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ABSTRACT 
 

Integrating Regulatory and Methylome data for the discovery of clear cell Renal Cell 

Carcinoma (ccRCC) Variants 

T Calvert-Joshua 

MSc Bioinformatics Thesis, Department of the South African National 

Bioinformatics Institute, University of the Western Cape 

 

Kidney cancers, of which clear cell renal cell carcinoma comprises an estimated 

70%, have been placed amongst the top ten most common cancers in both males and 

females. With a mortality rate that exceeds 40%, kidney cancer is considered the 

most lethal cancer of the genitourinary system. Despite advances in its treatment, the 

mortality- and incidence rates across all stages of the disease have continued to 

climb. Since the release of the Human Genome Project in the early 2000’s, most 

genetics studies have focused on the protein coding region of the human genome, 

which accounts for a mere 2% of the entire genome. It has been suggested that 

diverting our focus to the other 98% of the genome, which was previously dismissed 

as non-functional “junk DNA”, could possibly contribute significantly to our 

understanding of the underlying mechanisms of complex diseases.  

In this study a whole genome sequencing somatic mutation dataset from the 

International Cancer Genome Consortium was used. The non-coding somatic 

mutations within the promoter, intronic, 5-prime untranslated and 3-prime 

untranslated regions of clear cell renal cell carcinoma-implicated genes were 

extracted and submitted to RegulomDB for their functional annotation.  

As expected, most of the variants were located within the intronic regions and only a 

small subset of identified variants was predicted to be deleterious. Although the 

variants all belonged to a selected subset of kidney cancer-associated genes, the 

genes frequently mutated in the non-coding regions were not the same genes that 

were frequently mutated in the whole exome studies (where the focus is on the 
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coding sequences). This indicates that with whole genome sequencing studies a new 

set of genes/variants previously unassociated with the clear cell renal cell carcinoma 

could be identified. In addition, most of the non-coding somatic variants fell within 

multiple transcription factor binding sites. Since many of these variants were also 

deleterious (as predicted by RegulomDB), this suggests that mutations in the non-

coding regions could contribute to disease due to their role in transcription factor 

binding site disruptions and their subsequent impact on transcriptional regulation. 

The substantial overlap between the genes with the most aberrantly methylated 

variants and the genes with the most transcription factor binding site disruptions, 

signifies a potential link between differential methylation and transcription factor 

binding site affinities. In contrast to the upregulated DNA methylation generally seen 

in promoter methylation studies, all of the significant hits in this study were 

hypomethylated, with the subsequent up-regulation of the genes of interest, 

suggesting that in the clear cell renal cell carcinoma, aberrant methylation may play a 

role in activating proto-oncogenes, rather than the silencing of genes. When a cross-

analysis was carried out between the gene expression patterns and the transcription 

factor binding site disruptions, the non-coding somatic variants and differential 

methylation profiles, the genes affected again showed a clear overlap. Interestingly, 

most of the variants were not present in the 1000genomes data and thus represent 

novel mutations, which possibly occurred as a result of genomic instability. 

However, identifying novel variants are always promising, since they epitomise the 

possibility of developing pioneering ways to target diseases. The numerous 

detrimental effects a single non-coding mutation can have on other genomic 

processes have been demonstrated in this study and therefore validate the inclusion of 

non-coding regions of the genome in genetic studies in order to study complex 

multifactorial diseases. 
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CHAPTER 1 

1. INTRODUCTION AND LITERATURE REVIEW 

1.1. Cancer Development  
 

Cancer is a group of genetic diseases that develop as a result of germline mutations, 

epigenetic changes (which are non-inherited, modified gene functioning) or somatic 

mutations within normal cells (You and Jones, 2012). These mutations confer a 

selective growth advantage upon the newly transformed cells, which they, in turn, 

impart on their progeny during cell division (Ringo, 2004).  Collectively these cells 

proliferate uncontrollably to form a tumour (Ringo, 2004). The six well-recognized 

features that cancer cells share are: uncontrolled proliferation, resistance to apoptosis 

(cell death), induction of angiogenesis (formation of new blood-vessels), 

circumvention of growth suppressors, tissue invasion and metastasis (Hanahan and 

Weinberg, 2011). In general, mutations in two classes of genes; tumour suppressor 

genes and proto-oncogenes, lead to cancer formation. 

 

1.1.1. Tumour suppressor genes and oncogenes 
 

Tumour suppressor genes are responsible for halting the cell cycle when the 

necessary cell signals which indicate that the integrity of the deoxyribonucleic acid 

(DNA) has been preserved, are not returned (Chau and Wang, 2003). Additionally, 

they promote DNA repair or apoptosis, depending on the extent of DNA damage 

during DNA replication. When tumour suppressor genes or the DNA sequences 

regulating these genes, undergo mutations, they may become underexpressed or 

inactivated due to loss-of-function mutations (Chau and Wang, 2003). Due to their 

inability to impede cell proliferation, they indirectly promote cancer development. By 

contrast, proto-oncogenes function in cell proliferation for growth, healing and tissue 

regeneration. They can however be converted to oncogenes through gain-of function 

point mutations, insertions, deletions, gene amplification events and chromosomal 

translocations (Chau and Wang, 2003). Oncogenes allow proteins to be expressed at 

higher-than-normal levels, resulting in tumourigenesis (Lodish et al., 2000a). After 
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several mutations the cell may develop the capacity to metastasize (Weinberg, 2007). 

Yet, despite the metastasis, cancers are always named after their site of origin called 

their primary tumour (Weinberg, 2007). Kidney cancers therefore originate within the 

kidneys as a result of normal kidney cells being transformed into malignant kidney 

cells. 

1.2. Functions of the kidneys 
 

The kidneys form part of the renal system which, besides the kidneys, is also 

comprised of the ureters, the bladder and the urethra (Mifflin and Shunker, 2005) 

(See Figure 1 for the anatomy of the kidney and the renal system). The major roles of 

the kidneys are the filtering and removal of wastes from the blood and the 

maintenance of electrolyte- and fluid balance within the body (Mifflin and Shunker, 

2005). Over and above this, they also regulate the body’s blood pressure and play a 

role in red blood cell synthesis, bone metabolism and maintaining the body’s pH 

balance (Mifflin and Shunker, 2005).  

 

   

 

 

 

 

 

 

 

Figure 1: The bean-shaped structure of the kidney (top right) and the main organs forming the renal 

system (bottom) (Health Central, 2012). 
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1.3. Anatomy of the Kidneys and the Origin of Renal Cell Carcinoma 
 

These bean-shaped organs are about the size of a fist. They are located in the upper 

abdominal cavity against the posterior muscular wall; one on either side of the 

vertebral column (Mifflin and Shunker, 2005). The functional units of the kidneys are 

the nephrons (~1 million per kidney). Each nephron contains a glomerulus, a 

collecting duct and the proximal- and distal convoluted tubules (See Figure 2. for the 

anatomy of the kidney and the nephron). The glomeruli filter waste and toxins from 

the body, forming a filtrate that generally also contains some useful chemicals 

(Mifflin and Shunker, 2005). The tubules are then responsible for reabsorbing 

essential water and chemicals from the filtrate back into the bloodstream. This leaves 

behind the urine which moves to the bladder via the collecting duct (Mifflin and 

Shunker, 2005). The proximal convoluted  tubules, which lead from the glomerular 

structure, are the sites of origin of renal cell carcinoma (RCC); the most common 

type of kidney cancer (Zeng et al., 2014).  

 

 

 
Figure 2: The anatomy of the kidney and the structure of the nephron which contains the collecting 

duct, the glomerulus and the tubules (McGraw-Hills Company, 2011). 
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1.4. Epidemiology of kidney cancers 
 

Kidney cancers have been placed among the top ten most common cancers in both 

males and females (Ljungberg et al., 2011). With a mortality rate that exceeds 40% 

(Girgis et al., 2014), they are considered the most lethal cancers of the genitourinary 

system (Zeng et al., 2013). Although kidney cancer affects all age groups, it is most 

commonly diagnosed in patients over 55 years of age (Tijani et al., 2012). Moreover, 

it occurs nearly twice as often in males than in females, which could be attributed to 

the prevalence of smoking and occupational exposures in males. Its subtype, RCC, 

accounts for more than 90% of all renal malignancies (Ljungberg et al., 2011). Yet, 

RCC is itself a heterogeneous group of cancers with the major subtype, clear cell 

renal cell carcinoma (ccRCC) accounting for approximately 70% of RCC cases 

(Zeng et al., 2013). The other two major molecular subtypes, chromophobe- and 

papillary RCC, account for 5% and 10% of cases, respectively (Zeng et al., 2013).  

 

Kidney cancers are generally diagnosed rarely in Africans and Asians, but it is not yet 

clear whether this is due to a more efficient screening system in developed countries 

or to a predisposition to developing the disease in Caucasians (Tijani et al., 2012).  

Nevertheless, even in developed countries such as the United States, where 

individuals have access to the same level of healthcare, the renal cell cancer 

incidence rate differs among ethnic and racial groups, mirroring the rates of their 

countries of origin. This suggest that there might still be a genetic component that 

predisposes individuals to developing renal cell carcinoma (Chow et al., 2010). 

 

Despite the higher incidence rates in Northern America and other developed 

countries, they have a much lower reported mortality rate. By contrast, in 

underdeveloped regions such as in Southern Africa, the mortality rate is almost 

equivalent to the incidence rate for kidney cancer. (See Figure 3 for the mortality and 

incidence rates in various parts of the world) (Global Burden of Cancer 

[GLOBOCAN], 2012).  
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However, more than 70% of RCC cases are diagnosed incidentally, when a patient is 

being screened for unrelated symptoms (Tijani et al., 2012). This could explain the 

lower mortality rate in developed countries, since an early diagnosis of the disease 

has been linked to a more favourable prognosis and in general, access to medical care 

is better in developed countries. In underdeveloped countries, patients are often only 

diagnosed during the advanced stages of the disease, resulting in a dismal prognosis 

(Tijani et al., 2012). Although lack of medical care has been suggested as a major 

contributor to the deficiency in proactive and targeted screening in underdeveloped 

countries, it has also been reported that an early diagnosis may be made in these 

regions, but due to cultural influences, many individuals choose to turn to traditional 

healers for help and only return when the cancer has metastasized (Tijani et al., 

2012).  

One cannot, however, rule out the asymptomatic nature of the disease as a primary 

reason for individuals not feeling prompted to seek medical assistance.  
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Figure 3: Age-standardized incidence and mortality rates for kidney cancer according to gender in 

various parts of the world. The incidence of kidney cancer is usually much higher in males than in 

females. Although the incidence and mortality rate in the more developed countries are higher 

compared to the less developed countries, the mortality rate is much lower than the corresponding 

incidence rate. In contrast, in the less developed countries, patients are much more likely to succumb 

to the disease (GLOBOCAN 2012). 

 

1.5. Symptoms and Prognosis 
 

RCC is usually asymptomatic, until the cancer has metastasized to distant organs 

(White et al., 2014). A “classical triad” of symptoms, namely: haematuria (blood in 

the urine), abdominal masses, and flank pain, which occur in unison, can sometimes 

be observed. Yet, this accounts for a mere 10% of individuals with kidney cancer 

(Tijani et al., 2012). The lack of defined symptoms often makes it a very difficult 

disease to diagnose. This is unfortunate, since an early diagnosis of RCC is 
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associated with a >80% chance of survival, five years after the diagnosis. However, 

more than 30% of patients are diagnosed at the metastatic stage when the survival 

rate drops to below 10%, as shown in Figure 4  (White et al., 2014). 

 

 
Figure 4: RCC 5-year survival rate, classified according to the Stage of the tumour  (American Cancer 

Society, 2014). During the early stages of the disease (Stage I and even Stage II), the patient has an 

above 70% chance of surviving RCC, but during the metastatic stage (Stage  4) prognosis drops 

dismally to just 8%. 

 

Metastatic RCC is complicated because it is highly resistant to radio- and other forms 

of systemic therapy, making surgical intervention the mainstay of treatment (Tijani et 

al., 2012). However patients with an advanced stage of the disease are generally too 

moribund and unfit for the recommended surgical intervention (Tijani et al., 2012). 

Furthermore, even after a partial or complete nephrectomy is carried out on patients 

declared fit for surgery, the prognosis is still very poor (Ljungberg et al., 2011). 

Approximately 20% of individuals have a relapse after surgery and subsequently 

develop metastatic RCC (Ljungberg et al., 2011).  While kidney cancer does not 

necessarily discriminate against gender, race or age, certain risk factors can 

predispose an individual to developing the disease. 
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1.6. Risk Factors 
 

Some of the most common risk factors are smoking, obesity and hypertension 

(Salehipoor et al., 2012). Nevertheless, taken together these account for only 49% of 

the cases. More than half of the cases remain unexplained and further risk factors 

need to be explored (Salehipoor et al., 2012). Currently, very little is known about the 

genetics of the disease development and progression and there are no serum 

biomarkers to accurately diagnose RCC  (White et al., 2014). Cancer is however a 

genetic disease, thus a unique combination of mutational events can generally be 

observed for each sub-type of kidney cancer. 

 

1.7. Cancer Genetics of clear cell renal cell carcinoma 
 

Loss of heterozygosity (LOH) in the chromosome 3p arm is a consistent feature in 

90% of ccRCC tumours, the primary subtype of RCC (Chau and Wang, 2003). LOH 

refers to the loss of the second functional copy of an allele in a heterozygous cell, 

making the cell homozygous for the mutated gene. The mutant gene is then often 

rendered non-functional, which may result in disease (Chau and Wang, 2003). Due to 

the size of the absent portion of the chromosome in ccRCC, it often encompasses all 

of the four most commonly mutated genes in ccRCC, namely: PBRM1, SETD2, 

BAP1 and VHL, as shown in Figure 5 (Gerlinger et al., 2013). Furthermore, the LOH 

is often also associated with gains in the chromosome 5q arm, which harbours a 

number of proposed oncogenes (Girgis et al., 2012). Of the commonly mutated genes 

in RCC, the von Hippel-Lindau (VHL) tumour suppressor gene is detected most 

frequently, accounting for approximately 60% of sporadic ccRCC (Zeng et al., 2013). 

Similarly, the Birt-Hogg-Dube (BHD) gene has been associated with chromophobe 

RCC, while the c-MET oncogene has been linked to papillary RCC (Linehan et al., 

2004). Recent microarray studies have also demonstrated the dynamic link between 

copy number aberrations, with a greater metastatic risk for patients with ccRCC and a 

subsequently poorer clinical prognosis (Girgis et al., 2014). Still, few chromosomal 

abnormalities have been documented in RCCs and the pathogenesis of this disease 
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has of yet not been fully elucidated (White et al., 2014). Furthermore, despite an 

increase in incidental diagnosis and improvements in screening techniques and 

treatment, there has been an increase in the disease-specific mortality rate within the 

last two decades (Dall’Oglio et al., 2011). 

 

 
Figure 5: The frequency at which each gene of interest in ccRCC samples are mutated as a result of 

loss of heterozygosity (LOH) in the chromosome 3p arm (Hakimi et al., 2013). VHL PBRM1, SETD2 and 

BAP1 are four of the genes most commonly implicated in ccRCC. 

 

1.8. Lack of understanding of disease 
 

Understanding the pathogenicity of renal cancer on a molecular level (both 

genetically and epigenetically) is therefore essential for its early diagnosis, prognosis 

and for drug development (Girgis et al., 2014), which could ultimately lessen the 

burden of this disease. Our current knowledge on RCC is limited, due to it being 

based solely on studies that involved interpreting, analysing and drawing inferences 

from the 2% of the human genome that encodes proteins (Skubitz and Skubitz, 2002). 

This has left us with not much success in elucidating the disease pathogenesis. For 

years, differential gene expression (GE) studies have shown that changes in the 

expression levels of genes and proteins are critical for malignant transformation 

(Skubitz and Skubitz, 2002). Yet, not many studies have delved into why and how 

these genes are dysregulated in the tissue or organ of interest (Skubitz and Skubitz, 
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2002). Albeit, several studies within the last decade have highlighted that it may be 

worthwhile to explore how the non-coding regions of the genome may contribute to 

the diseased phenotype (Linehan, 2012). Determining the locations of the regulatory 

regions and how they influence transcription or translation could reveal the links 

between gene dysregulation and disease. The next section will give a brief overview 

of the synthesis and functions of the non-coding regions surrounding genes in order 

to explore whether these regions could possibly control or impact gene dysregulation. 

 

1.9. The Human Genome and Cancer 

1.9.1. Intragenic and Intergenic DNA 
 

The human genome is made up of genes that are protein-coding, genes that encode 

functional ribonucleic acid (RNA) products, as well as large regions of non-coding 

DNA (Gaffney and Keightley, 2006) (Wong et al., 2000). In higher eukaryotes, 

approximately 97% of the genome does not code for proteins. Furthermore, the 

chromatin (DNA wrapped around histone proteins) in the nucleus is divided into the 

euchromatic portion and the heterochromatic portion (e.g. centromeres and 

telomeres) (Wong et al., 2000). The latter portion consists of highly repetitive DNA 

and is largely devoid of genes (Wong et al., 2000). The euchromatic portion will be 

the focus of this study. Euchromatin can be further subcategorized into the intergenic 

region (stretches of non-coding DNA between adjacent genes) and the intragenic 

regions (stretches of DNA within the same gene) (Wong et al., 2000) (Figure 6 

illustrates the difference between intergenic and intragenic DNA). The intergenic 

region contains the regulatory elements, while the intragenic region can be further 

subdivided into the introns and exons (Wong et al., 2000). The introns, which may 

also contain regulatory components, are excised and the exons are spliced together to 

form mRNA, after which they are translated into proteins (Wong et al., 2000) 

(Mignone et al., 2002). Because they are translated into proteins, they were 

commonly believed to be the most important components of the genome. 

 

10 
 

 

 

 

 



 
 

Figure 6: An illustration of the intragenic region of a gene (A) which contitutes the exons 

(represented as blocks) and the introns (represented as lines) and how the introns may be excised to 

form mRNA. (B)  shows the intergenic region between Gene A and Gene B (adapted from Horiuchi 

and Aigaki, 2006).  

 

1.9.2. Regulation in the Human Genome 
 

The central dogma of molecular biology states that DNA is transcribed into RNA, 

which is translated into proteins and these proteins ultimately determine the 

organism’s phenotype (Shapiro, 2009).  However, as stated before, not all DNA 

encodes for proteins and most of the transcribed DNA remains in its final RNA state - 

as ribosomal RNA, transfer RNA and other small non-coding RNA (Shapiro, 2009). 

These RNA molecules may have catalytic roles (ribozymes), function in ribosomal 

RNA (rRNA) processing, in translation and in gene regulation (Shapiro, 2009). In 

fact, most genomic DNA functions in the regulation of gene expression and is not 

transcribed (Mignone et al., 2002). Gene regulation may be exerted on a 

transcriptional level; controlling whether a gene should be transcribed and if it is, to 

what extent it is transcribed. Post-transcriptionally, the fate of the transcribed RNA 

may also be regulated. This is achieved by controlling the stability, translation 

efficiency and subcellular localization of RNA molecules (Mignone et al., 2002). 

Generally, transcriptional control is mediated by RNA polymerase, transcription 

factors and cis-regulatory elements (e.g. promoters, enhancers, silencers, introns 
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etc.), that regulate the expression of the gene on the same DNA strand on which the 

regulatory element is located), which play a role in the production of pre-messenger 

RNAs (pre-mRNA) from DNA (Mignone et al., 2002).  

 

1.9.2.1. Processing of pre-mRNA to mature messenger RNA (mRNA) 
 

After production of the pre-mRNA (the initial transcript), the molecule is further 

processed by the removal of introns (Figure 7 (B)), and the addition of a 7-methyl-

guanylate cap at the five prime end of the first exon and a poly adenine (poly A) tail 

at the three prime end of the last exon (Mignone et al., 2002). The functionally 

mature mRNA is a tripartite that consists of a five prime untranslated region (5’UTR) 

and a three prime untranslated region (3’ UTR)  on either end of a coding sequence 

(CDS) (Mignone et al., 2002), as shown in Figure 7 (C). Mutations in any of these 

regions could result in disease. However, as emphasised before, countless studies 

have already focused on mutations within the CDS of genes. Therefore, together with 

the two cis-regulatory elements, the promoters and the introns, this study will 

primarily focus on the non-coding regions of the tripartite, namely: the 5’UTR and 

the 3’UTR - all of which are predicted to be the major regions involved in regulating 

gene expression for a given gene (L.W. Barrett et al., 2013). 
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Figure 7: A) A complete gene with the promoter and introns before transcription. B) The gene region 

containing the transcription start site (TSS) and the 10kb upstream region (promoter) after the 

introns are removed.  C) The mature mRNA consisting of just the 5’UTR, the 3’ UTR and the CDS after 

splicing (Dere et al., 2011). 

The subsequent subsections will discuss the non-coding regions of the gene in a little 

more detail and what the effects are of mutations within the region of interest, 

starting with the largest region, the introns. 

 

1.9.2.2. Introns 
 

Introns are spliced out of precursor RNA during splicing and it is well-known that 

this splicing is also necessary to produce a variety of proteins from a single gene 

copy in a process termed alternative splicing (Zhang and Edwards, 2012). Alternative 

splicing is demonstrated in Figure 8. Introns are also the sources of many small, non-

coding RNA molecules that regulate the expression of other genes and are therefore 

carriers of an array of transcriptional regulation elements (Zhang and Edwards, 

2012). Furthermore, they are enhancers of meiotic crossing over within the coding 

regions and therefore drivers of evolution. Finally, they are signals for mRNA export 
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from the nucleus and function in nonsense-mediated decay – a surveillance pathway 

that functions to reduce gene expression errors, by deleting mRNA transcripts with 

premature stop codons (Lucy W. Barrett et al., 2013). Most mutations that affect 

splicing are single nucleotide substitutions within introns or exons. These mutations 

may either result in the incorrect protein being produced or the introduction of a 

premature termination codon, which ultimately results in loss of function of the 

mutated allele (Faustino and Cooper, 2003).  

 

 
Figure 8: An illustration of how one gene can give rise to two different isoforms (splice variants), by 

carefully controlling which introns are spliced out. When the introns before and after exon 3 are 

spliced out, isoform 1 is formed. Alternatively, a different isoform (isoform 2) is created by the 

splicing out of exon 4. These two isoforms will give rise to two different proteins (Grigoryev, 2013). 
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1.9.2.3. The 3’- and 5’ untranslated regions 
 

Similarly, the untranslated regions flanking the CDS of the gene do not directly 

produce proteins, but they play pivotal roles in transcriptional control and in 

translation (Reamon-Buettner et al., 2007). The 3’UTR contains regulatory elements 

that are involved in the control of nuclear transport, subcellular targeting, 

polyadenylation signalling and mRNA degradation and translation (Reamon-Buettner 

et al., 2007). Mutations in this region can result in the production of non-functional 

proteins or downregulation of functional proteins and have been associated with 

breast cancer, papillary thyroid carcinoma and other diseases (Pal et al., 2001). 

Likewise, the 5’UTR plays a role in regulating translation by influencing RNA 

stability and translation efficiency (Chatterjee et al., 2001). Functional elements in 

this region serve to modify protein expression in response to cellular requirements. 

Genetic mutations, such as SNPs, that disrupt the motif in the 5’UTR have been 

linked to certain cancers such as multiple myeloma, oesophageal cancer (Chatterjee 

et al., 2001) and breast cancer (Wang et al., 2007). Nevertheless, they are also known 

to harbour promoters, another reason why this non-coding region is impossible to 

ignore. 

 

1.9.2.4.  Locations of Promoters in non-coding regions and the significance of 

Transcription factor binding site disruptions 

 

As displayed in Figure 7 (A), promoters are regulatory sequences which are generally 

located near the 5’ end of genes (Holloway et al., 2008) and act as a binding sites for 

transcription factors (TFs) (Cartharius et al., 2005). A fundamental step of regulatory 

control is the association of TFs with their DNA binding sites, also called 

transcription factor binding sites (TFBSs), at the onset of transcription (Holloway et 

al., 2008). TFBSs are short stretches of DNA (~6-20bp) located within promoters. 

They are recognized by the DNA binding domains of TFs, where they bind and 

activate or repress gene expression (Zhang et al., 2006). Since promoters harbour 

TFBSs, they therefore play a crucial role in transcription initiation. In some 

organisms, TFs may exert their control from several kilobases away from the 
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transcription start site (TSS), which is located upstream of the 5’UTR (See Figure 7 

(B)) for the position of the TSS). However, in complex genomes, such as humans, 

these binding sites may be found in the 5’UTRs, the introns or the 3’UTRs 

(Holloway et al., 2008). Mutations occurring in these regulatory sites often result in 

an altered rate or control of transcription. For example, a mutation in a promoter may 

result in the RNA polymerase that is no longer able to bind at the corresponding 

promoter region (Ringo, 2004). When RNA polymerase cannot bind, transcription 

cannot initiate and the necessary proteins cannot be produced. Similarly, if a mutation 

produces a new transcription binding site, a gene may be upregulated, expressing 

proteins at higher levels than required (Laurila and Lähdesmäki, 2009) or  they may 

be inappropriately suppressed, accomplishing the opposite. It is therefore not 

surprising that mutations in promoter regions have previously been linked to renal 

cell carcinoma (Hirata et al., 2003) (Havranek et al., 2005). Finally, the promoter 

region is particularly interesting, because they are one of the most common sites of 

single nucleotide polymorphisms (SNPs) compared to the rest of the genome (Li et 

al., 2014). 

 

1.9.3. Single Nucleotide Polymorphisms (SNPs) 
 

Various studies have found that functional SNPs occur in 30-60% of human 

promoters and tend to cluster in close proximity around the TSS (Linehan, 2012). 

SNPs are single-nucleotide substitutions of one base for another. They are the most 

common type of sequence variants, accounting for roughly one mutation per 1000 

base pairs (bps). SNPs are found in both the coding and non-coding regions. They are 

said to hold the key to understanding disease susceptibility and progression in 

complex diseases involving multiple gene interplay, such as cancers (Linehan, 2012). 

SNPs which occur in regulatory regions (e.g. promoters, enhancers, silencers), called 

regulatory SNPs (rSNPs), may dysregulate allele-specific gene expression and 

eliminate or create a new TFBS (Buroker, 2014).  Andersson et al. (2014) reported 

that disease-associated SNPs were overrepresented to a greater extent in regulatory 

regions than in exons. Linehan (2012) therefore suggested that locations of 

transcriptional regulatory elements may represent a major site where mutations may 
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contribute to disease. However, except for an activating mutation in the TERT 

promoter, no other regulatory variants have been functionally characterized as cancer 

drivers and this is largely due to poor exploration of non-coding sequences 

(Fredriksson et al., 2014) (Fu et al., 2014). Since research has shown that many 

regulatory elements are located within the UTRs and introns, these non-coding 

regions may be promising targets for the discovery of variants for further functional 

analysis. 

 

1.9.4. Previous Research on Mutations in the Intragenic and Non-genic regions 
 

In a report by Ley et al. (2008), which describes somatic mutations in acute myeloid 

leukaemia (AML) patients using whole genome sequencing (WGS), of the 11000 

mutations detected more than 97% were in the intronic regions, while a further 1% 

were in the UTRs. The mutations were, however, not further analysed for their 

functional significance, due to difficulty in the interpretation of the generated data 

(Hindorff et al., 2009). When a similar study was carried out by Mardis et al. (2009), 

another mutation was identified in an evolutionarily conserved non-genic region. 

Genome-wide association studies conducted by De Gobbi et al. (2006), Easton and 

Eeles (2008) and Steidl et al. (2007) also reported inherited non-genic alterations in 

cancer genomes. Undeniably, several studies within the last decade have 

demonstrated the immense impact of mutations in these non-coding regions, in the 

context of disease. Nonetheless, cancer is a heterogeneous disease that often involves 

crosstalk between multiple mutated genes (Loeb et al., 2003). More importantly, 

since cancer cells are renegade normal cells, a systematic approach to such studies is 

required to distinguish which genes or gene variants perform normal metabolic 

functions and which truly underlie the disease phenotype.    

 

1.9.5. Somatic Mutations and Cancer 
 

Linehan (2012) suggested that genomic studies such as whole-genome sequencing 

need to be exploited in order to gain a complete understanding of the genetic basis of 
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kidney cancer and its pathways. Previous studies have shown that more than 1% of 

human genes are implicated in cancer. Of these genes, more than 90% are 

dysregulated by somatic mutations; 20% show germline mutations and 10% are 

causally implicated by both (Futreal et al., 2004). Since most cancers can therefore be 

traced back to somatic events, by comparing the somatic mutations in the normal and 

cancer genomes of the same individual, one can confidently detect the specific 

mutations that may be implicated in the disease as well as discern how they are 

related to the disease stage, metastasis and drug resistance (Strausberg and Simpson, 

2010). Furthermore, unlike whole exome sequencing (WES) and targeted sequencing, 

WGS allows one to identify mutations in the non-coding and regulatory regions that 

may contribute to carcinogenesis (Huang et al., 2013).   

However, beyond somatic and germline mutations, a considerable amount of interest 

has been shown in the contribution of epigenetic factors, especially the role of DNA 

methylation in disease. 

 

1.10. Aberrant DNA Methylation in cancer 
 

Epigenetic changes are reversible modifications that are heritable. They affect gene 

expression without altering the DNA sequence and have also been identified as 

hallmarks of cancer (Martin-Subero et al., 2009). DNA methylation is one of the 

most extensively studied epigenetic changes in mammals, because of its importance 

in cell, tissue and organismal phenotypes. Furthermore, neither genetic mutations 

(nucleotide changes, deletions, recombinations), nor cytogenetic abnormalities, are as 

common in human tumours as DNA methylation alterations (Baylin et al., 2001). 

DNA methylation refers to a chemical conversion of a cytosine to a 5-methyl-

cytosine (m5C) residue by DNA methyltransferases (DNMTs), in regions where a 

cytosine is immediately followed by a guanine (CpG).  These CpGs are generally 

globally depleted in mammals except for at short CpG-rich DNA stretches called 

CpG islands (CGIs), which are preferentially located at the TSS of promoters. CGIs 

may harbour hypermethylated promoter regions (discussed later in this section), 

which results in gene repression, an important method of inactivation of  tumour 

suppressor genes, DNA repair genes and apoptotic genes in neoplastic cells (Kim and 
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Kim, 2014). This aberrant methylation has been shown to be ubiquitous in human 

cancers (Du et al., 2010), and has been implicated in both oncogenesis and cancer 

progression (Ibragimova et al., 2013).  

In ccRCC, it has been shown that the VHL tumour suppressor gene (TSG) is 

inactivated due to promoter hypermethylation in ~15% of cases (Ibragimova et al., 

2013). In fact, some common cancer-associated genes, such as RASSF1, are 

frequently hypermethylated and rarely mutated. Recently, intragenic  methylation 

(within introns and exons) has also been linked to transcriptional and splicing events, 

suggesting its associated regulatory potential (Heyn et al., 2013). Hence, it has 

become apparent that in human cancers, heritable loss of gene function can be 

mediated as often by epigenetic, as by genetic abnormalities (Baylin et al., 2001).  

 

High throughput profiling of the methylation status at CpG sites is therefore crucial 

for our insight into the impact of the epigenome in disease (Du et al., 2010) 

Microarray-based Illumina Infinium methylation assays have been introduced to 

further epigenomic studies due to their high throughput, good accuracy, small sample 

requirement and relatively low cost (http://www.illumina.com/products/-

methylation_450_beadchip_kits.html). To estimate the methylation status, the assay 

uses a pair of methylated and unmethylated probes to measure the intensity of the 

methylated and unmethylated alleles at the interrogated CpG site (Du et al., 2010).  

The Beta value (β-value) is a widely used method to measure the level of 

methylation. It is a quantitative measure of DNA methylation at CpG islands or the 

ratio of the intensity of the methylated bead type/probe to the overall locus 

intensity (which is the sum of methylated and unmethylated probe intensities). The 

β-value is a continuous number ranging between 0 for completely unmethylated, to 1, 

which is completely methylated (Du et al., 2010). A β-value of 0.5 indicates a similar 

intensity between methylated and unmethylated probes, which means the CpG site is 

about half-methylated (Du et al., 2010). Higher β-values represent hypermethylation, 

while lower β-values represent a lower level of DNA methylation, classified as 

hypomethylation. Both hypermethylation and hypomethylation events have been 

associated with human cancers (Ehrlich, 2002). 

 After considering somatic mutations, regulatory information as well as aberrant 
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methylation events in their contribution to cancers, the allele frequency (AF) of the 

significant variants becomes significant. 

 

1.11. Allele Frequency of Variants in the African Population 
 

Genetic variants associated with diseases identified via high-throughput technologies 

such as whole genome sequencing are determined using case control studies  (Cross 

et al., 2010). The individuals participating in the study are classified as affected or 

unaffected, but one of the challenges of translating the (putative) associated 

biomarkers, such as the SNP, as a causal agent or risk factor in disease is the lack of 

allele frequency data (Cross et al., 2010).  The aim of this section was to compare the 

frequency of allele variants in the genomes of individuals with ccRCC to healthy 

individuals in the general population in order to observe if they are common or rare 

allelic mutations. Common gene variants are usually defined as those present at a 

minor allele frequency (MAF) of >5% within the general population, whereas a low-

frequency is defined as being between 0.5%–5% and very rare alleles at a MAF of 

<0.5%. MAF is defined as the frequency at which the less abundant allele of a SNP is 

present in a given population. In order to identify pathological candidates, the rare 

alleles are generally more interesting, because variants causing disease risk are likely 

to be segregating at a very low frequency  (The 1000 Genomes Project Consortium, 

2012). For this analysis the 1000 Genomes Project dataset was used, because in their 

study over 2000 samples were sequenced within five super-populations, namely: East 

Asian, South Asian, African, European and American ancestries. These genomes are 

available to researchers to assist with establishing reference allele frequencies within 

healthy population groups.  

 

1.12. Why Africans? 
 

By taking this study one step further and analysing these mutations in the African 

population, one can further increase the depth and scope of one’s findings. Because 

Africa is the ancestral homeland of modern humans, African populations have an 

appreciable amount of genetic and phenotypic diversity that is much greater than in 
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the rest-of-world populations. Stated differently, modern non-Africans carry only a 

subset of the genetic variation present in Africans (Campbell and Tishkoff, 2008).  

African populations possess a much larger pool of population-specific alleles and are 

known to have less linkage disequilibrium (LD – the non-random association 

between alleles at different loci) among loci, relative to non-Africans. Genomic 

studies involving data from these diverse ethnic groups are thus essential for 

understanding how genetic variations influence complex disease susceptibility 

(Campbell and Tishkoff, 2008).  The mortality rate in Africa is high, but this may 

change as access to anti-retrovirals and better health-care systems are becoming more 

widely available. Since kidney cancer is a late-onset disease and the life-expectancy 

of Africans is predicted to increase, this may lead to an increase in the incidence of 

kidney cancers in Africans (Bor et al., 2013). 

Therefore, by functionally annotating the non-coding data generated by whole 

genome sequencing and by comparing them to AF data from African ethnic groups, 

we may unequivocally add great insight into our current understanding of how non-

coding genetic variants relate to disease susceptibility. For this reason, the data 

released by the ENCODE Project will be invaluable in this research project. 

ENCODE recently publicly released functional annotation data on both protein-

coding and non-coding genes of the human genome. Their ultimate aim was to 

enhance the understanding of the human biology and disease  within the scientific 

and medical communities, by aiding with their interpretation of the functions of the 

human genome (The ENCODE Project Consortium, 2011).  

 

1.13. The Encyclopedia of DNA elements (ENCODE) Project  
 

Recent analysis has indicated that at least 80% of the entire genome is biologically 

active and is either transcribed, binds to regulatory proteins or participates in another 

important biochemical activity (The ENCODE Project Consortium, 2011).  Exploring 

the function and evolutionary origins of non-coding DNA is an important goal of 

contemporary genome research, considering it encompasses 98% of the human 

genome.  

The ENCODE Project (http://genome.ucsc.edu/ENCODE/), initiated by the National 
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Human Genome Research Institute (NHGRI) in 2003, aimed to  use multiple 

scientific technologies and approaches in order to functionally annotate the dynamic 

aspects of the human genome (See Figure 9 for an overview of some of the 

technologies used). During their pilot project phase, which spanned from 2003 until 

2007, a variety of computational and experimental methods were exploited and 

compared to functionally analyse a defined 1% of the genome. By 2007 they 

capitalized on the technologies developed during the pilot phase to study the entire 

human genome. The goal was to annotate all genes (coding and non-coding), all 

transcripts, transcriptional regulatory regions as well as chromatin states and DNA 

methylation patterns (The ENCODE Project Consortium, 2011).  

 

To achieve this, seven ENCODE Data Production Centres, encompassing 27 

institutions, were established to generate multiple complementary types of genome-

wide data. This data included the identification and quantitation of RNA species in 

whole cells and subcellular compartments, the mapping of protein-coding regions and 

the delineation of chromatin and DNA accessibility and structure using nucleases and 

chemical probes. Histone modifications and transcription factor binding sites were 

mapped by chromatin immunoprecipitation (ChIP) and the genomic DNA 

methylation was measured (these data types are discussed in the section that follows). 

In parallel to the large-scale projects, several smaller-scale production efforts 

analysed long-range chromatin interactions, localizing binding proteins on RNA, 

identifying transcriptional silencing elements and examining detailed promoter 

sequence architecture in a portion of the genome. To ensure data quality, they have an 

on-going emphasis on the development and application of standards to allow for the 

reproducibility of the data and to record the metadata of experiments. Massively 

parallel DNA sequence technologies have been implemented to facilitate 

standardized data processing, comparison and integration. Primary- and processed 

data as well as experimental data are collected for curation, quality review, 

visualization and dissemination by a Central Coordination Centre, after which the 

data is rapidly released to the public via a web-accessible database. RegulomDB is an 

example of an easily accessible web-interface that has made extensive use of the 

ENCODE data. 

22 
 

 

 

 

 



 
Figure 9: Various assays and methods were employed to identify functional elements in the ENCODE 

Project (Darryl Leja and Ian Dunham, 2011). 

 

1.14. RegulomDB 
 

RegulomDB is a database which functionally annotates non-coding and intergenic 

regions of the human genome in order to identify regions/elements with putative 

regulatory potential and variants that are truly functional within the human genome, 

by making use of the data generated by ENCODE. All ENCODE (2012 Freeze) TF 

ChIP sequencing (ChIP-seq), histone ChIP-seq, Formaldehyde-Assisted Isolation of 

Regulatory Elements (FAIRE), DNase1 hypersensitive data, DNA Methylation data 

and Chromatin states from the Roadmap Epigenome Consortium (unpublished) have 

been integrated into the database. Furthermore, TF ChIP-seq data from the National 

Centre for Biotechnology Information (NCBI) Sequence Read Archive, a large 

collection of Expression Quantitative Trait Loci (eQTLs), manually curated enhancer 

regions from VISTA Enhancer Browser and various computationally predicted data 

which are supplemented with manually curated annotations have been incorporated 

(Boyle et al., 2012). A brief description of the various data types and technologies 

used in epigenetic studies follows below (DNA methylation was already discussed in 

detail in section 1.10, so it is excluded here).  
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a) Expression Quantitative Trait Loci (eQTLs) 
 

Genome-wide association studies (GWAS) have shown that most single nucleotide 

variants (SNVs) associated with complex multifactorial diseases lie within the non-

coding portion of the genome. Due to their locations, they do not modify amino acid 

sequences, but evidence strongly suggests that these variants have an impact on gene 

expression and they have therefore been termed expression Quantitative Trait Loci 

(eQTLs) (Costa et al., 2013).   

 

b) DNAse I hypersensitive data 
 

DNA is usually tightly wrapped around histone proteins and packed into 

nucleosomes. This tight packaging effectively shields the DNA from the cleavage by 

DNAse I enzymes. Thus the ability of DNA to be digested by DNAse I, is indicative 

of nucleosome-depleted DNA and therefore suggests that the DNA must be active 

and presumably occupied by transcription factors. Mapping DNase hypersensitive 

sites (DHSs) is therefore a valuable tool for identifying active regulatory elements 

such as promoters and enhancers (Song and Crawford, 2010). 

 

 

c) Chromatin immunoprecipitation sequencing (ChIP-seq) and histone 
ChIP-seq 

 

The epigenome is defined as the methylated DNA and the modified histone proteins 

around which both methylated and unmethylated DNA is wrapped. During transitions 

through the developmental stages and within diseases such as cancers, the DNA 

methylation states and the histone modifications (such as histone acetylation and 

histone methylation) undergo global changes, thereby drastically altering the 

chromatin states. The chromatin state is defined as being either open; meaning the 

DNA is accessible for transcription; or closed, meaning the DNA is inaccessibly 

wound around their histone proteins and packaged tightly into nucleosomes. ChIP 

assays allow investigators to identify protein-DNA interactions in vivo, by covalently 

24 
 

 

 

 

 



crosslinking proteins such as histones and/or TFs to their genomic DNA substrates. 

After the isolation and fragmentation of the chromatin, the protein-DNA complexes 

are captured using antibodies specific to the protein bound to the DNA in the 

complex. ChIP followed by high-throughput sequencing (ChIP-seq) allows for the 

high-resolution characterization of genome-wide profiles of TFs, histone 

modifications, DNA methylation and nucleosome positioning (O’Geen et al., 2011). 

 

d) Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) 
 

Similar to ChIP assays, FAIRE is used to isolate nucleosome-depleted DNA from 

human chromatin. The FAIRE procedure involves cross-linking chromatin with 

formaldehyde which is then sheared by sonication, before it is phenol-chloroform 

extracted. The DNA in the aqueous phase is recovered, fluorescently labelled and 

hybridized to a DNA microarray. FAIRE can therefore show the position of DNase 

hypersensitive sites, transcriptional start sites and active promoters in combination 

with techniques such as quantitative Polymerase Chain Reaction (qPCR) or FAIRE-

sequencing (FAIR-seq) (Tsompana and Buck, 2014). 

 

1.14.1. Scoring system of RegulomDB 
 

Using the observed modifications in these data types, RegulomDB developed a 

heuristic scoring system based on the functional consequence of the variant. The 

functional consequence then gets assigned to a class ranging from Category 1 to 

Category 6, as illustrated in Table 1. Category 1 represents the highest level of 

confidence that the functional location of the variant likely results in a functional 

consequence, such as altered TFB or altered gene regulation. This is based on known 

eQTLs for genes, which as previously discussed in section 1.14a, have been shown to 

be associated with expression. Categories 4-6 lack evidence of the variant actually 

disrupting the site of binding (Boyle et al., 2012).  
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Table 1: A breakdown of the RegulomDB scoring system and the corresponding annotations. 

Category 1 represents the highest level of confidence that the variant has functional consequences. 

Category 3 is border line and category 4-6 means that there is insufficient evidence that the variant 

has functional consequences. 

Score Supporting data 

1a eQTL + TF binding + matched TF motif + matched DNase Footprint + DNase peak 

1b eQTL + TF binding + any motif + DNase Footprint + DNase peak 

1c eQTL + TF binding + matched TF motif + DNase peak 

1d eQTL + TF binding + any motif + DNase peak 

1e eQTL + TF binding + matched TF motif 

1f eQTL + TF binding / DNase peak 

2a TF binding + matched TF motif + matched DNase Footprint + DNase peak 

2b TF binding + any motif + DNase Footprint + DNase peak 

2c TF binding + matched TF motif + DNase peak 

3a TF binding + any motif + DNase peak 

3b TF binding + matched TF motif 

4 TF binding + DNase peak 

5 TF binding or DNase peak 

6 Other 

 

 

1.15. Aims and objectives 
 

The aim of this project was to implement a Bioinformatics approach to extract the 

coordinates of the promoter, intronic and untranslated regions of genes known to be 

implicated in ccRCC, to compare these regions in paired normal-matched-tumour 

ccRCC genomes generated by whole genome sequencing, in order to understand how 

these non-coding somatic mutations as well as their regulatory mechanisms and 

epigenetic modifications may contribute to the ccRCC. Analysis of allele frequencies 

of these variants will be used to assess whether these mutations may also affect 

Africans with respect to ccRCC when compared to rest-of-world populations. 
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The objectives of this study were, to: 

a) Identify a set of previously identified RCC-associated disease genes, and 

an equal number of non-disease genes as a control set. Comparison of 

mutation frequency in RCC genes and control genes will indicate whether 

RCC genes are mutated more frequently than non-RCC genes or whether 

genomic instability is genome-wide (non-specific) in ccRCC tumours. 

b) Extract the promoter, CDS, 5’UTR, 3’UTR and intronic regions of these 

genes. The CDS region serves as a second control to assess the frequency 

of mutations observed in the non-coding regions compared to those in the 

coding region. 

c) Retrieve a publicly available whole genome sequenced ccRCC somatic 

mutation dataset (tumour and matching normal samples). 

d) Extract the somatic mutations that fall within the different genomic 

regions of ccRCC-associated genes and the control set (e.g. 5’UTR, 

introns etc.) 

e) Find the functional annotation of the ccRCC tumour-specific variants 

using ENCODE released data. 

f) Identify the transcription factor binding sites (TFBSs) in RCC genes that 

may have been disrupted by the somatic variants. 

g) Identify aberrant methylation patterns specific to ccRCC tumours around 

the promoter regions of the RCC genes. 

h) Relate the TFBS, methylation and somatic mutation data specific to 

ccRCC tumours to the gene expression levels of the genes of interest, for 

the ccRCC tumours compared to unaffected tissue. 

i) Extract the allele frequencies (AFs) of the somatic variants identified in 

this study, in the African population, to assess whether their frequencies in 

African populations differ from in rest-of-world populations and may 

predispose Africans to ccRCC. 
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CHAPTER 2 

2. METHODS 
 

In this section, the methodology and the reasoning behind each step will be 

described. The first step involved the selection of RCC and normal genes and the 

identification of an appropriate ccRCC somatic mutation dataset on which the entire 

successive analyses would rest. After the extraction of the somatic mutations within 

genomic regions of interest, the functional annotations of the non-coding variants 

were retrieved from RegulomDB. The variants were also checked for their locations 

within TFBS and for differential methylation within the genomic regions. 

Furthermore, gene expression data was utilized to ascertain if these variants may 

have resulted in gene dysregulation. The interplay between protein-protein 

interactions and the connections between the genes within a network were also 

analysed for the genes often targeted. Finally, the allele frequencies of all ccRCC 

non-coding somatic variants within the normal population were investigated. The 

flowchart in Figure 10 shows a brief overview of the most important steps, which are 

discussed in more detail within the various subsections. The shortened version of the 

Read-Me containing the names of the Python scripts can be viewed in Appendix VII. 

The slightly longer version of the Read-Me and all the Python scripts were uploaded 

to https://github.com/ and can be viewed at https://github.com/tralynca/Thesis-

scripts/tree/master. 
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Figure 10: An overview/flowchart of the methodology used in this analysis. Intricate steps such as 

filtering and the selection of controls are not included, but they are discussed under the different 

subsections of the methods. 
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2.1. Mining of non-disease genes and RCC disease genes 
 

Many RCC genes have already been identified and captured in multiple databases, 

ready for mining. By initiating this study with confirmed disease genes, it was easier 

to deduce whether the somatic variants, regulatory- and epigenetic data extracted 

within the genomic regions of these genes, could be disease-related. Furthermore, 

linking regulatory variants (which are generally located within non-coding regions) 

with coding genes that are well known cancer drivers may aid in shedding light on 

the regulatory mechanisms that govern oncogenesis (Fu et al., 2014).  This was given 

further credibility by comparing the results of the RCC-disease genes to the non-

disease genes used as the control. The list of ccRCC genes was compiled by 

interrogating various publicly available databases, detailed below.  

 

2.1.1. Selection of RCC disease genes 
 

Five databases were queried and genes that were present in two or more of the five 

databases were included in the list of RCC genes. The databases queried were: 

 

2.1.1.1 The Online Mendelian Inheritance in Man (OMIM)  
 

OMIM was queried via NCBI (http://www.ncbi.nlm.nih.gov/omim, Accessed 

10/06/2015) for genes implicated in RCC. OMIM is a compendium of manually 

curated human genes and their genetic phenotypes, as well as extensive text 

summaries of all known Mendelian disorders (Hamosh et al., 2005). It also offers 

links to literature, sequences, maps and many other resources (Hamosh et al., 2005). 

Using OMIM, all RCC genes were extracted. 

 

2.1.1.2. The Integrative Onco Genomics (IntOGen) 
 

IntOGen 2.4.0 (http://www.intogen.org/, Accessed 13/06/2014) is a web platform that 

integrates the results of tumour genomes analysed with various different mutation-
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calling workflows to summarize pathways, genes and somatic mutations involved in 

tumourigenesis (Gonzalez-Perez et al., 2013). Over 4600 somatic mutations from 31 

different projects and 13 distinct tumour types were analysed (Gonzalez-Perez et al., 

2013). IntOGen didn’t allow genes of cancer subgroups to be mined, so all high 

confidence driver kidney cancer genes were mined.   

 

2.1.1.3. The Catalogue of Somatic Mutations in Cancer (COSMIC) 
 

COSMIC V70 (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/, Accessed  

13/06/2014) combines data from the Wellcome Trust Sanger Institute’s Cancer 

Genome Project with manually curated cancer mutation data from scientific literature 

(Forbes et al., 2011). It is maintained by the Institute‘s Cancer Genome Project and it 

contains data for over two million point mutations and over six million non-coding 

mutations in over 1 million tumour samples and 12 000 cancer genomes (Forbes et 

al., 2015). COSMIC includes a substantial amount of data sets from The Cancer 

Genome Atlas (TCGA; http://cancergenome.nih.gov/) and the International Cancer 

Genome Consortium (ICGC; https://dcc.icgc.org/) projects. Approximately half of 

COSMIC's cancer genomes are curated from these consortium data portals, while the 

other half results from curations of published literature. COSMIC has also commited 

to a data release every two months to ensure updated data implicated in human 

cancers (Forbes et al., 2011). From Cosmic the top 300 ccRCC-implicated genes were 

extracted.  

 

The mutation data was obtained from the Sanger Institute Catalogue Of Somatic 

Mutations In Cancer web site, http://www.sanger.ac.uk/cosmic. Bamford et al (2004). 

The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br 

J Cancer, 91,355-358. 
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2.1.1.4. Oncomine 
 

Oncomine 4.4.4.4 (https://www.oncomine.org/resource/main.html, Accessed  

10/06/2014) systematically compiles microarray data for analyses and curation 

before making it available via a web-based data mining platform (Rhodes et al., 

2004). This includes gene annotation data from various genome resources to facilitate 

the interpretation of a genes possible role in cancer pathogenesis (Rhodes et al., 

2004). From Oncomine the top 10% of over- and underexpressed genes in ccRCC 

were retrieved. 

 

2.1.1.5. Entrez-Gene  
 

The content of Entrez-Gene (http://www.ncbi.nlm.nih.gov/gene, Accessed 

10/06/2014) represents the results of curated and automated data integration from 

NCBI’s Reference Sequence project (RefSeq), collaborating data and other databases 

in NCBI. This database allowed for more refined filtering. Hence, alternatively 

spliced and annotated ccRCC genes were selected. 

 

Because IntOGen and OMIM didn’t allow for a refined filtering to retrieve ccRCC-

specific genes, the gene list was essentially a RCC gene list and not a ccRCC gene 

list. All disease genes were in the Human Genome Organization Gene Nomenclature 

Committee (HGNC) format. 

 

2.1.1.6. Final Selection of RCC disease genes 
 

The gene lists were prioritized using a gene ranking procedure. Duplicate genes were 

eliminated from individual lists first, whereafter the genes were ranked in order of the 

frequency of occurrence using a command line in Ubuntu 13.10 (sort input_filenames 

| uniq –c| sort –nr > output_filenames). The –c counts the number of unique entries 

and the sort –nr records the number of times the same entry is observed across the 

five gene lists. The aim was to winnow down the set of genes for genes commonly 
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associated with RCC, in order to increase the confidence of the genes’ implication in 

RCC. This was followed by the selection of the genes most commonly identified by 

the five databases. After the selection of RCC disease genes, a control set of non-

disease genes was required for comparative purposes. 

 

2.1.2. Random Selection of non-disease genes 
 

A list of non-disease genes were randomly selected using Ensembl 

(http://www.ensembl.org/index.html). Ensembl is a joint project between the 

European Molecular Biology Library-European Bioinformatics Institute (EMBL-

EBI) and the Wellcome Trust Sanger Institute to provide a publicly available web 

interface which stores automatically annotated data on genomes of multiple species. 

 A Python V2.7.6 script was used in order to randomly select the equivalent number 

of non-disease genes as the RCC disease genes.  

The genes were not matched by length, because the selection of non-disease genes 

was meant to be truly random. Also, matching by length could favour the selection of 

potentially unknown disease genes, since the protein coding- and intronic regions of 

disease genes have been shown to be longer in disease genes than in non-disease 

genes (Polymenidou et al., 2011) (Smith and Eyre-Walker, 2003).  However, gene 

length was taken into consideration when calculating the density of the hits in the 

various genomic regions of both the disease and non-disease genes, as discussed in 

section 2.5. 

 

2.1.2.1. Conversion of Ensembl gene ID’s to transcript ID’s in BioMart Ensembl 
 

These genes (disease and non-disease) were then submitted to BioMart Ensembl 

Genes 79 (http://www.ensembl.org/BioMart/martview/) to retrieve the Ensembl gene- 

and transcript ID’s, the HGNC symbols and strand orientation for all genes, since 

they were all required for submission to University of California at Santa Cruz’s 

(UCSC’s) Table Browser Tool  and for the analysis that followed.    
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2.2. Extraction of genomic coordinates of genes of interest from UCSC 
 

A common mode of impact of disease variants is through disruption of regulatory 

elements that modulate the target gene (Macintyre et al., 2014). As previously 

discussed, many of these regulatory elements are located within the non-coding 

regions of genes. This section aimed to identify the non-coding genomic coordinates 

for the RCC disease genes and the random non-disease genes. The hg19 genomic 

coordinates of the introns, 5’UTR, 3’UTR and 1000 bases upstream of each gene 

were extracted from UCSC using the Table Browser feature 

(https://genome.ucsc.edu/cgi-bin/hgTables). Thus, for this section and for all 

subsequent data sets the NCBI human reference genome build 37 (GRCh37)/hg19 

was used. The 1000 bases upstream were considered since this includes the TATA 

box, which acts as a basal promoter element for transcription by RNA polymerase 2 

(RNAP II) and RNA polymerase 3 (RNAP III) (Wang et al., 1996). This region will 

therefore henceforth be called the promoter region. The coordinates of the CDS were 

extracted, as a control to compare the results of the non-coding regions with that of 

the coding region. The locations of a random selection of genomic coordinates from 

each genomic section were manually confirmed using UCSC and Ensembl, in order 

to validate the scripts used by these parties in selecting these regions.  Files were 

stored as Browser Extensible data (.bed) files for which the format is: 

Chromosome  start coordinate end coordinate  strand 

After the genomic coordinates of the genes were extracted the whole genome 

sequenced somatic variant data was obtained. 
 

2.3. Extraction of somatic mutations 

2.3.1. Why ICGC somatic mutation data and not COSMIC or TCGA? 
 

Initially the TCGA data was considered for the whole genome analysis, but it was 

later determined to be whole exome sequenced data and therefore not appropriate for 

this study. Since the COSMIC database hosts updated TCGA and ICGC data for 

ccRCC somatic variant calls, its datasets were then retrieved. However after 
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obtaining more somatic mutations within the CDS region compared to the non-

coding regions, a query was made with the COSMIC information team and this data 

was also found to be whole exome sequenced and not whole genome sequenced as 

anticipated. Finally the ICGC data proved to be the WGS dataset that truly contained 

whole genome sequence data, and was thus suitable for this study. 

 

2.3.1.1. Extraction of Whole Genome Sequencing Data from ICGC 
 

In order to identify the non-coding somatic variants within ccRCC patients, data from 

ccRCC whole genomes with their matched normal genomes were required. The 

ICGC simple somatic mutation dataset, current Release 18 for ccRCC tumour with 

matching blood control samples were obtained from the ICGC Data Repository 

(https://dcc.icgc.org/repository/-current/Projects/RECA-EU, Accessed 05/05/2015). 

The EU/FR project was selected due to the availability of whole genome sequenced 

data as opposed to the other ccRCC ICGC projects that performed only whole exome 

sequencing. The Illumina HiSeq sequencing platform was used in these studies to 

carry out full genome sequencing on the tumour and matching controls (blood). 

CASAVA version 1.7 was used as their general sequence analysis workflow, which 

includes multiple processing steps such as base-calling, demultiplexing, alignment 

and genotyping.  Here Burrows-Wheeler Aligner (BWA) was used for the alignment 

and the variant calling was performed with Samtools mpileup. The other analysis 

algorithms used were Genome Analysis Toolkit, Picard, SNpEff, VCF Tools and 

BVA Tools. The output file available for public data and downloaded for this study 

was a tab separated file (simple_somatic_mutations.open.RECA-EU.tsv). 

 

2.3.2. Checking the validity of the ccRCC genomes data 
 

The data was checked using Linux (sort –kn –u input file > output file) to confirm 

that there was an equal number of donor IDs and specimen IDs, since these numbers 

would later be required in downstream calculations. The –k command can be used 

multiple times, but here it was used twice to specify the columns for the donor ID and 
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specimen ID, where –k is the command to signal that columns will be looked at and n 

is the number of the column. Finally, the –u command prints only the unique entries. 

Similarly grep –c GRCh37 showed that the number of times the human reference 

code occurred correlated with amount of entries in the file; that is, all entries 

contained genomic coordinates from the same human reference genome. The grep 

command allows one to search for a pattern specified by the user. In this case the 

pattern was GRCh37. Again, the –c counts the number of times the pattern occurred. 

The number of entries were determined using wc –l, where wc –l executes the 

command to count the number of lines. The same procedure was followed to check if 

all entries were generated via WGS (grep –c WGS).  

 

2.3.3. Detecting somatic variants (SVs) in the ccRCC disease and non-disease genes 

2.3.3.1. Locating the somatic variants (SVs) in disease genes 
 

Non-coding somatic variants were detected by using a Python script that scanned 

both the bed files (containing the genomic coordinates of the genes) and the somatic 

variant call file. If the somatic variant fell within the bed range genomic coordinates, 

the desired data was directed to and stored in a new file. 

The pseudo code for extracting the somatic mutations was: 

for (every) line in the ccRCC somatic variant (SV) file: 

 for (every) line in the .bed file (genomic range file): 

  if the chromosome in SV file = = the chromosome in .bed file AND the start 

coordinate in SV file >= start coordinate in .bed file and  end coordinate in SV file <= last coordinate 

in .bed file: 

    Write the matching line to a new file 

 

2.3.5.2. SVs in non-disease genes 
 

By considering the non-disease genes the overarching question was: “If the same 

number of random non-disease genes were used instead of RCC disease genes, was 

an equivalent amount of SVs observed as in the RCC genes?” The same Python 
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script was modified to use the genomic regions of these non-disease genes and the 

data was stored separately as the control gene variants set. 

All hits for this section and every section that followed were always first printed to 

Stdout (screen) for validation before the data was written to an output file.  

 

2.4. Processing and filtering of somatic variant list 
 

Many duplicate entries cluttered the file due to one gene having many Ensembl 

transcript IDs. The unique entries were sorted and retained by using a Linux 

command sort –t Ctrl+v+Tab -kn -u SV_results_*.txt > 

SV_results_*.txt_SORTED.txt 

The * was the genomic region, since these files were initially kept separately. 

The –t allows one to specify the character on which the data is split in the file, e.g. –t 

‘Ctrl+v+Tab’ means it is split on a tab. Sometimes, just using the Tab button doesn’t 

work effectively, but ‘Ctrl+v+Tab’ always executes the command accurately. The –k 

was used multiple times for the selection of all the columns except for the column 

containing the Ensembl transcript IDs. That is, sort and select unique entries by 

observing all columns, but ignore the Ensembl transcript IDs. The accuracy of the 

Python script to select somatic mutations was also checked by selecting random hits 

and checking them manually in UCSC’s genome browser to verify if they were 

located within the appropriate targeted genomic region (e.g. if the position of the 

somatic variant was within the 5’UTR region of that specific gene, as indicated by 

the script). In so doing some discrepancies were observed. Firstly, it was already 

known that the somatic variant file retrieved from ICGC reported only the Ensembl 

IDs and no HGNC symbols. Therefore, genes that were not within the original 

disease gene list were not easily spotted based solely on their Ensembl IDs. Due to 

many overlapping genes in the human genome and because the strand of the genes 

couldn’t be specified in the Python script, many of the hits were not linked to the 

gene IDs within the selected RCC gene list. The Ensembl and HGNC IDs obtained 

from BioMart Ensembl Grch37 were therefore matched with the SVs in the output 
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file to retrieve only those entries linked to the genes of interest. The correct gene with 

the correct HGNC symbol would again become imperative when doing the gene 

expression analysis since that dataset reports only HGNC symbols. Having the 

incorrect HGNC symbol would mean that the gene expression levels for a specific 

variant would not be extracted. 

 

The pseudo code for the extraction of the correct somatic variants was: 

 if Ensembl gene ID in candidate gene list == Ensembl gene ID in SV hits list: 

  Print the data to a new file 

The Python script was modified to accept the data files for the non-disease genes and 

the same processing was applied. All the results were tabulated for direct comparison 

between somatic variants for the RCC disease and non-disease genes, as shown in the 

Results section. 

 

2.4.1. Manual confirmation of one of the genes of interest  
 

A second check was performed in order to confirm appropriate variant selection. One 

of the genes was selected at random and all its hits were manually checked by 

extracting the genomic region coordinates, which were exclusive to that specific 

gene, from UCSC (.bed file).  All the somatic variants linked to this gene within the 

WGS somatic mutations file were extracted using: 

grep gene_name simple_somatic_mutation.open.RECA-EU.tsv > output_file and 

stored in a separate file. 

The hits for this gene generated by the Python script were also extracted using: 

grep gene_name  file_with_python_generated_somatic_mutations.txt > gene_name_ 

mutations.txt 
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The genomic position of each of the gene’s somatic variants generated by whole 

genome sequencing were checked manually to see how many of them fell within the 

specific ranges captured in the .bed file and the number of hits per genomic region 

was recorded. For example, all of gene X’s WGS variants were validated against the 

bed ranges in the introns bed file, to ascertain whether the mutation fell within one of 

the introns in that file. These manually extracted hits were compared to those 

generated by the script to ascertain if the same number of hits was obtained per 

genomic region.  

After the variants were extracted and validated, the density of these hits was 
investigated. 

 

2.5. Density of hits 
 

Cancer mutations are not always distributed uniformly across the genome, but instead 

the local density may vary by up to five-fold in distinct genomic regions (Polak et al., 

2015).  Furthermore, it is expected that non-coding regions will have more variation 

than coding regions as explained in section 1.9.4. In order to compare the density of 

these hits per genomic region a Python script was used. Here the number of unique 

hits was used, considering multiple patients reported variants at the same position 

causing the same somatic variant to appear more than once, and therefore skewing 

the results. The Linux sort –t –k –u function allowed for duplicate somatic variants to 

be removed if the genomic position was exactly the same despite the patient ID being 

different. The –k here specified the genomic region (i.e. observe the chromosome 

number and gene start- and end coordinate only) in order to select unique entries.  

Pseudo code: 

Add up all the bases that were scanned within the distinct genomic region 

Add up the number of unique hits within the distinct genomic region 

Density =  

number of unique hits within the distinct genomic region /  

the bases that were scanned within the distinct genomic region 
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2.5.1. Manual confirmation of density with the PTEN gene 
 

Similarly, in order to confirm that the density of the variants was correctly calculated 

by the script, a gene was selected for manual confirmation. Its genomic regions were 

extracted from UCSC’s Table browser and manually added. The number of hits for 

that gene was manually divided by the number of bases allocated to the distinct 

genomic region of that gene. The same python script was then adapted to perform the 

calculation on the files for this gene to validate that the script was doing the density 

calculation correctly for the actual data. 

 

2.6. Annotation of Somatic Mutations using RegulomDB 
 

The ultimate aim of this study was to retrieve and understand the functional 

consequences of the non-coding somatic variants, in order to determine whether they 

have a predicted detrimental effect on transcription or translation.  In order to 

therefore assign the potential functional annotations to the non-coding variants, the 

epigenetic data repository of RegulomDB V1.1 was mined. To submit the somatic 

variants to RegulomDB, the data had to be converted to 0-based coordinates (Format 

= chromosome_number : minimum_coordinate  maximum_coordinate), which was 

the format required by the web front-end of the database. 

 

2.6.1. Conversion of the genomic coordinates for RegulomDB input 
 

All the ccRCC somatic mutations identified in this study were single nucleotide 

substitutions, hence the start and end coordinates were identical. To facilitate the 

conversion, a mini-script was written (Python) to add one to the maximum 

coordinate.  

This resulted in some duplicates since many SVs had the same genomic coordinates 

and only differed by the type of nucleotide substitution (the allele that was mutated) 

in different patients. The duplicates were removed with sort –u, but this meant that 

fewer SVs were retained than in the original SV hits files. The SVs with a Category 
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1-2 rating were highlighted due to the highest level of confidence displayed in the 

functional consequence of these variants. A python script was used to connect the 

RegulomDB data to the somatic mutation data which was previously removed for 

input to the Regulome database. A pivot table was created to observe the genes that 

contained the most somatic mutations (which could be due to numerous variants in 

the same patient) and the genes commonly targeted in multiple patients.  

Pseudo code for adding one to the end coordinate: 

for (every) line in file: 

 Split the file into columns at every position where there is a tab 

 Extract the chromosome, start and end coordinate 

 if the end coordinate == the start coordinate: 

  += 1 (add one) 

else: (i.e. if the mutation was an insertion or deletion and the end coordinate was 

already greater than the start coordinate) 

end coordinate +=0  

Print the chromosome, start and end coordinate to a new file 

 

2.7. Analysis of somatic variants 
 

After processing, the files were analysed to check for trends, overlapping 

genes/variants, correlations and other relationships. Pivot tables were used to observe 

the regional comparisons were also made (5’UTR, 3’UTR, intronic, CDS and 

promoter) to observe the genomic regions where mutations or certain observations 

were most frequent. The Gene Ontology (GO) term names and definitions of the 

genes with somatic mutations were also retrieved from Ensembl BioMart (hg19) in 

order to observe if the molecular functions these genes participate in may be related 

to the hallmarks of cancer. 
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2.8. ICGC patient clinical data 
 

The clinical data for the 95 patients was also made available by ICGC 

(https://dcc.icgc.org/api/v1/download?fn=/release_19/Projects/RECA-EU/donor.-

RECA-EU.tsv.gz), which included amongst other: the ICGC donor id,  the donor sex, 

vital status, disease status at last follow up, relapse type, age at diagnosis, relapse 

interval, tumour stage at diagnosis and survival time. This was retrieved in the event 

that further inferences could be made after the initial analyses were complete. 

 

2.8.1. Connecting clinical information to somatic mutations 
 

The total number of somatic mutations as well as the number of predicted deleterious 

mutations was connected to the patient’s clinical information using a Python script so 

as to see if this information could be translated to the condition of the patient. After 

connecting the clinical and somatic mutation data, the next step was to relate the 

somatic variants/SNPs to transcription factor binding sites that might have been 

disrupted by these SVs. One potential approach for prioritizing non-coding variants 

for further analysis is to identify the variants located in regulatory elements/regions, 

because they may enhance or disrupt transcription factor binding at enhancers or 

promoters (Soumya, 2013). 

 

2.9. Somatic variants in Transcription Factor Binding Sites (TFBS) 
 

rSNPs in the non-coding regions have been shown to alter the DNA landscape where 

TFs bind, effectively altering the TFBSs (Buroker, 2014).  Although RegulomDB 

also displays TF ChIP-seq data, the ENCODE TFBS data allowed for a more 

efficient data-specific extraction and observation of the TFs affected, which later 

became useful in the ensuing analysis. The Transcription Factor Binding Site 

clustered V3 data was retrieved from UCSC/ENCODE (http://genome.ucsc.edu/-

ENCODE/downloads.html). Data was based on ChIP-seq experiments spanning 7 

human cell types and mapped to GRCh37 (hg19). The whole genome SVs detected in 
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the non-coding and CDS regions of RCC disease genes were compared to the TFBSs 

identified by ENCODE in ccRCC genomes, to discover the total number TFBSs that 

may have been disrupted by these variants as well as the genes and TF’s commonly 

involved. The TFBS ranges were larger than the SV range, hence, the script was 

written to find the SV positions within the TFBS ranges. 

 

The pseudo code was as follows: 
 

For each somatic mutation: 

 For each TFBS coordinate: 

  if first coordinate of non-coding ccRCC SV >= first coordinate of TFBS 

AND last coordinate of the somatic mutation <= last coordinate of TFBS: 

   Write matching line to the output file 

 

Doing this part of the analysis was essential, since SVs in TFBS could alter TF 

binding by either destroying/altering the binding capability of the TFBS or by 

creating a new binding capability, as previously discussed. No new TFBSs were, 

however, expected to be discovered with the data exploited in this study, since the 

TFBS-dataset was comprised of predetermined potential TFBSs.  

After somatic mutations as well as regulatory information were examined, taking an 

epigenetic approach was still necessary for a more holistic analysis. Crucial 

modifications that contribute to cancer onset and progression may not be detected by 

common DNA analysis as they may affect gene expression and/or DNA methylation 

patterns rather than the protein function (Costa et al., 2013).  Aberrant DNA 

methylation, particularly promoter hypermethylation, has been hypothesized to play a 

pivotal role in the development of ccRCC with various reports showing over 60 

candidate tumour suppressor genes demonstrating evidence of tumour-specific 

hypermethylation. As previously stated, the VHL tumour suppressor gene is 

inactivated by promoter hypermethylation in approximately 15% of ccRCC cases 

(Ricketts et al., 2014). Hence, the genes of interest (GOIs) were also analysed for 

potential differential methylation patterns and their relationship with tissue-specific 

gene expression. 
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2.10. Aberrant Methylation in GOI 
 

Methylation data (CosmicCompleteDifferentialMethylation.tsv) was extracted from 

the Cosmic Whole genomes database (http://cancer.sanger.ac.uk/wgs-

/files?data=/files/grch38/cosmic/v73/CosmicCompleteDifferentialMethylation.tsv.gz, 

Accessed 06/2015) via their sftp server. COSMIC, however, obtained the data from 

the ICGC portal, after which it was processed by the COSMIC team. Methylation 

data was generated using the Infinium HumanMethylation450 bead chip. The HM450 

array, targets 482 421 CpG sites throughout the genome; that is, 96% of CpG islands, 

with additional coverage in island shores and flanking regions. The TCGA Level 3 

data was used by COSMIC, since normal samples were included which could be used 

to calculate differential methylation. The Beta values (M/M+U), where M is 

methylated and U is unmethylated, were already calculated for each interrogated 

locus. Probes with a SNP coordinate within 10bp of the interrogated CpG site or that 

had a "within 15bp from the CpG site” overlap with a REPEAT element, were 

masked as NA across all samples. Probes with a non-detection probability (p-value) 

greater than 0.05, were also masked as NA. Lastly, probes that mapped to multiple 

sites on hg19 were similarly annotated as NA. The differential methylation analysis 

was then carried out by COSMIC. The beta-values from tumour and normal 

populations for each locus (probe/CpG) were compared using the Mann-Whitney 

test. The Mann-Whitney U test is used to compare two independent groups, when the 

dependent variable is either ordinal or continuous and the data is not normally 

distributed (Laerd Statistics, 2013). The correction for multiple testing was carried 

out using the Bonferroni correction as follows:                 

the p-value of each locus (CpG) is multiplied by the total number of CpGs in the list. 

If the corrected p-value is still below the error rate, the locus was considered

 significant:  

Corrected p-value = p-value * n (number of CpGs in the test) <0.05.  

In practice this means that a p-value < 0.0000001655 is significant. 
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2.10.1. Representation of the data 
 

The methylation level was classified as High, Medium, or Low (Beta-value > 0.8; 

0.2-08; < 0.2 respectively) and the methylation state (altered=Y or N). For each 

locus, the state was defined as ‘altered’ when the absolute difference between the 

average beta value in the normal population and tumour sample was > 0.5. The 

CosmicCompleteDifferentialMethylation file only displayed results for loci where the 

p-value < 0.0000001655 and where the methylation level was High or Low and the 

state was ‘altered’ (http://cancer.sanger.ac.u-k/wgs/analyses).  

 

2.10.2. Filtering and analysis of methylation of data 
 

 This data, however, consisted of the combined methylation profiles of all analysed 

cancers. Hence, the ccRCC data was extracted from all the other cancer data using  

grep clear_cell_renal_cell_carcinoma CosmicCompleteDifferentialMethylation.tsv > 

ccRCC_methylation.tsv. 

The sort –t –kn ccRCC_methylation.tsv -u > uniq_patients.txt Linux command, 

(where n was the column number containing patient ID) revealed that the differential 

methylation data of 307 ccRCC patients was reported in this study. COSMIC also 

annotated the probes and reported those that were within the promoter region as 

“Promoter_Associated. These were then extracted using grep Promoter_Associated  

ccRCC_methylation.tsv > promoter_meth_ccRCC.txt. Lastly Python was used to 

extract all the aberrantly methylated promoter positions within the genomic regions 

of the 173 disease and non-disease genes (using the .bed files).  
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Pseudo code: 

For genomic coordinate of differentially methylated promoter in ccRCC: 

 For range of genomic region of RCC genes in bed file: 

  If the methylated position >= start coordinate of the range of the genomic 

region of RCC genes AND the methylated position <= end coordinate of range of the 

genomic region range of RCC genes: 

   Print the match to output file 

The genes, to which the methylated positions belonged, had to be manually retrieved 

from UCSC hg19, since both input files didn’t report the HGNC symbols of promoter 

associated methylation points. A pivot table was once again drawn up to determine 

the genes for which the promoter regions were most often aberrantly methylated and 

the number of patients affected. These results were compared to the genes that were 

somatically mutated and specifically to the genes that potentially disrupted TFBSs in 

order to see if there was a relationship. 

Nevertheless, another way to add credibility to the contribution of SVs, disruptions in 

TFBSs or aberrant methylation to the disease, is to relate these mutations to gene 

dysregulation in the genes of interest. Therefore, gene expression levels for the genes 

mutated/modified data were compared. 

 

2.11. Gene Expression 

2.11.1. Gene Expression changes of somatic variants 
 

Changes in gene expression levels are known to be associated with cancerigenesis 

(Kasowski et al., 2010). However, as stated previously, whereas changes in the CDS 

of genes may alter the amino acid sequence, cis-regulatory mutations alter gene 

expression (Stern and Orgogozo, 2008). Therefore, linking non-coding SVs, TFBS 

modifications or any other forms of epigenetic changes with gene dysregulation 

could strongly implicate these mutations in the disease. Gene Expression data for 

ccRCC was initially retrieved from ICGC, to be used with the somatic variants. This 

would have allowed access to the same tumour specimens sequenced for somatic 
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variant calling. However, ICGC only sequenced the tumour samples, hence, no 

differential analysis (Fold change) could be calculated. Therefore, COMSIC’s Whole 

Genomes genes expression data was downloaded (http://cancer.sanger.ac.uk/wgs-

/files?data=/files/grch37/cosmic/v73/CosmicCompleteGeneExpression.tsv.gz, 

Accessed June 2015).  COSMIC made use of the TCGA Level 3 Gene expression 

data generated via IlluminaHiSeq RNASeqV2, IlluminaGA RNASeqV2, 

IlluminaHiSeq RNASeq, and IlluminaGA RNASeq. For the RNASeq platforms, the 

Reads Per Kilobase of transcript per Million (RPKM) was used as a method of 

quantifying gene expression from RNA sequencing data by normalizing for total read 

length and the number of sequencing reads. The RNASeqV2 platforms contain data 

produced using MapSplice to do the alignment and RSEM to perform the 

quantitation.  

The mean and sample standard deviation (STDEV) of the gene expression values 

were calculated from the tumour samples that are diploid for each corresponding 

gene, platform and study. Based on these mean and STDEV values, the standard 

scores for gene expression for each corresponding gene, platform, and study were 

calculated. In order to display if a gene is over or under expressed, a threshold of 2 

STDEV, plus or minus was selected. In the cases where a sample was analysed with 

more than one platform for the specific study and gene, if the scores from all 

platforms were reported as above or below the threshold, then only was over or under 

displayed, respectively. If they didn't agree then they were not displayed. The z-core 

displayed across the website (an indicative score of the expression level) was taken 

from one platform in order of preference: IlluminaHiSeq_RNASeqV2, IlluminaGA 

RNASeqV2, IlluminaHiSeq RNASeq, IlluminaGA RNASeq (http://cancer.sanger-

.ac.uk/wgs/analyses).  

This file contained the patient ID, sample name, the HUGO gene symbol, whether 

the gene expression level was normal, up- or down-regulated and the z-score. 

However, COSMIC combined all gene expression data for the numerous tissue types 

sequenced by TCGA. Because TCGA followed a barcode system by which the tissue 

type could be identified, a python script was used to extract all data belonging to the 

set of unique ccRCC-specific tumour IDs recovered from https://tcga-
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data.nci.nih.gov/datareports/codeTablesReport.htm?codeTable=Tissue%20Source%2

0Site.  

Pseudo code: 

for barcode in TCGA barcode file: 

 for the barcode in the gene expression (GE) file: 

  if the barcode of TCGA file in barcode of the GE file: 

   print matching line to output file  

 

A total of 95 unique ccRCC patient datasets were then randomly selected using 

Python (pseudo code not shown) in order to make sure that the patient sample size 

matched that of the somatic mutations dataset (n = 95) and that the same patients 

were considered when a comparison was made between gene expression levels in 

disease and non-disease genes. 

Thereafter, the data for the gene expression levels of all 173 ccRCC disease and non-

disease genes were extracted and saved in a sub file (using Python). 

Pseudo code: 

for HGNC symbol in RCC gene list: 

 for HGNC symbol in GE file: 

  if HGNC symbol in gene list == HGNC symbol in GE file: 

   print matching line to output file 

 

 A comparison was made based on all somatic variants for RCC disease and non-

disease genes that were initially reported before they were functionally annotated by 

RegulomDB. Reporting data after functional annotation would skew the results 

considering the non-disease genes reported fewer deleterious hits and therefore 

would have fewer genes for which the gene expression levels would be reported. Up- 
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or downregulation was deemed significant if the Fold change was above two 

(FC >2). 

A  Pivot table was again constructed in Excel for the gene expression data, in order to 

see which genes were often dysregulated. 

  

2.11.2. Gene Expression for SV in TFBS 
 

Additionally, the genes for which there were no deleterious annotations, but many 

possible TFBS disruptions, were also compared to see if there was a relationship with 

the TFBS disruptions and their GE levels. A pivot table became useful again to 

correlate SMs with TFBS disruptions and gene dysregulations per gene and per 

patient.  

However, a drawback of many gene-specific studies is that physical interactions 

between genes or proteins are often not taken into account despite the knowledge that 

many diseases, such as cancers, are known to be multifactorial (Glaab et al., 2012). 

The top genes that frequently accumulated deleterious, non-coding variants, the 

genes with the most TFBS disruptions at the locations of non-coding variants and all 

the genes with aberrantly methylated promoter regions were therefore submitted to 

STRING-DB in order to see if these genes and their proteins somehow interplayed 

with each other.  

 

2.12. STRING-DB protein-protein interactions 
 

The analysis in STRING 9.0 (http://string-db.org/) allowed for common pathways via 

Kyoto Encyclopedia of Genes and Genomes (KEGG) to be observed in a gene-

specific manner, because it was easier to observe the actual number of the GOIs 

enriched for a specific pathway. Here the GOIs refer to the subset of genes selected at 

the end of the previous section 2.11.2 for the STRING-DB analysis. STRING-DB 

grouped and functionally annotated the genes according to their biological process 

and molecular function within their protein-protein interaction network. Most 
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importantly, the direct interactions, co-regulations and co-expression of certain genes 

as well as the potential hub proteins, became more apparent. This information makes 

it easier to translate the genes into their relevance to the disease. All of STRING-

DB’s Active prediction methods were initially exploited, which include: the 

Neighbourhood method, gene fusion data, co-occurrence-, co-expression- and 

experimental data and finally, data gathered from data-mining and text mining. The 

highest confidence together with the Bonferroni correction method (P <0.05) were 

used as the thresholds for prediction. The Markov Cluster Algorithm (MCL) was 

applied to cluster molecules that are directly associated with each other. MCL is a 

fast and scalable, unsupervised cluster algorithm for networks, based on stochastic 

flow in graphs (“MCL - a cluster algorithm for graphs,” n.d.). Conversely, only the 

experimental data was used when the network was expanded to observe the 

surrounding molecules that interplay with the GOIs and to identify hub proteins that 

may elucidate the role of the genes/proteins. 

After all the data was compared and variants of interest were highlighted, it was 

important to check the frequency of these variants. Variants that are more common in 

the diseased genomes compared to controls could indicate increased risk of 

developing the disease while the less common variants could be associated with 

having a more protective function. Therefore the allele frequency of the variants was 

analysed using 1000Genomes data (The 1000 Genomes Project Consortium, 2012). 

 

2.13. Allele Frequency of Somatic Variants in the African Population 
 

Whole genome sequencing files were retrieved from the ENCODE 

1000genomesdatabase 

(ALL.wgs.phase3_shapeit2_mvncall_integrated.v5.20130502.sites.vcf.gz). This 

release contains an integrated set of SNPs, indels, multi-nucleotide polymorphisms 

(MNPs), long insertions and deletions, copy number variations and other structural 

variants discovered and genotyped in 2504 unrelated individuals. All variants in the 

1000 Genomes vcf files are reported on the forward strand. Python was once again 

used to extract the allele frequency of the variants of interest. This was done for all 
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CDS and non-coding ccRCC variants as well as CDS and non-coding non-disease 

genes. 

 

Pseudo code: 

 
For line in somatic mutation file: 

 For line in allele frequency file: 

  If chromosome and genomic position as well as reference and alternate allele 

in the SM file == chromosome and genomic position as well as reference and alternate allele 

in the allele frequency file: 

  Print the data from both files to a new file. 

 

This section was responsible for answering the questions:  

 

• What is the allele frequency of the variants in the African population 

compared to other population groups?  

• What could it mean if the allele frequency is more or less frequent?  

• If the variant is completely absent from the 1000genomes data set, does this 

mean that it is a truly rare/novel and functional variant generated by genomic 

instability in the cancer tumour or that 1000genomes does not report 

sufficient data (i.e. the sequencing depth must be increased) to complete this 

analysis?  

• If the AF of the variant is higher in Africans compared to other population 

groups, does this mean that we should be seeing more ccRCC cases in Africa, 

that they do not contribute to disease or that these variants have a protective 

effect in Africans? 
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CHAPTER 3 

3. RESULTS AND DISCUSSION 

In this chapter the most important findings generated from the methodology are 

shown and discussed. Detailed findings and tables can however be found in the 

Appendices. In some cases, the results that were generated motivated the 

implementation of new methods subsections, not found in the original methods 

chapter. For this chapter the most important questions that were answered were: 

a) Were there more somatic variants in the noncoding genomic regions 

compared to the coding regions; and were these results ccRCC-specific or 

were the variants generated as a result of general genomic instability across 

the cancer genomes of the 95 patients (determined by comparing the results 

of the disease genes to that of the non-disease genes)?  

b) Could these non-coding variants be causally implicated in ccRCC based on 

their functional annotation by RegulomDB?  

c) Could these non-coding variants in any way potentially disrupt TFBSs, and if 

they do, how many TFs would be affected?  

d) Were there any aberrantly methylated positions within the non-coding 

genomic regions of these genes, since literature has shown a link between 

somatic mutations, TFBS disruptions and differential methylation patterns? 

e) After the genes with frequent non-coding mutations and those often targeted 

by these epigenetic and regulatory changes are isolated, can one see interplay 

between these genes or their proteins within a network? 

f)  Could the allele frequency data help to deduce which variants increase the 

susceptibility and which variants have a protective effect within the African 

population? 
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3.1. Selection of RCC disease genes and random non-disease genes   

3.1.1. RCC disease genes 
 

Table 2 shows the number of genes obtained from each database, how the data was 

generated and whether the databases are curated. Apart from IntOGen, all of the 

databases contained either manually curated or a combination of manually curated 

and computer-automated validated data. When the filtering procedure of selecting 

genes present in three or more gene lists was implemented, only 27 genes remained. 

Hence, genes found in two or more of the five genes lists were retained for pragmatic 

purposes. Of the 3567 genes, 175 genes remained for the combined sense and 

antisense strands. After eliminating genes that didn’t have a matching Ensembl ID 

and HGNC symbol, 173 RCC disease genes were carried forward for further 

downstream analysis, as the RCC-associated gene set. See Appendix I for the 

complete list of ccRCC genes used in this study. 

 

3.1.2. Selection of non-disease genes 
 

Because 173 RCC- implicated disease genes were used, 173 random non-disease 

genes were also chosen from the Ensembl list of non-disease genes for a fair 

comparison. See Appendix II for the complete list of non-disease genes used in this 

study. 

 

3.2. Bed files from UCSC  
 

The genomic positions of the non-coding and CDS regions of all genes were captured 

in .bed files. They contain the reference chromosome, the start coordinate, end 

coordinate and the strand orientation for the GOIs. The start and end coordinates of 

the bed files were always captured in a range of a few hundred to a few 1000 bases 

(with the start coordinate reported first, followed by the end coordinate). Therefore 

the coordinates of WGS SVs (which, being SNPs, were reported as a single 
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coordinate), were located within the bigger bed ranges when the Python script was 

written. 

 

Table 2: The number of genes extracted from the various databases and how these databases 

sourced their data. Apart from IntOGen, all of the databases contained either manually curated or a 

combination of manually curated and computer-automated validated data. 

Database Sources Data type No of genes Reviewed 

IntOGen  Publicly available cancer 

genomic studies: Gene 

Expression Omnibus (GEO), 

Array Express, COSMIC, 

Progenetix, Sanger Cancer 

Genome Project, Cancer 

Genome Atlas (TCGA) 

Genomic, 

transcriptomic, 

pathways 

263 Unknown 

COSMIC Cancer Genome Project (CGP), 

TCGA,  

Somatic mutations 224 Curated 

Oncomine DNA Microarray experiment (t-

statistics), Therapeutic Target 

Database, GO Ontology 

Consortium 

Gene expression 2844 Curated 

Entrez-Gene 

(NCBI) 

NCBI Reference Sequence 

Project (RefSeq), collaborating 

model organism databases, 

other databases in NCBI 

Genes 134 curated and 

automated 

OMIM 

(NCBI) 

Biomedical literature Genes and genetic 

phenotypes 

81 Curated 
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3.3. Extraction of somatic mutations 

3.3.1. WGS data from ICGC 
 

A total of 53 males and 42 females (total number of participants; n = 95) between the 

ages 30-79 were enrolled for the ICGC WGS somatic mutation study. 95 primary site 

tumour biospecimens with paired blood samples were obtained from the 95 patients. 

The biospecimens obtained were distributed across the various stages of the disease 

with the majority of the samples collected from stage 1 (n = 53). Upon collection of 

the samples, none of the patients underwent any chemo- or radiation therapy.  ICGC 

did not record the HGNC symbols, but used the Ensembl gene and transcript IDs in 

their data analyses. 

 

3.3.2. Validity of the ccRCC genomes data 
 

After all entries in the ICGC dataset was confirmed to be WGS and no extra tumour 

specimens per patient ID were found, the data was ready to be processed to extract 

the somatic variants (mutations within the tumour sample and not in the non-tumour 

sample) within the 173 disease and non-disease genes. 

 

3.3.3. Detecting somatic variants (SVs) in the RCC disease and non-disease genes 
 

After the somatic mutations were retrieved for the both gene sets, the output files 

were cluttered with many duplicates due to one gene having many Ensembl transcript 

IDs. Furthermore, when some hits were manually checked to confirm their genomic 

position, many of the hits were linked to Ensembl gene IDs that were not in the RCC 

gene list. As previously stated, this was due to some overlapping genes in the human 

genome and due to genes at the same location but on the opposite DNA strand (the 

ICGC somatic mutation file didn’t record the strand of the gene for which their 

somatic mutations were captured). 
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3.4. Processing and filtering of somatic variant list 
 

The Total (before filtering) column in Table 3, displays the total number of SVs with 

their duplicates. The unique hits were then extracted based on the Ensembl ID, 

genomic position, donor ID and alleles, while the transcript ID was ignored. The 

genes with an Ensembl gene ID that didn’t occur in the gene list were also rejected 

and unique results were captures in See Table 3, ‘After filtering’. Table 3 also shows 

that when the disease and non-disease genes were compared; the promoter and 

5‘UTR regions contained at least twice as many variants in the RCC disease genes 

than in the non-disease genes (after filtering). However, the 3’UTR harboured 9x 

more variants, while the CDS regions had 15x more variants in the disease genes 

compared to the non-disease genes. Finally, the intronic region accumulated almost 

22x more variants in the RCC genes than the non-disease genes, indicating that the 

increase in variants in the RCC genes were true disease-associated variants targeting 

specific genes and not just as a consequence of global cancer-induced instability 

across the genome. 

 

3.4.1. Manual confirmation of the PTEN gene 
 

The PTEN gene was selected for the manual confirmation to ascertain that the script 

was selecting appropriate data. This gene was chosen, because the Python script 

detected hits in multiple genomic regions (e.g. 3’UTR, CDS) for this gene, so the 

accuracy of variant detection could be reviewed using ALL the distinct genomic 

regions of interest. The manual tally matched that of the automated Python script for 

each genomic region, so the script was determined to be accurately selecting the 

somatic variants.  
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3.5. Density of hits 
 

Before the density study could be carried out, some of the hits had to be filtered out, 

since, especially in the intronic regions, many patients had somatic variants at the 

exact same position (which are effectively duplicate positions in this regard). Only 

one entry of each unique position was therefore used in the calculation of the density 

(See Table 3, ‘Unique positions’). Thus a total of 4295 unique non-coding SVs (total 

not shown) and 153 CDS variants were identified. Initially when the density of the 

hits was compared the results were unexpected, because previous WGS studies have 

shown that most spontaneous mutations and even disease-associated SNPs were 

outside of the coding region. When this density analysis was carried out, the 

distribution of the hits seemed to not vary too greatly across the genomic regions. 

Upon further investigation it became apparent that other studies have pointed out 

similar results. Weinhold et al. (2014) demonstrated that there was no distinction in 

the regional mutation density of variants in transcribed regions: which includes the 

CDS, introns, 3’-UTRs, 5’-UTRs and even promoter and enhancer regions. Much of 

the previously reported mutation enrichment in the non-coding regions of the genome 

was attributed to the complete intergenic regions, which, except for the promoter 

regions (1000 bases), were not really considered in this study. The vast  intergenic 

region is understood to be largely uninvolved in gene regulation and is subsequently 

also under weaker selective constraint, explaining the higher number of mutations in 

other studies (Weinhold et al., 2014).  

A one-tailed, paired t-test was carried out using an R-script (V2.3.2) to test if the 

difference in the mutation rate between the disease and non-disease genes was 

statistically significant. The H0 stated that there was no significant difference in the 

mutation rate of the disease and non-disease genes in the group of 95 patients. 

Alternatively, HA stated that the mutation rate in the disease genes was significantly 

higher than the mutation rate in the non-disease genes. The results of the t-test 

showed that the mutation rate was 5.9x higher in disease genes than in the non-

disease genes (p = 0.040). 
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A surprisingly high number of hits were generated in the CDS region, as shown in 

Figure 11. This could be attributed to the fact that the genes selected were disease 

genes and since it was a cancer dataset, the genomic instability was still expected to 

be higher within the tumours compared to the non-disease genomes, even within 

coding regions (which are generally under greater negative selection). However, as 

anticipated, it was still clear that in terms of sheer numbers and comparatively, the 

intronic region carried the highest mutational burden, with more than 90% of the total 

somatic variants (See Figure 11). 

The intronic region was expected to accrue the most mutations due to them being 

much longer stretches of DNA than the other genomic regions. Furthermore, one 

gene usually has multiple introns, but  only one of each of the other genomic regions 

(with the exception of the CDS which usually constitutes more than one exon) 

(Ivashchenko et al., 2009). 
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Table 3: The results for the somatic variants in the RCC disease genes (blue) and in the random non-disease genes (green). The first column of each sub- table represents the 
genomic regions of interest (e.g. 5’UTR). The second column represents the total number of variants per genomic region before any filtering was applied (duplicates variants due 
to splice variants creating multiple Ensemble transcript IDs and genes linked to incorrect Ensembl IDs due to overlapping genes are therefore included) The third column is a 
count of the total number of variants after the transcript IDs and overlapping genes not in the original gene list were removed. Column four displays the unique positions where 
the variants were located by eliminating duplicates based on donors that have somatic mutations at the exact same position .The fifth column displays the number bases that 
were scanned within each genomic region in order to find the somatic variants and column six shows the density of the hits (number of unique hits at unique position/number of 
bases scanned). 

 

 

 

 

ccRCC Somatic Variants in RCC disease genes  non-disease genes  

RCC disease genes Random Non-disease Genes 

 Total 
(before 
filtering) 

After 
filtering 

Unique 
positions 

No bases 
scanned 

Density of hits  Total 
(before 
filtering) 

After 
filtering 

Unique 
positions 

No bases 
scanned 

Density of hits 

Promoter 256 62 62 639 000 9.70x 10-5 Promoter 545 34 33 497 000 6.64 x 10-5 

5’UTR 155 43 43 242 001 1.78 x 10-4 5’UTR 262 18 17 172 158 9.87 x 10-5 

CDS 560 154 153 1065 807 1.4 x 10-4 CDS 306 10 9 98 452 9.14 x 10-5 

Introns 21988 4205 4115 49 257 081 8.35 x 10-4 Introns 3699 192 192 4 666 766 4.11 x 10-5 

3’UTR 165 75 75 610 175 1.23 x 10-4 3’UTR 123 8 8 271 819 2.94 x 10-5 
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Figure 11: Most of the non-coding somatic variants were located within the intronic regions of the 

RCC disease genes, although a surprisingly high number of hits were also in the CDS region. This high 

number of mutations in the CDS region may be due to general genomic instability in the tumour 

genomes compared to normal, non-disease genomes. 

 

3.5.1. Manual confirmation of density with the PTEN gene 
 

The PTEN gene was once again used for the manual confirmation of the density of 

hits. The manual calculation showed that the automated calculation of the density of 

the hits was accurately calculated with the Python script. 

After the somatic variants were acquired and filtered the primary question of interest 

could be answered: How many of these non-coding variants are actually predicted to 

have a functional effect on the disease phenotype? The variants were therefore 

submitted to RegulomDB for their functional annotation. 
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3.6. Annotation of Somatic Mutations using RegulomDB 
 

Although RegulomDB is a database for non-coding variant annotations, the CDS 

variants were also submitted in order to observe how they fared compared to the non-

coding regions. Similarly, the functional annotations of the variants for the non-

disease genes were also queried for comparison. The hypothesis was that there would 

be far fewer deleterious variants in the non-disease genes than in the RCC genes 

since they are not implicated in disease. First all the genomic positions had to be 

converted (using a Python script) to comply with the submission format of 

RegulomDB. 

 

3.6.1. Conversion of the genomic coordinates for RegulomDB input and RegulomDB 
output 
 

As stated in section 2.6.1, after the conversion, there were once again many 

duplicates due to the many patients having the same somatic variant (exact same 

position). Furthermore, for many patients the position of the somatic mutation was 

the same, but the alternate allele was different. The RegulomDB web front does not 

take the respective alleles into account. Hence, the variant count once again reduced, 

but they were later recoupled to the original patient ID and allelic data. The variants 

were then separated based on the RegulomDB score. Variants with a score of 1-2 

were deemed deleterious. A variant with a score of three was border line and was 

excluded because the RegulomeDB database still classifies it as having too little 

evidence of functional consequences. Naturally, the rest of the variants with a score 

higher than three were also not considered. 

As shown in Table 4 below, there were no deleterious SVs within the 3’UTR, 5’UTR 

or CDS regions of the non-disease genes. The Fisher’s exact test was carried out to 

determine whether there was a significantly higher ratio of deleterious hits for the 

disease genes compared to non-disease genes, per genomic region. However, the p-

values for all categories were 0.8 on average and so the H0 (there is no significant 

difference between the number of disease and non-disease deleterious hits) could not 
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be rejected. There was, therefore, no statistically significant evidence that the number 

of deleterious hits was higher for the disease genes than for the non-disease genes. 

However, the power of the Fisher test depends directly on the magnitude of the 

counts and the number of variants analysed were consistently below 10 for the non-

disease genes, which therefore doesn’t provide enough power to be confident in the 

results of the test.  

In terms of percentages, despite the percentage of deleterious hits in the CDS and 

intronic regions of both sets of genes appearing to be very similar; this was based on 

a smaller number of input data (SVs) for non-disease genes and so there were only 

six total deleterious mutations in the non-disease genes compared to the 128 reported 

in the disease genes.      

As hypothesized, for all genomic classifications, the total number of somatic variants 

far outweighed the predicted deleterious variants (between ~8x more for promoters 

to ~38x more for introns). Figure 12 below shows a graphical interpretation of this 

distinction for the ccRCC disease variants (only). 

 

 

Figure 12: As expected the total number of deleterious variants (red) were always far fewer than the 

general mutations (blue) accumulated in the genome. 
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 A Python script was used to link all the variants with their newly acquired 

RegulomDB scores back to their allelic and patient ID information. The non-coding 

variants were combined and a pivot table was used to further analyse the variants. 

However, before an in-depth analysis was carried out the “multi-hit” hypothesis was 

tested.                            
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Table 4: The results for the somatic variants in the RCC disease genes (blue) and the random-non-disease genes (green). The first column of each sub- table represents the 

genomic regions of interest. The number of somatic variants for the RCC disease genes that were submitted to RegulomDB is shown in Column 2 of each sub-table and the 

number of variants with deleterious and borderline scores in columns 3 and 4, respectively.  

 

 

                             RegulomDB annotation score  for SVs in RCC disease genes and  non-disease genes  

RCC disease genes Random Non-disease genes   

 Total submitted to 
RegulomDB 

 Category 2 

(Likely to affect 
binding) 

Category 3 

(Less likely to 
bind) 

 Total submitted to 
RegulomDB 

 Category 2 

(Likely to affect 
binding) 

Category 3 

(Less likely to 
bind) 

Promoter 62 8 (12.9%) 2 (3.2%) Promoter 33 1 (3.03%) 0 

5’UTR 43 4 (9.3%) 5 (11.6%) 5’UTR 17 0 0 

CDS 153 3 (1.9%) 3 (1.9%) CDS 9 0 0 

Introns 4115 109 (2.65%) 124 (3.01%) Introns 192 5 (2.56%) 6 (3.13%) 

3’UTR 75 4 (5.33%) 2 (2.67%) 3’UTR 8 0 0 
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The conversion of a normal cell to a neoplastic (malignant) cell is known to require 

multiple mutations. Each increasing mutation in the progeny cells confers a greater 

growth advantage on its subsequent offspring (Lodish et al., 2000b). To see if, 

generally, multiple hits may also be driving ccRCC tumourigenesis, especially in the 

context of non-coding mutations, the total number of hits per patient as well as the 

total number of deleterious hits per patient were investigated. This was of course an 

estimate since some patients had a far greater number of mutations than others.  

 

a) Total variants 
 

1.) Non-coding regions 
 

The total number of all non-coding variants (i.e. excluding the CDS region) 

was divided by the total number of patients for which there were non-coding 

somatic variants (4385/95), as shown in Table 5 (blue), and an estimated 

46.16 total non-coding variants per patient was calculated. As expected, the 

non-disease genes accumulated a 14 fold lower ratio, with 252 mutations in 

79 patients; roughly equating to 3.19 total non-coding variants per patient 

(SV: patient ratio is illustrated in Table 5 in green).  

 

2.) CDS region 
 

For all the variants in the CDS region, this total was 2.2 (154/70) hits per 

patient (Table 5 in blue). This was understandable since mutations in the 

coding regions are generally perceived to be more detrimental and so are 

under a strong negative selection, keeping the number of mutations low. The 

non-disease genes reported half this value with 1.1 (9/10) total CDS variants 

(green); thus, still half that of the RCC genes. 
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b) Deleterious variants 
 

When the same calculation was carried out for the total deleterious variants 

in the non-coding and CDS region, the numbers were again considerably 

reduced.   

 

1.) Non-coding regions 
 

As Table 5 shows (blue), there was projected to be just 2.19 (125/57) 

deleterious hits per patient for the non-coding regions (down from 46.16) of 

the disease genes. Hence, there were 21 times more total non-coding variants 

(46.16 per patient) compared to deleterious non-coding variants (2.19 per 

patient) in the disease genes. Interestingly, the genomic region with the 

variants that were generally more functionally significant (deleterious) were 

located within the promoter region. Table 4 (blue, under heading Category 2) 

shows that 12.9% of these variants had a predicted functional effect, which 

was of course expected, since the promoter region is critical for transcription 

initiation. The non-disease genes had just one (1.0) deleterious hit per patient 

in the non-coding regions (6/6), as illustrated in Table 5 (green). 

 

2.) CDS region 

 

Within the coding regions there was also exactly one (3/3) deleterious hit per 

patient (Table 5 in blue). This means that there were at least twice as many 

deleterious non-coding mutations (2.19 per patient) compared to deleterious 

CDS mutations (1.0 per patient). As shown in Table 5 (green), the non-

disease genes contained no deleterious CDS hits. As stated before, mutations 

in the coding sequences are generally more likely to cause disease, so serious 

base modifications in the CDS region are usually repaired by DNA-repair 

systems (Paz-Elizur et al., 2005). It was therefore not surprising that the 

variants in the CDS regions of the non-disease genes were not deemed 

deleterious. Stated differently, if the CDS mutations commonly occurred in 
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these genes, then they would have been highlighted as RCC disease genes in 

prior studies. The Fisher’s exact test was once again performed, where the H0 

stated that the reduction from the number of total hits to deleterious hits for 

the combined non-coding regions was NOT significantly different from that 

of the CDS region. However, with a p-value of 0.35, the null hypothesis 

could not be rejected and thus, there was no statistically significant 

distinction between the CDS and the combined non-coding region in terms of 

their reduction from total mutations to deleterious mutations. Again, the 

observations were in some cases very low, which didn’t give sufficient power 

to be confident in the results of the test. 

 

Table 5: The total number of hits in the non-coding and CDS regions for the RCC genes (blue) and the 

non-disease genes (green) contrasted with the RegulomDB predicted deleterious variants per 

category are shown under the respective colours. The number of patients affected is shown in 

brackets. In general the total number of deleterious variants was just a fraction of the total number 

of somatic variants per category. The non-disease genes also generally reported far fewer variants in 

all categories compared to the disease genes. 

RCC genes Random non-disease genes 

Total SV Deleterious SV Total SV Deleterious SV 
CDS Non-

coding 
CDS Non-

coding 
CDS Non-

coding 
CDS Non-

coding 
154 (70) 4385 

(95) 
3 (3) 125 (57) 10 (9) 252 (79) 0 6 (6) 

 

In summary, there was an estimated 48 total mutations (non-coding and CDS) per 

patient, but just three potential deleterious mutations per patient, of which two 

predicted deleterious mutations were non-coding. Although this was just a small 

subset of cancer genes, these findings were substantiated with that of Tomasetti et al. 

(2015), who documented that only three successive mutations are required for cancer 

development, despite previous predictions that this number has to be much higher. 

After the potentially deleterious variants were identified and the number of hits per 

patient were calculated, the genes associated with the most somatic variants were 
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isolated. This was done in order to see the types of genes that were commonly 

targeted, bearing in mind that the results would be biased because the subset of genes 

that were selected could have been biased towards a certain category. 

 

3.7. Analysis of somatic variants 
 

a) All non-coding variants 
 

When all non-coding somatic mutations were taken into account, a total of 165 of the 

173 RCC disease genes contained non-coding somatic mutations. Every one of the 95 

patients had multiple somatic mutations within their non-coding regions. In contrast, 

only 40 of the 173 non-disease genes harboured random mutations in 79 of the 

patients. The genes such as VHL, MET, PBRM1 and BAP1 that are observed in 

literature as those frequently accumulating variants implicated in ccRCC were 

notably NOT highlighted in the top genes with the most total non-coding somatic 

variants category, as seen in Figure 14 (green bar graph). In fact the PTPRD gene on 

chromosome 9 was the most targeted gene, with 473 non-coding variants in 92% of 

patients (87/95). Chromosome 9 was also the most frequently targeted chromosome 

in the same number of patients (87/95), while chromosome 3 accumulated the second 

most mutations, accruing 419 variants in 89% of patients (85/95). However, only five 

genes harboured mutations on chromosome 9, compared to 15 genes on chromosome 

3. Interestingly, although chromosome 3 often comes up in ccRCC somatic mutations 

studies, a different set of genes, such as FHIT and MECOM carried the mutational 

burden as opposed to VHL and BAP1 which were minimally impacted (results not 

shown.)  

 

b) Deleterious non-coding variants 
 

When this was contrasted with the deleterious non-coding mutations, 60 genes 

harboured deleterious non-coding mutations within patients. The total number of 

non-coding mutations versus the total number of deleterious mutations was compared 
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per gene and their statistical significance was tested using the chi-square method. The 

p-values per gene can be viewed in Appendix III.  

In terms of the genes implicated, one of the genes (MET) commonly observed in 

ccRCC studies, did rank in the top 20  as seen in Figure 14 (blue bar graph). 
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A) The total number of non-coding mutations (ccRCC-specific) 

 

 

B) The number of deleterious, non-coding mutations (ccRCC-specific)  

 

 

C) Total number of coding sequence (CDS) mutations (ccRCC-specific) 

 

Figure 13:  A) The top 20 genes with regards to the most total non-coding somatic variants across the 

95 patient tumours. The genes with the most variants were not those genes commonly implicated as 

being the most frequently mutated in exome-related ccRCC studies. B) The top 20 genes with regards 

to the most deleterious, non-coding somatic variants across the 95 patient tumours. Except for the 

MET gene, these genes are still not the most commonly mutated genes in ccRCC exome-related 

studies. C) The top 20 genes, (especially the top five genes VHL, SETD2, PBRM1, MTOR and KDM5C) 

with the most variants in the CDS region were the genes commonly highlighted as the most 

frequently mutated in ccRCC exome-related studies. 
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a) CDS variants 
 

Similarly, the coding region accumulated mutations in only 68 of its 173 genes 

within 70 patients. Hence, 25 of the 95 patients enrolled in this study, had no 

mutations in the coding sequences of any of these selected RCC genes in their 

ccRCC tumours. Moreover, although eight out of the 173 GOIs didn’t acquire any 

non-coding somatic mutations, there were also no new CDS mutations in these eight 

genes that could implicate these genes in ccRCC. When the commonly mutated genes 

within the CDS regions were observed, an almost completely different gene set was 

showcased as displayed in Figure 14 (orange bar graph). Now the top five genes: 

VHL, SETD2, PBRM1, MTOR and KDM5C were all the genes commonly mutated 

in patients in previous exome-related ccRCC studies.  In fact, this was almost a 

replica of the genes reported by (Hakimi et al., 2013), shown in Figure 13. It should 

be noted that this was an exploratory analysis in which gene length was not yet taken 

into account. This factor was however considered in subsection 3.7.1.  

 

 

Figure 14: The top genes most commonly affected by the loss of the a piece of chromosome 3p in 

ccRCC (Hakimi et al., 2013). VHL, SETD2, PBRM1, MTOR and KDM5C also accrued the most somatic 

variants within the coding sequences of the patient tumours used in this study. 

 

These initial results do, however, add some credibility to the accuracy of this study in 

terms of its agreement with previous studies. However, this also demonstrates that by 
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continuing to do exome sequencing studies one may limit the potential discovery of 

ccRCC gene variants that may play a crucial role in the development and/or 

progression of the disease, due to their locations outside the coding sequence. By 

focusing on the CDS region, the functional significance of other genes associated in 

ccRCC may have been overlooked. More emphatically, this suggests that perhaps it is 

not mutations in the non-coding regions of already identified ccRCC-implicated 

genes that eventually prime the gene for additional mutations in the CDS region of 

that same gene, in order to establish the gene’s selective growth advantage; but 

rather, that there may be an entirely new set of undiscovered ccRCC genes that may 

be implicated in ccRCC through their frequency of harbouring non-coding DNA 

mutations. This was demonstrated by the 25 patients with no CDS variants and the 

165 genes which accrued non-coding mutations compared to the mere 68 genes with 

CDS mutations. 

Consequently, in this study the non-coding variants were of greater interest, but as 

stated previously, it was also because the coding portion of the genome has been 

exhaustively queried and analysed in various studies. Special attention was given to 

the variants that were predicted to be deleterious by RegulomDB, although frequent 

comparisons were made to other mutation categories where necessary. A total of 125 

deleterious non-coding mutations were identified, which affected 60 genes in 57 

patients. It was obvious that some genes were frequently targeted in many patients, 

such as with the RUNX1 gene, demonstrated below in Table 6 (blue). 

In some cases the same patient had multiple mutations in a distinct gene such as with 

TRIO, FRYL and AKT1 (Table 6 in green). However, while both mutations 

occurred within the intronic region of the TRIO gene in patients DO47150 and 

DO46905, the two mutations within the FRYL and AKT1 genes were located within 

the promoter and intronic regions of the same genes. This suggested that unlike the 

TRIO gene, where mutations were in close proximity to each other, there was a wider 

distribution of genomic instability around the FRYL and AKT1 genes.  

A hotspot analysis was therefore carried out on all CDS, total non-coding and non-

coding, deleterious variants. The aim of the analysis was to evaluate if mutations 

were confined to shorter stretches of the gene, as opposed to being evenly distributed 
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throughout the gene. It was determined that a few genes which incurred non-coding 

mutations (i.e. total non-coding), had recurrent mutations in several patients at the 

exact same position. For example, five patients had a mutation at the same position in 

the genes: ADCY1, ANK3, CUBN and VWF, while two patients acquired variants at 

the same location in the VHL gene. 

For the genes with deleterious non-coding and CDS mutations, no mutations were 

identified at identical positions. For all three categories (total non-coding, deleterious 

non-coding and CDS) several variants were within close proximity to each other 

(within 1kb), however, most of the variants were broadly distributed across numerous 

genomic positions within that specific gene, even in the genes that were highly 

enriched for mutations. This demonstrates again the general genomic instability 

hypothesis within certain genes. Still, an additional analysis was carried out for a 

direct comparison between gene length and total mutations. 
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Table 6:  The donor ID is bolded and always starts with ‘DO’ followed by a five-character number. 

Some patients had multiple mutations in the same genes, such as in the RUNX1 gene (blue). In some 

cases, such as in the TRIO gene (green), some patients had more than one mutation in the same gene 

and within the same genomic region. In other patients, despite having more than one mutation in 

the same gene, the mutations actually occurred within different genomic regions such as with the 

FRYL and AKT1 genes (green). 

Donor ID 3UTR 5UTR Introns Promoter 
DO47150 

  
5 

 TRIO 
  

2 
 SYNE1 

  
1 

 HSPG2 
  

1 
 NOS1 

  
1 

 DO47100 
  

5 
 DO47092 

  
4 1 

FRYL 
  

1 1 
RUNX1 

  
1 

 CUBN 
  

1 
 DOCK2 

  
1 

 DO46905 
  

4 1 
AKT1 

  
1 1 

NCOR2 
  

1 
 RUNX1 

  
1 

 ERBB4 
  

1 
      

 

3.7.1. Gene length versus number of mutations 
 

In order to see if the genes such as RUNX1, AKT1, TRIO and FRYL just naturally 

incurred more mutations due to being longer that the other genes, a scatter plot was 

drawn up. The genes’ start and end coordinates were extracted from Ensembl 

BioMart (hg19) and the gene lengths were calculated using the built-in Excel 

formula: =sum (end – start). Excel’s Chart feature was used create a scatter plot of 

the gene lengths versus the total non-coding mutations and the gene length versus the 

deleterious non-coding mutations.  

As shown in Figure 15 (A), the hypothesis was mostly true in that the genes with 

shorter lengths generally had fewer mutations than the longer genes. However, some 
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exceptions were apparent. Some of the median length genes incurred a higher number 

of total non-coding mutations. Likewise, several longer genes had the median number 

of mutations. The genes highlighted in the previous section as having mutations at 

the same location in multiple patients and the genes with multiple mutations 

occurring in the same gene belonging to just one patient, were then individually 

scrutinized. While the RUNX1, ADCY1, ANK3, CUBN, VWF, TRIO and FRYL 

genes were distributed among the top half of the genes with longest lengths, the 

AKT1 and VHL genes were two of the smallest genes in the gene lists, substantiating 

again that these mutations are not just arbitrary.   

Table 7 illustrates that when the GO annotations of these genes were retrieved from 

Ensembl BioMart (hg19), all of the genes participated in cancer hallmark pathways 

and molecular activities. However, besides the long RUNX1 gene which functions in 

the most cancer trademark events, the two smallest genes, AKT1 and VHL are 

involved in more cancer-related metabolic activities than the other longer genes, 

which could explain why they would be targeted in cancers. When the same number 

of genes (n = 9) with just one mutation was randomly selected (Hence, a mutation in 

just one genomic region and in just one patient), three of the genes were functionally 

annotated to play a role in three cancer-hallmark events, but the majority of genes 

(67%) participate in just one or no cancer-related activities (not shown). 
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A) 

 

B) 

 
Figure 15: A) The gene lengths and the total non-coding mutations per gene. The longest genes 

generally incurred the most non-coding mutations. B) The 60 genes with their deleterious variants. 

Contrary to total non-coding variant s, with the deleterious variants, the smaller genes generally 

accumulated the most mutations. 
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Table 7: The cancer-related activities in which the genes mutated at the exact same position in several patients (blue) and the genes mutated at multiple genomic regions 

in the same patient (green) function in. The two smallest genes, VHL and AKT1 function in more cancer-hallmark events than most of the much longer genes. 

Gene Signalling Adhesion Proliferation Transcription regulation Differentiation Apoptosis Angiogenesis 

ADCY1 √   √    

ANK3 √ √   √   

CUBN  √      

VWF  √      

VHL   √ √ √ √  

FRYL    √    

RUNX1 √  √ √ √  √ 

TRIO √     √  

AKT1 √  √  √ √  
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Similarly, when this analysis was repeated with the eight genes from the original list 

of 173 RCC genes (shown in Appendix IV), which had no somatic mutations in any 

of the patients, the lengths of these genes also ranged from long to short and except 

for the RAF1 gene (which is linked to three of the selected cancer-related events), 

most of the genes (75%) partake in just one or no cancer-hallmark activities (Shown 

in Appendix V). This suggests that it is very likely that it is not specific lengths or 

types of genes that are targeted in cancer but any pathway that may give the cell a 

growth advantage when perturbed. 

Interestingly, when the gene lengths versus non-coding, deleterious mutations were 

considered, there was no definite relationship between the two, as shown in Figure 15 

(B). Therefore, although the mostly linear relationship between gene length and total 

non-coding mutations suggests that the mutations were most probably randomly 

acquired across the length of the gene, the longer genes with a moderate number of 

total mutations as well as the relationship between gene length and deleterious non-

coding mutations yet again suggests that the higher instability around certain genes 

cannot just be attributed to chance. In fact Martincorena et al.(2012) carried out a 

phylogenetics and population genetics study to show that the mutation rate has been 

evolutionary optimized; such that the rate of mutation is generally lower in more 

highly expressed genes and in those under stronger negative selection. Albeit, the 

Martincorena et al. observations were carried out on Escherichia coli (E. coli).  

Hence, even the general instability seems to be controlled or targeted to some degree. 

In the next subsection the categories of mutations (categories = total non-coding, 

deleterious non-coding and CDS mutations) were observed within individual patients 

to ascertain if there were any apparent trends, i.e., if any category of mutation was 

absolutely necessary for the disease phenotype to be expressed. 

 

3.7.2. Total non-coding, deleterious and CDS mutations per patient 
 

The total number of non-coding variants, CDS variants and non-coding deleterious 

variants were compared using Excel’s Vlookup feature, to observe the number of 
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mutations per mutation category (categories: all non-coding, all CDS, deleterious 

non-coding). When the data was analysed on a patient-by-patient basis, as stated 

previously, all 95 patients had multiple total non-coding somatic mutations.  

There wasn’t much of a generalized trend with regard to the number of deleterious 

mutations required; in the sense that one patient would have multiple deleterious 

mutations in multiple genes, while others reported just one or two deleterious 

mutations in the just one gene. In fact, nearly half of the patients (27/57) with 

deleterious non-coding mutations had only one deleterious mutation (not shown). 

Albeit, for most (but not all) patients, there was either a deleterious non-coding 

variant and/or a CDS variant as displayed in Table 8. However, 14 patients, accrued 

no CDS or deleterious non-coding variants (only tolerated non-coding mutations) 

within these RCC-implicated genes and yet these patients expressed the disease 

phenotype (One example is highlighted in Table 8  in green). 

With regards to the genes, as discussed in section 3.7a, 105 of the 173 RCC genes, 

(i.e. 60%) accrued no somatic mutations within their CDS region. Again, had this 

been a whole exome sequenced data set, where the total coding sequence mutations 

are considered, these genes would not be discovered nor classified as significant. 

Obviously this could imply that additional criteria may be required over and above 

that used by RegulomDB to classify variants as deleterious, since these patients did 

develop ccRCC. However, since this is just a subset of RCC genes, it could also 

suggest that the genes that are disease-associated in these patients were not selected 

for this particular study. This also demonstrates the complexity of polygenic and 

multifactorial diseases such as cancers, since no two patients may have the same 

distinct profile or markers signifying the disease. 

To see if the clinical data could add richness to the analysis, the total number of hits 

as well as the total number of deleterious hits were associated with each donor’s 

clinical information using a Python script. 
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Table 8: (Subset of the original table shown in Appendix IV) If there were no mutations in that 

mutation category, it is shown #N/A. Although all patients had multiple non-coding somatic 

mutations (column 2), some patients had either deleterious non-coding mutations or CDS mutations, 

but not both. For fourteen patients, there were no deleterious non-coding or CDS mutations 

(example shown in green).   

Patient ID  
ALL non-
coding 

ALL CDS 
mutations 

Deleterious mutations 
ONLY 

DO46877 221 7 10 

DO46933 66 2 3 

DO47159 66 6 #N/A 

DO46827 65 #N/A 2 

DO47174 59 5 3 

DO46873 57 2 #N/A 

DO47136 54 1 1 

DO47012 52 5 #N/A 

DO46957 50 #N/A #N/A 

 

 

3.8. ICGC patient clinical data 
 

Only 29 of the 95 donors contained complete clinical data, but the data was 

nevertheless coupled, to see if a story could unfold from this small sample size.   

 

3.8.1. Connecting clinical information to somatic mutations 
 

No apparent trend could be observed in the donors who were reported to be deceased, 

nor was there any indication as to why some patients have been able to survive the 

disease, despite an exorbitantly high number of mutations. In fact, some deceased 

patients had neither deleterious non-coding mutations nor CDS mutations. One 
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patient had no CDS mutations and only one deleterious non-coding mutation 

(although he had 83 tolerated, non-coding mutations); he was only 46 years old and 

was only in stage I of ccRCC and yet succumbed to the disease. None of the deceased 

patients had at least one gene mutated in all patients and except for in the introns, 

none of them had variants within the same genomic position that could signal if the 

distinct genomic region of the variant reflects on the severity of the phenotype. 

Hence, both the somatic mutation data and the clinical information provided no 

sufficient basis for why one patient would develop cancer or have a worse prognosis, 

despite having only one deleterious mutation, while another required multiple 

mutations. Of course it has been shown that there is generally genomic instability 

within cancer genomes, so the mutations could have accumulated after the patient’s 

sample was taken at the initial visitation, or there may have been other environmental 

factors that came into play to accelerate the disease.  Furthermore, as stated before, 

the additional genes that contributed to this particular donor’s disease may not have 

been considered in this study. At this stage the conventional approach would be to 

look at the functional annotations of all the genes involved, but since regulatory data 

was made available by the ENCODE Project, it seemed more fitting to first observe 

how these mutations related to transcription factor binding site (TFBS) disruptions; it 

could be that this provided the clues for the functional significance of the mutations, 

especially for those patients with no deleterious or CDS mutations. Also, unlike CDS 

SNPs or variants that may cause disease by altering the amino acid sequence, rSNPs 

located in non-coding regions, are more likely to have an effect on the transcription 

of their neighbouring genes; usually by affecting the binding affinity of TFs or by 

altering promoter methylation (Li et al., 2014). 

 

3.9. Somatic variants in Transcription Factor Binding Sites (TFBS) 
 

In a GWAS study in 2010,  Kasowski et al. showed that TF binding variations were 

frequently due to SNPs and that these mutations often resulted in gene dysregulation, 

suggesting a functional effect for these variants. More recently, disruptions in these 

TFB motifs due to genetic variants, have also been shown to be an underlying 
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mechanism of chromatin variation within humans (Kasowski et al., 2013). A 

discussed in section 1.14c) , the state of the chromatin impacts the accessibility of 

DNA and therefore the transcription of the gene. The rs2125230 rSNP in the AKT3 

gene, for example, has been implicated in aggressive prostate cancer by modifying 

the IRF1 TFBS, which possibly inhibits the antiviral agents used to combat the 

tumour (Buroker, 2014).  

For this section of the study the location of SVs in TFBSs were therefore 

investigated. The data was reported separately for the coding (CDS) and non-coding 

mutations within TFBS of the RCC disease genes. The script was then modified to 

generate the TFBS data for the variants reported within the non-disease genes. After 

the distinction was made between disease and non-disease genes, an evaluation was 

made based on the difference between TFBS disruptions for the deleterious and 

tolerated non-coding mutations (as categorized by RegulomDB) within the RCC 

disease genes. The motivation behind the search was that the function of the gene 

within which the somatic mutation was reported may not be of primary significance, 

but that the exact genomic position within the gene of interest played an even greater 

role due to its effect on multiple TFBSs.  

 For the non-disease genes, out of the total 40/173 genes that accumulated somatic 

variants, only 14 genes had possible TFBSs modifications. On the contrary, most 

non-coding somatic variants (132/165), located within the RCC disease genes, were 

located within TFBSs; meaning they could possibly alter TF binding affinity. There 

were over 3000 potential TFBS disruptions according to the positions of these non-

coding variants and more than half of the patients had variants at positions in the 

genome where ten or more TFs bind. The 3000 disruptions do not necessarily mean 

that they reflect 3000 distinct TFBSs or 3000 distinct TFs. Many genes are regulated 

by the same TFs and therefore provide binding sites for these TFs at a specific motif 

(DNA sequence) in that gene. These motifs do not need to be an exact 

complementary match for the TF to bind, but its sequence could vary slightly and the 

TF would still recognize it as a binding site (i.e. they are degenerate).  Numerous 

patients therefore acquired variants at these TFBSs, which affected the same TFs. 

Because of these degenerate motifs, one motif/binding site within the same gene was 
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at times the binding site of multiple distinct TFs. Therefore, it was not surprising that 

the number of total somatic mutations within a patient mostly fell far below the 

number of potentially disrupted TFBSs. However, two general observations could be 

made at this point in the study. Contrary to the non-disease genes, the RCC disease 

genes frequently accumulated somatic mutations even if these mutations were not 

considered deleterious by the criteria used by RegulomDB and even if the somatic 

mutations did not occur within the CDS region. In addition, the ccRCC variants were 

often located within TFBSs and more specifically, often at TFBS locations that could 

affect the binding of multiple TFs. 

 

a) Number of total non-coding somatic mutations vs number of TFBS disruptions  

 

When all non-coding disease variants (deleterious and tolerated) and their 

associated TFBS disruptions were considered, there were no direct 

relationships between the genes that accumulated the most somatic variants 

and the genes with the most TFBS disruptions as shown in Figure 16.  As 

stated previously, this was not really surprising since the position of the 

variant within the gene determined the number of TFBSs that could be 

altered. One gene could have multiple mutations, but none of them could be 

located within TFBS positions, whereas another gene could have just one 

variant, but that position may fall within the binding site of a myriad of TFs. 

Here, in the case of all non-coding variants, the former scenario was evident 

since there were generally more non-coding somatic variants than potential 

TFBS disruptions. 
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Figure 16: The bar graph in green on top displays the genes which had the most non-coding somatic 

mutations (deleterious + tolerated) while the bar graph at the bottom (in blue), shows the genes 

which had the most TFBS disruptions based on the position of the variant. When genes with the most 

non-coding somatic mutations were contrasted with the genes that harboured the most TFBS 

disruptions based on the position of the variants, these genes didn’t overlap. Many of the total non-

coding mutations (deleterious + tolerated) therefore did not fall within multiple TFBSs. 

 

b) Number of deleterious non-coding somatic mutations vs number of TFBS 

disruptions  

 

This was however very different when the RegulomDB scored deleterious variants 

were considered. As displayed in Figure 17 , there was a much better correlation in 

terms of the top 20 genes with the most deleterious somatic mutations (as scored by 

RegulomDB) and the top 20 genes with the most potential TFBS disruptions (using 

ENCODE TFBS data). There was still a big distinction between the number of times 

the gene was mutated (as depicted by the number of accumulated variants within that 

gene) and the number of TFBSs the mutation may have disrupted.  However, as 

opposed to when all non-coding variants were considered, with the deleterious non-
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coding variants, there were more TFBS disruptions for a particular gene than 

somatic variants. Hence, by using the RegulomDB scoring system one is better able 

possibly isolate the somatic variants that have a functional regulatory effect, while 

the ENCODE TFBS data allows for the observation of the actual number of distinct 

TFs and TFBSs affected.  For TRIO, PPARG and RUNX1 for example, there were 

an estimated 14-15 fold more possible disruptions in the TFBS of these genes 

compared to the number of non- coding somatic mutations as depicted by Figure 17.  

This could demonstrate a greater functional consequence for the mutations at those 

positions. 

 

Figure 17: The top 20 genes with the most deleterious non-coding variants (blue) and the top 20 

deleterious genes with the most TFBS disruptions (green). There was a much better overlap between 

these genes as seen by TRIO, RUNX1, DOCK2 and NCOR2, compared to when all non-coding 

(deleterious and tolerated) somatic variants were considered. This indicates that by using the 

RegulomDB scoring system one is better able to observe the non-coding somatic variants that may 

have an adverse effect on transcriptional regulation. 
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a) Number of CDS somatic mutations versus number of TFBS disruptions  

 

As when the total non-coding variants were taken into account, when the total 

number of CDS variants in the RCC genes was compared to the number of 

possible TFBS disruptions, for the most part, there was no strong association 

between the two. Although it may seem unexpected at first to detect TFBSs in 

CDS regions, this phenomenon was previously observed in a study carried 

out by Stergachis et al. (2013). Genomes contain both regulatory code that 

specifies TFB recognition sequences and genetic code for codons that specify 

amino acids. These codes have always been assumed to be segregated 

physically into the coding and non-coding compartments of the genome and 

to operate independently of one another. However, the potential for some 

coding sequences to accommodate splicing signals and transcriptional 

enhancers has long been recognized (Stergachis et al., 2013). In fact, by using 

DNaseI footprinting in 81 different cell types, Stergachis et al. (2013), found 

that more than 15% of human codons are dual used codons, termed duons. 

These duons simultaneously specify amino acids and TFBSs. TFBSs have 

already been detected in the exons of keratin18 in humans (Stern and 

Orgogozo, 2008). Approximately 17% of single nucleotide variants (SNVs) 

that fall within duons alter TF binding (Stergachis et al., 2013). The 153 CDS 

somatic variants were determined to possibly impact the binding of TFs to 

their 304 TFBS (not shown). This amounted to an estimated two TFBS 

disruptions per CDS mutations. In contrast, there were 891 possible TFBS 

disruptions for the 125 non-coding deleterious variants or approximately 

seven possible TFBS disruptions per non-coding deleterious variant. In 

addition, out of the 70/95 patients with CDS somatic variants (previously 

shown in Table 5), less than 40% of them (only 27 patients) had mutations 

that fell within TFBSs and those variants that did fall within TFBSs affected 

only 23 genes.  

Moreover, upon further investigation, these TFBS disruptions caused by CDS 

variants were mostly attributed to one gene in one donor that had a somatic 

mutation in a location where 68 TFs potentially bind. In terms of genes, 
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although the VHL and SETD2 genes, which were previously two of the top 

20 genes (with regard to the most CDS variants), remained in the top 20 

genes with the most potential TFBS alterations, as displayed in Figure 18 

(blue), most of the mutations in the CDS (orange), did not seem to be 

specifically targeted at a genes TFBSs.  

Meanwhile, the peroxisome proliferator activated receptor gamma (PPARG) 

gene was previously not highlighted in any of the categories with the top 20 

frequently mutated genes, yet the position of its CDS variant potentially alters 

numerous TFBSs (orange). PPARG is a nuclear receptor that has been shown 

to inhibit cell growth in ccRCC, but only if it is expressed and remains 

unaltered (Collet et al., 2011). A disruption at a critical location in its TFBS 

that eliminates this binding site could cause the gene not to be expressed and 

would thereby promote tumourigenesis. This shows again that evaluating the 

position of a variant with respect to their TFBSs could shed better light on 

the functional consequences of that specific variant. This holds true even for 

synonymous/silent CDS mutations which are now widely accepted as 

disease-causing due to their impact on the efficiency of protein folding, 

aberrant splicing, the folding energy and structure of pre-mRNA, as well as 

the creation and modification of binding sites (Buske et al., 2013) (Faa′ et al., 

2010) (Sauna and Kimchi-Sarfaty, 2001).   

Despite finding that CDS variants do not generally fall within TFBSs, it is 

still worthwhile to investigate their position in relation to their binding 

motifs. Since 13.5% of common disease- and trait-specific SNVs identified in 

GWAS studies fall within duons, they may have a profound effect on 

pathogenesis (Stergachis et al., 2013). Correct classification of mutations, 

such as identifying the previously unknown molecular defects caused by a 

mutation, especially the largely unexplored non-coding variants or the 

previously dismissed synonymous (neutral) coding mutations, could allow us 

to define the pathogenic role of many sequence variants, which could 

ultimately lead to better therapies. The unravelling of its role could very well 

be as a result of defining them with regard to their TFBS disruptions.  In the 
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next subsection a few significant TFs were investigated for their role in the 

severity of the ccRCC. 

 

 

Figure 18: The number of time the somatic mutation fell within a TFBS within the CDS region of the 

gene (blue) compared to the number of times the gene was somatically mutated (orange). Although 

VHL and SETD2 remained in the top five, many of the genes frequently mutated did not fall within 

TFBSs, while the location of others such as PPARG which previously didn’t even come up in the top 

20, affected many TFBSs. 

 

3.9.1. Transcription factors (TFs) in deceased patients 
 

The TFs that bind at these possibly disrupted TFBSs were also investigated within all 

five deceased donors, to ascertain if specific TFs were common to all of the deceased 

patients, but absent in the surviving patients, thereby serving as biomarkers for a poor 

prognosis. Mutations in the binding sites of three of the TFs: CEBPB, EBF1 and 

CTCF were commonly found within the five deceased patients, but only two of the 
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patients had mutations that may simultaneously affect the binding of all three TFs, as 

Table 9 indicates. 

CTCF and EBF1 binding site disruptions were present in 3/5 patients, while disrupted 

CEBPB binding was common to 4/5 of the deceased patients.  Early B-cell factor 1 

(EBF1) is a transcriptional activator, just as CCAAT/enhancer binding protein beta 

(CEBPB), while CCCTC-binding factor (CTCF) is a chromatin binding protein that 

acts as a transcriptional activator or repressor depending on the gene. It became 

apparent that a mutation in the binding site of CTCF may be critical, since one 

patient (DO47004) who lost their battle with ccRCC, had only one deleterious variant 

located in the binding site of this TF and no other deleterious mutations that 

potentially impacted TFBSs. CTCF has been shown to modulate cell differentiation, 

cellular senescence, as well as the control and progression of the cell cycle, and may 

also potentially act as a tumour suppressor (Fiorentino and Giordano, 2012). In 2014 

Kemp et al. showed that CTCF hemizygous (having only one copy of a gene instead 

of the normal two copies) knockout mice were more susceptible to cancers and these 

cancers were particularly characterized by their increased aggressiveness.   

One deceased patient (DO47249) who did not have a mutation in the CTCF binding 

site, did however, have mutations in the TFBSs of the other two TFs, namely: 

CEBPB and EBF1. When this analysis was carried out in the surviving patients, none 

of them had deleterious variants that fell within TFBS of the CTCF transcription 

factor and none of them, except for one patient had the combination of CEBPB/EBF1 

TFBS disruptions. This exception was a patient for whom no vital status or other 

clinical data was recorded and so their results could be included in this study.  

It would thus be worthwhile to explore these TFs as potential targets for cancer 

therapeutics or to investigate its function in tumourigenesis or cancer progression. 

Although this analysis was beyond the scope of this study, in the next sub-section, a 

STRING-DB analysis was carried out to view the connections these three TFs make 

with other molecules in order to understand their possible influence on the disease. 
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Table 9: The binding of the three transcription factors (CEBPB, EBF1 and CTCF) within the five 

deceased donors may be altered by non-coding variants located within their TFBSs. Every one of the 

three TFs affected was present in at least three of the patients at a time, but no single affected TF 

was ever common to all five patients. All the deceased patients had a combination of the disruptions 

in the binding sites of the TFs CEBPB/EBF1 or a disruption in the binding site of CTCF. None of the 

surviving patients had the former combination or a disruption in the binding site of CTCF. To see if 

any of these TFs interplay with each other or if they are attached to other known genes that are 

causally implicated in cancers, a protein-protein interaction analysis was carried out. 

DO47249 DO46885 DO46828 DO46827 DO47004 

CEBPB BATF ATF2 CCNT2 ARID3A 

EBF1 CEBPB ATF3 CEBPB ATF3 

EP300 CTCF BCLAF1 CHD1 BRF2 

FOXM EBF1 BRCA1 CTCF CREB1 

IKZF1 FOS CBX3 EBF1 CTCF 

MTA3 JUN CCNT2 EGR1 EGR1 

NFATC MAFF CEBPB FOXA1 EP300 

NFIC MAFK CHD2 FOXP2 ETS1 

NR2C2 REST CTCF HDAC FOS 

PAX5 
 

E2F1 KDM5B FOSL2 
 

 

3.9.2. Network analysis of TFs 
 

The Bonferroni statistical method (p< 0.05) was chosen at the highest confidence 

levels (0.900) and only experimental evidence was considered to build the network. 

Figure 19 demonstrates that CEBPB and CTCF interplay via two intermediates. If a 

disruption in the binding site of CTCF is as detrimental as hypothesized, then 

CTCF’s relationship with CEBPB could explain how the cancer in the patients 

without the potential CTCF disruptions, could accelerate to its final state. EBF1, on 

90 
 

 

 

 

 



the contrary, remains independent of the other proteins in the network and even when 

EBF1was considered individually and the network around this protein was expanded 

to observe other directly-interacting molecules, this protein remained unassociated. 

Hence, not much is known about its interactions with other proteins in metabolic 

processes. However, EBF1 has been shown to cooperate with STAT5 (Heltemes-

Harris et al., 2011), which is a signal transducer and transcription activator that has 

been causally implicated in several cancers, including renal cancer (Cavalcanti et al., 

2010)(Yamashita and Iwase, 2002). Therefore, this protein could also be further 

explored as a potential genetic marker or to better understand the regulatory 

architecture of ccRCC.  

When the proteins were grouped according to their Biological process, all three TFs 

participate in positive regulation of gene expression, metabolic- and biosynthetic 

processes. Dysregulation of gene expression and cellular processes are known cancer 

mechanisms (Srihari et al., 2014)(Skubitz and Skubitz, 2002) and thus, it is not 

surprising that disruptions in the binding sites of these TFs could result in 

cancerigenesis or metastasis. This was however, an extremely small sample size so 

no firm conclusions could be drawn. 

 

  

Figure 19: All three proteins participate in the positive regulation of gene expression, metabolic and 

biosynthetic processes according to the Gene ontology category ‘Biological process’ in STRING-DB. 
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Finally, the TFBS data was linked to the clinical data of the donors to see if trends 

could be observed that related the number or location of potential TFBS disruptions 

to the severity of the disease. 

 

3.9.3. TFBS data combined with clinical data 
 

When the TFBS data was added to the clinical data of the patients, one patient’s data 

deserved special attention, in that no mutations in the CDS region was observed, and 

despite harbouring six non-coding somatic mutations, these mutations were not 

deemed deleterious by RegulomDB. Moreover, none of the mutations fell within 

TFBS locations. More explicitly, there were no (CDS) somatic variants that affected 

the amino acid sequence or (non-coding) variants that could influence regulation by 

directly altering TFBSs.  

The fundamental question was therefore, is it only somatic mutations that potentially 

disrupt TFBSs; disruptions which ultimately influence transcription or gene 

dysregulation? In recent years there have been reports of DNA methylation’s possible 

role in directly impacting the binding of TFs to TFBSs. In 2011, Chen et al. showed 

that TF binding affinities are directly influenced by the methylation of cis-regulatory 

elements (such as promoters, introns, enhancers etc.). It has been shown that some 

disease genes go under the radar with regard to DNA mutations and TFBS 

disruptions, yet fall victim to aberrant methylation events that eventually result in the 

expression of the disease phenotype. So the next section of this study focused on 

assessing the signatures of methylation with regards to TFBSs and gene regulation. 

 

3.10. Aberrant Methylation in GOI  
 

Gene regulation is driven by TFs that bind to TFBSs at promoters, and this binding 

affinity is controlled by promoter methylation (Luu et al., 2013). The COSMIC 

methylation data was therefore expedient for this study, since the promoter-

associated positions were already defined by using the position of the probes on the 
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array chip. Initially all the differentially methylated promoter-associated positions 

within the 173 RCC disease genes were extracted, within their genomic regions of 

interest, in order to see the overall extent of aberrant methylation within their 

promoters. That is, the relationship between differential methylation and its effect on 

gene dysregulation was not yet considered. The motivation behind scanning all of the 

genomic regions is predicated on the awareness that promoters may be located in the 

5’UTRs, the introns or even downstream of genes, in the 3’UTRs of human genomes, 

as explained earlier in section 1.9.2.4 (Holloway et al., 2008). Later this data was 

contrasted with gene dysregulation to characterize the aberrant methylation as 

potentially being functionally significant.  

As shown in Table 10, no promoter-associated aberrant methylation was reported in 

the CDS region, which was expected, since promoters are not located within protein 

coding sequences. The values reported in the table are more a reflection of the 

number of patients with differential methylation at a specific genomic location than 

the number of unique differentially methylated events (e.g. patient A at chr3:500548, 

patient B at chr3:500548, patient C at chr3:500548, patient A again, at chr17: 

2124587). Initially there were 1024 methylation events, however, many of the hits in 

the introns and promoter regions were at the same genomic positions. After removing 

duplicates there were 616 methylation events that affected 17 genes, in 191 of the 

original 307 patients enrolled in the methylation study. Thus, nearly two thirds of 

patients (62%) had aberrant DNA methylation, even though not many distinct genes 

were affected. Out of the 616 events there were just 38 unique differentially 

methylated positions. 
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Table 10:  The number of differentially methylated positions in the various genomic regions and the 

associated RCC genes. The CDS region showed no promoter-associated aberrant methylation. There 

was aberrant promoter methylation in the 3’UTR, which was initially of concern, considering 

promoters are usually upstream of the transcription start site of genes. However, as stated before, in 

complex organisms such as humans, promoters may even be located in the 3’UTRs of genes. 

 Promoter 5'UTR CDS Introns 3'UTR 

Aberrantly 
methylated 
position 
(promoter 
associated) 

303 

(OGG1, 
PDGFRA, 
VEGFA, 
IGF2BP3, 
RUNX1, 
LCP1) 

124  

(RUNX1, 
PACRG, 
BAP1) 

0 586 

 (VHL, 
PACRG, 
HLA-B, 
NF1, 
RUNX1, 
LCP1, 
MAX, SCD, 
NCOR2, 
PLEC, 
NBPF10)  

11  

(KMTD2) 

 

In contrast, the non-disease genes had no promoter-associated differential 

methylation in the 3’-, 5’UTR or the CDS regions, as displayed in Table 11. When 

the duplicate positions between the promoter and intronic aberrant DNA methylation 

events were removed, there were only 31 unique methylation events that affected just 

four of the 173 non-disease genes (2%). Only 25 out of the 307 patients were 

affected; that is 8% of patients, compared to 62% of patients when the RCC disease 

genes were considered. Again, the 31 events were based more on the number of 

individual patients with their distinct aberrant methylation events (e.g. patient A at 

chr3:500548, patient B at chr3:500548, patient C at chr3:500548, patient A again, at 

chr17: 2124587), but the unique genomic positions for which there was differential 

methylation totalled just six. In terms of the sizes of the genes affected, the 17 

differentially methylated genes were scattered across all gene lengths. In this part of 

the analysis gene length is still relevant, because the methylation patterns were 

observed within the individual genomic regions (5’UTR, 3’UTR, introns, CDS and 

promoter) and not just in the 1000 bases chosen as the promoter region for all genes 

at the start of the study.  
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Since size wasn’t a factor, the differential methylation could not have been 

coincidental. This again showed that methylation events are directed towards certain 

genes and because they were less common in non-disease genes, differential 

methylation events are also more enriched in the context of disease. Hence, working 

backwards from differentially methylated positions to the variants/genes affected, 

may help in the discovery of novel variants/genes and enhance our understanding of 

the role epigenetics plays in complex diseases. In the next section aberrant 

methylation and its association with TFBS is investigated for their possible link to 

TFBS affinities.  

Table 11: The number of differentially methylated positions in the various genomic regions for the 

non-disease genes. The CDS, 3UTR and 5UTR regions showed no promoter-associated aberrant 

methylation. 

 Promoter 5'UTR CDS Introns 3'UTR 

Aberrantly 
methylated 
position 
(promoter 
associated) 

29 (EIF3L, 
ZNF502, 
TMCO6)  

0 0 2 (ZNF502, 
PRKRIP1)  

0 

 

 

3.10.1. Aberrant methylation in relation to TFBSs 
 

As stated previously, there have been multiple reports that DNA methylation 

mediates cell differentiation and gene regulation by altering the interactions between 

TFs and their TFBSs (Chen et al., 2011). When the TFBS is methylated, the TF 

cannot bind at its binding site and the gene cannot be expressed (Chen et al., 2011). 

As Figure 20 illustrates, there was a good overlap between the genes that had 

differentially methylated promoters (C), the genes with the most potential TFBS 

disruptions located in the genes that had the most total noncoding somatic variants 

(deleterious and tolerated) (A) as well as the genes with the most potential TFBS 

disruptions in the genes with the most deleterious somatic variants (B). Many 
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differentially methylated genes such as: RUNX1, NCOR2, PLEC, OGG1 etc., were 

also amongst the top 20 genes of both of the latter two categories. Other aberrantly 

methylated genes such as VEGA and IGF2BP3 were reported in at least one of the 

two categories of genes with frequent TFBS disruptions (categories: genes with the 

most total non-coding SVs with corresponding levels of potential TFBS disruptions 

or genes with the most deleterious SVs with corresponding levels of potential TFBS 

disruptions).  

Interestingly, the BAP1 gene (C), which didn’t really come to the forefront within the 

other parts of this study, despite being frequently implicated in ccRCC, was 

highlighted in this section of the study. Albeit, the VHL gene which has been found 

to be differentially methylated in 15% of ccRCC cases (Ricketts et al., 2014), was one 

of the frequently methylated genes in this analysis, corroborating the findings of this 

study. 

There were, however, far fewer genes with differential promoter methylation than 

genes with somatic variants. As discussed previously, only 17 of the 173 disease 

genes reported aberrant methylation, despite 165 of them containing non-coding 

somatic variants. When the GO annotations for these 17 differentially methylated 

genes were investigated, no apparent trend could be observed in terms of identical 

shared molecular functions. However, 81% of the genes participate in a combination 

of signalling, proliferation or the activation of certain pathways (not shown). These 

are all well-known proto-oncogenic activities, although this observation will only be 

relevant if the differential methylation also results in the upregulation of these genes.  

Interestingly, no additional genes were shown to be differentially methylated that 

were not previously shown to be somatically mutated (this will be elaborated on 

later). Another interesting observation was the type of differential promoter 

methylation frequently observed. Most methylation studies report promoter 

hypermethylation, but in this study almost all (97%) of the non-coding promoter-

associated positions were hypomethylated. Only 16 of the 616 methylation events 

were as a result of hypermethylation. In 2002, Ehrlich  showed that although genomic 

hypermethylation is often seen in the CpG islands of cancers, frequent 

hypomethylation often underlies transcriptional control sequences.  
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A) The number of TFBS disruptions in the genes with the most total non-coding 

mutations 

 

 

B) The number of TFBS disruptions in the genes with the most deleterious non-

coding mutations 

 

C) The genes with the most differentially methylated positions in their promoters 

 

Figure 20:   A) The top 20 genes with the most TFBS disruptions that overlapped with the genes with 
the most total (deleterious + tolerated) non-coding variants.  B) The top 20 genes with the most TFBS 
disruptions that overlapped with the genes with the most deleterious non-coding variants. C) All the 
genes with aberrantly methylated positions in their promoters. Many of the differentially methylated 
genes such as RUNX, NCOR, PLEC, OGG1, IGF2BP3, etc. in (C) overlapped with the genes in panels A 
and B, showing a possible relationship between methylation and TFBS disruptions. 
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Thus, although hypermethylation is frequently studied, inappropriate 

hypomethylation of oncogenes has been shown to be key feature in cancerigenesis, in 

recent years (Chen et al., 2011).  

In as early as 1983, Gama-Sosa et al. reported that the malignant tissues of 103 

human tumours had significantly lower genomic m5C content than benign and 

normal tissues. In fact they demonstrated that the level of hypomethylation correlated 

with the extent of the cancer, with metastases showing the highest percentage of 

hypomethylation. This may also reflect a role for the extent of hypomethylation in 

relation to tumour progression (Gama-Sosa et al., 1983). Later it was shown that 

ovarian carcinomas and Wilms tumours respectively showed up to 25% and 60% less 

m5C in their DNA than their normal counterparts (Ehrlich, 2002). It has therefore 

been suggested that assays for DNA hypomethylation may become a clinically useful 

addition to hypermethylation of CpG islands (Ehrlich, 2002). 

At the end of section 3.9.3, the question was posed as to the relevance of an 

association between of methylation events and TFB affinities. Since there seems to 

be a relationship between the genes reporting the highest differential promoter 

methylation events and the genes with the highest number of TFBS disruptions and 

because this relationship only appears to exist for the non-coding variants (not the 

CDS variants, hence it seems to be targeted at transcriptional regulation) the 

possibility exists that the two events may somehow be tied and that aberrant 

methylation may be used as a mechanism by cancer cells to pervert normal cellular 

processes to their advantage. Furthermore, earlier it was highlighted that no new 

genes were differentially methylated that were not also somatically mutated, 

suggesting that there is a possible relationship between somatic variants and 

differential methylation, and since the non-coding variants are often located within 

multiple TFBSs, the association may even be more specifically between methylation 

and TFBS disruptions. 

 Of course knowing whether the somatic variant (or SNP) or the aberrant methylation 

came first, is a bit harder to ascertain. Nevertheless, rSNPs have been reported to 

alter CpG methylation, representing one of the mechanisms that link genetic 

variations, such as somatic variants, to epigenetic changes (Li et al., 2014). 
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Albeit, aberrant methylation only becomes relevant to disease when there is a 

correlation with gene dysregulation of the gene expression of the target gene for the 

associated promoter. Hence, a Python script was again used to extract only the 

instances where the differential status was indirectly proportional with the gene 

expression levels (since promoter methylation represses gene expression). 

 

3.11. Gene Expression 
 

3.11.1. Gene Expression and aberrant methylation 
 

When the relationship between the aberrant DNA methylation and the associated 

gene expression levels (Fold change >2) were taken into account, six genes 

harboured 102 differentially methylated events with corresponding differential gene 

dysregulation in 30 of the patients. These six genes were also the top genes which 

had the most differential methylation. In contrast the non-disease genes reported no 

correlation between the two events for any of the genes. All of the aberrantly 

methylated positions for the RCC genes were the hypomethylated promoter regions 

with the overexpression of the target gene as shown in Figure 21. That is, none of the 

hypermethylated promoter regions showed inversely proportional dysregulated 

genes.  

In 2002 Ehrlich stated that there is evidence that cancer-associated hypomethylation 

of proto-oncogene promoters is correlated with activation of the gene expression 

counterpart. This was similarly shown to be true this study. Since no 

‘hypermethylated promoter-downregulated gene’ relationships existed, the purpose 

of hypomethylation in ccRCC may be exclusively targeted at the upregulation of 

proto-oncogenes. Now the purpose behind the targeted promoter hypomethylation of 

the 17 genes becomes apparent, since the upregulation of proto-oncogenic activities 

is one of the hallmarks of cancer. 
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Figure 21: The total number of times a gene displayed aberrant DNA methylation and an indirectly 

proportional gene expression levels. All of the genes were hypomethylated with concordant 

upregulation of the same gene. 

 

In 2013, Luu et al. used an algorithm to show that hypomethylated-associated motifs 

often target conserved regions near TSS and tend to occur in TFBSs. Through a series 

on intermittent mechanisms this results in the conversion of enhancers from a 

repressed state (H3K27me) to an active state (H3K27a), which naturally have 

implications in the overexpression of the target gene (Luu et al., 2013).  

After contrasting differential methylation and gene dysregulation, the relationship 

between non-coding SVs and gene dysregulation was investigated,  since it was 

expected that there would be a better correlation between the two events if the SV 

was also a rSNP; that is, a SNP that alters TFBSs (Buroker, 2014).  

 

3.11.2. Gene expression and somatic mutations 
 

As stated before in section 3.9, rSNPs often result in gene expression changes due to 

their impact on TF binding. A total of 158 of the 165 somatically mutated genes were 

dysregulated in ccRCC tumours compared to their normal tissue. The seven genes 

which were not dysregulated in ccRCC patients, despite accumulating multiple non-

coding somatic mutations in the WGS study, were investigated to observe the number 

of potential TFBSs they may disrupt. Although two of the genes had variants that 
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could alter multiple TFBSs, the other four gene variants would result in minimal 

TFBS modifications, with two of them just potentially disrupting one binding site 

each. Furthermore, none of these seven genes acquired aberrant promoter 

methylation. Therefore, non-coding mutations are possibly more likely to have an 

impact on gene expression if variant lies at a position that potentially alters multiple 

TFBSs or if the promoter of the gene is aberrantly methylated.  

Once again, when the specific genes most frequently dysregulated (Fold change > 2) 

were analysed, many of those genes (MST1, RAN, PBRM1, RUNX1 etc.) were also 

the genes that had deleterious non-coding mutations, disrupted TFBSs and some, 

such as the RUNX1 gene, were also hypomethylated with concordant overexpression 

of their genes (See Figure 22). Also, most of these genes, as with previous sections of 

this study, are not the genes most commonly highlighted in ccRCC somatic mutation 

studies (such as VHL) where WES is the empirical platform and the coding sequence 

is the focus of the analysis. Interestingly, the KDM5C and NSD1 genes were 

dysregulated, despite having no variants at TFBSs and no differential promoter 

methylation, but only a few tolerated, non-coding somatic variants in the patients 

enrolled in the WGS somatic mutation study.  

 

  

Figure 22: The genes often dysregulated were the same genes that were previously shown to have 

deleterious, non-coding somatic variants. For these genes the genomic location of the mutation 

affected multiple TFBSs and some such as the RUNX1 gene contained deleterious, non-coding SVs, 

possible TFBS disruptions, differentially methylated promoters and concordant gene dysregulation. 
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KDM5C did harbour some CDS mutations, but coding mutations generally affect the 

amino acid sequence, rather than gene expression levels. Therefore, for genes such as 

KDM5C and NSD1, there may be an alternative mechanism at work that elucidates 

its observed gene dysregulation. Then again, it may also be that many of the non-

coding variants annotated as tolerated by RegulomDB, may in fact be more 

functionally significant than anticipated.  

Nonetheless, the relationship between the TFBS disruptions, non-coding somatic 

mutations and differential methylation and their gene expression levels, demonstrates 

that there is definitely a niche for considering variants in the non-coding regions of 

the genome as well as the epigenetics and regulatory information in their contribution 

to ccRCC. 

This therefore also adds weight to the theory that one should look beyond just the 

mutations in the genome to a) what causes them and b) the consequences of the 

same. However, the sample IDs that were genotyped for somatic mutations 

(processed by ICGC), differed from the sample IDs of the methylation and gene 

expression data (processed by TCGA). A direct comparison across data types could 

therefore not be made on a patient-by-patient basis, despite the use of the same 

samples and hence, no strong associations could be made.  

Nevertheless, with complex multifactorial diseases such as cancers, the pathogenesis 

often depends on interplay between various dysregulated genes and/or their 

regulatory and epigenetic events. Taking a systems biology approach could therefore 

shed more light on which genes are more relevant in the expression of the disease 

phenotype. To this end the significant genes were submitted to STRING-DB to 

analyse the interactions of these genes and proteins in a network. 

 

3.12. STRING-DB protein-protein interactions 
 

The genes with the most deleterious, non-coding somatic mutations (n = 31, genes), 

the top 30 genes with the most TFBS disruptions in the non-coding regions, all the 

genes which incurred differential methylation in their promoters (n = 17) and the 
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three TFs for which the TFBSs are commonly disrupted in the deceased patients, 

were extracted and duplicates were removed in Excel. A total of 57 unique 

genes/proteins were submitted to STRING-DB (shown in Appendix VI) and the 

analysis was carried out using the highest confidence score in STRING-DB together 

with the Bonferroni correction method (P <0.05).  

When an enrichment analysis was carried out to group the proteins according to 

Biological function, 25 of the 57 genes were involved in negative regulation of 

biological processes, as illustrated by the red molecules in Figure 23 (A). According 

to its Gene Ontology definition (https://www.ebi.ac.uk/QuickGO/GTerm?id-

=GO:0048519), this is any process that inhibits or downregulates the frequency or 

the extent of a biological process. This influence may be exerted by means of 

dysregulation of gene expression or protein modifications and interactions.  

When the Markov Cluster Algorithm (MCL) was applied, a surprisingly high number 

of genes were observed to be directly interacting with each other, as shown in yellow 

in Figure 23 (B). Thus, mutations in any of these genes or their TFBSs that alter the 

levels of proteins present could have a snowball effect on downstream molecules in 

the pathway and possibly influence numerous neighbouring metabolic processes. If 

the targeted genes being downregulated are tumour suppressor proteins, then 

decreasing their levels could result in the cell cycle not being arrested if DNA repair 

is required. Similarly, if proteins responsible for the degradation of proto-oncogenes 

upon completion of their function are downregulated, this would increase 

proliferation, thereby contributing to tumourigenesis. 

Some of frequently mutated genes such as TRIO and DOCK2 do not form any links 

within this network. Many of them such as KMT2D (shown in STRING-DB by its 

synonym MLL2), NOTCH1, HSPG2, RUNX1, ERBB4 and ATM do, however, 

interact with each other and interplay with multiple other proteins that form the 

backbone of the network (as shown in Figure 23(A) in the green blocks). These 

backbone genes/proteins which include EGFR and HRAS and NFkB1 have already 

been implicated in many cancers (Minner et al., 2012) (Fujita et al., 1988) (Hoesel 

and Schmid, 2013).  Two of the noteworthy genes in ccRCC, VHL and MET (shown 

in Figure 23(A) in the blue block), form connections on the outskirts of this network, 
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but also interplay with many cancer genes such as PDGFRA and VEGFA, 

demonstrating how modifications in many of these genes could result in the cancer 

phenotype.  
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Figure 23: (Top) Most of the proteins (25/57) were grouped under ‘Negative regulation of biological 

process’ according to the Gene ontology criterion: Biological Process (shown in red). Many genes 

such as KMT2D (shown as MLL2), NOTCH1, HSPG2, RUNX1, ERBB4 and ATM interact and interplay 

with multiple proteins that form the backbone of the network (green blocks). Two of the noteworthy 

genes in ccRCC, VHL and MET, form connections on the outskirts of this network (shown in the blue 

block), but also interplay with many cancer genes such as PDGFRA and VEGFA. (Bottom) When MCL 

clustering was applied, one can clearly see that many of these proteins directly interact with one 

another (shown in yellow) (Adapted from String-DB, 2015).  
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Additionally, in this small network (n=57), ten of these proteins participate in the 

phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway and nine out of the ten proteins 

from a tight network (shown by the red molecules in Figure 24). Since these are the 

genes frequently modified in ccRCC patients across various studies and because this 

pathway has already been associated with ccRCC (Guo et al., 2015; Porta and Figlin, 

2009), this also demonstrates how catastrophic a mutation or the inactivation of just 

one gene could be to a pathway. Alternatively, it could imply that more than one of 

these genes needs to be altered or inactivated in order for the disease phenotype to be 

expressed.  

  

Figure 24: The ten genes/proteins that participate in the PI3K/Akt pathway. Most of them 

were interlinked with the exception of FGFR2.  

 

Finally, the network was expanded within the context of STRING-DB’s Active 

prediction methods to view the surrounding molecules. The intention was to observe 

other proteins (not included in the original submitted list) that may interplay with the 

57 proteins of interest and to identify hub proteins that may further elucidate the role 

of the genes/proteins. 
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A total of 26 of the 57 proteins can be seen interplaying with ubiquitin C (UBC), as 

illustrated in Figure 25. Table 12 shows that four of these proteins are linked to UBC 

via an intermediate protein, while 22 interact directly with UBC. Several studies have 

reported and discussed frequent mutations in the ubiquitin-proteasome pathway 

(UPS) and more specifically, the link between the VHL gene and ubiquitin (Guo et 

al., 2012) (Roos et al., 2011) (Corn, 2007)(Ishizawa et al., 2004). However, not many 

studies have focused on the roles of these other genes and their association with 

ubiquitin C in ccRCC. Ubiquitin has been shown to be involved in DNA repair, cell 

cycle progression, the modification of polypeptide receptors, the biogenesis of 

ribosomes (ribosomes are essential for cell proliferation) and  transcription regulation 

(Shi and Grossman, 2010) (Kanayama et al., 1991). 

Cyclins, which play a fundamental role in modulating  the cell cycle during cell 

proliferation are, for example, degraded by the ubiquitin proteins (Kanayama et al., 

1991). The level of cell surface signal receptors, which play a role in cell migration, 

proliferation, survival and differentiation,  are also tightly regulated by the ubiquitin 

pathway (Diehl et al., 2010)(Fischer et al., 2009). Due to ubiquitin’s dynamic role in 

protein regulation by triggering the degradation of target proteins, they can act as 

either oncogenes or tumour suppressor genes, depending on which of these genes are 

targeted for degradation at any given time (Diehl et al., 2010). Interestingly, in as far 

back as1991, Kanayama et al., already showed that the levels of poly-ubiquitin C 

were higher in malignant renal tumours than in their normal counterparts. 
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Figure 25: Most of the genes of interest were centred on Ubiquitin C (centre in red square). Some 

were also linked to EGFR or RB1 (Adapted from String-DB, Accessed 29/09/2015). 
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Table 12: The genes/proteins interacting directly with ubiquitin C (UBC) or via an intermediate 

gene/protein. 

Protein/gene Direct link Via another gene/protein 

CDKN2A √  

VHL √  
NOTCH1 √  
RUNX1 √  
NOS1 √  
ERBB4 √  
MYH9 √  
IGF2BP3 √  
HLA-B √  
NEDD4L √  
LCP1 √  
SCD √  
BAP1 √  
CEBPB √  
PPARG √  
NCOR2  via HDAC1 
DMD √  
VEGFA √  
EGFR √  
TCF7L2  via CTNNB1 
NFKB1 √  
HRAS  via RAF1 
RAN √  
AKT1 √  
CCND1 √  
FN1  via VHL 

 

 

  
 

Hence, because of the target specificity of ubiquitin and by reason of ubiquitin’s 

general upregulation in renal tumours, the cancer-hallmark events would therefore be 

enhanced in malignant cells compared to normal cells, contributing to tumour 

progression. Frezza et al. (2011), therefore, discusses the ubiquitin-proteasome 

pathway’s pivotal role in the upregulation of cell growth and in the downregulation 

of apoptosis (which is not further elaborated here).  
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In terms of therapy, since many of the RCC genes are directly associated with 

ubiquitin, as demonstrated in Figure 25, combinatorial drug therapy could be 

advantageous in combatting renal tumours. This approach has been shown to 

overcome the complexity of treating multifactorial diseases such as cancers (Frezza 

et al., 2011). One such example is in diabetes mellitus, another complex disease, 

where a combination of three non-coding SNPs was associated with increased risk in 

Mexican Americans, as discussed by Pritchard and Cox ( 2002) and were therefore 

suggested as a triad biomarker for the disease.   

Moreover, the E3 ubiquitin ligase, which is the enzyme responsible for ubiquitin’s 

keen substrate-specificity for its target molecule (Frezza et al., 2011), could also be 

used  as a vector to target tumours by pursuing them in the opposite direction; that is, 

to target the specific protein/gene attached to ubiquitin without interfering with other 

ubiquitin-interacting molecules. For this reason, the various components of the 

ubiquitin-proteasome pathway, especially the ubiquitin-related targets, have emerged 

as crucial targets for novel anti-cancer therapy (Ande et al., 2009). Hence, analysing 

the protein-protein interactions surrounding ubiquitin could assist with the targeted 

design of more effective anti-cancer therapeutics. 

Regarding the independent proteins, many of the proteins which appeared completely 

unassociated with other proteins in the network, were individually submitted to 

STRING-DB to observe their connections, and upon further investigation were also 

observed to be linked to UBC via an intermediate, as demonstrated in Figure 26. The 

two frequently mutated genes, DOCK2 and TRIO for example, interact with UBC via 

the RAC1 protein. Therefore, further expansion of this network could eventually 

interconnect most of these disease molecules to UBC via at least one intermediate. 
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Figure 26: Despite not being associated with UBC in the larger network where all 57 genes were 

considered, DOCK2 (red) and TRIO (yellow) can be seen here as interplaying with UBC (orange 

square) via the intermediate protein RAC3 (dark blue) or RAC1 in the centre (light blue). 

 

On the other hand, Table 13 shows that four of the genes that did not interplay with 

UBC, did interact with the epidermal growth factor receptor (EGFR). EGFR is 

involved in the progression of many cancer types, including RCC, representing an 

important therapeutic target (Minner et al., 2012). However, although many 

inhibitors have been designed to target EGFR, they have failed to produce objective 

responses (Dancey, 2004). The molecular heterogeneity of ccRCC has been proposed 

as one of the reasons for the low activity and thus, the relative resistance of ccRCC’s 

single-agent EGFR inhibitors (Dancey, 2004). This again suggests that combinatorial 

treatment  may be a more promising strategy for eradicating ccRCC tumours (Miles 

et al., 2014) (Cooper et al., 2012). This network analysis therefore validates that by 

analysing just the non-coding variants with the most frequent mutations, one could 

successfully select for the most appropriate targets by either directly targeting a 

specific gene or a combination of genes, or by targeting a hub gene/protein they all 

form connections with. 

 

111 
 

 

 

 

 



Table 13: The genes/proteins interacting directly with the epidermal growth factor receptor (EGFR) 

or via an intermediate gene/protein. 

Protein/gene Direct link Via another gene/protein 
HSPG2 √  

MET √  

FGFR2  via PLCG1 

PDGFRA  via CRK 

 

However, even with non-coding variants, the allele frequency of a rSNP can vary 

between different ethnic or racial groups due to population bottlenecks (Buroker, 

2014). This would influence the occurrence of TFBSs and the TFs regulating specific 

genes; thereby also impacting the susceptibility of certain populations to a disease. 

The final step in the analysis was to therefore, to observe and compare the allele 

frequencies of all non-coding somatic variants within the different super populations. 

 

3.13. Allele Frequency of Variants in the African Population 
 

For both the ccRCC disease variants and the non-disease variants, most of the alleles 

were not reported in the 1000Genomes data file, as shown in Table 14. However, 

finding such a small subset of AFs was unexpected. Thus, a random set of about 30 

variants were manually checked using grep ‘variant position’ 

1000genomes_filename, but they were still not found. To confirm their absence, the 

variants were submitted to BioMart using the Ensembl Variants dataset (hg19). When 

they were also not found, the scope of the range was extended on either end of the 

start- and end coordinate in order to ascertain whether other variants could be picked 

up around this region. For example, if the variant was at position 14: 105254288, 

then the region that was verified was 14:104254288 - 14:106254288. Many SNPs 

were then flagged within this range, but the ccRCC variants were once again not 

found. The allele frequencies of these variants could therefore not be determined, but 
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it is likely that they do not occur frequently in populations, i.e. that they are very rare 

variants (present in <0.5% of the population).   

 

Table 14: The total number of alleles for which the allele frequencies were obtained in the 

1000Genomes dataset. The blue columns show the total non-coding and the CDS ccRCC variants, 

while the green columns display the total non-coding and the CDS non-disease variants.  For all 

variants within their distinct categories, very few alleles were found. 

RCC disease genes Non-disease genes 

All non-coding 

SVs 

 Non-coding 

variants found  in 

1000genomes 

All non-coding 

SVs 

Non-coding 

variants found in 

1000genomes 

4385 73 244 5 

All CDS SVs 

CDS  variants 

found in 

1000genomes 

All CDS SVs 

 CDS variants 

found in 

1000genomes 

154 3 10 0 

 

It is also likely that these variants contribute to ccRCC, since they were located 

within ccRCC disease genes. Rare alleles are often more recent, due to not having 

been subjected for a prolonged period of time to the influences of purifying negative 

selection (Soumya, 2013). Purifying selection aims to remove modifications with 

functional consequences from a population (Elyashiv et al., 2010). Hence, rare 

variants are expected to be relatively deleterious mutations (Soumya, 2013) and thus 

interesting for this study. Alternatively, these may also be novel individual-specific 

variants generated due to the natural mutation rate in Homo sapiens or they may be 

spontaneous variants as a result of increased genomic instability within the tumours 

of these donors. Nevertheless, discovering very rare/novel variants are certainly very 
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promising, because they may provide pioneering insights into the underlying 

mechanisms of a disease and hence, possible new targets for the diagnosis, prognosis 

and treatment of a disease. However, the allelic variants that were present in the 

1000Genomes dataset and therefore, more common, were also specifically 

investigated, since common variants that do contribute to disease are more likely to 

act on the non-coding genome (Soumya, 2013). 

 

3.13.1. No distinction in AF between Africans and other super populations 
 

When the alleles were compared across the macro-populations, of the 73 non-coding 

variants that WERE present in the 1000genomes dataset, 11 alleles did not show any 

distinctly different frequencies in Africans compared to the other population groups. 

That is, they were either the same as another super population or the AF was 

somewhere in the middle range of the extremes of the other population groups. It is 

therefore unlikely that these AF differences may have a large effect on the 

differences in ccRCC incidence in Africans compared to other populations. 

 

3.13.2. Higher AF in Africans compared to other super populations  
 

For 28 alleles, the AFs were higher in Africans and are therefore likely to be 

implicated in ccRCC when they are observed in Africans. It has been proposed that in 

genetically complex diseases like cancers, weakly penetrant, high-risk alleles may be 

present at higher frequency (>1%) in the population (Hirschhorn et al., 2002). Higher 

frequency or common alleles tend to be ancient, because they have survived the 

effects of negative purifying selection and are likely to have a small to modest 

functional effect of the disease phenotype. They often act very subtly to cause disease 

without sabotaging their evolutionary fitness. That is, while they may confer a high 

risk for a one disease, they may also protect the individual from another disease 

(Soumya, 2013) and are thereby able to ‘survive’ the selection pressure. 
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Most of the SNPs with comparatively higher AFs in Africans were just slightly more 

frequent in Africans and so are not individually discussed. However, a number of 

these AFs were much more common in this super population compared to other 

population groups and they are the ones being discussed in more detail below.  

The most common of these SNPs, rs261597 (G->A), in the Dedicator of cytokinesis 

2 gene (DOCK2), for example, is found in 76% (AF = 0.76) of Africans, although 

this particular SNP is rather common across populations, being present in between 

26% and 46% of other super populations. This DOCK2 gene is interesting, since it 

was in the top 20 genes with the most total and deleterious SVs, the top 20 genes 

with the most CDS mutations and the top 20 genes with the most possible TFBS 

disruptions. DOCK2 functions in mitosis and has been shown to be induced in RCC 

(Lenburg et al., 2003). Although this variant may contribute to ccRCC, it is unlikely 

that it is highly penetrant; otherwise we would see a lot more ccRCC cases across 

super populations. However, it could be one of a subset of variants required for the 

disease onset, since DOCK2 modifications are ccRCC-implicated. 

In contrast, the rs116331317 SNP (A->C) in the cubilin gene (CUBN) occurred in 

53% of Africans, but it was only detected in between 2% and 10% of other 

population groups. CUBN is found mainly in the proximal tubules of the kidneys (the 

primary site for ccRCC development) and is responsible for vitamin B1 uptake, 

which is essential for DNA and protein formation (Maria Aminoff, 1999). This gene 

was also one of the top 20 genes with the most SVs, deleterious SV, total TFBS 

disruptions and the most potentially deleterious TFBS disruptions.  

Similarly, the rs61415991 SNP (T->G) in the pre-mRNA processing factor 8 gene 

(PRPF8) occurs in 41% of Africans, but only in between 2% and 8% of other 

populations. This gene, however, never featured in any of the top 20 categories, 

which is interesting considering its high allele frequency in the general population. In 

addition, not much literature was found linking this gene to ccRCC. Therefore, 

except for its selection from databases, this gene doesn’t appear to be somatically 

mutated very often in ccRCC (based on literature), so there must be another 

mechanism at work to link this gene to ccRCC in a subset of patients. However, this 
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also suggests that mutations in this gene might be under a stronger purifying selection 

than DOCK2 and CUBN and hence, more detrimental/penetrant.  

Lastly, the rs79266366 SNP (G->T) in the microphthalmia-associated transcription 

factor gene (MITF) occurs in 14% of Africans, but only occurs in 3%-8% of other 

population groups. This gene was also in the top 20 genes with the highest number of 

possible TFBS disruptions and has additionally been causally implicated in paediatric 

RCC (Fall et al., 2011).   

Identifying common variants in complex disease studies is interesting for a second 

reason. It has been suggested that these common variant associations may be as a 

consequence of undiscovered rare variants with dramatic functional consequences, 

which are present at the same locus (Dickson et al., 2010).  For example, the allele of 

the MECOM SNP, rs1918961 (C->T), is a common allele variant (MAF >5%) in the 

Asian, American, African and European super populations. However, this common 

allele also has 138 rare/novel variants (i.e., they were not found in 1000Genomes) in 

close proximity to it, and these rarer variants may be the variants actually 

contributing to tumourigenesis, or rather, they may have the greater functional effect 

on ccRCC.   

 

3.13.3. Lower AF in Africans compared to other super populations 
 

Eleven of the non-coding variants had a lower AF in Africans compared to the other 

super populations - three of each in the protein tyrosine phosphatase receptor type 

delta (PTPRD) gene. This gene was previously shown to be the most frequently 

mutated of all genes. Focal deletions are often seen in the 9p23 arm of PTPRD in 

many ccRCC tumours (The Cancer Genome Atlas Research Network, 2013). These 

9p23 SNPs have been linked to several other cancers, such as cutaneous squamous 

cell sarcomas and non-small cell lung cancer (Hendriks and Pulido, 2013) (Purdie et 

al., 2007). However, Du et al. (2013) also described a SNP in PTPRD as a genetic 

risk factor for developing ccRCC, but since these PTPRD SNPs are infrequent in 

Africans, they are more likely to result in ccRCC when seen in other populations. 
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Alternatively, mutations in this gene could be kept to a minimum in Africans, 

because it may be more deleterious in this populations group. Concerning other 

populations, because the somatic mutation patients in this study were of 

European/French ancestry, this may be a promising gene to investigate as a risk 

factor/biomarker for ccRCC in this population group. 

 

3.13.4. Alleles not found in Africans 
 

Lastly, a total of 15 alleles was present in other population groups and NOT in 

Africans. These SNPs could represent a locus that has a protective function in 

Africans, due to being under a strong purifying selection, although the theory can 

only be tenable with a proper study design that evaluates these loci within Africans 

with and without ccRCC. 

 

3.13.5. Alleles only in Africans 
 

Lastly, nine alleles (mostly in the NAV3 gene) were distinctly unique to the African 

population.  The rs183605535 SNP was found in 1% of Africans, the rs183605535 

SNP in 7% of the population, while the particularly rare SNP, rs112941962, was 

present in 0.2% of Africans (i.e. <1%).  Similarly, the ANK3 SNP, rs150147334 (C-

>T), was also present in <1% of this super population, while the RYR3, RUNX1, 

PTPRD, FGFR2 and MECOM SNPs, were all low frequency SNPS common to 1% 

of Africans. SNP rs150147334 in ANK3 has been shown to potentially disrupt 

multiple TFBSs and this gene incurred 100 non-coding somatic mutations in 60/95 

patients.  So although this allele is very rare, this gene is often targeted in ccRCC 

tumours. Therefore, DNA repair enzymes might be activated to keep the total number 

of mutations low, by correcting mismatched bases at distinctly deleterious locations. 

Nevertheless, all of these genes were within one or more categories of the top 20 

most mutated genes or top 20 genes with the most TFBS disruptions. The runt-related 

transcription factor gene (RUNX1) is of particular interest, as it was present in all 
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categories of the top 20 most mutated genes and TFBS disruptions. Additionally, its 

promoters were frequently differentially methylated, with subsequent gene 

dysregulation in many patients. Since its variant’s AF is quite low across all super 

populations, despite being quite a common target for non-coding somatic mutations 

and regulatory and epigenetic modifications, it could serve as an important molecular 

marker for ccRCC diagnosis or prognosis and possibly also for its treatment. Its 

direct link to UBC could also make targeting this molecule very achievable (targeting 

proteins/genes linked to UBC was explained earlier in section STRING-DB protein-

protein interactions 3.12). 

However, the cancer patients used in this study were not Africans, creating 

ascertainment bias due to the greater genetic variation in Africans compared to the 

rest-of-world populations. Since no conclusive supporting data was available, no 

strong associations could therefore be made about the relationship between allele 

frequencies and their potential risk or contribution to disease in Africans.   

 

3.13.6. Biomarker implications 
  

The fact that these variants were somatic mutations (present in the tumour and not in 

the normal tissue), means that they are most likely contributing to the ccRCC 

phenotype. Again, it is difficult to determine whether most of them accumulated as a 

result of the malfunctioning or inactivation of pathways/genes after the cancer 

developed (i.e. whether these variants were passengers) or whether they were 

causally implicated in ccRCC (i.e. drivers of the disease).  

Nevertheless, given that all of the patients had multiple non-coding variants, and 

assuming that the variants did not accrue as a general result of the disease, then it is 

plausible that a large number of SNPs cumulatively contribute to ccRCC in each 

individual. Unlike Mendelian disorders that have high-penetrance mutations (the 

disease-specific allele directly expresses the disease phenotype) and are under strong 

purifying selection, disease-susceptibility variants in complex diseases are known to 
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have low to medium penetrance and are under weaker selection (Pritchard and Cox, 

2002).  

Therefore, it is possible that the three SNPs that are very common in Africans, 

compared to other super populations, the SNPs that were distinctly found only in 

Africans and even those found less frequently in Africans, represent an opportunity 

for the design of a genetic signature for disease susceptibility/risk in Africans.  

In summary non-coding variants and their relationships with TFBS disruptions, DNA 

methylation patterns and gene dysregulation, show promise for a better understanding 

of the mechanistic architecture of ccRCC and potentially other non-Mendelian 

diseases. This also provides a gateway for the selection of the most relevant 

genes/variants to simplify a topological network analysis for the possible design of 

cancer therapies. Lastly, the AFs of the variants may help us to better identify which 

individuals are truly at risk for developing ccRCC in different population groups for a 

pharmacogenomics approach to treating and possibly eradicating the disease. 

 

 

 

 

 

 

 

 

 

 

 

 

119 
 

 

 

 

 



CHAPTER 4 

4. CONCLUSION AND FUTURE WORK 
 

4.11. Summary of the findings 
 

As hypothesized, most of the somatic variants specific to tumours were found 

in the intronic regions of the genes of interest. Only a small subset of these 

variants were predicted to be detrimental by RegulomDB, but the variants that 

fell within the promoter regions were generally more likely to have a 

functional effect- understandably so, since the promoter region is crucial for 

transcription initiation.  When the positions of these variants in relation to 

TFBSs were observed, only a few of the variants within the CDS regions, 

termed duons, were located within TFBSs. However, all of non-coding 

variants were preferentially located within the TFBSs. More than 60% of 

patients enrolled in the DNA methylation study also had epigenetic 

modifications in the form of differential DNA methylation. More than 97% of 

these aberrant methylation events were hypomethylation of the gene 

promoters with a subsequent upregulation of the affected gene, indicating that 

the activation of proto-oncogenes could potentially be a mechanism of action 

for DNA methylation changes in ccRCC. There was substantial overlap 

between the genes with the most non-coding variants, the genes linked to 

variants often located within TFBS and those often hypomethylated at 

promoter regions. Many of the genes often targeted were also directly linked 

to each other in a protein-protein interaction network. 

 

4.12. Novel Findings of this study 
 

 An interesting observation was that the genes most often dysregulated and 

those frequently associated with the non-coding mutations, were not the usual 

RCC genes that are often highlighted in whole exome sequencing and other 

studies that focus only on the protein-coding variants. Hence, identifying and 

examining the variants in the non-coding regions of disease genes may offer 
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substantial insight into the underlying mechanisms of ccRCC oncogenesis. 

When the protein-protein interactions of a selection of these genes were 

observed, many more genes/proteins were directly associated with ubiquitin 

C, which represents many new potential targets for anti-cancer therapeutics. 

Also, for most of the variants the AFs could not be determined due to their 

absence from 1000genomes data, which suggests that many novel/very rare 

variants are generated within non-coding regions of ccRCC tumours, possibly 

as a result of genomic instability. Albeit, this is promising, since detecting de 

novo or very rare variants may hold the key to identify genetic regions with 

unknown disease mechanisms, which may ultimately lead to genetic screening 

to identify individuals at risk or to the development of more efficient 

therapeutics to target the disease.  

 

4.13. Limitations of this study 
 

However, it should be noted that even in this study many of the potentially 

significant and novel variants may have been missed since the entire 

intergenic region were not taken into account. Identifying variants in the 

intergenic regions may also lead to the discovery of variants affecting the 

enhancer regions, since these regions are usually located far from the genes 

they regulate.   

In terms of other epigenetic modifications, it has been shown that there is a 

better correlation between chromatin states and gene expression levels than 

with differential methylation or non-coding somatic mutations and their 

associated gene expression levels. Including this data in this study may give 

rise to more clues about the underlying mechanisms that influence all stages of 

the disease.  

In addition, this was also a small sample size and therefore only constitutes a 

pilot study. On the issue of bias; in future it would be best to extract the 

complete set of all non-coding somatic variants in a WGS ccRCC study, in 

order to avoid omitting variants of interests that may be present in genes not 

included in a predetermined disease-associated gene list.  Using a list of 
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‘known’ disease genes will inevitably bias the study towards existing 

knowledge of the disease mechanisms.  

It is also better to use the same tissue type as the normal/control tissue 

counterpart, as opposed to using blood. 

Also, most whole genome sequencing is performed at 30-60x depth of 

coverage, which may not be sufficient to identify rare alleles with a high level 

of confidence. Tumours can constitute several distinct genetic subclones for 

which the AF of somatic mutations in small subclones may be very low. A 

sequencing depth of  1000X may therefore be required to accurately identify 

variants present in only 1% of the sample (Stead et al., 2013). Therefore 

identifying a dataset sequenced at greater depth may increase the discovery of 

very rare/novel variants with a functional impact on the disease.  

Finally, it would be worthwhile to extract the somatic mutations for the 

individuals for which complete clinical data is available and to cross compare 

the results with the TFBS disruptions and methylations statuses of all of those 

deceased and alive. This could give a truer picture of the genomic profile of 

those who are more severely affected than others.  

 

4.14. Future directions 
 

This is a pilot study that indicates some interesting avenues for further 

research, particularly: 

a) That with ENCODE genome annotation now available, analysis of the 

non-coding regions can give profound insights into the contribution of 

non-CDS to disease aetiology 

b) That relationships appear to exist between non-coding somatic variants, 

differential methylation of promoters, TFBSs disruptions and gene 

dysregulation in tumours – which suggest that these should also be 

explored in future studies of disease mechanisms 

c) That genes identified as disease-associated through CDS analysis are not 

always the same as those identified through non-coding region analysis, 
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and extending research to analyse whole genome sequence may identify 

new disease associated genes/variants 

d) That observing the protein-protein interactions of flagged genes may allow 

us to identify new or a combination of targets for the production of less 

resistant tumour inhibitors 

 

Despite the limitations associated with this study, the outcomes have strongly 

suggested that the non-coding portions of the genome may have a dynamic impact on 

disease development and progression, as a result of the numerous processes they 

affect when even a single position is mutated; and that these regions therefore 

deserve consideration within the context of genetic studies of variants that may 

underlie complex diseases. 
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Appendices 
 

Appendix I 
 

The 173 ccRCC disease genes with their Ensembl IDs, HGNC symbols, chromosome 

number and strand, where 1 is the forward strand and -1 is the reverse strand. 

ENSG00000154262 ABCA6 17 -1 
ENSG00000085563 ABCB1 7 -1 
ENSG00000135503 ACVR1B 12 1 
ENSG00000164742 ADCY1 7 1 
ENSG00000185567 AHNAK2 14 -1 
ENSG00000127914 AKAP9 7 1 
ENSG00000142208 AKT1 14 -1 
ENSG00000145362 ANK2 4 1 
ENSG00000151150 ANK3 10 -1 
ENSG00000196975 ANXA4 2 1 
ENSG00000134982 APC 5 1 
ENSG00000117713 ARID1A 1 1 
ENSG00000149311 ATM 11 1 
ENSG00000085224 ATRX X -1 
ENSG00000166710 B2M 15 1 
ENSG00000163930 BAP1 3 -1 
ENSG00000138376 BARD1 2 -1 
ENSG00000176171 BNIP3 10 -1 
ENSG00000074410 CA12 15 -1 
ENSG00000107159 CA9 9 1 
ENSG00000064989 CALCRL 2 -1 
ENSG00000153113 CAST 5 1 
ENSG00000105974 CAV1 7 1 
ENSG00000067955 CBFB 16 1 
ENSG00000110148 CCKBR 11 1 
ENSG00000110092 CCND1 11 1 
ENSG00000004897 CDC27 17 -1 
ENSG00000039068 CDH1 16 1 
ENSG00000179776 CDH5 16 1 
ENSG00000147889 CDKN2A 9 -1 
ENSG00000181885 CLDN7 17 -1 
ENSG00000141367 CLTC 17 1 
ENSG00000182871 COL18A1 21 1 
ENSG00000169031 COL4A3 2 1 
ENSG00000118260 CREB1 2 1 
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ENSG00000105662 CRTC1 19 1 
ENSG00000144677 CTDSPL 3 1 
ENSG00000107611 CUBN 10 -1 
ENSG00000108094 CUL2 10 -1 
ENSG00000121966 CXCR4 2 -1 
ENSG00000083799 CYLD 16 1 
ENSG00000211452 DIO1 1 1 
ENSG00000198947 DMD X -1 
ENSG00000134516 DOCK2 5 1 
ENSG00000136160 EDNRB 13 -1 
ENSG00000146648 EGFR 7 1 
ENSG00000100393 EP300 22 1 
ENSG00000116016 EPAS1 2 1 
ENSG00000141736 ERBB2 17 1 
ENSG00000178568 ERBB4 2 -1 
ENSG00000106462 EZH2 7 -1 
ENSG00000168309 FAM107A 3 -1 
ENSG00000138829 FBN2 5 -1 
ENSG00000066468 FGFR2 10 -1 
ENSG00000068078 FGFR3 4 1 
ENSG00000091483 FH 1 -1 
ENSG00000189283 FHIT 3 -1 
ENSG00000115414 FN1 2 -1 
ENSG00000075539 FRYL 4 -1 
ENSG00000128242 GAL3ST1 22 -1 
ENSG00000107485 GATA3 10 1 
ENSG00000125166 GOT2 16 -1 
ENSG00000171723 GPHN 14 1 
ENSG00000113249 HAVCR1 5 -1 
ENSG00000112406 HECA 6 1 
ENSG00000095951 HIVEP1 6 1 
ENSG00000206503 HLA-A 6 1 
ENSG00000234745 HLA-B 6 -1 
ENSG00000108753 HNF1B 17 -1 
ENSG00000174775 HRAS 11 -1 
ENSG00000109971 HSPA8 11 -1 
ENSG00000142798 HSPG2 1 -1 
ENSG00000086758 HUWE1 X -1 
ENSG00000136231 IGF2BP3 7 -1 
ENSG00000123104 ITPR2 12 -1 
ENSG00000096968 JAK2 9 1 
ENSG00000136636 KCTD3 1 1 
ENSG00000126012 KDM5C X -1 
ENSG00000147050 KDM6A X 1 
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ENSG00000157404 KIT 4 1 
ENSG00000167548 KMT2D 12 -1 
ENSG00000135480 KRT7 12 1 
ENSG00000198910 L1CAM X -1 
ENSG00000136167 LCP1 13 -1 
ENSG00000131981 LGALS3 14 1 
ENSG00000198589 LRBA 4 -1 
ENSG00000188906 LRRK2 12 1 
ENSG00000139329 LUM 12 -1 
ENSG00000107968 MAP3K8 10 1 
ENSG00000125952 MAX 14 -1 
ENSG00000131844 MCCC2 5 1 
ENSG00000137337 MDC1 6 -1 
ENSG00000085276 MECOM 3 -1 
ENSG00000108510 MED13 17 -1 
ENSG00000042429 MED17 11 1 
ENSG00000068305 MEF2A 15 1 
ENSG00000105976 MET 7 1 
ENSG00000187098 MITF 3 1 
ENSG00000148773 MKI67 10 -1 
ENSG00000196549 MME 3 1 
ENSG00000087245 MMP2 16 1 
ENSG00000147065 MSN X 1 
ENSG00000173531 MST1 3 -1 
ENSG00000198793 MTOR 1 -1 
ENSG00000100345 MYH9 22 -1 
ENSG00000067798 NAV3 12 1 
ENSG00000163386 NBPF10 1 1 
ENSG00000196498 NCOR2 12 -1 
ENSG00000165795 NDRG2 14 -1 
ENSG00000183091 NEB 2 -1 
ENSG00000049759 NEDD4L 18 1 
ENSG00000196712 NF1 17 1 
ENSG00000109320 NFKB1 4 1 
ENSG00000166741 NNMT 11 1 
ENSG00000147140 NONO X 1 
ENSG00000089250 NOS1 12 -1 
ENSG00000148400 NOTCH1 9 -1 
ENSG00000165671 NSD1 5 1 
ENSG00000114026 OGG1 3 1 
ENSG00000070756 PABPC1 8 -1 
ENSG00000112530 PACRG 6 1 
ENSG00000163939 PBRM1 3 -1 
ENSG00000134853 PDGFRA 4 1 
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ENSG00000261371 PECAM1 17 -1 
ENSG00000198300 PEG3 19 -1 
ENSG00000121879 PIK3CA 3 1 
ENSG00000178209 PLEC 8 -1 
ENSG00000132170 PPARG 3 1 
ENSG00000163932 PRKCD 3 1 
ENSG00000174231 PRPF8 17 -1 
ENSG00000171862 PTEN 10 1 
ENSG00000163629 PTPN13 4 1 
ENSG00000153707 PTPRD 9 -1 
ENSG00000164611 PTTG1 5 1 
ENSG00000132155 RAF1 3 -1 
ENSG00000132341 RAN 12 1 
ENSG00000153201 RANBP2 2 1 
ENSG00000139687 RB1 13 1 
ENSG00000147274 RBMX X -1 
ENSG00000173821 RNF213 17 1 
ENSG00000108375 RNF43 17 -1 
ENSG00000122406 RPL5 1 1 
ENSG00000159216 RUNX1 21 -1 
ENSG00000198838 RYR3 15 1 
ENSG00000151835 SACS 13 -1 
ENSG00000099194 SCD 10 1 
ENSG00000117118 SDHB 1 -1 
ENSG00000181555 SETD2 3 -1 
ENSG00000104332 SFRP1 8 -1 
ENSG00000141646 SMAD4 18 1 
ENSG00000127616 SMARCA4 19 1 
ENSG00000065526 SPEN 1 1 
ENSG00000118046 STK11 19 1 
ENSG00000131018 SYNE1 6 -1 
ENSG00000054654 SYNE2 14 1 
ENSG00000135111 TBX3 12 -1 
ENSG00000148737 TCF7L2 10 1 
ENSG00000168769 TET2 4 1 
ENSG00000105329 TGFB1 19 -1 
ENSG00000171914 TLN2 15 1 
ENSG00000164342 TLR3 4 1 
ENSG00000141510 TP53 17 -1 
ENSG00000038382 TRIO 5 1 
ENSG00000103197 TSC2 16 1 
ENSG00000156298 TSPAN7 X 1 
ENSG00000038427 VCAN 5 1 
ENSG00000112715 VEGFA 6 1 
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ENSG00000134086 VHL 3 1 
ENSG00000134258 VTCN1 1 -1 
ENSG00000110799 VWF 12 -1 
ENSG00000109685 WHSC1 4 1 
ENSG00000184937 WT1 11 -1 
ENSG00000140836 ZFHX3 16 -1 
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Appendix II 
 

The 173 non-disease genes with their Ensembl IDs, HGNC symbols, chromosome number 

and strand, where 1 is the forward strand and -1 is the reverse strand. 

ENSG00000243532 RN7SL19P 8 -1 
ENSG00000258668 COX6CP11 14 -1 
ENSG00000122432 SPATA1 1 1 
ENSG00000257853 MED15P1 14 -1 
ENSG00000252535 RNA5SP254 8 -1 
ENSG00000229455 RPS10P18 10 -1 
ENSG00000235294 RPL7AP25 3 -1 
ENSG00000206228 HNRNPA1P4 8 -1 
ENSG00000250585 LINC00604 5 1 
ENSG00000233543 CHTF8P1 X 1 
ENSG00000184208 C22orf46 22 1 
ENSG00000199876 RN7SKP131 22 -1 
ENSG00000247240 UBL7-AS1 15 1 
ENSG00000252174 RNU7-18P 3 1 
ENSG00000249031 SUMO2P6 5 1 
ENSG00000180440 SERTM1 13 1 
ENSG00000226617 RPL21P110 13 1 
ENSG00000182700 IGIP 5 1 
ENSG00000200028 RNA5SP98 2 1 
ENSG00000104177 MYEF2 15 -1 
ENSG00000113119 TMCO6 5 1 
ENSG00000227203 SUB1P1 8 1 
ENSG00000207962 MIR30C1 1 1 
ENSG00000223656 HMGB3P10 1 1 
ENSG00000163958 ZDHHC19 3 -1 
ENSG00000243510 RN7SL111P 2 1 
ENSG00000128563 PRKRIP1 7 1 
ENSG00000227766 HCG4P5 6 -1 
ENSG00000207138 RNU6-869P 8 1 
ENSG00000184586 KRTAP7-1 21 -1 
ENSG00000176953 NFATC2IP 16 1 
ENSG00000227242 NBPF13P 1 -1 
ENSG00000215325 ASS1P10 5 1 
ENSG00000235703 LINC00894 X 1 
ENSG00000204652 RPS26P8 17 1 
ENSG00000219891 ZSCAN12P1 6 1 
ENSG00000169900 PYDC1 16 -1 
ENSG00000230833 RPEP3 1 1 
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ENSG00000253936 IGHV3-63 14 -1 
ENSG00000178947 LINC00086 X 1 
ENSG00000230873 STMND1 6 1 
ENSG00000234617 SNRK-AS1 3 -1 
ENSG00000178852 EFCAB13 17 1 
ENSG00000014914 MTMR11 1 -1 
ENSG00000181689 OR8K3 11 1 
ENSG00000201170 RNU1-132P 1 -1 
ENSG00000237864 LINC00322 21 -1 
ENSG00000086619 ERO1LB 1 -1 
ENSG00000251260 WDFY3-AS1 4 1 
ENSG00000241350 PMS2P11 7 1 
ENSG00000248366 TRAJ51 14 1 
ENSG00000180658 OR2A4 6 -1 
ENSG00000200480 SNORD114-8 14 1 
ENSG00000240545 RN7SL492P 4 -1 
ENSG00000141699 FAM134C 17 -1 
ENSG00000242360 RN7SL272P 13 -1 
ENSG00000242707 RN7SL362P 18 -1 
ENSG00000231920 NEBL-AS1 10 1 
ENSG00000223921 MTND1P27 2 -1 
ENSG00000199529 RNU6-462P 4 1 
ENSG00000236753 MKLN1-AS 7 -1 
ENSG00000151470 C4orf33 4 1 
ENSG00000200086 RNU6-433P 2 -1 
ENSG00000254825 OR9G2P 11 -1 
ENSG00000132424 PNISR 6 -1 
ENSG00000243366 RN7SL60P 13 1 
ENSG00000239490 RPS4XP18 18 1 
ENSG00000256193 LINC00507 12 1 
ENSG00000207453 RNU6-535P 10 -1 
ENSG00000181778 TMEM252 9 -1 
ENSG00000250337 LINC01021 5 1 
ENSG00000202261 SNORD115-4 15 1 
ENSG00000225713 RPL30P1 1 -1 
ENSG00000147041 SYTL5 X 1 
ENSG00000188626 GOLGA8M 15 -1 
ENSG00000121766 ZCCHC17 1 1 
ENSG00000185182 GOLGA8DP 15 -1 
ENSG00000218902 PTMAP3 20 1 
ENSG00000229546 LINC00428 13 -1 
ENSG00000228050 TOP3BP1 22 -1 
ENSG00000198833 UBE2J1 6 -1 
ENSG00000234901 MTND6P13 X -1 
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ENSG00000226942 IL9RP3 16 -1 
ENSG00000214313 AZGP1P1 7 1 
ENSG00000143162 CREG1 1 -1 
ENSG00000226245 ZNF32-AS1 10 1 
ENSG00000204670 IGKV1OR2-3 2 1 
ENSG00000231166 TUBB4BP6 9 1 
ENSG00000254925 OR4C9P 11 -1 
ENSG00000201210 RNA5SP139 3 1 
ENSG00000162592 CCDC27 1 1 
ENSG00000249464 LINC01091 4 1 
ENSG00000241225 TRNAS30P 17 -1 
ENSG00000130640 TUBGCP2 10 -1 
ENSG00000224344 KNOP1P3 2 1 
ENSG00000167595 C19orf55 19 1 
ENSG00000251859 RNU6-1288P 2 -1 
ENSG00000252782 RNU6-341P 14 -1 
ENSG00000212160 RNU6-205P 4 1 
ENSG00000237200 ZBTB40-IT1 1 1 
ENSG00000207622 MIR619 12 -1 
ENSG00000196653 ZNF502 3 1 
ENSG00000100129 EIF3L 22 1 
ENSG00000235379 RPL7P31 7 1 
ENSG00000187536 TPM3P7 2 -1 
ENSG00000237443 OR13D2P 9 1 
ENSG00000251813 RNU6-983P 1 -1 
ENSG00000207406 SNORA41 2 1 
ENSG00000226653 OR13Z1P 1 1 
ENSG00000249421 ADAMTS19-1 5 -1 
ENSG00000128694 OSGEPL1 2 -1 
ENSG00000180846 CSNK1G2-S1 19 -1 
ENSG00000207721 MIR186 1 -1 
ENSG00000252311 RNU1-103P 16 -1 
ENSG00000235892 PKMP2 X 1 
ENSG00000068654 POLR1A 2 -1 
ENSG00000212014 MIR509-3 X -1 
ENSG00000164970 FAM219A 9 -1 
ENSG00000164385 C6orf195 6 -1 
ENSG00000235169 SMIM1 1 1 
ENSG00000230069 LRRC37A15P 4 -1 
ENSG00000249459 ZNF286B 17 -1 
ENSG00000102055 PPP1R2P9 X -1 
ENSG00000171987 C11orf40 11 -1 
ENSG00000236156 CHCHD4P3 9 1 
ENSG00000215943 MIR892A X -1 
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ENSG00000148468 FAM171A1 10 -1 
ENSG00000255238 RFPL4AP1 19 1 
ENSG00000199179 MIRLET7I 12 1 
ENSG00000049319 SRD5A2 2 -1 
ENSG00000196240 OR2T2 1 1 
ENSG00000022840 RNF10 12 1 
ENSG00000176312 OR4H12P 14 1 
ENSG00000198414 TATDN2P1 X 1 
ENSG00000205871 RPS3AP47 15 -1 
ENSG00000139239 RPL14P1 12 1 
ENSG00000257482 ZNF727 7 1 
ENSG00000251729 RNA5SP401 15 -1 
ENSG00000142609 C1orf222 1 -1 
ENSG00000237665 GRM7-AS2 3 -1 
ENSG00000258710 CT60 15 1 
ENSG00000239151 RNU7-195P 15 1 
ENSG00000201499 RNU6-312P 2 -1 
ENSG00000238842 RNU7-106P 12 -1 
ENSG00000256037 MRPL40P1 12 1 
ENSG00000187156 LINC00221 14 1 
ENSG00000123933 MXD4 4 -1 
ENSG00000064763 FAR2 12 1 
ENSG00000187867 PALM3 19 -1 
ENSG00000257704 PRR24 19 1 
ENSG00000164818 HEATR2 7 1 
ENSG00000254161 IGLVIV-65 22 1 
ENSG00000130684 ZNF337 20 -1 
ENSG00000221598 MIR1249 22 -1 
ENSG00000216090 MIR937 8 -1 
ENSG00000153975 ZUFSP 6 -1 
ENSG00000217330 SSXP10 6 1 
ENSG00000200889 RNU4-13P 17 -1 
ENSG00000253229 HIGD1AP6 8 1 
ENSG00000177693 OR4F4 15 -1 
ENSG00000147036 LANCL3 X 1 
ENSG00000128891 C15orf57 15 -1 
ENSG00000104979 C19orf53 19 1 
ENSG00000207757 MIR93 7 -1 
ENSG00000230418 ARL2BPP7 9 -1 
ENSG00000185028 LRRC14B 5 1 
ENSG00000151806 GUF1 4 1 
ENSG00000145107 TM4SF19 3 -1 
ENSG00000214530 STARD10 11 -1 
ENSG00000204588 LINC01123 2 1 
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ENSG00000236253 SLC25A3P1 1 -1 
ENSG00000168890 TMEM150A 2 -1 
ENSG00000201302 SNORA65 9 -1 
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Appendix III 
 

The total number of non-coding mutations compared to the total number of 
deleterious mutations per gene and their corresponding p-value based on the chi-
square statistical test. 

HGNC 
symbol 

Total non-coding 
mutations Deleterious mutations p-value 

PTPRD 473 0 7.1277E-105 
DMD 329 3 6.17363E-71 
ERBB4 300 4 9.06696E-64 
FHIT 144 0 3.55296E-33 
RUNX1 153 5 6.50503E-31 
MECOM 140 2 1.41249E-30 
LRBA 113 1 1.59413E-25 
RYR3 97 0 6.93273E-23 
ANK3 100 1 1.12586E-22 
NAV3 95 0 1.90385E-22 
PACRG 92 1 6.40314E-21 
DOCK2 99 5 3.72501E-19 
GPHN 76 0 2.83665E-18 
ANK2 74 0 7.8117E-18 
SYNE1 71 1 2.63858E-16 
NEDD4L 72 3 7.35785E-15 
FBN2 68 2 8.41693E-15 
CUBN 75 4 1.02196E-14 
NF1 58 0 2.62118E-14 
ITPR2 60 2 4.8453E-13 
SYNE2 48 0 4.26219E-12 
ADCY1 50 1 1.13521E-11 
VWF 34 0 5.51121E-09 
TRIO 61 8 8.32909E-09 
MME 32 0 1.54173E-08 
ABCB1 29 0 7.23783E-08 
ZFHX3 27 0 2.03455E-07 
FRYL 38 3 2.09072E-07 
NSD1 25 0 5.73303E-07 
TCF7L2 36 3 5.73303E-07 
ATRX 28 1 8.94473E-07 
TLN2 27 1 1.49988E-06 
PBRM1 23 0 1.62001E-06 
MITF 22 0 2.7265E-06 
NEB 22 0 2.7265E-06 
APC 21 0 4.59283E-06 
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SACS 21 0 4.59283E-06 
MEF2A 20 0 7.74422E-06 
PTPN13 20 0 7.74422E-06 
WHSC1 20 0 7.74422E-06 
NOS1 27 2 9.58401E-06 
AKAP9 19 0 1.30718E-05 
ATM 19 0 1.30718E-05 
MED13 19 0 1.30718E-05 
SMAD4 19 0 1.30718E-05 
IGF2BP3 25 2 2.66915E-05 
HUWE1 17 0 3.73798E-05 
PTEN 17 0 3.73798E-05 
RB1 17 0 3.73798E-05 
TET2 17 0 3.73798E-05 
HIVEP1 20 1 5.69941E-05 
NCOR2 39 7 6.24904E-05 
JAK2 16 0 6.33425E-05 
KIT 19 1 9.61659E-05 
KDM6A 15 0 0.000107511 
LRRK2 15 0 0.000107511 
EGFR 28 4 0.000157052 
COL18A1 14 0 0.000182811 
COL4A3 14 0 0.000182811 
FN1 14 0 0.000182811 
SMARCA4 17 1 0.000274727 
CALCRL 13 0 0.000311491 
MTOR 13 0 0.000311491 
VCAN 13 0 0.000311491 
CDC27 12 0 0.000532006 
CDH1 12 0 0.000532006 
ANXA4 15 1 0.000789113 
EP300 15 1 0.000789113 
SETD2 15 1 0.000789113 
MYH9 11 0 0.000911119 
PDGFRA 11 0 0.000911119 
RANBP2 11 0 0.000911119 
RNF43 11 0 0.000911119 
CRTC1 14 1 0.001340641 
VTCN1 14 1 0.001340641 
ABCA6 10 0 0.001565402 
EPAS1 10 0 0.001565402 
EZH2 10 0 0.001565402 
LCP1 10 0 0.001565402 
CAST 17 2 0.001616222 
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MET 17 2 0.001616222 
NBPF10 17 2 0.001616222 
NFKB1 13 1 0.002281937 
ARID1A 9 0 0.002699796 
CAV1 9 0 0.002699796 
CDH5 9 0 0.002699796 
CUL2 9 0 0.002699796 
MCCC2 9 0 0.002699796 
VHL 9 0 0.002699796 
CBFB 8 0 0.004677735 
CLTC 8 0 0.004677735 
HECA 8 0 0.004677735 
TP53 8 0 0.004677735 
HNF1B 11 1 0.006655605 
SPEN 11 1 0.006655605 
RNF213 20 4 0.007290358 
BARD1 7 0 0.008150972 
CA12 7 0 0.008150972 
CREB1 7 0 0.008150972 
CTDSPL 7 0 0.008150972 
KCTD3 7 0 0.008150972 
MED17 7 0 0.008150972 
PIK3CA 7 0 0.008150972 
CDKN2A 6 0 0.014305878 
EDNRB 6 0 0.014305878 
KMT2D 6 0 0.014305878 
MAX 6 0 0.014305878 
CYLD 5 0 0.025347319 
MSN 5 0 0.025347319 
NNMT 5 0 0.025347319 
PABPC1 5 0 0.025347319 
PRPF8 5 0 0.025347319 
SFRP1 5 0 0.025347319 
AHNAK2 4 0 0.045500264 
FGFR2 16 4 0.045500264 
MKI67 4 0 0.045500264 
PEG3 4 0 0.045500264 
TSPAN7 4 0 0.045500264 
PPARG 10 2 0.057779571 
GATA3 7 1 0.058781721 
L1CAM 7 1 0.058781721 
B2M 3 0 0.083264517 
BAP1 3 0 0.083264517 
FH 3 0 0.083264517 
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GOT2 3 0 0.083264517 
NDRG2 3 0 0.083264517 
RBMX 3 0 0.083264517 
RPL5 3 0 0.083264517 
CXCR4 2 0 0.157299207 
DIO1 8 2 0.157299207 
GAL3ST1 2 0 0.157299207 
HAVCR1 2 0 0.157299207 
HLA-B 2 2 0.157299207 
KDM5C 2 0 0.157299207 
LUM 2 0 0.157299207 
MMP2 2 0 0.157299207 
SDHB 2 0 0.157299207 
TSC2 2 0 0.157299207 
BNIP3 5 1 0.179712495 
NOTCH1 7 2 0.256839258 
CA9 1 0 0.317310508 
FAM107A 1 0 0.317310508 
FGFR3 1 0 0.317310508 
HRAS 1 0 0.317310508 
KRT7 1 0 0.317310508 
MAP3K8 1 0 0.317310508 
MDC1 1 0 0.317310508 
PLEC 4 1 0.317310508 
PRKCD 1 0 0.317310508 
PTTG1 1 0 0.317310508 
RAN 1 0 0.317310508 
SCD 1 0 0.317310508 
STK11 1 0 0.317310508 
TLR3 1 0 0.317310508 
WT1 4 1 0.317310508 
CCND1 3 2 0.563702862 
ERBB2 3 1 0.563702862 
MST1 3 1 0.563702862 
VEGFA 3 2 0.563702862 
ACVR1B 2 1 1 
AKT1 4 2 1 
HSPG2 10 5 1 
OGG1 2 1 1 
TBX3 2 1 1 
TGFB1 2 1 1 
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Appendix IV 
 

The eight RCC with had no somatic mutations 

CCKBR 

CLDN7 

HLA-A 

HSPA8 

LGALS3 

NONO 

PECAM1 

RAF1 
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Appendix V 
 

Table 8: (full) If there were no mutations in that mutation category, it is shown #N/A. Although all 

patients had multiple non-coding somatic mutations (column 2), some patients had either 

deleterious non-coding mutations or CDS mutations, but not both. For fourteen patients, there 

wasn’t any deleterious non-coding or CDS mutations (example shown in green).   

Patient ID  
ALL non-
coding 

ALL CDS 
mutations 

Deleterious 
mutations 
ONLY 

No 
deleterious or 
CDS 
mutation 

DO46877 221 7 10   

DO46897 200 3 4   

DO46905 131 4 5   

DO47100 129 5 5   

DO47240 103 4 2   

DO46836 87 2 3   

DO47088 85 3 2   

DO47004 83 1 1   

DO46847 83 5 3   

DO46929 83 2 1   

DO46992 80 1 #N/A   

DO47140 77 4 #N/A   

DO47112 76 1 #N/A   

DO47150 75 2 5   

DO46844 73 1 2   

DO46980 72 2 3   

DO47060 67 3 1   

DO46933 66 2 3   

DO47159 66 6 #N/A   
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DO46827 65 #N/A 2   

DO47174 59 5 3   

DO46873 57 2 #N/A   

DO47162 57 2 3   

DO46841 56 2 2   

DO47104 55 3 2   

DO46881 55 3 2   

DO47136 54 1 1   

DO47012 52 5 #N/A   

DO46957 50 #N/A #N/A 1 

DO47168 50 #N/A #N/A 2 

DO47237 50 3 #N/A   

DO47171 49 #N/A 4   

DO46984 49 #N/A 1   

DO46828 49 4 1   

DO47120 48 2 1   

DO46949 46 #N/A 1   

DO47128 46 1 1   

DO47072 45 #N/A #N/A 3 

DO46937 45 2 1   

DO46838 45 2 1   

DO47092 45 3 5   

DO46988 45 2 #N/A   

DO47124 44 2 3   

DO46973 43 2 3   

DO46869 42 1 1   

DO46856 41 2 2   
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DO46889 41 1 2   

DO46961 41 2 1   

DO46859 40 1 #N/A   

DO46853 40 1 1   

DO47144 39 4 #N/A   

DO46925 37 2 1   

DO46953 36 1 #N/A   

DO46885 35 #N/A 1   

DO46977 35 1 1   

DO46917 35 2 #N/A   

DO46909 34 1 1   

DO46850 34 1 #N/A   

DO47153 34 1 1   

DO47165 30 #N/A #N/A 4 

DO46913 30 1 #N/A   

DO46996 29 1 1   

DO47056 29 1 #N/A   

DO46830 29 3 #N/A   

DO46945 28 #N/A #N/A 5 

DO47064 27 2 #N/A   

DO46941 27 #N/A #N/A 6 

DO46893 27 4 2   

DO47147 27 #N/A 1   

DO47096 26 2 4   

DO46832 26 1 2   

DO47016 26 1 3   

DO47052 26 #N/A 1   
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DO46865 24 #N/A #N/A 7 

DO46969 23 1 #N/A   

DO47116 23 2 1   

DO46862 22 1 #N/A   

DO47080 21 1 1   

DO47246 21 2 4   

DO47084 18 1 #N/A   

DO47156 16 #N/A 1   

DO47234 15 3 1   

DO47243 15 1 #N/A   

DO46965 14 #N/A #N/A 8 

DO47068 14 #N/A 3   

DO47000 12 #N/A #N/A 9 

DO47108 12 #N/A 1   

DO47076 12 #N/A #N/A   

DO47132 10 #N/A #N/A 10 

DO46901 10 1 #N/A   

DO46921 8 2 #N/A   

DO47249 8 #N/A #N/A 11 

DO46834 8 #N/A #N/A 12 

DO46826 6 #N/A #N/A 13 

DO47048 6 #N/A #N/A 14 
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Appendix VI 
 

The 57 genes submitted to STRING-DB 

TRIO 

RUNX1 

DOCK2 

ATM 

NEDD4L 

NCOR2 

MECOM 

PPARG 

ANK3 

ERBB4 

MYH9 

PLEC 

CDKN2A 

FRYL 

CUBN 

IGF2BP3 

ANK2 

FN1 

MITF 

OGG1 

DMD 

RAN 

ITPR2 

NF1 

SYNE1 

EGFR 

SYNE2 

HRAS 

HNF1B 

NFKB1 

HSPG2 
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FGFR2 

RNF213 

TCF7L2 

HLA-B 

MET 

CCND1 

NBPF10 

NOS1 

AKT1 

NOTCH1 

RYR3 

FBN2 

DIO1 

CAST 

VEGFA 

MAX 

KMT2D 

LCP1 

VHL 

PDGFRA 

HLA-C 

SCD 

PACRG 

BAP1 

CEBPB 

CTCF 

EBF1 
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Appendix VII 
 

Read-Me 

 

1. Selection of ccRCC WGS somatic mutation dataset from ICGC 

 
Initially TCGA and then COSMIC ccRCC datasets were used, but when the 

results were evaluated, more coding SVs were obtained. The contact centres of 

the respective databases were contacted and it was confirmed that these were 

actually whole exome sequencing datasets, despite being under the heading 

‘whole genome.’ 

The ICGC dataset was then retrieved and confirmed to be whole genome 

sequenced somatic variants. 

 

1.1.Downloaded simple somatic mutation in ccRCC from ICGC 

https://dcc.icgc.org/repository/current/Projects/RECA-EU 

 

File: simple_somatic_mutation.open.RECA-EU.tsv  (Release18 January 

21, 2015) 

 

1.2. There were 95 unique donors, specimens and samples as shown by the Linux 

command: sort –t ‘Cntl + V + tab’ –k2,2 (donor)/-k4,4 (specimen)/ -k5,5 

(sample) simple_somatic_mutaion.open.RECA-EU.tsv –u > 

uniq_donor/specimen/sample_ID.txt 

 

1.3.I checked if they were all GRCh37 coordinates using grep –c GRCh37 

simple_somatic_mutaion.open.RECA-EU.tsv. Had 1522025 hits. The same 

as the number of lines in the file using wc –l. 

 

1.4. I Did the same to check if they were Whole genome sequenced grep –c 

WGS simple_somatic_mutaion.open.RECA-EU.tsv and this was found to 
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be the same count as the same as the number of lines in the file using wc –l. 
 

1.5. I also downloaded the ICGC clinical data file from 

https://dcc.icgc.org/api/v1/download?fn=/release_18/Projects/RECA-

EU/clinical.RECA-EU.tsv.gz 

 

File: donor.all_projects.tsv 

The file contains: ICGC donor ID, project code, study donor involved in (eg. 

EU or US), submitted donor ID, donor sex, vital status, disease status at last 

follow up, relapse type (progression), donor age at diagnosis, age at 

enrolment, age at last follow up, relapse interval, donor diagnosis_icd10, 

donor tumour staging system at diagnosis, tumour stage at diagnosis, tumour 

stage at diagnosis supplemental, survival time, interval of last follow up 

 

 

2. Selection of genes of interest 

2.1. ccRCC genes 
 

The following databases were queried and the below-mentioned criteria were used to 

select the genes of interest. 

 

NCBI (OMIM) - 81 genes 

http://www.ncbi.nlm.nih.gov/omim 

 

Too few genes (ONLY 10) if I select “clear cell renal cell carcinoma” 

Advanced search: “renal cell carcinoma” 

Selected only those preceded by asterix (*) 

 

NCBI (Gene) - 134 genes 

http://www.ncbi.nlm.nih.gov/gene 

Criteria: “clear cell renal cell carcinoma” AND “Homo sapiens”  

155 
 

 

 

 

 

https://dcc.icgc.org/api/v1/download?fn=/release_18/Projects/RECA-EU/clinical.RECA-EU.tsv.gz
https://dcc.icgc.org/api/v1/download?fn=/release_18/Projects/RECA-EU/clinical.RECA-EU.tsv.gz
http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/gene


Homo sapiens (side panel) 

Gene source: Genomic 

Categories: Alternatively spliced, Annotated genes 

Sequence content: Ensembl 

 

Oncomine - (2844 genes) 

https://www.oncomine.org/resource/login.html (requires Login details) 

 

Analysis Type: clear cell renal cell carcinoma vs. Normal Analysis 

Analysis Type: Kidney cancer vs. Normal Analysis 

Analysis Type: clear cell renal cell carcinoma 

Molecular subtype: Mutation 

Sample Type: clinical specimen 

Selected top 10% over and under expressed genes.  

 

Intogen  - (263 genes) 

 

Filtered by: Cancer site: Kidney cancer 

Driver category: HCD (High confident drivers)  

 

COSMIC– 300 genes  

https://www.intogen.org/search 

 

Criteria: Clear cell renal cell carcinoma 

Genes with mutations TAB 

Selected the top 300 genes based on amount of mutated samples out of the amount of 

samples tested  

 

2.2. Non-disease genes 
 

I wrote a script to select 500 random non-disease genes from a file containing 38256 

non-disease genes compiled by a previous Post-doc student Dr Wendy Kroger. I took 
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500 at first because when I selected the correct amount of genes, many of them didn't 

have HGNC symbols and I needed genes with both Ensembl and HGNC symbols. 

Python script: random_nondisease_genes.py 

 

I converted the 500 random Ensembl IDs to Ensembl Transcript IDs with their strand 

orientation and HGNC symbols using BioMart Ensembl. 

 

I used the sort function in excel to extract only the genes that had HGNC symbols, 

because it would later be needed to confirm that the hits found where representative 

of my GOIs. The chromosome number and strand were also extracted for interest’s 

sake. 

 

The random_nondisease_genes.py script was modified to extract JUST 173 genes 

from the script with all the non-disease genes (that had both an Ensembl ID and 

HGNC symbol) 

sort -k2,2 173_non_disease_genes.txt -u > 173_non_disease_genes_UNIQ.txt was 

used to confirm that the HGNC Ids were unique and wc -l was used to confirm that 

the number of ccRCC genes I was working with was 173. 

The Ensembl ID's of the 173 non-disease genes were again submitted to BioMart in 

order to retrieve the transcript ID's for only those 173 genes, because UCSC didn't 

recognize many of the HGCN symbols and doesn’t accept Ensembl Ids 

 

 

3. Extraction of bed files form UCSC 

3.1. ccRCC disease genes 
 
It was found that the + strand in the ICGC dataset was actually representative of the 

reference genome strand on which the genotype alleles are located and it has nothing 

to do with the strandedness of the gene that contains the somatic mutation. 

 

3.1.1. Therefore the HGNC symbols of the 175 GOI where again submitted to 

Ensembl in order to extract the Ensembl Ids for the genes (the ICGC doc 
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only reports Ensembl Ids). 

Those that had Ensembl ID's were retained because it would later be 

needed to confirm that the hits found where representative of my GOIs. 

Also the chromosome and strand was extracted. 

 

3.1.2. The sort -k2,2 173_GOI_with_unique_Ensembl_ID.txt -u > 

175_ccRCC_disease_genes_with_or_without_ensembl_ID_UNIQ.t

xt was used to confirm that the HGNC Ids were unique and wc -l was 

used to confirm that the number of ccRCC genes I was working with 

was 173. 

 

3.1.3. The regional genomic coordinates of the 5’-UTR, 3’-UTR, introns, CDS 

and promoter regions (1kB upstream of the TSS) were retrieved from 

UCSC using the Table function (http://genome.ucsc.edu/cgi-

bin/hgTables) and the GRCh37/hg19 human genome reference.  

The UCSC track was chosen over Ensembl and Refseq, because the latter 

two could not pick up some of the 175 GOI. The format is: 

Chromosome  genomic_ start  genomic_end 

 ucsc_description score  strand 

 

3.1.4.  A proportion of coordinates for each genomic region were manually 

checked to see if they were located within the regions specified by UCSC. 

For each file there were more entries than the original number of genes, 

but this was accounted for by the presence of many splice variants per 

gene. 

 

3.1.5. sort -k1,1 -k2,2 -k3,3 -k6,6 promoter_175_ccRCC_genes.txt -u > 

promoter_175_ccRCC_genes_UNIQ.txt was used to extract the unique 

lines based on chromosome, genomic range and strand. 
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3.2. Non-disease genes 
 

3.2.1. The transcript IDs were submitted to UCSC's table browser to extract the 

5'UTR, 3'UTR, promoter, CDS and intronic regions of the 173 non-

disease genes. 

The unique bed range coordinates were again extracted using:  

sort -k1,1 -k2,2 -k3,3 -k6,6 promoter_173_non_disease_genes.txt -u > 

promoter_173_non_disease_genes_UNIQ.txt  

 

 

4. SV Discovery 

4.1. Disease genes 
 

4.1.1. Wrote a script to find all the somatic variants for distinct genomic regions 

Python: icgc_variants.py 

 

The hits were first printed to Stdout with the bed range in order to 

check if the variant position did fall within the bed range. This was 

however not retained in the files of interest. 

 

4.1.2. Many duplicate genes existed due to one gene having many different 

Ensemble transcript ID’s. The unique entries were maintained and sorted 

by using a Linux command: 

 sort -t'Ctrl+V+Tab' -k1,1 -k2,2 -k5,5  -k8,8 -k9,9 -k10,10 -k16,16 -

u SV_results_173ccRCC_3UTR.txt > 

SV_results_173ccRCC_3UTR_UNIQ.txt 

 

4.1.3. However, because there are many overlapping genes in the human 

genome, many of the hits based on genomic position were not within the 

genes within the GOI list. The Ensembl and HGNC Ids were therefore 

retrieved using BioMart Ensembl Grch37 (12 June 2015) and matched 

with the SV file to retrieve only those linked to the genes of interest 
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Python script:  

checking_if_ensembl_IDs_of_173_GOI_are_in_SV_hits.py 

 

4.1.4. Duplicates were eliminated based on a unique genomic position, gene, 

donor ID, structural annotations, alleles and Ensembl ID. 

sort -k1,1 -k2,2 -k3,3 -k4,4 -k5,5 -k7,7 -k8,8 -k9,9 -k10,10 -k11,11 

actual_hits_175_ccRCC_introns.txt -u > 

actual_hits_175_ccRCC_introns_UNIQ.txt 

There were no duplicates 

 

4.1.5. The number of unique somatic mutations based on just the genomic 

position, Ensembl ID and alleles, were also subtracted because this was 

required for the density study 

sort -k1,1 -k2,2 -k3,3 -k4,4 -k7,7 -k8,8 -k9,9 -k11,11 

actual_hits_175_ccRCC_promoter.txt -u > 

actual_hits_175_ccRCC_promoter_UNIQ_positions.txt 

  

4.2. Non-disease genes 
 

4.2.1. I wrote a script to find all the somatic variants for distinct genomic 

regions 

Python: icgc_non_disease_genes_variants.py 

 

The hits were first printed to Stdout with the bed range in order to 

check if the variant position did fall within the bed range. This was 

however not retained in the files of interest. 

 

4.2.2. Many duplicate genes existed due to one gene having many different 

Ensemble transcript ID’s. The unique entries were maintained and sorted 

by using a Linux command: 

sort -t'Ctrl+V+Tab' -k1,1 -k2,2 -k3,3 -k5,5  -k8,8 -k9,9 -k10,10 -
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k16,16 -u SV_results_173_non_disease_introns.txt > 

SV_results_173_non_disease_introns_UNIQ.txt 

 

4.2.3. However because there are many overlapping genes in the human 

genome, many of the hits based on genomic position were not within the 

genes within the GOI list. The Ensembl and HGNC Ids were therefore 

retrieved using BioMart Ensembl Grch37 (12 June 2015) and matched 

with the SV file to retrieve only those linked to the genes of interest 

 

Python script: 

 checking_if_ensembl_IDs_of_173_GOI_are_in_SV_hits.py 

 

4.2.4. Duplicates were eliminated based on a unique genomic position, gene, 

donor ID, structural annotations, alleles and Ensembl ID. 

sort -k1,1 -k2,2 -k3,3 -k4,4 -k5,5 -k7,7 -k8,8 -k9,9 -k10,10 -k11,11 

actual_hits_175_non_disease_3UTR.txt -u > 

actual_hits_175_non_disease_3UTR_UNIQ.txt 

There were no duplicates 

 

4.2.5. The number of unique somatic mutations based on just the genomic 

position, Ensembl ID and alleles, were also subtracted because this was 

required for the density study using: 

sort -k1,1 -k2,2 -k3,3 -k4,4 -k7,7 -k8,8 -k9,9 -k11,11 

actual_hits_175_non_disease_3UTR.txt  -u > 

actual_hits_175_non_disease_3UTR_UNIQ_positions.txt 

 

 

5. Density of hits 
 

5.1.The density of the hits were check based on the unique position of the 

somatic mutation, its genes ID and alleles involved using 

Python script: density_hits_ccRCC.py 
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5.2.The density_hits_ccRCC.py script was checked by extracting the genomic 

bases for JUST the PTEN gene (ENSG00000171862) from UCSC. 

Duplicates were also removed by sort –t ‘cntrl+v+tab’ –k1,1 –k2,2 –k3,3  -u 

PTEN_gene  > PTEN_gene_*_UNIQ. The bases were manually added per 

distinct genomic region to calculate the total number of bases. The density 

was also manually checked by dividing the number of hits over the total 

number of bases. 

 

5.3.The density_hits_ccRCC.py script was modified to accommodate the non-

disease genes. 

 

 

6. RegulomeDb 
 

6.1.In order to enter the data to RegulomeDB the end coordinates of the somatic 

mutations had to be converted to zero based format using a Python script: 

add_one_to_coordinate2_RCC.py 

 

6.2.Thereafter the coordinates were submitted to RegulomeDB 

However the introns file was too big and had to be split into manageable sizes 

for input 

split -l 200 regulome_coord_coverted_ccRCC_introns.txt was used, which 

created 20 files named xaa – xau 

 

6.3.The intronic file was stored separately in 

/ICGC/Regulome_annotations/Results/Annotations_from_web_interfa

ce/173_ccRCC_genes/introns/regulomedb_results_introns_xaa.bed up 

until regulomedb_results_introns_xau.bed. The same was done for 

the .bed files. 

sort -k4,4 -k1,1n -k2,2n -k3,3n regulomedb_results_introns_xa*.bed -

u > regulomedb_results_ccRCC_introns.bed was used to combine the 
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files and wc -l was used to check that the original amount that was 

submitted was in the output file 

 

6.4.The input files of the same script were modified to accommodate the non-

disease variants using the add_one_to_coordinate2.py script. 

 

 

7. Matching RegulomeDB results to ICGC SV 

 
7.1.I wrote a script to check link up the RegulomeDB annotation with their 

original ccRCC variants in order to eventually extract the total number of 

variants and the number of deleterious variants that are linked to a specific 

tumour; as well as other trends in terms of the mutational landscape.  I also 

used this script in order to see if any of mutations were indels. 

Python script: variants_linked_to_regulome_score_and_annotation.py 

 

7.2.The output was checked to see if there were the same amount as in the 

original actual hits file with a unique Ensembl ID, patients ID, genomic 

positions and alleles. 

 
7.3.The variants_linked_to_regulome_score_and_annotation.py script was 

modified for the non-disease genes 

 

 

8. Analysis of somatic mutations 
 

8.1.The non-coding ccRCC variant were combined in order to see which genes 

came up frequently in different donors , which chromosomes are often 

affected etc. 

 

sort -k1,1 -k2,2 -k3,3 -k4,4 -k5,5 -k7,7 -k8,8 -k9,9 -k10,10 -k11,11 -
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k12,12 173_ccRCC_regulome_annotation_introns_sv.txt 

173_ccRCC_regulome_annotation_3UTR_sv.txt 

173_ccRCC_regulome_annotation_5UTR_sv.txt 

173_ccRCC_regulome_annotation_promoter_sv.txt -u > 

combined_non_coding_regulome_annotation_of_sv.txt  

 

8.2.This data was placed into a pivot table in order to do the analysis. 

 

8.3.The ccRCC CDS data was also copied to the pivot containing all non-coding 

to do a comparison on which genomic regions contained the most mutations. 

 

8.4.The deleterious variants were then extracted and placed into a separate excel 

sheet. 

 

8.5.A Vlookup was carried out in Excel to compare the number of all non-coding 

somatic mutations, CDS somatic mutations and deleterious non-coding 

somatic mutations.  

 

8.6.To see if the reason why some genes accumulated more mutations was 

simply due to the gene being longer and hence having more targets for 

variation, a scatter plot was drawn up using Excel. The gene lengths of the 60 

genes with contained RegulomeDB deleterious mutations were submitted to 

BioMart Ensembl (hg19) and the gene lengths were extracted from the 

Structures attribute. The difference in gene lengths were calculated in excel 

and the deleterious mutations were placed in a column next to it in excel. 

Excels built-in scatter plot was used to draw up the scatter plot. 

 

8.7. The same procedure was followed for all non-coding mutations 

(=VLOOKUP(A2,$E$2:$F$166,2,FALSE)). 

  

8.8.The genes within which one patient had multiple mutations (TRIO, FRYL 

and AKT1) and the genes where several patients had mutations at the exact 
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same location  (ADCY1, ANK3, CUBN, VWF and VHL)  were also 

scrutinized to see if they generally occurred in the longer genes  

 

 

9. BioMart Gene Ontology annotations 
 

9.1.For the 164 genes with non-coding somatic mutations the GO was extracted 

for Ensembl BioMart 

From the Attributes: (Features) External option, the GO term and GO 

definition were chosen. 

 

9.2.The GO annotation of the TRIO, FRYL and AKT1, ADCY1, ANK3, CUBN, 

VWF and VHL genes were copied from the original file and pasted onto its 

own sheet. 

The Conditional Formatting -> Highlight cell rules -> Text that contains 

was used in order to highlight the cells containing the text I specified e.g. 

‘proliferation’ 

 

9.3.Nine genes with one mutations as opposed to multiple mutation in many 

genomic regions were randomly selected to see if they also participate in as 

many cancer-related activities 

 

MDC1 (adhesion) 

CA9 (transcription) 

SCD (none) 

STK11 (apoptosis, signalling, receptor activity 

FAM107A (none) 

PRKCD (apoptosis, signalling, receptor activity 

KRT7 (none) 

TLR3 (apoptosis, signalling, receptor activity 

PTTG1 (transcription) 

 

165 
 

 

 

 

 



9.4.The eight RCC genes with no SM were also selected and the gene lengths and 

GOs were retrieved. 

 

The genes were: 

CCKBR 

CLDN7 

HLA-A 

HSPA8 

LGALS3 

NONO 

PECAM1 

RAF1 

 

10. Clinical Information 
 

10.1. The donor id with the number of mutations per mutation category 

(ALL non-coding, non-coding deleterious and all CDS mutations) were 

copied to a separate file. 

 

This was then used with the python script 

match_mutations_to_donor_ID.py to link the number of mutations per 

category to the donor ID. 

 

 

10.2. The donor IDs were also checked for common genes or common 

genomic position in order to ascertain if variants in certain genomic regions 

resulted in a more severe phenotype.  

 

11. TFBS analysis 
 

11.1. The file containing the combined ccRCC non-coding variants was 

used in the TFBS analysis in order to see whether these SM fell within 
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TFBSs 

 

A python script was used to extract all TF and TFBS information for the 

non-coding somatic mutations. 

Python script: som_mut_in_TFBS.py 

 

11.2. The results were placed into a pivot table  

The deleterious mutations were separated to place into the previous 

Vlookup table. 

 

11.3. The script was modified to accommodate the ccRCC CDS mutations 

 

11.4. A pivot table was also created for the CDS TFBS data in order to 

extract donor to TF and gene to TF relationship data 

 

11.5. Similarly the som_mut_in_TFBS.py script was modified for the 

combined non-coding non-disease gene variants  and for the non-disease 

genes CDS mutations 

 

11.6.  These results for the both were saved separately into pivot tables. 

 

11.7.  The TFBS data was added to the Vlookup sheet with the results for 

the somatic variants and charts were made to see the comparison in terms of 

how the somatic mutations affected the TFBSs. 

 

11.8. The genomic position were also analysed to see if any individuals had 

variants at the exact same genomic positions.  
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12. Methylation 
 

12.1. I ran the methylation_in_non_coding_regions.py to find the 

methylation statuses of the promoter regions for the 173 disease and non-

disease genes by modifying the input and output files of the specific variants. 

 

 

12.2. The HCNC symbols were manually added to all files using UCSC and 

Ensembl 

 

12.3. The genomic regions were placed into the methylation file (e.g. 

introns if the variant originally came from the intron bed file) and the bed 

regions were deleted in excel. The methylation files were combined using  

 

sort –t’Ctrl + V + Tab’ –k1,1 –k2,2 –k3,3 –k,4 –k8,8 –k10,10 –k13,13 –

k14,14 methylation…… -u >    

combined_methylation_in_non_coding_regions.txt 

(the genomic region from the methylation data file as well as beta values was 

ignored for now) 

 

12.4. The results were placed into a pivot table. 

  

12.5. 16 RCC genes had aberrant methylation. The GO annotations for 

these genes were also observed an pasted in into a separate Excel sheet. 

 

 

13. Gene Expression and methylation data 
 

13.1. The ccRCC methylation data was coupled to the gene expression data 

using  

Python: python gene_expr_at_diff_methyl_regions.py  
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13.2. The significant methylation versus gene expression data was recorded 

(inverse proportionality between gene expression and diff methylation) 

Python: significant_correlat_gene_exp_and_methyl.py  

 

 

13.3. The same was done for the non-disease genes by modifying the scripts 

with the input files of non-disease data 

 

 

14. Gene Expression and non-coding somatic mutations 
 

 

A lot of processing had to be done before the GE data could be extracted. First the 

entries with the 173 disease and non-disease genes had to be extracted. The gene 

expression file from ICGC had no matching normal tissue that was sequenced so 

differential analysis (Fold change) could not be determined. Hence the gene 

expression data from COSMIC/TCGA was used just to check simply on gene level, if 

the gene was found to be frequently differentially methylated in many ccRCC 

tumours.  

 

a) The Differential gene expression for all cancers were retrieved from 

COSMIC Whole genomes 

http://cancer.sanger.ac.uk/wgs/files?data=/files/grch38/cosmic/v73/Cosmi

cCompleteGeneExpression.tsv.gz, Accessed June 2015. 

b) The sort -t 'Ctrl + v + Tab ' -k2,2 CosmicCompleteGeneExpression.tsv -

u > uniq_patients_CosmicCompleteGeneExpression.tsv was used to 

ascertain the number of patients for which the gene expression data was 

recorded.  

c) However since TCGA combined all the gene expression data from all their 

cancer patients there were a total of 8348 unique patient ID’s. 
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d) Hence, the tissue bar codes for ccRCC tissue were retrieved from TCGA and 

a Python script was used to extract the GE data for ccRCC tissues/genes only. 

Python: extract_ccRCC_gene_exp_data.py 

 

e) To make sure that the use of study subjects was unbiased, the GE data for 95 

patients were extracted to be used for both disease and non-disease genes. 

Python script:  extract_GE_data_for_95_patients_from_521_patients.py 

 

f) The same Python script was then used to extract the GE data for the ccRCC 

non-coding and CDS variants and the non-disease non-coding and CDS 

variants and the input and output file names were changed as necessary. 

Python script: SV_and_COSMIC_gene_exp.py 

g) I created a pivot table for the RCC genes for further analysis. 

 

15. STRING-DB 
 

15.1. The genes with the most deleterious, non-coding somatic mutations (2 

or more, n = 31, genes), the top 30 genes with the most TFBS disruptions in 

the non-coding regions (33 or more disruptions), the genes which incurred 

differential methylation in their promoters (n = 17) and the three TFs of 

which the TFBSs are commonly disrupted in the deceased patients were 

extracted and duplicates were removed in Excel. A total of 57 unique 

genes/proteins were therefore submitted to String-DB and the analysis was 

carried out using the highest confidence score in String-DB. 

 

15.2. The Biological Process was considered as the Gene ontology: 

Negative regulation of biological process contained the most molecules. 

170 
 

 

 

 

 



 

15.3. Then the network was zoomed out in order to establish hub proteins.  

Experimental was used as the sole parameter. UBC was identified. 

 

15.4. Some of the genes that were unattached in the network were checked 

individually on the highest confidence and experimental evidence only 

PLEC linked to ITGB4 (integrin receptor protein for laminin) 

TRIO linked to UBC via RAC1 (GTPase which in its active state regulates 

apoptotic cells) 

MLL2 linked to RBBP5 retinoblastoma binding protein 5 that plays a crucial 

role in cell differentiation and regulates H3K4 methylation at important 

developmental loci 

DOCK2 also linked to UBC via RAC1 (ras-related C3 botulinum toxin 

substrate 1 ) 

OGG1 was also linked to UBC via POLH DNA polymerase specifically 

involved in DNA repair. 

 

15.5. When the pathways that could be perturbed by these mutations were 

considered,  ten of the molecules functioned in the phosphoinositide 3-kinase 

(PI3K)/ Akt pathway.  

 

 

16. Allele Frequency 
 

a) The AF of the combined non-coding ccRCC and non-disease genes variants 

were checked as well as the variants in the CDS regions for both categories.  

 

b) Since the combined non-coding file was big (over 4000 variants) and the 

1000 genomes dataset doesn’t look at the donor ID, the file was sorted to 

filter out duplicate entries by ignoring the donor ID. 

sort -k1,1 -k2,2 -k3,3 -k4,4 -k7,7 -k8,8 -k9,9 -k11,11 

combined_non_coding_regulome_annotation_of_sv.txt -u > 
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combined_non_coding_regulome_annotation_of_sv_UNIQ_positions.t

xt 

 

This brought the number down from 4385 to 4226 

 

c) A python script was used to extract the variants in the files: ccRCC non-

coding somatic mutations, ccRCC CDS mutations, non-disease non-coding 

somatic mutations and non-disease CDS mutations,  if the allele for that 

variant was found in the 1000Genome dataset. 

  

Python script: 1000genomes_variant.py  

 

16.1.Most of the variants were not found  so several random variants (~30) were 

checked using grep variant position 1000genomes_filename 

 

16.2.The variants were also checked using Ensembl BioMart (hg19) using the 

Ensembl Variants database and the Homo sapiens Somatic Short Variants 

(SNPs and indels) (GRCh37.p13) dataset. 

The filters section was used to choose the chromosome and to enter the 

variant start and end region. To ascertain that the search was being carried out 

correctly and that the results indicate that my variant was definitely not 

found, the range was increased to include about 100000 bases before and 

after the start and end coordinate, respectively. The generated many results. 

The View all feature was used together with Control+Find in order to check if 

my variant was not in this list of variants. 

 

16.3.Finally, the variants were then run through Variant Effect Predictor  (VEP) 

on 06/11/2015 to confirm that these variants were novel with the following 

criteria for output  

http://grch37.ensembl.org/Homo_sapiens/Tools/VEP 

 

172 
 

 

 

 

 

http://grch37.ensembl.org/Homo_sapiens/Tools/VEP

	Title page
	Keywords
	Abstract
	Acknowledgements
	Contents
	Chapter one: Introduction and literature review
	Chapter two: Methods
	Chapter three: Results and discussion
	Chapter four: Conclusion and future work
	Bibliography
	Appendices

