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Abstract

The standard model of cosmology (the ΛCDM model) has been very successful

and is compatible with all observational data up to now. However, it remains

an important task to develop and apply null tests of this model. These tests are

based on observables that probe cosmic distances and cosmic evolution history.

Supernovae observations use the so-called ‘standard candle’ property of SNIa to

probe cosmic distances D(z). The evolution of the expansion rate H(z) is probed

by the baryon acoustic oscillation (BAO) feature in the galaxy distribution, which

serves as an effective ‘standard ruler’. The observables D(z) and H(z) are used

in various consistency tests of ΛCDM that have been developed. We review the

consistency tests, also looking for possible new tests.

Then the tests are applied, first using existing data, and then using mock data

from future planned experiments. In particular we use data from the recently

commissioned Dark Energy Survey (DES) for SNIa. Gaussian Processes, and

possibly other non-parametric methods, used to reconstruct the derivatives of

D(z) and H(z) that are needed to apply the null tests of the standard cosmological

model. This allow us to estimate the current and future power of observations to

probe the ΛCDM model, which is the foundation of modern cosmology.

In addition, we present an improved model of the HI galaxy number counts and

bias from semi-analytic simulations, and we use it to calculate the expected yield

of HI galaxies from surveys with a variety of phase 1 and 2 SKA configurations.

We illustrate the relative performance of the different surveys by forecasting errors

on the radial and transverse scales of the BAO feature. We use the Fisher matrix

method to estimate the error bars on the cosmological parameters from future

SKA HI galaxy surveys. We find that the SKA phase 1 galaxy surveys will not

contend with surveys such as the Baryon Oscillation Spectroscopic Survey (BOSS)

whereas the full ”billion galaxy survey” with SKA phase 2 will deliver the largest

dark energy Figure of Merit of any current or future large-scale structure survey.
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Chapter 1

Introduction

One of the key problems in Cosmology is understanding the dark energy that

is driving the late-time acceleration of the Universe. Dark energy affects the

expansion history of the universe, and probes of this history thus provide tests of

dark energy models [4–6]. Determining the time dependence of the equation of

state, as well as its present density is an essential step in identifying the physical

origin of dark energy [7].

The simplest dark energy candidate is the cosmological constant suggested by the

standard model (ΛCDM). Alternative models such as the Quintessence models

suggest scenarios where the dark energy density evolves with time. Although re-

cent data and observations are supportive to the cosmological constant scenario,

the data can not exclude the dynamical dark energy models. Therefore an im-

portant goal for current and future observations is to measure the dark energy

parameters in many different ways and detect any departure from the constant

value of Λ that has been suggested by the ΛCDM model [8, 9].

Methods to detect time variation in the dark energy density have been developed.

It appears those methods are not efficient in detecting the variation in time even

with high quality simulated data [10]. One approach that has been followed is to

use the luminosity distance fitting formulas from simulated data to reconstruct

the assumed time varying dark energy model. The issue with this approach is the

unphysical parameters introduced by the luminosity distances fitting formulas,

these make recovering the attributes of the assumed model problematic [11–13].
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Chapter 1: Introduction 2

Another approach proposed to distinguish models of dark energy is to use expan-

sions of the equation of state of the dark energy, w. This can be achieved using a

polynomial fit in redshift space. This method takes account the slow variation of

w. A disadvantage of this fitting approach is that it introduces unphysical param-

eters. Instead of the polynomial fitting, a logarithmic expansion in the redshift

space has also been suggested [14, 15].

In this thesis, we consider a complementary approach to test the consistency of the

standard model itself independent of the values of Ωm and ΩK . This is achieved

by designing specific tests to probe the deviation from ΛCDM model. This ap-

proach is a model independent technique, requiring that the data to be from model

independent measurements.

Cosmological observations such as Supernovae type Ia (SNIa) apparent magnitude

versus redshift data and Baryon Acoustic Oscillation (BAO) scale data provide

strong evidence for dark energy.

Two upcoming ground based survey missions, Pan-STARRS (The Panoramic Sur-

vey Telescope and Rapid Response System) and LSST(The Large Synoptic Survey

Telescope), will add valuable knowledge about the nature of SNIa. The major goal

for Pan-STARRS is characterizing Earth-approaching objects, including asteroids

and comets, however measuring cosmological objects such as Supernovae is also on

of the important scientific goals of this mission. The LSST is a 6.7 meter telescope

that will be fully operational by 2022 and will observe all-sky providing millions of

SNIa observations during the planned 10 years of the LSST mission.The measure-

ments from these large surveys should substantially reduce the statistical errors

in the SN Hubble diagram.

Another future observations of SNIa from upcoming surveys such as the Dark En-

ergy Survey (DES), will provide accurate data that can improve our understanding

of the dark energy. While the Baryon Oscillation Spectroscopic Survey (BOSS)

already observe the spatial distribution of luminous red galaxies and quasars to

detect the BAO signal out to redshift ∼ 0.7. Also, Euclid is a Europe Space

Agency (ESA) mission will investigate the distance-redshift relationship and the

evolution of cosmic structures by measuring shapes and redshifts of galaxies and

clusters of galaxies out to redshifts ∼ 2. The Square Kilometer Array (SKA) is

expected to be the largest and most sensitive radio telescope in the world by 2030,

and it will provide accurate measurements of the BAO scale.

 

 

 

 



Chapter 1: Introduction 3

This thesis is a combination of interconnected projects discussed in different chap-

ters. Chapters 2 and 3 are introductory chapters; their role is to discuss the

theory behind the standard model in cosmology and the large scale structure of

the universe respectively.

In Chapter 4, we introduce model independent tests for the standard model. Those

tests require measurements of luminosity distance. We consider the luminosity

distance of SNIa from the Sloan Digital Sky Survey (SDSS) [16]. Then we use

SDSS measurements to compute the derivatives of the luminosity distance.

In Chapter 5 we discuss the Hubble rate data from different probes; the BAO and

the galaxy age measurements. We compute the derivatives of the Hubble rate.

Then we use the results to perform consistency tests for the ΛCDM model. Some

of these tests we develop and introduce in this chapter.

The null tests we examine, do not rely on parameterizations of observables, but

focus on quantities that are constant only if dark energy is a cosmological constant.

Gaussian Processes (GP) is a powerful supervised machine learning technique

that can be applied to regression problems or classification tasks. As a non-

parametric reconstruction technique, GP is used as a smoothing technique in order

to extract Hubble rate in Chapter 5 or distance derivatives in Chapter 4 in a model

independent way. A detailed description of this method provided in Appendix A.

In Chapter 6, we explore some of the potential uses of the SKA. For neutral

hydrogen (HI) redshift galaxy surveys the key inputs are the flux sensitivity (Srms),

the detection threshold, the telescope field of view and the assumed model for

HI evolution. We use semi-analytical simulations (SAX-S3) of HI to predict HI

galaxy number density (dN/dz) and the galaxy bias. We explore different Srms’s

associated with the different stages of the SKA telescope. We use the Fisher

matrix to forecast the performance of SKA HI galaxy surveys in measuring the

BAO components.

Finally we conclude in Chapter 7.

 

 

 

 



Chapter 2

The Expansion History of the

Universe

There is no special place in the Universe. Cosmology works with the assumption,

known as the cosmological principle, that at any given time the distribution of

matter in the universe is homogeneous and isotropic [17].

The homogeneous isotropic universe on large scale is supported by the cleanest

observations to date, which is the Cosmic Microwave Background (CMB) obser-

vations [18]. Although the early universe matter distribution was homogeneous,

the late universe grows inhomogeneous matter distribution with time due to grav-

itational instability. The local regions of the universe show inhomogeneities, such

as stars and galaxies.

We know that from galaxy spectra, if the galaxy is moving away/toward us the

frequency shifts to a higher/lower frequency which appears bluer/redder. The

galaxy will be referred to as being blue/red shifted. All galaxies observed happen to

be redshifted, except for some nearby galaxies that are affected by the gravitational

field of the local group [9, 19]. Redshift is defined as

z =
λobs − λem

λem

, (2.1)

where λobs is the observed wavelength and λem is the emitted wavelength from the

galaxy. For small redshifts we have the Doppler approximation to the redshift:

z =
v

c
, (2.2)
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Chapter 2: The Expansion History of the Universe 5

where v is the receding velocity of the galaxy and c is the speed of light.

In 1929, Edwin Hubble also used the redshift concept to measure the recession

velocity and the distance of 1355 galaxies. These measurements showed that the

two quantities were proportional to each other. This discovery led to the famous

formula known as Hubble’s law:

~v = H0~r, (2.3)

where H0 is the proportionality constant, known as Hubble constant. This work

by Hubble was the first evidence of an expanding universe [20].

2.1 The Standard Model

The standard model or Λ cold dark matter model (ΛCDM) based on a Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric with baryonic matter, cold dark mat-

ter, radiation (photons and neutrinos) and a cosmological constant. The ΛCDM

model best fits the following measurements:

• The CMB temperature anisotropy and polarization [18, 21].

• The large scale structure in the distribution of galaxies [22].

• The abundance of hydrogen, helium and lithium [23, 24].

• The accelerated expansion of the universe [25].

The model is based on the assumption that General Relativity is the correct theory

of gravity on large scales. From a first look, one might think ΛCDM just needs

more observations to narrow down the uncertainties on the model parameters

to reach perfection. However, the discovery of the accelerating expansion of the

universe introduces an extra challenge to the fundamental theory of gravity and

ΛCDM model.

The biggest challenge with ΛCDM model is the cosmological constant Λ problem,

where Λ is responsible for the acceleration of the Universe, with

ρΛ (cosmological constant) ≈
(
10−47 GeV4

)
. (2.4)
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The problem is the very small and highly fine-tuned value of Λ, where the observed

value of ρΛ is smaller by a factor of 1056 than (1 TeV)4, which is the smallest

possible value predicted by current particle physics. The standard model provides

no physical cause for Λ, which led to thinking that w might be differing from −1

or to vary with time [8, 9].

The ΛCDM model is based on the Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric, the Friedmann equations and the cosmological equations of state to de-

scribe the observable universe.

Friedmann-Lemaitre-Robertson-Walker metric

The general metric to describe the space-time of the universe is given by

ds2 = gµν(x)dxµdxν . (2.5)

where µ and ν are indices from 0 to 3, (x0, x1, x2, x3), where 0 represents time

and 1, 2 and 3 represent the spatial coordinates, and gµν is the metric tensor.

The metric is a fundamental quantity to describe the geometric properties of the

universe at a given time. In a background universe assuming homogeneity and

isotropy, FLRW space-time metric is given by

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (2.6)

where a(t) is the scale factor. The scale factor encapsulates the expansion of the

space with respect to time, and it relates to redshift as 1/a = 1+z [26]. The terms

in the square brackets represent the spatial metric in three dimensions spherical

polar coordinates, (r, θ, φ). The value of K determines the geometry of the space

(or the curvature). In this work, the normalization of the scale factor is to set

a = 1 at the present time, and the speed of light to c = 1, therefore the time and

the comoving distance have the same units [9, 26].

Notice that now we described the FLRW homogeneous expanding universe using

only the metric, i.e the scale factor, and the geometry. How the scale factor

changes with time depends on the energy density of the universe. The Einstein

theory of General Relativity is then required. According to General Relativity, the

equations that relate the geometry to the energy density are Einstein equations,
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given by

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν . (2.7)

where Gµν ≡ Einstein tensor, R ≡ gµνRµν , known as the Ricci scalar, Rµν ≡
Ricci tensor. Tµν , the energy-momentum tensor, describes the density and the

flux of energy and momentum in space-time. Essentially it is a generalization of

the stress tensor of Newtonian physics. G is the gravitational constant [9, 26].

The Friedmann equation

The Hubble rate is H = ȧ/a which describes the expansion rate of the universe.

The Ri0 = R0i terms in (2.7) vanish due to the assumption of isotropy in Robert-

son–Walker metric. The 0-0 terms of the Einstein equations in (2.7) given the

isotropic FLRW space-time metric give directly

H2(t) =
8πG

3
ρ− K

a2
. (2.8)

This is the Friedmann equation: the energy densities of all the various cosmic

components are encapsulated in ρ; these components include matter, radiation and

dark energy. The Hubble rate at the present time is denoted by H0 ≡ H(t = 0)

which is called the Hubble constant. Hubble constant can be written as H0 =

100 h kms−1Mpc−1, where h = H0/100 is a dimensionless number.

The acceleration equation

The i-j term of the Einstein equation, (2.7), gives

ä

a
+

4πG

3
(3P + ρ) = 0, (2.9)

which is called the acceleration equation. ρ and P are the total density and

pressure, respectively.

The fluid equation

While the Friedmann equation describes the scale factor evolution with time, the

fluid equation describes the evolution of the density with time. If we consider the

universe to be composed by a homogeneous and isotropic fluid, then from (2.8)

and (2.9), the fluid equation of an expanding universe can be written as

ρ̇+ 3
ȧ

a
[ρ+ P ] = 0 (2.10)
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In cosmology it is common to define w ≡ P/ρ, this relation known as the equation

of state (EoS) where w is assumed to be constant. Therefore, by knowing the

pressure of the components the densities can be evaluated by solving (2.10), hence

ρi ∝ a−3−3wi . (2.11)

ρi represents all the densities, matter, radiation and dark energy. Where:

• Matter, Pm = 0, wm = 0 ⇒ ρm ∝ a−3

• Radiation , Pr = ρr/3, wr = 1/3 ⇒ ρr ∝ a−4

• Vacuum energy, PΛ = −ρΛ, as a negative pressure driving the expansion

ρΛ ∝ a0. Where wΛ = −1 for dark energy only if dark energy assumed to be

the vacuum energy ( or Λ).

The standard model also known as the concordance model, is based on solving

Einstein equation, (2.7), as above. The total density at the present time in a flat

universe, is known as the critical density and is defined as ρcr,0 ≡ 3H2
0/8πG, while

ρ > ρcr,0 for closed universe and ρ < ρcr,0 for an open universe [9, 19, 26].

Density parameters

Friedmann equation for all the species could be compressed in one equation,

H2(z) = H2
0

∑
i

Ωi (1 + z)3(1+wi), (2.12)

where wi is constant, the sum is over i which represent the components: mat-

ter, radiation, curvature and dark energy (m, r, k, de). In ΛCDM model, those

components are known as the density parameters with fractional distributions:

Ωm =
8πGρm
3H(t)2

, (2.13)

Ωr =
8πGρr
3H(t)2

,

ΩΛ =
Λ

3H(t)2
,

ΩK =
−K

a(t)2H(t)2
.
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A key condition in this model is that ΩK = 1− Ωr − Ωm − ΩΛ for a flat universe.

Matter: The matter content consists of two types. The baryonic matter (Ωb)

which accounts for all the visible matter; and cold dark matter (Ωcdm) or non-

baryonic matter which accounts for all the non-detectable matter that we only

know about by its gravitational effects, such as the rotational curves of galaxies and

the gravitational lensing of light by galaxy clusters. Thus we have Ωm = Ωb+Ωcdm.

In ΛCDM model, cold dark matter is considered collision-less, it does interact with

other components only through gravity. The recent observations from Planck

mission measures Ωm ≈ 31% of the total (mass) energy density of the universe

[27].

Radiation: The radiation consist of photons and neutrinos. Neutrinos contribution

to the total density is rather theoretical. Thus, the present density parameter of

radiation, which is the sum of photons and neutrinos, Ωr, counts only 8.051×10−5

of the total mass energy density, therefore it is commonly ignored [28].

Curvature: The universe in ΛCDM model can be flat with K = 0, open with

K < 0 or closed with K > 0.

Dark energy and EoS parameterization: In standard cosmology, the dark energy

field does not exchange energy with other components of the universe [29]. The

dark energy equation of state, w(z) = Pde/ρde
1 can express the evolution of dark

energy. By integrating (2.10) for dark energy with a general equation of state, we

get

ρde(z)

ρde(z = 0)
= exp

[
3

∫ z

0

[1 + w(z′)]
dz′

1 + z

]
. (2.14)

Thus given (2.11), (2.12) and (2.14), we have

H(z)2 = H2
0

[
Ωm(1 + z)3 + ΩK(1 + z)2 + Ωde exp(3

∫ z

0

1 + w(z
′
)

1 + z′
dz
′
)

]
, (2.15)

where we used the fact that a = (1 + z)−1. Equation (2.15) gives the Hubble

parameter as a function of redshift, in terms of the (energy) density parameters

of the various cosmic components.

Note that for a constant w, this equation reduces to the form that has been

introduced in (2.11), i.e. ρde ∝ (1 + z)3(1+w). In ΛCDM model, the dark energy

1In the rest of this thesis, w(z) will refer to the dark energy equation of state.
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component, ΩΛ, is estimated to be between 65 − 72% of the total matter-energy

density of the universe. Recent Planck measurements estimate ΩΛ ≈ 69% of the

total mass-energy density of the universe [27].

2.2 Distances

In the nearby (or local) universe, i.e. for z < 0.1, the effects of the space time

curvature and the cosmic expansion are negligible. At low redshift the distance

to objects are measured through kinematic methods; the most known and used

methods are: the apparent luminosity, the trigonometric parallax and the proper

motion methods, respectively. While at much higher redshift, z > 0.1, bright

sources are used to measure distance such as galaxies, SNIa and quasars. Such

sources enable us to measure distances at higher redshift using methods that are

not affected by the curvature and cosmic expansion, such as Tully-Fisher method,

Faber-Jackson relation and also Type Ia supernovae method, for further details

about these methods see [26, 30].

In general, distances in the universe are expressed in term of the scale factor a(t)

(or redshift) to account for the cosmic expansion. A distance between an object

and an observer along the line-of-sight is given by

χ(z) ≡
∫ t0

t(a)

dt′

a(t)
=

∫ z

0

dz′

H(z′)
, (2.16)

which is called the co-moving distance, assuming a flat universe. To account for

universes with different curvature, a general form for the co-moving distance will

be

Dc =
1

H0

√
|ΩK |

CK

(
H0

√
|ΩK |χ(z)

)
, (2.17)

where Dc is known as the transverse co-moving distance; where CK(x) = x for a

flat universe, sinh(x) for an open universe and sin(x) for a closed universe [30].
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2.2.1 Luminosity distance and standard candles

Consider an object with a distance DL(z) from the observer with bolometric lu-

minosity (L) of the object. Then, the bolometric flux (F ) is given by2

F =
L

4πD2
L(z)

. (2.18)

The quantity DL is the known as the luminosity distance, which is related to the

transverse co-moving distance by

DL(z) = (1 + z)Dc(z). (2.19)

Equation 2.19 shows that the flux in (2.18) will be reduced by a factor (1 + z)−2 is

due to cosmic expansion. That indicates the photons at the observer lose energy

relative to the source of emission. In fact, one factor of (1 + z) due to the photon

energy loss. The second factor comes from the changed rate of arrival of photons.

To use the absolute luminosity method, the object has to be very luminous and

be standardize-able to increase the accuracy of the measurement. In general, such

luminous objects are known as the standard candles. A widely used probe, which

we will consider in this work is SNIa. The standard candles magnitude relates to

the distance as

µ(z) + logH0 − 25 = 5 log

(
DL(z)

10 pc

)
, (2.20)

distance modulus, µ ≡ m − M , which is the difference between the apparent

magnitude m and the absolute magnitude M of the object at a distance 10pc.

The concept of distance indicators come from the fact that some sources have

known luminosity. By knowing the luminosity of a source, then we can estimate

its distance using (2.18). Almost all distance measurements in astronomy are

based on measurements of the distance of an objects within our own galaxy; these

objects are known as primary distance indicators. One of the most famous pri-

mary distance indicators is RR Lyrae stars. RR lyrae are variable stars that have

been used as distance indicators for long time, with pulsation period between 0.2-

0.8 days. In 1912 Cepheids variables took over from the other primary distance

indicators because they are so bright. They are the most important stars used to

2This formula holds if flux and luminosity are integrated over all frequencies.
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measure distances outside our galaxy, with pulsation period between 2-45 days.

The primary distance indicators are dim and can not be used to measure distances

outside the local group and some nearby groups (more than one Mpc) [9].

Consequently, the second distance indicators, such as galaxies and SNIa can be

calibrated using primary distance indicators such as Cepheids. Second distance

indicators are brighter than Cepheids and they are used to measure large distances

outside the local universe (at high redshift). The SNIa is the only supernovae type

that has little variation in the absolute luminosity, which makes them ideal distance

indicators and usually they are known as the standard candles in cosmology.

2.2.2 Angular diameter distance and standard rulers

Another method to measure cosmic distances is to use objects with known physical

size l. The angular diameter distance of an object is given by

DA =
l

θ
, (2.21)

where θ is the angle subtended by the object, and l � DA. In an expanding

universe the comoving size is given by l/a, therefore

DA = aDc(a) =
Dc(z)

1 + z
. (2.22)

Hence, the angular diameter distance will become

DA(z) =
c

H0

(1 + z)−1

√−ΩK

sin

(√
−ΩK

∫ z

0

dz′

E(z′)

)
. (2.23)

The BAO in the matter power spectrum, is developing into an important probe

of dark energy, since the scale of the BAO peak in the power spectrum acts as

a standard ruler, expanding along with the universe from the time of the CMB

to the present day. From the BAO scale, DA is measured using the plane across

the line-of-sight. And the measurements of the BAO scale along the line-of-sight

determine the Hubble rate, H(z) (see Fig. 2.1).
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Figure 2.1: The sketch shows the BAO scale, where along the line-of-sight we
can measure H(z), and across the line-of-sight we can measure DA. Given dz

and θ are the redshift interval and the subtended angle, respectively [1].

Moreover, forthcoming surveys are being designed specially to measure the BAO,

such as BINGO [31], BOSS and eBOSS [32]. BAO measurements are also com-

plementary to the SNIa data, since it can be measured at high redshift, z & 1.2,

whereas SNIa current data are best measured at z . 1.2.

The origin of the BAO peak is further discussed in section 3.4.

 

 

 

 



Chapter 3

Large Scale Structure

Our galaxy the Milky Way, and M31 galaxy are members of the local group which

contain over 40 galaxies. Those galaxies interact gravitationally with each other.

For instance, our galaxy is falling towards Andromeda which is the nearest galaxy.

Also, the local group interacts with other galaxy groups. Galaxy groups are also

bound by gravitational force. When the mass of the group is greater than 1014M�,

then the group of galaxies is known as a galaxy cluster. Virgo is the nearest cluster

to our local group, both are part of a larger structure known as the local super-

cluster. Zooming out further, strong clustering of clusters and super-clusters form

over-dense regions known as filaments, see Fig. 3.1, leaving under-dense regions or

voids in the space.

There are two commonly known effects on large scale structure that are important,

Fingers of God (FoG) effect and Kaiser effect. The galaxies in the cluster have

the redshift of the cluster in addition to its velocity dispersion. FoG effect make

the large scale structure seem to point at the observer (see Fig. 3.1). The second

effect is the Kaiser effect which makes the galaxies near to the cluster, on the

observer’s side, looks further away due to the galaxies falling into the cluster (due

to the peculiar velocity), and the opposite happens ( they look closer to us) if the

galaxies are behind the cluster.

The two effects, FoG and Kaiser effect, combined are known by the redshift space

distortions (RSD). In fact, FoG is RSD on small scales whereas Kaiser is RSD on

linear scales.

14
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3.1 The growth of structure

The universe looks smooth on large scales and clumpy on small scales. The dis-

tribution of density fluctuations are given by

δ =
ρ− ρ̄
ρ̄

. (3.1)

where ρ̄ is the expected mean density. The evolution of structure is understood

using the linear perturbation theory. Small perturbations grow to form the inho-

mogeneous universe with stars, galaxies and clusters of galaxies, which are known

as the non-linear regime, where δ � 1. Therefore more complicated techniques

are used to describe the structure on small scales such as N-body simulations and

semi-analytical models.

For an expanding universe the growth of fluctuations can be calculated using the

perturbed Einstein and energy-momentum conservation equations. Since cold dark

matter has no pressure, the growth of linear matter perturbations are described

by [33]

δ̈ + 2Hδ̇ = 4πGρ̄δ, (3.2)

A general solution for this equation can be written as

δ(x) = f1(x)D(t) + f2(x)E(t), (3.3)

the first term on the right is the decaying mode, while the left term is the grow-

ing mode. The decaying mode corresponds to the small-scale mode and can be

neglected, while the growing mode coressponds to the large-scale mode. Since we

are interested in the large-scale mode we adopt the growing mode solution, where

the growth equation is defined by (3.2) it can be written as [34]

d2D

d ln a
+

(
4 +

d lnH

d ln a

)
dD

d ln a
+

[
3 +

d lnH

d ln a
− 3

2
Ωm(z)

]
D = 0, (3.4)

where D is known as the growth factor and Ωm(z) = ΩmH
2
0 (1 + z)3/H2(z). This

equation holds true in General Relativity theory where the scales are much smaller

than the horizon. An approximation for (3.4) is given by

f(z) ≡ d lnD

d ln a
≈ [Ωm(z)]γ, (3.5)
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Figure 3.1: The 2dF galaxy redshift survey map revealing the structure of the
universe with respect to redshift [2].

where f is the growth rate and the growth index γ ≈ 0.55 − 0.6, and it is found

to be 0.55 for ΛCDM. That indicates γ can be affected mildly by the cosmological

parameters [35]. Using (3.5), we have

D(z)

D(z0)
≈ exp

[
−
∫ z

0

dz′

1 + z′
[Ωm(z)]γ

]
. (3.6)

Theoretically, inflation models predict the primordial matter fluctuation to be

Gaussian. Therefore, these primordial matter fluctuations can be fully described

by the power spectrum (P (k)) or its Fourier transform, the correlation function

(ξ(r)), we now discuss these two approaches briefly.

3.2 The power spectrum

Equation 3.1 determines the density fluctuations as a function of position. One

way to characterize the density fluctuations is to estimate the variance in the

Fourier transform coefficients as a function of the length of the wave number k

thus,

< δkδk′ >= (2π)3δD(k + k′)P (k). (3.7)
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This is known as the power spectrum where δk is the Fourier transform of δ and

δD is the Dirac delta function. P (k) is only a function of the wave number k = |k|
due to the assumption of isotropic universe. The variance is defined as

σ2 =
1

2π2

∫
P (k)k2dk =

∫
∆2(k)

k
dk, (3.8)

where ∆2(k) is the variance per unit logarithmic interval. To get a more practical

expression of the power spectrum, consider a cubic box of the universe with a

length L, hence the volume of the universe, V , is proportional to L3. The wave-

lengths will be λ = L/n where n is the number of modes. Therefore the number

of modes from k to k+ dk will be given by the density of modes times the volume

of the shell,

(
L

2π

)3

×
(
4πk2dk

)
. (3.9)

It is clear that the power spectrum has units of volume. Although, to avoid that

the value of the power spectrum depends on the choice of k, commonly the power

spectrum is expressed in dimensionless units such as

∆2(k) =
V

2π2
k3〈|δ2

k|〉 =
V

2π2
k3P (k), (3.10)

Also, the dimensionless power spectrum of the primordial curvature perturbation

from Inflation is given by

∆2
Φ ∝ kns−1, (3.11)

In terms of ∆2(k) we have [36],

∆2(k) ∝ k3+ns , (3.12)

where ns is known as the spectral index of scalar perturbations with ns = 0.96

[37].

The power spectrum that we defined in (3.7) depends only on k. In redshift space

we also care about the direction of the wave number, ~k, therefore we include the

effects that we introduced earlier, the redshift space distortion (RSD). Taking the

RSD effect in cognizance, the power spectrum will be given by
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Ps(~k) =
[
1 + βµ2

]2
P (k). (3.13)

where µ is the cosine of the angle between the line of sight and ~k. The second term

in 3.13 accounts for the RSD presence; In other words, this term is introduced to

compensate for the fact that apparent over-density in redshift space is larger than

in real space. Due to the undetectable dark matter, the mass over-density δ is not

equal to the galaxies over-density δg. The linear bias (b) can be defined as

b ≡ δg
δ
. (3.14)

The linear bias impose that galaxies trace the distribution of dark matter. Con-

sequently, the power spectrum of dark matter can be determined from the galaxy

power spectrum. Then the β parameter can be defined as

β =
f

b
' Ω0.55

m

b
, (3.15)

which is a measurable quantity. This is done by measuring the ratio of the

quadrupole and monopole of the power spectrum [26].

In linear perturbation theory, the linear power spectrum is proportional to the

growth factor D2(z), thus

Plin(k) =
D2(0)

D2(z)
Plin(k, z). (3.16)

3.3 The correlation function

To measure the clustering of the galaxies on large scale, the correlation function

is given by

ξ(r) =
V

2π2

∫ ∞
0

P (k)
sin(kr)

kr
k2dk, (3.17)

where ξ(r) is the probability of having two galaxies separated by a distance r. The

correlation function is related to the probability of finding a galaxy in the volume
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dV1 and another in dV2 separated by a vector r. Hence

d2Pr(r) = [1 + ξ(r)]n2dV1dV2, (3.18)

where n represent the number of galaxies per unit volume. The correlation function

is usually measured by comparing the observational results to a random sample,

this method has the advantage of avoiding the computation of Fourier series.

3.4 Large scale structure surveys

We can not observe the large scale structure of the matter distribution directly,

since the adopted assumption in CDM model that most of the matter in the

universe is dark matter. Observations of the spatial distribution of visible galaxies

can be provided, with the assumption that the matter density and the galaxies

are related as in (6.7) hence, we can estimate the power spectrum of the density

fluctuations.

The study of galaxy distributions provide information about the cosmic density

field. There are two common ways that have been developed to study the galaxy

distribution; photometric sky surveys and spectroscopic sky surveys.

The photometric sky surveys provide approximate redshifts, while the spectro-

scopic sky surveys provide accurate redshift information. Spectroscopic surveys

provide knowledge about the statistical properties of galaxies. Therefore a growing

interest has been developed in redshift surveys.

Redshift surveys

Redshift surveys are very time consuming since a spectrum has to be recorded

for each object. The rapid development of technology makes this task easier than

before but also current and future surveys are getting more challenging. To design

a redshift survey, firstly an area or a region on the sky has to be selected geometri-

cally. Secondly the minimum brightness of the objects that the survey can capture

has to be defined, the brightness threshold. The brightness threshold defines the

number density of the galaxies in the survey as well as the exposure time. The

determination of the power spectrum depends on the relation between the number
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density and the galaxies over-density in a given survey volume V , which is given

by

δg :=

(
∆n

n̄

)
V

= b

(
∆ρ

ρ

)
V

, (3.19)

where n̄ is the average number density of the galaxies, and ∆n is the difference

between the local number density and the average number density.

While the power spectrum is theoretically predicted, the normalization of the

power spectrum can only be determined from observations [38]. The normaliza-

tion is measured by determining the fluctuation amplitude, σ8, which is done by

averaging over the selected galaxies on multiple spheres of radius R = 8 h−1 Mpc

in the local universe, therefore

σ2
8 =

〈(
∆n

n̄

)2
〉

8

≈ 1. (3.20)

Given that b’s value depends on how galaxies have formed in the mass density

field, from (3.1), (3.19) and (3.20), it is straightforward to relate the matter density

fluctuations to σ8. Then

σ8 =
σ8,g

b
≈ 1

b
. (3.21)

The recent update from Planck mission estimate σ8 = 0.83 [27].

Spectrum errors

The acoustic oscillations in the power spectrum are primarily at wavenumbers

0.1–0.2hMpc−1, hence surveys are usually designed with nP
(
k = 0.2hMpc−1

)
≥ 1.

Therefore, the error on the power spectrum is given by

δP

P
=

1√
m

(
1 +

1

nP0.2

)
, (3.22)

where m is the number of Fourier modes, and P0.2 is the power spectrum at

k = 0.2 hMpc−1 [1]. The first term and the second term represent two types of

errors known as cosmic variance and shot noise respectively. Shot noise reflects

the limits on reconstructing the matter distribution from galaxy surveys, and

is inversely proportional to the number of galaxies at a given survey volume.

Upcoming surveys such as the SKA will limit shot noise on galaxy surveys. Cosmic

variance which is the uncertainty that results from observing only part of the
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Figure 3.2: The predicted baryon wiggles in the galaxy power spectrum (line)
and the measurements from the galaxy surveys (dots) of 2dFGRS +SDSS (top),
SDSS DR5 LRGS sample (middle) and all of the data combined (bottom) [3].

universe at a specific time limits our statistical knowledge on a cosmological scale.

Shot noise and cosmic variance are equal when nP0.2 = 1.

CMB constraints

CMB measurements provide tight constraints on Ωm and the normalization of the

matter fluctuation, since the CMB angular power spectrum depend on the matter

densities. Also they provide constraints on ΩK from the locations of the peaks.

As a consequence of using the CMB constraints we consider additional nuisance

parameters such as spectral index (ns), the electron-scattering optical depth τ ,

Hubble constant (h), dns/d ln k of the scalar fluctuation spectrum, as well as the

amplitude and the slope of the tensor fluctuations spectrum. In Chapter 6, we will

see how the constraints on the parameters change if one assumes a flat universe.
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Another important value that we can determine from the CMB measurements is

the physical scale of the acoustic peaks in the CMB which is equivalent to the

scale of the BAO in large scale structure. This is known as the sound horizon

(rs). The sound horizon at drag epoch, rs(zd), at which baryons were released

from Compton drag of the photons can be used to locate the position of the BAO

peak. rs(zd) is the distance that sound waves can travel from the big bang moment

t = 0, to drag epoch td. This is given as

rs(zd,Ωb,Ωr) =

∫ td

0

csdt (3.23)

where zd is the redshift at the drag epoch, Ωr is the radiation density parameter

and cs is the speed of sound given by

cs =

[
3

(
1 +

3Ωb

4Ωr

)]− 1
2

. (3.24)

Baryon wiggles

In the period before recombination the universe consisted of hot plasma and

baryons which were tightly coupled. A density perturbation sphere in a tightly

coupled baryon-photon plasma will propagate outwards as an acoustic wave with

a speed cs. At recombination the baryons and the photons were decoupled. The

Photon wave freely propagated away to form the CMB, while the baryon wave

stalls. The radius of the stalled baryon wave is imprinted on the distribution of

the baryons; The gravitational interaction between the baryons and dark matter

causes clustering of dark matter halos and thus galaxies at this radius, the sound

horizon. Therefore the probability of finding a galaxy in the high density region

of the stalled baryon wave increases. This probability is evident as a bump in

the two point correlation function at radius s, it appears due to the formation of

galaxies at the center of the density perturbation sphere.

The acoustic peaks are the imprint of the baryonic matter density fluctuations

in the galaxy power spectrum. These fluctuations are known as the BAOs. The

BAO features have been detected from the two-degree Field Galaxy Redshift Sur-

vey (2dFGRS) and SDSS Data Release 5 galaxies as shown in Fig. 3.2 [3]. The

detection of the BAO peak position across the redshift plane is one of the most

promising approaches to study the expansion rate of the universe and reconstruct
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the dark energy equation of state. The accurate detection of this peak is challeng-

ing. Nonetheless, the SDSS and the 2dF galaxy redshift surveys were successful

in detecting the BAO peak. In the near future, larger telescopes will be available

with the aim to measure the BAO accurately (among other scientific goals), over

wider redshift range and to detect the radial and transverse BAO separately thus,

determine the nature of dark energy. In Chapter 6 we will forecast how well future

redshift surveys with a large telescope such as the SKA will detect the BAO peak.

 

 

 

 



Chapter 4

Null tests of the cosmological

constant using supernovae

SNIa are the best distance indicators to probe the expansion history of the Uni-

verse. These ‘standardizable candles’ can be observed to high redshift, and have

produced convincing evidence that the Universe has undergone a recent phase of

accelerated expansion. Current samples of SNIa (e.g. [39–43]) comprise several

hundred SNIa with z < 1.8. Forthcoming surveys of SNIa, such as DES [44], will

produce well-measured light-curves for over 4000 SNIa, improving the cosmological

constraints by an order of magnitude.

In this chapter we use luminosity distances DL(z) determined from SNIa obser-

vations to test the consistency of the standard model, through a set of null tests.

Reconstructing the expansion history of the Universe in a model-independent fash-

ion is essential for these tests. To do this, we use the GP, which have previously

been used to reconstruct w(z) from SNIa luminosity distances [6, 45–47].

We use GaPP (Gaussian Processes in Python)1, a package developed by Seikel

and introduced in [45].

4.1 Null tests of ΛCDM – theory

In Chapter 2, we introduced the equation of state parameter of dark energy,

w = pde/ρde, and (2.19) which can be used to express the dimensionless comoving

1http://www.acgc.uct.ac.za/~seikel/GAPP/index.html
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luminosity distance,

D(z) ≡ H0(1 + z)−1DL(z), (4.1)

It is typical to parametrize w(z) in order to differentiate between various dark

energy models, or to parametrize background and perturbation variables to test

classes of modified gravity models, see section 2.1. A complementary approach is

to test the consistency of the standard model itself, independent of the values of

Ωm and ΩK . A range of null tests designed specifically to probe various aspects

of the concordance model have been introduced (see e.g. [48–54] and [55] for a

review and Appendix B for detailed calculations), such as

w(z) =
{

2(1 + z)(1 + ΩKD
2)D′′ − [(1 + z)2ΩKD

′2 + 2(1 + z)ΩKDD
′ (4.2)

− 3(1 + ΩKD
2)]
}
/
{

3{(1 + z)2[ΩK + (1 + z)Ωm]D′2 − (1 + ΩKD
2)}D′

}
.

Given an observed distance-redshift relationship D(z), it is possible to reconstruct

the equation of state of dark energy and test the ΛCDM model [45]. However,

a disadvantage of this method is that it depends on the values of the density

parameters, Ωm and ΩK , which must be measured independently [45].

To avoid this problem and test ΛCDM using SNIa data, we use the consistency

tests introduced in [51] (see also [50, 52]). Following this approach, we test the

null hypothesis that the expansion of the universe can be described by a flat or a

curved ΛCDM model.

The assumptions underlying the consistency tests and the null hypothesis are:

(1) the universe is homogeneous and isotropic on large scales; (2) gravity is de-

scribed by General Relativity; (3) the universe contains cold matter (with w = 0)

and dark energy with w = −1. Photons and neutrinos can be included (Ωγ, Ων

are known independently, from CMB data), but it is reasonable to neglect radi-

ation at the low redshifts probed by SNIa data. Detection of a deviation from

the consistency tests would imply a violation of at least one of these assumptions:

(1) large-scale nonlinear inhomogeneity or anisotropy; (2) modified gravity; (3) dy-

namical dark energy (w 6= −1), or alternatively, a cosmological constant plus an

unknown additional species with equation of state which deviates from that of

cold matter, curvature or vacuum energy. Any of these possibilities imply that the

standard ΛCDM is ruled out. Note that the tests cannot identify which of these

possibilities applies.
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For a flat ΛCDM model, i.e. w = −1 and ΩK = 0, by manipulating (2.19), we

find that

Ωm

[
(1 + z)3 − 1

]
D′2 = 1−D′2. (4.3)

If we define

O(1)
m (z) =

1−D′(z)2

[(1 + z)3 − 1]D′(z)2
, (4.4)

then

flat ΛCDM implies O(1)
m (z) = Ωm. (4.5)

Thus we obtain a null test of the concordance model:

O(1)
m (z) 6= Ωm falsifies flat ΛCDM. (4.6)

Any variation of O(1)
m (z) with redshift reflects an inconsistency between the flat

ΛCDM model and observations. To detect evolution of O(1)
m with redshift we can

differentiate O(1)
m (z), from which we define the additional diagnostic:

L(1)(z) = (1+z)−6
{

2
[
(1 + z)3 − 1

]
D′′(z) + 3(1 + z)2D′(z)

[
1−D′(z)2

]}
, (4.7)

which vanishes if and only if dO(1)
m /dz = 0. The factor (1 + z)−6 added to en-

sures stability of the errors (see below). If L(1) is nonzero at any redshift, then

observations are incompatible with ΛCDM:

L(1) 6= 0 falsifies flat ΛCDM. (4.8)

We can extend this approach to include spatial curvature, and derive null tests

for general (curved) ΛCDM. Using (2.12), (2.19) and (4.2) with w(z) = −1, and

solving for Ωm and ΩK , we find [53, 55]:

Ωm = 2Υ(z)
{[

(1 + z)2 −D2 − 1
]
D′′ −

(
D′2 − 1

)
[(1 + z)D′ −D]

}
, (4.9)

Ωm ≡ O(2)
m (z),

and

ΩK = Υ(z)
{

2
[
1− (1 + z)3

]
D′′ + 3D′

(
D′2 − 1

)
(1 + z)2

}
, (4.10)

ΩK ≡ O(2)
K (z).
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Here Υ(z) is defined by

Υ−1 = −2
[
1− (1 + z)3

]
D2D′′ −

{
(1 + z)

[
(1 + z)3

− 3(1 + z) + 2
]
D′2 − 2

[
1− (1 + z)3

]
DD′ − 3(1 + z)2D2

}
D′. (4.11)

Then we have

O(2)
m (z) 6= Ωm falsifies curved ΛCDM, (4.12)

O(2)
K (z) 6= ΩK falsifies curved ΛCDM. (4.13)

These are not independent tests: the derivative of O(2)
K vanishes if and only if the

derivative of O(2)
m vanishes. Hence we need only a single diagnostic for vanishing

derivative. We use the derivative of O(2)
m to define

L(2) = (1 + z)−6D′2
{
D
[
− 3 (1 + z)

(
D′2 − 1

)
(2D′ + 3(1 + z)D′′)

+ 2zD′′′
(

3 + z(3 + z)
)]

+ 9(1 + z)2D2D′′2 + 3(1 + z)D2D′

×
(

2D′′ − (1 + z)D′′′
)

+ 6(1 + z)2D′2
(
D′2 − 1

)
−
[
3z2(3 + z)D′′2 + zD′

(
z(3 + z)D′′′ − 6(2 + z)D′′

)]
(1 + z)

}
, (4.14)

which vanishes if and only if dO(2)
m /dz = 0. (Again we use the pre-factor to stabilize

the errors.) Then we have the null test for curved ΛCDM:

L(2)(z) 6= 0 falsifies curved ΛCDM. (4.15)

In principle, L(1) and L(2) provide no additional information compared to O(1)
m and

O(2)
m . However, it is easier to detect a deviation from zero than to confirm that a

quantity is constant, especially since the exact value of this constant is not known

a priori. The disadvantage of L(1) and L(2) is that they require higher derivatives

than O(1)
m and O(2)

m , which are more challenging to constrain.

Another problem with L(1) and L(2) is the degeneracy between w and Ωm: a model

with redshift dependent w can be formally consistent with ΛCDM within the error

bars of the reconstruction if the value of Ωm is adjusted accordingly. Such cases can

only be identified with the Om tests, but not with L (see section 4.3 for details).
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Note that L(1) and L(2) are not identical to dO(1)
m /dz and dO(2)

m /dz, respectively.

Starting from these two derivatives, we have neglected the denominators, which

add significant noise to the tests without adding extra information, and used a

pre-factor (1 + z)−6 to obtain L(1) and L(2). We are free to do this without loss

of generality, since we are testing the equality of these quantities with zero. As

a consequence, the error bands of the reconstructions do not necessarily increase

with redshift as one might expect, and the size of the errors of L(1) and L(2) are

not directly comparable. In addition, the errors added from extra redshift factors

are small when we have spectroscopic redshift measurements.

4.2 Null tests using SNIa data

To apply these null tests using current datasets, it is essential to choose a model-

independent method to reconstruct D(z) and its derivatives. For this purpose,

we use GP (via the GaPP code [45]) to smooth the data and reconstruct the

derivatives.

4.2.1 Gaussian Processes

GP provide a distribution over functions that are suitable to describe the data.

At each point zi, the distribution of function values f(zi) is a Gaussian. Thus

the reconstruction consists of a mean function with Gaussian error bands. The

function values at different points are correlated by a covariance function k(z, z̃),

which depends on a set of hyperparameters (e.g. the characteristic length scale `

and the signal variance σf ). This also provides a robust way to estimate derivatives

of the function in a stable manner. See Appendix A for a detailed description

of GP. In contrast to parametric methods, GP do not assume a specific form

for the reconstructed function. Instead only typical changes of the function are

considered. The hyperparameter ` corresponds roughly to the distance one needs

to move in input space before the function value changes significantly, while σf

describes typical changes in the function value.

There are various formulas of covariance functions. The choice of covariance func-

tion affects the reconstruction to some extent therefore a careful choice must be

made for each particular problem. A general purpose covariance function is the
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squared exponential covariance function k(z, z̃) = σ2
f exp [−(z − z̃)2/(2`2)]. The

Matérn class has a peak width governed by the value of ν

k(z, z̃) = σ2
f

21−ν

Γ(ν)

(√
2ν(z − z̃)2

`

)ν

×Kν

(√
2ν(z − z̃)2

`

)
, (4.16)

where Kν is a modified Bessel function. The Matérn class, along with other

covariance functions, has been intensely tested by [56]. Table II in [56] shows

that Matérn (ν = 9/2) is the best function to use to test ΛCDM model. Their

results indicate that GP in general tend to prefer smooth covariance reconstruction

functions if there is no rapid variation on the reconstructed quantities. Therefore,

we use the Matérn (ν = 9/2) covariance function [57]:

k(z, z̃) = σ2
f exp

(
− 3 |z − z̃|

`

)
×
[
1 +

3 |z − z̃|
`

+
27(z − z̃)2

7`2
+

18 |z − z̃|3
7`3

+
27(z − z̃)4

35`4

]
. (4.17)

For a given covariance function, the probability distribution of the hyperparam-

eters depends only on the data. It is necessary either to marginalize over the

hyperparameters σf and `, or to fix the hyperparameters to their maximum likeli-

hood values. Here we choose the latter approach, which is a good approximation

and computationally much less expensive than marginalization. This has been

tested by [56], a technical paper which discusses the critical issues when working

with GPs, namely the choice of the covariance matrix and the optimization of the

hyperparameters.

As we mentioned above, we choose the Matérn (ν = 9/2) covariance function

because it leads to the most reliable results amongst the covariance functions

that we have tested. Where“reliable” means the following: For various assumed

cosmological models and many realizations of mock data sets, the assumed model

on average lies within the reconstructed 1-σ limits for approximately 68% of the

redshift range (and within the reconstructed 2-σ limits for ∼ 95% of the redshift

range). These values are theoretically expected, thus making Matérn (ν = 9/2)

a reliable covariance function for our purposes. A detailed analysis regarding the
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optimal choice of covariance function can be found in [56]. (Note that these results

only apply to GP reconstructions using D measurements. When applying GP to

other data, another covariance function might be more reliable.)

We follow Appendix A, which contain a summary of the technical details of GP.

Also, for detailed reviews of GP, see MacKay [58].

4.2.2 Application to real data

In this section we will explain how we apply GP method to the Union 2.1 dataset

[40] and determine the current constraints on the consistency of ΛCDM.

Union 2.1 dataset comprises 580 SNIa, with 0.015 < z < 1.5, and includes a

covariance matrix which incorporates a systematic uncertainty. The distance

modulus, µ = m − M , is the difference between the observed magnitude m(z)

and the absolute magnitude of an object M , and is given by (2.20). We choose

H0 = 70 kms−1Mpc−1, as in [40]. Note that H0 and M are degenerate in (2.20)

so we can fix H0 and only consider the uncertainties in M which are included

in the covariance matrix of the Union 2.1 dataset [40] – this includes the errors

on H0. We convert µ to D and add the theoretical values D(z = 0) = 0 and

D′(z = 0) = 1 to the dataset. This form of D and D′ is what we feed to the GP

as training points, see Appendix A.

Fig. 4.1 shows the reconstructed D(z) and its first three derivatives for the Union

2.1 data set, while Fig. 4.2 shows the inferred reconstructions for O(1)
m , O(2)

m and

O(2)
K . Fig. 4.3 shows the reconstruction of L(1) and L(2).

The errors on the reconstructed distances in Fig. 4.1 increase with increasing

order of derivative. For example, at z = 1.5, the standard deviation is 0.05 for the

reconstruction of D, 0.12 for D′, 0.22 for D′′, and 0.29 for D′′′. The near-constancy

of the errors on D′′′ reflect the fact that we are unable to constrain rapid variations

(carried via higher derivatives) on scales below a typical length scale, which is

roughly associated with `. By using GP the scale ` and the resulting smoothness

of the reconstruction is driven purely by the data. Where there is insufficient

evidence for rapid variations, a smooth function will result, which we see in the

second and third derivatives.
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Figure 4.1: Gaussian processes reconstruction of D, D′ (top) and D′′, D′′′

(bottom) for Union 2.1 data. The red (solid) line is flat ΛCDM with Ωm = 0.27.
The blue (dashed) line is the mean of the reconstruction. Shaded areas give

95% (light) and 68% (dark) confidence limits of the reconstructed function.
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Figure 4.2: Reconstruction of O(1)
m (top), O(2)

m (middle) and O(2)
K (bottom) for

Union 2.1 data. Lines and shadings are as in Fig. 4.1.
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Figure 4.3: Reconstruction of L(1) (top) and L(2) (bottom) for Union 2.1 data.
Lines and shadings are as in Fig. 4.1.

4.2.3 Mock data

To demonstrate the ability of the null tests to distinguish between different cosmo-

logical models when applied to future SNIa datasets, we produce mock catalogues

for two fiducial models:

• Flat ΛCDM

• Dynamical dark energy model with ΩK = 0 and

w(z) =
1

2

{
− 1 + tanh

[
3
(
z − 1

2

)]}
. (4.18)

The choice of this form of w(z) is motivated by our interest in testing a slow

evolving function of dark energy.
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To create the mock catalouges, we take Ωm = 0.3. Using the redshift distribution

and scatter anticipated by DES [44], we simulate ∼ 4000 data points in the redshift

range 0 < z < 1.2. Note that the scatter only includes statistical errors.

For each of the two simulated datasets, we reconstruct D(z) and its derivatives

and apply the null tests. Fig. 4.4 and 4.5 shows the constraints and uncertainties

on O(1)
m , O(2)

m and O(2)
K for ΛCDM model and evolving w model, respectively, while

Fig. 4.6 shows the results for L(1) and L(2).

4.3 Discussion

We have introduced an approach to applying null tests of the ΛCDM models (flat

and curved). Using a GP technique to reconstruct the distance-redshift relation-

ship and its derivatives from SNIa data sets in a model-independent fashion, we

have shown that the flat concordance model is consistent with current data, falling

within the 1σ limits. The null tests are stronger if we assume flatness, as expected.

For the Union 2.1 dataset, the consistency tests are in good agreement with a

constant, indicating no evidence of a deviation from a flat ΛCDM model (see

Figs. 4.2, 4.4 and 4.5). For the O(1)
m and O(2)

m tests we find a value for Ωm ∼ 0.27.

O(2)
K is consistent with zero, as expected for flat ΛCDM. Due to the limited number

of SNIa in the Union 2.1 sample and the model-independent method we use, the

reconstructed uncertainties are significant.

For a mock data set based on the DES supernova survey, we find that our approach

can distinguish between competing cosmological models. Using a simulated sample

drawn from a flat ΛCDM model, the recovered distribution of O(1)
m is constant over

the redshift range considered (Fig. 4.4 and 4.5), consistent with O(1)
m = Ωm. For

the evolving w model of (4.18), O(1)
m deviates strongly from a constant value, so

that flat ΛCDM would be disfavoured. This is confirmed by the deviation of L(1)

from zero in Fig. 4.6.

When spatial curvature is allowed, the constraints from the null tests tend to be

weakened, as would be expected by the degeneracy introduced by the extra degree

of freedom [59]. For a flat ΛCDM fiducial model, the reconstructed distribution

of O(2)
m and O(2)

K are consistent with being constant and equal to Ωm and ΩK
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Figure 4.4: O(1)
m (top), O(2)

m (middle) and O(2)
K (bottom) reconstructed using

simulated DES data, and assuming ΛCDM.
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Figure 4.5: O(1)
m (top), O(2)

m (middle) and O(2)
K (bottom) reconstructed using

simulated DES data, and assuming evolving w in (4.18).
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Figure 4.6: Reconstruction of L(1) and L(2) for simulated DES data, and
assuming ΛCDM (top) and the evolving w in (4.18) (bottom). Due to the de-
generacy between w and Ωm, the reconstruction of L(2) for the model with
evolving dark energy is consistent with ΛCDM. However, the inferred values of
Ωm and ΩK differ significantly from the input value as can be seen in Figs. 4.4

and 4.5.
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(Fig. 4.4), respectively, confirming that the model does not deviate from ΛCDM,

as anticipated. But the errors are significantly larger when curvature is allowed.

For the evolving w fiducial model, the reconstructions of O(2)
m and O(2)

K are con-

sistent with constants (Fig. 4.5) – but these constant values differ significantly

from the input values of Ωm and ΩK , respectively. The evolving w model can

erroneously be interpreted as a ΛCDM model with a large matter density Ωm and

negative curvature ΩK . Consequently, the reconstruction of L(2) (Fig. 4.6) is con-

sistent with a constant, indicating that ΛCDM is not disfavoured. In both cases,

the errors are large and the null tests are degraded.

This problem reflects the degeneracy between the density parameters and the dark

energy equation of state (see also [45, 59, 60]). The reconstructions are formally

consistent with a constant, and thus with ΛCDM, due to their incorrectly inferred

values. Additional constraints on the value of Ωm and ΩK from, for instance, BAO

or CMB measurements, are needed to break this degeneracy.

4.4 Conclusions

In this Chapter, we described a series of null tests that can be applied to SNIa

data to determine the consistency of observations with a (flat) ΛCDM model –

without the need to parametrize the equation of state of dark energy. The tests

require that the distance D and the diagnostics O(1)
m , O(2)

m , O(2)
K , L(1) and L(2)

are reconstructed in a model-independent way. We used GP to perform these

reconstructions.

We applied the null tests to the Union 2.1 SNIa data set. The results were con-

sistent with a flat ΛCDM model (Figs 4.2 and 4.3).

Using the anticipated redshift distribution for the DES supernova survey, we pro-

duced mock data sets of 4000 SNIa, with two competing fiducial cosmological

models: flat ΛCDM and an evolving w model. The reconstructed distributions

of O(1)
m for these datasets show that the consistency tests are able to distinguish

between different cosmological models, and can correctly identify deviations from

ΛCDM, in the case when spatial flatness is assumed. However, allowing for spatial

curvature degrades the null tests in general (although not always – see Fig. 4.2).

The inherent degeneracy between the equation of state of dark energy and the
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density parameters (Ωm,ΩK) reduces our ability to distinguish between various

models. The distributions of O(2)
m , O(2)

K and L(2) were consistent with a constant

for the evolving w model (Fig. 4.6), but the inferred values of Ωm and ΩK from

the O(2)
m and O(2)

K distributions were unrealistic (Fig. 4.4 and 4.5). The degeneracy

needs to be broken using other data.

For future data sets which will have the power to probe ΛCDM at high precision,

the null tests we have introduced will require further refinement. In particular, we

need to develop a method of quantifying the significance of any possible deviation.

This is left for future work.

 

 

 

 



Chapter 5

Using H(z) data as a probe of the

concordance model

In Chapter 4 we discussed the fact that one of the most direct ways to reconstruct w

is via SNIa observations that give the luminosity distance DL. Model-independent

approaches to reconstructing w have been developed [5, 6, 45, 47, 61–74]. SNIa

observations lead indirectly to H(z) via the derivative D′L(z). Then we need the

second derivative of DL(z) to reconstruct w. This is very challenging for any

reconstruction technique since any noise on the measured DL(z) will be magnified

in the derivatives. The problem can be lessened if direct H(z) data are used

because only the first derivative needs to be calculated to determine w(z).

In this Chapter we focus on observations that directly give H(z). This may be

derived from differential ages of galaxies (‘cosmic chronometers’) and from the

radial BAO scale in the galaxy distribution. Compared to SNIa observations,

less H(z) observational data are needed to reconstruct w with the same accuracy.

For the cosmic chronometer data, it has been estimated [75] that 64 data points

with the accuracy of the measurements in [76] are needed to achieve the same

reconstruction accuracy as from the Constitution SNIa data [77].

We use GP method that we introduced in Chapter 4 for smoothing H(z) data to

also perform consistency tests of the flat ΛCDM model and of curved ΛCDM mod-

els. These consistency tests are formulated as functions of H(z) and its derivatives

which are constant or zero in ΛCDM, independently of the parameters of the model

(see [78] for a review). Accordingly, deviations from a constant function indicate

problems with our assumptions about dark energy, theory of gravity, or perhaps

40
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Figure 5.1: h(z) = H(z)/H0 (top) and h′(z) (bottom) reconstructed from
BAO data, using Gaussian processes. Shaded areas represent 68% and 95%
confidence levels. The dashed (red) curve is flat ΛCDM with Ωm = 0.27; the
solid (blue) curve is the GP mean. Note that while the BAO data appear to
give an inconsistent h′(z), this is driven by the two highest redshift points both

of which happen to lie below the flat ΛCDM curve.

something else, but without the usual problems of postulating an alternative to

ΛCDM. Some of the tests we use here are given for the first time.

5.1 Testing ΛCDM

It is convenient to express w(z) as a function of h(z) = H(z)/H0 using (2.15)

h2(z) = Ωm(1 + z)3 + ΩK(1 + z)2 + Ωde exp[3

∫ z

0

1 + w(z
′
)

1 + z′
dz
′
], (5.1)

where Ωde = 1 − Ωm − ΩK . To find a formula for w(z) in terms of h(z), we can

rearrange (5.1)
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Figure 5.2: h(z) = H(z)/H0 (top) and h′(z) (bottom) reconstructed from
cosmic chronometer data, using Gaussian processes. Lines and shadings are as

in Fig. 5.1.

exp

∫ z

0

1 + w(z′)

1 + z′
dz′ =

1

3Ωde

[h(z)2 − Ωm(1 + z)3 − ΩK(1 + z)2]. (5.2)

Taking the logarithm of both sides of (5.2), then differentiate one time, we get

1 + w(z)

1 + z
=

1

3

2hh′ − 3Ωm(1 + z)2 − 2ΩK(1 + z)

h2 − Ωm(1 + z)3 − ΩK(1 + z)2
, (5.3)

thus, w(z) in terms of h(z) can be written as

w(z) ≡ pde

ρde

=
2(1 + z)hh′ − 3h2 + ΩK(1 + z)2

3
[
h2 − Ωm(1 + z)3 − ΩK(1 + z)2

] . (5.4)

In principle, given h(z) data we can smooth it, attempt to estimate its derivative,

and reconstruct w(z). Same as in w(z) in terms of D(z) case, the reconstruction

of w(z) in terms of Hubble rate is compromised by various difficulties. It depends

on the values of Ωm and ΩK , so we need independent information about these
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Figure 5.3: h(z) = H(z)/H0 (top) and h′(z) (bottom) reconstructed from
CC+BAO data, using Gaussian processes. Lines and shadings are as in Fig.

5.1.

parameters when we reconstruct w(z) from H(z) data. These are difficult to

estimate without assuming a form for w(z) [59, 60, 79].

These difficulties reflect the fact that we cannot use data to construct physical

models – rather, we need to use data to test physical models. The ΛCDM model

could be tested by looking for deviations from w = −1. However, there is a more

focused approach: to develop null hypotheses for ΛCDM, independently of the

parameters Ωm and ΩK [78].

To test the concordance model – i.e. flat ΛCDM – we can use (5.1) to define a

diagnostic function of redshift [50–52]:

O(1)
m (z) ≡ h2 − 1

z(3 + 3z + z2)
. (5.5)

By measuring h(z) and calculating the right hand side of this equation, we should

obtain the same value of Ωm if the assumed model is true, regardless of the redshift
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of the measurements. Therefore

O(1)
m (z) = Ωm implies the concordance model.

This test is equivalent to the test in (4.4) that has been introduced in Chapter

4 in terms of D(z). Similarly, if O(1)
m (z) is not a constant, this is a signal of an

alternative dark energy or modified gravity model. Given observed h(z) data, we

can estimate confidence limits for O(1)
m . If these are not consistent with a constant

value, we can rule out the concordance model.

Therefore it is easier to measure deviations from zero than from a constant. The

more effective diagnostic is thus the vanishing of the derivative O(1)′
m (z). This is

equivalent to L(1) = 0, where [51]

L(1) ≡ 3(1 + z)2(1− h2) + 2z(3 + 3z + z2)hh′. (5.6)

The null test is therefore

L(1) 6= 0 falsifies the concordance model.

To apply this test, we need to reconstruct h′(z) from the data. Note that this test

is equivalent to (4.7).

If the concordance model is ruled out, it is still possible that a curved ΛCDM

model describes the Universe. Equations 5.1 and 5.4 (with w = −1) form a linear

system for Ωm and ΩK . Solving for these parameters we can define

O(2)
m (z) ≡ 2

(1 + z)(1− h2) + z(2 + z)hh′

z2(1 + z)(3 + z)
, (5.7)

OK(z) ≡ 3(1 + z)2(h2 − 1)− 2z(3 + 3z + z2)hh′

z2(1 + z)(3 + z)
, (5.8)

and we have

O(2)
m (z) = Ωm implies ΛCDM,

OK(z) = ΩK implies ΛCDM.

These quantities are equivalent to those in (4.9) and (4.10) in terms of D(z), the

dimensionless comoving luminosity distance [53]. The D(z) forms contain second

derivatives D′′ whereas the h(z) forms above contain only first derivatives h′.
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Figure 5.4: O(1)
m (z) reconstructed from cosmic chronometers (top), BAO (mid-

dle) and CC+BAO (bottom). Where the dashed (red) curve is flat ΛCDM.
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m (z) reconstructed from cosmic chronometers (top), BAO (mid-

dle) and CC+BAO (left). The dashed (red) curve is a curved ΛCDM model.
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Figure 5.6: OK(z) reconstructed from cosmic chronometers (top), BAO (mid-
dle) and CC+BAO (bottom). The dashed (red) curve is a curved ΛCDM model.
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Figure 5.7: L(1)
m = L(1)/(1 + z)6 reconstructed from cosmic chronometers

(top), BAO (middle) and CC+BAO (bottom). The dashed (red) curve is a
ΛCDM model.

Given observed Hubble rate data from which we can estimate the derivative h′(z),

we can then estimate confidence limits for O(2)
m (z) and O(2)

K (z). If these are not

consistent with a constant value, we can rule out ΛCDM in general, and conclude

that dark energy has w 6= −1 (or there is modified gravity). The more effective

diagnostic of these consistency tests is the vanishing of the derivatives of (5.7) and
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m = L(2)/(1 + z)6 reconstructed from cosmic chronometers

(top), BAO (middle) and CC+BAO (bottom). The dashed (red) curve is a
ΛCDM model.
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(5.8). The vanishing of O(2)′
m is equivalent to L(2) = 0, where

L(2)(z) ≡ 3(1+z)2(h2−1)−2z(3+6z+2z2)hh′+z2(3+z)(1+z)(h′2 +hh′′). (5.9)

Then

L(2)(z) 6= 0 falsifies ΛCDM.

The vanishing of O(2)′
K does not give any independent information – it is also

equivalent to L(2) = 0.

Given observations of h(z), we can construct this function independently of the

parameters of the model and test ΛCDM by measuring consistency with zero.

Remember, this has the advantage that it is easier to detect deviations from zero

rather than a constant, but at the expense of requiring an extra derivative in the

observable. This is akin to detecting deviations from constant in w, but without

reliance on the parameters of the model.

For the application of these consistency tests in term of h(z), it is crucial to

use a model-independent method to reconstruct O(1)
m , O(2)

m , OK , L(1) and L(2).

Model-dependent approaches have the problem that they affect or even determine

the outcome of the consistency test: While fitting a ΛCDM model to the data

would always lead to a result that is consistent with ΛCDM, fitting a model that

does not include ΛCDM as a special case would result in inconsistencies with

ΛCDM. The only model-dependent approaches that do not entirely determine

the outcome of the test are those assuming a model which includes ΛCDM as a

special case. Nevertheless, they affect the result by forcing the data into a specific

parametrisation, which might not reflect the true model. The only way to avoid

this problem is to use a non-parametric approach. As in Chapter 4, we use GPs,

which are described in Appendix A.
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Figure 5.9: w(z) reconstructed from cosmic chronometers (top), BAO (mid-
dle – note the different z range) and CC+BAO (bottom) by marginalizing over

Ωm = 0.275± 0.016. The dashed (red) curve is a ΛCDM model.
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5.2 Reconstruction and consistency tests from

H(z) data

Cosmic chronometers are based on observations of the differential ages of galaxies

[76, 80–82]. The Hubble rate at an emitter with redshift z is

H(z) = − 1

1 + z

dz

dte
, (5.10)

where te is the proper time of emission. The differential method uses passively

evolving galaxies formed at the same time to determine the age difference ∆te in

a small redshift bin ∆z, assuming a Friedmann background. To find old galaxies

sharing the same formation time, we have to look for the oldest stars in both

galaxies and show that they have the same age. This method is effective; but

while the differential approach significantly reduces the systematics that would be

present when determining the absolute ages of galaxies, it still faces uncertainties

due to the assumptions that are made to estimate the age.

The second way to measure H(z) is the observed line-of-sight redshift separation

∆z of the BAO feature in the galaxy 2-point correlation function [83–85],

H(z) =
∆z

rs(zd)
, (5.11)

where rs(zd) is the sound horizon at the baryon drag epoch.

Results: real data

We use the following H(z) datasets:

CC: 18 cosmic chronometer data points [86].

BAO: 6 radial BAO data points [83–85].

CC+BAO: Combination of CC and BAO sets.

We normalize H(z) using H0 = 70.4± 2.5 km s−1Mpc−1. The uncertainty in H0 is

transferred to h(z) as

σ2
h =

σ2
H

H2
0

+
H2

H4
0

σ2
H0
. (5.12)
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The reconstructed functions h(z) and h′(z) for the three datasets are shown in

Fig. 5.1, 5.2 and 5.3. The shaded regions correspond to the 68% and 95% confi-

dence levels (CL). The true model is expected to lie 68% of the plotted redshift

range within the 68% CL. Note that this is only an expectation value. The actual

value for a specific function may deviate from the expectation. The dependence

of the actual percentage on the smoothness of the function has been tested and

analysed in [45].

Fig. 5.4 shows the reconstruction of O(1)
m . The reconstruction of O(2)

m and OK is

shown in Figs. 5.5 and 5.6, respectively. While Figs. 5.7 and 5.8 gives L(1) and L(2),

respectively. We actually plot a modified Lm = L/(1 + z)6 which stabilises the

errors at high redshift without affecting the consistency condition. To reconstruct

w(z), we use (5.4), and implement the smooth h and h′. The reconstructed w(z),

is shown in Fig. 5.9, where we assume the concordance values Ωm = 0.275± 0.016

and ΩK = 0 [87].

Results: mock data

To demonstrate how a larger number of data will affect our results when recon-

structing w and testing ΛCDM, we simulated a data set of 64 points for H(z),

drawing the error from a Gaussian distribution N (σ̄, ε) with σ̄ = 10.64z + 8.86

and ε = 0.125(12.46z + 3.23), where σ̄ are the uncertainties we want to produce

while ε is a parameter that guarantees the probability of σ̄ lies within the 94%

confidence level. A clear explanation of the adopted methodology can be found in

[75].

We simulated data points for two different models:

Concordance model, ΩK = 0, Ωm = 0.27.

A model with slowly evolving equation of state, introduced in (4.18), and the same

concordance density parameters.

The GPs reconstructions are shown in Figs. 5.10, 5.11–5.16.

Discussion

Fig. 5.4 shows that for the CC and CC+BAO data (18 and 24 points), we get

good reconstructions when there is no differentiation of h(z) involved. The BAO
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Figure 5.10: h(z) (top), h′(z) (middle) and h′′(z) (bottom) reconstructed from
simulated data, assuming a concordance model.
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Figure 5.11: h(z) (top), h′(z) (middle) and h′′(z) (bottom) reconstructed from
simulated data, assuming a model (4.18) with slowly evolving w(z).
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m (z) (middle) and OK(z) (bottom) recon-
structed from simulated data, assuming a concordance model.

 

 

 

 



Chapter 5: Using H(z) data as a probe of the concordance model 57

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2

O
m

(1
) (z

)

z

true model

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

O
m

(2
) (z

)

z

true model

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2

O
k
(z

)

z

true model

Figure 5.13: O(1)
m (z) (top), O(2)

m (z) (middle) and OK(z) (bottom) recon-
structed from simulated data, assuming a model (4.18).
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Figure 5.14: L(1)
m = L(1)/(1 + z)6 (top) and L(2)

m = L(2)/(1 + z)6 (bottom)
reconstructed from simulated data, assuming a concordance model.

dataset only contains 6 data points up to redshift 0.73. Beyond that redshift,

the reconstruction differs significantly from ΛCDM. The results from the CC and

CC+BAO sets are however in very good agreement with ΛCDM.

The BAO data appear to be inconsistent with the concordance model. However,

6 data points are not sufficient for a reliable reconstruction. The two data points

with highest redshift happen to be below the concordance curve, which pulls the

reconstructed curve down. However, this illustrates the importance of having

the derivative of the data consistent with the model, as well as the data itself.

Current and upcoming large-volume surveys, such as BOSS [88], EUCLID [89]

and SKA [90], will provide radial BAO measurements of increasing number and

precision.

The reconstruction of O(2)
m and OK shown in Figs. 5.5 and 5.6 is more challenging

for the available dataset, since we need the first derivative of h. With present

datasets, the uncertainties in the reconstruction are quite large. Using CC and
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Figure 5.15: L(1)
m = L(1)/(1 + z)6 (top) and L(2)

m = L(2)/(1 + z)6 (bottom)
reconstructed from simulated data, assuming a model (4.18).

CC+BAO, these results as well as the results for L(1) and L(2) shown in Figs. 5.7

and 5.8, are consistent with ΛCDM.

For the mock datasets, Figs. 5.10, 5.11, 5.12 and 5.13 show that the GP recon-

structions recovers the assumed models very effectively. We can clearly distinguish

the model with slowly evolving w(z) from ΛCDM in O(1)
m . For O(2)

m and OK , the

reconstruction errors are too large to see this difference. The same is true for

consistency tests L(1) and L(2) shown in Figs. 5.14 and 5.15.

The reconstruction of the equation of state w(z) also shows a clear difference of

the two models, assuming we can accurately determine H0, Ωm and ΩK separately

from w(z): see Fig. 5.16. GP works very well to recover the assumed w. With

less than 100 data points, we can reconstruct a dynamical dark energy model far

better than is achievable using thousands of SNIa data – compare to analogous

reconstructions in [45].

 

 

 

 



Chapter 5: Using H(z) data as a probe of the concordance model 60

-2

-1.5

-1

-0.5

 0

 0  0.5  1  1.5  2
w

(z
)

z

ΛCDM

-1.5

-1

-0.5

 0

 0.5

 0  0.5  1  1.5  2

w
(z

)

z

true model

Figure 5.16: w(z) reconstructed from simulated data, assuming a concordance
model (top) and a model introduced in (4.18) (bottom), by marginalizing over

Ωm = 0.275± 0.016.

5.3 Conclusions

We have considered the information that current and future H(z) data can give

us. Currently such data come from cosmic chronometers and BAO data, and is

plainly consistent with the concordance model. Future data, however, will provide

a powerful discriminator between different models. It is remarkable how few data

points are required compared to supernovae: to reconstruct w(z) accurately in our

non-parametric way requires many thousands of SNIa, compared to less than 100

H(z) data points.

We have derived and analysed new consistency tests for the ΛCDM model, which

we have formulated in terms of H(z) directly, rather than using the more familiar

distance function [53, 78]. By smoothing the data points using GP, we have shown

that these can be very effective in determining that ΛCDM is the incorrect model,

but without having to assume the key parameters Ωm and ΩK , which currently
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only have constraints derived by assuming ΛCDM or a similar alternative. These

tests not only require that the data points themselves are consistent with the

model, but that their derivative is also.

Future data which directly measures the expansion history will therefore play an

important role in future dark energy studies.

 

 

 

 



Chapter 6

Future SKA HI galaxy surveys

The SKA is a giant radio telescope array, to be constructed across two sites, in

South Africa and Western Australia. The first phase early science stage starts in

2020 while the completion is due in 2023 [91]. The second phase (with about ten

times the sensitivity and twenty times the field of view) planned for 2030. One of

the key science aims of the SKA is to probe the nature of dark energy by mapping

out large-scale structure, primarily using the 21cm emission line of HI to detect

galaxies and measure their redshifts with high (spectroscopic) precision.

At present, HI galaxy surveys (e.g. HIPASS [92]) are quite small compared to

optical and near-infrared counterparts like BOSS and WiggleZ, limiting their use

for precision cosmology. The unprecedented sensitivity and the field of view of

the SKA will allow for dramatically faster survey speeds, making it possible to

map the galaxy distribution out to high redshifts over most of the sky. The end

result will be sample variance-limited observations over a truly gigantic survey

volume, allowing HI surveys to outperform other methods in terms of precision

cosmological constraints, and making it possible to probe ultra-large scales and

novel wide-angle effects [93, 94].

The current best cosmological constraints from large-scale structure surveys come

from observations of the BAO. The BAO feature is a preferred clustering scale

imprinted in the matter distribution by acoustic oscillations in the coupled photon-

baryon fluid around the time of decoupling [1]. The radial and transverse BAO

scales depend on the Hubble rate, H(z), and the angular diameter distance, DA(z),

as well as the (comoving) sound horizon in the ‘baryon drag’ epoch, rs(zd) that

we introduced in section 3.4. The comoving sizes of the BAO feature along and

62
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across the line of sight are given by

s‖(z) =
c∆z

H(z)
, s⊥(z) = (1 + z)DA(z)∆θ, (6.1)

where the redshift extent ∆z and angular size ∆θ of the BAO feature in the galaxy

correlation function are the observables. In the absence of RSDs and nonlinear

effects, we have s⊥ = s‖ = rs(zd), which can be precisely estimated from CMB

measurements. The BAO scale is therefore a ‘standard ruler’, with which we can

obtain precise constraints on DA and H, and thus the dark energy equation of

state, w(z) = pde/ρde and other quantities.

The expected performance of SKA HI galaxy surveys in constraining dark energy

was previously investigated by Abdalla et al. [93]. In this work we update those

results, using improved modelling of the number density and bias of the HI galaxy

distribution, as well as the various SKA configurations specified in [95]. We provide

the expected galaxy number counts and bias as a function of redshift and raw flux

sensitivity, and map these on to specific SKA configurations. We then present

Fisher forecasts for the BAO for each configuration, and use these to compare

with the performance of other galaxy surveys.

6.1 Telescope and Survey specifications

In this section, we analyse the specifications and expected flux sensitivities of

surveys with various SKA configurations.

The SKA will be built in two phases. Phase 1 will consist of three separate

sub-arrays: SKA1-MID, SKA1-SUR1 and SKA1-LOW [96]. MID and SUR are

dish arrays equipped with the mid-frequency receivers (ν . 1.4 GHz) necessary

to detect HI emission at low/intermediate redshift, while LOW is an aperture

array optimised for lower frequencies (< 350 MHz) and thus higher redshifts.

We will concentrate on MID and SUR here, and their corresponding ‘precursor’

arrays, MeerKAT and ASKAP, which they will be co-sited with, and which can

be connected into the final Phase 1 systems. LOW will be capable of detecting

HI emission only for z ≥ 3, which will presumably be done most efficiently using

1After this work was completed, SUR was deferred as part of a re-baselining review for SKA1
[91].
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intensity mapping rather than a galaxy survey, so we will not consider it here

(although see e.g. [97]).

The specifications of Phase 2 are less well-defined. While its target sensitivity has

been given – around ten times that of MID or SUR at mid-frequency – the receiver

technology, field of view, and baseline distribution are not yet decided. As such,

we can only speculate on these details here. To “future-proof” our results to some

extent, in later sections we will present results for the HI galaxy number counts

and bias as a function of raw flux sensitivity, as well as for individual experimental

configurations. The former can easily be rescaled for the actual specifications of

Phase 2 when they are announced, as well as for any other future radio experiment

that targets HI.

6.1.1 Flux sensitivity

We begin by reviewing the basic flux sensitivity equation. The rms (root mean

square) noise associated with the flux measured by an interferometer is

Srms ≈
2kBTsys

Ae
√

2δν tp
, (6.2)

for a telescope with system temperature Tsys, total effective collecting area Ae,

frequency resolution δν, and observation time per pointing tp (kB is the Boltzmann

constant). We have assumed that the noise is Gaussian. The extra factor of 1/
√

2

comes from assuming a dual-polarisation receiver system. For a dish reflector, the

effective collecting area is typically about 70% of its total geometrical area.

The expression above gives the flux sensitivity for the telescope psf (point spread

function); that is, the noise rms for an ”angular” pixel set by the resolution of the

interferometer (not to be confused with its field of view or primary beam). This

calculation corresponds to the so called ”natural array” sensitivity.

In this work, we will consider a range of values when analysing the cosmological

performance to allow for differences in the final line-processed sensitivity.

The total system temperature is given by Tsys = Tinst+Tsky, where the contribution

from the sky is Tsky ≈ 60 (300 MHz/ν)2.55 K, where the coefficient 60 comes from

the system noise. Tinst is the instrument temperature (which is usually higher than
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the sky temperature for ν � 300 MHz). For typical instrumental specifications,

the noise rms for the array can be written as

Srms = 260µJy

(
Tsys

20 K

)(
25, 000 m2

Ae

)
×
(

10 kHz

δν
· 1hr

tp

)1/2

.

We will assume that the interferometer, in a single pointing, can observe the

following sky area, corresponding to the primary beam or field of view of a dish:

θ2
B ≈

π

8

(
1.3λ

D

)2

[sr], (6.3)

where any efficiency factor has already been taken into account. This is valid for

dishes with single feeds (single pixels) like MeerKAT and SKA1-MID. The ASKAP

and SKA1-SUR dishes are equipped with Phased Array Feeds (PAFs), however, for

which the situation is slightly more complicated. PAF systems are able to observe

a total of Nb beams, depending on the number of feeds, so that the total field of

view should be Nb × θ2
B. While θ2

B increases with wavelength, the total effective

PAF beam will remain constant above a certain critical wavelength, corresponding

to where the individual sub-beams begin to overlap with one another.

The specifications for each SKA configuration are summarised in Table 6.1, along

with the expected flux rms for a one hour integration in a single pointing with

a frequency resolution of 10 kHz. For SKA1-MID/SUR and their combination

with MeerKAT/ASKAP, only Band 2 is considered, as the lower-frequency Band

1 will provide insufficient sensitivity for a HI galaxy survey. For the combined

telescopes, only the overlapping band is given. Note however that the SKA1

baseline specifications suggest that the ASKAP PAFs should be replaced to match

the SKA1-SUR band and instrumental temperature (taken to be 30 K).

For SKA2, as mentioned above, we just assume 10 times the sensitivity of the

Phase 1 configurations, leaving other aspects of the specification (e.g. system

temperature, number of dishes) undefined. We must still choose a field of view

(FOV) and bandwidth, however; reasonable estimates are a FOV about 20 times

that of the Phase 1 configurations, and a bandwidth sufficient to cover 0.1 ≤ z ≤
2.0 (i.e. 1290 ≥ ν ≥ 480 MHz). The significantly larger FOV can be supported

by various proposed technologies for Phase 2, e.g. MFAA,2 while the Phase 1 dish

arrays will already possess the technology required to cover the specified frequency

2https://www.skatelescope.org/mfaa/
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range (albeit with lower sensitivity, limiting the useful minimum frequency for HI

galaxy surveys).

6.1.2 Survey specifications

To maximise its effectiveness, a balance must be found between the sensitivity of a

survey and its area. In principle, wide surveys can probe larger volumes and thus

sample a greater number of Fourier modes, but this comes at the cost of reducing

sensitivity per pointing (for a fixed total survey time), thus increasing shot noise

and reducing the maximum redshift that can be reached.

For a 10,000 hour survey, and the sensitivities given in Table 6.1, SKA2 will es-

sentially be able to achieve a sample variance-limited “full sky” survey, so we set

its survey area to 30,000 deg2. For SKA1, however, the situation is less obvious.

Using the Fisher matrix analysis described in the following sections, we searched

for the optimal SKA1 survey area for our target science – in this case, whatever

maximises the dark energy figure of merit (FOM). FOM is discussed briefly be-

low. We also considered two possible frequency intervals: the current SKA1 MID

specification (950-1670 MHz) and a slightly “deeper” band (800-1300 MHz) with

a maximum redshift of ∼ 0.8. The results of the optimisation procedure are shown

in Fig. 6.1.

For the lower frequency range, Fig. 6.1 shows that the FOM is maximised for a

survey area of around 5,000 deg2. This is where a balance between depth and width

is reached – the information gain from detecting the BAO at higher redshifts is

traded-off against the larger sample variance due to the smaller area. Conversely,

the higher frequency band is restricted to lower redshifts, limiting the maximum

depth that can be achieved. This leads to a preference for larger areas (∼ 25, 000

deg2), although note that this survey would not be sample variance-limited as in

the SKA2 case.

These results are specific to the figure of merit that we are optimising for. If we

instead required a strong detection of the BAO at the highest redshift for the 950-

1670 MHz band, for example, the optimal area would again be around 5,000 deg2.

Other issues can also be considered. For instance, we might want to ”piggy-back”

the HI galaxy survey on top of other surveys to optimise the overall observing
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Figure 6.1: Dark energy figure of merit versus survey area for SKA1, with
different frequency ranges. A Planck CMB prior has been included in the FOM
calculation, but the optimal survey areas are the same even if the prior matrix

is not included.

time, which could drive us to use the 10,000 hours over ∼ 25, 000 deg2. A “full

sky” survey would also have the advantage of probing wide-angle effects.

In this work, we have opted to assume a 5,000 deg2 area for SKA1 using the 800-

1300 MHz band. Although the current specifications for, say, SKA1-MID Band

2, specify a minimum frequency of 950 MHz, the numbers are still under review,

so that it is acceptable to assume that such a change could happen. Using a

smaller 5,000 deg2 area for SKA1 allows the survey to be sample variance-limited

in every redshift bin, which also brings advantages in terms of dealing with possible

systematics (e.g. it will be easier to deal with a 5-sigma detection threshold). The

final specifications that we assumed are summarised in Table 6.2.

For a given survey area, Sarea we will need approximately Sarea/(θB)2 pointings.

The time per pointing tp is then related to the total integration time ttot through

tp = ttot
(θB)2

Sarea

. (6.4)

 

 

 

 



Chapter 6: Future SKA HI galaxy surveys 69

T
el

es
co

p
e

R
ed

sh
if

t
T

ar
ge

t
fr

eq
.

B
ea

m
[d

eg
2
]
S

a
re

a
[d

eg
2
]
t p

[h
ou

rs
]

S
re

f
rm

s
[µ

J
y
]

M
ID

+
M

ee
rK

A
T

(a
)

0.
0

–
0.

78
1.

0
G

H
z

0.
88

5,
00

0
1.

76
15

2

S
U

R
+

A
S
K

A
P

(b
)

0.
0

–
1.

19
1.

3
G

H
z

18
5,

00
0

36
17

5/
14

0(c
)

S
K

A
2(d

)
0.

1
–

2.
0

1.
0

G
H

z
30

30
,0

00
10

5.
14

T
a
b
l
e
6
.2
:

S
u

rv
ey

sp
ec

ifi
ca

ti
on

s.
W

e
as

su
m

e
a

to
ta

l
ob

se
rv

at
io

n
ti

m
e

of
10

,0
00

h
ou

rs
.

F
o
r

M
ID

+
M

ee
rK

A
T

,
a

m
o
d

ifi
ca

ti
o
n

o
f

b
a
n

d
2

is
as

su
m

ed
(8

00
-1

30
0

M
H

z)
in

or
d

er
to

ac
h

ie
ve

th
e

ta
rg

et
re

d
sh

if
t

ra
n

ge
.

F
lu

x
rm

s
is

ca
lc

u
la

te
d

fo
r

a
fr

eq
u

en
cy

in
te

rv
a
l

o
f

1
0

k
H

z.
V

al
u

es
fo

r
th

e
b

ea
m

an
d

fl
u

x
se

n
si

ti
v
it

y
ar

e
q
u

ot
ed

at
th

e
ta

rg
et

fr
eq

u
en

cy
.

N
o
te
s:

(a
)

B
ea

m
an

d
ti

m
e

p
er

p
oi

n
ti

n
g

(t
p
)

ar
e

as
su

m
ed

to
ch

an
ge

as
(1

G
H

z/
ν

)2
ac

ro
ss

th
e

b
a
n

d
,

a
n

d
th

e
fl

u
x

rm
s

is
a
ss

u
m

ed
to

ch
an

ge
as

ν
/(

1
G

H
z)

.
(b

)
V

al
u

es
ca

lc
u
la

te
d

at
th

e
P

A
F

cr
it

ic
al

fr
eq

u
en

cy
.

B
el

ow
th

a
t

fr
eq

u
en

cy
,

th
e

va
lu

es
a
re

a
ss

u
m

ed
co

n
st

a
n
t.

A
b

ov
e

it
,

th
e

b
ea

m
an

d
t p

ar
e

as
su

m
ed

to
go

as
1/
ν

2
,

an
d

th
e

fl
u

x
rm

s
as

ν
.

(c
)

T
h

e
fi

rs
t

va
lu

e
ta

ke
s

a
w

ei
g
h
te

d
av

er
a
g
e

o
f

th
e

S
U

R
+

A
S

K
A

P
te

m
p

er
at

u
re

w
h

il
e

th
e

se
co

n
d

va
lu

e
as

su
m

es
th

at
th

e
A

S
K

A
P

P
A

F
s

ar
e

re
p
la

ce
d

to
m

a
tc

h
S

U
R

sy
st

em
te

m
p

er
a
tu

re
.

(d
)

In
d

ic
at

iv
e;

th
e

b
ea

m
an

d
fl

u
x

rm
s

ar
e

as
su

m
ed

co
n

st
an

t
a
cr

o
ss

th
e

b
a
n

d
.

 

 

 

 



Chapter 6: Future SKA HI galaxy surveys 70

Since (θB)2 goes as 1/ν2, this will increase the available integration time per point-

ing at lower frequencies; the flux rms is therefore proportional to the frequency,

and so decreases for lower frequencies. The flux rms will remain constant below

the critical frequency for PAFs, however, as explained above. In order to cover

the required survey area, we assume that the mosaicking (how we pack the point-

ings/beams) is done at the highest frequency used for the HI survey; that is, the

telescope pointings are packed side by side at the highest frequency. This ensures

that the full survey area is covered at the highest frequency, but means that the

beams will overlap at lower frequency, reducing the survey efficiency.

6.2 HI galaxy simulations

Crucial ingredients to any cosmological calculation using galaxy surveys are the

galaxy number density as a function of redshift and detection threshold, and the

corresponding bias with respect to the underlying dark matter distribution. Ana-

lytical calculations, though possible, would have to rely on some relation between

the HI luminosity for a given galaxy and its host dark matter halo. As such, they

might fail to emulate the actual distribution unless properly calibrated to full sim-

ulations, as the HI luminosity can depend on other factors besides the halo mass.

Instead, to calculate the HI galaxy number density and bias as a function of the

survey rms sensitivity Srms we have used the S3-SAX simulation3. This simulation

consists of a galaxy catalogue containing the position and several astrophysical

properties for objects in a mock observing cone. It was produced by Obreschkow

and Rawlings [98] by adding HI and CO properties to the galaxies obtained by

De Lucia and Blaizot [99] through the post-processing of the Millennium dark

matter simulation [100]. Since each galaxy in the simulation has associated with

it a HI luminosity and line profile, as well as a redshift, we can proceed to calculate

the number of galaxies that one could expect to detect with a given survey.

3http://s-cubed.physics.ox.ac.uk/s3_sax
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Figure 6.2: HI galaxy redshift distribution, dN/dz, calculated from sim-
ulations (solid circles) and the corresponding fitting function, (6.5). From
top to bottom, the curves shown correspond to flux sensitivities Srms =
(0, 1, 3, 5, 10, 23, 100, 200) µJy (colour-coded according to the panel on the right).

6.2.1 HI galaxy number densities

Detection of a HI galaxy relies on the measurement of its corresponding HI line

profile. This is usually set by the galaxy rotation curve and the inclination angle

at which the galaxy is observed. The largest line width will be obtained if we

observe the spiral galaxy edge-on and the smallest when it is observed face-on.

The choice of detection algorithm is crucial to the success of any large HI galaxy

survey campaign, as it will determine the total number of galaxies detected and

how clean that detection is, i.e. how well spurious detections (due to RFI, for

instance), can be rejected. As such, the expected galaxy number density for a

given survey is not simply a function of the flux sensitivity.

In this Chapter, we take the simple approach that at least two points on the HI

line are required to be measured in order for a galaxy to be detected. That is,

the width of the line has to be larger than twice the assumed frequency resolution

of the survey. The idea is to obtain information on the typical line double peak

(double horn) expected from HI galaxies due to their rotation. This will remove
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Figure 6.3: HI galaxy bias for different Srms. Note that bias values for high flux
rms are uncertain. This has little impact, however, as shot noise will dominate

at these sensitivities.

any galaxy that is seen face-on since it would just show as a narrow peak, which

could be confused with RFI. Typical line profiles have widths of tens of kilometres

per second, which is fine for the radio telescopes we are considering, as resolutions

of 10 kHz are easily achievable (corresponding to ∼ 2 km/s in the rest frame).

Using the S3-SAX database, we applied the following “detection” pipeline:

1. Take zA (the apparent redshift, including Doppler correction) from the database.

2. Set the spectral resolution to δV = 2.1(1 + zA) km/s, corresponding to a

frequency resolution of 10 kHz (which was assumed for the sensitivity calcu-

lations).

3. Take wP (the line width between the two horns of the HI line profile, cor-

rected for galaxy inclination) from the database, and select only galaxies

with wP > 2δV .
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4. Take vHI (the velocity-integrated line flux of the HI line) from the database

and select only galaxies where the flux = vHI/wP > Ncut × Srms/
√

(wP/δV ).

This corresponds to a detection threshold of Ncut × 1σ for the HI line.

Note that Srms is only the flux sensitivity – the survey flux cut will be a factor

of several above that (usually five or ten, depending on the chosen threshold),

although the actual value is not straightforward to specify since it depends on the

detection algorithm.

In order to be as general as possible, we give results for a range of Srms values

so that a simple interpolation can be used if there is a change in the survey

specifications. We use the formula of Obreschkow and Rawlings [98] to fit the

dN/dz data points from S3-SAX:

dN(z)/dz

1 deg2 = 10c1zc2exp (−c3z) , (6.5)

where ci are free parameters. Note that dN
dz

is the number of galaxies per square

degree and per redshift interval. Fig. 6.2 shows the fitted curves and the simulated

data points, and the fitted parameters are given in Table 6.4.

6.2.2 HI galaxy bias

To calculate the galaxy bias using the SAX simulation, two approaches were con-

sidered. The most direct was to put the extracted HI galaxies in a box according

to their redshift and position, and to then calculate the galaxy power spectrum.

The bias squared is then the ratio of this power spectrum to the dark matter one

at a given scale k. Ideally we would target large scales, to avoid non-linearities and

shot noise contamination. The initial box for the simulation was 500h−1 Mpc, but

this was further reduced along the line of sight to avoid cosmic evolution, which

raises a problem for the bias extraction since linear modes with k . 0.1h/Mpc

will be affected by cosmic variance.

The other option was to calculate the HI galaxy bias using the dark matter halo

bias. To that end, we need to extract from the simulation box, at a given redshift,

the dark matter halo hosting each HI galaxy above the target flux cut. The HI
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bias can then be calculated using a weighted sum of the dark matter halo bias,

bHI(z, Srms) ≈
∑
i

b(z,Mi)
Ni

Ntot

, (6.6)

where b(z,Mi) is the halo bias for mass Mi [101], Ni is the number of halos in

the box with mass Mi hosting HI galaxies above the detection threshold, and

Ntot =
∑

iNi. This method is less affected by shot noise and does not suffer from

the cosmic variance issues of the previous method. As such, in this Chapter we

opted to calculate the bias following this second prescription. The data points

obtained from the simulation are shown in Fig. 6.3 as a function of redshift for

different Srms sensitivities, and numerical values are given in Table. 6.3. We fit the

simulated data using

bHI(z) = c4 exp(c5z), (6.7)

and give the values of the best-fit parameters in Table 6.4.

The galaxies used in the bias calculation are contained in small volumes between

∼ (60/h)3 Mpc3 (for z ≈ 0) and (175/h)3 Mpc3 (for z ≈ 2) due to the size

of the redshift bins considered. Given the much larger volumes probed by an

experiment like the SKA, one would expect to find a number of halos larger than

those contained in the simulation boxes. However, this should only have an impact

for large flux cuts, which are dominated by shot noise anyway and so will have

little consequence in terms of cosmological constraints.

For halos of a given mass, there is significant variation in the HI mass of the

galaxies residing within them. This implies that some galaxies with considerably

higher HI masses than the average will be found. The number of halos rapidly

decreases with halo mass and redshift, however, and so the majority of galaxies

with high HI masses will be found in modest halos with modest bias. The fraction

MHI/Mhalo has also been shown to rapidly decrease with increasing halo mass for

halos with masses above 1012M� [102], so even very massive halos are likely to

have modest HI masses of the order of 109M� on average. This has the effect of

introducing an effective upper limit to the bias at each redshift, which we estimated

to be only slightly higher than the maximum values we were able to obtain from

the simulation. As such, at each redshift one can assume that the bias remains

constant for values of Srms higher than the maximum that could be extracted from

the simulation.
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Srms c1 c2 c3 c4 c5

0.0 6.21 1.72 0.79 0.5874 0.3577

1.0 6.55 2.02 3.81 0.4968 0.7206

3.0 6.53 1.93 5.22 0.5302 0.7809

5.0 6.55 1.93 6.22 0.5504 0.8015

6.0 6.58 1.95 6.69 0.5466 0.8294

7.3 6.55 1.92 7.08 0.5623 0.8233

10 6.44 1.83 7.59 0.5928 0.8072

23 6.02 1.43 9.03 0.6069 0.8521

40 5.74 1.22 10.58 0.6280 0.8442

70 5.62 1.11 13.03 0.6094 0.9293

100 5.63 1.41 15.49 0.6052 1.0859

150 5.48 1.33 16.62 0.6365 0.9650

200 5.00 1.04 17.52 — —

Table 6.4: Best-fit parameters for the number density and bias fitting func-
tions, (6.5) and (6.7), for different flux limits. Srms is measured in µJy.

For HI masses below 109M�, locally-measured HI luminosity functions seem to

imply many more galaxies than predicted by the simulation, suggesting that low

mass galaxies are more HI rich than previously thought [102]. If this is the case,

the bias will be smaller than predicted here for small values of Srms (e.g. . 1 µJy).

This result is subject to completeness uncertainty and cosmic variance, however,

and is yet to be confirmed [103]. Conversely, the Damped Lyman-Alpha (DLA)

observations (though model-dependent, and suffering from several uncertainties)

are so far consistent with our predictions for the HI bias [104].
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6.3 Cosmological Performance

In this section, we use Fisher forecasts to compare the ability of the proposed SKA

HI galaxy surveys to constrain various cosmological quantities. Our focus is on

the detection of the BAO feature, which we use as a figure of merit owing to its

status as arguably the cleanest [105, 106] and most ‘standard’ observable targeted

by cosmological large-scale structure surveys. In order to parameterize deviations

from the standard model of DE (w = −1), we can parameterize the equation of

state,

w(z) = w0 + wa
z

(1 + z)
. (6.8)

Constraints on the dark energy equation of state parameters, w0 and wa, are also

presented. We take the Planck best-fit flat ΛCDM model [37] as our fiducial

cosmology, with h = 0.67, Ωcdm = 0.267, Ωb = 0.049, ns = 0.962, and σ8 = 0.834.

6.3.1 SKA assumed sensitivities

Our forecasts follow the specifications given in Table 6.2, with the sensitivities ob-

tained for a total observation time of 10,000 hours, and a survey area of 5,000 deg2

for SKA1 and 30,000 deg2 for SKA2. For each configuration we also considered

‘optimistic’ and ‘pessimistic’ variations, which are intended to bracket the possible

range of flux sensitivities once HI modelling uncertainties and possible changes to

the instrumental design are taken into account.

For SKA1, we take the flux rms at the target frequency of 1 GHz to be

Sref
rms = 70/150/200µJy(opt./ref./pess.). (6.9)

The optimistic scenario is roughly equivalent to taking the reference flux for SKA1-

MID+MeerKAT (152 µJy), but assuming that the detection threshold would be

set at the 5σ level. For SKA2, in lieu of any other information about its design

we take the flux rms to be constant across the band, with

Sref
rms = 3.0/5.4/23µJy(opt./ref./pess.). (6.10)

The frequency/redshift interval for SKA1 is taken to be compatible with SKA1-

SUR + ASKAP Band 2 or a modification of SKA1-MID + MeerKAT Band 2 as
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Figure 6.4: Number densities for the optimistic, reference, and pessimistic
cases of SKA1 and 2, compared with Euclid. Dashed-dotted lines show the
number density at which n(z)b2(z)P (z, kmax) = 1 for the various surveys, with
kmax ≈ 0.2h/Mpc. When dN/dz is above this line, sample variance dominates
the shot noise for all k < kmax; the point at which it dips below the line is

effectively the maximum redshift of the survey.

explained in section 6.1.2, such as 800-1300 MHz. We ignore Band 1, since above

z ∼ 0.8 one cannot detect enough galaxies for cosmological purposes with SKA1

sensitivities anyway. Note that both MID and SUR have similar sensitivities for

the HI galaxy survey we are describing, although the current SUR band 2 definition

is more optimal for this. For SKA2, we take the z range given in Table 6.2.

The number density and bias scale with frequency/redshift, as explained in Section

6.1.1. We take this into account by interpolating between the best-fit sensitivity

curves shown in Figs. 6.2 and 6.3, as a function of redshift. The interpolation also

allows us to factor in possible changes to the flux cut (galaxy detection threshold).

For a given survey, the flux rms therefore scales as

Srms = Sref
rms

Ncut

10

ν21

νc
(1 + z)−1, (6.11)

where ν21 is the rest frame frequency of the 21 cm line, Sref
rms is the reference flux

sensitivity quoted in the tables, Ncut is the threshold above which galaxies are

taken to be detected, in multiples of the noise rms, and νc is the target/critical
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frequency at which Sref
rms was calculated (1.0 GHz for MID and 1.3 GHz for SUR).

Note that for SUR (PAFs), the flux Srms will remain constant for frequencies below

νc.

As mentioned above, we assume that the reference experiment for SKA1 has non-

PAF receivers (i.e. SKA1-MID + MeerKAT). For SKA2 we take the flux to be

constant with redshift, also as discussed above. Then we correct for number density

and bias by interpolating (6.5) and (6.7) using the values in Table 6.4. The

resulting best-fit parameters for the number density and bias functions are given

in Table 6.5. The redshift distribution for the target surveys is shown in Fig. 6.4,

and compared to the limit below which the survey becomes shot noise-dominated.

6.3.2 Fisher forecasts

We use the Fisher forecasting technique to estimate how well the SKA surveys will

be able to measure the BAO scale, and thus the various cosmological parameters.

For a qualitative description of what the Fisher matrix is, see chapter 11 in [26].

The first step is to construct the Fisher matrix, which is derived from a Gaussian

approximation of the likelihood, evaluated for a set of fiducial parameters. For a

spectroscopic galaxy redshift survey, the Fisher matrix in a single redshift bin is

Fij =
1

2
Vsur

∫
d3k

(2π)3

∂ logP T (k, z)

∂θi

∂ logP T (k, z)

∂θj
, (6.12)

where {θi} are the cosmological parameters of interest, and Vsur is the comoving

volume of the redshift bin given by,

Vsur =
( π

180

)2

Sarea

∫ zmax

zmin

(1 + z)2D2
A(z)

c

H(z)
dz (6.13)

in units of Mpc3/h3. This definition neglect the redshift evolution within the bin.

while the subscript in Sarea represents the survey area.

The total variance of the measured fluctuations in the galaxy distribution is

P T (k, z) = P (k, z) + 1/n(z), (6.14)
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Figure 6.5: Forecast fractional errors on the expansion rate, H(z), and angular
diameter distance, DA(z), from BAO measurements with the various surveys.

The redshift binning is fixed at ∆z = 0.1 for all experiments.
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where P (k, z) is the redshift-space galaxy power spectrum, and 1/n(z) is the

inverse of the galaxy number density, which acts as a shot noise term. Only the

power spectrum depends on the cosmological parameters, so we can write

Fij =
Vsur

8π2

∫ 1

−1

dµ

∫ kmax

kmin

k2dk

(
nP

1 + nP

)2
∂ logP

∂θi

∂ logP

∂θj
,

where µ = cos θ is the cosine of the angle between the line of sight and the Fourier

mode k. We fix the lower integration limit to kmin = 10−3hMpc−1, and discard

all information from modes beyond a non-linear cutoff scale,

kmax = kNL,0 (1 + z)2/(2+ns) , (6.15)

where kNL,0 ' 0.2hMpc−1 [107].

We adopt a simplified ‘wiggles-only’ approach to deriving BAO constraints, where

only derivatives of the (Fourier-space) BAO feature are included in the Fisher

matrix calculation. We first calculate the full (isotropic) power spectrum, P (k, z),

for the fiducial cosmology using CAMB (see Appendix C.1 for further details)

[108], and then separate it into smooth and wiggles-only components such that

[109]

P (k, z) = [1 + fBAO(k)]Psmooth(k, z). (6.16)

If the actual cosmology differs from the fiducial cosmology, the observed wavenum-

ber, k, of a feature in the isotropic power spectrum will be shifted according to

[110]

k =
√
k2
⊥(D

(fid.)
A /DA)2 + k2

‖(H/H
(fid.))2, (6.17)

where D
(fid.)
A and H(fid.) are the values of the angular diameter distance and Hub-

ble rate given the fiducial model, respectively. Since our aim is to provide a

consistent comparison of the performance of various surveys, rather than to give

high-precision forecasts on a large set of parameters, we make a number of sim-

plifying assumptions: we ignore redshift-space distortions, non-linear effects, and

uncertainty in both the bias and acoustic scale, and assume that the cosmological

information encoded by the BAO feature comes entirely from the shift in k. We

can then write
∂ logP

∂θ
≈ [1 + fBAO(k)]−1 dfBAO

dk

dk

dθ
(6.18)

where, Appendix C.1 discusses further details on how to calculate this derivative.

 

 

 

 



Chapter 6: Future SKA HI galaxy surveys 82

Sref
rms c1 c2 c3 c4 c5

SKA1

opt. 70 5.253 0.901 7.536 0.628 0.819

ref. 150 5.438 1.332 11.837 0.625 0.881

pess. 200 5.385 1.278 14.409 0.646 0.896

SKA2

opt. 3.0 6.532 1.932 5.224 0.530 0.781

ref. 5.4 6.555 1.932 6.378 0.549 0.812

pess. 23.0 6.020 1.430 9.028 0.607 0.852

Table 6.5: Fitted parameters for the galaxy number density and bias, for the
frequency-corrected Srms of the various experiments. The flux rms at the refer-
ence frequency, Sref

rms, is in µJy, while the fitted coefficients are dimensionless.

We work in terms of the parameters θ ∈ {logDA, logH}, so that the Fisher inte-

gral factorises into a simple 2×2 matrix of analytic angular integrals multiplied by

the (scalar) k integral. This calculation includes the cross-correlation between DA

and H (Further details in C.2). Because we are neglecting a number of nuisance

parameters and other effects, our forecasts could be interpreted as somewhat op-

timistic – although note that we are using only the information encoded in the

BAO wiggles, which is quite insensitive to such effects (e.g. [111]).

Using the definition of the expansion rate, H, given in (2.15), and the angular

diameter distance, DA, for a flat universe given in (2.23). We can project the

constraints on DA and H to various basic cosmological parameters. Given H0 =

100h km/s/Mpc, and adopt the commonly used parametrisation of the dark energy

equation of state, given in (6.8). The full set of parameters that we consider is

then

θ′ = {w0, wa,Ωcdm,Ωb,ΩK , h}, (6.19)

with the Fisher matrix found by projecting from the original 2 × 2 matrix and

summing over redshift bins,

F ′αβ =
∑
ij,n

∂θi
∂θ′α

∂θj
∂θ′β

∣∣∣∣∣
zn

Fij(zn). (6.20)
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Finally, we add the Planck CMB prior Fisher matrix from Amendola et al. [35]

to represent the high-z constraints that will be available. See Appendix C.3 for

detailed analytical derivatives of DA and H with respect to the cosmological pa-

rameters of interest and how we combine Planck CMB prior to the SKA Fisher

matrix.

6.3.3 Comparison with previous results and future exper-

iments

The results of our Fisher forecasts are shown in Figs. 6.5 – 6.7 and Table 6.6. For

comparison, we have also included forecasts for

(a) a future optical/near-infrared Hα galaxy survey with similar specifications

to Euclid, using the number counts and bias model for the reference case

described in Amendola et al. [35],

(b) the BOSS LRG galaxy survey, using the specifications in [112], with a total

of 1.5 million galaxies out to z . 0.75, and with a bias of b ≈ 2.

As can be seen from Fig. 6.5, an SKA1 galaxy survey will offer – at best – only

slight improvements over existing experiments at low redshift (z . 0.7). Indeed,

from Table 6.6 it can be seen that BOSS outperforms SKA1, although this is

predominantly due to the larger assumed bias.

SKA1 should still significantly improve the cosmological constraints at low redshift,

however, for the simple reason that it will cover a mostly independent survey area

to existing experiments like BOSS and WiggleZ, thus increasing the total volume

surveyed overall.

The picture is considerably more interesting for SKA2, which will be capable of

performing a sample variance-limited survey over 3/4 of the sky from 0.3 . z . 1.5

in the reference case (increasing to z ≈ 2.0 in the optimistic case). This will

constitute the final word in spectroscopic redshift surveys in this redshift range,

as there is little prospect of covering a greater survey area in the future. As shown

in Fig. 6.5, the SKA2 reference case is forecast to provide measurements of H(z)

and DA(z) to better than 0.5% and 0.3% precision respectively, out to z ≈ 1.3.

This significantly outperforms future Hα surveys such as Euclid, which has half
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the survey area (and approximately double the errors) over the same range. This

is contingent on performing at least as well as the reference case, however; the

pessimistic case would only be competitive with Euclid out to z ' 0.8.

Even in the reference case, measurements above z ∼ 1.5 would be difficult, as the

HI source density falls too low (contrary to what has been forecast for Euclid, for

instance). Note that the HI source density at z > 1 flattens as Srms → 0, however

(Fig. 6.2), suggesting that a sufficiently deep HI survey could produce precision

constraints out to substantially higher redshift, at least in principle.

Figs. 6.6 and 6.7 show forecasts for the equation of state and spatial curvature

parameters for the reference cases of the various surveys. These were derived

by projecting the (H,DA) Fisher matrices, including the cross-correlation terms,

to the parameter set described in section 6.3.2, and then adding a Planck CMB

Fisher matrix prior. Corresponding marginal errors are given in Table 6.6 for

the same parameters, for all cases. As before, SKA2 outperforms Euclid by a

factor of around 2, reflecting its having double the survey area, as well as a further

improvement due to its 4 additional redshift bins below Euclid’s minimum redshift.

In terms of the dark energy figure of merit, defined as [113, 114]

FOM = 1/
√

det(F−1|w0,wa
) (6.21)

(equivalent to the inverse of the area of the 1σ (w0, wa) ellipse), the SKA2 reference

case performs around 4× better than Euclid, and some 60× better than SKA1

(opt. case).

Note that our forecasts are only intended for comparison of the various surveys.

In reality, systematic effects (radio interference, the efficiency of source extraction

algorithms, contamination by foreground emission, non-linearities, modelling er-

rors etc.) should further affect the survey performance. We have concentrated

exclusively on the BAO wiggles in our forecasts, however, which are hoped to

give constraints more insensitive to such systematics. On the other hand, other

observables (e.g. redshift space distortions) can also be measured, significantly

improving the constraints on some parameters.

Leaving these issues aside, our calculations predict that the SKA2 (reference case)

survey will be sample variance-limited over a significant fraction of the redshift

range that is important for dark energy (i.e. z . 2). As a result, it can come

remarkably close to what would be possible with a ‘perfect’ noise-free HI survey
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Figure 6.6: Forecast constraints (1 and 2σ contours) on the dark energy equa-
tion of state parameters, w0 and wa, for the reference cases of both SKA1 (pur-
ple, largest), BOSS (grey, second largest) and SKA2 (green, smallest), compared
to a Euclid-like Hα galaxy survey (yellow, intermediate). A Planck CMB prior

has been included for all three experiments.

over the same area (represented by the Srms = 0 entry in Table 6.6); the 1σ errors

on w0 and wa are only ∼ 1.5× larger than their ‘noise-free’ values, for example,

and even in the pessimistic case they are still only ∼ 3× larger.

Abdalla et al. [93] also investigated how well the SKA can measure the BAO

scale and dark energy parameters. Our work differs from theirs in various aspects.

They used an analytical HI evolution model relying on prior knowledge of the star

formation rate (SFR) and overall mass density of neutral hydrogen at a specific

redshift, functions which depend on fitting formulas. We use a more realistic

simulation to estimate the number counts, which we consider to be an improvement

as our simulation relies on more physical properties, making our predictions more

reliable. The difference between the two sets of results can be seen by comparing

the number counts (Fig. 6.2). Although the number count estimate at high redshift

is consistent in both cases, where they have a sharp curve as a function of redshift,

ours decreases more gradually4. The second important difference is that while

they assumed b = 1, the bias in our simulation was a function of redshift, and was

dependant on the frequency-corrected Srms value (see Fig. 6.3).

4See Fig. 3 of Abdalla et al. [93].
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Figure 6.7: Forecast constraints (1 and 2σ) on w0 and ΩK for the references
cases of SKA1 (purple, largest), BOSS (grey, second largest) and SKA2 (green,
smallest), compared with a Euclid-like Hα galaxy survey (yellow, intermediate).

A Planck CMB prior has been included for all experiments.

6.4 Conclusions

In this Chapter, we analysed the potential for producing precision cosmological

constraints with future HI galaxy surveys using the SKA telescope. HI is abundant

in the late Universe, making it a prime candidate for detecting large numbers of

galaxies which can then be used to trace the underlying dark matter distribution.

In particular, modern radio receivers have the high sensitivity and bandwidth to

detect the HI emission over an extremely wide redshift range, making it possible

to trace the cosmological matter distribution over unprecedentedly large volumes.

Our analysis uses up-to-date simulations to calculate the expected galaxy number

density and bias as a function of redshift and flux sensitivity. We have also provided

a set of fitting formulas, (6.5) and (6.7), that can be used to convert these results

into number density and bias functions for specific experiments, such as the SKA

or any other array.

One of our main conclusions is that although SKA1 will already detect a large

number of HI galaxies, it will only be useful for cosmological applications up to z ∼
0.7 due to the sharp decline of the detected HI galaxy number density with redshift.
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This means that first, for a cosmological HI galaxy survey with SKA Phase 1,

frequencies above ∼ 1 GHz should be enough (i.e. Band 2). Moreover, these

arrays will lack the sensitivity to detect enough galaxies to produce constraints

that are competitive with contemporary optical and near-infrared galaxy surveys

in the early 2020s.

On the other hand, the full SKA will push the HI galaxy detection limit up to

z ∼ 2.0 (requiring a larger band down to 500 MHz), and over the full visible sky,

making it a prime cosmological survey instrument. Its sensitivity will allow us

to produce an immense galaxy redshift survey over almost 3⁄4 of the sky, surpass-

ing all other planned surveys in terms of precision measurements of the BAO.

This should allow it to pin down the equation of state of dark energy with un-

precedented precision. Note that, while we have concentrated on the BAO as the

most robust large-scale structure observable, redshift space distortions and even

the overall shape of the power spectrum contain a great deal of extra information

that can also be used to constrain dark energy. In this sense, the forecasts in this

work represent conservative estimates of the cosmological constraints that can be

achieved with the SKA (although recall that we optimistically neglected several

nuisance parameters in our forecasts).

Note that the SKA will also be able to produce competitive cosmological con-

straints using the HI intensity mapping (IM) technique [109]. IM surveys are

sensitive to large-scale fluctuations in the HI brightness temperature, which can

be used to recover information about the cosmological matter distribution without

requiring high signal-to-noise detections of many individual sources. This means

that the flux sensitivity of a telescope is used more efficiently in IM mode, as none

of the detected signal need be discarded due to thresholding. Indeed, an IM survey

with Phase 1 of the SKA will produce a dark energy figure of merit of at least half

that of Euclid+BOSS [115], in stark contrast to the underwhelming performance

predicted for a Phase 1 HI galaxy survey (Section 6.3.3).

This is not to say that galaxy surveys should be deprecated in favour of intensity

mapping, however. Of the two, galaxy surveys are certainly the more tried-and-

tested (and thus less risky) method – the first large cosmological IM surveys are

still a few years away, and a number of significant technical challenges (e.g. fore-

ground contamination, polarisation leakage, autocorrelation calibration) remain

to be solved [116]. In fact, a galaxy survey may be the preferred choice for a dark

energy survey with Phase 2 of the SKA, as it will likely be easier to approach
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the sample variance limit for z . 2. This is because IM surveys are subject to

a number of effective noise contributions separate from the instrumental noise

(e.g. residual foregrounds and calibration errors) that are difficult to reduce to a

negligible level, while galaxy surveys do not suffer from such residuals. Realistic

simulations informed by experience with Phase 1 surveys will be needed to confirm

this, however.

 

 

 

 



Chapter 7

Conclusion

The lack of theoretical and physical models to explain the dark energy problem

led us to think that the data from probes of dark energy should lead us to the

correct model or at least exclude the models do not agree with the data. In

Chapter 4 we described a series of null tests that can be applied to SNIa data

to determine the consistency of observations with flat ΛCDM model without the

need to parameterize w(z).

The tests require that the luminosity distance, D, and its derivatives (D′ and

D′′) to be reconstructed using a model independent techniques. Thus, we used

the GP method to reconstruct those functions. The reconstructed and smoothed

D,D′, D′′ and D′′′ were used to perform the diagnostics O(1)
m , O(2)

m , O(2)
K , L(1) and

L(2).

These diagnostics were applied to SNIa Union 2.1 data set and the results were

consistent with flat ΛCDM model as shown in Figs. 4.2 and 4.3. We also simulated

DES supernovae survey data. We simulated the data using two different models,

flat ΛCDM and evolving w. Using large number of simulated DES data, over

4000 SNIa, the diagnostic O(1)
m has the ability to distinguish between different

cosmological models, and correctly identify deviation from ΛCDM as shown in

Figs. 4.4 and 4.5. While the other null tests where the curvature was restricted,

O(2)
m and O(2)

K showed unrealistic reconstruction of the input values of Ωm and ΩK

suggesting that the degeneracy between w and the density parameters need to

be broken by other data from different probes. The L(2) diagnostic shows huge

uncertainty which made it impossible to distinguish between models, suggesting

that the dependence of this test on an accurate reconstruction of D′′′ is an issue.
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The tests we introduced in Chapter 4 need further refinement, also the results

suggest that we need a huge amount of SNIa data to reconstruct the model values

correctly. Fortunately, future surveys such as DES, promising large amount of

data that will help to preform these tests accurately.

Similarly, in Chapter 5 we developed and analyzed consistency tests for ΛCDM

model in terms of H(z) instead of D(z) function. We applied H(z) data to those

null tests, by combining cosmic chronometers and radial BAO data. The H(z)

null tests require less derivatives than the tests in terms of D, therefore the recon-

struction of the tests were easier and more accurate. In fact these null tests require

an order of magnitude less H(z) data point than the D(z) null tests required of

SNIa data points. We expect more from these tests specially that future surveys

such as BOSS [88], EUCLID [89] and SKA [90], will provide H(z) data from BAO

measurements of increasing number and precision.

Due to the urge of knowing how well the future surveys will contribute to solve

the quest of the expansion history of the universe thus, we forecast the potential

of the SKA HI galaxy surveys which will indeed revolutionize our knowledge. We

forecast for different stages of the SKA telescope. Our investigation was based on

the simulations of the galaxy number density and the bias as a function of redshift

and flux sensitivity. We produced fitting formulas for these quantities which can

be used for other similar galaxy surveys require an estimate of galaxy number

density or bias (see (6.5) and (6.7)).

The SKA1 will detect a large number of HI galaxies up to z ∼ 0.7. This indicates

that for HI galaxy surveys with SKA1, frequencies above ∼ 1 GHz will be efficient,

see Fig. 6.5. These results suggest the SKA1 will only be complementary to the

current galaxy surveys at best. Although the full SKA will push the HI galaxy

detection to z ∼ 2, and with coverage of 3/4 of the sky, SKA will be a prime

cosmological HI survey instrument. This should allow for high precision BAO

measurements and thus high accuracy in recovering the dark energy parameters.

 

 

 

 



Appendix A

Gaussian Processes

For a data set {(zi, yi)|i = 1, . . . , n}, where Z represents the training points zi,

i.e. the locations of the observations, we want to reconstruct the function that

describes the data at the test input points Z∗.

A Gaussian Process is a distribution over functions and is thus a generalization of

a Gaussian distribution. It is defined by the mean µ(z) and covariance k(z, z̃):

f(z) ∼ GP (µ(z), k(z, z̃)) . (A.1)

At each zi, the value f(zi) is drawn from a Gaussian distribution with mean µ(zi)

and variance k(zi, zi). f(zi) and f(zj) are correlated by the covariance function

k(zi, zj).

Choosing the covariance function is one of the main points for achieving satisfac-

tory results. The squared exponential is a general purpose covariance function,

which we use throughout in Chapter 5:

k(zi, zj) = σ2
f exp

[
−(zi − zj)2

2`2

]
. (A.2)

The ‘hyperparameters’ are σf (signal variance) and ` (characteristic length scale).

` can be thought of as the distance moved in input space before the function value

changes significantly. σf describes the typical change in y-direction. In contrast to

actual parameters, they do not specify the exact form of a function, but describe

typical changes in the function value.
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For Z∗, the covariance matrix is given by [K(Z∗,Z∗)]ij = k(z∗i , z
∗
j ). Then the

vector f ∗ with entries f(z∗i ) is drawn from a Gaussian distribution:

f ∗ ∼ N (µ(Z∗), K(Z∗,Z∗)) . (A.3)

This can be considered as a prior for the distribution of f ∗. One needs to add

observational information to obtain the posterior distribution.

The observational data have a covariance matrix C. For uncorrelated data, C

is a diagonal matrix with entries σi. The combined distribution for f ∗ and the

observations y is given by:[
y

f ∗

]
∼ N

([
µ

µ∗

]
,

[
K(Z,Z) + C K(Z,Z∗)

K(Z∗,Z) K(Z∗,Z∗)

])
(A.4)

While the values of y are already known, we want to reconstruct f ∗. Thus, we

are interested in the conditional distribution

f ∗|Z∗,Z,y ∼ N
(
f̄ ∗, cov(f ∗)

)
, (A.5)

where

f̄ ∗ = µ∗ +K(Z∗,Z) [K(Z,Z) + C]−1(y − µ) (A.6)

cov(f ∗) = K(Z∗,Z∗)

−K(Z∗,Z) [K(Z,Z) + C]−1K(Z,Z∗), (A.7)

are the mean and covariance of f ∗, respectively. The variance of f ∗ is simply the

diagonal of cov(f ∗). Equation A.5 is the posterior distribution of the function

given the data and the prior in (A.3).

In order to use this equation, we need to know the values of the hyperparameters

σf and `. They can be trained by maximizing the log marginal likelihood:

lnL = ln p(y|Z, σf , `)
= −1

2
(y − µ)> [K(Z,Z) + C]−1 (y − µ)

− 1

2
ln |K(Z,Z) + C| − n

2
ln 2π . (A.8)
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Note that this likelihood only depends on the observational data, but is indepen-

dent of the locations Z∗ where the function is to be reconstructed.

Derivatives of the function can be reconstructed in a similar way. For the first

derivative, the conditional distribution is given by [45]:

f ∗′|Z∗,Z, y ∼ N
(
f̄ ∗′, cov(f ∗′)

)
, (A.9)

where

f̄ ∗′ = µ∗′ +K ′(Z∗,Z) [K(Z,Z) + C]−1(y − µ) (A.10)

cov(f ∗′) = K ′′(Z∗,Z∗)

−K ′(Z∗,Z) [K(Z,Z) + C]−1K ′(Z,Z∗). (A.11)

For the covariance matrices, we use the notation:

[K ′(Z,Z∗)]ij =
∂k(zi, z

∗
j )

∂z∗j
(A.12)

[K ′′(Z∗,Z∗)]ij =
∂2k(z∗i , z

∗
j )

∂z∗i ∂z
∗
j

. (A.13)

K ′(Z∗,Z) is the transpose of K ′(Z,Z∗).

To calculate a function g(f, f ′) which depends on f and f ′, we also need to know

the covariances between f ∗ = f(z∗) and f ∗′ = f ′(z∗) at each point z∗ where g is

to be reconstructed. This covariance is given by:

cov(f ∗, f ∗′) =
∂k(z∗, z̃)

∂z̃

∣∣∣∣
z∗

(A.14)

− K ′(z∗,Z) [K(Z,Z) + C]−1K(Z, z∗).

g∗ = g(z∗) is then determined by Monte Carlo sampling, where in each step f ∗

and f ∗′ are drawn from a multivariate normal distribution:[
f ∗

f ∗′

]
∼ N

([
f̄ ∗

f̄ ∗′

]
,

[
var(f ∗) cov(f ∗, f ∗′)

cov(f ∗, f ∗′) var(f ∗′)

])
. (A.15)

 

 

 

 



Appendix B

Derivation of the consistency

tests of w(z)

w(z) in terms of D(z) and derivatives

To get a formula for w(z) in terms of D(z), we can use the general definition of

w(z),

w(z) =
ρde(z)

pde(z)
. (B.1)

Equation B.1 shows the dark energy equation of state. Using (2.16) and (2.17),

H(z) can be expressed in this form [? ]:

H(z) =

(
dDc

dz

)−1√
1−D2

c (z)H2
0 ΩK , (B.2)

where Dc(z) is the transverse co-moving distance introduced in (2.17).

ρde(z) = 3
K

[
1

(dDc/dz)2
+H2

0 ΩK

{
(1 + z)2 − D2

c

(dDc/dz)2

}]
(B.3)

−Ωm(1 + z)3 1
(dDc(z)/dz)2

and

pde(z) = 1
k

[
− 3

(dDc/dz)2
+ (1 + z) d

dz
1

(dDc/dz)2
(B.4)

−H2
0 ΩK

{
(1 + z)2 − 3D2

c

(dDc/dz)2
+ (1 + z) d

dz
D2

c

(dDc/dz)2

}]
.
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We also have the luminosity distance DL(z) in term of Dc(z),

DL(z) = a0(1 + z)f(χ) ≡ (1 + z)Dc(z). (B.5)

Then the dimensionless luminosity distance DL(z) is

D(z) = H0(1 + z)Dc(z). (B.6)

The first derivative of Dc(z) with respect to z,

dD(z)

dz
= H0

dDc(z)

dz
. (B.7)

By substituting the expressions of D(z) introduced in (B.6) and dD(z)/dz in-

troduced in (B.7) into the density and the pressure equations, (B.3) and (B.4),

respectively, we get

ρ(z) = 3
H2

0

D′2k

[
(1 +D2ΩK) + (1 + z)2D′2ΩK + Ωm(1 + z)3D′2

]
, (B.8)

and

p(z) =
1

D′
H2

0

D′2k
[2(1 + z)(ΩKD

2 + 1)D′′]

− [3(1 +D2ΩK) + 2(1 + z)ΩKDD
′ + (1 + z)2ΩKD

′2]D′. (B.9)

By dividing (B.8) by (B.9), we get the expression for w(z) in term of D(z) given

in (4.2).

 

 

 

 



Appendix C

Fisher matrix and propagation of

errors

C.1 Wiggles only power spectrum

These are the steps and calculations to follow in order to produce wiggles only

power spectrum from the theoretical galaxy matter power spectrum.

Produce the matter power spectrum

• First we need to generate the P (k) using Plank parameters from CAMB

with high resolution wiggles, to do that we modify CAMB parameters input

file with these values:

use_physical = T

ombh2 = 0.022068

omch2 =0.12029E+00

transfer_kmax = 2

transfer_k_per_logint = 50

• Then we smooth the wiggles by putting Ωb = 0.004 (the lowest value CAMB

can run without crashing) and in this case we add the value of the Ωb to Ωc.

Therefore, Ωc(new) = Ωc(old) + Ωb.

use_physical = T
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ombh2 = 0.004

omch2 =0.142358E+00

transfer_kmax = 2

transfer_k_per_logint = 5

To produce the wiggles only power spectrum, we subtract the smoothed from the

high resolution wiggles power spectrum. The results will produce the BAO wiggles

function fBAO. Accordingly, we can define the power spectrum as

P (k) = [1 + fBAO(k)]Psmooth(k) (C.1)

Numerical differentiation of fBAO(k)

We can differentiate the function fBAO(k) with respect to k numerically.

A numerical and an accurate method that we can use to differentiate the numerical

function fBAO with respect to k, is known as the Parabola method1.

The method works as follow, stepping through all the points from 2 to n− 1. For

each point i there is one on the left i− 1 and one on the right i+ 1. We can draw

an explicit parabola through these three points (just as we can draw a line through

two points). The equation for a parabola is y = Ax2 +Bx+C, and for each point

the do-loop finds the A, B and C for the parabola that runs through the point

and the two on each side. The slope at the center point i is y′ = 2Ax(i) + B.

Note that A, B and C are different for each step. This function has been tested

on many functions x2, exp(x) and cos(x).

BAO signal

The basic quantities and parameters we require are

k2 = k2
‖ + k2

⊥, (C.2)

1http://mathfaculty.fullerton.edu/mathews//n2003/NewtonPolyMod.html
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Figure C.1: The power spectrum P (k), the smoothed power spectrum and the
wiggles only function fBAO(k) on the top panel. On the x-axis k in Mpc−1h,

and on the y-axis the units are Mpc3h−3

where k‖ and k⊥ are the wave number along and across the line of sight respectively,

and the total wave number is k =
√
k2
‖ + k2

⊥. Where

k⊥ref =
k⊥DA(z)

DA(z)ref

(C.3)

k‖ref =
k‖H(z)ref

H(z)

The subscript ref means the reference cosmology and the ones without ref are

the ones with true cosmology. Note that k⊥ref and k‖ref are fixed. k⊥ and k‖ are

 

 

 

 



Appendix C. Fisher matrix and propagation of errors 100

directly related to µ by

k⊥ = k
√

1− µ2 and k‖ = µ2k. (C.4)

Fisher method

Taking the derivative of k with respect to both quantities, H(z) and D(z)

∂k

∂DA

= −k
2
⊥refD

2
A(z)ref

D3
A(z)

[(
k⊥ref

DA(z)ref

DA(z)

)2

+ k2
‖

]− 1
2

(C.5)

∂k

∂H
=

k2
‖ref

H(z)2
ref

H(z)

[(
kref‖

H(z)

H(z)ref

)2

+ k2
⊥

]− 1
2

.

Therefore the Fisher formula will be given by:

Fij =

∫ 1

−1

dµ

∫ ∞
0

k2dk

8π

Vsurvey

[P z + n−1]2

[
∂Pb

∂ ln(ks)

]2
∂ ln(ks)

∂θi

∂ ln(ks)

∂θj
. (C.6)

If the fractional errors on s−1
⊥ and s‖ are equivalent to measuring the fractional

errors on DA/s and Hs (where s is the true physical value of the sound horizon),

∂ ln(ks)

∂ ln s−1
⊥

= µ2 − 1,
∂ ln(ks)

∂s‖
= µ2 (C.7)

Therefore, Fisher matrix can be expressed as

Fij =

∫ 1

−1

dµ

∫ ∞
0

k2dk

8π2

Vsurvey

[P z + n−1]2

[
∂[1 + fBAO(k)]Pref

∂ ln(ks)

]2
∂ ln(ks)

∂θi

∂ ln(ks)

∂θj
.

(C.8)

We can also rewrite the Fisher matrix where θj and θi are replaced by the param-

eters we aim to forecast for, DA and H, hence
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Fij =

∫ 1

−1

dµ

∫ kmax

kmin

k2dk

8π2

Vsurvey

[P z + n−1]2

×
[
∂fBAO(k)Pref

∂k

] [
∂fBAO(k)Pref

∂k

]
∂k

∂ logDA

∂k

∂ logH
, (C.9)

assuming that the reference cosmology = true cosmology. Using (C.2), (C.3) and

(C.5), the Fisher matrix can be written as

Fij =

∫ 1

−1

dµ

∫ kmax

kmin

Vsurvey k
2dk

8π2

[
n(z)

P (k)n(z) + 1

]2

×
[
∂FBAO

∂k

]2 [
P (k)

1 + FBAO

]2 [
(µ2 − 1)k

] (
µ2k
)
, (C.10)

where the power spectrum is defined as

P (k) = Plin

[
D(z)

D(zin)

]2 [
(1 + zin)

(1 + z)

]2

R(µ)2 b2, (C.11)

and

R(µ) = 1 + βµ. (C.12)

C.2 Errors on DA and H

Using the 2× 2 Fisher matrix defined in (C.9), the errors on lnDA(z) and lnH(z)

are computed using [? ],

σlnDA
=
√

(F−1)11, σlnH =
√

(F−1)22. (C.13)

Fig. 6.5 shows the fractional percentage error on the Hubble rate (σH/H) and the

angular diameter distance (σDA
/DA) for the reference experiments.

C.3 Error propagation to w

We use the parameters of w(z) introduced in (6.8). Therefore the cosmological

parameters under consideration are given by (6.19). We propagate the errors in
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DA(z) and H(z) to the cosmological parameters using

F̃αβ =
∑
ij

∂θi
∂θα

∂θj
∂θβ

Fij. (C.14)

where θi = lnDA, lnH and θα = w0, wa,Ωcdm,Ωb,ΩK , h. Partial derivatives of DA

and H with respect to w0 and wa are given by [? ]

∂ lnDA

∂w0

= −3

2
Ωde

∫ z
0

ln(1 + z′)F(z′)E(z′)−3dz′∫ z
0
E(z′)−1dz′

,

∂ lnDA

∂wa
= −3

2
Ωde

×
∫ z

0

{
ln(1 + z′)− z′

(1+z′)

}
F(z′)E(z′)−3dz′∫ z

0
E(z′)−1dz′

,

∂ lnDA

∂Ωcdm

= −1

2

∫ z
0
{(1 + z′)3 −F(z′)}E(z′)−3dz′∫ z

0
E(z′)−1dz′

,

∂ lnDA

∂Ωb

= −1

2

∫ z
0
{(1 + z′)3 −F(z′)}E(z′)−3dz′∫ z

0
E(z′)−1dz′

,

∂ lnDA

∂ΩK

= −1

2

∫ z
0
{(1 + z′)2 −F(z′)}E(z′)−3∫ z

0
E(z′)−1dz′

+
1

6

(∫ z

0

E(z′)−1dz′
)2

,

∂ lnDA

∂h
=

1

h
∂ lnH

∂w0

=
3

2
Ωde ln(1 + z)

F(z)

E2(z)
,

∂ lnH

∂wa
=

3

2
Ωde

{
ln(1 + z)− z

(1 + z)

} F(z)

g(z)
,

∂ lnH

∂Ωcdm

=
1

2

{
(1 + z)3 −F(z)

} 1

E2(z)
,

∂ lnH

∂Ωb

=
1

2

{
(1 + z)3 −F(z)

} 1

E2(z)
,

∂ lnH

∂ΩK

=
1

2

{
(1 + z)2 −F(z)

} 1

E2(z)
,

∂ lnH

∂h
= −1

h
,

where F(z) and H(z) = H0E(z) are given by (2.14) and (2.15) respectively.
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We marginalize over H0, Ωcdm, Ωb and ΩK , and we add the distance information

from the CMB as follows

F total
αβ (z) = FCMB

αβ + F gal
αβ (z), (C.15)

where

FCMB
αβ = 104∂ lnDA(z = 1090)

∂qα

∂ lnDA(z = 1090)

∂qβ
. (C.16)

Forecasting the errors for the cosmological parameters w0, wa, Ωcdm, Ωb, ΩK and

h, is achieved by adding a diagonal prior matrix, derived from the Planck prior

matrix, to the SKA Fisher matrix – see Table C.1. We also add prior information

about the angular diameter distance out to last scattering at z = 1090, using

(C.16):
σDA(1090)

DA(1090)
= 0.001 (C.17)
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