
In The Name of Allah, Most Gracious Most Merciful 

COMPARATIVE IN VITRO STUDY OF THE ANTI-CANCER 

EFFECT OF APRICOT AND PEACH KERNEL EXTRACTS ON 

HUMAN COLON CANCER CELLS 

 

 

 

 

 

 

WAGHEDA CASSIEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

COMPARATIVE IN VITRO STUDY OF THE ANTI-CANCER EFFECT 

OF APRICOT AND PEACH KERNEL EXTRACTS ON HUMAN 

COLON CANCER CELLS 

 

by 

 

 

WAGHEDA CASSIEM 

 

Submitted in partial fulfilment for the degree 

Magister Scientiae 

Department of Medical Biosciences 

University of the Western Cape 

Bellville 

 

 

Supervisor: Prof M. de Kock 

Co-supervisor: Dr A. Mohammed 

May 2015 

 

 

 

 

 



 

DECLARATION 

 

 

I, the undersigned, declare that Comparative in vitro study of the anti-Cancer effect of the 

apricot and peach kernel extracts on HT -29 human colon cancer cell line is my own 

work, that it has not been submitted before for any degree or assessment at any university, 

and that all the sources that I have used or quoted have been indicated and acknowledged by 

means of complete references.  

 

 

 

 

 

 

 

 

  

 W. Cassiem Date 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgements 

 

The completion of this thesis has been made possible by the efforts of many individuals and 

institutions whom I would like to acknowledge for their contribution.  

I firstly acknowledge The Creator for His mercy and affording me the opportunity to realise 

this project under the guidance of those whom He has guided. 

This study was carried out in the department of Medical Biosciences at the University of the 

Western Cape (UWC), the Chemistry department (UWC) laboratory, and the Health Sciences 

Faculty Immunology department at the University of Cape Town (UCT). 

I would like to thank my supervisor, Prof. M. de Kock, for enthusiastically taking me under 

her wings, selflessly imparting her knowledge and giving of her time, being a pillar of 

support and encouragement and the voice of hope at the times of despair. It is much 

appreciated. 

I would also like to thank:  

 Dr Ahmed Mohammed, Department of Chemistry, University of the Western Cape, 

for his assistance as my co-supervisor. 

 Ronnie Dreyer, University of Cape Town, for his expertise in flow cytometric 

analysis. 

 The late Prof. Sedick Isaacs, for his invaluable comments and encouragement to 

pursue this study. 

 Prof. G. van der Horst, Department of Medical Bioscience, University of the Western 

Cape, for his assistance with MedCalc. 

 

 

 

 



 Colleagues and staff members at the School of Natural Medicine, University of the 

Western Cape, for their support and encouragement. A special mention of the HoD, 

Dr. J. Campbell and Chinese Medicine co-ordinator Dr. Ma Xuesheng. 

 Students at the Department of Medical Bioscience, University of the Western Cape, 

for their lab assistance and timeous encouragement. 

 Extended family, friends and members of the community who always kept my family 

and me in their prayers during this strenuous period of study. 

 

To my father, Achmad, and late mother, Fatima, who were the inspiration for this study, 

husband Shafiek, children Mujahieda, Jawaad, Ali-Ammaar, Maseeh, Hadiyah, and 

brother Zubayr, thank you for all your support and endless encouragement. May you all 

be blessed abundantly. 

 

 

 

 

 

 

 



i 
 

Table of Contents 

Table of Contents            i 

List of Tables            vi 

List of Figures           vii 

List of Abbreviations          xv 

Summary                   xviii 

Chapter 1: Literature review         1 

1.1 Cancer          1 

1.1.1 Colon Cancer        3 

1.1.2 Pathogenesis        5 

1.2 Chinese Medicine (CM)       7 

  1.2.1 Peach and Apricot Kernels in Chinese Medicine   7 

1.2.2 Composition of the Apricot Bitter Kernel    9 

  1.2.3 Composition of the Peach Kernel     10 

1.3  Specific active components of the apricot and peach kernels   12 

1.3.1 Amygdalin        12 

  1.3.2 Laetrile and the “Krebs Hypothesis”     14 

1.3.2.1 Theories for the possible mechanism of action of Laetrile 15 

1.3.2.2 Rhodanese enzyme      19 

1.3.3 Metabolism and Toxicity of Amygdalin    20 

 

 

 

 



ii 
 

1.3.3.1 Cyanide       23 

1.3.3.1.1 Metabolism and Excretion of Cyanide   23 

1.3.3.1.2 Toxicity of cyanide derived from cyanogenic glycosides 

               in apricot kernels      26 

1.4 Research of possible effects of Amygdalin     27 

1.4.1 Cell growth / cell death studies     27 

1.4.2 Antimicrobial properties of amygdalin    28 

1.4.3 Antioxidant properties of amygdalin     28 

1.4.4 Toxicity tests        29 

1.5 Disclaimers         30 

1.6 Overview of the cell cycle        32 

1.6.1 The cell cycle phases       33 

1.6.1.1 G1 Phase       34 

1.6.1.2 S Phase       36 

1.6.1.3 G2 phase       39 

1.6.1.4 M phase       40 

  1.6.2 Cell cycle checkpoints      41 

1.6.2.1 DNA damage checkpoint     42 

1.6.2.2 Intra-S phase checkpoint     44 

1.6.2.3 The spindle assembly checkpoint    46 

1.7 Types of cell death        47 

 

 

 

 



iii 
 

1.7.1 Apoptosis        49 

1.7.1.1 Extrinsic pathway / Cytoplasmic pathway   49 

1.7.1.2.1 Intrinsic pathway / mitochondrial pathway   50 

1.8 Significance to health care and or biomedical science   52 

 

Chapter 2: Materials and Methods        55 

2.1 Materials 

2.1.1 Chemicals and Solutions used      55 

2.1.2 Equipment        56 

2.2 Methods      

 2.2.1 General cell culture procedures     57 

 2.2.2 Cell counts        58 

 2.2.3 Preparation of extraction fractions from kernels   59 

 2.2.4 Organic ethanol / acetone extractions (including total, lipophilic   

  and hydrophilic extractions)      59 

2.2.4.1 Total extraction and filtration     59 

2.2.4.2 Lipophilic extraction and filtration    60 

2.2.4.3 Hydrophilic extraction and filtration    60 

2.2.4.4 Evaporation of the Total, Lipophilic and  

 

 

 

 



iv 
 

Hydrophilic extractions     60 

2.2.5 Double boil decoction / Aqueous extraction    61 

  2.2.5.1 Freeze drying method of the aqueous extractions  62 

2.2.5.2 CAK, CPK, TAK, SAK and SPK treatment   62 

2.2.6 Cell growth and viability       62 

2.2.6.1 Crystal Violet (CV)      62 

2.2.7 Cell Morphology        64 

2.2.7.1 Haematoxylin and Eosin Staining (H&E)    64 

2.2.8 Cell cycle progression       65 

2.2.8.1 Flow Cytometry       65 

2.2.9 Hoechst 33342 fluorescent stain      67 

2.2.10 Statistical analysis       67 

 

Chapter 3: Results 

3.1 The rationale for making the extractions used to treat the HT-29 colon cancer  

      cells           69 

3.1.1. Expected compounds in the various extractions   74 

3.2 Cell Viability         77 

3.2.1 Crystal violet method studying the effects of CAK, CPK, TAK, 

SAK and SPK organic and CAK, CPK, SAK and SPK aqueous extractions  

 

 

 

 



v 
 

 

on the growth of HT-29 colon cancer cells     77 

3.3 Morphological study                 104 

3.3.1 Haematoxylin and Eosin staining (H&E)             104 

3. 4 Flow cytometry                  112 

3.4.1 Cell cycle progression after treatment with 100, 500 and 1000 µg/mL   

         CAK, CPK, TAK, SAK and SPK organic extractions            113 

3.4.2 Cell cycle progression over 24, 48 and 72 hours after treatment with 

        100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK organic 

        extractions                            126 

3.4.3 Cell cycle progression over 24, 48 and 72 hours after treatment with    

        100, 500 and 1000 µg/mL CAK, CPK, SAK and SPK aqueous  

        extractions                    143 

3.5 Hoechst 33342 fluorescent stain                150 

 

Chapter 4: Discussion                  155 

Annexure                    170 

References                    208 

 

 

 

 

 



vi 
 

List of Tables 

Table 2.1 Formula used to calculate percentage yield     61 

Table 3.1 General description of the organic fractions of CAK, CPK, TAK, SAK and 

SPK          73 

Table 3.2 Shows the percentage yield of CAK, CPK, TAK, SAK and SPK organic 

kernel extraction fractions       75 

Table 3.3 Shows dry weight in grams of CAK, CPK, SAK, SPK powder of freeze dried 

aqueous kernel extraction fractions       76 

Table 3.4 Summary presentation of extracts which showed the most significant 

inhibition on cell proliferation of HT-29 human colon cancer cells  101 

Table 3.5  Summary of the organic kernel extractions that significantly altered cell cycle 

progression, increasing the number of cells in the S phase and decreasing the 

number of cells in the G2 phase of the HT-29 colon cancer cells after 24, 48 

and 72 hours exposure to 100, 500 and 1000 µg/mL    137 

Table 3.6  Summary of the aqueous kernel extractions that significantly altered cell cycle 

progression, increasing the number of cells in the S phase and decreasing the 

number of cells in the G2 phase of the HT-29 colon cancer cells after 24, 48 

and 72 hours exposure to 100, 500 and 1000 µg/mL    148 

 

 

 

 

 

 

 

 



vii 
 

List of Figures 

Figure 1.1 Causes and Pathogenesis according to Chinese Medicine   6 

Figure 1.2 Amygdalin         13 

Figure 1.3 Laetrile         14 

Figure 1.4 Graphic representation of the chemistry of nitrilosides in cancer  18 

Figure 1.5 Hydrolysis of Amygdalin       21 

Figure 1.6 Structures of common plant-derived cyanoglycosides and principle  

pathway of HCN formation       22 

Figure 1.7 Basic processes involved in the metabolism of cyanide   25 

Figure 1.8 Mammalian cell cycle        32 

Figure 1.9 Cell cycle and its checkpoints       34 

Figure 1.10 Cell cycle regulation of DNA replication     36 

Figure 1.11 Signalling at G2/M transition       39 

Figure 1.12 Cell cycle control: G1/S phase checkpoint     41 

Figure 1.13 Intra-S-phase checkpoint       44 

Figure 1.14 Spindle Assembly Checkpoint (SAC) principles    46 

Figure 1.15 Apoptotic signalling pathways and their relevance to microRNA 

regulation in cancer        52 

Figure 3.1 Shows the dried Chinese apricot kernel (CAK), Chinese peach kernel 

 

 

 

 



viii 
 

(CPK), Turkish apricot kernel (TAK), South African apricot kernel (SAK) and 

South African peach kernel (SPK) which were removed from their respective 

pips          70 

Figure 3.2 Shows pictures of the end product of the CAK, CPK and TAK organic 

extractions         71 

Figure 3.3 24h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL Chinese apricot kernel organic extractions 78 

Figure 3.4 48h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL Chinese apricot kernel organic extractions 78 

Figure 3.5 72h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL Chinese apricot kernel organic extractions 79 

Figure 3.6 24h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL Chinese peach kernel organic extractions 81 

Figure 3.7 48h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL Chinese peach kernel organic extractions 82 

Figure 3.8 72h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure  

to 100, 500 and 1000 µg/mL Chinese peach kernel organic extractions 82 

Figure 3.9 24h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to100, 500 and 1000 µg/mL Turkish apricot kernel organic extractions 84 

Figure 3.10 48h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL Turkish apricot kernel organic extractions 85 

 

 

 

 



ix 
 

Figure 3.11 72h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500, 1000 µg/mL Turkish apricot kernel organic extractions 85 

Figure 3.12 24h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL South African apricot kernel organic extractions

          87 

Figure 3.13 48h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL South African apricot kernel organic extractions

          88 

Figure 3.14 72h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL South African apricot kernel organic extractions

          88 

Figure 3.15 24h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL South African peach kernel organic extractions

          90 

Figure 3.16 48h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL South African peach kernel organic extraction

          91 

Figure 3.17 72h Box-and-whisker plots illustrating the HT-29 colon cancer cells exposure 

to 100, 500 and 1000 µg/mL South African peach kernel organic extractions

          91 

Figure 3.18 24h Box-and-whisker plot illustrating the exposure of HT-29 colon cancer cell 

to 100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK organic 

extractions         95 

 

 

 

 



x 
 

Figure 3.19 48h Box-and-whisker plot illustrating the exposure of HT-29 colon cancer cell 

to 100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK organic 

extractions         96 

Figure 3.20 72h Box-and-whisker plot illustrating the exposure of HT-29 colon cancer cell 

to 100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK organic 

extractions         97 

Figure 3.21 24h, 48h, 72h:Box-and-whisker plot illustrating the exposure of HT-29 colon 

cancer cell to 100, 500 and 1000 µg/mL CAK, CPK, SAK and SPK aqueous 

extractions         100 

Figure 3.22 – 3.31 show 24h, 48h and 72h untreated cells and cells exposed to CPK and 

CAK organic and aqueous extractions               105 

Figure 3.32 – 3.36 show the effects SAK aqueous and organic extractions on HT-29 colon 

cancer cells                    107 

Figure 3.37 – 3.42 show the effects of some SAK organic extractions on HT-29 colon 

cancer cells using H&E staining                 108 

Figure 3.43 – 3.48 show the effects of some SPK aqueous and organic extractions on HT-

29 colon cancer cells using H&E staining                109 

Figure 3.49 – 3.54 show the effects of some SPK organic extractions on HT-29 colon 

cancer cells using H&E staining                 110 

Figure 3.55 – 3.56 show the effects of SPK-T organic extractions on HT-29 colon cancer 

cells using H&E staining       111 

Figure 3.57 Flow cytometric analysis of HT-29 cells after 24 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK 

organic extractions        115 

 

 

 

 



xi 
 

Figure 3.58 Flow cytometric analysis of HT-29 cells after 48 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK 

organic extractions        116 

Figure 3.59 Flow cytometric analysis of HT-29 cells after 72 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK 

organic extractions        117 

Figure 3.60 Flow cytometric analysis of HT-29 cells after 24, 48 and 72hour exposure to 

concentrations of 100 µg/mL CAK, CPK, TAK, SAK and SPK organic 

extractions         120 

Figure 3.61 Flow cytometric analysis of HT-29 cells after 24, 48 and 72hour exposure to 

concentrations of 500 µg/mL CAK, CPK, TAK, SAK and SPK organic 

extractions         121 

Figure 3.62 Flow cytometric analysis of HT-29 cells after 24, 48 and 72 hour exposure to 

concentrations of 1000 µg/mL CAK, CPK, TAK, SAK and SPK organic 

extractions         122 

Figure 3.63 Flow cytometric analysis of HT-29 cells after 24hour exposure to 

concentrations of 100, 500 and 1000 µg/mL total extractions of CAK, CPK, 

TAK, SAK and SPK        123 

Figure 3.64 Flow cytometric analysis of HT-29 cells after 48h exposure to concentrations 

of 100, 500 and 1000 µg/mL total extractions of CAK, CPK, TAK, SAK and 

SPK          124 

 

 

 

 



xii 
 

Figure 3.65 Flow cytometric analysis of HT-29 cells after 72 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL total extractions of CAK, CPK, 

TAK, SAK and SPK        124 

Figure 3.66 Flow cytometric analysis of HT-29 cells after 24 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL lipophilic extractions of CAK, 

CPK, TAK, SAK and SPK       126 

Figure 3.67 Flow cytometric analysis of HT-29 cells after 48 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL lipophilic extractions of CAK, 

CPK, TAK, SAK and SPK       127 

Figure 3.68 Flow cytometric analysis of HT-29 cells after 72 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL lipophilic extractions of CAK, 

CPK, TAK, SAK and SPK       127 

Figure 3.69 Flow cytometric analysis of HT-29 cells after 24 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL hydrophilic extractions of CAK, 

CPK, TAK, SAK and SPK       129 

Figure 3.70 Flow cytometric analysis of HT-29 cells after 48 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL hydrophilic extractions of CAK, 

CPK, TAK, SAK and SPK       130 

Figure 3.71 Flow cytometric analysis of HT-29 cells after 72 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL hydrophilic extractions of CAK, 

CPK, TAK, SAK and SPK       130 

Figure 3.72 Flow cytometric analysis of HT-29 cells after 24h, 48h and 72 hour exposure 

to concentrations of 100, 500 and 1000 µg/mL organic CAK extractions 132 

 

 

 

 



xiii 
 

Figure 3.73 Flow cytometric analysis of HT-29 cells after 24, 48 and 72 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL organic CPK extractions 133 

Figure 3.74 Flow cytometric analysis of HT-29 cells after 24, 48 and 72 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL organic TAK extractions 133 

Figure 3.75 Flow cytometric analysis of HT-29 cells after 24, 48 and 72 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL organic SAK extractions 134 

Figure 3.76 Flow cytometry analysis of HT-29 cells after 24, 48 and 72 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL organic SPK extractions 135 

Figure 3.77(a-n) Flow cytometric analysis of HT-29 cells after 24h, 48h and 72h 

exposure to concentration of 100 µg/mL aqueous extractions of CAK, CPK, 

SAK and SPK         140 

Figure 3.78 Flow cytometric analysis of HT-29 cells after 24h, 48h and 72h exposure to 

concentration of 100 µg/mL aqueous extractions of CAK, CPK, SAK and SPK

          144 

Figure 3.79 Flow cytometric analysis of HT-29 cells after 24h, 48h and 72h exposure to 

concentration of 500 µg/mL aqueous extractions of CAK, CPK, SAK and SPK

          144 

Figure 3.80 Flow cytometric analysis of HT-29 cells after 24h, 48h and 72h exposure to 

aqueous extractions of CAK, CPK, SAK and SPK at concentration of 1000 

µg/mL          145 

 

 

 

 



xiv 
 

Figure 3.81 Flow cytometric analysis of HT-29 cells after 24h exposure to concentrations 

of 100, 500 and 1000 µg/mL aqueous extractions of CAK, CPK, SAK and 

SPK          146 

Figure 3.82 Flow cytometric analysis of HT-29 cells after 48h exposure to aqueous 

extractions of CAK, CPK, SAK and SPK at concentrations of 100, 500 and 

1000 µg/mL         147 

Figure 3.83 Flow cytometric analysis of HT-29 cells after 72h exposure to concentrations 

of 100, 500 and 1000 µg/mL aqueous extractions of CAK, CPK, SAK and 

SPK          147 

Figure 3.84(A)-(H) show fluorescent stained HT-29 colon cancer cells exposed for 24 and 

48hours at 500 µg/mL to organic kernel extractions    152 

Figure 3.85(A)–(D) show fluorescent stained HT-29 colon cancer cells treated with CAK, 

CPK, SAK and SPK aqueous kernel extractions at 24 and 48 hour 500 µg/mL

          154 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

List of Abbreviations 

APC/C: Anaphase-Promoting Complex / cyclosome 

BAD: Bcl-2 Antagonist of Cell Death 

ATM: ataxia-telangiectasia mutated 

ATR: Ataxiaand Rad3 Related 

BAK: Bcl-2 Homologous Antagonist/Killer  

BAX: Bcl-2 Associated X Protein 

BCL-2: B-Cell Lymphoma-2 Family Members 

BID: BH3-Interacting Domain Death Agonist 

Bw: body weight 

CAK: Chinese apricot kernel 

CARD: Caspase-Recruiting Domain 

Cdc: Cell Division Cycle 

Cdc20: Cell Division Cycle 20 

Cdc25A, B: Cell Division Cycle 25A, B 

Cdk: Cyclin Dependent Kinases 

Cdk2: Cyclin Dependent Kinase 2 

Chk1, 2: Checkpoint 1, 2 

CKI: Cdk-inhibitors 

 

 

 

 



xvi 
 

CM: Chinese Medicine 

CHM: Chinese Herbal Medicine 

Cip/Kip: Cyclin inhibiting protein / Kinase inhibiting protein 

CPK: Chinese peach kernel 

CV: Crystal Violet 

MdM2: Mouse Double Minute-2 

DMEM: Dulbeco’s Modified Eagle’s Medium 

DMEM/F12: Dulbecos Minimum Essential Medium F12 

DMSO: Dimethyl-Sulfoxide 

DNA: Deoxyribonucleic Acid 

ECETOC: European Centre for Ecotoxicology & Toxicology of Chemicals 

FAP: Familial Adenomatous Polyposis 

FBS: Fetal Bovine Serum 

EFSA: European Food Safety Authority 

G1 phase: Gap 1 phase 

G2 phase: Gap 2 phase 

GLOBOCAN: International Agency for Research on Cancer (IARC’s) online database 

H&E: Haematoxylin and Eosin 

LC: Level codes 

 

 

 

 



xvii 
 

L-Glut: L-Glutamine 

MMC: Mitomycin-c bladder cell line 

MDM2: Mouse Double Minute -2 Homologue 

MOMP: Mitochondrial Outer Membrane Permeabilisation 

NOAEL: No-Observed Adverse Effect Level 

PBS: Phosphate-buffered saline solution 

PI: Propidium iodide 

Rb: Retinoblastoma 

RFB: Replication Fork Barriers 

SAK: South African apricot kernel 

SPK: South African peach kernel 

S phase: Synthesis phase 

TAK: Turkish apricot kernel 

TDI: Tolerable Daily Intake 

Thr: Threonine 

Tri NaCitrate: Tri Sodium Citrate  

Tyr: Tyrosine 

WEE-1: Wee1-Like Protein Kinase 

WM: Western Medicine 

 

 

 

 



xviii 
 

ABSTRACT  

Amygdalin, a controversial anti-cancer agent, is a cyanogenic glycoside plant compound 

found in apricot and peach kernels. Both amygdalin and its patented form, Laetrile®, have 

been promoted and sold as "vitamin B-17", although neither compound is a vitamin. No 

consensus on the efficacy of amygdalin regarding the treatment of different cancers has been 

reached. Cancer is now the third leading cause of death worldwide. More than 7.6 million 

deaths were estimated to have occurred in 2007 and by 2030 it is projected to increase to 17 

million cancer deaths per year. Cancers of the lung, breast, colon/rectum, liver and prostate 

are no longer largely confined to Western industrialized countries but are among the most 

common cancers worldwide (Thun et al. 2010). In South Africa it is estimated that one in 

every four males and one in every five females will be affected by a cancer diagnosis in their 

lifetime. The most common cancers in males are prostrate, lung, oesophagus, bladder and 

colorectal and in females they are cervix, breast, colorectal, oesophagus and lung (Haggar & 

Boushey 2009). Colon cancer is one of the most prevalent cancers worldwide, especially in 

western societies and is nutrition dependent (Klenow et al. 2009). It is one of the leading 

causes of death in both men and women in industrialised western countries. Colon cancer 

development involves both hereditary factors and lifestyle factors which include absence of 

physical exercise, unbalanced nutrition and long term smoking (Forman et al. 2004; Heavey 

et al. 2004). Colon cancer is traditionally treated by the resection of the colon, chemotherapy, 

radium therapy, and pharmaceutical hormonal drugs (Willson et al. 1987; Padussis et al. 

2004)). Epidemiological studies supports evidence that colon cancer is preventable by 

adjusting the diet (Forman et al. 2004) and a protective effect is attributable to polyphenols 

and foods such as fruits and vegetables (Araújo et al. 2011). It was reported by Ruan et al.  

(2006) that the addition of Chinese Herbal Medicine in conjunction with chemotherapy not 

only raised the efficacy of the chemotherapeutic drug, but also reduced the toxic side-effects. 
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The aim of this research was to carry out a comparative in vitro study of the anti-tumour 

effect of the Chinese , South African and Turkish apricot (Xing ren / Armeniacea Semen) and 

Chinese and South African peach (Tao ren / Persica Semen) kernel extracts on the HT-29 

colon cancer cell line. 

All the extracts significantly reduced cell viability and inhibited proliferation in the HT-29 

cancer cells after 24 hours with the lipophilic and total fractions of CAK being the most 

effective. After 72 hours, it is clear that the inhibitory effects have been abolished and 

replaced by a stimulatory effect as the cell viability is higher in the treated cultures than the 

untreated controls. Results show that the total and the hydrophilic fractions of all the kernels 

increased cell viability more than the lipophilic fractions. It cannot be said with certainty that 

it was the amygdalin metabolite cyanide that affected the cell viability or induced apoptosis 

on its own. If hydrolysis of amygdalin indeed happened and cyanide was produced, it would 

affect the cells by shutting down aerobic respiration. Since cancer cells have more β-

glucosidases and less rhodanese than normal cells, it is a possibility that the HT-29 cancer 

cells had some rhodanese to convert cyanide into a relatively harmless compound 

thiocyanate. It could be that in vitro this conversion, in light of the low enzyme levels in the 

HT-29 cancer cells, happened slowly and that the effect was only seen after 48 hour. 

However, this does not explain the overall inhibition even by the lipophilic fractions that 

should not contain any amygdalin or the eventual stimulatory effect, observed from 48 hour 

onwards. 

The S phase block observed, was mostly seen after 24 hour exposure to organic extractions, 

with the SAK showing 86% of cells in the S phase in contrast to the aqueous extractions 

which only slightly increased the S phase fraction. 
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This could indicate that synergistic and/or additive effects between polyphenolic compounds 

may also be responsible for the reduction of cell viability, proliferation and apoptosis. All the 

kernels and the various fractions affected cell viability and to an extent cell cycle progression, 

but more studies is needed to establish the most effective kernel and specific fraction or 

signature active component. 

Inhibition of cell viability and proliferation and the induction of apoptosis could be an 

important preventive approach in chemoprevention. Understanding how dietary components 

regulate proliferation and cell survival could play a critical role in development of new 

enriched agents that can prevent and treat cancer with reduced risk of toxicity. 
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Chapter 1 

 

1. Literature Review 

Food for the majority of people is the one form of medicine that can easily be controlled. “Let 

food be thy medicine; and medicine be thy food” – Hippocrates. The apricot (Xing ren / 

Armeniacea Semen) and peach (Tao ren / Persica Semen) kernels are normally consumed as a 

food supplement, anti-cancer nutritional treatment, or herb and may be taken in the form of a 

decoction or tincture as medicine. Literature has revealed that the apricot kernel has 

antimicrobial, anti-mutagenic, cardioprotective, anti-inflammatory, antinociceptive and 

antioxidant activities (Raj et al. 2012). 

 

1.1 Cancer 

Cancer is one of the leading causes of morbidity and mortality worldwide. It has been 

predicted that by the year 2020, the number of new reported cancer cases in the world will 

have increased to an excess of 15 million with deaths increasing to 12 million (Kanavos 

2006). In most developing countries cancer is the largest single cause of death in both men 

and women (Parkin et al. 1999). 

Cancer is a disease of uncontrolled cell growth and may be caused by poor dietary habit, 

genetic predisposition and environmental carcinogenic agents. A large percentage of all 

cancers worldwide are caused by unhealthy dietary habits, and in the case of colon cancer, 

diet may account for 80% of the cases. When alcohol and smoking are added to the diet the  
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percentage may increase dramatically (Reddy et al. 2003). Genetic predisposition to cancer 

lends itself ~20% of cancer cases, thus the majority of cancers are associated with a host of 

environmental factors (Doll & Peto 1981). As the causes of cancer may be due to exposure to 

known suspected risk factors related to lifestyle or the environment provides a clear challenge 

to develop preventive strategies. For many cancers, curative treatment is generally not 

possible and this may be exacerbated by poverty, health and inappropriate facilities in poorer 

areas. Therefore, prevention of cancer in relation to diet is important to reduce the incidence, 

especially in areas where dietary deficiencies contribute to risk factors in cancer 

development. Dietary changes should thus be the focus on health care strategies that are cost 

effective. 

Despite many therapeutic advances in medicine and the understanding of the process of 

carcinogenesis, overall incidence and mortality from cancer is still high (Ouédraogo et al. 

2011). Natural or synthetic compounds are becoming more common that are used to block, 

reverse, or prevent the development of invasive cancers. The use of natural products as new 

chemotherapeutic agents need to be implemented more in order to make a difference in the 

mortality rate (Reddy et al. 2003). Cellular carcinogenesis forms the biologic basis for the 

identification of these preventive products, the assessment of their activity and ultimately the 

success or failure of a therapy (Reddy et al. 2003; Jemal et al. 2010). 
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1.1.1 Colon Cancer 

This is the third most commonly diagnosed cancer in males and the second in females with 

over 1.2 million new cases and 608,700 deaths estimated to have occurred in 2008 and is 

more prevalent in developed countries (Padussis et al. 2004; Jemal et al. 2010). Colon cancer 

development involves both hereditary factors and lifestyle factors which include absence of 

physical exercise, unbalanced nutrition and long term smoking (Forman et al. 2004; Heavey 

et al. 2004). Hereditary factors that increase risk include a personal or family history of 

colorectal cancer and/or polyps, a personal history of chronic inflammatory bowel disease 

(e.g. ulcerative colitis or Crohns disease), certain inherited genetic conditions (e.g. Lynch 

syndrome, also known as hereditary non-polyposis colorectal cancer, or familial adenomatous 

polyposis [FAP]), and type 2 diabetes (Roynette et al. 2004). The onset occurs in people 30 – 

50 years and younger. A study based on a national database of 400,000 patients with colon or 

rectal cancer (Bailey et al. 2014) showed that for patients 20 to 34 years, the incidence rates 

of localised, regional and distant colon and rectal cancers have soared. Incidence rates today, 

per 100,000 people, are 3 for ages 20 to 34; 17 for ages 35 to 49; and 300 for people over 50. 

According to Bailey et al (2014) in 2030, the incidence rates for colon and rectal cancers will 

increase by 90% and 124,2%, respectively, for patients 20 to 34 years and by 27,7% and 

46%, respectively, for patients 35 to 49 years. Approximately 95% of colorectal cancers are 

adenocarcinomas. Colon carcinomas arise within adenomatous polyps, and not all polyps 

develop into cancers; carcinomas are 10 fold more frequent in villous polyps than tubular 

polyps and hyperplastic lesions are rarely the site of carcinomas (Willson et al. 1987). 

Metastasis is normally around the focus areas such as the liver, pancreas, spleen, abdominal 

lymph nodes and lungs. Epidemiological studies supports evidence that colon cancer is  
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preventable by adjusting the diet (Forman et al. 2004) and a protective effect is attributable to 

polyphenols and foods such as fruits and vegetables (Araújo et al. 2011). The increased risk 

is associated with a high-fat and low fibre diet (Singh & Fraser 1998) as well as obesity, diet 

high in red or processed meat (Ferguson 2002) and alcohol consumption (Jemal et al. 2010). 

 

There are disparities in this type of cancer incidence and mortality among races and ethnic 

groups where African-American populations have a higher incidence and mortality rate 

compared to other ethnic populations (Padussis et al. 2004). The reasons are not entirely 

known but it has been postulated that differences in access to high quality regular screening, 

timely diagnosis and treatment, lifestyle and dietary factors and socio-economic factors all 

play a role (Padussis et al. 2010). Age is a big risk factor with people aged 50 years having a 

higher mortality rate which further increases over 50 years (Padussis et al. 2010). Patients 

with a personal history of adenomatous polyps or a previous history of colorectal cancer are 

at an increased risk of developing colon cancer in the future. Size, number and histology of 

the polyps are important prognostic factors with a size of > 1 cm, villous or tubuvillous 

histology, and multiple polyps conferring a greater risk of colorectal cancer (Padussis et al. 

2010). It is estimated that the incidence and mortality rates per 100 000 in Southern Africa 

for males vs. females was 235.9:161.0 and 172.1:108.1 respectively by 2008 (Jemal et al. 

2011). The rate for all cancers (in both men and women) was 1.7 times higher in more 

developed countries than in less developed countries, with 14.1 million new cases and 8.2 

million cancer-related deaths in 2012, and colorectal cancer accounting for 1.36 million of 

the most commonly diagnosed cancers (Ferlay et al. 2014; WHO/GLOBOCAN 2013). 
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1.1.2 Pathogenesis 

The aetiology of large intestine cancer is still unclear but is said to possibly be due to chronic 

inflammation, polyps, adenoma of the large intestine which is related to diet and 

environmental factors. According to Western Medicine pathology the aetiology includes 

inherited genetic factors and environmental factors with diet being the biggest contributing 

factor referring to the bacterial flora in the large intestine, bowel transit time, and the amount 

of cellulose, amino acids and bile acids in the bowel contents. It has also been linked to the 

high density protein CD 133 population, a marker of organ specific adult stem cells that can 

grow a new tumour (Ricci-Vitiani et al. 2007). 

 

Chinese Medicine diagnoses and treats according to syndrome and pattern differentiation. 

The main patterns attributed to colon cancer according to Chinese Medicine are that of states 

of excess (i.e. blood stasis, damp-heat and accumulation of toxic materials) and states of 

deficiency (i.e. deficiency of Qi, Blood, Yin, and Yang of the spleen, liver and kidney). The 

tumour itself is seen mainly as Blood Stasis (see Figure 1.1). 
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Figure 1.1: Causes and Pathogenesis according to Chinese Medicine 

 

* Improper diet 

* Constitutional deficiency  

of the Spleen & Stomach 

 

Deficiency of Spleen & Stomach 

Accumulation of Toxic Heat, Fire & Dampness within intestines & at times a 

deficiency of Spleen, Kidney and Resistance Qi (immune system) 

   giving rise to different 

syndromes that will present 

   with varying manifestations 

 

 

 Syndromes:  

 Agglomeration of Dampness and Heat 

 Stagnation of Toxic Materials & Blood Stasis 

 Deficiency of Stomach & Liver Yin 

 Deficiency of Qi & Blood 

 Deficiency of Spleen & Kidney Yang 

 Deficiency of Liver & Kidney Yin 

BLOOD STASIS 

(TUMOUR)  
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1.2 Chinese Medicine (CM) 

CM, an ancient discipline of medicine, refers to the human body as having four vital 

substances, namely Qi, Blood, Body fluids and Essence, and as constituting of four levels i.e. 

Wei level (outer most and first energetic level also known as the defensive level), Qi level 

(second energetic level and relating more to the organs), Ying level (third and nutritive level) 

and lastly the Blood level (deepest level). A balance in Yin and Yang, a theoretical 

framework by which everything is classified, renders the body in a state of health, whereas an 

imbalance thereof will indicate a state of ill-health and thus an imbalance in any of the vital 

substances and which may manifest on any of the four levels. CM employs the philosophy 

that “Qi is the commander of Blood (it thus moves blood by providing it with the necessary 

force for it to course through our organs, vessels and meridians), and blood is the mother of 

Qi (it thus serves as the material foundation for Qi)” (Maciocia 2005). Chinese Herbal 

Medicine (CHM) is but one branch of CM and boasts over 4000 years of empirically based 

evidence. The lungs and large intestine are said to have an interior / exterior relationship in 

terms of their organ function and according to acupuncture meridian theory as paired 

meridians, and in this fashion is able to treat each other respectively (Maciocia 2005). The 

large intestine is the last area of body fluid reabsorption.  

 

1.2.1 Peach and Apricot Kernels in Chinese Medicine 

In the Chinese Materia Medica by Bensky et al (2004) the Chinese apricot and peach kernels 

are shown to have an effect on the large intestine and lung meridians and organs. According 

to Zhang Bing-Cheng (Dan Bensky 2004a) the Chinese apricot and peach  
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kernels are similar in nature although “the one moves into the liver meridian at the Blood 

level (deepest level) and the other into the lung meridian at the Qi level (second level)”. Thus 

the apricot and peach kernels together addresses both the Qi and Blood levels, and because 

the flow of Qi supports the movement of blood, a combination of apricot and peach kernels 

can be used when Blood stasis leads to pain in the chest, abdomen or throughout the body 

(Dan Bensky 2004a). Raj et al (2012) indicated that the apricot kernel (Xingren; Prunus 

armeniaca - native to northern China) according to Chinese Medicine has been traditionally 

prescribed for the treatment of asthma, constipation and cough. 

In comparison to the peach kernel, the apricot‟s action is more focused on the upper part of 

the body whereas the peach kernel is more focused on the lower parts of the body despite 

both having a moistening effect on the intestines (Dan Bensky 2004a). Their status as fruit 

kernels implies that there is some life-giving generative force, which is expressed by the 

peach kernel‟s ability to assist in the generation of new blood following the expulsion of the 

old stagnant blood, and in combination herbal treatment is thus used in cancer treatment (Dan 

Bensky 2004a). The peach kernel thus has the ability to remove blood stasis and improve the 

circulation. 

 

The apricot kernel appears in the category of herbs which relieves coughing and wheezing. 

According to Chinese Materia Medica by Bensky et al (2004) it is used to treat the following 

symptoms: cough, wheezing, with or without constipation, heaviness of the head and body. 

Apricot kernels have the following properties: bitter, slightly warm, slightly toxic; enters the  

lung and large intestine channels and is said to direct the lung-Qi downwards hence stopping 

cough and facilitating peristalsis, disperse exterior wind cold and moisten the intestines. The 
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 kernels are slightly toxic (Dan Bensky 2004a) but by virtue of its toxicity, it is able to treat 

sores and kill parasites (Dan Bensky 2004a). Due to the interior / exterior relationship of the 

lung and the large intestine, when the lung-Qi fails to descend (governing respiration) the 

large intestine also fails in its rhythmic movement (peristalsis) thus leading to constipation. 

However, apricot kernels may be used to treat any type of constipation. Investigations of 

differences between the bitter apricot kernel (beixingren) and the sweet apricot kernel 

(nánxingren) showed that the sweet apricot kernel is less toxic and more moistening and 

primarily used for alleviating coughing and wheezing (Femenia et al. 1995). 

 

1.2.2 Composition of the Apricot Bitter Kernel  

i)  Glycosides: glucosidases, amygdalin, amygdalase, prunase, prunasin,  

   mandelonitrile (secondary product) 

ii)  Fixed oils: oleic acid, linoleic acid, palmitic acid, stearic acid, linolenic 

acid, eicosatetraenoic acid  

iii)  Volatile oils: benzaldehyde, linalool, 4-terpenenol, α-terpineol 

   (Dan Bensky 2004a).  

(See Annexure 1 for the complete chemical composition of the Apricot kernel) 

 

It must be noted that the peach kernel (Tao ren, Prunus persica - native to northern and 

central China) is more often spoken about in terms of cancer treatment than apricot kernels 

due to its ability to remove blood stasis. 
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Experiments have shown that CHM plays an anti-cancer role by inducing apoptosis and 

differentiation, improving the immune system, inhibiting angiogenesis, reversing multidrug 

resistance, etc. (Ruan et al. 2006). According to Chinese Materia Medica (Dan Bensky 

2004b), the peach kernel falls into the category of herbs that invigorate the blood. It has the 

ability to treat the following symptoms: menstrual disorders, abdominal pain, trauma, injury, 

lung and intestinal abscess with fixed mass, all with the characteristic blood stasis syndrome; 

and constipation due to dryness. It has the properties of being sweet, bitter and neutral; enters 

the heart, lung, liver and large intestine channels; it invigorates the blood and dispels blood 

stasis, moistens the intestines, stops coughing and wheezing. 

 

1.2.3 Composition of the Peach Kernel 

i) Glycosides: amygdalin, prunasin 

ii) Fixed oils: mono-, di-, and triglycerides of oleic acid, palmitic acid, stearic 

acid; sterol esters, phosphotidyl choline, phosphotidyl  

ethanolamine, phosphatide serine, triolein 

iii) Volatile oils: benzaldehyde, 1-methylhydrazine, 1,3-dioxolane-3- methanol,   

1-methyl-1-propylhydrazine, 3-methyl-2-pentanone, 4-methyl-

5-propylnonane, 4-methyl-1-pentanol, thujene, limonene, 

ocimene, 1-octanol, camphor, naphthalene, nonanol, ß-

gurjunen, caryophyllene, 2,4-dimethydecane,  

4,7-dimethylundecane 
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iv) Flavanoids: (+) catechin, pruning, hesperitin-5-0-glucoside, naringenin, 

kaempferol, dihydrokaempferol, kaempferideglucoside,  

quercitinglucoside (Dan Bensky 2004b). 

 

According to Bensky et al (2004), the apricot kernel is toxic due to its cyanogenic glycoside 

content; for application in a decoction 10 to 20 kernels is the toxic dose for children and 40 – 

60 kernels for adults; ingestion of 50 - 120 kernels may cause death, however, within the 

normal dosage range and taken as a decoction, no toxic side effects are to be expected. It 

must be noted that the powdered kernel suspension is 4 – 5 times as toxic as the decoction of 

the kernels and peeled kernels are less toxic than unpeeled kernels (Dan Bensky 2004a). Dry-

frying the apricot kernel mitigates their bitterness and reduces the oil content (Dan Bensky 

2004a). 

 

According to the Phytochemical database of the American Department of Agriculture (Duke 

1992), the seed contains some amounts of the hormones alpha-estradiol and estrone (E1). 

According to Risk Profile Apricot Kernel oil (AKO) CAS No. 72869-69-3 (31.05.2013) 

(Anon 2013), independent to the aforementioned database the author Ning DD et al. (1990) 

also reports that the seed contains beta-estradiol (E2) and E1. Risk Profile Apricot Kernel oil 

(AKO) CAS No. 72869-69-3 (31.05.2013) furthermore states that the seed contains both free 

and conjugated estradiol and E1 in a separate oestrogenic fraction that makes up 0.09% of the 

seeds weight as demonstrated in the Monograph on apricot in the Herbal Medicines (World 

Health Organisation 2004). There is about 200 apricot species mainly found in the northern  
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hemisphere; however, Prunus Africana is the only species native to Southern Africa. (Iziko 

Museum 2002). 

 

1.3 Specific active components of the apricot and peach kernels 

Various documents from the oldest civilizations such as Egypt and China, 2500 years before 

Christ, mention the therapeutic use of derivatives of the bitter almonds (Pulido 2000). 

Egyptian papyri from 5000 years ago mention the use of „aqua amigdalorum‟ for the 

treatment of some tumours of the skin (Pulido 2000). A white crystalline substance, pure 

amygdalin, was first isolated in 1830 by two French chemists Roubiquet and Boutron-

Charland (Halenár et al. 2013; Greenberg & Francisco 1975; Pulido 2000). In 1837, the 

German scientists von Liebig and Woehler found that in the presence of certain enzymes, 

amygdalin breaks down into glucose, benzaldehyde, and hydrogen cyanide (which is 

poisonous) (Cooke et al. 2009; South 1845) 

 

  

1.3.1 Amygdalin 

Amygdalin (Figure 1.2), a controversial anti-cancer agent, is a cyanogenic glycoside plant 

compound that was initially isolated from bitter almonds (Halenár et al. 2013; Abtahi 2008; 

Milazzo et al. 2007). Amygdalin is found in many fruit pits and plants of the Rosacea family 

such as P. persica (peach) and P. armeniaca (apricot) and P. amygdalusvaramara (bitter 

almond) (Milazzo et al. 2009). It is a white, crystalline, inodorous powder that is slightly  
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soluble in cold water and very soluble in hot water, acetone, alcohol, but not in ether (Al 

Bakri et al. 2010). Recent high resolution Raman imaging has revealed that throughout the 

apricot seed there are local amygdalin “concentration spots” (Krafft et al. 2012). When 

pressed, the apricot kernel releases oil very chemically similar to the oil found in sweet 

almond and peach kernels. This oil contains olein, glyceride, linoleic acid, and a transparent, 

crystalline chemical compound, amygdalin (Dai & Mumper 2010). Although the oil from 

apricot seeds usually breaks down into a toxic substance capable of causing death of the 

human, which is the main cause for the controversy, there are also varieties of apricot seeds 

that are reported to be edible (Dai & Mumper 2010). 

 

 

Figure 1.2: Amygdalin. CAS no. 29883-15-6.UIPAC name: [(6-O-β-D-glucopyranosyl-β-D- 

glucopyranosyl) oxy] (phenyl) acetonitrile CAS no. 29883-15-6, Chemical formula is C20H27NO11, 

MW=457.43 g/ mol (Anon 2013). 
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1.3.2 Laetrile and the “Krebs Hypothesis”  

Laetrile (Figure 1.3), is the trade name for laevo-mandelonitrile-beta-glucuronoside, a 

substance allegedly synthesized by Ernst T. Krebs, Sr., M.D when he was a pharmacy 

student. He had theorized that "cancer proteins" could be broken down by this enzyme he had 

prepared. When the substance proved too toxic in animal experiments, he boiled it and 

obtained better results (Seers et al. 2012). In 1949, Krebs, Jr., modified his father's extraction 

process and named the result Laetrile that is registered with the U.S. Patent Office. This 

compound is chemically related to amygdalin. Most advocators of laetrile for the treatment of 

cancer use the terms "laetrile" and amygdalin interchangeably (Seers et al. 2012). 

 

Laetrile (laevo-D-mandelonitrile-B-glucoronide) is the patented purified, semi synthetic form 

of amygdalin which contains 2 sugars, a benzaldehyde, and hydrogen cyanide (Halenár et al. 

2013). As a nitriloside, amygdalin resembles the B complex structures and after enforcement 

agencies began trying to ban Laetrile as a drug Krebs Jnr. claimed that Laetrile was a vitamin 

(“Vitamin B17”) and that cancer is caused by a deficiency of this vitamin (Fassa 2009). 

 

Figure 1.3: Laetrile (CAS no. 1332-94-1). MW=309.2714 g/mol. Laetrile is also classified as a 

cyanogenic glycoside (Anon 2013). 
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Vitamin B17 is also known as Laetrile or Amygdalin and these three names are being used 

interchangeably (Enculescu 2009). According to Krebs Jnr (Ernst T. Krebs 1975) this “newly 

designated vitamin B-17” (nitriloside) could account for: 

1. The thiocyanate in the body fluids, blood, urine, saliva, sweat, and tears 

2. Part of the benzoic acid (and subsequently hippuric acid) and salicylic acid 

isomers 

3. The HCN that is used for the production of cyanocobalamin (Vitamin B12) 

 

1.3.2.1 Theories for the possible mechanism of action of Laetrile 

Four different theories have been posed regarding the anti-cancer activity of Laetrile (Cooke 

et al. 2009) 

i) Trophoblast theory: The trophoblast theory (Beard, 1911) suggests that all 

cancers arise from special cells which are randomly dispersed in the body 

during embryonic development (which would normally have become egg or 

sperm cells). Building on the trophoblast theory, Krebs (1970) suggested that 

the transformation of the rogue egg/sperm cells into a cancerous state could be 

prevented by ingesting laetrile. Trophoblast cancer cells are thought to have a 

different balance of enzymes in comparison to normal non-cancerous cells, 

that is, more beta-glucuronidase and less rhodanese than normal cells. Beta-

glucuronidase breaks laetrile down and produces cyanide (which kills the cell 

by shutting down aerobic respiration); however, rhodanese can convert 

cyanide into a relatively harmless compound (thiocyanate). As cancerous cells  
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have less of rhodanese enzyme to convert cyanide to a harmless form they are 

more affected by cyanide than healthy cells. 

Therefore, it is believed cancerous cells are more likely to be adversely 

affected by laetrile, while normal cells are thought to be unaffected. However, 

there is no experimental evidence to support the idea that normal and 

malignant cells differ in their concentrations of these two enzymes (Cooke et 

al. 2009) 

 

ii) Enzyme balance: The second theory of action of laetrile is similar to the first 

in suggesting that cancerous cells have a different balance of enzymes. The 

main difference with this theory is that the trophoblastic explanation for 

cancer cell development is not used. This second approach states that cancer 

cells have more beta-glucosidase and less rhodanese enzymes than normal 

cells, and therefore laetrile negatively affects only cancerous cells as they are 

not protected by sufficient rhodanese. However, no experimental evidence 

exists to support this theory (Cooke et al. 2009) 

 

iii) Vitamin B17” deficiency: The third theory is that cancer is a result of a 

metabolic disorder caused by a deficiency in so-called “vitamin B17”. Dr 

Krebs (1970) used vitamin B17 as another name for laetrile, and it is thought 

that by restoring this missing “vitamin” in the body, health can be restored. 

Studies have shown that the vitamin status of an individual can determine the  
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development of cancer. However, there is no evidence that B17 or laetrile is 

needed for normal metabolism or that it even functions as a vitamin in humans 

or animals (Cooke et al. 2009) 

 

iv) Fourth Theory: As well as disrupting aerobic respiration, the cyanide 

released by laetrile increases the acid content of tumours and leads to the  

destruction of lysosomes within the tumour cells. The lysosomes release their 

contents (i.e. enzymes which can break down other cellular molecules) thereby  

killing the cancer cell(s) and stopping the growth of the tumour. However, this 

theory is not supported by evidence (Cooke et al. 2009). 
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Figure 1.4: Graphic representation of the chemistry of nitrilosides in cancer (Anon 2001) 

 

Thus the entire rationale for using amygdalin/laetrile rests on the assumption that normal 

cells have higher levels of an enzyme, rhodanese, which “neutralizes” the amygdalin 

production of cyanide (Pulido 2000). In this way the amygdalin serves as a source of glucose 

to the healthy cells (see Figure 1.4) whilst killing malignant cells. 
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In 1980, the U.S. Supreme Court prohibited the use of Laetrile® as a cancer therapy or as a 

treatment for any other medical condition in the United States, but the compound continues to 

be manufactured and administered as an anticancer therapy, primarily in Mexico. 

 

1.3.2 Rhodanese enzyme 

Rhodanese is a multifunctional, mitochondrial, sulphur transferase that catalyzes the 

detoxification of cyanide by suphuration in a double displacement mechanistic reaction 

(Saidu 2004). With the aid of electron density map and gel electrophoresis, bovine liver 

rhodanese shows that it consists of a single polypeptide chain with molecular weight of 

32,000 to 33,000 (Saidu 2004). The principal detoxification pathway of cyanide is that 

catalyzed by a liver mitochondrial enzyme, namely rhodanese (Cyanide: Thiosulphate 

Sulphur Transferase; E.C.2.8.1.1) (Saidu 2004). The physiological role in animal tissue of 

rhodanese (Cyanide: Thiosulphate Sulphur Transferase; E.C.2.8.1.1), a sulphur transferase, is 

to catalyze, in vitro, the formation of thiocyanate that is excreted by the kidneys from cyanide 

and thiosulphate; in vivo however, the enzyme is multifunctional (Saidu 2004). 
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1.3.3 Metabolism and Toxicity of Amygdalin  

The proposed mechanism of action of amygdalin in healthy or diseased bodies has not been 

established yet (Greenberg & Francisco 1975; Cooke et al. 2009). It is known that cyanide is 

a by-product of the metabolism of amygdalin and is a toxic substance which may be lethal. 

The method of administration (oral vs. intramuscular vs. intravenous) is thus called into 

question as to the most suitable form of administration to reduce the toxic effects of the 

cyanide since there seems to be a link with intestinal bacteria and the release of cyanide (on 

oral administration). According to data collected by Jonathan Newmark (October 1981), the 

rat and human small intestine is rich in amygdalin and prunasin-hydrolyzing enzymes. This 

data is consistent with the findings of Moertel et al as cited by Park et al (2005) that 

amygdalin administered intravenously caused no side effects of cyanide toxicity, but that oral 

administration did. Amygdalin is hydrolyzed by the enzyme emulsion (β-glucosidase) (see 

Figure 1.5) to prunasin (D-mandelonitrilemonoglucoside); prunasin is then hydrolyzed to 

mandelonitrile by the same enzyme (β-glucosidase). Nitrilosides are hydrolysed to free 

hydrogen cyanide (HCN), benzaldehyde or acetone and glucose (Ernst T. Krebs 1970). 

Cyanogenic glycosides, which are monosaccharide or disaccharide conjugates of 

cyanohydrins, are widely present in plants where they are the principal precursors of 

hydrocyanic acid. Representatives of importance identified in edible plants are: amygdalin 

which is found in bitter almonds, apple pips, kernels of cherries, apricots and peaches 

(Genderen 1997). Formation of hydrogen cyanide in plants first requires the hydrolisation of 

glycosides by glycosidases to the cyanohydrins and mono- or – disaccharides (Genderen 

1997). Cyanohydrins undergo further hydrolysis by lyases to hydrogen cyanide and carbonyl 

compounds involved (Genderen 1997). 

 

 

 

 



 

Chapter 1: Literature Review 

 

 

21 
 

 
 

 

Figure 1.5: Hydrolysis of Amygdalin (Padmaja 1995) 

 

Cyanogenic glycosides such as amygdalin (the predominant cyanogenic glycoside variant in 

apricot kernels) are considered non-toxic until cyanide (HCN) is released. This usually occurs 

as a result of enzymatic hydrolysis by β-glucosidases following grinding of plant tissue which 

activates intracellular β-glucosidases, or by the gut micro-flora. It can also occur, to a lesser 

degree, by glucosidases of the liver and other tissues (Padmaja 1995). This reaction can also 

result from chewing, which causes the enzyme and the cyanogenic glycosides stored in 

different compartments to combine (Chaouali et al. 2013). The reaction occurs rapidly in an 

alkaline environment, and the hydrolysis is complete in 10 min. Hydrolysis is possible in an 

acid solution but takes place slowly. The released HCN is readily absorbed and rapidly 

distributed in the body via the blood (EFSA 2004). 
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Figure 1.6: Structures of common plant-derived cyanoglycosides and principle pathway of HCN 

formation. (Al Bakri et al. 2010; Femenia et al. 1995; Yildrim and Askin 2010). 

 

Glycosides and salts are expected in total extractions. Glycosides are a class of molecules in 

which, a sugar molecule is bound to a "non-sugar" molecule (aglycone). Many plants store 

their secondary bioactive metabolites in the form of inactive glycosides. Once the glycoside 

is split into its two components (sugar and aglycone), the aglycone can exert its biological 

effects. The aglycone part in apricot and peach kernels contains a cyanide group, and some 

contain a sulphate group. Subjecting these compounds to hydrolysis using either aqueous 

medium or enzymes yield an aglycone which may contain the cyanide group (C=N), and 

sometimes the cyanide group can be split further into a hydrocyanic acid (HCN), which is a 

volatile compound. Boiling of any of the above mentioned starting materials in water  
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(aqueous extract) can decrease the cytotoxicity due to the volatility of HCN molecule, 

making it usable by human beings for medication. However, the organic extraction 

procedures may keep the glycosidic compounds without decomposition and could be more 

cytotoxic than aqueous extractions. 

 

1.3.3.1 Cyanide 

Cyanide acts through the inhibition of cytochrome-c oxidase in the respiratory electron 

transport chain of the mitochondria, impairing both oxidative metabolism and the associated 

process of oxidative phosphorylation, thereby causing death through energy deprivation and 

oxygen uptake (Chaouali et al. 2013). Cyanide causes intracellular hypoxia by reversibly 

binding to mitochondrial cytochrome oxidase a3 within the mitochondria (Chaouali et al. 

2013). Cytochrome oxidase a3 is necessary for the reduction of oxygen to water (Chaouali et 

al. 2013). The toxicity of cyanide is largely attributed to the cessation of aerobic cell 

metabolism causing central nervous system and cardiovascular dysfunctions by cellular 

hypoxia (Chaouali et al. 2013). 

 

1.3.3.1.1 Metabolism and Excretion of Cyanide 

Hydrogen cyanide has a pKa of 9.22; thus, at physiological pH (about pH 7), hydrocyanic 

acid is distributed in the body as hydrogen cyanide and is not present as the free cyanide ion. 

Hence, the form of cyanide to which exposure occurs, the salt or the free acid, does not 

influence distribution, metabolism, or excretion from the body (Simeonova & Fishbein 2004). 
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The major portion of cyanide in blood is sequestered in the erythrocytes, and a relatively 

small proportion is transported via the plasma to target organs. Cyanide is concentrated in red 

blood cells at a red blood cell to plasma ratio of 199:1, but levels in plasma reflect tissue 

levels better than levels in whole blood or erythrocytes (Simeonova & Fishbein 2004). The 

major route of metabolism for hydrogen cyanide and cyanides is detoxification in the liver by 

the mitochondrial enzyme rhodanese as discussed in section 1.3.2.2, which catalyses the 

transfer of the sulfanesulfur of thiosulfate to the cyanide ion to form thiocyanate (Figure1.6) 

(Saidu 2004). About 80% of cyanide is detoxified by this route. 

The limiting factor in cyanide metabolism is the low concentration of the sulphur-containing 

substrates in the body, primarily thiosulfate, but also cystine and cysteine (Aminlari & 

Baghshani 2009). While rhodanese is present in the mitochondria of all tissues, the species 

and tissue distributions of rhodanese are highly variable. In general, the highest 

concentrations of rhodanese are found in the liver, kidney, heart, brain, and muscle, but the 

supply of thiosulfate is limited (Aminlari & Baghshani 2009). The half-time for hydrogen 

cyanide elimination is approximately 1 hour (World Health Organisation 2004). 
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Figure 1.7: Basic processes involved in the metabolism of cyanide (Anon 2013). 
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1.3.3.1.2 Toxicity of cyanide derived from cyanogenic glycosides in apricot  

Kernels 

Acute toxic effects: related to cyanide have occurred from consumption of stone fruit kernels 

(EFSA 2004). The lethal dose in humans is about 0.5 – 3.5mg/kg body weight (bw) 

(Bewertung 2007; EFSA 2004; Chaouali et al. 2013). The estimated no-effect level in adults 

is 5μg/kg bw, corresponding to the intake of a bitter apricot kernel (Bewertung 2007) and 

translates to a maximum daily limit of two kernels. 

Food: Cyanogenic glycosides present in apricot kernels (and/or Laetrile™), as sources of 

hydrocyanic acid (HCN), are relatively non-toxic until HCN is released. This can occur as a 

result of enzymatic hydrolysis by β-glucosidases following maceration of plant tissue or by 

the gut microflora e.g. as part of the digestive process. Benzaldehyde is also produced by the 

hydrolysis of amygdalin in addition to sugar moieties and HCN. 

Fatal acute: (e.g. deaths) have occurred from consumption of stone fruit kernels, whereas 

chronic uptake of HCN in sub-acutely toxic doses may be involved in the disturbance of 

thyroid function and neuropathies. The systemic effects of an oil prepared from the seeds 

containing 94% unsaturated fatty acids, and oleic and linoleic acids were assessed in a 13-

week feeding study in rats. The animals were fed a diet containing 10% oil. No toxic effects 

were observed and no macroscopic or microscopic lesions in any of the organs were found 

(Gandhi et al. 1997). 

A study concluded that data on chronic toxicity were not adequate to establish a no-observed 

adverse effect level (NOAEL) or Tolerable daily intake (TDI) in humans (EFSA 2004). 
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1.4 Research of possible effects of Amygdalin 

1.4.1 Cell growth / cell death studies 

The first recorded use of amygdalin to treat cancer was reported in 1845 by T. Inosmetzeff, a 

professor at the Imperial University of Moscow. A young male cancer patient aged 20 years 

received approximately 46,000 mg of amygdalin over a period of 3 months, and was still 

alive 3 years later (South 1845). Furthermore, a woman aged 48 years, with extensive 

metastasis from a primary right ovarian tumour that received varying amounts of amygdalin 

over a period of years, survived 11 years at the time of the report (South 1845) and no 

sustained pharmacologic harm was seen in these patients. 

The apricot kernel was found to be antimutagenic against Mitomycin-c bladder cell line 

(MMC) but not inhibitory to the synthesis of DNA of 4 kinds of tumour cells, namely mouse 

metallothioneins (MT-II), murine L929 fibrosarcoma cells (L929), SKV 20 (Wei et al. 2002). 

Park et al (2005) showed that amygdalin down regulated cell-cycle related genes in SNU-C4 

human colon cancer cells concluding that amygdalin could possibly be used as therapeutic 

anticancer drugs. Human DU145 and LNCaP prostate cancer cells exhibited several 

morphological characteristics of apoptosis after treatment with an aqueous apricot kernel 

extract of amygdalin, increasing Bax expression and caspase-3-enzyme activity, and 

decreasing Bcl-2 expression (Chang et al. 2006). 

Syrigos et al (1998) demonstrated that amygdalin was cytotoxic to HT1376 bladder cancer 

cells only at high concentrations, whereas the combination of amygdalin with HMFG1-β-

glucosidase enhanced the cytotoxic effect of amygdalin 36 fold. Fukuda (2003) reported 

amygdalinic acid to have anticancer properties upon oral administration to mice having  
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inoculated tumour cells (AC755). The inhibitory 12-0-tetradecanoylphorbol-13-acetate 

(TPA)-induced Epstein-Barr Virus early antigen (EBV-EA) activation tests in Raji cells 

results showed amygdalinic acid produced 65-80% inhibition of EBV-EA activation at a 

concentration of 500 mol ratio / TPA, without producing cytotoxicity (Fukuda et al. 2003). 

Amygdalin in aqueous solution is epimerized to neoamygdalin / inactive form (L-

mandelonitrile-β-gentiobioside) which is inactive against cancer (Kwon 2003). 

 

1.4.2 Antimicrobial properties of amygdalin 

Abtahi et al (2008) stated that bitter apricot kernels have been used in folk medicine for the 

treatment of skin diseases and parasitic diseases due to its antimicrobial properties.  

 

1.4.3 Antioxidant properties of amygdalin 

Yigit (2009) indicates that the sweet and bitter apricot kernel has antioxidant activities. Wu et 

al (2011) had found a high content of phenolic compounds (4.1593mg GAE/g) which 

contribute to the antioxidant activity in the kernels oil. The main fatty acids found in the 

peach kernel oil were oleic acid (61.87g / 100g in oil) and linoleic acid (29.07g / 100g oil). 

The HPLC analysis of the phenolic compounds found that ritun, (-)-epicatechingallate, 

hydrocinnamic acid, sinopinic acid, dithiothreitol and caffeic acid were major constituents. 

These results suggested that peach kernel oil is a good source of unsaturated fatty acid, 

phenolic compounds with strong antioxidant activity thus having the potential to be used as 

nutrient rich food oil (Wu et al. 2011). 
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Flavanoids, a polyphenolic antioxidant compound, occur alongside carotenoids (natural 

colouring with antioxidant activity), glutathione, vitamin C, tocopherols, ascorbate and other 

compounds in plants, fruits and vegetables. Antioxidants protect proteins, lipids and DNA 

from the damage of free radicals (Vardi et al. 2008). Vardi et al (2008) had shown that 

elevated myeloperoxide (MPO) levels contributed to Methotrexate (MTX)-induced oxidative 

small intestine injury and that apricot and beta-carotene caused a decrease in MPO activities. 

Vardi et al (2008) sites Ramos et al (2008) as saying that the apricot provides inhibition of 

lipid peroxidation, capillary permeability and platelet aggregation. Flavones were shown to 

reduce cell proliferation in HT-29 cells with an EC50 value of 54.8 ± 1.3 µM and to induce 

programmed cell death, differentiation and growth inhibition in transformed colonocytes by 

acting at the mRNA levels of genes involved in these processes (Wenzel et al. 2000). 

 

1.4.4 Toxicity tests 

A comparative study for both pure amygdalin and the apricot kernel proved that both of them 

exhibit significant analgesic, anti-inflammatory and Hı receptor blocking effects (Badr & 

Tawfik 2010). The toxicity results revealed that they are both safe up to a concentration of 

100 mg / kg of the animal‟s body weight (Badr & Tawfik 2010).  

 

The average lethal dose of HCN in humans has ranged from 50 – 60 mg /g to 1.52 mg /kg 

(106 mg for a 70 kg adult) and the lowest reported fatal dose was 0.56 mg / kg (Suchard et al. 

1998).  
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A decrease in proliferation of human promyelocytic leukemia cells (HL-60) cells with peach 

kernel extract was observed after 48h and the IC50 was approximately 11 mg / mL. In the 

presence of ß-glucosidase, the LC50 was 6.4 mg / mL (Kwon et al. 2003). 

 

 

1.5 Disclaimers 

Many review articles on trials or research reports have disclaimed the anti-tumour effect of 

apricot kernels saying that the effectiveness of laetrile is not supported by clinical trials 

(Milazzo et al. 2009; Greenberg & Francisco 1975). According to the Committee on Toxicity 

report the total lethal dose (TDI) is not conclusive due to lack of evidence (Committee On 

Toxicity 2006). High doses chemotherapy of amygdalin, in murine P388 lymphocytic 

leukemia and P815 mast cell leukemia in BDF1 mice, at dosages of 200 mg / kg and 2000 mg 

/ kg results showed no prolongation in the life-span of mice bearing either the P388 or P815 

tumour (Chitnis et al. 1985). 

According to the Committee on Toxicity of Chemicals in Food, Consumer Products and the 

Environment‟s Statement on Cyanogenic Glycosides in Bitter Apricot Kernels, (Committee 

On Toxicity 2006), rats given drinking water containing up to 300 mg / L sodium cyanide for 

13 weeks (equivalent to approximately 12.5 mg / kg bw / day cyanide) showed no apparent 

significant changes in haematology, clinical chemistry or urinary parameters. There were no 

treatment-related gross or histopathological changes in the rats. Slight changes were observed 

in the testes and spermatozoa of treated males. Comparable results were obtained from a 13 

week study in mice. Testicular effects have also been observed in dogs fed a cassava or rice  
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plus cyanide diet. The lethal dose according to this study in humans is 0.5 – 3.5 mg / kg body 

weight. 

 

In the studies mentioned, the favourable outcomes were obtained where lower doses were 

used. The latent period and toxic dose depends on the botanical species ingested, the type of 

processing (peeled kernels are less toxic than unpeeled), the method of administration  

(decoctions are far less toxic than ingestion of unprepared kernels; hot water blanching 

treatment of 20 min at 100 °C is enough to inactivate endogenous ß-glucosidase activity 

(Tuncel et al. 1998) as well as the length of time it is chewed and the pH of the gastric juice 

(Dan Bensky 2004a). Children under 5 years of age 5 –10 kernels are sufficient to cause side 

effects and 20 kernels can be lethal (Dan Bensky 2004a). From the dosages mentioned above 

one can deduce that it was too big in comparison to the size and weight of the rodents and 

standard dosages. Acute lethal dose of CN for mammals is 0.5 mg CN / kg of body weight; 

acute oral lethal dose of HCN for humans is 0.5 – 3.5 mg / kg body weight and the 

consumption of 50 bitter almonds is deadly for adults, and 5 - 10 kernels are fatal for young 

children (Chaouali et al. 2013). 
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1.6      Overview of the cell cycle  

 

 

Fig 1.8: Mammalian cell cycle. Cell cycle consists of two parts: mitosis and interphase. During interphase, the 

genome is duplicated and was called S phase for synthesis. G1 and G2 were proposed as the gaps between 

mitosis and S phase and between S phase and mitosis, respectively. G1 is usually where critical decisions are 

made as to whether to enter a resting quiescent stage known as G0 or to continue cycling and commit to 

replicating the genome and mitosis. The point in G1 where this growth factor-dependent decision is made is 

known as the restriction point (R). G1 has been described as consisting of 2 parts on either side of R, where the 

first part of G1 is known as G1-pm (post-mitotic), and the second part is known as G1-ps (pre-S) (Foster et al. 

2010). 

 

The cell cycle consists of four phases which occur in sequence, namely gap1 (G1), synthesis 

(S), gap2 (G2) and mitotic (M) phase (Besson et al. 2008). During the G1 and G2 phases the 

cell ensures that all is ready for the process of DNA replication and of cell division, 

respectively. During the S phase, DNA replication takes place. The G1, S and G2 phases are 

collectively referred to as interphase. The M phase is the process of nuclear and cytoplasm 

division and it can be subdivided into prophase, metaphase, anaphase and telophase. The 

progression from one phase of the cell cycle to the next is mainly controlled by a family of 

serine/threonine protein kinases called cyclin dependent kinases (Cdks) (Masai et al. 2005; 

Suryadinata et al. 2010). 
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Cdks are present in an inactive form throughout the cell cycle within cells that have the 

potential to divide and only become activated at specific points in the cell cycle. The Cdks 

required during the different cell phases of the cell cycle are as follows: Cdk4 and Cdk6 are 

active during the G1 phase; Cdk2 is active during the G1 and S phase with Cdk1 active in both 

the G2 and M phases. For their specific activation, Cdks require association with their specific 

regulatory subunits known as cyclins. When activated, Cdks phosphorylate selected proteins 

required at specific stages of the cell cycle. Cyclins are proteins whose synthesis is dependent 

on whether or not they are required at a specific phase of the cell cycle. The activities of the 

Cdks can also be regulated by phosphorylation/dephosphorylation events as well as by Cdk-

inhibitors (CKI). Phosphorylation of Cdks can either lead to their activation or to their 

deactivation depending on the Cdk amino acid residue that is phosphorylated (Duronio & 

Xiong 2013). 

 

1.6.1 The cell cycle phases 

In order to progress from G0  G1  S  G2 M, the cells must meet the criteria of each 

cell cycle and the DNA must be intact. Checkpoints are of great importance to ensure that the 

integrity of the genetic material is protected. Failing to repair DNA damage and entering 

mitosis with faulty DNA, gives rise to dead, aneuploid, or mutant cells (Woollard & Nurse 

1995). Aneuploidy and mutation can produce uncontrolled cell proliferation that gives rise to 

cancer. 
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1.6.1.1    G1 Phase 

 

 

 

 

 

 

The G1 phase is a period in which a cell decides whether it has received the necessary growth 

signals to proceed to the S phase. During this phase the cell receives signals from both the 

extracellular and intracellular environment (Jossen & Bermejo 2013; Masai et al. 2005; 

Willis & Rhind 2009). If the cell has not received the appropriate signals it will not pass 

through a point known as restriction point (R-point), it will either temporally stop or it will  

 

Figure 1.9: Cell cycle and its checkpoints. The human cell cycle can be divided into four phases 

– G1, S, G2 and M phase. Cells must proceed through the cell cycle in a unidirectional manner and 

cell cycle progression is restricted to cells that have fulfilled specific requirements to enter the next 

phase of the cell cycle. Whether requirements for cell cycle progression are met is supervised by 

the checkpoints which hold back cells at cell cycle transitions (Schnerch et al. 2012). 
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exit the cell cycle and enter the phase known as the quiescence phase (G0) (Ford & Pardee 

1999; Bartek & Lukas 2001). 

In early G1 phase the levels of D-type cyclins increase due to appropriate growth signals and 

they bind with and activate Cdk4 and Cdk6 (Paternot et al. 2014). Following their complete 

activation (i.e. after cyclin binding and phosphorylation by Cdk-activating kinase, CAK) the 

cyclinD-Cdk4/6 complex phosphorylates the retinoblastoma protein (pRb) (Masai et al. 2005; 

Paternot et al. 2014b). Rb, a tumour-suppressor protein, which when unphosphorylated, binds 

to the elongation factor2 (E2F) (Harbour et al. 1999; Henley & Dick 2012; Zhang et al. 

2000). E2F controls transcription of several genes implicated in DNA synthesis and in cell 

cycle progression (Zhang et al. 2000). Cyclin E is another cyclin which is induced during the 

G1 phase. Cyclin E binds with Cdk2 to form a cyclinE-Cdk2 complex (Ford & Pardee 1999). 

CyclinE-Cdk2 participates in keeping Rb in the hyper-phosphorylated state and is important 

for transition from G1 to S phase (Harbour et al. 1999; Masai et al. 2005; Paternot et al. 

2014). Cyclin A is not expressed until the S phase where the CyclinA-Cdk complexes are 

important for maintaining phosphorylation of Rb during S phase (Lim & Kaldis 2013). 

 

The activities of Cdk4/6 andCdk2 can be regulated by cyclin kinase inhibitors (CKIs) 

(Henley & Dick 2012; Rhind & Russell 2012). Two groups of CKIs have been identified. 

The first group, the INK4, consist of p15
INK4a

, p16
INK4b

, p18
INK4c

 and p19
INK4d

. These proteins 

function only at the G1 phase; they form complexes with Cdk4/6 before they bind to cyclin D. 

Thus inhibiting their kinase activity and interfering with their cyclin D association (Besson et 

al. 2008). Another group of inhibitors, namely the Cip/Kip family consist of p2l
waf1, Cip1

, 

p27
Kip1

, and p57
Kip2 

(Lim & Kaldis 2013). Contrasting to the INK4 proteins the Cip/Kip  
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proteins serve as CKIs in all phases of the cell cycle and binds to both cyclins and Cdks. p27 

is up-regulated in mitogen starved and quiescent state cells; is down-regulated as cells enter 

the cell cycle (Besson et al. 2008). 

 

1.6.1.2    S Phase 

 

Figure 1.10: Cell cycle regulation of DNA replication. Assembly and disassembly of protein complexes for 

DNA replication during cell cycle progression; the stars represent phosphorylation mediated by Cdc7-ASK, 

Cdk2-CyclinE, Cdk2-CyclinA, and Cdc2-CyclinB, respectively (Masai et al. 2005). 

 

Exogenous stressors which compromise the replication process by slowing down or stalling 

fork progression are known as replication fork barriers (RFB‟s). Examples of RFB‟s include: 

(1) DNA protein complexes (Anand et al. 2012), (2) alternative DNA metabolism (Lambert 

& Carr 2005), (3) secondary DNA structure (Branzei & Foiani 2010), (4) DNA damage  
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(Branzei & Foiani 2010), (5) Replication inhibitors (Lambert & Carr 2005). Cells with 

undamaged DNA that pass the G1 restriction point proceed into S phase (Takeda & Dutta 

2005). DNA replication takes place in S phase and is initiated at multiple origins of 

replication that are activated either during early, mid or late S phase.  

Onset of S phase requires firstly the activation of cyclin E-Cdk2 and later cyclinA-Cdk2 

complexes (Ford & Pardee 1999; Harbour et al. 1999; Sørensen & Syljuåsen 2012). Exit from 

the cycle requires down regulation of these complexes (Henley & Dick 2012). During the S 

phase of the cell cycle the entire DNA content of the nucleus must be replicated completely 

and precisely in a period of a few hours (Jossen & Bermejo 2013; Takeda & Dutta 2005). 

Thus S phase cytoplasm induces nuclei from non-proliferating cells to replicate their DNA. 

Progression from G1 to S phase involves conversion of pre-RCs into replication forks, which 

are complex structures in which parenteral DNA is unwound to produce a single stranded 

DNA template (ssDNA) for replicative DNA polymerases. Progression thus requires origin 

unwinding, stabilization of single stranded DNA (ssDNA) and loading of replicative DNA 

polymerases (Jossen & Bermejo 2013; Takeda & Dutta 2005). The replication forks are 

fragile structures and prone to developing DNA breaks. Cyclin dependent kinases (CDKs) 

and Dbf dependent kinase (DDK)/Dbf4-Cdc7 regulated throughout S phase is also needed 

and initiates DNA replication (Lee et al. 2012). MCM helicase, CDK and DDK is needed for 

recruitment of Cdc45 which is important for origin unwinding and loading of replicative 

polymerases together with AND-1/CTF4 (Jossen & Bermejo 2013; Sørensen & Syljuåsen 

2012; Takeda & Dutta 2005). 

Three DNA polymerases are necessary for the replication of DNA namely, DNA pol-Ɛ, DNA 

pol-α and DNA pol-δ elongation factors which primarily synthesizes the lagging  
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Strand (Jossen & Bermejo 2013; Takeda & Dutta 2005). Loading of these polymerases and 

accessory proteins (including a clamp and clamp loader) onto the chromatin and replication 

origins results in functional replication forks capable of synthesizing both strands (Masai et 

al. 2005). DNA pol-δ is mainly associated with DNA replication in the S phase and the 

lagging strand (Jossen & Bermejo 2013). 

The length of S phase differs between species and between different developmental stages 

within species, but within any particular type of cell, the S phase is remarkably constant in 

length (Takeda & Dutta 2005). On completion of S phase the cyclinA-Cdk2 complex 

dissociates and the initiating signal is abolished, allowing activation of Cdk1 and entry into 

mitosis. A signal has to be sent to block mitosis in cells which fail to complete the S phase. 

This checkpoint (G2/M) ensures that cells do not attempt to divide before their entire 

genomes become duplicated. Failure of this checkpoint results in „catastrophic‟ mitosis of 

cells that have incompletely replicated DNA (Bartek et al. 2004). DNA replication occurs 

only during the S phase. In early S phase, cyclins D and E are targeted by ubiquitination to be 

degraded by proteasomes (Suryadinata et al. 2010). Cyclin A levels then increase activating 

Cdk2 and enabling S phase progression, whilst enzymes and other proteins increase in 

amount at the beginning of the S phase but are not rate limiting (Ford & Pardee 1999). 
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1.6.1.3    G2 phase 

 

Figure 1.11: Signalling at G2/M transition. The rate limiting step for the transition from G2 to mitosis is the 

dephosphorylation of Cdk1 on Tyr
15

 and in some cases Thr
14

. This phosphorylation is catalysed by the Wee1 

family of dual-specificity kinases and the phosphate is removed by Cdc25 phosphatases. Most of the many 

signalling pathways that affect the G2/M transition regulate Wee1 or Cdc25. The DNA damage and replication 

checkpoints inactivate Cdc25; the morphogenesis and nutritional checkpoints activate Wee1. Cdk1 regulates its 

own activation as part of a feedback loop by directly phosphorylating Wee1 and Cdc25 or doing so indirectly 

through Plk1 (Rhind & Russell 2012). 

 

During the G2 phase cells assess whether all the genetic material and cellular structures are 

correctly duplicated and then get ready to undergo mitosis. Cells prepare for mitosis by 

increasing the levels of cyclin A. CyclinA-Cdk1 complex promotes progression into the M 

phase. Cyclin B (the main mitotic cyclin) also increases in this phase (Suryadinata et al. 

2010). 
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Cyclin B forms a complex with Cdk1 and this complex are known as the M-phase 

maturation-promoting factor (MPF). MPF inactivation by Cyclin B degradation is required 

for exit from mitosis. CyclinB-Cdk1 complex is however held inactive by remaining in the 

cytoplasm and by inhibiting phosphorylation of Cdk1 at its Thr
14

 and Tyr
15

amino acid 

residues by Wee 1 and Myt1 (Cdc25 phosphatase) (Rhind & Russell 2012). At the end of the 

G2 phase, when the cell is ready to go into mitosis, the cyclinB-Cdkl complex is activated by 

phosphorylation at its Thr
161

 amino acid residue by phosphatases, Cdc25B and Cdc25C and is 

then transported into the nucleus (Rhind & Russell 2012; Sørensen & Syljuåsen 2012). 

 

1.1.1.4 M phase 

In the M phase of the cell cycle the chromosomes are pulled from the equator towards 

opposite poles of the cell and cytoplasmic cleavage also takes place. Entry into mitosis is 

induced by increased activity of cyclinB-Cdk1 complex. Activated cyclin B-Cdk1 complex 

phosphorylates many proteins essential for the M phase. CyclinB–Cdk1 complex activates 

the anaphase-promoting complex/cyclosome (APC/C) which is an E3 ubiquitin-protein ligase 

that regulates sister chromatid separation and exit from mitosis by targeting key proteins for 

degradation (Ibrahim et al. 2008; Lim & Kaldis 2013). APC/C promotes anaphase by 

degrading securin, the inhibitor of separase. Separase is a protease which cleaves cohesion 

and a protein that bind sister chromatids at the kinetochore, thus preventing their separation. 

APC/C also targets cyclins A and B for degradation; the degradation of cyclin B leads to the 

end of the M phase (Lim & Kaldis 2013). 
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1.1.2 Cell cycle checkpoints 

 

Figure 1.12: Cell cycle control: G1/S phase checkpoint. The G1/S cell cycle checkpoint controls the passage 

of eukaryotic cells from the first „gap‟ phase (G1) into the DNA synthesis phase (S). Two cell cycle kinases, 

Cdk4/6-CyclinD and Cdk2-CyclinE, and the transcription complex that includes Rb and E2F are pivotal in 

controlling this checkpoint. During G1 phase, the Rb-HDAC repressor complex binds to the E2F-DPI 

transcription factors, inhibiting the downstream transcription. Phosphorylation of Rb by Cdk4/6 and Cdk2 

dissociates the Rb-receptor complex, permitting transcription of S-phase genes encoding for proteins that 

amplify the G1 to S phase switch and that are required for DNA replication. Many different stimuli exert 

checkpoint control including TGFβ, DNA damage, contact inhibition, replicative senescence, and growth factor 

withdrawal. The first four act by inducing members of the INK4 or Cip/Kip families of cell cycle kinase 

inhibitors. TGFβ additionally inhibits the transcription of Cdc25A, a phosphatase that activates the cell cycle 

kinases. Growth factor withdrawal activates GSK3β, which phosphorylates cyclin D, leading to its rapid 

ubiquitination and proteosomal degradation. Ubiquitination, nuclear export, and degradation are mechanisms 

commonly used to rapidly reduce the concentration of cell cycle control proteins (Cell Signaling Technology 

2014). 
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The term "cell cycle checkpoint" refers to the entire process of monitoring cell cycle events 

such as DNA replication and spindle assembly, generating signals in response to errors in 

these processes, and halting the cell cycle at a specific point (Murray 1995). Cells must 

induce the response rapidly to stop the cell cycle before the genome is irreversibly damaged 

and the checkpoint must amplify the initial signal generated by a small number of damaged 

molecules to a level at which it can halt the cell cycle (Murray 1995; Woollard & Nurse 

1995). Checkpoint mechanisms delay mitosis due to DNA damage or replication stress 

(Magiera et al. 2014). 

 

1.6.2.1   DNA damage checkpoint 

The cell cycle DNA damage checkpoints occur in the G1/S and in G2/M transitions and may 

arrest the cells in the S or M phase. The G1/S and G2/M checkpoints prevent entry into S and 

M phases respectively (Willis & Rhind 2010).At the G1/S checkpoint, p53, which is normally 

kept low through the inhibition of Mouse Double Minute-2 (Mdm2), is required for cell cycle 

arrest. p53 is a tumour suppressor protein that is phosphorylated by protein kinases such as 

ataxia-telangiectasia mutated (ATM), ataxia and Rad3 related (ATR) kinase P13k-like family 

in response to DNA damage (Jaehnig et al. 2013), oncogenic insult and hypoxia (Pan et al. 

2011). p53 is thus stabilised and activated to induce cell cycle arrest, apoptosis, DNA damage 

repair, senescence and a number of other protective responses (Pan et al. 2011). ATM 

responds to double stranded breaks (DSB) and ATR to replication blocking lesions (Sørensen 

& Syljuåsen 2012; Willis & Rhind 2010). When p53 is activated it stimulates the  
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transcription of various genes such as p2l, Mdm2 and Bax. p21, one of the Cip/Kip family 

members as already mentioned, blocks cyclin-Cdk activities, thus preventing replication of 

damaged DNA. Mouse Double Minute-2 Homolog (Mdm2) is a negative regulator of p53; it 

inhibits p53 transcriptional activity and facilitates its ubiquitination. Over expression of 

Mdm2 has been shown to lead to the enhancement of tumorigenic potential.  

If DNA damage cannot be repaired, p53 can induce cell death by activating apoptosis 

promoting genes such as Bax. When DNA damage occurs in G2/M, cells can initiate cell 

cycle arrest irrespective of whether or not p53 is present (Schnerch et al. 2012). Entry into 

mitosis is prevented by keeping Cdk1 in its inactive form. This can be done by 

phosphorylation or by sequestration of components of the cyclinB-Cdk1complex. Two 

protein kinases that facilitate these processes are checkpoint kinase 1 and 2 (Chk1 and Chk2), 

which are triggered when there is DNA damage. ATM activates Chk2 which then 

phosphorylates and then degrades the phosphatase Cdc25A; ATR activates Chk1 leading to 

the degradation of Cdc25A (Sørensen & Syljuåsen 2012; Willis & Rhind 2009). Chk1 and 

Chk2 phosphorylation of Cdc25 also results in the inhibition of Cdc25 binding activity to l4-

3-3 γ proteins. 14-3-3γ protein keeps the phosphatase in the cytoplasm and stops the removal 

of the inhibitory phosphorylation on Thr
14

 and Tyr
15

 of Cdk1, thereby maintaining cyclinB-

Cdk1 in an inactive form (Sørensen & Syljuåsen 2012). 
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1.6.2.2    Intra-S phase checkpoint 

 

Figure 1.13: Intra-S-phase checkpoint. This represents the double strand break-induced  

(DSB) replication dependent intra-S phase checkpoint (Bartek et al. 2004). 

 

S phase is the genetically most vulnerable period of the cell division cycle and are more 

significant for preventing genetic instability than the G1 or G2 or mitotic-spindle checkpoints 

(Jossen & Bermejo 2013; Kaufmann 2009). Mre11-Rad50-Nbs1 (MRN) is required for S 

phase DNA damage checkpoint response (Kaufmann 2009; Liu et al. 2012). It works parallel 

to the Chk2-Cdc25A pathway which regulates origin firing (Willis & Rhind, 2009). There is 

3 types of S phase checkpoints, namely i) DSB-induced replication dependent intra-S phase 

checkpoint, ii) replication dependent intra-S phase checkpoint / or replication checkpoint, iii) 

S-M checkpoint (Bartek et al. 2004). The intra-S phase checkpoint has sequential steps 

including DNA damage sensors, signal transducers and effectors (Liu et al. 2012). 

 

The intra-S phase checkpoint does not require active replication forks and prevents the firing 

of new replication forks by inhibiting initiation at licensed but unfired origins (Lambert & 

Carr 2005; Lee et al. 2012) whether early or late (Grallert & Boye 2008), resulting in a  
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reduction in the rate of progression through the S phase rather than an arrest of the S phase 

(Oakley & Hickson 2002). The intra-S-phase checkpoint is activated by double strand breaks 

(DSB) that are generated in the genomic loci outside the active replicons. None of the three 

S-phase checkpoints require p53, the target of G1 checkpoint that arrests the cell cycle in G1 

phase (Bartek et al. 2004). Intra-S phase checkpoint activated by genotoxic insults causes 

only temporary, reversible delay in cell cycle progression, mainly by inhibition of new 

replicons initiation and thereby slowing down DNA replication (Bartek and Lukas 2001), but 

not permanently arrested (Oakley & Hickson 2002; Willis & Rhind 2009; Bartek et al. 2004). 

A long term intra-S-phase block would limit the amount of sister chromatids and therefore 

reduce available templates for efficient repair by homologous recombination (Bartek & 

Lukas 2001). Complete inhibition of Cdks and prolonged intra-S-phase arrest may cause 

regaining of replication competence of already fired origins, making the recovery process 

prone to over-replication of at least parts of the genome (Bartek & Lukas 2001). Willis and 

Rhind (2009) suggest that this checkpoint may be more concerned with tolerating and 

accommodating damage during replication rather than repairing it. DSB sensors recruit ATM 

to damaged DNA. Activated ATM induces phosphorylation and activation of the checkpoint 

component Chk2 which then targets Cdc25A and BRCA1 and Nbs1 a component of MRN 

protein complex (Tasat & Yakisich 2010). Cdc25A, an unstable protein with a half-life of 20 

– 30 minutes, requires ATR, claspin and Chk1 (Bartek et al. 2004). MRN works parallel to 

the Chk2-Cdc25A pathway which regulates origin firing (Willis & Rhind 2009). Cdc25A-

degradation pathway may be involved in slowing down the ongoing S phase, thus the ATM-

Chk2-Cdc25A-Cdk2-Cdc45 axis emerges as a key mechanism of not only the rapid 

prevention of S phase entry in the G1 checkpoint but also in the intra-S-phase response  
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(Bartek & Lukas 2001). Inhibition of Cdk2 activity through the Cdc25A degradation leads to 

a several hour delay of S phase progression, which correlates with the intra-S-phase 

checkpoint response (Tasat & Yakasich 2010; Bartek & Lukas 2001; Willis & Rhind 2009). 

Interference with the Chk2-Cdc25A-Cdk2 cascade at any of the steps downstream of ATM 

results in radioresistant DNA synthesis (RDS) (Bartek & Lukas 2001). 

 

1.6.2.3 The spindle assembly checkpoint 

 

Figure 1.14: Spindle Assembly Checkpoint (SAC) principles. During the early stages of mitosis (pro-

metaphase), unattached kinetochores catalyse the formation of the mitotic checkpoint complex (MCC) 

composed of BubR1, Bub 3, Mad2 and Cdc20, leading to inhibition of the APC/C. Once all the chromosomes 

are aligned with their kinetochores attached to the spindle (metaphase), regeneration of the MCC ceases, 

allowing Cdc20 to activate the APC/C, leading to the ubiquitylation and degradation of securing and cyclin B1. 

Degradation of securin liberates separase which in turn cleaves the Scc1 kleis in subunit of the cohesion ring 

structure; this opens the ring, allowing the sister chromatids to separate (anaphase). Meanwhile, degradation of 

cyclin B1 inactivates Cdk1 leading to mitotic exit (Lara-Gonzalez et al. 2012). 
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The absence of microtubule attachment, or lack of tension at the kinetochore (because of 

chromosomes failing to attach to opposite poles) activates the spindle assembly checkpoint 

(SAC), arresting the cells at the metaphase-to-anaphase transition (Lau & Murray 2012). The 

SAC inhibits the commencement of anaphase until all kinetochores are attached properly to 

the mitotic spindle. The proteins that are activated during this checkpoint include the Mitotic 

arrest eficient2 (Mad2) and the budding uninhibited by benomyl (Bub) proteins. Mad2 

prevents transition from metaphase to anaphase by binding to kinetochores thus preventing 

activation of, the E3 ubiquitin ligase, anaphase-promoting complex (APC) and its co-

activator Cdc20 (APC/C) (Lau & Murray 2012; Lara-Gonzalez et al. 2012). This ensures that 

cells only progress through mitosis when all chromosomes are properly attached. 

 

1.7    Types of cell death 

There are several types of programmed cell death (PCD) that have been identified, namely 

mitotic catastrophe, oncosis, necrosis, apoptosis and autophagy. There exists an intimate 

relationship between necrosis, autophagy and apoptosis. In this dissertation, only the one type 

of programmed cell death, apoptosis, will be discussed in detail since it has been shown to be 

closely related to anti-cancer therapy. 

Mitotic catastrophe is a term used to indicate cell death from aberrant mitosis. It is a cell 

pathway that occurs during mitosis as a result of errors in the cell cycle checkpoint and 

cellular damage. It is associated with morphological features such as the presence of 

multinucleated and micronucleated cells, with all these characteristics occurring prior to cell  
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death. Therefore mitotic catastrophe guards cells against unnecessary aneuploidization (Vitali 

et al. 2011). 

Oncosis, a passive form of cell death, occurs due to severe cellular damage as a result of 

cytotoxicity or failure of plasma membrane ion channels. It is characterized by cellular and 

organelle swelling, membrane blebbing as well as increased permeability of the plasma 

membrane, which leads to cell lysis. The lysed cell releases signalling molecules which in the 

end induces inflammation (Trump et al. 1997). 

Autophagy (type II PCD) is a catabolic process every cell undergoes to recycle long-lived 

proteins and to eliminate damaged macromolecules and organelles; therefore it helps to 

maintain the cell‟s health (Bouzas-Rodríguez et al. 2012; Grasso & Vaccaro 2014). It is a 

survival mechanism in nutritionally deprived cells allowing them to live longer by recycling 

their components (Bouzas-Rodríguez et al. 2012). Autophagy also helps to prevent 

neurodegeneration by degrading miss-folded proteins (Bouzas-Rodríguez et al. 2012). It thus 

plays either a pro-death or pro-survival role (Ouyang et al. 2012). 

Necrosis (type III PCD) is a type of cell death that is commonly referred to as an „accidental‟ 

type of cell death or premature cell death when cells are exposed to serious physical or 

chemical insults. Here the integrity of the cell membrane is disrupted, intercellular materials 

released into the extracellular milieu leading to an inflammatory response by the immune 

cells (Ouyang et al. 2012). The morphological features of necrosis thus include an increase in 

cell volume enlargement of cytoplasmic organelles, severe plasma membrane damage and 

loss of cellular contents (Ouyang et al. 2012). 
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1.7.1    Apoptosis 

Apoptosis („programmed / normal‟ cell death) (type I PCD) is a cellular mechanism by which 

unwanted or useless cells undergo death in response to signals originating from inside or 

outside the cell without eliciting inflammation. Apoptosis plays a significant role in cell 

growth during development and homeostasis (Roche Applied Science 2007). 

Too much or too little of the apoptosis pathway can result in diseases such as cancer, 

autoimmune diseases and neurodegenerative disorders (Roche Applied Science 2007). Cells 

undergoing apoptosis can be recognized by the following morphological features: cell 

shrinkage, chromatin condensation, nuclear fragmentation, plasma membrane blebbing and 

formation of apoptotic bodies. The morphological characteristics observed in cells 

undergoing apoptosis are due to the activities of a family of intracellular cysteine proteases 

known as cysteine-dependent aspartate-specific proteases (caspases). In order for apoptosis to 

take place, various cellular processes such as, early gene transcription and translation are 

activated, leading to the synthesis of specific apoptosis associated proteins (De Kock et al. 

1994). The initiation of apoptosis can occur either via an extrinsic (death receptor pathway) 

or an intrinsic (mitochondrial pathway) pathway depending on the stimulus (Ouyang et al. 

2012; Sayers 2011). 

 

1.7.1.1    Extrinsic pathway / Cytoplasmic pathway  

The extrinsic pathway involves the binding of specific extracellular ligands to cell surface 

receptors known as death receptors (DRs). Death receptors are members of the tumour 

necrosis factor (TNF) receptor super-family which have apoptosis inducing activities (Sayers 

et al. 2011). The best described ligands and their matching death receptors comprise of 

FasL/FasR, TNF-α/TNF-Rl, Apo-3ligand(Apo-3L)/DR3, Apo-2ligand(Apo-2L)/DR4,  
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Apo2L/DR5 and DR6 (Ouyang et al. 2012; Sayers et al. 2011). They are predominantly 

produced by cells of the immune system.  

After binding of an appropriate ligand to receptor death domain (DD) the receptor recruits 

adaptor proteins such as Fas-associated DD (FADD) or TNF receptor associated DD 

(TRADD) that also have a DD at their C-terminus and a second domain, a death-effector 

domain (DED) at their N -terminus. The DED of the adaptor protein binds to the DED of an 

inactive initiator caspases (procaspase 8/1 0) forming a complex that leads to the activation 

and release of active caspase 8 or 10. The activated initiator caspase then activates a series of 

effector caspases resulting in the cleavage of caspase substrates (e.g. structural and pro-

apoptotic proteins), which in the end leads to apoptosis (Ouyang et al. 2012). The active 

initiator caspase can in addition cleave a B-cell lymphomaprotein2 (Bcl-2) family member 

termed Bid to truncated Bid (tBid), its active form. Bid promotes activation of the intrinsic 

pathway of apoptosis. 

 

1.7.1.2    Intrinsic pathway / mitochondrial pathway 

The mitochondrial pathway is activated by intracellular events and depends on the release of 

pro-apoptotic factors released from the mitochondria (Sayers et al. 2011). The mitochondria 

play a central role in the transmission of death signals in response to the various forms of 

cellular stressors. In this pathway, outer mitochondrial membrane permeabilization (MOMP) 

is produced by the formation of pores in the mitochondrial membrane. The formation of 

pores is controlled by Bcl-2 family proteins which inhibit apoptosis. These proteins can be 

categorized into three sub-groups, namely the anti-apoptotic proteins (Bcl-2,Bcl-x, Bcl-XL,  
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Bcl-XS, Bcl-w and BAG) and the pro-apoptotic proteins (Bax, Bad, Bok, Bid, Bim, Bik, 

Noxa, Puma) (Ouyang et al. 2012; Sayers 2011). 

Upon apoptosis induction, pro-apoptotic Bcl-2 proteins such as Bax and Bid translocates 

from the cytoplasm to the outer mitochondrial membrane where they work together with 

other pro-apoptotic Bcl-2 proteins to form pore-like structures in the membrane and inhibit 

the protective effect of Bcl-2 (Ouyang et al. 2012). This leads to the release of pro-apoptotic 

proteins such as cytochrome-c (Cyt-c), and second mitochondria-derived activator of caspase/ 

direct IAP-binding protein with low pI(Smac/DIABLO), and serine protease HtrA2/Omi, 

which cleaves and inactivates IAP, from the mitochondrial inter-membrane space into the 

cytosol (Sayers 2011). Cyt-c together with ATP binds to apoptotic protease-activating factor-l 

(Apaf-l) forming the apoptosome complex (Ouyang et al. 2012; Tun et al. 2007). The 

apoptosome recruits and activates procaspase-9 by the interaction of the caspase recruiting 

domain (CARD) of Apaf-l, with that of procaspase-9 which triggers the activation of the 

initiator caspase-9. Activated caspase-9 cleaves and then initiates caspase-3 and -7 creating 

an expanding caspase cascade of proteolytic activity and ultimately causing cell death 

(Ouyang et al. 2012). 

The release of mitochondrial Smac/DIABLO as well as the HtrA2/Omi into the cytoplasm 

promotes apoptosis by inhibiting the activity of apoptosis protein inhibitors (lAP) overrides 

this checkpoint (Sayers 2011; Tun et al. 2007). IAP‟s are proteins which normally attach to 

caspases-3-7-9 through its IAP repeat domain to provide an important checkpoint to prevent 

caspase activation, thus inhibiting their activity; they have also been shown to promote the 

degradation of caspases (Sayers et al. 2011). 
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Figure 1.15: Apoptotic signalling pathways and their relevance to microRNA regulation in cancer 

(Ouyang et al. 2012). 

 

1.8     Significance to health care and or biomedical science 

 There is a great demand for effective cancer treatment. In the hope that some benefit 

can be derived from the apricot and / or peach kernel preparations in the treatment of 

colon cancer, thus contributing to society at large in terms of medicines, and give 

credit to those who have used such protocols in the past, and who have been silenced 

in the name of big pharmaceuticals at the expense of the sick, suffering and dying 

patients and their family members. 
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 Chinese Medicine practitioners use these two kernels in herbal prescriptions, the 

peach kernel in particular in cancer treatment where there is Blood stasis in especially 

the colon and lungs complicated with constipation and cough. It would thus be 

beneficial to know if these kernels have this type of activity and such an effect at a 

cellular level. 

 Pharmacological studies have been performed using amygdalin as an anti-cancer 

agent (Syrigos et al. 1998; Kwon et al. 2003). It was used as a pro-drug in antibody-

directed enzyme pro-drug therapy (Syrigos et al. 1998; Kwon et al. 2003). It is 

therefore imperative that in vitro and in vivo studies on the effects of the mechanism 

of action of peach and apricot kernels be carried out to assist in the development of 

peach and apricot kernel extracts as drugs or pro-drugs. 

 Clinical studies have shown that metastasis of colon carcinoma occurs after invasion 

of the bowel mucosa as a result of surgical resection (Willson et al. 1987). It would 

therefore be advantageous to find a cure for this type of cancer which may then not 

require surgical resection but rather an edible product which may have a direct effect, 

namely a food substance. 

 

The difference between Western Medicine and Chinese Medicine is that Chinese Medicine 

makes its diagnosis and treats in terms of syndromes and patterns. According to Chinese 

Medicine the onset of disease is as a result of the imbalance of Yin and Yang. Diagnosis is 

based on the premise of „one pattern, many syndromes; and one syndrome, many patterns‟. It 

is not possible to know the syndrome or pattern of the sample specimen‟s origin when doing  
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in vitro studies and thus will not be able to say whether or not the extractions are effective in 

a particular tissue sample according to a particular pattern or syndrome. 

 

This research is a Western Medicine take of treatment of cancer cells. The goal of this 

research is specifically directed at testing whether the kernels, its various forms and extract 

preparations have any anti-tumour effect at all. Further studies may then focus on biopsied 

tissue samples from specific patients with specific patterns and syndromes for which these 

extracts and forms may be effective. 

 

The aim of this study is: 

To perform a comparative in vitro study of the effects of the apricot and peach kernel 

extracts on a human colon cancer cell line to determine: 

(i) Whether the apricot and peach kernels extracts induce any cytotoxic and or growth 

inhibitory effects in the HT-29 colon cancer cells. 

(ii) Whether there are differences in the efficacy of the respective kernel preparations on 

the HT-29 colon cancer cells. 

(iii) Whether the kernels from the various origins display effectiveness on the HT-29 cells 

including a time and dose difference. 
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Chapter 2 

Materials and Methods 

 

2.1 Materials 

2.1.1 Chemicals and Solutions used 

Dulbecos Minimum Essential Medium F12 (+L-Glut, FCS, HEPES) (DMEM)  

[GIBCO; Cat. No. 31331-028] 

Crystal violet [Sigma-Aldrich; Cat. No. C3886] 

Gluteraldehyde 

Triton X-100 [Sigma-Aldrich] 

Phosphate Buffer Saline (1:9 PBS) [GIBCO; Cat. No. 20012-019] 

Bouin’s solution [Sigma-Aldrich; Cat. No. HT10132] 

Eosin B [Sigma-Aldrich; Cat. No. 861006] 

Xylene [Kimix] 

Haematoxylin [Sigma-Aldrich; Cat. No. H9627] 

Trypsin [Sigma-Aldrich; Cat. No. T4049] 

Tri Sodium Citrate [Sigma-Aldrich] 

 Propidium Iodide [Sigma-Aldrich; Cat. No. 81845] 
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 RNase A [Roche] 

 Trypan blue [Sigma-Aldrich; Cat. No. T6146] 

 Penicillin / Streptomycin [GIBCO; Cat. No. 15140-122] 

Fetal Bovine Serum (FBS) [GIBCO; Cat. No. 10500-056] 

Dimethyl-Sulfoxide (DMSO) [Scharlau;Cat. No. SU0155] 

Hoechst 33342 fluorescent stain [Sigma-Aldrich; B2261] 

 

2.1.2 Equipment 

Buchi water-bath B-480 Scientific Engineering cc 

Buchi rotavapor R-114  

Bench top Freeze dryer 

Glomax plate reader 

ZEIS ICM 405 light microscope 

Erlenmeyer soxlet apparatus 

Buchi vac V-500 

FACs Calibur DNA analysis flow cytometer 

 Nikon Eclipse 50i light microscope 
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All chemicals used were of analytical grade and obtained from Sigma. Sterile tissue culture 

consumables obtained from Greiner. 

 

2.2 Methods 

2.2.1 General cell culture procedures 

HT-29 human colon cancer cells obtained from Dr Gelderblom, Medical Research Centre, 

Bellville, Cape Town, were grown in 25cm
2
 and 75cm

2
 tissue culture flasks and maintained 

in a 5% CO2, 95% humidified air atmosphere at 37°C. The maintenance growth medium of 

the HT-29 cells consisted of Dulbecos Minimum Essential Medium F12 (DMEM/F12) 

supplemented with 5% heat inactivated Fetal Bovine Serum (FBS), penicillin and 

streptomycin (1000 µg/mL). 

 

The HT-29 human colon cancer cell line was originally isolated by Fogh and Trempe from a 

human carcinoma of the colon (Forgue-Lafitte et al. 1989). HT-29 human colon cancer cells 

can proliferate in a defined (serum – free) medium containing no added growth factors within 

3 to 4 days or 2 to 3 days (on an autologous extracellular matrix) compared to 1 day in the 

presence of fetal calf serum (Forgue-Lafitte et al. 1989). 

When the cells reached 80% confluency, they were washed with PBS, and then incubated 

with just enough trypsin to cover the monolayer for ± 3 minutes, at 37°C. The trypsin was 

then removed and the flask was tapped lightly to allow cells to detach from the surface of the 

flask. Equal amounts of medium were added to inhibit the action of the trypsin, thereafter the 

cells were centrifuged for 4 minutes at 2500 rpm. Cells were then resuspended in fresh 
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medium and divided into subcultures or used in experiments. Some sub-cultured cells were 

placed in cryovials in freeze medium and stored at -80°C to ensure a continuous supply of 

low passage HT-29 ells. The freeze medium used to store cells in consisted of 70% growth 

medium, 10% DMSO and 20% FBS. 

 

2.2.2 Cell counts 

Cells were harvested by trypsinization as described in 2.2.1. Cells were then transferred to a 

centrifuge tube, and centrifuged for 4 minutes at 2500 rpm. The supernatant was poured off, 

and cells were resuspended in 1mL growth medium. The resuspended cells were then counted 

by making use of a haemocytometer. A ratio of 1:1 (trypan blue: cell suspension) was used to 

determine the amount of viable cells. 10µL trypan blue was added to 10µL of the cell 

suspension in a micro Eppendorf. 10µL of this solution was then placed on each side of the 

slide and counted. Dead cells take up the dye, therefore stain blue, and are not included in the 

cell count. Viable cells do not take up the dye, so they remain clear and are counted. 

The number of cells per ml was determined by the following calculation: 

cells/mL = average number of cells x dilution factor x 10
4 

 

The cell suspension was then diluted with medium to give the required cell number and was 

seeded into the appropriate tissue culture plates. 
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2.2.3 Preparation of extraction fractions from kernels 

Chinese apricot kernels and Chinese peach kernels were obtained from China in June 2012 

via Dr Li Chunlan, Newlands, Cape Town. Turkish apricot kernels from Malatya were 

sponsored by Mrs Asma Kariem-Elitemiz in July 2012. South African apricot kernels were 

sponsored by Mr Dirk Versfeld in December 2012. South African peach kernels were 

donated by De Wit Industries Cape Town, South Africa in May 2014. 

The various fractions prepared from the kernels include two main groups of extractions 

namely: organic and aqueous extractions. To simplify the format by which the kernels could 

be used to treat the cells organic extractions were fractionated into a total fraction, lipophilic 

fraction and a hydrophilic fraction. 

 

2.2.4 Organic ethanol / acetone extractions (including total, lipophilic and hydrophilic  

extractions) 

2.2.4.1 Total extraction and filtration 

A specific amount of CAK, CPK, TAK, SAK, and SPK kernel types was used, grounded and 

placed into Erlenmeyer flasks respectively. The grounded kernels were soaked in 80% 

ethanol for 24hr then filtered. This first portion of filtrate was kept aside. The kernel pulp was 

soaked again in 80% ethanol and the process was repeated to provide a second portion of 

filtrate. This second portion of filtrate was added to the first amount to provide the total 

extraction fraction and the grounded pulp was discarded. 
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2.2.4.2 Lipophilic extraction and filtration 

A specific amount of CAK, CPK, TAK, SAK, and SPK kernel types was used, grounded and 

placed into Erlenmeyer flasks respectively. The grounded kernels were soaked in 100% 

acetone for 24hr and then filtered. This first portion of filtrate was kept aside. The kernel pulp 

was soaked again in 100% acetol and the process was repeated to provide a second portion of 

filtrate. This second portion of filtrate was added to the first amount to provide the total 

extraction fraction. 

This procedure was repeated for all the kernels. After each lipophilic extraction’s second 

filtration was completed, the pulp was set aside and the hydrophilic extractions performed 

using this pulp. 

 

2.2.4.3 Hydrophilic extraction and filtration 

The pulp set aside from the lipophilic extractions was soaked in 80% ethanol solution for 

48hour. It was filtered, the pulp kept aside and soaked again in 80% ethanol and left to stand 

for 48hour. Once filtered, this second filtrate was added to the first filtrate and the pulp 

discarded. 

 

2.2.4.4 Evaporation of the Total, Lipophilic and Hydrophilic extractions 

Each respective filtrate was poured into a round bottom flask and attached to a Buchi 

rotavapor. At 55ºC the flask was submerged into the warm water bath and the sample 

evaporated. An empty glass vial was weighed. Each respective oil sample fraction was 
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transferred to the vial and weighed and percentage yield calculated (see Table 3.2). The oil 

fractions were stored at -20ºC. 

 

Table 2.1: Formula used to calculate percentage yield 

(           )        

    
                

 

2.2.5 Double boil decoction / Aqueous extraction 

A specific amount of Chinese apricot kernel (CAK), Chinese peach kernel (CPK), Turkish 

apricot kernel (TAK), South African apricot kernel (SAK) and South African peach kernel 

(SPK) were grounded separately using a domestic coffee grinder and placed into separate 1 

litre beakers. 

The grounded kernels were covered with boiled distilled water and placed onto a hot plate 

(DragonLab MS-H-Pro). It was brought to a boil at a maximum temperature of 400ºC, and 

the temperature then lowered to 200ºC and allowed to simmer. This process took 

approximately one hour forty minutes. The solution was filtered and the liquid removed and 

kept aside. The grounded substrate was placed back into the beaker and covered with 250mL 

boiled distilled water. The boiling and filtration process was repeated using the same method. 
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2.2.5.1 Freeze drying method of the aqueous extractions 

The final liquid volume was divided into two round bottom flasks and freeze dried for 

approximately 48hr. The freeze dried powdered kernels were then weighed (g) (see Table 

3.3) and placed into plastic jars and stored in a dry area at room temperature. 

 

2.2.5.5 CAK, CPK, TAK, SAK and SPK treatment 

To make up a final concentration of 100% organic stock solution of the respective CAK, 

CPK, TAK, SAK and SPK kernel extractions, 1g of the respective oils were added to 9mL of 

DMSO to make up a final volume of 10mL. 

To make up a final concentration of 100% aqueous stock solution of CAK, CPK, TAK, SAK 

and SPK kernel extractions, 1g of freeze dried powdered kernel extract was added to 9mL of 

DMSO to make up a final volume of 10mL. 

Final treatment concentrations of 100µg/mL, 500µg/mL and 1000µg/mL respectively of each 

kernel extract was made by adding 10µg/mL, 50µg/mL and 100µg/mL respectively of stock 

solution to 10mL growth medium. 

 

2.2.6 Cell growth and viability 

 

2.2.6.1 Crystal Violet (CV) 

Principle: Crystal violet is a triphenylmethane dye (4-[(4-dimethylaminophenyl)-phenyl-

methyl]-N, N-dimethyl-aniline) also known as gentian violet (or hexamethylpararosaniline 

chloride). Despite the fact that this colorimetric assay is much simpler, faster and more 
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objective than the classic colony formation assay, it generally gives an overestimation of the 

survival rate compared to the clonogenic assay since they measure dividing and non- dividing 

cells. The dye stains DNA and the colour of the dye depends upon the pH of the solution. 

Upon solubilisation, the amount of dye taken up by the monolayer and the intensity of the 

colour produced are proportional to the cell number. 

 

Method: 5000 cells were seeded in each well of a 96 well culture plate and incubated at 37°C 

for 24hr to attach. Thereafter the medium was discarded and replaced with fresh medium and 

100µL of each treatment (see Section 2.2.5.5) was added to the wells and incubated at 24hr, 

48hr and 72hr intervals respectively. 

The medium and treatment was discarded and the cells fixed by adding 100µL of 1% 

gluteraldehyde to each well and the plates incubated at room temperature for 15min. The 

gluteraldehyde was removed and 100µL of 0.1% crystal violet stain was added to each well 

and the plates incubated for 30min at room temperature. The plates were then washed under 

running water for 15min and left to dry overnight. When thoroughly dried, 200µL of 0.2% 

TritonX-100 was added to each well and incubated at room temperature for 30min to 

solubilise the cells. Thereafter, by using reverse pipetting technique, 100µL of the solubilised 

solution was transferred to non-treated 96 well plates and the absorbance of the specimens 

analysed at 570nm using a Glomax plate reader. This experiment was done in triplicate (n = 

3). 
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2.2.7 Cell Morphology 

In this study we looked at the morphological changes within the cells after being exposed to 

the kernel extractions. 

 

Method: The morphology of the cells, after treatment with CAK, CPK, TAK, SAK, SPK 

organic extractions and CAK, CPK, SAK and SPK aqueous extractions was evaluated using 

Haematoxylin and Eosin (H&E) staining. 

 

2.2.7.1 Haematoxylin and Eosin Staining (H&E) 

Principle: The study of histology is based on microscopic analysis of the structure of tissues 

/cells. H&E yields excellent morphology, making it useful for visualizing structures of 

different composition, even under low magnification. H&E is able to differentiate cellular 

components based on the chemical nature of the cell.  Cells are made up of negatively 

charged acidic components and positively charged basic components. H&E takes advantage 

of these properties, forming electrostatic linkages to ionizable radicals in the cell, leading to 

positively and negatively charged cell components to be termed acidophilic and basophilic, 

respectively, according to the properties of the stain they take up. In the case of H&E, 

haematoxylin is a basic dye that stains cell nuclei blue–purple, whereas eosin is an acidic dye 

that stains the cell cytoplasm, collagen, and erythrocytes red–pink. When these two stains are 

applied sequentially, they combine to provide more contrast between cellular components 

than either stain would alone. 
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Method: Cells were seeded on sterilized coverslips placed in 6-well plates and was incubated 

at 37°C for 24hr to attach. The medium was then removed and replaced with 2mL fresh 

medium and 2mL treatment (see Section 2.2.5.5). It was then incubated for 24hr, 48hr and 

72hr intervals respectively. 

The coverslips with attached cells were removed and fixed in Bouin’s fixative for 30min. 

Thereafter it was placed in 70% ethanol for 20min and then rinsed in tap water till white. The 

cells were then stained in haematoxylin (Ehrlich) for 15min followed by another rinse in tap 

water for 1min. Thereafter the cells were stained in eosin for 20min followed by a 

dehydration procedure by placing the coverslips ina graded series of ethanol twice in each 

(70%, 90% and 100% ethanol) for 5min respectively and cleared in xylene. The coverslips 

were then mounted using DPX mountant onto microscope slides. The slides were analysed by 

viewing them under a Nikon Eclipse 50i light microscope. The cytotoxic effects of the 

various doses of the kernel extracts on HT-29 cells, including apoptotic body formation, were 

studied. 

 

2.2.8 Cell cycle progression 

 

2.2.8.1 Flow Cytometry 

Principle: Flow cytometry is a method which can determine multiple characteristics of single 

particles flowing in a single file down a stream of fluid. It aims to measure optical fluorescent 

characteristics of particles or cells. Among these properties is size and DNA, which 

corresponds to forward angle of light scatter and granularity or internal complexity which 

corresponds to side scatter and is often used to analyse cell cycle progression as the 

lightscatters off the cell and excites the fluorescent probe to fluoresce a certain colour 
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emission which can then be quantitatively determined by software. In this study propidium 

iodide was used to bind to double stranded DNA under appropriate staining conditions. The 

DNA stained in this manner will emit fluorescence in direct proportion to their DNA content. 

The flow cytometer measures the fluorescence from each stained cell as it passes through the 

laser beam. Flow cytometric analysis provides quantitative data and the ability to measure 

large numbers of cells rapidly. Flow cytometry was used to analyse the cell cycle in the HT-

29 colon cancer cells. A combination of mirrors and filters was used to separate the green 

(FITC) and the Propidium iodide (PI). 

 

Method: Equal numbers of cells were seeded in 25cm² flasks and incubated at 37°C for 24hr 

to attach. The cells were then exposed to the different treatments (see Section 2.2.5.5) for 

24hr, 48hr and 72hr intervals respectively. Cells were harvested and pelleted by 

centrifugation at 3500 rpm/6min. The trypsin was poured off and the cells resuspended in 

1ml cold PBS and centrifuged. To achieve permeability, 3mL of ice cold 95% ethanol was 

added to each tube in a drop wise manner whilst vortexing each tube. The specimens were 

stored at -20°C overnight. The ethanol was removed by centrifugation at 3500 rpm/6min and 

the cells washed with 1ml PBS at 6min intervals. The sediment was resuspended in 1mL of 

the hypotonic DNA staining buffer, PI / RNase, and stored at 4°C protected from light. 30min 

before reading the specimens using a FACS Calibre flow cytometer. For each sample at least 

10 000 events were collected and aggregated cells were gated out. 

(RNase solution: 250mL distilled water, 0.25g Tri NaCitrate, (750µL) 0.75mL Triton X-100, 

0.025g PI and 0.005g RNase A) 
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2.2.9 Hoechst 33342 fluorescent stain 

Principle: Hoechst 33342 fluorescent stain was used to assess apoptosis in HT-29 colon 

cancer cells. Hoechst 33342 is a UV light excitable nucleic acid binding dye that is a cell 

permeant. It stains highly condensed chromatin of apoptotic cells and lightly stains the looser 

chromatin structure of viable cells. The apoptotic cells may take the form of crescents around 

the periphery of the nucleus. Hoechst 33342 is excited by ultra violet rays at around 350nm 

and emits blue / cyan fluorescence light around an emission maximum at 460nm. It may be 

used on live or fixed cells.  

 

Method: Cells were seeded in growth medium on heat sterilised coverslips placed in 6-well 

plates and was given 24h to attach after which it was exposed to SAK and SPK hydrophilic, 

SPK lipophilic organic extractions and CAK, CPK, SAK and SPK aqueous extractions (see 

Section 2.2.5.5) for 24h and 48h at a concentration of 500 µg/mL. After 24h and 48h 

respectively the medium was removed and 1mL of Hoechst 33342 was added and incubated 

at 37ºC for 30 minutes in an incubator. Coverslips were mounted onto slides. Images were 

captured with a Nikon fluorescence microscope. Magnification of photographs was 40x. 

 

2.2.10 Statistical analysis 

Data obtained in the quantification of morphological lesions using crystal violet were 

analysed for statistical significance. MedCalc statistical software version 12 (as developed by 

Frank Schoonjans, Mariakerke, Belgium) was used to analyse data. In MedCalc, Level Codes 

(LC) is used to break-up the (ordinal) data in one variable into different sample subgroups. 
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As the results appeared to have non-parametric data distributions the Kruskal-Wallis test was 

employed. Data from independent experiments are shown as the mean ±SD and were 

statistically analysed for significance using the ANOVA one-way analysis of variance, to 

compare the control and treated groups. Means are presented in bar charts, with Box-and-

Whisker referring to standard deviations. P-values<0.05 are regarded as statistically 

significant. Annexure2 – 20 represents true ANOVA and Kruskal-Wallis analysis and not just 

a repetition of a means comparison. This was done to ensure that results which were shown to 

differ significantly also differed on the basis of a between groups and within groups analysis. 

The point is that two or more sets of data may differ significantly on the basis of a Student-t-

test, but on the basis of variance may not be comparable (the variance within groups too large 

and can therefore not be compared. SDs does not necessarily take care of this). 

The Box-and-Whisker plots show aspects which are difficult to tabulate or demonstrate by 

means of histograms or other statistical treatments. In the figures where data is represented as 

box-and-whisker plots, each box displays the following parameters for a given distribution: 

(i) median (centre line of box), (ii) second and third quartile values (25 to 75 percentile) 

representing the middle 50% of the values (central box), (iii) range of data excluding data 

points lying outside the one and a half times interquartile range (T-bars) and (iv) data points 

lying outside the one and a half time (plotted with a square marker) or three times the 

interquartile range (plotted with a round marker). 

The flow cytometric DNA analysis of cell cycle progression of HT-29 cells was performed 

after 24, 48 and 72 hours of exposure to 100, 500, 1000 µg/mL CAK, CPK, TAK, SAK and 

SPK organic and aqueous extractions. Manual DNA analysis using a FACs Calibur DNA 

analysis flow cytometer was doneto establish percentage values of cells in G1, G2 and S phase 

at a minimum of 10 000 cycle events. 
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Chapter 3 

Results 

 

3.1 The rationale for making the extractions used to treat the HT-29 colon cancer cells 

 

The total extract of plant material contains apart from the active compounds, an uncounted 

number of secondary metabolites, which may work in an antagonistic or synergistic manner 

and may also contain inactive compounds against the biological target under study. The 

rationale to fractionate the organic extract into total, lipophilic and hydrophilic fractions was 

to simplify the format by which the kernels may be introduced into the cells. There is a 

difference in the manner in which the organic (total, lipophilic and hydrophilic fractions) and 

aqueous extractions may exert their effects. The lipophilic fraction contains the lipid soluble 

compounds, while the hydrophilic fraction contains the hydrophilic compounds. Whereas, the 

total extract contains relative amounts of both lipid soluble and hydrophilic (polar) 

compounds. The compounds of each of the fractions, when used as a whole, may counteract 

each other’s effects, or increase each other’s activity and therefore the cells were exposed to 

the total as well as the separate lipophilic and hydrophilic extractions and the results 

compared. 

 

The aqueous extractions are similar but not identical to the hydrophilic extraction as it was 

obtained using water and not 80% ethanol as an extraction compound. It therefore, has a 

greater amount of polar compounds in comparison to the hydrophilic extraction. 
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The various extractions may therefore provide a means to simplify the investigation of the 

effects of the apricot and peach kernels on HT-29 colon cancer cells, resulting in a fractional 

analysis of the respective kernels, at the various concentrations and time periods. 

 

Chinese medicine practitioners may prescribe the kernels as a single herb or in a combination 

formula. The method of administration may be in the form of a double boil / aqueous 

decoction. This aspect of the study will hence also provide relevant information to the 

practitioner in clinic in the treatment of colon cancer. 
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Figure 3.1: The dried Chinese apricot kernel (CAK), Chinese peach kernel (CPK), Turkish apricot kernel 

(TAK), South African apricot kernel (SAK) and South African peach kernel (SPK) which was removed 

from their respective pips. 

 

The raw, dried CAK, CPK, TAK, SAK and SPK are all light brown in colour, approximately 

1cm in length and 0,5cm in width. All the kernels have a tear dropped / oval shape with mild 

ridges on the surface. Comparing the shape of the kernels, the CAK has a sharper edge, CPK 

has a rounder shape with sharp edges and TAK has rounded edges. The SAK is the biggest 

and widest in size and flat whilst the SPK is narrower than the SAK and flat (see Fig 3.1). 
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Figure 3.2: Pictures of the end product of the CAK, CPK and TAK organic extractions. Figure 3.2A shows 

the oil of the CAK total fraction. Figure 3.2B shows the oil of the CPK lipophilic fraction. Figure 3.2C shows 

the oil of the TAK, CPK and CAK hydrophilic fractions with different consistencies. Figure 3.2D shows the oil 

of the TAK lipophilic fraction. See Table 3.1 for a description of the fractions. 

 

Table 3.2 provides a general description of what the CAK, CPK, TAK, SAK and SPK 

organic fractions looked like after they were evaporated using a Buchirotavapor R-114 and 

allowed to settle at room temperature. 

 

3.2A 3.2B 

3.2C 
3.2D 
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Table 3.1: General description of the organic fractions of CAK, CPK, TAK, SAK and SPK 

Kernel Fraction Description of Fractions 

CAK-T; Chinese Apricot Kernel total extract Brown-yellowish in colour; a creamy consistency 

CAK-L; Chinese Apricot Kernel lipophilic extract Yellowish in colour; semi-solid oil 

CAK-H; Chinese Apricot Kernel hydrophilic extract Yellowish in colour; a creamy consistency 

CPK-T; Chinese Peach Kernel total extract Light cream in colour; semi-creamy-oil consistency  

CPK-L; Chinese Peach Kernel lipophilic extract Light cream in colour, oil with fatty sedimentation 

CPK-H; Chinese Peach Kernel hydrophilic extract Light cream in colour; creamy consistency 

TAK-T; Turkish Apricot Kernel total extract Light yellow in colour; semi-cream-oil consistency 

TAK-L; Turkish Apricot Kernel lipophilic extract Light yellow in colour; oil 

TAK-H; Turkish Apricot Kernel hydrophilic extract Light yellow in colour; semi-cream-oil consistency 

SAK-T; South African Apricot Kernel total extract Dark yellow in colour; oil with fatty deposit on top 

SAK-L; South African Apricot Kernel lipophilic extract Yellow in colour; oil with fatty deposit at the bottom 

SAK-H; South African Apricot Kernel hydrophilic extract  Light yellow in colour; oil 

SPK-T; South African Peach Kernel total extract Yellow in colour; liquid consistency 

SPK-L; South African Peach Kernel lipophilic extract Yellow in colour; oil with fatty deposit at bottom 

SPK-H; South African Peach Kernel hydrophilic extract Light yellow in colour; oil 
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3.1.2. Expected compounds in the various extractions 

 

According to Bensky et al (2004) the apricot and peach kernel have varying amounts of 

glycosides, fixed and volatile oils, with the peach kernel also containing flavanoids. The 

apricot and peach kernel total extraction was expected to yield relative amounts of fixed and 

volatile oils. The apricot and peach kernel lipophilic extraction was expected to yield a 

greater amount of fixed (e.g. linoleic acid) and volatile oils (e.g. benzaldehyde). The peach 

kernel lipophilic extraction was also expected to yield a small amount of flavanoids due to 

the use of acetone to perform the extraction. Trace amounts of flavanoids may be expected in 

the successive hydrophilic extractions which may result in dissolution. 

 

A percentage yield of lipophilic extractions (Table 3.2) of the various kernels achieved is 

related to the nutritional value. A percentage yield of 40% and more is an indication of the 

high nutritional value of the specific kernel. The nutritional value is the composition of the 

specific kernel and its extraction and its impact on the body. The low total extraction yields 

from the CAK, CPK and TAK (Table 3.2) could also be due to the procedure which required 

the evaporation of the CAK, CPK and TAK to be repeated twice as a result of a water 

residue. This may also be attributed to the nature of the compounds, as it is well known that 

lipophilic compounds are relatively difficult to be extracted using aqueous solvents. The 

exact chemistry and validation of the amount and types of glycosides, fixed, volatile oils and 

flavanoids is not within the scope of this study. The apricot and peach kernel hydrophilic 

extractions were expected to yield hydrophilic compounds and trace amounts of lipophilic 

compounds. 
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Table 3.2: The percentage yield of CAK, CPK, TAK, SAK and SPK organic kernel extraction fractions 

Kernel type Total Extraction
*
 

(% Yield) 

Lipophilic 

Extraction
** 

(% Yield) 

Hydrophilic 

Extraction
*** 

(% Yield) 

CAK 7.1  40.2 10.7 

CPK 7.9 46 7.6 

TAK 8.5 45.6 11.1 

SAK 43.3 51.1 5.7 

SPK 45.2 61.3 6.6 

 

 

The total
*
 extraction aimed at yielding relative amounts of fixed and volatile oils was 

performed with 80% ethanol. The lipophilic
**

 extraction of the lipid molecules was 

performed with acetone, and was followed by a successive extraction of the hydrophilic
***

 

fraction of the polar compounds with 80% ethanol. The low percentage yield of CAK, CPK 

and TAK total fractions is indicated in bold and italics. 

 

In contrast to the organic extraction which yielded oil, the aqueous extraction yield was a 

white-yellowish powder after the aqueous extraction was freeze dried using a bench top 

freeze dryer. 

Aqueous extractions (Table 3.3) is said to have a greater amount of polar compounds (e.g. 

salts and carbohydrates) and a smaller amount of non-polar compounds. The apricot and 

peach kernel aqueous extractions are expected to yield a greater amount of glycosides,  
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including amygdalin and prunasin, salts, and relatively smaller amounts of fixed and volatile 

oils.  

 

Table 3.3: Dry weight in grams of CAK, CPK, SAK, SPK powder of freeze dried aqueous kernel 

extraction fractions 

 

 

The following data represents the results after the HT-29 colon cancer cells were exposed at 

24, 48 and 72 hours to concentrations of 100, 500 and 1000 µg/mL of organic (total, 

lipophilic and hydrophilic) and aqueous extractions of the Chinese apricot kernel (CAK), 

Chinese peach kernel (CPK), Turkish apricot kernel (TAK), South African apricot kernel 

(SAK) and South African peach kernel (SPK). The Turkish peach kernel and the Turkish 

aqueous extract were not available at the time of the experiments. 

 

 

 

 

Kernel Type Dry Weight (g) 

CAK  9.82 

CPK 9.90 

SAK 9.96 

SPK 9.94 
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3.2 Cell Viability 

3.2.1 Crystal violet method studying the effects of CAK, CPK, TAK, SAK and SPK 

organic and CAK, CPK, SAK and SPK aqueous extractions on the growth of HT-29 

colon cancer cells 

The crystal violet staining method was used to determine the cell proliferation of HT-29 

colon cancer cells after exposure to CAK, CPK, TAK, SAK and SPK organic and aqueous 

extractions at concentrations of 100, 500 and 1000 µg/mL for 24, 48 and 72 hours. These 

experiments were done in triplicate. Absorbance values of samples (LC) were read at 570nm 

using a Glomax spectrophotometer. See Annexure 3 to 21 for statistical analysis reports. In 

the figures colour coding is used to depict the control and various sample fractions: yellow 

(control), green (total fractions), red (lipophilic fractions) and blue (hydrophilic fractions). 

 

Quantification of the effects of the various organic extracts of the Chinese apricot kernel on 

cell proliferation of HT-29 colon cancer cells is shown in figures 3.3 – 3.5. The study showed 

that after 24 and 48 hours at concentrations of 100, 500 and 1000 µg/mL all the fractions 

inhibited cell proliferation. Whereas, after 72 hours (Fig 3.5) the cells show a recovery in cell 

viability and cell proliferation as no significant difference between the control and these 

treated samples was observed. See Annexure 3 – 5 for full Kruskal Wallis test report.  
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Fig 3.4: 48h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 100, 500 

and 1000 µg/mL Chinese apricot kernel organic extractions (P<0,001). Samples differed between each other 

(p<0.05). 1000 µg/mL CAK total (LC4) showed the most outspoken growth inhibition (±40%) when compared to 

the control 
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Fig 3.3: 24h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after  exposure to 100, 

500 and 1000 µg/mL Chinese apricot kernel organic extractions (P<0,001). Samples differed between each 

other (p<0.05). 1000 µg/mL CAK lip (LC7) showed the most outspoken growth inhibition (±20%) when 

compared to the control 
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CAK treated samples in figures 3.3 – 3.5 differed from the control with a significant P-value 

of p<0.001. Whereas, samples differed from each other showing a significant P-value of 

p<0.05 (see Annexure 3 – 5 for full Kruskal Wallis test report).  

At 24 hours all CAK treated samples differed from the control (Absorbance (A) = 0,575). 

The CAK fractions inhibited cell growth to approximately 20% to that of the control with the  

1000 µg/mL CAK lipophilic extract (Fig 3.3, LC7) having the most outspoken growth 

inhibitory effect. 

At 48 hours all CAK treated samples differed from the control (A = 0,287). The 1000 µg/mL 

CAK total extract (Fig 3.4, LC4) showed the greatest inhibitory effect on HT-29 colon cancer 

cell proliferation followed by the 1000 µg/mL CAK lipophilic extract (Fig 3.4, LC7).   
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Fig 3.5: 72h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL Chinese apricot kernel organic extractions (P<0,001). Samples differed between 

each other (p<0.05). 100 µg/mL CAK hyd (LC8) showed the most outspoken increase in cell proliferation 

indicating a recovery in cell growth 
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No inhibitory effect was seen after 72 hours CAK exposure. Instead some treated samples 

showed an increase in cell proliferation (Fig 3.5, LC2, 3, 8 and 9) indicative of a recovery in 

cell proliferation in the HT-29 colon cancer cells.  

 In summary, the 24h1000 µg/mL CAK lipophilic extract (approximately 80% decrease) 

showed the greatest growth inhibitory effect, and after 48 hours the 1000 µg/mL CAK total 

extract (approximately 40% to that of the control) showed an outspoken inhibitory effect on 

cell proliferation.  
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Quantification of the effects of the various organic extracts of the Chinese peach kernel on 

cell proliferation of HT-29 colon cancer cells is shown in figures 3.6 – 3.8. The study showed 

that after 24 and 48 hours at concentrations of 500 and 1000 µg/mL there was significant 

inhibition of cell proliferation. Whereas, after 72 hours at concentrations of 100, 500 and 

1000 µg/mL the growth inhibitory effect was overcome and the cells show a recovery in cell 

proliferation.  
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Fig 3.6: 24h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL Chinese peach kernel organic extractions (P<0,001). Samples differed between 

each other (p<0.05). 1000 µg/mL CPK total (LC4) showed the most outspoken growth inhibition (±20%) 

when compared to the control 
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Fig 3.7: 48h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL Chinese peach kernel organic extractions (P<0,001). Samples differed between 

each other (p<0.05). 1000 µg/mL CPK total (LC4) showed the most outspoken growth inhibition (±40%) 

when compared to the control 
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Fig 3.8: 72h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL Chinese peach kernel organic extractions (P<0,001). Samples differed between 

each other (p<0.05). 100 µg/mL CPK hyd (LC8) showed the most outspoken increase in cell proliferation 

indicating a recovery in cell growth  
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CPK treated samples differed from the control with a significant P-value of p<0.001. 

Whereas, samples differed from each other showing a significant P-value of p<0.05 (see 

Annexure 6 – 8 for full Kruskal Wallis test report).    

At 24 hours all treated samples differed from the control (A = 0,575). The 1000 µg/mL CPK 

total extract (Fig 3.6, LC4) induced the most outspoken growth inhibition by approximately 

20% to that of the control.  

At 48 hours all treated samples differed from the control (A = 0,287). After 48 hours the 1000 

µg/mL total extract (approximately 40% to that of the control) showed the greatest inhibitory 

effect (Fig 3.7, LC4). Followed by 500 µg/mL total extract which also showed a high 

inhibitory effect (Fig 3.7, LC3).    

At 72 hours no growth inhibition was observed which could be seen as an indicator of cell 

growth recovery. The 1000 µg/mL CPK hydrophilic extract did show the most outspoken 

increase in cell proliferation (Fig 3.8, LC8).    

In summary, the CPK extracts which showed the greatest growth inhibitory effect was at 24h 

1000 µg/mL total and after 48 hours at a concentration of 1000 µg/mL total extract. After 72 

hours it would appear that the initial inhibitory effect of the CPK was abrogated and the cells 

resumed proliferation to an even greater extent than before the treatment.  
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Quantification of the effects of the various organic extracts of the Turkish apricot kernel on 

cell proliferation of HT-29 colon cancer cells is shown in figures 3.9 – 3.11. The study 

showed that after 24 and 48 hours at concentrations of 100, 500 and 1000 µg/mL there was 

significant inhibition of cell proliferation. Whereas, after 72 hours at concentrations of 100, 

500 and 1000 µg/mL the growth inhibitory effect was overcome and the cells show a 

recovery in cell proliferation (see Kruskal Wallis for full test report - Annexure 9 – 11). 
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Fig 3.9: 24h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL Turkish apricot kernel organic extractions (P<0,001). Samples differed between 

each other (p<0.05). 500 µg/mL TAK total (LC3) showed the most outspoken growth inhibition (±20%) 

when compared to the control 
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Fig 3.10: 48h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 100, 

500, 1000 µg/mL Turkish apricot kernel organic extractions P<0,001). Samples differed between each other 

(p<0.05). 1000 µg/mL TAK hyd (LC10) showed the most outspoken growth inhibition (±56%) and 100 µg/mL 

TAK total (LC5) & 100 µg/mL TAK hyd (LC8) the most outspoken recovery in growth  
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Fig 3.11: 72h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL Turkish apricot kernel organic extractions (P<0,001). Samples differed between 

each other (p<0.05). 100 µg/mL TAK lip & hyd (LC5 & LC8) showed the most outspoken increase in cell 

proliferation indicating a recovery in cell growth 
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The TAK treated samples differed from the control with a significant P-value of p<0.001. 

Whereas, samples differed from each other showing a significant P-value of p<0.05 (see 

Annexure 9 – 11 for full Kruskal Wallis test report).  

At 24 hours all TAK treated samples differed from the control (A = 0,575). The 500 µg/mL 

total TAK extract showed a significant inhibitory effect on cell proliferation of the HT-29 

colon cancer cells by approximately 20% to that of the control (Fig 3.9, LC3).  This was 

followed by the 100 µg/mL total extract (Fig 3.9, LC2).  

At 48 hours all TAK treated samples differed from the control (A = 0,287). The sample 

treated with 1000 µg/mL hydrophilic extract (Fig 3.10, LC10; Kruskal Wallis report 

Annexure 10) showed a significant growth inhibitory effect by approximately 56% to that of 

the control. However, there was an outspoken increase in cell proliferation of cells treated 

with 100 µg/mL TAK lipophilic and hydrophilic extract (Fig 3.10, LC5 and LC8 

respectively).    

At 72 hours the 100, 500 and 1000 µg/mL treated samples showed no effect on growth 

inhibition on the HT-29 colon cancer cells which may indicate cell growth recovery (Fig 

3.11).  In fact, samples treated with 100 µg/mL TAK lipophilic and hydrophilic extracts once 

again showed an outspoken increase in cell proliferation.  

In summary, the 24h100 µg/mL total TAK extract and 48h1000 µg/mL hydrophilic extract 

showed a significant growth inhibitory effect with no inhibitory effect seen at 72 hours.   
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Quantification of the effects of the various organic extracts of the South African apricot 

kernel on cell proliferation of HT-29 colon cancer cells is shown in figures 3.12 – 3.14. The 

study showed that after 24 and 48 hours at concentrations of 500 and 1000 µg/mL there was 

inhibition of cell proliferation. Whereas, after 72 hours at concentrations of 100, 500 and 

1000 µg/mL total, lipophilic and hydrophilic extracts no significant inhibitory effect was 

observed (see Kruskal Wallis test report Annexure 14).  
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Fig 3.12: 24h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL South African apricot kernel organic extractions (P<0,001). Samples differed 

between each other (p<0.05). 1000 µg/mL SAK total (LC4) showed the most outspoken growth inhibition 

(±30%) when compared to the control 
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Fig 3.13: 48h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL South African apricot kernel organic extractions (P<0,001). Samples differed 

between each other (p<0.05). 500 µg/mL SAK total (LC3) showed the most outspoken growth inhibition 

(±60%) when compared to the control 
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Fig 3.14: 72h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 100, 

500 and 1000 µg/mL South African apricot kernel organic extractions (P<0,001). Samples differed between 

each other (p<0.05). 500 µg/mL SAK total (LC3) shows the most outspoken increase in cell proliferation 

indicating a recovery in cell growth   
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The SAK treated samples differed from the control with a significant P-value of p<0.001. 

Whereas, samples differed from each other showing a significant P-value of p<0.05 (see 

Annexure 12 – 14 for full Kruskal Wallis test report).  

At 24 hours all the SAK treated samples differed from the control (A = 0,575). The 24h1000 

µg/mL total extract (Fig 3.12, LC4; Annexure 12) showed the most outspoken growth 

inhibitory effect by approximately 30% to that of the control. 

At 48 hours all the SAK treated samples differed from the control (A = 0.287). The 500 

µg/mL total extract treated sample (Fig 3.13, LC3; Annexure 13) showed the most significant 

inhibition in cell proliferation by approximately 60% to that of the control.  

At 72 hours (Fig.3.14; Annexure 14) no growth inhibitory effect was shown for the 100, 500 

and 1000 µg/mL extracts. In fact the 500 µg/mL SAK total extract (LC3) showed an 

outspoken increase in cell proliferation (Fig 3.13).   

In summary, at 24 hours the 1000 µg/mL SAK total extract showed the most outspoken 

growth inhibitory effect. At 48 hours the 500 µg/mL total extract showed the most outspoken 

inhibition on cell proliferation and subsequently showed the most outspoken increase in cell 

proliferation at 72 hours. After 72 hours it would appear that the initial inhibitory effect of the 

SAK was abrogated and the cells recovered inducing cell proliferation to an even greater 

extent than before the treatment with SAK.  
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Quantification of the effects of the various organic extracts of the South African peach 

kernel on cell proliferation of HT-29 colon cancer cells is shown in figures 3.15 – 3.17. The 

study showed that after 24 hours and 48 hours there was significant inhibition of cell 

proliferation. Whereas, at 72 hours no inhibition in cell growth was shown which is indicative 

of a recovery in cell proliferation.  
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Fig 3.15: 24h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL South African peach kernel organic extractions (P<0,001). Samples differed 

between each other (p<0.05). 500 µg/mL SAK lip (LC6) showed the most outspoken growth inhibition 

(±30%) when compared to the control 
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Fig 3.16: 48h Box-and-whisker plot illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL South African peach kernel organic extractions (P<0,001). Samples differed 

between each other (p<0.05). 500 µg/mL SPK total (LC3) & 1000 µg/mL SPK lip (LC7) showed the most 

outspoken growth inhibition (±60%) when compared to the control   
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Fig 3.17: 72h Box-and-whisker plots illustrating the growth of HT-29 colon cancer cells after exposure to 

100, 500 and 1000 µg/mL South African peach kernel organic extractions (P<0,001). Samples differed 

between each other (p<0.05). No significant growth inhibition was shown. 500 µg/mL SPK lip (LC6) shows 

an increase in cell proliferation indicating a recovery in cell growth 
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The SPK treated samples differed from the control with a significant P-value of p<0.001. 

Whereas, samples differed from each other showing a significant P-value of p<0.05 (see 

Annexure 15 – 17 for full Kruskal Wallis test report).  

At 24 hours all the SPK treated samples differed from the control (A = 0,575). The 500 

µg/mL lipophilic extract (approximately 30% to that of the control) followed by 100 µg/mL 

total extract showed the most outspoken growth inhibitory effect (Fig 3.15, LC6 and LC2 

respectively; Annexure 15).  

At 48 hours all the SPK treated samples differed from the control (A = 0,287). The most 

outspoken inhibition on cell proliferation was seen with the 1000 µg/mL lipophilic extracts 

followed by the 500 µg/mL total extract (Fig 3.16, LC7 and LC3 respectively) by 

approximately 60% respectively to that of the control.  

At 72 hours no inhibition on cell proliferation was shown. However, 500 µg/mL and 1000 

µg/mL lipophilic extracts showed an increase in cell proliferation which may be an indication 

of cell growth recovery (Fig 3.17, LC6 and LC7; Annexure 17).  

In summary, the 24h500 µg/mL lipophilic extract showed the most significant growth 

inhibitory effect. While after 48 hours and at a concentration of 500 µg/mL, the total extract 

showed the most significant inhibition on cell proliferation.   
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Figs 3.18 – 3.20 compares all the organic kernel extractions after 24, 48 and 72 hours 

exposure. The organic extract treated samples differed from the control with a significant P-

value of p<0.001. Whereas, samples differed from each other showing a significant P-value 

of p<0.05 (see Annexure 18 – 20 for full Kruskal Wallis test report).  

A significant decrease in the cell growth of the HT-29 colon cancer cells by all organic 

extractions after 24 hours was observed. After 24 hours, the overall most outspoken growth 

inhibitory effect by ±20% to that of the control was induced by the 1000 µg/mL CAK 

lipophilic extract followed by the 1000 µg/mL CAK total extract (Fig 3.18, LC7 and LC4 

respectively)  (see Kruskal Wallis test result for full report – Annexure 18 – 20).  

After 48 hours the greatest growth inhibitory effect by approximately 40% to that of the 

control was seen in the cells treated with 1000 µg/mL CAK total extract followed by 1000 

µg/mL CPK total extract (Fig 3.19, LC4 and LC13 respectively). The most outspoken 

recovery in cell proliferation after 48 hours was seen in samples treated with 100 µg/mL 

TAK lipophilic and hydrophilic extracts (Fig 3.19, LC23 and LC26 respectively). Growth 

inhibition was thus not to the same extent as observed after 24 hours.  

After 72 hours a slight inhibition of cell proliferation was still seen with the 1000 µg/mL 

SAK lipophilic extract (Fig 3.20, LC34) whilst the most outspoken recovery in cell 

proliferation was shown in the sample treated with 500 µg/mL SAK total extract (Fig 3.20, 

LC30). No indication of any recovery effect was observed after 24 hours. Over time the 

treatment lost the ability to inhibit cell growth seemingly resulting in a recovery, thus the 

inhibitory effect was not cytotoxic at all in either of the kernels or fractions used to treat the 

cells.  
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There was an initial overall decrease in cell proliferation of approximately 80% of the HT-29 

colon cancer cells at 24 hours and approximately 40% overall inhibition of cell growth after 

48 hours and a further possible recovery in cell proliferation after 72 hours. This may indicate 

that in order for a sustained effect to be achieved that an individual patient may have to 

consume the kernel extracts on a daily basis.          
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Fig 3.18: 24h Box-and-whisker plot illustrating the growth inhibition of HT-29 colon cancer cell after exposure to 100, 500 and 1000 µg/mL CAK, 

CPK, TAK, SAK and SPK organic extractions (P<0,001). Samples differed between each other (p<0.05). 1000 µg/mL CAK total and lip extracts 

showed overall most outspoken inhibition on cell proliferation (LC7 & LC4) at 24 hours (±20%).  
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Fig 3.19: 48h Box-and-whisker plot illustrating the growth inhibition of HT-29 colon cancer cell exposure to 100, 500 and 1000 µg/mL CAK, CPK, TAK, 

SAK and SPK organic extractions (P<0,001). Samples differed between each other (p<0.05). 1000 µg/mL CAK and CPK total extracts showed the most 

outspoken overall inhibition on cell proliferation (LC4 & LC13). 100 µg/mL TAK lip & hyd (LC23 & 26) showed most outspoken growth recovery 
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Fig 3.20: 72h Box-and-whisker plot illustrating the growth inhibition of HT-29 colon cancer cell after exposure to 100, 500 and 1000 µg/mL CAK, 

CPK, TAK, SAK and SPK organic extractions (P < 0,001). Samples differed between each other (p<0.05). 1000 µg/mL SAK lip extract (LC34) showed 

the least cell growth recovery and 500 µg/mL SAK total (LC30) showed the most outspoken cell growth recovery   
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Fig 3.21 shows quantification of all CAK, CPK, SAK and SPK aqueous extractions for 24, 

48 and 72 hours exposure. TAK aqueous extraction was not available at time of the 

experiment. A significant decrease in cell proliferation by all available extractions was seen 

after 24 and 48 hours with a slight increase in the cell proliferation after 72 hours which may 

indicate a recovery in cell growth. 

All aqueous treated samples differed from the control with a significant P-value of p<0.001. 

The samples differed from each other showing a significant P-value of p<0.05 (see Annexure 

21 for full Kruskal Wallis test report).  

 

At 24 hours all the aqueous treated samples differed from the control (A = 0,575). All the 

aqueous kernel extractions induced a growth inhibitory effect to approximately 30% to that of 

the control. The 500 µg/mL CPK and CAK aqueous extracts induced the most outspoken 

growth inhibitory effect (Fig 3.21, LC6 and 3 respectively) at 24 hours.  

 

All the aqueous treated samples at 48 hours differed from the 48 hour control (A = 0,287). 

The 500 µg/mL SAK aqueous extract (Fig 3.21, LC22) induced the most outspoken 

inhibition on cell proliferation by approximately 50% to that of the control. 

 

After 72 hours the 500 µg/mL SAK aqueous extract still induced the most outspoken 

inhibition on cell proliferation although to a much lesser degree compared at 48 hours (Fig 

3.21, LC35). This was followed by 500 µg/mL CAK aqueous extract (Fig 3.21, LC29). It 

would appear that the inhibitory effect of the 100 and 1000 µg/mL CAK, CPK and SAK 

aqueous extracts may have been overcome inducing an increase in cell proliferation  
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(Fig 3.21, LC28, 30, 31, 33, 34 and 36 respectively). The SPK aqueous extract treated 

samples did not differ much from each other compared to the control.  

In summary, the 500 µg/mL CPK aqueous extract had an overall growth inhibitory effect at 

24 hours, whilst the 500 µg/mL SAK aqueous showed an overall growth inhibitory effect at 

48 hours and 72 hours. At 24 hours no increase in cell proliferation is shown, whereas after 

72 hours an increase in cell proliferation is observed. It may be concluded that the inhibitory 

effect of the aqueous extracts observed is thus not cytotoxic. 
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Fig 3.21: 24h, 48h, 72h Box-and-whisker plot illustrating the growth inhibition of HT-29 colon cancer cells after exposure to 100, 500 and 

1000 µg/mL CAK, CPK, SAK and SPK aqueous extractions. The proliferation of all treated samples differed markedly from the control 

(P<0,001). 24h 500 µg/mL CPK, 48h & 72h 500 µg/mL SAK aqueous extractions showed the most outspoken inhibition of cell proliferation 

(LC6, LC22 & LC35). 
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33. 72h1000 AquaCPK 

34. 72h100 AquaSAK 

35. 72h500 AquaSAK 

36. 72h1000 AquaSAK 

37. 72h100 AquaSPK 

38. 72h500 AquaSPK 

39. 72h1000 AquaSPK 
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Table 3.4: Summary of the organic and aqueous extracts fractions that induced the most outspoken inhibition on cell proliferation of HT-29 human colon cancer 

cells 

 

SAMPLE 

EXTRACT 
24 HOURS 48 HOURS 72 HOURS 

SAMPLE  

EXTRACT 
24 HOURS 48 HOURS 72 HOURS 

ORGANIC 

CAK 
1000 µg/mL lip 

1000 µg/mL lip 

 None  AQUEOUS CAK  500 µg/mL 

  

  

 500 µg/mL 

  
 

1000 µg/mL total 

     
  ORGANIC 

CPK 

 

 

 

1000 µg/mL total 

 

 

 

1000 µg/mL total 

 
None 

  

 

AQUEOUS CPK 

 

 

 

 500 µg/mL 

 

 

  

500 µg/mL 

 

 

 

500 µg/mL total 

 

ORGANIC 

TAK 

 

 

 100 µg/mL total 

 

 

1000 µg/mL hyd 

 

 

 

 

 

None  

 

 

 

 

  

 

AQUEOUS TAK NOT AVAILABLE AT TIME OF EXPERIMENT 

 

  

  

  

    
 500 µg/mL total 

 
ORGANIC 

SAK 

 

1000 µg/mL total 

 

 

500 µg/mL total 

 

 

1000 µg/mL 

lip 

 
AQUEOUS SAK 

 

 

 500 µg/mL 

 
500 µg/mL 

 

ORGANIC 

SPK 

 500 µg/mL lip 

 
1000 µg/mL lip 

 None AQUEOUS SPK 
Experimental sample did not differ significantly 

from the control 

 

   

 100 µg/mL total 

 
 500 µg/mL total 
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Table 3.4 tabulates a comparative summary of the organic and aqueous kernel extractions 

that displayed the most outspoken inhibition on cell proliferation at 24, 48 and 72 hours. At 

24 and 48 hours all the organic and aqueous extractions induced a decrease in cell 

proliferation. Of the organic CAK extractions the 1000 µg/mL CAK lipophilic extract 

induced the most outspoken growth inhibitory effect at 24 hours and the 1000 µg/mL CAK 

total extract did so at 48 hours (Fig 3.3 and 3.4). Whereas the CPK total extract at 1000 

µg/mL caused a growth inhibitory effect at 24 and 48 hours (Fig 3.6 – 3.8). After 72 hours 

the inhibitory effect caused by the CAK and CPK organic fractions after 24 and 48 hours was 

completely abrogated with some of the treated samples even showing an increase in cell 

viability / proliferation. The cells exposed to the CAK and CPK aqueous extractions showed 

the same tendency as with the organic extractions including the recovery in cell viability after 

72 hours.     

The SAK total extract induced an outspoken growth inhibitory effect at 24h1000 µg/mL and 

48h500 µg/mL (Fig 3.12 – 13). Whereas the SPK lipophilic extract at 24h500 µg/mL and 

48h1000 µg/mL showed an outspoken growth inhibitory effect (Fig 3.16 – 17). The SAK 

aqueous extraction at 48h500 µg/mL and 72h500 µg/mL had induced an outspoken growth 

inhibitory effect (Fig 3.21).  

It is observed that of the aqueous fractions the CAK, CPK and SAK 500 µg/mL seemingly 

had the most outspoken growth inhibitory effects (Table 3.4). Whereas, the total and 

lipophilic organic fractions of all the kernels are seen to have the most outspoken inhibition 

on cell proliferation. The Turkish apricot kernel has shown to be effective in decreasing cell 

proliferation at 24 and 48 hours and increasing cell proliferation at 72 hours (Fig 3.9 – 11, 

Table 3.4) which could indicate that the inhibitory effect is being overcome.  
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The Turkish apricot organic extractions therefore showed a similar result to that of the CAK, 

CPK, SAK and SPK organic extractions after 24 and 48 hours exposure.  

Exposure of the HT-29 colon cancer cells to the organic and aqueous fractions produced 

similar results in that the 24 and 48 hour samples all show a decrease in cell proliferation and 

after 72 hours show an increase in cell proliferation indicative of a recovery in cell growth.   
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3.3 Morphological study 

 

3.3.1 Haematoxylin and Eosin staining (H&E) 

Light microscopy was conducted to investigate the morphological effects exerted by 100, 500 

and 1000 µg/mL CAK, CPK, TAK, SAK and SPK organic and aqueous extractions on the 

HT-29 colon cancer cell line after 24-, 48- and 72 hour exposure. The H&E staining was 

performed to visualise morphological changes in the cytoplasm and nucleus since 

haematoxylin stains the cell nucleus blue and the eosin stains the cytoplasm pink. H&E 

staining also visualises the cells undergoing mitosis as well as apoptotic and / or necrotic 

cells. 

HT-29 colon cancer cells tend to form colonies with a characteristic round to elliptical shape 

depending on the confluency of cells in the flask. Round nuclei with 2 - 4 nucleoli are visible 

in the cells. The untreated cells were well rounded or elliptically shaped with uniform sized 

cells in each colony. 

The morphological changes of the HT-29 colon cancer cells in response to the treatment with 

the various kernel extractions showed some cells displaying cell membrane blebbing possibly 

due to changes in membrane permeability, irregularly shaped cells, cellular shrinking and 

hypercondensed chromatin all features associated with cells undergoing apoptosis. These 

changes are illustrated by Figures 3.22 – Figures 3.56. The HT-29 colon cancer cells tend to 

form colonies displaying nuclei and prominent nucleoli. The treated HT-29 colon cancer cells 

grew in a sparse manner, more obvious clumping, smaller colonies and a decrease in cells 

numbers. After 72 hours however, the cells seem to resume their initial growth appearance, 

increase in colony size and cells.       
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The selection of the H&E figures is based on the results obtained by the crystal violet staining 

and the flow cytometric data analysis representing the various kernel extractions at the 

specific concentrations and time periods as those with possibly the most significant 

morphological changes when treated with the respective kernel fractions. The treatments are 

grouped according to the specific kernel types.  

 

Figures 3.22 – 3.31 show 24h, 48h and 72h untreated cells and cells exposed to CPK and CAK organic and aqueous 

extractions. Fig 3.22 Untreated 24h control shows cells in interphase. Fig 3.23 shows a 48h control. Fig 3.24 shows a 72h 

control. Fig 3.25 shows cell membrane blebbing (white arrow) and irregular cell shape (yellow arrow) after exposure to 

CPK-H 24h100 µg/mL (magnification: 40x). 

 

Figure 3.22: 24h Control  Figure 3.23: 48h Control 

     Figure 3.25: CPK-H 24h100 µg/mL   Figure 3.24: 72h Control 
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Fig 3.26 shows small rounded cells displaying cell membrane blebbing (black arrow) and possible apoptotic cell (green 

arrow) after exposure to CAK aqueous 24h100 µg/mL. Fig 3.27 shows an enlarged cell (yellow arrow) and cellular 

shrinkage (black arrow) after exposure to CAK aqueous 24h500 µg/mL. Fig 3.28 shows membrane blebbing (black arrow) 

and hypercondensed chromatin (red arrow) after exposure to CAK aqueous 72h100 µg/mL. Fig 3.29 shows a cell with 

irregular shape (black arrow) and possible apoptotic cell (red arrow) after exposure to CPK aqueous 24h1000 µg/mL. Fig 

3.30 shows membrane blebbing (black arrow) and possible apoptotic cell (red arrow) after exposure to CPK aqueous 48h500 

µg/mL. Fig 3.31 shows membrane blebbing (arrow) after exposure to CPK aqueous 48h1000 µg/mL (magnification: 40x). 

Figure 3.26: CAK aqueous 24h100 µg/mL Figure 3.27: CAK aqueous 24h500 µg/mL 

Figure 3.28: CAK aqueous 72h100 µg/mL Figure 3.29: CPK aqueous 24h1000 µg/mL 

Figure 3.30: CPK aqueous 48h500 µg/mL Figure 3.31: CPK aqueous 48h1000 µg/mL 
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Figure 3.32 – 3.36 show the effects of SAK aqueous and organic extractions on HT-29 colon cancer cells. Fig 3.32 

shows an irregular cell (black arrow) and dense hyperchromatin (red arrow) after exposure to SAK aqueous 72h100 µg/mL. 

After 72 hours the cells start overcome the effect of the extractions and resume their shape and colony formation as seen 

with the controls. Fig 3.33 an irregular shaped cell (black arrow) and possible apoptotic cell (red arrow) after exposure to 

SAK aqueous 72h500 µg/mL is seen. Fig 3.34 shows possible apoptosis (red arrow) and an enlarged cell with granulation 

(black arrow) after exposure to SAK-H 24h100 µg/mL. Fig 3.35 shows cells with dense hyperchromatin (black arrow) and 

membrane blebbling (yellow arrow) after exposure to SAK-H 24h500 µg/mL. Fig 3.36 shows an irregular shaped cell 

(arrow) after exposure to SAK-H 24h1000 µg/mL.  (magnification: 40x). 

Figure 3.32: SAK aqueous 72h100 µg/mL Figure 3.33: SAK aqueous 72h500 µg/mL 

Figure 3.34: SAK-H 24h100 µg/mL Figure 3.35: SAK-H 24h500 µg/mL 

Figure 3.36: SAK-H 24h1000 µg/mL 
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Figure 3.37 – 3.42 show the effects of some SAK organic extractions on HT-29 colon cancer cells. Fig 3.37 abnormal 

cell with irregular shape (red arrow) and membrane blebbing (black arrow) after exposure to SAK-L 24h100 µg/mL is seen. 

Fig 3.38 an irregularly shaped cell (black arrow) and possible apoptotic cell (white arrow) after exposure to SAK-L 72h100 

µg/mL can be observed. Fig 3.39 shows an irregularly shaped cell (arrow) after exposure to SAK-L 48h500 µg/mL. Fig 3.40 

displays possible apoptotic cells (black arrow) after exposure to SAK-L 48h1000 µg/mL. Fig 3.41 abnormal cell with an 

enlarged irregularly shaped cell (arrow) after exposure to SAK-T 24h100 µg/mL can be observed. Fig 3.42 shows possible 

apoptotic cell (arrow) after exposure to SAK-T 24h1000 µg/mL (magnification: 40x). 

Figure 3.37: SAK-L 24h100 µg/mL Figure 3.38: SAK-L 72h100 µg/mL 

Figure 3.39: SAK-L 48h500 µg/mL Figure 3.40: SAK-L 48h1000 µg/mL 

Figure 3.41: SAK-T 24h100 µg/mL Figure 3.42: SAK-T 24h1000 µg/mL 
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Figure 3.43 – 3.48 show the effects of some SPK aqueous and organic extractions on HT-29 colon cancer cells using 

H&E staining. Fig 3.43 shows possible apoptotic cells (red arrows) and blebbing (black arrow) after exposure to SPK 

aqueous 72h100 µg/mL. Fig 3.44 shows abnormal cell with irregular cell shape (black arrow) and hypercondensed 

chromatin (white arrow) after exposure to SPK-H 24h500 µg/mL. Fig 3.45 shows irregularly shaped enlarged cell (black 

arrow) and possible apoptotic cell (white arrow) after exposure to SPK-H 24h1000 µg/mL. Fig 3.46 an irregularly shaped 

cell after exposure to SPK-H 48h100 µg/mL is observed. Fig 3.47 shows an enlarged and detached cell (arrow) after 

exposure to SPK-H 48h500 µg/mL. Fig 3.48 irregularly shaped cell (arrow) after exposure to SPK-L 24h100 µg/mL is seen 

(magnification: 40x). 

Figure 3.43: SPK aqueous 72h100 µg/mL Figure 3.44: SPK-H 24h500 µg/mL 

Figure 3.45: SPK-H 24h1000 µg/mL Figure 3.46: SPK-H 48h100 µg/mL 

Figure 3.47: SPK-H 48h500 µg/mL Figure 3.48: SPK-L 24h100 µg/mL 

 

 

 

 



 

Chapter 3: Results 

 

 

110 
 

 

Figure 3.49 – 3.54 show the effects of some SPK organic extractions on HT-29 colon cancer cells using H&E staining. 

Fig 3.49 shows abnormal cells after exposure to SPK-L 24h1000 µg/mL. Fig 3.50 shows cells with granulation and irregular 

shape (arrow) after exposure to SPK-L 48h100 µg/mL. Fig 3.51 a cell with membrane blebbing (black arrow) and possible 

apoptotic cell (red arrow) after exposure to SPK-L 48h500 µg/mL is observed. Fig 3.52 an irregular shaped cell (black 

arrow) after exposure to SPK-L 48h1000 µg/mL is seen. Fig 3.53 shows abnormal cell with loss of internal cellular integrity 

(arrow) after exposure to SPK-L 72h100 µg/mL. Fig 3.54 shows irregular shaped cell (arrow) after exposure to SPK-L 

72h500 µg/mL (magnification: 40x). 

Figure 3.49: SPK-L 24h1000 µg/mL Figure 3.50: SPK-L 48h100 µg/mL 

Figure 3.51: SPK-L 48h500 µg/mL Figure 3.52: SPK-L 48h1000 µg/mL 

Figure 3.53: SPK-L 72h100 µg/mL Figure 3.54: SPK-L 72h500 µg/mL 
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Figures 3.55 – 3.56 show the effects of SPK-T organic extractions on HT-29 colon cancer cells using H&E staining. 

Fig 3.55 shows an abnormal enlarged cell with membrane blebbing after exposure to SPK-T 48h100 µg/mL. Fig 3.56 shows 

possible apoptotic cells (red arrow) and abnormal cell with irregular internal cellular structure (black arrow) after exposure 

to SPK-T 72h1000 µg/mL. Cells seemingly overcome the effects of the kernel fractions after 72 hours and an increase in cell 

growth is seen (magnification: 40x). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.55: SPK-T 48h100 µg/mL Figure 3.56: SPK-T 72h1000 µg/mL 
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3. 4 Flow cytometry 

Propidium iodide staining detected by flow cytometry was utilised to investigate the effects 

of 100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK organic and aqueous 

extractions on cell cycle progression. This allowed for the quantification of DNA content in 

the respective samples. Cell cycle distribution and an S phase block were revealed (See 

Annexure 2 for DNA analysis data).  

Inhibition of cell cycle progression with an increase in the amount of cells in the S phase 

(during which DNA synthesis occurs) and subsequent decrease of cells in the G2 phase could 

be an indication of the activation of an intra-S phase block. The slowing down of cell cycle 

progression in the S phase may not be permanent and often a recovery in cell proliferation 

and the progression of DNA into the G2 phase may be seen. If DNA damage is too severe 

then the likelihood that cells would progress to the G2 phase is decreased and thus 

programmed cell death may occur. A G2 value of zero percent (0%) may indicate that the 

cells were blocked in the S phase or the cells may in fact have undergone programmed cell 

death. An increase of cells in the G1 phase after 72 hours and a decrease of cells in the S 

phase may indicate a complete repair of DNA damage resulting in a continuation of cell cycle 

progression.  
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3.4.1 Cell cycle progression after treatment with 100, 500 and 1000 µg/mL CAK, CPK, 

TAK, SAK and SPK organic extractions  

Figure 3.57 - 3.62 show time and dose related histograms of the respective 24, 48 and 72 

hour exposures of HT-29 colon cancer cells to 100, 500 and 1000 µg/mL CAK, CPK, TAK, 

SAK and SPK organic extractions. All organic extractions influenced cell cycle 

progression differently depending on the type of kernel extraction, duration and 

concentration. The first three figures 3.57 – 3.59 compare effects of the various 

concentrations of the fractions on cell cycle progression for specific time periods. The next 

three figures (3.60 – 3.62) compares the effect of a specific concentration of the fractions for 

the three exposure times.   

Figure 3.57 show cell cycle progression after 24 hours. 100, 500 and 1000 µg/mL SAK 

hydrophilic extracts (SAK-H) increased the number of cells in the S phase to 86,4%, 65,57% 

and 74,47% respectively. A corresponding decrease of cells in the G2 phase of 0% was 

observed (Annexure 2). 100 µg/mL SPK lipophilic extract (SPK-L) increased the number of 

S phase cells to 66,8%, 500 µg/mL SAK total extract (SAK-T) to 60,13%  and 1000 µg/mL 

SAK-T to 60,19%. The sample treated with 100 µg/mL CAK lipophilic extract (CAK-L) had 

the least amount of cells in the S phase (3,76%) and 1,44% cells in the G2 phase (Fig 3.57, 

Annexure 2). Cell cycle progression of most samples treated with 1000 µg/mL fractions 

showed an increase in the number of cells in the S phase to some extent.    

After 48 hours (Fig 3.58) cells exposed to 100 µg/mL and displaying an outspoken increase 

of cell numbers in the S phase were SPK-H (S=76,08%) and SPK-L (S=52,94%). A peak in 

the S phase of cells exposed to 500 µg/mL SAK-L (S=70,74%) and  

 

 

 

 



 

Chapter 3: Results 

 

 

114 
 

 

SPK-H (S=41,88%), and SPK-T (S=77,62%) and SPK-H (S=46,54%) at a concentration of  

1000 µg/mL were also observed (Annexure 2). All the concentrations of the SPK-H fraction 

affected cell cycle progression after 48 hours in this manner.  

After 72 hours (Fig 3.59) a minor effect on cell cycle progression was seen except for 100 

µg/mL SPK-L and SAK-L that induced a peak in the number of cells in the S phase to 

63,44% and 29,61% respectively, 500 µg/mL CPK-H and SPK-L to 56,73% and 37,14% 

respectively, and 1000 µg/mL SPK-T  to 33,16% (Fig 3.59; Annexure 2).  

In summary, the fraction (s) which was most consistent at inducing an increased number of 

cells in the S phase and a G2 phase of 0% after 24 hours for all three concentrations was 

SAK-H followed by SAK-T. After 48 hours exposure it was SPK-H for all three 

concentrations and after 72 hours exposure it was SPK-L at 100 µg/mL.  
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 Figure 3.57: Flow cytometric analysis of HT-29 cells after 24 hour exposure to concentrations of 100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK 

organic extractions. Cell cycle analysis show an outspoken increase in cells in S-phase and decrease in cells in G2 phase when treated with 100µg/mL SAK-H 

(S=86,4%, G2=0%), SPK-L (S=66,8%, G2=0%); at 500 µg/mL SAK-H (S=65,57%, G2=0%), SAK-T (S=60,13%, G2=0%); at 1000 µg/mL SAK-H (S=74,47%, 

G2=0%), SAK-T (S=60,19%, G2=0%) (Annexure 2). 
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                24h 100                                         24h 500                               24h 1000 

24h exposure  @ 100, 500, 1000 µg/mL organic extractions 

G2 S G1

CAK: Chinese  apricot kernel 
CPK: chinese peach kernel 
TAK: Turkish apricot kernel 
SAK: South African  apricot  
           kernel 
SPK: South African peach 
          kernel 
T: Total extract 
L: Lipophiic extract 
H: Hydrophilic extract  
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Figure 3.58: Flow cytometric analysis of HT-29 cells after 48 hour exposure to concentrations of 100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK 

organic extractions. After exposure to 500 and 1000 µg/mL cells show a tendency to recover which is shown by the decrease in cells in the S phase and an increase 

in cells in the G2 phase. Cells show an outspoken increase in cells in S-phase and decrease in cells in G2 phase indicating a growth inhibitory effect when treated 

with 100 µg/mL SPK-H (S=76,08%, G2=0%) and SPK-L (S=52,94%, G2=0%); at 500 µg/mL SAK-L (S=70,74%, G2=0%), SPK-H (S=41,88%, G2=0%); and 1000 

µg/mL SPK-T (S=77,62%, G2=0%) and SPK-H (S=46,54%, G2=0%) (see Annexure 2 for data). 

 

0%

20%

40%

60%

80%

100%

C
o

n
tr

o
l

C
A

K
 T

C
A

K
 L

C
A

K
 H

C
P

K
 T

C
P

K
 L

C
P

K
 H

TA
K

 T
TA

K
 L

TA
K

 H
SA

K
 T

SA
K

 L
SA

K
 H

SP
K

 T
SP

K
 L

SP
K

 H

co
n

tr
o

l
C

A
K

 T
C

A
K

 L
C

A
K

 H
C

P
K

 T
C

P
K

 L
C

P
K

 H
TA

K
 T

TA
K

 L
TA

K
 H

SA
K

 T
SA

K
 L

SA
K

 H
SP

K
 T

SP
K

 L
SP

K
 H

co
n

tr
o

l
C

A
K

 T
C

A
K

 L
C

A
K

 H
C

P
K

 T
C

P
K

 L
C

P
K

 H
TA

K
 T

TA
K

 L
TA

K
 H

SA
K

 T
SA

K
 L

SA
K

 H
SP

K
 T

SP
K

 L
SP

K
 H

%
 c

el
ls

 i
n

 G
1,

 G
2 

an
d

 S
 p

h
as

e 
 

48h 100                                   48h 500  48h 1000 

48h exposure  @ 100, 500, 1000 µg/mL organic extractions 

 

 
G2 S G1

CAK: Chinese  apricot kernel 
CPK: Chinese peach kernel 
TAK: Turkish apricot kernel 
SAK: South African apricot  
          kernel 
SPK: South African peach  
         kernel 
T: Total extract 
L: Lipophiic extract 
H: Hydrophilic extract  
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Figure 3.59: Flow cytometric analysis of HT-29 cells after 72 hour exposure to concentrations of 100, 500 and 1000 µg/mL CAK, CPK, TAK, SAK and SPK 

organic extractions. Cell cycle analysis show an increase in cells in G1 and G2 phase, as well as a decrease in cells in S phase indicating a recovery in cell 

proliferation. Cells treated with the following fractions yielded 0% cells in the G2 phase and the highest S phase peak namely at 100 µg/mL SPK-L (S=63,44%); at 

500 µg/mL CPK-H (S=56,73%) and at 1000 µg/mL SPK-T (S=33,16%) (see Annexure 2 for data). 
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72h 100  72h 500  72h 1000 

72h exposure  @ 100, 500, 1000 µg/mL organic extractions 

 

 
G2 S G1

CAK: Chinese  apricot kernel 
CPK: Chinese peach kernel 
TAK: Turkish apricot kernel 
SAK: South African  apricot  
          kernel 
SPK: South African peach 
          kernel 
T: Total extract 
L: Lipophiic extract 
H: Hydrophilic extract  
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3.4.2 Cell cycle progression over 24, 48 and 72 hours after treatment with 100, 500 and 

1000 µg/mL CAK, CPK, TAK, SAK and SPK organic extractions 

Figure 3.60 - 3.62 show time related histograms comparing the same concentration for all the 

fractions over time. Figure 3.60 show 100 µg/mL over 24, 48 and 72 hours. Exposure to 100 

µg/mL at 24, 48 and 72 hours showed that all the SPK organic extractions affected cell cycle 

progression by inducing a peak in the number of cells in the S phase with SPK-L inducing an 

increase in all three time periods. However, the most effective 100 µg/mL kernel fraction was 

SAK-H inducing the biggest S phase peak, 86,4%, after 24 hours (Fig 3.60, Annexure 2).  

500 µg/mL SPK organic extraction affected the cell cycle progression by inducing a peak in 

the number of cells in the S phase and  0% in the G2 phase after 24, 48 and 72 hours with 

SPK-H being the more consistent fraction having an effect. 500 µg/mL SAK-L after 48 hours 

however, showed the most outspoken effect by increasing the S phase to 70,74% (Fig 3.61, 

Annexure 2). 

1000 µg/mL SPK organic extraction consistently induced a peak in the number of cells in the 

S phase after the three exposure times with 1000 µg/mL SPK-T at 48 hours inducing the 

highest peak in the S phase (S=77,62% and G2=0%) (Fig 3.62, Annexure 2). 

Therefore the 100 µg/mL SAK-H had the greatest effect on cell cycle progression by 

inducing an increase in the number of cells in the S phase to 86,4% with no cells in the G2 

phase at 24 hours. The SPK total, lipophilic and hydrophilic organic extractions increased the 

number of cells in the S phase consistently in all the exposure times. After 72 hours, for all 

three concentrations of CAK, CPK and TAK, no effect on cell cycle progression was 

observed. It follows that the S phase block observed mostly after 24 and 48 hours had been  
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overcome and the cell resumed cell cycle progression and thus cell proliferation (Fig 3.60 – 

3.62).  

. 
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Figure 3.60: Flow cytometric analysis of HT-29 cells after 24, 48 and 72 hour exposure at a concentration of 100 µg/mL CAK, CPK, TAK, SAK and SPK 

organic extractions. Cell cycle analysis showed an increase in cells present in S-phase as well as a marked decrease in the cells present in G2 phase (G2=0%) when 

treated at 24h100 µg/mL SAK-H (S=86,4%), SPK-L (S=66,8%); 48h100 µg/mL SPK-H (S=76,08%), SPK-L (S=52,94%) and at 72h100 µg/mL SPK-L (S=63,44%) 

and SAK-L (S=29,61%) (see Annexure 2 for complete flow cytometric data). 
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Figure 3.61: Flow cytometric DNA analysis of HT-29 cells after 24, 48 and 72 hour exposure to a concentration of 500 µg/mL CAK, CPK, TAK, SAK and 

SPK organic extractions. An increase in the number of cells in S-phase as well as a decrease in cells present in G2 phase (G2=0%) when treated at 24h500 µg/mL 

SAK-H (S=65,57%) and SAK-T (S=60,13%); 48h500 µg/mL SAK-L (S=70,74%) and SPK-H (S=41,88%) and 72h500 µg/mL CPK-H (S=56,73%) and SPK-L 

(S=37,14%) (see Annexure 2). An increase in the number of cells in the G1 phase of the treated samples indicates a recovery of the damaged DNA and thus a 

progression of the cell cycle.  

0%

20%

40%

60%

80%

100%

co
n

tr
o

l
C

A
K

 T
C

A
K

 L
C

A
K

 H
C

P
K

 T
C

P
K

 L
C

P
K

 H
TA

K
 T

TA
K

 L
TA

K
 H

SA
K

 T
SA

K
 L

SA
K

 H
SP

K
 T

SP
K

 L
SP

K
 H

co
n

tr
o

l
C

A
K

 T
C

A
K

 L
C

A
K

 H
C

P
K

 T
C

P
K

 L
C

P
K

 H
TA

K
 T

TA
K

 L
TA

K
 H

SA
K

 T
SA

K
 L

SA
K

 H
SP

K
 T

SP
K

 L
SP

K
 H

co
n

tr
o

l
C

A
K

 T
C

A
K

 L
C

A
K

 H
C

P
K

 T
C

P
K

 L
C

P
K

 H
TA

K
 T

TA
K

 L
TA

K
 H

SA
K

 T
SA

K
 L

SA
K

 H
SP

K
 T

SP
K

 L
SP

K
 H%

 c
el

ls
 i

n
 G

1,
 G

2 
an

d
 S

 p
h

as
e 

 

               24h 500     48h 500   72h 500   

24h , 48h and 72h exposure  @ 500 µg/mL organic extractions 

G2 S G1

CAK: Chinese  apricot kernel 
CPK: chinese peach kernel 
TAK: Turkish apricot kernel 
SAK: South African apricot  
          kernel 
SPK: South African peach 
          kernel 
T: Total extract 
L: Lipophiic extract 
H: Hydrophilic extract  

 

 

 

 



 

Chapter 3: Results   

 

122 
 

 

 

Figure 3.62: Flow cytometric analysis of HT-29 cells after 24, 48 and 72 hour exposure to a concentration of 1000 µg/mL CAK, CPK, TAK, SAK and SPK 

organic extractions. The occurrence of an S-phase peak as well as a decrease in cells in G2 phase (G2=0%) was observed when treated at 24h1000 µg/mL SAK-H 

(S=74,47%) and SAK-T (S=60,19%); 48h1000 µg/mL SPK-T (S=77,62%) and SPK-H (S=46,54%); and 72h1000 µg/mL SPK-T (S=33,16%). An increase in the 

number of cells in the G1 phase indicates a recovery in cell cycle progression of the treated samples.   
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To evaluate and compare the specific kernel extractions with one another the following 

figures 3.63 - 3.71 display dose related histograms of specific fractions over time. Figure 

3.63 – 3.65 show 100, 500 and 1000 µg/mL of CAK, CPK, TAK, SAK and SPK total 

extractions for the three time periods. The total extractions show an increase in the number 

of cells in the S-phase with a decrease in cells in the G2 phase at 24 and 48 hour exposure 

with a minor effect on cell cycle progression seen after 72 hours (Fig 3.65). 

 

 

Figure 3.63: Flow cytometric analysis of HT-29 cells after 24 hour exposure to concentrations of 100, 500 

and 1000 µg/mL total extractions of CAK, CPK, TAK, SAK and SPK. Cell cycle analysis showed an 

increase in the number of cells present in the S-phase as well as a decrease in the number of cells present in the 

G2 phase (G2=0%) when treated with 100 µg/mL SPK-T (S=64,47%), SAK-T (S=37,92%) and CPK-T 

(24,32%); 500 µg/mL SAK-T (S=60,13%) and SPK-T (S=34,25%); 1000 µg/mL SAK-T (S=60,19%). 
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Figure 3.64: Flow cytometric analysis after 48 hour exposure to 100, 500 and 1000 µg/mL total extractions 

of CAK, CPK, TAK, SAK and SPK. Analysis showed a peak in the number of cells in the S-phase and a 

decrease in cells present in G2 phase (G2=0%) when treated with 1000 µg/mL SPK-T (S=77,62%). Treated 

samples separately showing a peak in cells present in the S phase and a G2=0% included 100 µg/mL CAK-T 

(S=28,95%) and SPK-T (S=48,61%), 1000 µg/mL TAK-T (S=16,67%) and SAK-T (S=45,13%).  

 

Figure 3.65: Flow cytometric analysis after 72 hour exposure to 100, 500 and 1000 µg/mL total extractions 

of CAK, CPK, TAK, SAK and SPK. A peak in the number of cells in the S-phase and a decrease in cells 

present in G2 phase (G2=0%) when treated with 100 µg/mL TAK-T (S=16,44%; SPK-T (S=16,36%); and 1000 

µg/mL SPK-T (S=33,16%). After 72 hours no difference from the control is observed indicating that effect of 

the treatment is no longer present and cells resume progression of the cell cycle (Annexure 2). 
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Figures 3.63 - 3.65 compared the total fractions of all the kernels to establish the specific 

kernel and its organic total fraction that had the most outspoken effect on cell cycle 

progression by inducing a peak in the S phase.  

The total fractions inducing an increase in the number of cells in the S phase was 100 µg/mL 

SPK-T after 24 hours (Fig 3.63) to 64,47%, 1000 µg/mL SPK-T after 48 hours (Fig 3.64) to 

77,62% and 1000 µg/mL SPK-T after 72 hour exposure (Fig 3.65) to 33,16%.      

In comparison to the effect induced by the 100 and 1000 µg/mL total fractions, none of the 

500 µg/mL total fractions after 48 hours influenced the cell cycle progression by influencing 

either the S phase nor the G2 (Fig 3.64, Annexure 2). No effect after 72 hours is seen as there 

was no difference between the control and treated samples.      
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Figures 3.66 - 3.68 show histograms comparing the lipophilic extractions inducing a peak 

in the S-phase and a decrease in cells present in the G2 phase with little difference in the G1 

phase seen over 24, 48 and 72 hour periods.  

 

 

Figure 3.66: Flow cytometric analysis of HT-29 cells after 24 hour exposure to 100, 500 and 1000 µg/mL 

lipophilic extractions of CAK, CPK, TAK, SAK and SPK. Cell cycle analysis show the highest increase in 

cells present in the S-phase as well as a decrease in cells present in G2 phase (G2=0%) when treated with 100 

µg/mL SPK-L (S=66,8%); 500 µg/mL SPK-L (S=21,88%); and 1000 µg/mL SPK-L (S=57,12%) (Annexure 2 

for complete data report). 
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Figure 3.67: Flow cytometric analysis of HT-29 cells after 48 hour exposure to 100, 500 and 1000 µg/mL 

lipophilic extractions of CAK, CPK, TAK, SAK and SPK. Analysis showed a peak in the S-phase as well as 

a decrease in cells present in the G2 phase (G2=0%) when treated with 100 µg/mL SPK-L (S=52,94%); 500 

µg/mL SAK-L (S=70,74%); and 1000 µg/mL SAK-L (S=37,87%) (Annexure 2 for complete data report). 

 

 

Figure 3.68: Flow cytometric analysis of HT-29 cells after 72 hour exposure to concentrations of 100, 500 

and 1000 µg/mL lipophilic extractions of CAK, CPK, TAK, SAK and SPK. Cell cycle analysis showed an 

increase in cells in the S-phase and a decrease in cells in G2 phase (G2=0%) when treated with 100 µg/mL SPK-

L (S=63,44%); and 500 µg/mL SPK-L (S=37,14%) (Annexure 2 for complete data report).  
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The lipophilic fractions that induced an occurrence of an S phase peak were 100 µg/mL SPK-

L (S=66,8%) after a 24 hour exposure (Fig 3.66), 500 µg/mL SAK-L (S=70,74%) after 48 

hours (Fig 3.67), and 100 µg/mL SPK-L (S=63,44%) after 72 hours (Fig 3.68).   

In summary, the 500 µg/mL SAK-L extraction after 48 hours induced the highest S phase 

peak of 70,74% and a G2=0%.   
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Figures 3.69 - 3.71 show histograms comparing the hydrophilic extractions. The 

hydrophilic extractions show an increase in the number of cells in the S phase and a decrease 

in cells present in the G2 phase at 24 and 48 hours. An increase in the number of cells in the 

G1 phase and a decrease in the number of cells in the S and G2 phases after 72 hours indicate 

that cell resumed cell cycle progression.    

 

Figure 3.69: Flow cytometric analysis of HT-29 cells after 24 hour exposure to 100, 500 and 1000 µg/mL 

hydrophilic extractions of CAK, CPK, TAK, SAK and SPK. An increase in the number of cells present in 

the S-phase as well as a decrease in cells present in the G2 phase (G2=0%) was observed when samples were 

treated with 100 µg/mL SAK-H (S=86,4%) and SPK-H (S=56,25%); 500 µg/mL SAK-H (S=65,57%); and 1000 

µg/mL SAK-H (S=74,47%) and TAK-H (S=58,62%). CAK-H and CPK-H show no inhibitory effect on the cell 

cycle progression (Annexure 2 for complete data report).  
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Figure 3.70: Flow cytometric analysis after 48 hour exposure to 100, 500 and 1000 µg/mL hydrophilic 

extractions of CAK, CPK, TAK, SAK and SPK. An increase in the number of cells in the S-phase as well as 

a decrease in cells present in the G2 phase (G2=0%) when treated with 100 µg/mL SPK-H (S=76,08%); 500 

µg/mL SPK-H (S=41,88%); and 1000 µg/mL SPK-H (S=46,54%) was observed. 

 

Figure 3.71: Flow cytometric analysis of HT-29 cells after 72 hour exposure to 100, 500 and 1000 µg/mL 

hydrophilic extractions of CAK, CPK, TAK, SAK and SPK. Analysis showed an outspoken increase in cells 

in the S-phase and a decrease in cells in G2 phase (G2=0%) when treated with 500 µg/mL CPK-H (S=56,73%). 

An increase in the number of cells in the G1 phase and decrease in S phase indicates a recovery in cell cycle 

progression.  
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The exposure of the HT-29 colon cancer cells to the hydrophilic kernel extractions influenced 

the progression of the cell cycle by inducing an outspoken increase in the number of cells in 

the S phase with: 100 µg/mL SAK-H after 24 hour to 86,4% (Fig 3.69, Annexure 2), to 100 

µg/mL SPK-H to 76,08% after 48 hours exposure (Fig 3.70) and to 56,73% with 500 µg/mL 

CPK-H after 72 hours (Fig 3.71). The CAK-H, CPK-H and TAK-H had shown very little 

effect on cell cycle progression, whilst a resumed progression in cell cycle is seen after 72 

hours at 100 and 1000 µg/mL.           
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Figures 3.72 - 3.76 show histograms comparing HT-29 colon cancer cells exposure to the 

respective CAK, CPK, TAK, SAK and SPK organic extractions after 24, 48 and 72 hour 

exposure at 100, 500 and 1000 µg/mL. The total and hydrophilic extractions show a more 

prevalent effect than the lipophilic extractions for the respective kernels. 

 

 

Figure 3.72: Flow cytometric analysis of HT-29 cells after 24h, 48h and 72 hour exposure to 

concentrations of 100, 500 and 1000 µg/mL organic CAK extractions. Cell cycle analysis showed an 

increase in cells in the S-phase and a decrease in cells in the G2 phase (G2=0%) when treated at 48h100 µg/mL 

CAK-T (S=28,95%). (Annexure 2 for complete data analysis).  
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Figure 3.73: Flow cytometric analysis of HT-29 cells after 24, 48 and 72 hour exposure to concentrations 

of 100, 500 and 1000 µg/mL organic CPK extractions. Cell cycle analysis showed an increase in cells in the 

S-phase as well as a marked decrease in cells in the G2 phase (G2=0%) when treated at 24h100 µg/mL CPK-T 

(S=24,32%), 24h1000 µg/mL CPK-L (S=29,9%) and 72h500 µg/mL CPK-H (S=56,73%). 

 

Figure 3.74: Flow cytometric analysis of HT-29 cells after 24, 48 and 72 hour exposure to concentrations 

of 100, 500 and 1000 µg/mL organic TAK extractions. An outspoken increase in cells in the S-phase as well 

as a marked decrease in cells in the G2 phase (G2=0%) when treated at 24h1000 µg/mL TAK-H (S=58,62%). 

The rest of the fractions had no effect on cell cycle progression (Annexure 2). 
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Figure 3.75: Flow cytometric analysis of HT-29 cells after 24, 48 and 72 hour exposure to concentrations 

of 100, 500 and 1000 µg/mL organic SAK extractions. Cell cycle analysis showed an outspoken increase in 

cells in the S-phase as well as a marked decrease in cells in the G2 phase (G2=0%) when treated at 24h100 

µg/mL SAK-H (S=86,4%); 24h500 µg/mL SAK-H (S=65,57%) and SAK-T (S=60,13%); 24h1000 µg/mL 

SAK-H (S=74,47%) and SAK-T (S=60,19%); 48h500 µg/mL SAK-L (S=70,74%), SAK-H (S=33,66%); 

48h1000 µg/mL SAK-T (S=45,13%); 72h100 µg/mL SAK-L (S=29,61%). No SAK fractions at 72h1000 µg/mL 

showed an effect on cell cycle progression and thus cells resume progression of the cell cycle after 72 hours 

(Annexure 2). 
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Figure 3.76: Flow cytometry analysis of HT-29 cells after 24, 48 and 72 hour exposure to concentrations 

of 100, 500 and 1000 µg/mL organic SPK extractions. Cell cycle analysis showed a significant increase in 

cells in the S-phase as well as a marked decrease in cells in the G2 phase (G2=0%) when treated at 24h100 

µg/mL SPK-L (S=66,8%), SPK-T (S=64,47%), SPK-H (S=56,25%); 24h500 µg/mL SPK-H (S=50,98%); 

24h1000 µg/mL SPK-L (S=57,12%); 48h100 µg/mL SPK-H (S=76,08%), SPK-L (S=52,94%); 48h500 µg/mL 

SPK-H (S=41,88%); 48h1000 µg/mL SPK-T (S=77,62%); 72h100 µg/mL SPK-L (S=63,44%); 72h500 µg/mL 

SPK-L (S=37,14%); and 72h1000 µg/mL SPK-T (S=33,16%). Cells resume cycle progression after 48 hours 

and 72 hours exposure to the SPK fractions (Annexure 2 for complete DNA analysis).    

 

DNA analysis of the respective kernel fractions at the relevant time periods and 

concentrations show that none of the CAK fractions show a significant inhibition of the cell 

cycle (Fig 3.72, Annexure 2).  

The CPK and TAK fractions had a minor effect on the cell cycle where CPK-H at 72h500 

µg/mL and TAK-H at 24h 1000 µg/mL showed the highest increase in the number of cells in 

the S phase (S=56,73% and S=58,62% respectively). 
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Most of the SAK and SPK fractions showed an effect on cell cycle progression with the 

SAK-H fraction at 24h100 µg/mL (S=86,4%) and the SPK-T fraction at 48h1000 µg/mL 

(S=77,62%) showing the most outspoken increase in the number of cells in the S phase (Fig 

3.75 and 3.76, Annexure 2). A complete repair and recovery in the damaged DNA after 72 

hours exposure to the SAK and SPK fractions is however seen with a decrease in the number 

of cells in the S phase.                   

 

Table 3.5 shows a summary of the flow cytometric data analysis indicating the organic 

kernel extractions that caused an increase in the number of cells in the S phase and a decrease 

in cells in G2 phase. The period of exposure, concentration and kernel extraction is shown.  
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Table 3.5: Summary of the organic kernel extractions that significantly altered cell cycle progression, 

increasing the number of cells in the S phase and decreasing the number of cells in the G2 phase of the 

HT-29 colon cancer cells after 24, 48 and 72 hours exposure to 100, 500 and 1000 µg/mL. 

KERNEL TYPE KERNEL 

EXTRACTION  

(in order of 

significance) 

TIME of 

EXPOSURE 

(hours) 

CONCENTRATION 

(µg/mL) 

CAK Total 48h  100 

CPK Total 

Lipophilic 

24h 

24h 

100 

1000 

Hydrophilic 72h 500 

TAK Hydrophilic 24h 1000 

Total 72h 100 

SAK Hydrophilic 

Lipophilic 

Total 

Hydrophilic 

Lipophilic 

Total 

Hydrophilic 

Lipophilic  

Total 

24h 

24h 

24h 

24h 

24h 

24h 

24h 

24h 

24h 

100 

100 

100 

500 

500 

500 

1000 

1000 

1000 

Lipophilic 

Hydrophilic 

Total 

Hydrophilic 

Lipophilic 

48h 

48h 

48h 

48h 

48h 

500 

500 

1000 

1000 

1000 

Lipophilic 72h 100 

 

 

 

 



 

Chapter 3: Result  

 

138 
 

hydrophilic  72h 100 

SPK Total 

Lipophilic 

Hydrophilic 

Hydrophilic 

Lipophilic  

Total 

Lipophilic 

Hydrophilic 

24h 

24h 

24h 

24h 

24h 

24h 

24h 

24h 

100 

100 

100 

500 

500 

500 

1000 

1000 

Hydrophilic 

Lipophilic 

Total 

Hydrophilic 

Lipophilic 

Total 

Hydrophilic 

Lipophilic 

48h 

48h 

48h 

48h 

48h 

48h 

48h 

48h 

100 

100 

100 

500 

500 

1000 

1000 

1000 

Hydrophilic 

Lipophilic 

Lipophilic 

Total  

Total 

72h 

72h 

72h 

72h 

72h 

100 

100 

500 

500 

1000 

 

All the organic kernel extractions affected cell cycle progression by producing an S phase 

block to varying degrees of exposure to the type of kernel extraction, duration and 

concentration. The CAK, CPK and TAK organic extracts had a minimal effect on cell cycle 

progression with the total and hydrophilic fractions reflecting more frequently.  
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The most marked and consistent effect on cell cycle progression by increasing the number of 

cells in the S phase was seen by all the SAK and SPK organic fractions to varying degrees of 

efficacy. All SAK organic fractions at the respective concentrations after 24 hours, and all the 

SAK organic fractions at 500 and 1000 µg/mL after 48 hours, as well as SAK-L and SAK-H 

at 100 µg/mL after 72 hours showed an effect on cell cycle progression. SAK-H at 24h100 

µg/mL showed the most outspoken increase in cells in the S phase (86,4%) (Annexure 2).      

All SPK organic fractions at the respective concentrations after 24 and 48 hours, as well 

SPK-L and SPK-H at 100 µg/mL, SPK-T and SPK-L at 500 µg/mL and SPK-T at 1000 

µg/mL after 72 hours induced an inhibitory effect on cell cycle progression. SPK-T at 

48h1000 µg/mL showed the most marked inhibitory effect by inducing a peak in the S phase 

to 77,625% (Annexure 2).  

 

Of all the organic fractions of the kernels and times of exposure it was SAK-H at 24h100 

µg/mL that showed the biggest effect on cell cycle progression by inducing the highest peak 

in the S phase (86,4%) (Annexure 2).    
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Figure 3.77 (a) – (n) show a diagrammatic representation of the cell cycle analysis of HT-29 

human colon cancer cells grown in the presence of organic and aqueous kernel extractions for 

24h, 48h and 72h at various concentrations. 

 

 

 

 

Figure 3.77 (a) – (c) show the 24h, 48h and 72 controls. Normal G1, S and G2 phases are seen after calibration 

to the Nile red beads used for calibration. 
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Figure 3.77 (d) – (i) illustrates HT-29 colon cancer cells exposed to organic extractions of SAK-H, SPK-H, 

CPK-H and TAK-H at different times and concentrations. 24h and 48h exposure of HT-29 colon cancer 

cells to 500 µg/mL SAK-H, SPK-H show an increase in cells in S phase and no cells in the G2 phase (d – g). a 

similar effect was observed after treating the cells with 72h500 µg/mL CPK-H, 24h1000 µg/mL TAK-H and 

48h100 µg/mL CAK-T (h – j). 
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Figure 3.77 (k) – (n) show HT-29 colon cancer cells exposed to 500 µg/mL aqueous extractions of CAK, 

CPK, SAK and SPK at 24h and 48h. An increase in cells in the S phase and a decrease in cells in the G2 phase 

compared to the controls is seen after treatment with 24h100 µg/mL CAK and CPK and 24h500 µg/mL SAK 

and SPK aqueous extractions (k –n). 
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3.4.3 Cell cycle progression over 24, 48 and 72 hours after treatment with 100, 500 and 

1000 µg/mL CAK, CPK, SAK and SPK aqueous extractions  

Figures 3.78 - 3.83 show time and dose related histograms of the respective 24, 48 and 72 

hour exposure of HT-29 colon cancer cells to the respective 100, 500 and 1000 µg/mL of 

CAK aqueous (CAK-Aqu), CPK aqueous (CPK-Aqu), SAK aqueous (SAK-Aqu) and 

SPK aqueous (SPK-Aqu) extractions. All the aqueous extractions influenced cell cycle 

progression differently depending on the time of exposure and concentration of the extract. 

The first three figures (3.78 – 3.80) compares the effects of the specific concentrations of the 

aqueous extractions for the three exposure times, while figures 3.81 – 3.83 compare the 

effects of all the concentrations of the aqueous extractions over a specific time of exposure on 

cell cycle progression.     

Figure 3.78 show cell cycle progression after 100 µg/mL exposure at 24, 48 and 72 hours 

respectively. The 100 µg/mL CAK-Aqu extract induced the highest increase in the number of 

cells in the S phase to 30.68% after 24 hours and again at 72 hours (35,77%). After 48 hours 

no outspoken changes in cell cycle progression was observed.  

Looking at the 500 µg/mL aqueous concentrations (Fig 3.79), CAK-Aqu caused an S phase 

peak after 24 hours (33,83%) while SAK-Aqu increased the cell numbers in the S phase after 

72 hours (32,81%). 

The 1000 µg/mL CPK-Aqu concentration influenced cell cycle progression after 24 hours 

and 72 hours (Fig 3.80). No outspoken effect on cell cycle progression was observed with the 

other kernels at this high concentration.                                       
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Figure 3.78: Flow cytometric analysis of HT-29 cells after 24h, 48h and 72h exposure to concentration of 

100 µg/mL aqueous extractions of CAK, CPK, SAK and SPK. Analysis showed an increase in cells in the S-

phase as well as a marked decrease in cells in the G2 phase (G2=0%) when treated at 24h100 µg/mL CAK-Aqu 

extract (30,68%) and again after 72h100 µg/mL (35,77%) (Annexure 2 for complete data analysis report). 

 

Figure 3.79: Flow cytometric analysis of HT-29 cells after 24h, 48h and 72h exposure to concentration of 

500 µg/mL aqueous extractions of CAK, CPK, SAK and SPK. The highest peak in the S-phase was observed 

after 24h500 µg/mL CAK-Aqu (S=33,83%) and after 72h500 µg/mL SAK-Aqu extraction (32,81%) (Annexure 

2).  
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Figure 3.80: Flow cytometric analysis of HT-29 cells after 24h, 48h and 72h exposure to aqueous 

extractions of CAK, CPK, SAK and SPK at concentration of 1000 µg/mL. Cell cycle analysis showed that 

an increase in the number of cells in the S-phase as well as a marked decrease in cells in the G2 phase (G2=0%) 

was seen when cells were exposed to 1000 µg/mL CPK-Aqu extract after 24 hours (S=28,03%) and again after 

72 hours (S=29,66%). No further effect was observed at this high concentration for the other kernels (Annexure 

2).  
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Figures 3.81 - 3.83 show dose related histograms comparing a specific time of exposure to all 

the aqueous extractions concentrations. After a 24 hour exposure all three concentrations of 

the CAK-Aqu (S=30,68%, 33,83% and 21,38% respectively) and CPK-Aqu extraction 

(S=18,39%, 21,88% and 28,03% respectively) showed an increase in the number of cells in 

the S phase (Fig 3.81). In comparison, after 72 hours exposure the 100 µg/mL CAK-Aqu, 

SAK-Aqu and SPK-Aqu extracts showed an increase in cell number in the S phase to 

35,77%, 25,48% and 31,4% respectively (Fig 3.83), while only the 1000 µg/mL CPK-Aqu 

extract induced an S phase increase to 29,66%.  

At a 48 hour exposure to the respective aqueous extractions however, only a minimal 

increase in the number of cells in the S phase was seen (Fig 3.82). 

 

 

Figure 3.81: Flow cytometric analysis of HT-29 cells after 24h exposure to concentrations of 100, 500 and 

1000 µg/mL aqueous extractions of CAK, CPK, SAK and SPK. Analysis showed the highest increase in 

cells in the S-phase when treated with 100 µg/mL CAK-Aqu extract (S=30,68%); 500 µg/mL CAK-Aqu extract 

(S=33,83%); and 1000 µg/mL CPK-Aqu extract (S=28,03%). 
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Figure 3.82: Flow cytometric analysis of HT-29 cells after 48h exposure to aqueous extractions of CAK, 

CPK, SAK and SPK at concentrations of 100, 500 and 1000 µg/mL. Cell cycle analysis showed a limited 

increase in cells in the S-phase after 48 hour exposure (Annexure 2).  

 

 

Figure 3.83: Flow cytometric analysis of HT-29 cells after 72h exposure to concentrations of 100, 500 and 

1000 µg/mL aqueous extractions of CAK, CPK, SAK and SPK. Cell cycle analysis showed the most 

outspoken  increase in cells in the S-phase after 72 hours when treated with 100 µg/mL CAK-Aqu extract 

(S=35,77%); 1000 µg/mL CPK-Aqu extract (S=29,66%).  
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Table 3.6: Summary of the aqueous kernel extractions that significantly altered cell cycle progression, 

increasing the number of cells in the S phase and decreasing the number of cells in the G2 phase of the 

HT-29 colon cancer cells after 24, 48 and 72 hours exposure to 100, 500 and 1000 µg/mL. 

 

KERNEL TYPE 

 

KERNEL 

EXTRACTION 

(in order of 

significance) 

 

TIME of EXPOSURE 

(hours) 

 

CONCENTRATION 

(µg/mL) 

CAK Aqueous  24h 

24h 

24h 

48h 

48h 

48h 

72h 

100 

500 

1000 

100 

500 

1000 

100 

CPK Aqueous 24h 

24h 

24h 

48h 

48h 

48h 

72h 

100 

500 

1000 

100 

500 

1000 

1000 

SAK Aqueous 24h 

48h 

48h 

48h 

72h 

72h 

500 

100 

500 

1000 

100 

500 

SPK Aqueous 24h 

24h 

100 

1000 
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48h 

48h 

48h 

72h 

100 

500 

1000 

100 

 

 

Table 3.6 shows that all the aqueous kernel extractions showed an inhibitory effect on cell 

proliferation to varying degrees of exposure to the kernel type, duration and concentration.  

CAK-Aqu extract affected cell cycle progression at all concentrations after 24 and 48 hours 

and at only 100 µg/mL after 72 hours (Annexure 2) which also showed the highest increase 

in cells in the S phase (35,77%) for all aqueous kernel treatments. Whereas CPK-Aqu extract 

affected cell cycle progression at all concentrations after 24 and 48 hours but only with 1000 

µg/mL concentration (29,66%) after 72 hours (Annexure 2).   

The 500 µg/mL SAK-Aqu extraction after all exposure times and 100 µg/mL concentration 

after 48 and 72 hours induced a peak in the S phase with the most outspoken increase shown 

after 72h500 µg/mL exposure. While the 100 µg/mL SPK-Aqu extract after all exposure 

times, 1000 µg/mL after 24 and 48 hours, and only 500 µg/mL after 48 hours induced an 

increase in the number of cells in the S phase. SPK-Aqu after 72h100 µg/mL exposure 

induced the highest increase in the number of cells in the S phase (31,4%).  

In summary, all the aqueous kernel extractions induced an S phase peak after 48 hours at all 

concentrations whilst the aqueous extract that induced the most outspoken increase in the 

numbers of cells in the S phase was the 100 µg/mL CAK-Aqu extract after 72 hours.            

 

 

 

 

 



 

Chapter 3: Result  

 

150 
 

 

The increase in the number of cells in the S phase could be indicative of an S phase block. 

DNA synthesis occurs during the S phase and exogenous stressors can compromise the 

replication process by slowing down or stalling fork progression. The results show that the 

organic as well as the aqueous extractions affect DNA synthesis temporarily by inducing the 

S phase peaks mostly after 24 and 48 hours. After 72 hours most of the cells resume cell 

cycle progression and no difference between control and treated samples are seen.            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3: Result  

 

151 
 

 

3.5 Hoechst 33342 fluorescent stain 

Normal cell cycle progression is important for cell function. A change in signalling pathways 

may result in a change in cell morphology and thus cell function. A morphological study is 

important for determining changes in signalling pathways to verify morphological changes 

and the presence of apoptotic cells. The cells were stained with Hoechst 33342 to assess 

apoptosis in HT-29 colon cancer cells by staining highly condensed chromatin of apoptotic 

cells and lightly staining the looser chromatin structure of viable cells. Treatment of the HT-

29 human colon cancer cell with 500 µg/mL organic kernel extractions of SAK-H, SPK-H 

and SPK-L at 24 and 48 hours, and 500 µg/mL aqueous kernel extractions of CAK, CPK, 

SAK and SPK at 24 and 48 hours was done based on the results of the flow cytometric 

analysis which showed the HT-29 colon cancer cells as being significantly influenced by 

these kernel extractions. By studying the cell nucleoli we are able to observe structural 

changes, cell viability including cytotoxic effects leading to apoptosis. Figure 3.84 (A) – (H) 

show fluorescent stained HT-29 human colon cancer cells treated with organic kernel 

extractions at 24 and 48 hour 500 µg/mL. 
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Figure 3.84 (A) - (H) show fluorescent stained HT-29 colon cancer cells exposed for 24 and 48 hours at 

500 µg/mL to organic kernel extractions. Figures (A) 24h control and 48h control (B) show untreated 

fluorescent stained HT-29 colon cancer cell. Figure 3.84 (C) show cells after 24h500 µg/mL and (D) 48h500 

µg/mL SPK-H exposure. Hypercondensed chromatin (white arrows) and in (D) a crescent shaped cell (yellow 

arrow) is seen (magnification: 20x). 
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Figure 3.84 (E) shows cells after 24h500 µg/mL and (F) 48h500 µg/mL SPK-L exposure. Hypercondensed 

chromatin (white arrows) and apoptotic cells (yellow arrows) is seen. Figure 3.84 (G) and (H) show after 24h 

and 48h500 µg/mL respective SAK-H exposure dividing cells (green arrows) is seen and in (H) apoptotic cells 

(yellow arrows) are seen (magnification: 20x). 
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Figure 3.85 (A) – (D) show fluorescent stained HT-29 colon cancer cells treated with 

aqueous kernel extractions at 24 and 48 hour 500 µg/mL. Apoptotic body formation and 

hypercondensed nuclei are seen after all treatments indicating a definite morphological 

change however, a normal dividing cell is seen after 48h500 µg/mL SPK aqueous exposure. 

 

Figure 3.85 (A) – (D) show fluorescent stained HT-29 colon cancer cells treated with CAK, CPK, SAK 

and SPK aqueous kernel extractions at 24 and 48 hour 500 µg/mL. Figure 3.85 (A) show apoptosis (yellow 

arrow) and hypercondensed nuclei (white arrow) after 24h500 µg/mL CAK aqueous exposure. Figure 3.85 (B) 

show apoptotic body formation (yellow arrows) and hypercondensed nuclei (white arrow) after 24h500 µg/mL 

CPK aqueous exposure. Figure 3.85 (C) apoptosis formation (yellow arrow) and hypercondensed nuclei (white 

arrow) is seen after 48h500 µg/mL SAK aqueous exposure. Figure 3.85 (D) a dividing cell (green arrow) and 

increased apoptotic body formation (yellow arrow) is seen after 48h500 µg/mL SPK aqueous exposure 

(magnification: 20x). 
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Chapter 4 

Discussion 

Colon cancer is one of the most prevalent cancers worldwide, especially in western societies 

and is nutrition dependent (Klenow et al. 2009). It is one of the leading causes of death in 

both men and women in industrialised western countries. In America, colon cancer has a low 

incidence in the black African population compared to the white African population (Cronjé 

et al. 2009). However, in South Africa, Cronjé et al (2009) found over the past decade the 

opposite to be true, namely an increase in colon cancer in young black males.  

A colorectal polyp growth (adenoma) is considered premalignant and during this stage can be 

cured by surgical removal. However, when the polyp shows severe cellular abnormalities and 

becomes invasive, it is considered malignant and the search for optimal treatment is still 

ongoing (Nel 2007). While elucidating the underlying mechanisms of cancer development, it 

is important to identify compounds that are able to interfere with one or more steps in 

carcinogenesis. Epidemiological studies revealed that colon cancer is preventable by 

adjusting the diet leading to a reduction in the incidence, especially in areas where dietary 

deficiencies contribute to risk factors in cancer development. In this regard identification of 

chemopreventive compounds in commonly consumed natural dietary sources such as fruits, 

vegetables and tea, is of particular importance in that it provides a means of everyday cancer 

prevention (Wattenberg 1996). The term cancer chemoprevention was first defined by Sporn 

et al (1976) and entails the use of agents to slow the progression of carcinogenesis, reverse or 

inhibit it, with the aim of lowering the risk of developing an invasive or a clinically 

significant disease. Epidemiological and laboratory studies have indicated a positive 

association between cancer reduction and intake of dietary plant foods and this has been  
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attributed to the presence of phytochemicals (Greenwald et al. 2001). Due to their safety, low 

toxicity and general acceptance, these natural compounds have been targeted for use in 

chemoprevention. One group of phytochemicals that has shown potential in chemoprevention 

studies are plant polyphenols (Amin et al. 2009). 

 

The apricot and peach kernels are composed of varying amounts of glycosides (flavonoids 

occur in plants and most foods as glycosides), fixed and volatile oils (Williamson 2004) thus 

potentially providing protection against cancer, aging, atherosclerosis, ischemic injury, 

inflammation and neurodegenerative diseases. The peach kernel displays a stronger 

antioxidant activity than apricot oils possibly due to the higher total phenolic component in 

the peach kernels (Sanhita et al. 2012). Flavonoids (such as amygdalin) are polyphenolic 

compounds that are ubiquitous in nature and are categorized, according to chemical structure, 

into flavonols, flavones, flavanones, isoflavones, catechins, anthocyanidins and chalcones 

(Williamson 2004). 

The antioxidant potential of polyphenols depends on the chemical structure, particularly the 

relative positions of the hydroxyl groups (Rice-Evans et al. 1996). The antioxidant effects are 

mediated by the scavenging of free radicals, chelation and stabilization of divalent cations, 

and the modulation of endogenous antioxidant enzymes (Araújo et al. 2011). However, 

although the anticancer properties of the polyphenolic constituents of apricot and peach 

kernels have been demonstrated against prostate and bladder cancer promotion (Chang et al. 

2006; Syrigos et al. 1998), the underlying mechanisms involved are still not clear. To further 

elucidate the possible anticancer mechanisms involved, the present study was designed to 

investigate the in vitro chemopreventive properties of different extraction fractions of the  
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particular kernels. The choice was based on the fact that CAK and CPK kernels are regularly 

prescribed by Chinese Medicine practitioners, TAK because Turkey is the world’s biggest 

producer of apricot kernels (Durmaz & Alpaslan 2007), and the South African kernels, SAK 

and SPK, to establish comparative or dissimilar effects from the other kernels.  

A bitter taste is usually an indication of the presence of cyanide hence the respective raw 

kernels were tasted. All the kernels were to varying degrees bitter in taste which was 

confirmed through tasting of the samples by two individuals. The test was done blind without 

the individuals being aware of the sample type.  The South African apricot and peach kernel 

used in this study had an immediate yet subtle bitter taste compared to the Chinese apricot 

and peach kernels whose bitter taste was less immediate. TAK proved to be more bitter in 

taste compared to CAK which had a subtle bitter taste. CPK had a delayed yet very potent 

bitter taste compared to the other kernels. According to ISO 2164-1975 NT standard, if a 

leguminous plant contains a lower rate than 10mg/kg then the sample is free of cyanide 

(Chaouali et al. 2013).  

 

The CAK and CPK, which was purchased from a Chinese Medicine practitioner, was in a 

treated (i.e. baked) form which mitigates any toxic side effect, thus have less volatile oils 

compared to TAK, SAK and SPK (non-baked form), and which makes it suitable for use in 

high dosages. It would therefore be expected that the CAK and CPK organic extractions 

would be less effective than the TAK, SAK and SPK. CPK is expected to have a slightly 

more favourable result than CAK as according to Bensky et al (2004) who categorised the 

Chinese peach kernel as a blood invigorating herb that is used more commonly than the 

Chinese apricot kernel in cancer formulations. SAK, SPK and TAK were purchased directly  
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from the source of harvest still in its hard shell and thus  have not undergone the same 

preparation at the time of purchase. As mentioned previously, aqueous preparation of the 

kernels decreases its cytotoxicity whilst the organic preparations keep the glycosidic 

compounds without it decomposing thus retaining the toxicity.   

Fractionating the organic preparation of the CAK, CPK, TAK, SAK and SPK kernels 

provided a means to simplify the evaluation of the kernel extractions effects on the HT-29 

colon cancer cells. The lipophilic kernel extractions of the CAK, CPK, TAK, SAK and SPK 

kernels yielded percentage values of more than 40% indicating a high nutritional value which 

refers to the composition of the kernels and its impact on the body (see Table 3.2). The total 

extractions comprised of fixed and volatile oils and none or minimal amounts of glycosides 

whilst the aqueous extractions consisted of glycosides and a small amount of fixed and 

volatile oils. The hydrophilic extractions have glycosides with little to none fixed and volatile 

oils. The kernels are known to have a cyanogenic glucoside present namely amygdalin which 

is known to release cyanide when metabolised. However, food related cyanide intoxications 

are rare (Sanchez-Verlaan et al. 2010). At a pH of 7, hydrocyanic acid is distributed as 

hydrogen cyanide and not as free cyanide ion, thus it does not influence distribution, 

metabolism or excretion from the body (Simeonova & Fishbein 2004). A small proportion of 

hydrogen cyanide is transported to target organs such as the liver via the plasma.  
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Cell viability study 

Malignant cells are characterized by excessive proliferation, the inability to terminally 

differentiate or perform apoptosis under normal conditions, and an extended or immortalized 

life span. Thus, any perturbation of cell cycle specific proteins by polyphenols can potentially 

affect and/or block the continuous proliferation of these tumorigenic cells. Natural 

polyphenols have been reported to induce cell cycle arrest by the down-regulation of cyclins 

and cyclin-dependent kinases (CDKs) or by indirectly inducing the expression of p21, p27 

and p53 genes (Ramos 2008). A study conducted by Hsu and Liu (2004), showed that the 

flavonoid acacetin, inhibited the proliferation of lung cancer cells by inducing apoptosis and 

blocking cell cycle progression in the G1 phase. The isoflavone, genistein reduced 

proliferation and induced a G2/M phase arrest and apoptotic death in colon cancer HT-29 

cells (Hsu & Liu 2004). The flavonoids may inhibit the formation and growth of tumours by 

induction of cell cycle arrest and apoptosis (Wenzel et al. 2000). As both the organic (total, 

hydrophilic and lipophilic) and aqueous extracts effectively inhibited cell proliferation in the 

colon cancer cells it is presumed that the inhibitory action was due to the flavonoids in the 

kernels. 

The crystal violet cell viability staining and flow cytometric analysis methods were used to 

measure cell proliferation and cell cycle progression of HT-29 colon cancer cells after 

exposure to the various kernel extractions. A time (24-, 48- and 72 hours) and dose (100, 500 

and 1000 µg/mL) study was conducted. 
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The results show that all organic and aqueous kernel extractions inhibited cell proliferation 

after 24 and 48 hours. These effects were overcome after 72 hours with the cells showing a 

recovery in cell proliferation except for the SAK-L 500 µg/mL and the SAK-H 100, 500 and 

1000 µg/mL treated samples that suppressed the proliferation of the colon cancer cells even 

after 72 hours. Cell viability tests showed that CAK-L, CPK-T, TAK-T, SAK-T and SPK-L 

after 24 hours, and CAK-T and -L, CPK-T, TAK-H, SAK-T, SPK-T and –L after 48 hours 

greatly inhibited cell proliferation. The total and lipophilic extractions more commonly 

showed an inhibitory effect which was probably due to the presence of glycosides, fixed and 

volatile oils. The kernel that displayed the greatest inhibitory effect on cell proliferation of 

the HT-29 colon cancer cells after 24 hours was 1000 µg/mL CAK-L extract followed by the 

CAK-T extract, and after 48 hours the 1000 µg/mL CAK-T extract followed by the 1000 

µg/mL CPK-T extract.   

The CAK and CPK kernel extractions were expected to have a reduced effect on cell 

proliferation due to its prepared form. Although the SAK and SPK organic fractions affected 

cell growth more prominently than CAK and CPK, it was the CAK-T and –L extracts that 

had the most outspoken inhibitory effect despite the fact that the kernels were pre-treated by 

the vendor. This brings about the question as to whether the Chinese kernels were in fact 

more potent than the other kernels due to its components, or whether its pre-treated form 

rendered it more potent or whether the method of extraction may have enhanced its potency.  
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Cell cycle progression study 

The natural progression of cells through the cell cycle is governed by signal pathways which 

ensure the successful replication and duplication of cells within a certain time period. During 

the S phase, DNA damage can elicit an intra S-phase block that slows down DNA replication. 

An arrest in the S phase may be as a result of minor DNA damage which may be repaired or 

major DNA damage that result in apoptosis or autophagy (Stewart et al. 2003; Yuan et al. 

2014). The results of numerous studies in cell culture suggest that flavonoids may affect 

chronic disease by selectively inhibiting kinases involved in cell signalling, including DNA 

synthesis (Yuan et al. 2014).  

The study showed that the organic and aqueous extracts affected cell cycle progression 

differently. The CAK, CPK and TAK organic kernel extracts had a minor effect on cell cycle 

progression with the total and hydrophilic extracts being more effective. All the SAK organic 

extracts at especially 24 hours and all the SPK organic extracts at especially 24- and 48 hours 

induced an S phase block by showing a peak in the S phase cell population. In contrast all 

aqueous kernel extracts and respective concentrations affected cell cycle progression after 48 

hours. After 72 hours however, similar to what was observed in the cell viability study, the 

cells overcame the inhibitory effect of the kernel extractions and resumed cell cycle 

progression except for the 72h100 µg/mL CAK aqueous extract that induced an outspoken 

peak in the S phase after 72 hours.          

These results may be due to an activation of the intra-S phase checkpoint. Genotoxic insults 

cause only a temporary, reversible delay in cell cycle progression, mainly by inhibition of the 

initiation of new replicons and thereby slowing down DNA replication (Bartek & Lukas 

2001).      
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The phenolic flavonoid structure, specifically the phenolic hydroxyl groups and their 

structural arrangements confer the antioxidant activity through their hydrogen donating 

properties. Pro-oxidative properties and the subsequent disruption in the function of the 

mitochondria could play a role in reduction in cell viability. Inhibition of cell growth 

occurred possibly via mechanisms that involve the delay of cell cycle progression, preventing 

the cells from exiting the S phase (Yuan et al. 2014). The activated Cdc25A-degradation 

pathway slows the S phase, making the ATM-Chk2-Cdc25A-Cdk2-Cdc45 axis the key 

mechanism of the intra-S-phase response (Bartek & Lukas 2001). Inhibition of Cdk2 activity 

through the Cdc25A degradation leads to a several hour delay of S phase progression (Bartek 

& Lukas 2001; Willis & Rhind 2009). It would seem that even though the cell viability is 

decreased after 24- and 48h and the cells are stalled in the S phase, the compound concerned, 

is either eliminated via a metabolic pathway leading to a full recovery in cell viability after 72 

hours or it could be that the cells simply overcame the temporary S phase block and 

continued in the cell cycle. 

 

No significant differences between the apricot and peach kernel extractions for both the 

organic and aqueous extractions were seen even though the peach kernels have more 

flavonoids than the apricot kernels. However, both kernels contain a cyanogenic glycoside, 

amygdalin. Amygdalin is considered non-toxic until cyanide (HCN) is released, following 

enzymatic hydrolysis by β-glucosidases after grinding of plant tissue which activates 

intracellular β-glucosidases, or by the gut micro-flora (Cooke et al. 2009). Preparation of the 

extractions used in this study should not have caused activation of β-glucosidases, but freeze  
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drying or addition to the culture media could possibly result in hydrolysis and the production 

of cyanide which affects the cell by shutting down aerobic respiration. 

 

Cancer cells are thought to have a different balance of enzymes in comparison to normal non-

cancerous cells, that is, more β-glucosidases and less rhodanese than normal cells (Cooke et 

al. 2009). Rhodanese convert cyanide into a relatively harmless compound thiocyanate.  

Cancerous cells such as the HT-29 colon cancer cells have less rhodanese enzyme to convert 

cyanide to a harmless form, thus they are more affected by cyanide than healthy cells. In this 

study, since the cells all recovered from the various treatments over time and in some 

instances even showed increased cell viability, it is questionable as to whether cyanide is 

indeed formed or that the inhibitory effects are induced by cyanide. The intra-S phase block 

is a temporary block and more studies on specific compounds will have to be done to 

establish if the same compound is affecting cell viability and inducing the cell cycle block.  

 

Furthermore, another question that needs to be answered is if it is the induction of this S 

phase block that is causing and or reducing cell viability? 

It may be assumed that the preparation of the treatment, aqueous extraction process, addition 

to the culture media and the freeze drying process, may have contributed to the release of the 

cyanide.    
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Morphological studies 

Morphological changes such as cell membrane blebbing, hypercondensed chromatin, changes 

in growth patterns and cell shape were studied in H&E stained colon cancer cells after 24-, 

48- and 72h exposure to organic and aqueous extractions.   

Apoptosis plays an important role in the maintenance of tissue homeostasis. It is important 

for getting rid of damaged cells, and suppressed apoptosis contributes to development of 

cancer (Lowe et al. 2004). Apoptosis is carried out by the coordinated actions of several 

caspases (Green 2006). Many flavonoids, including glycosides, causing apoptosis target the 

mitochondria and trigger the execution phase by the activation of caspases, which play an 

important role in signal transduction cascades (Salleh et al. 2011). It has been proposed that 

the reduction in cell viability could be attributed to the disruption in the function of the 

mitochondria which leads to the activation of the mitochondria-mediated apoptotic pathways.  

 

HT-29 colon cancer cells grow densely in colonies with multiple nucleoli and rounded to 

elliptical shapes. The 24- and 48 hours exposure of the cells to organic and aqueous kernel 

extractions showed fewer cell colonies, with changes in cell shape (irregular) and size 

(shrunken) as well as possible apoptotic bodies. After 72 hours though the cells tend to 

resume their pre-treatment growth pattern.  The exposure of HT-29 colon cancer cells to 

CAK-Aqu and CPK-Aqu extractions at 24h500 µg/mL, and SAK-Aqu and SPK-Aqu 

extractions at 48h500 µg/mL show the presence of irregularly shaped cells, hypercondensed 

chromatin and apoptotic bodies (Fig 3.85). Even though all CAK organic extractions may  
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have shown an inhibitory effect on cell proliferation after 24 hours, it did not effect any 

prominent morphological changes.   

 

Hoechst 33342 fluorescent stain  

The Hoechst 33342 staining method was done to determine the presence or absence of 

apoptotic cells after exposure of the HT-29 colon cancer cells to the various kernel 

extractions. Apoptosis is distinguished from necrosis or accidental cell death by characteristic 

morphological and biochemical changes including compaction and defragmentation of 

nuclear chromatin, cytoplasm shrinkage and loss of membrane symmetry.  

The morphological features described as chromatin condensation, membrane blebbing, cell 

shrinkage and apoptotic bodies were confirmed by staining cells with Hoechst 33342. Cell 

shrinkage and apoptotic bodies, although very few, were seen after treatment with 500 µg/mL 

SAK-H, SPK-H, SPK-L organic extracts and CAK, CPK, SAK and SPK aqueous extracts 

after 24 and 48 hours. The decrease in cell proliferation can therefore not be ascribed to 

apoptosis only.     

 According to Suzuki et al (1998), HT-29 cells show an apoptosis-resistant phenotype in 

response to micro-environmental stresses. It is reported that bufalin (isolated from a 

traditional Chinese medicine) did not cause caspase-dependant cell death in colon cancer 

cells, instead, bufalin activated an autophagy pathway, as characterized by the accumulation 

of LC3-II and the stimulation of autophagy flux (Xie et al. 2011). Evidence exist that most 

cellular systems that have defects in the apoptotic signalling pathway had autophagy 

contribute to cell death (Chiu et al. 2009). For future studies, it would be of great value to  
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apply the triple staining method that distinguishes between apoptotic cells and cells 

undergoing autophagy in the cultures showing decreased viability or cell numbers, without 

apoptosis.  

Thus, treatment lowered cell viability and in some instances induced an S phase block as seen 

with SAK-T and SPK-L after 24- and 48 hours at all concentrations. Some cells did die via 

apoptosis probably due to major DNA damage. Virtually all treated samples show a recovery 

in cell proliferation after 72 hours. Cells exposed to all concentrations of CAK treatment after 

72 hours showed a complete recovery in cell proliferation, leading in some instances to an 

increased cell growth. Thus, not only a complete reversal of action / effect ensued, a different 

signalling mechanism was also stimulated. Either repair of damaged DNA resulting in 

continuation of cell cycle progression happened, or programmed cell death was switched on, 

or removal / absence of a metabolite ensured a switch from growth inhibition to growth 

stimulation. 

 

In summary, all the extracts significantly reduced cell viability and inhibited proliferation in 

the HT-29 colon cancer cells after 24- and 48 hours with the lipophilic and total fractions of 

CAK being the most effective. After 72 hours, it is clear that the inhibitory effects have been 

abolished and replaced by a stimulatory effect as the cell viability was higher in the treated 

cultures than the untreated controls. Results show that the total and the hydrophilic fractions 

of all the kernels increased cell viability more than the lipophilic fractions. Amygdalin is the 

major glycoside (flavonoids) in all the kernels but it cannot be said with certainty that it was 

the amygdalin metabolite cyanide that affected the cell viability or induced apoptosis on its 

own. If hydrolysis of amygdalin indeed happened and cyanide was produced, it would affect  
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the cells by shutting down aerobic respiration. Since cancer cells have more β-glucosidases 

and less rhodanese than normal cells (Cooke & Seers 2009), it is a possibility that the HT-29 

cells had some rhodanese to convert cyanide into a relatively harmless compound 

thiocyanate. In the body this conversion usually takes place within an hour but, it could be 

that in vitro this conversion, in light of the low enzyme levels in the HT-29 cells, happened 

slowly and that the effect was only seen after 48 hours. However, this does not explain the 

overall inhibition even by the lipophilic fractions that should not contain any amygdalin or 

the eventual stimulatory effect, observed from 48 hours onwards. 

 

The S phase block observed, was mostly seen after 24 hour exposure to organic extractions, 

with the SAK-H showing 86%, SPK-H showing 76% and at 48 hour exposure to SPK-T 

showing 77% of cells in the S phase in contrast to the aqueous extractions which only slightly 

increased the S phase fraction. The increase in the number of cells in the S phase with an 

accompanying decrease in the number of cells in the G2 phase compared to the controls may 

indicate an intra-S phase block. S phase is the genetically most vulnerable period of the cell 

cycle, occurs independent of p53 and is more significant for preventing genetic instability 

than the G1 or G2 or mitotic-spindle checkpoints (Bartek et al. 2004). Complete inhibition of 

CDKs and prolonged intra-S-phase arrest may cause regaining of replication competence of 

already fired origins, making the recovery process prone to over-replication of at least parts 

of the genome (Bartek & Lukas 2001). Willis and Rhind (2009) suggest that this checkpoint 

may be more concerned with tolerating and accommodating damage during replication rather 

than repairing it. 
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Synergistic and or additive effects between polyphenolic compounds may also be responsible 

for the reduction of cell viability, proliferation and apoptosis. The apricot kernels have high 

levels of unsaturated fatty acids (linoleic acid, linolenic acid and eicosapentaenoic acid) that 

could contribute to the antioxidant activity of these kernels. A metabolite of linoleic acid, 

gamma-linoleic acid (18:3n-6), has been shown in vitro, to suppress growth and induce 

apoptosis of cervical cancer and to induce a cell cycle block (G1/S) in osteogenic sarcoma 

cells in vitro (De Kock et al. 1994). All the kernels and the various fractions affected cell 

viability and to an extent cell cycle progression, but more studies are needed to establish the 

most effective kernel and specific fraction or signature active component. 

Inhibition of cell viability and proliferation and the induction of apoptosis could be an 

important preventive approach in chemoprevention. Understanding how dietary components 

regulate proliferation and cell survival could play a critical role in development of new 

enriched agents that can prevent and treat cancer with a reduced risk of toxicity. 

Future studies should target the effect of selected pure signature compounds that can be 

investigated to provide more information about the possible active polyphenolic constituents.  

It would also be of value to do quantitative apoptosis and autophagic studies to determine the 

extent of cell death after treatment.   

The organic kernel extractions more than the aqueous kernel extractions had thus induced a 

growth inhibitory effect of the HT-29 colon cancer cells with minimal cytotoxic effect as the 

treated samples had shown to overcome the inhibitory effect of the kernel fractions.  

All kernel fractions had shown to induce a growth inhibitory effect of the cells to varying 

degrees at different times of exposure and concentrations.  
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Kernels of all three origins affected the cells in different ways by both inhibiting cell 

proliferation and blocking cell cycle progression or by stimulating cell growth recovery. I am 

of the opinion that should untreated CAK and CPK kernels have been used, that it may have 

had a more pronounced effect on the HT-29 colon cancer cells. The CAK and CPK organic 

extracts showed an effect on cell proliferation mostly after 48 hours compared to the SAK 

and SPK organic extracts after 24 hours already (Table 3.5). Otherwise all kernels, 

irrespective of their origin, showed an effect on the HT-29 colon cancer cell’s growth and cell 

cycle progression.     

The results may definitely inform clinical practice and thus be of value to the Chinese 

Medicine Practitioner wishing to have a better understanding of the application of these herbs 

in a prescription, but also to the general public in search of a nutritional preventive and 

intervention in the treatment of cancer. A link between the daily consumption of plant foods 

and cancer reduction has definitely been established.  
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Annexure 1 

This following overview as to the chemical composition of the Apricot kernel (seed) is taken 

from the phytochemical database of the American Department of Agriculture. It can be 

retrieved on the Internet at the address: http://www.ars-grin.gov/duke/ 

CHEMICAL PART Lo ppm Hi ppm REFERENCE 

Alpha-estradiol seed   HHB 

Amygdalin seed  8000 HHB 

Ash seed 1000 30 000 HHB 

Beta-carotene seed  0 CRC 

Beta-glucosidase seed   CAN 

Beta-sitosterol seed   DUKE 1992A 

Calcium seed 930 1522 SMO 

Campesterol seed   DUKE 1992A 

Carbohydrates seed  140 000 DUKE 1992A 

Cholesterol seed   CAN 

Copper seed 1 16 SMO USA 

Cyanide seed 20 2000 CAN 

Delta-24-Cholesterol seed   HHB 

Dextrose seed 81000 116 000 DUKE 1992A 

EO seed 800 16000 DUKE 1992A 

Estrone seed   HHB 

Fat  seed 400 000 514 000 HHB 

Fibre seed  33000 DUKE 1992A 

Linoleic acid seed 56 000 411 200 HHB 

Magnesium seed  1750 SMO 

Neo-Chlorogenic acid  seed   CAN 

Oleic acid seed 248 000 411 200 HHB JAD 

Pangamic acid seed   HHB 
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Phosphorus seed  3000 DUKE 1992A 

Potassium seed 4180 7783 DUKE 1992A 

Protein seed  315 000 DUKE 1992A 
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Annexure 2: Flow cytometry data  

The following represents the data as collected after a 24, 48 and 72 hour exposure of the HT-29 colon cancer cells to 100, 500 and 1000 µg/mL 

organic and aqueous kernel extractions. FACs Calibre DNA analysis was performed and manually read to obtain the data.  

 

ORGANIC EXTRACTIONS FLOW CYTOMETRY RESULTS 
 

 
  G1  S G2      G1  S G2      G1  S G2  

24hr100 Control 85,2 13,88 0,91 48hr100 Control   83,47 15,3 1,24 72hr100 Control 83,51 15,61 0,88 

 
CAK T 90,09 7,99 1,92 

 
CAK T 71,05 28,95 0 

 
CAK T 81,88 15,92 2,2 

 
CAK L 94,8 3,76 1,44 

 
CAK L 89,91 10,09 0 

 
CAK L 77,11 21,72 1,17 

 
CAK H 90,64 7,81 1,55 

 
CAK H 86,82 12,63 0,55 

 
CAK H 80,06 17,43 2,51 

 
CPK T 75,68 24,32 0 

 
CPK T 87,31 12,02 0,67 

 
CPK T 79,07 19,34 1,59 

 
CPK L  80,17 18,41 1,42 

 
CPK L  77,04 20,71 2,25 

 
CPK L  80,85 18,43 0,72 

 
CPK H  82,36 16,12 1,52 

 
CPK H  69,05 29,12 1,83 

 
CPK H  86,88 11,81 1,31 

 
TAK T 82,16 14,37 3,46 

 
TAK T 69,4 26,47 4,14 

 
TAK T 83,56 16,44 0 

 
TAK L  78,25 19,87 1,88 

 
TAK L  77,5 20,15 2,35 

 
TAK L  85,32 13,8 0,89 

 
TAK H  82,15 17,06 0,79 

 
TAK H  74,94 24,52 0,54 

 
TAK H  90,12 9,25 0,62 

 
SAK T 62,08 37,92 0 

 
SAK T 51.56 45.32 3.12 

 
SAK T 83,19 16,04 0,76 

 
SAK L 62,13 38,87 0 

 
SAK L 84,06 13,12 2,83 

 
SAK L 70.39 29.61 0 
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SAK H 13.60 86.40 0 

 
SAK H 81,57 16,33 2,1 

 
SAK H 77 23 0 

 
SPK T 35.53 64.47 0 

 
SPK T 51,39 48,61 0 

 
SPK T 89,78 10,22 0 

 
SPK L 33.20 66.80 0 

 
SPK L 47,06 52,94 0 

 
SPK L 36,56 63,44 0 

 
SPK H 43.75 56.25 0 

 
SPK H 23.92 76.08 0 

 
SPK H 79.39 20.61 0 

               24h500 control  85,2 13,88 0,91 48h500 control 83,47 15,3 1,24 72h500 control  83,51 15,61 0,88 

 
CAK T 88,78 9,83 1,4 

 
CAK T 81,41 17,74 0,85 

 
CAK T 81,14 15,16 3,71 

 
CAK L 84,3 14,43 1,27 

 
CAK L 85,68 12,53 1,79 

 
CAK L 86,3 11,78 1,92 

 
CAK H 87,6 10,45 1,94 

 
CAK H 83,12 16,33 0,55 

 
CAK H 83,58 13,66 2,75 

 
CPK T 87,69 10,31 2 

 
CPK T 87,25 11,34 1,4 

 
CPK T 86,09 10,99 2,92 

 
CPK L  86,9 10,67 2,43 

 
CPK L  87,88 9,56 2,56 

 
CPK L  85,08 12,34 2,57 

 
CPK H  86,69 11,98 1,33 

 
CPK H  86,21 10,82 2,97 

 
CPK H  43,27 56,73 0 

 
TAK T 88,02 10,41 1,57 

 
TAK T 86,43 13,43 0,15 

 
TAK T 87,74 11,19 1,07 

 
TAK L  85,28 12,04 2,68 

 
TAK L  82,52 15,63 1,85 

 
TAK L  77,4 22,32 0,28 

 
TAK H  85,13 12,2 2,67 

 
TAK H  85,18 12,9 1,91 

 
TAK H  90,95 7,26 1,8 

 
SAK T 39.87 60.13 0 

 
SAK T 77,9 16,71 5,39 

 
SAK T 89,14 10,86 0 

 
SAK L 79,13 20,87 0 

 
SAK L 29,26 70,74 0 

 
SAK L 85.23 14.77 0 

 
SAK H 34.43 65.57 0 

 
SAK H 66,34 33,66 0 

 
SAK H 79.97 17.73 2.29 

 
SPK T 65,75 34,25 0 

 
SPK T 81,08 15,06 3,86 

 
SPK T 83,64 16,36 0 

 
SPK L 78,12 21,88 0 

 
SPK L 71,66 28,34 0 

 
SPK L 62,86 37,14 0 

 
SPK H 49.02 50.98 0 

 
SPK H 58,12 41,88 0 

 
SPK H 84.42 15.58 0 

               24h1000 control 85,2 13,88 0,91 48h1000 control 83,47 15,3 1,24 72h1000 control  83,51 15,61 0,88 

 
CAK T 78,47 17,38 4,15 

 
CAK T 87,34 12,66 0 

 
CAK T 86,43 11,13 2,45 

 
CAK L 78,51 15,88 5,61 

 
CAK L 86,79 12,96 0,25 

 
CAK L 86,39 10,57 3,04 

 
CAK H 81,06 16,95 1,99 

 
CAK H 87,83 12,17 0 

 
CAK H 87,47 8,86 3,67 

 
CPK T 57,11 38,17 4,72 

 
CPK T 87,65 11,41 0,94 

 
CPK T 82,31 16 1,69 
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CPK L  70,1 29,9 0 

 
CPK L  86,93 12,3 0,77 

 
CPK L  88,12 9,49 2,39 

 
CPK H  50,67 42,67 6,65 

 
CPK H  86,92 13,08 0 

 
CPK H  87,31 9,24 3,45 

 
TAK T 78,74 17,64 3,62 

 
TAK T 83,33 16,67 0 

 
TAK T 86,13 10,86 3 

 
TAK L  84,96 12,14 2,9 

 
TAK L  87,34 12,66 0 

 
TAK L  89,27 7,76 2,97 

 
TAK H  41,38 58,62 0 

 
TAK H  89,15 10,85 0 

 
TAK H  87,51 9,34 3,15 

 
SAK T 39,81 60,19 0 

 
SAK T 54,87 45,13 0 

 
SAK T 74.90 24.54 0.56 

 
SAK L 84,43 15,57 0 

 
SAK L 62,13 37,87 0 

 
SAK L 82,83 14,9 2,27 

 
SAK H 25.53 74.47 0 

 
SAK H 58.27 41.73 0 

 
SAK H 86,51 11,97 1,53 

 
SPK T 89,71 10,29 0 

 
SPK T 22,38 77,62 0 

 
SPK T 66,84 33,16 0 

 
SPK L 42.88 57.12 0 

 
SPK L 62,89 37,11 0 

 
SPK L 89,59 10,41 0 

 
SPK H 50,33 49,67 0 

 
SPK H 53,46 46,54 0 

 
SPK H 96,66 3,23 0,11 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Annexure 
 

 

175 
 

 

 

AQUEOUS EXTRACTIONS FLOW CYTOMETRY RESULTS 
 

    G1  S G2  TIME-DOSE KERNEL G1  S G2  TIME-DOSE KERNEL G1  S G2  

24hr100 Control 85,2 13,88 0,91 48hr100 Control   83,47 15,3 1,24 72hr100 Control 83,51 15,61 0,88 

 
CAK 68,46 30,68 0,87 

 
CAK 79,01 20,84 0,16 

 
CAK 64,1 35,77 0,13 

 
CPK 81,61 18,39 0 

 
CPK 76,85 23,15 0 

 
CPK 92,58 7,42 0 

 
SAK 88,82 10,77 0,41 

 
SAK 80,5 19,5 0 

 
SAK 74,52 25,48 0 

 
SPK 85,11 14,35 0,54 

 
SPK 76,51 23,49 0 

 
SPK 68,6 31,4 0 

               24h500 control  85,2 13,88 0,91 48h500 control 83,47 15,3 1,24 72h500 control  83,51 15,61 0,88 

 
CAK 65,99 33,83 0,18 

 
CAK 80,96 18,83 0,21 

 
CAK 90,18 9,82 0 

 
CPK 78,12 21,88 0 

 
CPK 76,1 23,9 0 

 
CPK 87,42 12,58 0 

 
SAK 79,6 20,4 0 

 
SAK 78,97 21,03 0 

 
SAK 64,57 32,81 2,62 

 
SPK 86,8 12,49 0,71 

 
SPK 78,06 21,94 0 

 
SPK 90,96 9,04 0 

               24h1000 control 85,2 13,88 0,91 48h1000 control 83,47 15,3 1,24 72h1000 control  83,51 15,61 0,88 

 
CAK 78,62 21,38 0 

 
CAK 82,62 17,38 0 

 
CAK 94,36 5,64 0 

 
CPK 71,97 28,03 0 

 
CPK 78,95 21,05 0 

 
CPK 70,01 29,66 0,33 

 
SAK 87,41 12,59 0 

 
SAK 82,69 17,31 0 

 
SAK 93,04 6,96 0 

 
SPK 84,45 15,23 0,32 

 
SPK 83,22 16,78 0 

 
SPK 88,3 11,7 0 
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Annexure 3 

 

Kruskal-Wallis test 

Data 24hCAKorganic 

Factor codes LC1 

Sample size 230 

Test statistic 79,5168 

Corrected for ties  Ht 79,5333 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 14 220,00 (2)(3)(4)(5)(6)(7)(8)(9)(10) 

(2) 2 24 126,52 (1)(3)(4)(6)(7) 

(3) 3 24 86,35 (1)(2)(4)(5)(8)(9)(10) 

(4) 4 24 51,58 (1)(2)(3)(5)(7)(8)(9)(10) 

(5) 5 24 135,65 (1)(3)(4)(6)(7) 

(6) 6 24 82,02 (1)(2)(5)(8)(9)(10) 

(7) 7 24 92,96 (1)(2)(4)(5)(8)(9)(10) 

(8) 8 24 143,52 (1)(3)(4)(6)(7) 

(9) 9 24 128,54 (1)(3)(4)(6)(7) 

(10) 10 24 131,40 (1)(3)(4)(6)(7) 
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Annexure 4 

 

Kruskal-Wallis test 

Data 48hCAKorganic 

Factor codes LC2 

Sample size 174 

Test statistic 88,6423 

Corrected for ties  Ht 88,6567 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 11 168,73 (2)(3)(4)(5)(6)(7)(8)(9)(10) 

(2) 2 11 93,68 (1)(4)(5)(7) 

(3) 3 23 95,52 (1)(4)(5)(6)(7) 

(4) 4 11 19,68 (1)(2)(3)(5)(6)(8)(9)(10) 

(5) 5 20 136,00 (1)(2)(3)(4)(6)(7)(8)(9)(10) 

(6) 6 17 66,09 (1)(3)(4)(5)(7)(10) 

(7) 7 20 40,75 (1)(2)(3)(5)(6)(8)(9)(10) 

(8) 8 13 91,42 (1)(4)(5)(7) 

(9) 9 24 80,87 (1)(4)(5)(7) 

(10) 10 24 89,04 (1)(4)(5)(6)(7) 
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Annexure 5 

 

Kruskal-Wallis test 

Data 72hCAKorganic 

Factor codes LC3 

Sample size 190 

Test statistic 68,7815 

Corrected for ties  Ht 68,7879 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 15 43,87 (2)(3)(5)(7)(8)(9)(10) 

(2) 2 23 122,57 (1)(4)(5)(6)(7)(8) 

(3) 3 16 111,25 (1)(4)(6)(7)(8) 

(4) 4 16 65,31 (2)(3)(8)(9)(10) 

(5) 5 23 86,54 (1)(2)(6)(8)(9) 

(6) 6 16 50,47 (2)(3)(5)(7)(8)(9)(10) 

(7) 7 24 80,12 (1)(2)(3)(6)(8)(9) 

(8) 8 21 159,14 (1)(2)(3)(4)(5)(6)(7)(9)(10) 

(9) 9 12 120,54 (1)(4)(5)(6)(7)(8) 

(10) 10 24 97,23 (1)(4)(6)(8) 
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Annexure 6 

 

Kruskal-Wallis test 

Data 24hCPKorganic 

Factor codes LC4 

Sample size 196 

Test statistic 78,1837 

Corrected for ties  Ht 78,1978 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 14 189,50 (2)(3)(4)(5)(6)(7)(8)(9)(10) 

(2) 2 16 63,63 (1)(5)(6)(7)(10) 

(3) 3 24 66,50 (1)(5)(6)(7)(10) 

(4) 4 19 48,79 (1)(5)(6)(7)(9)(10) 

(5) 5 13 138,85 (1)(2)(3)(4)(8)(9) 

(6) 6 23 116,15 (1)(2)(3)(4)(8)(9) 

(7) 7 24 110,25 (1)(2)(3)(4)(8) 

(8) 8 15 76,73 (1)(5)(6)(7)(10) 

(9) 9 24 89,96 (1)(4)(5)(6) 

(10) 10 24 111,65 (1)(2)(3)(4)(8) 
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Annexure 7 

 

Kruskal-Wallis test 

Data 48hCPKorganic 

Factor codes LC5 

Sample size 188 

Test statistic 91,8134 

Corrected for ties  Ht 91,8247 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 11 182,82 (2)(3)(4)(5)(6)(7)(8)(9)(10) 

(2) 2 16 117,47 (1)(3)(4)(6)(8)(9) 

(3) 3 16 64,69 (1)(2)(4)(5)(7)(8)(10) 

(4) 4 24 36,29 (1)(2)(3)(5)(6)(7)(8)(9)(10) 

(5) 5 15 110,60 (1)(3)(4)(6)(8)(9) 

(6) 6 24 69,85 (1)(2)(4)(5)(7)(8)(10) 

(7) 7 24 106,02 (1)(3)(4)(6)(8)(9) 

(8) 8 18 147,11 (1)(2)(3)(4)(5)(6)(7)(9)(10) 

(9) 9 16 69,00 (1)(2)(4)(5)(7)(8)(10) 

(10) 10 24 97,40 (1)(3)(4)(6)(8)(9) 
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Annexure 8 

 

Kruskal-Wallis test 

Data 72hCPKorganic 

Factor codes LC6 

Sample size 198 

Test statistic 39,5476 

Corrected for ties  Ht 39,5505 

Degrees of Freedom (DF) 9 

Significance level P = 0,000009 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 15 44,60 (2)(3)(5)(6)(7)(8)(9)(10) 

(2) 2 24 111,21 (1)(8) 

(3) 3 16 92,72 (1)(8) 

(4) 4 16 79,03 (8)(9) 

(5) 5 24 85,98 (1)(8)(9) 

(6) 6 15 110,17 (1)(8) 

(7) 7 24 87,92 (1)(8)(9) 

(8) 8 24 146,19 (1)(2)(3)(4)(5)(6)(7)(10) 

(9) 9 16 126,41 (1)(4)(5)(7) 

(10) 10 24 94,08 (1)(8) 
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Annexure 9 

 

Kruskal-Wallis test 

Data 24hTAKorganic 

Factor codes LC7 

Sample size 192 

Test statistic 97,3666 

Corrected for ties  Ht 97,3890 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 14 185,50 (2)(3)(4)(5)(6)(7)(8)(9)(10) 

(2) 2 16 37,75 (1)(4)(5)(6)(7)(8)(9)(10) 

(3) 3 24 39,02 (1)(4)(5)(6)(7)(8)(9)(10) 

(4) 4 24 94,90 (1)(2)(3)(5)(6)(8) 

(5) 5 15 135,33 (1)(2)(3)(4)(7)(9)(10) 

(6) 6 14 121,36 (1)(2)(3)(4)(9)(10) 

(7) 7 21 101,93 (1)(2)(3)(5)(8) 

(8) 8 16 130,38 (1)(2)(3)(4)(7)(9)(10) 

(9) 9 24 84,31 (1)(2)(3)(5)(6)(8) 

(10) 10 24 88,92 (1)(2)(3)(5)(6)(8) 
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Annexure 10 

 

Kruskal-Wallis test 

Data 48hTAKorganic 

Factor codes LC8 

Sample size 161 

Test statistic 130,1313 

Corrected for ties  Ht 130,1489 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 11 142,00 (2)(3)(4)(5)(6)(7)(9)(10) 

(2) 2 19 57,63 (1)(4)(5)(6)(7)(8)(9)(10) 

(3) 3 18 45,25 (1)(4)(5)(6)(7)(8)(9)(10) 

(4) 4 15 112,07 (1)(2)(3)(9)(10) 

(5) 5 18 120,19 (1)(2)(3)(6)(9)(10) 

(6) 6 16 105,16 (1)(2)(3)(5)(8)(9)(10) 

(7) 7 8 121,06 (1)(2)(3)(9)(10) 

(8) 8 15 126,77 (2)(3)(6)(9)(10) 

(9) 9 19 31,08 (1)(2)(3)(4)(5)(6)(7)(8) 

(10) 10 22 26,45 (1)(2)(3)(4)(5)(6)(7)(8) 
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Annexure 11 

 

Kruskal-Wallis test 

Data 72hTAKorganic 

Factor codes LC9 

Sample size 221 

Test statistic 68,6915 

Corrected for ties  Ht 68,6952 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 15 25,47 (2)(3)(4)(5)(6)(7)(8)(9)(10) 

(2) 2 24 117,08 (1)(3)(5)(8) 

(3) 3 24 67,83 (1)(2)(4)(5)(6)(7)(8)(9)(10) 

(4) 4 24 98,73 (1)(3)(5)(8) 

(5) 5 16 172,25 (1)(2)(3)(4)(6)(7)(9)(10) 

(6) 6 24 129,15 (1)(3)(5) 

(7) 7 23 114,22 (1)(3)(5)(8) 

(8) 8 24 157,98 (1)(2)(3)(4)(7)(9)(10) 

(9) 9 23 110,28 (1)(3)(5)(8) 

(10) 10 24 105,46 (1)(3)(5)(8) 
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Annexure 12 

 

Kruskal-Wallis test 

Data 24hSAKorganic 

Factor codes LC10 

Sample size 152 

Test statistic 99,3956 

Corrected for ties  Ht 99,4143 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 14 145,50 (2)(3)(4)(5)(6)(7)(8)(9)(10) 

(2) 2 12 55,04 (1)(4)(5)(7)(8)(9)(10) 

(3) 3 23 47,26 (1)(4)(5)(6)(7)(8)(9)(10) 

(4) 4 16 9,13 (1)(2)(3)(5)(6)(7)(8)(9)(10) 

(5) 5 12 78,54 (1)(2)(3)(4)(7)(8)(9) 

(6) 6 17 69,12 (1)(3)(4)(7)(8)(9) 

(7) 7 14 102,89 (1)(2)(3)(4)(5)(6)(10) 

(8) 8 13 102,69 (1)(2)(3)(4)(5)(6)(10) 

(9) 9 16 99,09 (1)(2)(3)(4)(5)(6) 

(10) 10 15 81,27 (1)(2)(3)(4)(7)(8) 
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Annexure 13 

 

Kruskal-Wallis test 

Data 48hSAKorganic 

Factor codes LC11 

Sample size 186 

Test statistic 86,9082 

Corrected for ties  Ht 86,9220 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 11 179,09 (2)(3)(4)(5)(6)(7)(8)(9)(10) 

(2) 2 22 70,23 (1)(3)(5)(6)(7)(9)(10) 

(3) 3 22 28,41 (1)(2)(4)(5)(6)(7)(8)(9)(10) 

(4) 4 23 64,96 (1)(3)(5)(6)(7)(9)(10) 

(5) 5 22 127,61 (1)(2)(3)(4)(8)(10) 

(6) 6 16 117,28 (1)(2)(3)(4)(8) 

(7) 7 16 115,66 (1)(2)(3)(4)(8) 

(8) 8 19 86,13 (1)(3)(5)(6)(7) 

(9) 9 16 108,59 (1)(2)(3)(4) 

(10) 10 19 97,29 (1)(2)(3)(4)(5) 
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Annexure 14 

 

Kruskal-Wallis test 

Data 72hSAKorganic 

Factor codes LC12 

Sample size 184 

Test statistic 88,3241 

Corrected for ties  Ht 88,3298 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 15 54,40 (2)(3)(6)(8)(9) 

(2) 2 18 138,75 (1)(4)(5)(6)(7)(8)(9)(10) 

(3) 3 24 158,31 (1)(4)(5)(6)(7)(8)(9)(10) 

(4) 4 15 48,73 (2)(3)(6)(8)(9) 

(5) 5 24 63,85 (2)(3)(6)(8)(9) 

(6) 6 24 105,65 (1)(2)(3)(4)(5)(7)(10) 

(7) 7 8 34,75 (2)(3)(6)(8)(9)(10) 

(8) 8 19 91,47 (1)(2)(3)(4)(5)(7) 

(9) 9 22 92,25 (1)(2)(3)(4)(5)(7) 

(10) 10 15 70,83 (2)(3)(6)(7) 
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Annexure 15 

 

Kruskal-Wallis test 

Data 24hSPKorganic 

Factor codes LC13 

Sample size 147 

Test statistic 93,2899 

Corrected for ties  Ht 93,3064 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 14 140,50 (2)(3)(4)(5)(6)(7)(9)(10) 

(2) 2 12 48,29 (1)(4)(5)(6)(8) 

(3) 3 18 60,33 (1)(4)(5)(6)(8) 

(4) 4 15 87,00 (1)(2)(3)(6)(7)(8)(9)(10) 

(5) 5 14 92,79 (1)(2)(3)(6)(7)(8)(9)(10) 

(6) 6 14 22,25 (1)(2)(3)(4)(5)(7)(8)(9)(10) 

(7) 7 14 62,93 (1)(4)(5)(6)(8) 

(8) 8 13 126,31 (2)(3)(4)(5)(6)(7)(9)(10) 

(9) 9 20 49,40 (1)(4)(5)(6)(8) 

(10) 10 13 63,00 (1)(4)(5)(6)(8) 
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Annexure 16 

 

Kruskal-Wallis test 

Data 48hSPKorganic 

Factor codes LC14 

Sample size 165 

Test statistic 74,6429 

Corrected for ties  Ht 74,6667 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 11 159,64 (2)(3)(4)(5)(6)(7)(8)(9)(10) 

(2) 2 15 71,93 (1)(5)(6)(7)(9) 

(3) 3 23 52,98 (1)(5)(6)(8)(9)(10) 

(4) 4 21 57,67 (1)(5)(6)(9)(10) 

(5) 5 16 116,94 (1)(2)(3)(4)(7)(8)(10) 

(6) 6 9 122,78 (1)(2)(3)(4)(7)(8)(10) 

(7) 7 21 46,90 (1)(2)(5)(6)(8)(9)(10) 

(8) 8 13 78,08 (1)(3)(5)(6)(7)(9) 

(9) 9 16 106,72 (1)(2)(3)(4)(7)(8) 

(10) 10 20 87,35 (1)(3)(4)(5)(6)(7) 
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Annexure 17 

 

Kruskal-Wallis test 

Data 72hSPKorganic 

Factor codes LC15 

Sample size 166 

Test statistic 102,1537 

Corrected for ties  Ht 102,1628 

Degrees of Freedom (DF) 9 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Rank Different (P<0,05) 

from factor nr 

(1) 1 15 30,00 (2)(3)(4)(6)(7)(8)(9)(10) 

(2) 2 14 84,36 (1)(4)(5)(6)(7)(10) 

(3) 3 16 96,34 (1)(4)(5)(6)(7)(10) 

(4) 4 17 54,65 (1)(2)(3)(5)(6)(7)(8)(9) 

(5) 5 16 32,34 (2)(3)(4)(6)(7)(8)(9) 

(6) 6 24 146,35 (1)(2)(3)(4)(5)(7)(8)(9)(10) 

(7) 7 15 120,23 (1)(2)(3)(4)(5)(6)(9)(10) 

(8) 8 14 105,39 (1)(4)(5)(6)(9)(10) 

(9) 9 21 80,93 (1)(4)(5)(6)(7)(8)(10) 

(10) 10 14 53,64 (1)(2)(3)(6)(7)(8)(9) 
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Annexure 18 

 

Kruskal-Wallis test 

Data 24h_All_organic_extractions 

Factor codes LC_2 

Sample size 803 

Test statistic 608,2704 

Corrected for ties  Ht 608,3045 

Degrees of Freedom (DF) 45 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Averag

e Rank 

Different (P<0,05) 

from factor nr 

(1) 1 14 796,50 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(42)(43) 

(45)(46) 

(2) 2 15 140,67 (1)(7)(8)(9)(10)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(3) 3 23 148,02 (1)(4)(7)(8)(9)(10)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(4) 4 23 77,93 (1)(3)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44) 
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(45)(46) 

(5) 5 12 122,17 (1)(7)(8)(9)(10)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(6) 6 22 122,16 (1)(7)(8)(9)(10)(12)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(7) 7 9 14,06 (1)(2)(3)(5)(6)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42) 

(43)(44)(45)(46) 

(8) 8 16 243,31 (1)(2)(3)(4)(5)(6)(7)(13)(14)(15)(19)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(9) 9 20 268,40 (1)(2)(3)(4)(5)(6)(7)(13)(14)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(10) 10 18 234,36 (1)(2)(3)(4)(5)(6)(7)(13)(14)(15)(16)(19)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(11) 11 16 193,81 (1)(4)(7)(14)(15)(16)(19)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(12) 12 24 200,56 (1)(4)(6)(7)(14)(15)(16)(19)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(13) 13 19 152,29 (1)(4)(7)(8)(9)(10)(14)(15)(16)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(14) 14 13 407,19 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(16)(17)(18)(19)(20)(21)(23)(24)(25)(26)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(43)(44)(45)(46) 

(15) 15 23 327,70 (1)(2)(3)(4)(5)(6)(7)(8)(10)(11)(12)(13)(17)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(16) 16 24 312,77 (1)(2)(3)(4)(5)(6)(7)(10)(11)(12)(13)(14)(17)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(17) 17 15 228,07 (1)(2)(3)(4)(5)(6)(7)(14)(15)(16)(19)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(18) 18 24 266,77 (1)(2)(3)(4)(5)(6)(7)(13)(14)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(19) 19 24 322,94 (1)(2)(3)(4)(5)(6)(7)(8)(10)(11)(12)(13)(14)(17)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 
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(20) 20 16 261,56 (1)(2)(3)(4)(5)(6)(7)(13)(14)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(21) 21 24 259,56 (1)(2)(3)(4)(5)(6)(7)(13)(14)(15)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(22) 22 24 471,31 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(15)(16)(17)(18)(19)(20)(21)(23)(26)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(43)(44)(45)(46) 

(23) 23 15 599,97 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(25)(27)(28)(30)(31)(34)(35)(40)(41)(42)(44) 

(24) 24 14 544,71 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(27)(28)(31)(34)(35)(36)(40)(41)(44) 

(25) 25 21 495,33 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(23)(26)(31)(32)(34)(35)(36)(37)(39)(40)(41)(43)(44)(46) 

(26) 26 16 578,97 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(25)(27)(28)(30)(31)(34)(35)(36)(40)(41)(42)(44) 

(27) 27 24 431,67 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(15)(16)(17)(18)(19)(20)(21)(23)(24)(26)(29)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(43)(44)(45)(46) 

(28) 28 24 458,54 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(15)(16)(17)(18)(19)(20)(21)(23)(24)(26)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(43)(44)(45)(46) 

(29) 29 12 539,83 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(27)(31)(34)(35)(36)(40)(41)(44) 

(30) 30 23 489,41 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(23)(26)(31)(32)(34)(35)(36)(37)(39)(40)(41)(43)(44)(45)(46) 

(31) 31 16 178,16 (1)(4)(7)(9)(14)(15)(16)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(32) 32 12 611,71 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(25)(27)(28)(30)(31)(41)(42)(44) 

(33) 33 17 555,88 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(27)(28)(31)(34)(35)(36)(40)(41)(42)(44) 

(34) 34 14 688,21 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(33)(38)(39)(42)(44)(45) 

(35) 35 13 689,77 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(33)(38)(39)(42)(44)(45) 

(36) 36 16 677,28 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(24)(25)(26)(27)(28)(29)(30)(31)(33)(38)(39)(42)(44)(45) 
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(37) 37 15 623,83 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(25)(27)(28)(30)(31)(41)(42)(44) 

(38) 38 12 564,67 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(27)(28)(31)(34)(35)(36)(40)(41)(42)(44) 

(39) 39 18 597,92 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(25)(27)(28)(30)(31)(34)(35)(36)(40)(41)(42)(44) 

(40) 40 15 687,53 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(33)(38)(39)(42)(44)(45) 

(41) 41 14 714,39 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(37)(38)(39)(42)(43)(45)(46) 

(42) 42 14 464,79 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(15)(16)(17)(18)(19)(20)(21)(23)(26)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(43)(44)(45)(46) 

(43) 43 14 619,86 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(25)(27)(28)(30)(31)(41)(42)(44) 

(44) 44 13 781,73 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(42)(43) 

(45)(46) 

(45) 45 20 561,37 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(27)(28)(30)(31)(34)(35)(36)(40)(41)(42)(44) 

(46) 46 13 606,77 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(25)(27)(28)(30)(31)(41)(42)(44) 
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Annexure 19 

 

Kruskal-Wallis test 

Data 48h_All_organic_extractions 

48h All organic extractions 

Factor codes LC_3 

Sample size 830 

Test statistic 528,8902 

Corrected for ties  Ht 528,9263 

Degrees of Freedom (DF) 45 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average 

Rank 

Different (P<0,05) 

from factor nr 

(1) 1 11 808,27 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(2) 2 11 338,41 (1)(4)(5)(7)(12)(13)(15)(17)(18)(22)(23)(24)(25)(26)(27)(28)(32)(33)(34)(35)(36)(37)(38)(41)(42)(44)(45)(46) 

(3) 3 23 373,67 (1)(4)(5)(6)(7)(12)(13)(15)(17)(18)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(35)(36)(37)(38)(41)(42)(44)(45)(46) 

(4) 4 11 63,23 (1)(2)(3)(5)(6)(8)(9)(10)(11)(14)(15)(16)(17)(19)(20)(21)(22)(23)(24)(25)(26)(27)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45) 

(46) 
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(5) 5 20 567,65 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(39)(40)(43) 

(6) 6 17 238,56 (1)(3)(4)(5)(7)(10)(11)(13)(16)(17)(20)(22)(23)(24)(25)(26)(29)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(7) 7 20 134,87 (1)(2)(3)(5)(6)(8)(9)(10)(11)(14)(16)(17)(19)(20)(21)(22)(23)(24)(25)(26)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(8) 8 13 332,92 (1)(4)(5)(7)(12)(13)(15)(17)(18)(22)(23)(24)(25)(26)(27)(28)(29)(32)(33)(34)(35)(36)(37)(38)(41)(42)(44)(45)(46) 

(9) 9 24 296,58 (1)(4)(5)(7)(12)(13)(15)(17)(18)(20)(22)(23)(24)(25)(26)(28)(29)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(44)(45)(46) 

(10) 10 24 335,33 (1)(4)(5)(6)(7)(12)(13)(15)(17)(18)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(40)(41)(42)(44)(45)(46) 

(11) 11 16 354,53 (1)(4)(5)(6)(7)(12)(13)(15)(17)(18)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(35)(36)(37)(38)(41)(42)(44)(45)(46) 

(12) 12 16 163,56 (1)(2)(3)(5)(8)(9)(10)(11)(14)(16)(17)(19)(20)(21)(22)(23)(24)(25)(26)(29)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(13) 13 24 85,17 (1)(2)(3)(5)(6)(8)(9)(10)(11)(14)(15)(16)(17)(19)(20)(21)(22)(23)(24)(25)(26)(27)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44) 

(45)(46) 

(14) 14 15 329,50 (1)(4)(5)(7)(12)(13)(15)(17)(18)(22)(23)(24)(25)(26)(27)(28)(29)(32)(33)(34)(35)(36)(37)(38)(40)(41)(42)(44)(45)(46) 

(15) 15 24 180,48 (1)(2)(3)(4)(5)(8)(9)(10)(11)(13)(14)(16)(17)(19)(20)(21)(22)(23)(24)(25)(26)(29)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(16) 16 24 335,08 (1)(4)(5)(6)(7)(12)(13)(15)(17)(18)(22)(23)(24)(25)(26)(27)(28)(29)(30)(32)(33)(34)(35)(36)(37)(38)(40)(41)(42)(44)(45)(46) 

(17) 17 18 521,64 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(30)(31)(32)(39)(41)(42)(43) 

(18) 18 16 161,19 (1)(2)(3)(5)(8)(9)(10)(11)(14)(16)(17)(19)(20)(21)(22)(23)(24)(25)(26)(29)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(19) 19 24 298,33 (1)(4)(5)(7)(12)(13)(15)(17)(18)(20)(22)(23)(24)(25)(26)(28)(29)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(44)(45)(46) 

(20) 20 19 417,18 (1)(4)(5)(6)(7)(9)(12)(13)(15)(17)(18)(19)(21)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(36)(37)(41)(42)(45)(46) 

 

 

 

 



   
       Annexure 

 

197 
 

(21) 21 18 313,14 (1)(4)(5)(7)(12)(13)(15)(17)(18)(20)(22)(23)(24)(25)(26)(27)(28)(29)(31)(32)(33)(34)(35)(36)(37)(38)(40)(41)(42)(44)(45)(46) 

(22) 22 15 753,43 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(43)(44)(45)(46) 

(23) 23 18 777,86 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(24) 24 16 747,66 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(43)(44)(45)(46) 

(25) 25 8 782,50 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(43)(44)(45)(46) 

(26) 26 15 790,17 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(27) 27 19 208,97 (1)(2)(3)(4)(5)(8)(10)(11)(13)(14)(16)(17)(20)(21)(22)(23)(24)(25)(26)(29)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(28) 28 22 165,70 (1)(2)(3)(5)(8)(9)(10)(11)(14)(16)(17)(19)(20)(21)(22)(23)(24)(25)(26)(29)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(29) 29 22 444,73 (1)(4)(5)(6)(7)(8)(9)(10)(12)(13)(14)(15)(16)(18)(19)(21)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(36)(37)(41)(42)(45) 

(30) 30 22 243,80 (1)(3)(4)(5)(7)(10)(11)(13)(16)(17)(20)(22)(23)(24)(25)(26)(29)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 

(31) 31 23 413,48 (1)(4)(5)(6)(7)(9)(12)(13)(15)(17)(18)(19)(21)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(36)(37)(41)(42)(45)(46) 

(32) 32 22 629,48 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(35)(38)(39)(40)(43)(44)(46) 

(33) 33 16 596,03 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(35)(38)(39)(40)(43)(44) 

(34) 34 16 607,28 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(35)(38)(39)(40)(43)(44) 

(35) 35 19 493,89 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(21)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(39)(41)(42)(43)(45) 

(36) 36 16 584,16 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(38)(39)(40)(43) 
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(37) 37 19 546,37 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(39)(40)(43) 

(38) 38 15 478,13 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(21)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(36)(41)(42)(43)(45) 

(39) 39 23 384,54 (1)(4)(5)(6)(7)(9)(12)(13)(15)(17)(18)(19)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(35)(36)(37)(41)(42)(44)(45)(46) 

(40) 40 21 428,69 (1)(4)(5)(6)(7)(9)(10)(12)(13)(14)(15)(16)(18)(19)(21)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(36)(37)(41)(42)(45)(46) 

(41) 41 16 624,91 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(35)(38)(39)(40)(43)(44)(46) 

(42) 42 9 652,44 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(23)(26)(27)(28)(29)(30)(31)(35)(38)(39)(40)(43)(44)(46) 

(43) 43 21 376,74 (1)(4)(5)(6)(7)(12)(13)(15)(17)(18)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(35)(36)(37)(38)(41)(42)(44)(45)(46) 

(44) 44 13 486,12 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(21)(22)(23)(24)(25)(26)(27)(28)(30)(32)(33)(34)(39)(41)(42)(43)(45) 

(45) 45 16 595,50 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(35)(38)(39)(40)(43)(44) 

(46) 46 20 525,38 (1)(2)(3)(4)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(30)(31)(32)(39)(40)(41)(42)(43) 
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Annexure 20 

 

Kruskal-Wallis test 

Data 72h_All_organic_extractions 

72h All organic extractions 

Factor codes LC_4 

Sample size 899 

Test statistic 356,6618 

Corrected for ties  Ht 356,6738 

Degrees of Freedom (DF) 45 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average R

ank 

Different (P<0,05) 

from factor nr 

(1) 1 15 166,33 (2)(3)(5)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(33)(35)(36)(38)(39)(42)(

43)(44)(45) 

(2) 2 23 477,63 (1)(4)(5)(6)(7)(8)(13)(17)(23)(26)(29)(30)(31)(32)(34)(37)(40)(41)(42)(43)(46) 

(3) 3 16 412,03 (1)(4)(6)(8)(17)(23)(24)(26)(29)(30)(31)(32)(34)(37)(41)(42)(43) 

(4) 4 16 239,13 (2)(3)(8)(9)(10)(11)(15)(16)(17)(18)(19)(20)(22)(23)(24)(25)(26)(27)(28)(29)(30)(33)(35)(36)(38)(39)(42)(43)(44)(45) 

 

 

 

 



   
       Annexure 

 

200 
 

(5) 5 23 318,70 (1)(2)(8)(9)(11)(15)(17)(18)(20)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(33)(34)(39)(41)(42)(43)(44) 

(6) 6 16 193,19 (2)(3)(8)(9)(10)(11)(12)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(33)(35)(36)(38)(39)(42)(43)(44)(4

5) 

(7) 7 24 312,56 (1)(2)(8)(9)(11)(15)(17)(18)(20)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(33)(34)(39)(41)(42)(43)(44) 

(8) 8 21 675,45 (1)(2)(3)(4)(5)(6)(7)(9)(10)(11)(12)(13)(14)(15)(16)(19)(20)(21)(22)(25)(27)(28)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(45

)(46) 

(9) 9 12 469,21 (1)(4)(5)(6)(7)(8)(17)(23)(26)(29)(30)(31)(32)(34)(37)(40)(41)(42)(43)(46) 

(10) 10 24 372,48 (1)(4)(6)(8)(17)(18)(20)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(34)(41)(42)(43)(44) 

(11) 11 24 477,87 (1)(4)(5)(6)(7)(8)(13)(14)(17)(23)(26)(29)(30)(31)(32)(34)(37)(40)(41)(42)(43)(46) 

(12) 12 16 382,53 (1)(6)(8)(17)(18)(20)(23)(24)(25)(26)(27)(29)(30)(31)(32)(34)(41)(42)(43)(44) 

(13) 13 16 323,06 (1)(2)(8)(11)(15)(17)(18)(20)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(33)(34)(39)(41)(42)(43)(44) 

(14) 14 24 360,17 (1)(6)(8)(11)(17)(18)(20)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(34)(39)(41)(42)(43)(44) 

(15) 15 15 470,10 (1)(4)(5)(6)(7)(8)(13)(17)(23)(26)(29)(30)(31)(32)(34)(37)(40)(41)(42)(43)(46) 

(16) 16 24 371,33 (1)(4)(6)(8)(17)(18)(20)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(34)(41)(42)(43)(44) 

(17) 17 24 639,25 (1)(2)(3)(4)(5)(6)(7)(9)(10)(11)(12)(13)(14)(15)(16)(19)(21)(22)(28)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)(42)(45)(46

) 

(18) 18 16 545,34 (1)(4)(5)(6)(7)(10)(12)(13)(14)(16)(19)(21)(23)(26)(29)(30)(31)(32)(34)(35)(36)(37)(40)(41)(42)(46) 

(19) 19 24 400,81 (1)(4)(6)(8)(17)(18)(20)(23)(24)(25)(26)(27)(29)(30)(31)(32)(34)(37)(41)(42)(43)(44) 
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(20) 20 24 533,13 (1)(4)(5)(6)(7)(8)(10)(12)(13)(14)(16)(19)(21)(23)(26)(29)(30)(31)(32)(34)(35)(36)(37)(40)(41)(42)(46) 

(21) 21 24 367,27 (1)(6)(8)(17)(18)(20)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(34)(39)(41)(42)(43)(44) 

(22) 22 24 454,71 (1)(4)(5)(6)(7)(8)(13)(17)(23)(24)(26)(29)(30)(31)(32)(34)(37)(40)(41)(42)(43)(46) 

(23) 23 16 729,78 (1)(2)(3)(4)(5)(6)(7)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(24)(25)(27)(28)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40

)(41)(44)(45)(46) 

(24) 24 24 589,42 (1)(3)(4)(5)(6)(7)(10)(12)(13)(14)(16)(19)(21)(22)(23)(30)(31)(32)(34)(35)(36)(37)(38)(40)(41)(42)(45)(46) 

(25) 25 23 532,61 (1)(4)(5)(6)(7)(8)(10)(12)(13)(14)(16)(19)(21)(23)(26)(29)(30)(31)(32)(34)(35)(36)(37)(40)(41)(42)(46) 

(26) 26 24 685,19 (1)(2)(3)(4)(5)(6)(7)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(25)(27)(28)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41

)(45)(46) 

(27) 27 23 527,87 (1)(4)(5)(6)(7)(8)(10)(12)(13)(14)(16)(19)(21)(23)(26)(29)(30)(31)(32)(34)(35)(36)(37)(40)(41)(42)(46) 

(28) 28 24 503,19 (1)(4)(5)(6)(7)(8)(10)(13)(14)(16)(17)(21)(23)(26)(29)(30)(31)(32)(34)(36)(37)(40)(41)(42)(43)(46) 

(29) 29 18 690,14 (1)(2)(3)(4)(5)(6)(7)(9)(10)(11)(12)(13)(14)(15)(16)(18)(19)(20)(21)(22)(25)(27)(28)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41

)(45)(46) 

(30) 30 24 787,98 (1)(2)(3)(4)(5)(6)(7)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(24)(25)(27)(28)(31)(32)(33)(34)(35)(36)(37)(38)(39

)(40)(41)(43)(44)(45)(46) 

(31) 31 15 175,03 (2)(3)(5)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(33)(35)(36)(38)(39)(42)(

43)(44)(45) 

(32) 32 24 231,96 (2)(3)(8)(9)(10)(11)(12)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(33)(35)(36)(38)(39)(42)(43)(44)(4

5) 
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(33) 33 24 473,19 (1)(4)(5)(6)(7)(8)(13)(17)(23)(26)(29)(30)(31)(32)(34)(37)(40)(41)(42)(43)(46) 

(34) 34 8 109,94 (2)(3)(5)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(33)(35)(36)(38)(39)(42)(

43)(44)(45) 

(35) 35 19 387,66 (1)(4)(6)(8)(17)(18)(20)(23)(24)(25)(26)(27)(29)(30)(31)(32)(34)(41)(42)(43)(44) 

(36) 36 22 380,23 (1)(4)(6)(8)(17)(18)(20)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(34)(41)(42)(43)(44) 

(37) 37 15 261,50 (2)(3)(8)(9)(11)(15)(17)(18)(19)(20)(22)(23)(24)(25)(26)(27)(28)(29)(30)(33)(38)(39)(42)(43)(44)(45) 

(38) 38 14 422,82 (1)(4)(6)(8)(17)(23)(24)(26)(29)(30)(31)(32)(34)(37)(40)(41)(42)(43) 

(39) 39 16 502,06 (1)(4)(5)(6)(7)(8)(13)(14)(17)(21)(23)(26)(29)(30)(31)(32)(34)(37)(40)(41)(42)(46) 

(40) 40 17 276,21 (2)(8)(9)(11)(15)(17)(18)(20)(22)(23)(24)(25)(26)(27)(28)(29)(30)(33)(38)(39)(42)(43)(44)(45) 

(41) 41 16 172,25 (2)(3)(5)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(33)(35)(36)(38)(39)(42)(

43)(44)(45) 

(42) 42 24 791,48 (1)(2)(3)(4)(5)(6)(7)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(24)(25)(27)(28)(31)(32)(33)(34)(35)(36)(37)(38)(39

)(40)(41)(43)(44)(45)(46) 

(43) 43 15 640,10 (1)(2)(3)(4)(5)(6)(7)(9)(10)(11)(12)(13)(14)(15)(16)(19)(21)(22)(28)(30)(31)(32)(33)(34)(35)(36)(37)(38)(40)(41)(42)(45)(46) 

(44) 44 14 550,71 (1)(4)(5)(6)(7)(10)(12)(13)(14)(16)(19)(21)(23)(30)(31)(32)(34)(35)(36)(37)(40)(41)(42)(46) 

(45) 45 21 416,76 (1)(4)(6)(8)(17)(23)(24)(26)(29)(30)(31)(32)(34)(37)(40)(41)(42)(43)(46) 

(46) 46 14 270,39 (2)(8)(9)(11)(15)(17)(18)(20)(22)(23)(24)(25)(26)(27)(28)(29)(30)(33)(39)(42)(43)(44)(45) 
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Annexure 21 

 

Kruskal-Wallis test 

Data 24h_48h_72h_All_aqueous_extractions 

Factor codes LC_9 

Sample size 855 

Test statistic 391,3315 

Corrected for ties  Ht 391,3953 

Degrees of Freedom (DF) 38 

Significance level P < 0,000001 

Post-hoc analysis 

Factor n Average Ran

k 

Different (P<0,05) 

from factor nr 

(1) 1 1

5 

847,93 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)

(38)(39) 

(2) 2 2

4 

191,79 (1)(4)(7)(10)(13)(14)(15)(16)(17)(18)(19)(20)(21)(23)(24)(25)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39) 

(3) 3 2

4 

183,81 (1)(4)(7)(10)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39) 
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(4) 4 2

4 

371,06 (1)(2)(3)(6)(11)(12)(14)(15)(19)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(5) 5 2

4 

273,35 (1)(6)(14)(15)(16)(17)(19)(20)(21)(24)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39) 

(6) 6 2

4 

138,69 (1)(4)(5)(7)(8)(9)(10)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(

38)(39) 

(7) 7 2

3 

308,65 (1)(2)(3)(6)(11)(14)(15)(16)(19)(20)(24)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(8) 8 1

6 

266,75 (1)(6)(14)(15)(16)(17)(19)(20)(21)(24)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39) 

(9) 9 1

6 

273,87 (1)(6)(14)(15)(16)(17)(19)(20)(21)(24)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39) 

(10) 1

0 

1

6 

365,41 (1)(2)(3)(6)(11)(14)(15)(19)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(11) 1

1 

2

4 

196,85 (1)(4)(7)(10)(13)(14)(15)(16)(17)(18)(19)(20)(21)(23)(24)(25)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39) 

(12) 1

2 

2

3 

247,54 (1)(4)(6)(14)(15)(16)(17)(18)(19)(20)(21)(24)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39) 

(13) 1

3 

2

4 

339,27 (1)(2)(3)(6)(11)(14)(15)(16)(19)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(14) 1

4 

1

6 

832,50 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)

(38)(39) 
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(15) 1

5 

2

4 

484,90 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(18)(22)(23)(25)(26)(27)(28)(30)(31)(33)(39) 

(16) 1

6 

2

4 

456,27 (1)(2)(3)(5)(6)(7)(8)(9)(11)(12)(13)(14)(22)(23)(25)(26)(27)(28)(30)(31)(32)(33)(34)(39) 

(17) 1

7 

2

1 

404,83 (1)(2)(3)(5)(6)(8)(9)(11)(12)(14)(19)(26)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(18) 1

8 

2

4 

356,23 (1)(2)(3)(6)(11)(12)(14)(15)(19)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(19) 1

9 

2

4 

522,23 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(17)(18)(21)(22)(23)(25)(26)(27)(29)(30)(31) 

(20) 2

0 

2

4 

428,77 (1)(2)(3)(5)(6)(7)(8)(9)(11)(12)(14)(22)(23)(25)(26)(27)(28)(30)(31)(32)(33)(34)(36)(37)(39) 

(21) 2

1 

2

8 

393,29 (1)(2)(3)(5)(6)(8)(9)(11)(12)(14)(19)(26)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(22) 2

2 

2

0 

299,90 (1)(3)(6)(14)(15)(16)(19)(20)(24)(27)(28)(29)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(23) 2

3 

2

0 

317,87 (1)(2)(3)(6)(11)(14)(15)(16)(19)(20)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(24) 2

4 

2

4 

421,62 (1)(2)(3)(5)(6)(7)(8)(9)(11)(12)(14)(22)(26)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(25) 2

5 

2

4 

318,08 (1)(2)(3)(6)(11)(14)(15)(16)(19)(20)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 
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(26) 2

6 

2

3 

281,57 (1)(6)(14)(15)(16)(17)(19)(20)(21)(24)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39) 

(27) 2

7 

1

5 

747,93 (2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(28)(29)(32)(33)(34)(35)(36)(37)(38)(39) 

(28) 2

8 

2

4 

606,69 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(20)(21)(22)(23)(24)(25)(26)(27)(29)(35) 

(29) 2

9 

2

4 

410,63 (1)(2)(3)(5)(6)(8)(9)(11)(12)(14)(19)(22)(26)(27)(28)(30)(31)(32)(33)(34)(36)(37)(38)(39) 

(30) 3

0 

2

4 

635,33 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(29)(35)(38) 

(31) 3

1 

2

3 

651,78 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(29)(35)(38) 

(32) 3

2 

2

4 

573,87 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(16)(17)(18)(20)(21)(22)(23)(24)(25)(26)(27)(29)(35) 

(33) 3

3 

2

4 

617,60 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(20)(21)(22)(23)(24)(25)(26)(27)(29)(35) 

(34) 3

4 

1

6 

589,66 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(16)(17)(18)(20)(21)(22)(23)(24)(25)(26)(27)(29)(35) 

(35) 3

5 

1

8 

416,25 (1)(2)(3)(5)(6)(8)(9)(11)(12)(14)(26)(27)(28)(30)(31)(32)(33)(34)(36)(37)(39) 

(36) 3

6 

1

8 

560,56 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(17)(18)(20)(21)(22)(23)(24)(25)(26)(27)(29)(35) 
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(37) 3

7 

2

4 

557,44 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(17)(18)(20)(21)(22)(23)(24)(25)(26)(27)(29)(35) 

(38) 3

8 

2

4 

528,31 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(17)(18)(21)(22)(23)(24)(25)(26)(27)(29)(30)(31) 

(39) 3

9 

2

4 

597,19 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(20)(21)(22)(23)(24)(25)(26)(27)(29)(35) 
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