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2. ABSTRACT 

A magmatic Ni-Cu (Co-Zn) sulphide deposit, named the Hondekloof prospect, is present in 

the Kliprand area at the border between the Northern Cape and Western Cape Provinces of 

South Africa. The deposit occurs in the central part of the polyphase deformed and highly 

metamorphosed Garies Terrane, in the Namaqua Sector, along the south-western margin of the 

Mesoproterozoic Namaqua-Natal Metamorphic Province. Given the sub-economic 

concentrations yielded from evaluation of three of its known massive-sulphide lenses 

evaluated, the Hondekloof prospect has received relatively little consideration in terms of 

ongoing scientific research. Consequently, many aspects related to the genesis, classification 

and tectonic evolution of the deposit, to date, remain relatively unclear and unknown. The 

present contribution has therefore been geared to addressing some of those issues in view of 

the new data obtained on the country rocks and host rocks to the mineralization.  

Six exploration boreholes were logged, sampled and examined at the deposit site in Kliprand. 

A total of seven host rocks, namely meta-gabbronorite, biotite gneiss, feldspathic-biotite-garnet 

gneiss, pink gneiss, meta-syenite as well as enderbite along with a garnetiferous 

quartzofeldspathic rock occur in association with the sulphide mineralization. The origin, 

protoliths and tectonic settings of the host lithological units were determined and discussed in 

terms of modern plate tectonic principles. The meta-gabbronorite (the actual ore host), which 

had a magmatic protolith and forms part of the pre- to syn-tectonic Oorkraal Suite, displays the 

chemical characteristics of a depleted mantle origin (source of MORB-like melt), generated 

within a continental tectonic rift environment. Country rocks with sedimentary protoliths have 

chemical characteristics indicating a psammitic, felsic to intermediate provenance deposited 

within a regional subduction-related tectonic setting. A number of geochemical indices, of 

which the combination of element-ratios (such as Fe2O3/Al2O3 vs. TiO2/Al2O3, as well as Cr 

vs. Ni, amongst others) created as exploration vectors towards mineralisation, have shown 

potential for pointing towards the direction of the mineralization. Based on classification 

schemes of magmatic Ni sulphide deposits, it is has been suggested that the Hondekloof 

prospect could be classified as a low MgO, conduit-type, disseminated magmatic nickel 

sulphide deposit. 
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3. ABBREVIATIONS:  

NNMP: Namaqua-Natal Metamorphic Province 

OCC: Okiep Copper Company 

Qtz: quartz  

Bio: Biotite  

Hbl: Hornblende  

Plag: Plagioclase  

Grt: Garnet  

Opx: Orthopyroxene  

Cpx: Clinopyroxene  

And: Andalusite  

Kfs: K-feldspar  

Sill: Sillimanite  

Epid: epidote  

H2O: Water 
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1. CHAPTER I 

INTRODUCTION 

1.1 Introduction  

South Africa is known as one of the world’s most prolific mining countries on earth in terms of 

mineral resources. In itself it hosts several of the world’s largest mineral deposits, such as the 

platinum group elements (PGE) deposits in the Bushveld Complex, gold deposits in the 

Witwatersrand Basin, diamond deposits at Kimberley, the world’s richest chromium deposits (LG6 

in the Bushveld Complex), and the world’s richest manganese deposits (in the Transvaal 

Supergroup, Griqualand West Basin), all of which, to some extent, control the economy of the 

entire country. While much attention has been given to such areas in the search of additional 

resources for future exploitation (and for economic growth), relatively little attention has been 

given to other areas in terms of exploration. Such areas include the Namaqua-Natal Metamorphic 

Province, the Cape Fold Belt (in the Saldania Belt) and others.   

Despite having been given relatively little consideration in terms of exploration, the Namaqua-

Natal Metamorphic Province (NNMP), particularly the Namaqua Sector, has proven to be one of 

the remarkable mineralized sectors in the country, hosting one of the world’s giant volcanic hosted 

massive sulphide (VHMS) deposits, namely the Copperton (Prieska Copper Mine) deposit 

(Cornell et al., 1986; Cornell et al., 1990a, 1990b, Cornell et al., 1992; Bailie et al., 2010; Bailie 

and Gutzmer, 2011). Several other VHMS deposits have also been documented in the Namaqua 

Sector, near to the Copperton (Prieska Copper Mine) deposit, namely Annex, Areachap, 

Kantienpan, Kielder and Smouspan prospects (Ghavami-Riabi et al., 2008; Bailie et al., 2010; 

Bailie and Gutzmer, 2011). In addition other equivalent deposits such as sulphide ores in the 

Springbok area of Namaqualand, also known as the Okiep Copper District, have also been a major 

source of copper for South Africa (McIver et al., 1983; Lombaard et al., 1986; Schoch and 

Conradie, 1990; Cawthorn and Meyer, 1993; Clifford et al., 1995; Clifford and Barton, 2012; Van 

Zwieten et al., 1996; 2004; Robb et al., 1999; Duchesne et al., 2007, Maier et al., 2013). One of 

the world’s largest sedimentary exhalative (SEDEX) resources, in the form of the Broken Hill and 

Black Mountain Pb-Zn-Ag deposits, is also hosted in the supracrustal succession of the 
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Bushmanland Group (in the central region of the Namaqua Sector, Northern Cape Province) near 

the town of Aggeneys (Ryan et al., 1986; Moore et al., 1990; Bailie et al., 2007a, b). 

Unlike the northern part of the Namaqua Sector where, at least, a number of studies have been 

carried out given the presence of economic occurrences of Cu-Zn-rich deposits in the Upington 

area and copper deposits in the Springbok area, the southern part of the Namaqua Sector, in 

comparison (to the northern part), remains very much underexplored. Not much has been done 

either in terms of mineral exploration or field investigation for tectonic studies in the past two 

decades. As a result, the geological and economic prospectivity of some of its areas (terrains) have, 

therefore, remained poorly constrained.  

The Hondekloof deposit represents a family of small, orthomagmatic massive sulphide Ni-Cu-

(Co-Zn) deposits that occur in the southern central portion of western Namaqualand (specifically 

the central part of the Garies terrane). The deposit is located on the farm Nuwefontein, 

approximately 4 km west of the village of Kliprand (Fig 1.1; Bekker, 1980; Taylor, 1990; Andreoli 

et al., 1991a, 1991b; Hamman et al., 1996), and is ca. 120 km southeast of the Okiep Copper 

district (Taylor 1990; Andreoli and Moore 1991; Hamman et al., 1996; Andreoli et al., 2006). The 

prospect is restricted to a 200-m-wide, 3.5-km-long zone and occurs in three massive sulphide 

lenses, having a structural configuration forming small boudinage (Lehumo Technical Report, 

2008).     

Resources calculated for the two largest deposits (lenses) amount to 2 Mt of ore with a grade of 

0.88% Ni, 0.2% Cu, 410 ppm Co and <1 ppm platinum-group elements plus gold (Hamman et al., 

1996; Macey et al., 2011). Andreoli et al. (1987, 1991a) argued that the suite of mafic rocks,  which  

act  as  the  main  ore  bearers  at  the Hondekloof Ni ± Co and Steenkampskraal monazite deposits, 

have  the characteristics  and  associations typical of the late-tectonic Koperberg Suite (a nearby 

cupriferous mafic suite from which the Okiep terrane had inherited its nickname of the Okiep 

Copper District). This is in contrast to Hamman et al. (1996), who suggested that the meta-noritoids 

at the Hondekloof deposit are related to the pre- to syn-tectonic mafic rocks of the Oorkraal Suite. 

Shallow drilling for resource and reserve estimation was done in the early 1980s (Maier et al., 

2013), and was renewed again more recently in early 2006. Since then, however, very little to no 

work has been done on the Hondekloof deposit in terms of exploration and exploitation. Until 
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today, the deposit remains largely unclassified and uncharacterized (Hamman et al., 1996). Its age 

has also not been determined, making its tectonic evolution enigmatic. As such, many aspects of 

the deposit remain poorly understood.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Aims and objectives 

Several other prospects of varying size and nature have also been noted in the Garies terrane (Maier 

et al., 2013), making the Kliprand area an interesting and suitable area for future and further 

exploration activities. Therefore, for a contribution, this study is aimed at placing constraints on 

the Hondekloof deposit in terms of classification and characterization. It aims to: 

Figure 1-1: Location of the Hondekloof deposit. Adapted from Lehumo Resources Technical report 

(2008) 
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 Characterize the deposit by determining the nature of its sulphide mineralization, as well 

as the types and characteristics of its host rocks, 

 Examine the host rocks and constrain their origin (source area and provenance), protoliths 

and tectonic setting, 

 Understand the genesis of the deposit and be able to create a geological framework which 

can explain the formation and influence of tectonism thereafter on the mineralization.   

In addition the project also aims at addressing some issues related to vectoring towards the 

mineralization. Taking into consideration that the Hondekloof deposit and, in fact, the whole of 

southern Namaqualand (around the Kliprand area) is not well studied, this project is therefore of 

great interest, and will serve as a contribution to further, and broaden our understanding of the 

geology and economic prospectivity of the area.  

1.3 Review of Magmatic sulphide deposits 

As the name suggests, magmatic sulphide deposits are formed by the emplacement of magmatic 

bodies (Buchanan and Nolan, 1979; Holwell and McDonald, 2010). They develop when a 

fractionating body of magma intruded into the crust has reached sulphide saturation, that is, the 

point whereby magma can no longer hold sulphur in solution, and, an immiscible sulphide liquid 

exsolves from the silicate melt, to form its own separated phase (Holwell and McDonald, 2010). 

However, there are two processes, namely magma fractionation and sulphide liquid segregation 

that govern the formation of all magmatic sulphide deposits. Both processes are fundamentally 

controlled by the rate of temperature drop or rate of cooling of the melt. In addition to that, the 

process of silicate-sulphide immiscibility and sulphide globule melt interaction also plays a central 

role in determining, controlling and dictating the way in which metals are partitioned between 

sulphide and silicate melt during the time of segregation (Burnham, 1967). The latter mechanism 

(silicate-sulphide immiscibility) is a well-recognised example (Haughton et al., 1974; Buchanan 

and Nolan, 1979; Wendlandt, 1982; Mavrogenes and O’Neill, 1999; Naldrett, 2004) commonly 

used to describe the way in which a large and economic magmatic sulphide deposit can be 

generated from a fractionating body of magma. Furthermore, sulphide-metal associations can also 

be explained in terms of metal (or element) affinity to particular phases (for example lithophile 

elements to silicate, chalcophile elements to sulphide/sulphur, siderophile elements to iron, and 

atmophile elements to gas), as extensively described by  Goldschmidt rules.  
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The extent to which metals partition between sulphide and silicate melts (i.e. the magnitudes of 

the relevant sulphide-silicate partition coefficients), will determine the ability of an immiscible 

sulphide fraction to concentrate both base and precious metals during the formation of a magmatic 

sulphide deposit ((Burnham, 1979). Following the separation of a sulphide liquid from a silicate 

magma within the temperature range of approximately 1200 to 1000oC, for example, that being 

the point at which the magma reaches sulphide saturation, chalcophile elements such as Cu, Ni, 

the PGEs, gold, silver and some semi-metals, such as Bi and Te, will effectively be collected by 

any sulphide liquid (globule) rather than remaining in the silicate melt. Certain metals, such as Cu, 

Ni and Co, often partition strongly into the sulphide phase in substantial proportions compared to 

the others. The partitioning of these elements is strongly pronounced because they (those metals) 

have a very high distribution coefficient between sulphide and silicate melts (Holwell and 

McDonald, 2010).  

During the initial stages in the development of such magmatic sulphide deposits, apart from having 

a buoyant body of magma to be emplaced at some level of the crust, one of the most fundamental 

factors is that, at first, that magma has to attain sulphide saturation. The mechanisms by which this 

is achieved are numerous and may be difficult to determine. Candela and Holland (1984), and 

Candela (1991) proposed a number of scenarios which can theoretically explain how a body of 

magma may reach sulphide saturation, namely, sulphide saturation can be achieved: (1) as 

solidification proceeds and magma temperature falls, (2) by virtue of increasing fO2 in the magma, 

or (3) by continuously decreasing the amount of ferrous iron in the magma (such as might occur 

during the extraction of an Fe-rich phase). Other factors, such as the addition of externally derived 

sulphur, or an ingress of new magma, can also promote saturation and the formation of an 

immiscible sulphide phase. Holwell and McDonald (2010) expanded on these concepts and argued 

that assimilation of country rock-hosted sulphur must also be considered as an essential factor in 

producing sulphide saturation in high-degree (high temperature) mantle melts, such as komatiites. 

According to Burnham (1967) sulphide saturation and the generation of economic sulphide 

mineralisation can be achieved through other types of contamination as well. Silica contamination, 

due to the assimilation of felsic country rocks, can decrease the solubility of sulphur in a mafic 

magma (Li and Naldrett, 1993), and can also trigger sulphide saturation. In addition, an increase 

in magma oxygen fugacity (fO2), for example in response to the assimilation of oxygen-bearing 
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country rocks, can lower the iron (II) oxide content and thus the sulphur-carrying capacity of the 

magma, and also trigger sulphide saturation (Buchanan and Can, 1979). 

Segregated sulphide melts have enormous potential to host concentrations of metals with both 

chalcophile and siderophile tendencies, such as base (Cu, Ni, Co) and precious (Au, Pt) metal ores. 

However, after a number of discoveries of magmatic sulphide deposits in a variety of tectonic 

settings, it has become a known fact, with concrete examples, that most, if not all, of the large and 

important ore deposits associated with the development of an immiscible sulphide fraction usually 

have the tendency to be hosted in magmas with mafic and ultramafic compositions (Holwell and 

McDonald, 2010). Typical examples include the varieties of magmatic sulphide deposits found in 

layered mafic intrusions, e.g. Voisey’s Bay, Noril’sk. As a variety of contamination-related 

processes are capable of inducing sulphide saturation and promoting magma-sulphide liquid 

segregation, sulphide mineralisation commonly occurs at the base and margins of intrusions, where 

contamination is most prevalent (Holwell and McDonald, 2010). “The Platreef of the Bushveld 

Complex; the Basal Series of the Stillwater Complex; the Penikat-Portimo Complex, Finland; the 

Muskox intrusion, Canada; the Fedorov-Pansky intrusion, Russia; and conduit systems such as 

Noril’sk, Russia and the Uitkomst Complex, South Africa, are all typical examples of magmatic 

sulphide deposits that occur at the base and margin of an intrusive body” (Ripley et al., 2003; 

Holwell and McDonald, 2010).  

1.3.1 Current understanding of the development of magmatic sulphide deposits 

Before anything else, a fractionating body of magma, which is sulphide-rich, has to be emplaced 

at some level of the crust, and must also be controlled by the rate of cooling, which is determined 

by the temperature of the intrusive body, the temperature of the intruded country rocks, and the 

rate of crystallisation, so that sulphide saturation can be reached, and thus trigger the process called 

magmatic segregation or sulphide liquid exsolution so that a magmatic sulphide deposit can be 

generated.   

Following the separation of a sulphide liquid from a silicate magma at temperatures of around 

1200ºC (typical of mafic magmas), the first phase to crystallise from the sulphide droplet is called 

monosulphide solid solution (mss), at around 1000ºC (Holwell and McDonald, 2010; Maier et al., 

2013). Ni is generally compatible with mss and will partition into it at this stage. This leaves a Cu-
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rich residual liquid behind, which subsequently crystallises to a phase called intermediate solid 

solution (iss) at around 900ºC (Holwell and McDonald, 2010). Consequently, at this stage there is 

a Ni-rich mss portion and a Cu-rich iss portion segregated but partly coexisting in the melt. As the 

temperature cools to below 650ºC, the mss recrystallises to pyrrhotite (FeS) and pentlandite ((Fe, 

Ni)9S8) and the iss recrystallises to chalcopyrite (CuFeS2) (Holwell and McDonald, 2010). The 

precise temperature of these recrystallisations is dependent on how rich the mss is in sulphur. The 

end product results in a typical sulphide assemblage of pyrrhotite-pentlandite-chalcopyrite 

commonly found in association with natural magmatic sulphide mineralization. The mss type 

usually results in Ni-rich and PGE-poor magmatic sulphide deposits, whereas the iss type, by 

contrast, frequently gives rise to Cu-PGE-rich types of magmatic sulphide deposits (Holwell and 

McDonald, 2007). Deep mantle-derived magma containing mafic and ultramafic bodies will, if 

fractionated (during the first phase of sulphide saturation), in the earlier stages, give rise to mss or 

Ni-rich types of sulphide deposits (forming at deeper crustal levels). With continuous 

fractionation, as the magma approaches an advanced phase of sulphide saturation, an iss or Cu-

PGE type deposit will be generated (Hutchinson and McDonald, 2008). This also explains the 

abundance of pyrrhotite and pentlandite ores for the mss type of deposits while changing to 

chalcopyrite for the iss type of magmatic sulphide deposits.  

1.4 Exploration and mapping History of the Hondekloof orebody  

As early as 1970, Gold Fields of South Africa Ltd. (GFSA) was reported to have been the first 

company to have initiated an exploration program to investigate a broad aerial-electromagnetic 

anomaly over the Kliprand dome. Their drilling program was focused on the central part of the 

dome but unfortunately failed to locate any geological feature of economic interest. Nine years 

later (in 1979), Okiep Copper Company Ltd. (OCC) launched a regional stream sediment sampling 

program in southern Namaqualand involving both sediment and soil sampling. This stream 

sediment sampling, after completion, led to the discovery of the Hondekloof nickeliferous gossan 

outcrops in the Kliprand area. This discovery was immediately followed up by a diversity of 

exploration activities, such as surface mapping, exploration geochemistry, geophysics (magnetics, 

induced polarization and electromagnetic polarization) and surface drilling, all of which came to 

an end around 1983. 
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Further activities, mainly in the form of field assessments, were thereafter undertaken by different 

teams of consulting companies in the following years. For example, Cooke (1989) reassessed the 

Hondekloof prospect by re-evaluating the existing data already used by the Okiep Copper 

Company Ltd. Anomalously high Cu, Ni and Co values were reported in the soil samples of the 

Hondekloof gossan outcrops and were found to be laterally extending beyond the sampling grid 

for at least 700 m. Both Cu and Co showed a dispersion of some 900 m down-slope, northwards, 

towards the nearby old riverbed located to the north of the Hondekloof gossan outcrops. Ni, in 

turn, showed a limited dispersion anomaly, and only formed a halo of about 400 m down-slope. 

With the erratic distribution of Pb, Zn and Mn, Co was considered as an important pathfinder to 

the Hondekloof nickeliferous orebody (Cooke, 1989). A brief inspection of the area was again 

undertaken by Rand Mines Ltd. in 1990, and followed by Gold Fields Ltd. which also had a re-

look of the area in 1996.   

The area was regionally mapped by Albat (1984) as part of a research mapping project under the 

sponsorship of the Precambrian Research Unit of the University of Cape Town. A detailed map, 

which straddles the discontinuous main gossan exposures on Hondekloof (1500 m  600 m 

compiled to a scale of 1:2 000) was produced by the Okiep Copper Company Ltd. (in 1980). 

According to the technical report of Lehumo Resources Ltd. (2008), reconnaissance mapping of 

the Hondekloof gossan outcrops and surroundings was done by Taylor (1990) as part of an 

Honours project at the University of the Witwatersrand. Andreoli et al. (1991a; 1991b) broadly 

advanced the study of Taylor (1990) and briefly discussed the field relationships and petrogenetic 

aspects of some of the host lithological units based on field sketches. Hamman et al. (1996) re-

investigated the area as part of an MSc study at some later stage, and also brought slight 

improvements to the detailed map produced by the Okiep Copper Company Ltd.  

As mentioned earlier, an early drilling program was undertaken by Gold Fields of South Africa 

Ltd. in 1970. The program was again reactivated by Okiep Copper Company Ltd. during 1980 and 

1982, and was done in two drilling phases in those respective years. A total of 29 diamond drill 

holes were drilled on 10 approximately parallel sections, totalling 2 619.6 m. Most boreholes were 

inclined towards the south with angles varying from -40 to -80o, with only two boreholes drilled 

vertically. Of the 29 boreholes drilled, 14 intersected sulphide mineralisation of significance. The 

drilling program was again rejuvenated in early 2005 by Lehumo Resources Ltd. under the name 
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Hondekloof Nickel project (Pty.) Ltd. A two-phase drilling program were initiated, with the first 

drilling phase starting in March 2006 and completed by mid-November of the same year. A total 

of 133 diamond drill holes were drilled on 33 approximately parallel sections spaced 50 m apart 

(with 20 m strikes on the drill lines, totalling 9 909.55m). The drill angles varied between -45 and 

-75o with 13 holes drilled vertically. Of the 133 boreholes drilled, roughly half of the holes 

intersected sulphide mineralization of significance. The second phase of drilling started in mid-

November 2006 and was completed three months later (in February 2007). A total of 14 boreholes 

were drilled east of the first phase area and 22 west of the first phase area. This second drilling 

phase covered a distance of 7 km, and the boreholes were drilled in 36 locations spaced 200 m 

apart along strike. 

Since the recovery of the borehole data several studies have been undertaken using different 

methods, mainly for assessing the economic viability of the deposit. Certain aspects such as pre-

feasibility and feasibility studies, operational strategy, an economic model, geotechnical 

assessments as well as flotation test-work and logistics have already been completed and finalised 

by the Lehumo Resource Company Ltd. (since 2008). Although the production has currently been 

put on hold because the deposit is currently economically not viable (based on current economic 

standards), further studies are needed, particularly those that can provide clues as to further 

constraining the characteristics of the deposits and aiding understanding of the economic 

prospectivity of the area. The studies involving classification and vectoring are all yet to be done 

on this deposit. This work has therefore contributed in filling some of those gaps.    
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2. CHAPTER II  

GEOLOGICAL SETTING 

2.1 Regional Geological Setting 

This study is based in the West Coast region of South Africa in the vicinity of the settlement called 

Kliprand (Albat, 1984) on the Nuwefontein Farm. The area is generally referred to as 

Namaqualand, and forms part of the Garies terrane (De Beer et al., 2010; Macey et al., 2011). The 

Garies terrane, together with the Okiep terrane, have been interpreted as the representative 

fragments or crustal blocks of Mesoproterozoic age, having rocks which formed or were deformed 

during the Namaquan orogenic event, at 1200 to 1000 Ma (De Beer et al., 2010). Every rock 

which formed, or deformed, or the pre-existing rocks which have been tectonized during this 

particular tectonic event, in southern Africa, have been broadly interpreted to form part of a single 

metamorphic belt termed the Namaqua-Natal Mobile belt (Cornell et al., 2006; Eglington, 2006; 

Colliston and Schoch, 2006; Moen and Toogood, 2007). Different names for this particular 

tectonic area and its subdivisions have frequently been given based on various interpretations 

offered by different authors. Stowe (1986), Raith et al. (2003), Cornell et al. (2006) and Ghavami-

Riabi et al. (2008) referred to it as the Namaqua-Natal Metamorphic Province, whilst Matthews 

(1981), Taylor (1990), Eglington (2006) and Colliston and Schoch (2006) preferred to use the 

name the Namaqua-Natal Mobile belt instead. However, this study follows the nomenclature of 

Namaqua-Natal Metamorphic Province as defined by Stowe (1986). 

2.1.1 Geological evolution of the Namaqua-Natal Metamorphic Province 

The Namaqua-Natal Metamorphic Province (NNMP), in southern Africa, is one of a number of 

medium to high-grade metamorphic belts of Mesoproterozoic age in sub-Saharan Africa (Thomas 

et al., 2000; Eglington and Armstrong, 2003). Hoffman (1991) considered the Namaqua-Natal 

Metamorphic Province (NNMP) as being one of the dispersed remnants that formed part of the 

Mezoproterozoic orogenic systems in Africa, and has also marked the formation and break-up of 

the ∼1.0-0.7 Ga supercontinent Rodinia (Groenewald et al., 1991; Jacobs et al., 1995; Dalziel et 

al., 2000). Its age spans between 1250 Ma and 950 Ma (Dalziel et al., 2000), and it formed a part 

of the Kalahari Craton of southern Africa (Jacobs et al., 1995; Grantham et al., 2001; Frimmel, 

2004). It extends from southern Namibia south-eastwards through the Northern Cape Province of 
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South Africa, towards Kwazulu-Natal (on the eastern seaboard where it is truncated by the Indian 

Ocean), and generally covers nearly 35 to 40% of the landmass in the local geological framework 

of South Africa (Eglington, 2006; Fig. 2.1).  Relatively old rocks, of Archean age, of the Kaapvaal 

craton, bound the province to its north and northeast (in a tectonic style represented by thrusting, 

trans-current faulting and magnetic anomalies- Fig. 2.1; Cornell et al., 2006), whilst the younger 

rocks of the Pan-African orogeny (represented by the Gariep and Saldania belts) truncate the 

province to the southwest and south (Fig. 2.1).  

 

 

 

 

 

 

 

 

 

Rocks of similar age and common characteristics have also been documented elsewhere (besides 

South Africa), for example, in Namibia (Becker et al., 2006), and in Botswana (Singletary et al., 

2003), as well as in Mozambique (Grantham et al., 2003), Zambia (Hanson et al., 1988) as well as 

in Argentina (Thomas et al., 2000) and Antarctica (Groenewald et al., 1991). But in relation to the 

geographical subdivision of South Africa, where this study is based, the NNMP is only well 

represented in two of the country’s nine provinces. It outcrops extensively (1) in the Northern Cape 

Province, covering a region of approximately 100 000 km2 in areal extent, as well as (2) in 

KwaZulu-Natal where the area covered extends to about 20 000 km2 (Stowe, 1983; Hartnady et 

al., 1985; Thomas et al., 1994). 

alkaline 

STUDY AREA 

Figure 2-1: Simplified geological map of southern Africa, from Cornell et al. (2006) 
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In general the NNMP is subdivided into two broad and coeval sectors namely the Namaqua Sector 

(or Namaqualand) in the west and the Natal Sector in the east (Nicolaysen and Burger, 1965; 

Stacey and Kramers, 1975; Pettersson et al., 2007; Fig. 2.1). A regional gravity and magnetic 

survey studies carried out by De Beer and Meyer (1984), together with crustal xenolith evidence 

from kimberlite diatremes in Lesotho and a few deep boreholes drilled by Soekor (Eglington and 

Armstrong, 2003, and references therein), show that the two sectors are part of a single and 

continuous (1400-km-long and 400-km wide) arcuate orogenic belt, with each sector having rocks 

which formed, or deformed, during the main episodes of the Namaqua-Natal orogenic event, at 

1200 to 1000 Ma.  

Occupying the eastern portion of the NNMP is the Natal Sector (McCourt et al., 2006; Fig. 2.1), 

stretching for 1500 km long (Gose et al., 2004) and rimming the south-eastern margin of the 

Archean Kaapvaal craton (Grantham et al., 2000a; Jacobs et al., 1993; Jacobs and Thomas, 2001; 

McCourt et al., 2006). Thomas (1989) subdivided the Natal Sector, from north to south, into three 

tectonically distinct terranes (namely the Tugela, Mzumbe and Margate terranes). Jacobs et al. 

(1993) elaborated on this subdivision of Thomas (1989), and pointed out that the boundaries 

between the terranes are everywhere tectonic (Matthews, 1981; De Beer and Meyer, 1984; Jacobs 

et al., 1993; Thomas et al., 2000; McCourt et al., 2006).  

Located in the western portion of the NNMP is the Namaqua Sector, which covers an area of 

approximately 22 000 km2 (McClung, 2008). The Namaqua Sector is crosscut by several large 

transcurrent faults which, according to Joubert (1980, 1986) and Stowe (1989), allow the Namaqua 

Sector to be subdivided into: (1) the Kheis, (2) the Gordonia, (3) the Bushmanland and (4) the 

Richtersveld Subprovinces (Hartnady et al., 1985; Pettersson et al., 2009; Fig. 2.2).  

The Kheis sub-province occupies the portion which serves as the border between the Archean 

Kaapvaal Craton and the Namaqua Sector (Fig. 2.2). It comprises highly metamorphosed 

sequences which, according to van Niekerk (2006), have been tectonised to amphibolite facies 

conditions. These rocks have ages ranging between 1600 to 1900 Ma (van Niekerk, 2006), and are 

reported to have been deformed between 1100 to 1300 Ma, during the Namaquan Orogeny (SACS, 

1980; Moen, 1999).  
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To the west of the Kheis Subprovince is the Gordonia Subprovince of the Namaqua Sector (Fig. 

2.2). Its contact with the Kheis Subprovince to the east is marked by a number of eastwards-

directed subduction configuration zones (Cornell et al., 1990a; Pettersson et al., 2007; Cornell and 

Pettersson, 2007; Bailie et al., 2010). Bailie et al. (2011) advocated that the above configuration 

zones mark the subduction history of the Namaqua Sector subducting underneath the Kaapvaal 

Craton. According to Van Bever Donker (1980), the Gordonia Subprovince can be further 

subdivided into the Areachap terrane and the Kakamas terrane. Both terranes are comprised of 

highly metamorphosed metasedimentary rocks which are metamorphosed to upper amphibolite to 

granulite facies conditions (Bailie et al., 2011). The Areachap terrane has rocks dating from 1.29–

1.24 Ga in age (Cornell et al., 1992; Cornell and Pettersson, 2007), whilst those of the Kakamas 

terrane have ages limited between 2.0 Ga to 1.10 Ga (Thomas et al., 1994). 

To the west of the Gordonia Subprovince is the Bushmanland Subprovince, which occupies most 

of the central, southern and southwestern portion of the Namaqua Sector (Fig. 2.2). Cornell et al. 

(2006), and Pettersson et al. (2008) considered the Bushmanland Subprovince to be the largest 

STUDY AREA 

Figure 2-2: Terrane map of the Namaqua Sector (from Hartnady et al. (1985) and Thomas et 

al. (1994)). The overall study area region is shown by a red square. 
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subprovince in the Namaqua Sector (i.e. an areal coverage of some 60 000 km2). This subprovince 

is, however, also considered to be the most poorly exposed, and the least understood domain of all 

the domains of the Namaqua Sector's geology (Schmitz and Bowring, 2004). Following the 

simplified subdivision of Raith et al. (2003) and Andreoli et al. (2006), the Bushmanland 

Subprovince can be subdivided from north to south into: (1) the Aggeneys, (2) Okiep, (3) Garies 

and (4) Steenkampskraal terranes. Each of these terranes is different in terms of its local geology 

(Raith et al., 2003). They are, however, marked by the presence of metasedimentary sequences 

which are intruded by a series of small mafic suites (Clifford et al., 1981; Andreoli et al., 2006).  

Adjacent to the Bushmanland Subprovince, to the north and west, is the Richtersveld Subprovince 

(Fig. 2.2). According to Reid (1979) and Reid et al. (1987), the Richtersveld Subprovince is one 

of the few areas in the Namaqua Sector which preserves some of the oldest rocks in the history of 

the Namaqua-Natal Metamorphic Province. A comprehensive subdivision of the Richtersveld 

Subprovince was provided by Cornell et al. (2006). Two principal components, called domains, 

were determined, namely the Vioolsdrif Suite and the Orange River Group. The Vioolsdrif Suite 

is characterized by having extensive granitoid batholith bodies which intruded the volcano-

sedimentary sequences found in the Orange River Group. 

 

2.2 Local Geological Setting 

2.2.1 The Kliprand Area 

Geologically the Kliprand area is situated in the southern portion of the Namaqua Sector, along 

the mountainous escarpment that separates the inland Bushmanland plateau from the sandy area 

of the west coast plain (Baars, 1990). The area preserves rocks that outcrop partly in the lowermost 

sequences of the Karoo Supergroup, and partly in the Namaqua-Natal Metamorphic Province 

(Macey et al., 2011). The western and south-eastern parts of the area are predominantly underlain 

by intensely deformed and high-grade ortho- and para-gneisses that form part of the Garies terrane 

of the Namaqua Sector (Albat, 1983). Within this zone, intrusions of voluminous post-tectonic 

granite and granitoid batholiths occur in various sizes (Moore, 1983; Moore and Verwoerd, 1985; 

1989; Macey et al., 2011). Diverse varieties of metamorphosed mafic rocks and magmatic rocks, 

having ages from Mesoproterozoic to Recent, have also been mapped by Macey et al. (2011).  
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The eastern part of the area is underlain by the Permian-to-Carboniferous sequences of both the 

Dwyka and Ecca Groups of the Karoo Supergroup (Macey et al., 2011). These rocks are relatively 

unmetamorphosed and are the only exposed basal units that form part of the Karoo Supergroup in 

the area (Macey et al., 2011). 

The Namaqua Sector comprises a number of tectonostratigraphic terranes separated by major 

tectonic structures distinguished on the basis of their lithostratigraphy, tectonic histories and 

metamorphic grades (Hartnady et al., 1985; Thomas et al., 1994; Andreoli et al. 2006). Of these 

terranes, only the Garies terrane outcrops cover a large lateral extent in the Kliprand area (Albat, 

1989).  

A comprehensive geological study of the Kliprand area was undertaken by Albat (1983, 1984, 

1989) and Macey et al. (2011). According to these authors, six to seven main stratigraphic units 

are identified in the Kliprand area. Two criteria, (1) based on the type of lithologies preserved, and 

(2) based on their ages relative to the age of the main Namaqua deformation (at ca. 1.15 Ga.), D2 

(Joubert, 1971; Van Aswegen, 1974) are used to separate these units.  

In relation to this D2 deformation event, pre-, syn- to post-tectonic units are generally identified 

based on: (1) the way in which the orientation of their fabrics (foliation + lineation) correspond 

with the orientation of E-W trending foliations developed during the main phase of the Namaquan 

event (Macey et al., 2011).  

The Mesoproterozoic intrusive rocks are dominated by granitoids which are subdivided into two 

major suites, the pre- to syn-tectonic Little Namaqualand Suite and the late- to post-tectonic 

Spektakel Suite (SACS, 1980; Joubert, 1986). The pre-tectonic mafic granulites are referred to as 

the Oorkraal Suite, whereas the group of post-tectonic intermediate to mafic intrusive rocks are 

collectively referred to as the Koperberg Suite (SACS, 1980; Clifford et al., 1995). 

Gneisses with clear supracrustal precursors are included in the Kamiesberg Group, following the 

suggestion of Moore (1989). The five lithodemic units recognised here are pelites, semi-pelites, 

quartzitic rocks, calc-silicates and marbles, and heterogeneous migmatitic grey biotite-quartz-

feldspar gneisses. It remains unclear whether the pink quartzofeldspathic gneisses have either 

intrusive igneous or sedimentary precursors. As such it has therefore not been included in either 
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the Little Namaqualand Suite or the Kamiesberg Group, and has thus been grouped separately, on 

its own, as the Lekkerdrink Gneiss (Moore, 1989). 

While the origins and ages of certain units, such as the Lekkerdrink Gneiss, are very enigmatic 

and remain controversial, those of others, such as the Ibequas granite, are believed to have been 

the products of dehydration melting (that took place during the peak metamorphism associated 

with the Namaquan event). Table 2.1 provides a comprehensive summary of the lithological units 

(in their relative geochronological order) documented in the Kliprand area. 

2.2.2 Metamorphism  

The supracrustal rocks of the Bushmanland Subprovince in the Kliprand area have undergone 

granulite-facies metamorphism (Albat, 1984). This granulite-facies zone is defined by the 

following pelitic assemblage: quartz-K-feldspar-cordierite-plagioclase-garnet-sillimanite-opaques 

± biotite, which most likely formed by the following prograde dehydration melting reaction 

(Waters, 1986a):  

sillimanite +  biotite  +  quartz = cordierite + garnet + K-feldspar + melt  

This dehydration reaction marks the transition from upper-amphibolite to granulite facies 

conditions (Waters and Whales, 1984; Waters, 1986b). Further evidence for this transition was 

determined by the presence of local partial melts in the rocks (for example the development of 

abundant coarse-grained quartz-feldspar ± garnet segregations, giving the rock a migmatitic 

appearance).  

Most rocks in the area fall within this upper granulite-facies subzone and have peak metamorphic 

conditions of ~750–870°C and 4.5–6 kbars (Albat, 1979, 1984; Waters, 1986b, 1989; Baars, 1990; 

Norwicki et al., 1995). The advance to granulite-facies conditions was marked by the dehydration 

of hydrous assemblages, the formation of two-pyroxene mafic granulites and the onset of partial 

melting (Waters, 1989; Baars, 1990).  

 

 

Table 2-1: Rocks of the Garies terrane in the Kliprand area (Adapted after Joubert & Waters, 1980; Zelt, 

1980; Albat, 1984; Macey et al., 2011) 
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Spektakel Suite 

Ibequas Granite 

Osdam Granite 

Klein-Lieslap            

Charnockite 

Kootjiesfontein Granite 

Kliphoek Granite 

Garies Granite 

Lepel se Kop Granite 

Brandkraal Granite 

Uilklip Granite 

Banke Granodiorite 

Burton’s Put Granite 

Platklip Granite 

Brakfontein Granite 

 

 

Characteristically megacrystic and locally 

charnockitic. Predominantly comprise sheet-like 

bodies of weakly foliated, medium grained 

equigranular K-feldspar leucogranite with very 

low biotite contents. Share common resemblance 

with the Little Namaqualand Suite, but differ from 

the latter by being less deformed, hence post-

tectonic. Occur as voluminous and largely 

megacrystic late to post-tectonic granites and 

charnockite, intruded into the earlier formed grey 

gneisses and the Little Namaqualand Suite 

orthogneisses.   

 

 

 

Kamiesberg Group 

Meta-Pelitic Gneiss 

Meta-Psammitic Gneiss 

Calc-silicate and 

Marble 

Metaquartzite 

 

Pre-tectonic supracrustal rocks of the 

Bushmanland Subprovince that occur with east-

west trending regional tectonic fabrics. This group 

derived its name from the Kamiesberg Mountain, 

a region within which several belts of supracrustal 

rocks occur.   

 

 

Oorkraal Suite 

 

 

Metagabbronorites 

Metanorites 

Amphibolites 

Deformed and metamorphosed mafic rocks of the 

Namaqua Sector. Occur as melanocratic black, fine 

to medium grained rocks, and have moderate to 

strong granoblastic texture and locally a 

compositionally banded texture. Are pre-tectonic 

in age.  

  

 

Grey Gneiss Complex 

Predominantly composed of grey, pre-tectonic 

supracrustal orthogneisses of the Bushmanland 

Subprovince. 

 

 

Little Namaqualand 

Suite 

 

 

Landplaas Gneiss 

Karagas Gneiss 

Darterpoort Gneiss 

Grootberg Gneiss 

Mesklip Gneiss 

 

Characterised by their granitic composition 

(orthogneisses), and their pre- to syn-tectonic age, 

indicated by strong penetrative augen and streaky 

gneiss fabrics. Further characterised by being 

compositionally heterogeneous, and occur in a 

variety of textures. 

 
Lekkerdrink Gneiss 

 

 

 

Characterized by a pink colour, occurring as a 

group of texturally variable quartzofeldspathic 

gneisses. It is unclear as to whether it was 

originated from an intrusive or sedimentary 

protolith. Hence unclassified.  
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2.2.3 Structure  

The structural sequence for the Bushmanland Subprovince was originally established by Joubert 

(1971). Albat (1984) and Macey et al. (2011) re-advanced the study of Joubert (1971) around the 

Kliprand area. Following the interpretation of these authors, at least three main phases of high-

grade ductile deformation have been identified in southwestern Namaqualand (Joubert, 1971, 

1986; Baars, 1990; Jackson, 1998; Grantham, 2000a, 2000b), and most particularly in the Kliprand 

area (Albat, 1984; Macey et al., 2011). D1 is described as an early deformation phase, followed by 

D2 (the main Namaquan event), and two late folding events (D3 and D4). 

The metasedimentary and metavolcanic rocks display a gneissic banding which is folded by, and 

therefore predates, the main regional D2 fold generation. This banding is interpreted either as the 

original primary layering (bedding), or as a tectonically produced surface (S1) (Albat, 1984). 

Evidence of D1 episode is observed as rootless isoclinal intrafolial folds preserved within the 

gneissic layering of the supracrustal rocks (Macey et al. 2011).  

The second deformation phase (D2) is considered as the principal phase of the Namaquan orogeny 

(Joubert, 1971). In comparison to D1, the D2 deformation is characterised by large-scale, large-

amplitude and short-wavelength isoclinal folding which produced a regional, generally E–W-

trending, penetrative S2 foliation (gneissic banding) and an L2 stretching lineation or mineral 

elongation (Joubert, 1971, 1986). Albat (1984) interpreted this D2 deformation as being an 

isoclinal structural event. The gneissic fabric is observed in all the pre-tectonic rock types, but is 

best developed in the pre-tectonic gneisses of the Little Namaqualand Suite (Albat, 1984). Strongly 

recrystallized elongate K-feldspar augen porphyroblasts and the preferred orientation of platy 

minerals, especially biotite (streaky and stripy textures), define the S2 fabric in these rocks. 

The D3 deformation event is characterised by kilometre-scale E–W-trending F3 folding which 

produced upright to inclined shallowly-plunging open folds (Macey et al., 2011). The S3 foliation 

planes are commonly filled with 2–3-cm-thick un-deformed equigranular white to cream-coloured 

quartz-feldspar ± biotite ± magnetite leucosomes (Macey et al., 2011). Although S2 and S3 are 

roughly coaxial, the dip of S3 with respect to S2 is variable across the F3 folds (Grantham, 2000a, 

2000b; Macey et al., 2011).  
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The D4 phase is associated with small-amplitude/large-wavelength, very-large-scale, NW-trending 

open folds which are monoclinal in places and in general have the appearance of gentle megascale 

warping (Albat, 1984). The D4 deformation is restricted to folding of all previously existing 

structures, but did not result in the production of any new penetrative foliations.  

2.2.4 The Hondekloof prospect 

Figure 2.3 indicates the location of the Hondekloof prospect within the simplified geological map 

of the Bushmanland Subprovince. 

  

 

 

 

 

 

 

 

 

 

 

 

 

The deposit sits within the moderate relief granitic hills which forms the heart of the Bushmanland 

plateau (Andreoli et al., 1991a; Hamman et al., 1996). The geology of the Hondekloof deposit and 

surroundings was investigated and broadly described by Taylor (1990), Andreoli and Moore 

(1991), and Hamman et al. (1996). Following the interpretation of these authors, the Hondekloof 

STUDY AREA 

Figure 2-3: A simplified geological map of the southwestern and western portion of the Namaqua Sector 

(modified after Andreoli et al., 2006). Tectonic terranes are shown in variable shading. Double dotted 

lines indicate clusters of Koperberg suite and related mafic intrusions. Solid lines show metamorphic 

facies boundaries (A: greenschist, B: amphibolite, C: low-T granulite, D: high-T granulite). Short, 

dashed line near the coastline indicates staurolite zone (Pan African overprint). The study area is 

indicated by means of a red rectangle 
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deposit, on the surface, is marked by a series of fourteen to fifteen discontinuous gossan outcrops 

extending 200 m wide and 3.5 km long. These gossans are reported to have been spatially 

associated with small attenuated and flattened mafic bodies forming part of the Nuwefontein Suite 

and Ookraal Suite (Albat, 1984; Taylor 1990). According to Bekker (1980) and Albat (1984) these 

rocks are part of the pre- to syn-tectonic intrusive rocks metamorphosed to granulite facies 

conditions, and tectonically deformed during the main isoclinal structural event of the Namaquan 

Orogeny. 

As illustrated in Fig. 2.3, the Kliprand area falls under the spinel + quartz upper granulite facies 

domain (D in Fig. 2.3) within the six metamorphic facies domains established by Waters (1991) 

(see explanation of the facies in Fig. 2.3). Because of that, it has been interpreted to represent a 

deeper crustal level than its neighbouring blocks around the Springbok (Maier et al., 2013, Fig. 

2.3). The deposit is underlain by large bodies of megacrystic charnockite and charnockitic 

orthogneiss, mafic two-pyroxene granulites of the Oorkraal Suite (Table 2.1; de Beer et al., 2002) 

and an easterly-trending belt of predominantly supracrustal rocks which consists of calc-silicate 

rocks, metapelites, biotite-garnet gneisses, quartzite and ferruginous rocks belonging to the 

Kamiesberg Subgroup (de Beer et al., 2002; Albat 1984; Moore 1989). According to Andreoli and 

Moore (1991) the deposit is generally hosted in small attenuated and flattened regional fabric-

parallel noritoid bodies, which, according to these authors, are not well characterized.  
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3. CHAPTER III 

 METHODOLOGY 

3.1 Introduction 

This project seeks to examine the petrography, petrology and whole rock geochemistry of the host 

rocks to the Hondekloof prospect and thereby constrain and characterize both the deposit and its 

host rocks. It involves firstly logging and sampling of key exploration boreholes which have 

intersected sulphide mineralization of significance and secondly make a meaningful contribution 

based on analysing, evaluating and interpreting the data generated from petrographic and 

geochemical studies.    

3.2 Data collection 

Six exploration boreholes were logged, sampled and examined at the deposit site in Kliprand. 

Logging was carried out in each borehole employing such criteria as: (1) changes in grain size, (2) 

fabrics or textures, (3) colour, (4) litho-types, and type of contacts, (5) contact angle and (6) 

additional remarks, to establish and classify the different varieties of the lithology encountered in 

the boreholes. Sampling was also carried out concurrently and the representative specimen (of ca. 

20 cm length) for each lithology measured was sampled.  

3.3 Petrography 

A total of forty-five polished thin section slides were prepared and examined using a number of 

in-house transmitted and reflected light petrographic microscopes. The physical working 

conditions and the standards of the microscopes used are described in detail in Raith et al. (2012), 

and are also illustrated in Figure 3.1.  The rocks are described in two sections, firstly as they appear 

in the cores and secondly as they appear in thin section. The estimated mineral mode for each 

lithology has been reported, with their abundances being given as a range (e.g. from - to ~ wt. %).  

3.4 Geochemistry 

A total of forty-two samples plus three duplicates were prepared for XRF and Laser Ablation-ICP-

MS analyses. The samples were crushed and milled according to the standard geochemical sample 

preparation procedures. The major element compositions were analysed by X-ray fluorescence 
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(XRF) spectrometry on fused glass beads prepared from 5 g per sample. The XRF spectrometer 

employed a Rh tube at a power output of 3 kW prepared with La-free flux. Loss On Ignition (LOI) 

calculations, which determine the amount of volatiles in a sample, is calculated by determining the 

weight difference after ignition to 1000oC. The XRF spectrometer uses the combination of both a 

gas-flow proportional counting detector and a scintillation detector to cover the analysis of all 

major elements. Detection limits for the XRF spectrometer are typically lower than 0.5 ppm 

(0.00005%), and a wide range of international (NIST®) and national (SARM®) standards were 

used in the calibration procedures. 

Complimentary to the major element analysis by XRF spectrometry, a complete suite of trace and 

rare earth element (REE) analyses were determined using Laser Ablation ICP-MS. In this 

technique, a Resonetics 193nm Excimer laser was connected to an Agilent 7500 ICP-MS for laser 

ablation work with a solution of 0.9L/min Argon + 0.004L/min Nitrogen as carrier gas. The 

samples were analysed on the same polished pressed powder pellets (mounts) previously prepared 

for XRF fusion. Accuracy and precision were monitored through the repeated analyses of in-house 

and international standards and duplicate samples. Effort was made to report analytical errors in 

the relevant tables in chapter 5 of the geochemistry.  Detection limits of most trace elements 

analysed were equal to, or less than 0.1 ppm, except for Th and Co (0.2 ppm), Sr (0.5 ppm), Sc 

and Zn (1 ppm), and V (8 ppm). Most of the REE had detection limits less than or equal to 0.05 

ppm, with the exceptions being Nd (0.3 ppm), and La and Ce (0.1 ppm).  

 

 

 

 

 

 Figure 3.1 Illustration of the polirized microscope used for petrographic study. (a): Reflected light 

microscope; (b): transmitted light microscope.
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4. CHAPTER IV 

LITHOLOGICAL DESCRIPTION  

4.1 Introduction  

The results obtained from core and petrographic observations are reported together in order to 

avoid duplication.  A summary of the borehole locations within the extensions of the orebody are 

shown both in Figure 4.1 and listed in Table 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H435 
Plate 

5.6: Thin H493 H573 H563 

H582 

Figure 4-1: Three lenses of the Hondekloof prospect on the simplified geological map of the 

Kliprand area. (Modified after Macey et al., 2011). 
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Table 4-1: List of boreholes examined and their location within the orebody 

Location: Borehole ID 

Eastern extension: H563, H582 

Central extension: H493, H573 

Western extension: H435, H445 

 

Figure 4.1 is a schematic map showing the surface delineation of the Hondekloof prospect and the 

locations of the three gossanous outcrops for which the lateral extensions of the Hondekloof 

orebody (on the surface) is defined (Macey et al., 2011). The lithologies are firstly described 

individually in order to give their characteristics and are secondly shown on simplified modelled 

strip logs in order to relate their vertical distribution in various boreholes. The classification and 

nomenclature of the lithologies are based on the criteria specified in chapter 3. Effort was also 

made to summarize the petrographic descriptions (mineral composition, grain size, textures etc.) 

of all the lithologies in Table 4.2. To achieve a more meaningful description of lithologies and 

acknowledge their highly metamorphosed nature, the rocks are named in accordance with the 

classification scheme of the British Geological Survey (Robertson, 1999) as adopted by Bailie et 

al. (2010b).  

4.2 Meta-gabbronorite 

4.2.1 Core description 

The meta-gabbronorite shows a weak to moderate foliation as well as numerous variations in the 

way in which it occurs in the different boreholes. Four varieties are present in the boreholes listed 

in Table 4.1.  

Certain varieties display a dark-brown to green colouration in which the biotite content is high 

(20-25 Wt.%) (Plate 4.1a). Other varieties, especially those hosted in borehole H582, have a 

generic dark green colouration and contain a large amount of pyroxene (25-30 Wt.%) (Plate 4.1b). 

Some are also highly mineralized (sulphide content = 20-35 wt.%), with greater amounts of 

pyrrhotite and pyrite as well as lesser amounts of pentlandite and chalcopyrite (Plate 4.1c). An 
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additional variety, here termed a meta-norite (Plate 4.1d), is also present, which specifically occurs 

in borehole H193.   

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Petrographic description 

The meta-gabbronorite is dominated by two pyroxenes, with hypersthene, which hosts several 

inclusions of hornblende, biotite and opaque minerals, the more abundant. Two metamorphic 

textures, firstly granoblastic, and secondly decussate, consistently occur in the meta-gabbronorite. 

There are also two generations of biotite with different grain shapes, a euhedral and an embayed 

type of biotite. The latter type is uncommon and, together with hornblende, occurs as replacement 

products of orthopyroxene. Hornblende alone also replaces the orthopyroxene locally. A sample 

reported as meta-norite (Plate 4.2a) from borehole H493, is characterized by only having a single 

b a 

s

e

s

e

Plate 4-1: Core photographs of the meta-gabbronorite. Photos a, b and c show the different varieties of the 

meta-gabbronorite. Photo d shows the variety described as meta-norite. 
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type of pyroxene (orthopyroxene) (Plate 4.2a) rather than two types (orthopyroxene and 

clinopyroxene) which are seen in the meta-gabbronorite samples (Plate 4.2b).     
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Plate 4-2: a and b: Thin section photomicrographs of a meta-norite at the Hondekloof deposit. 

Notice the lack of clinopyroxene in the thin section (a). Granoblastic texture (nearly 

equigranular-equidimensional crystals) (taken in crossed polarized light). c and d)-Thin section 

photomicrographs of a mineralized metagabbronorite. Notice how sulphides account for 

between 40 and 45 % of the rock volume. Opx: orthopyroxene, Cpx: clinopyroxene, Plg: 

plagioclase, Qtz: quartz. Opq: opaque mineral. Coloured photographs (a and c) are taken in 

crossed polarized light, and black and white photographs (b and d) in plane polarized light.   
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Table 4-2: Summarized petrographic descriptions of the host lithologies to the Hondekloof deposit 

Litho-type Mineral assemblage in vol.% Textures,  alteration & grain sizes Boreholes  

    

Meta-gabbronorite Primary: orthopyroxene (15-20 vol.%) and 

clinopyroxene (5-8 vol.%), plagioclase (30-35 

vol.%), biotite (10-15 vol.%) 

Secondary: hornblende (± 4-5 vol.%), quartz (± 

4-5 vol.%), phlogopite (± 1-2 vol.%), andalusite 

(± 2-3 vol.%) and opaque minerals  

 (≤ 2-3 vol.%) 

Accessories: Sphene (titanite) and epidote 

Textures: granoblastic, decussate and 

poikiloblastic, weakly foliated 

 

Alterations: uralitization, biotitization 

 

Grain size: coarse grained (1.0 to 9.0 mm) 

H582, 

H573, 

H563, 

H493, 

H445, 

H435 

    

 

Garnetiferous 

quartzofeldspathic 

rock 

 

Primary: quartz (25-30 vol.%), alkali feldspar 

(orthoclase) (20-25 vol.%), garnet (almandine) 

(20-23 vol.%), plagioclase (5-6 vol.%), 

cordierite (5-6 vol.%), biotite (5-8 vol.%)  

Secondary: muscovite (3 vol.%), microcline (± 

2-3 vol.%) opaque minerals (± 1-2 vol.%), 

sillimanite (2-3 vol.%) 

Accessories: chlorite and sericite 

 

Textures: porphyroblastic and poikiloblastic 

 

Alterations: Sericitization and chloritization 

 

Grain size: coarse grained (≥ 7.0-9.0 mm) 

 

H563, 

H493, 

H445, 

H435 

 

Biotite gneiss 

 

Primary: alkali feldspar (orthoclase) (25-30 

vol.%), quartz (20-25 vol.%), cordierite (8-10 

vol.%), biotite (10-12 vol.%)  

 

Secondary: garnet (10-13 vol.%), plagioclase 

(5-6 vol.%), andalusite (± 1-2 vol.%) and 

opaque minerals (1-2 vol.%.) 

 

Accessories: epidote and sericite 

 

Textures: foliation, granoblastic, poikiloblastic, 

recrystallized and intracrystalline deformation 

textures 

 

Alterations: Sericitization, chloritization and 

saussuritization  

Grain size: fine to medium grained (1.5 to 0.1 mm) 

 

H582, 

H563, 

H493, 

H445, 

H435 
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 Table 4.2 (Cont.) Summarized petrographic descriptions of the host lithologies to the Hondekloof deposit  

    

Litho-type Mineral assemblage in vol.% Textures,  alteration & grain sizes Boreholes  

    

Feldspathic biotite 

garnet gneiss 

Primary: garnet (15-17 vol.%), orthoclase (22-

26 vol.%), quartz (26-32 vol.%), biotite (8-10 

vol.%). 

 

Secondary: sericitized plagioclase (4-7 vol.%), 

microcline (1-2 vol.%), staurolite (3-4 vol.%), 

cordierite (3-4 vol.%)  

 

Accessories: calcite, apatite, pyrophyllite 

 

Textures: foliation, poikiloblastic, granoblastic 

and vermicular textures 

 

Alterations: Sericitization 

 

Grain size: fine to medium (2.3 to 3.0 mm) 

H563 

Pink gneiss Primary: orthoclase (30-35 vol.%), quartz (15-

20 vol.%), biotite (20-25 vol.%), cordierite (10-

13 vol.%),  

 

Secondary: microcline (± 2-3 vol.%), garnet (± 

5-6 vol.%), sericitized plagioclase (± 5-6 vol.%) 

and opaque minerals (± 1-2 

vol.%).Accessories: N/A 

Textures: foliation  

 

Alterations: Sericitization, plagioclase alteration 

to clay minerals 

 

Grain size: fine to medium grained (≤ 2.5 to 1 mm) 

 

H582, 

H573, 

H563 

 

Meta-syenite 

 

Primary: alkali feldspar (60-65 vol.%), biotite 

(10-12 vol.%), sericitized plagioclase (5-10 

vol.%), orthopyroxene (3-5 vol.%), quartz (3-5 

vol.%), hornblende (±5-10 vol.%),   

Secondary: opaque minerals (≤ 1-1.5 vol.%) 

Accessories: chlorite and epidote 

 

 

Textures: interlocking, decussate 

 

Alterations: chloritization, uralitization and 

saussuritization. 

 

Grain size: coarse grained (5 to 6 mm) 

 

H573, 

H435 

Enderbite Primary: plagioclase (30-35 vol.%), orthoclase 

(35-40 vol.%), orthopyroxene (5-10 vol.%)  

 

Secondary: microcline (3-4 vol.%), quartz (4-5 

vol.%), sulphides (5-10 vol.%). 

Accessories: epidote   

Textures: interlocking, decussate and 

poikiloblastic  

 

Alterations: Sericitization and saussuritization. 

Grain size: coarse grained (2.0 to 6 mm) 

H582, 

H493 
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4.3 Garnetiferous quartzofeldspathic rock  

4.3.1 Core description 

The garnetiferous quartzofeldspathic rock is a light coloured, coarse grained, garnet-rich unit.  

Garnet porphyroblasts commonly occur in large (2-3 cm) aggregates and give the rock a 

conspicuous, spotted appearance (Plate 4.3a). The garnet porphyroblasts, furthermore, host 

various inclusions of biotite, muscovite and, locally, sillimanite, and are characteristically 

poikiloblastic (Plate 4.3b). Mafic minerals, such as pyroxenes and amphibole, are lacking and 

the rock has the largest grain size of all the lithologies encountered in the different boreholes. 

Consequently, it is consistently porphyroblastic throughout. Although quartz and alkali 

feldspar are the major minerals present, locally they may constitute less than 45wt.% in some 

boreholes (Plate 4.3b); in these cases garnet constitutes up to 50wt.% of the rock volume. Many 

of the varieties of this garnetiferous quartzofeldspathic rock commonly occur as thickened 

veins (melt products) within the other reported litho-types.   

 

 

 

 

 

 

 

4.3.2 Petrographic description 

The garnetiferous quartzofeldspathic rock is characterized by containing remnants of several 

minerals (such as orthoclase and biotite) which have cannibalized to form almandine garnet 

(Plate 4.4). The garnet has also grown much larger than the other minerals (a poikiloblastic 

texture) (Plate 4.4a). Polygonization texture is also common, especially in quartz-dominated 

samples. Undulose extinction is consistent and well displayed where quartz and orthoclase are 

abundant. Orthoclase porphyroblasts show internal fracturing indicating intracrystalline 

deformation. Nearly all the minerals are angular to sub-angular in shape, with the exception of 

a B 

Plate 4-3: Core photograph of the two varieties of the garnetiferous quartzofeldspathic rock. 
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garnet, which is euhedral (Plate 4.4a). Weathered orthoclase is sericitized (Plate 4.4a), whilst 

chlorite replaces biotite (Plate 4.4a). 
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Plate 4-4: Thin section photomicrographs of a garnetiferous quartzo-feldspathic rock from the 

Hondeklood deposit. Notice how the garnet porphyroblasts define both the porphyroblastic and 

poikiloblastic metamorphic textures in the rock (a). The red arrow in photo a indicates undulose 

extinction in quartz. The red arrow in photo c indicates how almandine garnet ((Mg, Fe, 

Mn)3AlSi3O12)  has been overgrown by orthoclase (KAlSi3O8). Two alteration processes are well 

displayed in photo c: (1) biotite → chlorite and (2) Plagioclase → sericite. Abbreviations: Grt: 

garnet, Bio: biotite, Qtz: quartz, opq: opaque mineral, Ser-plg: sericitized plagioclase, Orth: 

orthoclase. Ser-orth: sericitized orthoclase.Photos a and c (cross polarized light), and b and c 

(taken in plan polar). 
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4.4 Biotite gneiss 

4.4.1 Core description 

The biotite gneiss is a banded, quartzofeldspathic gneiss showing distinctive leucocratic and 

melanocratic sets of bands. The leucocratic bands comprise quartz and alkali feldspar, and the 

melanocratic bands are composed of biotite, hornblende and epidote. There are four varieties 

of this biotite gneiss (established on the basis of distinctive foliation styles). The first variety 

shows a unique type of up-dip folding foliation fabric (with symmetrical micro-limbs on the 

folds) (Plate 4.5a). The second variety displays a simple type of streaky foliation fabric in 

which there is a clear segregation between the felsic and mafic minerals (quartz + alkali 

feldspar vs. biotite + hornblende, respectively) (Plate 4.5b). The third variety shows open box-

like fold foliation fabrics in which the biotite content decreases incrementally up-dip as 

compared to the first two varieties (Plate 4.5c). The fourth variety has poorly developed folding 

foliation bands as well as having a lower biotite content compared to the third variety, but, in 

addition, has variable amounts of garnet porphyroblasts present (Plate 4.5d). There are also 

sections, locally, where some varieties of this biotite gneiss, as well as those of the feldspathic 

biotite garnet gneiss, show some melt segregations within them. 

 

 

 

 

 

 

 

 

 

 

 

a b 

c d 

Plate 4-5: Core photographs showing the varieties of the biotite gneiss. .a. variety1; b. variety 2; c. variety 3; 

d. variety 4     
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4.4.2 Petrographic description 

The biotite gneiss contains similar type of orthoclase and cordierite which are dusty and are 

showing speckled microscopic appearances. Sericitization is common, in which the alkali 

feldspars have been variably altered to sericite. Saussuritization, with epidote replacing 

plagioclase, also occurs. Biotite is chloritized to varying degrees but less pervasively than the 

other alterations reported. A penetrative foliation fabric is evident and common in most 

samples, and is defined by the elongation and alignment of the biotite grains (Plate 5.6a & b). 

A granoblastic texture is also common, with the garnet and andalusite being characteristically 

poikiloblastic. Minerals appear to have been strained and have been subjected to 

recrystallisation, as indicated by the amalgamation of small strained sub-grains to generate a 

coalesced texture in some samples. An intracrystalline deformation texture is also pervasive, 

as indicated by the presence of internal fracturing within the alkali feldspars (orthoclase). 

Furthermore, andulose extinction is also common as evidence of the fact that the minerals have 

been strained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Qtz 

Gnt 

Orth 

Bio 

Crd 

Qtz 

Gnt 

7.0 mm 

a b 

Plate 4-6: Thin section photomicrographs of a biotite gneiss from the Hondekloof deposit. The 

red arrows in photo c indicate a coalescence texture where strained-sub-grains recrystallized 

to form large strain free quartz grains. Notice how each sub-grain goes extinct at a different 

angle. Photograph a) and b) are shown in cross polarized light and plane polarised light 

respectively. Grt: garnet, Qtz: quartz, Bio: biotite, Orth: orthoclase, Crd: cordierite.  
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4.5 Feldspathic biotite garnet gneiss 

4.5.1 Core description 

The feldspathic biotite garnet gneiss preserves several features, such as post-tectonic garnet 

porphyroblasts which overgrew the foliation texture defined by the biotite. The garnet grains 

are generally clustered together with inclusions of both quartz and alkali feldspar as well as 

biotite. There are four varieties of this biotite gneiss among which different characteristics are 

described in the different boreholes (Plate 4.7a-d). One of these varieties has large amounts of 

both alkali feldspar and biotite and displays a weathered brown colouration (Plate 4.7a). Some, 

especially those hosted in boreholes H445 and H435, have penetrative fabrics as well as large 

and well-developed garnet porphyroblasts (Plate 4.7b). Other equivalents also have a 

conspicuous, spotted appearance with lower biotite contents and greater alkali feldspar contents 

(Plate 4.7c and d). The latter variety is also coarse grained, and furthermore have garnets which 

are sparsely distributed.   
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Plate 4-7: : Core photographs showing different variations of the feldspathic biotite garnet gneiss. Variety1 

(a), variety 2 (b), variety 3 (c), variety 4 (d). 
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4.5.2 Petrographic description 

The feldspathic biotite garnet gneiss preserves features that are similar to the biotite gneiss. It 

has sections with large amounts of almandine garnet which indicate syn-kinematic growth 

(rotation) (Plate 4.8a). There are crystals of plagioclase and quartz which have cannibalized to 

form myrmekitic intergrowth with vermicular textures (Plate 4.8b). Garnet is characteristically 

poikiloblastic, hosting quartz, sulphides (pyrrhotite) and pyrophyllite as inclusions (Plate 4.8a). 

Fine-grained calcite grains occur within small tension gashes and are associated with apatite as 

accessory minerals. Most samples show alteration of alkali feldspars (such as orthoclase) which 

are severely sericitized. Metamorphic textures, notably granoblastic and vermicular, locally 

occur in sections which are garnet-poor.     
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Plate 4-8: Thin section photomicrographs of the feldspathic biotite garnet gneiss from the 

Hondekloof deposit. The red arrow shown in photo a shows rotation as sign of a syn-kinematic 

growth. That in photo (c) shows the development of vermicular texture of a myrmekite. Orth: 

orthoclase, Qtz: quartz, Bio: biotite, Mk: mermekite, Grt: garnet,slph: sulphide. 
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4.6 Pink gneiss 

4.6.1 Core description 

The pink gneiss is a pink coloured, equigranular, granoblastic, foliated quartzofeldspathic 

gneiss. The foliation is defined by quartz and alkali feldspar that are flattened (Plate 4.9a). 

Alkali feldspar grains are heterogeneously distributed, particularly in terms of the grain size 

distribution. For example, the grains become fine-grained where the biotite content is high, and 

medium to coarse grained as the biotite content decreases. Biotite also exhibits some intrafolial 

foliation fabrics as they folded between the foliation bands (Plate 4.9b). The pink gneiss only 

occurs in two varieties. The first is medium grained and has a pink colouration (Plate 4.9a), 

with the other fine grained and having a pink to weathered brown colouration (Plate 4.9b).  

 

 

 

 

 

 

 

4.6.2 Petrographic description 

The pink gneiss is marked by the absence of mafic minerals, such as amphibole, and by the 

absence of biotite in some samples. This results in a high quartz, alkali feldspar (orthoclase) 

and cordierite content in samples where biotite is absent, or present in minor amounts (Plate 

4.10a). Sericitic alteration is common and occurs as an alteration of plagioclase and alkali 

feldspar in different samples. Plagioclase alteration to clay minerals is also seen, but is 

localized and less common. The pink gneiss, however, does not show as much textural variation 

as shown by the other gneisses investigated, with the foliation remaining consistent in both 

hand specimen and thin section (Plate 4.10a). Two foliation fabrics are present, one defined by 

mineral recrystallization into smaller grain aggregates (Plate 4.10a), and the second by 

localised mineral elongation and alignment of biotite grains (Plate 4.10d). In addition, where 

biotite becomes less abundant the grain size also becomes progressively equi-dimensional 

a 
b 

Plate 4-9: The two varieties of pink gneiss; a. variety 1 and  b. variety 2. 
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(Plate 4.10c). Undulose extinction in both quartz and orthoclase indicate strain in these mineral 

grains. The grain size also varies from fine to coarse grained (with a bi-modal grain size 

distribution) in biotite-rich samples (Plate 4.10a), and is more typically medium grained (with 

an equi-dimensional grain size distribution) in samples which are biotite-poor (Plate 4.10c) 
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Plate 4-10: Thin section photomicrographs of a pink gneiss from the Hondekloof deposit. The 

red arrows indicate the plane of foliation marked by mineral recrystallization into smaller grains 

(in photo a), and that marked by mineral elongation and alignment (in photo c). Ser-plg: 

sericitized plagioclase, Qtz: quartz, Bio: biotite, Mic: microcline. Crd: cordierite, Orth: 

orthoclase. Photos a and c are taken in crossed polars and b and d in plane polarized light. 
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4.7 Meta-syenite 

4.7.1 Core description 

The meta-syenite is a leucocratic rock consisting of more than 60 wt.% of alkali feldspar (Plate 

4.11a). The alkali feldspar occurs in association with quartz, plagioclase and biotite, and lesser 

amounts of hornblende and pyroxene. The alkali feldspar is typically euhedral and 

characteristically translucent. The rock furthermore displays fracturing of the alkali feldspar 

crystals and is generically coarse grained. Two varieties are shown in Plate 4.11a and b, and 

are different based on their distinctive colouration (pink and green, respectively). Both varieties 

are thin, and occur as thin layers of between 0.9 and 1 m within the meta-gabbronorite (and 

most especially in borehole H435).  

 

 

 

 

 

 

 

4.7.2 Petrographic description 

Orthoclase phenocrysts display an interlocking texture which is indicative of extensive 

recrystallization (Plate 4.12a). The orthoclase phenocrysts have angular to sub-angular shape, 

whereas plagioclase, biotite and hornblende display embayments (Plate 4.12a). The texture is 

generally decussate, with fracturing within orthoclase (Plate 4.12a). Undulose extinction is 

present, but is localized within individual grains of plagioclase and quartz. Partial alteration of 

hornblende to biotite is seen but is uncommon and localized (Plate 4.12a & b). Alteration 

involving hornblende, biotite and chlorite is shown in Plate 4.12. There is also fracturing 

present within individual orthoclase grains with a sense of shear (rotation).  

 

 

a b 

Plate 4-11: Core photographs showing the meta-syenite of the Hondekloof deposit. a. variety 1; b. variety 2. 
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4.8 Enderbite 

4.8.1 Core description 

The enderbite is a recrystallized, megacrystic, leucocratic, sulphide-rich rock occurring as a 

vein. It consists of alkali feldspar, quartz and plagioclase along with minor amounts of 

orthopyroxene, with or without hornblende and biotite. Some varieties, especially those 

examined in borehole H 582, are devoid of hornblende and biotite (Plate 4.13a). Generally it 

is coarse grained, with heterogeneous granoblastic textures, and consists of large alkali feldspar 

grains alongside quartz grains which are randomly oriented. This enderbite, furthermore, 

displays both a spotted appearance and a pegmatitic texture, and occurs, to some extent, as a 

pegmatite (Plate 4.13b). Sulphides, mostly in the form of pyrite, are present, but are mostly 

disseminated and may occur in volumes of between 10 to 20wt. % in some borehole intervals 

(Plate 4.13a). This lithology, like the garnetiferous quartzofeldspathic rock (see section 4.13) 

occurs as a product of partial melting (as it occurs as a vein with a large amount of coarse grain 

quartz and alkali feldspar).     
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Plate 4-12: Thin section photomicrographs of the meta-syenite of the Hondekloof deposit.. Orth: 

orthoclase, Qtz: quartz, Bio-Hbl: hornblende → biotite, Chl-Hbl: hornblende → chlorite. 
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4.8.2 Petrographic description 

Saussuritization is common in which plagioclase has altered into epidote. Sericitization is 

pervasive as both alkali feldspar and plagioclase are altered to varying degrees to form sericite. 

Pyroxene porphyroblasts are poikiloblastic and contain inclusions of fine grained orthoclase 

(Plate 4.14a). Most grains of plagioclase are between 2.0 to 10 mm, with some being as large 

as 15mm. A coarse-grained interlocking texture is present due to the angular and elongated 

plagioclase grains. The plagioclase grains also display decussate and poikiloblastic textures 

which are common but localized (Plate 4.14a). The two samples of the enderbite have different 

mineralogical compositions in terms of felsic and mafic minerals. One has high alkali feldspar 

contents and is less mineralized (borehole H 582), whereas the one in borehole H493 is 

orthopyroxene-rich and is mineralized.   
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Plate 4-13: Core photographs displaying the enderbite of the Hondekloof deposit. 

Plate 4-14: Thin section photomicrographs of the enderbite from the Hondekloof deposit. Notice 

the even distribution of the feldspars (plagioclase and alkali feldspar). Opx: orthopyroxene, 

Orth: orthoclase, Plg: plagioclase, Slph: sulphide. Photo a is shown in crossed polars and b in 

plane polarised light. 
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4.9 Summary  

 Strip logs (Fig. 4.2) are given in order to illustrate the distribution of the various lithologies in 

the different boreholes. Additional description of the geology of the borehole locations is 

provided in section 2 of the appendices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-2: Strip logs showing the vertical distribution of the different lithologies examined in the different boreholes.  

 

 

 

 



The lithogeochemical characterization-Hondekloof Ni mineralization  

 

Reddy Bokana 2015 41 

4.10 Estimation of the metamorphic grade 

Evidence obtained from core and petrographic examination (Table 4.2) clearly indicates that 

most of the lithologies have undergone severe degrees of metamorphism. Previous studies by 

Albat (1984) and Waters (1986b, 1989) all point to the temperature and pressure conditions 

attaining granulite facies and partial melting conditions (P-T of 750–870°C and 4.5-6 kbar). 

The metamorphic petrogenesis guide of Bucher and Grapes (2011) (Fig. 4.3), employed in this 

study to estimate the metamorphic pressure-temperature (P-T) conditions, likewise estimated 

similar granulite facies conditions. The estimation of the temperature and pressure conditions, 

as well as the metamorphic mineral assemblages that formed by prograde and retrograde 

reactions, is shown by red and green ellipses, respectively, for rocks of mafic composition, 

namely the metagabbronorite, as determined from geochemical analyses, found in the study 

area (Fig. 4.3).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3: A generalised pressure and temperature petrogenesis phase diagram used to estimate the 

degree of metamorphism from the meta-gabbronorite of the Hondekloof deposit (after Bucher and 

Grapes, 2011). The triangular diagrams are ACF diagrams showing the predominant metamorphic 

assemblages (shaded) at varying degrees of pressure and temperature (P-T) conditions. The ACF 

diagram in the red circle is the representative or estimated prograde metamorphic conditions (based 

on mineralogy), and the corresponding prograde mineral assemblage (ACF diagram in the green circle 

– based on overprinting retrograde assemblages) for the meta-gabbronorite. Temperature: ~ 750- 

870oC; Pressure: ~4-6 kbar. The green ellipse represents the approximate P-T conditions for the 

retrograde assemblages (Temperature: 450-550oC, and Pressure: 2-3.5 kbar). Note that the 

metamorphic grade is estimated here by comparing the mineral paragenesis.  
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Estimated prograde conditions: Temperature: 750 – 850oC  

        Pressure: 4-6 kbar 

Prograde mineral assemblage: quartz, plagioclase, 

clinopyroxene, garnet, orthopyroxene and biotite (1)                                    

 

Estimated retrograde conditions:  Temperature: 450 – 550oC  

        Pressure: 2-3.5 kbar 

Retrograde mineral assemblage: andalusite, hornblende, 

epidote, and biotite (2).                                             

 

The above results are solely those estimated from the meta-gabbronorite samples. The meta-

gabbronorite is the only lithology in the boreholes with appropriate composition (chemically 

and mineralogically) to be able to estimate the P-T conditions, whereas the other lithologies, 

being dominantly quartzofeldspathic in composition, do not lend themselves to estimates of 

the P-T conditions (e.g. Bucher and Grapes, 2011). Multiple ACF diagrams in the petrogenetic 

grid given in Fig. 4.3 are used to show the sensitivity of mafic minerals (as they appear or 

disappear) during varying degrees of metamorphism. The meta-gabbronorite, being the only 

mafic lithology examined for this investigation, is of an appropriate composition (both 

chemically and mineralogically) to be able to determine the P-T metamorphic conditions. The 

peak prograde P-T conditions, therefore, indicate that the metamorphism likely occurred at 

depths of at least 20 km within the crust, on the basis of the temperature for which the prograde 

minerals have equilibrated. However, these conditions depend mainly on what the geothermal 

gradient in the Kliprand area was at the time of metamorphism. Albat (1984) assumed that the 

geothermal gradient of Namaqualand during Proterozoic times was around 35oC /km. A 

simplified method, used by Albat (1984), taking into account the estimated temperature (T) of 

the prograde minerals from the observed prograde assemblage and the estimated geothermal 

gradient of the study area (GT =  35oC /km), has therefore been used to estimate the depth of 

metamorphism through the equation: 

Dm = T/ GT  (4.1) 

where Dm is the depth of metamorphism, T is the estimated temperature during metamorphism, 

and GT is the estimated geothermal gradient of the study area. 

Therefore: depth = 750oC /  35oC /km = 20 km  
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 The prograde assemblages likely formed by a reaction, such as: 

Qtz + Bio + Hbl = Qtz + Bio + Plag + Cpx + Opx + Grt + H2O (4.2) 

The above reaction corresponds to the series of metamorphic reactions proposed by Waters and 

Whales (1984) for the granulite facies and anatexis conditions in the southwestern section of 

the Namaqua Sector. Similar reactions of metamorphic anatexis are also suggested by Stevens 

et al. (1997). The retrograde assemblage for the meta-gabbronorite likely formed by such a 

reaction as: 

Qtz + Bio (1) + Plag + Opx + Cpx + H2O = Hbl + And + Bio (2) + Epid (4.3) 

during cooling. Evidence of a prograde dehydration reaction, such as those suggested by 

Waters and Whales (1984), for example: Bio + Plag + Qtz = Opx + Cpx + Plag + H2O (4.4) 

are applicable in the present study for the case of the enderbite and meta-gabbronorite (based 

on reaction 4.4). It is thus assumed that the enderbite likely formed as a melt product of 

prograde dehydration metamorphism from the meta-gabbronorite. Similar examples of 

metamorphic reactions marking anatexis, are: Bio + Sil + Qtz + Plag = Grt + Kfs + H2O (4.5) 

which is produced in the biotite gneiss as well as the feldspathic biotite garnet gneiss for which 

the garnetiferous quartzofeldspathic rock seems to have developed as a melt product. 
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5. CHAPTER V 

GEOCHEMISTRY 

5.1 Introduction 

The representative major and trace element analyses of the examined samples were obtained 

(Table 5.1 & 5.2) and used to determine the chemical composition of the rocks as well as infer 

their origins (source or provenance), protoliths and tectonic settings. However, because of the 

high grade metamorphism experienced by the investigated rocks in the study area, most 

elements, particularly some of the major elements, such as SiO2, MgO, the alkalis and CaO, 

along with the large ion lithophile elements (LILE), were used with caution knowing that their 

present concentrations in the rocks likely may not reflect their initial concentrations in the 

protoliths.  It is likely that the rocks have experienced some compositional changes due to 

elements mobility during metamorphism (Rollinson, 1993; Bailie et al., 2010). Consequently 

many of the elements were used with care and a greater reliance was placed on the high field 

strength (HFS) and transition elements (Ti, Zr, Hf, Nb, Th, Ta, Y, Cr, P, Ni, Sc), as well as the 

Rare Earth Elements (REE), as most of these are typically treated as being immobile during 

metamorphic processes (e.g. Winchester and Floyd, 1977; Pearce, 1982, 1996; Jenner, 1996; 

Hollings and Wyman, 2005), and therefore can be considerably useful for seeing through the 

effects of metamorphism or metasomatism. Nonetheless, the effects of element mobilization 

may still be influential on the results.     

5.2 General classification 

All the varieties of gneisses examined, namely the biotite gneiss, feldspathic biotite garnet 

gneiss and pink gneiss, as well as the meta-syenite generally have high SiO2, Na2O, and P2O5, 

moderate to high K2O, intermediate to high Al2O3, and low MgO, CaO and TiO2, and show 

variability in trace element concentrations (Fig. 5.1 and b). The meta-gabbronorite, in contrast, 

shows moderate to high MgO, intermediate to high Fe2O3 and CaO, high TiO2 and Cr2O3, and 

low SiO2, Na2O, and K2O contents (Table5.1 and 5.2).  In addition, some of the meta-

gabbronorite samples examined (H 563-3c and H493-1a, Table 5.2) have high Th (339.16-

345.38 ppm), and high U (8.93-9.61 ppm) contents, indicating that they are highly radioactive. 

The enderbite and garnetiferous quartzofeldspathic rock consistently show a significant range 

in some of their major and trace element concentrations,  but only two samples were analysed 

for each of them (Table 5.2). The two samples of enderbite differ in terms of their major 

 

 

 

 



The lithogeochemical characterization-Hondekloof Ni mineralization  

 

Reddy Bokana 2015 45 

element concentrations, with one sample (H 493-2)  being felsic (having high SiO2 (75.74 

wt.%), low Fe2O3 (5.26 wt.%) and fairly low CaO (3.28 wt.%) contents, with the other (H582-

5) being more mafic in composition (with high Fe2O3 (10.57 wt.%), fairly high CaO (6.56 

wt.%) and low SiO2 (50.75 wt.%) contents) (Fig. 5.1). The two garnetiferous 

quartzofeldspathic rock samples also show high variability in terms of Fe2O3 (6.63-18.24 

wt.%), SiO2 (56.62-63.61 wt.%) and K2O (0.81-4.56 wt.%) contents (Fig. 5.1).   

Figure 5.1 & 5.2 show multiple bivariate plots using MgO as an abscissa plotted against all the 

major oxide-elements (Na2O, K2O, Al2O3, CaO, Fe2O3, P2O5 and TiO2), as well as MgO plotted 

against some of the selected trace and transition elements (Cr, Ni, Rb, Sr, Y, Zr, Ba, La, and 

Ce). It is worth noting that the specific set of bivariate diagrams plotted with MgO as the 

abscissa may, however, not be as useful a discriminant function for some of the lithologies 

investigated (e.g. all the gneisses), as it is for the meta-gabbronorite.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5-1: Bivariate plots using MgO in wt% as the abscissa plotted against all the major oxides. The 

arrows indicate the low silica sample for both the meta-gabbromorite (H 582-6, H 493-1c) and 

enderbite (H582-5). 
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Linear relationships, with negative correlations between MgO and the majority of the major 

and trace elements (SiO2, Al2O3, CaO, K2O, Na2O, P2O5, Rb, Sr, Y, Ba and Ce), along with a 

positive correlation for such elements as FeOtotal, Cr, Ni and Mg# are clearly shown on Figure 

6.1a and b respectively. The negative correlations, as indicated by such elements as Al2O3, CaO 

and K2O, as well as Na2O, P2O5 and SiO2, correspond with the presence of two pyroxenes in 

the meta-gabbronorite (Table 4.2), particularly as some of these elements would act 

incompatibly toward such minerals, whilst MgO would act in a compatible manner toward 

them. FeOtotal, in turn, shows a positive correlation with MgO in the meta-gabbronorite, as does 

TiO2 (Fig.5.1). Furthermore, some samples of the meta-gabbronorite (H 582-6, H 493-1c) also 

show very low silica (35.87 wt.%), and fairly high MgO (13.20 wt.%) contents, and fairly 

intermediate Mg# (100MgO/(FeOTotal + MgO)) (40-60), indicating an overall primitive 

composition as compared to the other samples investigated (Fig. 5.1; Table 5.1). 

 A collective trend is also shown on the plots of SiO2 vs. MgO, Na2O vs. MgO and K2O vs. 

MgO, along with positive trends for the Fe2O3 vs. MgO plot (Fig. 5.1), for the gneisses, meta-

syenite, enderbite and garnetiferous quartzofeldspathic rock. There is a sharp negative 

correlation between SiO2 and MgO, a sharp positive correlation between MgO and Fe2O3, and 

increasing Na2O and K2O with decreasing MgO (Fig. 6.1). Furthermore, there is also a strong 

relationship (or good association) between some of the meta-gabbronorite samples and those 

of the enderbite (particularly the more mafic one, H 582-5) in many of the bivariate plots shown 

on Fig. 5.1 and 5.2.       

Cr and Ni show some degree of positive correlation with MgO for the meta-gabbronorite 

samples (Fig. 5.2). In addition, positive correlations were also obtained when plotting Mg# vs. 

MgO, and negative correlations between MgO and Rb, Sr, Ba, La, Ce and Zr for the meta-

gabbronorite samples (Fig. 5.2). Figure 5.1b also displays all the samples of the gneisses, meta-

syenite and garnetiferous quartzofeldspathic rock. These rocks display Zr, Ce, Y and Rb 

increasing sharply with decreasing MgO content. However, the meta-syenite alone shows a 

high Sr, Rb, La, Ba and low Cr and Ni content. The gneisses, including the garnetiferous 

quartzofeldspathic rock, have a relatively high Zr content.   

Note that sample H 582 has been excluded from the geochemical classification diagrams 

because it sulphide-rich and therefore affect the geochemical classification of the meta-

gabbronorite.  
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Figure 5-2: Bivariate plots with MgO in wt.% as the abscissa plotted against some selected trace 

elements 
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Table 5-1: Major element composition of the host rocks to the Hondekloof deposit 

Lithology Sample ID SiO2 Al2O3 TiO2 Fe2O3 MgO CaO Na2O K2O MnO P2O5 Cr2O3 L.O.I. Total  

Meta-gabbronorite                           

  H582-4 47.98 13.67 2.89 10.67 6.36 5.95 2.96 1.42 0.17 0.88 0.03 7.12 100.1 

  H582-6 35.87 8.39 2.09 35.9 7.08 4.29 1.29 1.03 0.17 0.56 0.05 4.16 100.88 

  H573-2 50.54 14.73 1.75 12.3 5.5 6.55 3.16 2.61 0.22 0.19 0.04 1.73 99.32 

  H563-3a 49.12 6.85 1.39 18.7 16.42 3.39 0.33 1.48 0.25 0.37 0.17 0.75 99.22 

  H563-3b 50.37 14.6 3.07 9.2 4.18 8.02 2.28 2.26 0.12 0.8 0.05 4.29 99.24 

  H563-3c 42.76 18.2 3.75 11.09 7.78 3.8 2.07 6.01 0.05 0.7 0.04 1.32 97.57 

  H493-1a 43.64 14.61 4.14 14.04 9.78 4.47 1.56 4.2 0.11 0.95 0.07 0.86 98.43 

  H493-1b 49.28 14.15 2.49 11.92 9.11 7.15 2.03 1.11 0.15 0.61 0.06 1.33 99.39 

  H493-1c 50.83 9.13 2.23 14.56 13.2 4.73 1 1.85 0.19 0.51 0.11 1.08 99.42 

  H493-1d 50.48 16.54 2.11 13.8 7.34 6.75 1.42 0.96 0.19 0.28 0.02 0.16 100.05 

  H445-1a 51.18 15.06 2.97 10.73 3.81 6.54 2.76 3.66 0.14 1.01 0.01 0.95 98.82 

  H445-1b 52.26 15.5 3.03 9.98 3.32 5.13 2.44 4.36 0.11 1.24 0.01 1.75 99.13 

  H435-3 50.48 14.92 2.99 10.56 4.05 6.55 2.53 4.04 0.16 1.08 0.01 0.81 98.18 

Biotite gneiss                           

  H582-2a 66.71 14.02 0.6 6.32 1.96 1.61 2.66 3.59 0.08 0.08 0.04 1.39 99.06 

  H582-2b 63.04 15.77 0.92 7.4 2.53 1.8 3.14 3.44 0.11 0.07 0.04 0.84 99.1 

  H582-3 71.31 13.26 0.37 3.12 1.02 0.67 2.68 5.19 0.06 0.07 0.03 1.4 98.87 

  H563-4a 60.53 17.63 0.88 8.5 2.63 2 2.81 3.45 0.12 0.07 0.03 0.94 99.59 

  H563-4b 64.9 14.55 0.95 6.99 2.2 1.57 1.84 4.11 0.09 0.05 0.03 2.16 99.44 

  H563-4c 65.35 15.04 0.92 6.71 2.19 1.68 2.05 2.74 0.12 0.06 0.03 2.75 99.64 

  H563-4d 72.28 13.76 0.27 2.83 0.74 1.36 2.46 4.88 0.09 0.06 0.03 0.7 99.46 

  H563-4e 71.06 14.21 0.29 3.08 0.76 1.52 2.58 4.19 0.08 0.07 0.03 1.22 99.09 

  H493-3 60.93 17.13 0.75 7.45 2.42 1.89 3.16 4.3 0.1 0.11 0.03 0.92 99.19 

  H445-3 60.03 17.04 0.89 8.77 2.46 1.38 1.96 4.45 0.14 0.07 0.02 1.96 99.17 

Errors (1 Std. deviation)(in 

wt.%) 
0.05 0.29 1.31 0.16 0.72 0.04 1.92 3.26 1.25 1.22 0.05   2.45 99.33  
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Table 5-1 (cont.) Major element composition of the host rocks to the Hondekloof deposit 

Lithology Sample ID SiO2 Al2O3 TiO2 Fe2O3 MgO CaO Na2O K2O MnO P2O5 Cr2O3 L.O.I. Total 

Biotite gneiss                           

  H435-1a 59.03 17.54 0.86 6.72 2.85 1.62 2.68 5.15 0.04 0.1 0.02 2.67 99.28 

  H435-1b 66.74 14.5 0.94 5.86 1.86 1.87 1.88 3.31 0.06 0.09 0.03 2.23 99.37 

Feldspathic biotite garnet 

gneiss 
                          

  H563-2a 67.87 15 0.35 3.44 0.95 0.62 2.36 7.42 0.06 0.11 0.03 1.02 99.23 

  H563-2b 67.92 14.76 0.48 5.85 1.56 1.67 2.94 3.17 0.12 0.05 0.04 0.89 99.45 

  H563-2c 66.05 15.62 0.82 5.96 2.28 2.42 3.01 2.61 0.11 0.05 0.03 0.66 99.62 

  H563-1 63.81 16.85 1.02 4.01 1.91 2.16 2.82 5.71 0.03 0.19 0.03 1.04 99.58 

  H493-4a 59.09 15.89 0.82 8.38 2.49 2.23 2.15 3.82 0.13 0.07 0.03 4.19 99.29 

  H445-2 58.44 15.55 0.28 3.04 1.55 5.14 2.2 8.12 0.05 2.83 0.01 1.43 99.64 

  H435-2a 70.03 14.78 0.57 3.08 1 1.44 2.5 4.5 0.05 0.11 0.02 1.53 99.61 

  H435-2b 56.72 18.28 0.85 11.11 3.18 1.79 1.49 2.93 0.19 0.04 0.03 2.41 99.02 

Garnetiferous quartzofeldspathic rock                         

  H563-5 56.62 16.52 0.66 18.24 4.07 2.27 1.42 0.81 0.58 0.05 0.05 0.12 101.41 

  H493-4b 63.61 16.35 0.7 6.63 1.92 1.72 2.37 4.56 0.14 0.08 0.04 1.5 99.62 

Pink gneiss                           

  H582-1 73.68 12.6 0.32 2.14 0.38 0.48 2.3 6.55 0.01 0.12 0.03 0.77 99.38 

  H573-1 74.89 12 0.36 2.45 0.39 0.91 2.42 5.53 0.03 0.06 0.02 0.43 99.49 

Mineralized feldspathic rock                           

  H582-5 50.75 15.09 3.03 10.57 4.08 6.56 2.49 4.01 0.16 1.06 0.01 0.85 98.66 

  H493-2 75.74 8.44 0.44 5.26 2.18 3.28 1.72 0.66 0.05 0.61 0.04 1.17 99.59 

Meta-syenite                           

  H573-3 67.01 15.97 0.4 2 0.76 0.55 2.84 9.1 0.01 0.13 0.02 0.76 99.55 

  H435-4a 58.35 17.25 0.59 4.42 0.93 2.47 2.54 9.47 0.03 1.11 0 1.1 98.26 

  H435-4b 58.19 16.99 0.12 1.99 1.04 4.28 2.26 9.97 0.03 2.41 0 1.04 98.32 

Errors (1 Std. deviation)(in 

wt.%) 
0.05 0.29 1.31 0.16 0.72 0.04 1.92 3.26 1.25 1.22 0.05  2.45  99.33  
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Table 5-2: Trace element composition of the host rocks to the Hondekloof deposit 

Lithology Sample ID Sc V Cr Co Ni Cu Zn Rb Sr Y Ta Nb Mo Cs Ba Zr Hf 

Meta-gabbronorite                                 

  H582-4 25.34 L 249 32.16 56.34 10.42 150 74.37 309.4 39.73 1.17 17.36 1.66 1.83 665.6 377.4 8.93 

  H582-6 21.57 150.8 420.4 453.1 6897 621.2 234.1 27.49 301.7 24.51 0.79 10.24 6.55 0.59 540.1 278.1 7.03 

  H573-2 33.81 231.5 273 40.37 61.76 27.32 135.1 300.2 94.39 114.9 1.54 12.54 10.43 30 138.8 200.6 6.25 

  H563-3a 30.42 167 1198 68.13 377.9 29.92 414.9 50.89 183.9 25.38 0.46 6.98 2.71 3.71 501.2 274.2 5.89 

  H563-3b 25.29 192.1 370.5 31.01 80.32 46.25 255.7 146.4 323.8 43.27 1.51 23.17 6.23 3.91 638.9 772.2 19.36 

  H563-3c 20.09 260 296.7 35.05 77.79 16.3 234.9 412.1 251.3 62.44 2.44 41.37 2.84 10.4 1553 469.2 13.25 

  H493-1a 27.34 274.4 476.7 46.33 114.6 21.77 236.5 284.7 299.6 72.58 1.58 35.45 2.64 7.31 1247 450.1 10.81 

  H493-1b 27.8 197.9 471 42.76 105 20.02 151.2 33.48 545.2 30.06 0.68 10.19 3.01 0.88 786 385.7 8.21 

  H493-1c 32.15 207.7 795.4 62.16 210.1 46.92 169.3 83.13 275.3 36.37 0.74 10.87 3.54 2.12 740.2 480.9 16.7 

  H493-1d 34.85 277 167.8 46.58 55.57 14.36 239.5 81.51 159.2 30.92 0.54 8.18 4.59 8.87 141.3 184.2 5 

  H445-1a 33.33 220.8 121.3 24.67 35.12 20.97 155.6 151.3 709.9 79.6 1.95 33.38 4.91 1.21 1829 737.1 18.04 

  H445-1b 25.2 208.3 119.9 20.75 31.06 24.43 192.1 195.9 601.2 72.52 2.53 40.57 6.24 3.3 2284 468.7 13.05 

  H435-3 33.98 227.4 102.9 26 34.78 26.99 159 129.1 836.8 66.06 2.09 34.52 4.35 1.2 2587 809.9 19.73 

Biotite gneiss                                   

  H582-2a 22.49 111.8 336.2 14 41.71 51.46 86.59 140.4 174.9 75.15 0.69 10.19 20.31 1.77 640.3 391.5 12.04 

  H582-2b 23.4 148.7 330.5 16.82 45.84 53.01 130.3 135.9 165.4 49.2 0.86 15.27 17.91 3.95 688.6 304 9.13 

  H582-3 13.04 70.02 274.3 4.39 16.52 10.99 73.39 161 117.4 44.43 0.41 6.93 15.88 1.36 530.1 427.1 10.28 

  H563-4a 25.94 156.3 245.5 19.36 49.57 34.43 151.4 123.5 186.3 56.76 1.05 14.7 20.74 3.96 679.8 309.2 8.48 

  H563-4b 19.77 135.2 250.1 19.12 54.86 52.95 125.1 161.8 162.7 49.36 0.67 12.73 15.41 3.88 828.6 528.3 17.46 

  H563-4c 26.04 148.1 276.4 15.75 46.37 35.02 127.9 103.6 125.1 70.05 0.86 15.46 17.67 2.74 494.6 437.2 13.93 

  H563-4d 13.99 46.91 277 4.36 16.01 10.92 44.15 123.2 139.2 62.96 0.32 7.89 15.2 1.4 579.6 355.1 11.08 

  H563-4e 14.92 58.84 248 7.05 26.3 24.66 43.73 104.1 123.3 56.57 0.37 4.08 18.5 1.3 495.6 332.8 5.25 

  H493-3 21.86 143.4 255.3 17.2 45.95 42.24 139.5 163.1 172.4 54.74 0.95 13.89 16.88 3.89 728.3 305 11.08 

  H445-3 27.23 162.5 182.1 20.16 50.33 45.17 158.2 162.4 166.7 68.46 1.02 14.88 14.02 4.3 808.7 258.8 7.37 

  H435-1a 18.29 219.6 166.9 21.58 65.83 91.02 151.2 214 166.4 30.58 1 14 20.44 5.63 848.5 274.4 8.34 

  H435-1b 17.95 121.9 248.7 13.81 38.42 35.23 114 130 139.8 47.76 0.65 14.29 11.23 1.93 599.3 330 9.64 

Detection 

Limits 
Instrument DL 0.05 0.02 0.89 0 0.16 0.35 0.3 0 0 0 0 0 0 0 0 0 0 

  
Fusion method 

DL 
0.53 0.23 8.93 0 1.63 3.53 2.96 0 0 0 0.03 0 0 0 0 0 0 
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Table 5-2 (cont.) Trace element composition of the host rocks to the Hondekloof deposit   

Lithology Sample ID Sc V Cr Co Ni Cu Zn Rb Sr Y Ta Nb Mo Cs Ba Zr Hf 

Feldspathic biotite garnet gneiss                             

  H563-2a 11.37 143.9 245 8.75 37.17 21.47 127.2 239.8 314.2 26.7 0.73 14.14 12.69 3.63 1812 511.7 12.76 

  H563-2b 16.73 57.76 205.5 4.15 20.15 12.31 45.72 199.6 133.4 70.46 0.63 5.88 12.1 1.57 801.6 212.2 7.36 

  H563-2c 24.95 94.06 308.3 11.33 39.22 28.65 79.94 122.1 177.6 89.49 0.45 7.74 18.25 3.24 596.4 318.6 9.94 

  H563-1 22.92 128.6 383.9 13.12 118.4 18.47 95.58 141.9 193.9 86.17 21.54 14.76 11.43 5.14 452.7 387.7 10.81 

  H493-4a 21.29 148.1 263.3 23.07 56.88 64.23 260.7 140.4 159.1 49.29 0.79 13.55 20.39 3.12 776.7 364 9.69 

  H445-2 13.29 31.44 86.62 5.48 15.6 7.95 66.09 245.9 589.6 144.9 0.3 3.87 4.73 3.26 2495 230 7.32 

  H435-2a 13.08 53.7 247.5 6.08 30.81 11.48 146.4 146 198.7 31.62 0.7 11.82 12.52 1.93 840.7 260.2 7.11 

  H435-2b 34.8 168.2 272.1 25.5 63.85 51.44 156 142.3 147.7 83.02 1.34 18.47 20.99 5.5 599.5 504 11.89 

Garnetiferous quartzofeldspathic rock                           

  H563-5 85.16 189.9 387 27.15 71.24 36.73 145.6 54.1 93.87 52.94 1.07 12.4 29.03 6.04 111.2 493.3 15.21 

  H493-4b 25.77 105.6 279.9 11.82 35.19 25.46 114.6 132.7 204.6 71.72 0.59 10.59 16.91 2.09 988.4 247.5 9.37 

Pink gneiss                                   

  H582-1 8.95 45.77 241.7 3.43 11.27 10.46 51.31 249.9 39.41 17.82 0.27 3.98 14.95 1.82 245.2 315.5 8.56 

  H573-1 10.59 41.03 181.5 4.39 25.66 11.55 45.39 384.2 37.43 40.89 1.1 10.53 12.08 8.98 189.8 281.2 9.32 

Mineralized feldspathic rock                               

  H582-5 25.74 135.7 107.6 27.09 40.05 16.48 187.3 119.9 517 113.3 2.41 38.44 3.29 2.94 2274 90.78 1.42 

  H493-2 14.75 82.45 318.2 28.41 167 67.13 72.04 26.94 240.3 26.73 0.6 5.28 17.37 2.81 217.1 107.7 3.06 

Meta-syenite                                   

  H573-3 7.52 47.84 137.3 3.95 9.9 6.56 58.68 414.4 133.3 21.4 0.25 6.85 8.54 5.79 879.5 18.51 0.62 

  H435-4a 7.73 62.36 68.39 6.44 12.21 10.19 83.81 273.2 585.4 55.82 0.28 4.13 4.73 2.88 2902 100.9 2.65 

  H435-4b 7.28 13.57 40.88 3.96 10.29 8.14 26.5 251.4 643.2 98.33 0.188 1.56 2.64 2.32 2588 5.42 4.5 

Detection 

Limits 
Instrument DL 0.05 0.02 0.89 0 0.16 0.35 0.3 0 0 0 0 0 0 0 0 0 0 

  
Fusion method 

DL 
0.53 0.23 8.93 0 1.63 3.53 2.96 0 0 0 0.03 0 0 0 0 0 0 
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Table 5-2 (cont.) Trace element composition of Host rocks to the Hondekloof deposit 

Lithology Sample ID La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Pb Th U 

Meta-gabbronorite                                 

  H582-4 44.37 103.1 13.73 58.42 13.28 2.76 11.76 1.74 8.59 1.6 3.99 0.5 3.09 0.5 8.84 2.4 1.11 

  H582-6 28.67 63.71 8.18 35.19 7.28 1.98 6.1 0.97 4.83 0.97 2.74 0.38 2.29 0.33 29.53 1.29 0.68 

  H573-2 42.34 109.9 13.85 52.79 13.66 1.61 14.62 2.57 17.11 3.88 12.19 2 14.52 2.24 15.35 12.05 8.94 

  H563-3a 27.98 65.25 8.42 34.87 7.22 1.65 6.4 0.92 5.08 0.94 2.64 0.4 2.54 0.38 7.94 6.18 1.84 

  H563-3b 87.48 209.3 26.26 107.5 21.39 2.59 18.64 2.27 10.13 1.81 3.94 0.67 4.06 0.64 17.65 34.1 2.56 

  H563-3c 617.9 1231 151.8 577.5 101.5 3.29 65.94 6.32 21.44 2.7 3.84 0.46 2.16 0.32 50.52 345.4 9.61 

  H493-1a 610.7 1225 152.6 577.2 101.9 3.3 68.97 6.73 23.93 2.97 5.38 0.53 3.08 0.38 44.45 339.2 8.93 

  H493-1b 34.18 73.71 9.65 39.48 8.93 2.69 7.52 1.11 5.52 1.26 3.2 0.48 2.78 0.54 11.78 1.05 0.51 

  H493-1c 36.04 85.79 11.22 47.98 9.8 2.42 8.42 1.31 7.16 1.6 3.89 0.56 3.55 0.61 9.82 6.28 1.85 

  H493-1d 14.79 37.58 5.21 23.71 6.93 1.56 7.58 1.16 6.61 1.19 3.27 0.48 3.09 0.49 13.27 2.53 1.52 

  H445-1a 97.84 232.6 30.49 123.7 24.75 3.85 20.14 3.09 16.35 3.15 8.01 1.13 6.52 0.93 24.35 2.07 0.48 

  H445-1b 82.97 195.4 24.81 102.7 21.77 3.71 18.94 2.72 14.67 2.8 7.07 0.97 5.71 0.8 41.27 2.88 1.07 

  H435-3 98.17 227 29.14 120.1 23.17 3.96 18.1 2.48 13.69 2.54 6.69 0.88 5.59 0.71 31.86 3.34 0.65 

Biotite gneiss                                   

  H582-2a 55.94 119.5 14.52 57.61 10.85 1.52 10.95 1.94 12.74 2.96 8.7 1.45 10.61 1.51 32.26 22.98 2.67 

  H582-2b 49.7 103.8 12.41 48.5 9.33 1.71 8.49 1.35 8.43 1.85 5.37 0.84 5.93 0.86 26.33 16.8 2.7 

  H582-3 48.37 109.5 12.33 44.94 7.85 1.38 6.81 1.02 6.54 1.53 4.88 0.87 5.59 0.83 42.86 20.88 2.98 

  H563-4a 55.22 111.7 13.49 50.28 10.67 1.79 9.06 1.63 9.87 2.15 6.69 0.95 6.79 0.99 29.63 17.65 2.49 

  H563-4b 59.77 134.6 17.02 62.15 12.09 1.72 10.96 1.39 8.51 1.83 5.43 0.9 6.04 0.89 35.33 26.14 2.19 

  H563-4c 58.76 130.1 15.07 57.77 11.18 1.55 11.06 1.79 12.8 2.74 8.21 1.28 8.86 1.19 29.86 24.85 2.25 

  H563-4d 45.72 101.6 11.19 39.66 6.5 1.48 7.97 1.47 9.7 2.05 6.54 1.18 7.98 1.2 42.46 20.41 2.36 

  H563-4e 47.64 113.4 13.29 49.29 10.51 1.11 9.07 1.63 10.1 2.25 5.74 0.79 6.88 0.94 39.61 22.48 2.21 

Detection 

Limits 
Instrument DL 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0.01 0 0 

  
Fusion method 

DL 
0 0 0 0 0 0 0 0 0.13 0 0 0 0 0.04 0.09 0 0 
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Table 5-2 (cont.) Trace element composition of Host rocks to the Hondekloof deposit 

Lithology Sample ID La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Pb Th U 

Biotite gneiss                                     

  H493-3 56.93 119 14.13 56.65 11.35 1.7 9.56 1.46 10.21 2.44 5.65 0.92 5.46 0.94 35.02 19.8 3.24 

  H445-3 51.99 108.6 13.22 49.72 10.19 1.82 10.37 1.87 11.76 2.53 7.46 1.15 8.3 1.22 41.48 17.92 1.91 

  H435-1a 53.57 114.3 13.29 50.85 9.7 1.98 8.47 1.17 6.3 1.21 3.14 0.44 2.73 0.49 34.44 20.52 3.43 

  H435-1b 52.07 108.3 13.2 50.38 10.51 1.69 9.11 1.47 8.52 1.69 5.09 0.66 4.78 0.7 30.13 18.69 2.86 

Feldspathic biotite garnet gneiss                                   

  H563-2a 60.76 132 15.69 63.12 13.33 2.26 10.59 1.18 6.33 1.01 2.37 0.35 1.97 0.29 44.83 24.45 3.35 

  H563-2b 82.82 188.2 22.94 88.21 16.26 1.86 13.49 1.84 12.07 2.46 8.55 1.37 9.49 1.46 52.11 48.93 4.21 

  H563-2c 35.25 66.62 6.87 25.96 5.82 1.62 6.88 1.71 13.51 3.22 9.93 1.48 10.68 1.57 37.15 8.23 1.76 

  H563-1 67.98 139.1 16.02 57.77 11.59 1.92 10.56 2.08 14.87 3.16 9.22 1.43 8.71 1.31 32.6 30.11 2.96 

  H493-4a 48.7 97.98 11.32 42.8 8.53 1.76 7.77 1.3 8.6 1.82 5.82 0.8 5.74 0.88 1693 15.01 1.36 

  H445-2 224.5 536.3 70.36 283.2 53.29 5.87 49.66 6.43 32.51 5.63 14 1.56 9.42 1.32 51.07 16.44 2.45 

  H435-2a 59.31 129.9 16.07 60.57 13.71 1.86 10.73 1.55 7.37 1.28 3.49 0.51 3.34 0.45 35.61 34.05 3.7 

  H435-2b 56.99 118.6 14.39 54.78 10.83 1.57 12.41 1.97 13.29 3.15 9.1 1.5 10.5 1.54 33.67 26.51 2.72 

Garnetiferous quartzofeldspathic rock                           

  H563-5 24.97 52.08 5.85 21.55 7.75 1.02 21.75 6.89 69.43 19.26 67.8 11.27 81.03 11.83 10.35 10.15 4.16 

  H493-4b 75.94 163.2 19.52 74.85 14.22 2.2 11.41 1.8 12.38 2.67 7.66 0.94 6.77 1.09 63.36 34.91 1.61 

Pink gneiss                                   

  H582-1 18.83 40.53 4.52 16.51 3.46 0.69 3.25 0.56 3.2 0.69 1.7 0.24 1.39 0.24 36.19 7.77 1.86 

  H573-1 44.79 102.9 11.13 38.89 8.48 0.64 7.14 1.26 7.47 1.65 4.25 0.67 3.83 0.59 33.06 30.04 6.88 

Mineralized feldspathic rock                               

  H582-5 93.62 246.1 34.52 157.4 39.11 3.94 38.42 5.13 26.58 4.33 9.26 1.06 5.72 0.69 29.92 3.56 1.97 

  H493-2 31.05 73.12 9.96 42.4 10.08 1.48 9.14 1.19 5.79 1.03 2.06 0.27 1.76 0.23 10.72 2.15 1.79 

Meta-syenite                                   

  H573-3 220.5 501.5 57.66 207.3 35.61 1.83 21.89 2.02 7.44 0.82 1.42 0.12 0.64 0.08 78.36 136.5 5.7 

  H435-4a 94.74 217.2 27.86 111.5 23.49 3.49 20.1 2.48 12.77 2.09 4.75 0.49 2.68 0.36 54 6.86 0.71 

  H435-4b 153.3 431.1 44.81 183.9 37.46 4.68 25.64 4.25 21.15 2.94 8.83 1.01 5.55 0.5 51.53 10.13 1.07 

Detection 

Limits 
Instrument DL 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0.01 0 0 

  
Fusion method 

DL 
0 0 0 0 0 0 0 0 0.13 0 0 0 0 0.04 0.09 0 0 
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5.3 Determination of protoliths 

In order to interpret the tectonic and metamorphic history of the rocks hosting the deposits, it 

is essential to determine their protoliths. This firstly involve determining whether they were 

sedimentary or magmatic in origin prior to metamorphism. Using the immobile element 

geochemical discriminant diagram of Winchester and Max (1982), where Ni is plotted against 

Zr/Ti (Fig. 5.3) as a discriminant function, as a method successfully applied by Yigitbas et al. 

(2008) and Cardona et al. (2010), would therefore yield reliable results for resolving this 

problem. This diagram mainly relies on a rational relationship that exists between two 

immobile elements, Zr and Ti. In general, Zr contents are much higher, on average, in immature 

sedimentary rocks (e.g. greywacke, 140–800 ppm) than in felsic igneous rocks (e.g. granite 

140–175 ppm and syenite 100-500 ppm) (Mielke and Winkler, 1979; Watson and Harrison, 

1983). Ti, by contrast, has a concentration which is 10 times greater (≥ 2.0 wt.%) in mafic 

igneous rocks than the maximum concentration values which are found in mafic sedimentary 

rocks (≤ 0.25 wt.%) (Mielke and Winkler, 1979; Nicollet and Andriambololona, 1980). 

Consequently, the Zr/Ti ratio may yield a reasonably reliable estimate as to the nature of the 

protoliths of the metamorphic rocks. In this diagram, however, one  must  be  aware  that  the  

line separating igneous and sedimentary boundary  is interpreted  as  a  maximum  value  for  

igneous  rocks. Meaning that sedimentary rocks directly derived from limited weathering and 

erosion of an igneous provenance, or which were originally volcaniclastic rocks with a large 

magmatic component, can also plot below the discriminant line, within the igneous field. One 

must therefore be mindful of this possibility when interpreting the results obtained from the 

diagram. 

A discriminant line for separating the igneous and sedimentary fields has been drawn, taking 

two values of 0.10 ppm and 0.05 ppm for the Zr/Ti ratio (Winchester and Floyd, 1987) and 

extrapolated accordingly,. The meta-gabbronorite and the meta-syenite, as well as the 

enderbite, plot exclusively within the igneous field (Fig. 5.3), clearly confirming a derivation 

from magmatic precursors. The biotite gneiss as well as the feldspathic biotite garnet gneiss 

and the garnetiferous quartzofeldspathic rock, in turn, plot variably within both the igneous and 

sedimentary fields. These rocks, therefore, broadly reflect the compositions of a hybrid nature 

which suggests either that: 1) the sedimentary protolith experienced relatively little effects of 

weathering of an igneous provenance, or 2) the parent rocks were originally volcaniclastic with 

a significant magmatic component, or 3) rocks of different parentage were mixed together 

during deformation and metamorphism.  
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The pink gneiss plots exclusively within the sedimentary field, implying a derivation from a 

sedimentary precursor. Two classification discriminant diagrams using immobile high field 

strength element (HFSE) data Y/Nb vs. Zr/TiO2 (Fig. 5.4a), and the combination of trace and 

major element data, Zr/TiO2 vs. SiO2 (Fig. 5.4b) respectively, as proposed by Winchester and 

Floyd (1977), have been used to classify the protoliths to the metamorphosed magmatic rocks 

as well as to determine the average composition of the provenance for the metamorphosed 

sedimentary rocks (Fig. 5.4a & b). On these diagrams, two groups of protoliths with contrasting 

compositions are distinguished, one being felsic (plotting within the rhyolitic and dacitic 

fields), and the other being mafic (plotting within the basaltic field) (Fig. 5.4a and b). The felsic 

group includes all the various gneisses, the meta-syenite and the garnetiferous 

quartzofeldspathic rock. The mafic group, in turn, only includes the meta-gabbronorite 

samples. The two analysed samples of the enderbite plot separately, having one in each group, 

this implies that one of them is felsic and another is mafic. The explanation for this is discussed 

in chapter 6.  

The meta-gabbronorite samples plot within the basaltic field in both diagrams (Fig. 5.4a and 

b). Those of the remaining lithologies falling in the felsic group are scattered variably from the 

rhyodacitic to dacitic fields (Fig. 5.4a), as well as some within the andesitic to the rhyolitic 

fields (Fig. 5.4b). This variability may be the result of the degree of reworking or weathering 

or compositional variability in the materials forming these rocks.  The meta-syenite, because it 

contains more plagioclase than quartz, has most likely a protolith of rhyodacitic composition 

(Fig. 5.4a). There are two analysed samples of the meta-syenite which compared to the other 

Figure 5-3: Discrimination diagram to determine sedimentary and igneous precursors (after 

Winchester and Max, 1982). 
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samples have relatively low SiO2 contents, and relatively moderate Zr/TiO2 ratios (Fig. 5.4b); 

these samples plot towards the andesite field (Fig. 5.4a and b). The majority of the syenite 

samples, however, plot much closer to the rhyolite fields in both diagrams of Winchester and 

Floyd (1977) (Fig. 5.4a & b). The compositional changes, in this case, possibly means that the 

chemistry of the rocks may have been influenced to some degree, and that furthermore the rock 

might possibly have experienced element-depletion (e.g. SiO2 and Zr) during metamorphism. 

Additionally, the location of the analysed specimen as being close to the meta-gabbronorite 

interval may also play a role in influencing the composition of the meta-syenite by affecting 

the concentrations of SiO2 and Zr. Similar protolith compositions indicate a derivation from 

felsic to intermediate provenances for all the metasedimentary rocks i.e. the biotite gneiss, 

feldspathic biotite garnet gneiss and pink gneiss.  

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1 Magmatic precursors 

From the discriminant diagram of Winchester and Max (1982) (Fig. 5.3), the meta-

gabbronorite, meta-syenite and enderbite, indicate the majority of magmatic rocks as their 

Figure 5-4: Comparative classification diagrams for protoliths and provenance composition (after 

Winchester and Floyd 1977), (a) Nb/Y vs. Zr/TiO2 and (b) Zr/TiO2 vs. SiO2. Alk-Bas: Alkaline basalt, 

SB-AB: Sub-alkaline basalt. 
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precursors. Little to none is known about the characteristics of the enderbite’s precursors 

because of the erratic distribution shown on the majority of its samples.  The discrimination 

diagram of silica vs. the alkalis (Middlemost, 1975) places both the meta-gabbronorite and 

meta-syenite fully within the alkaline field (Fig. 5.5a). In addition, the plot on which the alkalis 

are displayed exclusively (the Na2O vs. K2O plot) places the samples of the meta-syenite within 

the high K-alkaline series, and those of the meta-gabbronorite within the K- and Na series (Fig. 

5.5b). There is, however, a large discrepancy between the results obtained from Fig. 5.5a and 

Fig. 5.5b, and those reported earlier on and displayed in Fig. 5.4a and Fig 5.4b, with regards to 

the positions of the meta-gabbronorite samples. In the former diagrams (Fig. 5.4a & b), it is 

shown that the meta-gabbronorite samples plot exclusively within the sub-alkaline field, whilst 

in the latter diagrams (Fig. 5.5a, b & c) the same samples plot exclusively in the alkaline field. 

The mobility of the alkalis and silica used in Fig. 5.5a and b should be taken into account. 

However, Fig. 5.5c, where the immobile element, Zr, was used, also produced a similar result 

as where the alkalis and silica were used in Fig. 5.5. The AFM plot of Irvine and Barger (1971) 

(Fig. 5.5d), plots the samples predominantly within the tholeiitic field. 
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Classification of the meta-gabbronorite using two discriminant diagrams of Saunders et al. 

(1992), using the immobile elements ratios, La/Nb vs. La/Ba (Fig. 5.6a) and Zr/Y vs. Ti/Y (Fig. 

5.6b) also helped to see through the meta-gabbronorite’s melt source. The majority of the 

samples show the signature of an asthenospheric source by occupying the space in which both 

La/Nb vs. La/Ba ratios increase thus showing affinity to an asthenospheric melt (Fig.  5.6a). 

Figure 5.6b, on which MORB and OIB are separated based on Zr/Y vs. Ti/Y ratios display the 

samples occupying the space in which the MORB mantle melt are generally represented 

(Saunders et al., 1992; de Kock et al., 2014). 

 

 

 

 

 

Figure 5-5 (previous page): (a) Total alkali vs. silica diagram for separating the alkaline and 

sub-alkaline basalts, (b)  Na2O vs. K2O diagram for subdividing the alkaline magmas (after 

Middlemost 1975), (c) Zr vs. P2O5 diagram (after Winchester and Floyd, 1976) for separating 

the alkaline and tholeiitic basalts, (d) AFM diagram (after Irvine and Barager, 1971) 
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The five sets of tectonic discriminant diagrams of Verma et al. (2006) (Fig. 5.7), along with 

ten newer multi-dimensional plots of Verma et al. (2013) (Fig. 5.8), integrating both major and 

trace element data, as well as two additional older tectonic discriminant diagrams, namely the 

Zr-Ti-plot of Pearce (1982), and the Zr-Zr/Y-plot of Pearce and Norry (1979), are used to infer 

the tectonic setting of the meta-gabbronorite. It must be remembered that the effects of element 

mobility, as noted above, may be influential in affecting the compositions of these rocks. Using 

only single element diagrams, particularly for the determination of tectonic settings, may result 

in spurious results. Therefore, using the combination of multi-element diagrams, as well as 

mathematical ratios, as applied by Verma et al. (2006, 2013) may help to minimize those 

effects.  

The tectonic setting diagrams of Verma et al. (2006 and 2013) rely on a collective number of 

discriminant functions calculated based on mathematical and logarithmic ratios (e.g. DF1 and 

DF2). Each diagram in the set makes use of two selected independent discriminant functions 

calculated independently. Basaltic rocks forming in island arc (IA), continental rift (CR) and 

continental arc (CA) settings, along with those in ocean island arc (OI) and collisional systems 

(Col), are all displayed in their different fields. The suffix B in the annotations, particularly in 

Figure 5.7, simply stands for basalt. The deducible tectonic setting is therefore obtained on the 

basis of the reproducibility of the results (meaning that the samples would consistently plot in 

the same setting or field in each of the five diagrams reported).  

 

 

 

 

Figure 5-6: (a)  La/Ba vs. La/Nb diagram displaying asthenospheric and lithospheric mantle sources, and (b) 

Zr/Y vs. Ti/Y showing the MORB and OIB characteristics of the mantle melt for the meta-gabbronorite (after  

Saunders  et  al., 1992).    
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As shown in Fig. 5.7 (a-d), the meta-gabbronorite plots consistently and repeatedly within the 

field of continental rift, indicating that this rock was emplaced in a rifting or crustal extension 

setting. In addition, two comparable tectonic discriminant diagrams of Pearce (1982) and 

Pearce and Norry (1979) strongly agree with each other, indicating a within plate tectonic 

setting. These diagrams, along with the multi-element diagrams of Verma et al. (2006) (Fig. 

5.7a-g), suggest that the metagabbronorite was emplaced in a rift or crustal extensional regime. 

Three outlier samples, which suggest an oceanic island arc setting, are also shown in Fig. 5.7a, 

b & e. Given that the tectonic setting is an extensional setting, then the island arc setting shown 

Figure 5-7 (previous page): (a)- (e) Discrimination diagrams showing different tectonic settings based 

on natural logarithm transformation of major-element ratio (Verma et al., 2006). Note that of the five 

diagrams, one will consistently not show a particular tectonic setting. This should be noted and borne in 

mind. DF1 and DF2 stand for the discriminant function. Field of island arc basalt (IAB), continental rift 

basalt (CRB), ocean-island basalt (OIB) and mid-ocean ridge basalt (MORB) are shown in their 

respective positions. Tectonic setting diagrams (f) after Pearce (1982) and (g) Pearce and Norry (1979), 

showing different fields of Island Arc, Mid-Oceanic Ridge and Within Plate Basalts. Black. The black 

arrow showing the predominant  field where samples are represented. 
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by these outlier samples may be suggesting some relationship to an arc and relating the setting 

of the meta-gabbronorite to a back-arc type environment. 

The ten newer multi-dimensional diagrams of Verma et al. (2013), in contrast, yield a different 

result to the one obtained above. These diagrams, on the grounds of using: 1) the combination 

of major and trace element data (Fig. 5.8), and 2) strictly immobile trace element data (Fig. 

5.9) plot the samples consistently in the continental arc field; suggesting that the meta-

gabbronorite was likely emplaced in a subduction-related complex. Some samples also plot in 

the field of island arc as well as in that of a collisional setting (particularly in the one case 

where the field of continental arc is not shown) (e.g. Fig.5.8d and Fig. 5.9d). The possibility of 

the latter environments (island arc or collisional) are discounted based on the minority of the 

samples showing such results. Alternatively, these possible tectonic settings could also be 

related to the likely adjacent settings to the continental arc (within the overall subduction 

complex). It, however, should be noted that two possible tectonic settings, i.e. one being a 

rifting or crustal extensional environment, and the other being a continental arc environment, 

are suggested for the study area. The interpretation of which setting is more suitable, will be 

discussed in the next chapter.  

Conclusive results were also obtained using the combination of multi-element spider diagrams 

and the REE-diagrams with trace element data. On multi-element spider plots, based on 

primitive mantle normalization, and plotted according to the element order and values of 

McDonough and Sun (1995), the meta-gabbronorite shows a slightly flat to negatively sloping 

pattern (Fig. 5.10a), in which the LILE are highly enriched relative to the HFSE, as is Zr, 

whereas Sr, Eu, Ti and P and the HFSE are depleted. A prominent Nb-Ta trough is also evident. 

The LILE are also showing variable patterns that are indicative of either igneous fractionation, 

crustal contamination or element mobility. 

 

 

 

 



The lithogeochemical characterization-Hondekloof Ni mineralization  

 

Reddy Bokana 2015 
62 

 

 

-8
-6
-4
-2
0
2
4
6
8

-8 -6 -4 -2 0 2 4 6 8

D
F

 2

DF 1

IA+CA - CR+OI - Col

IA+CA
CR+Ol

Col

a

-8
-6
-4
-2
0
2
4
6
8

-8 -6 -4 -2 0 2 4 6 8

D
F

 2

DF 1

IA - CA - CR+Ol

IA

CR+Ol

CA

b

-8
-6
-4
-2
0
2
4
6
8

-8 -6 -4 -2 0 2 4 6 8

D
F

 2

DF 1

IA - CA - Col

IA Col

CA

c

-8
-6
-4
-2
0
2
4
6
8

-8 -6 -4 -2 0 2 4 6 8

D
F

 2

DF 1

IA - CR+Ol - Col

IA

Col

CR+Ol
d

-8
-6
-4
-2
0
2
4
6
8

-8 -6 -4 -2 0 2 4 6 8

D
F

 2

DF 1

CA - CR+Ol - Col

Col

CR+Ol

CAe

Figure 5-8: Mafic samples of the meta-gabbronorite in five new multidimensional diagrams based on log-

ratios of major and trace elements (TiO2, MgO, P2O5, Nb, Y and Zr) for discrimination of island arc (IAB), 

continental rift (CRB), ocean island (OIB), and mid-ocean ridge (MORB) tectonic settings (Verma et al. 

2013). 
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Figure 5-9: Mafic samples of the meta-gabbronorite in five new multidimensional diagrams based on 

log-ratios of immobile trace elements (Yb, La, Ce, Sm, Nb, Th, Y and Zr) for discrimination of island 

arc (IAB), continental rift (CRB), ocean island (OIB), and mid-ocean ridge (MORB) tectonic settings 

(Verma et al. 2013). 

Symbols & colours by Lithology

Meta-gabbronorite

 

 

 

 



The lithogeochemical characterization-Hondekloof Ni mineralization  

 

Reddy Bokana 2015 
64 

On the REE plot, normalized relative to chondrite and plotted in the order of Nakamura (1974) 

(Fig.5.10b), the meta-gabbronorite displays light rare earth element (LREE)-enrichment, and 

heavy rare earth element (HREE)-depletion, with a gently negative sloping REE pattern. The 

majority of the samples also show moderate to strong negative Eu anomalies [(Eu/Eu*)N = 

1.00-0.12] a flattening towards Lu, with high HREE fractionation (GdN/YbN = 1.92-24.69), 

weak to no LREE fractionation (LaN/SmN = 0.38-2.67) and a range of LREE/ HREE ratios, 

ranging between 3.36 to 10.72, confirming the influence of crustal components in the meta-

gabbronorite. One sample of the meta-gabbronorite (H 582-6) (Fig. 5.10b) displays a typical 

horizontal REE pattern. The ratio for LREE fractionation relative to the HREEs, given by 

(La/Lu)N,  is between 1.96 and 20.21 for all the meta-gabbronorite samples.   

The meta-syenite samples, being felsic, display an overall highly fractionated patterns in the 

multi-element spider plots (Fig. 5.10c). The samples are characterised by strong positive 

anomalies of Th, Pb, and the LREE (Nd, Sm and Dy), as well as strong negative anomalies of 

Cs, Nb, Ta, Sr, Eu as well as P and Ti.  The REE plot also shows a strongly sloping pattern, 

with LREE-enrichment relative to the HREE (Fig. 5.10d). The meta-syenite samples 

furthermore display large negative Eu anomalies ((Eu/Eu*)N = 0.20-0.49), with a pattern 

steepening towards Lu, low to moderate fractionation within the LREE (LaN/SmN = 2.53-3.88) 

and moderate to strong fractionation within the HREE (GdN/YbN = 3.73-27.45), as well as large 

values for LREE / HREE (10.39-29.71).  

The two enderbite samples show a rather more erratic pattern on the multi-element spider 

diagram (Fig. 5.10e) than that of the meta-syenite. The one sample (H 582-5), with a higher 

overall trace element content (Fig. 5.10e), shows moderate to high LILE-enrichment relative 

to the HFSE, fairly pronounced positive Rb, Ba, Ta, , Pb, , P, and LREE anomalies, and low 

contents/anomalies and troughs in Th, Sr and Ti. The sample with the lower overall trace 

element content (H 493-2) (Fig. 5.10e) shows peak anomalies for U, La, Pb, Nd, Sm, and Dy, 

along with negative anomalies for Nb, Sr and Ti, and is seemingly less fractionated compared 

to sample H582-5. Both samples display fairly similar negatively sloping patterns on the REE 

plot (Fig. 5.9f), showing overall pronounced negative Eu anomalies ((Eu/Eu*)N = 0.31-0.47),  

a degree of moderate fractionation within the HREE (GdN/YbN = 4.20-5.42), relatively flat 

LREE patterns (LaN/SmN = 1.51-1.94), and show relatively similar ranges in terms of LREE/ 

HREE (6.26-7.76), with quite strong LREE enrichment compared to the HREE.  
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Figure 5-10: Multi-element spider diagrams normalized to primitive mantle (after McDonough and Sun, 1995) and 

REE plots normalized to the chondritic values of Nakamura (1974) for various meta-magmatic rocks of the western 

Namaqua Sector. Diagrams dealing with particular rocks are shown. The black line in each diagram is drawn for 

visualization of a general trend in the diagram.   

 

 

 

 



The lithogeochemical characterization-Hondekloof Ni mineralization  

 

Reddy Bokana 2015 
66 

5.3.2 Sedimentary precursor 

The samples of the biotite gneiss, feldspathic biotite garnet gneiss and garnetiferous 

quartzofeldspathic rock, straddle the boundary between the sedimentary and igneous fields on 

the protolith discrimination diagram of Winchester and Max (1982) (Fig. 5.3). The pink gneiss, 

by contrast, plots exclusively within the field of sedimentary protoliths (Fig. 5.3). As 

highlighted in Chapter 4, some of these units, particularly the garnetiferous quartzofeldspathic 

rock, seem to occur as the product of partial melt. Some of the other lithotypes, for example 

the biotite gneiss and the feldspathic biotite garnet gneiss, also contain some remnant of partial 

melt products. Consequently, given the origin of the garnetiferous quartzofeldspathic rock as a 

melt segregation product, irregularity in its composition is to be expected. However, in order 

to facilitate the interpretation, all the units mentioned, including the pink gneiss, have all been 

classified as having been derived from different varieties of sedimentary protoliths. The 

assumption was made that the samples of a particular lithology, such as the biotite gneiss, that 

plot in the igneous field should be regarded as having compositions that have either undergone 

a small degree of weathering of an igneous provenance, or show a significant magmatic 

component to their protolith, such as a volcanoclastic. The garnetiferous quartzofeldspathic 

rock is however treated as a different case for it random geochemical distribution and also for 

it being considered as product of partial melt product. 

5.3.2.1 Weathering in the source area 

Source area weathering is one of the most important processes which affect the mineralogical 

and chemical composition of the siliciclastic sediments or rocks (Taylor and McLennan, 1985). 

The effects of weathering, i.e. element-depletion (particularly of the alkali and alkali earth 

elements) and element-enrichment (particularly, for example, of Al2O3) is often captured in the 

chemistry of the siliciclastic sediments (Nesbitt et al., 1980; Grandstaff et al., 1986; Harnois, 

1988), so that the chemistry (both major and trace element composition) of the sediments (i.e. 

either modern or ancient metamorphosed sediments) derived from various sources, can be used 

to quantify the intensity of weathering of their source areas (e.g. Nesbitt et al., 1980; Bailie et 

al., 2007; Abu El-Enen, 2011; Grisolia and Oliveira, 2012).  

An evaluation of the extent of source area weathering can be quantified using parameters such 

as the weathering index, WI (Nesbitt et al., 1980), which may be given by two parameters: 

 1. Chemical index of alteration (CIA= (¼100[Al2O3/ (Al2O3+CaO*+Na2O+K2O)]), or  
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2. Chemical Index of Weathering (CIW = 100[Al2O3/ (Al2O3+ CaO + Na2O)]),  

calculated based on molecular proportions. CaO* is defined as the amount of CaO contributed 

by silicate minerals in the system (Nesbitt and Young, 1982). The CIA is a quantitative measure 

of the amount of chemically weathered materials added into the siliciclastic sediments or rocks 

during weathering, and therefore reflects the chemical weathering intensity in the source areas 

(Grisolia and Oliveira, 2012). In general, unweathered, fresh basaltic and granitic rocks usually 

have CIA values ranging between 30 to 45, and 45 to 55, respectively (Nesbitt, 2003). Intensely 

weathered rocks, on the other hand, which produce secondary minerals such as clays with high 

kaolinite and/or gibbsite contents, generally reflect CIA values closer to 100 (Nesbitt, 2003; 

Abu El-Enen, 2011).  

The CIA values obtained range from 60.10 to 67.25 for the biotite gneiss, 50.15 to 74.64 for 

the feldspathic biotite garnet gneiss and 57.43 to 57.46 for the pink gneiss (Table 5.2). Their 

CIW values, in the same order, are ranged from 76.15 to 83.61 for the biotite gneiss; 67.93 to 

84.79 for the feldspathic biotite garnet gneiss; and 78.28 to 81.92 for the pink gneiss. These 

CIA values, therefore, collectively indicate that the provenance to the gneisses certainly 

underwent some degree of low to moderate chemical weathering; except for the feldspathic 

biotite garnet gneiss which has CIA indices ranging up to 74.64, reflecting quite an extensive 

degree of weathering.  

Additional results were also obtained using the Index of Compositional Variability, ICV (ICV 

= (Fe2O3 + K2O + Na2O + CaO + MgO + TiO2)/Al2O3) of Cox et al. (1995). This index, 

however, only estimates the abundance of alumina contents relative to the other major cations 

in siliciclastic sediments or rocks, and is, therefore, applicable in reflecting the degree of 

maturity of mud rocks or pelitic rocks delivered to a sedimentary basin (Cox et al., 1995). 

Immature pelitic rocks, with a high content of non-clayey silicate minerals, commonly 

occurring in tectonically active settings, i.e. in arc settings or rifting basins (van de Kamp and 

Leake, 1985), usually have ICV values of close to, or more than 1 (Cox et al., 1995), whereas 

more mature pelitic rocks, enriched in clay minerals, which tectonically characterize by 

quiescent or cratonic environments (Weaver, 1989) where recycling and weathering are active, 

usually have much lower values of ICV (<< 1) (Cox et al., 1995).  

The examined rocks collectively have ICV values ranging from 0.89 to 1.25, with an average 

of 1.10 (Table 5.3) suggesting that the materials forming the protoliths likely were derived 

either from immature pelitic sediments or from semi-pelitic sediments. Figure 5.11a, which 
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uses alumina and alkalis vs. silica, also suggests that the detritus that gave rise to the parent 

materials was deposited in an arid climatic zone (an area characterized by less intense chemical 

weathering due to the limited, or lack of, rainfall and precipitation) (Fig. 5.11a). Note that the 

latter diagrams are set up to record the climatic conditions present during deposition of the 

sediments and thus useful for recording the paleoclimatic environment.  

Table 5-3: Discriminant ratios for determining the chemical characteristics of sedimentary rocks 

Lithology Sample ID 100TiO2/Zr K2O/Al2O3 Al2O3/TiO2 Cr/Zr Th/Sc CIA CIW ICV 

Biotite gneiss         

 H582-2a 0.15 0.26 23.37 0.86 1.02 64.08 76.65 1.19 

 H582-2b 0.30 0.22 17.14 1.09 0.72 65.30 76.15 1.22 

 H582-3 0.09 0.39 35.84 0.64 1.60 60.83 79.83 0.98 

 H563-4a 0.28 0.20 20.03 0.79 0.68 68.10 78.57 1.15 

 H563-4b 0.18 0.28 15.32 0.47 1.32 65.93 81.01 1.21 

 H563-4c 0.21 0.18 16.35 0.63 0.95 69.92 80.13 1.08 

 H563-4d 0.08 0.35 50.96 0.78 1.46 61.26 78.27 0.91 

 H563-4e 0.09 0.29 49.00 0.75 1.51 63.16 77.61 0.87 

 H493-3 0.25 0.25 22.84 0.84 0.91 64.69 77.23 1.17 

 H445-3 0.34 0.26 19.15 0.70 0.66 68.63 83.61 1.17 

 H435-1a 0.31 0.29 20.40 0.61 1.12 64.99 80.31 1.13 

 H435-1b 0.28 0.23 15.43 0.75 1.04 67.25 79.45 1.08 

 Average 0.21 0.27 25.48 0.74 1.08 65.34 79.07 1.10 

Feldspathic biotite garnet gneiss              

 H563-2a 0.07 0.49 42.86 0.48 2.15 59.06 83.43 1.01 

 H563-2b 0.23 0.21 30.75 0.97 2.93 65.48 76.20 1.06 

 H563-2c 0.26 0.17 19.05 0.97 0.33 66.02 74.20 1.09 

 H563-1 0.26 0.34 16.52 0.99 1.31 61.18 77.19 1.05 

 H493-4a 0.23 0.24 19.38 0.72 0.70 65.96 78.39 1.25 

 H445-2 0.12 0.52 55.54 0.38 1.24 50.15 67.93 1.31 

 H435-2a 0.22 0.30 25.93 0.95 2.60 63.65 78.95 0.89 

 H435-2b 0.17 0.16 21.51 0.54 0.76 74.64 84.79 1.17 

 Average 0.19 0.31 28.94 0.75 1.50 63.27 77.64 1.10 

Pink gneiss                   

 H582-1 0.10 0.52 39.38 0.77 0.87 57.46 81.92 0.97 

 H573-1 0.13 0.46 33.33 0.65 2.84 57.53 78.28 1.01 

 Average 0.11 0.49 36.35 0.71 1.85 57.49 80.10 0.99 

 

Figure 5.11b, which estimates the process of element-exchange in the silicate-bearing minerals 

(e.g. biotite, feldspars and clays, etc.) during chemical weathering, attests to the formation of 

some clay-minerals, particularly smectite, in these rocks. Together with the CIA and CIW 
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values, the ICV values conclusively suggest that the protoliths to these rocks likely formed 

from semi-pelitic to psammitic sediments.  

 

 

 

 

  

 

 

 

 

5.3.2.2 Provenance 

The Al2O3/K2O ratios of Cox et al. (1995) is often used as a provenance indicator on the basis 

of the differential ratios determine by the presence of clay minerals (Al2O3/K2O < 0.3) relative 

to the alkali feldspars (Al2O3/K2O: 0.4-10) in the samples. Cox et al. (1995) proposed a specific 

value of this ratio, being Al2O3/K2O = 0.5 in particular, to be a reliable discriminant function 

for determining the contribution of the alkali feldspars in the provenance. High and low ratios, 

i.e. Al2O3/K2O > 0.5 and Al2O3/K2O < 0.5 are denoted as being due to maximal or minimal 

contribution of the feldspars in the provenance. The maximum (0.52) and minimum (0.17), as 

well as average values (0.31) of the Al2O3/K2O ratio yielded by the examined rocks collectively 

suggest that their parent rocks only had a minimal contribution of the alkali feldspar in their 

provenance. It was also borne in mind that this result may, however, be invalid in the event that 

the metamorphism was not isochemical (as the elements used as index, particularly K2O, may 

be highly mobile during metamorphism).  

The application of certain provenance ratios, particularly Al2O3/TiO2, was also suggested by 

Girty et al. (1996) to discriminate the average provenance composition of pelitic rocks. Girty 

et al. (1996) effectively distinguished between sediments derived from mafic igneous rocks 

Figure 5-11: a. SiO2 vs. Al2O3+K2O+Na2O paleoclimatic discriminant diagram, b CaO+Na2O+K2O-Al2O3-

Fe2O3+MgO ternary plot for discriminating element exchange in the siliciclastic sediments during weathering.   
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(Al2O3/TiO2 < 14) from those derived from intermediate igneous precursors (Al2O3/TiO2 = 19-

28) on the basis of using the specified values of the Al2O3/TiO2 ratio. On that basis, therefore, 

the Al2O3/TiO2 ratios of the examined rocks range from 15.43 to 55.54 with an average of 

28.94. These results strongly suggest that the detritus forming the protoliths to the studied rocks 

likely derived from a provenance dominated by felsic to intermediate composition. Similar 

results were also obtained using Ni and TiO2 as provenance index (Fig. 5.13a).  

The Th/Sc ratio is regarded as one of the best provenance indicators available, i.e. for 

discriminating between a felsic and mafic provenance of the siliciclastic rocks (Taylor and 

McLennan, 1985; McLennan et al., 1990; Fedo et al., 1995). Scandium partitions preferentially 

into mafic minerals, such as the pyroxenes and amphiboles, whereas Th preferentially goes into 

felsic minerals, usually zircon and allanite (e.g. Rollinson, 1993). The overall moderate to high 

Th/Sc ratios of the majority of the samples (1-2.83) (Table 5.3), largely confirms the 

predominance of felsic materials in the provenance. However, the low Th/Sc ratio (0.33) 

yielded by one sample of the feldspathic biotite garnet gneiss (H- 563-2c) also attests to some 

contribution of mafic materials in the provenance. Figure 5.12b, which assesses the 

contribution of a mafic provenance (by indicating high Sc contents and low Th/Sc ratios) as 

opposed to a more felsic provenance which usually has low Sc contents and high Th/Sc ratios) 

also attests to the involvement of mafic components in the source area or provenance.  

Cr and Zr also make reliable elements for a provenance indicator index (McLennan and 

Hemming, 1992; Fedo et al., 1995; Cox et al., 1995). Both elements, Cr and Zr, are used as 

proxies for the respective contents of chromite and zircon in the rocks. Chromium partitions 

strongly into mafic minerals or rocks, whilst zirconium partitions into felsic minerals or rocks. 

On this basis, therefore, Cr/Zr ratios should be able to reflect the relative contribution of either 

mafic or felsic igneous components in the source area. Consequently, the relatively low Cr/Zr 

ratios obtained from the examined samples (0.13 to 1.09, with an average of 0.75) suggest that 

the precursors to these rocks formed from materials derived from a provenance of felsic to 

intermediate composition. The protolith diagram of Reid (1997) (Fig. 5.12c), using the relative 

proportions of K2O, MgO and NaO2, also suggests that variable types of arkoses are the most 

likely protoliths to these rocks.   
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The metasedimentary rocks have also been investigated by means of using multi-element 

distribution (with spider diagrams and REE plots). The elements in the spider plot are arranged 

in the order of McDonough and Sun (1995) and normalized to primitive mantle values. The 

biotite gneiss displays a typical LILE-enrichment and HFSE-depletion, along with positive 

anomalies for Rb, Th, and Pb, as well as Nd, U and Zr, and has low contents of Cs, Ba, Nb, Ta 

and Eu, with Sr, P and Ti showing strong depletion (Fig. 5.13a). The high LILE and Pb 

contents, along with low Ti and lower HFSE contents than the LILE, further suggests that their 

protoliths have some kind of crustal influence. The REE pattern, normalised to the chondritic 

values of Nakamura (1974), show LREE-enrichment and HREE-depletion, LaN/LuN = 3.85-

11.44, with large negative Eu anomalies [(Eu/Eu*)N = 0.35-0.67), moderate fractionation 

within the LREE (La/Sm)N = 2.85-4.43) and a relatively flat to positively sloping HREE pattern 

(GdN/YbN = 0.81-1.54), steepening from La to Eu and flattening towards Lu (Fig. 5.13b). The 

LREE/ HREE ratios range from 5.08 to 10.10.   

Figure 5-12: (a.) Discriminant diagram for determining the composition of the provenance to the 

metasedimentary rocks. (b) Th/Sc vs. Sc plot illustrating the relative contributions from mafic and felsic 

provenance to the rocks (after McLennan et al., 1990; 1993). (c). K2O-MgO-Na2O plot indicating the arkosic 

composition of the protoliths to the investigated rocks (after Reid, 1997). 
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The feldspathic biotite garnet gneiss shows an erratic distribution in the LILE, with high Rb, 

Th, Nd, and Zr contents, and low contents of Nb, Ta and P, coupled with Ti and Ba troughs 

(Fig. 5.13c). They furthermore display a negatively sloping REE pattern, with LREE-

enrichment relative to HREE depletion (LaN/LuN = 2.35-21.91), and also showing an overall 

large and well pronounced negative Eu anomaly [(Eu/Eu*)N = 0.35-0.78] (Fig. 5.13d). There 

is one sample (H 445-2), which in the REE plot (Fig. 5.13d), has much higher REE contents 

than the others, and also has a well pronounced Eu anomaly [(Eu/Eu*)N = 0.78] which is much 

larger than that of the others.     

The pink gneiss shows enrichments in Rb, Th, U, Pb, Nd and Zr, and depletion in Ba, Nb, Ta, 

Sr and Ti relative to the general trend of the trace element plot, along with a typical flattening 

towards the HFSE on the spider plot (Fig. 5.13e). The REE plot shows a negatively sloping 

pattern, with a typical LREE-enrichment and HREE depletion, with the LREE / HREE 

ranging between 7.45-7.68, and having a characteristic negative Eu anomaly ((Eu/Eu*)N = 

0.25-0.63). The Eu anomaly is well pronounced on one sample (H 573-1) [(Eu/Eu*)N = 0.63] 

plotting towards the upper field of the REE plot (Fig. 5.13f) and less so on the other sample (H 

582-1) [(Eu/Eu*)N = 0.25] plotting on the  lower field of the same plot.  

Sample (H 563-5) in the spider plot shows enrichment in Rb, Th, La, Pb, and flattening towards 

Dy, Y, Yb and Lu in the HFSE, with depletion in Ba, Nb, Ta, Ce, P, Zr and Ti (Fig. 5.13g). It 

displays HREE-enrichment and LREE depletion (LaN/LuN = 7.24) and has a fairly pronounced 

negative Eu anomaly [(Eu/Eu*)N = 0.53] in the REE plot (Fig. 5.13h). The other sample (H 

493-4), by contrast, shows high Cs, U, Ta, Pb, Na, and Sm contents, and ascending from Dy, 

Y to Yb, flattening towards Lu, with Ba, Nb, Ta, Ce, Zr, P and Ti showing troughs in the spider 

plot (Fig. 5.13g). The REE pattern, by contrast, shows normal LREE enrichment relative to 

HREE (LaN/LuN = 0.22), and has a smaller negative Eu anomaly [(Eu/Eu*)N = 0.24] in 

comparison to the one reported earlier. The garnetiferous quartzofeldspathic rock like the pink 

gneiss, has two samples showing contrasting patterns both in the spider diagram and the REE 

plot (Fig. 5.13g & h). 
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The two tectonic discrimination diagrams, using immobile trace element data, namely the La-

Th-Sc and La-Th-Zr/10 diagrams of Bhatia and Crook (1986) (Fig. 5.14a & b), were employed 

for tectonic discrimination of sedimentary rocks. Both diagrams (Figure 5.14a & b) show 

different fields in which modern and ancient sediments of various tectonic environments are 

determined. In both the La-Th-Sc plot (Fig. 5.14a) and the La-Th-Zr/10 plot (Fig. 5.14a & b), 

the majority of the samples plot within the field of continental island arc setting.  
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Figure 5-13: Spider plot normalized to the primitive mantle values of McDonough and Sun (1995), with the 

REEs normalised to the chondrite values of Nakamura (1974). 
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5.4 Geostatistical analysis 

The geostatistical analyses, using R-mode cluster and stepwise discriminant analyses were 

employed on major and trace elements data in an attempt to establish the relationships that exist 

between the mineralization host and the country rocks. Particular attention was given to the 

meta-gabbronorite as it occurs as the actual host rock to the mineralization. Application of 

statistical techniques were employed in order to create meaningful geochemical patterns for 

which vectoring and element prediction can be developed. Most trace elements were, however, 

not useful because of their various distribution for developing vectors. Two clusters using 

major elements data were generated and are shown on dendogram (Fig. 5.15). Each cluster is 

defined based on major element associations and lithological associations on the database.  
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Table 5.4a displays the element associations and the functionality of each cluster on the 

dendogram:   

 Group 1: actual host rock (the meta-gabbronorite ± enderbite) 

Element association: TiO2, CaO, MgO, Fe2O3, Cr2O3, P2O5, MnO and L.O.I.  

 

 Group 2: country rocks  

Element association: Al2O3, Na2O, K2O and SiO2 

 

The two groups are characterized in terms of mafic and felsic element associations for group 1 

and group 2 respectively.  There are, however, only four elements (Al3O5, CaO, MgO and TiO2) 

in the database (Table 5.4b) which are significant for determining the classification of the 

groups. These results indicate that any sample in group 1, for example those of the meta-

gabbronorite, would comprise of high TiO2, high CaO and high MgO but low Al2O3 contents. 

Those in group 2, by contrast, will show the opposite of those elements reported in group 1 

(low TiO2, low CaO and low MgO but high Al2O3 contents). In addition, the samples falling 

in group 2 will also be characterized by high Na2O, high K2O and high SiO2, which otherwise 

are depleted in group 1.  

 

Figure 5-15: Dendogram showing rock association groups based on the Ward method 
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The depletion in such elements as CaO, MgO and most especially TiO2, and high contents of 

Na2O, K2O and SiO2, and most especially Al2O3 should reflect the compositional differences, 

and contacts between the meta-gabbronorite and the other litho-types in the boreholes. 

Therefore, numerous geochemical indices, based on these compositional differences, could be 

developed and be used to monitor and visualize such contact using numerous bivariate plots 

(Fig. 5.15). 

 

 

Table 5-4 Element discrimination function for determining the actual ore-host rock (the meta-

gabbronorite) (group 1) and the associated host rocks (group 2) 

 

 

 

 

 

 

 

 

 

 
 

a) General discriminant functions showing the two groups, with a positive association (indicating group 

1) and a negative association (indicating group 2). b) Most significant element-discriminant functions 

in the groups. c) Eigenvalue indicating the accuracy and validity of the classification.   

 

Figure 5.16 displays four typical examples in which such indices (namely Al2O3 vs. CaO; 

Al2O3 vs. MgO; Al2O3 vs.  TiO2; and Al2O3 vs. CaO+MgO+TiO2) can be used to set aside the 

actual host rock (which is the meta-gabbronorite) to the large group of country rocks. Several 

indices with such kinds of examples are discussed further in Chapter 6. As also shown in Table 

5.3c, the success rate of using these indices is quantified as being as 100 % accurate and 

applicable; implying that each indices can be applied with a fair amount of confidence for 

mapping the intervals where the meta-gabbronorite occurs within different boreholes. This 

technique can be used to aid to the logging technique to determine the position of the meta-

gabbronorite in the boreholes (especially if conventional logging technique fail in case of the 

 

 

  Function 

1 

TiO2 -.334 

CaO -.255 

SiO2 .234 

MgO -.175 

Fe2O3 -.149 

K2O .065 

Cr2O3 -.055 

P2O5 -.053 

MnO -.047 

Na2O .040 

Al2O3 .037 

L.O.I. -.022 

 

 

 Function 

1 

Al2O3 -.514 

CaO .789 

MgO .578 

TiO2 .969 

Classification Resultsa 

  Ward Method Predicted Group Membership Total 

  1 2 

Original 
Count 

1 13 0 13 

2 0 28 28 

% 
1 100.0 .0 100.0 

2 .0 100.0 100.0 

A 100.0% of original grouped cases correctly classified.  
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presence of several alteration in the rocks). The application of these indices, for example, those 

shown in Figure 5.16, increases from index 1 (Fig. 5.16a) to index 4 (Fig. 5.16d), clearly 

indicating that the latter index (Fig. 5.16c) would be more useful than the former (Fig. 5.16a).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5 also shows the results obtained from multivariate correlation analysis, of which the 

significance of the correlation matrix has been limited to 0.5, wherein the distribution and 

existing relationships among different elements, including the base metal sulphides (Ni, Cu, 

Zn and Co), have been investigated and highlighted. As clearly shown in Table 5.5, only values 

which are highlighted and those with two tails are considered as being the most useful 

correlation coefficients (as they fall within the significance of 0.05 as specified), and are also 

considered as the only values that show a meaningful measure of the nature (positive or 

negative), magnitude (high or low) and strength (strong or weak) of the relationships between 

the variables (elements, in this case) to be used for vectoring.  

As mentioned earlier, significant correlations (or relationships) are highlighted on Table 5. 5. 

Certain elements, such as Al2O3 and Na2O, showed a strong negative correlation with Ni, Cr, 

Figure 5-16: Indices to distinguish between the actual host-rock and the other associated host-

rocks. Group 1 represents the meta-gabbronorite and group 2 all the other rock-types. TiO2 vs 

Al2O3 and Al2O3 vs. TiO2+CaO+MgO provide the best differentiation between the two groups. 
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Co, MgO and Fe2O3; Na2O is negatively correlated with Zn. In the same order, Ni, Cr and Co 

also showed strong positive correlations with both MgO and Fe2O3 as well as among 

themselves. Zn, in turn, has only been positively correlated with Ni and Na2O. Cu by contrast 

shows no significant correlation matrix in the dataset.  

 
Table 5-5: correlation table showing element relationships in the dataset 

 

 

Additional results obtained also indicate that Cr and Zr, together, correlate strongly with Ni,  

98.1% of coefficient of determination (Table 5.5), with Cr alone providing 97% of the 

information of Ni. For all the host rocks combined, Cr provides 82.7%, Co 5.0% and Fe2O3 

1.3% of correlation with Ni. This result, therefore, indicates that Cr alone controls the 

distribution of Ni in all the host rocks and within the meta-gabbronorite. Co is controlled by 

MgO both in the meta-gabbronorite (90.9%) and in all the country rocks (89.9%). Similarly, 

the distribution of Zn in the meta-gabbronorite can be predicted using Na2O (56.4%), followed 

by Co (64.1%) in the country rocks. Cu was, however, excluded in this investigation as the data 

revealed no correlation coefficient (Table 5.5) for it. Several geochemical indices are also 

developed and discussed further in chapter 6. Those indices are therefore considered as 

pathfinder elements with potential for pointing towards the mineralization. Table 5.6 shows 

different predictors for the mineralization both in the meta-gabbronorite and in all other country 

rocks altogether.  

                                                                                Correlations 

  Al2O3 CaO Fe2O3 K2O MgO Na2O P2O5 TiO2 Cr Co Ni Cu Zn 

Al2O3 1 .384 -.732** .522 -.769** .640* .322 .600* -.874** -.745** -.882** -.507 -.467 

CaO   1 -.613* -.317 -.653* .570* .078 -.050 -.566* -.498 -.603* .047 -.510 

Fe2O3     1 -.400 .914** -.841** -.610* -.541 .842** .925** .879** .141 .656* 

K2O       1 -.396 .299 .581* .711** -.408 -.520 -.377 -.169 -.112 

MgO         1 -.871** -.558* -.412 .939** .956** .927** .250 .603* 

Na2O           1 .397 .301 -.816** -.844** -.839** -.322 -.752** 

P2O5             1 .713** -.493 -.727** -.475 -.159 -.269 

TiO2               1 -.465 -.540 -.510 -.233 -.226 

Cr                 1 .894** .984** .462 .676* 

Co                   1 .877** .331 .550 

Ni                     1 .400 .746** 

Cu                       1 .178 

Zn                         1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

The most significant correlations are highlighted in bold and the most significant correlations indicate two 

tails of which the number are either positive (where elements increase together) or negative (where the 

relationship becomes inverse). 
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Table 5-6: Element predictors and their predictibility percentage as pathfinders for Ni, Co and Zn in 

the meta-gabbronorite and in all the host-rocks 

Element predictor 

for Ni  

Percentage of 

prediction 

Element 

predictor for Co 

Percentage of 

prediction 

Element 

predictor 

for Zn 

Percentage 

of 

prediction 

In the meta-gabbronorite 

Cr 97.0 % MgO 90.9% Na2O 56.4% 

Zn 1.1% P2O5 5.8%   

Total 98.1%    56.4% 

In all country rocks altogether 

Cr 82.7% MgO 89.9% Co 61.4% 

Co 5.0% Cu 3.6%   

Fe2O3 1.3% CaO 2.4%   

Total 89.0%  95.9%  61.4% 

 
Attached tables display both the coefficient of correlation (R) and the coefficient of determination (R-

Square) and the potential predictors for each element of interest. Also shown are the results obtained 

while investigating the meta-gabbronorite in isolation and those for all the host-rocks combined. 

 

 

 

 

6. CHAPTER VI 

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Discussion  

6.1.1 Introduction 

Understanding the origins (source/provenance), protoliths and tectonic evolution of the highly 

metamorphosed and polyphase deformed rocks of the poorly-known Garies Terrane in the 

south-western section of the Mesoproterozoic Namaqua-Natal Metamorphic Province, and, in 

particular, the host lithologies to the Hondekloof mineralization, was the major focus of this 

study. Findings on the host lithological characteristics as well as a classification of the 
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mineralization type in view of the general and global classification of magmatic Ni sulphide 

mineralization, as defined by Naldrett (1999, 2004), Hronsky (2007), and Song et al. (2008, 

2011) are discussed and addressed with particular attention on the Hondekloof prospect.  

6.1.2 Origin and protoliths 

There are a total of seven lithologies (namely the meta-gabbronorite, biotite gneiss, feldspathic-

biotite-garnet gneiss, pink gneiss, meta-syenite, enderbite and garnetiferous quartzofeldspathic 

rock) that are identified and among which only the meta-gabbronorite occurs in association 

with the mineralization. The geochemical study conclusively revealed two overall precursor 

origins (magmatic and sedimentary) which allowed the characteristic natures of the protoliths 

of each lithology examined to be determined (Fig. 5.3). Lithologies of magmatic origin include 

the meta-gabbronorite, meta-syenite, enderbite and the garnetiferous quartzofeldspathic rock. 

Those of sedimentary origin include the biotite gneiss, feldspathic biotite garnet gneiss, as well 

as the pink gneiss (Fig. 5.3).   

The meta-gabbronorite falls exclusively within the magmatic field on the classification diagram 

of Winchester and Max (1982) (Fig. 5.3) and has a basaltic composition on the protolith 

discrimination diagrams of Winchester and Floyd (1977) (Fig. 5.4a & b). The latter 

interpretation is supported by the nearly flat REE pattern (Fig. 5.10b) and a weakly sloping 

spider diagram pattern (Fig. 5.10a), indicating that the meta-gabbronorite samples collectively 

reflect the composition of a mafic composition protolith. These trends are, collectively, in good 

agreement with the occurrence of plagioclase as well as such mafic minerals as ortho- and 

clinopyroxene and that are confirming that the nature of the magma generating this rock is of 

a basaltic composition. However, enrichment of Rb, Ba and Pb, as shown on the multi-element 

spider plot (Fig. 5.10a), is indicating that there is an influence of a crustal component   either 

due to crustal contamination or due to the overall composition of the source area of the meta-

gabbronorite. A well-pronounced negative Eu anomaly, as clearly shown on the REE plot (Fig. 

5.10b), suggests that there was retention of plagioclase component in the source area. The meta-

gabbronorite compositions range between calc-alkaline and tholeiitic magma composition (Fig. 

5.5), and hold the chemical characteristics of a rift and continental arc type tectonic magmas 

as defined by Verma et al. (2008, 2013). The results shown on Fig. 5.6a and b, further indicate 

that the meta-gabbronorite holds the chemical characteristics of a depleted mantle source, 

source of Mid Oceanic ridge Basalt (MORB)-melt, and that, it has no affinity to an enriched 

mantle-source, source of Ocean Island Basalt (IOB)-like melt. The present study based on the 
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latter interpretations concludes that this meta-gabbronorite should be regarded as forming part 

of the Oorkraal Suite following the suggestion of Hamman et al. (1996); and that is not directly 

related to Koperberg Suite as suggested by Andreoli (1987, 1991a).   

Similarly the meta-syenite samples are also of magmatic origin, as shown on the classification 

diagram of Winchester and Max (1982) (Fig. 5.3), but are different as they are of felsic 

composition (Fig. 5.4a & b). This corresponds to the relatively negatively sloping patterns in 

both REE plots and spider diagrams (Fig. 5.10c and d) of this lithology, reflecting the presence 

of a crustal component or derivation from a crustal source. A felsic composition is also 

indicated by the abundance of K-feldspar in the mineralogical composition of this rock, which 

conforms to the high K, calc-alkaline composition of this rock (Fig. 5.5b). The presence of a 

Nb-Ta “trough” in the spider diagram pattern of this rock (Fig. 5.10c) is suggestive of the 

involvement of a crustal component and reflects a subduction related tectonic environment 

(Rollinson, 1993). The relative depletion of P and Ti, as shown on the spider diagram (Fig. 

5.10c), also suggests the presence and retention of apatite as well as magnetite/ilmenite in the 

source area from which the magma forming this meta-syenite was generated.  Suggestions were 

also made with regards to the classification of this meta-syenite, given the fact that it has 

orthopyroxene and therefore should be termed a charnockite or having affinity to a group of 

charnockitic intrusion. However, two interpretations may be possible in this case, as it may 

either be part of the post-tectonic charnockite of the Little Namaqualand Suite (hence the name 

charnockite) or be part of the pre- to syn-tectonic bi-modal felsic magma which was emplaced 

at the same time as  the Oorkraal Suite magma (hence the name meta-syenite).  

The original sedimentary signature has only been retained for the pink gneiss samples amongst 

all the gneisses (biotite gneiss, feldspathic biotite garnet gneiss, and pink gneiss) represented 

on the classification diagram of Winchester and Max (1982) (Fig. 5.3). The biotite gneiss and 

feldspathic biotite garnet gneiss straddle the boundary between the magmatic and sedimentary 

fields (showing a dispersed distribution that is suggestive of a mixed origin characteristics) 

(Fig. 5.3). The effects of partial melting in these gneisses, as pointed out in chapter 4, may be 

responsible for influencing their chemical composition in the latter diagram (Fig. 5.3). They 

have the chemical compositions which seemingly reflect a mixed origin, such as that of a 

volcaniclastic”, or a compositional equivalent of the volcaniclastic nature. Certain element 

ratios, such as Th/Sc, Cr/Zr and Al2O3/TiO2, collectively suggest that the protoliths to these 

gneisses were derived from a provenance of felsic to intermediate composition (Fig. 5.12a). 
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Some element-based factors (such as the CIA and CIW), furthermore suggests that the detritus 

forming these gneisses also underwent little to low degrees of weathering in their provenance 

(or source area). They are all collectively displaying the signature of subduction-related 

processes, as shown by the presence of Nb-Ta “troughs” in their multi-element spider diagram 

patterns (Fig. 5.13), and also clearly, consistently reflect a continental island arc tectonic setting 

(Fig. 5.14). Additional trends, for example, using MgO-K2O-Na2O (Fig. 5.12c) as well as Ni 

vs. TiO2 (Fig. 5.12a), as the protolith indicators indicate that the protoliths to these gneisses 

have the overall composition of predominantly arkoses, and, to a lesser extent, psammitic 

sediments. This, in combination with the studies of Moore (1983, 1989) and Albat (1984), 

suggests that these gneisses should be regarded as meta-arkoses generated from the 

metamorphism of continental arc sediments. 

 Features of partial melting, for example the presence of coarse grained quartz and alkali 

feldspar assemblages, migmatitic segregations and pegmatitic textures in the rocks, as reported 

by Waters and Whales (1984) along the southern section of the Namaqualand, have also been 

detected in this study through the mineralogical and textural characteristics of enderbite and 

garnetiferous quartzofeldspathic rock. It is therefore suggested here that both the enderbite and 

garnetiferous quartzofeldspathic rock have likely been generated through partial melting during 

prograde dehydration metamorphism. It also is suggested here that the garnetiferous 

quartzofeldspathic rock corresponds with the Ibiquas Granite (S-type granite), as proposed by 

Macey et al. (2011), due to the fact that the mineralogical composition of this rock (dominated 

by almandine garnet and alkali feldspar) reflects a generation of melt  derived either from a 

metasedimentary rock or an equivalent of peraluminous igneous rock.  

The suggestion that enderbite is a melt product of the meta-gabbronorite is based on the 

observation of the close association both chemically and mineralogically as well as  spatial 

proximity in the boreholes of these two rock types (Fig. 4.2).  A partial melt origin is also 

suggested by the presence of sulphide mineralisation in the enderbite, suggesting 

remobilisation and redistribution of the sulphides contained within the host meta-gabbronorite 

at a local scale during high grade metamorphism, partial melting and deformation. Table 6.1 

gives a summary of the proposed protoliths based on interpretation of this study.  

Table 6-1: Proposed protoliths 

Litho-type Mineralogical 

Evidence 

Textures  Proposed 

Protolith 

Alternative 

Protolith 
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Meta-gabbronorite Two pyroxenes + 

plagioclase 

Granoblastic and 

gneissic foliation  

Gabbronorite/or 

two pyroxene 

granulite 

Gabbro or norite 

Garnetiferous 

quartzofeldspathic rock 

Garnet + quartz + alkali 

feldspar 

Poikiloblastic  partial melt 

segregation 

Peraluminous 

igneous rock 

Biotite gneiss  Quartz, alkali feldspar 

and biotite 

Gneissic foliation Psammitic 

arkoses/sandstone  

Semi-pelitic or 

granitic/rhyolitic 

rock 

Feldspathic biotite garnet 

gneiss 

Quartz and k feldspar + 

garnet 

Gneissic foliation Psammitic 

arkoses/sandstone 

Semi-pelitic or 

granitic/rhyolitic 

rock 

Pink gneiss  Quartz and feldspar + 

biotite 

Gneissic foliation Psammitic 

sediments  

Semi-pelitic or 

granitic/rhyolitic 

rock 

Meta-syenite Alkali feldspar (≥ 65-

70 wt. %) 

Relict interlocking 

textures 

Syenite Monzonite/granite 

Enderbite Plagioclase+ feldspar + 

orthopyroxene 

Pegmatitic  A partial melt 

segregation from 

a gabbronorite 

A partial melt 

segregation from 

norite or gabbro 

 

6.1.3 Metamorphism and deformation 

The work of Albat (1984) and Waters (1986b) on the metamorphic evolution of southern 

Namaqualand made it unnecessary for us to undertake geobarometry and geothermometry 

analyses, and that the findings of these earlier workers could simply be confirmed from mineral 

parageneses. The consistency in these authors’ works as well as supporting evidence from a 

number of regional metamorphic studies in the Namaqua Sector, and the Okiep Copper District, 

(e.g. Robb et al., 1999; Clifford et al., 2004; Clifford and Barton, 2012), suggest temperature 

and pressure conditions in the upper amphibolite to upper granulite facies grade (temperatures 

≥750oC and pressure = 5-6 kbar). Waters (1988) suggested thermal conditions reaching up to 

dehydration partial melting conditions based on the supracrustal sequences of the Kamiesberg 

Group he studied along the southern portion of the Kliprand area. He made use of multiple 

mineral reaction processes, such as biotite  +  sillimanite  +  quartz =  garnet +  K-feldspar  +  

liquid to infer a low pressure-granulite facies metamorphism and anti-clockwise P-T regime 

for the whole south-western and western  portion of the Namaqua Sector encompassing both 

the Okiep Copper District as well as the Garies and Kliprand areas. Albat (1984) used two 

models for the purpose of discussing the thermal evolution path and the nature of high 

temperature-low-pressure granulite facies metamorphism in the supracrustal sequences around 

the Kliprand area. The pros and cons of the models as proposed by these earlier worker will be 

discussed and follow on with interpretation from the present study.  
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6.1.3.1 Models of Albat (1984) 

The graphical illustrations of the two models proposed by Albat (1984) are shown on Figure 

6.1a and b, respectively. The first model (Fig. 6.1) proposed that the western Namaqua Sector 

was affected by a series of cumulative metamorphic events occurring contemporaneously with 

a specific deformation event (e.g. D1+M1; D2+M2 and D3+M3). The model therefore evoked 

the concept of thermal peaks and thermal troughs to separate different periods of thermal 

fluctuation in the metamorphic history of the Namaqua Sector (Fig. 6.1).  

 

 

 

 

 

 

 

 

 

The first model suggests that the western Namaqua Sector rocks were heated in a cycle of three 

successive metamorphic events accompanied by three phases of deformation, from D1+M1 

through D2+M2, to D3+M3. The M2 metamorphic event represents an amphibolite facies 

metamorphic event and is recorded as the second highest thermal event in the cycle. M3 is a 

granulite facies condition and post-dates the M2 event. The model thus suggests that the 

metamorphism in the western Namaqua Sector followed a characteristic anti-clockwise 

pressure temperature time (P-T-t) path due to the fact that the thermal peak increased 

progressively to a granulite facies condition, M3, and subsequently cooled off approximately 

isobarically. Robb et al. (1999) recommended this model for the whole western Namaqua 

Sector after examining the regional metamorphism of the Okiep Copper District and surrounds. 

Waters (1990), for example, argued that such peak metamorphic conditions in the western 

Namaqua Sector could only have been attained or facilitated by magmatic accretion that might 

have been achieved by emplacement of a thick basaltic body which was underplated at least 10 
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Figure 6-1: Two schematic models for the metamorphic regime of the western Namaqua Sector. (a): 

Successive metamorphic events labelled as M1, M2 and M3, showing the changes in the thermal regime 

through time. (b) A single metamorphic event attaining the maximum thermal climax (M2) after which 

the temperature cools off gradually.  
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km below the present level of erosion, accompanied by voluminous felsic intrusions into the 

mid-crust.  

The second model, by contrast, suggests that the western Namaqua Sector rocks were heated 

gradually to a maximum granulite facies condition (M2) and subsequently cooled off gradually 

thereafter (Fig. 6.1). This model therefore challenges the existence of several periods of thermal 

fluctuations in the metamorphic history of the western Namaqua Sector and rather promotes a 

single continuous thermal path reaching a thermal climax (M2) after which the peak 

metamorphic conditions gradually subsided. M2, according to this model, is documented as the 

prograde (thermal high) event of granulite facies conditions. M3 represents amphibolite facies 

conditions which were superimposed onto the M2 event as its retrograde phase. This model, to 

some extent, is similar to the first model, but in reverse, in that the granulite facies 

metamorphism, M2, which is the highest thermal event, pre-dated the later amphibolite facies 

event, M3. This model thus, in summary, suggests a clockwise pressure temperature time (P-

T-t) path for the western Namaqua Sector metamorphism. 

6.1.3.2 Present study interpretation 

Textural evidence recorded from the present study correlates well with the second model rather 

than first model. The former model offers features which explain much of the thermal path and 

P-T regime under which the Hondekloof prospect could possibly have been metamorphosed. 

No textural evidence suggesting the occurrence of multiple metamorphic events, such as 

coronas, were observed in the investigated rocks, thus failing to corroborate the first model. 

Corona textures provide tangible evidence of thermal highs and lows and support several 

periods of thermal fluctuations in the metamorphic history (Waters and Whales, 1984; Waters, 

1986b).  Temperature-sensitive minerals, such as garnet and biotite, would have recorded such 

a metamorphic history by preserving several temperature-dependent features, for example, 

textural zonation patterns within minerals (Waters, 1986b). Each zone or pattern would have 

been unique and characteristic for each specific thermal period in the metamorphic record 

(Waters and Whales, 1984; Waters, 1986b). Ideally, several metamorphic reaction features, 

such as coronas and double coronas, would be expected to have been preserved in the rock 

record if model 1 was applicable in the study area. No such features were observed during the 

present study. 
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The second model is supported, in this current study, by the occurrence of mineral reaction 

textures such as pyroxene being replaced by amphibole (hornblende) in the meta-gabbronorite. 

Furthermore, chlorite and epidote (green assemblages) replace such minerals as biotite and 

plagioclase in such lithologies as the biotite gneiss, suggesting that the latest metamorphic 

event, which is M3, probably cooled off to a near greenschist facies conditions. This 

interpretation corroborates well with the textural evidence described in numerous sections in 

chapter 4. This suggests that the magma that formed the meta-gabbronorite and Hondekloof 

deposit possibly intruded prior to the D2 deformation event and was affected by the M2 

granulite facies metamorphism. The present interpretation does not, however, by any means, 

rule out the possibility of having another higher thermal event prior to M2 in the area. 

Nevertheless, no textural evidence was observed to lead to such a conclusion during the present 

study. But, if a pre-M2 peak metamorphic assemblage exists, then any evidence of its existence 

must have been destroyed and is not preserved in the rock record. Alternatively, a previous 

high grade metamorphic event, if it exists, may have occurred prior to intrusion of the precursor 

to the meta-gabbronorite. 

6.1.4 Tectonic evolution 

Very little is known about the nature, age and tectonic evolution of the Garies terrane outcrops. 

Reliance is, however, placed on the work of Albat (1984) and Macey et al. (2011) for 

interpretations of the tectonic evolution of the Kliprand area and surroundings. Based on the 

limited data available and consideration on previous work available, two simplified tectonic 

scenarios are envisaged and discussed.   

6.1.4.1 Extensional analogue (local scale) 

The local geology, most particularly the structural configuration as well as the petrographic 

and geochemical characteristics of the lithological units that occur within the Kliprand area 

provide numerous evidences of multiple phases of local deformations in study area. It is with 

that knowledge that models of local and regional scales were developed, and discussed 

concurrently in order to accommodate interpretations of multiple phases of deformation in the 

study. Figure 6.2a summarizes the various stages involved during the extensional regime which 

acted locally within a back arc basin (under the assumption that the Kliprand area is a portion 

of a back-arc basin within the regional collisional system of the Namaqua Sector). It is here 

suggested that the Garies-Kliprand area may be regarded as a portion of an old thickened 
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lithospheric-continental crustal block or a localized back arc basin and an extensive mobile belt 

in the anatomy of a collisional system of the Namaqua Sector with the Kaapvaal Craton (Albat, 

1984). The block underwent a localized rifting/crustal extension (in the local scale) (Fig. 6.2a-

stage 1) leading to opening up of a back arc basin due to continuous lithospheric thinning (Fig. 

6.2a-stage 2). Subsequently further extension occurred, causing erosional debris (the sediments 

which would be lithified into the pink gneiss, biotite gneiss, etc.) to become available and 

deposited in the basin (Fig. 6.2a-stage 3). Continued extension led to continuous 

accommodation which, in turn, led to basin sagging. Crustal extension led to mantle upwelling 

and partial melting (Fig. 6.2a-stage 4), with intrusions of the mantle-derived magma 

subsequently occurring. Throughout this time, however, deposition of detritus into the basin 

was continuous (Fig. 6.2a-stage 5). Burial subsequently and progressively occurred (Fig. 6.2a-

stage 6) and the whole area underwent a regional granulite facies metamorphism (caused by 

the overall compressive regime and crustal thickening and/or pressure of the overlying 

stratigraphic successions, or simply as the lower sediments got buried to deeper and deeper 

levels) (Fig. 6.2a-stage 7). Exhumation occurred subsequently, with the overall regional 

compressional stress, coupled with multiple intense erosional periods being the driving forces 

which mechanically unroofed the stratigraphic units of the upper successions and ultimately 

exposed the granulite facies rocks at the surface (Fig. 6.2a-stage 8).      

6.1.4.2 Compressional analogue (Regional scale) 

This model, in contrast to the previous one, attempts to explain the compressional forces acting 

regionally in the framework of a convergence subduction-related scenario (Fig. 6.2b). This 

model proposes that the Garies Terrane, as a whole, should be considered as forming part of a 

large subduction-related collisional system in the Namaqua Sector (Fig. 6.2b-stage 1), wherein 

the Kliprand and surrounding areas would represent the arc-related basins which have opened 

up and developed either in front of, or behind a volcanic arc (see suggestions of Albat, 1984).  

Meta-sedimentary rocks, such as the biotite gneiss and pink gneiss,  derived from arc settings 

as shown both by arc-signature (Fig. 5.14), and by subduction-related signature in them (Fig. 

5.13).  Those of magmatic origin, by contrast, were derived either from a local rifting (e.g. the 

meta-gabbronorite) (Fig. 5.7) or by the recycled crustal materials which underwent melting 

(e.g. the meta-syenite). A plausible scenario for developing an arc related basin locally within 

the Kliprand area, in a major compressional regime, such as that of the Namaqua Sector 
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configuration, is here explained by a north-south subduction process of the Kaapvaal Craton-

Rehoboth cratonic block beneath the Bushmanland Subprovince.  

There are a wide range of pre- to syn-tectonic metamorphosed sedimentary rocks as well as a 

large volume of bimodal igneous rocks which are locally exposed in the Kliprand area (Macey 

et al,., 2011). The occurrence of these mixed- litho-types and their multiple characteristics and 

origins provide evidence that the Garies Terrane, if not regionally, but at least locally, has been 

subjected to a multiple phases of tectonic events. Sedimentation in active convergent and 

subduction related settings commonly occurs in basins which have opened up either in front of 

(i.e. the fore-arc basin) or behind (i.e. the back arc basin) a volcanic arc zone (Keller et al., 

2002). Continuous opening either in back-arc or in fore-arc basins commonly ends with a series 

of magmatic intrusions occurring concurrently with sedimentation in the basin (Faccenna et 

al., 2001; Keller et al., 2002). Evidence of sedimentation, based on the presence of a variety of 

meta-arkoses, as well as bimodal magmatism, as shown by the existence of the meta-

gabbronorite and meta-syenite, provide clear indications of a rift-type continental back arc 

environment. The geochemistry of the meta-gabbronorite (spider diagram Fig.5.10a), and their 

tectonic setting classification on multiple tectonic discrimination diagrams of Verma et al. 

(2008) (Fig. 5.7), in particular, support the involvement of a rift arc setting signature. Prominent 

Nb and Ta “troughs” in the multi-element trace element diagrams (spider diagrams) (Fig 5.13a, 

c, and e) of all the meta-arkoses clearly attest to the fact that these rocks regionally have a 

subduction related signature and hence collisional tectonic setting. These features confirm that 

the protoliths (sediments) which formed these meta-arkoses were derived from provenances 

which were generated from a subduction-related type of setting. The meta-gabbronorite, by 

contrast, does not show a Nb and Ta subduction “trough” or anomaly in its spider diagram (as 

clearly shown for the meta-syenite samples) (Fig. 5.10a & c). This suggests that the meta-

gabbronorite, likely, could have been generated by magmatism within the back arc basin, and 

that its parental magma was produced further away from the actual metasomatized mantle 

wedge (and hence no subduction signature was retained).  
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The actual location and position of the volcanic arc in the overall regional subduction 

collisional model (Fig. 6.2b), to date, is still puzzling and has yet to be well understood. The 

volcanic arc terrane of the Richtersveld Subprovince, located farther to the north of the study 

area, has been suggested as a possible candidate for the volcanic arc representation (Albat, 

1984). The possibility of having a possible, enigmatic and, as yet, unidentified crustal block 

flanking the south-western margin of the Garies Terrane can also not be completely ruled out 

as a possible scenario and theory. Such a crustal block would then have probably detached 

from the whole Namaqua Sector during the break up of Gondwana or before or during the 

break up of Rodinia. However, if this is true, the whereabouts of such a block, and, as to where 

it went and its present location, may result in a protracted debate and -un-resolvable matter. 

The subduction signature, as shown in the various samples of the biotite gneiss, pink gneiss 

and others (Fig. 5.13) clearly suggests that the protoliths to these rocks were generated in a 

collisional arc-related type of setting. This information, in combination with the position of 

these samples in the tectonic discrimination diagram of Bhatia and Crook (1986) (Fig. 5.14), 

support the involvement of a collisional arc basin as a host tectonic setting.  
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The metamorphism of these rocks to granulite facies grade furthermore suggests a burial 

history to at least 20 km below the surface; assuming a general geothermal gradient at the time 

estimated to have been around 35oC/km (see Albat, 1984). The fact that these rocks occur at, 

or near the surface at the present day simply suggest that they must have been uplifted, 

exhumed and intensely eroded after such a deep burial occurred. Following on from this, the 

granulite facies metamorphism, M2, which largely coincided with D2 deformation, has been 

estimated to have occurred during the early Namaquan Orogeny at 1187 ± 22 Ma following the 

suggestion of Clifford et al. (1981) and Clifford and Barton (2012). Evidence of pre-Namaqua 

events (apart from intrafolial folds) have, however, not been preserved in the rock record, 

making it extremely difficult to substantiate the early stages of the model with firm evidence. 

Crustal shortening associated with D3 deformation, has, however, been well preserved as 

symmetrical folding foliation fabrics within the biotite gneisses (Plate 4.5a & b). Based on field 

observations, this shortening event is estimated to have had the orientation of a north-south 

orientation relative to the current position and present-day orientation of the study area. This 

orientation is also confirmed by the structural studies of Albat (1984) and Macey et al. (2011) 

which, together, support the findings of this study. Field evidence of north-south compressional 

folding, as well as biotite-hornblende-rich xenoliths with a sinistral sense of shear have also 

been preserved in the meta-pelitic gneisses forming part of the Kamiesberg Group of the 

Namaqualand stratigraphy (see Plate 8.4 in appendix). This interpretation is consistent with the 

result obtained by G. Abrahams (pers. comm., October 2014), whose work has provided a large 

amount of field evidence quantifying the magnitude and orientation of the various stress fields 

which likely operated in the study area. Confirmation of this north-south orientation (of the 

principal stress during D3) is also in excellent agreement with the structural work of Albat 

(1984), as well as that of Joubert (1986). 

6.1.5 Vectoring and controls on the mineralization (Ni, Cu, Co and Zn) 

Two conceptual models based on multivariate statistical analyses (on the basis of element 

relationships) were built in order to understand the distribution of the mineralization. Only 

specific elements, such as Ni, Cu, Co and Zn, are given particular attention for vectoring (as 

they represent the mineralization). Important relationships between the mineralization and the 

different host rocks and identifying the nature of those relationships were established as the 

main focus of this geostatistical analysis. Sulphide mineralization in several samples of the 

meta-gabbronorite both in core specimen (Plate 4.1c) as well as in thin sections (Plate 4.2c) 

indicate that the meta-gabbronorite occurs as the actual ore-host lithology (amongst the many 
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host lithologies which are reported). Multiple geochemical vectors (or indices) have thus been 

created and are robust in isolating the meta-gabbronorite’ samples from within the large group 

of hosts (Fig. 6.3). These vectors, most particularly CaO + MgO vs. TiO2/Al2O3, CaO/Al2O3 

vs. TiO2/Al2O3 and others have shown consistency in isolating the meta-gabbronorite samples 

from within the large group of hosts by plotting them on different binary diagrams (Fig. 6.3). 

The robustness of these indices suggest that they can be used as chemographic indices for 

showing the position and/or highlighting areas where the meta-gabbronorite spatially occurs. 

The use of geochemistry as an exploration tool in highly deformed and granulite facies area 

such as the Kliprand area is necessary and thus the importance of the vectors proposed in this 

study. The main criteria in developing these vectors has been that the other litho-types, in 

general, have shown to have more Al-contents relative to the overall Al-contents of the meta-

gabbronorite. The latter has been attributed to the large amount of felsic minerals (for example 

feldspars) that those litho-types have in comparison to the overall amounts of felsic minerals 

that the meta-gabbronorite has (and hence high and low Al-contents, respectively).  

The observation that certain elements are strongly correlated with Ni, Co and Zn was reported 

on Table 5.4 and the nature of their relationships were also explained on Table 5.5.  Stepwise 

regression analysis, which evaluates the percentage to which one element can be predicted 

using the concentration of other elements, has indicated that there are several possibilities of 

determining several path-finder elements for each commodity elements studied (see Table 5.5). 

Several indices developed and applied have, indeed, shown that elements such as Cr, MgO and 

Fe2O3 are potentially useful for prediction of the distribution of Ni in the host lithologies (most 

particularly in the meta-gabbronorite). Other indices, such as MgO + P2O5, as well as Na2O, 

are also useful and have shown potential for being used for prediction of Co and Zn 

concentration (see Table 5.5). Figure 6.3 show multiple vectors for which the actual ore-host 

(the meta-gabbronorite) is set aside from within the large group of hosts using geochemistry as 

an exploration tool. A derivation of the enderbite from the meta-gabbronorite through a partial 

melting is geochemically supported by the closer association of the enderbite sample with the 

meta-gabbronorite sample in several diagrams shown on Fig. 6.3. 

 

  

 

0 1 2 3 4 5

0
5

1
0

1
5

2
0

TiO2

M
g
O

d 

0 1 2 3 4 5

0
2

4
6

8
1

0

TiO2

C
a

O

e 

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

MgO Al2O3

T
iO

2
A

l 2
O

3

f 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

CaO Al2O3

T
iO

2
A

l 2
O

3

0 5 10 15 20

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

CaO MgO

T
iO

2
A

l 2
O

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

Fe2O3 Al2O3

T
iO

2
A

l 2
O

3

a b c 

Wt.%   

   

 

 

 

 



The lithogeochemical characterization-Hondekloof Ni mineralization  

 

Reddy Bokana 2015 
92 

 

 

 

 

 

 

 

 

 

  

 

Copper, despite being one of the commodity elements, could not be predicted using any of the 

potential vectors which have been developed. Due to it not showing any valuable correlation 

matrix, as well as lack of showing any coefficient of determination, the distribution of Cu is 

considered less predictable or unpredictable in comparison to the other commodity elements. 

Metamorphism and deformation of the ore deposit are considered as the driving factor which, 

due to the mobility of Cu, in the metamorphic fluid, may have been responsible for affecting 

its distribution (as Cu can be easily remobilized during metamorphism or metasomatism). But 

other elements, by contrast, such as Ni, Zn and Co as shown on Figure 6.4, display closer 

relationships with numerous indices which are developed as their vectors. It is therefore 

suggested that some of these vectors may be used as an exploration tool for determining the 

position of many of these commodity elements in different host rocks, either, for the 

Hondekloof deposit or for similar deposits.  
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It was also envisaged that there is a good relationship between plagioclase content, Al2O3 

content and Ni content in several samples of the meta-gabbronorite. Those samples which have 

lots of plagioclase and high Al2O3 and Na2O contents, have low Ni contents. This observation 

is suggesting that the barren-meta-gabbronorite and mineralized meta-gabbronorite can be 

separated on the basis of the mineralogical composition of plagioclase and its Al2O3 content 

(Table 6.2). Those samples of meta-gabbronorite having a high Al2O3-content and lots of 

plagioclase are considered either as barren or less mineralized compared to those which have 

less plagioclase and with a low Al2O3 content. This observation is shown petrographically in 

Plate 4.2a and c, wherein a higher plagioclase content equates with lesser amounts of 

mineralization and vice versa, and which is also in good agreement with respect to geochemical 

compositions in terms of the variation of Al and Ni contents (Table 6.2). A major conclusion 

drawn was that the barren or less mineralized meta-gabbronorite samples, as well as the 

mineralized meta-gabbronorite samples, are separated based on Al and plagioclase contents 

(see Table 6.2).  

Table 6-2: Determination of a mineralized and a less mineralized meta-gabbronorite sample 

Sample ID Al contents (%) Ni-content (ppm) Interpretation 

    

H493-1d 16.54 55.57 less mineralised or barren 

H 582-6 8.36 6896.82 Mineralized 

This discrimination is based on Aluminium content and the amounts of plagioclase in the samples. It is also known 

that only two sample shown on table 6.2 is statistically not a very conclusive result. 
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6.1.6 Classification of the Hondekloof prospect 

There are specific criteria for which the nature of a magmatic nickel sulphide mineralization is 

compared and classified (Table 6.3). These are: (1) the amount of sulphide, or the amount of 

base-metal, such as Cu, contained within the sulphide, (2) the fractionation state, in terms of 

MgO content of the parental magma, and (3) the environment of deposition (e.g. Naldrett, 1999, 

2004; Hronsky, 2007; Song et al., 2008, 2011). With regards to these criteria, therefore, the 

Hondekloof deposit could tentatively be classified as being a disseminated, low MgO, and 

conduit-type of magmatic nickel sulphide mineralization. 

Since it is possible to classify a magmatic Ni sulphide deposit based on tectonic setting 

characteristics (Hronsky, 2007; Song et al., 2008, 2011), an attempt was also made to identify 

the tectonic setting in which the Hondekloof deposit was deposited.  The assumption made 

here, however, is that there are only four tectonic environments that are suitable as potential 

hosts to a magmatic Ni sulphide deposit, namely: (1) a layered mafic intrusion, (2) a komatiite-

hosted deposit, (3) a large igneous province, and (4) a conduit system (Song et al., 2008, 2011). 

Selection of the conduit system as principal host type was made based on the fact that the 

Oorkraal Suite, which acts as the main ore-bearer for the Hondekloof mineralization, has no 

features seemingly reflecting the characteristics of either a layered mafic intrusion (e.g. the 

presence of layering or tabular stratigraphic layers), or a komatiite hosted deposit ( due to the  

lack of ultra-mafic rocks such as komatiite in the succession), or a large igneous province (such 

as the presence of flood basalts in the area). However, this interpretation can also become 

intriguing given the fact that the presence a related eruptive magmatic component (such as a 

volcanic or plutonic intrusion) has not been proven conclusively in the case of the Hondekloof 

deposit; which is a pivotal requirement for developing a conduit-type model. In addition, the 

highly metamorphosed and deformed nature of the area makes this interpretation tentative. 

Nevertheless, it is here assumed that the meta-gabbronorite, being part of the Ookraal Suite, 

possibly acted as the conduit pipe to the previously existing country rocks and meta-

sedimentary formations (namely biotite gneiss, feldspathic biotite garnet gneiss and pink 

gneiss).  

Song et al. (2011) argued that intrusions which host conduit types of mineralization generally 

do not exceed dimensions of more than 10 km in size (i.e. due to the fact that the size of such 

intrusion are controlled by the size and shape of a regional fault which the nickeliferous magma 
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used as a conduit). A conduit style is tentatively supported here by the notion that the Oorkraal 

Suite only extends to about 3.5 km in dimension (Macey et al. 2011). This observation, in 

combination with a lack of features, that would, otherwise, suggest other tectonic 

environments, suggests that the Hondekloof deposit is a conduit type of magmatic Ni sulphide 

deposit. It should be noted, however, again that the highly deformed nature of the rocks makes 

this interpretation suggestive and tentative at best. A more comprehensive study of the actual 

sulphide mineralisation of the Hondekloof deposit is required before a firm, conclusive 

classification for the deposit can be given.  

 

 

 

Table 6-3: criteria for classifying a magmatic Ni sulphide deposit (after Naldrett, 1999, 2004; Hronsky, 

2007, Song et al., 2008, 2011) 

Based on: Class I  Class  ii   Class iii Class iv  The Hondekloof classification  

      

1. Sulphide content 

based classification 

Massive type: 

 

Characteristics: 

≥ 40 modal % 

Examples: 

Kambalda style 

(Australia) 

Disseminated 

type:  

Characteristics: 

≤ 10 modal % 

Examples: 

Noril’sk style 

(Russia); 

Nkomati (South 

Africa) 

 

  Disseminated type 

 

Reason: disseminated ore 

textures and lack of massive ores 

(Chapter 4). 

      

2. Parental magma  

(MgO content) 

based classification 

High MgO 

Characteristics: 

18-30% MgO 

content, 

Ore grade range: 

0.5-0.7% Ni 

 

Examples: 

Kambalda style 

(Australia) 

Low MgO 

Characteristics: 

8-12% MgO 

content, 

Ore grade range: 

0.2-0.4% Ni, 

0.2-0.4% Cu 

 

Examples: 

Noril’sk style 

(Russia); 

Voisey’s Bay 

style (Canada) 

  Low MgO-type 

 

Reason:  

The overall MgO content of the 

meta-gabbronorite (the main 

host to the sulphide ores) ranges 

between 3.32 and 9.78 wt.% 

(Fig. 5.1) 

 

      

3. Tectonic setting 

based classification 

Layered mafic 

intrusion 

Examples: 

Stillwater 

(America), Great 

Dyke 

(Zimbabwe); 

Komatiite 

Based  

Examples: 

Kambalda 

(Australia), 

Thompson 

(Canada) 

Conduit system 

Examples: 

Noril’sk 

(Russia); 

Voisey’s Bay 

(Canada); 

Large 

Igneous 

Province 

 

Conduit type 

Reason: size of the Oorkraal 

Suite intrusion (3.5 km) 
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Bushveld (South 

Africa) 

Nkomati (South 

Africa) 

 

6.2 Conclusion  

The overall lithogeochemical characterization of the country rocks to the Hondekloof deposit 

dealing with the host rock classification, tectonic evolution and origin of the protoliths and an 

attempt at general mineralization characterization were among the subjects dealt with in this 

study. Using both petrography (petrology) and geochemistry as combined geological tools for 

undertaking host rock classification including, but not limited to, origin and protoliths and 

geochemical characterization, has demonstrated that there are as much as seven lithological 

units (namely meta-gabbronorite and biotite gneiss, feldspathic biotite garnet gneiss and pink 

gneiss, meta-syenite as well as enderbite and garnetiferous quartzofeldspathic rock) that occur 

in the Hondekloof deposit. Petrologically and geochemically, these lithological units are 

broadly subdivided into two main groups both in terms of origin affinity (igneous and 

sedimentary) (Fig. 5.3) as well as compositional affinity (mafic and felsic) (Fig. 5.4a and b). 

Based on these classification schemes, the meta-gabbronorite, which acts as the ore-bearer at 

the Hondekloof deposit, herein referred to as the actual host rock, is determined to have 

affinities to (1) igneous origin (Fig. 5.3), (2) mafic composition (Fig. 5.4a and b) and also (3) 

having the chemical characteristics and nature of a depleted mantle source (like MORB) (Fig. 

5.6a and b). Similar to the meta-gabbronorite, the meta-syenite also has an affinity to igneous 

origin, but felsic in composition, whereas, on the other hand, the biotite gneiss, feldspathic 

biotite garnet gneiss and pink gneiss have affinity to sedimentary origin, with various natures 

of sedimentary protoliths varying in composition between felsic and intermediate (Fig. 5.4a 

and b), somewhat with or without mixed-origin characteristics like “volcaniclastic”, and differ 

from the enderbite and the garnetiferous quartzofeldspathic rock, which have been classified 

as the products of partial melting during metamorphism. Based on a relatively broad 

understanding of the overall regional tectonic evolution of Namaqualand (e.g. Joubert, 1977; 

Albat, 1984; Macey et al., 2011), coupled with our current understanding of the development 

of the local tectonism of the Garies terrane to date, a simplified step by step tectonic model 

(Fig. 6.2) falling within the framework of a subduction-related collisional setting and 

particularly within a local back arc basin-system has been tailored and proposed for the 

Kliprand area.  
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Evaluation of the pressure-temperature conditions for estimation of the degree of 

metamorphism using mineral paragenesis principles (Fig. 4.2) revealed that the multiple 

lithological units investigated were metamorphosed to temperature (T) and pressure (P) 

conditions of granulite facies (T: 750-875 oC, and P: 4-6 kbar, respectively). This P-T 

condition, coupled with the knowledge of regional geothermal gradient of southern 

Namaqualand, 35 oC/km (Albat, 1984), together have indicated that these lithological units, 

including the Hondekloof deposit, must have been buried to a depth of at least 20 to 25 km for 

such thermal and pressure conditions to become available in the crust presuming the 

requirement of the modern plate tectonic principles. It is therefore assumed that the principles 

of modern plate tectonics as being applied in the modern era must have also been applicable in 

the very same way as in the Precambrian and Proterozoic times for such P-T conditions to be 

applicable in the study area. 

 A particular attention on geochemical vectoring focusing on multivariate statistical approach, 

with a lesser emphasis on some geological controls (such as ore minerals and (liberation) 

textures, mineral chemistry, magmatic and metamorphic ore-forming processes) developed for 

the sake of pathfinder identification to Ni mineralization, purely based on a statistical approach, 

have demonstrated applicability in this study in two ways. Firstly, in isolating the actual host 

lithology from within the large group of country rocks (Fig. 5.15; Fig. 6.3 and table 5.4), and, 

secondly, for targeting some commodity elements (e.g. Ni, Cu, Zn, Co) based on the knowledge 

of their pathfinder elements (Fig. 5.16; Fig. 6.4 and Table 5.6). This technique, although not 

well-developed, can have a profound significance for exploration of Ni mineralization if 

coupled with a good understanding of a few other geological controls. 

A relatively broad nickel mineralization classification scheme, some features of which are not 

entirely well developed (due to some analytical and geological constraints), have led to some 

relevant findings suggesting, tentatively, that the Hondekloof deposit could be classified as a 

low MgO, conduit-type, and disseminated magmatic nickel sulphide deposit. 

 

6.3 Recommendation and future work  

There are several outstanding questions surrounding the actual age of the Hondekloof prospect. 

Lack of having such information made it difficult for this study to substantiate the tectonic 

model proposed with conclusive evidence. Consequently it is thus suggested that some of the 
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host lithologies examined require dating in order to fully understand and determine their origin, 

genesis, time of origin and emplacement and that of the orebody at large. In addition, isotopic 

information will also be needed as it may help to constrain the source of the sulphide ores and 

that of the meta-gabbronorite. 
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Appendix 1. Extended abstract published and presented on the 27th edition 

of international applied geochemistry symposium in Tucson, Arizona, 

United States of America, 2015.  
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Abstract 

A series of magmatic Ni-Cu (Co-Zn) sulphide mineralization, namely the Hondekloof 

deposit, is present in the Kliprand area at the border between the Northern Cape and Western 

Cape Provinces of South Africa. The deposit occurs in the central parts of the metamorphic 

high grade Garies Terrane, Namaqua Sector, along the south-western margin of the 

Mesoproterozoic Namaqua-Natal Metamorphic Province (Figure 8-1).  

 

Figure 8-1. Simplified geological map of southern Africa, from Cornell et al. (2006) 
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Given the sub-economic value yielded from the evaluation of three of its known 

massive sulphide lenses the Hondekloof deposit has received relatively little attention in terms 

of ongoing scientific research. Therefore many aspects related to the genesis, classification and 

tectonic evolution of the deposit, to date, remain relatively unclear. The present contribution 

has therefore been geared to addressing some of these issues in view of new data obtained. 

Six exploration boreholes were logged, examined and sampled at the deposit site in 

Kliprand. A total of seven host rocks, namely meta-gabbronorite, biotite gneiss, feldspathic-

biotite-garnet gneiss, pink gneiss, meta-syenite as well as enderbite along with a garnetiferous 

quartzofeldspathic rock, distributed unevenly in the different boreholes, are present. A 

comprehensive geological investigation involving core, petrographic and geochemical 

analysis, undertaken in view of producing a new set of data and interpretation has added 

significantly to our current understanding of this deposit. The Hondekloof deposit and its host 

rocks locally formed within a rift continental back-arc basin and carry a signature of a regional 

collisional subduction system.  

The meta-gabbronorite, which forms part of the pre-to-syn-tectonic Ookraal Suite, 

metamorphosed to granulite facies grade, occurs as the actual host rock hosting the 

disseminated base metal sulphides in association with ortho- and clinopyroxene, and lesser 

plagioclase. Both the enderbite and garnetiferous quartzofeldspathic rocks occur as melt 

products seen as veins formed during prograde metamorphism. Certain geochemical indices, 

of which the combination of element-ratios such as TiO2/Al2O3 vs. CaO + Al2O3, and 

TiO2/Al2O3 vs. CaO/Al2O3 and MgO/Al2O3 vs. TiO2 as well as Cr vs. Ni and Cr + MgO + Fe2O3 

vs. Ni, along with others, which were created as vectors to the mineralisation, have significantly 

shown potential for pointing towards the direction of the mineralization (Fig. 2). 

The disseminated nature of the sulphide mineralization, as well as the fact that the ores 

were subjected to both metamorphism and deformation suggest that the mineralization 

occurred syn-genetically to its host rock and that the deposit was buried to a depth of at least 

20 km within the crust to experience granulite facies metamorphism (assuming the geothermal 

gradient of the Garies Terrane at the time was 35oC/km). Thereafter the area was uplifted, 

eroded and exhumed to shallow level. In particular, the presence of partial melt products, such 

as the enderbite within the meta-gabbronorite, which itself carries mineralization locally, 

suggests that some of the sulphide ores may have been locally remobilized during prograde 

metamorphism. 
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Symbols & colours by Lithology

Biotite gneiss

Endorbite

Feldspathic biotite garnet gneiss

Garnetiferous quartzofeldspathic rock

Meta-gabbronorite

Meta-syenite

Pink gneiss

Figure 8-2. Geochemical indices as vectors for pointing towards the direction of the 

mineralization. a) TiO2/Al2O3 vs. CaO + MgO; b) CaO/Al2O3 vs. TiO2/Al2O3; c) for 

discrimination of the actual host, the meta-gabbronorite from the large group of host. 

b) Cr. vs Ni and Cr + MgO + Fe2O3 vs. Ni as pathfinders of Ni within the meta-

gabbronorite. The dotted line and opposite headed arrows indicate the separation. 
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The results obtained, with regards to the criteria applicable for classifying magmatic Ni 

sulphide deposits suggests that the Hondekloof deposit could be classified as being: 1) a low-

MgO type, 2) a conduit type and, 3) a disseminated type of magmatic Ni sulphide 

mineralization. 
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Appendix 2 Field description of the examined boreholes 
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Field Geology of the examined boreholes 

Figure 4.1 has provided a summary description of the distribution of the lithologies both within 

and around the Hondekloof gossan outcrops.  The augen gneiss of the Little Namaqua Suite 

(Plate 8.1), by far, occurs as the most extensive outcrop on most drilling of the boreholes (Fig. 

4.1). This gneiss is characterized by a series of conjugate joint sets and several micro-features, 

developed as syn-kinematic set of joints (Plate 8.1).  

 

 

 

 

 

 

 

 

 

 

There is a clear contact between the meta-gabbronorite and the meta-pelitic gneiss of the 

Kamiesberg Group in the central extension of the orebody (Plate 8.2a). Several veins, 

composed of plagioclase, alkali feldspar and quartz (identified as enderbite in the boreholes), 

cut through the meta-gabbronorite in several locations on the central extension orebody (Plate 

8.2b).  

   

 

 

 

 

 

 

Meta-gabbronorite 

Meta-pelitic gneiss 
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Plate 8-1: Field evience of “east-west and north-south-south Syn-kinematic joints on the augen gneiss 

of the Little namaland Siute within the western lense of the Hondekloof deposit. 

Plate 8-2: a: Sharp intrusion of the meta-gabbronorite into the meta-pelitic gneiss of the Kamiesberg 

Group. b: A feldspathic vein crosscutting  the weathered meta-gabbronorite.  
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Several veins composing of garnet, quartz and alkali feldspathic (termed garnetiferous 

quartzofeldspathic rock) cut through the meta-gabbronorite, the pink gneiss (Plate 8.3) and the 

meta-pelitic gneiss in several section within the orebody extensions (Fig. 4.1).  

 

 

 

 

 

 

 

There are also several structural information preserving evidences of deformation, 

metamorphism and partial melting on the meta-pelitic gneiss of the Kamiesberg Group (plate 

8.4). This gneiss has, however, not been identified in the collection of the boreholes studied, 

but preserves abundant features such as those shown on Plate 8.4. The features include 

compressional folding (Plate 8.4a), biotite-hornblende-rich xenoliths (Plate 8.4b), partial melt 

veins (Plate 8.4c), with abundant parasitic folds (m-, s- and z-folds) developed along the limbs 

of the major Kliprand dome feature. 
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Plate 8-3: Evidence of the garnetiferous quartzofeldspathic veins cutting through the pink gneiss. 

Photo taken in the eastern extension of the orebody 

Plate 8-4: a: North south compressional 

fold in the meta-pelitic gneiss. Interlimb 

angle: 115-120o; limb thickness: 10-15 

cm; axial trace orientation: E-W. 

Evidence of N-S compressional folding 

event. b: Biotite-hornblende xenoliths 

indicating north-south compression and 

sinistral rotation on the tails. c: 

Intersecting veins as evidence of partial 

melting  
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