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Abstract 

Prostate cancer (PCa) is the second most common form of cancer in men around 

the world. In many parts of Africa, data on prostate cancer is sparse. This is 

attributed to poor access to testing and diagnostics. The International Agency for 

Research on Cancer (GLOBOCAN) estimated that 28,000 deaths occurred as a 

result of PCa in Africa in 2008, 4500 of which were in South Africa. This figure 

(28,000) is predicated a rise to 57,000 over the next two decades. Currently, the 

most commonly used diagnostic tests for PCa are the DRE and PSA tests. The 

former is highly invasive and both have low specificity and poor sensitivity. 

Therefore, the need for a less invasive early detection method with the ability to 

overcome the lack of specificity and sensitivity is required. Biomarkers have 

recently been identified as a viable option for early detection of disease. 

Examples of biological indicators for disease are miRNAs. miRNAs are small 

non-coding RNA molecules which play a key role in controlling gene expression 

and certain biological processes. Studies have shown that aberrantly expressed 

miRNAs are a hallmark of several diseases like cancer. miRNA expression has 

been shown to be associated with tumour development, progression and response 

to therapy, suggesting their possible use as diagnostic, prognostic and predictive 

biomarkers.  

The study aimed to investigate the potential of miRNAs implicated in prostate 

cancer as putative biomarkers for the disease and evaluating these miRNAs in a 

panel of prostate as well as several other cancer cell lines using qRT-PCR. An in 

silico approach was used to identify 13 putative miRNAs implicated in prostate 

cancer of which 8 were further analysed in a parallel study and 5 in this study. 
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Two publicly available target prediction software were used for target gene 

prediction of the 5 identified miRNAs. The target genes were subjected to 

functional analysis using web-based software, DAVID. Functions which were 

clustered with an enrichment score of 1.3 and greater were considered significant. 

Targets with gene ontologies linked to “transcription regulation”, “regulation of 

“apopotosis”, “extracellular region” and “metal ion binding” were considered for 

further analyses. Protein gene interaction analysis was performed to determine the 

pathways the target genes are involved in using STRING. Expression profile 

analysis of the genes in various tissues was also carried out using in silico 

methods through the TiGER and GeneHub-GEPIS databases. 

 

Analysis using DAVID resulted in 9 gene targets for the 5 miRNAs. It was found 

that miR3 seemed the most promising miRNA for biomarker validation based on 

the in silico analyses. Its target gene MNT was found to be abundantly expressed 

in prostate tissue from the TiGER results. The GeneHub-GEPIS results also 

indicated that the gene’s expression is up-regulated during prostate cancer. 

The expression levels of the miRNAs analysed using qRT-PCR indicated that 

miR3 is significantly over-expressed in prostate cancer cells when compared to 

the other cancer cell lines used in this study, corroborating the results observed 

from the in silico analyses. Another miRNA with interesting results was miR5. It 

was predicted to target two genes, YWHAZ and TNFSF13B. In TiGER, both 

were found to be expressed in prostate tissue. The genes were also found to be up 

regulated during prostate cancer in GeneHub-GEPIS. The expression level of 

miR5 in LNCaP was 15.32; it was significantly up-regulated in the cell line using 

qRT-PCR. However, miR5 was also present in HEPG2-7.06, MCF7-0.79, HT29-
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1.61 and H157-3.59. Thus, it was concluded it can be used as a biomarker in 

combination with other miRNAs. The miRNA miR2 was found to target the actin 

filament protein encoding gene AFAP1. The gene was predicted to be up-

regulated with a DEU of 33.25 in GeneHuB-GEPIS. The qRT-PCR analysis 

showed that the expression ratio in LNcaP was 8.79. However, miR2 expression 

was up-regulated in MCF7-0.85 and HT29-1.09 as well. The expression level of 

miR1 in BHP1 was found to be 4.85. It can be considered as an indicator for 

benign prostate hyperplasia.  

  

Future work would include investigating the expression of miR3 in a larger panel 

of cancer cells as well as in patient samples. In addition, analysis of the UTR 

sequences of the miRNAs targets experimentally to prove that the target genes 

identified using in silico methods, are indeed regulated by these miRNAs. 

Furthermore, performing gene “knock-out” studies on the genes that code for the 

miRNAs to study their roles in prostate cancer development.  
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Chapter 1 

Literature Review 

 

1.1 Cancer 

 

One of the greatest health concerns worldwide currently is cancer. It has become 

the most devastating disease among the chronic diseases.  It has continued to rise 

in incidence and is associated with a high morbidity and mortality rate, in 2012; 

there were 8.2 million cancer related deaths (CDC, 2014).  According to the 

National Cancer Institute statistics, there are over 13 million new cases of cancer 

per annum worldwide, and the number of new cases is expected to rise by 70 % 

by 2050 with deaths projected to rise to over 12 million worldwide by 2040 

(WHO, 2015). Additionally, the Cancer Association of South Africa reports that 

one in six males and one in seven females have some type of cancer with prostate 

cancer being most prevalent in the former and breast cancer in the latter.  

Cancer arises in almost all human tissues and it is believed that the basic 

processes that transform a normal cell into a cancer cell are essentially the same 

in all cancers arising in the human body. These basic properties of survival, 

proliferation and dissemination are called the hallmarks of cancer (Hanahan and 

Weinberg, 2000). Although these hallmarks are thought to be common for all 

types of cancer, they are acquired through diverse distinct mechanisms during 

different times of the multistep tumourigenesis process in different forms of 

cancer. There are six hallmarks of cancer(figure 1) originally proposed by 
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Hanahan and Weinberg, these are: i) sustaining proliferative signalling, ii) 

evading growth suppressors, iii) activating invasion and metastasis, iv) enabling 

replicative immortality, v) angiogenesis and vi) resisting cell death (Hanahan and 

Weinberg, 2011).  

 

 

Figure 1: The six hallmarks of cancer acquired by normal cells as they evolve to 

a neoplastic state (Adapted from Hanahan and Weinberg, 2011). 

 

1.1.1 Hallmarks of cancer 

 

The hallmarks of cancer have been defined as acquired functional capabilities that 

allow cancer cells to survive, proliferate, and disseminate (Hanahan and 

Weinberg 2000; Hanahan and Weinberg 2011). These functions are acquired in 

different tumour types via distinct mechanisms and at various times during the 
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course of multistep tumourigenesis (Hanahan and Weinberg 2000; Colotta et al., 

2009). Recently, an increasing body of research has suggested that two additional 

hallmarks of cancer are involved in the pathogenesis of some and perhaps all 

cancers. One involves the capability to modify, or reprogram, cellular metabolism 

in order to most effectively support neoplastic proliferation (Hanahan and 

Weinberg 2011; Colotta et al., 2009; Luo et al., 2009). The second allows cancer 

cells to evade immunological destruction, in particular by T and B lymphocytes, 

macrophages, and natural killer cells (Hanahan and Weinberg 2011; Colotta et 

al., 2009; Negrini et al., 2010). Because neither capability is yet generalized and 

fully validated, they are referred to as emerging hallmarks (Hanahan and 

Weinberg, 2011).  

Additionally, two consequential characteristics of neoplasia facilitate acquisition 

of both core and emerging hallmarks (figure 1.2). Genomic instability and thus 

mutability present cancer cells with genetic alterations that drive tumour 

progression (Colotta et al., 2009; Luo et al., 2009). Inflammation by innate 

immune cells designed to fight infections and heal wounds can instead result in 

their inadvertent support of multiple hallmark capabilities, thereby manifesting 

the now widely appreciated tumour-promoting consequences of inflammatory 

responses (Hanahan and Weinberg 2011; Colotta et al., 2009; Luo et al., 2009; 

Negrini et al., 2010). 
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Figure 1.2: Emerging Hallmarks of cancer and Enabling Characteristics. 

(Adapted from Hanahan and Weinberg, 2011). 

 

 

1.2 Prostate cancer (PCa) 

 

Prostate cancer is one of the most common cancers among men worldwide. 

According to the International Agency for Research on Cancer (GLOBOCAN) in 

2012, prostate cancer was among the most commonly diagnosed cancers in 

males, coming second after lung cancer. Prostate cancer makes up 8 % of all 

cancers diagnosed in the world for both sexes (figure 1.3).  
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The incidence of PCa varies significantly between ethnic groups and geographic 

regions with men of African descent living outside of Africa having some of the 

highest incidence rates, 234.6 per 100,000 (Chang et al., 2011; Rebbeck et al., 

2013). In the USA, men of African descent are more frequently diagnosed with 

PCa at an earlier age of onset, have higher prostate specific antigen levels, higher 

tumour volume as well as more aggressive tumour stages (Zeeger et al., 2004; 

Lange et al., 2008).  

 

 

Figure 1.3: The most commonly diagnosed cancers worldwide (for males and 

females) in 2012, with prostate cancer accounting for 8 %. (Adapted from 

GLOBOCAN, 2012). 

 

 

Mortality rate among people of African descent is also higher than that of 

Caucasian Americans with the latter having 25.6 deaths per 100,000 men and the 

former having 2.4 times that rate at 62.3 per 100,000 men (Chang et al., 2011). In 
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contrast, prostate cancer incidence in Asian countries is low (Curado et al., 2007) 

and reasons for this are not clear. However, studies do indicate that these patterns 

may be linked to differences in access to care, inherited susceptibility, referral 

patterns, differences in the biology of the disease, treatment options, differences 

in testing, reporting and diagnosis of the disease. (Parkin et al., 2003; Rebbeck et 

al., 2013). 

 

In many parts of Africa, data on prostate cancer is sparse. This could be because 

of poor access to testing and diagnostics. The International Agency for Research 

on Cancer (GLOBOCAN) estimated that 28,000 deaths occurred in Africa in 

2008 and predicated a rise to 57,000 over the next two decades. However, a study 

by Chu et al.,2011 questioned the validity of these figures, stating that they could 

be an underestimation of PCa cases in Africa. In their study on PCa among 

different racial groups in the Western Cape, Heyns et al., 2011, suggestes the 

underestimates could be as a result of less awareness and education about the 

disease among patients and physicians as well as the fear and taboo of possible 

digital rectal examinations.  
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1.2.1 Anatomy and normal functions of the prostate 

The prostate is a compound exocrine gland that is part of the male reproductive 

system (Figure 1.4) (Theodorescu, 2001). The normal adult prostate is about the 

size of a walnut and increases in size with age. It is situated at the base of the 

bladder and surrounds the urethra. The rectum sits posterior to the prostate, 

allowing for palpation of the prostate during rectal examination (Basch et al., 

2012). The secretions of the prostate are high in sugars and proteins. The prostatic 

secretions are thought to be important in aiding fertilization by increasing the 

motility of sperm and perhaps promoting the viability of sperm after ejaculation. 

The gland produces approximately 20 % of the fluid produced during ejaculation 

(Gupta et al., 2013). The glandular tissue of the prostate is dependent on 

androgens for normal growth and development; androgens are hormones that 

promote the development of male sexual characteristics, the most common being 

testosterone (Theodorescu, 2001).   

 

 

 

Figure 1.4: Anatomy of the prostate gland. (Adapted from Theodorescu, 2001). 
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In terms of structure, the prostate is clinically divided into zones (figure 1.4). 

These are the peripheral zone (PZ), which comprises of the posterior part of the 

gland surrounding the distal urethra and it has been reported that 80 % of cancers 

arise in the PZ (Taylor et al., 2011).  The central zone (CZ) surrounds the 

ejaculatory ducts and approximately 5 % of cancers are reported to arise here 

(Descotes et al., 2007). Figure 1.3 also shows that the transition zone (TZ) 

surrounds the proximal urethra and continues to enlarge throughout life and is the 

part of the gland where benign prostatic hyperplasia (BPH) occurs in later life. 

About 15 % of cancers originate from the transition zone (Taylor et al., 2011).   

 

Figure 1.5: Zonal anatomy of the prostate. The human prostate is composed of zones 

of exocrine glandular tissue with the ducts emptying into the prostatic urethra. (Adapted 

from Cramer, 2007). 
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1.2.2 Prostate cancer pathology 

The prostate has two main epithelial cell types; the basal cells and the luminal 

cells (Theodorescu et al., 2001). The latter lines the lumen of the prostate and is 

responsible for the production of a protein known as the prostate specific antigen 

(PSA). There has been no record of any other cell in the male body producing this 

protein and thus it is used as a biomarker for prostate cells. The basal cells 

surround the luminal cells and act as a barrier between the luminal cells and the 

stroma (Taylor and Albertsen, 2011). During the development of prostate cancer, 

the normal prostate structure is altered, the rate of cell division surpasses cell 

death and this leads to uncontrolled tumour growth. These changes result in a 

breakdown of the basal cell barrier between the prostatic duct and the surrounding 

stroma. These breakdowns lead to an invasion of luminal cells into the 

surrounding stroma, which can eventually lead to migration of these cells into the 

rest of the body using the nervous or circulatory systems (Huang et al., 2013). 

Arriving at their final destination, the tumour cells can lodge and grow secondary 

tumours which can result in a dramatic decline in the cure rates for the disease. 

The presence of these prostate cancer cells in another site, such as bone, does not 

change its classification to bone cancer-for instance. The new tumour is still 

considered to be prostate cancer (Taylor and Albertsen, 2011).  

1.2.3 Benign Prostatic Hyperplasia 

Benign Prostatic Hyperplasia (BPH) arises from the glandular epithelial cells that 

line the ducts of the prostate gland.  Although the pathogenesis of BPH is not 

well understood, it is generally agreed that it begins with stromal alterations, 

which then stimulate growth and variably alter the differentiation of associated 
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epithelial cells (Taylor and Albertsen, 2011).  It is interesting to note that most 

prostate cancers arise in prostates that already have BPH. However, BPH 

originates in the transitional zone while the peripheral zone is the most 

prevalent site for prostate cancer. BPH is easily distinguished from prostate 

cancer histologically, as BPH has a distinct basal cell layer and is characterised 

by an altered stromal-epithelial arrangement (Descotes et al., 2007). 

 

BPH is the most common non-malignant condition to affect men and is the most 

frequent benign condition found in the prostate, occurring in more than 70 % of 

men aged 70 years or older (Taylor et al., 2011). Although BPH is not the 

premalignant precursor of prostate cancer (Basch et al., 2012), this condition has 

significant similarities with prostate cancer. Both show increased prevalence with 

age (although BPH usually occurs 15-20 years earlier), they both require 

androgenic stimulation and may respond to androgen deprivation (Botswick and 

Brawer, 1987).  The current clinical marker for prostate cancer, PSA, is known to 

increase with age and is also associated with BPH (Gupta et al., 2013).  Thus, 

there may be considerable uncertainty when distinguishing between BPH and 

prostate cancer using the PSA test (Basch et al., 2012). 

 

1.2.4 Prostatic intraepithelial neoplasia: A precursor to prostate 

cancer 

The piling up of luminal cells in the prostate is called Prostatic Intraepithelial 

Neoplasia (PIN). PIN is thought to bea precursor to prostate cancer and is usually 
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segregated into low grade and highgrade, depending on how closely it resembles 

true prostatecancer (Taylor and Albertsen, 2011). Prostatic intraepithelial 

neoplasia retains a basal cell layer, distinguishing it from prostate cancer, which 

lacks a basal celllayer. In figure 1.6, the normal luminal cells are very similar to 

one another in size, shape, and the location of the nucleus toward the basal layer 

(Botswick and Brawer, 1987). In low-grade PIN the luminal cells become less 

uniform; the nuclei are no longer located solely at the basal layer, instead they 

become enlarged and contain large dark spots referred to as nucleoli. In high-

grade PIN these characteristics become more pronounced, the nuclei become very 

large and the nucleoli are very prominent. In early prostate cancer (carcinoma), 

there is an additional loss of the complete basal layer. 
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Figure 1.6: Cellular changes in Prostatic Intraepithelial Neoplasia (PIN). The progressive changes in the structure of the gland 

are seen going from left (normal) to right (microinvasive carcinoma). (Adapted from Boswick and Brawer, 1987).
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1.3 The Gleason grading system 

One of the defining attributes of prostate cancer that distinguishes it from PIN 

and the normal prostate glands is the loss of the basal layer of cells (Boswick and 

Brawer, 1987). However, loss of the basal layer is not the end of the process of 

changes in the prostate that lead to aggressive prostate cancer. Just as with PIN, in 

which there are low-grade and high-grade classifications of aggressiveness, there 

are specific changes that occur in the prostate that have been associated with 

more or less aggressive disease (Taylor and Albertsen, 2011). There are several 

systems that have been developed to classify these changes and correlate them 

with patient survival and response to therapy. The system that is used throughout 

the world is the Gleason grading system developed by Donald Gleason in the 

1960s (Oesterling and Moyad, 1997; American Joint Committee on Cancer, 

2010). It is a standardized system of grading histological changes in the prostate 

glandular structure that could be used to predict prostatic disease progression 

(Gleason, 1966). Figure 1.7 shows a figure that Gleason published in 1966 that is 

still used by pathologists to grade prostate cancer using the Gleason system. The 

figure represents the appearance of the prostate glandular morphology at low 

magnification using a microscope.  

 

In figure 1.7, looking at panel 1, each circle represents the lumen of a duct or 

gland. Gleason noticed that as the prostate cancer becomes more aggressive the 

glandular structure becomes less uniform and more disorganized. This 

organization is often referred to as the degree of differentiation. The more 

organized (grade 1), the more differentiated. The less organized the less 
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differentiation and the more aggressive the cancer (grade 5) (Gleason, 1966). 

From 1 to 5, each number represents an increasing Gleason grade. There are a 

variety of glandular types that can be classified as belonging to each specific 

grade. As the Gleason grade increases, the size and shape of the glands become 

less uniform. In very advanced cancer, Gleason grade 4 or 5, the glands become 

very tiny, or in some cases there is a loss of glandular structure completely 

(Oesterling and Moyad, 1997).  
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Figure 1.7: Gleason Grading System. As prostate cancer becomes more aggressive, the glands become less organized, 

withsmaller and more variable lumen sizes. Each panel from 1 to 5 represents an increasing Gleason grade. (Adapted from 

Foster and Bostwick, 1998). 
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1.3.1 Tumour staging 

Whilst grading refers to how aggressive a cancer can be, cancer staging is the 

process of determining whether the cancer has spread and how far. Staging also 

provides a better insight into the risk of the disease spreading further so that the 

correct treatment option can be selected. The TNM stage was developed by the 

American Joint Committee on Cancer (AJCC) (Wallace et al., 1975). It is used to 

evaluate the extent of the primary tumour (T), the affected regional lymph nodes 

(N) and if it has spread or metastasized (M) table 1.  
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Table 1: TNM staging of prostate cancer. 

 

Primary  

Tumour 

(T)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TX 

T0 

Ta 

T 

 

      

T2 

 

 

 

 

T3 

 

 

 

T4 

 

 

 

Cannot evaluate the primary 

tumour 

No evidence of primary 

tumour 

Non invasive papillary 

carcinoma 

Carcinoma in situ: flat tumour  

 

Tumour invades muscle 

T2a Tumour invades 

superficial muscle (inner half)  

T2b Tumour invades deep 

muscle (outer half) 

 

Tumour invades perivesical 

tissue   

T3a Microscopically 

T3b Macroscopically 

 

Tumour invades prostate 

T4a Tumour invades prostate 

T4b Tumour invades pelvic or 

abdominal wall 

 

 

Regional  

Lymph 

Nodes (N) 

 

 

 

 

 

 

NX 

 N0 

 N1 

 

 

 

Regional lymph nodes cannot 

be assessed 

No regional lymph node 

metastasis 

Metastasis in a single lymph 

node  

 

 

 

Distant  

Metastasis  

(M) 

 

 
 

 

 

 

MX 

M0 

M1 

 

 

 

 

Distant metastatic cannot be 

assessed 

No distant metastatic 

Distant metastatic   

 

 

M, metastasis; N, nodes; T, tumour. (Adapted from American Joint Committee on 

Cancer, 2013). 
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1.4 Diagnosis 

Diagnosis of prostate cancer includes testing for the presence of prostate-specific 

antigen (PSA) in blood testing, PSA velocity (how much a patient’s PSA levels 

increase from year to year), digital rectal examination (DRE), blood count and 

biochemical profiling, transrectal ultrasound (TRUS) and biopsy (Horwich et al., 

2010). Secondary diagnosis can occur during investigation for other diseases, 

such as bladder cancer, where biopsies may be undertaken.  

 

1.4.1 Prostate-specific antigen testing 

Currently, prostate cancer screening is done in part through the use of the prostate 

specific antigen (PSA) blood test often combined with a digital rectal exam 

(DRE). Not all low or high PSA levels are indicative of prostate cancer, as PSA 

levels are organ specific and not cancer specific (Descotes et al., 2007; Velonas et 

al., 2013; Qu et al., 2014). Despite routine application of PSA assays, PSA 

screening has been very controversial. As of October 2011, the United States 

Preventive Services Task Force (USPSTF) recommended against the use of PSA 

as a screening tool for prostate cancer in asymptomatic men. The controversy 

around use of PSA as a screening tool stems from the fact that PSA is organ-

specific and not disease-specific, thus making it prone to high false-positive 

diagnosis. In addition to prostate cancer, there are several reasons for elevated 

levels of PSA found in a man's blood. These include: benign prostate hyperplasia, 

prostatitis (Basch et al., 2012), recent ejaculation, digital rectal exam, and 

prostate biopsy. Biopsies show that over two-thirds of men with PSA levels 

greater than 4 ng/mL, do not have prostate cancer (Descortes et al., 2007). In the 
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meantime, there are men with PSA levels in the normal range (below 4ng/mL) 

who have prostate cancer (Heidenreich et al., 2011). According to the Mayo 

Clinic, 76 % of men with raised PSA levels do not test positive for it upon biopsy 

(Tollefson, 2012). Additionally, in 2004, Thompson et al conducted a study over 

a period of 7 years in 2,950 males who had never had PSA levels higher than 4.0 

ng/mL or an abnormal DRE. Prostate biopsies showed that there was a 15.2 % 

(n=449) prevalence of PCa in men with PSA levels no higher than 4.0 ng/mL. 

High-grade prostate cancer (defined as Gleason score ≥7) was also seen in 15.8 % 

(n = 71) of these men. 

 

In 2006, Dyche et al., investigated the prevalence and outcome of PSA testing for 

prostate cancer screening or diagnosis in men 45 years to 75 years of age over a 

period of 6 years. The study was conducted on 8797 males and a total of 82,672 

visits were made over the time period. The findings were that 5.7 % of these men 

underwent at least one PSA test. Of that 5.7 %, 3.4 % were under the age of 55. 

Overall, the prevalence of PSA testing was 14.9 % in the 45 to 54 years old age 

group and 11.8 % in the 55 to 64 years old age group and 10.3 % in the 65 to 75 

years old age group. The study concluded that PSA testing for prostate cancer 

screening and diagnosis appears to decrease with advancing age. The study was 

however, not conclusive on why this happens. It could be because of the 

problems associated with PSA discussed afore mentioned.  

 

Another important limitation of PSA as a biomarker is its inability to identify 

patients with aggressive and lethal forms of prostate cancer. Because many forms 

of prostate cancer are apathetic and do not progress to metastasis and death, it 
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would be important for new biomarkers to be able to distinguish those from 

aggressive prostate cancer (Heidenreich et al., 2011). Over the last 25 years, no 

new blood test, genetic test or medical x-ray have been able to replace PSA. So 

we are in a midst of a biomarker crisis as lack of specificity of PSA requires 

supplementation in order to improve patient management, and to differentiate 

cancer from benign diseases of the prostate. 

 

1.4.2 Digital rectal examination (DRE) 

Digital rectal examinations are performed by a clinician physically examining the 

prostate via the rectum for any bumps or enlargements. A normal prostate is 

about the size of a walnut and uniformly soft and pliable.  Areas of prostate 

cancer will often feel harder than the surrounding normal area. The hardened part 

is called the nodule (Heidenreich et al., 2011).  The prostate can also be larger 

than normal; however this is due to BPH rather than prostate cancer. About 18 % 

of patients with prostate cancer can be diagnosed by a DRE regardless of PSA 

levels (Carter et al., 2013). A DRE can indicate whether a prostate biopsy is 

recommended for a patient, especially in more aggressive cases (Horwich et al., 

2010). However, like PSA testing, DREs are not absolutely conclusive. DREs are 

dependent on the ability of a doctor to feel the differences between a normal 

prostate and a tumour. If the cancer is located away from the rectal surface or if it 

is not particularly hard, then it might be missed. Because of such problems, the 

American Urological Association (AUA) 2013 guidelines could not find evidence 

to support the continued use of DREs for first-line screening due to its lack of 
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sensitivity and the high possibility of missing early prostate cancer tumours, 

which may not be felt during the examination (Horwich et al., 2010).  

The National Health Institute (NIH) in the UK release statistics on digital rectal 

examinations for the year 2014. In the report, it is indicated in a test group of men 

aged between 50 and 70 years old only 47.6 % underwent a DRE (Federman et 

al., 2014). An additional 6.9 % were offered a DRE but declined. The study 

concluded that screening for prostate cancer remains controversial. Nevertheless, 

the DREs are still the standard test used for prostate cancer in conjunction with 

other diagnostic tests such as PSA. 

 

1.4.3 Transrectal ultrasound (TRUS) 

A Transrectal ultrasound is performed by inserting a small probe in the patient’s 

rectum; this probe emits sound waves into the patient’s prostate that echo back to 

the probe to create video images of the prostate (Basch et al., 2012). The TRUS 

can sometimes detect tumours that may not have been detected by a DRE, and it 

may also give clinicians a better idea of PSA density, which can help distinguish 

between BPH and prostate cancer (Descotes et al., 2007).  

 

1.4.4 Biopsy 

A biopsy can be ordered as a follow up on a PSA test, DREs and/or or imaging 

tests. However, there are many factors that should be considered before a biopsy. 

The patient’s medical history, age, ethnicity, heredity, other present diseases, as 

well as results from any other preceding tests are all factors to consider. A biopsy 
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is a procedure in which a sample of body tissue is removed and examined under a 

microscope (Basch et al., 2012).  A core needle biopsy is the main method used 

to diagnose prostate cancer. Using transrectal ultrasound to have an image of the 

prostate gland, a clinician then inserts a thin, hollow needle through the wall of 

the rectum into the prostate. When the needle is pulled out it removes a small 

cylinder of prostate tissue. This can be repeated from 8 to18 times (Horwich et 

al., 2010). While biopsies and an analysis of the tumour histology can allow 

clinicians to appropriately determine the patient’s disease and its severity, the 

biopsy procedure can also lead to adverse events, such as infection, bleeding, and 

urinary difficulties (Carter et al., 2013). There is also a risk of false diagnosis. 

This can happen if the needle misses the tumour (American Cancer Society, 

2012).  

Thus, an ideal screening test should be minimally invasive, accurate and 

conveniently available to the general population. It should also be able to provide 

an accurate and early diagnosis. The current diagnostic methods for prostate 

cancer as discussed above are lacking in sensitivity and specificity. They are 

uncomfortable and maybe potentially harmful not only physically but 

psychologically and lead to patient apathy towards them. Thus, a molecular 

marker that is inexpensive, sensitive enough to detect the disease before tumour 

formation and remains unaltered during disease progression is necessary.  

1.5 Biomarkers 

The discovery of cancer biomarkers has become an integral part of medicine. A 

reason why biomarkers have revolutionized the medical field is because they are 
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effective non-invasive indicator molecules. The National Cancer Institute (NCI) 

defines biomarkers as any biological molecule that is isolated from body fluids 

such as urine, blood or tissue that is a sign of a normal or abnormal process in the 

body or disease condition. They are objective indications of a medical state 

observed from outside the patient, which can be measured accurately and is 

reproducible (Strimbu and Tavel, 2010). 

Biomarkers can also be used to assess the effectiveness of particular therapies in 

improving the effects of a disease. By using easily obtained biomarkers to 

monitor a patient's reaction to a particular drug, it is possible to determine 

whether treatment is effective for that individual by measuring drug response 

rates or toxic effects associated with the drug (Kulasingam and Diamandis, 2008). 

During any biological process or disease progression, organs secrete biological 

markers that reflect the occurrence of physiological function (Good et al., 2007). 

Tumours and cancer cells release RNA, DNA and proteins such as growth factors 

and cytokines into circulation (De Bock et al., 2009). Thus these released 

molecules are able to pinpoint the organ they originated from to facilitate the 

detection of the problem or disease. As a consequence biological fluids such as 

urine, plasma, serum or cerebrospinal fluid are good sources for mining 

biological indicators to distinguish a disease state from the non-diseased state 

(Mayuex., 2004). 

Specific clinical biomarkers have the potential to revolutionize the diagnosis and 

treatment of a variety of medical conditions. The lack of current methods of 

detection of many diseases at an early stage is a major factor in the prevalence of 
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diseases. Thus, the objective of biomarker discovery is to identify specific 

molecular markers susceptible to improve early diagnosis, survey therapeutic 

outcomes and facilitate the development of novel drug candidates (de Bock et al., 

2010). The assumption that the pathology of concern will affect some 

physiological processes causing changes at the molecular or protein expression 

levels, is the fundamental approach to biomarker discovery (de Bock et al., 2010).  

 

 

1.5.1 Types of biomarkers 

Cancer biomarkers can be classified into five categories: risk assessment, 

screening/diagnostic, prognostic, predictive, and pharmacodynamic (figure 1.8). 

Risk assessment biomarkers use studies on chromosomal aberrations, micronuclei 

and other changes deemed to represent genomic damage to select for potential 

disease onset in high risk individuals (Vaini, 2001; Teixeira et al., 2105). 

Prognostic biomarkers predict the natural course of the cancer as well as   

distinguish the tumour's outcome. Biomarkers also help determine whom to treat, 

how aggressively to treat, and which candidates will likely respond to a given 

drug and the most effective dose. Predictive biomarkers evaluate the probable 

benefit of a particular treatment. Pharmacodynamic biomarkers assess the 

imminent treatment effects of a drug on a tumour and can possibly determine the 

proper dosage in the early stages of clinical development of a new anticancer 

drug (Sawyers, 2008). 

 

 

 

 



25 
 

Instead of analyzing the tumour cells themselves, the molecular composition of a 

tumour can be indirectly characterized by analyzing blood samples and searching 

for variations in serum proteins, thereby improving the precision of screening and 

curtailing the need for invasive diagnostic procedures. Some difficulties were 

encountered initially in an attempt to reproduce these cancer associated serum 

proteins. With advances in our ability to measure quantitatively, collect 

standardized samples, and resolve the problems of reduced sensitivity in 

detection, confidence in the results of this approach has risen (Sawyers, 2008). 

Measurements from biomarkers can be used to adjust empirical results of clinical 

trials by establishing a relationship between the effects of interventions on 

molecular/cellular pathways and clinical responses, thereby providing a way for 

scientists to comprehend mechanistically the differences in clinical response that 

may be affected by uncontrolled variables (Atkinson et al., 2001). 
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Figure 1.8: Types of biomarkers and their impact on cancer management. (Adapted from Chen et al., 2012).
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Studies have shown that aberrantly expressed miRNAs are a hallmark of several 

diseases like cancer (Croce et al., 2009). miRNA expression has been shown to 

be associated with tumour development, progression and response to therapy, 

suggesting their possible use as diagnostic, prognostic and predictive biomarkers 

(Iorio and Croce 2012). Because of these characteristics, miRNAs have been 

emerged as potential as diagnostic, prognostic, and treatment response 

biomarkers.  

 

1.6 MicroRNAs 

miRNAs are naturally occurring endogenous, single stranded RNA molecules. 

They are 18 -24 nucleotide bases long and are non-protein coding (Munker and 

Calin, 2013). miRNAs control gene expression by binding to target mRNAs with 

imperfect complementarity within the 3’-UTR, leading either to their repression 

of translation or degradation (Cannell et al., 2008). They were first discovered in 

Caenorhabditis elegans (C. elegans) by Ambros and colleagues in 1993. Since 

their discovery, they have become the subject of intensive research which has 

amassed a wealth of information on their biogenesis, function and significance in 

gene regulation. miRNAs play important roles in a wide range of biological 

processes including cell proliferation and differentiation, organ development, 

apoptosis, as well as regulation of several processes related to eukaryotic 

development (Ardekani and Naeini, 2010).  As a consequence, misregulation at 

any point of these processes owing to abnormal miRNA mutation or expression 

can result in cancer.  
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The understanding of the mechanisms of action of miRNAs is still in its infancy. 

However, to date, work in this area has suggested that miRNAs may regulate 

gene expression at either the transcriptional or the post-transcriptional level. This 

may be by either suppressing translation of protein coding genes, or cleaving 

target mRNAs to induce their degradation (Bartel, 2004). 

Currently, there are 2154 mature human miRNAs that have been reported 

(MiRbase, V21 www.mirbase.org ) and they have been predicted to regulate up to 

60% of the human protein coding genes. 

 

1.6.1 Biogenesis of MicroRNAs 

A larger number of miRNA genes are situated in intergenic regions or in 

antisense orientation to annotated genes (Lee and Ambros, 2001; Lagos-Quintana 

et al., 2001; Lau et al., 2001) this indicates that they are distinct transcription 

units. There are however, a small number of the human miRNA genes that are 

located in intronic regions and are transcribed as part of annotated genes (Yang et 

al., 2011).  

 

Biogenesis of miRNAs in humans is a two-step process which involves both 

nuclear and cytoplasmic cleavage events carried out by Drosha and Dicer (Denli 

et al., 2004; Lee et al., 2001). The miRNA genes are transcribed by RNA 

polymerase into primary polyadenylated miRNA transcripts called pri-miRNAs. 

Pri-miRNAs consist of one or more hairpin structures each with a stem loop and a 

terminal loop. They bear a 3’ polyadenylated tail and a 5’ over hang capped by a 

7-methylguanosine. pri-miRNAs can also produce more than one functional 
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miRNA (Melo and Melo, 2014). Pri-miRNAs are processed into precursor 

miRNA and subsequently into an miRNA duplex which then releases the mature 

miRNA (Bartel et al., 2004). 

 

The intergenic miRNA is transcribed by RNA polymerases II and III to produce 

primary miRNA, which as discussed earlier, is a stem looped structure with single 

stranded RNA overhangs at the 3’ end and the 5’ end (MacFarlane and Murphy, 

2010). Whilst still in the nucleus, a protein complex called the microprocessor 

comprised of RNase III endonuclease Drosha and the double-stranded RNA-

binding protein DiGeorge syndrome critical region gene 8 (DGCR8) (figure 1.9) 

cleaves the pri-miRNA into a 70 nucleotide hairpin structure called the pre-

miRNA (Du and Zamore, 2005). The DGCR8 protein recognizes the stem and the 

flanking single-stranded RNA and serves as a ruler for Drosha to cut the stem 

about 11 nucleotides away from the stem–ssRNA junction, releasing the pre-

miRNA (Melo and Melo, 2014). 

 

The miRNAs located within introns of protein coding genes are transcribed by 

RNA polymerase II (Rodriguez et al., 2004). Two possible miRNA pathways for 

the maturation of pri-miRNA have been proposed for intronic miRNAs (Figure 

1.9). These processes may occur simultaneously or independently. In one such 

pathway referred to by some researchers as the non-canonical pathway, some 

miRNAs known as mirtrons bypass the Drosha step. Instead, introns are excised 

out of the pri-miRNA by spliceosomal components. The product is a pre-miRNA 

that continues to the cytoplasm for maturation (Kim et al., 2007).  The alternative 
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pathway, called the canonical, is the same as that of the intergenic miRNAs, 

involving cleavage with Drosha (Melo and Melo, 2014). 
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Figure 1.9: Nuclear section of miRNA biogenesis. 

Intergenic miRNAs are transcribed by RNA polymerase III producing a pri-miRNA molecule, which is processed into a precursor 

miRNA (pre-miRNA) by the microprocessor complex comprised of DGCR8 and Drosha. Pre-miRNAs are exported to the 

cytoplasm by Exportin 5 and Ran-GTP which are nucleocytoplasmic transporters. Intronic miRNA are transcribed by RNA poly 

II. The miRNA sequence is excised from the pri-mRNA by spliceosomal components to liberate a mirtron which is exported to 

the cytoplasm. (Adapted from MacFarlane and Murphy, 2010). 
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The export of the pre-miRNA from the nucleus to the cytoplasm is facilitated by 

the nucleocytoplasmic transporter factor Exportin-5 which is a RanGTP-

dependent dsRNA binding protein (Bohnsack et al., 2004).  At this point, the pre-

miRNA is a stem looped structure about 60-70 nucleotides long.  In the 

cytoplasm, as seen in figure 1.10, an RNase III enzyme Dicer, in a complex with 

its binding partner the transactivator RNA-binding protein (TRBP), binds to the 

pre-miRNA on the second nucleotide at the 3’ overhang. Dicer then cleaves off 

the terminal base pairs and the loop of the pre-miRNA. This results in a double 

stranded RNA structure called the miRNA:miRNA* duplex with 3’ overhangs. 

This structure contains the mature miRNA strand (22 nucleotides in length) and 

its complementary strand denoted by an asterisk (Li et al., 2007).  The mature 

miRNA strand is then loaded onto miRISC, which is a miRNA associated RNA-

induced silencing complex. miRISC contains an Argonaute protein (Ago 2) 

which catalyzes the cleavage of mRNAs (figure 1.10). Thus it is also a protein 

responsible for translational repression (MacFarlane and Murphy 2010). The 

complementary strand is degraded.                         
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Figure 1.10. Cytoplasmic component of microRNA biogenesis. 

Pre-miRNA is cleaved by Dicer to generate an miRNA duplex. The miRNA duplex liberates the mature miRNA to assemble into 

a RISC loading complex comprised of Ago2, TRBP, PACT and Dicer. The mechanism of mature miRNA release is unclear. 

(Adapted from MacFarlane and Murphy, 2010). 
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The mechanism of the miRNA and RISC assembly is not well understood in 

humans. There are many hypotheses with regards to the unwinding of the duplex. 

There is evidence however, that the process is ATP-independent. Gregory et al., 

2005, hypothesised that Dicer cleaves the passenger strand and thus initiates the 

unwinding of the duplex, releasing the mature single strand that is captured by 

Ago2.  Another hypothesis by Maniataki et al., 2005, is that conformational 

changes in miRISC during assembly could also cause the duplex to unwind 

simultaneously. The mature miRNA incorporated into the RISC guides the 

complex to target mRNAs with complementary sequences to inhibit their 

translation via mRNA cleavage, mRNA destabilization or translational repression 

(Bartel, 2004). 

 

 

1.6.2 Regulation of miRNA biogenesis. 

As discussed earlier, miRNAs play important roles in a wide range of biological 

processes such as cell differentiation, organ development, and apoptosis. 

Therefore, stringent control of their levels is critical to maintaining normal 

cellular functions and any deregulation of miRNA expression is often associated 

with human diseases, such as cancer (Jiang et al., 2009). As such, it is highly 

important to have the biogenesis of miRNAs subject to regulation at various 

levels, from transcription, processing, sequence identity, and binding to target 

mRNAs.  
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Transcription is a major point of regulation in miRNA biogenesis. Many miRNA 

gene promoters have characteristics that are similar to protein-coding gene 

promoters. Therefore, the same mechanisms of gene expression control such as 

use of silencers, specificity factors and repressors can be employed (Ozsolak et 

al., 2008; Corcoran et al., 2009). miRNA genes can be transcribed by either RNA 

polymerase II or III. A wide range of regulatory options can be facilitated as each 

enzyme is regulated differently and recognizes specific promoters and terminators 

(Melo and Melo, 2014). 

Regulation can also occur during the Drosha processing pathway. Drosha and 

DGCR8 levels in the cell are tightly controlled and as such play an important role 

in the regulation of pri-miRNA processing (Davis et al., 2008). The protein 

DGCR8 has a stabilizing effect on Drosha by interacting with its middle domain, 

and Drosha can control the levels of DGCR8 by cleaving hairpins in mRNA 

coding for DGCR8 thus leading to its degradation (Triboulet et al., 2009). 

Therefore, a well controlled equilibrium needs to exist between the amounts of 

Drosha and DGCR8 to maintain the processing of pri-miRNAs. 

 

 

1.6.3 Function of miRNAs 

miRNAs play a vital role in regulating numerous metabolic and cellular 

pathways, notably those controlling cell proliferation, differentiation and survival 

(Bushati and Cohen, 2007). For these purposes, an miRNA is complementary to 

one or more mRNAs. In animals the complementary site is usually in the 3’-UTR 

(Cannell et al., 2008). Perfect or near perfect complementarity promotes cleavage 
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of the mRNA. However, nucleotides 2-7 of the miRNA have to be perfectly 

complementary (Lagos-Quintana et al., 2001). Binding of miRNA to the mRNA 

can inhibit protein translation or accelerate the process of deadenylation causing 

the mRNA to be degraded (Melo and Melo, 2014).  

 

Dysregulation of miRNA expression has been demonstrated in most tumours 

examined (Gong et al., 2005). However, the specific classification of miRNA as 

oncogenes or tumour suppressors can be difficult because of the intricate 

expression patterns of miRNAs. These expression patterns differ for specific 

tissues and differentiation states and this poses two difficulties in classification 

(Bartel et al., 2004; Jiang et al., 2009). Firstly, it is not always clear if altered 

miRNA patterns are the direct cause of the cancer or rather an indirect effect of 

changes in cellular phenotype. Secondly, a single miRNA can regulate multiple 

targets (MacFarlane and Murphy, 2013). This, coupled with tissue specific 

expression could, implicate a single miRNA as a tumour suppressor in one 

context and an oncogene in another. 

 

 

1.6.4 miRNA regulation in cancer 

Since the discovery of miRNAs in 1993, their regulation has been involved in a 

large variety of physiological processes. miRNAs were first reported to be 

dysregulated in cancer in 2002, when Calin and co-workers described a deletion 

at 13q14 in chronic lymphocytic leukaemia. The miR-15/miR-16 clusters are 

located on this locus and are not only down-regulated in these tumours but also 
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regulate B-cell lymphoma 2 expression. Early studies also suggested that there 

was a predominant down regulation of miRNAs (Lu et al., 2005) and DICER 

expression down regulation in cancer supporting this hypothesis (Karube et al., 

2005). However, further studies revealed both up and down regulation of miRNA 

in all solid tumours and leukaemias (Calin et al., 2002). However, some miRNAs 

seem to have a tissue-specific function and are only expressed in specific cancers; 

others are universally over or under-expressed in cancer. For example, miR-21 

has been shown to be up-regulated in almost all solid tumours, including prostate, 

breast, lung, pancreas, stomach, and colon tumours (Chan et al., 2005; Karube et 

al., 2005). 

 

 

1.6.5 miRNAs as tumour suppressors and oncogenes 

It is well documented that up-regulation or down-regulation of miRNAs occurs in 

various human cancers (Zhang et al., 2007, Vaz et al., 2013). Over-expressed 

miRNAs may function as both oncogenes (through down-regulation of tumour-

suppressor genes) and/ or regulators of cellular processes such as cell 

differentiation or apoptosis (He et al., 2005, 2007). 

 

Let-7 miRNAs were one of the first miRNAs discovered in Caenorhabditis 

elegans (Ardekani and Naeini, 2010). Let-7s are highly conserved among 

invertebrates and vertebrates, including humans who have twelve let-7 genes 

encoding nine miRNAs (Zhang et al., 2007; Ardekani and Naeini, 2010). Several 

let-7 genes have been mapped to regions within the human genome that are 
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frequently altered or deleted in various cancers (Calin et al., 2004). This 

discovery has implicated let-7 as a tumour suppressors.  

 

Two well-defined let-7 targets are the oncogenes, Ras and high mobility group 

AT-hook 2 (HMGA2). Ras is a signal transducing GTPase that delivers signals 

from cell surface receptors to functional intracellular pathways, thus affecting cell 

proliferation, growth, cytoskeleton organization, cell movements and survival 

(Pylayeva-Gupta et al., 2011). As a result, active Ras mutants (H-Ras, K-Ras and 

N-Ras) are found within a variety of human cancers including pancreatic, colon, 

thyroid and lung carcinomas. Let-7s regulate the expression of Ras, and its 

mutants via 3’ UTR binding which inhibits translation. Thus, when functioning as 

a tumour suppressor, let-7 mediates the suppression of Ras and its cellular 

processes (He et al., 2007; Pylayeva-Gupta et al., 2011).  

 

HMG2A is a non-histone architectural transcription factor that alters DNA 

conformation, leading to direct transcriptional activation of a variety of genes that 

influence cell growth, differentiation, proliferation and survival (Wantanbe et al., 

2009). HMG2A is undetectable in normal adult tissue but is highly expressed in 

embryonic tissues, lung cancer and uterine leiomyomas (Wantanbe et al., 2009; 

Zhang et al., 2007). Studies reveal that the let-7s regulate HMG2A by 

destabilizing its mRNA through 3’-UTR binding (Zhang et al., 2007).  

 

The let-7 family of miRNAs regulate numerous genes not all of which are as well 

defined as HMG2A and Ras. Recent data indicates that let-7s play a much larger 

role in controlling cell proliferation than initially thought as they have been 
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shown to functionally inhibit numerous cell cycle regulators including c-myc, 

CDC25A, CDK6 and cyclin D2 (Worringer et al., 2014; Vaz et al., 2013). 

 

1.6.6 miRNAs as molecular markers 

The frequent deregulation of miRNAs in cancer makes them attractive new 

markers for cancer detection and monitoring. miRNAs can either serve as 

diagnostic, prognostic or predictive markers; they can also monitor therapy 

success. Studies have suggested that miRNAs can help to differentiate cancer 

from normal tissue, discriminate different tumours subtypes, characterize poorly 

differentiated tumours and identify tumours of unknown origin (Lu et al., 2005). 

The stability of miRNAs, provides an advantage in using them over other 

markers. Studies have shown that miRNAs can be stably expressed in degraded 

total RNA samples from human tissues (Karube et al., 2005), and they remain 

detectable in formalin-fixed, paraffin-embedded tissue (Arroyo et al., 2011; 

Yaman et al., 2008, 2011).  

 

miRNA measurements in body fluids, such as blood or urine, are crucial for 

diagnostic purposes because these are fluids that are more accessible as compared 

to tissue or organs (Chan et al., 2005). miRNAs are present in body fluids as free 

miRNAs in exosomes (Michael et al., 2010), associated with AGO2 proteins 

(Arroyo et al., 2011) or in circulating tumour cells (Zhang et al., 2011). Studies 

by Yaman et al., 2011 and Zhang et al., 2011 indicated that miR-141 and miR21 

circulating miRNAs, may serve as non-invasive markers in prostate cancer.  
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Lawrie et al., 2008, first reported the existence of circulating miRNAs in serum 

and their possibility to be developed as cancer markers. The mechanism of 

release and the roles of circulating miRNAs are still largely unclear. Recently, 

Skog et al., 2008 showed that the interaction between cells via mRNA and 

miRNA can be accomplished by microvesicle transfer, thus circulating miRNAs 

are proposed to be released from tumour cells in microvesicles to ensure 

communication with recipient cells in the surrounding microenvironment. 

Because circulating miRNAs might manipulate target cells, cell-free miRNAs 

might be not only serum markers for cancer and disease progression but also 

functionally relevant and therefore potential targets for novel therapy approaches 

(Brase et al., 2010). 

 

MiR-21 is one of the first miRNAs to be described as an oncomir. As most of the 

targets of miR-21 are tumour suppressors, miR-21 is associated with a wide 

variety of cancers including that of the breast, ovaries, cervix, colon, brain and 

prostate. Studies by Brase et al., 2011; Li et al., 2012 and Jackson et al., 2014 

showed that miR-21 expression in prostate cancer tissue and serum samples is 

significantly associated with the pathological stage of prostate cancer as well as 

lymph node metastasis.  

 

Brase et al., 2011 also examined miR-141 as a miRNA correlated with tumour 

progression in cancer. The study identified it as one of the miRNAs present at 

high levels in patients with malignant tumours when compared to PSA.  In the 

same study, miR-141 was also shown to distinguish between patients with 

metastatic prostate cancer and healthy controls. However, both miR-21 and miR-
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141 are implicated in other cancers apart from prostate cancer and thus may not 

be suitable diagnostic markers for the disease but rather have prognostic value. 

 

1.7 Bioinformatics as a tool for the detection of novel biomarkers  

Over the past years, major advances have been accomplished in the field of 

molecular biology and these have been linked with advances in high throughput 

technologies such as genomics, transcriptomics and proteomics (Emmett et al., 

2014) Furthermore, these technologies have brought forward an explosive amount 

of biological information which has led to the need for computerised databases to 

store, organise, and analyse the data (Martone et al., 2004; Benson et al., 2012).  

For this reason, the field of bioinformatics, or systems biology, which is the 

merging of the computational and biological science disciplines, has been an 

important tool for the organisation and analysis of the vast amount of biological 

data (Zhang et al., 2011). The main aim of bioinformatics is to find key biological 

information hidden amongst a mass of raw data to identify important trends and 

patterns which would eventually lead to novel biomarker discovery for both 

diagnostic and therapeutic purposes (Raza, 2012). Additionally, bioinformatics 

allows for the in silico simulations of complex disease physiologies, such as 

interactions between components, on their molecular level (Berman et al., 2013). 

Bioinformatics has presented ways in which data mining approaches can be used 

to filter valuable targets such as miRNA, genes, or proteins for the discovery of 

possible novel biomarkers for diseases (Sommer et al, 2010).  
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1.9 Role of bioinformatics in miRNA research  

Studies have shown that aberrantly expressed miRNAs are a hallmark of several 

diseases like cancer (Croce et al., 2009). miRNA expression has been shown to 

be associated with tumour development, progression and response to therapy, 

suggesting their possible use as diagnostic, prognostic and predictive biomarkers 

(Iorio and Croce 2012). Identifying miRNAs, their target genes, and their 

respective regulatory functions are important for understanding normal biological 

processes as well as understanding their various roles in disease development 

(Zhang and Verbeek, 2010; Liu et al., 2012; Fujiwara and Yada, 2013). 

Bioinformatics facilitates experimental validation of miRNAs and their target 

genes by producing statistically significant hypotheses from biological data that 

has been stored in databases, based on other biological experimental data (Liu et 

al., 2012). Potential target identification is based on the software’s algorithm. 

There are several miRNA-target prediction software tools publicly available 

(Fujiwara and Yada, 2013) which include TargetScan, and miRDB (Wong and 

Wang 2015). Possible targets are predicted based on the software’s prediction 

algorithms. The target prediction software as well as the other platforms used in 

this study will be discussed further in the next chapter. 

 

 

1.10. Study rationale 

The principal involvement of miRNAs in the aetiology and progression of many 

common diseases indicates these molecules are significant markers with potential 

use as diagnostic, prognostic and therapeutic tools. The discovery that miRNAs 
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are detectable and quantifiable in the circulation of diseased persons adds further 

validity to their potential as biomarkers of disease, both benign and malignant. 

The investigation of existing miRNA molecules coupled with the identification of 

novel miRNAs, and elucidation of their downstream targets, will provide a better 

understanding of their functional effects and thus provide greater insight into the 

complex and poorly understood mechanisms underlying diseases such as cancer. 

In PCa, the roles of miRNAs have become clear due to the understanding of the 

interactions between miRNAs and their targets and the resulting impact on 

prostate carcinogenesis. Thus the purpose of this study was to identify specific 

miRNAs as potential early diagnostic biomarkers in prostate cancer using a 

combination of in silico methods and molecular methods. Specific study aims are 

outlined as follows: 

1.) The in silico identification of specific miRNAs and their targets involved in 

prostate cancer progression, as well as categorization of gene networks these 

targets are involved in, and the implications of the identified miRNAs in cancer 

causing pathways. 

2.) Analyse expression profiles of identified miRNAs in prostate cancer cell lines as 

well as a panel of cancer cell lines including breast, liver, colon, lung and oral 

carcinomas using real time PCR (qRT-PCR). 

3.) Analysis of identified prostate miRNAs as potential early diagnostic biomarkers 

by investigating whether the panel of miRNA identified are PCa specific or 

generalised to several malignancies studied via the cell lines used in this work. 
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Chapter 2 

Identification of miRNAs as biomarkers for the detection of 

Prostate cancer (PCa) using an in silico approach 

 

2.1 Introduction 

The sequencing of the genomes of many organisms as well as the human genome 

brought about the availability of a large amount of genomic data.  In an attempt to 

make use of this vast wealth of data from the genome sequencing projects, new 

fields in molecular biology such as functional genomics, proteomics and 

metagenomics were established (Hancock et al., 2013).  

These fields attempt to answer questions about the function of DNA at the levels 

of genes, RNA transcripts, and protein products accomplished by the study of 

patterns of gene expression under various conditions (Raza, 2012). 

Advancements in technologies involved in these fields such as DNA and protein 

microarrays, have resulted in an explosion of large scale experimental and 

literature data. Thes data are stored in various repositories known as databases 

(Raza, 2012). These databases perform a myriad of functions such as the analysis 

of gene and protein expression and regulation, gene annotations, comparison of 

genetic and genomic data, as well as the simulation and modelling of DNA, RNA, 

and protein structures as well as molecular interactions in structural biology 

(Zhang et al., 2011). As a result, the past 15 years have seen an exponential 

increase in these databases (Raza, 2012).   
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These databases include public repositories such as the GenBank, a gene database 

hosted by NCBI (National Centre for Biotechnology Information) (Benson et al., 

2012) and the Protein DataBank (PDB), a protein database hosted by the 

Worldwide Protein Data Bank (Berman et al., 2003). There are also a number of 

private databases, many of which are hosted and used by biotech companies or 

research groups involved in gene mapping projects (Benson et al., 2012). In this 

study, a number of databases were used for various objectives including 

identifying the target genes of miRNAs implicated in prostate cancer and 

analysing the interaction of proteins encoded by these genes. 

 

2.2 Data mining 

The process of retrieving interesting patterns of information from the 

aforementioned databases is referred to as data mining. It can also be categorised 

as the extraction of information from different sources of published literature 

(Yang et al., 2009). Data mining has also been used to identify disease associated 

entities and to understand their roles in disease onset as well as progression. 

Because of the unprecedented growth of genomic data, data mining has become a 

field of interest as almost any new discovery or development about a gene, its 

pathways or protein it codes for is recorded in literature and consequently updated 

in databases.  Thus the goal of data mining is to filter that knowledge and to 

present the resulting information to a user in a concise, understandable format 

(Faro et al., 2012). 
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The use of computational tools in data mining to decipher biological data has 

resulted in new methods for biomarker and disease discovery, as well as disease 

pathway elucidation. An in-silico approach to target discovery for early diagnosis, 

understanding of disease and development of therapeutics can save considerable 

wet bench time. This approach can reveal important evidence for evolutionary 

and functional relationships between genes and proteins (Krallinger and Valencia 

2005). 

 

2.3 Pathway Analyses using mirPath tool in DIANA-TarBase 

version 7 

The DIANA-miRPath is a tool that performs miRNA pathway analysis, providing 

accurate statistics. It is available at the DIANA-TarBase database (DIANA 

miRPath version 7.0) accessible at http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=mirpath/index.  The tool is capable of 

combining results with merging and meta-analysis algorithms, performing 

hierarchical clustering of miRNAs and pathways based on their interaction levels, 

as well as being able to generate sophisticated visualization of results, such as 

dendrograms or miRNA versus pathway heat maps (Paraskevopoulou et al., 

2013). 

DIANA-miRPath hosts numerous novel features, extensions and optimizations, 

including: (1) the use of predicted interactions derived from DIANA-microT-

CDS (Vlachos et al., 2014) and TargetScan 6.2 (Hsu et al., 2014); (2) a 

significant extension to the annotation database, enabling the identification of 
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miRNAs controlling molecular pathways as well as the performance of miRNA 

function annotation using gene ontology (GO) terms (Xiao et al., 2009; 

Paraskevopoulou et al., 2013); (3) a new Reverse Search Module with 

unprecedented flexibility that can assist in (re)-discovering miRNAs with not yet 

identified functions; and (4) support for seven model species: H. sapiens, Mus 

musculus, Rattus norvegicus, Drosophila melanogaster, Caenorhabditis elegans, 

Gallus gallus and Danio rerio. 

 

The gene and miRNA annotations in DIANA-mirPath are derived from Ensembl 

(Paraskevopoulou et al., 2013) and miRBase (Vlachos et al., 2014), respectively.  

The miRNA: gene interactions are derived from the in silico miRNA target 

prediction algorithms: DIANA-microT-CDS and TargetScan 6.2, the latter 

operates in both Context+ and Conservation modes (Paraskevopoulou et al., 

2013). DIANA-microT-CDS is a highly accurate target prediction algorithm with 

target prediction in 3′ UTR and CDS mRNA regions. 

 

2.4 Target gene prediction 

Many studies have shown that miRNAs play an essential role in gene regulatory 

networks (Section 1.5.3) by controlling the expression of genes involved in 

important biological processes (Bartel, 2009). Thousands of miRNA genes have 

been identified, but the functions of most of these miRNAs remain unknown due 

to the lack of experimental and computational approaches to predict their exact 

target mRNAs (Agarwal et al., 2015). 
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miRNA functional characterization is currently a very active research field in 

biology, and there has been a rapid accumulation of miRNA knowledge in the 

past few years. Although a large quantity of existing data is certainly very helpful 

to guide future studies, it can at the same time make it challenging for miRNA 

researchers to quickly retrieve information relevant to their studies. Because of 

this, several miRNA databases have been established to systematically organize 

miRNA data (Grimson et al., 2007). The most prominent one is miRBase, which 

was set up to provide official nomenclatures to the miRNA research community 

(Griffiths-Jones et al., 2006). Although miRBase is a valuable source for 

providing standard miRNA nomenclature, it contains limited information on 

miRNA functional annotation. Thus, besides miRBase, a few other databases 

have been developed to focus more on miRNA function and consequently target 

prediction. Some examples of these databases include TargetScanHuman, 

miRDB, and PicTar. These databases host miRNA targets predicted by different 

computational algorithms (Krek et al., 2005; Grimson et al., 2007). However, 

common features of miRNA target prediction tools include, seed match 

conservation, free energy and site accessibility. This section introduces two 

databases for miRNA gene target prediction in humans, TargetScanHuman and 

miRDB which were used in this study to improve the robustness of the 

predictions. 

 

2.5. TargetScanHuman 

Early studies of target recognition revealed that near-perfect complementarities at 

the 5' end of a miRNA, the so-called "seed regions" at positions 2 to 8, are 
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primary determinants of target specificity (Bartel et al., 2004). These sites are 

called the canonical binding sites and binding happens through Watson and Crick 

base pairing (Agarwal et al., 2015). However, studies have also shown that 

binding these regions may not always be sufficient for gene repression (Grimson 

et al., 2007). 

 

TargetScanHuman is a web server that predicts biological targets of miRNAs by 

searching for the presence of conserved 8-mer, 7-mer and 6-mer sites that match 

the seed region of the 3’ UTR of a mRNA (Agarwal et al., 2015). It can be 

launched at http://www.targetscan.org/. TragetScanHuman not only predicts 

mRNAs that have the aforementioned conserved sites, it also considers the 

flanking sites of the seed region. A study by Grimson et al., 2007 found that 

effective binding sites reside within an AU-rich region.  Thus, TargetScanHuman 

takes advantage of this in its prediction algorithm (Agarwal et al., 2015).   

 

Additionally, an accurate ranking of the predicted targets for each miRNA is 

provided (Friedman et al., 2009). This ranking is based on either the probability 

of evolutionarily conserved targeting (Agarwal et al., 2015) or the predicted 

efficacy of repression calculated using cumulative weighted context ++ scores of 

the sites (Agarwal et al., 2015). Predictions are also ranked by their probability of 

conserved targeting (Friedman et al., 2009).  TargetScanHuman uses the miRNA 

ID information as a query to extract target gene information from all available 

experiments publicly available.  
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2.6 miRDB 

miRDB is a freely accessible online tool for miRNA target prediction and 

functional annotations (Wong and Wang, 2015).  It can be launched from 

http://mirdb.org. A feature of this platform is the MirTarget algorithm, which was 

developed by analyzing thousands of miRNA target interactions from high-

throughput sequencing experiments. Unlike TargetScanHuman, seed conservation 

is a consideration and not priority in miRDB. Seed match considerations are only 

in the 7-mer and 8-mer regions. miRDB is also different from existing miRNA 

target predicting databases. Firstly, its database design strategy is centred on 

mature miRNAs. If a miRNA has three pre-cursors in a genome, there are three 

different databases for it (Wang, 2008). Thus, there is no centralized place to 

present the miRNA functional annotations (Wang, 2008; Peterson et al., 2014). 

As mature miRNAs are the carriers of miRNA function, miRDB is designed to 

focus on them only to avoid database redundancy (Wang, 2008; Peterson et al., 

2014; Wong and Wang, 2015). Secondly, miRDB has a wiki editing interface for 

community-provided miRNA annotations (Wang, 2008; Wong and Wang, 2015). 

With the rapid progress on miRNA functional studies, it is challenging for any 

single team to keep track of all the latest developments in the field (Wong and 

Wang, 2015).  Thus, miRDB allows miRNA researchers to provide miRNA 

functional annotations and actively interact with each other (Wang, 2008). 
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2.7 Functional characterization of genes via DAVID 

DAVID (Database for Annotation, Visualization and Integrated Discovery) is a 

publicly available high-throughput annotation tool that maps a large number of 

genes to a list of associated Gene Ontology terms and statistically highlights 

genes that are highly enriched for those terms (Huang et al., 2009). This increases 

the potential to identify biological processes most pertinent to the biological 

phenomena under study. DAVID is available at https://david.ncifcrf.gov/ version 

6.7 (Jiao et al., 2012). 

Gene ontology (GO) is a major bioinformatics initiative to unify the 

representation of gene and gene product attributes across all species (Rancaglia et 

al., 2013). The gene ontology project specifically aims to: 1) maintain and 

develop its controlled vocabulary of gene and gene product attributes; 2) annotate 

genes and gene products, and assimilate and disseminate annotation data; and 3) 

provide tools for easy access to all aspects of the data provided by the project. It 

also enables functional interpretation of experimental data using the GO, for 

example via enrichment analysis (Gene Ontology Consortium, 2004).   

The gene ontology covers three domains: 1) Cellular component, the parts of a 

cell or its extracellular environment. 2) Molecular function, the elemental 

activities of a gene product at the molecular level, such as binding or catalysis 

and 3) Biological process, operations or sets of molecular events with a defined 

beginning and end, pertinent to the functioning of integrated living units such as 

cells, tissues, organs, and organisms (Gene Ontology Consortium, 2004; 

Rancaglia et al., 2013). 
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There are many functions performed by the DAVID platform including functional 

annotation, gene functional classification and gene ID conversion. For the 

purpose of this study, the functional annotation tool was employed. 

One tool DAVID has is the Functional Annotation Clustering tool which is a 

newly added feature to the DAVID Functional Annotation Tool (Huang et al., 

2009). This function uses a novel algorithm to measure relationships among the 

annotation terms based on the degree of their co-association genes to group the 

similar, redundant and heterogeneous annotation contents from the same or 

different resources into annotation groups (Huang et al., 2009). This reduces the 

burden of associating similar redundant terms and makes the biological 

interpretation more focused on a group level. The tool also provides a look at the 

internal relationship among the clustered terms. The clustered format is able to 

give a more insightful view about the relationships of annotations (Dennis et al., 

2003).  

 

2.8 Gene/protein interaction analysis via STRING 

Complete knowledge of all direct and indirect interactions  between  proteins  in  

a given cell  would represent  an  important  milestone  towards  a  

comprehensive description of cellular mechanisms and functions. Currently, to 

achieve this goal is elusive. However, considerable progress has been made; 

particularly for certain model organisms and functional systems (Madu and Lin, 

2010). At present, protein interactions and associations are annotated   at   various   

levels of detail via online resources, ranging from raw data repositories to highly 
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formalized pathway databases (Franceschini et al., 2013).  For many applications, 

a global view of all the available interaction data is desirable, including 

computational   predictions. 

One such online database that predicts protein-protein/gene interactions is 

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) 

http://string-db.org/.  

STRING aims to provide a comprehensive, yet quality controlled collection of 

protein-protein associations for a large number of organisms (Snel et al., 2003). 

The associations are derived from high throughput experimental data, from the 

mining of databases and literature, and predictions based on genomic context 

analysis (Mering et al., 2005). STRING integrates and ranks these associations by 

benchmarking them against a common reference set, and presents evidence in a 

consistent and intuitive web interface. Importantly, the associations are extended 

beyond the organism in which they were originally described, by automatic 

transfer to orthologous protein pairs in other organisms, where applicable. 

STRING currently holds 730 000 proteins in 180 fully sequenced organisms 

(Mering et al., 2005). STRING has three unique features for protein interaction 

prediction (1) it provides uniquely comprehensive coverage, with over 1000 

organisms, 5 million proteins and more than 200 million interactions stored; (2) it 

is one of very few sites to hold experimental, predicted and inferred interactions, 

together with interactions obtained through text mining; and (3) it includes a 

wealth of accessory information, such as protein domains and protein structures, 

improving its day-to-day value for users (Franceschini et al., 2013). 
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2.9 Analysis of tissue-specific gene expression profiles via TiGER     

and GeneHub-GEPIS 

2.9.1 TiGER 

TiGER (Tissue-specific Gene Expression and Regulation) available at 

http://bioinfo.wilmer.jhu.edu/tiger/ is a database that contains tissue-specific gene 

expression profiles or expressed sequence tag (EST) data, cis-regulatory module 

(CRM) data, and tissue specific transcription factor interaction data  in 30 human 

tissues  for each gene contained within the database (Liu et al., 2008). At present 

the database contains expression profiles for 19,526 UniGene genes, 

combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative 

CRMs for 2,130 RefSeq genes (Liu et al., 2008). 

 

The gene expression pattern for each UniGene is calculated based on the NCBI 

EST database. TiGER has identified and catalogued 7261 tissue-specific genes 

for 30 human tissues based on their expression enrichment and statistical 

significance. Thus, on average, each tissue expresses approximately 290 tissue-

specific genes (Yu et al., 2007).  

 

In addition to EST data, TiGER also identifies transcription factors (TFs) based 

on patterns of co-occurrence of pairs of DNA binding sites (Yu et al., 2007). 

TiGER predicts 9060 tissue-specific TF interactions, around 300 for each tissue 

(Yu et al., 2005). To evaluate these results, the database uses known interactions 

as positive controls due to the scarcity of tissue-specific interactions.  
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Cis-regulatory modules (CRMs) are a stretch of DNA usually about 100-1000 

base pairs in length where several transcription factors can bind (Davidson, 

2004). They are the central cis-elements that control gene expression (Istrail and 

Davidson, 2005). TiGER calculates the interaction strength between two 

transcription factor (TF) binding sites and then derives an empirical "potential 

energy" for each TF binding site (Yu et al., 2007). This results in energy profiles 

for the promoter sequences of tissue-specific genes. An energy level less than -1 

indicates the existence of a TF module (Liu et al., 2008). 

 

This development of computational methods for tissue-specific combinational 

gene regulation, based on transcription factor binding sites, CRMs and ESTs 

enables the platform to perform a large-scale analysis of tissue-specific gene 

regulation in human tissues. 

 

2.9.2 GeneHub-GEPIS 

GeneHub-GEPIS is a web application that performs digital expression analysis in 

human and mouse tissues based on an integrated gene database (Zhang et al., 

2007). It is available at http://share.gene.com/Research/genentech/genehub-

gepis/genehub-gepis-search.html. 

The platform calculates the normalized gene expression levels across a large 

panel of normal and tumour tissues, thus providing rapid expression profiling for 

a given gene. The Digital Expression Unit (DEU) is used as a measure of 
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expression profiles in comparison to normal tissue and cancer tissue. For a given 

gene in each tissue category, it is defined as the number of matching expressed 

sequence tag (EST) clones from a normalized library size of 1 million (Zhang et 

al., 2007). The backend GeneHub component of the application contains pre-

defined gene structures derived from mRNA transcript sequences from major 

databases and includes extensive cross-references for commonly used gene 

identifiers (Zhang et al., 2004: 2007). ESTs are then linked to genes based on 

their precise genomic locations as determined by the Genomic Mapping and 

Alignment Program (GMAP). In addition, the gene-centric design makes it 

possible to add several important features, including text-searching capabilities, 

the ability to accept diverse input values, expression analysis for microRNAs, 

basic gene annotation, batch analysis, and linkage between mouse and human 

genes (Zhang et al., 2007). 

 

2.10 Previous work 

A list of 13 miRNAs implicated in prostate cancer was generated in a parallel 

study, (Khan, 2015), using publicly available databases, MiRBase 

(http://www.mirbase.org/search.html) (Grifiths-Jones et al., 2006) and the Gene 

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo) (Barrett et 

al.,2013).  Of the 13 miRNAs, 8 were carried forward in the parallel study and 

the remaining 5 were used in this study. 
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2.11 Aims and Objective 

This chapter aimed to identify putative miRNA biomarkers associated with 

prostate cancer as well as explore some predicted interactions and pathways these 

miRNAs are involved in. This is in an effort to identify putative genes as prostate 

cancer biomarkers in conjunction with the targeting miRNAs. The work outlined 

in this chapter was undertaken using in silico methods. 

The specific study objectives were: 

i) Predict and analyse participating pathways for the 5 identified miRNAs using 

DIANA-Tarbase.  

ii) To identify the genes targeted by the 5 miRNAs identified from the previous 

study using TagetScanHuman and miRDB. 

iii) Functionally annotate the miRNA targeted genes using DAVID and furthermore 

generating gene/protein interactions networks using STRING. 

iv) To perform an in silico expression analysis of the miRNA targeted gene using 

TiGER and GeneHub-GEPIS.
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2.12 Methodology 

 

Figure 2.1: Outline of the in silico methodology for prostate cancer miRNA biomarker discovery.
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2.12.1 Pathway Analyses using mirPath Tool in DIANA-TarBase 

Version 7 

Pathway analysis for this section of the study was achieved using the mirPath 

software tool (Vlachos et al., 2014) in the DIANA-TarBase database (DIANA 

miRPath version 7.0) accessible at http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=mirpath/index. 

This database (DIANA-miRPath) was used to determine the involvement and 

implication of the 5 miRNAs in cancer causing pathways and to further implicate 

them in the progression of PCa. The 5 miRNA were used as input into DIANA-

miRPath. The microT-CDS tool was used to search for gene pathways, with a p-

value threshold of 0.05 and micro-T threshold of 0.8 used as parameters. The 

resulting gene pathways were unionised and visualized as a heat map. 

 

2.12.2 Prediction of Target Genes for Identified Prostate Cancer 

miRNAs 

2.12.2 (a) miRNA Target Prediction with TargetScanHuman 

Each of the five miRNAs designated miR1, miR2, miR3, miR4, miR5, were used 

as input in the TargetScanHuman search box using the miRNA nomenclature; 

hsa-miR-1 to hsa-miR5 for the respective miRNAs. Human was selected as 

species of priority from which to search for target genes. The queries were 

entered one at a time for each miRNA. TargetScanHuman returned a list of the 
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top 100 predicted target genes for each miRNA, irrespective of site conservation, 

ranked by cumulative weighted context++ scores for each miRNA.  From each 

gene list obtained, only genes with a target prediction score of 80 % and above 

was selected for further analysis. 

 

2.12.2 (b) miRNA Target Prediction with miRDB 

Another online database used for target prediction was miRDB. As mentioned in 

section 2.3, two databases were used to improve the robustness of the predictions. 

Each of the five miRNAs was entered into the miRDB search box individually. 

From the drop down menu, human was chosen as the priority species from which 

targets were to be searched. The query was submitted using the ‘Go’ option. 

miRDB returned a list of predicted targets for each miRNA, from each gene list 

obtained, only genes with a target prediction score of 80 % and above were 

selected for further analysis. 

 

Duplicates were removed from the individual gene lists obtained from the two 

platforms. These lists were combined and duplications were removed in 

Microsoft Excel. The result was a gene list of 502 genes. All the genes were 

represented by their official gene symbols 
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2.12.3 Functional Characterization of Predicted Genes via 

DAVID 

The functional annotation of the 502 target genes identified was done using the 

Database for Annotation, Visualization and Integrated Discovery 

(https://david.ncifcrf.gov/summary.jsp) DAVID version 6.7 (Jiao et al., 2012).  

The gene list was copied and pasted into DAVID search box and the official gene 

symbol was selected as the unique gene identifier.. Annotations were limited by 

selecting for Homo sapiens, with the classification stringency set to medium. The 

“options” were set as follows; display, fold change and Bonferroni analysis. The 

list was then submitted for functional annotation clustering. Using the medium 

classification stringency for clustering, a total of 63 clusters were generated. 

Clusters generated were individually investigated to select clusters of genes that 

are involved in biological processes, present in the membrane region and that 

were involved in pathways that are known to play a critical role in the onset and 

progression of cancer. A total of 12 genes were produced from functional 

annotation in DAVID that corresponded to the selection criteria used. 

 

2.12.4 Literature Review of Genes 

Literature mining for each gene obtained from DAVID was performed. The 

following platforms (Uniprot, PolySearch, Google Scholar and GoPubmed) were 

used to search for abstracts or journal articles implicating the genes in cancer. 

Subsequent to these mining approaches, a final list of 9 putative genes was 

compiled. These were then cross-referenced back to the 5 miRNAs for their 
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involvement in prostate cancer. However, only 4 out of the 5 miRNAs had gene 

targets. The criteria used in selecting the final gene list after the enrichment in 

DAVID resulted in miR1 not being linked to a target gene. The gene list 

produced in DAVID was analysed for protein/gene expression analysis in 

STRING. 

 

2.12.5 Analysis of Gene/Protein Interaction Networks via 

STRING 

Gene IDs for the 9 genes, targeted by the 4 miRNAs implicated in prostate cancer 

were used as input for the generation of a gene network using the STRING DB 

Version 9. (Meiring, 2003; Franceschini et al., 2013). The 9 genes were used as 

driver genes to produce expression networks. To produce each of the expression 

networks, parameters were chosen as a follows: (i) a confidence level of 0.7, (ii) a 

network depth of 4 and (iii) restricting to show only the top 50 interactions 

between the 9 genes targeted by four miRNAs. 

 

2.12.6 Analysis of Tissue-Specific Gene Expression Profiles via 

TiGER 

Each of the 9 genes using their gene symbols was used as input into the “search 

box” option in the Geneview tool of TiGER to search for gene expression in 

prostate tissue. 
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2.12.7 Digital Expression Analysis via GeneHubGEPIS 

The 9 genes were submitted by inputting the official gene symbol of each gene 

into the “search box” option, selecting ‘human’ as target species after which, 

selecting the “enter” option.  
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2.13 Results and discussion 

2.13.1 Analysis of DIANA-TarBase generated pathways 

 

 

Figure 2.2 Association of the miRNAs in cancer causing related pathways. 

The strongest association is indicated by the red blocks. These have a log p-value 

-10≤. Intermediate association is indicated by the orange colour with a log p-

value between -9.4 and -4.9. The weakest association is shown by yellow blocks 

with a log p-value between -1.5 and -5.  
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DIANA-TarBase aims to catalogue the published experimentally validated 

miRNA:gene interactions (Vlachos et al., 2014). The process of cataloguing 

miRNA targets faces major challenges as there are large numbers of interactions 

which the identified genes as well as the miRNAs are involved in (Xiao et al., 

2009; Hsu et al., 2014). Thus an in silico approach is usually relied on to examine 

miRNA regulatory networks and their effects on molecular pathways. 

Figure 2.2 shows the association of miRNAs in cancer causing related pathways. 

The analysis was done using the online publicly available tool DIANA-TarBase 

version7.0 (http://www.microrna.gr/miRPathv2).  The figure represents a heat 

map of the 5 miRNAs. The analysis in DIANA showed that possible gene targets 

of miR1 are involved in cellular processes such as regulation of the actin 

cytoskeleton, glycerolphospholipid metabolism and lysine degradation.  

It has been well documented that cancer cells reprogram their metabolic pathways 

to meet their abnormal demands for proliferation and survival (Tennant et al., 

2010; Cairns et al., 2011). This is because they need a higher rate of metabolism 

to support their accelerated proliferation rate (Tennant et al., 2010; Cairns et al., 

2011). Studies by Menendez and Lupu 2007; Cairns et al., 2011; Zhang and Du, 

2012 have shown that altered lipid metabolism has been recognized as a common 

property of malignant cells. Because lipid metabolism in cancer cells is regulated 

by common oncogenic signalling pathways (Chunfa and Freter, 2012), and is 

believed to be important for the initiation and progression of tumours (Menendez 

and Lupu 2007), miR1, miR3 and miR5, predicted to be involved in this pathway, 

may be good indicators of the onset of cancer.  
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One of the predicted pathways that miR2 is involved in is the inositol phosphate 

metabolism pathway (Figure 2.2). Members of this pathway regulate cell 

proliferation, migration and phosphatidylinositol-3-kinase (PI3K)/Akt signalling 

(Yu et al., 2009). A recent study, (Tan et al., 2015) has shown that genes in this 

pathway are frequently dysregulated in cancer. The study found that gene 

dysregulation in this pathway was significantly associated with a risk of lung, 

breast, prostate and bladder cancers. 

 

2.13.2 miRNA target prediction 

 

Two publicly available target search databases, TargetScan and miRDB were 

used as platforms to identify genes associated with the five miRNAs. 

 

Table 2.1: Representation of the number of target genes identified. 

Database Name  # of target genes 

identified 

miRDB 
 

1076 

TargetScanHuman 1502 

 

 

The target genes obtained from the two databases were prioritized using the 

following criteria; (a) only the genes with a prediction score of 80 % and above 

were taken for further analysis, (b) gene lists with more than 800 targets were 

excluded, (c) duplications were eliminated in Excel.  
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Table 2.1 shows the number of target genes identified by the two different 

databases after applying the above criteria. The list from TargetScanHuman was 

1502 genes and miRDB produced 1076 genes. (A combined list of gene targets 

from TargetScan and miRDB can be found in appendix A). There was a 

difference of 426 genes between the two databases used. This 28 % difference in 

the number of genes targeted by the miRNAs could be explained by the 

properties (target prediction algorithms) of both databases. As mentioned in 

section 2.5, miRDB avoids database redundancy (Wang, 2008; Peterson et al., 

2014; Wong and Wang, 2015) and only considers seed matches in the 7-mer and 

8-mer regions, whilst TargetScanHuman includes 6-mer regions in addition to 7-

mer and 8-mer regions (Wang, 2008).  The two gene lists were combined and 

duplicates were removed, resulting in a final gene list of 502 genes.  

 

2.13.3 Functional Annotation via DAVID 

The 502 genes prioritized in section 2.12.1 were used as input into DAVID for 

functional annotation and analysis. A classification stringency of medium in was 

employed in DAVID. The output was a total of 150 genes in 86 clusters. DAVID 

categorized the gene products into three Gene Ontology (GO) groups, namely; 

Cellular Component (CC) Biological Process (BP) and Molecular Process (MP), 

as seen in figures 2.3, 2.4 and 2.5 respectively. 
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Figure 2.3: Functional characterizations of miRNA target genes under cellular component using DAVID. The blue bars 

represent the number of genes associated with the specified GO term.  
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Figure 2.4: Functional characterizations of miRNA target genes under biological processes using DAVID. The blue bars 

represent the number of genes associated with the specified term.  
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Figure 2.5: characterizations of miRNA target genes under molecular function using DAVID. The blue bars represent the 

number of genes associated with the specified GO term.  
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Table 2.2: miRNA target genes involved in the cellular component domain. 

Gene 

 

Cellular Component 

MNT - 

AFAP1 Integral to plasma membrane, cell fraction  

BIRC2 Cytoplasm membrane bound vesicle, cell 

fraction 

LIG4 Integral to plasma membrane 

YWHAZ Cell fraction, vesicle, membrane bound vesicle,   

TNFSF15 Extracellular region, integral to plasma 

membrane  

TNFSF13B Extracellular region, integral to plasma 

membrane, extracellular region 

CTNND1 Cell fraction, membrane bound vesicle 

FOXC1 Nuclear chromatin 

 

Table 2.2 shows the breakdown of the 9 target genes involved in the cellular 

component. From figure 2.3, it can be seen that about 23 genes function in the 

extracellular region. Two of the target genes have been found to function in 

extracellular region, namely TNFSF13B and TNFSF15; they constitute 8.7 % of 

the total number of genes.  The gene MNT did not have a cellular component 

function. AFAP1, TNFSF15, TNFSF13B and LIG4 constitute 15.4 % of the total 

genes characterized in DAVID. BIRC2 makes up 9 % of the total genes coding 

for proteins functioning as cytoplasm membrane vesicles (figure 2.3). YWHAZ 

and CTNND1 make up 6 % of the genes coding for proteins found in the cellular 

fractions. FOXC1 makes up 3 % of the total number of genes involved in nuclear 

chromatin functions.  
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Table 2.3: miRNA target genes involved in the biological process domain 

 

Gene 

Biological Process 

MNT Regulation of transcription, regulation of apoptosis, 

immune response 

AFAP1 - 

BIRC2 Response to endogenous cell death, apoptosis, negative 

regulation of apoptosis 

LIG4 Negative regulation of apoptosis,  

YWHAZ Immune response, protein localization 

TNFAF15 Negative regulation of apoptosis 

TNFAF13 Negative regulation of apoptosis, immune response, 

CTNND1 Protein localization 

FOXC1 Regulation of apoptosis 

 

Table 2.3 shows the breakdown of the 9 target genes involved in the biological 

process domain.  The biological process ontology constituted the greater number 

of the gene functions. The genes MNT and FOXC1 made up 7 % of the total 

genes involved in regulation of apoptosis. BIRC2, LIG4, TNFAF15 and 

TNFAF13B made up 20 % of genes involved in negative regulation of apoptosis. 

The genes YWHAZ and CTNND1 constituted 4 % of the genes involved in 

protein localization (figure 2.4). The gene AFAP1 did not have any predicted 

biological process function. 

 

Table 2.4: miRNA target genes involved in the molecular function domain. 

Gene 

 

Molecular Function 

MNT Transcription factor binding, transcription regulator 

AFAP1 Protein binding 

BIRC2 Metal ion binding  

LIG4 Metal ion binding, nucleoside binding 

YWHAZ Transcription factor binding 

TNFSF15 Tumour necrosis factor 

TNFSF13B Tumour necrosis factor 

CTNND1 Protein binding 

FOXC1 Transcription regulator 
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Table 2.4 shows the breakdown of the 9 target genes involved in the molecular 

function domain of the gene ontology. It can be seen from figure 2.5 that 20 

genes are involved in protein binding.  Two of the target genes are found to be 

represented in that number, namely CNTDD1 and AFAP1. FOXC1 and MNT 

constitute two out of 10 of the transcription regulator genes. The genes TNFSF15 

and TNFSF13B are the only genes that code for the tumour necrosis factor.  LIG4 

and BIRC2 represent 66 % (2 out of 30) genes involved in metal ion binding 

(figure 2.5).  The gene YWHAZ constitutes 6.7 % of the genes coding for 

transcription factor binding. 
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Table 2.5: Representation of the miRNAs and their identified gene targets from 

DAVID. 

 

miRNA 

Confidence 

% 

 

Target (Gene) 

 

Gene description 

miR4 96 TNFSF15 Tumour necrosis factor 

(ligand) superfamily, 

member 15 

 

miR4 

miR3 

80 LIG4 Ligase IV, DNA, ATP-

dependent 

miR4 99 FOXC1 Forkhead box C1 

miR5 97 YWHAZ Tyrosine 3-

monooxygenase/ 

tryptophan  5-

monooxygenase 

activation protein, zeta 

polypeptide 

 

miR5 88 TNFSF13B Tumour necrosis factor 

miR4 

miR2 

98 

83 

 

AFAP1 

(AFAP) 

Actin Filament 

Associated Protein 

miR4 83 CTNND1 (E-cadherins) cell 

malignancy 

miR4 87 BIRC2 Apoptotic suppressor 

 

miR3 80 MNT MAX binding protein 

 

One feature of the functional annotation tool in DAVID is to give predictions on 

the localisation of proteins encoded by the input genes. For purposes of this 

study, emphasis was placed on genes with proteins localised on the cell surface. 

Figure 2.3 depicts miRNA targets strongly associated with membrane and 

membrane bound proteins. In the process of tumour development, or invasion, 

some proteins involved in cell-cell adhesion or cell movement lose their adhesive 

properties and are shed into the surrounding environment (Hanash, 2011) finding 

their way into biological fluids, such as saliva, blood and urine. This makes them 
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good targets as biological markers for therapeutics and diagnostics. Other 

important aspects that were taken into consideration when prioritizing the gene 

list were the processes they are involved in. Genes involved in biological 

processes such as regulation of apoptosis, secretion and immune response were 

prioritized, figure 2.4. These genes were considered significant as apoptosis is 

important in cancer development. Studies have shown that some oncogenic 

mutations disrupt apoptosis, leading to tumour initiation, progression or 

metastasis (Lowe and Lin, 2000). Conversely, compelling evidence indicates that 

other oncogenic changes promote apoptosis, thereby producing selective pressure 

to override apoptosis during multistage carcinogenesis (Su et al., 2015). 

Figure 2.5 shows that 30 % of the target genes are involved in transporter 

membrane activity. Recent studies have shown that plasma membrane transporter 

proteins play an important role in taking up nutrients into and effluxing 

xenobiotics out of cells to sustain cell survival (Williams, 2014). In the last 

decade, it has been reported that many transporters are differentially up-regulated 

in cancer cells compared to normal tissues, suggesting that the differential 

expression of transporters in cancer cells may become a good target for diagnostic 

markers for cancer therapy.  

The outcome of functional annotation using DAVID, coupled with literature 

mining was a list of 9 genes. A number of these genes, depicted in table 2.5, have 

been implicated in cancer (YWHAZ, FOXC1 and TNFSF13B) as well as prostate 

cancer, (MNT) (van Rooij, 2011; Dedeoğlu, 2014; Stokowy et al., 2014; Uso et 

al., 2014; Dedeoğlu, 2014). The remaining genes do not appear in literature as 

having been validated as prostate cancer biomarkers or connected to the disease.  
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2.13.4 Gene/Protein Interaction Analysis via STRING 

The 9 genes were used as input into STRING Version 9 to visualize protein 

expression networks as described in section 2.12.5 Figures 2.4 and 2.5 show the 

results of the analysis. Figure 2.12.5 shows that there was an association between 

TNFSF15 and TNFSF13B which code for the human tumour necrosis factor 

ligand superfamily member proteins, which are also known as proliferation-

inducing ligands. Both these two genes may play a key role in the development of 

B-cells (Boss et al., 2006) and plasma cells in the bone marrow (Matthes et al., 

2011). They also function in the development of human tumours (Zhao et al., 

2014). TNFSF13B expression is related to the progression of several types of 

carcinomas (Moreaux et al., 2009; Pelekanou et al., 2011) including renal cell 

cancer, (Pelekanou et al., 2011), breast cancer, (Zhao et al., 2014; Moreaux et al., 

2009) and lung cancer (Lin et al., 2012). 

 

It can be seen in figure 2.4 that TNFSF15 and TNFSF13B are both linked to 

LIG4 by the apoptotic suppressor BIRC2.  BIRC2 is a member of the inhibitor of 

apoptosis family of proteins and plays a pivotal role in regulation of nuclear 

factor-κB (NF-κB) signalling and apoptosis (Gyrd Hansen et al., 2010). Up-

regulation of BIRC2 has been frequently detected in lymphoid malignancies 

(Gyrd Hansen et al., 2010). A recent study (Yamato et al., 2015) showed that up-

regulation of BIRC2 is evident in a wide range of epithelial tumours such as lung 

tumours. 
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Figure 2.6: Protein Network Visualization generated by 

STRING. The interactions of the 9 miRNA targeted genes 

clustered together. The genes are represented by the nodes and the 

different line colours represent the types of evidence for the 

association. 

Figure 2.7: Protein Network Visualization generated by 

STRING. The interactions of the 9 miRNA targeted genes in in 

association with other genes. The genes are outlined in the black 

boxes. 
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The gene LIG4 encodes the protein DNA ligase that joins single-strand breaks in 

a double-stranded polydeoxynucleotide in an ATP-dependent reaction (Francis et 

al., 2014; Xie et al., 2014). Thus this protein is essential for recombination and 

DNA double-strand break repair. Dys-regulation of this gene by miRNAs may 

influence DNA repair ability, thus altering genetic stability and resulting in 

carcinogenesis. The genes AFAP1, CTNND1, YWHAZ and FOXC1 are linearly 

connected. AFAP1 is thought to encode a protein that is a potential modulator of 

actin filament integrity which responds to cellular signals. One of the Hallmarks 

of cancer is cell signalling, with cancer cells being self sufficient with regards to 

needing external signals to grow and divide, or insensitivity to anti-growth signals 

(Weinberg and Hanahan, 2000; Hanahan, 2011). Perhaps dys-regulation in this 

gene may result in cell signalling insufficiency or insensitivity. However, further 

studies would have to be done to prove this.  

The FOXC1 gene belongs to the forkhead family of transcription factors which is 

characterized by a distinct DNA-binding forkhead domain. The specific function 

of this gene has not yet been determined. However, a recent study implicated it in 

brain metastasis in breast cancer (Ray et al., 2010; Sizemore et al., 2012). The 

MAX binding protein MNT did not have any connections to the other genes.  

Figure 2.7 shows the predicted interactions of the 9 miRNA target genes with 

each other as well as with other genes. The 9 genes of interest are outlined in 

solid boxes. Thus, the 9 candidate genes are involved in metabolic and cellular 

pathways with not only each other but with other genes. The associations are 

based on the co-occurrence of proteins on metabolic maps in the KEGG database 

(von Mering et al., 2003). Proteins that occur on the same metabolic KEGG map 
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are presumed to be functionally interacting. The different coloured lines represent 

evidence for the association. STRING, displays a score of confidence for each 

association between proteins (low confidence: scores <0.4; medium: 0.4 to 0.7; 

high: >0.7). The higher the score, the more evidence for the association recorded 

by STRING (Eisen et al., 1998; von Mering et al., 2003; Franceschini et al., 

2013).  Some genes have more than one association. They have a combined score 

which is close to one. Thus, the more combined associations between genes, the 

more evidence for the interaction. (Franceschini et al., 2013). Upon visualization 

of predicted interaction networks of BIRC2 (figure 2.7), it can be seen that it has 

many associations. This shows that it is an important protein to the network. The 

more interactions a protein has in a network, the more important that protein is to 

the network as many other proteins rely on it in their functioning (Tomaic et al., 

2008). BIRC2 is connected to CASP3, DIABLO, RAF1, TRAF1 and TRAF2. It 

is connected to these genes by 3 lines of evidence, indicating more associations 

and thus higher confidence (Tomaic et al., 2008). The family of TRAF genes 

encode proteins that are receptor associated factors. They are involved in the 

regulation and response to apoptosis (Inoue et al., 2000; Potter et al., 2007). 

DIABLO is a mitochondrial protein that potentiates some forms of apoptosis 

(Adrain et al., 2001; Martinez-Ruiz et al., 2008). CASP3 encodes proteins in the 

family of caspases. These are endoproteases that provide critical links in cell 

regulatory networks controlling inflammation and cell death. Thus CASP 3 is an 

apoptosis related cysteine peptidase (Mcllwain et al., 2013). Studies by Soung et 

al., 2004 and Chen et al., 2008 found that alterations in this gene may lead to 

human tumourigenesis.  
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Upon visualization of predicted interaction networks of YWHAZ, it was observed 

that it has two interactions with FOXC1, two with CTNND1, two with RAF1 and 

one interaction with CASP3. This is a total of 7 interactions. This shows that it is 

an important protein, central to this particular network.  

 

2.13.5 Tissue Specificity Expression Analysis via TiGER and 

GeneHub-GEPIS 

The 9 genes were subjected to cross cancer tissue specific analyses in TiGER and 

GeneHub-GEPIS (section 2.12.6-7). Figures 2.8 to 2.10 give a graphical display 

of 3 genes and their expression in prostate tissue for both databases. Data on the 

remaining 6 genes can be found in Appendix A. GeneHUB-GEPIS database 

compares expression of the gene between cancerous and normal tissue.  

A detailed understanding of how genes are expressed and regulated in different 

tissues can help elucidate the molecular mechanisms of tissue development and 

function. The approximately 25,000 genes (Liu et al., 2008) in the human genome 

demonstrate dramatic diversity in terms of expression levels, both temporally and 

spatially (Bartel, 2009). Despite this diversity, the expression of all genes is 

controlled by a relatively small number (less than 2,000) of transcription factors 

(Liu et al., 2008). Thus gene expression regulation also depends heavily on 

miRNAs (Bartel, 2009).  Therefore, a database dedicated to comprehensive 

information about tissue-specific gene regulation is a desirable tool in expression 

studies.  
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The TiGER results for the MNT gene show that it is preferentially expressed in 

prostate tissue (Figure 2.8 A). The GeneHub-GEPIS results for MNT show a 

DEU value of 94.6 in over-expressed cancerous prostate cells when compared  to 

the normal prostate tissue (Figure 2.8 B). This figure is higher than the normal 

tissue expression and MNT’s over-expression in any other tumour tissue. This 

gene is targeted by miR3, thus it is a potential biomarker for prostate cancer 

detection. MNT codes for a protein that is a transcriptional repressor and an 

antagonist of Myc-dependent transcriptional activation and cell growth 

(Montagne et al., 2008). This could explain its over-expression in prostate cancer 

tissue.  
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Figure 2.8: Expression profile for MNT from TiGER (A) MNT is preferentially expressed in the prostate with an 

expression enrichment value greater than 2. GeneHUB-GEPIS (B). Normal tissue expression is shown in blue; over 

expression in tumour tissue is shown in yellow. 

 

A 

B 
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Figure 2.9: Expression profile for YWHAZ from TiGER (A) YWHAZ is preferentially expressed in the tongue with an expression 

enrichment value greater than 2.5. Expression in prostate tissue is between 1 and 0.5.  GeneHUB-GEPIS (B). Normal tissue expression 

is shown in blue; over expression in tumour tissue is shown in yellow. 

B 

A 
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Figure 2.9 show expression profiles of the gene YWHAZ, targeted by miR5. 

TiGER results indicate that it is preferentially expressed in the tongue followed 

by the bladder with an expression enrichment of about 2.8 and 2.4 respectively.  

The GeneHub-Gepis results show a DEU of 588.53 in prostate tumour tissue. 

Thus, YWHAZ is over-expressed in prostate tumour when compared to normal 

prostate tissue. However, over-expression in eye tumours is greater at 950.77 

DEUs. Therefore YWHAZ may not be a good biomarker specific to prostate 

cancer detection, further experimental evaluation is required. 

 

There was no data present for AFAP and TNFSF15 in TiGER, figures 2.15 and 

2.16 (appendix A).  However, there was data on tumour and normal tissue 

expression for AFAP1 in GeneHub-GEPIS. The expression profile in GeneHub-

GEPIS showed that it is under-expressed in prostate tumours when compared to 

the normal prostate tissue. 

 The lack of data for AFAP1 and TNFSF15 in TiGER could be as a result of lack 

of data for the particular genes in the database (not including the current data) or 

it could indicate that gene expression in tissues is not well documented for both 

the genes. The TNFSF15 gene targeted by miR2 and miR4 belongs to the tumour 

necrosis factor ligand family, as discussed earlier (section 2.13.3). It acts as an 

autocrine factor to induce apoptosis in endothelial cells (Michelsen et al., 2009). 

It has been reported to be abundantly expressed in endothelial cells. Thus, 

dysregulation can result in any number of cancers.  
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Figure 2.10: Expression profile for LIG4 from TiGER (A) LIG4 is preferentially expressed in muscle tissue with an expression 

enrichment value of about 4.5. There is no expression recorded in prostate tissue.   GeneHUB-GEPIS (B). Normal tissue 

expression is shown in blue; over expression in tumour tissue is shown in yellow. 

 

B 
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From the results of the expression profiling in TiGER and GeneHub-GEPIS, there 

is evidence that genes targeted by the 5 miRNAs are expressed in prostate tissues. 

However, some of the genes are preferentially expressed in other tissues, with 

some genes such as LIG4 (figure 2.10) not having any expression at all in neither 

the normal prostate tissue nor the prostate tumour tissue. There could be three 

reasons for this, the gene is not expressed in the prostate tissue, the databases 

used are lacking information on this gene or thirdly, there is currently no 

experimental validation of LIG4 expression in prostate tissue.   

 

2.14. Conclusions and Summary 

 

It has been shown that miRNAs are involved in carcinogenesis (Croce et al., 

2008) via regulation of gene expression (de Bock et al., 2010). Recognition of 

miRNAs that are differentially expressed between tumour tissues and normal 

tissues may help to establish the apparent pathogenic role of miRNAs in cancers 

(Lu et al., 2005; Karube et al., 2010; Zhang et al., 2007). Investigations (Croce et 

al., 2008) have demonstrated that almost all cancers have alternative miRNA 

expression profiles when compared to their adjunct normal tissues. These cancer 

types include lung cancer, leukaemia, brain cancer, prostate and breast cancer (de 

Bock et al., 2010), which together have caused the majority of cancer related 

deaths in the past decades (CDC, 2014).  

 

In this study, putative miRNA biomarkers for prostate cancer were identified. A 

combination of biological data mining, text mining and in silico gene enrichment 
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techniques proved to be effective in classifying genes targeted by miRNAs and 

linking them to cancer.  An analysis of predicted miRNA pathways in DIANA 

showed that they are involved in metabolic processes that that are important in 

cancer progression. Thus, it can be investigated further if they are involved in 

prostate cancer via qRT-PCR expression analysis. 

The gene targets of the miRNAs annotated in DAVID showed that they are 

involved in the cellular component, biological processes and molecular function 

gene ontology domains. In these domains it was found that the genes code for 

proteins involved in various processes and cell functions whose dys-regulation 

could lead to cancer. Some of the genes such as MNT and FOXC1 were found to 

code for proteins that are involved in regulation of apoptosis. LIG4, AFAP1 and 

CTNND1 code for proteins integral to the plasma membrane. BIRC2, TNFSF13B 

and TNFSF15, were found to code for proteins that are involved in negative 

regulation of apoptosis. YWHAZ codes for genes involved in immune response.  

STRING results indicated that the genes are involved in interaction networks with 

each other as well as other genes. It was noted that the genes are connected to 

CASP3, DIABLO, RAF1, TRAF1 and TRAF2 which have demonstrated roles in 

apoptosis. It was also found that BIRC2 is the most connected gene in the gene 

list. Thus it is an important part of the gene network as it connects many genes 

via its associations.   

Tissue specificity expression analysis in TiGER revealed that MNT is 

preferentially expressed in prostate tissue. Results from GeneHUb-GEPIS 

showed that the gene was over expressed by a DEU of 94.6 in prostate tissue 

when compared to the normal tissue. The analysis also showed that, YWHAZ, 
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FOXC1 and TNFSF13B, were all found expressed in prostate tissue. LIG4 and 

TNFSF15 did not express in prostate tissue. AFAP1 did not show expression in 

prostate from the TiGER database. However, GeneHub-GEPIS showed that it is 

under-expressed in prostate tumours when compared to the normal prostate 

tissue. 
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Chapter 3 

3. Molecular Validation of miRNAs as Putative Biomarkers for 

the Early Detection of Prostate Cancer 

 

3.1 Introduction 

It is well documented that miRNAs are involved in gene regulation (Lagos-

Quintana et al., 2001; Bartel, 2004; Ardekani and Naeini, 2010). This is done 

through binding to target mRNA, thereby altering protein expression. As 

discussed in section 1.6.3, the binding of miRNA to the mRNA can inhibit 

protein translation or accelerate the process of deadenylation causing an mRNA 

to be degraded (Melo and Melo, 2014). Because of their function, miRNAs have 

played a vital role in disease pathogenesis and have potential as biomarkers and 

therapeutic agents (MacFarlane and Murphy, 2010; Yang et al., 2011; Worringer 

et al., 2014). 

Currently, routine diagnostic methods for the early detection of PCa include 

digital rectal examination (DREs) and prostate-specific antigen (PSA) testing 

(American Joint Committee on Cancer, 2012; CANSA, 2015). The PSA test is 

nonspecific, due to the fact that elevated PSA levels have been measured in 

benign prostatic hyperplasia (BPH), infection, and/or chronic inflammation 

(Heidenreich et al., 2011; Basch et al., 2012). Thus, testing for PSA may lead to 

confounding outcomes. Other blood based biomarkers including the human 

 

 

 

 



90 
 

glandular kallikrein 2 (hK2) and urokinase plasminogen activator (uPA) and its 

receptor (uPAR), have been studied alone or in combination with PSA and 

suggested for diagnosis, staging, prognostics, (Karazanashvili and Abrahamsson, 

2003; Ishiguro et al., 2009; Nguyen et al., 2014) and monitoring of prostate 

cancer (Nguyen et al., 2014). However, because of the diverse nature of prostate 

cancer and its presentation in patients (Karazanashvili and Abrahamsson, 2003), 

there is an urgent need to identify additional biomarkers for enhanced prediction 

of disease progression and prognosis to aid in clinical decision making with 

respect to treatment options. 

 

miRNAs have many required features of good biomarkers, they are stable in 

various bodily fluids, the expression of some miRNAs is specific to tissues or 

biological stages (Sita-Lumsden et al., 2013; Moldovan et al., 2014), and the 

level of miRNAs can be easily assessed by various methods of gene expression 

profiling such as the Polymerase Chain Reaction (PCR) (Derveaux et al., 2010). 

The changes of several miRNA levels in plasma, serum, urine, and saliva have 

already been associated with different diseases (Hanke et al., 2009; Fabbri 2010). 

For example, the ratio of miR-126 and miR-182 in urine samples can be used to 

detect bladder cancer (Hanke et al., 2009), and decreased levels of miR-125a and 

miR-200a in saliva is associated with oral squamous cell carcinoma (Ng et al., 

2009).  

 

Gene expression analysis is increasingly important in various biological research 

fields and understanding the patterns of expressed genes is expected to provide 

insight into complex regulatory gene networks and can lead to identification of 
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genes implicated in disease. Quantifying gene expression levels can yield 

valuable clues about the function of a gene, for instance, accurate measurements 

of gene expression can identify the type of cells or tissues where particular genes 

are expressed, reveal individual gene expression levels in defined biological 

states and detect alterations in gene expression levels in response to specific 

biological stimuli (Fraga et al., 2008).  

 

3.1.1 Quantitative real-time PCR (qRT-PCR)  

The quantitative real-time polymerase chain reaction (qRT-PCR) has recently 

become the most widely used technique in modern molecular biology (Derveaux 

et al., 2010). This technique depends on the fluorescence-based detection of 

amplicon DNA and permits the kinetics of PCR amplification to be monitored in 

real time, making it possible to quantify nucleic acids with ease and precision 

(Guescini et al., 2008). Quantitative real-time PCR (qRT-PCR) has become a 

very versatile technique to examine expression changes of one or more genes of 

interest in various pathological states such as cancer. This method offers a broad 

range of advantages over standard methods such as the Northern blot and semi-

quantitative PCR due to its specificity, sensitivity, simplicity, low cost and high-

throughput nature (Derveaux et al., 2010). 
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3.1.2 Quantification Strategies in qRT-PCR 

There are two strategies used to quantify gene expression in qRT-PCR; absolute 

quantification and relative quantification. Absolute quantification relies on a 

standard curve which is generated by using a serially diluted sample of known 

concentration. The log of these dilution concentrations are plotted against the 

crossing points (Cp).  

The crossing point (Cp) is the cycle at which fluorescence achieves a defined 

threshold (Taylor, 2010). It corresponds to the cycle at which a statistically 

significant increase in fluorescence is first detected (Pabinger et al., 2009). The 

Cp value decreases linearly with an increase in target quantity. Thus, Cp values 

can be used as a quantitative measure of the input target number (Heid et al., 

1996). 

 

Relative Quantification compares the levels of two different target sequences in a 

single sample, such as the target gene of interest and another gene; and expresses 

the final result as a ratio of these targets (van Peer et al., 2012). For comparison 

purposes the second gene is a reference gene that is found in constant copy 

numbers under all test conditions (Yuan et al., 2006). This reference gene, which 

is also known as endogenous control, provides a basis for normalizing sample-to-

sample differences (Heid et al., 1996). 
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3.1.3 Aims and Objectives 

This section of the study aimed to validate the 5 miRNAs identified by in silico 

expression analysis in chapter 2 using molecular methods. Specific objectives are 

outlined as follows; 

1.) Growth of a prostate cancer cell line, a benign prostate hyperplasia cell line, other 

cancer cell lines as well as non-cancerous cell lines including a normal prostate 

cell line from which miRNA was extracted. 

2.) Extraction of miRNA and synthesis of cDNA 

3.) Molecular expression profiling of the 5 miRNA (cDNA) via Real-time 

Polymerase Chain Reactions (qRT-PCR) in all cell lines. 

 

3.2 Materials and Methods 

 

Reagents and suppliers. 
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Table 3: General reagents and suppliers 

Reagent  Supplier 

Dulbecco's Minimal Essential 

Medium (DMEM)  

 

Lonza 

Dulbecco's Minimal Essential 

Medium (DMEM) 

F12 

 

Lonza 

Roswell Park Memorial Institute 

Medium (RPMI) 1640  

 

Lonza 

Dimethyl Sulphoxide (DMSO)  

 
Sigma 

Fetal Bovine Serum (FBS) 

 
Lonza 

Phosphate Saline Buffer (PBS)  

 
Lonza 

Trypsin Lonza 

β-mercaptoethanol Sigma 

KAPA SYBR® FAST qRT-PCR 

Kit 

KAPABiosystems 

RNA isolation kit Nucleospin®  Macherey-Nagel 

Nuclease free dH2O  Merck 
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3.2.1 Cell Culture 

Cell lines used in the study are depicted in table 3.1.  The cell lines that were used 

in the course of this research were purchased from American Type Culture 

Collection (ATCC). The PNT1a cell line (passage 4) was obtained from Luiz 

Zerbini of the International Centre for Genetic Engineering and Biotechnology 

Cape Town (ICGEB). All cell lines are epithelial and adherent except the BPH1 

which is epithelial but non-adherent. 
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Table 3.1: Cell lines used to investigate the specificity of the miRNAs in cancer. 

Cell 

line 

Tissue Description Growth 

medium 

 

 

PNT1a 

 

Prostate Non-cancerous  

prostate 

epithelial cell 

line 

RMPI, 

PenStrep 10 % 

FBS 

LNCaP 

 

Prostate AR-sensitive 

prostate 

carcinoma 

RPMI, 

PenStrep 50 % 

FBS 

BPH1 

 

Prostate Benign prostate 

hyperplasia 

RPMI, 

PenStrep 10 % 

FBS 

A549 

 

Lung- 

Alveolar  

Lung epithelial 

carcinoma 

DMEM, 

PenStrep 10 % 

FBS 

HEPG2 

 

Liver  Hepatocyte 

epithelial 

carcinoma 

DMEM, 

PenStrep 10 % 

FBS 

MCF12 

 

Breast Non-cancerous 

Breast cell line 

DMEM/F12, 

PenStrep 10 % 

FBS, 

Hdyrocortisone, 

EGF, Insulin  

MCF7 Breast- 

pleural 

effusion 

Breast 

adenocarcinoma 

DMEM, 

PenStrep 10 % 

FBS 

 

 

H157 

 

Buccal 

Mucosa 

Squamous cell 

carcinoma 

DMEM,  

PenStrep 10 % 

FBS 

 

KMST6          

Fibroblast 

Non-cancerous 

embryonic 

fibroblast  

DMEM, 

PenStrep 10 % 

FBS 

HeLa 

 

Cervix Cervical 

adenocarcinoma 

DMEM, 

PenStrep 10 % 

FBS 

HT29 

 

Colon  Colorectal 

adenocarcinoma 

DMEM, 

PenStrep 10 % 

FBS 
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3.2.2 Start up of Cell Culture from frozen Cells 

The frozen cryovials were held under 25 ºC running tap water for about one 

minute until defrosted. The vial was wiped down with 70 % ethanol and placed in 

a lamina flow hood where the vial contents were emptied into a 15 mL tube to 

which 5 mL of pre-warmed complete medium  was added (table 3.1). The tube 

was then centrifuged for 5 minutes at 2039 x g using a Sorvall H4000 TC6 

centrifuge (American Instrument Exchange, Inc). The supernatant was removed 

and discarded. The pellet was re-supended in fresh culture medium  and the 

suspension transferred to a 25 cm2 flask (T25). The flask was then incubated in 

humidified incubator at 37 ºC with 5 % CO2 for 24 hours after which the medium  

was checked for contamination visually, this would be indicated by cloudy 

medium . After additional 24 hours of culturing, the flask was viewed under a 

Nikon TMS microscope at a magnification of 200 X to check if the cells had 

adhered to the flask. The medium was removed and replaced with fresh culture 

medium to remove any traces of DMSO left over from the cryopreservation 

medium. 

 

3.2.3 Maintaining the cell lines 

A schedule of cell culture maintenance was conducted as follows; medium was 

visually examined for contamination daily and flasks were examined under a 

microscope for culture confluence. When contamination was not observed and 

the confluency was below 50 %, old medium was replaced with fresh complete 

growth medium.  At a confluency of 80 %, the cells were sub cultivating.  
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3.2.4 Subcultivation 

3.2.4.1 Adherent cultures 

To sub-cultivate (passage) the cultures, old medium was aspirated with a sterile 

Pasteur pipette and discarded. The culture was then washed with 3 mL 1X 

Phosphate Buffered Saline (PBS) (table 3) pre-warmed at 37 ºC. The flask was 

swirled for 15 seconds after which the PBS was aspirated with a Pasteur pipette 

and 1 mL of 1.25 % trypsin (table 3) was added to the culture. The flask was 

swirled to spread the trypsin evenly. The flask was then placed in an incubator at 

37 ºC for 2 minutes after which the culture was viewed under a microscope to 

check for detachment of the cells. When the cells were detached, 5 mL of fresh 

complete growth medium was added to deactivate the trypsin. The suspended 

cells were collected by centrifugation at 2039 x g to be used for RNA extraction. 

 

3.2.4.2 Suspension cultures 

To maintain the suspension cultures, medium was aspirated into a 15 mL tube 

which was then centrifuged for 5 minutes at 2000 x g. The supernatant was 

removed and discarded and the pellet re-supended in fresh culture medium and 

the suspension transferred to a 25 cm2 flask (T25). The flask was then incubated 

in a humidified incubator at 37 ºC with 5 % CO2 for 24 hours after which the 

medium was checked for contamination visually. To harvest the non-adherent 
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culture for RNA extraction, the pellet would be re-suspended in PBS instead of 

culture medium. 

3.3 miRNA extraction 

Extraction of miRNA proved to be difficult in the study. Thus, a method to 

extract total RNA and synthesize miRNA cDNA using specific miRNA primers 

was devised. 

 

3.3.1. Extraction of total RNA 

The procedure for the extraction of miRNA was followed for both adherent and 

suspension cultures and was performed according to the manufacturers 

instructions (Macherey-Nagel NucleoSpin®). For the RNA extraction, the 

confluent cell lines were harvested as per section 3.2.2, at a concentration of 106 

cells/mL. The cells were transferred to an Eppendorf tube and centrifuged at 2000 

× g for 5 minutes at 4 °C. Thereafter, the supernatant was removed carefully 

avoiding disturbance of the pellet formed. The cells in the pellet were then lysed 

by adding 350 μL of lysis buffer RA1 containing 3.5 μL of a β-mercaptoethanol 

solution. The pellet was homogenised by vortexing vigorously for 10 seconds. 

The lysate was then transferred to a Nucleospin® Filter which was placed in a 2 

mL collection tube. This was centrifuged for 1 minute at 11,000 x g using an 

Eppendorf 5417R bench top centrifuge. After centrifugation, the NucleoSpin® 

Filter was discarded and the RNA binding conditions of the lysate in the 

collection tube were adjusted with 350 µL 70 % ethanol. The solution was mixed 
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by pipetting up and down five times. The lysate was then pipetted onto a 

NucleoSpin® RNA Filter Column placed in a collection tube. This was then 

centrifuged for 30 seconds at 11, 000 x g. The column was transferred into a new 

2 mL collection tube. The silica membrane of the column was desalted by adding 

350 µL desalting buffer (MDB) to the column centrifuging for 1 minute at 11, 

000 x g. The collection tube was discarded and the column placed in a clean tube.  

DNA present in the column was digested with 95µL of DNase (table 3). The 

column was kept at room temperature for 15 minutes and then washed with 

200µL RA2 solution centrifuging at 11, 000 x g for 30 seconds. The flow-through 

was discarded and the column was placed back into the collection tube. A second 

and third wash were performed with 600 µL and 250 µL of RA3 solution 

respectively centrifuging at 11,000 x g for both washes. The collection tube was 

discarded and the column place in a new sterile tube into which RNA was eluted 

with 60 µL RNase free water. The concentration and quality of RNA was 

assessed using the Nanodrop ND-1000 spectrometer (ThermoScientific) and all 

the RNA samples were stored at -20 ºC. 

 

 

3.4 Reverse transcription of miRNA to cDNA using stemloop 

sequence specific primers 

Primers for the 5 miRNAs were designed by Khan, 2015 using the cotton estate 

Database available at http://www.leonxie.com/miRNAprimerDesigner.php 

The cDNA was synthesized using the Transcriptor First Strand cDNA synthesis 

kit from Roche Life Sciences, according to the manufacturer’s instructions. All 
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the reagents were kept on ice. The template RNA mixture was prepared with the 

reagents as shown in table 3.2 in a sterile, nuclease-free, thin walled PCR tube to 

a final volume of 13 μL. The tube was then incubated at 65 ºC for 10 minutes, 

after which the cDNA synthesis reagents in table 3.3 were added to make a final 

volume of 20 µL. 

 

 

Table 3.2: Reagents for template RNA mix. 

Reagent Final concentration 

RNA 

 

1µg 

Cocktail of stemloop 

sequence specific primers 

2.5µM  

 

PCR grade water 

To make 13µL 

 

 

As total RNA was extracted instead of miRNA, a cocktail of stemloop sequence 

specific primers was prepared to be used in cDNA synthesis. The cocktail was 

made by pipetting 1 µL of the reverse of each of the 5 primers into a nuclease-

free, thin walled PCR tube. The concentration of each primer was 2.5 µM.  
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Table 3.3: Reagents for cDNA synthesis  

Component Volume Final 

Concentration 

Transcriptor 

Reverse 

Transcriptase 

Reaction Buffer 

4 µL 1x 

(8mM MgCl2) 

Protector 

RNase Inhibitor 

0.5 µL 20U 

Deoxynucleotide 

Mix 

2 µL 1 mM 

Transcriptor 

Reverse 

Transcriptase 

0.5 µL 10U 

Final volume 20 µL  

 

 

The reaction was incubated at 55 °C for 30 min followed by a final inactivation 

step of 5 min incubated at 85 °C. The concentration of the synthesised cDNA was 

determined with a Nanodrop ND1000 Spectrophotometer. 

 

3.5 Analysis of gene expression profiles of the miRNAs in cancer 

and control cell lines using qRT-PCR 

Expression profiles of the five miRNAs were analysed via quantitative real-time 

PCR (qRT-PCR). The housekeeping miRNA miR-191a as well as the house 
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keeping gene GAPDH, were used as references. All reactions were performed on 

the LightCycler® 480 System (Roche Applied Science) instrument. The reactions 

were prepared as outlined in table 3.4. 

 

        Table 3.4: Reagents for a standard qRT-PCR reaction 

Reagents Final Concentration 

SYBR Green Master 

Mix (10X) 

1X 

Forward Primer  1 µM 

Reverse Primer 1 µM 

cDNA 250ng 

PCR Grade dH2O Variable to make 

20µL 

Final Volume 20 µL 

 

 

A polymerase chain reacction was performed on each of the 5 miRNAs in each 

cell line. In addition, reactions for the reference miRNA primer 191a, reference 

housekeeping gene primer GAPDH and a no-template control (water) were also 

set up for each cell line. An aliquot of reaction mastermix was pipetted into each 

well of a 96 well plate and an aliquot of cDNA from each cancer cell line was 

then added as the PCR template to each well respectively. The experiment was set 

up with decreasing cDNA concentrations starting with 250 ng of cDNA to 0.0025 

ng.  Thus, 250 ng of cDNA for each cell line was run in duplicate for each primer 
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in order to construct a standard curve. A negative control was set up for each run 

containing 1 μL of PCR-grade water as a substitute for cDNA. The 96 well plates 

were sealed with clear sealing film and a qRT-PCR run set up on the 

LightCycler® 480 instrument according to the parameters in table 3.5. The 

evaluating parameters selected for data analysis were fluorescence (d[F1]/dT), 

melting temperature (Tm) and crossing point (Cp). The Second Derivative 

Maximum algorithm was employed for Cp determination where Cp was 

measured at the maximum increase of fluorescence.  

 

Specificity of real-time PCR primers was determined by amplification plots, 

melting temperature, and melting curve analysis using LightCycler Software, 

Version 1.5 (Roche Diagnostics). Standard curves were generated using a dilution 

series in the concentration range 250ng to 0.0025 ng. The PCR efficiencies were 

calculated using the REST® software and all threshold cycle (Ct) values were 

taken into consideration according to the following equation: E=10[-1/slope] 

(Pfaffl 2002). 
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Table 3.5: Cycling Protocol for the qRT-PCR  

Detection Format Block Type Reaction volume 

SYBR® Green  96 well 20µL 
Programme Name Cycles Analysis Mode 

Pre-incubation 1 None 

Amplification 40 Quantification 

Melting Curve 1 Melting Curve 

Cooling 1 None 

Programme Name Target (ºC) Acquisition  

Mode 

Hold 

(hh:mm:ss) 

Pre-incubation 95 None 00:03:00 

 

 

 

 

Amplification 

95 None 00:00:10 

 

Primer Dependent 

(65ºC) 

None 00:00:20 

 

72 Single 00:00:10 

 

 

 

Melting curve 

95 None 00:00:05 

 

65 None 00:01:00 

 

97 Continuous 5-10 

acquisitions/ºC 
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Cooling 40 None 00:00:10 
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3.6 Results and Discussion 

 

This chapter aimed to investigate the utility of a panel of miRNAs (miR1, miR2, 

miR3, miR4 and miR5) predicted (in silico) to be dys-regulated in prostate cancer 

as potential diagnostic biomarkers. The main objective was to evaluate the 

expression of these miRNAs in a prostate cancer cell line, non-cancerous prostate 

cell line, benign prostate hyperplasia as well as a diverse cohort of other cell lines 

(table 3.1) 

 

3.6.1 Normalisation and Statistical Analysis 

The accuracy of qRT-PCR is heavily dependent on the proper normalization of 

expression data. There are several variables in a qRT-PCR experiment that need 

to be controlled for, both technical as well as biological variables. Technical 

variables include differences in sample collection, RNA extraction and target 

quantification and biological variables can be sample-to-sample inconsistency 

(Deo et al., 2011). Therefore, normalization is performed with the purpose to 

remove experimentally induced variation and to differentiate true biological 

changes. An inappropriate normalization of qRT-PCR data can lead to misleading 

conclusions (Peltier and Latham, 2008, Roberts et al, 2014). Thus, the choice of 

normalization method is a crucial step in data analysis.  
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miRNAs pose a significant challenge for normalization (Deo et al., 2011). This is 

thought to be due to the fact that miRNAs only represent 0.01 % of  total RNA. 

Although this is a small fraction, it could have significant variation across 

different samples (Peltier and Latham, 2008). Despite these challenges, there are 

three normalization strategies which aid in expression profiling of miRNAs which 

include (i) average of all the quantification cycles values (Cq) from the 

experiments, (ii) stably expressed endogenous reference miRNAs, and (iii) 

external spike-in synthetic oligonucleotides. In this study, miR-191a (Schaefer et 

al, 2010; Deo et al, 2011), and GADPH (Ji et al, 2013) were used as reference 

nucleic acids for normalization, as they have been identified  to be stably 

expressed in prostate tissue.  

 

3.6.2 Standardization of qRT-PCR results 

The miRNA expression studies were quantified using the Pfaffl model. This 

method requires the use of the Relative Expression Software Tool (REST®), a 

freely available Excel® based application that compares a sample group to a 

control group and calculates the relative expression between them (Pfaffl, 2004). 

REST® uses a mathematical model (Pfaffl et al., 2002) that is dependent on the 

mean crossing point deviation between a sample and a control which are 

normalized by the mean crossing point deviation of a reference gene, in this case, 

a housekeeping miRNA. 

The mathematical model in REST® relies on the determination of the crossing 

points (figure 3.1). The crossing point (Cp) or the threshold cycle (Ct) is the cycle 
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at which fluorescence achieves a defined threshold. It corresponds to the cycle at 

which a statistically significant increase in fluorescence is first detected in a qRT-

PCR reaction (Heid et al., 1996; Rodriguez-Lazaro and Hernandez, 2013). This 

concept is the basis for accurate and reproducible quantification using qRT-PCR 

(Rodriguez-Lazaro and Hernandez, 2013). This is because a sample’s Cp value 

depends on the initial concentration of DNA in the sample. A sample with a 

lower initial concentration of target DNA requires more amplification cycles to 

reach the Cp value. A sample with higher concentration requires fewer cycles. 

Thus, Cp values can be used as a quantitative measure of the input target number 

(Heid et al., 1996).  

 

 

Figure 3.1: Amplification curve showing the crossing points at 19 cycles for one 

duplicate run and 21 cycles for another duplicate run. The amplification curve 

also shows reproducibility between replicates. 
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The REST® software aids in relative quantification analysis of qRT-PCR results. 

However, relative quantification is dependent on PCR efficiency (Pfaffl et al., 

2002). The slope of the standard curve describes the kinetics of the PCR 

amplification. It indicates how quickly the amount of target nucleic acid (NA) can 

be expected to increase with the amplification cycles (Livak et al., 1997). The 

slope of the standard curve is also referred to as the efficiency of the 

amplification reaction. A perfect amplification reaction would produce a standard 

curve with an efficiency of 2, because the amount of target NA would double 

with each amplification cycle (Pfaffl et al., 2004). The PCR efficiency can easily 

be calculated using the formula: 

 

E = 10 -1/slope 

 

Equation 3.1:  Efficiency of PCR is dependent on the gradient which describes 

the kinetics of the reaction.  (Pfaffl et al., 2004). 

 

An ideal slope would be -3.3 to give an efficiency of 2. However, a range of 3.2 

to 3.6 is acceptable as the gradient (Livak et al., 1997; Pfaffl et al., 2004;Ruijter 

et al., 2009). Thus, a standard curve is a requirement in both relative and absolute 

quantification. 

 

A relative quantification analysis was performed on the samples in this study. The 

expression levels of five miRNAs were evaluated in 11 cell line samples (table 
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3.1). A relative quantification analysis compares two ratios, the ratio of a target 

nucleic acid (NA) sequence to a reference NA sequence in an unknown sample 

and the ratio of the same two sequences in a standard sample, the calibrator 

(miR191a). This target sequence is the nucleic acid of interest, while the 

reference is a nucleic acid that is found at constant copy number in all samples 

and serves as endogenous control. The reference is used for normalization of 

sample-to-sample differences. The calibrator is typically a positive sample with a 

stable ratio of target-to- reference and is used to normalize all samples within one 

run (Roberts et al, 2014). Equation 3.2 shows how the result of this relationship is 

expressed.  

 

 

 

 

Equation 3.2: Normalization ratio for relative quantification analysis. (Pfaffl et 

al., 2004). 

 

3.6.3 Importance of Melting Peak Analysis in qRT-PCR 

The temperature at which a DNA strand separates or melts when heated can vary 

over a wide range, depending on the sequence, the length of the strand, and the 

GC content of the strand. For example, melting temperatures can vary for 

products of the same length but different GC/AT ratio, or for products with the 

                                     conc. Target                               conc. target 

                                    conc. reference   sample        :          conc. reference     Calibrator 
Normalized Ratio =     
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same length and GC content, but with a different GC distribution. Thus, a melting 

peak analysis can be performed to determine the characteristic melting 

temperature of the target DNA and to identify products based on their melting 

temperature (Tm). This distinguishes target amplicons from PCR artefacts such as 

primer dimers (Fraga et al., 2008).  The KAPA SYBR FAST qRT-PCR kit 

optimized for LightCycler® 480 uses SYBR® Green I dye chemistry to detect 

the accumulation of an amplicon. SYBR® Green is a fluorogenic intercalating 

dye that emits a strong fluorescent signal upon binding to double-stranded DNA. 

In its unbound form, fluorescence is diminished (Nestorov et al., 2013).   

 

3.6.4 Analysis and Quantification of qRT-PCR data  

3.6.4.1 Analysis of qRT-PCR normalisation  

Normalisation of qRT-PCR is important because of the many variables that need 

to be controlled for. Figure 3.2 shows the comparison of miR1 expression in 

KMST-6 and A549 before normalization with the housekeeping miRNA, 

miR191. The miRNA is down-regulated in both instances. However, the factor by 

which the miRNA is down-regulated is 8.626 before normalisation and 15.66 

after normalization. The p-values are 0.0895 and 0.0435 respectively. 
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Figure 3.2: Comparison of miR1 expression between the KMST-6 cell line and A459 cell line, before the normalization test (green 

writing) and after performing normalization (in blue). 
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3.6.4.2 Analysis of amplification curves 

Figure 3.3 shows the amplification curves of miR1 in KMST. The figure shows 

reproducibility of the duplicate runs.  

 

Figure 3.3: Amplification curve of miR1 in the KMST cell line. The different 

amplification curves represent different concentrations of KMST cDNA from 250 

ng to 0.0025 ng in duplicate from left to right.  

 

Examining figure 3.3, it can be seen that the reproducibility in the 250 ng 

duplicates was not consistent. This could have been caused by a number of 

reasons. One could be the introduction of random errors; this is indicated by the 

observation that one duplicate has a higher Cp value than the other duplicate. This 

could have resulted from adding more cDNA to the first duplicate hence 

demonstrating the importance of sample normalization as well as robust statistical 

analyses so that the results reflect an accurate biological event within each cell 
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line. Comparing the amplification curves of figure 3.3 and 3.4, it can be observed 

that the latter shows better evidence of varying cDNA concentration than the 

former.  

 

 

Figure 3.4: Amplification curve of miR1 in BPH1 cells. The different 

amplification curves represent different concentrations of BPH1 cDNA from 250 

ng to 0.0025 ng in duplicate from left to right.  

 

3.6.4.3 qRT-PCR melting peak analysis  

A melting curve analysis is important to determine the homogeneity of the PCR 

product of concern. Figure 3.5 shows the melting peak of miR1 in BPH1 cells. A 

prominent peak is seen at the Tm of 83 ºC. This corresponds to the expected Tm of 

miR1 which was calculated from the miRNA sequence obtained from mirBase. 

Figure 3.6 shows the melting peak of the housekeeping miRNA in the BPH1 cell 
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line. Examining figure 3.5 shows that there are 3 more additional peaks at 67 ºC, 

79 ºC and 91 ºC in addition to the expected peak at 83 ºC.  

One explanation of this is that DNA melting curves depend on the G/C content of 

a DNA strand (Rodriguez-Lazaro and Hernandez, 2013). As the dsDNA starts to 

melt, regions of the amplicon that are more stable (i.e G/C rich) do not melt 

immediately (Draghici et al., 2008; Rodriguez-Lazaro and Hernandez, 2013). 

These stable regions maintain their dsDNA configuration until the temperature is 

sufficiently high to cause it to melt. This scenario results in 2 melting phases 

(Draghici et al., 2008; Nestorov et al., 2013; Rodriguez-Lazaro and Hernandez, 

2013). The data in figure 3.5 is consistent with this interpretation. Additional 

sequence factors can also cause products to melt in multiple phases. These 

include amplicon misalignment in A/T rich regions, and designs that have 

secondary structure in the amplicon region (Rodriguez-Lazaro and Hernandez, 

2013).  Melting curves for the rest of the miRNAs in the various cell lines can be 

found in appendix B. 
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Figure 3.5: Melting peak of miR1 in BPH1 cells. A prominent peak is seen at the 

Tm of 83 ºC. 

 

 

Figure 3.6: Melting peak of miR191 in BPH1 cells. A prominent peak is seen at 

the Tm of 84 ºC. 
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3.6.4.4 Analysis of qRT-PCR Gene Expression data 

An analysis was done to evaluate the specificity of the putative miRNA as 

prostate cancer biomarkers. This was done by analysing their expression patterns 

in benign prostate hyperplasia, BPH1, LNCaP, PNT1a as well as in a panel of six 

different cancer cell lines (refer to table 3.1). The KMST cell line, a normal skin 

fibroblast was used for sample normalisation.  

The REST® software calculates relative expression between two samples using a 

statistical model called the Pair Wise Fixed Reallocation Randomization Test to 

normalise data. The data obtained were imported into an Excel® spreadsheet to 

create a graph showing the relative expression levels of miR1. miR2, miR3, miR4 

and miR5 in the various cancer cell lines. This expression was relative to the 

expression levels of the miRNAs in the control samples, where the control 

samples were given an arbitrary value of one which indicates no variation of 

regulation of the miRNAs of interest.  

 

Differential expression of the 5 miRNAs was observed across all cancer cell lines 

(figure 3.7), with miR2, miR3 and miR5 being significantly highly differentially 

expressed in the prostate cancer cell line LNCaP when compared to the other 

cancer cell lines. The expression ratios were 8.79, 13.87 and 15.32 respectively 

(Table 3.6). Thus, these miRNAs have the highest potential to be biomarkers for 

prostate cancer.  Also observed, was the expression of miR1 in the benign 

prostate hyperplasia cell line (BPH1). The miRNA is significantly highly 

expressed in BPH1 when compared to other cancer cell lines, (figure 3.4), with an 

expression ratio of 4.85 (table 3.6).  Currently, there are no molecular markers 
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identified for clinical use for detection of benign prostate hyperplasia or its 

likelihood to progress to cancer (Cannon and Getzenberg, 2012; Kunar et al., 

2013).  

DIANA-Tarbase generated pathways indicated that miR1 may be involved in 

various cancer causing related pathways including regulation of actin 

cytoskeleton and glucosaminoglycan biosynthesis (figure 2.6). Studies have 

shown that genes involved in actin cytoskeleton regulation, calcium signalling 

and glucosaminoglycan biosynthesis are targeted in BPH (Savli et al., 2008; Endo 

et al., 2009). Thus, this could explain the predicted association of miR1 in these 

pathways. However, more studies would have to be conducted on miR1 to 

determine its potential as a good candidate for benign prostate hyperplasia. 

Examining miR2, it was observed that it was significantly highly expressed in 

LNCaP when compared to the other cell lines. Expression of miR2 was down-

regulated in BPH1, A459, HEPG2, HeLa and H157 by ratios of -2.4, -4.0, -4.10, -

7.82 and -4.28 respectively (table 3.6). The miRNA was up-regulated in MCF7 

by a ratio of 0.85 in HT29 by 1.09 and in LNCaP by 8.79. Thus, miR2 is could be 

considered as a possible good indicator of prostate cancer. From DAVID, miR2 

was predicted to target the gene AFAP1 (Table 2.5). This gene is known to 

encode a protein that is a potential modulator of actin filament integrity which 

responds to cellular signals (Garzon et al., 2014). This gene is not well 

characterized in literature. However, further prediction studies in STRING 

indicated that the gene is involved in protein cancer networks and it is linked to 

another gene CTNND1 which is regulated by miR4.  
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GeneHub-GEPIS showed that AFAP1 is expressed in both normal and tumour 

prostate tissues (figure 2.16). However, the expression of this gene in the tumour 

tissue was shown to be down-regulated. This could be as a result of the action of 

over-expression of miR2. Further studies would have to be undertaken to validate 

this. 
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Figure 3.7: Relative expression ratio plot of the five miRNAs in various cancer cell lines including prostate cancer (LNCaP) and 

benign prostate hyperplasia (BPH1). The bars indicate up-regulation (above 0) of the miRNAs and down-regulation (below 0) of 

the miRNA. 
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Table 3.6: Fold expression ratios of the five miRNAs 

 BPH1 LNCaP A549 HEPG2 MCF7 HeLa HT29 H157 

miR1 4.85 -0.49 -3.96 -4.32 0.82 -3.94 -1.40 0.6 

miR2 -2.4 8.79 -4.0 -4.10 0.85 -7.82 1.13 -4.38 

miR3 -6.51 13.87 0.3 0.34 -0.69 -4.38 -1.04 0.11 

miR4 1.99 1.92 -6.99 -1.2 0.50 -4.01 1.11 -4.79 

miR5 -5.61 15.34 -2.69 7.057 0.79 -4.00 3.59 3.59 

GAPDH -8.560 1.189 -8.92 2.78 6.91 2.58 -1.01 2.58 
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An examination of the expression of miR3 shows that it is significantly over-

expressed by a ratio of 13.87 in the prostate cancer cell line LNCaP (table 3.6). 

Table 3.6 also shows that miR3 is under-expressed in BPH1 by a ratio of -6.51. 

Comparing the expression ratios of miR3 in BPH1 and LNCaP indicates that it 

could serve as a good indicator of prostate cancer. The under-expression of miR3 

in BPH1 could help in the specificity of prostate cancer diagnosis. This is because 

the current most widely used biomarker PSA cannot specifically distinguish 

between benign prostate hyperplasia and prostate cancer (Velonas et al., 2013; 

Qu et al., 2014). PSA is organ-specific and not disease-specific. Thus, it is prone 

to high false-positive diagnosis (Heidenreich et al., 2011; Velonas et al., 2013; 

Qu et al., 2014) as there are several reasons, in addition to prostate cancer, for 

elevated levels of PSA found in a man's blood. 

From the in silico study, miR3 was predicted to regulate two genes, MNT and 

LIG4. The MAX binding protein, (MNT) has been found to be highly expressed 

in prostate tumour tissue with a digital expression unit (DEU) of 94.6 (figure 2.8). 

However, the gene LIG4 is not expressed in prostate tumours. The qRT-PCR 

analysis showed that miR5 was the most over expressed miRNA with an 

expression ratio of 15.32 in LNCaP (table 3.6). It was not highly expressed in 

BPH1, A549 and HeLa with expression ratios of -5.61, -2.6 and -4.0 respectively. 

It was significantly highly expressed in HEPG2 with an expression ratio of 7.057. 

Expression levels in H157, HT29 and MCF7 were 3.59, 1.61 and 0.50 

respectively. Thus, it could be a good indicator of prostate cancer. However, its 

level of expression in HEPG2 (liver cancer) takes away from its specificity to 

prostate cancer. The miRNA was predicted to be involved in the regulation of the 
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genes YWHAZ and TNFSF13B (table 2.5). Several studies have demonstrated 

that YWHAZ has a pivotal role in tumour cell proliferation through its over-

expression (Chen et al., 2012; Nishimura et al., 2013). In many cancers, 

TNFSF13B has been shown to be an endogenous inhibitor of neovascularisation. 

This is a critical component of the negative control mechanism that operates in 

normal cells but is missing in tumour cells (Vassiliki et al., 2008; Deng et al., 

2012). 

 

3.6.5 Summary and conclusion 

The validation of biomarkers is a critical step in the biomarker discovery pipeline. 

In order to become a clinically approved marker, a potential biomarker should be 

confirmed and validated using hundreds of specimens. The tests should also be 

reproducible, specific and sensitive (Drucker and Krapfenbauer, 2013). 

Microarray technologies have previously been used to identify differentially 

expressed genes and have been used in numerous studies pertaining to human 

malignancies. However, microarray results have been influenced by various 

sources of variability including minor changes in experimental conditions such as 

biological heterogeneity in the population as well as in the specimen, specimen 

collection and handling and RNA extraction and amplification (Murphy, 2002; 

Abdulla-Sayani et al., 2006; Draghici et al., 2008). This would make it difficult to 

reproduce the results. As a consequence, differentially expressed genes in such 

preliminary discoveries could be confirmed using alternative methods such as 

qRT-PCR (Hu et al., 2006).  Quantitative real time PCR quantifies small changes 
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in gene expression and thus can give insight into the role of a gene and/or its 

product. These changes in gene expression can be indicative of a diseased state as 

the body tries to maintain homeostasis (Pfaffl, 2001). 

 

In this study, we evaluated the expression profiles of five miRNAs that were 

predicted via in silico methods to play regulatory roles in cancer onset and 

progression. Examination of the expression of these miRNAs in a panel of cancer 

cell lines showed that miR1 is over-expressed in BPH1. Thus it has the potential 

to serve as an indicator of benign prostate hyperplasia. However, because of its 

expression in MCF7 and H157 albeit minutely (0.8 and 0.6 respectively); it may 

have to be used in conjunction with other biomarkers or processes. It was also 

clear that miR3 was over-expressed in LNCaP and not in any other cell line. The 

expression ratio of miR3 in LNCaP was found to be 13.87. This makes it a good 

biomarker candidate for prostate cancer diagnosis. The study also showed that 

miR2 could be another potential biomarker for prostate cancer diagnosis. It had 

an expression ratio of 8.79 in LNCaP. However, it is also expressed in two other 

cancer cell lines HT29 and MCF7 with expression ratios of 1.09 and 0.85 

respectively. However, one miRNA may not be sufficient for the detection of a 

condition (Carlsson et al., 2011). Thus, both miRNAs could be used in 

combination with other biomarkers. Additionally, more cell lines and patient 

samples would need to be evaluated to establish the specificity of the expression 

of these miRNAs in BPH1 and prostate cancer. The use of a singular miRNA, or 

a combination of miRNAs could potentially improve the predictive accuracy or 

prognostics as well as treatment outcomes in prostate cancer (PCa). The use of 

these markers could play an important role in screening for PCa. This is because 
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current methods are invasive, and painful. Identifying biomolecules that can be 

present in bodily samples like urine could reduce unnecessary biopsies. 
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Chapter 4 

4.1 General discussion and future work 

Prostate cancer (PCa) is the most frequent tumour in men and a major cause of 

cancer-related morbidity and mortality (WHO, 2015). According to the 

International Agency for Research on Cancer (GLOBOCAN) in 2012, prostate 

cancer was among the most commonly diagnosed cancers in males, coming 

second after lung cancer. Additionally, prostate cancer makes up 8% of all 

cancers diagnosed in the world. In 2013, 238,590 men were diagnosed with 

cancer of the prostate and 29,720 men died as a result. Approximately 4500 of the 

deaths related to PCa were in South Africa (Cancer Association of South Africa, 

2014) which makes PCa a global epidemic. Current diagnostic tools include 

digital rectal examinations (DRE) (Schröder et al., 1998), prostate specific 

antigen test (PSA) (Lu-Yao et al., 2003), biopsy (Essink-Bot et al., 1998) and 

ultra sound (Bonekamp et al., 2011). All these diagnostic methods currently being 

employed are however, invasive, lack specificity and sensitivity (ACS, 2014; 

Djulbegovic et al., 2010). Additionally, the diagnostic application of the prostate 

specific antigen (PSA) has led to widespread over-diagnosis and subsequent 

overtreatment of clinically insignificant tumours (Simmons et al., 2011; Stavridis 

et al., 2010; Wolf et al., 2010).  It is foreseen that this problem may increase in 

the future (Bitu, 2015; Siegel, 2015). Therefore, there is a need for a less invasive 

early detection method with the ability to overcome the lack of specificity and 

sensitivity. Biomarkers have recently been identified as a viable option for early 

detection of disease for example biological indicators i.e. DNA, RNA, proteins 

and microRNAs (miRNA). 
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Mature miRNAs are a class of naturally occurring, small non-coding RNA 

molecules. They are partially complementary to one or more messenger RNA 

(mRNA) molecules, and their main function is to down-regulate protein 

expression in a variety of manners, including translational repression, mRNA 

cleavage,  and de-adenylation (Filipowicz, 2005; He et al., 2005; Mraz et al., 

2009). miRNAs are becoming increasingly recognized as powerful biomarkers 

for human disease. The information potential held by miRNAs, combined with 

the fact that they are stable in serum and plasma, has led to a rapidly growing 

interest in using miRNAs in blood or urine as diagnostic and prognostic 

biomarkers (He et al., 2005). The aim of this study was therefore to identify and 

characterize miRNAs, as a class of less invasive biomarkers for early diagnosis of 

prostate cancer. 

A number of miRNAs have been shown to influence key cellular processes 

involved in prostate tumourigenesis, including negative regulation of apoptosis, 

cell proliferation and migration and the androgen signalling pathway (Carlsson et 

al., 2011). Currently, a few studies have been undertaken to identify miRNA 

specific for prostate cancer Ambs et al., 2008 suggested that miRNA expression 

alters the development and progression of prostate cancer and some of the cancer-

related genes are regulated by miRNAs (Ambs et al., 2008). Porkka et al., also 

identified 51 miRNAs that are differentially expressed between benign and 

malignant prostate tumours, of which 37 were down-regulated and 14 up-

regulated (Porkka et al., 2007). These differentially expressed miRNAs lead to 

alteration in the expression and activity of their targets in prostate cancer. MiR-21 

in prostate cancer has been shown to stimulate androgen-dependent cell growth 
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and can also rescue cells from androgen deficient growth arrest. This indicated 

that miR-21 may also mediate castrate-resistant prostate cancer (CRPC) 

development (Jackson et al., 2014). Several studies, (Li et al., 2012; Brase et al., 

2011; Jackson et al., 2014) recently established that tissue miR-21 expression 

levels may have clinical importance. They evaluated miR-21 expression levels in 

a cohort of 169 radical prostatectomy tissue samples and found that increase in 

miR-21 expression levels was associated with pathological stage of prostate 

cancer. They went on to demonstrate in vivo tumour growth repression in a mouse 

model treated with a miR-21 inhibitor. 

 

Brase et al., 2011 also examined miR-141 as an miRNA correlated with tumour 

progression in cancer. The study identified it as one of the miRNAs present at 

high levels in patients with malignant tumours.  In the same study, MiR-141 was 

also shown to distinguish between patients with metastatic prostate cancer and 

healthy controls. However, both miR21 and miR141 are implicated in other 

cancers apart from prostate cancer and thus may not be suitable diagnostic 

markers for the disease but rather have prognostic value, (Li et al., 2012; Brase et 

al., 2011; Jackson et al., 2014). Thus, the need to identify putative novel miRNAs 

is still a necessity. 

 

The study investigated a panel of five miRNAs implicated in prostate cancer as 

putative biomarkers for detection of the disease. The panel was mined from 

online databases and literature mining in a previous study (Khan, 2015). It is well 

known that miRNAs control the expression of genes involved in various 

biological processes (Bartel, 2009). This is done by binding to the 3’ UTR of their 
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target mRNA (section 1.6). Thus, target gene prediction of miRNA is important 

in identifying which genes are affected by miRNA dys-regulation in diseases 

including prostate cancer.  

 

Target prediction of miRNA target genes was done using TargetScanHuman and 

miRDB. These are platforms that are publicly available. The target genes 

identified for the five miRNAs via TargetScanHuman were 1502. miRDB 

predicted 1076 target genes for the miRNAs. It was interesting to see a 28 % 

difference in the results from the two databases. This could be attributed to the 

properties of the two databases. The combined list from miRDB and 

TargetScanHuman were used as input into DAVID. This tool allows for 

functional annotation of genes. Thus, the processes that the genes are involved 

such as cellular component, biological function and molecular function are 

discerned.  

 

The list of genes in DAVID were reduced by looking at the enrichment score. An 

enrichment score greater than 1.3 was considered significant. The enrichment 

score is a figure of how important the particular gene is in the submitted gene list. 

Literature mining of the genes was also performed. Those genes involved in PCa 

but not experimentally validated were prioritized.  

 

It was found that terms such as regulation of apoptosis (figure 2.3) in biological 

processes are crucial to cancer onset. In the same way, genes with molecular 

functions such as metal ion binding and nucleoside binding were prioritized 
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(figure 2.4). As were genes with their cellular components localised to the cell 

surface (figure 2.2). Table 2.5 summarizes the miRNAs and the genes they target. 

Analysis of gene interaction networks in STRING showed that the genes are 

involved in protein networks with each other as well as with  genes such as RAF1 

which is a proto-oncogene (Mikula et al., 2001) and CASP3 which is responsible 

for apoptosis execution (Jin et al ., 2007). DIANA-Tarbase generated a heat map 

that indicated the involvement of the five miRNAs in cancer causing pathways, 

such as transcription mis-regulation in cancer as well as lipid metabolism. The 

miRNAs involved in these pathways included miR1, miR3 and miR5. 

 

Even though in silico methods are a cost effective, easy way of identifying novel 

biomarkers and maybe a tool of choice by many scientists, they generate a 

plethora of data that should be analysed critically. It is also important to validate 

in silico results. Thus, a molecular approach was employed to compare 

expression of the 5 miRNAs predicted to be involved in gene regulation during 

prostate cancer. 

 

In this study, we evaluated the expression profiles of the five miRNAs that were 

predicted via in silico methods to play regulatory roles in prostate cancer. We 

investigated expression profiles of the five miRNAs using qRT-PCR. This was 

done in various cell lines including the PCa cell line, benign hyperplasia cell line, 

normal prostate cell line, KMST, MCF12 and a panel of 6 other cancer cell lines. 

The expression profiles of the miRNAs in the cell were analysed using the 

relative expression tool REST®.  
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A hypothesis was made that the miRNAs would be significantly highly expressed 

in LNCaP and that additionally, some of the miRNAs may also show significant 

high expression in the BPH1. It was observed, as discussed in 3.6 that miR1 was 

significantly expressed in BPH1 and miR3 was highly expressed in LNCaP. Thus 

these hold potential to be biomarkers for BPH and PCa upon further work. 

 

However, because of the expression of miR1 in MCF7 and H157 albeit minutely 

(0.8 and 0.6 respectively); It may have to be used in combination with another 

biomarker. The expression ratio of miR3 in LNCaP was found to be 13.87. This 

makes it a good biomarker for prostate cancer diagnosis. It has been reported that 

using more than one miRNA for cancer detection is more appropriate (Carlsson et 

al., 2011). Thus, additional cell lines and patient samples would need to be 

evaluated to establish the specificity of the expression of miR3 in prostate cancer. 

The study also showed that miR2 could be another potential biomarker for 

prostate cancer diagnosis. It had an expression ratio of 8.79 in LNCaP. However, 

it is also expressed in two other cancer cell lines HT29 and MCF7 with 

expression ratios of 1.09 and 0.85 respectively. Thus, it could be used in 

combination with another biomarker.  

 

The use of a singular miRNA, or a combination of miRNAs could potentially 

improve the predictive accuracy or prognostics as well as treatment outcomes in 

prostate cancer (PCa). The use of these markers could play an important role in 

screening for PCa, however the objective remains to reduce the number of 

unnecessary biopsies performed and to limit the invasive procedures performed to 

differentiate between normal cells, benign tumours and PCa. 
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There is evidence from in vitro and in vivo studies that alteration in miRNA 

function plays a role in prostate carcinogenesis (Berger et al., 2014 and Murata et 

al., 2012). miRNA dysregulation influences a number of critical cellular 

processes involved in carcinogenesis, including but not limited to: stimulation of 

the cell cycle, avoidance of apoptosis, epithelial mesenchymal transition and 

modulation of AR-mediated signalling (Ozen et al., 2008; Clape et al., 2009; Fu 

et al., 2010; Schaefer et al., 2010). 

 

Further understanding of the expression patterns of miRNA dys-regulation may 

allow the development of novel diagnostic and therapeutic strategies involving 

miRNA augmentation or inhibition in the future. The potential to detect 

circulating miRNAs in serum and potentially, in urine, clearly exists (Chen et al., 

2008; Mitchell et al., 2008; Li et al., 2007; Park et al., 2009). The present study 

revealed miRNAs that may play a role in detection of prostate cancer and have 

demonstrated over- or under-expression when comparing non- cancerous prostate 

cells to prostate cancer cells. Further investigation of these miRNAs in larger 

patient groups will help to define their potential role as diagnostic and prognostic 

biomarkers in the future.  

 Future work would include examination of the expression profiles of the 

miRNAs in a larger panel of cells as well as investigation of expression profiles 

of these miRNAs in patient samples such as blood, urine and saliva. It would also 

be interesting to analyse the UTR sequences of the miRNAs targets 

experimentally. This will prove that the target genes identified using the in silico 

methods are indeed regulated by these miRNAs. Once the target genes are 

confirmed, further analyses can be performed on the miRNAs to study their roles 
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in prostate cancer development. This can be done by performing knockdown of 

the miRNA via Locked Nucleic Acid modified probes. This will aid in a wet 

bench functional analysis of the miRNA. 
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Appendix A 

 

Chapter 2 supplementary information. 

TiGER and GeneHub-GEPIS expression profiles of the of FOXC1, TNFSF13B, 

BIRC2, CTNND1, TNFSF15 and AFAP1 genes. 
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Figure 2.11: Expression profile for FOXC1 from TiGER (A) FOXC1 is preferentially expressed in the heart with an expression 

enrichment value greater than 6. Expression in prostate tissue is between 3 and 4.  GeneHUB-GEPIS (B). Normal tissue expression is 

shown in blue; over expression in tumour tissue is shown in yellow. 
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Figure 2.12: Expression profile for TNFSF13B from TiGER (A) TNFSF13B is preferentially expressed in the thymus with an 

expression enrichment value greater than 13. Expression in prostate tissue is about 2.5. GeneHUB-GEPIS (B). Normal tissue 

expression is shown in blue; over expression in tumour tissue is shown in yellow. 
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Figure 2.13: Expression profile for BIRC2 from TiGER (A) BIRC2 is preferentially expressed in the thymus with an 

expression enrichment value greater than 4.5. Expression in prostate tissue is less than 0.5.  GeneHUB-GEPIS (B). Normal 

tissue expression is shown in blue; over expression in tumour tissue is shown in yellow. 
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Figure 2.14: Expression profile for CTNND1 from TiGER (A) CTNND1 is preferentially expressed in the bladder with an expression 

enrichment value greater than 2.5. Expression in prostate tissue is between 1 and 0.5.   GeneHUB-GEPIS (B). Normal tissue expression is 

shown in blue; over expression in tumour tissue is shown in yellow. 
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Figure 2.15: Expression profile for TNFSF15 from GeneHUB-GEPIS . Normal tissue expression is shown in blue; 

over expression in tumour tissue is shown in yellow. There was no expression profile available for the gene in the TiGER 

database. 
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Figure 2.16: Expression profile for AFAP1 from GeneHUB-GEPIS. Normal tissue expression is shown in blue; over expression in 

tumour tissue is shown in yellow. There was no expression profile available for the gene in the TiGER database. 
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2.  Gene list 
Table 3: Tabular representation of the 502 target genes identified using in silico 

methods. 

SGIP1 
CLHC1 SGIP1 ANP32B MSH6 

E2F5 
SAMD5 E2F5 MDM4 PPP4R4 

ADAM22 
LINC00692 TFAP2B ANXA1 ITGA4 

FOXN2 
ERO1LB TLE3 BRINP3 POGK 

TOX 
TMSB4Y PACS1 UBE2E3 PLSCR1 

KCMF1 
OR6B2 MECP2 CYP4F31P C3orf58 

GABRB1 
TWF1 FOXC1 TNKS MAPK6 

MED13 
TMSB4X KIAA1644 RP11-664D7.4 ZFP36L1 

RAD23B 
CRYM AFAP1 GEMIN2 PPARG 

YWHAZ 
ATP5SL EN1 TMEM74B PTPN4 

PCDHB16 
TMED5 TMEM63B TMEM209 FAM46A 

PRKACB 
RP11-379H8.1 ZNRF2 BCHE TSPAN13 

SLC4A10 
KRTAP20-2 PIK3R2 CTPS2 RAPGEF6 

WWTR1 
AF131215.5 DPYSL5 COX7C VAPA 

SFMBT2 
ADAM2 KMT2D SNAP25 TMX3 

NIPSNAP3A 
C19orf59 HCFC1 KERA VEZF1 

C18orf25 
OR2C3 MYRF MMP21 HIC2 

CSNK1G3 
CTD-3148I10.1 SLC6A17 PSMD4 CLOCK 

ENOX2 
FAM60A BSN DCDC2B SH3KBP1 

KLRC4 
SLC39A6 ITGA3 RBM22 CLDN18 

CHD1 
ATP6AP2 MBD6 OR13J1 CSNK1G3 

CHCHD3 
RSPH4A CES4A C7orf71 NEDD1 

ZNF236 
SRFBP1 SHANK2 WDR83 GOLPH3 

HNRNPA0 
PLK2 CADM4 VIMP ADORA2B 
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XPO1 
RGS4 SZRD1 NDUFC1 SLAIN2 

RANBP9 
B3GNT2 TMEM222 ZNF572 TMED7 

MEX3C 
GPATCH2L PRKACA MCOLN3 STXBP4 

FAM120A 
ACTR6 CNIH2 HTR7 ZBTB44 

NWD2 
AL353698.1 TMEM151A HSD3B1 NUP98 

GANAB 
MTRNR2L8 DYSF EIF4ENIF1 SLC31A2 

EPHA5 
RNF146 TCP11L1 DNTT CAT 

AKIRIN2 
FAM24A MINK1 ZNF460 UQCRH 

CYTIP 
GNA14 MOCS3 CLDN12 SLC31A2 

KIAA2022 
NOTCH2NL STAC2 NXPH1 TPD52 

MAT2B 
FAM216B CNTNAP1 PTS MBD1 

PPP2R3A 
PPM1K XYLB TMEM241 TRMT10A 

TNFSF13B 
MED11 COTL1 ETNK1 AL353791.1 

CNOT2 
CYGB CYP26B1 TTI1 MAPK6 

POMGNT1 
FYB LRRC59 TMEM41B ASNA1 

SUB1 
ADH7 PCDHB11 AC012123.1 PLK2 

GDA 
ZNF449 SLC9A3R2 TBCA CTSO 

ZNF148 
CDIPT PKNOX2 RAB38 MYLIP 

KCNT2 
BTLA CBFA2T3 LILRB1 C11orf71 

MGP 
VMA21 CREB1 SSPN SAMD9 

NECAP2 
SLC39A10 ELK1 ARMC2 TYSND1 

ANO4 
PPBP CALR ATF4 MLTK 

MFHAS1 
IMPG1 HEYL MAEA IMPACT 

GIGYF2 
MTRNR2L3 SLC7A8 RBMS1 KCNE1L 

ATL1 
TCEB1 KDM2A URM1 CAT 

SLIT2 
KMO SREBF2 UBE2E3 FGF10 
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AMMECR1L 
CACNB2 TMEM194A CD69  

CCDC67 
MTUS1 STK38L C3orf58 ZMAT2 

TUBG1 
LIX1L DYNC1I1 AC011755.1 KCNJ6 

TAPT1 
NCOA1 SGIP1 TECRL OTOR 

ARPP19 
PSME3 E2F5 ZNF667 PPP2R5E 

CXADR 
LARP1 NOVA1 ARPP19 NRXN2 

NIPBL 
IGSF11 BRINP3 B3GALNT1 ZBTB47 

TSPAN6 
CELF3 HMGCR TNFSF13B USF2 

AGO3 
DIRAS1 VPS13D GSDMC CSF2RB 

ZNRF2 
ELN USP6NL ZBED5 UBAP2L 

G2E3 
RSU1 RLIM NPY1R LRRC28 

EIF5 
GAS7 PANK3 RP11-766F14.2 SLC28A1 

RAB18 
FOXP4 HTR7 GJE1 MLLT6 

LMAN1 
HMP19 SDC2 KLRC4 CELSR2 

ZAK 
NLGN2 TEAD1 GABRB1 BCDIN3D 

IPPK 
FAM84B CTCF DDAH1 CELF5 

GSDMC 
SOX13 RBMS1 MMP8 PRND 

ZFHX3 
SMARCC2 USP32 FAM104B ZFP36L1 

HECW1 
GPRC5A SOCS7 OTC ST3GAL2 

REV3L 
HNRNPU SEMA4G TRIM6 CCDC102B 

CDK12 
C6orf141 ETS1 LYRM5 WEE1 

SBNO1 
DYRK1A RAB1A POLR2D SLC8A2 

ACSL3 
NFIX PSD3 TMEM69 C20orf112 

COG5 
HRK BTF3L4 JAGN1 DNAJC14 

EPHA4 
FZD7 SV2A NLRP14 WDFY3 

RNF139 
MAT1A TOX3 FOXO1 SLC8A1 
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RBM39 
IGSF3 RHOT1 MUC4 DESI2 

MFAP3 
CLIP2 PITPNB VAMP2 DCLK3 

ADO 
ZFC3H1 FAM199X PDE4A PEAR1 

ST3GAL6 
KDM5C CLDN12 SPRED3 

ZDHHC21 
LOC101927910 TIMP3 FAM131B 

SPTBN4 FCHO2 SERPINB7 C1orf198 

PTHLH ZMYM4 FOXE1 RARA 

CALD1 YLPM1 HOXC11 PRELP 

NR1D1 KIAA1549L UNC13A EIF4G1 

DAAM2 SUMO2 ASIC1 TACC1 

DAB2IP BTBD10 PXN GLDN 

C9orf57 TMEM168 PCSK2 PBX1 

PLA2G2D MAP9 MYL12A PACSIN1 

SPRED2 ADAMTS6 ALX4 SPIN3 

CNST TCF7L1 UBTF ATXN7L3 

MTSS1L OTUD4 LAMC3 CDK18 

ATCAY RSBN1 TMEM184B ZNF385B 

PVALB EIF4ENIF1 WHSC1 CPLX2 

SPRR1B SEMA3E LCLAT1 DHRS11 

RANBP10 EXOC8 ZFP36 CTNND1 
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Appendix B 

 

Chapter 3 supplementary information.  

Melting curves 

 

Figure 3.8: Melting curve and melting peak of miR1 in MCF 7 cells.  

     

Figure 3.9: Melting curve and melting peak of miR2 in MCF 7 cells.  
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Figure 3.10: Melting curve and melting peak of miR3 in MCF 7 cells.  

 

Figure 3.11: Melting curve and melting peak of miR4 in MCF 7 cells. A sharp 

peak is seen at the Tm of 84 ºC. 
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Figure 3.12: Melting curve and melting peak of miR5 in MCF 7 cells. 

 

Figure 3.13: Melting curve and melting peak of miR1 in LNCaP cells.  
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Figure 3.14: Melting curve and melting peak of miR2 in LNCaP cells.  

 

Figure 3.15: Melting curve and melting peak of miR3 in LNCaP cells.  
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Figure 3.16: Melting curve and melting peak of miR4 in LNCaP cells.  

 

Figure 3.17: Melting curve and melting peak of miR5 in LNCaP cells.  
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Figure 3.18: Melting curve and melting peak of miR2 in BPH1 cells. 

 

Figure 3.19: Melting curve and melting peak of miR3 in BPH1 cells.  
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Figure 3.20: Melting curve and melting peak of miR4 in BPH1 cells. 

 

Figure 3.21: Melting curve and melting peak of miR5 in BPH1 cells.  
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Figure 3.22: Melting curve and melting peak of miR1 in PNT1a cells 

 

Figure 3.23: Melting curve and melting peak of miR2 in PNT1a cells.  
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Figure 3.24: Melting curve and melting peak of miR3 in PNT1a cells. 

 

 

Figure 3.25: Melting curve and melting peak of miR4 in PNT1a cells. 
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Figure 3.26: Melting curve and melting peak of miR5 in PNT1a cells. 
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