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ABSTRACT 

 

Breast cancer is one of the most common cancers among women in South Africa and 

the second leading cause of cancer death after lung cancer. According to the American 

Cancer Society 2015, women have a 12% chance of developing invasive breast cancer 

and a 3% chance of dying from it. Despite the wide variety of breast cancers e.g. 

lobular carcinoma in situ (LCIS) and ductal carcinoma in situ (DCIS), many share the 

same etiology and target tissue. Estrogen related carcinogenesis with regard to breast 

cancer typically results from the activation of distinct signalling pathways. These 

pathways are not mutually exclusive and are often constituted by receptor mediated 

stimulation of cell proliferation caused by specific transcriptional gene activation, 

reactive oxygen species (ROS) formation causing DNA damage and consequently 

mutations. The molecular pathways that cause drug resistance are not fully understood 

and the search continues to find novel targets for treatment. The effects of non-toxic 

triterpenes, oleanolic acid and ursolic acid and the role of autophagy and apoptosis as 

mechanisms to overcome drug resistance in breast cancer were studied in vitro in 

MCF-7 breast cancer cells and MCF10A breast cells. In this study the first aim was to 

establish the influence of OA and UA on cell growth and to see if opposing 

proliferation patterns could observed between the presumably ERɑ negative (ERɑ/ß -

/+) MCF-10A and ERɑ positive (ERɑ/ß +/+) MCF-7 cells. This was followed by 

morphology studies to establish the possible presence of cytotoxicity and examination 

of molecular pathways contributing to the anti-cancerous properties of UA and OA 

and their validity as therapeutic agents. The MCF-7 breast cancer cell line and the 

immortalized normal mammary cell line, MCF-10A were treated with different 

concentrations of UA and OA for 6hrs, 12hrs, 24hrs, 48hrs, and 72hrs respectively. 

Cell morphology was studied in hematoxylin and eosin as well as Hoechst and acridine 

orange stained cells and viability was measured using crystal violet staining. Molecular 

techniques employed included the Tali® Apoptosis - and the cellROX assays, flow 

cytometry and western blotting. Morphological, viability and apoptotic studies have 

shown that at their lowest concentration, both UA and OA have anti-proliferative and 

apoptotic effects on MCF-7 and to a lesser extent on MCF-10A. Flow cytometric 

analysis of treated cells has demonstrated cell arrest in the S- and G2/M phase. The 

 

 

 

 



 

XI 

 

MCF-7 and MCF-10A cells growth inhibition effect may be due to increased 

autophagy and apoptosis as an alternative to decreased proliferation in MCF-7 cells. 

This possibility should be evaluated in further studies. The results showed that UA was 

more effective OA in decreasing cell numbers and it may be applied as treatment for 

breast cancer. Our observation has shown the treatment with OA and UA increased 

cell death in MCF-7 cells.  

 

The opposing proliferation patterns observed between the presumably ERɑ negative 

(ERɑ/ß -/+) MCF-10A and ERɑ positive (ERɑ/ß +/+) MCF-7 cells could possibly be 

ascribed to ERß forming homodimers that may facilitate proliferation, whereas ERɑ/ß 

heterodimers (expressed in 59% of breast cancers) are frequently associated with the 

ERɑ antagonising actions of ERß.  

 

The results indicate a trend towards biphasic and anti- proliferative effects of the 

reactants in breast cancer cells which may contribute towards the development of anti-

cancer therapies. However, further work is must be done to identify the OA and UA 

mechanism(s) responsible for anticancer activity. 

 

Key words: Breast cancer, OA, UA, MCF-7, MCF-10A, autophagy, apoptosis 
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 Chapter I 

 

1 Literature Review 

 

1.1 Breast Cancer: An insight into incidence and survival 

 

Breast cancer is the most frequent type of cancer and the leading cause of death among 

females (Li et al., 2014)  accounting for 23% (1.38 million) of the total new cancer 

cases and 14% (458,400) of the total cancer deaths in 2008. The life-time risk of breast 

cancer among American women continues to remain at an astonishing one in eight, 

and the breast cancer incidence (26%) and mortality rate (15%) remain very high when 

compared to other cancers in women. Many factors are believed to contribute to this 

high burden of breast cancer, including lifestyle, environmental, genetic, and 

biological factors (Cummings et al., 2009; McTiernan et al., 2008). 

 

It is a fact that breast cancer is one of the most common cancers in women in both 

developed and undeveloped countries. The American Cancer Society has shown that 

in 2011 an estimated 230,480 new cases of invasive breast cancer have been diagnosed 

among women, as well as an estimated 57,650 additional cases of in situ breast cancer 

(Jemal et al. 2011; DeSantis et al. 2011). The previous report had indicated that 

approximately 39,520 women are expected to die from breast cancer and that only lung 

cancer accounts for more cancer deaths in women. 

  

Despite the fact that breast cancer is a recognized disease of the developed world, and 

more frequently observed in industrialized western countries, about 50% of breast 

cancer cases and as many as 58% of deaths arise in less developed countries (Ferlay et 

al., 2010). A report has stated that worldwide almost 460.000 people died of the disease 

in 2008 and about half of these breast cancer cases and 60% of the deaths had occurred 

in economically less developing countries (Jemal et al., 2011).  

 

According to the World Cancer Report 2000, the incidence of cancer at any 

localization would increase by 50 % by the year 2020, in which there would be 15 
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million new cases. In 2000, malignant tumors were the cause of 12 % of nearly 56 

million deaths that were produced throughout the world; in many countries, more than 

one-quarter of these deaths were attributable to breast cancer. In that same year, there 

were 6.2 million cancer-related deaths. Considering the fact that breast cancer 

incidence is already staggering, this increment means that breast cancer will continue 

to be a global threat in the future. 

 

Moreover, the disease is no more a “female illness”, in 2011, about 2,140 cases of 

breast cancer were expected to occur among men, accounting for about 1% of all breast 

cancers, and approximately 450 men would die from breast cancer (DeSantis et al., 

2011). This low percentage might be attributed to the fact that men are not routinely 

screened for breast cancer, thus the diagnosis is often delayed. The most common 

clinical manifestation of male breast cancer is a painless, firm, subareolar breast mass. 

Once detected, any suspicious breast mass in a male is subjected to a diagnostic biopsy 

and if a malignancy is diagnosed, the common treatment is mastectomy with 

assessment of the axillary nodes. 

 

Breast cancer survival rates differ seriously worldwide. It is estimated that survival 

rates range from 80% or over in North America, Sweden and Japan to around 60% in 

middle-income countries and below 40% in low-income countries (Coleman et al., 

2008). On the whole, survival rates are high in Western and Northern Europe, 

Australia/New Zealand, and North America; intermediate in South America, the 

Caribbean, and Northern Africa; and low in sub-Saharan Africa and Asia. This might 

be attributed to the availability of medical services and the high standards of living 

where patients can get access to proper screening and follow-up. However, the reasons 

behind such variations are currently under vigorous evaluation. 

 

In the African continent, breast cancer has shown to be the most diagnosed cancer in 

women in a number of Sub-Saharan African countries. This presents a shift from 

previous decades where cervical cancer was the most commonly diagnosed cancer in 

many of these countries. This might be attributed to the increased awareness of breast 

cancer, the education regarding self-examination of the breast, and the fact that 
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mammography has become more accessible with the advent of medical services. 

Breast cancer is currently considered as the second leading cause of cancer death 

among women (92,600 cases, 50,000 deaths). The number of cases varied enormously 

from 19.3 per 100,000 women in Eastern Africa to 89.7 per 100,000 women in Western 

Africa. This percentage is quite elevated when compared to the majority of the 

developed countries where the incidence rates are below 40 per 100,000 (Ferlay et al., 

2010). The incidence rates are rising in many African countries previously known to 

have low incidence of the disease. In addition, the high mortality rates in Africa have 

called for more research into the etiology of breast cancer. It is well documented that 

women diagnosed with breast cancer in Africa generally have a poorer prognosis than 

those in more developed. Moreover, race differences in incidence are very apparent. 

For example, the female breast cancer incidence rate in Harare (Zimbabwe) in 1990-

1992 was 6 times higher in white population (129.0) than in African Blacks (20.0) 

(Bassett et al., 1995). 

 

Cancer in South Africa is a rising health problem, with breast cancer being one of the 

leading cancers in women, following similar worldwide statistics (Vorobiof et al., 

2001). Breast cancer is the most common cancer affecting South African women – 1 

in 33 women in South Africa are diagnosed with Breast Cancer across all race groups 

(Schlebusch et al., 2010). It is generally estimated that White South African women 

have the highest risk with one in twelve diagnosed positive, whereas the lifetime factor 

risk for colored and Asian women is one in eighteen and the risk factor for black 

women is one in forty-nine thus showing the lowest incidence rates of all population 

groups. However, survival rates varies among groups with black females having the 

worst survival rate; as only 22% of black female patients present with early stages of 

the cancer (I and II) in contrast to nearly 69% of the non-black patients who are 

diagnosed at their early stages of the disease (Vorobiof et al., 2001). 

 

Despite the complex etiology, breast cancer is of moderate aggressiveness, meaning 

that most cancers grow from small size with low metastatic potential to large size and 

greater metastatic potential over several years (Gonzalez-Angulo et al., 2007; Pagani 

et al., 2010). Southern African women have the highest breast cancer incidence rates 
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of all African regions, in part because of a higher prevalence of reproductive risk 

factors for breast cancer, including early menarche and late childbearing among the 

more affluent predominantly white population (Vorobiof et al., 2001). 

 

Currently, Tamoxifen, a powerful estrogen antagonist is an accepted treatment and 

prevention therapy for breast cancer in both early and late stage cancer patients (Pagani 

et al., 2010). Tamoxifen exerts its effects on breast cancer cells by binding to the ER 

receptors thereby displacing estrogen (Musgrove et al., 1998). Taking into account that 

ER positive breast cancers utilize estrogen for proliferation, it is clear that Tamoxifen 

is a highly effective treatment to prevent tumour proliferation through ER antagonistic 

action. However, studies have indicated that while Tamoxifen inhibits the proliferation 

of breast cancer cells, it has been associated with uterotrophic effects such as, 

hyperplasia, polyps and the development of uterine cancer. Therefore, alternatives to 

the use of Tamoxifen require exploration. 

 

Genes that participate in oncogenesis are the result of the transformation of the genes 

that normally control cell cycle, damaged-DNA repair and cellular adherence. Cell 

transformation into a cancer one requires at least of two mutations: a) a mutation in a 

tumor suppressor gene and b) a mutation in a proto-oncogene that give rise to an 

oncogene. When these DNA changes cannot be repaired, cell falls into the first steps 

of malignant transformation (Vogelstein and Kinzler, 2004).  

 

1.2 Cell cycle  

 

Cell cycle checkpoints preserve genome integrity by monitoring the fidelity of DNA 

replication and segregation. The cell cycle consists of five phases, the Gap1 (G1), 

Synthesis (S), Gap2 (G2), Mitosis (M) and Quiescence (G0) phases, which are 

intimately linked to proliferation, differentiation, apoptosis and other important 

cellular processes. The cell cycle progression is controlled by a biochemical reaction 

system consisting of genes and proteins (Kohn, 1999). 
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The cell cycle is a coordinated process controlled by a complex network of signaling 

pathways molecules. Cell cycle progression is governed by the activity of cyclin 

dependent kinase (CDKs) in complex with their activating partner cyclin (Lim and 

Kaldis, 2013). This process is essential to the survival of cell, which involves the 

detection and repair of DNA damage and the avoidance of uncontrolled cell division 

(Fig. 1.1) (Keaton, 2007).  

 

The cell cycles length varies in time from one cell type to another. Fly embryos have 

the shortest known cell cycles, as little as 8 minutes. Whereas the cell cycle of liver 

cells of the mammalian could last longer than a year (Kohn, 1999). The cell cycle in 

culture, typically occupies a 16 to 24 hour period (Kohn, 1999). The G1 phase is highly 

variable, ranging from almost non-existent in rapidly dividing cells to days, weeks or 

years. The length of the S phase differs between species and between different 

development stages within a species, but within any particular type of cell the S phase 

is remarkably constant in length and is usually 8 hours (Lara-Gonzalez et al., 2012). 

The G2 period was estimated to be 3 to 4 hours or even as long as 6 hours while the M 

phase takes approximately an hour (Keaton, 2007).  

 

Checkpoints serve to monitor the order of events in the cell cycle and ensure that a cell 

cycle event occurs only after the completion of a prior event (Langerak & Russell 

2011). Different DNA damage checkpoints can be activated in response to DNA 

damage (Langerak & Russell 2011). DNA damage checkpoint is one such example 

that is activated upon various kinds of external or internal stimuli that induce DNA 

damage, either programmed or accidental, and thus helps integrate DNA repair with 

cell cycle progression (Jones and Petermann, 2012).  

 

Cells have systems which transduces DNA-damage signals to regulatory mechanisms 

of the cell cycle and arrests cell cycle progression, thus contributing to maintain the 

stability of the cell cycle (Dasika et al., 1999).   
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1.2.1 Cyclins  

 

Cyclins were described in 1982 by Timothy Hunt, (Jackson, 2008) as a diverse family 

of proteins whose defining feature is to bind and activate members of the CDK family. 

29 Cyclins and more than 20 CDKs have been identified in mammalian cells (Lim and 

Kaldis, 2013). Cyclin levels are regulated by cyclin gene expression and destruction 

of cyclins via proteolysis, and in a tightly controlled manner during distinct phases of 

the cell cycle (Bloom and Cross, 2007). 

 

All cyclins contain a highly conserved region of 100-150 amino acid residues called 

the “cyclin box”, which is required for their interaction with CDKs (Mikolcevic et al., 

2012). Four major cyclins (D, E, A, and B1) are required for cell cycle progression 

(Lim and Kaldis, 2013). Cyclins and CDKs are both subject to post-translational 

regulation by phosphorylation (Lim and Kaldis, 2013).  There are three major amino 

acid sites of phosphorylation namely threonine (Thr 160 of CDK2, Thr 161 of CDK1, 

and Thr 172 of CDK4/6), tyrosine (Tyr 15 of CDK2 and CDK2 and Tyr 17 of CDK4 

and CDK6) and threonine 14 (Thr 14). The phosphorylation of threonine (160, 161 or 

172) activates the cyclin-CDK complex whereas tyrosine (15 or 17) and treonine 14 

phosphorylations are dominant and inactivate the complex (Bloom and Cross, 2007). 
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Figure 1.1: Progression of the cell cycle is regulated by cyclin-cyclin-dependent 

kinase (CDK) complexes which are primary targets of mitogenic signals. During 

G1 phase, cyclin D-CDK4/6 and cyclin E-CDK2 phosphorylate the protein Rb, 

releasing transcription factors including E2F. Free E2F activates the transcription 

of genes necessary for DNA synthesis, resulting in S phase entry. Activities of 

cyclin-CDK complexes are inhibited by CDK inhibitory proteins (CKIs). CKIs are 

divided into two families: the INK4 proteins (p15INK4B, p16INK4A, p18INK4C, 

and p19INK4D) and CIP/KIP proteins (p21CIP1, p27KIP1, and p57KIP2). While 

INK4 CKIs inhibit specifically cyclin D-CDK4/6 complexes, CIP/KIP proteins 

bind and inhibit a broad range of cyclin/CDK complexes including cyclin E-CDK2. 

CIP/KIP proteins are regulated by mitogenic and anti-mitogenic extracellular 

signals.  

Source (Tury et al., 2012) 

 

 

 

The cyclin-CDK inhibitors namely the Cip/Kip family p21Cip1, p27Kip1, and 

p57Kip2 control not only the cell cycle progression but also have additional roles such 

as apoptosis induction (Sherr and Roberts, 1999), transcriptional regulation, cell 

migration and cytoskeletal dynamics (Romagosa et al. 2011; Besson et al. 2008). 

 

The Cip/Kip CDK inhibitor p21Cip1/WAF1 has a critical role in the nucleus to limit 

cell proliferation by inhibiting CDK-cyclin complexes. In response to DNA damage 

or anti-mitgenic signals, p21Cip1 and p27Kip1 can induce a cell cycle block mediating 

chemotherapeutic results (Besson et al., 2008; Scorah and McGowan, 2010). P21 

mediates the P53-dependent G1/S checkpoint, which may be considered to be a key 
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requirement to preserve genomic stability when DNA damage occurs (Roque et al., 

2012; Starostina et al., 2010). P27Kip1 regulates cell proliferation, cell motility and 

apoptosis. P57Kip2 inhibits CDK2, CDK3, and CDK1 and belongs to the CDK 

interacting protein/kinase interacting protein (CIP/KIP) family of CKIs (Jayapal & 

Kaldis 2014).  

 

1.3 Control of the cell cycle  

 

1.3.1 Cell cycle progression through phosphorylation/dephosphorylation 

 

The phosphorylation of proteins on serine, threonine and tyrosine residues by protein 

kinases is a basic post-translational modification which regulate protein 

activation/deactivation in cell proliferation and differentiation, cell mobility and 

motility, metabolism and apoptosis (Bononi et al. 2011). Three major cellular 

phosphatases have been characterized as retinoblastoma (RB) or RB-like protein 

phosphatases and the Ser/Thr phosphatases protein phosphatase (PP1 and PP2A), are 

the major cellular phosphates (Virshup and Shenolikar, 2009). 

 

Phosphorylation of the (RB) in the G1-phase of the mammalian cell division cycle is 

a controlling element regulating the passage of cells into S-phase (Henley and Dick, 

2012). Substrates are the p110 retinoblastoma (RB) protein as well as Cdc25 

phosphatase. The catalytic subunit of PP1 associates with RB in mitosis and G1 and is 

a positive regulator of its function (Durfee et al., 1993). PP1 dephosphorylate and 

inactivate Cdc25 phosphatase that stimulates CDK1 kinase through dephosphorylating 

Tyr-15 and The14 for the beginning of mitosis. 

 

1.3.2 Cell cycle checkpoints 

 

The following checkpoints have been identified, in the cell cycle: (I) the restriction 

point (mammalian) or START (yeast), which integrates internal and environmental 

signals early in G1 and decides if the cell will replicate, (II) the DNA damage 

checkpoint, which arrests cells after DNA damage, to allow repair to occur before 
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DNA is replicated in the S phase (Langerak & Russell 2011), (III) a DNA damage-

independent, p53-mediatted G1 checkpoint (Langerak & Russell 2011), (IV) S phase 

DNA damage checkpoint, which prevents initiation at DNA replicons following DNA 

damage, without affecting the DNA synthesis which has already started, (V) S/M DNA 

replication checkpoint which ensures that cells do not enter mitosis if all chromosomes 

are not replicated fully, (VI) activated Ras G2 checkpoint, which arrests some type of 

cells when activated Ras is present, (VII) the G2 DNA repair checkpoint, which 

surveys DNA replication for faults and (VIII) the mitotic spindle assembly checkpoint, 

which prevents chromosome segregation before spindle formation and chromosomal 

attachment have been accomplished (Medema and Macůrek, 2012)  

  

1.3.2.1 DNA damage response pathways of G1 phase 

 

The G1 arrest due to DNA damage causes a delay in cell cycle progression to facilitate 

DNA repair, thus preventing mutations. Entrance into S-phase is regulated by either a 

p53 dependent– or P53 independent pathway (Chao et al., 2006). The p53 independent 

pathway is known as Cdc25A pathway. These pathways share the same key upstream 

regulators, ataxia-telangiectasia mutated/ATM and Rad3-related (ATM/ATR) and 

checkpoint kinases 1 and 2 (Chk1/Chk2) and target Cdc25A, a dual specificity 

phosphatase and p53 simultaneously within minutes after DNA damage. However, not 

all DNA damage leads to the activation of both pathways, thus it would relay 

information to activate both or either one or the other (Chao et al., 2006). ATM is 

mainly activated in response to double-strand DNA breaks (DSBs) Whilst ATR is 

primarily activated following replicative errors that result in single-stranded DNA 

(Beckerman and Prives, 2010; Takahashi et al., 2011). 

 

1.3.2.2 The P53 response to DNA damage 

 

Wild type p53 demonstrated that its anti-proliferative effect is mediated by stimulation 

of a CKI the P21Waf1/Cip1 (P21) that inhibits CDK activity (Jossen and Bermejo, 2013). 

For p53 to become active, cellular levels must be stabilized by blocking the antagonist 

protein, murine double minute 2 (MDM2) (Chao et al., 2006). Activation of 
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ATM/ATR leads to phosphorylation of p53 at Ser20 causing inhibition of the 

p53/MDM2 interaction, preventing ubiquitin-mediated p53 degradation and thereby 

enhancing p53 stabilization (Hustedt et al., 2013). After modification, p53 translocate 

to the nucleus where it forms a homo-tetramer complex that can regulate the 

transcription of a wide variety of genes including p21 (Shangary and Wang, 2008). 

ATM can also phosphorylate the Mdm2 related protein, MdmX at S367. MdmX also 

inhibits p53 activity through binding to the p53 N‑terminal domain and reducing 

acetylation of p53 (Okamoto et al., 2005). 

 

The activation of p21 by p53 regulates the transition between G1 and S-phase by 

interacting with CDK2, repressing the kinase activity of cyclinD-CDK4, cyclinE-

CDK2, and cyclinA-CDK2 (Takahashi et al., 2011). In cells with unrepaired DNA that 

are already in S-phase, p21 binds to the complex composed of replication factor C, 

DNA polymerase-δ, and proliferating-cell nuclear antigen (PCNA), causing their 

dissociation from the replication fork, which blocks synthesis of DNA (Takahashi et 

al., 2011). This cell cycle checkpoint may be further prolonged by the gradual 

accumulation of p16, a protein that can selectively disrupt the cyclin D-CDK4/6 

complexes and by this means release the existing pool of p21 (Hustedt et al., 2013). 

When the threshold level of p21 is achieved, p21 can bind and inhibit the S phase 

promoting cyclin E-CDK2 complexes, and thereby secure the maintenance of the G1 

arrest. The inhibition of both the cyclin-CDK complexes leads to the 

dephosphorylation of RB which therefore cause the inhibition of the E2F dependent 

transcription of S phase genes. P21 is also involved in G2 arrest by interacting with 

CDK1 (Takahashi et al., 2011).  

 

On the other hand, phosphorylation of p53 at Ser46 has been shown to mediate the 

selectivity of p53 (Jossen and Bermejo, 2013) in favor of promoters which enhance 

apoptotic signaling, such as the p53-regulated apoptosis-inducing protein 1 (P53AIP) 

(Beckerman and Prives, 2010; Takahashi et al., 2011).  
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1.3.2.3 The Cdc25A pathway 

 

The Cdc25 family consists of Cdc25A, Cdc25B and Cdc25C. Cdc25A promotes entry 

into S phase by acting on cyclin A-CDK2 and cyclin E-CDK2, both Cdc25B and 

Cdc25C play a role in the commencement of mitosis (Polager and Ginsberg, 2009). 

 

A p53 independent pathway is activated by ATM phosphorylation. Chk2 

phosphorylates the Cdc25A phosphatase in several serine residues, which stimulates 

ubiquitination and proteasome mediated degradation of Cdc25A leading to cell cycle 

arrest (Lee et al., 2000). Degradation of Cdc25A inhibits CDK2 activity thus 

preventing recruitment of DNA polymerase α and initiation of DNA synthesis. This 

mechanism induces cell cycle arrest at the intra S Phase and G1/S Phase interface in 

response to DNA damage (Polager and Ginsberg, 2009). This pathway, targeting 

Cdc25A, is implemented rapidly and operates independently of the p53 status, and it 

is relatively transient and able of delaying cell cycle progression for a few hours. 

 

1.3.3 S phase DNA damage checkpoints 

 

Replication fork barriers (RFBs) slow down or stall fork progression. Examples of 

RFBs include; (1) DNA protein complexes that lead to natural “pause sites” that are 

active in every S phase, (2) alternative DNA metabolism, (3) secondary DNA 

structure, (4) DNA damage which could be produced by endogenous metabolism or 

induced by exogenous carcinogens and inter strand cross linking agents, and (5) 

replication inhibitors which competitively inhibits pol α (Lambert and Carr, 2005). 

Because of the genetic instability caused by the RFB, the nature of the cellular 

response could lead to DNA structure checkpoint pathways.  

 

1.3.3.1 The intra-S phase checkpoint 

 

The intra-S phase checkpoint prevents the firing of new replication forks by inhibiting 

initiation at licensed but unfired origins (Shibata et al., 2010), thus resulting in a 

reduction in the rate of progression through the S phase rather than an arrest. Unlike 
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the G1 or G2/M checkpoints, the intra-S phase response to DNA damage is independent 

of p53 (Cortez et al., 2004). The initial pathway is the ATM/ATR–Chk1/Chk2–

Cdc25A–cyclin E (A)/Cdk2–Cdc45 cascade (Shibata et al., 2010) (see section 1.3.2.3). 

Inhibition of CDK2 activity through Cdc25A degradation leads to a several-hour delay 

of S phase progression, a timing that correlates well with the transient intra-S phase 

checkpoint response (Boutros et al., 2013). 

 

1.3.3.2 The DNA replication (S/M) checkpoint 

 

Disturbance of replication elicits four definable cellular responses. (1) The inhibition 

of late origin firing, (2) stabilization of active replication forks, (3) a delay into mitotic 

entry and (4) slowing down of replication fork progression on damaged templates. The 

first three responses are fully dependent on the S phase checkpoint proteins whereas 

the latter is not (Timofeev et al., 2010). Most of the proteins involved in the S phase 

checkpoints are also essential for the G1 and the G2/M DNA damage checkpoints.  

 

Chk1 has a role in the maintenance of fork stability and claspin binding to the fork 

(Shibata et al., 2010). As a result of blocked replication or repair of lesions on DNA, 

the S phase checkpoint is activated and the signal finally arrives to the replicating fork. 

This results in slowing down of DNA replication. The different rate at which synthesis 

in the leading and lagging strands occur results in fork asymmetry (Boutros et al., 

2013; Timofeev et al., 2010). Chk 1 and 2 and mediators are recruited to sites of 

damage and are phosphorylated within nuclear foci. Chk kinases that are activated are 

released from foci and phosphorylate Cdc25 (Boutros et al., 2013; Timofeev et al., 

2010).  

 

1.3.4 G2 (G2/M) checkpoint 

 

The biochemical pathways involved in the DNA damage induced G2 checkpoints are 

signaling cascades that unite to inhibit the activation of CDK1. This checkpoint is very 

similar to the G1/S checkpoint. DNA double-strand breaks activate the ATM-Chk2-

Cdc25 pathway and DNA lesions such as UV light activate the ATR-Chk1-Cdc25 
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pathway. Down regulation of Cdc25A, Chk1, Chk2 and WEE1 regulates CDK1 

activity and consequently G2 arrest together with p53/p21, which is distinct from the 

G1/M checkpoint activities (Reinhardt et al., 2007). After ATM dependent activation, 

Chk1 and Chk2 furthermore phosphorylate Cdc25C on Ser216 creating a binding site 

for 14-3-3 proteins. Binding of 14-3-3 proteins to Cdc25C, results in the nuclear export 

of Cdc25C to the cytoplasm thus inhibiting CDK1 activity (Reinhardt et al., 2007). 

  

1.3.5 The spindle assembly checkpoint 

 

Making sure that segregation does not occur before all chromosomes make proper 

attachments, the spindle assembly checkpoint (also known as the spindle checkpoint 

or mitotic checkpoint) acts in mitosis by delaying the onset of anaphase when 

chromosomes fail to align completely at the metaphase plate.  

 

The anaphase-promoting complex (APC) is an ubiquitin protein ligase that triggers the 

metaphase-to-anaphase transition (Keaton, 2007) and ensures sister chromatid 

separation by destruction of securin. Fig. 1.2 illustrates the destruction of securin by 

the 26S proteasome causing exit from mitosis (Peters, 2006). The APC/C consists of 

12 core subunits and cofactors the Cdc20 and Cdh1. Cdc20 stimulates APC/C in the 

beginning mitosis and Cdh1 stimulates APC/C activity from late mitosis to the G1–S 

transition (Peters, 2006). The dependency of APC phosphorylation on Cdc20 binding 

ensures that APC-Cdc20 is only active while in mitosis. 
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Figure 1.2: Control of late mitotic events by the APC M-Cdk activity promotes the events of early 

mitosis, resulting in the metaphase alignment of sister chromatin on the spindle. CDK1 activity also 

promotes the activation of APCcdc20, which triggers anaphase and mitotic exit by stimulating the 

destruction of regulatory proteins, such as securin and cyclins, which govern these events. 

 
Source (Keaton, 2007) 

 

Kinetochores assist as assembly points for active Mad2 protein. Mad2 binds to Cdc20 

and inhibits APC activity (Kim et al., 2010). When most kinetochores are attached and 

chromosomes are aligned on the metaphase plate, Mad2 inhibition of APC-Cdc20 

activity is ended. Non-phosphorylated Cdh1 then initialize the APC (Rodier et al., 

2008). The active complex then ubiquitinates securin and allows the activation of 

separase, which cleaves cohesion. Loss of cohesion triggers chromosome segregation 

and the onset of anaphase. 

 

When the spindle assembly checkpoint is satisfied, APCs become active and 

ubiquitinate several proteins, including cyclin B (Kim et al., 2010). The destruction of 

securin allows the chromatids to separate, while proteolysis of cyclin B allows the cell 

to exit the mitotic state (Kim et al., 2010). The ubiquitin proteolysis of cyclin B is 

associated with the inactivation of CDK1, initiation of telophase, chromosome 

decondensation, nuclear envelope reformation, and cytokinesis (Rodier et al., 2008).  
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1.4 Cell death 

 

In vitro cellular stress studies, using morphology and biochemical criteria display three 

categories of cell death: apoptosis, autophagy and necrosis (Fig. 1.3). 

 

1.4.1 Apoptosis  

 

Apoptosis is a natural process of self-destruction in certain cells that are genetically 

programmed to have a limited life span or are damaged. Outspoken apoptosis can 

cause atrophy, while decreased apoptosis leads to uncontrolled cell proliferation, such 

as cancer (Kerr et al., 1972). 

 

 
Figure 1.3: Three pathways of cell death  

Source (Hotchkiss et al., 2009) 
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Morphologically, apoptosis involves a series of structural changes in dying cells 

characterized by degradation of cytoskeletal filaments, cell shrinkage, membrane 

blebbing and cellular fragmentation, nuclear condensation and DNA fragmentation, 

the formation of apoptotic bodies and loss of its ability to make contact with 

neighboring cells (Doonan and Cotter, 2008). 

 

Caspases are cysteine aspartyl proteases that are central regulators of apoptosis. 

Initiator caspases (caspase-2, -8, -9, -10, -11, and -12) are closely coupled to pro-

apoptotic signals. Once activated, these caspases cleave and activate downstream 

effector caspases (including caspase-3, -6, and -7), which in turn execute apoptosis by 

cleaving cellular proteins (Ola et al., 2011).  

 

Three distinct apoptotic pathways exist that both end in caspase activation. The first is 

under the control of the Bcl-2 (B-cell lymphoma 2) family of genes and its proteins 

(Brentnall et al., 2013).  

 

The second pathway of apoptotic signaling is called the "death receptor pathway", 

which is initiated by extracellular ligands such as Death receptors DR that are members 

of the tumor necrosis factor (TNF) receptor gene superfamily that consists of more 

than 20 proteins with a broad range of biological functions, including regulation of cell 

death and survival, differentiation or immune regulation (Ashkenazi and Salvesen, 

2014; Mahmood and Shukla, 2010). The third pathway is endoplasmic reticulum-

mediated apoptosis. 

 

1.4.1.1 The intrinsic pathway  

 

The intrinsic pathway is induced by DNA damage and cytotoxic insults (Surova and 

Zhivotovsky, 2013). It acts through the mitochondria Bcl-2. Under normal conditions, 

the anti-apoptotic Bcl-2 family (Bcl-XL, Bcl-W, Bfl-1, and Mcl-1) maintains 

mitochondrial integrity by inhibiting the pro-apoptotic Bax, Bak, Bad, Bcl Xs, Bid, 

Bik, Bim, and Hrk (Fig. 1.4A) (Zhai et al., 2008). Under stress conditions such as DNA 

damage or UV irradiation, Bcl-2-homology 3 (BH3) proteins are stimulated to stop the 
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action of the Bcl-2 family (Kook et al., 2014). This results in the upregulation of Bax 

and Bak leading to their oligomerization and the formation of a channel through which 

cytochrome C (Cyt C) will be released into the cytosol. The channel formation is 

influenced by mitochondrial outer membrane permeabilization (MOMP) that leads to 

the release of cytochrome c and other proteins from the mitochondrial intermembrane 

space (Czabotar et al., 2014) and is required for activation of the caspases that cause 

apoptosis or progressive mitochondrial malfunction, which causes energy depletion 

and cell death (Tait and Green, 2012). 

 

The Bcl-2 family proteins are characterized by the presence of Bcl-2 homology (BH) 

domains (Frenzel et al., 2009). There are four important Bcl-2 structural homology 

(BH domains) BH1, BH2, BH3 and BH4. The pro-apoptotic proteins are classified 

into two subgroups: the Bax-subfamily consisting of Bax, Bak, and Bok that all 

possess the domains BH1, BH2, and BH3, whereas the BH3-only proteins (Bid, Bim, 

Bik, Bad, Bmf, Hrk, Noxa, Puma, Blk, BNIP3, and Spike) have only the short BH3 

motif, an interaction domain that is both necessary and sufficient for their killing action 

(Frenzel et al., 2009). Cyt C, released from the mitochondrial space binds to apoptosis 

protease activating factor (Apaf-1) and dATP in the cytosol to form a heptameric 

complex, the apoptosome, in which each Apaf-1 subunit is bound non-covalently to a 

procaspase-9 subunit by their respective Caspase activation and recruitment domains 

(CARDs) domains (Shalaeva et al., 2015). Active caspase-9 cleaves and activates 

downstream executioner caspases, caspase-3, -6 and -7 which are important for the 

execution of apoptosis (Shalaeva et al., 2015). The 'inhibitor of apoptosis' (IAP) 

proteins are negative regulators of apoptosis that function by inhibiting the 

executioners of cell death (caspases) including caspase 3. Endonuclease G (EndoG) 

triggers DNA degradation and cell death upon translocation from mitochondria to the 

nucleus (Büttner et al., 2013).  Endo G cleaves chromatin DNA into nucleosomal 

fragments independently of caspases thus representing a caspase-independent 

apoptotic pathway initiated from the mitochondria (Büttner et al., 2013).  
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1.4.1.2 The extrinsic pathway   

 

The extrinsic pathway of apoptosis is activated after stimulation of death receptors 

(DR) that belong to the tumor necrosis receptor (TNFR) family like Fas, TNF-related 

apoptosis inducing ligand receptor (TRAIL-R) (Nair et al., 2014). TRAIL-R has strong 

antitumor activity in a wide variety of cancer cells and minimal cytotoxicity in most 

normal cells (Fig. 1.4B).  

 

DRs mediate a wide-range of physiological processes ranging from non-apoptotic 

responses that protect cells and regulate tissue regeneration to proliferation and 

migration. DRs have been classified into two groups: the first group contains EDAR, 

P75NTR and DR6 and members of this group all play a role in developmental 

processes (Büttner et al., 2013). The second group includes DR3, DR4, DR5, FAS and 

TNFR1 which function primarily in different aspects of the immune response (Jiang, 

2011).  

 

TRAIL can signal both apoptosis in transformed tumor cells and non-apoptotic 

signaling cascades. TRAIL initiates extrinsic apoptosis by binding to two related 

receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5). Clustering and oligomerization of 

DR4 and DR5 by TRAIL leads to the recruitment of various adaptor proteins to the 

aggregated intracellular domains of the receptors with subsequent formation of the 

death-inducing signaling complex (DISC) (Büttner et al., 2013).  One of the adaptor 

molecules, Fas-associated death domain (FADD) recruits the initiator caspases 8 

and/or -10 by means of homotypic death effector domain interaction (Fujikura et al., 

2012). TNFR1 aggregation leads to the formation of two complexes (Fujikura et al., 

2012). Complex I is formed at the plasma membrane and it consists of TNFR1, TNF-

associated domain death (TRADD) TNFR-associated factor 2 (TRAF2), receptor 

interacting protein (RIP), cellular inhibitor of apoptosis protein (cIAP)-1 and cIAP-2 

(Shalaeva et al., 2015). The formation of complex II is similar to the receptor-proximal 

DISC induced by FasL, TRADD, FADD and caspases 8 and/or -10. Activation of 

caspase-8 and caspase 10 results the activation of downstream effectors caspases 

including procaspase-3, -6, and -7 (Vanlangenakker et al., 2011).  TRAIL also binds 
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the decoy receptors, DcR1 and DcR2, which not contain a cytoplasmic domain (DcR1) 

or contain a truncated death domain (DcR2). The functional cytoplasmic domain of 

DcR2 activates NFkappaB that inhibits the death signaling pathway and/or promotes 

inflammation (Hao et al., 2004). Transient over-expression of DcR1 or DcR2 in 

TRAIL-sensitive tumor cells prevents cell death triggering by TRAIL (Mérino et al., 

2006).   
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Figure 1.4: Overview of the intrinsic and extrinsic apoptotic pathways. (A). The extrinsic apoptotic 

pathway is activated after stimulation of death ligands like TNF, TRAIL, FasL and subsequently the 

death receptors (TNFR, Fas and TRAIL-R) are stimulated (B). Signaling by these receptors induce 

proliferation, differentiation and cell death. DNA damage and cytotoxic insults are amongst stimuli 

that activate the intrinsic pathways of apoptosis. The intrinsic pathway acts through the mitochondria 

under the influence of the Bcl-2 family. Under normal conditions, the anti-apoptotic Bcl-2 family 

maintains mitochondrial integrity by inhibiting the pro-apoptotic Bax and Bak leading to 

mitochondrial leakage of cytochrome c into the cytosol. Cyt C associates with Apaf-1 to form an 

apoptosome that plays a role in the activation of caspase 9. Caspase 9 in turn activates executioner 

caspases 3, 6 and 7 which are crucial for the execution of apoptosis. 

 

Source (Vucic et al., 2011) 
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1.4.1.3 Endoplasmic reticulum-mediated (ER) pathway 

 

ER mediated apoptosis is the third mechanism known to be involved in the caspase 

dependent apoptotic process. The accumulation of unfolded proteins in the ER lumen 

or depletion of Ca2+ from the ER lumen activates a signaling cascade (Fig. 1.5) known 

as the unfolded protein response (UPR) (Bravo-Sagua et al., 2013; Malhotra and 

Kaufman, 2011). The resulting extensive stress leads to apoptotic cell death. Bax and 

Bak can localize to the ER in response to ER stress, leading to calcium release and the 

activation of caspase 4.   

 

 

 

 
   Figure 1.5: Apoptosis mediated by the unfolded protein response signaling. 

 

Source (Cao and Kaufman, 2012) 
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1.4.1.4 The caspase independent pathway(s) 

 

Caspase independent cell death (CICD) shares common features with apoptotic cell 

death. Upstream signaling pathways MOMP is necessary for activation of CICD. Cells 

undergoing CICD frequently demonstrate large-scale cytoplasmic vacuolization, 

autophagosome accumulation and peripheral nuclear condensation (Tait and Green, 

2008). Non-caspase proteases that have been implicated in apoptotic cell death are 

cathepsins, calpains, granzymes, serine proteases and proteasomal proteases (Tait and 

Green, 2008). 

 

Cathepsin B and L (both cysteine proteases) as well as cathepsin D (an aspartate 

protease) are proven to play a role in apoptosis through their translocation from 

lysosomes or endosomes to the cytosol (Turk and Stoka, 2007). Calpains are non-

lysosomal cysteine proteases, which are activated via increased intracellular 

Ca2+concentrations activating various signal transduction pathways, cell motility, and 

apoptosis and cell cycle regulation. Granzymes are serine proteases that released by 

cytoplasmic granules within natural killer (NK) cells and cytotoxic lymphocytes 

(CTLs) (Cullen et al., 2010). Granzymes cleave intracellular substrates, activating 

several apoptotic pathways leading cell death (Cullen et al., 2010). High temperature 

requirement A2 (HtrA2) or Omi, is a member of HtrA family which is an ATP-

independent serine protease (Vande Walle et al., 2007). Omi/HtrA2 is a serine protease 

located in the mitochondrial intermembrane space that is released to the cytosol upon 

various apoptotic stimuli and can induce apoptosis via its protease activity (Vande 

Walle et al., 2007).  

 

Apoptosis initiation factor (AIF) released from the mitochondrial inter membrane 

space translocates to the nucleus and initiates chromatin condensation and DNA 

fragmentation through enrolling or activating an endonuclease (Sevrioukova, 2011). 

These types of death effectors and different levels of reactive oxygen species (ROS) 

production are highly effective pro-apoptotic stimulators (Torres, 2010). 
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1.4.1.5 The role of Tumour suppressor p53 in apoptosis 

 

The tumor suppressor p53 is a pivotal player in the negative regulation of cell cycle 

progression by promoting the transcription of numerous downstream regulators that 

either induces cell cycle arrest, apoptosis or autophagy (Kruiswijk et al., 2015). 

Consequently, it prevents accumulation of irreversible genetic alterations that could 

ultimately lead to cellular transformation.  

 

In response to cellular stress, P53 transactivates or transrepresses many different 

downstream genes to trigger apoptotic responses. The p53-mediated transactivation of 

apoptosis-related genes include pro-apoptotic Bcl-2 family members e.g., Bax, Puma, 

Noxa, and Bid, which leads to the mitochondrial membrane depolarization in the 

intrinsic pathway; apoptotic protease activating factor-1 (APAF-1), a major 

component of apoptosome; and Fas/CD95, death receptor 4 (DR4), and DR5, 

components of the extrinsic apoptotic pathways (Kruiswijk et al., 2015). P53 can also 

directly bind to and inhibit the Bcl-XL and Bcl2 proteins, leading to the release of 

cytochrome C and the initiation of caspase cascade. There is strong evidence 

suggesting PUMA as a critical component of p53-mediated apoptosis, and in other cell 

types, NOXA seems to be equally significant (Nikoletopoulou et al., 2013). 

 

1.4.2 Autophagy  

 

Autophagy, a term derived from the Greek, means “self (auto)-eating (phagy)” 

(Mizushima et al., 2010). Autophagy is an adaptive catabolic process that serves to 

deliver degraded cytoplasmic materials and organelles to the lysosomes for digestion 

(Todde et al., 2009)  

 

During autophagy, double‑ or multiple‑membrane structures engulf portions of 

cytoplasm and/or organelles to form autophagosomes (Kroemer et al., 2010; Reggiori 

and Klionsky, 2005). The autophagosome merge with lysosomes to form 

autolysosomes, where the degradation will occur. Autophagy is mostly a cellular 
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survival process but could results in a cell death mechanism when different cell death 

pathways, including apoptosis, are deficient (Gozuacik and Kimchi, 2004). 

 

The autophagic process (Fig. 1.6) proceeds as a result of various steps: the initiation 

period relating to the formation of an isolation membrane or phagophore, the 

elongation of the phagophore, the maturation of an autophagosome with assimilation 

of a cytosolic cargo, the fusion of the mature autophagosome to the lysosome, and the 

degradation period in which the contents are digested with lysosomal proteases (e.g., 

cathepsins) and other hydrolytic enzymes (Kroemer et al., 2010; Ryter et al., 2014). 
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Figure 1.6: Stages of autophagy. (A) Different types of autophagy. LC3-II is a marker of Atg5/Atg7-

dependent autophagy, whereas Rab-9 is a marker of Atg5/Atg7-independent autophagy. (B) The 

initiation is sustained by activation of ULK1 and ULK2 complexes, which are inhibited by mTOR. 

(C) The nucleation depends on Beclin 1-Vps34-Vps15 core complexes and other proteins. (D) The 

elongation of the phagophore is mediated by two ubiquitin-like conjugation systems that together 

promote the assembly of the ATG16L complex and the processing of LC3. PE, 

phosphatidylethanolamine. (E) The maturation is promoted by LC3, Beclin 1, the lysosomal 

membrane proteins LAMP-1 and LAMP-2, the GTP-binding protein RAB7, the ATPase SKD1, the 

cell skeleton, the pH of lysosomes and possibly presenilin 1 (PS1). (F) Autophagic lysosome 

reformation (ALR) cycle. mTOR signaling is inhibited during initiation of autophagy, but reactivated 

by prolonged starvation. Reactivation of mTOR is autophagydependent and requires the degradation 

of autolysosomal products. Increased mTOR activity attenuates autophagy and generates proto-

lysosomal tubules and vesicles that extrude from autolysosomes and ultimately mature into functional 

lysosomes, thereby restoring the full complement of lysosomes in the cell.  

 

Source:(Kang et al., 2011)  

 

 

 

 



 

26 

 

1.4.2.1 Molecular regulation of autophagy (Figs. 1.6 and 1.7) 

 

The autophagy signaling pathways are regulated by a group of autophagy-related 

genes (Atgs) that were first identified and characterized in the yeast genome 

(Mizushima and Komatsu, 2011). Atg proteins are comprised of four functional groups 

that include a serine/threonine kinase complex that responds to upstream signals like 

Atg1/UNC-51-like kinase ULK1, Atg13, Atg17, a lipid kinase complex 

[Atg6/Beclin1, Atg14, Vacuolar protein sorting (Vps) 34/PI3KC3 and Vps15] and two 

ubiquitin-like conjugation pathways that contribute to the expansion of the vesicle 

(Atg8/LC3 and Atg12 systems). 

 

The activation depends on the phosphorylation status of Atg 13 by the inhibitor of 

autophagy the mammalian target of rapamycin (mTOR). mTOR is mainly regulated 

by PI3K/Akt/mTOR signaling pathway involved in inhibition of cell apoptosis, 

promotion of cell proliferation, cell survival, and angiogenesis (Hassan et al., 2013; 

Trigka et al., 2013). There are also mTOR-independent mechanisms of inducing 

autophagy, mechanistic TOR complex 1 (MTORC1). 

 

mTOR activity is regulated by the interaction with Rheb, a small GTP-binding protein 

that activates mTOR. The GTP hydrolysis, promoted by the TSC1/TSC2 dimer 

formation, inactivates Rheb, thus negatively regulating mTOR kinase activity. 

Phosphorylation and inactivation of TSC1/TSC2 via the class I PI3K/AKT pathway 

stimulates mTOR activation by Rheb thus inhibiting autophagy (Pearce et al., 2010). 

In contrast, AMPK, which is activated by the high AMP/ATP ratios present when 

nutrients are limited, induces autophagy through a phosphorylation event that 

stimulatesTSC1/TSC2 activity (Chan et al., 2009).  

 

Inactivation of mTOR kinase dephosphorylates Atg13 allowing association with the 

scaffold protein, Atg 17, complex formation with ULK1, stimulating its kinase 

activity. The complex then localizes to the isolation membrane where nucleation 

proceeds (Karanasios et al., 2013). Vesicle nucleation begins when Beclin-1 associates 

with the effected UV radiation resistance-associated gene (UVRAG). This stimulates 
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the activity of the lipid kinase class III phosphatidylinositol 3-kinase (PI3-K) (VPS 34) 

to promote the activation of the elongation process and autophagosome biogenesis 

(Zhong et al., 2009).  

 

The Atg proteins involved in autophagosome formation consist of several functional 

products:  Atg1 kinase and it is regulators, the PI3K complex, Atg9, the Atg2-Atg18 

complex, and two ubiquitin-like conjugation systems. Also, it is known as the ‘core’ 

molecular machinery (Xie and Klionsky, 2007). These types of core Atg proteins 

consist of 4 subgroups: firstly, the ULK complex secondly, two ubiquitin-like protein 

(Atg12 and Atg8/LC3) conjugation systems; thirdly, the class III phosphatidylinositol 

3-kinase (PtdIns3K)/Vps34 complex I; and fourthly, two transmembrane proteins, 

Atg9/mAtg9 (and associated proteins involved in its movement such as Atg18/WIPI-

1) and VMP1.  The suggested site for autophagosome formation, to be able to that 

almost the entire core Atg proteins are recruited, is called the phagophore assembly 

site (PAS). 

 

 

 
 

Figure 1.7: Regulation ULK1/2 complex in mammals. 

                    

Source (Mah and Ryan, 2012) 
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ATG13 forms a complex with ULK1/2. Under nutrient-rich conditions, mechanistic 

TOR complex 1 (MTORC1) also binds with the ULK1/2 complex and phosphorylates 

ATG13 and ULK1/2. Upon starvation MTORC1 activity is inhibited and disassociated 

from the ULK1/2 complex. ULK1/2 is activated and phosphorylates ATG13 and 

RB1CC1, the mammalian functional homolog of yeast Atg17. The mammalian 

ULK1/2 complex contains a component, C12orf44, which does not have a known yeast 

homolog, and whose function remains unclear (Feng et al., 2014). 

 

In mammalian cells, there are two types phosphatidyinositol triphosphate kinases 

(PtdIns3K), class I and class III; the class III enzymes are the orthologs of yeast Vps34. 

PIK3C3/VPS34, BECN1 (the mammalian homolog of yeast Vps30), and 

PIK3R4/p150 (the homolog of Vps15) are the core components in two different 

complexes. One complex additionally contains the homolog of Atg14, 

ATG14/ATG14L/Barkor, and is required specifically for autophagy, whereas the other 

complex includes the homolog of Vps38, ultraviolet irradiation resistance-associated 

gene (UVRAG), and mediates endocytosis but also regulates autophagy in several 

ways (Fimia et al., 2014). Elongation entails the use of two conjunction systems, 

namely the Atg12-Atg5 and phosphatidylethanolamine-Atg8 systems. Both systems 

resemble the ubiquitin-proteasomal pathways (Nakatogawa, 2013). The two systems 

are illustrated in Fig. 1.6. 

 

The first system entails the conjunction of Atg12 and Atg5 homologs through the 

generation of an isopeptide bond between the Atg12 C-terminal glycine and the Atg5 

Lys130 residue, which is catalysed by E1-like Atg7 and E2-like Atg10 enzymes. 

Cys572 of Atg7 is the active site cysteine residue that is essential for its interaction 

with Atg12 (Mah and Ryan, 2012). This conjugate localizes onto an isolation 

membrane where it becomes associated with Atg1bL (mammalian homolog). The 

second conjunction system involves the mammalian of the yeast Atg8 homologue 

called microtubule-associated protein1 light chain 3 (LC3) (Mizushima et al., 2010).  

 

Atg4 protease, Atg4b removes the amino acids located C-terminally from the last 

glycine residue of the nascent unprocessed form of  LC3, producing soluble  cytosolic 
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LC3-I. After activation of LC3-I by E1-like Atg7 and E2-like ATG7, it is conjugated 

with phosphatidylethanolamine (PE) to form membrane-associated LC3-II, which can 

ultimately cleaved by Atg4B in a deconjugation step (Mah and Ryan, 2012). The site 

of LC3-II anchorage is dependent on Atg1bL which recruits the soluble LC3-1 

polypeptide to the vicinity of PE in the membrane. Modification and localization of 

cytosolic LC3-1 to autophagosomal LC3-II is used as a marker for autophagosome 

formation (Kabeya, 2000). Upon closure of the phagophore, maturation proceeds by 

fusion with the endosomal of lysosomal vesicles. Sequestome (P62/SQSTM1) is a 

cargo receptor protein that recognizes polyubiquinated targets via their C terminal 

domains in cargo selectivity. The P62 protein is cleared along with the cargo and is 

been used as a biomarker of the autophagic process (Jiang and Mizushima, 2014). 

 

1.4.2.2 Signalling pathways regulating autophagy  

 

During nutrient deprivation, autophagosome formation is dramatically induced. One 

of the major intracellular pathways of autophagy is the phosphatidylinositol-3-

kinases–AKT (PI3K–AKT) and mammalian target of rapamycin (mTOR) kinase 

pathway (Yuan and Kroemer, 2010).  

 

1.4.2.2.1 Lkb1-Ampk-Autophagy-Axis  

 

Under bioenergetic stress conditions, the depletion of cellular ATP causes elevation in 

the AMP: ATP ratio (Hill et al., 2009). The parameter is sense by the AMP-activated 

protein kinase (AMPK) responsible for monitoring intracellular energy status and 

controlling glucose (Manning et al., 2002), lipid and protein metabolism. The activity 

of mTOR is inversely correlated with activated AMPK (Hardie et al., 2012).  

 

Activation of AMPK by LKB1 suppresses growth and proliferation and promotes 

catabolic and energy producing pathways maintaining cell polarity thereby inhibiting 

inappropriate expansion of tumor cells (Hardie et al., 2012). AMPK is thus a signal 

switch that monitors and regulates systemic and cellular energy status (Hardie et al., 

2012). Furthermore, the elevated level of calcium and calmodulin-dependent protein 
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kinase kinase β (CAMKKβ) up-regulates LKB1-AMPK-mTOR signaling pathway 

and induce autophagy (Xiao et al., 2011). 

 

mTORC1 controls the translation of  a number of cell growth regulators, including 

cyclin D1, hypoxia inducible factor 1α (HIF-1α), and c-myc, which in turn promote 

processes including cell cycle progression, cell growth and angiogenesis, all of which 

can become deregulated during tumorigenesis (Bell et al., 2011). Aberrant mTOR 

signaling is involved in many diseases states including cancer, cardiovascular disease, 

and metabolic disorders (Laplante and Sabatini, 2012). 

 

1.5 Crosstalk between autophagy and apoptosis in mammalian cells (Fig. 1.8) 

 

Death-associated protein kinase (DAPK) has been proposed to convert autophagy 

from a cell survival mechanism to one of the initiation of apoptosis (Xiao et al., 2011). 

Caspase 3 cleaves Atg4D to generate a truncated product, N63 Atg4D that, when 

overexpressed, induces autophagy-independent apoptosis (Fig. 1.8) (Xiao et al., 2011). 

Atg5, when cleaved by calpains, generate a truncated product 24KAtg5 that, when 

overexpressed by itself, induces apoptosis, but not autophagy (Kang et al., 2011). 

Cytoplasmic p53 has also been shown to suppress autophagy, through yet 

undetermined protein interactors. Both full-length p14ARF and a small mitochondrial 

isoform of this protein (smARF) have been shown to promote autophagy. In particular, 

smARF may promote the autophagic flow by releasing Bec-1 from Bcl-XL dependent 

inhibitory interactions (Mah and Ryan, 2012).  

 

1.5.1 The role of Beclin-1 in apoptosis and autophagy 

 

Caspases also cleave the BH3-only Beclin-1 at Asp149 during apoptosis resulting in 

the inhibition of autophagy (Fig. 1.8). However, unlike other known BH3-only 

proteins, Beclin-1 does not function as a pro-apoptotic molecule, even if it is 

overexpressed (Kang et al., 2011). Beclin-1 shows anti-apoptotic properties during 

chemotherapy, irradiation, immunotherapy, nutrient deprivation, angiogenesis 

inhibitors and hypoxia (Kang et al., 2011). The precise mechanism by which Beclin-1 
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inhibits apoptosis is not yet clear, but may be related to unregulated autophagy as an 

adaptive or anti-injury mechanism, clearing apoptotic cells. Caspase-3-, 7- and 8-

mediated apoptosis can cleave Beclin-1 generating N- and C-terminal fragments 

destroying the pro-autophagic activity of Beclin-1 (Ola et al., 2011). The C-terminal 

fragments translocate to mitochondria and sensitize cells to apoptotic signals (Kang et 

al., 2011). It was shown that TRAIL, a death receptor ligand, triggered the caspase-

mediated cleavage of Beclin-1 in cervical carcinoma cells in vitro (Trigka et al., 

2013)Autophagy and apoptosis share common stimuli and signaling pathways; 

therefore cell life or death, depends on the cell response and which process is dominant 

(Trigka et al., 2013). Although apoptosis-associated cleavage of Beclin-1 and Atg5 

inactivates autophagy, the cleavage of Atg4D by caspase-3 generates a fragment with 

increased autophagic activity (Chen and Klionsky, 2011). 

 

 
Figure 1.8: Crosstalk between autophagy and apoptosis in mammalian cells. In a cell, the same stress 

induces both autophagy and apoptosis as independent processes (left). A stress can also induce 

autophagy, which then inhibits apoptosis (middle) or, alternatively, a stress induces autophagy, which 

can be the trigger of apoptosis (right). (B) Both autophagy and apoptosis are negatively regulated by 

Bcl-2, Bcl-xL and Flip. (C) Autophagy proteins Atg5, beclin 1 and Atg4D function in autophagy in 

their unmodified form, but also have a role in apoptosis after cleavage by either calpains, which target 

Atg5 and give rise to 24 K Atg5, or caspase 3, which cleaves beclin 1, resulting in a C-terminal 

fragment of beclin 1 (Beclin 1-C), and Atg4D, truncating it at the canonical caspase cleavage 

sequence (DEVD63K) to _N63 Atg4D.  

 

Source (Chen and Klionsky, 2011) 

 

 

 

 

 

 

 

 

 

 

 

 



 

32 

 

1.6 Terpenoids 

 

Terpenoids, flavonoids and alkaloids are the three major types of plant-derived 

compounds used for their medicinal properties. Terpenoids which are also known as 

isoprenoids a form subclass of prenyllipids (terpenes, prenlyquinones and sterols) of 

which there are almost 40 000 different types which have been isolated in plants, 

animals and microbial species (Brahmkshatriya and Brahmkshatriya, 2013). They 

serve a wide range of functions in nature including defensive resins, pheromones, 

antioxidants, and the pigments responsible for vision (Beukes et al., 2014). The best-

known terpenoid pharmaceutical is the anticancer drug paclitaxel. Steroid hormones 

in animals are terpenoids and the plant hormones cytokinin, gibberellin and abscisic 

acid are derivatives of terpenoids (Wangersky, 1993). Terpenoids can be modified to 

produce thousands of different intermediates and metabolites.  Oxidation of terpenes 

is affected by their methyl groups and by moving, removing or adding of oxygen 

atoms. Terpenoids are also used for communication between organisms. Triterpenoids 

in plants can act as repellent or attractant (Beukes et al., 2014). Some terpenoids have 

antibiotic characteristics. Terpenoids are electron carriers (ubiquinone) facilitate 

polysaccharide assembly (polyprenyl phosphates) and form part of the membrane 

structure (phytosterols) (Wangersky, 1993). All terpenoids are derived from one of 

two isomers, isopentyl diphosphate (IPP) and dimethylallyl diphosphate or geranyl 

pyrophosphate (GPP) via the traditional mevolonate or methylerythritol phosphate 

pathway or both (Fig. 1.10). 

 

Table 1.1: The basic molecular structure of terpenes. Source (Wangersky, 1993) 

 

 

 

 

 

 

 

 

Terpene Isoprene Unit Carbon  Atoms 

Monoterpenes 2 10 

Sesquiterpenes 3 15 

Diterpenes 4 20 

Sesterpenes 5 25 

Triterpenes 6 30 

Carotenoids 8 40 

Rubber >100 >500 

 

 

 

 



 

33 

 

IPP and DMAPP (the isomer dimetylally diphosphate) are simultaneously produced 

from pyruvate and glyceraldehyde-3-phosphate via the non-mevalonate pathway or 

2C-methyl-D-erythritol 4-phosphate (MEP) pathway whereas acetyl-CoA produces 

IPP via the Mevalonic acid (MVA) pathway (Pulido et al., 2012).  

 

Despite the knowledge of the synthetic pathway involved in the synthesis of terpenes, 

these compounds are traditionally known as derivatives of isoprene, a five- carbon 

acyclic chain (C5H8) (Pulido et al., 2012). Based on the number of building blocks, 

terpenes are commonly classified as monoterpenes (C 10), sesquiterpenes (C 15), 

diterpenes (C20), triterpenes (C30) and tetraterpenes (C40) (Fig. 1.9). 

 

 

Figure 1.9: Simplified scheme of the origin of the diverse biosynthetic plant terpene classes  

 

Source (Pulido et al., 2012) 
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Figure 1.10: The biosynthesis of terpenes from isopentyl diphosphate 

(IPP) and dimethylallyl diphosphate (DMAPP) to form geranyl 

pyrophosphate (GPP).  

Source (Pulido et al., 2012) 

 

 

Systhesis of sesquiterpenes, triterpenes, sterols and polyterpenes  utilizes cytosotic IPP 

as precursor whereas monoterpenes, diterpenes and tetrapenes precursor IPP derives 

from the plastids as precursor (Pulido et al., 2012). The majority of the bioactive 

terpenes are found in plants (Muffler et al., 2011). With mono- and sesquiterpenes are 

mainly present in oils of plant raw material, and the higher terpenes, such as 

triterpenes, are mostly obtained in balsams and resins (Abe, 2007; Steigenberger and 

Herm, 2011).  

 

1.6.1 Triterpenes  

 

1.6.1.1 Uroslic Acid  

 

Ursolic acid (UA) or 3β-hydroxyurs-12-en-28-oic acid is a pentacyclic triterpenoid 

that occurs in numerous plants and is a constituent of several anti-inflammatory herbal 

medicine (Fig. 1.11) (Mitsuda et al., 2014).  
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Figure 1.11: Molecular structure of UA 

 

Source (Leipold et al., 2010) 

 

 

 

As an effective natural anticancer drug, UA has also been reported to show significant 

cytotoxicity against some tumor cell lines such as, colon cancer cells, endometrial 

cancer cells, prostate cancer, colon- and renal cancer and melanoma (Shanmugam et 

al., 2012). However, the low bioavailability of UA in vivo restricts its clinical 

application (Debnath et al., 2010). Chemical modifications in UA have been widely 

investigated in recent years to improve its antitumor activities and bioavailability 

(Shanmugam et al., 2012). Following this trend, the anti-proliferative activity of UA 

hydroxycinnamate esters isolated from cranberry fruit was tested in tumor cell lines. 

The esters inhibited the growth of several lung, colon, breast and renal cancers, 

melanoma and leukemia cell lines. 

 

Some studies have shown that UA exhibits growth inhibition properties against many 

human cancer cell lines in vitro, including HepG2 (Hepatoma cells), MCF-7 breast 

cancer cells, Caco-2 colon cancer cells and SNG-II endometrial cancer cells. The anti-

cancer properties of UA seen in cultured human melanoma cells were possibly 

mediated through the induction of apoptosis following activation of caspases 
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(Mahmoudi et al., 2015). UA has also been shown to activate different apoptotic 

processes in the endometrial cancer SNG-II cell line and activated the mitochondrial 

apoptotic pathway in colon cancer cells and apoptosis in M4Beu melanoma cells 

(Wang et al., 2011).  

 

UA decreased proliferation of HT-29 colon carcinoma cells by induction of apoptosis 

accompanied by activation of caspases-3, 8 and 9  and by intracellular Ca2 release in 

HL 60 leukemia cells (Tsai et al., 2009). UA caused enhanced release of cytochrome 

C, caspase activation, and down-regulation of inhibitor of apoptosis proteins (c-lAPs) 

in prostate cancer (Kim et al., 2012). In B 16F-10 melanoma cells, UA resulted in 

apoptosis accompanied by upregulation of the tumor suppressor gene p53 and caspase-

3 and down-regulation of Bel-2 (Huang et al., 2012). Caspase-3 activation by UA 

through the mitochondrial pathway with upregulation of pro-apototic Bax and a 

decrease in Bel-2 was reported in M4Beu human melanoma cells after UA treatment 

(Debnath et al., 2010). UAs have also induced apoptosis by acting as a sensitizer for 

TRAIL-induced apoptotic cell death in prostate cancer treatments (Shin and Park, 

2013).  

 

UA has been shown to decrease prostate tumor invasion and increased risk of 

metastasis (Kassi et al., 2007). An in vitro study on DU145 prostate cells showed that 

UA induced a G1-phase arrest mediated by p53/p21 (Hsu et al., 2004). The researchers 

furthermore found that UA up-regulated p53:NF-κB and the expression level of 

apoptosis-related protein (Fas/APO-1) Fas ligand and Bax) resulting in apoptosis (Hsu 

et al., 2004).  

 

According to Ovesná et al. (2006), UA and OA can act on various stages of tumor 

development, including the inhibition of tumorigenesis, inhibition during tumor 

promotion, and induction of tumor cell differentiation. Several other pharmacological 

effects, such as anti- tumor, hepato-protective, anti-inflammatory (oral & topical), 

anti-ulcer, antimicrobial, anti-hyperlipidemic, and anti-viral activities, have also been 

attributed to UA (Misra et al., 2014). 
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1.6.1.2 Biosynthesis of uroslic acid   

 

Synthesis of the precursors of UA from squalene is shown in Fig1.12. Dammarenyl (I) 

undergoes ring expansion, followed by and additional cyclization to form oleanyl 

cation, lupenyl cation and lupeol  (Leipold et al., 2010). The folding and cyclization 

of squalene lead to the dammarenyl ring system (I) (Fig. 13) (Leipold et al., 2010). 

Ursolic acid (4) contains an α-amyrin skeleton and the C30 isomer, β-amyrin is found 

in oleanolic acid (5).  

 

 

  Figure 1.12: Biosynthesis of dammarenyl cation (I), oleanyl cation, lupenyl cation and lupeol (1) 

 

Source (Babalola and Shode, 2013) 
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Figure 1.13: Biosynthesis of ursolic acid (4) and oleanolic acid (5) from oleanyl cation. 

 

Source (Babalola and Shode, 2013) 

 

 

1.6.1.3 Oleanolic Acid  

 

Oleanolic acid or oleanic acid is a pentacyclic triterpenoid found in the leaves and 

roots of Olea europaea, Viscum album L., Aralia chinensis L., Phytolacca americana 

(American pokeweed) and Syzygium spp and over 120 other plant species (Pollier and 

Goossens, 2012; Reisman et al., 2009). It is chemically known as 3β-hydroxy-olea-

12-en-28-oic acid, Fig. 1.14.  

 

In plants OA is in the form of free or combined glycosides, it has wide range of 

pharmacological affects, it is mainly used for the treatment of acute jaundice hepatitis 

and chronic viral hepatitis currently.  
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Figure 1.14: Molecular structure of OA. 

 

Source (Leipold et al., 2010) 

 

 

OA is relatively non-toxic, hepatoprotective, and exhibits antitumor and antiviral 

properties (Banik and Pandey, 2008). It used to treatment acute chemically induced 

liver injury, chronic liver fibrosis and cirrhosis (Feng et al., 2009). OA exhibits many 

biological activities such as anti-inflammatory, antitumor, antiviral, hepatoprotective 

and anti-hyperlipidemic effects. OA has been used in Chinese medicine to treat liver 

disorders for over 20 years (Wang et al., 2010).  

 

OA has has been shown to protect mice from various hepatotoxicants that cause 

oxidative and electrophilic stress, including carbon tetrachlo- ride, acetaminophen, 

bromobenzene and thioacetamide (Reisman et al., 2009). Despite its use as a 

hepatoprotective drug and various anti proliferative studies, the mechanism of action 

of OA remains to be fully elucidated (Asadi-Samani et al., 2015).  

 

Other pharmacological effects of OA includes the beneficial effects on the 

cardiovascular systems, interaction with cytochrome P450s, protection against 

kainate-induced excitotoxicity in rat hippocampal neurons and immunomodulatory 

effects, as well as its effects on intracellular redox balance and osteoclast formation 

(Liu, 2005). 
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OA has been shown to have significant anti-tumor activity, inhibiting growth of human 

hepatocellular carcinoma HuH7 cells with IC50 values of 100 and 75 mM, respectively 

(Shyu et al., 2010). The possible mechanisms of action this of inhibitory effect is 

suggested to be the induction of cell-cycle arrest in HCT-15 cells and mitochondria-

mediated intrinsic apoptosis in hepatocellular carcinoma cells (Shyu et al., 2010). OA 

induces apoptosis via up-regulation of cell cycle-related and other apoptotic genes like, 

p53, p21 and p27, Bax, caspase-9, and caspase-3 in lung cancer and reduces metastasis 

of B16F-10 melanoma cells (Lúcio et al., 2011). Inhibitory effects of OA on the growth 

of human bladder, prostate, pancreatic and colorectal cancer cell lines have 

furthermore been reported (Deretic and Levine, 2009; Kassi et al., 2007). OA was 

shown to induce apoptosis in human glioblastoma and neuroblastoma cells by 

inhibiting pro-survival p-Akt, NF-kappaB (P65) and Notch1 signaling pathways (Gao 

et al., 2007). OA have been found to be active in various stages of tumor development, 

including inhibition of tumor promotion, invasion and metastasis (Shishodia et al., 

2003). 

 

Inflammation plays an important role in the development and progression of cancer 

(Mantovani et al., 2008) and NF-κB, a key transcription factor involved in 

inflammation, is commonly overexpressed in cancer cells, thereby suppressing 

apoptosis of the tumor cells and maintaining a chronically inflamed microenvironment 

beneficial for cancer proliferation (Laszczyk, 2009). A study by Laszczyk, (2009) 

showed the anti-inflammatory and anticancer potential of OA. They postulated that 

OA acted most likely by targeting NF-κB, however, its exact mode of action remains 

to be discovered. It has been shown that OA is not only a free radical-scavenger acting 

through direct chemical reactions with reactive oxygen species, but also that the main 

antioxidant activity of the molecule is due to the Nrf2-mediated increased expression 

of antioxidant enzymes such as catalase and thioredoxin peroxidase, and the enhanced 

biosynthesis of the antioxidant glutathione. 
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1.6.1.4 Biosynthesis of OA 

 

The precursor molecule in the plant cell cytoplasm, 2, 3 oxidosqualene, is synthesized 

how isopentenly pyrophosphate via the mevalonate pathway (Pollier and Goossens, 

2012). Cyclization of 2, 3-oxidosqualene leads to the branch-point between the 

primary sterol and the secondary triterpenoid metabolism producing OA (Nataraju et 

al., 2009; Xue et al., 2012). 2, 3-oxidosqualene can also be cyclized through 

cycloartenol synthase (CAS) to produce this tetracyclic plant sterol precursor 

cycloartenol (Abe, 2007). The biosynthesis of OA (Fig. 1.15) shows that 2, 3-

oxidosqualene is cyclized to the pentacyclic oleanane-type triterpenoid backbone β-

amyrin by the OSC β-amyrin synthase (BAS) (Cammareri et al., 2008). BAS was first 

cloned from the medicinal plant Panax ginseng(Kushiro et al., 1998), and later from a 

variety of other plant species, including the olive (Morikawa et al., 2007). Lastly, β-

amyrin is further converted to OA by oleanolic acid synthase (OAS, a P450 enzyme), 

which catalyses a three-step, sequential oxidation at the C-28 position of β-amyrin at 

the C-28 position by a single cytochrome P450 enzyme to yield OA through 

erythrodiol (Domingo et al., 2012; Han et al., 2013). The cytochrome P450 enzyme is 

involved these multi-steps of oxidation, CYP716A12 (Carelli et al., 2011; Urlacher 

and Girhard, 2012). 
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Figure 1.15: OA biosynthetic pathway. BAS = b-amyrin synthase, CAS = cycloartenol synthase, IPP = 

isopentenyl pyrophosphate. 

 

Source (Pollier and Goossens, 2012) 

 

 

 

1.7 Objectives  

 

This study was carried out to establish the possible anti-cancerous effects of OA and 

UA in vitro on the estrogen receptor (ER)+ breast epithelial adenocarcinoma cell line, 

MCF-7, and the non-tumorigenic human breast epithelial MCF-10 cell line.  

Cellular and molecular analysis was employed to investigate the mechanisms of action 

of OA and UA. The aims were: 

To determine OA and UA cytotoxicity in MCF-7 and MCF-10A cell lines.  

To determine morphological effects of OA and UA on the two cell lines. 

To establish and compare the molecular mechanisms elicited by OA and UA in cancer 

cells (MCF-7) and compare that to the effects in non-malignant (MCF-10A) cells. 

 

To achieve these goals, the following steps were taken: 

I. Evaluation and quantification of influence of OA and UA on the morphology 

and cell growth using H & E stained cells. 
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II. Quantification of a time-and-dose response of OA and UA using the crystal 

violet assay after exposure to 10, 20, 50 and 100ug/ml for 6-72h in both MCF-

7 and MCF-10A cells.  

III. To evaluate cell death either by apoptosis or by autophagy by staining for the 

apoptotic/autophagic features of the cells. 

IV. Determination of ROS levels and detection apoptosis induction using Annexin-

V FITC-PI.  

V. Evaluation of cell cycle progression after exposure to OA and UA. 

VI. Determination of the mechanisms of autophagy in treated MCF-7 and MCF-

10A cells by evaluating Beclin-1 and LC3 using Western blot analysis. 

VII. To determine the Beclin-1 and LC3 gene-expression profile following 

treatment of the MCF-7 and MCF-10A cells using Quantitative PCR. 
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Chapter II 

 

2 Materials and Methods 

 

2.1 Materials  

 

2.1.1 Biorad, UK supplied: 

 

 Acrylamide/Bis 40% 

 Polyvinyl difluoride membrane 

 Prestained standard Kaleidoscope protein markers  

 Temed 

 Tris buffer 

 Tris/glycine/SDS buffer for SDS PAGE 

 Ponceau stain 

2.1.2 Merck, Germany supplied: 

 

 Ethanol (EtOH) 

 Potassium chloride (KCL) 

 Calcium chloride (CaCl2) 

 Sodium chloride (NaCl) 

 Acetic acid (CH₃COOH) 

 Methanol (MEOH) 

 Sodium dodecyl sulfate (SDS) 

 Xylene (XYL) 

 Ribonuclease (RNase) 

 Dimethylsulphoxide (DMSO) 

 All chemicals were of analytical grade  
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2.1.3 Gibco BRL, Scotland supplied: 

 

 Fetal bovine serum (FBS) 

 Horse serum  

 Gentamycin 

 Penicillin/streptomycin 

 Phosphate buffer saline (PBS)  

 Dulbecco's Modified Eagle Medium: Nutrient MixtureF-12  (DMEM/F-12 

Media) 

 HyClone™ Trypsin 

 

2.1.4 Sigma, Germany supplied: 

 

 Epidermal growth factor (EGF) 

 Hydrocortisone  

 Insulin 

 Trypsin 0.25% 

 Bouins solution  

 Haematoxylin  

 Eosin B  

 Trypan blue  

 Ammonium persulphate (APS) 

 Crystal violet stain 

 Hepes 

 Hoechst 33342 

 Propidium iodide (PI) 

 Acridine orange  

 Sodium dodecyl sulphate (SDS) 

 Triton X-100 

 Tween® 20 

 Glutaraldehyde 
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2.1.5 Life technological Sciences 

 

 Tali® Apoptosis Kit – Annexin V Alexa Fluor® 488 and Propidium Iodide*for 

use with Tali® Assay: Apoptosis* 

 CellROX® Orange Reagent kit.  

 

2.1.6 Cell signaling technology 

 

 LC3B Rabbit antibody  

 Beclin-1 Rabbit antibody  

 α Tublin antibody  

 Anti-Rabbit Secondary Antibodies 

 

2.2 Cell Lines  

 

The estrogen receptor (ER)+ breast epithelial adenocarcinoma cell line MCF-7 and the 

non-tumorigenic human breast epithelial MCF-10 cell lines were acquired from 

American Type Culture Collection (ATCC). Low passage MCF-7 and 10A cells were 

used in all experiments. MCF-7 is a cell line that was first isolated in 1970 from a 

malignant adenocarcinoma in a pleural effusion of a Caucasian woman. MCF-7 cells 

have retained several characteristics of the mammary epithelium as well as 

intracellular estrogen receptors. 

 

Genetic discrepancies exist between the MCF-7 cell line from the Michigan Cancer 

Foundation and the MCF-7 cell lines obtained from ATCC which has a karyotype 

containing 69 chromosomes. Although the ER status of MCF-10A and MCF-7 has 

been previously documented it has become widely accepted that receptor expression 

profiles may vary between different lots or batches of the same cell line (Marchese and 

Silva, 2012). 
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The MCF-10A  human breast epithelial cells (Spink et al., 2006; Yusuf and Frenkel, 

2010) stem from a 36 year old Caucasian female with fibrocystic breast disease (Soule 

et al., 1990). It is characterized as a non-tumorigenic cell line with estrogen and 

progesterone negative receptors (Tait et al., 1990). This cell line was chosen for this 

study as it can mimic the in vivo environment of normal breast epithelia (Soule et al., 

1990; Tait et al., 1990).  

 

2.3 Culture medium  

 

The MCF-7 cells were maintained in Dulbecco's modified Eagle's medium 

(DMEM/F12) and Ham's F12 medium (1:1) mixture. This was supplemented with 5% 

fetal bovine serum and 0.2% penicillin/streptomycin (100 U/ml penicillin and 

100μg/ml streptomycin).  

 

The MFC-10A cells were maintained in DMEM F12. This was supplemented with 5% 

horse serum, 20ng/ml epidermal growth factor EGF, 1mg/ml hydrocortisone, and 

1mg/ml cholera toxin, 10μg/ml, insulin and 5.0 ml penicillin/streptomycin. The cells 

were maintained in 75cm2 culture flasks in a humidified astrosphere at 37ºC. The 

media was changed every 3-4 days depending on the cell’s growth and allowed to grow 

to 70-80% confluence before sub-culturing. 

 

2.4 Supplements 

 

2.4.1 Oleanolic acid and ursolic acid 

 

The Oleanolic acid (purity ≥97%) and uroslic acid (purity≥90%) were obtained from 

Sigma. The oleanolic acid (OA) and uroslic acid (UA) were made up as stock solutions 

in dimethyl sulfoxide (DMSO) and stored at 4oC until needed. Because the 

experiments required uniform levels of OA or UA throughout, the required amount of 

OA and UA was added to medium prior to dispensing it into the flasks or wells of the 

96 or 6 well plates containing the attached cells. This method rules out effects of actual 
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contact of the OA or UA on cell viability when added directly. The final highest 

concentration of DMSO in the treated samples did not exceed 0.1%.   

 

2.5 Cell treatments for experimental techniques 

 

For all experimental procedure unless stated otherwise, the required amount of cells 

for each experiment were seeded and allowed to attach for 24 hours. Cells were then 

exposed to OA and UA separately at the following doses: 10µg/ml, 20µg/ml, 50µg/ml, 

and 100µg/ml for 6, 12, 24, 48 and 72h incubation periods. The effects of OA and UA 

on the two cell line were studied looking at following: cell viability (crystal violet 

staining), morphological changes and cell proliferation using light microscopy and 

haematoxylin and eosin stained cells,  using fluorescence  possible cell death including 

apoptosis and autophagy microscopy (Hoechst stain and triple stain (Hoechst, 

Propidium iodide and Acridine orange), apoptosis detection and quantification (Tali® 

Apoptosis Kit - Annexin V Alexa Fluor® 488 & Propidium Iodide), reactive oxygen 

stress (ROS) detection (Tali® Image-Based Cytometer and CellROX®Orange 

Reagent), cell cycle progression analysis (flow cytometry) and  for further autophagy 

detection, western blotting and RT-PCR. 

 

2.5.1 Estradiol proliferative assay 

 

As described in section 2.5.3. 5000 cells were seeded per well in 96 well plates and 

allowed to attach for 24 hours, after which the culture medium was removed from the 

wells and the cells were exposed to 10, 20, 50, 80 and 100pg/l 17ß-estradiol for 48 and 

72 hours.  Proliferative effects of 17ß-estradiol on MCF-7 and MCF-10A cells were 

determined using a crystal violet assay (section 2.5.3).  

 

2.5.2 ER status of MCF-10A cells 

 

MCF-10A cells are mammary epithelial cells which are one of the targets of sex 

hormones to stimulate development (Musgrove et al., 1998). As mentioned in Section 

2.3, receptor expression profiles may vary between different lots or batches of the same 
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cell line. To establish the ER status in this specific MCF-10A line as the status could 

have an influence on cell signalling, MCF-10A cells were exposed to combinations of 

17ß-estradiol, estriol and progesterone (10, 20 and 40pg/l estriol-progesterone 

respectively) for 48 and 72 hour periods. The “priming” of MCF-10A cells was carried 

out in an attempt to elicit expression of ERs in the cells. This was done to assist with 

the interpretation of signalling effects induced by OA and UA. The method is 

described in Section 2.11. Modifications include the use of 1/5000 v/v diluted horse-

radish peroxidase conjugated anti-mouse immunoglobulin (Stressgen bioreagents). 

The primary anti-ERα mouse monoclonal antibody was a gift from Prof EJ Pool, 

Department of Medical Biosciences, University of the Western Cape. 

 

2.5.3 Cell Viability  

 

The crystal violet staining (CVS) assay is used to detect cytotoxicity as it stains only 

viable cells (Itagaki et al., 1991; Saotome et al., 1989). This assay is based on the 

growth reduction rate reflected by the colorimetric determination of the stained cells. 

Cells were seeded at approximately 5000 cells per well in 200µl of culture medium in 

96-well plates, and allowed to attached for 24 hours.  The cells were exposed to the 

different concentrations 10-100 µg/ml of OA and UA for periods of 6, 12, 24, 48 and 

72 hours.  

 

After cells were treated, the medium was removed from each well and 100µl of 1% 

gluteraldehyde in phosphate buffered saline (PBS) was added for 15 minutes. The cells 

were stained with 0.1% crystal violet (CV) in PBS for 30 min.  The culture plates were 

then immersed in running tap water for 15 minutes and left to dry. 200 µl of 0.2% 

Triton X-100 in PBS were added to each well and incubated at room temperature for 

30 min. 100 µl of staining solution was transferred to new 96 well plates. The 

absorbances of the samples were measured at 570 nm using an ELISA reader (GloMax 

Multi Detection System). The viability was calculated independent colour using the 

formula (Equation 1) below.  
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Equation 1:  

 

 

2.5.4 Morphological effects 

 

2.5.4.1 Light microscopy: Haematoxylin and Eosin staining 

 

Hematoxylin and eosin cell staining (H and E) was conducted as a standard 

microscopic technique for qualitative evaluation of cellular morphology and in order 

to calculate the mitotic indices for quantitation of the cell cycle phase shift and 

abnormal morphology. Equal numbers of cells were seeded on sterilized coverslips 

placed in 6 well plates and allowed to attach for 24 hours. Thereafter, the cells were 

exposed to OA and UA at concentrations and times periods as explained in section 2.6. 

   

The cover slips with the attached treated cells were fixed in Bouin’s solution and 

stained with haematoxylin and eosin using standard procedures. The cover slips were 

cleared in xylene and mounted on glass slides. The slides were then examined for 

morphological changes using a light microscope Nikon. Quantification of cell 

proliferation was carried out by counting 1000 cells on every coverslip of the H and E 

stained cells. 

 

2.5.5 Fluorescent microscopy  

 

2.5.5.1 Apoptosis, autophagy and necrosis detection 

 

Hoechst 33342 (2'-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5'-bi-1H-

benzimidazole trihydrochloride trihydrate) is a fluorescent dye that can penetrate intact 

cell membranes of viable cells and cells undergoing apoptosis and binds to adenine-

thymine (A-T) base pair sections of DNA thus staining the nucleus (Latt et al., 1975). 
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MCF-7 and MCF-10A cells were plated at a density of 3x105 cells per well onto cover 

slips in 6-well plates. After incubation for 24h to allow attachment, the cells were 

treated with OA and UA at dosages 10-100µg/ml and incubated for 6-72h. The cells 

attached to the cover slips were stained with 1µg/ml Hoechst in medium for 30 min at 

37Co. Following this, the cells were washed three times with PBS and mounted using 

a solution of 0.5% p-phenylenediamine in 20mM Tris (pH 8.8) and 90% glycerol. The 

cells were analysed by a Nikon fluorescent microscope using a 450nm emission filter. 

 

2.5.5.2 Triple Fluorescence staining: Hoechst, Propidium iodide and Acridine 

Orange stain. 

 

A triple Fluorescence dye staining method using acridine orange (green), Hoechst 

33342 (blue) and propidium iodide (red) was used to identify the presence of apoptosis, 

autophagy or necrosis. Hoechst nucleic acid stain, as mentioned in section 2.4.3.1, is 

often used to distinguish condensed pycnotic nuclei in apoptotic cells while propidium 

iodide (PI) is a red-fluorescent dye that is unable to penetrate an intact membrane and 

therefore stains the nucleus of cells that have lost their membrane’s integrity due to 

necrotic processes. Acridine orange (AO) is a lysosomotropic fluorescent compound 

that serves as a tracer for acidic vescular organelles including autophagic vacuoles and 

lysosomes (Klionsky et al., 2007). Cells undergoing autophagy will have an increased 

tendency for acridine staining when compared to viable cells, however acridine orange 

is not a specific marker for autophagy and therefor other techniques are needed to 

verify increased autophagic activity.  

 

The cells were seeded and treated with OA and UA as explained in section 2.4.3.1. 

0.5ml Hoechst was added to the cells to provide a final concentration of 0.9µM. After 

25 minutes into incubation, 0.5 ml of AO solution (4µg/ml in PBS) was added to the 

medium to give a final concentration of 1µg/ml and incubated for 5min at 37oC. Finally 

0.5 ml of PI solution (40µg/ml in PBS) was also added to the medium to provide a 

final concentration of 12µM and incubated for the next 5 minutes at 37°C. The cells 

were washed thrice with PBS and mounted in an antifade solution of 0.5% p-

phenylenediamine in 20mM Tris (pH 8.8) and 90% glycerol on glass slides.  Samples 
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were examined with a Zeiss inverted Axiovert CFL40 microscope and Zeiss Axiovert 

MRm monochrome camera using Zeiss Filter 2 for Hoechst 33342-stained cells (blue 

emission), Zeiss Filter 9 for acridine orange-stained cells (green emission) and Zeiss 

filter 15 for propidium iodide stained cells (red emission). In order to prevent 

fluorescent dye quenching all procedures were performed in dark room by using plates 

and reagents covered with foil. 

 

2.5.6 Apoptosis and necrosis detection using the Tali® Apoptosis Kit - Annexin 

V Alexa Fluor® 488 and Propidium Iodide 

 

The Tali® Apoptosis Kit allows for the identification of apoptotic cells and necrotic 

and live cells in a population of live cells. Apoptotic cells stained with this mixture 

will produce a green emission with Annexin V–Alexa Fluor® 488 while necrotic cells 

are stained with both red propidium iodide and green Annexin V–Alexa Fluor® 488. 

This kit allows the discrimination between apoptotic and necrotic cells with two-color 

staining. It recognizes phosphatidyl serine (PS) that is translocated from the inner to 

the outer membrane during apoptosis. The Tali®Apoptosis Kit contains: 

 Annexin V – Alexa Fluor® 488 conjugate 

 Annexin Binding solution 

 Propidium Iodide (PI) solution  

MCF-7 and MCF-10A cells were exposed to OA and UA at the following 

concentrations: 10, 20. 50 and 100µg/ml for 6h, 12h, 24h, 48h, and 72h periods as 

mentioned in (section 2.6). Cells were harvested from the flasks, centrifuged and the 

supernatant discarded. The cells were re-suspended in Annexin binding buffer (ABB) 

to a concentration of approximately 5x105 - 5x106 cells/ml. To each 100μl of sample 

5μl of Annexin V Alexa Fluor® 488 was added and thoroughly mixed. The samples 

were then incubated at room temperature in the dark for 20min. After incubation, 

samples were centrifuged and the cells re-suspended in 100μl of ABB. Next, 1μl of 

Tali™ Propidium Iodide was added to each 100μl sample, thoroughly mixed and 

incubated at RT in the dark for 1-5 minutes. Subsequently, 25μl of the stained cells 

were loaded into a Tali™ Cellular Analysis Slide by pipetting the sample at an angle 
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of approximately 80 degrees into the half-moon-shaped sample loading area.  The 

slides were analysed by the Tali™ Image-Based Cytometer. The experiment was 

repeated three times. 

 

2.5.7 Determination of Reactive oxygen species (ROS) using the Cell ROX 

 

In this study, the Tali® Image-Based Cytometer was used to assess oxidative stress in 

cells. CellROX® Orange Reagent, used in this application, is a probe for the detection 

of ROS in live cells. This cell permeant dye remains non-fluorescent until it is oxidized 

by ROS. Cells stained with CellROX® Orange Reagent are analyzed using the Tali® 

Image-Based Cytometer to assess increases in ROS levels. 

 

For the detection of ROS in the current experiment, OA and UA were used to induce 

oxidative stress in MCF-7 and MCF-10A. Cells cultures were left treated with 10, 20. 

50 and 100µg/ml for 6, 12, 24, 48, and 72h and control were untreated. After treatment, 

CellROX® Orange Reagent was directly added to 1mL of cells (at 1 x 106 cells/mL) 

in complete medium at a 1:500 dilution (2μL dye to 1mL cell solution) and incubated 

for 30 minutes at 37°C. The medium and excess dye was removed by centrifugation 

and samples re-suspended in Hank's balanced salt solution.  

 

After labeling with CellROX® Orange Reagent, cells were analyzed with the Tali® 

Image-Based Cytometer using the RFP channel, collecting 9 fields per sample. In this 

assay, “RFP fluorescence” represented the fluorescence signal from CellROX® 

Orange Reagent. The controls, which were also labelled with CellROX® Orange 

Reagent, were used to determine baseline levels of oxidative activity and to set the 

fluorescence threshold for the Tali® instrument.  

 

This threshold was set manually and confirmed visually, and all cells with signal 

greater than the threshold were counted by the Tali® instrument as positive for ROS. 

Orange Reagent excites/emits fluorescence at maximum 545/565nm, which makes it 

compatible to the RFP channel of the Tali® instrument, which is excited at 530nm and 
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uses a 580nm long pass emission filter. The activity was recorded and statistical 

analyses conducted. 

 

2.5.8 Flow cytometry  

 

2.5.8.1 Cell cycle progression  

 

Cell cycles G1, S, G2 were analysed in MCF-7 and MCF-10A cells using propidium 

iodide to stain the nucleus in order to determine the amount of DNA. Laser beam of a 

single frequency is directed onto a hydrodynamically focused stream of fluid. A 

number of detectors are aimed at the point where the stream passes through the light 

beam: one in line with the light beam Forward Scatter (FSC) and several perpendicular 

to it Side Scatter (SSC) and one or more fluorescence detectors. Each suspended 

particle passing through the beam scatters the light. Fluorescent chemicals in the 

particle may be excited into emitting light at a lower frequency than the light source. 

This combination of scattered and fluorescent light is detected by the detectors. By 

analyzing fluctuations in brightness at each detector (one for each fluorescent emission 

peak) it is possible to deduce the size, quantity and fluorescent intensity (DNA content 

when stained with propidium iodide) of cells. FSC correlates with the cell volume and 

SSC depends on the inner complexity of the particle e.g. amount of DNA, shape of 

nucleus, etc.    

 

The cells were seeded at 5x105 in 25cm2 flasks and allowed to attach for 24h.  The 

cells were treated as described previously in section 2.6. After treatment the cells were 

trypsinized and centrifuged for 5 min at 300g. The supernatant was discarded. The 

cells were fixed in 4ml ice cold 70% ethanol that was added drop wise to the cell pellet 

while vortexing and were stored at -20ºC for 24 hours. After 24 hours, the cells were 

centrifuged at 300g for 5 min and the supernatant removed. The cells were washed 

twice in PBS and re suspended in 400µl PI in an RNase solution and incubated for 

45min.  Samples were analysed by flow cytometry in the PI/RNaseA solution and each 

analysis was based on at least 10000 events. Data from cell debris and clumps of 2 or 

more cells were removed from further analysis. Cell cycle distributions were 
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calculated by assigning relative DNA content per cell to sub-G1, G1, S and G2/M 

fractions.  

 

2.5.9 Western Blotting   

 

2.5.9.1 Protein Extraction   

 

For the electrophoresis and western blot experiments the protein content of each 

sample had to be determined as all quantified data were expressed per mg proteins. All 

the procedures involved in the extraction of total protein from cells were performed on 

ice (4oC). The cells were seeded in 25cm2 flasks and treated as described in section 

2.6. The cells were harvested by scraping the cells from the tissue culture flask and 

creating a suspension using 1ml of ice cold PBS. The suspension was then aspirated, 

transferred to conical tubes and centrifuged at 3000 rpm for 4 minutes. The supernatant 

was aspirated and the resulting pellet was re-suspended in 200 µl of lysis buffer (M-

PER™ Mammalian Protein Extraction Reagent). Lysates were clarified by 

centrifugation 800rmp for 10 minutes which removed the insoluble cellular debris 

 

2.5.9.2 Determination of protein concentration 

 

All the procedures involved in the determination of protein content in lysates, as well 

as sample preparation were performed an ice (4oC). Protein quantification was 

performed by taking an aliquot from the prepared cell lysates and protein content 

determined using the Nano-Drop® ND-1000 UV/V spectrophotometer. The remaining 

samples were stored at -20°C. 

 

2.5.9.3 SDS-PAGE and electrophoresis 

 

Equalized samples were mixed with sample buffer and incubated at 100Co for 2 

minutes. A 12% polyacrylamide gel was used. Equivalent amounts of protein (50 µg) 

were loaded per lane with a molecular marker being loaded in the first lane to assist 

with orientation and sizing of separated proteins. Proteins were fractionated by sodium 
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dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE; Mini-PROTEAN® 

Tetra Cell - Bio-Rad) at a constant voltage of 100 V and current of 200 mA (Bio-Rad 

Power Pac 1000) until the migration front reached the bottom of the gel. 

 

Resolved proteins were then electro-transferred onto polyvinylidene fluoride 

membrane (PVDF; Immobilon, Millipore, USA) using a horizontal semi-dry 

electrotransfer system (Bio-Rad Trans-Blot® SD, USA) at voltage of 15 V and 

constant current of 0.5 A (Bio-Rad Power Pac 1000).  

 

2.5.9.4 Immuno-detection  

 

Non-specific hydrophobic binding site were blocked with incubation in 5% non-fat 

milk and incubated for 1 hour at room temperature.  The blots were washed in TBS-T 

then incubated overnight at 4oC in the primary antibody. The primary antibodies: LC3 

and Beclin-1 were diluted 1:500 in TBS-T solution. The blots were washed as before 

and the blots were incubated in 1:10000 anti-rabbit horseradish peroxidise-conjugated 

secondary antibody for 2h at RT. Membranes were then exposed to ECL Western 

Blotting Substrate (Bio-Rad, South Africa). Chemiluminescent signals were captured 

with the UVP Bioimaging system. To provide a positive control for protein loading, 

all blots were probed for the representative protein β-actin.  

 

2.5.10 Quantitative PCR 

 

2.5.10.1 RNA extractions 

 

RNA was extracted using the QIAzol lysis reagent (Qiagen) according to 

manufacturer’s protocol. 
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2.5.10.2 Quality control of RNA samples 

 

To determine the concentration and purity of the RNA samples, 1.2µl of each RNA 

sample was analyzed on a Nanodrop (ND-1000, ThermoScientific). Nuclease free 

water was used as the blank control. 

 

2.5.10.3 cDNA synthesis 

 

cDNA synthesis of 500ng RNA was performed in duplicate for each sample. RNA 

was diluted to 50ng/µl and 10µl of the diluted RNA sample was added to 10µl of 

a cDNA synthesis master mix consisting of reverse transcriptase buffer, random 

primers, dNTP mix, MultiScribe™ reverse transcriptase (High Capacity cDNA 

synthesis Kit, Life Technologies, Part # 4368814) and nuclease free water. The 

components were thoroughly mixed and spun down using a bench top centrifuge to 

collect all the liquid. Cycling was performed on the GeneAmp® PCR System 9700 

(Life Technologies) using the cycling parameters tabulated below: 

 

Table 2.1: cDNA synthesis cycling parameters 

 

Step 1 2 3 4 

Temperature (°C) 25 37 85 4 

Time (minutes) 10 120 5 Infinity 

 

The experimental cDNA samples were made by combining 10µl of each duplicate. 

Before expression analysis, each experimental cDNA sample was diluted 1:16 with 

nuclease-free water. However, samples that were going to be run with GAPDH 

primer set were diluted to 1:64. The original cDNA synthesis plate, which still had 

10µl of each sample in duplicate, was kept at -80 °C. 

 

2.5.10.4 qPCR analysis 

 

To test the efficiency of the primers, a serial dilution of a cDNA pool was used as 

template for standard curve analysis. To test for DNA contamination, an RNA 
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pool was made and diluted in accordance with the protocol for cDNA synthesis 

and the subsequent dilution. Water was included as a NTC to detect contamination. 

 

For gene expression analysis, each reaction (for standard curves and samples) 

consisted of 1µl cDNA template; 0.2µl of each of the primers (final concentration 

200nM); 5µl KAPA SYBR® FAST qPCR KIT MasterMix (2X) ABI Prism (Lasec, 

KK4604) and nuclease-free water up to 10µl. Expression analysis was performed on 

the ABI 7900HT Fast Real Time PCR system using the following cycling parameters 

and followed by a dissociation (melt) curve analysis: 

 

  Table 2.2: qPCR cycling parameters 

 

Stage 1  2  3  

Cycles 1  40  1  

Temperature (°C) 95 95 60 or 62* 95 60 95 

Time 3 mins 3 secs 1 min 15 sec 15 sec 15 sec 

 

Post cycling, the data was analysed using the SDS v2.4 software (Life 

Technologies) and relative expression analysis performed using qBase+ (BioGazelle). 

 

2.6 Statistical analysis  

 

Statistical analysis of the quantitative data was done by GraphPad Prism (GraphPad 

Prism version 6.04 for Windows, GraphPad Software, San Diego California USA, 

www.graphpad.com). Cell viability studies were repeated thrice, with sample size (n) 

— 12 in each experiment and analyzed by means of two-way ANOVA followed by 

Tukey's multiple comparisons test. Annexin V and mitotic index were repeated thrice 

each analyzed by means of two-way ANOVA followed by Tukey's multiple 

comparisons test. A P-value of less than 0.05 was accepted as significant. Means of 

quantitative experiments are presented in bar charts, with T-bars referring to the 

standard error of the mean (SEM). All experiments included a set of appropriate 

controls.  
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CHAPTER III 

 

3 Results 

 

3.1  Determining the influence of 17ß-Estradiol on cellular proliferation as a 

parameter of ERɑ antagonistic properties  

 

Estrogen related carcinogenesis with regard to breast cancer typically results from the 

activation of distinct signalling pathways (Iwasaki and Tsugane, 2011). These 

pathways are not mutually exclusive and are often constituted by receptor mediated 

stimulation of cell proliferation. Activation of these pathways is purportedly a 

consequence of prolonged exposure to high levels of estrogen, specifically in the form 

of 17β-estradiol.  In order to evaluate the behaviour of the cells that was imported from 

ATCC for this study, a time and dose study with 17ß-estradiol on both cell lines, was 

done. The results could then be related to other similar studies and could assist in 

clarification of the effects of OA and UA on cell signalling. Consistent with previous 

in vitro studies (Mohammed et al., 2015), 17ß-estradiol caused cellular proliferation 

in MCF-7 cells. On the other hand, except for 10pg/l for 72h, 17ß-estradiol failed to 

stimulate significant proliferation in MCF-10A cells. 

 

Table 3.1: The quantification of the effects of 17β-Estradiol on the proliferation of MCF-7 and MCF-

10A cells after 48- and 72 hours. Significant differences between treated and control samples are 

indicated by *P ≤ 0.05 compared to respective controls (Two-way ANOVA followed by Tukey's 

multiple comparisons test). 

 

Time 17β-Estradiol MCF-7: Proliferation % MCF-10A: Proliferation 

% 

4
8

 H
o

u
rs

 

Control 100 100 

10pg/L 109* 99.5 

20pg/L 105 91 

50pg/L 103 80* 

80pg/L 103 76* 

100pg/L 105 82* 

7
2

 H
o

u
rs

 

Control 100 100 

10pg/L 111 105 

20pg/L 116* 97 

50pg/L 115* 90* 

80pg/L 102 90* 

100pg/L 103 91* 
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3.1.1 ER status of MCF-10A cells  

 

 

 

Figure 3.1: SDS-PAGE gel of MCF-10A whole cell lysates after combination 

treatment.  

 

Lane 1, MCF-10A 48 hour control cell lysates; lanes 2, 3 and 4 denotes MCF-

10A cell lysates after 48 hour exposure to 10, 20 and 40 pg/l estriol-

progesterone combination treatments respectively; lane 5, MCF-10A 72 hour 

control cell lysates; lanes 6, 7 and 8 denotes MCF-10A cell lysates after 72 hour 

exposure to 10, 20 and 40pg/l estriol-progesterone combination treatments 

respectively; lane 9, MCF-7 cell lysates after culture in maintenance medium. 

 

 

3.2 Cell viability studies  

 

Gillies et al. (1986) used crystal violet to quantify cell numbers in monolayer cultures 

as a function of the absorbance of dye taken up by the cells. Cell numbers were 

expressed as a percentage of the cells propagated in growth medium in order to 

determine the anti-proliferation effects of OA and UA on tumorigenic MCF-7 and non-

tumorigenic MCF-10A cells. 

 

3.2.1  The effect of OA on the viability of MCF-7 and MCF-10A cells 

 

OA, at four different concentrations 10, 25, 50 and 100μg/ml on MCF-7 breast cancer 

cells and MCF-10A mammary epithelial cells and incubated for 6, 12, 24, 48 and 72 

hours were used. The dose-dependent responses for the MCF-7- and MCF-10A cells 

are shown in Figs 3.2-A and B respectively.  

 

Cell numbers were affected by OA and UA in both all cell lines in a time and  

dose – dependent manner. It has been found that 10μg/ml OA increased cell 

proliferation of MCF-7 (P ≤ 0.001) after 12h (116%). 20μg/ml had no effect on the 
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viability of MCF-7 cells when compared to the control. 50μg/ml significantly  

(P ≤ 0.001) decreased MCF-7 cell viability after 6h (45.06%), 12h (52.93%), 24h 

(61.37%), 48h (59.57%), and 72h (66.73%). The highest concentration 100μg/ml 

caused an outspoken decrease in cell viability of MCF-7 cells (P ≤ 0.001) after 6h 

(35.82%), 12h (41.82%), 24h ( 58.42%), 48h (47.66%), and 72h (50.05%) as shown 

in Fig. 3.2-A.  

 

Similar to the effect on MCF-7 cells, OA also affected the MCF-10A cells. At  a 

concentration of 10μg/ml OA increased cell viability of MCF-10A after 6h (110.75%) 

compared to control Fig. 3.2-B. Cell viability after 20μg/ml was also significantly (P 

≤ 0.05) increased after 72h (110.35%) but significantly (P ≤ 0.05) decreased after 24h 

(90.31%) and 48h (81.47%) compared to control as shown in Fig. 3.2-B. 

 

The results showed that 50μg/ml significantly (P ≤ 0.001) decreased cell viability after 

6h (54.07%), 12h (48.22%), 24h (60.02%), 48h (60.90%) and 72h (63.49%) Fig. 3.1-

B. 100μg/ml also decreased cell viability significantly (P ≤ 0.001) in MCF-10A cells 

after 6h (44.74%), 12h (40.56%), 24h (57.85%), 48h (39.66%) and 72h (48.90%) Fig. 

3.2-B.  

 

The results presented in (Fig. 3.2-A and B) show that the two higher concentrations of 

50μg/ml and 100μg/ml OA respectively decreased cell proliferation in both cell lines. 

20μg/ml decreased proliferation in both cell lines after 24h. However, 72h the cells 

seemed to recover with the MCF-10A cells showing a significant increase in 

proliferation (110.35%). 
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Figure 3.2: Cell viability percentage of A: MCF-7 and B: MCF-10A cells as determined by crystal 

violet assay in 96-well plates following 6, 12, 24, 48 and 72-hour exposure to OA. Data is shown as 

mean ± SEM of three separate experiments. Significant differences between treated and control samples 

are indicated by *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-way 

ANOVA followed by Tukey's multiple comparisons test) 
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3.2.2 The effect of UA on the viability of MCF-7 and MCF-10A cells 

 

UA was tested at four different concentrations 10, 25, 50 and 100μg/ml on  

MCF-7 and MCF-10A cells and incubated for 6, 12, 24, 48 and 72 hours. The time and 

dose-dependent responses for the MCF-7 cells are shown in Fig. 3.3-A and for the 

MCF-10A cells in Fig. 3.3-B. It is evident that 10μg/ml UA significantly (P≤ 0.001) 

increased the MCF-7 cell viability after 6h (121.96%), 24h (114.24%) and 72h 

(115.13%). 20μg/ml had a biphasic effect. It decreased the MCF-7 cell viability after 

12h (89.3%) but after 24h it significantly increased (111.56%) the MCF-7 cell 

viability. Fig. 3.3-A shows that 50 and 100μg/ml UA both significantly decreased cell 

viability in of the MCF-7 after 6h (46.35%; 42,66%), 12h (56.94%; 53,29%), 24h 

(53,84%; 49.61%), 48h (63.04%; 45.64%) and 72h (50.78%; 49.44%).  

 

In the MCF-10A cells (Fig. 3.3-B) 10μg/ml UA significantly increased cell numbers 

in all the time periods. After 6h the increase was (109.38%), after 12h (108.36%), 24h 

(120.75%), (118.66%), and 72h (113.21%). The MCF-10A cell viability was 

significantly (P ≤ 0.05) decreased by 20μg/ml UA after 12h (91.19%) and 48h 

(91.70%), and after 72h it was decreased to 87.84%  (P ≤ 0.001) (Fig. 3.2-B).   50μg/ml 

UA significantly (P ≤ 0.001) decreased the MCF-10A cell viability after 6h (57.45%), 

12h (51.21%), 24h (65.83%), 48h (43%), and 72h (53.61%) compared to the control.  

100μg/ml UA significantly (P ≤ 0.001) decreased the MCF-10A cell viability after 6h 

(29.77%), 12h (27.4%), 24h (45.99%), 48h (32.09%), and 72h (37.44%) compared to 

the control as shown in (Fig. 3.3-B). 

 

10μg/ml UA significantly increased the proliferation in both cell lines for all the time 

periods. 20μg/ml generally decreased cell proliferation both cell lines, but to a greater 

extent in MCF-10A cells. The two higher concentrations (50 and 100μg/ml) decreased 

cell proliferation throughout in both cell lines. However, 100µg/ml UA inhibited cell 

proliferation to a greater extent in the MCF-10A cells with the most outspoken effect 

after 6 and 12h periods. 
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Figure 3.3: Cell viability percentage of (A); MCF-7 and (B); MCF-10A cells as determined by crystal 

violet assay in 96-well plates following 6, 12, 24, 48 and 72-hour exposure to UA. Data is shown as 

mean ± SEM of three separate experiments. Significant differences between treated and control samples 

are indicated by p < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective 

controls (Two-way ANOVA followed by Tukey's multiple comparisons test) 
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3.3 Morphological studies: Haematoxylin and Eosin (H&E) staining 

 

3.3.1 The effect of OA on MCF-7 and MCF-10A cells after 6h.  

 

Morphological changes were investigated in H&E stained cells. Figure 3.4-A and F 

show control MCF-7 and MCF-10A cells respectively. Figs B and G, C and H and D 

and I show cells treated with 10, 20, and 50μg/ml OA.  No morphological changes can 

be observed with the 10, 20 and 50μg/ml exposure to OA in either of the cell lines. 

MCF-7 cells exposed to 100μg/ml OA (Fig. 3.4-E) display smaller cells with less 

cellular attachments. The effects on the MCF-10A cells were more outspoken. The 

cells were round with condensed chromatin indicative of pycnosis (Fig. 3.4-J). 

 

3.3.2 Mitotic index the effect of OA on MCF-7 and MCF-10A cells after 6h. 

 

Quantification of cell proliferation is indicated by the mitotic index obtained by  

counting 1000 cells on every coverslip of the H and E stained cells. The effect of the 

various concentrations of OA on the two cell lines is shown in Figures 3.5 and 3.6. 

Both cell lines showed reduced metaphases when compared to control. Total mitosis 

was significantly decreased in the MCF-7 cells exposed to OA for 6h. 2% of cells were 

mitotic in the 50μg/ml and 1.6% in the 100μg/ml treated cultures (Fig. 3.5) in 

comparison to MCF-10A cells which had a mitosis index of 0.7% at 50μg/ml and 0.9% 

at 100μg/m (Fig. 3.6). The study showed that OA inhibited the number of mitotic 

MCF-7 cells. Some apoptotic, but mostly pycnotic cells (20% and 35%) for 50 and 

100µg/ml OA respectively were observed in these cultures exposed for 6h (Fig. 3.5). 

Quantification of the effects of OA in MCF-10A cells are shown in (Fig 3.6). The 

decrease in normal dividing and the increase in dying cells (50µg/ml; 27%; 100µg/ml; 

48.2%) were dose dependent. 
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Figure 3.4: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D, E) and MCF-10A (F, G, H, I, 

J) cells were treated with OA for 6h and stained with haematoxylin-eosin. Control MCF-7 cells (A); 

10μg/ml (B); 20μg/ml (C); 50μg/ml (D); 100μg/ml (E); Control MCF-10A cells (F); 10μg/ml (G); 

20μg/ml (H); 50μg/ml (I) and 100μg/ml (J). Red arrows indicate normal cells dividing, and black arrows 

indicate complete apoptosis with cells presenting with condensed chromatin and cytoplasmic shrinkage. 

All pictures are typical of three independent experiments each performed under identical conditions 
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Figure 3.5: MCF-7: quantification of the effects of OA on dividing and pycnotic and apoptotic cells 

after 6h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis (TM) 

after 6h exposure to 10, 20, 50 and 100µg/ml OA are shown. TM was significantly decreased. An 

increase in pycnotic and apoptotic cells (DN) were in the cultures exposer to 50 and 100µg/ml OA. 

Significant differences between treated and control samples are indicated by p < 0.05 are presented as 

*P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-way ANOVA followed by 

Tukey's multiple comparisons test) 
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Figure 3.6: MCF-10A: quantification of the effects of OA on dividing pycnotic and apoptotic cells after 

6h exposure. Prophase (P), metaphases (M), anaphases (A), telophases (T), total mitosis (TM) and death 

necrosis (DN) after exposure to 10, 20, 50 and 100µg/ml OA are shown. TM was significantly 

decreased. An outspoken increase in pycnotic and apoptotic cells (DN) were seen in the cultures 

exposed to the high concentrations of OA. Significant differences between treated and control samples 

are indicated by p < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective 

controls (Two-way ANOVA followed by Tukey's multiple comparisons test) 
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3.3.3 The effect of OA on MCF-7 and MCF-10A cells after 12h. 

 

Morphological changes were investigated in H&E stained cells. Figure 3.7 A and F 

show control MCF-7 and MCF-10A cells, respectively. Figs 3.7 B and G and C and H 

show cells treated with 10 and 20μg/ml OA. No morphological changes can be 

observed with these OA concentrations. Figs 3.7 D and I show cells treated with 

50μg/ml OA. Changes in the cell shape and decreased cells numbers can be observed. 

The effects on the MCF-7 and MCF-10A cells were more outspoken after 100µg/ml 

OA (Figs. E and J). The cells were small, round, and detached with condensed 

chromatin indicative of either apoptosis or pycnosis (Fig. 3.7-J). 

 

3.3.4 Mitotic index: effect of OA on MCF-7 and MCF-10A cells after 12h 

 

Quantification of the effect of the various concentrations of OA on cell proliferation 

of the two cell lines is shown in Figs 3.8 and 3.9.  The study showed that OA inhibited 

the number of mitotic MCF-7 cells after 12h treatment. Cells undergoing apoptosis 

and pycnosis (14.76% and 19.86%) for 50 and 100µg/ml OA respectively were 

observed (P ≤ 0.001) in these cultures (Fig. 3.8). Quantification of the effects of OA 

in MCF-10A cells are shown in Fig. 3.9.  The decrease in normal dividing and the 

increase in dying cells (50µg/ml; 13.56%; 100µg/ml; 26.6%) were dose dependent. 

OA after 12h exposure, significantly decreased the TM in MCF-7 cells to 2.33% at 

50μg/ml and 1% at 100μg/ml compared to MCF-10A cells where the TM was 

decreased from 2.1% in the control cells to 0.83% % after 50µg/ml and 0.53% after 

100µg/ml.  

 

 

 

 



 

69 

 

 
 

Figure 3.7: Haematoxylin and eosin stained. MCF-7 (A, B, C, D, E) and MCF-10A (F, G, H, I, J) cells 

were treated with OA after 12h is shown. control MCF-7 cells (A); 10μg/ml (B); 20μg/ml (C); 50μg/ml 

(D); 100μg/ml (E); control MCF-10A cells (F); 10μg/ml (G); 20μg/ml (H); 50μg/ml (I) and 100μg/ml 

(J). Red arrows indicate normal cells, and black arrows indicate apoptosis with cells presenting with 

condensed chromatin and cytoplasmic shrinkage. All pictures are typical of three independent 

experiments each performed under identical conditions 
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Figure 3.8: MCF-7: quantification of the effects of OA on dividing pycnotic and apoptotic cells after 

12h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T), total mitosis (TM) and death 

necrosis (DN) after exposure to 10, 20, 50 and 100µg/ml OA are shown. TM was significantly 

decreased. An outspoken increase in pycnotic and apoptotic cells (DN) were seen in the cultures 

exposed to the high concentrations of OA. Significant differences between treated and control samples 

are indicated by p < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective 

controls (Two-way ANOVA followed by Tukey's multiple comparisons test) 
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Figure 3.9: MCF-10A quantification of the effects of OA on dividing pycnotic and apoptotic cells after 

12h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T), total mitosis (TM) and cell 

death (CD) after exposure to 10, 20, 50 and 100µg/ml OA are shown. TM was significantly decreased. 

An outspoken increase in pycnotic and apoptotic cells (CD) were seen in the cultures exposed to the 

high concentrations of OA. Significant differences between treated and control samples are indicated 

by p < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls 

(Two-way ANOVA followed by Tukey's multiple comparisons test) 
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3.3.5 The effect of OA on MCF-7 and MCF-10A cells after 24h 

 

Morphological changes were investigated in H&E stained cells. Figs 3.10-A and F 

show control MCF-7 and MCF-10A cells, respectively. Figs 3.10 B & G and C & H 

demonstrate cells treated with 10 and 20μg/ml OA. No morphological effects were 

observed with the low concentrations on MCF-7 and MCF-10A cells.  Figs D & J and 

I & E illustrate the effects of 50 and 100µg/ml OA after 24h in the MCF-7 and MCF-

10A cell line. A decrease in cell numbers with an increase in small, darkly stained cells 

shown condensed chromatin, density and some apoptotic bodies can be observed. The 

MCF-10A cells seem to be affected to a greater degree than the MCF-7 cells.  

 

3.3.6 Mitotic index: MCF-7 and MCF-10A cells after 24h OA exposure 

  

The mitotic effects induced on MCF-7 and MCF-10A cells following 24h exposure to 

various concentrations of OA is shown in Figs 3.11 and 3.12, respectively. A similar 

response as in the 6 and 12h treatment was observed at 24h. OA exposure inhibited 

the amount of TM in MCF-7 and MCF-10A cells. OA exposure (24h) significantly (P 

≤ 0.001) decreased dividing MCF-7 cells to 2.36% at 50μg/ml and 1.23% at 100μg/ml. 

MCF-7 cells showing features of apoptotic and pycnotic cells (36.5% and 46.46%) 

were observed in these cultures exposed to 50 and 100µg/ml OA for 24h (Fig. 3.11). 

Cell death caused by OA was significantly enhanced at only 50 and 100µg/ml, 

P≤0.001. Quantification of the effects of OA in MCF-10A cells are also shown in Fig 

3.12. The decrease in normal dividing and the increase in dying cells (50µg/ml: 

11.63%; 100µg/ml: 24.16%) was significant with (P ≤0.001). The cell’s response to 

OA was concentration dependent. 
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Figure 3.10: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D, E) and MC-F10A (F, G, H, 

I, J) cells were treated with OA after 24h and stained with haematoxylin and eosin. control MCF-7 cells 

(A); 10μg/ml (B); 20μg/ml (C); 50μg/ml (D); 100μg/ml (E); control MCF-10A cells (F); 10μg/ml (G); 

20μg/ml (H); 50μg/ml (I) and 100μg/ml (J). Red arrows indicate irregular-shaped dividing cells, and 

black arrows indicate complete apoptosis with cells shown condensed chromatin and cytoplasmic 

shrinkage. All pictures are typical of three independent experiments each performed under identical 

conditions 
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Figure 3.11: The quantification of the effects of OA on dividing pycnotic and apoptotic MCF-7 cells 

after 24h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis (TM) 

after 24h exposure to 10, 20, 50 and 100µg/ml OA are shown. TM was significantly decreased. An 

outspoken increase in pycnotic and apoptotic cells (DN) were observed in the cells exposed to 50 and 

100µg/ml. Significant differences between treated and control samples are indicated by p < 0.05 are 

presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-way ANOVA 

followed by Tukey's multiple comparisons test) 
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Figure 3.12: Quantification of the effects of OA on dividing pycnotic and apoptotic MCF-10A cells 

after 24h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis (TM) 

after 24h exposure to 10, 20, 50 and 100µg/ml OA are shown. TM was decreased while an outspoken 

increase in pycnotic and apoptotic cells (DN) were seen in the cells exposed to 50 and 100µg/ml. 

Significant differences between treated and control samples are indicated by p < 0.05 are presented as 

*P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-way ANOVA followed by 

Tukey's multiple comparisons test) 
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3.3.7 The effect of OA on MCF-7 and MCF-10A cells after 48h 

 

Figure 3.13-A and F show control MCF-7 and MCF-10A cells respectively. Figs B & 

G, C & H and D & I show cells treated with 10 and 20μg/ml OA. Morphological 

changes were not observed with the lower concentrations after 48h exposure on two 

cell lines. Figs D & J and I & E illustrate the effects of 50 and 100µg/ml OA after 48h 

in the MCF-7 and MCF-10A cell lines. Morphological changes can be seen associated 

with apoptosis such as apoptotic bodies, chromatin condensation and shrunken cells. 

Round, darkly stained pycnotic cells can also be seen in the MCF-10A cells (J). 

 

3.3.8 Mitotic index: MCF-7 and MCF-10A cells after 48h exposure to OA 

 

The influence of various concentrations OA on the mitosis of the two cell lines is 

shown in Figures 3.14 and 3.15. The study displayed that OA inhibited the percentage 

of mitotic MCF-7 cells. An increase apoptotic and pycnotic cells (12.46% and 19.5%) 

for 50 and 100µg/ml OA respectively were observed in these cultures exposed for 48h 

(Fig. 3.14). Quantification of the effects of OA in MCF-10A cells are shown in Fig 

3.14. The decrease in normal dividing and the increase in dying cells (20µg/ml: 0.7%; 

50µg/ml: 13.26%; 100µg/ml: 13.26%) were dose dependent. After 48h exposure to 50 

and 100μg/ml OA significantly decreased TM in MCF-7 cell (P≤0.001) to 3.3% and 

1.56% and in MCF-10A cells TM was also significantly decreased (P≤0.001) to 1.7% 

and 1.13% when compared to normal cells growth.  
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Figure 3.13: Shows H and E stained. MCF-7 (A, B, C, D, E) and MCF-10A (F, G, H, I, J) cells were 

treated with OA after 48h using haematoxylin-eosin staining. Control MCF-7cells (A); 10μg/ml (B); 

20μg/ml (C); 50μg/ml (D); 100μg/ml (E); control MCF-10A cells (F); 10μg/ml (G); 20μg/ml (H); 

50μg/ml (I) and 100μg/ml (J). Red arrows indicate normal dividing cells and black arrows indicate 

cytotoxic and possibly presenting with condensed chromatin and cytoplasmic shrinkage. All pictures 

are typical of three independent experiments each performed under identical conditions. 
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Figure 3.14: The quantification of the effects of OA on dividing pycnotic and apoptotic MCF-7 cells 

after 48h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis (TM) 

after exposure to 10, 20, 50 and 100µg/ml OA are shown. TM was significantly decreased. An increase 

in pycnotic and apoptotic cells (DN) after 50 and 100 was observed. Significant differences between 

treated and control samples are indicated by p < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 

0.001 compared to respective controls (Two-way ANOVA followed by Tukey's multiple comparisons 

test) 

 

C
e

ll
s

 %

P M A T T M D N

0

10

20

30

40

50

C o n tro l

1 0 µ g /m l

2 0 µ g /m l

5 0 µ g /m l

1 0 0 µ g /m l

***
***

***
***

***

***

*

 
 

Figure 3.15: The quantification of the effects of OA on dividing pycnotic and apoptotic MCF-10A cells 

after 48h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis (TM) 

after exposure to 10, 20, 50 and 100µg/ml OA are shown. TM was significantly decreased. 50 and 

100µg/ml caused an increased in dead cells. Significant differences between treated and control samples 

are indicated by p < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective 

controls (Two-way ANOVA followed by Tukey's multiple comparisons test) 
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3.3.9 The effect of OA on MCF-7 and MCF-10A cells after 72h 

 

Figure 3.16-A and F show H and E stained control MCF-7 and MCF-10A cells 

respectively. Figs B & G and C & H show cells treated with 10 and 20μg/ml OA. 

Morphological changes were not evident after exposure to these two concentrations in 

either of the cell lines.  Figs D & J and I & E show the effects of 50 and 100µg/ml OA 

after 72h in the MCF-7 and MCF-10A cell line. The cells appear to be smaller with a 

loss of the growth pattern observed in the control cultures. Decreases in the number of 

darkly stained pycnotic and apoptotic cells can be seen. The MCF-10A cells appeared 

rounded after 100µg/ml OA while the MCF-7 cells seem elongated (E and J). 

 

3.3.10 Mitotic index effect of OA on MCF-7 and MCF-10A cells after 72h 

 

The effect of the various concentrations of OA on the two cell lines is shown in Figures 

3.17 and 3.18. The study displayed that OA inhibited the percentage of mitotic  

MCF-7 cells. In both cell lines there was a significant decrease in mitosis after 72h. 

OA exposure significantly decreased TM in MCF-7 cells to 1.93% at 50μg/ml and 

1.4% at 100μg/ml as shown in Fig 3.17 when compared the reduction in MCF-10A 

cells as shown in Fig 3.18. The reduction in TM in both the MCF-7 cells and the  

MCF-10A cells can be ascribed to a decrease in the number metaphase. Some 

apoptotic, but mostly pycnotic cells (10.03% and 18.9%) for 50 and 100µg/ml OA 

respectively were observed in these cultures exposed for 72h (Fig. 3.17). OA exposure 

of MCF-10A cells are shown in Fig 3.18. Normal dividing cells decreased significantly 

and concentration was an increase in dying cells (50µg/ml: 11.93%; 100µg/ml: 

19.96%) were dose dependent (P< 0.001).  
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Figure 3.16: MCF-7 (A, B, C, D, E) and MCF-10A (F, G, H, I, J) cells were treated with OA after 72h 

and stained with haematoxylin eosin are shown. control cells (A); 10μg/ml (B); 20μg/ml (C); 50μg/ml 

(D); 100μg/ml (E); control cells (F); 10μg/ml (G); 20μg/ml (H); 50μg/ml (I) and 100μg/ml (J). Red 

arrows indicate normal cells dividing, and black arrows indicate complete apoptosis with all cells 

presenting with condensed chromatin and cytoplasmic shrinkage. All pictures are typical of three 

independent experiments each performed under identical conditions. 
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Figure 3.17: The quantification of the effects of OA on dividing, pycnotic and apoptotic MCF-7 cells 

after 72h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis (TM) 

after exposure to 10, 20, 50 and 100µg/ml OA are shown. TM was significantly decreased. An increase 

in pycnotic and apoptotic cells (CD) after 50 and 100 was observed. Significant differences between 

treated and control samples are indicated by p < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 

0.001 compared to respective controls (Two-way ANOVA followed by Tukey's multiple comparisons 

test) 
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Figure 3.18: The quantification of the effects of OA on dividing, pycnotic and apoptotic MCF-10A 

cells after 72h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis 

(TM) after exposure to 10, 20, 50 and 100µg/ml OA are shown. TM was decreased while an outspoken 

increase in pycnotic and apoptotic cells (CD) were seen in the cells exposed to 50 and 100µg/ml. 

Significant differences between treated and control samples are indicated by p < 0.05 are presented as 

*P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-way ANOVA followed by 

Tukey's multiple comparisons test) 
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3.3.11 Effect OA: Comparison between MCF-7 and MCF-10A cell lines  

 

The effect of various concentrations of OA on cancerous (MCF-7) and non-cancerous 

(MCF-10A) cell lines showed no visible morphological changes in the cells treated 

with 10 and 20μg/ml OA when compared to untreated (control) cells.  Pronounced 

effects were observed for the two cell lines treated with 50 and 100 µg/ml. Significant 

cell death was observed in cells treated with 50 and 100 µg/ml OA, starting from 6h 

and all the other time periods. The cellular response showed a similar trend in both 

MCF-7 and non-cancerous MCF-10A cell lines. 

 

The cellular proliferative response was quantified by means of the mitotic index. TM 

was reduced in both cell lines at all-time points. The results showed that OA inhibited 

MCF-7 cell proliferation to a greater extent indicating a dose-dependent decrease in 

cell proliferation with an outspoken increase in cell death. These results suggest that 

OA exhibits significant anti-tumour effects by suppressing cell proliferation, 

promoting apoptosis to a greater extent in the MCF-7 cells than the MCF-10A cells.  
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3.3.12 The effect of UA on MCF-7 and MCF-10A cells after 6h 

 

Morphological changes were studied in H&E stained cells. Figure 3.19-A and F 

illustrate control MCF-7 and MCF-10A cells respectively. Figs B & G and C & H 

appearance cells treated with 10 and 20μg/ml UA. No changes in either cell’s 

morphology were observed after treatment 10 and 20µg/ml. 50µg/ml UA in MCF-10A 

cells did not effect, any outspoken morphological changes. In contrast, outspoken 

changes can be observed in the MCF-7 cells exposed to 50µg/ml UA. The cells display 

cytotoxic effects including shrinkage and condensation of chromatin (Fig. D). After 

100µg/ml the MCF-10A cells appeared rounded and also display condensation 

chromatin while only a few dark, shrunken cells can be observed in the MCF-7 cells 

(Figs. J and E). 

  

3.3.13 Mitotic index: the effect of UA on MCF-7 and MCF-10A cells after 6h 

 

Quantification of UA treatment on cell proliferation is shown in Figures 3.20 and 3.21. 

The TM in MCF-7 cells was increased significantly (P ≤ 0.001) after treatment with 

10 and 20µg/ml UA to 5.3%. The cells exposed to 50 and 100µg/ml UA, however 

showed a decrease in TM (2.23% and 1.63%). Quantitative analyses revealed that 

MCF-7 cells exposed to UA showed an increase in the number of dead cells being 

either apoptotic or pycnotic (18.03% and 31.4%) for 50and 100µg/ml UA respectively 

after the 6h exposure (Fig. 3.20). In MCF-10A cells the decrease in normal dividing 

and the increase in dying cells (20µg/ml; 7.5%; 50µg/ml; 27.3%; 100µg/ml; 36.6%) 

were time-and-dose dependent. The TM was reduced by 50 and 100µg/ml UA to 1% 

and 0.53%.  
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Figure 3.19: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D, E) and MCF-10A (F, G, H, 

I, J) cells were treated with UA after 6h using haematoxylin-eosin staining. Control cells (A); 10μg/ml 

(B); 20μg/ml (C); 50μg/ml (D); 100μg/ml (E); Control cells (F); 10μg/ml (G); 20μg/ml (H); 50μg/ml 

(I) and 100μg/ml (J). Red arrows indicate normal cells dividing, and black arrows indicate complete 

apoptosis with all cells presenting with condensed chromatin and cytoplasmic shrinkage. All pictures 

are typical of three independent experiments each performed under identical conditions. 
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Figure 3.20: The quantification of the effects of UA on dividing pycnotic and apoptotic MCF-7 cells 

after 6h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis (TM) 

after exposure to 10, 20, 50 and 100µg/ml UA are shown. TM was significantly decreased while an 

increase in pycnotic and apoptotic cells (DN) were observed. Significant differences between treated 

and control samples are indicated by P < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 

compared to respective controls (Two-way ANOVA followed by Tukey's multiple comparisons test) 
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Figure 3.21: The quantification of the effects of UA on dividing pycnotic and apoptotic MCF-10A cells 

after 6h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis (TM) 

after exposure to 10, 20, 50 and 100µg/ml UA are shown. TM was decreased while an outspoken 

increase in pycnotic and apoptotic cells (DN) were seen in the cells exposed to 50 and 100µg/ml. 

Significant differences between treated and control samples are indicated by P < 0.05 are presented as 

*P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-way ANOVA followed by 

Tukey's multiple comparisons test) 
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3.3.14 The effect of UA on MCF-7 and MCF-10A cells after 12h  

 

Figure 3.22-A and F illustrates control MCF-7 and MCF-10A interphase cells 

respectively. Figs B & G and C & H display cells treated with 10 and 20μg/ml UA. 

No morphological changes were observed. Figs D & J and I & E showed effects after 

50 and 100µg/ml UA on the MCF-7 and MCF-10A cell lines after 12h. Morphological 

changes indicative of apoptosis, such as overall cell shrinkage, blebbing of the plasma 

membrane, changes in nuclear morphology including chromatin condensation, were 

observed. The number of cells was also reduced in theses cultures.  

 

3.3.15 Mitotic index: effect of UA on MCF-7 and MCF-10A cells after 12h 

 

The mitotic indices in MCF-7 and MCF-10A cells incubated with UA after 12h is 

shown in Figs 3.23 and 3.24.The study displayed that UA inhibited the percentage of 

mitotic MCF-7 cells. Exposure to UA for 12h caused the total mitosis to be reduced in 

the MCF-7 cells after 50 and 100µg/ml to 2.06% and 0.8% and in MCF-10A cells after 

50 and 100 µg/ml to 0.86% and 0.23% when compared to control. Some apoptotic, but 

mostly pycnotic cells (13.8% and 28.16%) for 50 and 100µg/ml UA treated cells 

respectively were observed (Fig. 3.23). A decrease in normal MCF-10A dividing cells 

compared to an increase in dying cells (50µg/ml; 12.8%; 100µg/ml; 29.8%) were seen.  
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Figure 3.22: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D, E) and MCF-10A (F, G, H, 

I, J) cells were treated with UA after 12h using haematoxylin-eosin staining. Control cells (A); 10μg/ml 

(B); 20μg/ml (C); 50μg/ml (D); 100μg/ml (E); Control cells (F); 10μg/ml (G); 20μg/ml (H); 50μg/ml 

(I) and 100μg/ml (J). Red arrows indicate normal cells dividing, and black arrows indicate complete 

apoptosis with all cells presenting with condensed chromatin and cytoplasmic shrinkage. All pictures 

are typical of three independent experiments each performed under identical conditions. 
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Figure 3.23: The MCF-7 quantification of the effects of UA on dividing and pycnotic and apoptotic 

cells after 12h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis 

(TM) after 12h exposure to 10, 20, 50 and 100µg/ml UA are shown. TM was significantly decreased 

while an increase in pycnotic and apoptotic cells (DN) were present. Significant differences between 

treated and control samples are indicated by p < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 

0.001 compared to respective controls (Two-way ANOVA followed by Tukey's multiple comparisons 

test) 
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Figure 3.24: The MCF-10A quantification of the effects of UA on dividing and pycnotic and apoptotic 

cells after 12h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis 

(TM) after exposure to 10, 20, 50 and 100µg/ml UA are shown. TM was decreased while an outspoken 

increase in pycnotic and apoptotic cells (DN) were seen in the cells exposed to 50 and 100µg/ml. 

Significant differences between treated and control samples are indicated by P < 0.05 are presented as 

*P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-way ANOVA followed by 

Tukey's multiple comparisons test) 
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3.3.16 The effect of UA on MCF-7 and MCF-10A cells after 24h 

 

Figure 3.25-A and F shows control MCF-7 and MCF-10A cells respectively. Figs B 

& G and C & H display cells exposed to 10 and 20μg/ml UA. Morphological changes 

were not observed with the low concentrations on the two cell lines. Figs D & I showed 

changes after 50µg/ml UA on the MCF-7 and MCF-10A cells. The cells appeared 

rounded with condensed chromatin and cell shrinkage that can be either pycnotic or 

apoptotic. Figs E & J showed MCF-7 and MCF-10A cells exposed to100µg/ml UA. 

Morphological changes, including apoptotic cells revealing characteristic changes in 

nuclear morphology, including chromatin condensation and fragmentation can be 

observed. 

  

3.3.17 Mitotic index: effect of UA on MCF-7 and MCF-10A cells after 24h 

 

Quantification of the effects of UA treatment on MCF-7 and MCF-10A cells after 24h 

is shown in Figures 3.26 and 3.27. The study revealed that UA inhibited the number 

of mitotic MCF-7 cells. An increase in the number of apoptotic cells (13.46% and 

18.86%) for 50 and 100µg/ml UA respectively in the cultures exposed for 24h, was 

observed (Fig. 3.26). In MCF-10A cells, the percentage of cells affected by UA is 

shown in Fig 3.27. A decrease in normal MCF-10A dividing cells compared to an 

increase in dying cells (50µg/ml; 12.53%; 100µg/ml; 27.66%) was discerned. Total 

mitosis in MCF-7 was significantly increased by 50 and 100µg/ml UA to 3.06% and 

1.63%, while in the MCF-10A cells TM was decreased by 50 and 100 µg/ml UA to 

1.26% and 0.66% (P ≤ 0.001). 
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Figure 3.25: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D, E) and MCF-10A (F, G, H, 

I, J) cells were treated with UA after 24h using haematoxylin-eosin staining. Control cells (A); 10μg/ml 

(B); 20μg/ml (C); 50μg/ml (D); 100μg/ml (E); Control cells (F); 10μg/ml (G); 20μg/ml (H); 50μg/ml 

(I) and 100μg/ml (J). Red arrows indicate normal cells dividing, and black arrows indicate complete 

apoptosis with all cells presenting with condensed chromatin and cytoplasmic shrinkage. All pictures 

are typical of three independent experiments each performed under identical conditions. 
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Figure 3.26: The quantification of the effects of UA on dividing pycnotic and apoptotic MCF-7 cells 

after 24h exposure. Prophases (P), metaphase (M), anaphase (A), telophase (T) and total mitosis (TM) 

after exposure to 10, 20, 50 and 100µg/ml UA are shown. TM was significantly decreased while an 

increase in pycnotic and apoptotic cells (DN) were present. Significant differences between treated and 

control samples are indicated by P < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 

compared to respective controls (Two-way ANOVA followed by Tukey's multiple comparisons test) 
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Figure 3.27: The quantification of the effects of UA on dividing pycnotic and apoptotic MCF-7 cells 

after 24h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis (TM) 

after exposure to 10, 20, 50 and 100µg/ml UA are shown. TM was decreased while an outspoken 

increase in pycnotic and apoptotic cells (DN) were seen in the cells exposed to 50 and 100µg/ml. 

Significant differences between treated and control samples are indicated by P < 0.05 are presented as 

*P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-way ANOVA followed by 

Tukey's multiple comparisons test) 
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3.3.18 The effect of UA on MCF-7 and MCF-10A cells after 48h 

  

Morphological changes were studied in H&E stained cells. Figure 3.28-A and F 

display control MCF-7 and MCF-10A cells respectively. Figs B & G, C & H and D & 

I show cells after treatment with 10 and 20μg/ml UA. No outspoken morphological 

changes were observed in either of the two cell lines.  

 

Figs I and E showed cells exposed to 50µg/ml UA for 48h. UA affected many of the 

MCF-10A dividing cells. Morphological changes include decreased cell size and 

darkly stained rounded cells. The MCF-7 cells showed only a few cells affected by 

50µg/ml UA.100µg/ml UA (Figs. I and E) showed enlarged ghost-like MCF-7 cells 

and small darkly stained rounded MCF-10A cells. 

 

3.3.19 Mitotic index: effect of UA on MCF-7 and MCF-10A cells after 48h 

 

The effect of the various concentrations of UA on dividing cells in the two cell lines 

is shown in Figures 3.29 and 3.30.  Quantitative analyses by means of mitotic indices 

showed a distinct increase in the number of apoptotic and abnormal cells in MCF-7 

(9.13% and 17.16%) for samples exposed to 50 and 100µg/ml UA respectively (Fig. 

3.29). In MCF-10A cells, the percentage of cells affected by UA is shown in Fig 3.30. 

A decrease in normal dividing MCF-10A cells is observed parallel to an increase in 

dying cells (50µg/ml; 8.96%; 100µg/ml; 14.5%). After 72h cells exposure with UA, 

total mitosis decreased MCF-7 cell proliferation to 1.56% at 50μg/ml and 0.7% at 

100μg/ml. Similarity, total mitosis was reduced in MCF-10A cells to 1.33% at 

20μg/ml, 1.06% at 50μg/ml and 0.76% at 100μg/ml when compared to control.  
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Figure 3.28: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D, E) and MCF-10A (F, G, H, 

I, J) cells were treated with UA after 48h using haematoxylin-eosin staining. Control cells (A); 10μg/ml 

(B); 20μg/ml (C); 50μg/ml (D); 100μg/ml (E); Control cells (F); 10μg/ml (G); 20μg/ml (H); 50μg/ml 

(I) and 100μg/ml (J). Red arrows indicate normal cells dividing, and black arrows indicate complete 

apoptosis with all cells presenting with condensed chromatin and cytoplasmic shrinkage. All pictures 

are typical of three independent experiments each performed under identical conditions. 
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Figure 3.29: The MCF-7 quantification of the effects of UA on dividing and pycnotic and apoptotic 

cells after 48h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis 

(TM) after 48h exposure to 10, 20, 50 and 100µg/ml UA are shown. TM was significantly decreased 

while an increase in pycnotic and apoptotic cells (DN) were present. Significant differences between 

treated and control samples are indicated by P< 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 

0.001 compared to respective controls (Two-way ANOVA followed by Tukey's multiple comparisons 

test) 
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Figure 3.30: The MCF-10A quantification of the effects of UA on dividing and pycnotic and apoptotic 

cells after 48h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis 

(TM) after 48h exposure to 10, 20, 50 and 100µg/ml UA are shown. TM was significantly decreased 

while an increase in pycnotic and apoptotic cells (DN) were present. Significant differences between 

treated and control samples are indicated by P< 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 

0.001 compared to respective controls (Two-way ANOVA followed by Tukey's multiple comparisons 

test) 
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3.3.20  The effect of UA on MCF-7 and MCF-10A cells after 72h 

 

Morphological changes were studied in H&E stained cells. Figure 3.31-A and F 

displayed control MCF-7 and MCF-10A cells respectively. As observed for all the 

other time periods, 10 and 20µg/ml had no effect on the morphology of either of the 

cell lines. 50µg/ml UA had an outspoken effect on the MCF-10A cell line causing a 

decrease in cells and smaller fragmented cells. The MCF-7 cells were not affected by 

50µg/ml UA. 100µg/ml UA observed the MCF-7 cells can be observed  

(Figs. E and J). 

 

3.3.21 Mitotic index: effect of UA on MCF-7 and MCF-10A cells after 72h 

 

Quantification of cell proliferation is indicated by mitotic indices obtained by counting 

1000 cells on every coverslip. Total mitosis (expressed as a percentage) included all 

the normal phases of dividing cells as well as pycnotic and apoptotic cells. The effect 

of the various concentrations of UA on the two cell lines is shown in Figures 3.32 and 

3.33. UA inhibited the percentage of mitotic MCF-7 cells. Mitotic indices revealed an 

increase in the number of apoptotic cells (7.73% and 16.1%) for 50 and 100µg/ml UA 

respectively (Fig. 3.32). In MCF-10A cells UA decreased normal dividing MCF-10A 

cells while inducing an outspoken increase in dying cells (50µg/ml; 6.3 %; 100µg/ml; 

15.9%). TM significantly decreased by 20, 50 and 100μg/ml UA to 3.7, 2.46% and 

0.9% in the MCF-7, (P≤0.001) and by 50 and 100μg/ml UA to 1.36% and 0.66% in 

MCF-10A cells (P≤0.001) can be observed. 
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Figure 3.31: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D, and E) and MCF-10A (F, G, 

H, P, and Q) cells were treated with UA after 72 h stained with haematoxylin-eosin. Control cells (A); 

10µg/ml (B); 20µg/ml (C) 50µg/ml and (D) 100µg/ml (E); Control cells (F); 10µg/ml (G); 20µg/ml (H) 

50µg/ml and (I) 100µg/ml (J). Red arrows indicate irregular-shaped dividing cells, and black arrows 

indicate complete apoptosis with all cells presenting with condensed chromatin and cytoplasmic 

shrinkage. All pictures are typical of three independent experiments each performed under identical 

conditions. 
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Figure 3.32: The MCF-7 quantification of the effects of UA on dividing and pycnotic and apoptotic 

cells after 72h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis 

(TM) after 48h exposure to 10, 20, 50 and 100µg/ml UA are shown. TM was significantly decreased 

while an increase in pycnotic and apoptotic cells (DN) were present. Significant differences between 

treated and control samples are indicated by P< 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 

0.001 compared to respective controls (Two-way ANOVA followed by Tukey's multiple comparisons 

test) 
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Figure 3.33: The MCF-10A quantification of the effects of UA on dividing and pycnotic and apoptotic 

cells after 72h exposure. Prophase (P), metaphase (M), anaphase (A), telophase (T) and total mitosis 

(TM) after 72h exposure to 10, 20, 50 and 100µg/ml UA are shown. DN was significantly decreased 

while an increase in pycnotic and apoptotic cells (DN) were present. Significant differences between 

treated and control samples are indicated by P< 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 

0.001 compared to respective controls (Two-way ANOVA followed by Tukey's multiple comparisons 

test) 
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3.3.22 Mitotic index: effect of UA on MCF-7 and MCF-10A cells  

 

As was the case with OA, UA caused no outspoken morphological changes in either 

of the cell types treated with 10 and 20μg/ml OA. TM was reduced in both cell lines 

at all-time points. Pronounced effects were observed for the two cell lines treated with 

50 and 100 µg/ml UA. Significant cell death was observed in cells treated with 50 and 

100 µg/ml UA. The cellular response showed a similar trend in both MCF-7 and non-

cancerous MCF-10A cell lines but more outspoken cytotoxic morphological changes 

were observed in MCF-10A cells. A dose response effect was also observed for UA 

exposute in MCF-7 and MCF-10A cells However, UA had a greater effect on MCF-

10A cells, seemingly being more cytotoxic to the non-transformed breast cells.  

 

According Nikoletopoulou et al., (2013), apoptotic cell death shows a distinct and 

characteristic morphology that includes the rounding up of the cell so that it appears 

pyknotic, the condensation of chromatin, the fragmentation of the nucleus and the 

shedding of apoptotic bodies, vacuoles containing cytoplasm and intact organelles. It 

is because of this observation that no distinction is made morphologically between 

apoptosis and pycnosis observed in both cell lines after exposure to either triterpene. 

 

3.3.23 Contrasting proliferative effects between MCF-7 and MCF-10A 

 

Comparison of dissimilarity between the two cell lines following treatment with a 

specific concentration of OA and UA is shown in Figs.3.34 – 3.37. It is clear from the 

comparative histograms that although the same amount of cells were seeded at the start 

of the experiment, after 24h attachment and the various treatment times, the mitotic 

index in MCF-10A cells is lower. This is due to the fact that the two cell lines have 

different doubling times with MCF-10A having a longer cell cycle than MCF-7 cells.  
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Figure 3.34: The percentage mitotic – and dead cells in MCF-7 and MCF-10A cells exposed to 10µg/ml 

for the different time periods. The first two bars in each time slot show OA and the last two show the 

effect of UA. No outspoken differences between the different cell lines before and after treatment were 

observed. MCF-7 cells exposed to OA for 6h had the highest percentage dead cells. (Excel 2013) 

 

 

 

Figure 3.35: The percentage mitotic – and dead cells in MCF-7 and MCF-10A cells exposed to 20µg/ml 

for the different time periods. MCF-7 cells exposed for 24h had the highest percentage dead cells. (Excel 

2013) 
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Figure 3.36: The percentage mitotic – and dead cells in MCF-7 and MCF-10A cells exposed to 50µg/ml 

for the different time periods. The highest percentage dead cells were seen in MCF-7 cells after 6- and 

24h exposure to 50µg/ml OA. (Excel 2013) 

 

 

 

 

 

Figure 3.37: The percentage mitotic – and dead cells in MCF-7 and MCF-10A cells exposed to 

100µg/ml for the different time periods. MCF-7 cells showed the greatest amount of dead cells after 

treatment with UA after 6h and OA after 24h. (Excel 2013) 
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3.4 Hoechst 33342 staining (HOC) 

 

3.4.1 Effect of OA and UA on MCF-7 and MCF-10A cells after 6h 

 

Hoechst 33342 staining was carried out to establish the possible induction of apoptosis 

after the treatment of OA (Fig. 3.38 A-J) and UA (Fig. 3.38 K-T) on the MCF-7 and 

MCF-10A cell lines after 6h.  

 

As shown in Fig. 3.38-A, MCF-7 control cells display normal nuclei. Fig. 3.38-B 

(10μg/ml) and Fig. 3.38-C (20μg/ml) show cells with smaller nuclei and a few cells 

undergoing apoptosis. No outspoken induction of apoptosis can be observed after 

50μg/ml (Fig. 3.38-D) and 100μg/ml (Fig. 3.38-E).  

 

Fig. 3.38 F and J show MCF-10A cells stained with Hoechst. No difference is seen 

between the control and cells treated with 10 and 20µg/ml OA for 6h (Figs. 3.38 G 

and H). 50 and100μg/ml OA (Figs. 3.38 I and J) treatments had an outspoken effect 

on the cells and only a few shrunken nuclei are evident.  Figs. 3.38 K-O and P-T show 

MCF-7 cells and MCF-10A cells exposed to UA respectively. No change between the 

control and cells treated with 10 and 20µg/ml is seen in the MCF-7 cells. The  

MCF-10A cells after 10 and 20µg/ml UA show thin elongated nuclei (Q and R). In 

both cells lines 50µg/ml UA Figs. 3.38 N (MCF-7 cells) and Figs. 3.38 S (MCF-10A) 

cells show shrunken nuclei indicative of apoptosis however, only a few cells can be 

observed as most of the cells lost cellular attachments and was lost in the staining 

process.   
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Figure 3.38: MCF-7 (A, B, C, D, and E) and MCF-10A (F, G, H, I, and J) cells treated with OA and MCF-7 (K, L, M, N, and O) and MCF-10A (P, Q, R, S, and T) cells treated with 

UA for 6h and stained with Hoechst. Control cells (A); 10μg/ml (B); 20μg/ml (C) 50μg/ml and (D) 100μg/ml (E). Control cells (F); 10μg/ml (G); 20μg/ml (H) 50μg/ml and (I) 100μg/ml 

(J). Control cells (F); 10μg/ml (L); 20μg/ml (M) 50μg/ml and (N) 100μg/ml (O). Control cells (P); 10μg/ml (Q); 20μg/ml (R) 50μg/ml and (S) 100μg/ml (T). All pictures are typical 

of three independent experiments each performed under identical conditions 
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3.4.2 Effect of OA and UA on MCF-7 and MCF-10A cells after 12h   

 

Hoechst 33342 staining was used to investigate the possible induction of apoptosis 

by OA and UA treatment of MCF-7 and MCF-10A cells after 12h.   

 

Fig. 3.39 A-E shows MCF-7 cells. No outspoken differences can be observed 

between the control (A) and treated cell nuclei (B-D). The nuclei of the cells 

exposed to 100µg/ml OA look deformed and a few apoptotic cells can be observed.  

Figs. 3.39 K-O and P-T show MCF-7 cells and MCF-10A cells exposed to UA. As 

for the OA treated cells, 10 and 20µg/ml UA had no observable effect on the nuclei 

of both cell lines.  

 

For both MCF-7 and MCF-10A the 50 and 100μg/ml treated cells possibly washed 

off the coverslips and therefore if not possible to ascertain if any apoptosis was 

induced in these treated cultures. 
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Figure 3.39: MCF-7 (A, B, C, D, and E) and MCF-10A (F, G, H, I, and J) cells treated with OA and MCF-7 (K, L, M, N, and O) and MCF-10A (P, Q, R, S, and T) cells 

treated with UA for 12h and stained with Hoechst. Control cells (A); 10μg/ml (B); 20μg/ml (C) 50μg/ml and (D) 100μg/ml (E). Control cells (F); 10μg/ml (G); 20μg/ml 

(H) 50μg/ml and (I) 100μg/ml (J). Control cells (F); 10μg/ml (L); 20μg/ml (M) 50μg/ml and (N) 100μg/ml (O). Control cells (P); 10μg/ml (Q); 20μg/ml (R) 50μg/ml 

and (S) 100μg/ml (T). All pictures are typical of three independent experiments each performed under identical cond
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3.4.3 Effect of OA and UA on MCF-7 and MCF-10A cells after 24h  

  

Hoechst 33342 staining of control MCF-7 cells (A) show normal nuclei. Fig. 3.40-

B the (10μg/ml) and Fig. 3.40-C (20μg/ml) treated samples show cells with smaller 

nuclei and a few cells undergoing apoptosis. No outspoken induction of apoptosis 

can be observed after 50µg/ml (3.40-D) and unfortunately too few cells are left after 

100µg/ml OA to ascertain if apoptosis was induced. Fig. 3.40 F to J shows  

MCF-10A cells. No difference can be observed between the control and the cells 

expose to 10 and 20µg/ml OA.   

 

Not enough cells were left on the coverslip after 50μg/ml and 100μg/ml of OA 

(Figs. 3.40 I and J) to establish the effect or apoptosis induction of OA. Figs. 3. 40 

K-O and P-T show MCF-7 cell and MCF-10A cells exposed to UA respectively. 

As with OA treatment 10 and 20μg/ml Hoechst stained cells show no noticeable 

induction of apoptosis while 50 and 100μg/ml UA treated cultures do not have 

enough cells left after the staining procedure to establish the effect of the treatments 

or the presence of apoptosis. 

 

 

 

 



 

104 

 

 

Figure 3.40: MCF-7 (A, B, C, D, and E) and MCF-10A (F, G, H, I, and P) cells treated with OA and MCF-7 (K, L, M, N, and O) and MCF-10A (P, Q, R, S, and T) cells 

treated with UA for 12h and stained with Hoechst. Control cells (A); 10μg/ml (B); 20μg/ml (C) 50μg/ml and (D) 100μg/ml (E). Control cells (F); 10μg/ml (G); 20μg/ml 

(H) 50μg/ml and (I) 100μg/ml (J). Control cells (F); 10μg/ml (L); 20μg/ml (M) 50μg/ml and (N) 100μg/ml (O). Control cells (P); 10μg/ml (Q); 20μg/ml (R) 50μg/ml 

and (S) 100μg/ml (T). All pictures are typical of three independent experiments each performed under identical conditions. 
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3.4.4 Effect of OA and UA on MCF-7 and MCF-10A cells after 48h  

  

Hoechst 33342 staining was carried out to establish the possible induction of 

apoptosis after the treatment of OA and UA on the MCF-7 and MCF-10A cells after 

48h.  

 

Fig. 3.41-A MCF-7 show control cells displaying normal nuclei. Fig. 3.41-B 

(10μg/ml) and Fig. 3.41-C (20μg/ml) show cells with smaller nuclei and a few cells 

undergoing apoptosis. No outspoken induction apoptosis of apoptosis can be 

observed after 50μg/ml (Fig.3.41-D) and 100μg/ml (Fig. 3.41-E). A similar effect 

is seen in the MCF-10A cells (F-J) again the 50 and 100μg/ml OA (Figs. 3.41 I and 

J) treated cultures show only a few cells. 

 

Figs. 3.41 K-O and P-T show MCF-7 cells and MCF-10A cells exposed to UA 

respectively. In both cells lines 50 and 100µg/ml UA Figs 3.41 N and O (MCF-7 

cells) and Figs. 3.41 S and T (MCF-10A) caused loss of cellular attachments and 

thus to few cells are left to observed any changes. 
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Figure 3.41: MCF-7 (A, B, C, D, and E) and MCF-10A (F, G, H, I, and J) cells treated with OA and MCF-7 (K, L, M, N, and O) and MCF-10A (P, Q, R, S, and T) cells 

treated with UA for 48h and stained with Hoechst. Control cells (A); 10μg/ml (B); 20μg/ml (C) 50μg/ml and (D) 100μg/ml (E). Control cells (F); 10μg/ml (G); 20μg/ml 

(H) 50μg/ml and (I) 100μg/ml (J). Control cells (F); 10μg/ml (L); 20μg/ml (M) 50μg/ml and (N) 100μg/ml (O). Control cells (P); 10μg/ml (Q); 20μg/ml (R) 50μg/ml 

and (S) 100μg/ml (T). All pictures are typical of three independent experiments each performed under identical conditions.
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3.4.5 Effect of OA and UA on MCF-7 and MCF-10A cells after 72h 

   

Hoechst 33342 staining was carried out to investigate the possible induction of 

apoptosis after the treatment of OA and UA in the MCF-7 and MCF-10A cell lines 

after 72h. 

 

As shown in Fig. 3.42-A MCF-7 control cells display normal nuclei. Fig. 3.42-B 

(10μg/ml) and Fig. 3.42-C (20μg/ml) show cells with smaller nuclei and a few cells 

undergoing apoptosis. No outspoken induction apoptosis of apoptosis can be 

observed after 50μg/ml (Fig. 3.42-D) and after 100μg/ml (Fig. 3.42-E), no cells 

could be observed. Fig 3.42 F-J shows MCF-10A cells stained with Hoechst. No 

difference can be observed between the control and the cells expose to 10 and 

20µg/ml OA for 72h (Figs. 3.42 G and H).  

 

Figs. 3.42 K-O and P-T show MCF-7 cells and MCF-10A cells exposed to UA 

respectively.  In both cells lines 50-100µg/ml UA Figs. 3.42 N and O (MCF-7 cells) 

and Figs. 3.42 S and T (MCF-10A cells) display only a few cells as most of the 

cells lost cellular attachments and was lost in the staining process.   
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Figure 3.42:  MCF-7 (A, B, C, D, and E) and MCF-10A (F, G, H, I, and J) cells treated with OA and MCF-7 (K, L, M, N, and O) and MCF-10A (P, Q, R, S, and T) 

cells treated with UA for 72h and stained with Hoechst. Control cells (A); 10μg/ml (B); 20μg/ml (C) 50μg/ml and (D) 100μg/ml (E). Control cells (F); 10μg/ml (G); 

20μg/ml (H) 50μg/ml and (I) 100μg/ml (J). Control cells (F); 10μg/ml (L); 20μg/ml (M) 50μg/ml and (N) 100μg/ml (O). Control cells (P); 10μg/ml (Q); 20μg/ml (R) 

50μg/ml and (S) 100μg/ml (T). All pictures are typical of three independent experiments each performed under identical conditions
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3.5 Apoptosis, autophagy and necrosis detection using triple staining: 

Hoechst (HOC), acridine orange (AO) and propidium iodide (PI) 

staining 

 

Since so few apoptotic cells were observed after the Hoechst staining method, it 

was decided to see if a different type of cell death was induced by OA and UA. 

Therefore, a triple staining fluorescent microscopy method was employed to 

visualize autophagy and the influence of OA and UA on morphology and cell 

viability. A triple fluorescent dye staining method was developed utilizing acridine 

orange (green), Hoechst 33342 (blue) and propidium iodide (red) fluorescent dyes. 

Acridine orange is a lysosomotropic fluorescent compound that serves as a tracer 

for acidic vesicular organelles including autophagic vacuoles and lysosomes 

(Kusuzaki et al., 2000). Cells undergoing autophagy has an increased tendency for 

acridine orange staining when compared to viable cells, however acridine orange is 

not a specific marker for autophagy and therefore other techniques are needed to 

verify the appearance of increased autophagic activity. Hoechst 33342 is capable of 

penetrate intact cell membranes of viable cells and cells undergoing apoptosis and 

stains the DNA. Propidium iodide is a fluorescent dye and unable to penetrate an 

intact membrane and therefore stains the nucleus of cells where the membrane is 

compromised due to oncotic or necrotic processes. 

 

3.5.1 The effect of OA and UA on apoptosis, autophagy and necrosis 

induction in MCF-7 and MCF-10A cells after 6h. 

 

Figs. 3.43-A show control MCF-7 cells with normal nuclei and cytoplasm. Fig. 

3.43-C (20μg/ml) show cells with increased green acridine orange fluorescence. 

Necrotic cells can be observed in MCF-7 cells (50μg/ml) while virtually no cells 

were left on coverslips after (100μg/ml) as shown in Figs. 3.43-E. 

 

Figs. 3.43-F show control MCF-10A cells displaying normal nuclei and cytoplasm 

morphology. No change in morphology is observed in the low concentration OA 

treated cells Fig. 3.43-G (10μg/ml) and Fig. 3.43-H (20μg/ml). Fewer cells are 
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observed following exposure of the MCF-10A cells to 50μg/ml and after100μg/ml 

possibly autophagic cells are observed Figs. 3.43 I and J. 

 

Figs. 3.43 K-O and P-T respectively show micrographs of MCF-7 and MCF-10A 

cells exposed to UA. No indication of dead cells can be seeing after 10 and 20μg/ml 

and not enough cells are left after treatment with the two high concentrations in 

MCF-7 cells and only a few necrotic cells are observed in the MCF-10A treated 

cultures Figs. 3.43 S and T.
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Figure 3.43:  MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D and E) and MCF-10A (F, G, H, I and J) cells were treated with OA and MCF-7 (K, L, M, N 

and O) and MCF-10A (P, Q, R, S and T), cells treated with UA for 6h. The cells were stained with a triple stain made up of Hoechst, acridine orange and propidium 

iodide.  Control cells (A); 10μg/ml (B); 20μg/ml (C) 50μg/ml and (D) 100μg/ml (E). Control cells (F); 10μg/ml (G); 20μg/ml (H) 50μg/ml and (I) 100μg/ml (J).  Control 

cells (F); 10μg/ml (L); 20μg/ml (M) 50μg/ml and (N) 100μg/ml (O). Control cells (P); 10μg/ml (Q); 20μg/ml (R) 50μg/ml and (S) 100μg/ml (T). All pictures are typical 

of three independent experiments each performed under identical conditions
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3.5.2 The effect of OA and UA on apoptosis, autophagy and induction in 

MCF-7 and MCF-10A cells after 12h.  

 

HOC, AO and PI staining was applied to study possible induction of apoptosis and 

autophagy after the treatment of OA and UA in the MCF-7 and MCF-10A for 12h.  

No change can be observed in the cultures exposed to 10 and 20μg/ml OA Figs. 

3.44 B-C and G-H. After 50μg/ml OA, MCF-10A cells show rounded green nuclei 

possibly indicative of autophagy. Only a few dead (red fluorescence) cells were 

observed in the cultures exposed to 100μg/ml OA 3.44 -J.  

 

No difference can be observed in MCF-7 cells treated with 10µg/ml UA (Fig. 3.44 

-L) when compared to control (Fig. 3.44 -K). 20 and 50μg/ml show a decrease in 

the number of cells (Fig. 3.44 M and N).  

 

No outspoken changes could be observed in the MCF-10A cells after exposure to 

10 and 20μg/ml UA for 12h. Previously mentioned the 50 and 100μg/ml samples 

did not have enough cells to evaluate changes. 
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Figure 3.44: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D and E) and MCF-10A (F, G, H, I, J) cells were treated with OA and MCF-7 (K, L, M, N and 

O) and MCF-10A (P, Q, R, S and T), cells treated with UA for 12h. The cells were stained with a triple stain made up of Hoechst, acridine orange and propidium iodide. 

Control cells (A); 10μg/ml (B); 20μg/ml (C) 50μg/ml and (D) 100μg/ml (E). Control cells (F); 10μg/ml (G); 20μg/ml (H) 50μg/ml and (I) 100μg/ml (J).  Control cells 

(F); 10μg/ml (L); 20μg/ml (M) 50μg/ml and (N) 100μg/ml (O). Control cells (P); 10μg/ml (Q); 20μg/ml (R) 50μg/ml and (S) 100μg/ml (T). All pictures are typical of 

three independent experiments each performed under identical conditions. 
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3.5.3 The effect of OA and UA on apoptosis, autophagy and induction in 

MCF-7 and MCF-10A cells after 24h. 

 

Investigating the possible induction of apoptosis, autophagy and necrosis after the 

treatment of OA (Figs. 3.45 A-J) and UA (Figs. 3.45 K-T) in the MCF-7 and MCF-

10A for 24h, HOC, AO and PI staining was applied.  

 

Figs. 3.45 K-M and P-R show MCF-7 and MCF-10A cells exposed to OA or UA 

respectively. No changes were observed in either cell line after 10 and 20µg/ml UA. 

Unfortunately the higher concentrations of both OA and UA caused the cells to lose 

attachment to the cover slips and could not be evaluated. 
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Figure 3.45: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D and E) and MCF-10A (F, G, H, I and J) cells were treated with OA and MCF-7 (K, L, M, N 

and O) and MCF-10A (P, Q, R, S and T), cells treated with UA for 24h. The cells were stained with a triple stain made up of Hoechst, acridine orange and propidium 

iodide. Control cells (A); 10μg/ml (B); 20μg/ml (C) 50μg/ml and (D) 100μg/ml (E). Control cells (F); 10μg/ml (G); 20μg/ml (H) 50μg/ml and (I) 100μg/ml (J).  Control 

cells (F); 10μg/ml (L); 20μg/ml (M) 50μg/ml and (N) 100μg/ml (O). Control cells (P); 10μg/ml (Q); 20μg/ml (R) 50μg/ml and (S) 100μg/ml (T). All pictures are typical 

of three independent experiments each performed under identical conditions.
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3.5.4 The effect of OA and UA on apoptosis, autophagy and induction in 

MCF-7 and MCF-10A cells after 48h 

 

HOC, AO and PI staining was applied to study possible induction of  

apoptosis and autophagy after the treatment of OA and UA in the MCF-7 and  

MCF-10A for 48h. 

 

No outspoken increase in either apoptosis or autophagy is observed in either cell 

line after OA (Figs. 3.46 A-J) or UA (Figs. 3.46 K-T). Figs. 3.46 D and I (50μg/ml 

OA) show some intact cells left after treatment. However the rest of the samples 

exposed to 50 and 100μg/ml OA and UA show only a few shrunken (red 

fluorescence) dead cells. Again the dramatic decrease in cell numbers after the high 

concentration OA and UA is caused by loss of cellular attachments due to the 

treatment.  
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Figure 3.46: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D and E) and MCF-10A (F, G, H, I and J) cells were treated with OA and MCF-7 (K, L, M, N 

and O) and MCF-10A (P, Q, R, S and T), cells treated with UA for 48h. The cells were stained with a triple stain made up of Hoechst, acridine orange and propidium 

iodide. Control cells (A); 10μg/ml (B); 20μg/ml (C) 50μg/ml and (D) 100μg/ml (E). Control cells (F); 10μg/ml (G); 20μg/ml (H) 50μg/ml and (I) 100μg/ml (J).  Control 

cells (F); 10μg/ml (L); 20μg/ml (M) 50μg/ml and (N) 100μg/ml (O). Control cells (P); 10μg/ml (Q); 20μg/ml (R) 50μg/ml and (S) 100μg/ml (T). All pictures are typical 

of three independent experiments each performed under identical conditions.
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3.5.5 The effect of OA and UA on apoptosis, autophagy and induction in 

MCF-7 and MCF-10A cells after 72h. 

 

Studying possible induction of apoptosis and autophagy after the treatment of OA 

and UA in the MCF-7 and MCF-10A in HOC, AO and PI stained cells showed no 

difference between controls and cells treated with 10 and 20µg/ml OA and UA after 

72h. 

 

As with all the previous treatments for the others time periods, no conclusive 

undergoing a specific cell death possibly induced by OA or UA could be 

established. Same deformed cells are observed after 50 µg/ml OA and UA (Figs. 

3.47 D, I, N and S), but no cells were observed in the samples exposed to 100 µg/ml 

OA and UA due to loss of culture attachments and loss of cells in the staining 

procedure.  

 

Neither the studies with Hoechst stain nor studies using the combination of three 

stains could give a definite answer as to a type of cell death possibly induced by 

OA and UA. The biggest challenge was in the samples exposed to 50 and 100µg/ml 

OA and UA where the cells seemed to wash off from the coverslips possibly due to 

weaker cellular attachments thus causing the cells to be lost in the   staining solution. 

To overcome this hurdle a method employing annexin V was employed to study the 

possible presence of apoptosis after exposure to OA and UA.  
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Figure 3.47: MCF-7 and MCF-10A cell morphology. MCF-7 (A, B, C, D and E) and MCF-10A (F, G, H, I and J) cells were treated with OA and MCF-7 (K, L, M, N 

and O) and MCF-10A (P, Q, R, S and T), cells treated with UA for 72h. The cells were stained with a triple stain made up of Hoechst, acridine orange and propidium 

iodide. Control cells (A); 10μg/ml (B); 20μg/ml (C) 50μg/ml and (D) 100μg/ml (E). Control cells (F); 10μg/ml (G); 20μg/ml (H) 50μg/ml and (I) 100μg/ml (J).  Control 

cells (F); 10μg/ml (L); 20μg/ml (M) 50μg/ml and (N) 100μg/ml (O). Control cells (P); 10μg/ml (Q); 20μg/ml (R) 50μg/ml and (S) 100μg/ml (T). All pictures are typical 

of three independent experiments each performed under identical condition
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3.6 Quantification of apoptosis using the Tali® Image Cytometer 

 

As the triple staining method also failed to provide answers regarding the specific 

type of cell death induced by OA and UA, a different method using annexin V was 

employed. 

 

Apoptotic induction was analysed in the two cell lines after treatment with OA and 

UA. To determine apoptosis, cells were stained with the annexin V-Alexa Fluor® 

488 conjugate. PI was used to differentiate the cells that were dead (annexin V 

positive/PI positive or annexin V negative/ PI positive). The cells size gate on the 

Tali® Image Cytometer is adjusted to exclude debris from the samples 

(www.lifetecnologies.com). 

  

3.6.1 The effect of OA and UA after 6h on apoptosis induction in MCF-7 and 

MCF-10A cells as quantified by the Tali® Image Cytometer 

 

The possible induction of apoptosis after OA and UA using four different (10, 25, 

50 and 100μg/ml) concentrations were measured using the Tali® Image-based 

Cytometer (Fig. 3.48). 

 

Fig. 3.48-A show that 20μg/ml OA significantly (P ≤ 0.05) increased MCF-7 

apoptotic cells 34% compared to control 8.5%. 50 and 100µg/ml OA increased the 

dead cells by 45.33% and 43.66% (P ≤ 0.01) respectively. Concomitantly the live 

MCF-7 cells decreased significantly (P ≤ 0.001) after 50μg/ml to 44.33% and to 

45.33% after 100µg/ml OA (P ≤ 0.01). 20μg/ml decreased the number of live cells 

to 53% compared to control as shown in Fig. 3.48-A.  

 

The MCF-10A cells (Fig. 3.48-B) did not show the same level of apoptosis as seen 

in the MCF-7 cells. 100μg/ml OA caused 16% increase in apoptotic cells compared 

to control (2.66%).  However, the number of dead cells was increased significantly 

(P ≤ 0.001) after 50µg/ml (48.66%) and 100µg/ml (42.66%). The live MCF-10A 

cells decreased significantly (P≤ 0.001) after 50μg/ml (42%) and 100μg/ml (29%).   
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UA caused a dose dependent decrease in live accompanied by a dose dependent 

increase in dead cells in both MCF-7 (Fig. 3.48-C) and MCF-10A (Fig. 3.48-D). 

Apoptosis was induced mainly by 100µg/ml UA in MCF-7 (16%) and (35%) in 

MCF-10A cells.  

 

 

 

Figure 3.48: Comparison of live, dead and apoptotic cells as analyzed by the Tali® Image Cytometer after 

exposure to OA and UA for 6h. A and B show MCF-7 and MCF-10A cells exposed to OA; C and D  show 

MCF-7 and MCF-10A cells after exposer to UA. Data is shown as mean ± SEM of three separate experiments. 

Treatments significantly different from the untreated control at p < 0.05 are presented as *P ≤ 0.05, ** P ≤ 

0.01, *** P ≤ 0.001 compared to respective controls (Two-way ANOVA followed by Tukey's multiple 

comparisons test). 

 

3.6.2 The effect of OA and UA after 12h on apoptosis induction in MCF-7 

and MCF-10A cells as quantified using the Tali® Image Cytometer 

 

Figure 3.49-A show a significant (P ≤ 0.01) increase in dead MCF-7 cells after 50 

and 100μg/ml OA at 35.33% and 38.33% respectively. Concurrently the MCF-7 

live cells was decreased significantly (P ≤ 0.001) by 50μg/ml (51%) and 100μg/ml 

(41%) compared to the control (90.66%), Fig. 3.49-A.  
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OA induced a similar decrease in the live cells in the MCF-10A cell line (Fig. 3.49-

B). A far more outspoken increase in dead cells was induced by 100μg/ml in the 

MCF-10A cells when comparing the results to that obtained in the MCF-7 cells. 

Less apoptotic cells were seen in the MCF-10A cells following OA treatment for 

12h. 

  

Figures 3.49 C and D show the MCF-7 and MCF-10A cells exposed to UA. Similar 

effects to that obtained with OA in the two cell lines was seen. However, a 

significant increase in apoptotic cells in both cell lines were seen in the samples 

treated with 100µg/ml UA (29.33%) in MCF-7 cells and 41.5% in MCF-10A cells 

(Fig. 3.49 C and D).  

 

 

 

Figure 3.49: Comparison of live, dead and apoptotic cells as analyzed by the Tali® Image Cytometer 

after exposure to OA and UA for 12h. The effect of OA on MCF-7 cells (A) and MCF-10A (B) and 

the effect of UA on MCF-7 (C) and MCF-10A (D) are shown above. Data is shown as mean ± SEM 

of three separate experiments. Treatments significantly different from the untreated control at p < 

0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-

way ANOVA followed by Tukey's multiple comparisons test). 
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3.6.3 The effect of OA and UA after 24h on apoptosis induction in MCF-7 

and MCF-10A cells as quantified by the Tali® Image Cytometer 

 

In the MCF-7 cell line apoptotic cells were increased significantly (P ≤ 0.01) after 

20 and 50μg/ml OA at 21% and 25.66% respectively. The number dead cells were 

also significantly increased after 50 and 100μg/ml OA at 32% and 43.33% when 

compared to the control (Fig. 3.50-A). Live MCF-7 cells were decreased to 63% 

by10μg/ml, to 56.66% by 20μg/ml and finally to 42.33% and 43.33% by 50μg/ml 

and100μg/ml respectively. 

 

OA induced a similar decrease in the live cells in the MCF-10A (Fig. 3.50-B). A 

far more outspoken increase in dead cells seen after 50 and 100μg/ml in the  

MCF-10A cells when comparing the results to that obtained in the MCF-7 cells. 

Less apoptotic cells were seen in the MCF-10A cells following OA treatment for 

24h.  

 

Figures 3.50 C and D show the MCF-7 and MCF-10A cells exposed to UA. Similar 

effects to that obtained with OA in the two cell lines was seen. However, a 

significant increase in apoptotic cells in both cell lines were seen in the samples 

treated with UA. 20% after 20µg/ml and 30.33% after 100 µg/ml in MCF-7 cells 

and 27.33% in MCF-10A cells (Fig. 3.50 C and D).  
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Figure 3.50: Comparison of live, dead and apoptotic cells as analysed by the Tali® Image Cytometer 

after exposure to OA and UA for 24h. The effect of OA on MCF-7 cells (A) and MCF-10A (B) and 

the effect of UA on MCF-7 (C) and MCF-10A (D) are shown above. Data is shown as mean ± SEM 

of three separate experiments. Treatments significantly different from the untreated control at p < 0.05 

are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-way 

ANOVA followed by Tukey's multiple comparisons test). 

 

 

 

 

 

3.6.4 The effect of OA and UA after 48h on apoptosis induction in MCF-7 

and MCF-10A cells as quantified by the Tali® Image Cytometer 

 

Figs. 3.51 A and B show MCF-7 and MCF-10A cells respectively. The number of 

dead cells increased after exposure from 5.66% to 50µg/ml OA to 50.33% and 

100µg/ml OA 55.66% in MCF-7 cells and from 10.66% to  62.66% and 59.66% in 

MCF-10A cells, showing the MCF-10A cells to be more sensitive to OA treatment. 

 

OA caused a corresponding to reduction in the living cells in MCF-10A (Figs. 3.51-

A and B). Apoptosis was induced by OA in both cell lines after 48h. However, the 

high number of dead cells not ascribed to apoptosis is probably necrosis or 

autophagy. 
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Figs. 3.51C and D show the MCF-7 and MCF-10A cells exposed to UA and similar 

effects that of OA is observed. However, 50μg/ml UA did not have the outspoken 

death inducing effect on MCF-7 cells that UA that had. 

 

 

Figure 3.51: Comparison of live, dead and apoptotic cells as analysed by the Tali® Image Cytometer 

after exposure to OA and UA for 48h. The effect of OA on MCF-7 cells (A) and MCF-10A (B) and the 

effect of UA on MCF-7 (C) and MCF-10A (D) are shown above. Data is shown as mean ± SEM of 

three separate experiments. Treatments significantly different from the untreated control at p < 0.05 are 

presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared to respective controls (Two-way ANOVA 

followed by Tukey's multiple comparisons test). 

 

  

3.6.5 The effect of OA and UA after 72h on apoptosis induction in MCF-7 

and MCF-10A cells as quantified by the Tali® Image Cytometer 

 

Fig. 3.52-A show that (50 and 100μg/ml) OA significantly (P ≤ 0.05) increased 

MCF-7 apoptotic cells (18.5% and 14.66%) when compared to control. 50 and 

100µg/ml OA increased the dead MCF-7 cells by 32% and 61% (P ≤ 0.01) 

respectively. Concomitantly the live MCF-7 cells decreased significantly (P ≤ 

0.001) after 50μg/ml to 52% and to 24.33% after 100µg/ml OA (P ≤ 0.01) when 

compared to control as shown in Fig. 3.52-A.  
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The MCF-10A cells (Fig. 3.52-B) did not show the same level of apoptosis as seen 

in the MCF-7 cells.  However the dead cells number was increased significantly (P 

≤ 0.001) after 50µg/ml (42%) and 100µg/ml (35.33%). Live MCF-10A cells 

decreased significantly (P ≤ 0.001) only after 50μg/ml (38 %) and 100μg/ml (49%).   

 

Figs. 3.52 C and D show the MCF-7 and MCF-10A cells exposed to UA. UA caused 

a dose dependent decrease the live cells and a dose dependent increase both the 

MCF-7 (Fig. 3.52-C) and MCF-10A (Fig. 3.52-D) dead cells. Apoptosis was 

induced after 100µg/ml UA (21%) in MCF-7 and in MCF-10A cells after 10, 20, 

50 and 100μg/ml UA to 25.33%, 16.33% 34.33% and 12.33% respectively.  

 

 

 
 

Figure 3.52: Comparison of live, dead and apoptotic cells as analysed by the Tali® Image 

Cytometer after exposure to OA and UA for 72h. The effect of OA on MCF-7 cells (A) and 

MCF-10A (B) and the effect of UA on MCF-7 (C) and MCF-10A (D) are shown above. Data is 

shown as mean ± SEM of three separate experiments. Treatments significantly different from 

the untreated control at p < 0.05 are presented as *P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 compared 

to respective controls (Two-way ANOVA followed by Tukey's multiple comparisons test). 
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3.7 Cell cycle progression  

 

Propidium iodide (PI) staining detected by flow cytometry was utilized to 

investigate the effects of OA and UA on cell cycle distribution, an S-phase block 

and a G2M block. 

 

3.7.1 Effect of OA on MCF-7 and MCF-10A cell cycle progression 

 

The dose-dependent responses for the MCF-7 cells are shown in Table 3.2 and for 

MCF-10A in Table 3.3. 

 

After 6h, the S-phase of MCF-7 cells was increased by 10, 20, 50 and 100µg/ml 

OA to 18.43%, 31.61%, 30.96% and 27.6% respectively. After 12h that it was found 

that all OA concentrations increased the S-phase fractions compared to control with 

an accompanying decrease in the G1 and G2 phases. After 24, 48 and 72h, OA 

showed a similar increase in the S-phase peak as observed for the 6h and 12h treated 

cells. In comparison to control sample after 24h which had 3.78% of cells in the S-

phase, OA at all concentrations, pushed the levels of cells in S-phase up to 30%. 

After 48h, in comparison to the control sample (2.78%) the increase varied from 

16.68% for 10µg/ml to 44.33% (100 µg/ml OA). After 72h the percentage of cells 

in the S-phase ranged from 19.44% (10 µg/ml) to 27.25% (100µg/ml OA). 

Furthermore the MCF-7 cells treated with 10, 50 and 100µg/ml OA showed an 

increase in the G2 peak (44.24%; 19.93% and 29.53%) after 48h, when compared 

to control cells. This increase was not observed after 72h.  

 

A similar increase in the S-phase peaks was observed in the MCF-10A cells after 

the different times of exposure. It can however be seen that cells moved to the G2 

phase after 6h 10, 50 and 100µg/ml, at 12h, (50 and 100µg/ml) at 24h (10 and 

20µg/ml OA), 48h (10µg/ml) and after 72h it was the MCF-10A cells exposed to 

50- and 100µg/ml (21.26% and 10.13%) that showed an accumulation of cells the 

G2 phase. Thus when comparing the effects of OA on MCF-7 and MCF-10A cells, 

it was seen that in both cells lines an intra-S-phase block was activated.  
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The accumulation of cells in the S-phase started at 6h and continued throughout the 

different time and doses indicating that OA affects the cell cycle progression 

possibly by activating the intra-S-phase checkpoint. Activation of the intra-S-phase 

block slows down the processes of DNA synthesis allowing time for DNA repair 

thus preventing genomic in stability. 

 

The MCF-7 cells showed increase of cells in the G2 phase after 48h could indicate 

that these cells had managed to repair the initial DNA damage induced by OA. 

However, the MCF-10A cells show this increase in the G2 peaks for most of the 

time period which could indicate that the DNA damage in these cells were not as 

severe as that induced by OA in the MCF-7 cells.   
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Table 3.2: The percentage distribution for control and OA treated MCF-7 cells. As the OA 

concentration increased, the percentage of cells that arrested in the phase of the cell cycle also 

increases. 

 

M
C

F
-7

 O
A

 

Time Cell cycle phases Control 10µg/ml 20µg/ml 50µg/ml 100µg/ml 

6h 

G1 89 71.59 59.06 61.62 69.52 

S 3.75 18.43 31.61 30.96 27.6 

G2 7.25 9.98 9.34 7.42 2.88 

12h 

G1 88 59.6 54.51 78.86 82.01 

S 2.78 38.89 45.49 17.78 13.47 

G2 9.22 1.51 0 3.36 4.52 

24h 

G1 86 67.19 64.35 67.12 66.22 

S 3.78 31.66 30.66 30.73 33.78 

G2 10.86 1.15 4.35 2.15 0 

48h 

G1 92 39.07 56.44 54.96 26.14 

S 2.78 16.68 37.17 25.11 44.33 

G2 5.22 44.25 6.39 19.93 29.53 

72h 

G1 91 75.35 68.3 70.55 67.58 

S 3.74 19.44 25.68 24.59 27.25 

G2 5.26 5.21 6.02 4.86 5.17 
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Table 3.3: The percentage distribution for control and OA treated on MCF-10A cells. As the OA 

concentration increased, the percent of cells that arrested in the S phase of the cell cycle also 

increases. 

 

M
C

F
-1

0
A

 O
A

 

Time 
Cell cycle 

phases 
Control 10µg/ml 20µg/ml 50µg/ml 

 

100µg/ml 

 

6h 

G1 90.56 60.03 64.18 62.42 62.3 

S 2.71 19.07 13.61 18.57 15.42 

G2 6.73 20.9 22.2 19.01 22.28 

12h 

G1 93.56 56.94 56.55 65.9 68.83 

S 2.71 34.87 38.83 10.6 0 

G2 5.73 8.19 4.62 23.5 31.17 

24h 

G1 91.56 70 85.62 88.86 93.31 

S 2.71 11.63 4.33 1.93 2.45 

G2 6.73 17.64 10.05 9.22 4.45 

48h 

G1 90.56 69.98 45.85 56.1 51.52 

S 3.72 1.97 46.47 43.9 42.6 

G2 4.72 28.05 7.68 0 5.88 

72h 

G1 90.88 53.9 61.93 62.14 64.26 

S 4.33 46.1 38.07 16.59 25.61 

G2 4.79 0 0 21.26 10.13 
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3.7.2 Effect of UA on MCF-7 and MCF-10A cell cycle progression 

 

The dose-dependent UA exposed effects on MCF-7 cells are shown in Table 3.4 

and for MCF-10A in Table 3.5.  

 

After 6h the S-phases of MCF-7 cells increased following treatment with 10, 20 , 

50 and 100µg/ml UA. The G1-phase was decreased after exposure  to UA  and the 

G2-phase remained the same except after 20 µg/ml UA when it was 0%. After 12h 

that it was found that 20μg/ml UA increased the S-phase fraction (51.04%) 

compared to control (2.78%) with an accompanying decrease in the G1 (20 and 

100μg/ml) while the G2 phase increased marginally after 100μg/ml UA.  

 

After 24h the S-phase of MCF-7 cells were increased by 10, 20, 50 and 100µg/ml 

UA to 57.56%, 58.73%, and 54.2% and 45.96% respectively. G1-phase decreased 

when exposed to 10, 20, 50 and 100μg/ml UA and the G2-phase increased after to 

exposed 10 and 20μg/ml UA (18.86% and 16.06%) respectively.  

 

After 48h the S-phases of MCF-7 cell line increased when exposed to 10μg/ml 

(44.19%), 50μg/ml (78.53%) and 100μg/ml (63.18%). And except for the 

50μg/ml,the G2 phases was also increase after UA exposer with an outspoken 

decline the G1 phases. After 72h S-phases increase after 10μg/ml (83.7%) and 

100μg/ml (69.39%) when compared to control (3.74%).   

 

A similar increase in the S-phase peaks was observed in the MCF-10A cells after 

the different times of exposure. However It can be seen that cells moved to the G2 

phase after 6h (10 , 50 and 100 µg/ml UA concentrations). At 12h and 24h UA 

increased S and G2 phases, except for 20 µg/ml after 12h  and 50 µg/ml after 24h.  

after 48h, S-phase peaks were seen after 20 and 100µg/ml UA and after 72h the 

MCF-10A cells exposed to all the UA concntrations showed elevated S-phase 

peaks.  Increased cells in the G2 phase was seen after 10µg/ml UA. Thus when 

comparing the effects of UA on MCF-7 and MCF-10A cells, it was seen that in both 

cells lines an intra-S-phase block was activated.  
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The accumulation of cells in the S-phase after treated with UA started after 6h and 

continued during the different times and doses demonstrating that UA affects the 

cell cycle progression as did OA, probably by activating the intra-S-phase 

checkpoint, resulting in a S-phase block. Activation of the intra-S-phase block 

slows down the processes of DNA synthesis allowing time for DNA repair thus 

preventing genomic in stability. 

 

The non-tumorgenic cell line, MCF-10A showed an overall increase of cells in the 

G2 phase after UA treatment when compared to the MCF-7 cells. This accumilation 

could be indicative of a G2/M block, but it also indicates  that the intra S-phase 

block caused by UA exposure was overcome by in the non-tumorigenic cells. 
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Table 3.4: The percentage distribution for control and UA treated MCF-7 cells. As the UA 

concentration increased, the percentage of cells that arrested in the S phase of the cell cycle also 

increased. 

 

 

 
 
 
 
 
 
 

M
C

F
-7

  
U

A
 

Time 
Cell cycle 

phases 
Control 10µg/ml 20µg/ml 50µg/ml 100µg/ml 

6h 

G1 89 84 63.32 71.39 67.85 

S 3.75 10 36.68 21.74 24.31 

G2 7.25 6 0 6.87 7.84 

12h 

G1 88 76.8 48.96 62.89 54.98 

S 2.78 19.85 51.04 37.11 37.36 

G2 9.22 3.35 0 0 7.66 

24h 

G1 86 23.58 25.21 42.27 54.69 

S 3.78 57.56 58.73 54.2 45.96 

G2 10.86 18.86 16.06 3.53 0 

48h 

G1 92 32.62 23.98 21.47 21.98 

S 2.78 44.19 34.37 78.53 63.18 

G2 5.22 23.19 41.65 0 14.84 

72h 

G1 91 12.8 67.67 71.75 26.06 

S 3.74 83.7 28.69 28.25 69.39 

G2 5.26 3.5 3.64 0 4.55 

 

 

 

 



 

134 

 

Table 3.5: The percentage distribution for control and UA treated on MCF-10A cells. As the UA 

concentration increased, the percentage of cells that arrested in the S phase of the cell cycle also 

increased. 

 
M

C
F

-1
0
A

 U
A

  

Time 
Cell cycle 

phases 
Control 10µg/ml 20µg/ml 50µg/ml 100µg/ml 

6h 

G1 90.56 37.36 37.42 57.58 67.76 

S 2.71 41.74 56.18 1.6 9.41 

G2 6.73 20.9 6.41 40.82 22.82 

12h 

G1 93.56 65.14 45.29 55.27 56.89 

S 2.71 19 0 37.11 32.54 

G2 5.73 15.86 54.71 7.62 10.86 

24h 

G1 91.56 38.18 38.9 37.83 24.53 

S 2.71 47.4 29.13 0 22.4 

G2 6.73 14.42 31.96 62.17 53.07 

48h 

G1 90.56 43.27 52.15 71.28 47.07 

S 3.72 5.48 26.02 0 51.54 

G2 4.72 51.25 21.83 28.72 1.54 

72h 

G1 90.88 50.83 64.03 41.31 40 

S 4.33 30.56 29.08 49.43 60 

G2 4.79 18.61 6.89 9.26 0 
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3.8 Reactive oxygen species (ROS) 

 

3.8.1 Effects of OA on ROS in MCF-7 cells after 6, 12, 24, 48 and 72h 

 

CellROX® Oxidative Stress Reagents specifically detect oxidative stress in cells. 

While a low level of ROS can serve as signalling molecules, ROS at higher 

concentrations could be indicative of pre-lethal toxicity induced by various drugs. 

After labeling with CellROX® Orange Reagent, cells were analyzed with the Tali®  

Image–Based cytometer using the RFP channel (representative of the fluorescence 

signal), collecting 8 fields per sample.  

 

The results, as seen in Table 3.6  indicate that treatment with OA produced a dose 

responsive increase in ROS levels of the MCF-7 cells after 6h. The treatment with 

10µg/ml and 20µg/ml OA produced an increase in ROS (14% and 21%). 55% and 

99% of the MCF-7 cells treated with 50µg/ml and 100µg/ml OA showed an increase 

in ROS compare to 2% in the control. 

 

Treatment with OA produced an increase in ROS levels of the MCF-7 cells after 12 

and 24h. The treatment with 10µg/ml and 20µg/ml OA produced an increase in 

ROS (17% and 25%). 36% and 80% of the MCF-7 cells treated with 50µg/ml and 

100µg/ml OA showed an increase in ROS compared to 5% in the control. 

 

After 24h, 10µg/ml caused a 20% ROS level, with 50 and 100µg/ml OA inducing 

22% and 89% increase in ROS compared to 2% in the control. After 48h and 72h 

ROS was inceased only in the cells exposed to 50µg/ml and 100µg/ml. 
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Table 3.6: The percentage oxidative stress in MCF-7 cells treated with OA concentrations (10, 20, 

50, and 100μg/ml) respectively, and at different times of exposure. A consecutive increase in the 

percentage of cells that stained positive with CellRox orange after exposure to OA, is seen. 

 

 

3.8.2 Effects of OA on ROS in MCF-10A cells after 6, 12, 24, 48 and 72h 

 

Treatment with OA produced a dose dependent increase in ROS levels of the MCF-

10A cells. After 6h, 10µg/ml and 20µg/ml OA produced an increase in ROS (14% 

and 73%) while 57% and 96% of the cells treated with 50µg/ml and 100µg/ml OA 

respectively showed an increase in ROS MCF-10A compared to 4% control as 

shown in Table 3.7.   

 

A similar dose dependent increase in ROS was observed after 12, 24, 48 and 72h 

however, the greatest increase in ROS was after 6h. No difference in oxidative 

stress was observed between the two cell lines after OA exposure of and both cell 

lines showed dose dependent increases in ROS. 

 

             

 

Time  

 

 

Control 

 

OA 

 

10µg/ml  

 

20µg/ml  

 

50µg/ml 

 

100µg/ml  

 

6h 

 

2 

 

14 

 

21 

 

55 

 

99 

 

12h 

 

5 

 

17 

 

25 

 

36 

 

80 

 

24h 

 

2 

 

20 

 

8 

 

22 

 

98 

 

48h 

 

1 

 

1 

 

5 

 

25 

 

67 

 

72h 

 

2 

 

9 

 

4 

 

39 

 

84 
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Table 3.7: MCF-10A cells ROS levels induced by OA (10, 20, 50, and 100μg/ml) for the different 

times of exposure. A dosed dependent increase in ROS is observed for all the different tome periods. 

 

 

3.8.3 Effects of UA on ROS in MCF-7 cells after 6, 12, 24, 48 and 72h 

 

It was mainly treatment with 20, 50 and 100µg/ml UA that increased ROS in the 

MCF-7 cells. After 6h treatment with 20µg/ml UA, an increase in ROS from 4% in 

control cells to 20% was observed, and an increase to 59% and 67% in cells treated 

with 50µg/ml and 100µg/ml UA (Table 3.8). 

 

After 12h a 38%, 53% and 68% increase in ROS was seen after 20, 50µg/ml and 

100µg/ml UA.  Similar increases were observed after 24, 48 and 72h with the 

100µg/ml UA inducing the highest level of ROS MCF-7 cells.  

 

 

 

 

             

 

Time  

 

 

Control 

 

OA 

 

10µg/ml  

 

20µg/ml  

 

50µg/ml 

 

100µg/ml  

 

6h 

 

4 

 

14 

 

73 

 

57 

 

96 

 

12h 

 

3 

 

14 

 

52 

 

65 

 

70 

 

24h 

 

7 

 

20 

 

40 

 

39 

 

76 

 

48h 

 

1 

 

18 

 

43 

 

57 

 

84 

 

72h 

 

5 

 

12 

 

38 

 

47 

 

69 
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Table 3.8: Oxidative stress in MCF-7 cells treated with UA concentrations, 10, 20, 50, and 100μg/ml 

respectively, and at different time of exposure. A consecutive increase in the % of cells that stained 

positive with CellRox orange was observed after exposure to increasing concentrations of UA, 

excluding 10μg/ml. ROS is shown as percentage. 

 

 

 

3.8.4 Effects of UA on ROS in MCF-10A cells after 6, 12, 24, 48 and 72h 

 

The results demonstrate that treatment with UA produced an increase in ROS levels 

of the MCF-10A cells in all the times of exposure. The treatment with 10µg/ml and 

20µg/ml UA produced an increase in ROS MCF-10A levels (18% and 51%) after 

6h and  86% and 98% of the cells treated with 50µg/ml and 100µg/ml UA showed 

an increase in ROS MCF-10A compared to the 4% observed in control  cells (Table 

3.9). 

 

The treatment with 10µg/ml and 20µg/ml UA for 12h produced an increase in ROS 

(22% and 49%) and extremely high levels, 90% and 97% were seen after 50µg/ml 

             

 

Time  

 

 

Control 

 

UA 

 

 

10µg/ml  

 

20µg/ml  

 

50µg/ml 

 

100µg/ml  

 

6h 

 

4 

 

 6 

 

 20 

 

59 

 

67  

 

12h 

 

3 

 

 11 

  

38 

 

 53 

 

 68 

 

24h 

 

3 

 

4 

 

34 

 

75 

 

89 

 

48h 

 

1 

 

 11 

 

13 

 

44 

 

78 

 

72h 

 

4 

 

4 

 

14 

 

61 

 

93 
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and 100µg/ml UA showed compared to 1% in the control. This trend continued in 

the 24, 48 and 72h exposure times with 50 and 100µg/ml UA inducing extremely 

high levels of ROS in MCF-10A cells.  

 

It seems that the higher concentrations UA not only caused a more outspoken 

increase in ROS in the MCF-10A cells than the MCF-7 cells but that UA also 

affected the MCF-10A cells to a great extent than OA had affected the MCF-10A 

cells. With 50µg/ml and 100µg/ml UA increasing ROS between (86%) to (98%) in 

the MCF-10A cells. 

 

 

Table 3.9: Oxidative stress in MCF-10A cells treated with UA after 10, 20, 50, and 100μg/ml 

respectively for 6-, 12-, 24-, 48-, and 72 hours. A dose dependent increase in the % of cells that 

stained positive with CellRox orange after exposure to increasing concentration of UA was seen. 

ROS is shown as percentage. 

 

             

 

Time  

 

 

Control 

 

UA 

 

 

10µg/ml  

 

20µg/ml  

 

50µg/ml 

 

100µg/ml  

 

 

6h 

 

4 

 

18 

 

51 

 

86 

 

98 

 

12h 

 

1 

 

22 

 

49 

 

90 

 

97 

 

24h 

 

3 

 

14 

 

43 

 

87 

 

95 

 

48h 

 

7 

 

26 

 

44 

 

88 

 

98 

 

72h 

 

3 

 

16 

 

56 

 

89 

 

96 
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3.9 Western blot  

 

3.9.1 LC3 and Beclin-1 expression in MCF-7 and MCF-10A after OA and 

UA exposure for 6h 

 

Since no conclusive results regarding the possible induction of autophagy by OA 

and UA could be obtained for 50 and 100µg/ml OA or UA using the triple staining 

method, it was decided to investigate markers (LC3 and Beclin1) for autophagy in 

cells exposed to 50 and 100µg/ml OA and UA. Fig. 3.53 shows 100µg/ml OA 

increased Beclin-1 expression in MCF-7 cells and to a lesser extent in MCF-10A 

cells. 50µg/ml OA increased the LC3 expression in MCF-10A.  

 

 

  

 

Figure 3.53: Beclin-1 and LC3 Expression in MCF-7 and (B): MCF-10A 

in cells exposed OA and UA for 6h 
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3.9.2 LC3 and Beclin-1 expression in MCF-7 and MCF-10A after OA and 

UA exposure for 12h 

 

50 and 100 µg/ml OA and 50µg/ml UA increased Beclin-1 in MCF-7 cells after 

12h. Also, 100µg/ml UA increased Beclin-1 in MCF-10A cells. Fig. 3.54A shows 

50µg/ml OA increased the LC3 expression in the MCF-7. 

 

 

 

 

Figure 3.54: Beclin-1 and LC3 expression in MCF-7 and MCF-10A cells 

following OA and UA exposure for12h 

 

 

 

3.9.3 LC3 and Beclin-1 expression in MCF-7 and MCF-10A affected by OA 

and UA for 24h 

 

Fig. 3.55 shows that 100µg/ml OA and UA increase Beclin-1 in MCF-7 cells. After 

24h, 50 and 100µg/ml OA increased Beclin-1 expression in MCF-10A cells when 

compared to control. 50µg/ml OA and UA increased LC3 expression in MCF-7 

cells and 50 and 100µg/ml OA and 50µg/ml UA increased LC3 expression in MCF-

10A after 24h. 
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Figure 3.55: Beclin-1 and LC3 expression in MCF-7 and MCF-10A 

cells following OA and UA exposure for 24h 

 

 

 

3.9.4 LC3 and Beclin-1 expression in MCF-7 and MCF-10A affected by OA 

and UA for 28h 

 

50 and 100 µg/ml OA and 50 and 100µg/ml UA increased Beclin-1 expression in 

MCF-7 cells and 50µg/ml OA and 100µg/ml UA increased Beclin-1 expression in 

MCF-10A cells when compared to control as shown in Fig. 3.56. 

 

50µg/ml UA and 100µg/ml OA increased LC3 expression in the MCF-7 and 

100µg/ml OA and 50µg/ml UA increased LC3 expression in MCF-10A cells when 

compared to control as shown in Fig. 3.56.  
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Figure 3.56: Beclin-1 and LC3 expression in MCF-7 and MCF-10A cells 

after OA and UA exposure for 48h 

 

 

 

3.9.5 LC3 and Beclin-1 expression in MCF-7 and MCF-10A after OA and 

UA for 72h 

 

50 and 100 µg/ml OA and 50 UA increased Beclin-1 expression in MCF-7 and 

50µg/ml OA and UA increase Beclin-1 expression in MCF-10A cells when 

compared to control as shown in Fig. 3.57. 

 

50 and 100 µg/ml OA and 50µg/ml UA increased LC3 expression in the MCF-7 

cells and 50µg/ml OA and UA increased LC3 expression in the MCF-10A cells 

compared to control as shown in Fig. 3.57. 
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Figure 3.57: Beclin-1 and LC3 expression in MCF-7 and MCF-10A 

cells following OA and UA exposure for 72h 

 

 

 

3.10 Analysis of gene expression  

 

Primer efficiency QC was performed on the primer pairs using a serial dilution 

of pooled cDNA samples. The slope of the standard curve should be between -

3.1 to -3.6 and display an R
2 

value of >0.98 as shown in Table 3.10. The 

disassociation curve should display one peak indicative of the target product 

and no peaks in the water (no template control, NTC) to indicate no contamination. 

In some instances, primer dimers are formed in the NTC or in samples where no 

target is present. Standard curve and disassociation curves analysed using the SDS 

software (Life Technologies) for each primer pair can be found in the 

Appendices. Primer pairs which passed QC, ATG6; RAB7A and GAPDH, were 

used for qPCR sample analysis and results can be found below. The ATG6 data 

was analysed with qbase software (www.biogazelle.com). The maximum allowed 

variability on technical replicates was set at 0.65 cycles. ATG6 is also known as 

Beclin-1. 
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Table 3.10: Primer efficiency (E), slope and R
2 

value for each primer pair as calculated using 

qbase software. An E value of 2 indicates 100% primer efficiency and an R
2 

value of 0.99 

indicates a good correlation between Ct and sample concentration. 

 

Cell Line Gene Efficiency R2 Slope 

 ATG6 2.072 0.968 -3.16 

MCF-7 GAPDH 1.87 0.994 -3.68 

 RAB7A 1.807 0.992 -3.892 

 ATG6 2.131 0.97 -3.042 

MCF-10A GAPDH 2.869 0.967 -2.184 

 RAB7A 1.923 0.957 -3.52 

 

The relative quantities of the samples were normalized to the geometric mean of 

the two reference genes and scaled to the control group (Figs 3.58, 3.59, 3.60 

and 3.61). The graphs below show the individual relative quantities of the 

biological samples. I indicate a better representation of the variability of the 

biological replicates. The results of a relative quantification analysis do not have 

a particular scale. Because of this they can be multiplied (or divided) by a common 

factor, i.e. in this case and average of 3-6 biological replicates in the control 

group. This process will alter the actual values, but not the sample to sample 

relationships (i.e. the fold changes). 

 

 
Figure 3.58: The relative quantity of ATG6 in MCF-7 cell lines treated with various 

concentrations of OA. The graph shows the relative quantity of ATG6 normalized to the 

reference genes, GAPDH and RAB7A, and scaled to the control group (COA17-37) for each 

biological sample submitted. 
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Figure 3.59: The relative quantity of ATG6 in MCF-7 cell lines treated with various 

concentrations of UA. The graph shows the relative quantity of ATG6 normalized to the 

reference genes, GAPDH and RAB7A, and scaled to the control group (CUA17-37) for each 

biological sample submitted. 

 

 

 
Figure 3.60: The relative quantity of ATG6 in MCF-10A cell lines treated with various 

concentrations of OA. The graph shows the relative quantity of ATG6 normalized to the 

reference genes, GAPDH and RAB7A, and scaled to the control group (C1-C6) for each 

biological sample submitted. 
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Figure 3.61: The relative quantity of ATG6 in MCF-10A cell lines treated with various 

concentrations of UA. The graph shows the relative quantity of ATG6 normalized to the 

reference genes, GAPDH and RAB7A, and scaled to the control group (C1-C6) for each 

biological sample submitted. 
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Chapter IV 

 

4 Discussion 

 

Breast cancer is the second leading cause of cancer death after lung cancer 

(American Cancer Society, 2015) In South Africa 1 in 34 women can develop breast 

cancer and this high rate is indicative of a significant public health problem. The 

lifetime risk of breast cancer differs according to ethnicity with 1/52 in black 

women, 1/18 in white women, 1/22 in coloured women and 1/19 in Indian women. 

Despite the progress made in breast cancer research, traditional treatment for breast 

cancer has not changed much over the past decades (Matsen & Neumayer 2013; 

Simic & Weiland 2003).  

 

Breast cancer treatment entails surgical removal of the tumor that is followed by 

chemotherapy with or without radiation (Ananthakrishnan et al., 2012; Coley, 2008; 

Ragaz et al., 2005; Yagata et al., 2011). However, the notorious effect of such 

treatments has in many cases exacerbated the overall diminishing health and quality 

of life of the recipients. Although early detection has improved survival, the 

chemotherapeutic agents used in the treatment of breast cancer have not proven to 

be efficient in all patients, as 50-60% of patients with metastatic disease fail to 

respond when treated with therapeutic agents (Chia et al., 2007; Conley et al., 

2012). This warrants further investigation into safer and more effective treatment 

strategies. Focus has been turned to natural compounds which have been shown to 

have anti-tumor effects. This study focused on two phytochemicals, namely UA and 

its isomer OA as an alternative treatment for breast cancer.  

 

Both UA and OA have a range of biological effects such as hepatoprotective, 

antitumor, cardiovascular and inflammatory actions (Raphael and Kuttan, 2003; 

Shanmugam et al., 2013; Sultana and Ata, 2008). Their activities have been reported 

in breast, endometrial, pancreatic and prostate cancer, leukemia a melanoma cells. 

Several studies have been undertaken in vivo and in vitro and have suggested that 
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OA and UA inhibit the growth of cancer cells, including breast cancer cells (Hwang 

et al., 2014; Wang et al., 2013; Weng et al., 2014). 

   

The aim of the present study was to examine the influence of OA and UA on breast 

cancer cell proliferation to determine whether these compounds induce autophagy 

or apoptosis and to investigate the effect on the molecular mechanisms influencing 

cell growth in the ERɑ positive (ERɑ/ß +/+) MCF-7 and ERɑ negative (ERɑ/ß -/+) 

MCF-10A cells. 

 

The ER status of MCF-10A and MCF-7 has been previously documented 

(Marchese and Silva, 2012) however, receptor expression profiles may vary 

between different lots or batches of the same cell line (Marchese and Silva, 2012).  

Additionally, MCF-10A is considered an ERɑ negative cell line but, some studies 

have reported the presence of ERɑ among in MCF-10A cells. Breast cancers are 

typically assessed for ERα, progesterone receptor and HER2 expression to define 

histological subtype and guide treatment options. 

 

It is known that the ER status of cells can influence cell signaling possibly 

influencing the effects of OA and UA on cell proliferation. The ER status of the 

cells used in this study was therefore determined and a time and dose study with 

17ß-estradiol carried out. 17ß-estradiol serves as a ligand for nuclear estrogen 

receptors, estrogen receptor alpha (ERɑ) and beta (ERß) that function by binding to 

DNA directly altering gene transcription, usually by up or down regulating adjacent 

gene expression. ERɑ regulate the transcription of several hundred genes (Santiago 

and Bashaw, 2014) including enhanced cellular proliferation in response to estrogen 

binding . ERß has not been well documented in this regard  (Santiago and Bashaw, 

2014). 

 

Consistent with previous in vitro studies Spink et al., (2006), 17ß-estradiol caused 

cellular proliferation in MCF-7 cells. On the other hand, except for 10pg/l, 17ß-

estradiol failed to stimulate significant proliferation in MCF-10A cells (Table 3.1). 

In fact a significant reduction in proliferation was observed after 48 hours exposure 
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to 50, 80 and 100pg/l 17ß-estradiol. The inability of 17ß-estradiol to significantly 

stimulate MCF-10A proliferation corroborates earlier studies by  Spink et al., 

(2006) Spink et al., 2006. The reduced proliferation may possibly be attributed to 

ERß that is frequently co-expressed with ERɑ at a measurably higher concentration 

in normal breast tissue (Marchese and Silva, 2012). ERß have been reported to 

inhibit in vitro cellular proliferation in response to17ß-estradiol. It has been 

suggested that this is achieved through the suppression of cyclin D1, c-myc and 

cyclin a gene transcription in concurrence with an increased expression of p27 and 

p21 which ultimately results in G2 cell cycle arrest (Musgrove et al., 1998). 

 

Analysis of MCF-10A cells showed bands corresponding to the approximate region 

where ERβ is reported to be situated (~ 59kDa) (UniprotKB), thus supporting the 

ERα negative status of MCF-10A cells. Furthermore, the absence of any other band 

corresponding to the relative position of ERα (~ 66kDa) (UniprotKB) further 

supports this notion. Another faint band, consistently present corresponded to the 

approximate region (~ 42kDa) (UniprotKB) where GPER-1 would be located. In 

the MCF-7 protein preparation, another band corresponding to the approximate 

position of ERα ~ 66kDa (UniprotKB) was present.  

 

The activation of the epidermal growth factor receptor is a fundamental integration 

point in the biological action triggered by GPER-1, a receptor for estrogen that is a 

member of the 7-transmembrane G protein-coupled receptor family. A wide 

number of natural and synthetic compounds, including estrogens and anti-

estrogens, elicit stimulatory effects in breast cancer through GPER up-regulation 

and activation, suggesting that GPER function is associated with breast tumor 

progression and tamoxifen resistance (Lappano et al., 2014). 

 

Tamoxifen, a powerful estrogen antagonist exerts its effects on breast cancer cells 

by binding to the ER receptors thereby displacing estrogen (Katzenellenbogen et 

al., 2000) but no beneficial effects was observed regarding the progression of ER-

negative tumors. Unfortunately tamoxifen is associated with uterotrophic effects 

such as, hyperplasia, polyps and the development of uterine cancer (Cohen, 2004). 
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Therefore, alternatives to the use of Tamoxifen, such as the pentacyclic 

triterpenoids, OA and UA, require exploration. 

 

4.1 Proliferation studies 

 

OA and UA at concentrations of 50μg/ml and 100μg/ml suppressed cell growth in 

both MCF-7 and MCF-10A cell lines as shown with both the mitotic index and the 

crystal violet cell assay as early as six hours. The 10µg/ml OA and UA increased 

the proliferation slightly in both cell lines with the MCF-10A cells exposed to 

20µg/ml showing recovery and increased proliferation at 72h (110.35%) when 

treated with OA but not with UA (Fig. 3.2-A and B). UA had a more outspoken 

suppressive proliferative effect at 50- and 100µg/ml when looking at both the 

mitotic index and crystal violet studies compared to OA. In previous studies, anti-

cancer effects of OA and UA was reported by independent researchers in vitro on 

MCF-7, MDA-MB-231, HepG2, Hep3B, Huh7 and HA22T cancer cell lines (Chen 

et al., 2015; Krukiewicz et al., 2015; Man et al., 2015; Pertino et al., 2013). The OA 

and UA used in the study by Chen et al were extracted from plants and the 

compounds were not pure while in this study the OA and UA were produced 

commercially and 97% pure. Although both were extracted and commercially 

obtained (Sigma), OA and UA have  similar  chemical structures while the impure 

plant extracted compounds  have one methyl group on their E ring  (Wang et al. 

2010; Yin & Chan 2007; Ovesná et al. 2006; Scarbath-Evers et al. 2015). The 

pentacyclic triterpenoids are a class of C30 isoprenoid compounds, they are 

relatively non-polar occurring widely in plants. Folding and cyclization of squalene 

leads to the dammarenyl ring system, which has a slightly different stereochemistry 

and ring structure from that of the major sterols (Dewick, 2009). Ring expansion 

and additional cyclization forms the characteristic fifth ring found in the lupeol, α-

amyrin and β-amyrin skeletons (Brendolise et al., 2011; Holanda Pinto et al., 2008; 

Santos et al., 2012). UA contains the β-amyrin skeleton; its C30 isomer α-amyrin 

is found in OA (Misra et al., 2014; Siewert et al., 2014). The 3-OH may be esterified 

with a phenolic acid.   
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The aggressive suppression by higher doses in contrast to the stimulatory effects of 

the lower concentrations OA and UA can possibly be related to the biphasic nature 

of the respective triterpenes. In this context, estriol has been reported to display dual 

agonist/antagonist behaviour by inhibiting and/or distorting dimerization of 

estrogen-ER complex formation (Lappano et al., 2014). Regardless of the poor 

estrogenicity of estriol, it retains the ability to interact with ER depending on ER 

status and estrogen availability exerting agonistic activity if used alone and anti-

estrogenic effects in the presence of estrogen. A similar mechanism could be 

underlying the different outcomes on proliferation seen in both cell lines after OA 

and UA treatment.  

 

 

In this study, it was hypothesized that the cell viability analysis of the toxic effects 

of OA and UA in cancer cells will reveal biochemical changes in breast cancer cell 

lines. OA have shown anti-proliferation effect in both MCF-7 and MCF-10A cell 

lines in vitro as shown with crystal violet cell viability assay as early as six hours 

at concentrations of 50μg/ml and 100μg/ml. OA and UA decreased cell 

proliferation in MCF-7 and MCF-10A cell lines. However, the MCF-10A cells 

recovered and increased proliferation at 72h (110.35%) when treated with OA but 

not with UA (Fig. 3.1-A and B).Thus, UA is a stronger anti-proliferator compared 

to OA and should be used at lower concentrations for treatment. OA and UA have  

similar  chemical structures while the impure plant extracted compounds  have one 

methyl group on their E ring (Ovesná et al., 2006; Scarbath-Evers et al., 2015; Yin 

and Chan, 2007). The pentacyclic triterpenoids are a class of C30 isoprenoid 

compounds occurring widely in plants. Folding and cyclization of squalene leads to 

the dammarenyl ring system, which has a slightly different stereochemistry and ring 

structure from that of the major sterols (Dewick, 2009). Ring expansion and 

additional cyclization forms the characteristic fifth ring found in the lupeol, α-

amyrin and β-amyrin skeletons (Brendolise et al., 2011; Holanda Pinto et al., 2008; 

Santos et al., 2012). UA contains the β-amyrin skeleton; its C30 isomer α-amyrin 

is found in OA (Misra et al., 2014; Siewert et al., 2014). The 3-OH may be esterified 

with a phenolic acid. As these compounds are relatively nonpolar, they can be found 
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in the waxy outer coating of fruits and other plant parts. UA induce apoptosis in a 

variety of tumor cells, including HL-60, human leukemia cancer cells (Baek et al., 

1997; Kim et al., 2000), K562 (Liu and Jiang, 2007) , HEC108 and SCG-II, human 

endometrial cancer cells (Achiwa et al., 2005a, 2005b),  M4Beu human melanoma 

cells (Harmand et al., 2005), A549, human non-small cell lung cancer cells PC-3 

and LNCaP, human prostate cancer cells (Kassi et al., 2007), Ha-CaT, human 

keratinocyte cells (Harmand et al., 2003), human Burkitt’s lymphoma Daudi cells 

(Lauthier et al., 2000) in a dose- and time-dependent manner. Both OA and UA also 

had anti-proliferative effect on MCF-7 and MCF-10A in a dose and time dependent 

manner (Fig. 3.2-A and B). 

 

Alternatively, antagonism by high concentrations of OA or UA of GPER-1, a 

receptor for estrogen that is a member of the 7-transmembrane G protein-coupled 

receptor family could result in decreased cell proliferation (Lappano et al., 2014). 

 

GPER-1 mediates its activities through the stimulation of adenylyl cyclase and 

epidermal growth factor receptor (EGFR) pathway activation (Lappano et al., 2014) 

and GPER-1 action has been associated with the proliferation of breast cancer cell 

lines (Lappano et al., 2014). GPER and EGFR physically and functionally interact 

in both ER-negative and ER-positive cancer cells. Antagonism by OA or UA of 

GPER-1 would inhibit transactivation of epidermal growth factor receptor (EGFR) 

and inactivate ERK/AP-1 signalling resulting in decreased cell proliferation 

(Lappano et al., 2014). Studies showed that concentration differences of estriol 

caused the switch between ERα agonism and antagonism of GPER-1 (Lappano et 

al., 2014). It can thus be speculated that differences in concentration of either OA 

or UA could potentially also cause the switch between ERα agonism by OA/ UA or 

antagonism by OA/UA of GPER-1 thus stimulating proliferation at the lower 

concentrations and inhibiting proliferation of the cells at the higher concentrations 

(Fig s. 3.2-3.3).  

 

Conversely, GPER-1 stimulation has also been reported to inhibit cellular 

proliferation. Furthermore, comparative studies on the actions of ER and GPER-1 

 

 

 

 



 

154 

 

have indicated that ER antagonists, serves as agonists to GPER-1 (Li et al., 2010). 

It is conceivable that the effects of these triterpenes may have converged on the 

inhibition of transcriptional gene activation and as a result, reduced proliferation. 

Alternatively, the presence of ERß in MCF-10A cells may account for the reduced 

proliferation in these cells. 

 

4.2 Morphological studies  

 

We further investigated the morphological changes in MCF-7 and MCF-10A cells 

to determine the pycnotic or apoptotic outcome after exposure to OA and UA 

treatment. Several studies have shown that treatment with UA, and OA, on cancer 

cells can cause apoptosis and cell cycle arrest (Domingues et al., 2014; Fontanay et 

al., 2008; Madhok et al., 2010; Pietenpol and Stewart, 2002; Shan et al., 2011; 

Steigerová et al., 2010; Tsai and Yin, 2008; Wójciak-Kosior et al., 2011). 

Aapoptotic cells display typical common features such as cell shrinkage, nuclear 

condensation, membrane blebbing, chromatin cleavage, and formation of pycnotic 

bodies of condensed chromatin (Moongkarndi et al., 2004). Determination of the 

morphological changes and quantification of changes indicative of cell death 

including pycnosis or apoptosis was done in H and E stained cells. Mmorphological 

changes, indicative of mainly pycnosis in both MCF-7 and MCF-10A cells were 

observed in the cells exposed to the higher concentrations of both OA and UA. 

Characteristics, such as rounding, shrinkage, membrane blebbing, and loss of 

contact to adjacent cells were also observed. Eevidence shows that apoptosis and 

autophagic cell death are crucial mechanisms that manipulate the development, 

homeostasis and elimination of cancer cells.  

 

Independent studies have reported that mitotic catastrophe often leads to cell death  

(Bröker et al., 2005; Castedo et al., 2004a; Mansilla et al., 2006; Portugal et al., 

2010; Vakifahmetoglu et al., 2008). During or after mitosis, the cellular 

morphology, discernible by multi-nucleation or micro-nucleation and/or mitotic 

arrest can be observed before the cells adopt the morphology of an apoptotic or 

necrotic cell (Green et al., 2009; Zhou et al., 2011). This may possibly explain the 
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increase in abnormal cells and cell death of MCF-7 cells treated with OA for 6h. In 

contrast, the effect by OA on the MCF-10A cell line was not as outspoken.  

 

It was observed that as the dose of the OA and UA was increased, MCF-7 and MCF-

10A cells undergoing pycnosis or apoptosis increased with an accompanying 

decrease in viable cells.  Loss of cellular attachments by the affected cells resulted 

in loss of these cells during the staining procedure. This hampered the study of and 

interpretation regarding the type of cell death induced by the 50- and 100 µg/ml 

concentrations of OA and UA in the Hoechst and triple staining procedures. It was 

observed that OA and UA increased MCF-7 and MCF-10A cell death while level 

of total mitosis in both cells decreased.  

 

Mitotic catastrophe is a mechanism that senses mitotic failure resulting in an 

irreversible fate, such as apoptosis, necrosis or senescence. Mitotic catastrophe can 

either kill the cell during or close to the metaphase, in a p53-independent manner. 

This occurs in a checkpoint kinase (Chk2) inhibited syncytia or in Polo-like kinase 

2 (PLK2) Plk2-depleted cells (Burns et al., 2003; Castedo et al., 2004b; Gonçalves 

et al., 2011; Kimura et al., 2013), or mitotic catastrophe can occur after failed 

mitosis, during the activation of the polyploidy checkpoint, in a partially p53-

dependent manner (Aylon et al., 2006; Castedo et al., 2004a; Eckerdt et al., 2005; 

Tominaga et al., 2006).  

 

Since no abnormal metaphases or lagging chromosomes were observed during the 

determination of the mitotic index, mitotic catastrophe has to be ruled out as a cause 

of cell death by OA and UA. Wang et al. (2011) reported that UA decreased 

proliferation of tumour cells both in vitro and in vivo. A study by Ya Ling Hsu et 

al. (2004) also reported that UA up-regulated P21 expression through a P53-

dependent manner and decreased expression of cyclins and their activating partner 

CDKs. Kassi et al. (2009) also demonstrated that  the ability of UA to induce 

apoptosis and to modulate glucocorticoid receptor (GR) and activator Protein-1 

(AP-1) in MCF-7 cells and UA is a GR modulator and may be considered as a 

potential anticancer agent in breast cancer (Kassi et al., 2009). 
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We further analyzed the possibility that the cells underwent autophagy. Generally 

autophagy blocks the induction of apoptosis, and apoptosis-associated caspase 

activation shuts off the autophagic process. But, in special cases, autophagy or 

autophagy-relevant proteins may help to induce apoptosis or necrosis, and 

autophagy has been shown to degrade the cytoplasm excessively, leading to 

'autophagic cell death (Mariño et al., 2014). We selected triple staining to try to 

determine the presence of autophagy or apoptosis after a study done by Visagie et 

al., (2011) where OA and UA have been shown to induce an autophagic response 

in PC3-protate cancer cells. They found that autophagy inhibition enhanced UA-

induced apoptosis in PC3 cells. No outspoken increases in cells undergoing 

autophagy or apoptosis after treatment, was observed in the Hoechst and triple 

stained cells. As mentioned before, the cells exposed to the higher concentrations 

were mostly lost in the staining procedure and therefore other experiments were 

employed to establish the presence of apoptosis and autophagy. 

 

4.3 Apoptosis and cell death detection  

 

Several forms of cell death may typically be induced within the same tissue 

although apoptosis is the fastest, while other forms, like necrosis or autophagy, only 

become visible when apoptosis is inhibited (Ciechomska et al., 2008; Ouyang et al., 

2012). Several studies suggest that OA and UA has potent cancer-preventive 

activity and great therapeutic potential (Ikeda et al., 2008; Kassi et al., 2007; Neto, 

2011; Sultana, 2011). The H and E and Hoechst stained treated samples did display 

some cells displaying typical morphology associated with apoptosis. A study by 

Kassi et al. (2009) and Zhang et al. (2006) showed that MCF-7 cells exhibited 

typical apoptotic features, including chromatin clumps and aggregation and DNA 

fragmentation after UA treatment. These changes were correlated with the down-

regulation of Bcl-2 and up-regulation of caspase-3 (Kassi et al., 2009; Zhang et al., 

2006). This was confirmed in another human hormone-refractory prostate cancer 

cell line, DU145 exposed to UA. Apoptotic cell death ensues by the activation of 

either the extrinsic pathway, which is initiated by activation of death receptors 
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leading to cleavage of caspase-8, or the intrinsic pathway, which is marked by 

mitochondrial depolarization, release of cytochrome c, and subsequent activation 

of caspase-9 (Anichini et al., 2006; Johnstone et al., 2002). In this study, 

quantification of the live, dead and apoptotic cells, showed an outspoken increase 

in dead cells of which the smaller fraction resulted from apoptosis. 

 

Changing of intracellular ATP levels can affect the form of cell death. High ATP 

levels lead to apoptosis, while a low ATP level leads to necrosis confirming that an 

intracellular ATP depletion switches the energy-dependent apoptotic cell death to 

necrosis (Golstein and Kroemer, 2007; Ha and Snyder, 1999; Latta et al., 2007; 

Leist et al., 1999, 1997; Nicotera et al., 1998; Tsujimoto, 1997). However, a 

complete ATP depletion leads to a yet another type of cell death, differing from 

apoptosis and necrosis (Ashkenazi and Salvesen, 2014; Dixon and Stockwell, 

2014). It is possible that levels ATP decreased in MCF-7 and MCF-10A cells 

influencing the type of cell death observed after OA and UA treatment.  Our study 

is similar to another which showed an intracellular ATP reduction switches the 

energy-dependent apoptotic cell death to necrosis (Ashkenazi and Salvesen, 2014; 

Golstein and Kroemer, 2007; Latta et al., 2007; Leist et al., 1999, 1997; Martins et 

al., 2013; Nicotera et al., 1998). The result showing some apoptotic, but mostly the 

presence of unspecified dead cells in both cell lines after OA and UA respectively 

warrants investigation into the specific type of cell death induced. It is also known 

that a relationship exists between apoptotic or autophagic induction. Autophagy 

allows a cell to respond to changing environmental conditions, such as nutrient 

deprivation. On starvation, autophagy is greatly increased, allowing the cell to 

degrade proteins and organelles and thus obtain a source of macromolecular 

precursors, such as amino acids, fatty acids, and nucleotides, which would not be 

available otherwise. Thus, autophagy serves as protective role allowing cells to 

survive during nutrient deprivation. However, when autophagy is prevented under 

these conditions, cells undergo apoptosis (Boya et al., 2005; Lum et al., 2005). 

 

In times of nutritional stress, the inhibitory effect of mTORC1 is lost. In addition, 

autophagy pathway activation is assisted by AMP-activated protein kinase 
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(AMPK). AMPK is acutely sensitive to the energy state of the cell, and is activated 

by low ATP to AMP ratios. However, low ATP levels, while stimulating autophagy, 

can also switch to necrosis, including pycnosis (Ashkenazi and Salvesen, 2014) as 

was observed in both the MCF-7 and MCF-10A cells. An increase in the number of 

dead cells was observed in both MCF-7 and MCF-10A. Overall OA caused a higher 

reduction in the live MCF-10A cells along with an increase in the % dead cells. In 

contrast to the MCF-10A cells, a similar effect was observed in MCF-7 cells after 

UA exposure and to a lesser extent with OA exposure (Figs. 3.47 – 4.51). Taking 

the different receptor profiles of the two cell lines into consideration, it does appear 

that the two cell lines are affected in a different way by the two triterpenes.  

 

The less aggressive suppression by UA in MCF-10A and OA in MCF-7 cells could 

possibly be due to the different receptor profiles of the two cell lines leading to 

activation of dissimilar signalling pathways affecting cell growth. 

 

4.4 OA and UA effect on cell cycle progression in MCF-7 and MCF-10A 

cells 

 

Regulation of the cell cycle is important in the growth and development of cancer  

(Alberghina et al., 2012; Inzé and De Veylder, 2006; Johnson and Walker, 1999; 

Malumbres and Barbacid, 2007; Orford and Scadden, 2008; Ruzinova and Benezra, 

2003; van den Heuvel, 2005; Weinberg, 1995; Williams and Stoeber, 2012). Cell 

cycle progression revealed a significant S-phase peak in MCF-7 and MCF-10A 

cells treated with OA and UA. The intra-S phase checkpoint activated by genotoxic 

insults causes only temporary, reversible delay in cell cycle progression, mainly by 

inhibition of new replicons initiation and thereby slowing down DNA replication 

(Bartek & Lukas 2001), but not permanently arresting DNA replication. 

 

In this study the S-phases of MCF-7 and MCF-10A cells increased with the 

treatment of OA and UA. There was a decrease in the G1 and G2 phases in MCF-7 

cells exposed to both triterpenes, except for the 48h exposure time where an 

increase in the G2 phase was observed after 10-, 50- and 100µg/ml OA and 10-, 20 
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and 100µg/ml UA. The non-tumorigenic cell line, MCF-10A showed an overall 

increase of cells in the G2 phase after OA treatment when compared to the MCF-7 

cells that showed only movement to G2 during the 48h treatments as mentioned 

above. This accumulation could be indicative of a G2/M block, but it also indicates 

that the intra S-phase block caused by OA exposure was overcome by the non-

tumorigenic cells.  

 

Our data suggest that OA and UA inhibits cell proliferation by invoking a transition 

delay or block in S-phase to G2 phase of the cell cycle. This delay may possibly 

involve more than one total passage of a number of cells during the cell cycle, while 

cell number more than doubled before level growth was observed, and since 6, 12, 

24, 48 and 72 h were necessary for maximal accumulation of cells in S-phase. A 

small percentage of MCF-10A but most of the MCF-7 cells were refractory to OA 

and UA and remained in the proliferative in S phase.  

 

In this study the increase of cells in the S-phase after treated with OA and UA 

started at 6h and continued throughout the different time and doses indicating that 

the treatment affects the cell cycle progression maybe via activating the intra-S-

phase checkpoint. Activation of the intra-S-phase block slows down the processes 

of DNA synthesis allowing time for DNA repair thus preventing genomic in 

stability. During S phase, both DNA damage and inhibition of DNA synthesis can 

be sensed by S-phase-specific mechanisms (Biondi et al., 2006; Nelson et al., 2002; 

Sjögren and Ström, 2010).  

 

S-phase progression requires a checkpoint signal to induce recombination repair 

and to allow completion of DNA synthesis (Bartek et al., 2004; Lopes et al., 2001; 

Sancar et al., 2004). S-phase-regulation relies on interaction of Cdc25A with the 

CDK1/cyclinA/B complex generating a rate-limiting stimulus for the G2/M 

transition. The lack of activity of the complex can delay completion of the cell 

division cycle  (Lee et al., 2013; Mailand et al., 2002; Park and Koff, 2001). The 

role of Cdc25A in initiation of DNA replication is also consistent with the ubiquitin-

proteasome-mediated destruction of Cdc25A in G1- and intra-S-phase checkpoint 
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responses to DNA damage and replication stress (Demidova et al., 2009; Lukas et 

al., 2001). Cdc25A is required for progression from G1 to the S phase of the cell 

cycle. It activates CDK2 by removing two phosphate groups. Cdc25A is 

specifically degraded in response to DNA damage, which prevents cells with 

chromosomal abnormalities from progressing through cell division. There is 3 types 

of S phase checkpoints namely I) DSB-induced replication dependent intra-S phase 

checkpoint, II) replication dependent intra-S phase checkpoint / or replication , III) 

S-M checkpoint (J. Bartek and Lukas, 2001; Bartek et al., 2004; Ben-Yehoyada et 

al., 2007; Ye et al., 2003).  

 

A long term intra-S-phase block is probably activated by OA and UA in MCF-7 

cells as only the 48h exposure samples showed cells in the G2 phase. This could 

limit the amount of sister chromatids and therefore reduce available templates for 

efficient repair by homologous recombination (J Bartek and Lukas, 2001; Sjögren 

and Nasmyth, 2001; Watanabe et al., 2009). Complete inhibition of CDKs and 

prolonged intra-S phase arrest may cause regaining of replication competence of 

already fired origins, making the recovery process prone to over-replication of at 

least parts of the genome (Bartek & Lukas 2001a). It is therefore possible that the 

insult caused by OA and UA treatments could act by inducing this block that could 

later progress to cell death. Inhibition of the CDK/cyclin complexes would also lead 

to a reduction of substrates including pRB and p107 (Musgrove et al., 1998).. They 

showed that  treatments that bind to the ER and progesterone receptors in breast 

cancer cells lead to a reduction in total and the underphosphorylated form pRB and 

p107. Since the mammary gland differs from most other tissues in that 

differentiation is followed by involution, some differences in control of 

differentiation is present and it was found that pRB deficiency is associated with 

increased apoptosis (Musgrove et al., 1998). 

 

Willis and Rhind 2009 suggest that this checkpoint may be more concerned with 

tolerating and accommodating damage during replication rather than repairing it, 

thus the MCF-7 cells most probably proceed to apoptosis or necrosis in the presence 

of outspoken DNA damage by specially the high concentrations OA and UA. 
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MCF-7 cells exposed to OA and UA yielded a seemingly opposite effect to that 

observed in MCF-10A cells. These results may be indicative of OA and UA 

successfully blocking or down regulating ERɑ causing cell cycle arrest. In contrast 

with the MCF-7 cells, most treated MCF-10A cells did proceed to the G2 phase. 

This is indicative of a recovery from the S-phase block possibly due to less DNA 

damage by OA and UA followed by DNA repair and movement to G2.  

 

Reactive oxygen species (ROS) can act as signalling molecules and, in cancer, are 

involved in cell cycle progression and proliferation, cell survival and apoptosis, 

energy metabolism and cell morphology (Diaz-Moralli et al., 2013; Evan and 

Vousden, 2001; Kroemer and Pouyssegur, 2008; Maddika et al., 2007).  A study by 

Kong et al. (2013) showed that cancer cells increased levels of ROS, and sub-lethal 

levels of ROS within these cells can promote proliferation and genomic instability. 

However, the increased levels of ROS can also make cancer cells more sensitive to 

ROS-inducing agents such as chemotherapeutic drugs (Lau et al., 2008). 

 

The prime site of ROS generation is the mitochondrial electron transport chain 

(complex I and III). Hypoxic conditions have been shown to amplify the amount of 

ROS produced, specifically at complex III (Diaz-Moralli et al., 2013). The 

relationship between mitochondrial ROS and the two triterpenes has not yet been 

confirmed. Similarly, effects of OA and UA on the concentration of tricarboxylic 

acid cycle intermediates leading to increased ROS levels have not been established 

and are suggested for future studies in order to clarify whether they influence the 

stability of the master regulator. Some chemotherapeutic methods increase cellular 

ROS levels, inducing damage leading to apoptosis induction in  cancer cells (Circu 

and Aw, 2010; Macip et al., 2003; Martin and Barrett, 2002; Trachootham et al., 

2009). Apart from apoptosis induction, ROS also induce other types of cell death, 

including pycnosis (Chung et al., 2003; Li et al., 2009; Loor et al., 2010; Marchi et 

al., 2012; Spinner et al., 2010).  

 

 

 

 

 



 

162 

 

This prompted the investigation of ROS as a cause of cell death in the MCF-7 and 

MCF-10A cells treated by OA and UA.  This study shows that ROS was increased 

in the MCF-7 and MCF-10A cells treated by OA and UA and at higher 

concentrations, coinciding with the proliferation quantification and morphology 

study where an increased number of dead cells were observed in the samples 

exposed to the higher doses of OA and UA (Figs. 4.47-51). A study by Carew et al. 

(2003) reported that in human cancer, mutations in mitochondrial genes, such as the 

gene encoding cytochrome C oxidase II, are associated with increased ROS 

generation. Chemotherapeutic treatment of cancer patients with DNA damaging 

agents that induce mutations in the mitochondrial DNA can increase cellular ROS 

to a toxic level and kill tumour cells (Brawek et al., 2010; El-Khoury et al., 2013; 

Indran et al., 2011; Leadsham et al., 2013; Lee and Wei, 2007; Shen, 2010). The 

resulting release of mitochondrial inter-membrane proteins, including cytochrome 

C, trigger apoptosis, or in case of the permeability transition pore dependent failure 

of ATP generation, to necrosis (Bonora et al., 2013; Brookes et al., 2004; Kokoszka 

et al., 2004; Orrenius et al., 2007; Scarlett and Murphy, 1997; Tsujimoto and 

Shimizu, 2007). Furthermore, TNFα, the best characterized necrosis-inducing 

ligand, has a direct involvement on mitochondrial ATP production, as well as the 

generation of ROS (Nikoletopoulou et al., 2013). TNFα also induces the activation 

of PARP1 (presumably via mitochondrial ROS, causing DNA-damage) leading to 

ATP depletion and subsequent necrosis (Arslan and Scheidereit, 2011; Eguchi et 

al., 1997; Jelezcova et al., 2010). PARP1 is a nuclear enzyme involved in DNA 

repair, DNA stability and transcriptional regulation, and becomes activated by DNA 

damage (Das et al., 2014; Mannuss et al., 2012; Mao et al., 2011; Paull et al., 2000). 

Its inhibition in cells exposed to genotoxic factors leads decreased rates of DNA 

repair and increased ROS (Cieślar-Pobuda et al., 2012; Ryabokon et al., 2008). 

PARP1 over-activation consumes large amounts of NAD +, Therefore, PARP1 

functions as a molecular switch between apoptosis and necroptosis by regulating 

ATP levels in the cell. 

 

ROS-sensitive signalling pathways are persistently elevated in many types of 

cancers where they participate in cell growth/proliferation, differentiation, protein 

 

 

 

 



 

163 

 

synthesis, glucose metabolism, cell survival and inflammation (Wu, 2006). ROS 

can act as second messengers in cellular signalling (Feissner et al., 2009; Mazars et 

al., 2010; Paravicini and Touyz, 2006) and regulate protein activity through 

reversible oxidation of its targets including protein tyrosine phosphatases, protein 

tyrosine kinases, receptor tyrosine kinases and transcription factors (Liou and Storz, 

2010).  

 

The increase in the levels of ROS after treatment of both MCF7 and MCF 10 cells 

with UA and OA may lead to apoptosis, however, as seen in the aforementioned 

study, more cells died from a non-apoptotic death pointing to a switch from 

apoptosis to possibly autophagy, pycnosis or necrosis As mentioned previously, 

autophagy pathway activation is assisted by AMP-activated protein kinase 

(AMPK). AMPK is acutely sensitive to the energy state of the cell, and is activated 

by low ATP to AMP ratios. A study by Amoa Onguéné et al., (2013) revealed that 

augmented ROS produced by mitochondria under 1.5% O2 caused increased 

activation of AMPK, independent of the AMP/ATP ration thus possibly inducing 

autophagy.  However, low ATP levels, while stimulating autophagy, can also 

switch to pycnosis or necrosis (Ashkenazi and Salvesen, 2014). This would explain 

the induction of the high levels of dead cells in both the malignant MCF-7 cells and 

the non-transformed MCF-10A cells after OA and UA treatment. 

 

4.5 Autophagy detection  

 

Protein expression of Beclin-1 and LC-3 was investigated in MCF-7 and MCF-10A 

treated with either OA or UA for 6- 72 hours. Autophagy is generally monitored by 

western blotting to assess the conversion of the microtubule associated light chain 

3 (LC3) from LC3-I to LC3-II, and establish the presence of a second autophagy-

related marker, Beclin-1 that is associated with nucleation (Kang et al., 2010; 

Mizushima et al., 2011). During the initiation stage of the autophagic process, the 

formation of autophagosomes requires the lipidation of the cytosolic form LC3-I, 

followed by the incorporation of the product LC-II into the outer and inner 

membranes of the early autophagic vesicles. It is known that the maturation of the 
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autophagosomes entails their fusion with acidic lysosomes to degrade the 

encapsulated cargo. Since LC3-II molecules are present on both the outer and inner 

membranes of the autophagosomes, the degradation of the cargo along with the 

inner membrane will also digest the LC3-II.  

 

The accumulation of LC-II generally indicates one of two situations (Mizushima et 

al., 2011). The detection of LC3-II by western blotting may indicate the beginning 

stages of the autophagic process. Less LC3-II is detected in the later stages of 

autophagy upon fusion with, and digestion by, the lysosomes. Both signify that 

autophagy is occurring. However, many inhibitors of the autophagic process block 

the fusion of autophagosomes with lysosomes. This prevents the turn-over of LC3-

II, allowing it to be visualised by immune-detection. 

 

Differential expressions of the two proteins were observed in cells treated with OA 

and UA when compared to untreated the cells. The OA and UA reduced Beclin-1 

expression in the cells treated for 6, 12, and 24h but 50- and 100µg/ml increased 

Beclin-1 after 48 and 72h. LC-3 expression was mostly increased in both cell lines. 

These data suggests the possibility that OA and UA induced MCF-7 and the MCF-

10A cell death by apoptosis and/ or autophagy pathway. During autophagy the cells 

certain processes are activated to remove unwanted of foreign substances that are 

detrimental to the cells (Abounit et al., 2012; Gomes et al., 2011; Huang and 

Klionsky, 2007; Liu et al., 2009; Mizushima and Komatsu, 2011). Deletion of 

autophagy-specific genes in cells of various organisms increases cell death through 

development and susceptibility to starvation and other apoptotic stimuli. However, 

high levels of autophagy can induce cell death (Berry and Baehrecke, 2008; Fulda, 

2012; Platini et al., 2010). These scenarios cannot be significant to normal 

development or to physiological adaptations of cells to stress; they may be relevant 

to the development of cancer and to cancer therapy. Cancer cells frequently include 

mutations with the purpose of give resistance to apoptosis; as such several 

chemotherapeutic agents that are toxic to the cell usually induce high levels of 

autophagy. Autophagy and apoptosis are interlinked which regulators of apoptosis, 

such as Beclin-1 (Maiuri et al., 2010, 2007; Shimizu et al., 2004). The BH3 domain 
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of Beclin-1 is bound to, and inhibited by Bcl-2 or Bcl-XL and Beclin-1 dysfunction 

has been implicated in many disorders, including cancer and neurodegeneration 

(Kang et al., 2011). Compounds that stabilize the complex may be useful in 

scenarios in which it may be desirable to inhibit autophagy, such as in established 

tumours in which autophagy is considered a pro-survival mechanism.  

 

The current study showed that OA and UA are capable of reducing the protein levels 

of Beclin-1 and increasing levels of LC-3. Reduced Beclin-1 expression after 6h 

and 12h of OA and UA treatment was observed in the MCF-7 cells but not in the 

MCF-10A cells. The other time periods (24-, 48- and 72h) showed a slight increase 

in Beclin-1 expression in the MCF-7 cells.  

 

The increased levels of LC-3 and Beclin-1 expression in the MCF-10A cells points 

to the presence of autophagy in the cells after OA and UA treatments after 6-, 12-, 

and 24h periods it was reduced after treatment with OA and UA for 48 and 72h. 

The longer exposure periods could possibly lead to a change in the autophagy 

process leading to cell death by activation of a different signalling pathway. 

 

 LC-3 levels were also enhanced by OA and UA in the MCF-7 cell line. The 

detection of LC3-II by western blotting indicates the beginning stages of the 

autophagic process. Less LC3-II is detected in the later stages of autophagy. Thus 

the presence of LC-3 in the MCF-7 cells could indicate the start of autophagy after 

stimulation by OA and UA, while the lack and low levels of Beclin-1 in these cells 

could point to a switch from autophagy to apoptosis. Suppression of Beclin-1 

expression can impair autophagy and sensitize the cells to starvation-induced 

apoptosis (Boya et al., 2005; Gordy and He, 2012; Luo and Rubinsztein, 2007). 

These results indicate that Beclin-1 may be an immediate-early response gene in 

tumorigenesis. Evidence suggests that at least one 'autophagy-specific' protein 

(Atg5) when cleaved can activate an apoptotic program. Inactivation of autophagy-

specific genes, such as Beclin-1 and ATG5, leads to increased tumorigenesis in 

mice (Pua et al., 2007; Takahashi et al., 2007; Tang et al., 2013). Therefore, 
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autophagy could be a tumour-suppressor pathway, and its decreased activity may 

contribute to the development of human cancer.  

 

4.6 QPCR 

 

Beclin-1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, 

a process of programmed cell survival, which is increased during periods of cell 

stress and extinguished during the cell cycle. In autophagy, vesicle nucleation 

begins when Beclin-1 associates with the cofactor UV irradiation resistance-

associated gene (UVRAG) (Kang et al., 2011). This stimulates the activity of the 

lipid class III phosphatidylinositol-3-kinase (PI3-K) named Vps34 to promote the 

activation of the elongation process and autophagosome biogenesis. This study 

focuses on the Beclin-1 network of associating proteins and its regulation of MCF-

7 and MCF-10A cells.  

 

Autophagy allows a cell to respond to changing environmental conditions, such as 

nutrient deprivation. On starvation, autophagy is greatly increased, allowing the cell 

to degrade proteins and organelles and thus obtain a source of macromolecular 

precursors, such as amino acids, fatty acids, and nucleotides, which would not be 

available otherwise. Thus, autophagy serves as protective role allowing cells to 

survive during nutrient deprivation. Moreover, when autophagy is prevented under 

these conditions, cells undergo apoptosis (Boya et al., 2005; Lum et al., 2005).  

Caspases can cleave Beclin-1 in apoptosis, thereby destroying its pro-autophagic 

activity. Caspase-3-, 7- and 8-mediated cleavage of Beclin-1 generates N- and C-

terminal fragments that lose their ability to induce autophagy. The C-terminal 

fragments translocate to mitochondria and sensitize cells to apoptotic signals (Kang 

et al., 2011). This process represents an amplifying loop for inducing massive 

apoptotic cell death. 

 

The molecular analysis of AGT6 in both cancer and non-cancer cell lines that was 

treated with ascending concentration of OA and UA seem to be indicate that UA is 

a more valuable agent in treating breast cancer as high expression of AGT6 was 
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noted after UA treatment.  On the hand, high concentration of UA was required for 

the immortalized mammary cell line, MCF-10A to undergo autophagy. The 

inconsistency of the expression may be attributed to the heterogeneous cells 

expression of breast cancer cell lines and the fact that the gene might be mutated. 

The assembly of the Beclin-1 complexes appears in a cell- or tissue-dependent 

fashion. One possible explanation is that their interaction with Beclin-1 may be 

relatively unstable, transient or occur only under specific conditions. However, 

more extensive gene expression analyses of other markers of autophagy are needed 

to confirm this data.  

 

4.7 Conclusion 

 

The OA and UA used in previous studies were extracted from plants and the 

compounds were not pure while in this study the OA and UA were produced 

commercially and 97% pure (Sigma). This OA and UA have  similar  chemical 

structures while the impure plant extracted compounds  have one methyl group on 

their E ring  (Wang et al. 2010; Yin & Chan 2007; Ovesná et al. 2006; Scarbath-

Evers et al. 2015).  

In conclusion, this study was able to show that OA and UA inhibited the 

proliferation of a breast cancer cell line in a dose- and time-dependent manner and 

that the two compounds OA and UA can be introduced as new treatment for breast 

cancer. GPER-1, a receptor for estrogen that is a member of the 7-transmembrane 

G protein-coupled receptor family and EGFR physically and functionally interact 

in both ER-negative and ER-positive cancer cells. Antagonism by OA or UA of 

GPER-1 would inhibit transactivation of epidermal growth factor receptor (EGFR) 

and inactivate ERK/AP-1 signalling resulting in decreased cell proliferation 

(Lappano et al., 2014). It is possible that differences in concentration of either OA 

or UA could potentially also cause the switch between ERα agonism by OA/ UA or 

antagonism by OA/UA of GPER-1 thus stimulating proliferation at the lower 

concentrations and inhibiting proliferation of the cells at the higher concentrations.  

It is conceivable that the effects of these triterpenes may have converged on the 

inhibition of transcriptional gene activation and as a result, reduced proliferation. 
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Alternatively, the presence of ERß in MCF-10A cells may account for the reduced 

proliferation in these cells. 

 

 Both OA and UA inhibited cell growth at the S-phase and G1/G2 phase of the cell 

cycle, indicating DNA damage in both cell lines after OA and UA. However, most 

treated non-tumorigenic MCF-10A cells did progress to the G2 phase indicating a 

recovery from the S-phase block possibly due to less DNA damage by OA and UA 

followed by DNA repair and movement to G2. This study shows that ROS was 

increased in the MCF-7 and MCF-10A cells treated by OA and UA and at higher 

concentrations, coinciding with the proliferation quantification and morphology 

study where an increased number of dead cells were observed in the samples 

exposed to the higher doses of OA and UA. However, low ATP levels, while 

stimulating autophagy, can also switch to pycnosis or necrosis explaining the 

induction of the high levels of dead cells in both the malignant MCF-7 cells and the 

non-transformed MCF-10A cells after OA and UA treatment. 

 

Furthermore OA and UA induced cell death by pycnosis or apoptosis. Autophagy 

is a process that is important in the treatment of cancer cells to self-destruct. OA 

and UA were able to induce autophagy and suppressed Beclin-1 in MCF-7 cells but 

not in MCF-10A cells LC3, an early autophagic stage protein was present in both 

cell lines after treatment, but disappeared after prolonged exposure to OA and UA. 

Thus the presence of LC-3 in the MCF-7 cells could indicate the start of autophagy 

after stimulation by OA and UA, while the lack and low levels of Beclin-1 in these 

cells could point to a switch from autophagy to apoptosis.  

However, further studies must be conducted to understand the mechanism of OA 

and UA on the breast cancer cells. Taken together, this study may enhance our 

understanding on cancer chemotherapy by OA and UA.  

 

Future studies: The detection of LC3-II by western blotting may indicate the 

beginning stages of the autophagic process. Less LC3-II is detected in the later 

stages of autophagy upon fusion with, and digestion by, the lysosomes. Both signify 

that autophagy is occurring. However, many inhibitors of the autophagic process 
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block the fusion of autophagosomes with lysosomes. This prevents the turn-over of 

LC3-II, allowing it to be visualised by immune-detection. Therefore, in order to 

elucidate whether LC3-II detection represents early autophagosome genesis of an 

uninterrupted autophagic flow or the amassing of these vesicles due to dysfunction 

in their degradation requiring the coupling to p62, an alternative marker of 

autophagy, a study evaluating the levels of p62 in addition to the LC3-II conversion 

is encouraged. 
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6 Appendix I (WESTERN BLOT RECIPES) 

 

 

 

 

 

 

 

 

 

 

 

 

PBS 10X 

 

40 g     NaCl 

1 g       KCl 

13.4 g  Na2HPO4-7H2O  

1.2 g    H2O 

 

Adjust the pH at 7.4 with HCl. 

Complete to 500 mL with distilled water. 

Lysis Buffer 

 

580 µL  Nonidet P40 

0.58 g   CHAPS 

0.150 g HEPES 

0.508 g  NaCl 

9.93 g    Saccharose 

0.022 g Na2EDTA 

 

Adjust the pH to 8.0. 

Complete to 50 mL with distilled water. 

 

Laemmli buffer samples 5X 

 

1 mL      Glycerol 

1 g          SDS 10% 

6.25 mL Tris HCl 0.5M pH 6.8 

2.5 mL   β-mercaptoethanol 

1 mL      Bromophenol 0.5% 

 

Complete to 10 mL with distilled water. 

 

Acrylis bis 30% 

 

29.2 g Acrylamide (29.2%) 

0.8 g   N-N’-methylene-bisacrylamide (0.8%) 

 

Complete to 100 mL with distilled water. 

 

SDS 10% 

 

100 g       Sodium Dodecyl Sulfate 

1000 mL distilled H2O 

 

APS 10% 

 

1 g      Ammonium Persulfate 

10 mL distilled H2O 

 

Prepare it fresh. 

 

 

Running Buffer 1.5 M, pH 8.8 

 

90.75 g  Tris 

500 mL distilled H2O 

 

Adjust the pH at 8.8 with HCl. 

 

Stacking Buffer 0.5 M, pH 6.8 

 

6 g        Tris 

100 mL distilled H2O 

 

Adjust the pH at 6.8 with HCl. 
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TANK Buffer 10X 

 

15 g Tris 

72 g Glycine 

50 mL SDS 10% 

Heat for. Complete to 500 mL with distilled water. 

 

 

TANK Buffer 1X 

 

100 mL Tank 10X 

900 mL distilled H2O 

Transfer buffer 1X 

 

3.03 g   Tris HCl 

14.4 g   Glycine 

200 mL Methanol 

1 mL     SDS 10% 

 

Complete to 1 liter with distilled water. 

 

TBS 10X 

 

24.2 g   Tris  

84 g      NaCl 

 

Adlust the pH to 7.6 with HCl. 

Complete to 1 liter with distilled water. 

 

T-TBS 1X 

 

To 1 liter of TBS 1X, add 1 mL of Tween 20. 

Blocking Buffer 

 

To 10 mL of T-TBS 1X, add 0.5 g of non-

fat dry milk. 

 

Coomassie blue R-250 0.5% 

 

 0.5 g    Coomassie blue R-250 (Biorad, 161-0400) 

 40 mL  Methanol 

 10 mL Acetic acid 

 

Complete to 100 mL with distilled water. Shaking with 

magnet for some hours. It is possible to recuperate the dye 

for 3-4 gels. 

 

Decoloration solution 

 

 25 mL Methanol 

 50 mL Glacial acetic acid 

 

Complete to 1 liter with distilled water. 

 

Stripping Buffer 

 

10 mL    β-mercaptoethanol 

200 mL  SDS 10% 

137 mL Tris-HCl 0.5 M, pH 6.8 

Complete to 1 liter with distilled water. 
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7 Appendix II (QPCR) 

                                      

 

Table1: Nanodrop measurements of MCF10 samples. The samples highlighted 

in red failed the QC requirements. This is indicated by A260/A230 ratios less than 

1.5, which indicates poor RNA purity. 

 

Sample ID Concentration 

(ng/l) 

A260 A280 260/280 260/230 

10UA_1 29.88 0.747 0.382 1.96 2.58 
10UA_2 38.6 0.965 0.437 2.21 1.9 

10UA_3 90.14 2.253 1.164 1.94 2.73 
10OA_1 88.8 2.22 1.16 1.91 2.37 

10OA_2 55.86 1.396 0.755 1.85 2.31 

10OA_3 65.62 1.64 0.822 2 2.29 

20UA_1 39.64 0.991 0.494 2.01 2.59 

20UA_2 100.54 2.513 1.286 1.95 2.48 

20UA_3 21.02 0.526 0.257 2.05 2.44 

20OA_1 23.91 0.598 0.299 2 1.79 

20OA_2 52.89 1.322 0.649 2.04 2.17 

20OA_3 47.41 1.185 0.604 1.96 1.96 
50OA_1 33.38 0.835 0.429 1.95 2.18 

50OA_2 20.56 0.514 0.271 1.9 1.03 

50OA_3 19.72 0.493 0.245 2.01 1.72 

50UA_1 39.61 0.99 0.512 1.93 1.92 

50UA_2 56.23 1.406 0.736 1.91 2.13 

50UA_3 22.86 0.571 0.3 1.9 1.61 

100UA_1 39.85 0.996 0.586 1.7 1.09 

100UA_2 8.49 0.212 0.186 1.14 0.32 

100UA_3 14.86 0.371 0.257 1.44 0.67 

100OA_1 21.99 0.55 0.362 1.52 0.64 

100OA_2 29.52 0.738 0.455 1.62 0.84 

100OA_3 12.02 0.301 0.214 1.4 0.66 
Control1 42.96 1.074 0.555 1.94 2.3 

Control2 49.01 1.225 0.655 1.87 2.22 

Control3 61.63 1.541 0.794 1.94 2.01 
Control4 15.01 0.375 0.218 1.72 1.49 

Control5 11.92 0.298 0.152 1.97 1.51 
Control6 15.28 0.382 0.197 1.94 2.42 
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Table2: Nanodrop measurements of MCF7samples. 

 

Sample ID Concentration (ng/l) A260 A280 260/280 260/230 

10OA_1 1629.91 40.748 20.269 2.01 2 

10OA_2 1256.56 31.414 15.811 1.99 2.18 

10OA_3 768.52 19.213 9.477 2.03 1.5 

10UA_1 351.64 8.791 4.643 1.89 2.12 

10UA_2 452.02 11.301 5.881 1.92 1.76 

10UA_3 500.39 12.51 6.337 1.97 2.27 

20UA_1 210.96 5.274 2.772 1.9 1.82 

20UA_2 200.83 5.021 2.528 1.99 2.43 

20UA_3 175.05 4.376 2.28 1.92 2 

20OA_1 443.71 11.093 5.8 1.91 1.82 

20OA_2 1367.76 34.194 16.765 2.04 2.39 

20OA_3 964.72 24.118 12.054 2 2.2 

50UA_1 1342.31 33.558 16.868 1.99 2.21 

50UA_2 292.26 7.306 3.804 1.92 2.19 

50UA_3 291.85 7.296 3.682 1.98 2.4 

50OA_1 683 17.075 8.53 2 2.1 

50OA_2 234.88 5.872 3.096 1.9 2.04 

50OA_3 857.53 21.438 10.62 2.02 1.58 

100UA_1 599.61 14.99 6.916 2.17 1.96 

100UA_2 291.11 7.278 3.353 2.17 1.74 

100UA_3 126.62 3.166 1.594 1.99 2.28 

100OA_1 376.39 9.41 4.839 1.94 2.4 

100OA_2 104.01 2.6 1.254 2.07 1.03 

100OA_3 124.2 3.105 1.599 1.94 2.32 

ControlOA_1 1016.12 25.403 12.773 1.99 2.33 

ControlOA_2 1126.03 28.151 13.634 2.06 2.46 

ControlOA_3 972.46 24.312 11.871 2.05 2.38 

ControlUA_1 314.65 7.866 4.002 1.97 2.17 

ControlUA_2 324.55 8.114 4.309 1.88 1.76 

ControlUA_3 381.1 9.527 5.014 1.9 2.18 
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Figure 1: Standard curve of ATG6 in MCF7 samples 
 

 

Figure2: Disassociation curve of ATG6 in MCF7 samples 

Target 
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Figure3: Standard curve of ATG6 in MCF10 samples 
 

 

 

Figure 4: Disassociation curve of ATG6 in MCF10 samples 

Target 
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Figure 5: Standard curve of GAPDH in MCF7 samples 
 

 

 
 
 

Figure 6: Disassociation curve of GAPDH in MCF7 samples 

Target 
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Figure 7: Standard curve of GAPDH in MCF10 samples 
 

 

Figure 8: Disassociation curve of GAPDH in MCF10 samples 

Target 
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Figure 9: Standard curve RAB7A in MCF7 
 

 

 

Figure 10: Disassociation curve of RAB7A in MCF7 samples 

Target 
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Figure 11: Standard curve of RAB7A in MCF10 samples 
 

 

 

Figure 12: Disassociation curve of RAB7A in MCF10 samples 
 

 

Target 
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