed in places by leaching of 

calcite cement and detrital grains. Quartz overgrowths, ferroan dolomite and Illite are the 

main authigenic phases affecting porosity and permeability, though calcite cements are 

preserved in places. Pseudomatrix, from compaction of clay and glauconite clasts, has also 

reduced porosity in places. Core 5 and 6 were cut in the massive sandstone from 2845-

 

 

 

 



 

109 
 

2875m. The sandstone is clean, moderately sorted and medium grained. It is lithic, with 

metaquartzite and claystone clasts, carbonaceous, and slightly feldspathic and micaceous. 

Poroperms are good, with secondary porosity developed by leaching of early calcite cement. 

Quartz overgrowths, kaolinite and Illite are the main permeability restriction phases. Minor 

amounts of ferroan dolomite, pyrite and, locally, siderite are also developed. 

 

Core 

No. 

DEPTH OF CORED INTERVAL (m)  

 

RECOVARY 

% 

STRATIGRAPHIC 

LEVEL (Sequence) 
Driller Schlumberger 

(logger) 

1 2537.0 - 2537.8 2539.0 - 2539.8  60.0 14A 

2 2537.8 - 2556.42 2539.8 - 2558.42  100 14A 

3 2556.0 - 2669.0 2663.0 - 2673.0  92.0 13B 

4 2717.5 - 2724.5 2721.5 - 2726.0  97.4 13A 

5 2846.0 - 2864.0 2848.0 - 2861.5  58.0 9A 

6 2872.0 - 2877.0 2874.5 - 2879.0  92.6 9A 

7 2894.0 - 2895.0 2896.0 - 2897.0  65.0 9A 

8 3280.0 - 3297.0 3284.0 - 3301.0  95.0 Pre-6A 

     

Table 6.2 showing core depths, recovery rate and stratigraphic sequences, compiled by 

Grobbler, (1991) well site geologist for SOEKOR. SOE-RPT-003. 

 

6.2.4    Description and interpretation of facies (Core #5 E-BB1) 

Facies are physical, chemical, and biological aspects of a sedimentary bed and the lateral 

change within sequences of beds of the same geologic age. 
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Core #5 was cut to evaluate the reservoir properties of the primary target sandstones in the 

9A sequence and was prompted by an increase in ROP, sandstone content, fluorescence and 

ditch gas below 2843m. (as highlighted in table 6.2 above); 

6.2.5    Facies description 

Facies A: Only one facie type occurs in the core, namely homogenous massive 

sandstone. The sandstone is fine to medium grained, well sorted and clean. Possibly 

amalgamated contacts are hardly visible. No grading of grains size can be detected. 

Calcareous material, TMS and claystone lithic fragments and feldspar grains are present in 

the sandstone. Stylolite development is common in the form of millimeter thick black layers 

in the sandstone. At the top of the core the stylolites are inclined and could be developed 

along cross-bedding surfaces. At the bottom of the core the stylolite development is 

influenced by concave-up dish structures. 

 

DEPTH OBSERVATION AND DESCRIPTION OF CORE 

2846.0 – 2847.0 Clean sandstone, fine to medium , well sorted, loose packing, round, 

lithic, carbonaceous mineral, feldspar, mica, vug filling kaoline, silica 

cement, grain dissolution, porosity, Illite from grain alteration, kaolinite, 

oil stained. 

2847.98 – 2850.0 Same as above, and carbonaceous material, very lithic, no mica observed 

2851.0 As seen above but here mica is present 

2851.98 Clean sandstone, tight packing, rounded, very lithic, (TMS, claystone, 

very carbonaceous, mica, Illite poor porosity, quartz, silica, kaoline, 

stylolite oil stained. 

2853.06 - 2856.0 Clean sandstone, loose packing, rounded, lithic, (TMS, claystone, 

carbonaceous, mica, good cement and grain dissolution, kaoline, Illite 

and siderite from grain alteration, oil stained. 

2856 - 2876 Same as above. 

Table 6.3 Detailed description of core #5 E-BB1. (1991) well site geologist for SOEKOR. SOE-

RPT-003. 
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Plate 6.1 Core #5 showing some sedimentary features in well E-BB1 (courtesy of PASA). 
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6.3 Summary of borehole interval E-BD2 Sequence 13A (1980-2622m). 
 

A 25m thick massive sandstone unit developed just above the 13At1 unconformity, from 

2576.9-2604m.The sandstone was intersected by core# 1. The sandstone is clean, 

moderately sorted and medium grained, with common metaquartzite clasts, and minor 

feldspar and carbonaceous material. Poroperm characteristics are very good (average 

17.5%, 287mD from core analysis) with cement dissolution porosity well developed after 

leaching of early calcite cement. Porosities are slightly reduced by quartz overgrowths and, 

to a lesser extent, kaolinite, dolomite and siderite. 

 

6.2.6 Summary of core 1 E-BD2 (2579.0-2597m) 

The core comprises mostly of clean, moderate sorted, medium grained sandstones. A 

slightly fine grained unit, with occasional claystone stringers, occur from 2593-2589. The 

sandstones are lithic, with common metaquartzite clasts, probably derived from Cape 

Supergroup basement. They are slightly feldspathic and carbonaceous, with traces of mica 

locally. The poroperm characteristics are very good; average porosity being 17.5% and 

average permeability 287mD. Secondary porosity is very well developed, as a result of 

dissolution of intergranular cement, probably calcite. Only minor amounts of pore filling 

cements are developed, quartz overgrowths being the most abundant, with lesser amounts 

of ferroan dolomite, siderite and, locally, pyrite. Vug filling kaolinite is the most abundant 

authigenic clay phase, with minor amounts of Illite (from grain alteration) present locally. 

After the reservoir bottom depth at 2602.1m, claystone core was observed hence no 

petrographic observation and analysis was performed on this section. Below is the result 

obtained from the conventional core measurements of well E-BD2. 

 

6.2.7    Conventional Core Analysis 

In this core analysis, there was an incomplete data capture such that missing data such as 

Sg, So, Sw, Calcite, Dolomite was not captured hence research was done by extrapolating 

data from the key well E-BB1 hence the research was done with data available from 

Petroleum Agency of South Africa (PASA). The tabulated result of the conventional core 
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measurements for well E-BD2 obtained from SOEKOR (Hill, 1991) PASA is found in the 

appendix page below. 

 

DEPTH OBSERVATION AND DESCRIPTION OF CORE 

2579.30 Clean massive sandstone, loose packing, rounded grains, lithic (TMS), 

(feldspars), good secondary pores due to cement dissolution, well sorted  

2580.35 Clean massive sandstone as above and some siderite present 

2581.10-

2582.35 

Clean massive sandstone as above less siderite and some carbonate 

present, well sorted 

2583.05 Clean massive sandstone, tight packing,(angular), carbonate, lithic (TMS), 

mica and some feldspar, well sorted 

2584.55-

2590.89 

Clean massive sandstone, as above but some carbonate present 

2591.94 Clean massive sandstone, mica, stylolitised carbonate streaks 

2592.94-

2595.03 

Clean massive sandstone, No stylolites present 

2595.53 Clean massive sandstone, tight packing, stylolites carbonate streaks, poor 

lining Illite. 

 

Table 6.4 Detailed description of core #1 E-BD2. (1991) well site geologist for SOEKOR. SOE-

RPT-003. 
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Plate 6.2 Core#1 showing some sedimentary features in well E-BD2 (courtesy of PASA). 

 

 

 

 

 

Heavily discoloration from very light 

to brownish possible due to oxidation 

of ferrous iron 

Possible amalgamation contact 

Contours formed from fluid escape in the 

formation fluid and discoloration due to 

oxidation of iron bearing minerals  

Carbonaceous shale bed about 10cm 

Stylolite formation 
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Plate 6.3 Core#1 showing some sedimentary features in well E-BD2 (courtesy of PASA). 

 

 

 

 

    Core description and interpretation (E-AO1) 
 

6.3.1    Summary of core #1 well E-A01 

Mostly very fine to medium grained, shelly glauconitic sandstones. Sorting improves with 

depth through the core. Porosity and permeability are very good at the top of the core, but 

tend to deteriorate with depth as quartz and calcite/dolomite cements become more 

abundant, and pore-lining illite and chlorite appear. Preserved porosity is secondary after 

cement and grain dissolution. Authigenic chlorite, pyrite and fe-rich calcite and dolomite 

may present reactivity problems if the formation was acidized with Hcl. 

Intercalation of sandstone and shale possibly 

indication of episodes of high and low sea current 

flow where during rise in sea water (high current), 

sand is deposited and during low sea level there 

little of no current, hence shale is deposited with 

finer darker grains.  

Brown coloured clast present possibly from a 

terrestrial origin with high oxidized iron 

mineralization  

Sandstone lense 
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6.3.2    Sequence 13Bt1 (2634-2804m) 

The reservoir was deposited in this sequence hence it is predominantly clay stone sequence, 

with thin sandstones throughout. Thick sandstone occurs at 2671m-2682m and this core 

was cut in the upper thick sandstone unit. The upper sandstones unit is clean, glauconitic 

and shelly. Secondary porosity and permeability are very good at the top of the unit, but 

deteriorate with depth as grain size decreases and sorting improves, cementation by quartz, 

calcite and dolomite becomes more extensive with depth in the unit, as does development 

of authigenic illite and chlorite. Hence porosity and permeability are poor at the base of the 

sandstone. 

 

DEPTH OBSERVATION AND DESCRIPTION OF CORE 

2674.00-26775 Clean sandstone with loose packing, rounded grains, glauconitic and 

some shell present. Cement dissolution, poor glauconitic, dolomite and 

pyrite. Bivalve and echinoderm present. 

2675.00-

2675.85 

Cleans massive sandstone, as above but echinoderms, bivalves, 

carbonaceous cement present. 

2676.91-

2679.84 

Clean massive sandstone, loose packing, rounded grains, very glauconitic, 

shelly-bivalves, echinoderms, brachiopods. Patchy cement grains 

dissolution and finer grains and good sorting. 

 

Table 6.5 Detailed description of core #1 E-A01. (1991) well site geologist for SOEKOR. SOE-

RPT-003. 
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Plate 6.4 Core#1 showing some sedimentary features in well E-A01 displayed in boxes for 

observation and description (courtesy of PASA). 

 

 

 

 

 

Thin shale bed about 3-4cm with 

clast present 

Stylolites formation present 

Light coloured massive sandstone with oil stains 

Contour of top light coloured sand and lower 

darker sandstone with signs of oil presence 

Darker base sandstone with signs of oil presence 

Well cores displayed in boxes for observation. 

Petroleum Agency of South Africa (PASA) 

 

 

 

 



 

118 
 

7 CHAPTER  
 

 Wireline log interpretation  

It is generally assumed that 100% water saturation in porous and permeable beds, the 

resistivity variations being due to mud filtrate and formation water mixing, a two phase 

system of miscible fluids occur. In well E-BB1 which is used in this research as a key well 

because it has all the required data needed for this research whereas E-BD2 and E-A01 are 

not complete hence some data was extrapolated from E-BB1 to E-BD2 and E-A01. E-BB1 has 

two reservoirs and the (top) upper reservoir is where the zone of interest was identify as the 

resistivity logs are significantly displaced than in (bottom) lower reservoir with little 

displacement of these curves. When hydrocarbons are present as in the case in well E-BB1 

(fig 7.1) at depth (2844.1 to 2865.6m), the system becomes a three phase and much more 

complex.  

The mud filtrate will replace the hydrocarbon immediately around the borehole essentially 

replacing them through the flushed zone, while the original saturation in hydrocarbons is 

only found in the virgin formation. As in well E-BB1, a resistivity profile across a hydrocarbon 

zone will show a flushed zone with a moderate to low resistivity filled with mud filtrate 

although resistivity will depend on mud type and the virgin formation with an extremely 

high resistivity because of the high saturation in hydrocarbons. Both oil and gas are infinitely 

resistive and show the same effect on resistivity logs as shown in the (Figure 7.1 track #9). 

The resistivity profile then shows a big increase away from the borehole, the exact reverse 

of a water zone were the resistivity curve profile shift towards the borehole as in (Figure 

7.1) below at depth (2865.6 to 2874.0m).  

This increase in resistivity deeper into the formation away from the borehole is expressed 

very distinctly on the logs. Shallow looking tools which read in the flushed zone show 

relatively low resistivity values while deep reading tools show very high resistivity as in (fig 

6.5) above and in (fig 7.1) below. The separation between the curves from the shallow and 

deep tools is a diagnostic of the presence of hydrocarbons and it is some time called the 

(hydrocarbon separation) and used in a quick look technique for locating oil and gas in a 

reservoir. This quick look can be however, verified by calculation since curve separation can 
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be caused by fresh water and many hydrocarbon zones do not give any obvious separation. 

Theoretically there is a differential rate of flushing of formation water and of oil or gas by 

the mud filtrate. This is supposed to create a zone where there is a high volume of 

formation water with only residual hydrocarbons, the so called low resistivity annulus on 

the outer fringe of the flushed zone, (Threadgold, 1971). It is clear that there is a 

considerable fluid movement not only during drilling when invasion occurs, but also when 

drilling ceases. The fluid equilibrium which existed before drilling attempts to re-establish 

itself, especially in gas filled reservoirs or those with very high permeability. 
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Figure 7.1 Showing various curves behaviour in a hydrocarbon bearing formation of well E-

BB1. (courtesy of PASA). 

7.1.1 Well E-BB1 Curve interpretation  

In the above well E-BB1, core #5 was studied and found some hydrocarbon potential. Only 

one dominant facies was identified, massive clean fine to medium-grained sandstone, well 

sorted, TMS and some lithic siltstone clasts and calcareous concretions are contained within 

the sandstone. No sedimentary structure present and the best facies for this well is facies 

“A”. In this well two reservoirs were identified; #1 ranges from depth 2841.5m to 2875.0m 

and reservoir #2 ranges from depth 2887.7m to 2909.9m. Although two reservoirs were 
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identified only reservoir #1 is of high interest for this study due to the factors that are 

discussed below. 

In track #14 (brown colour curve water saturation) is the water saturation curve which has 

higher values 0.441(Dec) at the top of the reservoir at depth 2841.0m and lower value at 

the bottom of the reservoir 2874.6m. In a pickett standalone cross plot (in the index page), 

plotted points that are less than 100% show a potential of hydrocarbon show.  

In track #13 (red permeability curve), the permeability curve which show a good matching 

relationship with permeability plots (black plots) although some of the points are off curve 

could be errors caused during data capturing or could be the presence of clay mineral (Illite, 

chlorite), presence of thin clay beds or tight zone within the reservoir.  

In track #12 (blue porosity curve), is a porosity curve which show a good matching 

relationship with the porosity (indicated in red points) in the reservoir, hence this match 

does not indicate that the reservoir is good based on the matches but simply means that the 

data obtained and processed shows a good correlation with the respective curves. Where a 

high porosity and permeability is a good characteristics of a sandstone reservoir.  

In track #11, is the sonic log DT (purple colour sonic curve) which shows a tight wrinkled 

reading of 80us/f to 87us/f at depth of 2841.5 and reads 67us/f at depth 2854.3m. This 

tightly wrinkled displacement of curve at this depth is caused by the resistance of the 

hydrocarbon show in the reservoir zone. This curve became smoother after depth 2854.3m 

probably due to the presence of water at that reservoir zone. 

In track #10, in (fig 7.1) above, there is a negative crossover at top depth 2543.5m to 

bottom depth 2872.9m of the density log RHOB (light brown density curve) register a 

significant low value due to the resistivity of hydrocarbon presence and neutron log NPHI 

(green curve) registering a low value as a result of the resistance of hydrocarbon presence 

which show a strong indication of hydrocarbon presence probably a gas show (Rider 2002). 

In track #9 (the aqua coloured curve being Shallow Resistivity curve and the red being the 

Deep Resistivity curve). The two curves shows a significant increase in values and separation 

at top depth 2843.5m to bottom depth 2872.9m where the deep resistivity curve shows a 

higher value reading away from the borehole deeper towards the formation comparatively 
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to the shallow resistivity curve which is closer to the borehole. This separation shows an 

indication of the presence of hydrocarbon preferably gas shows and further deep down  into 

the borehole the two curves show a sharp decrease (represented by the blue line at depth 

2865.7m) in value readings towards the borehole an indication of a gas water contact at 

depth 2865.7m. 

In track #8 (caliper log), this may show a diameter smaller than the bit size (diameter). If the 

log has a smooth profile, a mud-cake build-up is indicated. This is an extremely useful 

indicator of permeability because only permeable beds allow mud cake to form. The limits 

of mud-cake indicate clearly the limits of the potential reservoir, (Rider, 2002). Mud-cake 

thickness can be estimated from the caliper by dividing the decrease in hole size by two, i.e.   

 

Bit size (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) − 𝐶𝑎𝑙𝑖𝑝𝑒𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔

2
= mud cake thinkness 

  

DEPTH (m) PERMEABILITY (mD) POROSITY (%) 

2846.2 29.05 3.8 

2847.0 25.94 13.0 

2847.2 25.94 13.0 

2848.3 10.34 11.2 

2849.24 30.47 12.6 

2850.21 16.10 12.0 

2851.2 9.04 11.9 

2852.21 0.21 8.4 

2853.29 18.48 13.8 

2854.2 11.36 12.5 

2855.2 5.64 11.3 

2856.28 3.38 11.1 

Table 7.1 Summarized value for the above curves depths for well E-BB1, (source SOEKOR). 
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Figure 7.2 Showing various curves behaviour in a hydrocarbon bearing formation of E-BD2. 
(courtesy of PASA). 

 

 

7.1.2    Curve interpretation for well E-BD2 

Here one reservoir was identified at depth 2576.9m to 2602.4m. The core comprises mostly 

of clean moderately sorted, fine to medium grained sandstone. A slightly finer grained unit, 

with occasional claystone stringers, occurs from depth 2584m to 2588.5m and at depth 

2600.2m. The sandstone is lithic, with common metaquartzite clasts, probably derived from 

Cape Supergroup basement. They are slightly feldspathic and carbonaceous, with traces of 

mica locally.  
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In track #14 (brown colour water saturation curve), is the water saturation curve which has 

values 0.565(Dec) at the top of the reservoir at depth 2577.5m, higher value further down 

of the reservoir at depth 2583.5m. At depth 2584.4m there is a sharp decrease of water 

saturation and gradually increases to 0.696(Dec) at depth 2589.1m. This decrease here is 

caused by the presence of the thin claystone stringers that reduces the permeability and 

porosity at this point of the reservoir. At depth 2600.2m there is another sharp decrease of 

the water saturation at 0.44(Dec) and again a very high reading of water saturation of 1.3 

(Dec) at depth 2601.9m. At this point in the reservoir there is an unconformity at the 

maximum flooded surface mfs, (Hill, 1991). 

In track #13 (red permeability curve) the permeability curve show a good matching 

relationship with permeability plots (black plots) at depth 2578.8m further down the 

borehole to depth 2596.9m  

In track #12 (blue porosity curve), is a porosity curve which show a good matching 

relationship with the porosity (indicated in red points) in the reservoir, hence this match 

does not indicate that the reservoir is a good zone based on the matches but simply it is an 

indication that the data obtained and processed shows a good correlation with the 

respective curves. High porosity and permeability are characteristics of a good sandstone 

reservoir.  

In track #11 (the purple coloured sonic curve), is a sonic DT log. The general purpose of 

sonic log measure the time it takes for a sound pulse to travel between a transmitter and a 

receiver, mounted on a set distance away along the logging tool. The pulse measured is that 

of compressional or ‘P’ wave which is the fastest to arrive at the receiver. A lower to 

medium velocity reading is recorded due to gas effect in sandstone reservoir hence as 

shown in well E-BD2 above, (Ellis, 1987). 

In track #10 (light brown coloured density curve), is a density (RHOB) curve and shows a 

lower value of 2.352G/C3 at depth 2576.5m and the reading remains slightly stable further 

down the curve until at depth 2598.1 were the reading decreases to 2.384G/C3. At depth 

2602.1m, there is an increase of 2.531G/C3. There is no neutron (NPHI) curve plotted in this 

well due to missing data.  This increase is as result of an unconformity and a change in 

lithology from sandstone to claystone stringers at the mfs. 
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In track #9 (the red coloured resistivity curve is LLD and the aqua coloured curve is the LLS 

resistivity), here both curves shows low resistivity values at depth 2577.2m, LLD value is 

2.59G/C3 and LLS value is 2.61G/C3. At depth 2582.1m, LLD value further decreases to 

2.22G/C3 and LLS value decreases to 1.81. At depth 2584.2 there is a sharp spike increase of 

LLD value to 9.4G/C3 and LLS value to 8.0 then there is a decrease to 2.66G/C3 for LLD and 

for LLS value to 2.57G/C3. The alternation of values is probably caused by claystone 

stringers found at this depths, cement, clay minerals present. At depth 2589.6m, LLD value 

decreases to 2.04G/C3, LLS value decreases to 1.63G/C3 and there is a gradual separation of 

LLD curve and LLS curve from depth 2589.6m to 2597.7m. This slight separation is a 

characteristic of fresh water in a porous sandstone formation, (Rider, 2002). At depth 

2589.6m to depth 2600.1m there is an increase value, LLD value 5.11D\C3 and LLS value to 

4.56D/C3. This increase is caused by the claystone stringers and clay mineralisation present 

at this zone. Then finally at the base of the sandstone reservoir and on the unconformity 

(mfs), at depth 2600.1m to 2601.5m there is a decrease of LLD value to 3.46D/C3 to LLS 

value to 3.56D/C3. 

In track #8 (the caliper log), this may show a diameter smaller than the bit size (diameter). If 

the log has a smooth profile, a mud-cake build-up is indicated. This is an extremely useful 

indicator of permeability because only permeable beds allow mud cake to form. The limits 

of mud-cake indicate clearly the limits of the potential reservoir, (Rider, 2002). Mud-cake 

thickness can be estimated from the caliper by dividing the decrease in hole size by two (the 

caliper giving the hole diameter), i.e.   

 

Bit size (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) − 𝐶𝑎𝑙𝑖𝑝𝑒𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔

2
= mud cake thinkness 
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Figure 7.3 Showing various curves behaviour in a hydrocarbon bearing formation of well E-
A01 (courtesy of PASA). 

 

7.1.3    Curve interpretation for well E-BD2 

Here in well E-A01 three reservoirs were identified but only one is an interest zone. The 

sandstone here is a clean, very fine to medium grained, shelly, glauconitic section, 

moderately sorted, comprising of rounded to sub-rounded grains, with loose packing of 

grains. Porosity and permeability are very good, with 16% porosity and permeability of 

106.44mD. Quartz and calcite/dolomite cements appear in minor amounts at depth of 

2669.5m to 2684.5m. Preserved porosity is secondary, after cement and grain dissolution. 

There is alteration of glauconite, and there is also minimal amount of pore filling cements 

and clays. 

In track #14 (brown coloured water saturation curve), at depth 2669.5m the water 

saturation value reads 0.414mD and suddenly there is a decrease to 0.355mD at depth 
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2670.6m. There is an increase in water saturation value to 0.413mD at depth 2671.8m and 

from 2671.8m there is a decrease in water saturation value to 0.38 at depth 2672.9m. At 

depth 2674.1m water saturation value increases to 0.405mD and then there is a steady 

trend further downhole till depth 2677.6m to water saturation value 0.405mD. Then there is 

a sharp decrease at depth 2678.7m and water saturation value is 0.316mD and suddenly 

there is an increase in water saturation at 0.427mD at depth 2679.9m. Finally at the base of 

the reservoir at depth 2683.3m there is a decrease in water saturation value reading 

0.37mD. 

In track #13 (red coloured permeability curve), this is a core permeability curve were 

permeability is plotted. At depth 2667.2m the core permeability value show a high increase 

values and then decreases to depth 2675.3m, then increase slightly to depth 2676.4m, 

increase to depth 2677.6m then to 2679.9m and finally to reservoir base to 2681.0m. This 

does not show a good match with the facies reason being that the curve could not be 

generated due to missing data from the data received from PASA, in other to generate this 

curve, data was gotten from well E-BB1 which is the key well used in this project considering 

that the wells were drilled at the same site (block 9) hence some E-BB1 data was 

extrapolated into E-A01 and E-BD2. Such data include water saturation curve, permeability 

curve. Majority of plotted points are not aligned with the curve only 3 points seem to be 

aligning with the curve which is not good hence this can be affect by cementation, clay 

mineral and or claystone stringers cold be present. 

In track # 12 (blue coloured porosity curve), this is core density log curve. The plotted point 

matches well with curve indication that the data show a good correlation with the curve and 

reservoir. At depth 2667.2m there is an increase of value at Phi value reads 0.0573(Dec). At 

depth 2668.3m, Phi value reads 0.184(Dec) then Phi curve gradually decreases to 

0.0157(Dec) at depth 2683.3m. 

In track #11 (the purple coloured sonic curve), is the sonic (DT) log. The general purpose of 

sonic log measure the time it takes for a sound pulse to travel between a transmitter and a 

receiver, mounted on a set distance away along the logging tool. The pulse measured is that 

of compressional or ‘P’ wave which is the fastest to arrive at the receiver. A lower to 

medium velocity reading is recorded due to gas effect in sandstone reservoir hence as 
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shown in well E-A01 (Ellis, 1987). At depth 2667.1m at the top of the reservoir the DT value 

reads 79us/f meanwhile towards the bottom of the reservoir DT value decreases to about 

70us/f at depth of 2679.9m hence decrease in sonic is affected by the presence of 

hydrocarbon shows in the reservoir. 

Track #10 (density curve, light red coloured being RHOB and green coloured curve being 

NPHI), at depth 2670.6m there is a negative crossover were RHOB value reads 2.369G/C3 

and NPHI value reads 0.147 (Dec) to the depth of 2675.3m and RHOB value reads 2.464G/C3 

and NPHI value reads 0.142 (Dec). At depth 2677.6m, RHOB value reads 2.473G/C3 and 

HPHI value reads 0.137(Dec) and at depth 2679.9m, RHOB value reads 2.489G/C3 and HPHI 

value reads 0.075(Dec) presence of another negative cross over indicating presence of 

hydrocarbone. 

Track #9 (resistivity, red coloured curve being LLD and aqua coloured curve LLS). The LLD 

measures deeper laterally vertically in to the borehole while the LLS measures shallowly or 

medium into the lithologies in the borehole. At depth 2669.5m, LLD value reads 4.7 (ohmm) 

and LLS values reads 4.19ohmm to depth 2678.7m, LLD value reads 12.1ohmm and LLS 

value reads 9.66 (ohmm). As discussed previously in (chapter 6.1.6) fresh water can also 

present such displacement in the resistivity logs. This crossover also show the same 

characteristics as the once in the other reservoir in well E-BB1. 

In track #8 (the caliper log), this may show a diameter smaller than the bit size (diameter). If 

the log has a smooth profile, a mud-cake build-up is indicated. This is an extremely useful 

indicator of permeability because only permeable beds allow mud cake to form. The limits 

of mud-cake indicate clearly the limits of the potential reservoir, (Rider, 2002). Mud-cake 

thickness can be estimated from the caliper by dividing the decrease in hole size by two (the 

caliper giving the hole diameter), i.e.   

Bit size (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟)−𝐶𝑎𝑙𝑖𝑝𝑒𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔

2
= mud cake thinkness. 
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7.1.4    Interpretation of Permeability 

The permeability of a rock which is the ability of the rock to allow fluids to flow through its 

connected pores is controlled by rock grain size, grain shape, degree of cementation or 

consolidation, grain packing, and clay. Permeability of reservoir rocks may vary from less 

than 1 mD to over 1000 mD. To determine the permeability of the core plugs, the plugs 

were placed in a compliant sleeve within a cylinder. A pressure on the sleeve ensures that 

the injected gas or liquid flows parallel to the core plug axis. Fluid, usually gas is injected 

with an inflow pressure and flows almost linearly through the plug to atmospheric pressure. 

The permeability is then determined from Darcy’s law. Due to difference in flow physics 

between gas and liquid especially in low permeability media, a correction is done on the gas 

or air permeability which is known as Klinkenberg Correction. The permeability values are 

reported as permeabilities to air and liquid (corrected for the Klinkenberg effect). Gas 

permeability corrected for the Klinkenberg effect is considered equivalent to the 

permeability if a liquid medium is present in the pores. The quality of a reservoir as 

determined by permeability in mD may be scaled as shown in the table below. 

 

PERMEABILITY VALUE (mD) CLASSIFICATION 

Less than 1 Poor 

Between 1 and 10 Fair 

Between 10 and 50 Moderate 

Between 50 and 250 Good 

Above 250 Very Good 

Table 7.2 Showing Permeability Classification Scale (Modified after Djebbar, 1999). 

 

7.1.5    Well E-BB1 Permeability vs Depth 

Core #5 in well E-BB1 borehole permeability plots are concentrated (demarcated in red 

aquare) at top depth 2845.39m to bottom depth at 2856.60m (fig 7.4). The permeability 

plots in the zone demarcated in red rectangle is more that 1mD that is between 10mD to 

50mD which is classified as fair to moderately and the poor values (less than 1mD) recorded 
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at reservoir interval as shown in green circles at depth of 2841.5m to 2874.9m. A total of 43 

points plotted out of 220 and (177).  

 

 

 

 

 

 

 

 

   

7.1.6    Well E-BD2 Permeability vs Depth 

Core #1 well E-BD2 borehole permeability plots are concentrated (red circle) in the reservoir 

at top depth 2596.6m to bottom depth at 2587.5m (fig 7.5). The permeability plots in this 

zone demarcated in red circle are more than 1mD that is between 1mD to more than 

250mD which is classified as very good. 84 points plotted out of 168 and (120 nulls).  

 

 

 

 

 

 

 

 

 
 

 

2596.6m to 2587.5m, permeability is 1mD to 

more than 250mD classified as very good 

Figure 7.4 Classification of Permeability vs Depth of well E-BB1. (courtesy of PASA). 

Figure 7.5 Classification of Permeability vs Depth of well E-BD2. (courtesy of PASA). 
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7.1.7    Well E-A01 Permeability vs Depth 

Core #1in well E-A01 borehole permeability plots are concentrated at top depth 2678.89m 

to bottom depth at 2676.10m (fig 7.6). The permeability plots in the zone demarcated in red 

circle are less than 1mD hence it is classified as poor permeability for the reservoir. Total of 

7 points plotted out of 14 (7 nulls). 

 

 

 

 

 

 

 

 

 

 

7.1.8    Comparison of Core Porosity and Core Permeability 

The porosity-permeability cross plots are used to distinguish between rock types and also 

show the trend between porosity and permeability. Porosity-permeability and facies 

relationships vary from one exploration well to another well. The Klinkenberg Permeability 

measured in mD is plotted on a logarithmic scale (y-axis) versus the porosity measured as 

fraction is plotted on a linear scale (x-axis). Composition and abundance of principal frame 

work grains have a great impact on diagenetic processes controlling porosity reduction, 

preservation and enhancement with burial. Heterogeneity and facies variations such as the 

vertical and lateral changes from cross-bedded to ripple-laminated sandstones, affect 

reservoir performance. 

 

2678.89m to 2676.10m, 

permeability is 1mD and 

more classified as good. 

Figure 7.6 Classification of Permeability vs Depth of well E-A01(courtesy of PASA). 
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7.1.9    Well E-BB1 

Total of 42 points plotted out of 221 (1 outlier, 175) at top depth 2841.5m to 2874.9m. As 

shown in the cross plot (fig 7.7) porosity value at 0.1328v/v, permeability value is 22.77mD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is’t much clay in this reservoir hence value is more that 1 mD representing a massive 

sandstone ranging between 1mD to 50mD. The plot show a minimum value of 16 mD, a 

maximum value of 92 mD and a mean value of 26 mD which is classified as fair to moderate 

permeability (fig 7.7). Two types of fluid saturation values (saturation of gas, Saturation of 

water) were reported in well E-BB1. The plot of fluid saturation versus depth present an 

interval of increasing hydrocarbon saturation (fig 7.8) at depth 2845.5m to 2856.4m which 

corresponds to the massive sandstone reservoir at depth 2841.5m to 2874.9m. The 

presence of decreasing water in this interval may represent irreducible water saturation. 

Below this interval the water saturation increases dramatically with the decrease in gas 

satureation to the depth of 2874.9m. 

Where permeability is 25mD 

porosity is 0.128 

Figure 7.7 Showing comparison of core porosity and core permeability of well E-BB1 
(courtesy of PASA). 

 

 

 

 



 

133 
 

 

Figure 7.8 Cross plot showing gas concentration in reservoir in well E-BB1(courtesy of PASA). 

 

7.1.10    Comparison of  pickett plot for well  E-BB1, EBD2 and E-A01  
 

Pickett plot is a visual representation of the Archie equation and therefore is a powerful 

graphic technique for estimating Sw ranges within a reservoir. All that is needed to make a 

Pickett plot is a set of porosities and corresponding resistivities taken from well logs. 

Crossplotted points that lie above the water line have water saturations of less than 100% 

and complementary hydrocarbon saturations as indicated in (apedix page below). The 

pickett plots are  calculated by plotting deep resistivity log data (LLD) against density log 

data (Phi) of the same well to be able to have the result. The pickett plots for water 

resistivity determination for well E-BB1, E-BD2 and E-A01 taken at water bearing zones 

represented in (figures in apendix). However, their location on the plot does not 

immediately answer the question concerning the fluids and if the zones will produce when 

either tested or perforated. Water free hydrocarbons, water-cut hydrocarbons or water 

alone are all possibilities. The product of porosity and water saturation is the bulk volume of 

water (BVW) which can give important clues to producibility when related to pore character 

and reservoir type. As an additional feature, each pair of contiguous zones on Pickett plots 

Gas show at depth 2845.5 to 2856.4 

 

 

 

 



 

134 
 

generated are linked by a straight line segment. Taken collectively, the lines sketch out a 

trace that is the reservoir "trajectory" in the depth dimension of the covariation of resistivity 

and porosity. Trends, deviations, cut-backs and other features of the trajectory give 

important clues regarding hydrocarbon column structure, reservoir heterogeneity, cyclic 

repetition, and changes in pore size. Although the Pickett plot has many useful properties 

for pattern recognition, there is still room for improvement. When fitting either the water 

line or a line of irreducible saturation, the resulting values of cementation and saturation 

exponents are not immediately obvious, but must be calculated from the slopes. The normal 

range of porosities also means that there is often a fair degree of uncertainty in the 

estimate of water resistivity when extrapolating to the intercept at 100% porosity.  

 

 Application of result, determination of cut-off and net pay using ɸ, 

Sw ,Vsh. 

Net pay (NP) may be defined as “any interval that contains producible hydrocarbon at 

economic rates given a specific production method”. It thus represents the portion of the 

reservoir that contains high storability (driven by porosity), high transmissivity (driven by the 

fluid mobility, which refers to as the ratio of permeability to fluid viscosity), and a significant 

hydrocarbon saturation (driven by water saturation, Sw). Net pay can be interpreted as an 

effective thickness that is pertinent to identification of flow units and target intervals for 

well completions and stimulation programs (Worthington and Cosentino, 2005). The 

associated net-to-gross ratio (NGR) corresponds to the ratio of the net pay thickness to the 

total (or gross) thickness of the reservoir under consideration. Net pay (NP) and net-to-gross 

(NGR) are needed for several reservoir characterization activities. A major use of net pay is 

to compute volumetric hydrocarbons in-place. Another use of net pay is to determine the 

total energy of the reservoir i.e. both moveable and non-moveable hydrocarbons are taken 

into consideration. Net pay for this purpose may be therefore much greater than that for 

volumetric calculation (George and stiles, 1978). A third use of net pay is to evaluate the 

potential amount of hydrocarbon available for secondary recovery, meaning net pay with 

favourable relative permeability to the injected fluid, i.e. “floodable net pay” (Cobb and 

Marek, 1998). NP and NGR are crucial to quantify the hydrocarbon reserves and have a 

significant impact on the economic viability of hydrocarbon reservoir production 
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(Worthington and Casentino, 2005). Net pay determination usually involves defining the 

threshold values (or cut-offs) of the characteristics of interest. These limiting values are 

designed to define those rock volumes that are not likely to contribute significantly to the 

hydrocarbon production although this cut-off values may vary according to the intended 

application and should be therefore fit for purpose, meaning that “ the intended use of the 

net pay often determines how net pay is picked” (Snyder, 1971). Since the method to pick 

net pay (and to a larger extent NGR) depends on its usage, these uses determine also the 

method chosen for establishing cut-off- values. 

 

7.2.1 Summary of the problem 

The permeability cut-off is very often considered to be the controlling parameter in net pay 

and NGR evaluation especially in cases involving the flow regime or the reservoir recovery 

mechanism. The permeability cut-off, Kc, is dependent on a limited number of parameters 

including the fluid mobility, the permeability distribution, the reservoir pressure differential, 

and the reservoir drive mechanism (primary or water-flood). In this research the value 

considered (for wells E-BB1 which is the key well and E-BD2, E-A01), range typically varies 

between 0.1 and 100mD depending mainly on the fluid mobility. Because of its low 

viscosity, gas mobility might remain significant in a tight reservoir (fig 7.01) so the reservoir 

is still producible: the mobility is therefore an “appropriate starting point” to determine net 

pay from permeability cut-off (Cobb and Marek, 1998). Nonetheless there is no subsurface 

continuous permeability measurement (K), (“permeability log”) and core permeability 

measurements are not available throughout all wells.  

As a consequence, surrogate variables usually derived from well log measurements, such as 

porosity (ɸ), amount of shale (Vsh) or Clay (Vcl) and water saturation (Sw), are generally used 

to infer the locations and amount of net pay. The selection of cut-off values for these 

surrogate variable needs to be carefully done in order to avoid introducing further errors 

into the net pay identification process. It is then necessary for this purpose to test the 

accuracy and robustness of the availably method providing cut-offs and determine the 

optimal ones when evaluation either net pay or NGR. In the case where it is already 

determine based on the mentioned engineering and geological considerations, the 
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permeability cut-off Kc should be therefore related to those surrogate variables. In this 

research a common method to identify net pay using porosity (ɸ), (to a larger extent any 

surrogate variable such as water saturation (Sw), shaliness (Vsh)) is to use semi logarithmic 

porosity vs. permeability crossplots (fig 7.9) and a least-squares regression line to obtain the 

porosity cut-off (Worthington and Cosentino, 2005). A porosity cut-off (ɸc) may be obtained 

from the regression line (fig 7.9). The use of the Y-on-X regression line is an example of 

methods which may provide porosity cut-off values. These methods were used in this 

research to obtain the estimates of the “best” cut-off value with associated statistical 

characteristics. 

 

 

Figure 7.9 Determination of porosity cut-off of multi well E-BB1, E-BD2, E-A01 crossplots  
(courtesy of PASA). 

Net reservoir region 

Non reservoir 

region 

R2=0.866 SD 

X=0.03SD 

Y=1.00 

ɸc 0.0663% is determined from 

Kc crossplot value of 0.1mD 
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The best value is the value which when used gives the smallest likelihood error of 

prediction. This study will investigate which of these several porosity cut-off methods give 

cut-off values which are optional in terms of bias, efficiency, and robustness when applied 

to evaluate net pay and NGR for wells E-BB1, E-BD2 and E-A01. A common approach is to 

define, fixe permeability cut-off values according to the “Rule of Thumb”, gas-bearing rocks 

for which K ≥ 0.1mD are admitted as net pay whereas oil-bearing rocks for which K ≥ 1mD 

are pay. This approach is arbitrary since the rule of thumb is not taking into consideration 

the reservoir fluid characteristics. For instance a 1.0mD permeability cut-off is adequate for 

light, low-viscosity oils (George and Stiles, 1978). Since there is no continuous measurement 

of permeability, the practice has been therefore to relate core permeability to porosity 

and/or other log-derivable measurements such as Vsh, Sw, and Rt. The cut-off values should 

be “dynamically conditioned”, i.e. they should be tied back to a hydraulic parameter, such as 

absolute permeability, pore throat radius of fluid mobility (Worthington and Cosentino, 

2005). Pirson (1958) developed a “coregraph” method using three independent cut-off for 

K, ɸ and Sw. Another method from core and log analysis takes account of a different set of 

three net-pay cut-offs, shale factor Vsh, ɸ and Sw (Keener et al., 1967). McKenzie (1975) also 

defined “producible and non-producible rock types” by establishing an effective pore throat 

size correlated with the ratio 
𝐾

ɸ
. A porosity cut-off (ɸc) below which there is no commercial 

permeability can also be considered. Porosity (ɸ), water saturation (Sw) and a bulk-volume 

(ɸ.Sw) cut-off value are used for evaluation NP and NGR of oil-bearing carbonates (Teti and 

Krug, 1987). 
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Figure 7.10 Sw determination of wells E-BB1, E-BD2 and E-A01 (courtesy of PASA). 

 

The determination of Vcl is inconsistent since reservoir sandstone and clay are both porous 

hence porosity could not be used as a surrogate parameter to determine Vcl. A histogram 

chat (fig 7.11) was used to determine the cut-off value according to the discussion in the 

previous sub-chapter 7.2, the cut-off value can be picked to best suit the end result 

depending on what is set to be achieved based on hydrocarbon net pay and or NGR. The 

values ranges from the cut-off ≤ 0.38 are considered net pay and those values ranging from 

≥ 0.38 are non-pay zone. 

 

Sw cut-off of 0.5098 is 

determine from ɸc of 0.1 
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Figure 7.11 Vcl determination of wells E-BB1, E-BD2 and E-A01 (courtesy of PASA). 

 

 Determination of Net Pay 

The gross is regarded as the thickness of the reservoir interval that contains zones of which 

hydrocarbon can be produced and zones which does not favour the production of 

hydrocarbon. Net pay is any interval within the reservoir that contains producible 

hydrocarbon at economic rate given a specific production method. It represents the portion 

of the reservoir that contains high storability and mobility and significant hydrocarbon 

saturation. Net pay is used to compute volumetric hydrocarbon in place and to determine 

the total energy of the reservoir which are both moveable and non-moveable hydrocarbons. 

Other use of net pay is to evaluate the potential amount of hydrocarbon available for 

secondary recovery (Cobb & Marek, 1998). The distinction between gross and net pay is 

made by applying cut-off values in the petrophysical analysis. In this research, cut-off values 

Vcl cut-off of 0.38 is determine from 

the calculation of VclGR cut-off 
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of porosity (≥ 0.0663), volume of shale (≤ 0.38) and water saturation (≤ 0.5098) were used 

to identify pay intervals. The net to gross ratio is the thickness of net sand divided by the 

thickness of gross sand. This ratio is often used to represent the quality of a reservoir zone 

and for volumetric hydrocarbon calculations. Using the cut-off limits, flag curves were 

created in the database for net reservoir interval (red colour) and gross reservoir (green). 

The net to gross ratio determined could be used to calculate the volume of gas originally in 

place. However, the calculation of volume of hydrocarbon is not part of the scope of this 

study. Tables 7.3 to 7.5 below are the calculated net pay summary for wells with the 

corresponding graphics in Figure 7.12 to 7.14.  

Two reservoirs encountered in well E-BB1 at depth 2841.5 -2874.9 and 2888.1-2910.5 

respectively of which one proved to have net pay of (8.90m) having average porosity of 

11.6%, average water saturation of 42.9% and 38% volume of clay as presented in table 7.3 

and Figure 7.12 below. 

 

RESERVOIR SUMMARY CUT-OFFS USED 

 TOP 

DEPTH 

(m) 

BOTTOM 

DEPTH 

(m) 

GROSS 

THICK 

(m) 

NET 

PAY 

(m) 

NET/ 

GROSS 

AV. PHI 

(v/v) 

AV. Sw 

(v/v) 

PHI 

(v/v) 

Sw 

(v/v) 

Vcl 

 (v/v) 

RES. 

#1 

2841.5 2874.9 33.40 29.7

2 

0.890 0.116 0.429 >=0.066  <=0.38 

RES. 

#2 

2888.1 2910.5 22.40 19.9

2 

0.889 0.110 0.083 >=0.066  <=0.38 

PAY SUMMARY    

RES. 

#1 

2841.5 2874.9 33.40 29.57 0.885 0.116 0.429 >=0.066 <=0.5 <=0.38 

RES. 

#2 

2888.1 2910.5 22.40 1.48 0.066 0.120 0.083 >=0.066 <=0.5 <=0.38 

Table 7.3 Showing summary of calculated net pay for well E-BB1 (courtesy of PASA). 
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Figure 7.12 Showing ɸ, Sw, Vcl CUT-OFFS AND NET_PAY FOR WELL E-BB1 (courtesy of 
PASA). 

 

In well E-A01, One reservoir was evaluated and it showed net pay potential as presented in 

Table 7.4 below. The net thickness range from 1.05m to 15.00m and average porosity is 

0.066%, average water saturation is 38.8% and volume of clay is 38%. 
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RESERVOIR SUMMARY CUT-OFFS USED 

 TOP 

DEPTH 

(m) 

BOTTOM 

DEPTH 

(m) 

GROSS 

THICK 

(m) 

NET 

PAY 

(m) 

NET/ 

GROSS 

AV. 

PHI 

(v/v 

AV. Sw 

(v/v) 

PHI 

(v/v) 

Sw 

(v/v) 

Vcl 

(v/v) 

 2669.5 2684.5 15.00 10.37 0.691 0.115 0.388 >=0.066  <=0.38 

PAY SUMMARY 

 2669.5 2684.5 15.00 10.37 0.691 0.115 0.388 >=0.066 <=0.5 <=0.38 

 

Table 7.4 Showing summary of calculate net pay for well E-A01 (courtesy of PASA). 

 

 

 

Figure 7.13 Showing ɸ, Sw, Vcl cut-offs and Net_Pay for well E-A01 (courtesy of PASA). 
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In well E-BD2, the gross thickness range 350m and net thickness is 28.96m. An average 

porosity of 14.6%, average water saturation of 69.9% and volume of clay is 38% were 

calculated as presented in Table 7.5 and Figure 7.14 below. 

RESERVOIR SUMMARY CUT-OFFS USED 

 TOP 

DEPTH 

(m) 

BOTTOM 

DEPTH 

(m) 

GROSS 

THICK  

(m) 

NET 

PAY 

(m) 

NET/ 

GROSS 

(m) 

Av. 

PHI 

(v/v) 

Av. 

Sw 

(v/v) 

PHI 

(v/v) 

Sw 

(v/v) 

Vcl 

(v/v) 

 2576.2 2602.5 350.00 28.96 0.083 0.146 0.659 >=0.066  <=0.38 

PAY SUMMARY 

 2576.2 2602.5 350.00 4.57 0.013 0.128 0.358 >=0.066 <=0.5 <=0.38 

 

Table 7.5 Showing summary of calculate net pay for well E-BD2  (courtesy of PASA). 

 

Figure 7.14 Showing ɸ, Sw, Vcl CUT-OFFS AND NET_PAY FOR WELL E-BD2 (courtesy of 
PASA). 
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8 CHAPTER   
 

 Conclusion and Recommendation 

8.1.1 Conclusion  

Petroleum systems are likely to account for all the discoveries made to date in the 

Bredasdorp Basin. The principal source rock is the deep water mudstone of the 13A seismic 

unit, and the reservoir unites responsible for the largest volume of reservoirs are the deep 

water sandstones of the 14A units and shallow marine sandstones of the upper part of the 

syn-rift sequence. It should be noted that a second unidentified post-rift source rock was 

invoked to explain geochemically distinct gas and condensate in the 14A play fairway 

Burden and Davies (1997). The source rock in the deep water organic-rich mudstones of the 

13A seismic sequence immediately overlying the 13At1 unconformity. The research findings 

suggest that well E-BB1 and E-AO1 are stratigraphically located in the rich organic mudstone 

source rocks hence there was the formation and accumulation of hydrocarbons whereas 

well E-BD2 is stratigraphically located further away from E-BB1 and E-AO1 which shows very 

low hydrocarbons potentials. Successive basin wide unconformities (1At1, 5/6At1, 13At1, 

15At1, etc) were overlain by deep water mudstones representing a relatively rapid 

deepening of the basin and development of anoxia due to poor circulation in a restricted 

basin with limited or non-existent access to the open ocean. More than one of these 

mudstones may have contributed hydrocarbons to the system but the 13A shales are 

particularly important as they presently lie in the oil window over significant areas and they 

are stratigraphically close to the 14A reservoir sands. Reservoirs are of two distinct groups. 

At the top of the syn-rift succession, Valanginian shallow marine glauconitic sandstones in 

tilted fault-block structures are hosts to the gas fields of the northern Bredasdorp sub-basin 

along the southern flanks of the Infanta Arch. Post-rift reservoirs are more intimately 

associated with the source rock being deep water fan/channel sandstones enclosed in the 

deep water mudstones that include the source of the hydrocarbons; traps are essentially 

stratigraphic. Post-rift reservoirs occur at several horizons above and below the 13A source 

rock but the 14A sandstones are the most important of these. The main play fairway lies 

along the northern flank of the Agulhas Arch. The stratigraphic extent of the petroleum 

system is from the deposition of the oldest reservoir rocks in the Valanginian (if the minor 
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basement reservoir is excluded), to the present. Its active duration is from the start of 

generation in the deeper parts of the basin in the Lower Cretaceous until the present 

although the oil and gas that are presently found probably date from generation not longer 

than than 60 Ma (Paleocene). The following factors are those most critical to effective 

trapping of hydrocarbons in the basin: 

 

 Generation of hydrocarbons took place due to the depth of burial that had been 

reached by the Early Tertiary (60 Ma) with a second phase of generation in the Late 

Tertiary (5 Ma). As it is likely that other source rocks were mature for oil generation 

before the end of the Early Cretaceous, it seems probably that the volumes of oil and 

gas that have been generated in the basin are much larger than those that remain at 

the present-day. Evidence from the 14A play fairway indicates that earlier generated 

oils have been displaced from known reservoirs by more recently generated gas and 

gas liquids. The geothermal gradient in the western sub-basins is relatively high 

resulting in most of the Lower Cretaceous source rocks being in the gas window. 

Upper Cretaceous source rocks may however be mature and in the oil window in the 

deeper parts of the basin. 

 

 Trap Formation: The structural component of the syn-rift traps was formed during 

the second phase of rifting in the Early Cretaceous (Valanginian). The stratigraphic 

traps of the post-rift succession were formed at the time of deposition possibly with 

some enhancement due to later compaction under burial. 

 

 Early Sealing: Syn-rift traps were sealed at the earliest in latest Valanginian time with 

deposition of the oldest mudstones overlying the 1At1 unconformity. Post-rift 

stratigraphic traps were sealed syn-depositionally. 

 

 Retention: It is very noticeable that the major economic discoveries are restricted to 

the western part of the Bredasdorp sub-basin. There have been only minor 

discoveries and shows in the eastern part of the basin. This trend is likely to relate to 

the increased influence of tectonics from west to east with greater proximity of the 

Agulhas-Falkland Fracture Zone. Fault-control of sedimentation persisted much later 
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in the basin history in the east and this is likely to have affected the capacity of the 

eastern sub-basins to retain any generated hydrocarbons. In addition, there area of 

deep water deposition in which the main source rocks formed is much less in the 

eastern sub-basins than the west. 

 

8.1.2  Recommendation  

 

8.1.2.1 Skin effect 

Skin is the indication of altered permeability in the wellbore and near wellbore zones (Chen 

and Chang, 2006). The permeability in this zone is less than that of the formation. It is 

formed when mud (from drilling or acidization) penetrates or invades the formation near 

the wellbore (Chen and Chang, 2006). In boreholes E-BB1, E-BD2 and E-A01 in the 

Bredasdorp Basine, the calculated average Clay volume is 38%, attributed to “blockage” 

(Steyn, 1990) of the pore throats. These blockages were caused by various Clay minerals 

present in the formation and drop-out due to flow below dew points as well as mud which 

was dropped in perforations (PetroSA unpublished data). 

 

8.1.2.2    Proposed Solutions for Enhanced Recovery. 
 

Well testing techniques are essential in determining the lifespan of a well (Penuela and 

Civan, 2000). Gas-condensate reservoirs fall risk of diminishing at a rapid rate as a result of 

the drop of flowing bottom-hole pressure below saturation pressure of fluid at reservoir 

conditions (Penuela and Civan, 2000). Wells should be routinely stimulated for enhanced 

recovery and productivity. Many treatments conducted in the Ghawar field (Rahim and Al-

Qhatani, 2003) have reveal that for high skin factors (38%), a matrix treatment would be 

more sufficient than fracturing. Most matrix acidization treatments can be performed in two 

phases, firstly a pre-flush phase of hydrochloric acid followed by a main flush of mud-based 

acid (Lievaart and Davies, 1987). The sandstones from boreholes E-BB1, E-BD2 and E-A01 

display influential amounts of clays and cements which affect the porosity and permeability. 

These factors play a key role in selecting a suitable enhanced recovery method, along with 
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the heterogeneous nature of the reservoir zones in relation to porosity and permeability. 

Thus a secondary method can be applied, for instance matrix acidization injection coupled 

with hydraulic/acid fracturing. Fracturing is performed first by high pressure viscous 

injection (Mumallah, 1996) followed by an acid injection into the formed fracture. 

Heterogeneity within the reservoir zone could cause a problem where by acid will be more 

prone to enter higher permeability zones. A solution for this problem is the introduction of 

foam (Siddiqui et al., 2002) which would divert the acid towards lower permeability zones. 

This is favorable as the foam is clean, which minimizes damage to the formation and can be 

removed after the acidizing treatment. The redirected acid treatment moves along the 

fracture towards the lower permeable zones and the walls, dissolving and breaking up the 

clays and cements (Mumallah, 1996). The pressure is released and the fracture closed yet a 

pathway, formed by the etched surfaces, remains and acts as a conductive network from 

the formation into the wellbore. The aspect of Fines migration (Lievaart and Davies, 1987) 

poses a risk of clogging pore throats with dislodged clay particles. To alleviate this problem a 

suitable acid should be selected which would dissolve most of the clay particles.  The low 

permeability barriers can be alleviated by fracturing to enhance connectivity for improved 

gas and gas-condensate flow hence the above methods of treatment can thus be considered 

to improve the flow rate of hydrocarbons in the wells and wells that will be drilled in future. 

 

8.1.3 Problems encountered during research work; 
 

 The data obtained from Petroleum Agency of South Africa (PASA), there was a 

massive problems with missing data from the conventional core report on borehole 

such Sg, Sw and So for well E-BD2 hence it was tough calculating the average water 

saturation and average temperatures of the cored reservoir zones. 

 After loading data into Interactive Petrophysics (IP), there were incomplete or no 

logs (NHPI) that run through along the target zone of the borehole which makes it 

difficult to confirm the reading in terms of comparing the reading and interpretation 

of logs (LLD and LLS) as presented in (fig 7.02) above. Hence calculation of log using 

parameters in well E-BB1 which is this case is used as a key well that has complete 

data and the result was exported as LAS file in to wells E-BD2 and E-A01 that missing 
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data considering condition during basin formation was more or less the same cut 

across the area the wells are drilled in Bredasdorp Basin. 

 The data was mixed up such that corrections was done so that i can be able to  work 

with what I had e.g. top depth value was inverted with bottom depth value in wells 

E-BB1, E-BD2 and E-A01 hence that correction had to be made. 

 It took too long to acquire the available data from PASA to ease research work 

carried out on time and smoothly. 

 IP’s licence expiration date is frequent and had to wait for activation since it not 

controlled by the department or university but by the licence operator and a general 

set back in network functionality as IP function with internet functionality of the 

university. 

 Students have limited time to carry out research in the department, much and 

effective work is done late in to the day towards the pm since the department is very 

busy with undergraduate lectures, contractor of the newly build chemical science 

building that harbours the earth science department carry out construction works 

that create lot of interference in terms of noise level (banging and drilling noise).  To 

add to the noise, at 16:00pm students are kicked out of the department for the day. 

These cause difficulties in caring out this research.  
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Appendix 
 

Result obtained from the conventional core measurements of well E-BB1( Hill 

1991), PASA. 

Depth 
(m) 

Porosity 
(%) 

K 
(mD) 

Kair 
(mD) 

Sg 
(%) 

So 
(%) 

Sw 
(%) 

Calcite 
(%) 

Dolomite 
(%) 

Grain 
Density 
(g/cc) 

2846.05 13.8 26.29 29.05 70 5 25 0.0 1.0 2.67 

2846.25 11.7 12.95 14.56      2.66 

2846.54 13.1 27.66 30.06      2.65 

2846.79 13.1 29.29 32.17      2.65 

2847.05 13.0 23.56 25.94 66 4 30 0.0 1.0 2.66 

2847.25 10.1 4.82 5.67      2.65 

2847.50 11.2 12.41 13.88      2.65 

2847.75 11.5 10.65 12.11      2.65 

2848.03 11.2 9.04 10.34 67 5 28 0.5 1.0 2.65 

2848.25 13.1 24.83 27.47      2.64 

2848.50 13.2 24.87 27.25      2.65 

2848.75 13.8 25.79 28.40      2.67 

2849.05 12.6 28.11 30.47 67 0 33 0.5 1.0 2.65 

2849.27 14.4 39.29 42.73      2.65 

2849.53 8.9 1.01 1.40      2.66 

2849.78 9.3 1.30 1.74      2.66 

2850.05 12.0 14.44 16.10 67 4 29 0.5 1.0 2.65 

2850.25 13.3 27.49 29.95      2.65 

2850.47 13.3 20.03 22.31      2.65 

2850.72 10.7 4.27 5.12      2.65 

2851.05 11.9 7.78 9.04 66 5 29 1.0 1.0 2.66 

2851.22 11.3 6.50 7.70      2.65 

2851.46 13.5 18.19 20.22      2.66 

2851.72 13.4 15.81 17.83      2.65 

2852.03 8.4 0.10 0.21 47 19 34 0.0 2.0 2.67 

2852.29 9.0 0.61 0.89      2.65 

2852.79 12.8 12.56 14.33      2.65 

2853.11 13.8 16.70 18.48 73 0 27 1.0 3.0 2.68 

2853.33 12.2 10.62 12.12      2.65 

2853.58 11.5 7.04 8.19      2.66 

2853.83 11.8 9.00 10.33      2.65 

2854.05 12.5 9.91 11.36 65 4 31 0.0 1.0 2.67 

2854.22 12.0 10.49 12.01      2.65 

2854.51 9.3 1.12 1.72      2.65 

2854.76 9.7 1.97 2.56      2.64 

2855.05 11.3 4.68 5.64 66 5 29 0.0 1.5 2.66 

 

 

 

 



 

176 
 

2855.22 11.4 6.15 7.31      2.65 

2855.47 10.8 5.87 6.97      2.64 

2855.72 12.5 9.70 11.28      2.68 

2856.05 11.1 2.65 3.38 62 8 30 1.0 0.5 2.67 

 

 

Result obtained from the conventional core measurements of well E-BD2 

( Hill 1991), PASA. 

DEPTH (m) POROSITY (%) Kair (mD) K (mD) GRAIN 

DENSITY 

2579.30 19.8 935.94 929.28 2.64 

2580.35 18.6 502.55 496.59 2.67 

2580.60 18.6 282.96 275.57 2.66 

2580.85 17.5 235.05 227.52 2.65 

2581.60 19.2 672.96 670.18 2.65 

2581.85 16.9 121.36 116.44 2.64 

2582.35 19.7 645.21 645.10 2.64 

2582.64 19.4 489.34 485.87 2.64 

2583.80 16.0 165.59 159.19 2.64 

2584.30 17.3 156.57 150.40 2.64 

2585.80 19.0 422.15 421.45 2.64 

2586.32 19.4 755.32 747.28 2.64 

2586.82 19.7 204.11 197.60 2.67 

2587.35 17.4 68.05 63.97 2.64 

2587.85 15.6 177.83 173.97 2.64 

2588.10 18.0 299.54 295.98 2.64 

2588.35 18.7 392.54 329.52 2.64 

2588.60 18.5 448.35 445.58 2.64 

2588.85 18.9 531.57 529.74 2.66 

2589.10 17.1 147.35 141.91 2.64 

2589.35 17.0 200.50 197.79 2.64 
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2589.60 17.0 211.49 206.98 2.64 

2589.85 16.9 242.98 239.65 2.64 

2590.10 17.3 253.21 248.39 2.64 

2590.35 17.5 244.77 239.01 2.65 

2590.60 17.2 221.71 215.48 2.64 

2590.98 17.6 237.96 229.99 2.65 

2591.17 16.8 189.51 183.87 2.64 

2591.42 17.5 262.06 258.82 2.64 

2591.69 17.1 158.28 151.44 2.65 

2591.94 16.8 192.63 189.02 2.64 

2592.19 17.3 205.04 201.48 2.64 

2592.44 16.1 107.96 103.43 2.64 

2592.69 16.0 159.57 154.51 2.64 

2592.94 14.4 107.15 103.09 2.64 

2593.19 18.6 199.70 196.71 2.72 

2593.50 16.6 148.80 144.94 2.65 

2583.75 17.9 149.68 145.31 2.65 

2594.00 17.0 97.09 90.84 2.65 

2594.28 16.7 179.49 174.86 2.64 

2594.53 16.7 120.87 117.09 2.64 

2594.78 17.3 120.12 115.01 2.65 

2595.03 16.8 112.02 107.51 2.64 

2595.28 17.6 215.58 211.62 2.65 

2595.53 14.3 79.67 76.10 2.65 

2595.78 16.3 151.83 145.54 2.64 

2596.05 17.0 160.11 153.82 2.65 

2596.30 17.3 159.00 155.19 2.66 
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Result obtained from the conventional core measurements of well E-A01 

( Hill 1991), PASA. 

Depth 
(m) 

Gas 
Exp. 

Sum 
of 
fluids 

Air 
Perm 
(mD) 

Liq 
Perm 
(Md) 

Sw So Sg Cal. Dol. Grain 
density 

2674.05 16.1 17.3 111.57 106.44 84 00 16 1 05 2.73 

2674.05 15.7 17.3 104.80 99.75 84 00 16 1 05 2.73 

2674.30 15.5  109.31 105.18      2.68 

2674.30 14.9  103.48 99.47      2.68 

2674.55 15.9  77.11 73.33      2.67 

2674.55 14.4  72.75 69.16      2.67 

2674.80 15.3  96.83 92.44      2.68 

2674.80 14.8  91.54 87.15      2.68 

2675.05 14.6 15.0 88.00 83.34 89 00 11 1 09 2.68 

2675.05 14.2 15.0 82.99 78.43 89 00 11 1 09 2.68 

2675.25 13.8  55.89 52.74      2.69 

2675.25 13.3  52.74 49.62      2.69 

2675.50 14.0  37.13 34.27      2.69 

2675.50 13.5  35.15 32.43      2.69 

2675.75 12.7  10.22 8.88      2.70 

2675.75 12.3  9.60 8.34      2.70 

2675.90 14.8 15.5 5.19 4.09 63 00 37 1 08 2.70 

2675.90 14.3 15.5 4.81 3.79 63 00 37 1 08 2.70 

2676.20 14.2  1.56 1.10      2.68 

2676.20 13.5  1.29 .92      2.68 

2676.45 11.9  1.61 1.18      2.67 

2676.45 11.3  1.38 1.02      2.67 

2676.70 12.9  2.15 1.61      2.67 

2676.70 12.3  1.80 1.36      2.67 

2676.96 14.7 14.4 1.62 1.10 67 00 33 1 02 2.68 

2676.96 14.1 14.4 1.25 .85 67 00 33 1 02 2.68 

2677.30 10.4  .16 .07      2.66 

2677.30 9.8  .09 .04      2.66 

2677.55 12.4  .69 .44      2.68 

2677.55 11.8  .57 .37      2.68 

2677.80 12.0  1.63 1.16      2.68 

2677.80 11.5  1.32 .96      2.68 

2677.97 12.9 13.6 1.64 1.14 59 0 41 3 05 2.69 

2677.97 12.4 13.6 1.25 .87 59 00 41 3 05 2.69 

2678.25 11.8  .33 .18      2.68 

2678.25 10.9  .18 .10      2.68 

2678.50 12.0  1.36 .94      2.68 

2678.50 11.3  1.00 .70      2.68 

2678.75 5.5  .04 .02      2.72 

2678.75 5.0  .01 .00      2.73 

2678.93 11.1 11.2 1.18 .80 56 00 44 3 04 2.70 

2678.93 10.6 11.2 .90 .62 56 00 44 3 04 2.70 

2679.15 11.7  1.32 .92      2.68 

 

 

 

 



 

179 
 

2679.15 11.1  1.08 .77      2.68 

2679.40 11.7  1.21 .83      2.67 

2679.40 11.2  .97 .68      2.67 

2679.65 11.9  1.35 .94      2.67 

2679.65 11.3  1.10 .78      2.67 

2679.89 11.5 11.1 1.36 .95 49 00 51 2 02 2.67 

2679.89 11.1 11.1 1.16 .82 49 00 51 2 02 2.67 

2680.20 10.6  .28 .15      2.67 

2680.20 10.1  .19 .10      2.67 

2680.45 10.7  .36 .21      2.68 

2680.45 9.4  .26 .15      2.68 

2680.70 9.4  .19 .09      2.69 

2680.70 9.7  .12 .06      2.69 

2680.89 7.3 7.3 .12 .05 48 00 52 6.5 04 2.68 

2680.89 6.8 7.3 .07 .03 48 00 52 6.5 04 2.68 

2680.15 7.5  .08 .03      2.68 

2680.15 6.9  .04 .01      2.68 

 

 

STANDALONE PICKETT CROSSPLOTS FOR WELLS E-BB1, E-BD2 AND E-A01 

(courtesy of PASA). 
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