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University of the Western Cape

Abstract

FACULTY NATURAL SCIENCE

Department of Physics and Astronomy

Msc Astronomy

Measuring the quasar luminosity function below the detection threshold

by Eliab Malefahlo

The radio emission of radio-quiet active galactic nuclei (AGN) is thought to be from star formation

and AGN related emission. I investigate these sources using 1.4 GHz radio data from FIRST and three

optical quasars samples from the SDSS: (i) a volume-limited sample in the redshift range 0.2 < z < 0.4

defined by Mi < −23 (ii) magnitude-limited sample in the redshift range 1.8 < z < 2.5 defined by

mr ≤ 18.5 and (iii) a uniform sample in the redshift range 0.2 < z < 3.5 (divided into 12 redshift

bins). I constructed radio source counts and radio luminosity functions (RLFs) using the optical

quasars detected in FIRST, which are consistent with literature results obtained using SDSS and

NVSS quasars. There are differences at the low fluxs end because of the different resolutions of

FIRST and NVSS. I applied a median stack method to the 12 redshift bins of the uniform sample

and found that the median flux decreases from 182 µJy in the lowest redshift bin to 39 µJy and the

highest redshift bin. This is because the high redshift quasars although more luminous than their low

redshift counterparts, they are much further away so they have lower fluxes. I probed the quasar radio

source counts to lower levels using reconstructed source counts obtained by applying the Bayesian

stack technique. The reconstructed radio source counts were then used to constructed the quasar

RLF to lower levels, where I found: (i) for z < 1 the constructed quasar RLF has the same slope

as the detected quasars, suggesting that like the detect quasars their radio emission is dominated by

AGN related emission (ii) above z = 1 the constructed RLF steepens with redshift, which suggests

the strong link between accretion rate and radio jet power is gradually breaking down towards faint

optical luminosities at high redshift.
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Chapter 1

Introduction

In this thesis, I use a Bayesian stacking (Bayestack) technique to extend measurements of the quasar

radio luminosity function (QRLF) and source counts of optically selected sources below the detection

threshold of currently completed large-area radio surveys. I use the results to investigate the role of

star formation and active galactic nuclear accretion (AGN) activity on the radio emission of quasars,

in particular the radio-quiet quasars. First, I explore the importance of these two sources of emissions

for galaxy formation and evolution.

1.1 Cosmological context

1.1.1 Evolution of the Universe

The Big Bang theory is the most accepted evolutionary model of the Universe (see Peebles and Ratra

[2003] for an overview). The theory states that the Universe originated from a singularity with infinite

temperature and density, expanding to what is observed today (assuming general relativity holds in the

early Universe; Hawking and Ellis [1973]). The Universe expanded and cooled growing exponentially

in size over a short time scale 10−33 to 10−32 (inflation; e.g. Guth and Jagannathan [1998]). After

inflation, elementary particles were formed and as the Universe continued to expand and cool some

particles combined to form nucleons. Around 380,000 years after the Big Bang, the Universe became

cool enough for atoms to form, making the Universe transparent because the free electrons that were

scattering photons were captured to form these atoms (recombination).

The Big Bang model is a solution to Einstein’s field equations by Alexander Friedman where he as-

sumed an isotropic and homogeneous space on large scales. One of the strongest pieces of evidence

supporting the model is the prediction of the Cosmic Microwave Background (CMB, Penzias and

Wilson [1965]) radiation, the thermal afterglow of the Universe after recombination. The background
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Chapter 1. Introduction 3

Figure 1.1: An artist impression on the time scale of the evolution of the Universe according to the
Big Bang model. (NASA/WMAP science team).

radiation is an almost perfectly uniform blackbody with temperature fluctuations of the order 10−5

(Smoot et al. [1992]). Further evidence for the Big Bang includes; the expansion of the Universe (i.e.

Hubble’s law; Hubble [1929]) and the abundance of elements observed today (Alpher et al. [1948]).

Measurements of the fluctuations in the CMB together with galaxy distribution measured in galaxy

surveys place tight constraints on the cosmological parameters and favours the so-called ΛCDM model.

This is parameterized with four types of matter: dark matter, baryonic matter, hot dark matter (ra-

diation) and dark energy, the latter component dominates the current energy budget of the Universe

and is responsible for the accelerated expansion of the Universe. The latest results from Planck Col-

laboration et al. [2015] give a Hubble constant, H0 = 67.8 ± 0.9 km s−1Mpc−1 and a dark matter

density, Ωm = 0.308± 0.012. The model, however, is not perfect and in solving some of its problems

other problems arise.

The problems with the ΛCDM model arises when there is discrepancy between its predictions and

observations. This leads to the introduction of quantities such as dark matter and dark energy to

account for this discrepancy. Dark matter is used to account for the missing mass needed to explain

the kinetic motions observed (i) from rotation curves of stars orbiting galactic centres (Rubin et al.

[1980]) and (ii) in galaxies rotating about the centre of mass of their clusters (Zwicky [1937]). Dark

matter makes up ≈ 90% of matter and only interacts gravitationally, possibly weakly as well, with

baryonic matter but does not absorb or emit electromagnetic radiation. Dark energy is the term given

to the mysterious force pushing the expansion of the Universe in spite the gravitational force (Lemâıtre

[1927],Hubble [1929]). It has recently been found that not only is the Universe expanding but that the

expansion is accelerating (Riess et al. [1998], Perlmutter et al. [1999]). Dark matter makes up ≈ 70%

of the energy density of the Universe while baryonic matter makes up ≈ 30%.

 

 

 

 



Chapter 1. Introduction 4

Figure 1.2: The hierarchical structure formation as small dark matter particles (branches) merge to
form larger dark matter particles at time t0 (Lacey and Cole [1993]).

1.1.2 Galaxy formation and evolution

The large-scale structure observed in the Universe today grew from the tiny fluctuations of the near-

perfectly uniform early Universe under the influence of gravity. The growth of cosmic structure follows

hierarchical formation (Lacey and Cole [1993]; Fig. 1.2), where smaller dark matter halos (branches)

merge to form larger halos at later times. Galaxies form when baryons cool and collapse following the

gravitational potential of the dark matter halos.

The evolution of dark-matter halos through hierarchical structure formation can be understood through

N-body simulations (e.g. Springel et al. [2005]). The evolution of baryonic matter is more challenging

because most of the physical processes governing their interactions are still rather poorly understood

(e.g. star formation, supernovae feedback, AGN accretion and feedback). Models of galaxy formation

use simplification and approximations to account for these complex processes, to model the evolution

and distribution of galaxies in dark matter halos (e.g Somerville et al. [2008]). As a result, most N-body

simulations can produce galaxy clustering that agree with large surveys (e.g. Campbell et al. [2015]

found results that are consistent with those from the Galaxy and Mass Assembly Survey (GAMA;

Driver et al. [2011]) z < 0.7, however, found discrepancies with SDSS and VIMOS Public Extragalac-

tic Redshift Survey (VIPERS; Guzzo et al. [2014])), but have problems producing the relative galaxy

abundances and masses.

 

 

 

 



Chapter 1. Introduction 5

Figure 1.3: The unified model of AGN which explains the types of AGN by different observation
angles. The arrows represent the observation angle, with respect to the jets, to observe a specific
AGN type. Blazars Lacertae (BL Lac) and flat-spectrum radio quasars (FSRQ) have an unobscured
view of the central region while steep spectrum radio quasars (SSRQ) and Fanaroff and Riley (FR:
Fanaroff and Riley [1974]) narrow-Line Radio galaxies (NLRG) are obscured by the torus. On the
radio quiet side, Seyfert 2 galaxies have a more edge-on view than Seyfert 1 and radio-quiet quasars

(QSO). Adapted from Urry and Padovani [1995];Padovani et al. [1997]

1.2 Galactic processes

Galaxies are observed with different shapes and sizes, ranging from giant spherical blobs of red stars

(elliptical) to disk galaxies with well-arranged gas and stars (spirals). These features have been ob-

served since 1845 when William Parsons recorded a spiral structure in what was then known as a

nebula within the Milky Way. Hubble [1925] proved that some of these nebulae are galaxies in their

own right that came with a large variety of morphologies, which led to the first classification scheme

known as Hubble’s Tuning Fork (Hubble et al. [1936]).

The different shapes and sizes of galaxies result from interaction with each other gravitationally,

through collisions and mergers or lack thereof. The exchange of material during this interaction

influences the physical processes (star formation, AGN accretion and feedback), which in turn influence

the properties of the galaxy.

 

 

 

 



Chapter 1. Introduction 6

1.2.1 Star formation

Star formation (SF) is a process where stars form from the collapse of a giant molecular cloud. The

molecular clouds are self-gravitating regions mostly made up of hydrogen (H2) and Carbon monoxide

(CO). A typical cloud has a mass of ≈ 105−6M� and average densities of ≈ 102 cm−3 (Williams

et al. [2000]). Star formation occurs when some external stimulus causes instability in a smaller clump

within the molecular cloud, which leads to the collapse of the clump under its own weight as it collapses

the central temperature increases. The clump splits into smaller fragments, which also individually

continue to collapse until the central regions of the fragments reach the required temperature needed to

ignite nuclear fusion. The fusion generates outward (radiation) pressure that balances the gravitation

force. The newly-born stars send winds and shock waves to the surrounding gas, which can prevent

SF (negative feedback) or stimulate SF (positive feedback). Stars form according to the initial mass

function (Elmegreen [1997]), whereby lower mass stars are more likely to form than their high-mass

counterparts. The death of these high-mass stars usually results in a core collapse supernovae explo-

sion, which sends shock waves to the surrounding gas (supernovae feedback).

The star formation rate (SFR) of a galaxy quantifies the average rate at which stars form in the galaxy,

measured in solar masses per year (M� yr−1). The SFR depends on the amount of molecular gas avail-

able as well as other processes that affect the gas (feedback and AGN accretion). The availability of

large multi-wavelength data from various surveys has allowed for detailed studies of the phases and

processes that lead to individual star formation as well as measurements of star-formation rates out

to high redshifts (Dunne et al. [2009]; Karim et al. [2011],Zwart et al. [2014]). A typical galaxy such

as the Milky Way has a SFR of 1 M� yr−1, there are galaxies that have a low SFR and those that

undergo an extremely high SFR > 1000M� yr−1. A typical galaxy type that has a low SFR is the

old dead Ellipticals which mostly contain old stars with very little gas. Galaxies that have extremely

high SFR are known as starbursting galaxies, which is a short-lived phase of a galaxy which is usually

triggered by mergers or other forms of gravitational interaction with nearby galaxies.

Measuring the star-formation (SF) history of galaxies is important for understanding galaxy evolution;

it allows measurements of the growth of stellar mass, and it allows measurements of supernova rates

and can constrain cosmological parameters (see e.g. Karim et al. [2011] for an overview). SF leads to

radio emission and there is a tight relation between SFR and the radio luminosity.

1.2.2 Active galactic nuclei

Recent studies have shown that local massive galaxies all contain a super-massive black hole (SMBH)

at their centres (e.g. Tanaka et al. [1995]). An active galactic nuclei (AGN) is the central region of an
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Figure 1.4: (a) shows the FRI radio galaxy 3C 296 (Leahy and Perley [1991]) and (b) shows the
FRII radio galaxy Cygnus A Perley et al. [1984]. In both panels the contours represent the surface

brightness (Hardcastle [2005]).

active galaxy (i.e one where matter is accreted onto the SMBH). The sources of radiation from an AGN

are: (i) a fraction of the potential and kinetic energy of falling matter are converted into radiation, (ii)

synchrotron radiation (Section 1.2.4) from the material in the jets and (iv) free-free (Bremsstrahlung)

emission from accelerating/decelerating particles in the jets. Without gas to accrete, an AGN would

shut down; for this reason, AGNs are usually found in galaxies with young stellar populations (more

gas; Schawinski et al. [2009]) and typical have life span of ≈ 108yr (Woltjer [1959]).

A typical picture of a (radio-loud) AGN includes an accretion disk surrounded by a thick dusty torus

in the plane of the accretion flow and collimated jets of relativistic particles along the poles of the

torus (Fig. 1.3). It is well established that the appearance of an AGN depends on the observing angle

instead of underlying physical properties (Urry and Padovani [1995]). AGN are divided into two main

types, type I and type II. Type I AGN are those seen from the line-of-sight of the black hole (i.e.

unobscured) and contain broad emission lines produced by gas rapidly rotating around the black hole

(denoted by the dark blobs in Fig. 1.3). Type II AGN are orientated so that the torus obscures the

central black hole; these have narrow emission lines from the gas further away from the centre rotating

less rapidly (Peterson [1997]).

Fig. 1.3 also shows AGN division related to the radio loudness. Radio-loud AGN have greater radio

luminosities than radio-quiet (the technical definitions is given in Section 1.3). The old unification

model claimed that radio-loud and radio-quiet AGN have similar processes just viewed from a different

angle (e.g. Urry and Padovani [1995]; Fanidakis et al. [2011]). Some authors also claimed that radio-

quiet AGNs are just scaled-down versions of radio-loud AGNs (e.g. Ulvestad et al. [2005]). However;

they are essentially two different objects; radio-loud AGNs are mainly powered by synchrotron emis-

sion in the jets and radio-quiet AGN are mainly powered by SF (e.g.Padovani et al. [2011] Kimball
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Figure 1.5: (left) The correlation between total stellar mass in the bulge and the mass of the black
hole (BH mass). The red dots are from a simulation by Jahnke and Macciò [2011]; the open circles and
triangles are observed data from Feoli and Mancini [2009] and Greene et al. [2008] respectively. (right)
The black hole mass and dispersion velocity (σ) correlation, adapted from Kormendy and Richstone

[1995].

et al. [2011b] ; Condon et al. [2013]) and radiation related directly or indirectly to AGN accretion

(e.g. Gruppioni et al. [2003]; Jarvis and Rawlings [2004]). Radio-loud AGN are common in ellipticals

and radio-quiet are common in SF spiral hosts (Dunlop et al. [2003]). Furthermore, radio-loud AGNs

are thought to contain a binary SMBH system while radio-quiet have a normal SMBH (e.g. Sillanpää

[1999]).

The final division considered in Fig. 1.3 is associated with the FR type I and type II classification by

Fanaroff and Riley [1974]. FRI are galaxies with symmetric radio jets with most of their luminosity

concentrated in the centre. FRII galaxies are more luminous than FRI, they have jets with lobes that

contains bright hotspots at the end (Fig. 1.4).

1.2.3 Feedback

Studies on local galaxies have shown an interesting correlation between the mass of a SMBH and the

total stellar mass of the bulge (Fig. 1.5a; e.g. Tremaine et al. [2002]) and an even tighter correlation

between the SMBH mass and the stellar bulges’ velocity dispersion (Fig. 1.5b; e.g. Gebhardt et al.

[2000], Ferrarese and Merritt [2000]). These correlations suggest that there is a connection between

the formation and evolution of SMBH and the bulge (Gebhardt et al. [2000]).Chen et al. [2013] found

 

 

 

 



Chapter 1. Introduction 9

a correlation between SFR and the black-hole accretion rate (linked by feedback).

Feedback is a process that regulates the growth of a galaxy, positive feedback leads to growth and

negative feedback suppresses growth. There are various types of feedback process, the main ones being

SN feedback and AGN feedback. SN feedback occurs when a supernovae goes off and sends shock waves

and energy to the intergalactic medium (IGM). This can lead to growth (positive feedback) when the

shock waves triggers a collapse of a cloud in the IGM and it can also lead to negative feedback when

the energy released heats up the IGM, suppressing star formation (e.g. Best [2007]). AGN feedback

is in the form of radio jets. Negative feedback is when the IGM is heated by the radiation from jets

and gas is expelled from the galaxy (the expelled gas could have fuelled the AGN (e.g. Morganti et al.

[2013]) or collapsed to form stars is expelled and the heated gas suppresses star formation). Silk [2013]

claiming that jets can initiate SF by stimulating the collapse of a molecular cloud (positive feedback).

Further observational evidence of positive feedback in high-redshift quasars is shown by Kalfountzou

et al. [2014].

1.2.4 Synchrotron radiation

Synchrotron radiation is the emission produced when charged particles gyrate in a magnetic field with

relativistic velocities (Elder et al. [1947]). The frequency of the radiation depends on the strength of

the magnetic field and the velocity of the charged particles. The spectrum from charged particles is

due to those electrons gyrating at the fundamental frequency as well as its harmonics (which are closely

spaced), making the emission continuous (Grishanin et al. [1991]). The radiation is observed to be

linearly polarized when the line-of-sight is perpendicular to the magnetic field, circularly polarized the

line-of-sight parallel to the magnetic field and elliptically polarized when the line-of-side is in between

perpendicular and parallel. This process is common in astronomical environments and is responsible

for radio emission from jets in AGN, galaxies and supernova remnants.

Synchrotron emission is the dominant source of radiation in star-forming galaxies from the super-

nova shock of young high-mass stars, which amplifies the magnetic fields and accelerates electrons to

relativistic velocities. It is also the main source of radio emission in AGN.

1.2.5 Far-Infrared Radio correlation

There is a known correlation between far-infrared (FIR) emission and radio emission found in local

star-forming galaxies (Helou et al. [1985]), which holds over four orders of magnitude in luminosity

(Condon et al. [1992]). The FIR radiation is produced when dust absorbs ultraviolet (UV) photons

from young massive stars (that ends their lives with a supernovae explosion) and thermally re-emits
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in the FIR. The supernova emits both UV radiation and synchrotron radiation, thus, they both trace

the SFR of massive stars. The advantage of this correlation is that radio, unlike optical and UV, is

not obscured by dust and has higher angular resolution reducing confusion. The correlation holds to

high redshifts (z > 2) without evolving (e.g. Carilli et al. [2000], Sargent et al. [2010]). However, like

with many tracers, there is contamination from synchrotron emission produced by AGN.

1.3 Radio sources

Extragalactic radio sources can be divided into two populations as mentioned earlier; radio-loud and

radio-quiet. Radio-loud sources are defined to have radio luminosities above a chosen boundary (e.g.

log10[L8.4GHz WHz−1] > 25 (Hooper et al. [1996]). A better measure of radio loudness is defined

by the ratio of the optical and radio luminosities (Schmidt [1970]). Kellermann et al. [1989] used

luminosity from 5 GHz in the radio and from B-band (4400Å) in the optical, defining radio-loudness

as an radio-to-optical ratio > 10. At a frequency of 1.4 GHz, radio-loud sources mostly have flux

densities above 1 mJy, below which radio-quiet sources start to dominate. Some authors argue that

the division between radio-loud and radio-quiet is a result from optical selections, claiming that the

radio luminosity of AGN to be continuous (Lacy et al. [2001]).

1.3.1 Radio-loud

Radio-loud sources consist of mostly all the radio-loud AGN; Quasars, FRI, FRII, radio galaxies and

blazars, making up only ≈ 10% of the known sample of AGNs. These are all extremely luminous

AGNs with typical luminosities log10[L1.4GHz WHz−1] ≈ 24, spanning several orders of magnitude.

Fig. 1.6 shows that these sources dominate counts from flux densities > 1 mJy and peak at 1 Jy at

1.4 GHz (e.g Mitchell and Condon [1985]; Condon et al. [2012]). Numerous multi-wavelength studies

of these objects have been conducted since their discovery in the 1940s, but there is a great deal of

the processes that are not well understood (e.g. how jets are formed or why certain AGN do not have

them).

1.3.2 Radio-quiet

Radio-quiet sources have fainter radio luminosities (and smaller radio-to-optical ratio < 10) than the

radio-loud sources. At 1.4 GHz, radio-quiet sources dominate the counts at < 1 mJy (Fig. 1.6). These

sources are mainly powered by synchrotron emission from SF; in fact until recently it was thought that

SF was the only source of radiation at these fluxes. However, authors argued that (both radio-loud and

radio-quiet) AGN have an important contribution to the < 1 mJy flux densities ( e.g. Gruppioni et al.

[2003], Jarvis and Rawlings [2004], Padovani et al. [2011], [2014], Norris et al. [2013]). Observations
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Figure 1.6: The observed 1.4 GHz source counts and simulated counts from various authors (de
Ruiter et al. [1997]; White et al. [1997]; Prandoni et al. [2001]; Hopkins et al. [2003]; Bondi et al.
[2003]; 2008; Seymour et al. [2004]; Huynh et al. [2005]; Biggs and Ivison [2006]; Fomalont et al.
[2006]; Simpson et al. [2006]; Owen and Morrison [2008]; Ibar et al. [2009]; Guglielmino et al. [2014]).
The simulated counts are taken from the SKADS model (Wilman et al. [2008];2010) and are divided
into Radio galaxies, radio-loud quasars and radio-quiet AGN. The 5σ limits of SKA1 wide, deep and

ultradeep surveys are also shown.

(e.g. Padovani et al. [2014]) show that AGN make up ≈ 40% and radio-quiet AGN make up ≈ 25%

.

Studying radio-quiet AGNs is rather important as they make up a large fraction of the AGN pop-

ulation. They can, therefore, help shed light on the mysteries of AGN and galaxy evolution; for

example understanding the interaction between AGN feedback and SF (plus they are associated with

SF galaxies).

1.4 Quasars

Quasi-stellar radio sources (quasars) are a subset of the AGN population, discovered (Hazard et al.

[1963]; Schmidt [1963], Oke [1963]) in the radio as bright point sources with star-like counterparts in
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the optical. Their star-like appearance made them indistinguishable from stars, but they have a broad

emission spectrum different from any star (Schmidt [1963]). They were found to be galaxies at high

redshifts (assuming their redshifts are cosmological).

Quasars are one of the best sources for studying the evolution of the Universe, SF history and AGNs.

This is because they are among the brightest objects in the Universe, they are a member of the AGN

family, and they span a large redshift range to z ≈ 7 (e.g. Momjian et al. [2014]). Another interesting

property of quasars is the unique emission that ranges from UV to x-ray which has been observed at

all redshifts (Fan et al. [2004]; Shemmer et al. [2006]; De Rosa et al. [2011]), suggesting that quasars

established their nature in the early Universe (Momjian et al. [2014]). However there are a few changes

in quasar characteristics with redshift; (i) emission from hot dust (≈ 1000 K) has been observed in

low-redshift quasars (Jiang et al. [2010]), (ii) there is a possible decrease in the relative fraction be-

tween radio-loud and radio-quiet AGN at high redshifts, which could mean a change in the accretion

modes and BH spin of the first quasars (e.g. Dotti et al. [2013]).

Quasars, being AGNs, inherit the uncertainty in their dominant source of radio emission for < 1 mJy

sources (Fig. 1.6). Recent studies of optically-selected quasars suggest that these sources are domi-

nated by SF (Kimball et al. [2011a] and Condon et al. [2013]). However, White et al. [2015] used deeper

optical and near-infrared selection of quasars and they suggest that the radio emission is dominated

by AGN accretion. The investigation was extended to infrared where Rosario et al. [2013]; showed

that infrared emission from radio-quiet low luminosity AGN correlates with star formation and hence

the radio emission as well (FIR-radio correlation; Section 1.2.5) (Bonzini et al. [2015]; Padovani et al.

[2015]). However, Zakamska et al. [2016] extended the analysis of Rosario et al. [2013] to two orders

of magnitude of luminosity and found the emission is more likely associated with accretion (Lal and

Ho [2010]; Harrison et al. [2014]).

Although quasars were first discovered in the radio, Sandage [1965] found that quasars can be identi-

fied solely through their optical emission as they have a unique spectrum that is different from stars.

Since then quasar were mostly discovered through the use of optical surveys.

A large sample of quasars is needed to resolve the ongoing debates about AGN and quasar emissions.

However, quasars are hard to find and thus require large surveys like the Large Bright Quasar Sur-

vey (LBQS; Morris et al. [1991]) the 2dF Quasar Redshift Survey (2QZ; Boyle et al. [2000]) and the

successive releases of the Sloan Digital Sky Survey (SDSS; York et al. [2000]) quasar catalogues are

needed to representative samples. Optically selected quasars suffer from various selection effects: (i)

misses reddened quasars which are observed in radio (e.g. Webster et al. [1995];Gregg et al. [2002];Holt

et al. [2004]; Glikman et al. [2007]Urrutia et al. [2009] thought to be heavily obscured by dust (e.g.
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Richards et al. [2003]; Young et al. [2008]). (ii) Quasars in the redshift range 2 < z < 3.5 have similar

optical colours to stars (e.g. Fan [1999]).

1.5 Large radio surveys

Radio surveys are crucial for studying quasars; because, although AGN typically radiate in a large

range of frequencies (including UV, X-ray and optical), radio is where most of the characteristics of

AGN are seen (jets and lobes) and where the types of AGN differ the most. Furthermore, the radio

does not suffer from obscuration so it is sensitive to all types of AGN irrespective of their orienta-

tion. The current regime of large-area radio surveys e.g. the Sydney University Molonglo Sky Survey

(SUMSS; Bock et al. [1999]), the NRAO VLA Sky Survey (NVSS; Condon et al. [1998]) and Faint

Images of the Radio Sky at Twenty-centimeters (FIRST; Becker et al. [1995]) mostly detect radio-loud

sources.

There is a great deal of activity in the development and upgrades of radio telescopes in preparation for

the Square Kilometre Array (SKA), which is expected to reach nJy flux levels. The Low-Frequency

Radio Array (LOFAR) is complete and in operation. Telescopes that have been upgraded include;

the VLA (to the Jansky Very Large Array; JVLA) and MERLIN to e-MERLIN. The telescopes being

built include SKA pathfinders like the More Karoo Array Telescope (MeerKAT) and the Australian

Square Kilometre Array Pathfinder (ASKAP). These telescopes will survey the sky to fainter fluxes

faster than existing telescope (Norris et al. [2013]; Fig. 1.7).

1.6 Outline

This thesis is structured in the following way: In Chapter 2, I discuss the optical data from the SDSS

and radio data from FIRST. In Chapter 3, I use the detected sources to construct source counts and

quasar radio luminosity functions and compare to literature. In Chapter 4, I explore the fluxes of the

sources below the detection using median stacking, which returns a single statistic for a given bin. I

take it a step further by constructing the sources counts of the sources below the detection threshold

based on fitting a model to the data using a Bayesian approach. In Chapter 5 I summarise the results

found and give future aspects of the work.

Throughout the work unless state otherwise, I use AB magnitudes. All the positions are in J2000

epoch, spectral index α = −0.7 and ΛCDM cosmology, with H0 = 70 km−1 Mpc−1, ΩΛ = 0.7 and

Ωm = 0.3.
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Figure 1.7: Next-generation and current radio-continuum surveys at 1.4 GHz. The x-axis is the 5σ
flux limit, sensitivity increases to the left, and the y-axis is the survey area. The diagonal line shows the
limit of current telescopes (before upgrades); this is of course mostly limited by telescope observation
time, however, in 2016 it would take an unrealistic integration time to cross the line. Credit:,Norris

et al. [2013]

 

 

 

 



Chapter 2

Data

For an experiment of this nature where one tries to obtain useful information from sources below the

detection limit of a survey, one needs auxiliary data from another survey. I use FIRST radio data

with deeper optical data from SDSS that contains fainter sources than First.

2.1 SDSS

The optical sample is drawn from the quasar catalogues of both the twelfth and final data release

(DR12) of SDSS III’s BOSS (Eisenstein et al. [2011]) and DR7 of SDSS II’s Legacy (Shen et al.

[2011]). SDSS is a spectroscopic redshift survey observed with a dedicated 2.5 metre wide-field (Gunn

et al. [2006]) telescope equipped with an multi-band imaging (ugriz (Fukugita et al. [1996]) camera

and spectrograph. SDSS started observations in 2000, covering over a third of the sky in various

phases with different goals. The survey has gone through three phases, SDSS I, SDSS II, SDSS III

and, currently commencing SDSS IV.

2.1.1 SDSS I

SDSS I (York et al. [2000]) was operational until 2005 and imaged over 8,000 square degrees of the sky

in five optical bands along with spectroscopic observations of galaxies (Strauss et al. [2002],Eisenstein

et al. [2001]) and quasars (Richards et al. [2002]) in what is called the Legacy survey. The quasar

targets were observed in a 5,700 square degrees subset of the SDSS I imaging data (top panel of Fig 2.1

shows the footprint of these quasars). Legacy found a total of 670,000 galaxies 77,000 quasars.

15
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Figure 2.1: The quasar coverage of all the three phases of the SDSS. The top panel is SDSS I with
77,000 quasars covering an area of 5,700 square degrees, the middle panel is the SDSS II 105,000
quasars found in an area covering 7,500 square degrees. The bottom panel contains 297,301 SDSS III’s

BOSS quasars observed in area covering 10,000 square degrees.q

2.1.2 SDSS II

SDSS II was carried out between 2005 to 2008, completing the Legacy survey and starting both the

SEGUE and the Sloan Supernova surveys.

(i) Legacy Survey provided uniform coverage in five bands of over 7,500 square degrees of the sky

in the North Galactic cap (NGC) and 740 square degrees in the South Galactic cap (SGC). Most

of the survey footprint was covered in SDSSI, SDSSI only observed a small part. The complete

coverage of Legacy is shown in panel 2 of Fig. 2.1. It containes ≈ 2 million objects, ≈ million

galaxy spectra and more than 105,000 quasar spectra. panel 1 of Fig 2.2 shows the redshift

distribution (green lines) of the Legacy quasars (Legacy II).
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Figure 2.2: The redshift distribution of the SDSS quasars. The top panel is redshift distribution for
the three complete phases of the SDSS, SDSS I (Legacy, green line), SDSS II (Legacy II, red line) and
SDSS III (BOSS blue line). The redshift distribution of the full Legacy survey (Legacy II, red line)
and the uniform subsample (blue dotted lines) are shown in the second panel. The third panel shows

the uniform (green dotted lines) and full BOSS quasars (blue dotted line).

(ii) Sloan Extension for Galactic Understanding and Exploration (SEGUE) was a spectro-

scopic survey of 240,000 stars to study the structure, formation and evolution of the Milky Way

(Yanny et al. [2009]).

(iii) The Sloan Supernova survey is a repeated imaging survey over a 300 square degree area on

the Celestial Equator to search for supernovae Ia (Frieman et al. [2008]). The survey ran from

2005 to 2007 and confirmed a total of 327 type Ia supernovae events (Sako [2007]).
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2.1.3 SDSS III

SDSS III (Eisenstein et al. [2011]) began operations in 2008 and was completed in 2014. This phase

was divided into four different surveys; SEGUE-2, BOSS, APOGEE and MARVELS all conducted

with the same 2.5 wide-field Sloan telescope (Gunn et al. [2006]) with the new improvements since

SDSS III will observe fainter targets. The improvements include: (i) a multi-object fibre-fed optical

spectrographs with new fibres; 1000 fibres with 2′′ apertures per plate instead of the previous 630 fibres

with 3” apertures, (ii) new gratings CCDs and optics and (iii) a new near-infrared high-resolution

spectrograph and an optical interferometer.

(i) The Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2; Rockosi

et al. [2015] in prep.) builds on the work from SEGUE 1. SEGUE 2 spectroscopically observed

close to 119,000 unique stars in the halo of the galaxy with distances of 10 to 60 Kpc from the

galactic centre. The observations were done over 1317 square degrees from 2008 to 2009.

(ii) Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS; Ge et

al. [2015] in prep.) used two 60-fibre interferometric spectrographs to observe radial properties

(e.g velocity) of 11,000 stars in search for exoplanets and brown dwarfs that have orbital periods

from several hours to two years. MARVELS operated from 2008 to 2012.

(iii) APO Galactic Evolution Experiment (APOGEE; Majewski et al. [2015] in prep. ) uses

a 300-fibre high resolution, high signal-to-noise infrared (H-band) spectrograph to penetrate

through the dust that obscures stars, in the galactic disk, bar and bulge and halo, to investigate

their dynamics and composition. The data was observed from 2011 to 2014 using stars selected

from the 2MASS database.

(iv) Baryon Oscillation Spectroscopic survey (BOSS; Dawson et al. [2013]) used the same imag-

ing data as SDSS I and SDSS II, with an additional area in the South Galactic Cap, to a limiting

magnitude of r ' 22.5. BOSS surveyed 7578 deg2 in the NGG and 2663 deg2 in the SGG, a

total of 10269 deg2 shown in panel 3 of Fig. 2.1. One of BOSS’s key goals is to measure the

baryon acoustic oscillation (BAO) scale in (i) the distribution of galaxies and neutral hydrogen

(Anderson et al. [2014]) and (ii) the Lyman-α forest (Busca et al. [2013]). This is done using

spectral information of 1.5 million luminous galaxies brighter than i = 19.9 with z < 0.7 and

observations of high-redshift (z > 2) quasars (Busca et al. [2013]; Slosar et al. [2013]; Kirkby and

BOSS Collaboration [2013]).
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Figure 2.3: A spectrum of a gravitationally-lensed quasar Q1422+231 observed with the HIRES
spectrograph (Vogt [1992]) on the the Keck I telescope. The high redshift quasar is observed at
z = 3.625 and the Lyα forest is located around λ ∼ 5000 Å, ‘eating every’ (line) feature of the quasar

below the Lyα emission, (from Ellison et al. [2000]).

2.1.4 Quasar target selection: SDSS I and II

SDSS I and II targeted objects classified as point-like in the magnitude range 15 < i < 19.1 (Richards

et al. [2002]; 2006). This target selection catches both quasars and stars. Quasars are then differen-

tiated from stars by their unique colours in multi-dimensional color-colour space (Fan [1999]). The

colours of quasars are reduced by absorption from a phenomenon called Lyα forest (Lynds [1971]).

The Lyα forest is a series of Lyα absorption lines, corresponding to the neutral hydrogen transition

from n = 1 to n = 2, from foreground intergalactic gas. Due to their large distances, the light from a

quasar passes through this intergalactic gas from different redshifts with each leaving its ’mark’ in the

spectra of the quasar, resulting in the absorption lines being observed at a range of wavelengths. This

phenomenon has a significant effect on z ≥ 2.2 quasars; Fig 2.3 shows the Lyα forest for a z = 3.625

quasar. However, the quasars become reddened with increasing redshift making their colours distinct

from stars (Fan [1999], Richards et al. [2001b]). Quasar models by Fan [1999] show that on average

quasars are well separated from the stars, with the exception to 2.7 < z < 2.8, where quasars are

indistinguishable from A stars and blue horizontal branch (BHB) stars in the u−g, g−r colour-colour

space (Fig 2.4). Quasar candidates in SDSS I and II are primary the outliers from the stellar regions

in colour-colour space (Richards et al. [2001a]) (as seen in Fig 2.4) and the regions with large stellar

contamination were avoided.

As mentioned earlier, one of the main goals of BOSS is to observe BAO scale in the Lyman α forest

(Dawson et al. [2013]). This requires spectroscopic detections of 15 ≥ per quasars deg−2 at z > 2.2.

To achieve this, they apply a magnitude limit of g < 22 giving a surface density of 20 quasars deg−2 at
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Figure 2.4: The colour-colour plot (u−g), (g−r) used to identify quasars from various stars. Quasars
(models, Fan [1999]) are shown in different colours according to their redshift, blue representing low
redshifts and red high redshifts, and star are represented by black points. The left panel is a subset of
the brightest (18 < g < 19) objects targeted by SDSS I and II, were its one can easily distinction quasars
from stars except at 2.7 < z < 2.8. The right panel is a sample of brighter objects (21 < g < 22)
targeted by BOSS, which has a lot of contamination from stars due to the large uncertainties in
magnitudes because the their are close to SDSS’s photometry limit, (taken from Ross et al. [2012]).

z > 2.2. The magnitude limit is very close to the detection limit of SDSS photometry (Abazajian et al.

[2004]), as a result, it broadens (scatter) the stellar range in colour-colour space (Fig 2.4) therefore

increasing contamination. Using the traditional colour-colour space selection will be very challenging

as there is contamination from metal-poor A and F stars, faint low redshift quasars (z ≈ 0.8) and

compact galaxies which all have the same colours as the target quasars (Richards et al. [2001b]).

Therefore, new quasar target selection algorithms had to be developed for BOSS to achieve its goals.

2.1.5 Quasar target selection: SDSS III

Since traditional colour-colour space selection of quasars can not be used, four distinct targeting

algorithms are used in SDSS III; the Kernel Density Estimation (KDE; Richards et al. [2004],Richards

et al. [2009a]), Likelihoods (Kirkpatrick et al. [2011]), neural network method (Yèche et al. [2010])

and the Extreme Deconvolution XD (Bovy et al. [2011a], Bovy et al. [2011b]).

(i) Kernel Density(KD) classification scheme was introduced by Gray and Moore [2003], and

Richards et al. [2010] applied the method to SDSS imaging data. The method uses a set of

(known) stellar and quasar densities in multi-dimensional colour-colour space, (similar to the left

panel of Fig 2.4), as a trained sample. Objects are then given probabilities of being a quasar

based on their position colour-colour space with respect to the trained sample.

(ii) The Likelihood method (Kirkpatrick et al. [2011]) uses a similar approach as the KDE method

in that it uses a trained set (a model, using all the photometric data and their uncertainties).
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The likelihood of an object being a quasar, given its photometric data and errors is the sum of

the distance to all the quasars and stars in the trained set in colour-colour space.

(iii) The artificial neural network method (Yèche et al. [2010]) like the other methods uses a

trained set and computes the probability of an object, given all the photometric magnitudes and

their uncertainties, is a quasar in the desired redshift (2.15 < z < 3.5) using four neurons.

(iv) The Extreme Deconvolution (XD; Bovy et al. [2011a], Bovy et al. [2011b]) method is a

variation of the Likelihood method that properly accounts for the errors in the magnitudes.

XDQSO is an application of XD method to assign a probability of an object being a quasar.

BOSS quasars are divided into several sets; CORE, BONUS, KNOWN, and FIRST with each set

having different imaging cuts and flux limits. The cuts and limits were applied to single epoch data

except for FIRST targets were co-added, multi-epoch data were used if available (Ross et al. [2012]).

Objects with a FIRST flag are thus generally not in the CORE sample.

(i) The CORE quasars are uniformly selected across the BOSS footprint. From the second year

to the end of the survey the CORE quasars were identified using the XDQSO target selection

method (Bovy et al. [2011b]). During year one, a test year, the KDE selection method (Richards

et al. [2004], Richards et al. [2009b]) was used to identify CORE quasars.

(ii) BONUS quasars are selected to maximize the surface density in such that the survey require-

ments of 20 ≥ quasars per deg−2 are met. These were selected using a combination of all the

target selection methods (KDE Richards et al. [2004], Richards et al. [2009b]; likelihood method:

Kirkpatrick et al. [2011], neural network, and the XDQSO method (Bovy-2011a) with lower

likelihood than in the CORE sample) as well as additional data if needed.

(iii) Objects that have g ≤ 22 or r ≤ 21.85 with FIRST (Becker et al. [1995]) a match within 1′′ are

considered as targets. A additional cut (u− g) > 0.4 is applied to exclude low redshift quasars.

(iv) Known quasars with z > 2.15 found in existing catalogues such as DR7 (Schneider et al. [2010]);

the 2dF quasar redshift survey (2QZ; Croom et al. [2004]; the 2dF-SDSS LRG, quasar survey

(2SLAQ; Croom et al. [2009])); the AAT-UKIDSS-DSS (AUS) survey, the MMT-BOSS pilot

survey (Fabricant et al. [2005]) and quasars observed by VLT and KECK, that fall within 1.5′′

of a point source are considered targets. These are then re-observed to take advantage of the

upgraded SDSS spectrograph (Ross et al. [2012]).

2.1.6 Spectroscopy

All the targets from the various selection methods are spectroscopically observed with the BOSS

spectrograph. The spectrograph has a metal plate with holes were fibre-optic cables are attached and
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Figure 2.5: The left panel shows the geometry of a chunk that contains 47 plates and covers 144
deg2 . The right panel shows the different chunks (each with its own colour coding) that make up the

full BOSS footprint Ross et al. [2012]

.

light from a target enters the fibres and are directed to a grism or grating which splits the light to get

the spectrum. The holes are distributed such that to maximize the number of the targets observed

this is called tilling (the full details of SDSS tiling are found in Blanton et al. [2003]). Due to nature

of large-scale and galactic structure, the targets have an inhomogeneous angular density distribution

in the sky. Therefore, tilling completeness would mean a non-uniform distribution of the fibre holes.

BOSS has a tiling completeness of 93%, this is due to the unobservable regions called masked regions 1.

The are four types of masked regions, bright star mask, central mask, bad field mask and collision

priority mask (White et al. [2011]).

(i) Bright star mask

This is the mask that blocks regions around bright stars. The size of the mask depends on the

apparent brightness and angular diameter of the star.

(ii) Central mask

The central part of all the plate has a hole for centerpost as a result, targets within a 92′′ radius

of the central position are removed from the target list.

(iii) Bad field mask

This placed over regions that have bad photometric data.

(iv) Collision priority mask

Two holes in the plate cannot be closer than 62′′ in BOSS, this is because fibre optics can not

be placed so close to each other and this is known as fibre collision. Collision priority mask is

placed around objects that have high priority, so any object that lies within 62′′ is removed from

1www.sdss3.org/dr9/algorithms/boss tiling.php|
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the target list.

The survey is divided into several tilling chunk. A chunk is a set of tiles (might be from a different

plate) covering a spatially continuous area observed at the same time and with the same target selec-

tion method. Fig 2.5a shows the geometry of a chunk within the survey which contains 47 plates and

covers 144 square degrees. Fig 2.5b shows the chunks that make up the BOSS survey. Up to 1000

objects can be observed on each plate, with at least three 15 minute exposures or until the required

signal to noise is achieved (Pâris et al. [2014]).

The geometry of the tilling of BOSS data is expressed in the form of spherical polygons created

using the software package Mangle2 (Swanson et al. [2008]). The whole survey is made up of 32,561

polygons of different sizes, to minimize the number of polygons used and to accurately follow the

observed regions and avoid the masked regions.

2.1.7 Quasar catalogue

All the spectra of the quasars are visually inspected to ensure that the objects are indeed quasars.

Further more identify features in the spectra to confirm or if needed correct the redshift provided

by the pipeline (e.g in case a line is misidentified) (Paris et al. [2012]). About 300,000 (297,301)

BOSS quasars were spectroscopically identified and released in the twelfth data release (DR12) quasar

catalogue of the SDSS III(Pâris et al. 2015 in prep).

2.2 Sample

A magnitude limited survey may suffer from various selection effects, for example, Malmquist bias

(see Hendry and Simmons [1990]) whereby luminous sources are detected at all redshifts whereas the

less luminous sources at high redshifts are not detected. Our quasar sample is taken from the SDSS

which has an apparent magnitude limit of r ≈ 22.5 (Dawson et al. [2013]), therefore suffers from

the bias. Statistical measurements such as source counts and luminosity functions require uniform

and complete data or data that is corrected for biases. I select two samples from the SDSS quasar

catalogue to study sources above the FIRST noise (Chapter 3) and a third sample to study sources

below FIRST’s detection threshold (Chapter 4). Sample 1 and sample 2 were chosen purely so that

the results (source counts and luminosity functions) can be compared with literature (Condon et al.

[2013], Kimball et al. [2011a]).

2http://space.mit.edu/ molly/mangle/|
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2.2.1 Sample 1: Volume-limited sample

The first sample considered is a volume-limited sample. This is a sample where all the sources have an

intrinsic brightness above a set minimum. The minimum brightness is chosen such that all the sources

that meet these criteria are observed. The sample is chosen in the range 0.2 < z < 0.45 and define

the volume limit by Mi < −23. Only 162 BOSS quasars fell in the volume-limited sample. I ran into

a problem using BOSS data at these redshifts (because BOSS focused on high redshift quasars, see

2.2.3), so I used SDSS II quasar sample which has 1,313 sources in the redshift range and applied the

absolute magnitude limit.

2.2.2 Sample 2: Magnitude-limited sample

The second sample is a magnitude-limited sample. This is a sample where sources have apparent

magnitudes above a set value. This kind of sample suffers from Malmquist bias as the sources at

different redshifts have different brightness limit. I chose a magnitude limited sample from the redshift

range 1.8 < z < 2.5, favoured in optical quasar samples (e.g Condon et al. [2013]; Miller et al. [1990])

because the Lyα line is redshifted into the blue band. The magnitude limited sample is defined

by mr < 18, from the 11,613 (29.37%) quasars in this redshift range only 2,419 have the required

magnitudes.

2.2.3 Sample 3: Uniform sample

The third sample is a uniform selection of sources across the survey area (CORE sample). The sample

was initially taken solely from BOSS. However, BOSS quasars are not uniformly selected in redshift as

it focused on high redshift(and ignored the known low redshift quasars Dawson et al. [2013]).Fig. 2.2’s

bottom panel shows the redshift distribution of these (BOSS) quasars. The redshift distribution has

two peaks, one at z ≈ 2.2 and another at z ≈ 0.8 (Fig 2.2). The quasars around z = 0.8 have the

same colours as targeted high redshift quasars (Fig 2.4) and the peak around z = 2.2 is a really one

showing the underlying distribution of quasars .

The third sample is a combination of Legacy and BOSS. The low redshift part of the sample z < 2.15

is from SDSS II’s Legacy quasar catalogue (Shen et al. [2011]) which has an absolute magnitude limit

Mi < −22. Legacy observations from the first data release (DR1) are excluded from the uniform

sample because they were selected using a different algorithm (Shen et al. [2011]). The higher redshift

z > 2.15 sources are from BOSS’s uniform sample defined by Ross et al. [2012], which includes

quasars that have the UNIFORM flag equal one (CORE sample for year 2 onwards) or equal two

(CORE sample from year 1). I also apply Legacy’s absolute magnitude cut to the BOSS data so that

the whole sample has the same brightness cut. The uniform BOSS sample contains around 122,000
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Figure 2.6: The full 10,575 deg2 footprint of the FIRST maps, divided in two 8,444 deg2 in the
North Galactic Cap (NGC, on the right) and 2,131 deg2 in the South Galactic cap (SGC). The SGG

has rages (holes in the data) due to bad weather and faulty instruments.

sources and the Legacy uniform sample contains around 48,000 sources. Fig. 2.8 shows the footprint

of the uniform samples.

2.2.4 Completeness

When conducting a survey, one aims to observe all the sources in footprint, however due to certain

obstacles, it is not possible. Completeness is a measure of how close the observed sources are to the

‘true’ distribution of the sources (Johnston [2011]). For statistical measurements like source counts

and luminosity functions, it is essential to know how many objects are missing. Accurately measuring

the completeness is not easy because there are many obstacles to account for. I will divide the sources

of incompleteness into two, instrumental obstacles and astronomical obstacles.

(i) Instrumental incompleteness

This is when objects are missed due to technicalities or limitations of the instruments used. This

includes sources that missed because they lie in any of the masked regions (Section 2.1.6). This

source of incompleteness can accounted for by computing the ratio of the sources observed and

the target list.

(ii) Astronomical incompleteness

This is when objects are missed because of misclassification or high extinct(McGreer et al. [2009])

or observational biases such as Malmquist bias (Section 2.2). It is not trivial to find objects that

are misclassified or those that suffer heavy extinction. I correct for Malmquist bias by using

volume-limited data.
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Figure 2.7: The left panel shows the distribution of the separation between FIRST and SDSS quasar
positions. The vertical dashed line is the cut-off separation between FIRST and SDSS detected sources
used in this work. The right panel shows the 2-D scatter of the difference in Right Ascension and

Declination between SDSS and FIRST positions.

2.3 FIRST

The Faint Images of the Radio Sky at Twenty centimeters (FIRST) survey (Becker et al. [1995]) is

a high angular resolution survey carried out with the Very large Array (VLA) telescope in its B-

configuration at 20 cm (1.4 GHz, L-band). The survey was designed to match the 10,000 deg2 survey

area that the SDSS (York et al. [2000]) has covered. Observations started in 1993 and where com-

pleted in 2004, additional observations were made in SGC from 2009 to 2011 3 to observe the ragged

portions that were missed due to bad weather or faulty instrumentation. The survey covered a total

coverage of 10 575 deg2 with 8 444 deg2 in NGC and 2,131 deg2 in the SGC shown in Fig 2.6. The

data is obtained by integrating for 3 min over a pointing on the sky in 7 pair frequency channels

centered at 1365 and 1435 MHz. The pointings are designed to produce a uniform sensitivity over

the whole survey footprint when all the pointings are co-added (Becker et al. [1995]). Each pointing

is reduced (calibrated, self-calibrated, mapped and CLEANed) using an automated AIPS script. The

final FIRST maps (Fig 2.6) are obtained by co-adding the individually reduced (weighted) pointings

next to each other and stored in binary format as FITS images with 1.8′′ per pixels having a mean

rms of about 150µJy/beam and a 5′′ resolution (White et al. [1997]).

Sources are identified from the co-added map using HAPPY, a AIPS script (full details are in White

et al. [1997]). In brief, HAPPY identifies pixels above a set threshold, appropriately grouping them

into ‘islands’ and fitting a two-dimensional Gaussian to each island. Basic properties like peak flux

densities, integrated flux densities, right ascension and declination are obtained from this fit. Islands

with fitted peak fluxes below 750µJy are removed, the remaining islands are classified and corrected

3http://sundog.stsci.edu/first/obsstatus.html
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for the CLEAN bias (White et al. [2007],Condon et al. [1994]) explained in Section 2.5.1.

The survey catalogue contains more than 946,000 sources, over the 10,575 deg2 sky coverage. All

sources are above the detection limit, 1 mJy, with an exception of a region in the equatorial strip

which contains data from two epochs. As a result, the detection limit is 750µJy, there are ≈ 4,500

sources in this region were the flux densities are below 1 mJy. The catalogue sources have positional

accuracies ≤ 1′′ (White et al. [1997]).

2.4 Matching SDSS with FIRST

2.4.1 Catalogue sources

I am interested in the radio luminosity function of optically selected quasars so I match the SDSS

quasars to the FIRST catalogue. A quasar has a match when an object in the FIRST catalogue

is found within a certain separation of the SDSS positions. The separation should be as small as

possible to avoid random matching with other sources in the FIRST catalogue and it should also be

large enough to ensure real matches are not omitted because of slight mismatches in position between

the optical and radio data. Fig 2.7 shows the results of the matched sources, the right panel is the

distribution of the separation between the matched SDSS and FIRST quasar catalogue positions.

The right panel shows the 2-D scatter of the difference in Right Ascension and Declination between

SDSS and FIRST positions. The difference in Right Ascension shows a larger scatter compared to the

difference in Dec of the sources, this may suggest that the Right Ascension in one or both catalogues

is less accurate than the Declination. Fig 2.7 suggest a systematic offset on the euclidean separation

between FIRST and SDSS catalogues as the peak separation is at 0.2′′. I choose a limiting separation

of 1.8′′ based on the right panel of Fig 2.7. From the 295,305 quasars, 9,253 (3.13%) matches were

found within the limiting separation, 1.8′′; this is consistent with the low number of optical to radio

matches (SDSS to FIRST; Paris et al. [2012]) found.

2.4.2 FIRST cutouts

In the previous section, I matched SDSS quasars to FIRST catalogue sources. However, the catalogue

only has sources above the 1 mJy detection limit, which is about 0.02% of the FIRST data (White

et al. [2007]) and 3% of the SDSS quasars. Ultimately I am interested in pushing the quasar RLF

below the FIRST detection limit to the µJy levels. To do this, I extract a 10-pixel cutout around the

SDSS positions From the FIRST maps.
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Figure 2.8: The survey footprint of BOSS and Legacy. The area is divided into three regions grey,
green and red. The grey region is the part of the sample that falls within the FIRST footprint. The
green region is the part of the sample that falls within the FIRST footprint but has zero fluxes and

the red region is the part of the sample that does not fall within FIRST.

265,446 of the BOSS and 101,748 Legacy quasars fall within the FIRST area with a non-zero radio

flux (i.e. the data in the region is not corrupted or missing). These sources are represented by the

grey region in Fig. 2.8. The quasars in the red region either fall in a region where FIRST has not

observed or were observed in bad weather conditions such that the data is corrupted. The quasars in

the blue region have zero flux values due to bad data.

2.5 Catalogue and extracted fluxes

The extracted flux density of each quasar is the value of the central pixel of each cutout. The FIRST

cutouts contain sources that are detected and sources where there is just noise. It is then important

to investigate the difference between the catalogue and extracted fluxes of the detected sources and

extrapolate the factors to the sources below the detection threshold that will be used for stacking.

The left top panel of Fig 2.9 is the log-log plot of the peak catalogue fluxes versus the extracted flux.

There seems to be a lot of scattering below 10 mJy were the extracted fluxes fall above and below
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however most of the extracted fluxes fall below the peak fluxes. Above 10 mJy most of the extracted

fluxes are less than the peak fluxes, very few are equal to and even fewer are greater than the peak

fluxes. The button left panel shows the fractional difference between the extracted and peak fluxes

given by,

fracD = 100× SX − SP
SP

, (2.1)

where fracD is the fractional difference, SX is the extracted flux and SP is the peak flux. There is

clearly a significant difference between the extracted fluxes and peak fluxes (≈ 20%) which will have

an effect on the results and, therefore, needs to be accounted for or understood. The are two effects

considered, the snapshot bias and extraction position.

2.5.1 Snapshot bias

The snapshot bias is an effect that decreases the peak flux densities of detected sources and redistributes

it around the field. This phenomenon affects large area radio surveys such as FIRST and NVSS and

it is associated with the non-linear CLEAN process (Condon et al. [1994]). The bias is additive

and generally constant but the magnitude of the bias depends on (i) the rms of the snapshot (the

magnitude increases with noise), (ii) the position with respect to primary beam pattern and (iii) the

size of the source (extended sources are affected more) (Condon et al. [1998], Becker et al. [1995]).

Furthermore White et al. [2007] discovered that the bias affects sub-threshold sources (which are not

CLEANed), suggesting it is associated with the side-lobes of the beam pattern. However, this bias

behaves differently from the one associated with CLEAN algorithm as it is multiplicative (the higher

the flux the higher the bias). White et al. [2007]’s correction to the snapshot bias (which works for

both flavours) is given by

SX = min(1.40SX , SX + 0.25mJy), (2.2)

where SX is the extracted flux. The correction was applied to the extracted fluxes and the right panel

of Fig 2.9 shows the results. This correction has a significant effect on the low flux sources and little

effect on the high-flux sources. The correction is used for all our extracted data from here on.

2.5.2 Extraction position

The extracted flux densities are from the central pixel of the 10 by 10 FIRST cutout which is centred

on the optical position. If the source is not directly at the centre of the cutout, the extracted flux is

lower than the detected flux density. The difference in optical and radio positions might be due to

the difference the source of radio and optical emission in galaxies. However, because the sources are

so far way, this difference is negligible so can not be the source of the difference in radio and optical

positions. This difference must be due to astrometry errors between the two surveys.
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(a) Extracted fluxes.
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(b) bias-corrected fluxes.
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(c) Extracted fluxes.
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(d) bias-corrected fluxes.

Figure 2.9: The difference between FIRST extracted and catalogue fluxes. The top panels is the
plots of the catalogue fluxes versus the extracted fluxes, the solid line represents a case where the
extracted flux is equal to the catalogue flux and the red lines are the 5σ. The bottom panels show the
fractional difference between the extracted and peak fluxes, described by Eq 2.1. The right panels are

corrected for snapshot bias.
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2.6 Sample area

Measuring statistical quantities such as source counts and luminosity functions (LFs) one needs to

take into account the sky area in which the sources were observed. Computing this area is not as

straightforward as one might think as one cannot simply take the total survey areas of BOSS or

Legacy. The area that is required is the overlap between optical and radio surveys shown in Fig 2.8,

bottom panel for BOSS and middle panel for Legacy.

2.6.1 BOSS overlap

In calculating the overlapping region between BOSS and FIRST I consider the geometry of the BOSS

described by different sizes of polygons (see Section 2.1.6). I extracted the central coordinates of each

of the 32,561 polygons and checked whether it fell in the FIRST coverage. There was one of three

situations:

(i) The centre lies within the FIRST maps, then add the area subtended by the polygon to the

overlap area. A possible problem arises, does size (of the polygon) matter? I address this below.

These fall in the grey regions in Fig 2.8.

(ii) The centre lies within the FIRST maps but the flux is zero. The situation arises when the are no

observations in the field but due to the (rectangular) shape of the fits file this region is included

or the data is corrupted from bad observing conditions or instrument failure. These fall in the

green regions in Fig 2.8.

(iii) The last scenario is when the centre does not lie within the FIRST maps. This is when the area

was not observed by FIRST and falls in the red regions in Fig 2.8. The results are shown in

Fig.5 and Table 2.1.

The major flaw of this method is when the size of a polygon is bigger than a 1.8′′ FIRST pixel. This

would mean that there will be an overestimate the area when only a part of the polygon is in FIRST

maps (with the centre included) and under-estimate when again a part of the polygon is in FIRST

but the centre is not. The polygons are designed to accurately follow the SDSS footprint, so errors

are only found in FIRST.

The polygons size ranges from 3.28× 10−12 deg2 to 4.11 deg2 and with a median of 0.128 deg2. The

FIRST maps have size 1.8′′ per pixel which corresponds to an area of 2.5 × 10−7. More than half of

the polygons are bigger than the area of a FIRST map pixel
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BOSS deg2 Legacy deg2

Total 10269.00 6672.0
Overlap 8609.67 6558.0
Zero flux 304.58 90.0
No-matched 1354.75 24.0

Table 2.1: A summary of the overlap between the two optical samples from BOSS and Legacy surveys
and FIRST maps. Zero flux is the regions of the FIRST maps were no observations were made and

the No-matched is the regions that FIRST does not cover.

2.6.2 Legacy overlap

The overlapping area covered by the Legacy is a bigger challenge because unlike with BOSS, polygons

describing the geometry are not provided. Legacy only provided coordinates of the spectroscopic plates

which project a ≈ 7 deg2 on the sky and unlike polygons, plates overlap with each other. The overlap

area is estimated by using a flat sky approximation with 1 deg2 pixels. Then the area is estimated

by summing the unique area covered by the projection of the plates that fall in FIRST maps. This

method has a lot more uncertainties because the size of the projections is larger than a FIRST pixel.

The overlap area between FIRST and Legacy is 6,391.0 deg2; the results are shown in Table 2.1.
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Above the detection threshold:

Radio-loud quasars

Before I dive below the detection threshold (≈ 1 mJy), I investigate methods of computing radio

source counts and luminosity functions for optically selected quasars detected in FIRST. I will do this

for the two samples described in Section 2.2, the volume-limited and magnitude samples, and compare

my results to the literature.

3.1 Source counts

The simplest and most fundamental experiment one can undertake with objects from a survey is to

count their number as a function of flux. Source counts became popular in astronomy when Ryle [1955]

and Ryle and Scheuer [1955] found that the 2C survey counts were surprisingly steeper than those of

a static uniformly filled Euclidean universe and suggested the radio stars were extragalactic. Longair

[1966] then showed the steepening of the counts can be explained by differential cosmic evolution of

sources and since then source counts have been used to study extragalactic populations and galaxy

evolution (e.g. Rowan-Robinson [1970]; Whittam et al. [2013]).

Source counts are usually presented in differential form n(S)dS, defined as the number of objects per

steradian with flux density S between S and S+dS. The integral form of the source counts is defined

as the number of sources brighter than flux density S. The integral form is however not favoured as

it smoothes out rapid changes of source density with flux density, furthermore, the numbers in each

flux density bin are not statistically independent (Jauncey [1967], Crawford et al. [1970]). Even on

a logarithmic scale, source counts can be so steep that most of the interesting features are obscured.

33

 

 

 

 



Chapter 3. Radio-loud quasars 34

Weights are introduced to normalize the source counts; I consider two weighting schemes used in radio

studies, brightness-weighted and Euclidean-weighted.

(i) Brightness-weighted counts

The radio source counts are related to the sky brightness by the Rayleigh-Jeans’ long-wavelength

approximation,

n(S)dS =
2kBdTbν

2

c2
, (3.1)

where kB is the Boltzmann constant, dTb is the brightness temperature from n(S) sources between

S and S + dS, c is the speed of light and ν is the observed frequency. Knowing that the fluxes

span a few orders of magnitude one can substitute d log10(S) = dS/S and change bases to give[
dTb

d log10(S)

]
=

[
ln(10)c2

2kBν2

]
S2n(S). (3.2)

The brightness-weighted counts are thus proportional to the brightness temperature in each

logarithmic flux range (Condon [1988]).

(ii) Euclidean-weighted counts

The Euclidean weights are obtained by assuming a Euclidean universe (i.e a static uniformly-

filled universe). For sources with luminosities L in the range L + LdL with a luminosity function

ρ(L) (3.8). The observed flux S at distance R from the source is given by

S =
L

4πR2
. (3.3)

Then Rmax, the maximum radius at which an object with luminosity L will have flux > S, is

R =

(
L

4πS

)1/2

⇒ dR = − L3/2

(4π)3/2S5/2
dS. (3.4)

The number of sources with luminosity L that have fluxes > S in a shell R to R+ dR is,

N(S) = ρ(L)dV (R)

= ρ(L)4πR2dR

= −ρ(L)L3/2(4π)−1/2S−5/2dS.

⇒ n(S)S5/2 = −ρ(L)L3/2(4π)−1/2 (3.5)

The right side is constant because the N(S) is independent of the luminosity function (e.g. Krolik

[1999]). The differential source counts of objects normalized by S5/2 are expected to be constant

in a Euclidean universe, this was one of the earliest evidence of a non-static universe (e.g Ryle

and Clarke [1961]). I adopt the Euclidean weighting in this work.
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Figure 3.1: The Euclidean normalized source counts of the volume-limited sample defined by Mi <
−23 in the redshift range 0.2 < z < 0.45 in the top panel and the button panel is of the magnitude-
limited sample defined by mr < 18.5 in the redshift range 1.8 < z < 2.5. The blue dots are the BOSS
source with FIRST catalogue matches, the red triangles are Condon et al. [2013]’s sample taken from
Legacy with NVSS catalogue matches. The green squares are Legacy sources with FIRST counterparts
and the purple diamonds are also Legacy-FIRST sources with the NVSS flux cut of 2.4 mJy. The red

and blue dotted lines represent the NVSS and FIRST detection limits respectively.
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Figure 3.2: The 1.4GHz images of SDSS J091205.16+543141.2; the left panel shows the NVSS image
and the right panel shows a higher resolution with lower surface brightness FIRST image. The contours
have a ±

√
2 separation with FIRST starting at 0.5 mJy beam−1 and NVSS at 1 mJy beam−1 (taken

from Condon et al. [2013])

3.1.1 Sample 1

The top panel of Fig. 3.1 shows the quasar radio source counts of the volume-limited sample defined

by Mi < −23 in the redshift range 0.2 < z < 0.45 (2.2.1). The BOSS data points do not agree with

Condon et al. [2013]’s sample (Legacy-NVSS); this is due to the fact that BOSS ignored all the known

low-redshift quasars identified by Legacy (and other low redshift quasar surveys) and observed new

ones from the area not observed by Legacy (2.1.5). There are 282 quasars in the Legacy and FIRST

catalogues with fluxes ranging from 0.95 mJy to 2,260 mJy. The data (Legacy-FIRST) are consistent

with Condon’s (Legacy-NVSS) data as shown in the top panel of Fig. 3.1. Although FIRST counts

are mostly below the NVSS fluxes and at the faint FIRST data points lie above those of Condon

et al.. This is because when using extended baselines in the VLA like you do for FIRST you miss

the extended emission, and, therefore, would underestimate the amount of radio emission. This would

move objects to fainter radio fluxes than they actually are. Also, some will disappear from the FIRST

survey altogether as they do not have a peak flux above the rms that means that they are detected at

> 5σ. This would decrease the source counts as you get closer to the flux limit (5σ). However, when

using smaller baselines like in NVSS you miss very little extended emission, but the flux-limit is higher

(2.5 mJy), therefore you don’t get as deep as you do with FIRST (1 mJy). Even with a 5σ detection

threshold you still probably only detect ≈ 80% of the objects in both surveys. Fig. 3.2 illustrates the

difference between FIRST and NVSS with a multicomponent quasar, FIRST resolved the core and the

two lobes with flux densities that add up to 6.6 mJy while NVSS resolved it as a single object with a

flux density of 23.8 mJy (Condon et al. [2013]). This shows how FIRST and NVSS complement each

other.
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3.1.2 Sample 2

The Euclidean weighted source counts for the magnitude-limited sample is shown in the bottom panel

of Fig. 3.1. There are 233 detected sources in both BOSS and FIRST that satisfy this sample definition.

I obtained the source counts in Fig. 3.1 by: (i) selecting all the sources in the redshift slice, (ii) bin

the fluxes (I used the same bins as Condon et al.), (iii) and normalize the counts in each bin by S2.5
med

(Euclidean normalization), where Smed is the median flux of the bin. The results are consistent with

Condon et al.’s Legacy and NVSS results with the same issue at the low flux end as the volume-limited

sample (see 3.1.1) that FIRST has more data because it has a lower detection limit. The FIRST data

points are mostly below the NVSS points.

3.2 Radio luminosity function

Source counts contain rich information about source populations and their evolution. When combined

with redshift information they can be used to infer star-formation rates (e.g. Dunne et al. [2009],

Karim et al. [2011], Zwart et al. [2014]) and construct luminosity functions (LFs; e.g. Condon et al.

[2013]; Roseboom and Best [2014]).

A LF is the distribution of objects luminosities weighted by the comoving volume they are observed

in. LFs therefore, encompass more information than counts as the luminosity is an intrinsic property

of the source. It is hard to get the Bolometric luminosity of objects as this requires integrating con-

tributions over all frequencies. I instead work with the spectral luminosity function which is the LF

defined at a certain frequency (or bandwidth).

Construction of the LF requires the luminosities of the sources at given 1.4 GHz FIRST flux densities,

plus their SDSS redshifts. The spectral luminosity Lν , at frequency ν in the source frame, for an

isotropic source at redshift z is given by

Lν = 4πD2(1 + z)1−αSν , (3.6)

where Sν is the spectral flux measured at frequency ν in the observer’s frame,and α is the spectral

index between two frequencies ν and ν0 in the observer’s frame, defined as

α ≡ − ln(S/S0)/ ln(ν/ν0).

The (1 + z)1−α term corrects for the fact that the flux S0 has been redshifted from ν to ν0. 4πD2 is

the area of a sphere centred at the source with the observer at the circumference. D is the effective
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distance or comoving distance (Longair [1978]); for example in Friedman models (where cosmological

the constant Λ is zero) with zero pressure the comoving distance is given as (Mattig [1958])

D =
2c[2− ΩM (1− z)− (2− ΩM )

√
1 + ΩMz]

H0Ω2
M (1 + z),

(3.7)

where c is the speed of light, ΩM is the mass density and H0 the Hubble constant. The comoving

distance is related to the luminosity distance, defined by S = L/4πD2
L, as DL = D(1 + z).

The spectral LF, ρm, is (Condon [1984]):

ρm(Lν) = ln(m)Lνρ(Lν), (3.8)

where Lνρ(Lν)dLν is the comoving number density of sources with spectral luminosities between Lν

and Lν + dLν and m ≡ 2.5 (the definition of magnitude i.e. ∆m = 2.5 log10(S)).

Completeness is one of the major issues one faces when constructing a LF from a flux-limited survey,

such as SDSS. Such surveys are affected by Malmquist bias (Section 2.2) whereby brighter objects

at higher redshifts and fainter objects at lower redshifts are favoured. Several weighting schemes for

LFs were developed over the years to account for such biases, such as the classical approach (Felten

[1977]), C− method (Lynden-Bell [1971]) (see Johnston [2011] for a review).

I use the 1/Vmax method (Trumpler and Weaver [1953]; Christensen [1975]; Schechter [1976]) to correct

for this effect. For N sources in a spectral luminosity bin of logarithmic width m, ρm is given by

ρm(Lν) =
N∑
i=1

(
1

Vmax

)
i

, (3.9)

where Vmax (Mpc3) is the comoving volume where the sources could have been detected. In simple

terms, I obtain the LF by binning the luminosities (0.4 binwidths) and add the Vmax of each source in

the bin. The variance associated with ρm(Lν) is given by,

σ2 =

N∑
i=1

(
1

Vmax

)2

i

. (3.10)

Fig. 3.3 shows the quasar radio luminosity function (RLF) of the detected FIRST quasars from Legacy

and FIRST catalogues in the redshift 0.2 < z < 0.45 brighter than Mi = −23. This sample is volume-

limited and, therefore, contains all the optically selected quasars in this survey area and redshift

range. The quasars that are not in this list are those that are missed due to redshift completeness

(Section 2.2.4). RLF are known to follow a (broken) power law (Boyle et al. [1988], 2000, Pei [1995]),
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Figure 3.3: The 1.4 GHz luminosity function of the volume-limited sample Mi < −23 at 0.2 < z <
0.45. The green squares are obtained from Legacy with matched FIRST fluxes and the red triangles
are Condon et al. [2013]’s sample taken from Legacy with NVSS counterparts. The black line follows

Eq. 3.11 and Eq. 3.12.

our RLF follows one from L ≈ 1026 to lower luminosities. Condon et al. [2013] and Kimball et al.

[2011a] suggest a fall at around L ≈ 1020 WHz−1, otherwise, the total number of radio sources will

exceed the number of quasars. The power law is given by

log10

(
ρm

mpc−3mag−1

)
= −4.21− 0.16 log10

(
L

1.4GHz

)
, (3.11)

and starts to fall off at the higher luminosities (∼ 1026) following an arbitrary quadratic,

log10

(
ρm

mpc−3mag−1

)
=

[
−8.35− log10

(
L

1.4GHz

)
− 25.8/1.6

]2

. (3.12)

The fall-off at high luminosities is because there are no more observed quasars (in the SDSS) at these

luminosities (Kimball et al. [2011a]).

Its well know that powerful emission from (radio loud) quasars is dominated by accretion of mate-

rial into a black hole (Salpeter [1964]) and have luminosities above log10(L) ≈ 22.5 (Kimball et al.
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Figure 3.4: The 1.4 GHz radio luminosity function of quasars detected in FIRST from the magnitude-
limited optical sample defined by mr < 18.5 at 1.8 < z < 2.5 with an additional absolute magnitude
cut of Mi < −27.7. The blue dots are obtained from BOSS sources with FIRST matches and the red

triangles are Condon et al. [2013]’s sample taken from Legacy with NVSS counterparts.

[2011a]). Radio-quiet quasars have lower luminosities and are believed to be dominantly powered by

star-formation and AGN-related emission (Condon [1984], Windhorst et al. [1985], Kron [1985], Wall

and Jackson [1997]). Both Kimball et al. [2011a] and Condon et al. [2013] found a bump in the LF

peaked log10(L/WHz−1) ≈ 22.5 which deviates from the power-law in Eq. 3.11 for AGN dominated

emission. They conclude that radio-quiet quasars are powered by star formation because they behave

differently from radio-loud quasars which are known to be powered by AGN.

Fig. 3.4 shows the quasar RLF for the magnitude-limited sample mr < 18.5 with redshifts 1.8 <

z < 2.5. The plot shows a comparison between our luminosity function (BOSS-FIRST) and Condon

et al. [2013]’s Legacy-NVSS data. From the 2,419 quasars in the optical sample, 233 have detected

FIRST counterparts within a 1.8′′ radius. The quasars have luminosities ranging from 1.43× 1025 to

4.58 × 1028 WHz−1. The results are consistent with each other except for the difference at the faint

end (see Section 3.1.1).

 

 

 

 



Chapter 4

Below the detection threshold:

stacking and radio-quiet quasars

The main aim of this thesis is to investigate the nature of the radio-quiet quasars, but they lie below the

detection threshold of currently completed large-area radio surveys. In Chapter 3 I explored quasars

above the FIRST detection threshold (1 mJy) in the two samples described in Section 2.2. Only radio-

loud quasars have FIRST counterparts; currently the deepest large-area radio survey and they make

up ≈ 10% of the optically-selected quasars (e.g. Condon et al. [2013], White et al. [2007], Ivezić et al.

[2002]). Moreover, 99.98% of the five billion FIRST beams are ‘empty’ sky (White et al. [2007]). This

means that most of the quasar population and radio sources are below the detection threshold of 1 mJy.

This radio-quiet population below the detection threshold of wide-area surveys can be studied through

smaller deeper radio surveys such as the First-Look survey (FLS; Condon et al. [2003]) and Cosmic

Evolution Survey (COSMOS; Schinnerer et al. [2004]). FLS covers the same 5 deg2 field as Spitzer’s

First-Look survey (Fadda et al. [2004]) using the VLA in its B-configuration, and reached a mean RMS

of 23 µJy. COSMOS is a collection of 7 VLA observations in A configuration with an RMS ranging

from 36 to 46 µJy. These small surveys have a few 100s to 1000s (mostly extragalactic) sources which

make them excellent for studying galaxies. However, they have detected very few quasars: Using SDSS

DR3 White et al. [2007] found ten counterparts from FLS and four from COSMOS. There recently

have been a few deep surveys that have allowed the study of radio-quiet populations, for example,

the VLA-Chandra Deep Field South (VLA-CDFS; Kellermann et al. [2008]) covering a 0.11 deg2 area

down to a rms of ≈ 8.5µJy (complemented by data from a variety of other frequencies).

Another way of studying radio-quiet quasars is by observing a selected sample (e.g. Kimball et al.

[2011b]). However, this requires a great deal of telescope time. Hence, the most common means of

studying sources below the detection threshold in the past decade (Ivezić et al. [2002], White et al.
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[2007], Hodge et al. [2008], Mitchell-Wynne et al. [2014], Roseboom and Best [2014]), is to use some

form of ‘stacking’.

4.1 Stacking

There are a number of different versions and definitions of stacking seen in the literature (see Zwart

et al. [2015a] for an overview). In its simplest form, stacking is using positional information of a source

population selected (and classified) from an auxiliary survey and extracting the flux density in the sur-

vey of interest (where they are above or below the detection threshold; typically radio). In most cases

stacking is used to explore the average properties of sources below the detection threshold, typically

3σ − 5σ. For example, stacking to infer average SFR (e.g. Dunne et al. [2009]; Karim et al. [2011],

Zwart et al. [2014]), where they extracted 1.4 GHz radio fluxes from positions of sources selected by

stellar mass in the near infrared (taking advantage of the FIR-radio correlation, Section 1.2.5).

Average stacking techniques have added a great deal to our understanding of µJy source populations.

However, they only return a single statistic and lose all the other information. Mitchell-Wynne et al.

[2014] developed a maximum-likelihood based stacking technique that returns a model of the source

counts and Roseboom and Best [2014] adopted a similar approach to model the LF and its evolution.

Zwart et al. [2015b] then extended Mitchell-Wynne et al.’s technique to a fully-Bayesian framework

(Bayestack) that allows different source models to be fitted and compared.

I will stack all the SDSS quasars that are below the FIRST detection threshold using two approaches;

simple average stacking and a full Bayestack approach where I follow the work of Zwart et al. [2015b].

Before I discuss the stacking methods, I will explain the main sample below the FIRST detection limit.

4.2 Sample 3: Uniform sample

I use sample 3, the uniformly selected optical quasar sample (Section 2.2.3). The low-redshift part

of the sample (z < 2.15) is taken from Legacy and the higher redshift sample (2.15 < z < 3.5) from

BOSS. I extracted the pixel fluxes from FIRST cutouts nearest to the optical position. I divided the

sources into 12 redshift slices, kept as small as possible to avoid in-bin evolution, but making sure they

are wide enough to have statistically sufficient data. Table 4.1 and Fig. 4.1a show the redshift slices,

the number of objects in each slice and the median stacked fluxes. Fig. 4.2 shows the flux distributions

of the sources overs the 12 redshift slices. The distributions are Gaussian on the negative side but

have positive tails in the σ − 5σ regime that contain the buried sources whose fluxes I will use to fit

source count models after Zwart et al. [2015b]. There are negative fluxes because the interferometer
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z bin N Median flux (µJy) z bin N Median flux (µJy)

0.20 < z < 0.45 4381 182± 14 1.85 < z < 2.15 6319 84± 14
0.45 < z < 0.70 5508 168± 14 2.15 < z < 2.35 27256 34± 4.2
0.70 < z < 1.00 6106 126± 14 2.35 < z < 2.55 27088 35± 4.2
1.00 < z < 1.30 8423 112± 14 2.55 < z < 2.85 18613 39± 4.2
1.30 < z < 1.60 9225 98± 14 2.85 < z < 3.15 12744 35± 4.2
1.60 < z < 1.85 7421 98± 14 3.15 < z < 3.50 7775 39± 5.6

Table 4.1: The redshift slices used for sources below 5σ. The lower redshifts (z < 2.15) are taken
from Legacy and the higher redshifts are taken from BOSS.

does not measure the constant background of the sky, the mean background brightness is subtracted

from noise-only/source free observations and rejected where there are sources.

4.3 Simple averaging

In this approach, I summarized each of the flux distributions (Fig. 4.2) with a single statistic, the

average (mean or median) flux. White et al. [2007] fully explores the advantages the two statistics,

the mean and median:

(i) The mean is straightforward to compute and can be easily interpreted. The problem with this

average is that it is sensitive to outliers, i.e. a bright source will considerably shift the mean to

the positive side.

(ii) The median value is a more robust statistic as it is less sensitive to outliers, however, it also

has a number of biases including the shape of the population and the map noise (Bourne et al.

[2012]). The problem with the median is interpreting it. At a low signal-to-noise; White et al.

[2007]’s median stack approaches the mean, so they interpret their medians as means.

I use the median stack to obtain the average flux of each redshift slice (Table 4.1 and Fig. 4.1b).

The median fluxes are all below the detection threshold and they decrease with redshift and de-

crease exponentially with increasing redshift (which is expected, White et al. [2007]) from 182 µJy at

0.2 < z < 0.45 to 39 µJy at 3.15 < z < 3.5. This decrease is due to the optical selection imposed on

the sample. The flux decreases because galaxies are further away, and if radio emission is correlated

with optical emission (which there is up to a point, see Serjeant et al. [1998]) then the higher radio

fluxes are low from the fact that they are more distant (in spite the fact that they are intrinsically

more luminous). There was a discontinuity between the median flux from Legacy and BOSS. This

discontinuity is from the fact that BOSS reaches fainter apparent magnitudes within the Mi = 22

absolute magnitude cut introduced, hence there a lot more (fainter) objects in BOSS and with the

radio-optical correlation (Serjeant et al. [1998]) they will also have lower radio fluxes.
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Figure 4.1: The left panel is the histogram of the number of sources in the 12 redshift bins in sample
3. The right panel show the stacked median fluxes from the 12 redshift slices and the red horizontal
line shows the average rms (1σ) for FIRST. The blue vertical line at redshifts z = 2.15 splits the data,

z < 2.15 sources are taken from Legacy and z > 2.15 sources are taken from BOSS.

4.4 Bayesian framework

The median stacking method gives a single statistic representing a distribution of noise-dominated

fluxes. Some authors have used this one-point statistic to compute average quantities such as star-

formation rates (SFR) (e.g. Zwart et al. [2014], Karim et al. [2011], Dunne et al. [2009]). However,

there is only so much one can do with stacked median flux. I follow the work of Zwart et al. [2015b],

modelling source counts in a fully Bayesian framework, in order to constrain source counts and the

RLF to values below the detection threshold.

4.4.1 Bayes’ theorem

The use of Bayesian analysis methods has been increasing in astrophysics and cosmology over the past

20 years. This is because they provide a consistent way of estimating a set of parameters θ and in

determining a model (or hypothesis) H that best describes the data D. Bayes’ theorem states:

P (θ|D,H) =
P (D|θ,H)P (θ|H)

P (D|H)
, (4.1)

where P (θ|D,H) is the target posterior probability distribution given the data and model, P (D|θ,H)

is the likelihood (L) the probability of the data given the model and parameters, P (θ|H) the prior,

Π and P (D|H) is the Bayesian evidence (Z). The Bayesian evidence normalizes the posterior and

can be considered to be the average of the likelihood over the prior, written as an integral over the
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Figure 4.2: The flux distributions of the extracted FIRST fluxes from cut-outs centered at the SDSS
quasar positions. The quasars are divided into 12 redshift slices, with those in the first seven redshift
bins from Legacy and the rest from BOSS. The two blue lines in each bin represent the FIRST the
RMS σ = 150 µJy and 5σ = 750 µJy. The red dashed curve is a Gaussian with a width equal to the

survey noise and the mean equal to the peak flux each slice.
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n-dimensional parameter space,

Z =

∫
LΠdn. (4.2)

A model has a high evidence when a large portion of its prior parameter space is likely (large likelihood),

and small evidence when a large portion of its parameters space has a small likelihood irrespective of

how peaked the likelihood function is. This automatically adopts Occam’s razor, i.e “a simpler theory

with compact parameter space will have a larger evidence than a more complicated one unless the

latter is significantly better at explaining the data.” (Feroz et al. [2009b]).

In Bayesian model selection one would compare the evidence of two models A and B. This is computed

by considering the ratio of their evidence ZA/ZB (equivalent to the difference of their log-evidence

ln[ZA−ZB]), known as the Bayes factor. The Bayes factor effectively determines how model A better

fits the data than model B. Jeffreys [1961] introduced a way to conclude on how significantly better

Model A is compared to B based on the Bayes factor: ∆ lnZ < 1 is not significant, 1 < ∆ lnZ < 2.5

significant, 2.5 < ∆ lnZ < 5 strong and ∆ lnZ > 5 decisive.

4.4.2 Nested sampling

In order to compute the posterior distribution, one needs to sample from it normally using typical

MCMC sampling. Sampling has always been one of the most computationally expensive parts of

model selection because it involves solving the multidimensional integral in Eq 4.2. Nested sampling

(Skilling [2004]) was created for efficient calculation of the evidence and has the added bonus of

producing posterior inferences as a by-product.

MultiNest(Feroz et al. [2009b]; Feroz et al. [2009a]; Buchner et al. [2014]), is a robust implementation

of nested sampling. It gives out the full posterior distribution instead of a maximum, from which the

uncertainty analysis can correctly be done with having assumed distribution for the data uncertainties.

4.4.3 Models considered here

Source counts usually have a power-law nature; Mitchell-Wynne et al. [2014] used a single power law

fit to their data and Zwart et al. [2015b] had a variety of models from a single power-law (model A)

to piecewise power laws with multiple slopes (Model B, C, D). The models are not limited to power

laws; one can fit other models such as polynomials and poles/nodes (e.g Vernstrom et al. [2014]) or

modified power laws. I follow Zwart et al. and use piecewise power laws, comparing them using the

relative evidence to select the best model.
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(i) Model A

The first model is a simple power law;

dN

dS
(C,α, Smin, Smax) =

CSα Smin < S < Smax

0 otherwise
, (4.3)

where dN
dS are the differential source counts, the number of sources N with flux in the interval

[S, S + dS], C is the normalization constant, α is the slope and Smin < S < Smax are the lower

and upper bounds of the model respectively.

(ii) Model B,C and D

The next model is an extension of the previous model; with an extra power law that introduces

two new parameters, a second slope a1 and a break at S0,

dN

dS
(C,α, β, Smin, S0, Smax) =


CSα Smin < S < S0

CSα−β0 Sβ S0 < S < Smax

0 otherwise.

(4.4)

Model C and Model D have more breaks and slopes; Model is described by
dN
dS (C,α, β, γ, Smin, S0, S1, Smax) with one more break from Model B and Model D is described

by, dN
dS (C,α, β, γ, δ, Smin, S0, S1, S2, Smax).

(iii) Model A′, B′, C ′, and D′

I also consider the models A′, B′, C ′, and D′ where I fit the radio noise σn as a free parameter

(see next Section 4.4.4). These models otherwise have the same expressions as their fixed noise

counterparts A,B,C,D.

4.4.4 Likelihood

I now define the likelihood function of the binned fluxed data. I first consider the likelihood of finding

ki objects in the ith bin. Since these are binned data, I assume that they follow a Poisson distribution

with the mean number per flux interval given by dN
dS (S) (normalized by the sky area). Therefore

(ignoring the noise) the likelihood is,

Li (ki|θθθ) =
λkii e−λi

ki!
, (4.5)

where λ = dN
dS (Si)∆Si is the mean number in each bin and the mean number per flux bin dN

dS (Si) is

assumed to be constant in the interval ∆Si. If one considers an infinitesimal interval dS, then there
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will be zero or at most one object found in each bin with a likelihood given by,

Li (ki = 1|θθθ) =
λkii e−λi

1!
∼ λi =

dN

dS
(Si)dSi. (4.6)

I now consider a more realistic situation where the flux is

Sm = S + n, (4.7)

where S (Jy) is the ‘real’ flux from objects and n (Jy) is the noise. The noise is assumed to follow

a Gaussian distribution centered at zero with a variance σ2
n. This is a good assumption considering

Fig. 4.2. The likelihood is then,

Li (ki|θθθ) =
Ikii e−Ii

ki!
, (4.8)

where Ii the theoretical expected value in each bin given by,

Ii =

∫ Smax

Smin

dS
dN(S)

dS

∫ Smi+∆Smi

Smi

dSm
1

σn
√

2π
e
− (S−Sm)2

2σ2n . (4.9)

Solving the second integral in Eq. 4.9,

Ii =

∫ Smax

Smin

dS
dN(S)

dS

1

2

{
erf

(
S − Smi
σn
√

2

)
− erf

(
S − (Smi + ∆Smi)

σn
√

2

)}
. (4.10)

The total likelihood from the nbins bins is given by the product of the likelihood in each bin, assuming

the bins are independent,

L (k|θθθ) =

nbins∏
i=1

Li (ki|θθθ) . (4.11)

4.4.5 Priors

Priors are the prior knowledge or limits of a parameter/data. They play an important role in Bayesian

inference as they define the sampling parameter space. A uniform prior is the simplest form, pro-

viding an equal weighting of the parameter space. Most of the parameters were given uniform priors

(Table 4.2) with the exception being the normalization C which is a scale parameter and thus has a

logarithmic uniform prior.
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Table 4.2: Priors Π(θ|H).

Parameter Prior

C/sr−1Jy−1 log-uniform ∈
[
10−3, 105

]
α, β, γ, δ uniform ∈ [−2.5,−0.1]
Smin/µJy uniform ∈ [0.01, 150.0]
Smax/µJy uniform ∈ [150.0, 2000.0]
S0,1,2 uniform ∈ [Smin, Smax]
S0,1,2 further require S0 < S1 < S2

σn δ (σsurvey), or
uniform ∈ [0.5, 2.0]σsurvey

Combining Eq. 4.11 with the priors in Table 4.2 and substituting into Eq. 4.1 one can determine the

posterior probability distribution as well as the evidence. I use a Python implementation (Buchner

et al. [2014]) of MultiNest(PyMultiNest) on a cluster with 48 cores. The code does not use much

memory or disk space, but the number of parallel processors roughly determined the overall runtime.

4.4.6 Tests and simulations

I did not explicitly run any tests or simulations for the technique as this was already done by both

Mitchell-Wynne et al. [2014] and Zwart et al. [2015b]. Mitchell-Wynne et al. ran a Markov Chain

Monti-Carlo (MCMC) simulation using a dN/dS model, from which they simulated fluxes and noise

(drawn from a Gaussian). They then binned the data, which was found to be consistent with the

theoretical expectations (Eq. 4.11). They then accurately recovered the model parameters by running

the fit. Zwart et al. applied the technique to the Square Kilometre Array Design Studies SKA

Simulated Skies (SKADS-S3) simulations by Wilman et al. [2008]; 2010. SKADS is a semi-empirical

simulation of the extragalactic radio continuum sky, covering a sky area of 20 × 20 deg2 with ≈ 320

million sources out to a redshift of z = 20 and flux density of 10 nJy. The sources have flux densities

at 151 MHz, 610 MHz, 1.4 GHz, 4.86 GHz and 18 GHz, divided into six types: radio-quiet AGN

(13%), radio-loud AGN FRI (9%), radio-loud AGN FRII, quiescent star-forming galaxies (76%) and

starburst galaxies (2%). Zwart et al. fitted models A,B,C and D to extracted sources from a 1 deg2

of SKADS and added random noise sampled from a Gaussian to each source. They ran the code on

the SKADS noisy data and were able to successfully reconstruct the true source counts out to a known

limit (Smin).

4.5 Results

With the mathematical foundations of the method laid out, described and tested, I applied it to the

data. I start by applying the method to samples 1 and 2, the two samples used in Chapter 3, and

then to sample 3, the uniform sample (Section 2.2.3 and 4.2).
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Figure 4.3: The posterior distribution of the models A,B,C and Dd. The dark blue region are the
68% and the light region the 95% confidence levels. Model A is the wining model with the highest

evidence for sample 1.
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Figure 4.4: Continuation of Fig. 4.3
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Slopes Model ∆ logZ Model ∆ logZ
1 A 3.2± 0.14 A′ 1.4± 0.15
2 B 3.0± 0.14 B′ 1.1± 0.14
3 C 2.1± 0.14 C ′ 0.5± 0.15
4 D 1.9± 0.15 D′ 0.0± 0.0

Table 4.3: The relative evidence of the different source count models for sample 1 in the redshift
range 0.25 < z < 0.45 with Mi < −23. Model D′ is the reference evidence with the lowest log-evidence

logeZ = −59.2± 0.11 and model A is the winning model.

4.5.1 Posterior distributions

The Bayestack method returns the Bayesian evidence and the posterior for a given model. Fig. 4.3

and Fig. 4.4 show the triangle plots of the posterior for the Models A,B,C and D. The posterior

plots of Model A show that a single power law fits the data well, all the fitted parameters have a peak

and the posteriors of Smin, α and C are to a good approximation Gaussian. However, Smax is not

Gaussian, it is more Poisson-like and spans the whole prior range. The posterior plots of Model B

(a broken power law with two slopes) have one or two peaks and are highly non-Gaussian with the

exception to the posterior of the first slope α and Smin. With these kinds of posteriors the assumption

of a Gaussian posterior and Gaussian uncertainties made when using a χ2 estimator fail, showing why

a fully Bayesian approach is necessary for this work. The posterior plots of Model C and D are very

similar to that of Model B with more slopes and breaks. In both models the marginalization of Smax

is cut off at the end, this is one of the priors of this parameter (Table 4.2) where we only explore fluxes

below 1.5 mJy.

The winning model is found by comparing the evidence of the various models, using the Bayes factor.

Table 4.3 shows the evidence (normalized to minimum evidence) of all the models (including the prime

models of which the triangle plots are not shown) applied to sample 1. The model with the highest

evidence for sample 1 is Model A (simple power law). This procedure is done for sample 2 and the 12

redshift slices of sample 3 but I will not show the triangle plots or evidence tables.

Obtaining the best fit parameters from the posterior plot is not an easy task. This because of the

(non-Gaussian) shape of posteriors as seen in Fig. 4.3 and Fig. 4.4. The Bayestack code returns three

summaries or best fit values: the mean parameters, maximum likelihood parameters and maximum-

a-posteriori (MAP) parameters. I use the MAP parameters because the mean is sensitive to outliers

and the maximum likelihood assumes the posterior is Gaussian. Although MAP is the best statistic

for this situation, it still does not fully describe the complex nature of the posterior.
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4.5.2 Source counts

Source counts are reconstructed by evaluating MAP parameters of winning models at each bin and the

uncertainty is given by the 95% region around the median (re-centered on the MAP). The reconstructed

source counts of samples 1 and 2 are shown in Fig. 4.5a and 4.5b respectively along with the detected

sources. I use SKADS data at 1.4 GHz to compare the radio-quiet and radio-loud AGN with the

quasars in our sample. Comparing the SKADS galaxies with the quasars in this work, I note that

the (SDSS) quasars are optically selected and there is no way to impose this selection on the SKADS

data. So I simply normalize the SKADS source counts because I am only interested in the shape

(White et al. [2015]). I chose a normalization for each slice which is different for each sample (optical

absolute magnitude cut), and each redshift (comoving volume cut). All the reconstructions are valid

to a certain Smin (one of the parameters) because the fit is mostly driven by the bright end which has

a high SNR compared to the faint end. The depth also has a 1/
√
N (where N is the number of sources

in the fit) behavior so in general, the fit can be valid to a factor ≈
√
N below the threshold (Zwart

et al. [2015b]). The reconstruction of sample 1, which is best fitted by model A (the simple power

law), has the same slope as the counts of the detected sources. The SKADS counts are consistent with

the detected sources with a slope similar to the reconstructed source below 5σ. Sample 2 is best fitted

by three slopes (model C); the SKADS counts are consistent with the detected counts until they fall

off at ≈ 104µJy. The reconstructed slope at the faint end has a similar slope to the SKADS counts.

In what follows I apply the fitting algorithm to the 12 redshift slices of sample 3. The reconstructions

of the source counts are shown in Fig. 4.6 and 4.7, where they are compared with the SKADS sources

(radio-quiet and radio-loud sources) and the detected sources in each bin. In general, the reconstructed

counts are continuous from the detected counts and follow the SKADS counts, more so the radio-quiet

AGN. There are a number of changes in the counts as a function of redshift. Below z = 0.7 the

reconstructed counts and SKADS counts follow a power law. Above z = 0.7 the SKADS counts have

a ‘bump’ at S ≈ 100 mJy and the reconstructed counts are mostly best-fitted by a power-law with

two slopes (model B). There is also an apparent evolution of Smin as it seem to be going to lower

fluxes with redshift. This is mostly due to the sample selection, at low redshifts I use Legacy and

BOSS sources at higher redshifts. BOSS has significantly more sources than Legacy and will therefore

having better fits at low fluxes.

4.5.3 Luminosity functions

My main goal is to investigate the nature of radio-quiet quasars and their emission as well as the pro-

cesses behind it. The source counts in Section 4.5.2 shed light on the nature of these sources, but LFs

are more fundamental as luminosity is an intrinsic property of the source. In this section, I construct

LFs using the reconstructed counts. This is not a trivial objective because to generate LFs one needs
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Figure 4.5: The reconstructed source counts of the quasars in sample 1 and sample 2 using the
best-fit model A and C respectively (shown at the bottom right of each plot). The black line is the
maximum-a-posterior (MAP) reconstructed model with a 95% confidence level uncertainties. The red
and blue points are the detected sources from Condon and this work. The blue, red and green lines
represent all the extragalactic sources, radio-loud AGN and radio quiet AGN in SKADS. The red
region is the 95% interval of Smin and the light blue region is the theoretically expected region for the
value of Smin. The two light blue lines represent 1σ and 5σ for FIRST and the red line marks Smin.
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Figure 4.6: The reconstructed source counts of the quasars from sample 3. The best fit model to
represent these sources is indicated at the bottom right of each panel. The black line is the maximum-
a-posterior (MAP) reconstructed model with 95% confidence level uncertainties. The red and blue
points are the detected sources from Condon and this work. The blue, red and green lines represent all
the extragalactic sources, radio-loud AGN and radio-quiet AGN in SKADS. The two light blue lines
represent 1σ and 5σ for FIRST. The red line marks Smin and the shaded red region is the 95% interval

of Smin .
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Figure 4.7: Continuation of Fig. 4.6
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luminosities or fluxes with redshift information. In this case, I have the reconstructed counts which

contain flux information but no individual redshift for each flux (from the reconstruction). The only

redshift information is the upper and lower bounds of each slice.

In order to convert the reconstructed counts from each redshift slice to LF, I assume that all the

sources in each redshift slice are at the same redshift z corresponding to the mean redshift of the slice.

The Euclidean counts, nS2.5 (sr−1Jy1.5) (I use S to distinguish between the flux S and Euclidean

counts n(S)), of a bin with median flux S (µJy) are given by,

nS2.5 =
1

A

dN

dS
S2.5, (4.12)

where A (sr) is the survey area and dN/dS is the number of sources in the flux bin. The first step is

to convert the reconstructed Euclidean source counts nS2.5 to just dN/dS,

dN

dS
=
nS2.5 ×A
S2.5

. (4.13)

Consider the number of sources in a luminosity bin dN/dL (WHz−1), which can be given by converting

the flux bins into luminosity bins;
dN

dL
=
dS

dL

dN

dS
, (4.14)

where dS/dL is given by
dS

dL
=

1

4πD2
L(1 + z)1+α

. (4.15)

where DL is the luminosity distance and α is the spectral index. The mean z is used to compute the

luminosity distance for each slice (meaning all the sources in each slice are assumed to be at the same

distance). The redshift bins should therefore be as small as possible to avoid large distance errors.

From dN/dL the LFs ρm (Mpc−3 mag−1) can be computed by,

ρm =
dN

dL

1

Vmax

1

m
, (4.16)

where Vmax (Mpc3) is the comoving volume where the sources could have been detected, m = 2.5

The issue with the method is that defining Vmax for undetected sources does not make much sense.

However, I use Vmax as the maximum volume in the redshift slice (e.i the comoving volume between

minimum and maximum z) to normalize the LF.

I use this technique to construct the quasar radio LFs from the reconstructed quasars radio counts.

Fig. 4.8 shows the reconstructed LFs for sample 1 and sample 2 along with the LF of the detected

sources. The reconstructed LFs for Sample 1 is from a source count model of a power law with a

single slope, the LFs is also a power law with no breaks and has a slope similar to that of the detected
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sources. The continuous slope suggests that the emission processes governing the detected LFs and

reconstructed LFs are the same. The reconstructed LFs for Sample 2 is based on a source counts

model with three slopes. The LFs drops from the detected sources to the reconstructed LFs and rises

to a slope similar to that of the detected sources.

This technique was applied to all the redshift slices of sample 3 (Fig. 4.9 and 4.10). The reconstructed

LFs are consistent with SKADS radio-quiet although there are deviations at the bright end. At low

redshifts (z < 1) the detected LFs follow a power-law and the reconstructed LFs have similar slopes to

the detected LFs. This suggests that the dominant emission below and above the detection threshold

is the same, i.e the quasars are dominated by AGN-related emission. Above z = 1 The detected

LFs develop a ‘knee’ at log10(L WHz−1) = 27. The reconstruct LF appears to be steepening with

redshift, deviating more and more from the slope of the detected LFs (still continuous in most cases).

The steepening of the reconstructed LFs at fainter luminosities suggests that there are disproportion-

ately more radio emission per unit optical luminosity for low-luminosity quasars, particularly at high

redshift. This suggests that the strong link between optical luminosity and radio luminosity that is

seen in brighter quasars (e.g. Serjeant et al. [1998]), that is generally attributed to a link between

the accretion rate and the radio jet-power (Rawlings and Saunders [1991]), gradually breaking down

towards fainter optical luminosities at high redshift. A possible explanation for this might be that

this faint radio emission may actually be from star formation in the host galaxy, rather than related

to the accretion process. This might also be expected to evolve with redshift as it is known that the

star-formation rate density of the Universe strongly evolves from z = 0 out to z ∼ 2. If this increase

in star formation is mirrored in the host galaxies of the quasars in my sample, then I would expect

to observe an enhanced amount of radio emission, that would be disproportionately evident for the

faintest objects.
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Figure 4.8: The quasar radio luminosity functions of sample 1 and sample 2. The black points are
the constructed LF function from the MAP source counts and the grey region is the uncertainty. The
blue points are the LF of the detected sources constructed from source counts using the same method

as the MAP source count. The red triangles are from Condon et al. [2013]
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(f) 1.60 < z < 1.85

Figure 4.9: The luminosity function of the 12 redshift slices in the sample 3. The back points and
gray region are the reconstructed LF created using the reconstructed counts. The blue points are
the LFs from detected sources in Sample 1 and Sample 2 and the red triangles are the LFs from
Condon’s data. The blue, red and green lines represent all the extragalactic sources, radio-loud AGN

and radio-quiet AGN in SKADS.
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(c) 2.35 < z < 2.55
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(d) 2.55 < z < 2.85
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(e) 2.85 < z < 3.15
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(f) 3.15 < z < 3.50

Figure 4.10: Continues from Fig. 4.9

 

 

 

 



Chapter 5

Conclusions and future work

Understanding the nature of the emission of radio-quiet AGN is very important, whether it is domi-

nated by SF or related to AGN accretion, to galaxy formation and evolution. They make up ≈ 90%

of the total quasar population and many lie below the detection threshold of completed large-area

radio surveys (e.g. Ivezić et al. [2002]). I use optical quasars from SDSS’s BOSS (Eisenstein et al.

[2011]) and Legacy (Richards et al. [2002]) along with radio data from FIRST (Becker et al. [1995])

to investigate the radio emission from radio-quiet AGN.

I matched SDSS samples with detected radio-loud quasars in the FIRST catalogue. I constructed

quasar radio source counts and QRLF and found that they are consistent with the work of Condon

et al. [2013], who used SDSS and NVSS data. There are inconsistencies at the faint end of the source

counts due to the difference in resolutions and detection limits. This is because when using extended

baselines in the VLA like for FIRST extended emission is resolved out, and therefore, the amount of

radio emission would be underestimated. This would move objects to fainter radio fluxes than they

actually are and some will disappear from the FIRST survey altogether. This would decrease the

source counts as you get closer to the flux limit (5σ). However, when using smaller baselines like in

NVSS you miss very little extended emission, but the flux-limit is higher, therefore you don’t get as

deep as you do with FIRST. Even with a 5σ detection threshold you still probably only detect ≈ 80%

of the objects in both surveys.

In Chapter 4, I used two stacking techniques to make measurements of the radio emission from radio-

quiet quasars. The first technique is a simple average stacking approach, that gave a median radio

flux of the sources below the threshold. The median flux was found to decrease exponentially with

increasing redshift (which is expected, White et al. [2007]) from 182 µJy at 0.2 < z < 0.45 to 39 µJy at

3.15 < z < 3.5. This decreases is due to the fact that at higher redshift quasars are generally fainter,

but this is slightly counteracted by the optical selection imposed which means that the higher redshift
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sources are generally more luminous. However, given that the correlation between optical luminosity

and radio luminosity in radio-quiet quasars is not linear and has a broad scatter, it is not surprising

that the median radio flux decreases with redshift. I also find a discontinuity between the median

flux from Legacy and BOSS. This discontinuity is from the fact that BOSS reaches fainter apparent

magnitudes within the Mi = 22 absolute magnitude cut introduced, hence there a lot more (fainter)

objects in BOSS and with the radio-optical correlation Serjeant et al. [1998]) they will also have lower

radio fluxes.

The second approach is a fully Bayesian technique, where radio source count models were fitted to the

sources below the detection threshold (Zwart et al. [2015b]). I considered piece-wise power-law models

with different breaks and slopes, which I fitted to the data and obtained the reconstructed counts. The

reconstructed counts were compared to SKADS simulated counts (Wilman et al. [2008]; 2010) which

were normalized (White et al. [2015]) to fit the counts (because optical magnitudes cannot reliably be

applied to SKADS). The reconstruction in most cases follows the shape of the source counts from the

SKADS radio-quiet AGN population.

The reconstructed counts were converted into LFs, by assuming that all sources in a redshift slice have

the same redshift. The reconstructed LFs are consistent with the shape of the SKADS radio-quiet al-

though there are deviations at the bright end, where the SKADS radio-quiet population rapidly drops

off compared to the reconstructed LFS. This is purely due to the way the SKADS sources separated

into radio-loud and radio-quiet (Wilman et al. [2008]). At low redshifts (z < 1) the detected LFs

follow a power-law and the reconstructed LFs have similar slopes to the detected LFs. This suggests

that the dominant emission below and above the detection threshold is the same, i.e. the quasars

are dominated by AGN-related emission. Above z = 1 The detected LFs develop a ‘knee’ at log10(L

WHz−1) = 27. The reconstructed LFs appears to be steepening with redshift, deviating more and

more from the slope of the detected LFs (but still continuous in most cases). The steepening of the

reconstructed LFs at fainter luminosities suggests that there are disproportionately more radio emis-

sion per unit optical luminosity for low-luminosity quasars, particularly at high redshift. This suggests

that the strong link between optical luminosity and radio luminosity that is seen in brighter quasars

(e.g. Serjeant et al. [1998]), that is generally attributed to a link between the accretion rate and

the radio jet-power (Rawlings and Saunders [1991]), gradually breaking down towards fainter optical

luminosities at high redshift. A possible explanation for this might be that this faint radio emission

may actually be from star formation in the host galaxy, rather than related to the accretion process.

This might also be expected to evolve with redshift as it is known that the star-formation rate density

of the Universe strongly evolves from z = 0 out to z ∼ 2. If this increase in star formation is mirrored

in the host galaxies of the quasars in my sample, then I would expect to observe an enhanced amount

of radio emission, that would be disproportionately evident for the faintest objects.
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5.1 Future work

(i) In this work, I only considered piece-wise power-law for fitting the source counts. There are other

interesting models one could consider (e.g. polynomials and bins/poles), that might better fit

the data.

(ii) The sources at the bright end drive most of the fit as they have a higher SNR than those at the

faint end. It would be interesting slice the data into smaller flux bins (i.e. three bins, one at the

faint end the second in the middle fluxes and the third at the bright end) and run independent

fits and compare the results to the single fit I presented.

(iii) It would be interesting to run the fit directly in luminosity space (and not have to worry about

computing Vmax for undetected sources) similar to Roseboom and Best [2014] and compare with

the technique used in this work.

(iv) Given that I found a steepening at the faint end of the LFs, it would be good to confirm this using

a fainter sample, both optically and with deeper radio data. The deeper radio data that will be

coming with the upgraded JVLA (data already exists on Stripe 82; Heywood et al. submitted),

as well as LOFAR, MeerKAT and eventually the SKA.

The deeper data from the new generation of radio telescopes will allow fainter detections above the

threshold but using stacking techniques such as the one presented in this thesis puts one a step ahead

to much fainter radio LF. For example, MIGHTEE aims to reach the 1µJy rms level over 20 deg2. If

there are ∼ 2000 quasars over the area, then one can reach 100 nJy levels using this technique. The

new-generation telescopes will reach lower flux levels (down to µJy with the SKA pathfinders and nJy

with the SKA). This will provide more data to further investigate dominant emission in radio-quiet

AGN since most of the population will be detected.
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Ž. Ivezić, S. Jester, D. E. Johnston, A. M. Jorgensen, S. M. Kent, S. J. Kleinman, G. R. Knapp,

A. Y. Kniazev, R. G. Kron, J. Krzesinski, P. Z. Kunszt, N. Kuropatkin, D. Q. Lamb, H. Lampeitl,

B. C. Lee, R. F. Leger, N. Li, H. Lin, Y.-S. Loh, D. C. Long, J. Loveday, R. H. Lupton, T. Malik,

B. Margon, T. Matsubara, P. M. McGehee, T. A. McKay, A. Meiksin, J. A. Munn, R. Nakajima,

T. Nash, E. H. Neilsen, Jr., H. J. Newberg, P. R. Newman, R. C. Nichol, T. Nicinski, M. Nieto-

Santisteban, A. Nitta, S. Okamura, W. O’Mullane, J. P. Ostriker, R. Owen, N. Padmanabhan,

J. Peoples, J. R. Pier, A. C. Pope, T. R. Quinn, G. T. Richards, M. W. Richmond, H.-W. Rix,

C. M. Rockosi, D. J. Schlegel, D. P. Schneider, R. Scranton, M. Sekiguchi, U. Seljak, G. Sergey,

B. Sesar, E. Sheldon, K. Shimasaku, W. A. Siegmund, N. M. Silvestri, J. A. Smith, V. Smolčić,
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Luminosity Function of Quasi-stellar Objects: Star Formation and Active Galactic Nucleus. ApJ

Lett., 739:29, September 2011a. doi: 10.1088/2041-8205/739/1/L29.
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W. Mattig. Über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit. As-

tronomische Nachrichten, 284:109, May 1958.

I. D. McGreer, D. J. Helfand, and R. L. White. Radio-Selected Quasars in the Sloan Digital Sky

Survey. A J, 138:1925–1937, December 2009. doi: 10.1088/0004-6256/138/6/1925.

L. Miller, J. A. Peacock, and A. R. G. Mead. The bimodal radio luminosity function of quasars.

MNRAS, 244:207–213, May 1990.

K. J. Mitchell and J. J. Condon. A confusion-limited 1.49-GHz VLA survey centered on alpha = 13 H

00 M 37 s, delta = + 30 deg 34 arcmin. A J, 90:1957–1966, October 1985. doi: 10.1086/113899.

K. Mitchell-Wynne, M. G. Santos, J. Afonso, and M. J. Jarvis. Beyond stacking: a maximum-likelihood

method to constrain radio source counts below the detection threshold. MNRAS, 437:2270–2278,

January 2014. doi: 10.1093/mnras/stt2035.

 

 

 

 



Bibliography 78

E. Momjian, C. L. Carilli, F. Walter, and B. Venemans. The Highest Redshift Quasar at z = 7.085:

A Radio-quiet Source. A J, 147:6, January 2014. doi: 10.1088/0004-6256/147/1/6.

R. Morganti, J. Fogasy, Z. Paragi, T. Oosterloo, and M. Orienti. Radio Jets Clearing the Way

Through a Galaxy: Watching Feedback in Action. Science, 341:1082–1085, September 2013. doi:

10.1126/science.1240436.

S. L. Morris, R. J. Weymann, S. F. Anderson, P. C. Hewett, P. J. Francis, C. B. Foltz, F. H. Chaffee,

and G. M. MacAlpine. The large, bright QSO survey. V - QSOs in three southern fields. A J,

102:1627–1658, November 1991. doi: 10.1086/115984.

R. P. Norris, J. Afonso, D. Bacon, R. Beck, M. Bell, R. J. Beswick, P. Best, S. Bhatnagar, A. Bonafede,
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Koekemoer, F. Bertoldi, and C. D. Impey. The VLA-COSMOS Survey. I. Radio Identifications

from the Pilot Project. A J, 128:1974–1989, November 2004. doi: 10.1086/424860.

 

 

 

 



Bibliography 83

M. Schmidt. 3C 273 : A Star-Like Object with Large Red-Shift. Nature, 197:1040, March 1963. doi:

10.1038/1971040a0.

M. Schmidt. Space Distribution and Luminosity Functions of Quasars. Astrophys. J., 162:371, Novem-

ber 1970. doi: 10.1086/150668.

D. P. Schneider, G. T. Richards, P. B. Hall, M. A. Strauss, S. F. Anderson, T. A. Boroson, N. P.

Ross, Y. Shen, W. N. Brandt, X. Fan, N. Inada, S. Jester, G. R. Knapp, C. M. Krawczyk, A. R.

Thakar, D. E. Vanden Berk, W. Voges, B. Yanny, D. G. York, N. A. Bahcall, D. Bizyaev, M. R.

Blanton, H. Brewington, J. Brinkmann, D. Eisenstein, J. A. Frieman, M. Fukugita, J. Gray, J. E.
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A. K. Sillanpää. The OJ287 supermassive binary black hole model and the new unified scheme for the

AGNs. In S. K. Chakrabarti, editor, Observational Evidence for the Black Holes in the Universe,

volume 234 of Astrophysics and Space Science Library, page 209, 1999.

C. Simpson, A. Mart́ınez-Sansigre, S. Rawlings, R. Ivison, M. Akiyama, K. Sekiguchi, T. Takata,

Y. Ueda, and M. Watson. Radio imaging of the Subaru/XMM-Newton Deep Field - I. The

 

 

 

 



Bibliography 84

100-µJy catalogue, optical identifications, and the nature of the faint radio source population.

MNRAS, 372:741–757, October 2006. doi: 10.1111/j.1365-2966.2006.10907.x.

J. Skilling. Nested Sampling. In R. Fischer, R. Preuss, and U. V. Toussaint, editors, American

Institute of Physics Conference Series, volume 735 of American Institute of Physics Conference

Series, pages 395–405, November 2004. doi: 10.1063/1.1835238.
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