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ABSTRACT 

 

South African dams and reservoirs are increasingly showing the propensity to 

support sustained populations of Cyanobacteria (blue green algae).  These 

photosynthetic bacteria occur throughout the world and can rapidly form blooms 

in eutrophic water systems. 

 The occurrence of these photosynthetic bacteria, in our dwindling drinking water 

source dams, poses a serious, economic, as well as a health, threat to and arid 

country like South Africa due to is potential to produce of toxic metabolites like 

Microcystins and Nodularins (MCN).  MCN’s are cyclic peptides toxins, harmful 

to humans and animals, and its toxicological mechanism is based on a strong 

inhibition of protein phosphatises in the liver. This may lead to severe liver 

damage and increased tumour development. Rural communities consuming 

untreated water in South Africa are most at risk due the high toxicity of MCN’s at 

low doses. 

We endeavour to develop an immunosensor for the detection of Microcystins and 

nodularins using anti-sheep IgG antibody labelled with horseradish peroxidise 

(HRP) immobilised on a modified glassy-carbon polymer surface. The 

immunosensor will be applied to water samples for MCN’s as a group of 

compounds recognised by the ADDA moiety common to all MCN congeners.  

The immunosensor will provide immediate confirmation and quantification of 

MCN’s in situ. 
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A competitive Enzyme Linked Immuno-Sorbant Assay (ELISA) and High 

Performance liquid Chromatography (HPLC) will be used to validate results of 

our immunosensor.  Elisa’s are widely used as a screening test method for 

MCN’s. The antibody-antigen specificity forms the bases for the recognition of 

target compound (MCN’s) by antibodies which bind to a compound which is 

labelled with a colour indicator, and quantified by spectrophotometry.   

 

Key Words: Microcystin, Nodularins, Elisa, Immunosensor, HPLC, horseradish 

peroxidise (HRP), ADDA, Cyanobacteria, blue-green algae, ant-sheep IgG 

antibody,  
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Chapter 1 

1.1Introduction 

 

South Africa, as an arid country, is on the brink of serious water shortage crises.  

The low annual of rainfall of less than 500 mm per annum, makes it one of the 30 

driest counties in the world[1]. The provision of safe drinking water, for the 

burgeoning population, and to ensure economic sustainability, is proving to be a 

challenge for both the drinking water supplier’s, the South African Government 

and business alike. The City of Cape Town Council has in recent years introduced 

water usage restrictions and water saving strategies to reduce the consumptive 

pressure on the dwindling water resources. 

The limited natural water resource is placed under further pressure by the growing 

concern of Eutrophication. Eutrophication, or nutrient enrichment of water 

sources, is a direct consequence of human impact on the environment through 

urbanization and agricultural practices[2-3]. In developing countries, like South 

Africa, wastewaters from sewage and industries effluents  in urban areas, which 

are often discharged in a poorly treated form or untreated in the environment, are 

increasingly becoming a major source of nutrients, causing eutrophication of 

surface water bodies[2]. Anthropogenic inputs of excess phosphorus and nitrogen 

that enters the water bodies, results in the water quality of surface water 

ecosystem becoming compromised, cause fish killings to occur and the 
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proliferation of algal growth [2, 4]. The most significant and well documented 

impact of Eutrophication is the global phenomenon of harmful algal blooms [5-7].  

 

1.2 Harmful algal blooms 

Harmful algal blooms occur where microscopic algae, that are naturally present in 

water systems, proliferate to such densities that they become visible to the naked 

eye. Most  of these blooms are often dominated by Cyanobacteria, also known as 

blue-green algae[8]. Blue-green algae are able to dominate water systems owing 

to their unique ability to access spatially separated resources (light, nutrients, trace 

minerals). They possess gas vesicles which provide buoyancy and a mechanism to 

that allows them to control their vertical migration in the water column[9].    

Cyanobacteria are photosynthetic bacteria found in surface waters all around the 

world and can occur in diverse habitats from fresh water to terrestrial soils. There 

is still a debate as to whether Cyanobacteria should be classified as an algae or 

bacteria. Cyanobacteria are prokaryotic, as they have no organized cell structures 

(like plasmids and mitochondria) thus the closely represent eukaryotic bacteria as 

opposed to algae[10]. They do also however have the capacity to photosynthesize 

owing to their pigments and photosynthetic mechanism. The names 

"cyanobacteria" and "blue-green algae" (Cyanophyceae) are valid and compatible 

systematic terms[9]. 

 At least a third of the 50 known genera of cyanobacteria are capable of producing 

toxins and between 50 and 70 % of the blooms of those cyanobacteria are 

toxic[11]. Four potentially toxic genera are known for their ability to form 

massive blooms (Anabaena, Aphanizomenon, Planktothrix and Microcystis). In 
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South Africa, extremely dense scums of M. aeruginosa have been recorded with 

cell densities exceeding 109 cells/mL[12]. Thus the need for monitoring of algal 

toxins has become a necessity for the suppliers of drinking water. The City of 

Cape Town established the first dedicated municipal laboratory in South Africa 

for the undertaking of routine analysis for cyanotoxins in water supplies. 

1.3 Cyanobacteria – Toxins 

Cyanotoxins are classified based on the target organs they affect.  The most 

common types of cyanotoxins are neurotoxins, such as the anatoxins and 

saxitoxins, and peptide hepatotoxins such as microcystins and nodularins[9].   

Microcystins are the most widespread of all the cyanobacterial hepatotoxins and 

are produced mainly by cyanobacteria belonging to the genera Microcystis, 

Anabaena, Planktothrix and Nostoc. Microcystis genus is the most ubiquitous of 

the genera and produces the most commonly found hepatotoxins, called 

Microcystins.  The species M. aeruginosa appears to be the most ubiquitous 

species producing toxic blooms[13]. In Cape Town, this species is responsible for 

seasonal blooms in some of the city’s major source water dams. This occurrence 

usually takes place during summer when the water temperature, water pH, 

intensity of solar radiation, dissolved oxygen and CO2 availability create the 

perfect bloom environment. 

 

When cyanobacterial cells die, their cell walls burst, resulting in the release of the 

toxin into the water. The toxins are extremely stable and are not readily affected 

by breakdown chemical processes like hydrolysis or oxidation under conditions 

found in the most natural water bodies[13]. Microcystins  have been shown to be 
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stable at low and high pH as well at extremely and high temperatures[9, 14]. 

Boiling water contaminated with microcystins does not break down the toxin. 

Microcystins have been found to persist in the environment under certain 

conditions for up to 30 days[15]. 

1.4 The chemical structure of Microcystins 

 

Microcystins (MC’s) are cyclic peptides containing seven amino acids, five non-

protein amino acids and two protein amino acids. With more than 80 analogs, they 

are the most numerous of all the cyanotoxins and have been the focus of many 

researchers [9, 13, 16-19].  The molecular weight of microcystins and nodularins 

range from 800 to 1000 Daltons[20]. Microcystins (hepatapeptides) (Figure 1) and 

Nodularins (pentapeptides) (Figure 1) are cyclic molecules, but have the same 

general structure namely: 

cyclo-(D-alanine
1
-X

2
-D-MeAsp

3
-Z

4
-Adda

5
-D-glutamete

6
-Mdha

7
) for 

microcystins; 

   and   cyclo-(D-MeAsp
1
-L-arginine

2
-Adda

3
-D-glutamate

4
-Mdhb

5
) for Nodularin; 

Where X and Z are the two variable L-amino acids; D-MeAsp is D-erythro-β-

methylaspartic acid, Mdha is N-methyldehydroalanine and Mdhb is 2-

(methylamino)-2-dehydrobutyric acid. 

Adda is an unusual amino acid, unique to cyanobacterial toxins: (2S, 2S, 8S, 9S)-

3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid[8-9, 21].  
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Different microcystins have different lipophilicities and polarities, which could 

affect their toxicity[22]. Microcystin-LR (MC-LR) was the first microcystin to be 

chemically identified and is possibly the most toxic representative of this group of 

hepatotoxins and is the subject of most of the cyanotoxin research [21, 23-25].  It 

has been associated with most of the incidents of toxicity involving microcystins 

in most countries [9, 22, 26].  

 

Figure 1. Structure of Microcystin-LR, where Z – Arginine and X - Leucine 

Figure 2.  Structure of Nodularin 
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The extreme toxicity of microcystins and nodularins (MCN’s) has resulted in 

global efforts for rapid and economical detection methods. However, the potential 

of the misuse of MCN’s in bioterrorist activities has led to stringent restrictions on 

the sale and transport of cyanotoxin standards. This control has limited the 

capacity for research, development of detection methods and monitoring of these 

algal toxins[27].  

 
 

1.5 Toxicity of Microcystins & Nodularins (MCN’s) and their Health 

Impacts 

 

MCN’s are affecting many organisms from micro-algae to mammals. MC-LR is 

known to paralyse Chlamydomonas reihadtii, a motile green alga, thus increasing 

its dominance in ecosystems by eliminating its competitors (reviewed in [8]). 

Zooplankton communities in lakes are also affected when microcystin-producing 

species dominate water ecosystems. While some Zooplankton (certain species of 

copepods) avoid ingesting Microcystis colonies, others species do ingest them and 

have the ability to bio-accumulate the toxins, while organisms like Daphnia have 

been shown to  succumb to the toxins[8]. The bioaccumulation of toxins in lower 

organisms (mussels, crayfish, fish, frogs etc.) threatens the entire food web and 

ultimately humans that consume organism like fish [26, 28-29]. Tilapia rendalli, a 

fish used as a food source in Rio de Janeiro in Brazil, had MCN’s in its muscle 

tissue when the levels of cyanobacteria were low [30-31]. These chronic low 

levels of toxins pose a health threat to humans.  

In humans, the primary exposure route to cyanotoxins (MCN’s) is via oral 

consumption of drinking water, contaminated food[32-33], or intake of water 
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during recreational activities, in contaminated water bodies[34]. The popularity of 

commercially produced algal foods as a health and dietary supplements has also 

been noted as a source of potential exposure to MCN’s [18, 33]. MCN’s cannot be 

taken up through the skin since the molecules are too large, however through 

dermal contact they can cause skin, eye and ear irritations, and in cases where 

swimmers swallow whole cells gastrointestinal symptoms such as vomiting and 

diarrhoea has been known to occur[22]. Human fatalities have occurred, the most 

renowned case occurred in 1996, where Brazilian haemodialysis patients at a 

dialysis centre, using municipal water supply water contaminated with 

cyanotoxins. 

This was the first evidence for acute lethal human poisoning from MCN’s[16] . 

Yuan et al reported that during this incident, 100 of 131 patients developed acute 

liver failure and 52 of these victims died as a result of the exposure and later 

confirm to be liver failure[35]. Detection and quantification of microcystins in 

these biological samples posed some analytical challenges since there were no 

well-established and routine analytic methods to measure total microcystins in 

tissue or sera samples[35].  

 

The acute health effects of exposure to MCN’s have received increasing attention 

around the world[9, 22],  and has been well documented.  MCN’s are potent 

inhibitors of protein (serine/threonine) phosphatases PP1 and PP2a[34]. These 

enzymes remove the phosphate from protein and are a common biochemical 

process. This results in protein phosphorylation imbalances that cause the 

disruption of the cell structures, which in turn, results in death due to the hepatic 
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haemorrhage which occurs[25]. The liver cells die and disintegrate as the cellular 

cycles and structures are no longer maintained. Deformed hematocytes have also 

been observed in animal studies where they were exposed to microcystins [36-37]. 

By causing defective cells structures and disrupting cellular process like 

chromosomal division,  it has been argued that MCN’s may play a role in tumour 

promotion in the liver and colon[38].  The World Health Organization has thus 

made a provisional guideline for the exposure to microcystins. This risk is based 

on studies done with mice pigs exposed to microcystin-LR. Therefore a the 

guideline value of 1 µg/L for microcystin-LR is provisional, as the database is 

limited[22] .  

 

1.6 Detection Methods for Monitoring of Microcystins & 

Nodularins. 

 

Detection of cyanotoxins and in particular MCN’s has gone through number 

improvements. The emphasis on increase sensitivity and the ability detect lower 

concentrations has been focus of many studies[39].   The analytical methods used 

for MCN’s and specifically for Microcystin–LR can be divided into those that are 

used as screens i.e. they detect the presence of toxins and generally don’t need 

pre-treatment of samples,  and those that are  used for the identification and 

quantification of various individual toxins  and require elaborate and tedious pre-

treatment and concentration steps.  

 

Screening techniques include the Mouse assay, enzyme-linked immunosorbent 

assay (ELISA), and the phosphatase bioassay. The mouse assay as a screening 
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tool is less desirable these days, yet it remains a reliable screening method giving 

results within a few hours[22]. It is able to distinguish between hepatotoxins and 

neurotoxins and provide information on the minimum amount of toxin to kill a 

mouse and compares this value with lethal doses of known amounts of toxin[9].  

Several invertebrate bioassays ([40-42], plant bioassays [43-45] and in vitro 

methods [46] have been described for MCN detection. 

 

The protein phosphatase inhibition assays (PPIA) is preferred by scientist as a 

screening tool as it times more sensitive than the HPLC.  It is based on the 

inhibition of protein phosphatases by MCN’s on a molecular level and shows 

comparable results for microcystin-LR equivalents with HPLC and ELISA [47-

48].  Even though the method is relatively quick to perform and is sensitive to 

sub-nanogram levels of microcystins in treated water, the method is not specific to 

microcystins as it will detect other substances that inhibit protein phosphatases 

like okadoic acid[9, 26]. 

High-performance liquid chromatography (HPLC) with a photo diode array is the 

most precise method for the detection of hepatotoxins, but is limited by the 

availability of toxin standards[23]. The HPLC methods allows for the 

simultaneous determination of microcystin variants (LR, RR and YR). The 

disadvantages of HPLC methods are the time consuming process of pre-treatment 

of the samples to concentrate and purify the samples and elution time for each of 

the samples[49].  HPLC’s coupled with UV detection are also limited due to the 

narrow  absorption wavelength spectra of microcystins (between 200 and 

300nm)[39] in which most variants occur. When HPLC is coupled with a mass 
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spectrometer, the molecular weights of the toxins gives rise to more accurate 

identification of microcystins[9]. Sangolkar et al reviewed newer advances in 

HPLC techniques that include the HPLC being coupled to electrospray ionization 

(HPLC-ESI-MS) and atmospheric pressure ionization (HPLC-API-MS) 

technologies[50]. However, the expensive equipment and running cost, as well as 

the requirement for highly trained personnel, make the HPLC methods difficult to 

maintain in large or small municipalities that do not have the financial freedom to 

do so. Perhaps the greatest disadvantage of this analytical method is the 

procurement of toxin standards particularly in third world countries like South 

Africa. 

 

ELISA’s methods are based on antibody–antigen interactions, these antibodies 

can be monoclonal or polyclonal antibodies that have been raised against the 

microcystin structure [50-52]. This method proved to be reliable in detecting and 

monitoring drinking water for MCN’s [47] and has become a more affordable 

option to HPLC technologies. Commercially available ELISA kits are highly 

specific, sensitive and relatively quick to perform. The technical requirements are 

not as demanding as with the HPLC. Developments in ELISA have overcome 

shortcomings with the technique. Some ELISA used antibodies raised against 

specific toxins[53]. This is a limitation of some ELISA’s since cross reactivity of 

the antibodies with different MCN’s is variable  and do not correlate with the type 

and toxicity of the molecules[47]. Fisher et al however has developed an ELISA 

that targets the ADDA portion common to all MCN’s[54-55]. It reportedly detects 

all MCN’s as it and was shown to have good cross sensitivity to the most common 
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types of microcystins (-LR,-RR, -YR,- LW,- LF,-LW, -LF, 3-desmethyl-MC-LR, 

3-desmethyl-MC-RR, and Nodularin)[54].  The competitive indirect ELISA that 

Fischer et al developed consisted of synthetic ADDA-haptens, raising antibodies 

to ADDA showed low detection limits.  An ADDA Elisa kit is available from 

Abraxis (Abraxis LLC, Product No. 520011).  

 

Figure 3. Abraxis ELISA standard curves showing good agreement between variants of 

Microcystins and Nodularins [54] 

 

This product is robust, and can perform without sample pre-concentration, detects 

toxins in freshwater samples at lower concentrations than the phosphatase 

inhibition assay. It also shows good cross-reactivity with all cyanobacterial cyclic 

peptide toxin congeners tested to date[55]. The City of Cape Town uses this kit as 

its primary screen test and quantification for algal toxins in drinking water. 
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1.7 Human Risk to chronic exposure 

 

The chronic exposure (long-term) to low dosages of MCN’s in drinking water or 

recreational water or food products that has a potential for toxin bioaccumulation 

is a huge concern. The toxic mechanism of MCN’s results in damage and it is not 

certain how much low-dosage damage occurs in humans before notable effects are 

visible.  There is a risk of tumours associated with MCN’s[22] and thus there is a 

need to be able to detect microcystins at even lower concentration than that of 

ELISA and PPIA’s.   Epidemiological studies in China have linked drinking 

surface water to increased liver cancer, and more recently to lower intestinal 

cancers [33_35]. There is presumptive evidence that the observed increase in liver 

cancer was linked with microcystin in the drinking water, and the high cancer 

rates have been successfully reversed by provision of drinking water wells. 

Laboratory studies with Nodularin and with microcystin-LR have shown possible 

carcinogenesis, though this needs to be confirmed using standard procedures for 

carcinogenesis testing [36, 37]. Continuous low level exposure to microcystins 

may also result in hepatic accumulation; researchers have found that microcystin 

excretion occurs very slowly[56]. Bioaccumulation of toxins have been 

demonstrated in the livers of animals[31, 57-58], these results raises a serious 

concern for that long term exposure to even very low levels of microcystins may 

be significant. The prevalence of liver cancer and other liver diseases may become 

more prevalent as drinking water suppliers struggle with a growing problem of 

cyanotoxin blooms [37, 59]. 

 

 

 

 

 



25 

 

Newer detection techniques with greater sensitivity are being research and 

developed. Biosensors are at the forefront of the research into detecting toxins in 

the environment.  

 

 

This present work aims to develop an immunosensor that is cost effective and 

easy to produce. We endeavour to develop an immunosensor for the detection of 

Microcystins and nodularins using anti-sheep IgG antibody immobilised on a 

modified glassy-carbon polymer surface. The immunosensor will be applied to 

water samples for MCN’s as a group of compounds recognised by the ADDA 

moiety common to all MCN congeners.  The immunosensor will provide 

immediate confirmation and quantification of MCN’s in situ at very low 

concentration, below the guideline promulgated by the WHO (1 µg/L). 
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Chapter 2        

2.1 Introduction: 

 

This section summarises the findings of the results of microcystin monitoring 

results undertaking at Voëlvlei Water Treatment Works near Gouda and, to lesser 

extent results, from Faure Treatment Works. The Treatment works treats raw 

water stored in Voëlvlei dam and provides this treated potable water via a pipeline 

to the citizens Cape Town. Weekly toxin tests are performed as part of a 

mandatory monitoring programme to ensure the water provided is safe for public 

consumption. The monitoring of Algal toxins, specifically microcystins and 

nodularins is undertaken by the ELISA bioassay (Abraxis ADDA Elisa kit from 

Abraxis LLC, Product No. 520011).   

 

The concerns over the health risks and impacts that cyanotoxins pose to people 

prompted the World Health Organization (WHO) to adopt a provisional guideline, 

based on a value for microcystin-LR, in drinking water[9, 22].  Due to the lack of 

reliable analytical data, no guideline values have yet been set for the 

concentrations of nodularin or to other toxins (cylindrospermopsin, anatoxin etc) 

in water[22]. Currently, many countries are using the WHO guideline of 1 µg/L of 

Microcystin equivalents as a guide to monitoring their drinking water sources [19, 

27, 38].  
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In South Africa specific the SANS 241 (2011) stipulates the guideline for drinking 

water standards with respect to comes to cyanotoxins, specifically microcystins. 

Guidelines value has, however, been not been set for the maximum permissible 

concentration for cyanotoxins in recreational water. 

  The Department of Water Affairs (DWA) guidelines of 1996 contain the 

following table:   

  

Table 1. The effects of Microcystin on Human Health 

Microcystin 

Range 

(µg/L) 
Effects 

Target Water 

Quality Range 

0 - 0.8 
No health effects expected 

0.8 - 1 
Possible chronic effects associated with the long-term 
ingestion of microcystins in the drinking water. 

> 1 Possible acute hepatotoxic effects 

 

 

 

 

2.2 Algal Monitoring in the City of Cape Town 

 

Algal monitoring plays an important role in the monitoring of our raw drinking 

waters and potable water systems. Nuisance algal levels in drinking water dams 

are an ever increasing global concern. The shift in many algal communities is 

towards the dominance of the Blue-Green algae (Cyanophyceae) as a result of 

nutrient enrichment (eutrophication). Some of these species have the ability to 
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produce toxic blooms which poses a real threat to humans and animals. Scientific 

Services Branch, City of Cape Town, regularly monitors drinking water (potable 

and raw water) and recreational water bodies for the presence of harmful algae 

species. 

Prior to 1995 the only algal monitoring simply amounted to using microscope to 

identify and count algae in water samples. The 

species composition and relative abundance of the 

different species in the sample gives an indication 

of whether any problem species are beginning to 

dominate in a water body. The measuring of chlorophyll-a concentration of the 

sample also helped as an indication of the amount of algae in the water body. 

When the abundance of algal cells exceeded accepted guidelines, the next step 

was to test the sample for the presence of toxins called microcystins.  

Since 1995, toxin analysis was done by High Performance Liquid 

Chromatography (HPLC) method (Figure 4). A large volume (2L) of sample was 

required. The samples had to be filtered and then taken through an extraction 

process for between 8 to 24 hours. This step was then followed by a further 

process during which the sample is blown down using N2 gas to concentrate the 

sample to a new volume. Sample concentration is the major pre-treatment draw 

back High Performance Liquid Chromatography (HPLC) to determine the 

concentration of the different variants of toxins. The entire process described 

above takes approximately 1
1
/2 days before a result can be obtained.  Since 2005, 

the City invested in ELISA instrumentation (Figure 5) and embarked on staff 

training in the ELISA method for toxin analysis. ELISA, or Enzyme-Linked 
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Immunosorbent Assay, is an immunoassay technique involving the reaction of 

antigen and antibody in vitro. ELISA is a sensitive and specific assay for the 

detection and quantitation of antigens or antibodies. ELISA tests are usually 

performed in microwell plates. The sensitivity of Elisa’s allows for lower 

detection limits of toxins than HPLC’s.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELISA results can be reported within 2-3 hours of sample receipt. Multiple 

samples can be run simultaneously (in contrast to the hourly samples of the 

HPLC).   

 

 

 

Extraction unit HPLC 

Figure 4. HPLC and Extraction unit used to concentrates toxins in raw water 

samples 

Figure 5.  ELISA Reader, kit contents and micro well plates  
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Table 2. Comparison of HPLC and ELISA methods for Toxin Analysis 

 

 

2.3 Enzyme-Linked Immuno-Sorbent Assays 

Enzyme-linked immune-sorbent assay (ELISA) is a biochemical technique used 

mainly in immunology to detect the presence of an antibody or an antigen in a 

sample. ELISA’s is an immunoassay that exploits the specificity between 

antibodies and antigens. The origins of ELISA’s began in 1945 when the concept 

of immunoassays was first described, and followed a series’ of developments 

through to 1972 when Engvall and Perlman introduced  the use of enzymes as 

labels for immunoassay, they first coined the term enzyme-linked immunosorbent 

assay (ELISA) (cited in[60]).  Since then the development and advantages of 

immunoassays has received a lot of attention.  The ELISA has been used as a 

diagnostic tool primarily in medicine and plant pathology, as well as a quality 

control check in various industries[61-62].  Simplistically stated, in ELISA an 

unknown amount of antigen or antibody is affixed to a surface (eg. A microwell 

plate), and then a specific antibody or antigen is washed over the surface so that it 

 HPLC ELISA 

Time 1
1
/2 days for a results 2 hours for a result 

Cost +/- R1500 per sample 
+/- R800 and cheaper if multiple samples are 

run 

Detection 

limits 
0.5 µg/L 0.1 µg/L 

Toxins Microcystin variants Microcystin and Nodularin variants 

Number of 

samples 
1 sample run at a time 

Simultaneous Multiple samples: 

 up to 41 samples in duplicate 
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can bind to the corresponding antigen or antibody. This antibody or antigen is 

linked to an enzyme, and in the final step a substance is added that the enzyme 

can convert to some detectable signal.  There are, however, a variety of formats of 

ELISA’s each with advantages and disadvantages. Table 3 shows the steps and 

variety of the different types of ELISA’s  
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Table 3.  Measuring Principles for ELISA Types (from Biosense) 

Process Indirect Sandwich Direct Sandwich 
Direct Competitive 
Antigen Capture 

Direct Competitive 
Antibody Capture 

Indirect Competitive 
Antibody Capture 

Immobilization 

reaction 

A capture antibody binding specifically 
to the analyte (antigen) is immobilized 
on a solid phase (microtiter plate well). 

A capture antibody binding specifically 
to the analyte (antigen) is immobilized 
on a solid phase (microtiter plate well). 

An antibody binding specifically to the 
analyte (antigen) is immobilized on a 
solid phase (microtiter plate well, 
polystyrene tube or magnetic particles). 

A standard analyte (antigen) is 
immobilized on a solid phase 
(microtiter plate). 

A standard analyte (antigen) is 
immobilized on a solid phase 
(microtiter plate well). 

Binding of 

analyte 

The sample is added, and the analyte in 
the sample binds to the capture 
antibody on the solid phase. Unbound 
components are washed away. 

The sample is added, and the analyte in 
the sample binds to the capture 
antibody on the solid phase. Unbound 
components are washed away. 

   

Binding of 

detection 

antibody 

 

A detecting antibody binding specifically 
to the analyte is added, creating a 
sandwich. Unbound detecting antibody 
is washed away. 

    

Competition 

reaction 

  The sample is added together with an 
enzyme-labelled standard (''tracer''). 
The ''tracer'' competes with the analyte 
in the sample for binding to the 
antibody on the solid phase. Unbound 
components are washed away. 

The sample is added together with 
an enzyme-labelled antibody specific 
for the analyte. The analyte in the 
sample competes with the standard 
analyte on the solid phase for 
binding to the antibody. Unbound 
components are washed away. 

The sample is added together with a 
primary antibody specific for the 
analyte. The analyte in the sample 
competes with the standard analyte 
on the solid phase for binding to the 
antibody. Unbound components are 
washed away. 

Binding of 

enzyme-labelled 

antibody 

An enzyme-labelled antibody binding 
specifically to the detection antibody is 
added. Unbound antibody is washed 
away. 

An enzyme-labelled detecting antibody 
binding specifically to the analyte is 
added, creating a ''sandwich''. Unbound 
detecting antibody is washed away. 

  An enzyme-labelled antibody binding 
to the primary antibody is added. 
Unbound antibody is washed away. 

Chromogenic 

reaction 

A non-coloured substrate is added, and 
the substrate is converted to a coloured 
product by the enzyme bound to the 
antigen-antibody complex. 

A non-coloured substrate is added, and 
the substrate is converted to a coloured 
product by the enzyme bound to the 
antigen-antibody complex. 

A non-coloured substrate is added, and 
the substrate is converted to a coloured 
product by the enzyme bound to the 
solid phase. 

A non-coloured substrate is added, 
and the substrate is converted to a 
coloured product by the enzyme 
bound to the analyte-antibody 
complex. 

A non-coloured substrate is added, 
and the substrate is converted to a 
coloured product by the enzyme 
bound to the antigen-antibody 
complex. 

Quantitative 

analysis 

The colour intensity is measured with a 
microplate reader and the absorbance 
is directly proportional to the 
concentration of the analyte in the 
sample. The relationship between 
absorbance and analyte concentration 
is obtained from a standard curve 
created from a reference material. 

The colour intensity is measured with a 
microplate reader and the absorbance 
is directly proportional to the 
concentration of the analyte in the 
sample. The relationship between 
absorbance and analyte concentration 
is obtained from a standard curve 
created from a reference material. 

The colour intensity is measured with a 
microplate reader or a 
spectrophotometer and is inversely 
proportional to the concentration of 
the analyte in the sample. The 
relationship between absorbance and 
analyte concentration is obtained from 
a standard curve created from a 
reference material. 

The colour intensity is measured 
with a microplate reader and is 
inversely proportional to the 
concentration of analyte in the 
sample. The relationship between 
absorbance and analyte 
concentration is obtained from a 
standard curve created from a 
reference material. 

The colour intensity is measured with 
a microplate reader and is inversely 
proportional to the concentration of 
analyte in the sample. The 
relationship between absorbance and 
analyte concentration is obtained 
from a standard curve created from a 
reference material.  

Adapted from Biosense : Biosense Laboratories AS  Thormøhlensgt. 55  Bergen, N-5008,  Norway  Tel:(+47) 55543966;  Fax:(+47) 55543771 ;  E-Mail: biosense@biosense.com 
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formats[61].  From  Table 3 above, it is clear that both direct and indirect ELISA 

can be used for antigen (or antibody) detection, the indirect ELISA is more 

common as this format of  ELISA utilizes a primary antibody in conjunction with 

a labelled secondary antibody. Since the labelled secondary antibody is directed 

against all antibodies of a given species (e.g. anti-sheep), it can be used with a 

wide variety of primary antibodies (e.g. all sheep monoclonal antibodies)[63]. The 

use of secondary antibody also provides an additional step for signal 

amplification, increasing the overall sensitivity of the assay[60]. Direct methods 

also lack the additional signal amplification that can be achieved with the use of a 

secondary antibody[63].  

2.4 An ADDA Elisa kit is available from Abraxis  

The ADDA ELISA Kit (Abraxis LLC, Product No. 520011) is an enzyme-linked 

immunosorbent assay for the congener independent determination of microcystins 

and nodularins in water samples. The assay utilizes polyclonal antibodies that 

have been raised against the ADDA moiety of the molecule, allowing for the 

detection of microcystins and nodularin variants (over 80 variants are currently 

known) in drinking, surface, and groundwater at levels below World Health 

Organization (WHO) guidelines[55].  

The recognition of microcystins, nodularins and their variants by a polyclonal 

sheep antibody is the bases of this indirect competitive ELISA[54]. When present 

in a sample, microcystins and nodularins compete with a microcystins-protein 

analog that is immobilized on wells of a microtiter plate for the binding sites of 

antibodies in solution. After a washing step, a second labelled antibody is added 

and incubated, antibody- Horseradish Peroxidase (HRP). After a washing step and 
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addition of a substrate/chromogen solution, a colour signal is generated. The 

intensity of the colour is inversely proportional to the concentration of the 

microcystins/nodularins present in the sample. The colour reaction is stopped after 

a specified time and the colour is analysed using a microwell plate 

spectrophotometer to obtain the optical density (OD) at a wavelength of 450 

nanometer (nm)[64]. Various software packages are available to calculate the 

concentrations (eg GEN5 [65]) Below is a schematic of the ADDA ELISA process. 

 

  

The ADDA ELISA Test Kit (Figure 7) contains:  

• A Microtiter plate coated with an analog of microcystins conjugated to a 

protein;  

• Standards (6) : 0ppb ;  0.15 ppb;  0.40 ppb;  1.0 ppb;  2.0 ppb; and  5.0ppb  

Figure 6. Schematic Representation of the ADDA  Indirect Competitive  ELISA 

 

 

 

 



35 

 

 

Figure 7.  Abraxis ADDA ELISA kit 

• A Positive control with  a 

concentration of 0.75 ppb;  

• Antibody solution 

(polyclonal anti-

Microcystins);  

• Anti-Sheep-HRP 

Conjugate;  

• Wash Solution 5X 

Concentrate;  

• Colour Solution, 

tetramethylbenzidine (TMB); 

• Stop Solution;  

• Diluent/zero solution, 25 mL 

 

2.5 Findings of ELISA data collected from raw water, Cape Town. 

 

Weekly samples from different treatment works supplying the City of Cape Town 

are delivered for toxin analysis by ELISA - ADDA (Abraxis) bioassay. To 

improve toxin quantification, in the raw water samples, algal cells needs to be 

lysed. This can be achieved by freeze thawing or sonication[9]. Samples were pre-

treated by sonication to effect lysis of the cells in a small Elma sonication water 

bath at approximately 78
o
C to 80

o
C [9]. The total microcystins and nodularins 

present (intra- and extracellular toxins) will thus be determined. Elisa can be 

validated by HPLC as it compares favourably. 

The results of ongoing algal toxin monitoring of drinking water at two treatment 

works are presented below in Table 4. The mean and maximum values of MCN’s 

tested via ELISA method  was determined for the period July 2007 to March 

2011. 
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Table 4.  ELISA summary results for Faure and Voëlvlei waters. 

Water Source 
Mean Value   

(µg/L MC-LR) 

Maximum value 

(µg/L MC-LR) 

Faure  Treatment Works: 
 Firlands Raw water (n=11) 

0.12 0.27 

Faure Treatment Works: 
 RSE Raw water (n=41) 

0.15 0.27 

Voëlvlei Treatment Works: 
Raw water (n-113) 

0.17 0.94 

Voëlvlei Treatment Works: 
Treated water (n-99) 

0.13 0.31 

 

The mean values of the raw and treated water remain below the 0.2 µg/L level. 

The values less than 0.15 µg/L have been reported as <0.15 µg/L as this is the 

lowest standard in the Abraxis ADDA Elisa kit. The kit did not show the good 

consistency when detecting lower values of antigens.  The manufacturers reported 

detection limits of quantitation to be 0.02 µg/L to 0.07 µg/L[54]. This was 

difficult to achieve in the routine analysis performed on the drinking water 

samples from Voëlvlei and Faure treatment works. The maximum values for the 

periods sampled indicate that Faure works does not support large numbers of algal 

cells. However, the Voëlvlei works shows a propensity for supporting harmful 

algal blooms. During this period of data review no significant outbreak of blue 

green algae blooms occurred, but prior to 2006, Voëlvlei Dam did produce blue 

green algal blooms. This incident, however, was not tested with the ELISA 

ADDA kit being discussed.  The blooms resulted from poor quality water that was 

added to the dam from the Klein Berg River to augment the dam levels. The Klein 

berg river is impacted by the agricultural town of Tulbugh.  The maximum values 

in Table 3 above, are below the WHO guideline of 1µg/L thus this water is 

deemed as being safe for consumption.  
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The trend graph at Voëlvlei Dam (Figure 8) shows that for most of the time the 

toxin levels in the raw waters are below the detection limit of 0.15 µg/L and that 

the treatment process does clean up toxins to below this level as well.  The raw 

water trend indicates that during the summer months there is an increased level of 

toxin concentration present in the water. Managers of treatment works are 

critically aware of this and do prepare for bloom events by having powdered 

activated carbon in their stores as a means of removing the toxins if the levels 

Figure 8. Time series showing trends of ELISA toxin data at Voëlvlei Water Treatment Works 

 

 

 

 



38 

 

should overshoot the WHO guideline. Thus it would appear that there is a low 

level presents of toxin present all year round and  peaks during the summer 

months when condition for algal growth are optimal. Low level of toxin exposure 

or to rephrased low level chronic exposure to MCN’s in the water is not well 

known, especially for humans. As a potent inhibitor of protein phosphatase 1A 

and 2A activities, MCN’s are similar to okadoic acid as, known tumour promoter 

[22]. In China it was found that the primary liver cancer prevalence was 

associated with drinking water contamination [59]. Zhou et al also should that 

there an was an association  between the incidence of colorectal cancer and 

drinking water, which may be related to low level chronic exposure to 

microcystins and nodularins in drinking water[66].  The reliable early and cost 

effective detection of microcystins is being pursued by many researchers so that 

lower chronic level toxin can be more accurately measure. ELISA’s are probably 

the most widespread immunochemical method and several diagnostic ELISA kits 

are now commercially available [39]. Pyo et al. 2005a integrated an ELISA into a 

microchip [67]. Also various biosensors employing antibodies [68-69] have been 

constructed and represent promising technologies especially for routine 

monitoring of environmental waters. Other detection techniques involve specific 

artificial receptors (molecularly imprinted polymers), which have been recently 

designed for microcystin-LR[70]. They have been employed not only for SPE 

sample clean-up, but also for construction of sensitive and inexpensive 

competitive assays or biosensors for microcystins analysis [71-72].   
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In this study we will look to develop an inexpensive easy to assemble biosensor 

(immune-sensor) for MCN’s. The definition of a biosensor is generally accepted 

in literature as a self contained integrated device consisting of a biological 

recognition element (enzyme, antibody, receptor or micro-organism) which is 

interfaced to a chemical sensor (i.e. analytical devise) that together reversibly 

responds in a concentration-dependant manner to a chemical species. 
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Chapter 3 
          

This chapter addresses the various analytical electrochemistry techniques and 

materials used in this current study in the development of the immunosensor for 

the antibody-antigen based detection of microcystin and nodularin toxins in 

water.  

Methodology 

3.1 Electrochemistry  

Electrochemistry analytical methods are a class of techniques in analytical 

chemistry which study an analyte by measuring the potential (volts) and/or current 

(amperes) in an electrochemical cell containing the analyte [73]. These methods 

can be broken down into several technique-categories depending on which aspects 

of the cell are controlled and which are these various aspects are to be measured. 

The study of voltammetry, where the electrochemical cells current is measured 

while the cells potential is actively changing is the most common technique used. 

Another technique that is also commonly use is the impedimetric techniques.  

 

Voltammetry developed from the discovery of polarography in 1922 by the Czech 

chemist Jaroslav Heyrovsky, for which he later received the Nobel Prize in 

chemistry [74]. In the 1960s and 1970s significant advances were made in all 

areas of voltammetry (theory, methodology, and instrumentation), which 

enhanced the sensitivity and expanded the repertoire of analytical methods[73].  

The application of a potential (E) to an electrode and the monitoring of the 

resulting current (i) flowing through the electrochemical cell is a common 

characteristic of all voltammetric techniques [74]. In many instances the applied 
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potential is varied or the current is monitored over a period of time (t). Thus   

voltammetric techniques can be described as some function of E, i, and t. They are 

considered active techniques because the applied potential forces a change in the 

concentration of an electroactive species at the electrode surface by 

electrochemically reducing or oxidizing it,  this is different to the  passive 

techniques such as potentiometry[73].   

 

 Voltammetric techniques have the analytical advantages in that they have better   

sensitivities with a very large useful linear concentration range for both inorganic 

and organic species (10
–12

 to 10
–1

 M), a large number of useful solvents and 

electrolytes, a wide range of temperatures, rapid analysis times (seconds), 

simultaneous determination of several analytes, the ability to determine kinetic 

and mechanistic parameters, a well-developed theory and thus the ability to 

reasonably estimate the values of unknown parameters, and the ease with which 

different potential waveforms can be generated and small currents measured [74]. 

 

Voltammetric techniques are often used for the quantitative determination of a 

variety of dissolved inorganic and organic substances. However, the  use 

voltammetric techniques has been applied to a variety of purposes, including 

fundamental studies of oxidation and reduction processes in various media, 

adsorption processes on surfaces, electron transfer and reaction mechanisms, 

kinetics of electron transfer processes, and transport, speciation, and 

thermodynamic properties of solvated species. Voltammetric methods are also 

applied to the determination of compounds of pharmaceutical interest and, when 
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coupled with HPLC, they are effective tools for the analysis of complex 

mixtures[73]. 

3.1.1 Cyclic voltammetry  

 

Cyclic voltammetry is a widely used electro-analytical technique that uses micro-

electrodes and unstirred solution so that measured current is limited by the analyte 

diffusion at the electrode surface. It has wide applications in the study of redox 

processes, electrochemical properties of analytes in solution and for understanding 

reaction intermediates as well as for obtaining the stability of reaction products 

[73-74]  

 

The technique works by varying some applied potential at a working electrode at 

some scan rate (v) in both forward and reverse direction while monitoring the 

current. The resultant trace of current against potential is termed as a 

voltammogram[74]. During cyclic voltammetry measurement, the potential is 

ramped from an initial potential, Ei to a more negative or positive potential but, at 

the end of the linear sweep, the direction of the potential scan is reversed, usually 

stopping at the initial potential , Ei (or it may commence an additional cycle)[74] . 

The potential is usually measured between the reference electrode and the 

working electrode and the current is measured between the working electrode and 

the counter electrode (auxiliary electrode)[75].  
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A typical cyclic voltammogram is illustrated in figure 9. 

 

Figure 9. Typical cyclic voltammogram showing reduction and oxidation peaks 

Important parameters and information are usually obtained from cyclic 

voltammograms for analysis of redox properties of an electroactive sample. These 

parameters include 

• Peak potentials (Epc, Epa) and peak currents (Ipc, Ipa) of 

the cathodic and anodic peaks, respectively. 

• It also provides information about the sample 

• The reversibility or irreversibility of the reaction or whether 

it is quasi –reversible.  

•  insight into how fast the electron process is, relative to 

other processes such like diffusion.[74] 

 

3.1.2 Square wave voltammetry  

 

Square wave voltammetry (OSWV) is an improvement and on the linear sweep 

voltammetry because it allows for a more sensitive interrogation of the 

electrochemical nature of the analytes. In linear sweep voltammetry (as mentioned 

above) where the current at a working electrode is measured while the potential 

between the working electrode and a reference electrode is swept linearly in time. 

Oxidation peak 

Reduction peak 
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In OSWV a square wave is superimposed on the potential staircase sweep so that 

peaks and troughs that are recorded during the square wave sweep occurs at the 

potential where the chemical species present is either oxidised or reduced. The 

potential sweep in OSWV is a series of stair steps; therefore the current is 

measured at the end of each potential change and before the next, so that the 

contribution to the current signal from the capacitive charging current is 

minimized[73-74]. The advantages of the OSWV technique are more sensitive 

and therefore have much lower detection limits due to the lower contribution of 

capacitative of charging current[76].  Detection limits for SWV are on the order of 

nanomolar concentrations and the scan times are much faster. 

 

3.1.3 Differential Pulse Voltammetry  

 

Differential Pulse Voltammetry (DPV) is similar to linear sweep voltammetry in 

that the potential is scanned with a series of pulses, however the difference is that 

each potential pulse is fixed and of small amplitude (10 to 100 mV), and is 

superimposed on a slowly changing base potential[76]. Current is measured at two 

points for each pulse, the first point just before the application of the pulse and the 

second at the end of the pulse. These sampling points are selected to allow for the 

decay of the non-faradaic (charging) current. The difference between current 

measurements at these points for each pulse is determined and plotted against the 

base potential[74]. 

DPV is a useful technique for identifying any electroactive specie at the working 

electrode surface. This technique is suited for characterizing thin conducting 

polymer films. The potentials of the peaks formed with DPV, can help to identify 
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the cation in solution. The concentration of analytes can also be determined with 

DPV since the peak area is proportional to concentration. When using the 

Osteryoung-parry equation, the peak height can be used to estimate the analyte 

concentration in solution[73-74].  

The equation is  

     

 where  

Ip = Peak current for either the oxidation or reduction peak being  

       considered 

n  = Number of electrons transferred 

F  = Faraday constant (96584 C mol
-1

) 

Γ* = Surface Concentration of the electroactive film bound to the working    

        electrode. 

A  = Surface area 

v  = Scan rate (Vs
-1

) 

R  = Gas constant (8.314 Jmol-1K-1) 

T  =  Temperature the system (K) 

D = Diffusion coefficient 

t  = is the time between pulses. 

The magnitude of ∆E and the rooted term (D/πt), implies that the separation of 

potential and diffusion of analyte to the electrode plays and important role in 

determining the value of ∆Ip which increases the accuracy of this technique. By 

working with a differential current the sensitivity of the technique is improved. 

∆Ip = (n
2
F

2
A/4RT).(D/πt)

1/2 
.Canalyte ∆E 
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3.2 Electrochemical Impedance Spectroscopy (EIS) 

 

3.2.1 Background  

 

EIS is widely used as a standard characterization technique for many material 

systems and applications (e.g .corrosion, plating, batteries, and fuel cells)[77] . 

Simply stated it is the response of an electrochemical system or cell to an applied 

potential. In cyclic voltammetry and other dynamic electroanalysis, an applied 

potential is either constant (potentiostatic) or changing (potentiodynamic) when 

ramped at a constant rate of  v =dE/dt [74]. However, in impedance, a small 

perturbing potential (~ 5 mV amplitude[77] ) is applied across a cell or sample 

and changes in a cyclic sinusoidal manner and generates a current resulting from 

the overpotential (η) caused by the small displacement of the potential from the 

equilibrium value. Over a time scale, the averaged over potential is zero. Because 

the potential is only perturbing, it has the advantage of minimizing the 

concentration change after the experiment. The induced current alternates because 

the voltage changes in a cyclic manner, hence the term alternating current (AC). 

Impedance is therefore a measure of the ability of a circuit to resist the flow of 

an alternating current (AC)[74, 78] . It is synonymous to resistance (R) used in  

direct current (DC), which is defined by Ohm’s law  

      

 as the ratio between voltage (E) and current (I)[73-74] . 

The advantages of   EIS are that it is a non-destructive and rapid in situ technique 

for examining processes occurring at the electrode surface. During a controlled-

potential EIS experiment, the electrochemical cell is held at equilibrium at a fixed 

DC potential, and a small amplitude (5–10 mV) AC wave form is superimposed 

R = E / I 
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on the DC potential to generate a response from the equilibrium position. The 

response to the applied perturbation, which is generally sinusoidal, can differ in 

phase and amplitude from the applied signal. This response is measured in terms 

of the AC impedance or the complex impedance, Z (overall or complete 

impedance), of the system, which permits analysis of electrode process in relation 

to diffusion, kinetics, double layer, coupled homogeneous reactions, etc [79].  The 

complex impedance (Z* ) is made up of a resistive or real part Z′, attributable to 

resistors (in phase with the applied voltage), and a reactive or imaginary part Z′′, 

attributable to the contributions of capacitors. This is related to the resistance (R), 

reactance (X) and capacitance (C) by the equation: 

 

 

 

where     X = 1/ωC and ω = 2 π f.   R is the resistance measured in Ohms (Ω),  X is 

the reactance, C the  capacitance measured in Farads (F),     ω the applied angular 

frequency  measured in rad s
-1

 and  f  is the frequency measured in Hertz (Hz)[73]. 

Notational representation of this in terms of Z′ and Z" is given by: 

 

 

 

Because Z *is defined by the complex term, j, which determines the contribution 

of  Z′′ to Z′, the term complex impedance is often used. For a pure resistor that is 

not having any capacitance, its resistance when determined with a continuous 

current (DC) is R because its impedance is frequency independent, Z* = Z′ = R 

[74]. 

 

 

 

Z*  = R −  jX 
 

Z *= Z′ - jZ′′ where j = √-1  
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3.2.2 Nyquist & Bode Plots  

 

The Nyquist plot of Z′ is often used to present experimental data collected from an 

impedance experiment (usually positive x-axis corresponds to the real 

impedance), versus Z′′ (usually, the positive y-axis correspond to -Z"), over a wide 

frequency range (100 kHz to 0.1 Hz). The Nyquist plot of impedance spectra 

includes a semicircle portion and a linear portion, with the former at higher 

frequencies corresponding to the electron transfer process and the latter at lower 

frequencies corresponding to the diffusion process. The electron transfer 

resistance (Rct) at the electrode surface is equal to the semicircle diameter, which 

can be used to describe the interface properties of the electrode[74, 80]. 

 

Impedance data can also be presented as a Bode Plot in which the logarithm of the 

absolute value of Z′ and the phase (φ) are plotted against the logarithm of the 

frequency (f)[81]. This can be plotted on the same axis or separately. The data in 

Nyquist plots is often poorly resolved (particularly at high frequencies), but are 

more commonly displayed for historical reasons. The explicit frequency 

dependence is not displayed in the Nyquist plot. In contrast, the bode plot directly 

displays the frequency dependence; in addition, the data is well resolved at all 

frequencies, since a logarithmic frequency scale is used. When the frequency of 

the AC waveform is varied over a wide range of frequency (ca about 10
-4

 and > 

10
6
 Hz), the impedance obtained for the system is a function of the operating 

frequency. Spectra of the resulting impedance at different frequencies do reveal 

the different electrochemical kinetics involved in the system. While dipolar 
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properties are manifest at the high frequency regions, bulk and surface properties 

will be evident at intermediate and low frequencies respectively[81]. 

The total impedance of a system is determined by the various component 

impedances of an electrochemical cell; for example, electron transfer kinetics, 

diffusion and passivating layers. The relative contribution of the various 

components typically varies with frequency; for example, electron transfer 

kinetics may dominate at high frequencies, whereas diffusion may dominate at 

lower frequencies[81]. 

Thus to characterize impedance, Z, the following must be specified; its 

magnitude, absolute Z′, phase angle, (φ), and the frequency, f (in cycles per 

second, or Hertz), at which it was measured. These three parameters are 

represented as the Bode plot (Figure 10( a). The plot of the real part of impedance 

against the imaginary part gives a Nyquist Plot (Figure 10(b)). The shape of the 

resulting curve (or semicircle) is important in making qualitative interpretations of 

the data. Electrochemical Impedance plots sometime contain several semicircles 

and often only a portion of the semicircle is seen. Both plotting formats are used 

because each has its strengths. The advantage of Nyquist representation is that it 

gives a quick overview of the data and one can make some qualitative 

interpretations [79]. The disadvantage of the Nyquist representation is that one 

loses the frequency dimension of the data. One way of overcoming this problem is 

by labelling the frequencies on the curve.  
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To quantitatively analyze the data from the Nyquist or Bode plot, it has to be 

fitted to an equivalent circuit where the values of the electrical components are 

associated with the physical/  chemical properties of the electrochemical system 

being studied.  The circuit model provides a simple way of understanding what 

may be a complicated electrochemical system. The equivalent circuit is a 

combination of capacitor(s) and resistor(s). One commonly used equivalent circuit 

is the Randles circuit for fitting the impedance data.  

 

 

 

 

 

 

 

 

 

 

From the circuit the above , electron transfer resistance (Rct) at the electrode , and 

the  capacitance ,C, which is the ability of an electrochemical system to store or 

retain charge and Zw is the Warburg impedance associated with the resistance as a 

result of  the diffusion of ions across the electrode/electrolyte interface.  Thus, EIS 

can give useful information of the impedance changes on the electrode surface 

before and after modification. 

 

Z(B)

Figure 10. Typical Bode Plot (a) and a typical Nyquist Plot (b) 

(a)    (b) 

Figure 11. Randles equivalent circuit for simple electrochemical cell 
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3.3 Reagents and instrumentation 

 

3.3.1 Reagents 

 

All chemicals used in this study were purchased from Sigma – Aldrich (Pty) Ltd., 

South Africa. The pyrrole (98%) was re-distilled at reduced pressure and saturated 

with argon atmosphere and stored in 1 mL ampoules in the dark at 4
o
C. 

Hydrochloric acid (32%) was used without further treatment. Deionised-distilled 

water used was prepared with Milli-Q water purification apparatus (Millipore). 

Antibody and Microcystin antigen congeners were obtained from the commercial 

Abraxis ADDA toxin kit. (Chapter 2).  

 

3.3.2 Instrumentation 

 

All voltammetric experiments (Cyclic voltammetry-CV, Osteryoung square wave 

voltammetry -OSWV and Differential Pulse voltammetry studies) were carried out 

with a BAS 100W automated electrochemical workstation (Bioanalytical Systems, 

Lafayette, IN, USA) room temperature. Electrochemical impedance spectroscopy 

(EIS) measurements were performed with a PGZ402 Voltalab Analyzer 

(Radiometer Analytical S.A, France). A conventional three-electrode cell was 

used. The electrodes were a glassy carbon disc electrode (GCE) with a surface 

area of 0.071 cm
2,

 as the working electrode (WE), a platinum wire auxiliary 

electrode (AE) and Ag/AgCl (3 M NaCl type; BAS MF-2052) reference electrode 

(RE).  
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The working electrode was cleaned by polishing, using circular motions, on 

slurries of 1.0 µm, 0.3 µm and 0.05 µm alumina powders (Bueller, IL, USA) 

placed on individual alumina pads, and rinsed with deionised water obtained by 

passing distilled water through a Milli-Q water purification apparatus (Millipore). 

Intermittently between usages, the electrodes were treated in hot concentrated 

H
2
SO

4 
and 30% H

2
O

2 
and washed with distilled deionised water. The counter 

electrode (AE) was cleaned between each experiment by heating in a Bunsen 

flame, washed and thoroughly rinsed with plenty of deionised water. The 

polypyrrole film was prepared from 35.ug/L of pyrrole, pre-treated by degassing 

with argon, added to a electrochemical cell containing 5 mL of degassed 0.1 M 

HCl (pH 7.0). 
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Chapter 4 
 

Results and discussion 

4.1  Instrumentation : 

 

Electrochemical experiments were performed with a BAS 100W electrochemical 

workstation and electrodes from Bio-Analytical Systems, BAS, USA. Cyclic and 

square wave and differential pulse voltammograms were recorded with a 

computer interfaced to the BAS 100W workstation.  

A glassy carbon disk electrode (GCE) with a surface area 0.071 cm
2
 (diameter, 

3mm) was used as the working electrode. A platinum wire and Ag/AgCl (3 M 

NaCl) electrodes were used as auxiliary and reference electrodes, respectively. 

The GCE was cleaned by polishing, using circular motions, on slurries of 1.0 µm, 

0.3 µm and 0.05 µm alumina powders (Bueller, IL, USA) placed on individual 

alumina pads, and rinsed with deionised water obtained by passing distilled water 

through a Milli-Q water purification apparatus (Millipore).  The polished GCE 

was sonicated in millipore water after each consecutive polishing step. Polishing 

was done to ensure the removal any loosely-bound micro-particles. This pre-

treatment process was also conducted to activate surface groups of the GCE for 

successful subsequent modification.  All voltammetric results are reported with 

respect to Ag/AgCl reference electrode..  
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4.2  Synthesis of Polypyrrole 

Pyrrole (98%) available from Sigma-Aldrich was distilled and placed into 1ml 

vials after being degassed with argon for 5 mins  and stored in the dark  at 4
o
C.  

Vials were degassed for 5 mins before being used in electrochemical experiments. 

Thin polypyrrole films were prepared from 0.1 M solutions of distilled pyrrole in 

an ionic solution of 0.1 M HCl (by adding 35.3 µL of distilled pyrrole into 5 mL 

of 0.1 M HCl).  The choice of 0.1M HCl was based on work done by Akinyeye et 

al [78] that showed that a clear and unambiguous potential window between -400 

and 700 mV allowed for characterisation of peaks resulting from polypyrrole 

within the same potential window. The choice of a an electrolyte concentration of 

0.1 M HCl was based on the finding that higher concentration of 0.5 M and 1.0 M 

HCl causes undesirable and accelerated oxidation of the pyrrole monomer before 

application of potential [78].  

To prevent over-oxidation of the polymer the electrolyte solution was purged by 

de-gassing with a gentle flow of argon gas for 15 min prior to usage and keeping 

the argon atmosphere on the electrolyte during polymerisation and 

characterisation processes. The films were grown potentiodynamically with a scan 

rate (v) of 50 mV/s by adding 35.3 µL of Pyrrole to a glass electrochemical cell 

containing 5 mL of 0.1 M HCl .  The electro-synthesised films were dried in air 

for about 5 min prior to characterisation in fresh 0.1 M hydrochloric acid solution. 

The cyclic voltammogram for the electropolymerization of undoped polypyrrole 

film on a GCE is shown in figure below. The electrochemically polymerized film, 

grown at a scan rate (v) of 50 mV/s for 10 cycles was observed to have good 

adhesion to the GCE surface.  
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The CV does not produce well defined oxidation and reduction peaks. The 

observation is in keeping with the findings of  others[78]. This is due to the 

polymerization in a supporting electrolyte that has a small anionic dopant that 

could not produce an electroactive polymer with reversible or quasi-reversible 

electrochemistry.  Larger dopant were investigated (ZrO2
-
 ; WO3

-
) however of the 

dopants solubility was not easily achieved. 

 

 

 

 

 

 

 

Figure 12. Cyclic Voltammogram of the polymerization of Polypyrrole in 0.1 M 

HCl over the potential window of -400 to 700 mV at a scan rate of 50 mV/s for 10 

cycles on a GCE electrode. 
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 4.3 Characterization of Polypyrrole Modified Glassy Carbon 

electrode (GCE) 

CV is very often used to characterize conducting polymer films. This is often the 

most favoured method for studying the reversibility of electron transfer because 

the oxidation and reduction can be monitored in the form of a current–potential 

diagram. Cyclic voltammetry results of polypyrrole-modified GCE electrode 

(GCE/PPY) is given below in the Figure 13. 

 

Figure 13. Characterization GCE/PPy electrode at different scan rates (a=5, b=10,c= 

20,d= 50 & e= 100 mV-s) using cyclic voltammetry.  

 

The GCE/PPy electrode was characterised in fresh 0.1 M HCl at a different scan 

rates. There was an observed increase in anodic and cathodic peak currents with 

increasing scan rates over the potential window -500 to 700 mV/s. Brown-Anson 

plots in figure 4.3 were drawn to determine the surface concentration of the 

a 

b 

c 

d 

e 
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polymer films. Film thickness was not determined, thus the diffusion coefficients 

were calculated as a function of film thickness (L) using the Randle-Sevcik 

Equation. 

De/L for undoped polypyrrole = 3.36x10
-3

 cm
2
/s 

 

 

 

Figure 14.  Plot of Square root of  scan rate vs Current (A) for GCE/PPY  film in 

0.1 M HCl. 

 

After characterization the electrodes were carefully cleaned. The CGE/PPY was 

thoroughly rinsed with milllipore water and care was taken not to disturb the 

polypyrrole film on the electrode surface. The Ag/AgCl electrode was rinsed 

thoroughly and the reference electrode (Pt-wire) subjected to a Bunsen flame for 1 

min to remove all impurities. A fresh Electrochemical cell was assembled with the 

supporting electrolyte made up of 7.0 pH , 0.1 M PBS. A few sweeps of cycle 
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voltammetry sweeps at 50 mv/S was done in the PBS to condition the 

polypyrrole-modified electrode. This served to condition the electrode and remove 

any residual acid (HCl analyte). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  Characterization of GCE/PPY in 0.1 M PBS (pH 7.0) at scan rates 

(a=5, b=10,c= 20,d= 50 & e= 100 mV-s) 

 

 

The characterization graph for the polypyrrole modified glassy carbon electrode in 

0.1 m PBS is depicted (figure 15). Anodic peaks and cathodic peaks show in 

increase and decrease peak heights respectively with increased scan rates. 

a 
b 

c 

e 

d 
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Figure 16.  Plot of Square root of  scan rate vs Current (Ipa) of  for GC/PPY in 

PBS 0.1M PBS (pH7.0) 

The De    calculated on the trace generated a the 50mV/-S in figure 14 was  

8.79518x 10
-8

 cm
2
/s 

 

 

In both multi-scan rate voltammograms of the GCE/PPY electrode in 0.1 M HCl 

and 0.1M PBS (figure 13 and figure 15 respectively), both sets of peak potentials 

and corresponding peak currents varied, this possible indicates  that the polymer 

was electroactive and diffusion of electrons was taking place along the polymer 

chain. 

 

4.4  Preparation of Immunosensor 

The polypyrrole-modified glassy carbon electrode (GCE/PPY) was air dried for 

10 minutes after characterization steps described above. An accurate 10µl of 

Antibody solution (polyclonal anti-microcystins) was drop-coated onto the 

GCE/PPY surface and allowed to incubate overnight at 8
o
C for approximately 12- 

16 hours. The polyclonal antibody was obtained from a commercially available 
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ELISA kit produce by Abraxis and is a patented antibody raised in mice (Mouse 

IgG1). Following the initial incubation, a further 10 µg/L of antibody solution was 

added to the GCE/PPY. The freshly formed immunosensor (GCE/PPY/AB) was 

covered with a lid and allowed to dry at room temperature for 1-2hrs. All further 

electrochemical experiments were carried out in 0.1 M PBS (pH 7.0) vs a 

Ag/AgCl reference electrode. 

 

4.5 Cyclic Voltammetry. 

4.5.1 Cyclic Voltammetric Investigation of Immunosensor 

 

The prepared  GCE/PPY/AB immunosensor was investigated with CV over a 

potential window of -500/700 mV, with increasing scan rates (10, 20, 50 and 100 

mv
-
S) in 5mls of 0.1 M PBS (pH 7.0).  No distinct peaks are observed at all of the 

scan rates. The electro-conductivity was observed to increase with increasing scan 

rates, however,   there   was no change in conductivity as observed in the 

voltamogramme trace for curves for 50 and 100mV-s, (both yielded identical 

curves in figure 17 (c=d)).    The formal potential could not be determined from 

the data CV (figure 17). More sensitive voltammetric methods (OSWV and DPV) 

were thus used to observe the immunosensor responses over a potential range 
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Figure 17.  The multi –scan rate cyclic voltammograms for the Immunosensor 

(GCE/PPY/AB ) (a= 10, b =20, c=50 and  d = 100 mV/s) 

 

 

4.5.2 Square Wave (OSWV) Voltammetric Investigation Of 

Immunosensor 

 

The immunosensor ,GCE/PPY/AB,  was thus investigated using the more 

sensitive method of OSWV. The Potential window for the forward oxidative 

sweep was started from the initial E of -500 mV  to the final E of  +700 mV.  

Figure 18 and figure 19  shows the multi-scan rate using  OSWV  of the 

immunosensor (GCE/PPy/AB)  for the Anodic and Cathodic sweeps. 

 

 

 

a 

b 
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The Peak potential in anodic graphs shows decrease in current with increase scan 

rates and the cathodic graphs show an increase in peak current with increase scan 

rates. The formal potential ∆E for the immunosensor system was calculated to be 

-112 mV vs Ag/AgCl  using the equation 

 ΔE  =      ( Epa  + Epc)  / 2   

                  

 The formal potential was calculated based on the average cathodic and anodic 

peak potential determined at different scan rates (Table 5 below) 

OSWV   Anodic  Cathodic Formal 

Scan rate 

mV/s   Epa Epc Eo   (mV) 

15   -149.6 -149.6 -149.6 

30   -75.3 -145.5 -110.4 

45   -51.9 -145.4 -98.65 

60   -62.5 -145.4 -103.95 

75   -49.8 -143.4 -96.6 

    

average 

Eo   -112 

Table5. Average peak potentials calculated for different scan rates for the anodic 

and cathodic observed   

Figure 18. Multi-scan rate using OSWV of 

the immunosensor (GCE/PPy/AB) for the 

Anodic sweep 

Figure 19. Multi-scan rate using OSWV of the 

immunosensor (GCE/PPy/AB) for the Cathodic 

sweep 

 

 

 

 



63 

 

4.5.3  Differential Pulse Voltammetric  Investigation Of 

Immunosensor 

 

The GCE/PPY/AB was also investigated using the more sensitive method of 

DPV. The Potential window for the forward oxidative sweep was started from the 

initial E of  -500mV  to the final E of  +700 mV.  

 

 

 

 

 

 

 

 

 

 

 

   *Note: for both graphs a = 10, b -20 c = 5- and d = 100 mV/s 

 

Figures 20 and 21 depict the multi-scan rate using DPV of the immunosensor 

(GCE/PPy/AB) for the anodic and cathodic  sweep respectively. The formal 

potential for the immunosensor system was calculated to be -124 mV vs Ag/AgCl  

using the equation for ∆E (∆E  = ( Epa  + Epc)  / 2 ). The formal potential was 

calculated based on the average cathodic and anodic peak potential determined at 

different scan rates Table 6) 

a 

Figure 20.   Multi-scan rate using 

DPV of the immunosensor 

(GCE/PPy/AB) for the anodic sweep* 

Figure 21.   Multi-scan rate using DPV 

of the immunosensor (GCE/PPy/AB) for 

the cathodic sweep* 

a 
b 

c 

d b 
c 
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DPV   Anodic  Cathodic Formal 

Scan rate 
mV/s   Epa Epc Eo    (mV) 

10   -158.1 -134.7 -146.4 

20   -153.9 -145.4 -149.65 

50   -85.9 -147.5 -116.7 

100   -26.4 -141 -83.7 

    
average 
Eo   -124 

Table 6. Average peak potentials calculated for different scan rates for the anodic and 

cathodic observed 

 

The values for formal potential of the immunosensor system as determined by 

square wave voltammetry and differential pulse voltammetry are in good 

agreement.  These formal potential was used in the evaluation of antigen binding 

to the immunosensor and for the calibration curve development and real sample 

analysis. 

 

 

4.6 Development of Calibration curves  

 

The immunosensor was calibrated by varying the addition of known amounts of 

antigen concentration. Since OSWV and DPV were the only two methods used, 

that were sensitive enough to observe changes in peak potentials at different scan 

rates, the development of the calibration curves were undertaken by these two 

methods.  The Immunosensor GCE/PPy/AB was setup as the working electrode in 

a three as described previously using SWV and DPV techniques. Microcystin 

antigen standard, with a concentration of 1µg/l was added to the 5mL electrolyte 

0.1M PBS solution (pH7.0). The antigen was added in aliquots of 2µl. After each 
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standard addition the OSWV and DPV traces where run at scan rates 60 mV/s and 

50 mV/s respectively. The resultant anodic and cathodic curves are depicted in 

Figures 22(a) and 22(b). 

        

Figure 22. Oxidative (a)  and reductive (b) OSWV for immunosensor response to 

increasing Antigen  concentration. 

 

The cathodic sweep did not reveal clear changes in cathodic peak current (Ipc). 

The data from thus could not be used. Table 7 shows the concentrations and 

current differences used to construct the calibration curves for the Square wave 

Analysis (see Figure 24 and 25)  

Table 7.  Calibration curve data for OSWV 

OSWV OX Difference  
Concentration 
of   Antigen RED  Difference 

Concentration 
of   Antigen 

i µA          µg/l i µA           µg/l 

AB -9.499E-06 0.000E+00 0 

9.726E-06 0.000E+00 

0 

AG1 -9.552E-06 5.300E-08 3.998E-04 

9.716E-06 1.000E-08 

3.998E-04 

AG2 -9.601E-06 1.020E-07 7.994E-04 

9.733E-06 -7.000E-09 

7.994E-04 

AG3 -9.609E-06 1.100E-07 1.199E-03 

9.756E-06 -3.000E-08 

1.199E-03 

(a) (b) 
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The anodic sweep showed a clearer change in peak current response, with the 

addition of antigens, than the cathodic sweep. The changes in cathodic peak 

current (Ipc) was smaller in comparison to the Anodic peak responses.  Table 8 

shows the concentrations and current differences used to construct the calibration 

curves for the DPV Analysis (see Figure 26 & 27)  

 

 

 

 

 

 

 

 

Figure 23.  Oxidative (left)  and reductive (Right) DPV for immunosensor  

response to increasing Antigen concentration and a scan rate of 50 mV/s  

 

Table 8. Calibration curve data for DPV 

DPV OX Difference  
Concentration of 
Antigen RED  Diferrence 

Concentration 
of  Antigen  

i µA µg/l i µA µg/l 

AB -4.042E-06 0.000E+00 0 2.057E-06 0.000E+00 0 

AG1 -3.935E-06 1.070E-07 3.998E-04 1.967E-06 9.000E-08 3.998E-04 

AG2 -3.879E-06 1.630E-07 7.994E-04 1.916E-06 1.410E-07 7.994E-04 

AG3 -3.834E-06 2.080E-07 1.199E-03 1.890E-06 1.670E-07 1.199E-03 

 

 

 

Peak area 
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Figure 24.   Calibration curve using anodic  OSWV  peak response. 

 

 

 

 

 

 

 

 

 

 

Figure 25.   Calibration curve using cathodic SWV  peak response 
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Figure 26.   Calibration curve using anodic  DPV  peak response 

 

Figure 27.   Calibration curve using cathodic  DPV  peak response 
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The anodic peak response showed the approach to saturation and hence levelling 

off of the XY plot, at the highest concentration of antigen added to solution (1.2 x 

10
-3

).  The cathodic peak response to the Antigen-Antibody (Ag-Ab) binding 

event did not show the levelling off at the highest concentration detected 

indicating that the anodic current response was faster and is most likely the 

dominant catalytic mechanism for monitoring the Ab-Ag binding event.  The 

same behaviour was observed using SWV and DPV current response. The 

calibration curve for the Cathodic OSWV results were inconclusive.   

 

4.7 Real samples analysis: 

The polypyrrole modified immunosensor was used to investigate the binding 

response of real samples taken from the raw dam waters intended for drinking 

water purposes. The samples analysed were from Voëlvlei Dam and pre-treated 

by sonication to release any microcystin antigens form the algae and to arrest any 

biological activity. Samples were then filtered with syringe filters (0.45 µm pore 

size GFC Whatmann).  

4.7.1 Differential Pulse Voltammetric Investigation Of Immunosensor and Real 

Samples 

The antigen antibody binding events were observed in the sample matrix (figures 

28 & 29 

 

 

 

Sample  

Immunosensor  

Figure 28. OSWV of immuno-

sensor (GCE/PPY/AB) anodic 

response to real samples from 

Voëlvlei Dam  
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Figure 29. OSWV of immunosensor (GCE/PPY/AB) anodic response to real samples 

from Voëlvlei  dam 

 

 

 

 

 

 

 

 

 

 

The immune sensor does show a response to the antigen antibody binding at the 

electrode surface. Oxidative and reductive OSWV for immunosensor appears to 

have responded to an unknown concentration of antigens in the sample matrix. 

The current difference of the oxidative peaks for sample response and baseline 

immunosensor taken at the calculated formal potentials of 104 is given in the  

Table 9.  The concentrations for the unknowns could be calculated. 

 

Sample 

Immunosensor 
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Table 9. Table 4.5 : Showing the Peak currents and difference in peak currents of 

sample and immunosensor using OSWV 

AB= antibody; AB+SMP = antibody with sample. 

 

4.7.2 Differential Pulse Voltammetric investigation of immunosensor and real sample 

 

The antigen antibody binding events were observed in the sample matrix and 

showing Figures 30 (a) and (b) 

 

 

 

 

 

 

 

Figure 30. DPV of immunosensor (GCE/PPY/AB) anodic response (a) and   

                   cathodic response (b)  to real samples from Voëlvlei dam 

. 

 

Voelvlei Dam Raw Water 

    current (µA) Difference AB - (AB/SMP)(µA) 

OSWV OX AB -4.490E-05   

  AB + SMP -6.356E-05 1.866E-05 

OSWV RED AB 7.174E-05   

  AB + SMP 7.875E-05 -7.010E-06 

Sample (pink) 

(a) (b) 

Immunosensor 
(blue) 
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 Table 10. Showing the Peak currents and difference in peak currents of sample     

and immunosensor using DPV 

 

The  decrease in current observed in the sample  was related to the decrease in 

current as a result for the antibody-antigen binding and could be related to the 

concentration of the antigen in the sample using the calibration curves  set up for 

DPV and SWV. It should be noted that the DPV was more sensitive on the anodic 

potential sweep. The cathodic curve could not be used.  

The real concentrations for the results were comparable to the results obtained by 

ELISA method. This was only true for the Anodic currents of DPV and OWSV.  

Table 11. Comparison of results from ELISA and Immunosensor 

NB. Immunosensor result was diluted during the investigation. 

 

 

 

 

 

Voëlvlei Dam Raw Water 

 

    current (µA) Difference AB - (AB/SMP)(µA) 

DPV OX AB -2.247E-05   

  AB + SMP -3.706E-05 1.459E-05 

DPV RED AB 1.165E-04   

  AB + SMP 1.191E-05 1.046E-04 

ELISA results for Dam 0.28ug/l MYC 

Method 

Acceptable error  10% 

Immunosensor  estimated 

result 
0.14ug/l MYC Error to be determined in future work 
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4.8 Electrochemical Impedance Spectroscopy (EIS) results 

 

 

 

 

 

Chapter 5: 

Conclusions 
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The monitoring of cyanotoxins continues to be a major concern facing modern 

society. The detection of cyanotoxins and in particular MCN’s has gone through 

number improvements. The emphasis on increase sensitivity and the ability detect 

lower concentrations has been focus of many studies[39].   The analytical 

methods used for MCN’s and specifically for Microcystin –LR can be divided 

into those that are used as screens i.e. they detect the presence of toxins and 

generally don’t need pre-treatment of samples,  and those that are  used for the 

identification and quantification of various individual toxins  and require elaborate 

and tedious pre-treatment and concentration steps. The Elisa Method is currently 

the method of choice in routine monitoring laboratories. However the costs of 

Elisa consumables are increasing just as fast as the demand for toxin testing.  

 

Accreditation of routine monitoring laboratories also places extra pressure on labs 

to perform the lab analysis to a strictly controlled set of criteria. The need for 

accreditation is necessary to maintain a global standard of general laboratory 

practice that can sustain results that are reputable. The need for an accredited 

toxin analysis that is both cost effective and accurate and can conform to the 

demands of an accredited laboratory is being sought.  Biosensors are fast 

becoming the methods of choice for routine monitoring laboratories. Biosensor 

applications are varied owning to the easy assembly and low production costs 

effective.  
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This work showed that the polypyrrole-modified immunosensor was responsive to 

the presence of microcystin toxin in real samples, based on the antibody antigen 

binding reaction specificity. While there is lots of refining needed in the 

production of the immunosensor, the principle of antigen-antibody binding 

reaction can be investigated further by electrochemical analysis techniques.  

The Immunosensor was sensitive to lower dosages of toxin when compared to the 

ELISA method. It is predicted that future work would show that the 

immunosensor would be sensitive to lower concentrations below the detection 

limit of the ELISA methods. This would be beneficial to the routine monitoring of 

algal toxins since the low sub-lethal doses would be detected early during the 

water treatment process. 

Furthermore the analytical techniques employed in electrochemistry would easily 

conform to the rigours of an accredited laboratory. 
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